
www.mdpi.com/journal/algorithms

Special Issue Reprint

Scheduling
Algorithms and Applications

Edited by

Frank Werner

Scheduling: Algorithms and
Applications

Scheduling: Algorithms and
Applications

Editor

Frank Werner

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor

Frank Werner

Otto-von-Guericke University

Magdeburg, Germany

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special

issues/Scheduling Algorithms Applications).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-8276-4 (Hbk)

ISBN 978-3-0365-8277-1 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to “Scheduling: Algorithms and Applications” . ix

Frank Werner

Special Issue “Scheduling: Algorithms and Applications”
Reprinted from: Algorithms 2023, 16, 268, doi:10.3390/a16060268 1

Yuri N. Sotskov

Assembly and Production Line Designing, Balancing and Scheduling with Inaccurate Data: A
Survey and Perspectives
Reprinted from: Algorithms 2023, 16, 100, doi:10.3390/a16020100 5

Omar Salah, Abdulrahim Shamayleh and Shayok Mukhopadhyay

Energy Management of a Multi-Source Power System
Reprinted from: Algorithms 2021, 14, 206, doi:10.3390/a14070206 49

Eliana Maria Gonzalez-Neira, Jairo R. Montoya-Torres and Jose-Fernando Jimenez

A Multicriteria Simheuristic Approach for Solving a Stochastic Permutation Flow Shop
Scheduling Problem
Reprinted from: Algorithms 2021, 14, 210, doi:10.3390/a14070210 77

Alia Al Sadawi, Abdulrahim Shamayleh and Malick Ndiaye

Efficient Dynamic Cost Scheduling Algorithm for Financial Data Supply Chain
Reprinted from: Algorithms 2021, 14, 211, doi:10.3390/a14070211 99

Tianhua Zheng, Jiabin Wang and Yuxiang Cai

Parallel Hybrid Particle Swarm Algorithm for Workshop Scheduling Based on Spark
Reprinted from: Algorithms 2021, 14, 262, doi:10.3390/a14090262 123

Chan Hee Park and Young Dae Ko

A Practical Staff Scheduling Strategy Considering Various Types of Employment in the
Construction Industry
Reprinted from: Algorithms 2022, 15, 321, doi:10.3390/a15090321 137

Xudong Zhou, Nobuo Funabiki, Hein Htet, Ariel Kamoyedji, Irin Tri Anggraini,

Yuanzhi Huo and Yan Watequlis Syaifudin

A Static Assignment Algorithm of Uniform Jobs to Workers in a User-PC Computing System
Using Simultaneous Linear Equations
Reprinted from: Algorithms 2022, 15, 369, doi:10.3390/a15100369 157

Milos Seda

The Assignment Problem and Its Relation to Logistics Problems
Reprinted from: Algorithms 2022, 15, 377, doi:10.3390/a15100377 173

Christos Valouxis, Christos Gogos, Angelos Dimitsas, Petros Potikas and Anastasios Vittas

A Hybrid Exact–Local Search Approach for One-Machine Scheduling with Time-Dependent
Capacity
Reprinted from: Algorithms 2022, 15, 450, doi:10.3390/a15120450 201

Ana Čudina Ivančev, Maja Ahac, Saša Ahac and Vesna Dragčević

Comparison of Single-Lane Roundabout Entry Degree of Saturation Estimations from
Analytical and Regression Models
Reprinted from: Algorithms 2023, 16, 164, doi:10.3390/a16030164 219

v

Kasper Gaj Nielsen, Inkyung Sung, Mohamed El Yafrani, Deniz Kenan Kılıç

and Peter Nielsen

A Scheduling Solution for Robotic Arm-Based Batching Systems with Multiple Conveyor Belts
Reprinted from: Algorithms 2023, 16, 172, doi:10.3390/a16030172 237

Toufik Mzili, Ilyass Mzili, Mohammed Essaid Riffi and Gaurav Dhiman

Hybrid Genetic and Spotted Hyena Optimizer for Flow Shop Scheduling Problem
Reprinted from: Algorithms 2023, 16, 265, doi:10.3390/a16060265 251

vi

About the Editor

Frank Werner

Frank Werner studied mathematics from 1975 to 1980 and graduated from the Technical

University Magdeburg (Germany) with honors. He received a Ph.D. degree (with summa cum laude)

in Mathematics in 1984 and defended his habilitation thesis in 1989. From this time on, he worked at

the Faculty of Mathematics of the Otto-von-Guericke University Magdeburg in Germany, and since

1998 as an extraordinary professor. In 1992, he received a grant from the Alexander von Humboldt

Foundation. He was a manager of several research projects supported by the German Research

Society (DFG) and the European Union (INTAS). Since 2019, he has been the Editor-in-Chief of the

journal Algorithms. He is also an Associate Editor of the International Journal of Production Research,

of the Journal of Scheduling, and the Journal of Operations Research and Decisions and a member of the

editorial/advisory boards of 15 further international journals. He has been a guest editor of Special

Issues in nine international journals, and has served as a member of the program committee of more

than 125 international conferences. Frank Werner is an author/editor of 12 books, among them the

textbooks Mathematics of Economics and Business and A Refresher Course in Mathematics. In addition,

he has co-edited three proceedings volumes and published more than 300 journal papers, e.g., in

the International Journal of Production Research, Computers & Operations Research, Journal of Scheduling,

Applied Mathematical Modelling, or the European Journal of Operational Research. He received Best

Paper Awards from the International Journal of Production Research (2016) and IISE Transactions (2021).

His main research subjects are scheduling, discrete optimization, graph theory, and mathematical

problems in operations research.

vii

Preface to “Scheduling: Algorithms and

Applications”

This is the printed edition of a Special Issue published in the journal Algorithms. After the great

success of two previous Special Issues published in the same journal in the 2018 and 2020, a third issue

was set up in 2021 which again found great resonance. The goal of this issue was to present innovative

approaches to solving scheduling problems and finding interesting applications. Potential topics

included single-criterion and multi-criteria scheduling problems with additional constraints, such as

setup times/costs, precedence constraints, batching/lot sizing, and resource constraints, as well as

scheduling algorithms for problems arising in emerging applications, such as healthcare, transport,

and energy management.

Since scheduling is an interdisciplinary subject and plays an important role in many fields, this

reprint might be interesting not only for applied mathematicians and computer science experts, but

also for engineers or economists working in specific areas of optimization or operations research.

This reprint presents papers dealing with very different subjects, among them a survey of assembly

and production line design and scheduling under uncertainty. Other topics addressed in this reprint

include the energy management of power systems, cost scheduling for financial data supply chains,

staff scheduling in the construction industry, various assignment problems, single-lane roundabouts,

robotic arm-based batching systems with conveyor belts, as well as single-machine and flow-shop

scheduling problems, with the hope that readers will find fresh inspiration for future research in this

area.

Finally, thanks are given to all who contributed to the success of this issue: authors from 13

countries, many referees from all over the world, and the journal’s staff.

Frank Werner

Editor

ix

Citation: Werner, F. Special Issue

“Scheduling: Algorithms and

Applications”. Algorithms 2023, 16,

268. https://doi.org/10.3390/

a16060268

Received: 25 May 2023

Accepted: 26 May 2023

Published: 27 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Editorial

Special Issue “Scheduling: Algorithms and Applications”

Frank Werner

Faculty of Mathematics, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
frank.werner@ovgu.de; Tel.: +49-391-675-2025

1. Introduction

This special issue of Algorithms is dedicated to recent developments of scheduling
algorithms and new applications. After the Special Issue on Algorithms for Scheduling
Problems, which had 12 papers (see [1]), and the Special Issue on Exact and Heuristic
Scheduling Algorithms, which had 9 papers (see [2]), both of which are also available as
printed books, this is the third issue in the field of Scheduling in the journal Algorithms
since 2018 and underlines the increasing interest of researchers in this subject.

For this issue, high-quality papers were solicited to address both theoretical and
practical issues in the wide area of Scheduling. Some topics mentioned in the Call for
Papers for this issue were enumerative and approximate scheduling algorithms; meta-
and matheuristics; scheduling algorithms for problems in logistics, transport, timetabling,
healthcare, and energy management; and scheduling under uncertainty, to name a few.

After a careful refereeing process, 12 papers were selected for this issue. As a rule, all
submissions have been reviewed by two or three experts in the corresponding area. The
authors of the accepted papers come from 13 countries: Belarus, United Arab Emirates,
Colombia, China, Korea, Japan, Indonesia, Czech Republic, Greece, Croatia, Denmark,
Morocco, and India. First, the review and then the published papers in increasing order of
their publication dates for this special issue are briefly surveyed.

2. Special Issue

The survey paper [3] deals with the design, balancing, and scheduling of assembly
and production lines under inaccurate data. This paper discusses 149 references from the
recent literature on this interesting research field, in particular 30 surveys and books on
assembly and production lines published after 1986, as well as about 100 papers since 1998
for assembly lines and about 30 papers since 2014 dealing with disassembly lines. After
first briefly giving deterministic formulations and variants of generalizations of the simple
assembly line balancing problem, stochastic, fuzzy, and uncertain formulations of such
problems are reviewed. Finally, some unsolved research issues are discussed, and various
new settings in this research area are suggested.

The first accepted paper [4] deals with the energy management of a power system
with multiple energy sources. The goal is the minimization of the power consumption
from all sources, which is needed to satisfy the power demand of the system. The authors
present a mathematical model and derive a heuristic approach. Both approaches are tested
and analyzed on a ground robot with multiple energy sources.

The second paper [5] studies a multi-criteria permutation flow-shop scheduling prob-
lem, where both the processing times and the setup times are of stochastic nature. The
authors consider four optimization criteria, namely two quantitative and two qualitative
criteria. For this problem, they suggest a hybridized simheuristic approach that combines a
GRASP procedure, a Monte Carlo simulation, a Pareto archived evolution strategy, and an
analytic hierarchy process. Detailed computational results are presented to test the effects
of the processing times and the sequence-dependent setup times.

Algorithms 2023, 16, 268. https://doi.org/10.3390/a16060268 https://www.mdpi.com/journal/algorithms
1

Algorithms 2023, 16, 268

In the paper [6], the authors deal with the scheduling of a financial data supply chain
in order to evaluate the performance of the efficiency of the banking sector. In particular,
the objective is the minimization of different cost types subject to such constraints as the
availability of the resources, the customer service level, and the dependency relations of
the tasks. This paper develops an iterative dynamic scheduling algorithm to handle the
data batching process, which turned out to be effective. In addition, a sensitivity analysis is
presented when the parameters of the problems are varied.

The paper [7] considers hybrid mixed-flow workshop scheduling with the goal of
minimizing the maximum completion time. Using the Spark platform, they develop a
hybrid particle swarm algorithm, which is parallelized. The presented parallel algorithm is
particularly effective in the case of large batches and avoids falling into a local optimum.

In the paper [8], a problem from the construction industry in Korea is investigated.
In particular, a staff scheduling strategy is suggested, which also considers the irregular
absence of employees and a new labor policy by applying linear programming. They derive
a deterministic staff schedule and then, via a sensitivity analysis and simulation dealing
with the stochastic characteristics of absence, various proactive cases are presented.

The paper [9] investigates a User-PC computing system and presents a static assign-
ment algorithm of uniform jobs to workers in such a system. For finding a lower bound
on the makespan, the authors use simultaneous linear equations. Moreover, the paper
considers the extension of the algorithm to the case of multiple job types. Computational
experiments are made for 651 uniform jobs in 3 applications to run on 6 workers in the
testbed system. In the future, they also planned to use this algorithm for a multi-criteria
shop scheduling problem.

The paper [10] considers an assignment problem and some modifications which can
be converted to routing, distribution, or scheduling problems. For some of the resulting
variants, the authors focus on the direct use of mixed-integer programming models within
the GAMS environment. Finally, benchmark instances of the permutation flow-shop
problem and the travelling salesman problem are applied to present the limits of the
applicability of the software. In particular, they show that permutation flow-shop problems
with 20 jobs and 10 machines, as well as travelling salesman problems with 100 cities, can
be solved within a few minutes using GAMS.

In the paper [11], single machine scheduling problems with time-dependent capacity
and the objective to minimize the total aggregated tardiness are considered. The authors
formulate linear programming and constraint programming models. In addition, three
local search schemes are presented, which are applied in a hybrid approach that takes
advantage of the constraint programming part. Detailed computational results confirm
that for 48 of the considered instances, new best values have been found by the suggested
approach.

The paper [12] deals with a problem related to the design of roundabouts with the
goal of reducing the uncertainty in decision making during the final design stage. In
particular, they analyze and compare the performance estimations of the roundabout using
an analytical and a regression model to give recommendations for possible changes in
the geometric parameters of a roundabout. In the experiments, the authors generated 60
single-lane roundabouts with 4 legs, which have different sizes and leg alignments. It
turned out that the regression model estimated a higher functionality.

The next paper [13] considers a robotic-arm-based food processing system with multi-
ple conveyors, namely an infeed conveyor and two tray lane conveyors. The core problem
consists of fixing which item on an infeed conveyor belt is selected by which robotic arm
at which position, and on which tray this item will be located. For this problem, the
scheduling part must be solved almost in real time. The authors suggest to decompose
the problem into sub-problems formulated as a goal program, where the robotic arms are
scheduled only for a single tray. Then, the authors test their approach under a simulation
environment.

2

Algorithms 2023, 16, 268

The last accepted paper [14] considers the flow-shop scheduling problem by minimiz-
ing the makespan. For this problem, a hybrid metaheuristic algorithm is presented which
combines a genetic algorithm with a so-called spotted hyena optimization algorithm. The
algorithm has been tested and compared with other state-of-the-art algorithms on instances
of the OR library. It turned out that the new algorithm generates optimal or near-optimal
solutions and also outperforms existing algorithms, which is confirmed by the application
of several statistical analyses.

Finally, as the editor, it is my pleasure to thank the editorial staff of the journal
Algorithms for their pleasant cooperation, not only during the preparation of this volume,
but also for the previous Special Issues which I handled as editor for the journal. I would
also like to thank all referees for their thorough and timely reports on the submitted works,
and also the authors for submitting many interesting works from a broad spectrum in the
Scheduling field.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Werner, F.; Burtseva, L.; Sotskov, Y. (Eds.) Special Issue on Algorithms for Scheduling Problems. Algorithms 2018, 11, 87. [CrossRef]
2. Werner, F.; Burtseva, L.; Sotskov, Y. (Eds.) Special Issue on Exact and Heuristic Scheduling Algorithms. Algorithms 2020, 13, 9.

[CrossRef]
3. Sotskov, Y. Assembly and Production Line Designing, Balancing and Scheduling with Inaccurate Data: A Survey and Perspectives.

Algorithms 2022, 16, 100. [CrossRef]
4. Salah, O.; Shamayleh, A.; Mukhopadhyay, S. Energy Management of a Multi-Source Power System. Algorithms 2021, 14, 206.

[CrossRef]
5. Gonzalez-Neira, E.M.; Montoya-Torres, J.R.; Jimenez, J.-F. A Multicriteria Simheuristic Approach for Solving a Stochastic

Permutation Flow Shop Scheduling Problem. Algorithms 2021, 14, 210. [CrossRef]
6. Sadawi, A.A.; Shamayleh, A.; Ndiaye, M. Efficient Dynamic Cost Scheduling Algorithm for Financial Data Supply Chain.

Algorithms 2021, 14, 211. [CrossRef]
7. Zheng, T.; Wang, J.; Cai, Y. Parallel Hybrid Particle Swarm Algorithm for Workshop Scheduling Based on Spark. Algorithms 2021,

14, 262. [CrossRef]
8. Park, C.H.; Ko, Y.D. A Practical Staff Scheduling Strategy Considering Various Types of Employment in the Construction Industry.

Algorithms 2022, 15, 321. [CrossRef]
9. Zhou, X.; Funabiki, N.; Htet, H.; Kamoyedji, A.; Anggraini, I.T.; Huo, Y.; Syaifudin, Y.W. A Static Assignment Algorithm of

Uniform Jobs to Workers in a User-PC Computing System Using Simultaneous Linear Equations. Algorithms 2022, 15, 369.
[CrossRef]

10. Seda, M. The Assignment Problem and its Relation to Logistics Problems. Algorithms 2022, 15, 377. [CrossRef]
11. Valouxis, C.; Gogos, C.; Dimitsas, A.; Potikas, P.; Vittas, A. A Hybrid Exact-Local Search Approach for One–Machine Scheduling

with Time-Dependent Capacity. Algorithms 2022, 15, 450. [CrossRef]
12. Ivancev, A.C.; Ahac, M.; Ahac, S.; Dragcevic, V. Comparison of Single-Lane Roundabout Entry Degree of Saturation Estimations

from Analytical and Regression Models. Algorithms 2023, 16, 164. [CrossRef]
13. Nielsen, K.G.; Sung, I.; El Yafrani, M.; Kilic, D.K.; Nielsen, P. A Scheduling Solution for Robotic Arm-Based Batching Systems

with Multiple Conveyor Belts. Algorithms 2023, 16, 172. [CrossRef]
14. Mzili, T.; Mzili, I.; Riffi, M.E.; Dhiman, G. Hybrid Genetic and Spotted Hyena Optimizer for Flow Shop Scheduling Problem.

Algorithms 2023, 16, 265. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

3

Citation: Sotskov, Y.N. Assembly and

Production Line Designing,

Balancing and Scheduling with

Inaccurate Data: A Survey and

Perspectives. Algorithms 2023, 16, 100.

https://doi.org/10.3390/a16020100

Academic Editor: Dimitris Fotakis

Received: 7 November 2022

Revised: 4 February 2023

Accepted: 5 February 2023

Published: 10 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Review

Assembly and Production Line Designing, Balancing and
Scheduling with Inaccurate Data: A Survey and Perspectives

Yuri N. Sotskov

United Institute of Informatics Problems, National Academy of Sciences of Belarus, 6 Surganov Street,
220012 Minsk, Belarus; sotskov48@mail.ru; Tel.: +375-17-249-61-20

Abstract: Assembly lines (conveyors) are traditional means of large-scale and mass-scale productions.
An assembly line balancing problem is needed for optimizing the assembly process by configuring
and designing an assembly line for the same or similar types of final products. This problem consists
of designing the assembly line and distributing the total workload for manufacturing each unit of the
fixed product to be assembled among the ordered workstations along the constructed assembly line.
The assembly line balancing research is focused mainly on simple assembly line balancing problems,
which are restricted by a set of conditions making a considered assembly line ideal for research. A
lot of published research has been carried out in order to describe and solve (usually heuristically)
more realistic generalized assembly line balancing problems. Assembly line designing, balancing and
scheduling problems with not deterministic (stochastic, fuzzy or uncertain) parameters have been
investigated in many published research works. This paper is about the design and optimization
methods for assembly and disassembly lines. We survey the recent developments for designing,
balancing and scheduling assembly (disassembly) lines. New formulations of simple assembly line
balancing problems are presented in order to take into account modifications and uncertainties
characterized by real assembly productions.

Keywords: survey; assembly line; optimal line balance; scheduling; uncertainty; stability analysis

1. Introduction

The assembly line (conveyor) is widely used in large-scale and mass production
for the assembly of the same or similar types of products. The assembly line provides
strategic production of products close in purpose to existing parts and components, with
insignificant costs for training of working personnel. Most assembly lines consist of a
linearly ordered set: S = {S1, S2, . . . , Sm}, of the workstations interconnected by a step-by-
step moving belt or other moving mechanism. Each workstation, Sk ∈ S, makes a fixed set,
Vb

k ∈ V= {1, 2, . . . , n}, of indivisible assembly operations over a planned cycle time, c. An
industrial enterprise organizing a conveyor production must first design an assembly line
by determining its composition and configuration. During the exploiting of the designed
assembly conveyor, the problem of balancing the assembly line to increase its productivity
needs be repeatedly solved. Among the optimization problems that arise at various stages
of the assembly line lifecycle, the most important is the problem of balancing the assembly
line. Such a problem is denoted by the ALBP (assembly line balancing problem) [1]. To
solve the ALBP, it is necessary to optimally distribute a set of all given assembly operations,
V = {1, 2, . . . , n}, between the available workstations, S = {S1, S2, . . . , Sm}, which are
necessary for assembling the final products of the enterprise.

This review discusses the published results on optimal designing, balancing and
scheduling assembly and production lines with inaccurate, not deterministic parameters
(such as stochastic parameters, fuzzy parameters or uncertain parameters). The main
attention is paid to the most studied simple assembly line balancing problems (SALBP
for short) and some of their generalizations (GALBP), which allow a scheduler to more

Algorithms 2023, 16, 100. https://doi.org/10.3390/a16020100 https://www.mdpi.com/journal/algorithms
5

Algorithms 2023, 16, 100

fully consider the specifics of a particular conveyor production. We use the generally
accepted classification of the problems of balancing assembly lines presented in [1–3]
and the monograph [4]. The numerical parameters of assembly lines are specified, and
the permissible restrictions and conditions are listed in Section 2. Various assembly line
designing, balancing and scheduling problems and methods for optimization of them are
presented based on the articles published in the last two and a half decades.

Due to the high importance of the assembly line designing, balancing and scheduling
for mass and large-scale series production, large amounts of relevant research papers have
been published in operational research (OR) literature. Most such papers were surveyed
in [5–10]. In particular, the paper by Boysen et al. [5] surveys the OR literature on as-
sembly line designing, balancing and scheduling that has been published after previous
review papers appeared in 2006, 2007 and 2009 [6–9]. The authors of [5] cover essential
stages of the decision processes, including different approaches to the ALBP. Their sur-
vey is a supplement and continuation of the previous survey papers on the SALBP [6],
the GALBP [7] and the classification schemes of the ALBP [3,7,9]. Other survey papers
published after 2009 cover some specific aspects of the ALBP. In particular, the paper [10]
surveys two-sided assembly lines. The paper [11] surveys the requirements of different
real-world applications. The papers [12,13] surveyed the ALBP that were solved using
soft computing. The paper [14] surveys genetic algorithms used for solving the ALBP.
The paper [15] surveys balancing of multiple and parallel assembly lines. The paper [16]
surveys cost- and profit-oriented assembly line balancing problems. The paper [17] surveys
rebalancing of the unbalanced assembly lines. Disassembly line balancing problems are
surveyed in the paper [18]. The paper [19] surveys the ALBP arising in industry 4.0. A
bibliographic analysis of the ALBP through the Web of Science in the period from 1990 to
2017 is presented in [20].

This paper is about the design and optimization algorithms for assembly (disassembly)
lines. The survey covers assembly line designing, balancing and scheduling problems
with inaccurate parameters (i.e., stochastic, fuzzy or uncertain numerical parameters) and
different variations from the deterministic manufactory conditions. This survey may be
considered as a continuation of the surveys in [21,22]. We first consider deterministic
formulations of the SALBP, ALBP and GALBP with different types of variations from
the fixed manufactory conditions. Then, we review the stochastic, fuzzy and uncertain
formulations of the SALBP, ALBP and GALBP, along with disassembly line balancing
problems under uncertainty. This paper covers about 30 surveys and books on assembly and
production lines published since 1986, about 100 research papers since 1998 for assembly
lines and about 30 research papers since 2014 for disassembly lines.

The sections are ordered with respect to the increasingly considered problem uncer-
tainties. In Section 2, we determine the scope of this survey and describe the considered
problem settings. The deterministic ALBP with possible deviation from normal (determin-
istic) manufactory conditions are considered in Section 3. The ALBP with stochastic or
fuzzy parameters are surveyed in Section 4. Designing and balancing production lines of
disassembly of similar obsolete products are considered in Section 5. Section 6 addresses to
designing, balancing and scheduling assembly lines with uncertain (interval) parameters.
Before concluding in Section 8, in Section 7, some unresolved issues are discussed and
several new settings for designing, balancing and scheduling the assembly and production
lines are proposed, allowing taking into account fuller economic indicators of assembly
and production lines, as well as the uncertainty characteristic of operating conveyors.

2. A Division of Manual Labor, Assembly and Production Lines

In 1776, Smith [23] identified the advantages of the division of manual labor, which
made it possible to increase labor productivity as a result of the specialization of workers
in the joint manufacture of simple products. A century and a half later, on the basis
of assembly conveyors that were used in Chicago’s food factories in the United States,
Ford [24] combined, in a moving stream, the process of assembling a car by operators who

6

Algorithms 2023, 16, 100

specialized in a limited set of specific assembly operations. In Ford factories, assembly
conveyors were used to make car components and to assemble the entire car. Since then,
more than a century has passed, and assembly lines are still widely used both for the
production of fairly simple products and for the assembly of complex products in large-
scale and mass production. Modern assembly lines are specialized production systems
designed to assemble similar types of products in rather large quantities. Assembly lines
have been used in mass production, ensuring a rhythmic assembly of products with limited
operator training costs. Training of workstation operators is carried out in a short time.
Workstations of modern assembly lines are often robotic. Industrial robots perform the
most complex assembly operations in the absence of people on such types of workstations.

The mathematical statements of the ALBP were first described by Salveson [1], who
discussed the various configurations of assembly lines and the optimization problems of
assigning (balancing) assembly operations to the workstations. Due to the complexity
of the problems of designing and controlling assembly lines, the researchers looked at
various constraints that simplified the actual problems of balancing the pipeline. Such
simplifications were summarized by Baybars [2], who considered the problem of balancing
an assembly line with nine conditions, (1)–(9) (see Section 2.1), simplifying a real assembly
problem, called a simple assembly line balancing problem (SALBP). There are many essen-
tial differences between the SALBP and the actual assembly lines and production lines. In
the OR literature, the approximations of the SALBP to the real conveyor production were
based on the easing of certain limitations and conditions of the SALBP. Various generaliza-
tions based on the weakening of the conditions of the SALBP are called a general assembly
line balancing problem, denoted as GALBP.

2.1. Simple Assembly Line Balancing Problems

Distribution, V = Vb
1 ∪ Vb

2 ∪ . . . ∪ Vb
m, of the given set of assembly operations, V,

between the available workstations, S = {S1, S2, . . . , Sm} (i.e., splitting a partially ordered
set V of assembly operations on m non-intersecting subsets), is called a line balance,
b = (Vb

1 , Vb
2 , . . . , Vb

m), of the assembly line, S = {S1, S2, . . . , Sm}. A line balance is feasible,
if a technological order of all assembly operations that is determined by the precedence
digraph, G = (V, A), is not violated, where V denotes a set of vertices and A is a set of
directed arcs. A search for the optimal assembly line balance, b = (Vb

1 , Vb
2 , . . . , Vb

m), is called
an assembly line balancing problem (ALBP).

Large financial costs for the design, manufacture, installation and equipment of
the assembly line can pay off only with a periodical optimization of the line balance,
b = (Vb

1 , Vb
2 , . . . , Vb

m), used for the assembly line, S = {S1, S2, . . . , Sm}. Repeatedly balanc-
ing the assembly line increases the productivity of the assembly conveyor, and therefore the
efficiency of the entire assembly plant. Balancing the assembly line provides the required
performance of the assembly line with minimal (or limited) costs for its assembly operations.
The most studied problems of the balancing of the assembly line are the SALBP. As stated in
the review in [2] and monograph in [4], the following conditions must be met for the SALBP:
(A-1) all input parameters of the ALBP are deterministic, (A-2) each assembly operation
is indivisible (its execution cannot be divided between two or more workstations), (A-3)
the sequence of indivisible assembly operations is subject to the precedence constraints
specified by the digraph G = (V, A) and (A-4) all assembly operations are performed
within the cycle time, C, uniquely determined for all workstations of the assembly line.

The ALBP is to distribute assembly operations, V = {1, 2, . . . , n}, between the or-
dered workstations, S1, S2, . . . , Sm (therefore, it is necessary to determine the line balance,
b = (Vb

1 , Vb
2 , . . . , Vb

m), of the assembly line, S = {S1, S2, . . . , Sm}), in such a way that the
specified criterion is optimized and the specified conditions are not violated. The opti-
mization criterion and conditions of the ALBP are specified in advance. In addition to the
above conditions (A-1)–(A-4), the following conditions must be met for a simple assembly
line balancing problem: (A-5) All workstations, S1, S2, . . . , Sm, are equipped in such a way
that each of them can perform any of the assembly operations V. (A-6) The duration of

7

Algorithms 2023, 16, 100

the assembly operation does not depend on the workstation, Sk, to which it is assigned,
and this duration does not depend on the workstation, Sk+1, following the workstation,
Sk, nor does it depend on the previous workstation,Sk−1. (A-7) An assembly operation
can be performed on any available workstation of the set, S = {S1, S2, . . . , Sm}. (A-8) The
assembly line is serial without duplication of parallel workstations and without taking into
accounts the operation of the workpieces’ feeding mechanisms. (A-9) The assembly line is
designed to produce one type of product during its lifetime (during the whole lifecycle of
the assembly line).

2.2. Optimal Design of an Assembly Line and Optimization of the Existing Assembly Line

In the process of designing an assembly line, the ALBP of balancing the assembly
line with a predetermined (fixed) cycle time, c, arises. This problem is called SALBP-1
in [2,4]. In addition to the above conditions (A-1)–(A-9), the following condition must
be met in the SALBP-1: (A-10) the cycle time, c, is assumed to be constant (fixed) during
the whole lifecycle of the assembly line. In the SALBP-1, it is required to assign assembly
operations, V, to a linearly ordered set of workstations, S1, S2, . . . , Sm, and thus to minimize
the number of available workstations in use at a given and fixed cycle time, c. In practice,
such a problem is solved at the design stage of the assembly line.

In the process of operating the assembly line, it becomes necessary to solve the SALBP-
2 for balancing the assembly line with a fixed set of workstations, which consists in
determining the optimal balance of the assembly line at a given number m of the ordered
workstations. To solve the SALBP-2, it is required to minimize the possible cycle time,
c, when assigning assembly operations, V, on the given set, S = {S1, S2, . . . , Sm}, of the
workstations, i.e., it is necessary to find such an optimal line balance, b = (Vb

1 , Vb
2 , . . . , Vb

m),
of operations, V, and workstations, S = {S1, S2, . . . , Sm}, in which the cycle time, c, reaches
the minimum possible value. In the SALBP-2, the following condition must be met instead
of the condition (A-10): (A-11) a number m, of the workstations, S = {S1, S2, . . . , Sm}, is
given and fixed. The described SALBP-1 and SALBP-2 are two-fold [2].

The OR literature discusses a third more general class of the simple assembly line
balancing problems, when neither the number of workstations, m, nor the cycle time, C,
is fixed. It is necessary to maximize the efficiency of the assembly line. Such a problem is
denoted by SALBP-E [2,4,25]. The efficiency, E, of the assembly line is determined by the
following equality:

E = tsum/(m · c), (1)

where tsum = ∑n
i=1 ti denotes the sum of durations, ti, i ∈ V, of the assembly operations.

2.3. Generalizations of the SALBP and Complexity of These Problems

The OR literature contains investigations of different formulations of the ALBP that
result from the weakening of one or more conditions, (A-1)–(A-9). An assembly line can
be used to produce several modifications of a product that are divided into batches. Such
assembly lines are called multi-model lines. The assembly line can be used to produce
two or more modifications of the same product. Different modifications of the product
can be mixed in the process of their assembly. Such assembly lines in the OR literature
are called mixed-model assembly lines [26–29]. Assembly line configurations can vary.
In particular, article [27] discusses a U-shaped assembly line for a mixed-model ALBP. In
articles [10,29–33], the SALBP is considered for a two-way assembly line, when workstations
are located on both sides of a linear or U-shaped conveyor belt. The assembly line may
have parallel workstations that may duplicate one another in the event of a workstation
breakdown [34,35]. Other generalizations of the simple assembly line balancing problem
can be found in [36,37]. No matter what goal is considered in the problem (minimizing
cycle time, C, minimizing the number of workstations or maximizing the efficiency, E),
generalized assembly line balancing problems are called general assembly line balancing
problems [38]. Thus, the GALBP can denote a generalization of the SALBP-1, the SALBP-2
or the SALBP-E.

8

Algorithms 2023, 16, 100

It should be noted that «simple» SALBP-1, SALBP-2 and SALBP-E are in fact binary
NP-hard even in the simplest possible case, i.e., when m = 2 and the given precedence
digraph G = (V, A) does not contain any arc, A =Ø (it is clear that there is no conveyer
with m = 1). Thus, one could use the term «ideal» instead of «simple» for the NP-hard
SALBP. The proof of the NP-hardness of the SALBP-1, SALBP-2 and SALBP-E follows from
the fact that the binary NP-hard scheduling problem, I2||Cmax (see monographs in [39,40]
on scheduling theory), is reduced in a polynomial number of elementary operations to a
determined special case of the SALBP, namely: SALBP-1, SALBP-2 and SALBP-E. Hereafter,
a three-field notation, α|β|γ , is used to denote a scheduling problem, in which α indicates
the type of processing system, β denotes specified restrictions on the set of jobs to be
processed and γ denotes the criterion of optimality (see [41]). In particular, in the problem
I2||Cmax , it is necessary to construct a schedule with minimum schedule length Cmax for
fulfilling a given set of jobs on two identical machines. The proof of the NP-hardness of the
SALBP can be found in the monograph [4].

Before starting the survey section, it would be useful to explain why the remaining
Sections 3–7 are mainly devoted to the SALBP. Note that a simple assembly line balancing
problem may be rarely met in real-world productions, since the most practical assembly
lines violate some or most conditions of (A-1)–(A-11). On the other hand, the most final
mathematical results (lemmas and theorems) have been proven only for the SALBP-1, SALBP-
2 and SALBP-E. Furthermore, these mathematical results may be used for real assembly and
production lines. Due to the limited paper length, the proven mathematical claims are not
presented in Sections 3–7 (they are only mentioned in their descriptions). Hopefully, increasing
the uncertainty level in the considered ALBP may be useful for constructing a bridge between
the ideal SALBP and practical assembly and production lines.

3. Deterministic Problems of Designing and Balancing Assembly Lines with
Deviations from Normally Fixed Conditions

If the condition (A-1) for the ALBP is met with a possible change in the other conditions,
(A-2)–(A-9), and then such a problem is called a deterministic ALBP. For the deterministic
ALBP, the durations of assembly operations, ti, i ∈ V, are given and do not change during
the whole lifecycle of the assembly conveyer. The deterministic ALBP is formulated as
follows. A set of assembly operations is specified: V = {1, 2, . . . , n}. For each operation,
a fixed processing time (duration) is given along with the digraph G = (V, A), which
determines the partial strict order on the set V of assembly operations. The deterministic
ALBP is to assign assembly operations, V, to the ordered set of workstations (S1, S2, . . . , Sm),
such that the precedence relations given in the digraph G = (V, A) are not disturbed and
the objective function would take the optimal value. The deterministic SALBP is well-
studied, and many exact, approximate and heuristic algorithms have been developed
for these problems (see [1–5,10,26–38,42–52]). This section is focused on designing and
balancing assembly lines with possible deviations from normal manufacture conditions.

The article [2] presents the exact algorithms for solving the SALBP. In the article [42],
the authors divided the published algorithms for solving the ALBP into two groups. The
first group includes precise algorithms that guarantee the optimal solution to the ALBP,
and the second group includes heuristic algorithms that lead to some acceptable solution to
the ALBP, not necessarily optimal. This article contains an overview of heuristic algorithms
used for the ALBP, an efficiency comparison of algorithms for solving the ALBP and an
overview of the exact and approximate algorithms for solving the multi-model ALBP. The
article [43] compared the procedures proposed for solving the SALBP-1. The article [44]
presents a hybrid artificial intelligent algorithm, which realizes an artificial immune system
in combination with a simulated annealing algorithm. The algorithm aims at enhancing
the performance of an artificial immune system via incorporating simulated annealing in
order to achieve a global optimum for assembly conveyers with a rather large number
of assembly operations. The new algorithm was implemented on a mechanical assembly

9

Algorithms 2023, 16, 100

composed of seven parts joined by connectors. The algorithm was effective in achieving an
optimum with a restricted CPU time compared to other artificial intelligent algorithms.

The article [45] describes the application of a differential evolution algorithm to the
SALBP. This algorithm is an evolutionary one, similar to a genetic algorithm for global
optimization over continuous spaces. The extensive experimental work over public bench-
mark test instances showed the effectiveness of this algorithm. In most investigated SALBP,
smoothing workstation loads were considered. In the work [46], a differential evolution al-
gorithm was developed for minimization of the workload smoothness index in the SALBP-2.
The parameters were optimized based on the Taguchi method. To validate the algorithm,
the computational experimental results were compared with other published heuristics.
The comparison indicated the effectiveness of the new algorithm. An optimization of the
numerical parameters has been addressed in order to minimize a workload smoothness
index. After presenting a mathematical model, a differential evolution algorithm was
developed to minimize the smoothness index. Some advantages were based on a suitable
mutation, which ensures the search diversity and enhances the effectiveness based on
properties of the objective function. The values of numerical parameters in the developed
algorithm have been tuned based on the sizes of the tested instances. A detailed statistical
experiment showed that except for one from the medium-sized problems, the levels of
other numerical parameters influenced the efficiency of the addressed algorithms for other
problems. The computational results indicated supremacy of the algorithm over tested
heuristics for small, medium and large instances.

The article [47] is devoted to supply chain designing and conveyer balancing. These
problems cover an optimization of manufacturers, assembly conveyers and customer
demands. Due to analyzing the characteristics and complexities of the ALBP, the authors
of this article decomposed the problem into an upper-level problem and two lower-level
problems. The former was used to determine the assignment amount of each assembler.
The latter includes the ALBP inside each assembler and the transportation problem between
different layers. In order to solve this problem heuristically, a meta-heuristic was developed.
The ALBP was exactly solved by a branch-and-bound method. A table method was developed
in order to speed up the computations. A transportation problem was solved via mathematical
programming. Due to solving the lower-level problems, the cost function of the upper-level
problem was evaluated. In order to optimize the upper-level problem, a meta-heuristic was
developed. In a population initialization, the specific heuristics were designed. Several
numerical tests demonstrated the effectiveness of the proposed algorithms.

The application of industrial robots in mechanical conveyers usually increases the
efficiency of industrial productions. Different robot assembly strategies have been used.
Fault monitoring and strategy evaluation have attracted the attention of many researchers.
The paper [48] reviews the recent research in this field. Respecting the assembly process,
this paper separates the research contents into target recognition, searching and fault
monitoring. The main characteristics of each published approach were summarized, and
evaluations of assembly strategies were proposed with respect to typical metrics. The
known benchmarks for supporting a standardized performance evaluation were surveyed.
The challenges and potential directions were discussed.

Multi-manned conveyers are usually used in industries to manufacture similar prod-
ucts of large sizes, where several human operators have to be assigned to the ordered
workstations for performing a set of different assembly operations simultaneously on the
same unit of the product. In the paper [49], it was mentioned that previously published
mathematical formulations were able to solve a few small-sized problem instances exactly,
while larger cases were solved heuristically by heuristics or meta-heuristics, which do not
guarantee the optimality of the obtained solutions. A mixed-integer linear programming
formulation is presented with a symmetry constraint, allowing decomposing the original
problem into a Benders’ decomposition to solve large problem instances. The proposed model
was used to minimize the total number of human operators along the assembly conveyer and
the number of used workstations as weighted primary and secondary objectives, respectively.

10

Algorithms 2023, 16, 100

Feasibility cuts and symmetry break constraints were based on Benders’ cuts and several
numerical parameters, which were applied as constraints for reducing the solution search
space via eliminating infeasible allocation sets. Computational tests conducted on the datasets
showed that this mathematical model outperforms published formulations both in the so-
lution quality and CPU time for the tested small-sized problem instances. In particular, the
proposed algorithm yielded 117 optimal solutions out of 131 tested problem instances.

In the article [50], a main focus is placed on assembly conveyers, where workstations
were used for assembling large and bulk products, such as complex trucks, aircrafts, buses
and tool machines. The high number of assembly operations performed on the concrete
workstation, the several workers simultaneously involved in the process and the long
operation durations make the considered assembly conveyer different from most assembly
conveyers studied in the OR literature. A conveyer balancing model was addressed to the
total cost minimization provided that human operators have different skills. The proposed
algorithm was applied to a real industrial case.

Flexibility in assembly conveyers can be achieved due to the use of assembly robots.
The robotic ALBP is determined for a robotic assembly line, where a set of similar or
different assembly robots may be included in the assembly conveyer. An assembly robot
may need different assembly times to perform an assembly operation, because of different
specializations. The solution to such an ALBP includes attempts for optimally assigning
the robots to the ordered workstations and balancing the distribution of work between the
workstations. It is necessary to maximize the production rate of the assembly conveyer. In
the paper [51], a genetic algorithm was developed in order to find a heuristic solution to
the considered problem. Different heuristic procedures were used for adapting the genetic
algorithm to the ALBP. The assigning robots with different capabilities to the workstations
were investigated based on a recursive assignment procedure and a consecutive assignment
one. The genetic algorithm was improved by a local optimization (hill climbing) of the
workpiece. The conducted computational tests on randomly generated instances showed
that the assignment procedure achieves a better solution quality (an average cycle time),
while other computational tests determine a better combination of parameters for the
genetic algorithm. A comparison of the genetic algorithm with a truncated branch-and-
bound method for the ALBP demonstrated that the genetic algorithm provided closed
results faster than the exact branch-and-bound method. Workload smoothing on assembly
conveyers that aims to evenly assign assembly operations to different workstations may
support workforce planning and resource optimization. In the paper [52], the authors
studied smoothing conveyers and developed an algorithm to heuristically solve a large-
sized problem. To find a good heuristic solution, this algorithm uses a set of known rules for
assigning assembly operations based on a probabilistic procedure for closing workstations.
A computational experiment was conducted for selecting the best-performing priority rules
and for tuning the probabilistic procedure. The efficiency of the proposed algorithm was
experimentally tested on the computer.

Since the industrial robots are utilized in U-shaped assembly lines to replace human
operators, the focus of such assembly lines is not only on productivity, but also on the
carbon and noise emissions. In the paper [53], a multi-objective mixed-integer non-linear
programming is proposed to minimize carbon emissions, noise emissions and cycle time,
concurrently. In the proposed approach, quantifying a carbon emission and a noise emission
was achieved via presentations connected with processing times of assembly operations
and industrial robots. Existing constraints of the precedence relations were readjusted into
an integrated formula to remove worthless equations and to improve the computational
efficiency. A hybrid Pareto grey wolf optimization was used to heuristically solve these
multi-objective problems. The algorithm included a code to initialize the wolves and
designed two searching procedures to update the position of the wolves. Two crossover
operators were designed to enhance the communication between the low-grade wolves. The
algorithm was compared with five other multi-objective algorithms and the computational
results indicated that the proposed algorithm outperforms the compared algorithms in

11

Algorithms 2023, 16, 100

the evaluation metrics of the convergence, maximum spread and hyper-volume ratio. The
developed algorithm can achieve the trade-off in reducing carbon and noise emissions and
minimizing the cycle time.

In the paper [54], a learning effect was studied in the ALBP. In many realistic settings,
the produced workers (or machines) continuously develop by repeating the same or similar
activities. The production time of the product shortens if it is processed later. It was
shown that polynomial solutions can be obtained for both SALBP and U-shaped ALBP
with a learning effect. In a mass manufacturing, neither human operators nor industrial
robots alone can efficiently perform all assembly operations. Therefore, a human–robot
collaborative conveyer shows great potential to ensure flexibility with the high reliability
of robot assistance. It is usually challenging to achieve a harmonious coexistence between
humans and industrial robots to efficiently complete the assembly operations. In this regard,
the paper [55] provides a formalization of the human–robot coexistence and introduces a
key issue in a collaborative conveyer. An assembly graph was used for representing the
assembly operation of the complex products. The human network based on self-attention
can achieve a higher accuracy. Combined with the robustness of a soft actor-critic, the
collaborative system improves the ability of the robot in the dynamic conveyer. The
effectiveness of the developed algorithm was verified through an experimental analysis.
The computational results indicated that the accuracy of the proposed recognition was 91%.
It was proven that the reinforcement learning method was feasible to provide an adaptive
decision for industrial robots in human–machine collaboration. The convergence speed of
the reward function proved the feasibility of the algorithm for adaptive decision-making in
a human–robot collaborative environment.

3.1. Preventive Maintenance and Worker Assignment Problems

The article [56] addresses the mixed-model ALBP, considering preventive maintenance
scenarios. A mixed-integer mathematical programming was developed in order to optimize
a cycle time and assembly operation alteration. A cooperative algorithm was proposed to
simplify a large-sized ALBP due to the divide-and-conquer procedure. An archive was
generated to save the obtained complete solutions with better performances, evaluating the
fitness of solutions. A mixed-model variable decoding procedure was designed to speed-up
the decoding process of the proposed algorithm. An inter-population crossover operator
was designed. Four objective-oriented neighbor search operators were proposed to promote
the convergence performance of the proposed algorithm. Experimental computational
results demonstrated that the algorithm allows obtaining the Pareto solutions for small-
sized instances of the mixed-model ALBP. This algorithm outperformed other ones. The
obtained Pareto front was close to the true Pareto front.

In the article [57], paced and un-paced assembly lines were compared via simulation
on the computer. Human operators can speed-up their processing times when it is needed
either to feed other workers downstream or to unblock upstream workers. In the study [57],
it was found that un-paced assembly lines were superior to paced assembly lines for some
real-world settings, e.g., in the mixed-model production environments with a long assembly
line length. The benefit of such assembly lines has been overestimated in previously
published studies because of simplifying assumptions, such as disregarding the state-
dependent behavior or worker fatigue. With an inhomogeneous workforce, the assembly
line efficiency was more sensitive to worker placement. In the un-paced assembly lines, an
inexperienced human operator should be placed in the middle of the assembly line; while
in paced assembly lines, an inexperienced worker should be placed at the first workstation
of the assembly line. Assembly operators capable of speeding up should be placed in the
middle of the assembly line in both tested types of assembly lines.

In the article [58], the preventive maintenance in the assembly line balancing problem
is investigated for improving the production efficiency and smoothness. For such a two-
objective problem, a heuristic rule based on the tacit knowledge and gene expression
programming was developed to obtain a good heuristic solution rather quickly. A grey

12

Algorithms 2023, 16, 100

wolf optimizer was developed in order to achieve a Pareto front solution. The neighbor
operators prevent the developed algorithm from trapping into local optima. The conducted
computational experiments demonstrated that the heuristic rule used outperformed other
published rules. A real-world case study was conducted in order to validate the proposed
heuristic rule and the developed meta-heuristic rule.

In the assembly lines, it is reasonable to assume that assembly operation durations
are the same for each human operator. In sheltered work centers for disabled workers, this
assumption is not valid. Some human operators may execute some assembly operations
considerably slower than others capable of executing them. Worker heterogeneity leads
to problems, called an assembly line worker assignment and line balancing problem. For
a fixed set of workers, this problem is to maximize the production rate of an assembly
conveyer by assigning human operators to available workstations and assembly operations
to workers, while satisfying precedence constraints between the given assembly operations.
In the article [59], a heuristic algorithm and an exact algorithm to solve this problem are
introduced. A mixed-integer programming formulation for this problem was also presented.
The proposed heuristic algorithm is based on a beam search. The exact algorithm was a
branch-and-bound method, which used reduction rules and obtained lower bounds for
exact solutions. Computational tests on a set of instances showed that these algorithms
were effective and improved compared to other published algorithms.

In a real assembly line, variable production situations, such as customer demand
changes, the product structure variations and workstation failures, may affect the existing
feasible balance of the assembly line, resulting in the need for the rebalancing of the optimal
assembly line. In the desired rebalancing of the assembly conveyer, it is usually assumed in
the OR literature that the duration of an assembly operation does not depend on the human
operator performing it. However, in many practical cases, the time each operator requires
to execute an assembly operation may vary due to several reasons (such as the worker
experience, skill and disability of some individuals). In the study in [60], the assembly
line worker assignment and rebalancing assembly line problem, which considers that
assembly operation durations vary in terms of workers, was introduced in order to fill
this gap. The considered problem consists of the re-assignment of assembly operations
and workers to non-disrupted workstations after disruptions occur due to breakdowns or
shutdowns of workstations to minimize variability in terms of assembly line cycle time and
workstation assignments of assembly operations relative to the initial assembly line balance.
The objectives of this paper are to describe the problem properties, develop a mixed-integer
linear programming model and propose an artificial bee colony algorithm to heuristically
solve this problem. The numerical experiments have been designed and conducted using
120 instances. The computational experiments indicated that both developed algorithms
managed to obtain optimal assembly line balances for small-sized instances. For large-sized
instances, the proposed algorithms showed a higher performance in terms of solution value
and CPU time.

3.2. Changing Customer Demand and Optimization of Operation Sequences

The assembly sequence and path planning problem involves finding a proper sequence
of parts to be assembled into a finished product and to shorten assembly paths for each such
part. This problem combines assembly sequence planning and assembly path planning,
which are both NP-hard problems and are therefore intractable for a large problem size. In
most published results on this problem, it was assumed that path planning was monotone
(i.e., each part was moved only once) and each part was completely rigid. Such simplifica-
tions are limiting assumptions. Indeed, most assembled complex products such as ships,
aircraft and automobiles are composed of rigid and flexible parts. The required generation
of an assembly sequence and a path plan for most real-world complex products requires
an intermediate placement of parts to be taken into account. The article [61] presents an
algorithm for solving both monotone and non-monotone problems for rigid and flexible
parts. This algorithm uses an assembly matrix for describing different relations between all

13

Algorithms 2023, 16, 100

pairs of parts and the amounts of compressive stresses needed for assembling flexible parts
and obtains a tentative assembly sequence using a greedy algorithm. Short assembly paths
are iteratively computed from the initial one to the goal configurations of the parts using
a sample path planner. In case of a failure, if the part is flexible, it is determined whether
the part can still be assembled by undergoing deformation. To evaluate the developed
algorithm, two products were designed, and the problem was solved via four combinations
of the proposed algorithms. The means and standard deviations of five criteria were calcu-
lated. The computational results showed that the greedy heuristic algorithm outperformed
other algorithms with at most a 4.6% average gap in path length and a 2.1% average gap in
the CPU time compared to the best solution.

The diversification of customer demand poses a great challenge for many manufac-
turing enterprises and the scheduling problems of material handling affects the efficiency
of assembly conveyers. In the article [62], a scheduling algorithm and a static kitting
strategy were proposed in order to solve scheduling problems of the material handling
for automotive mixed-model assembly lines based on the integrated super-markets. An
integer programming was established with the objective to minimize the number of logistic
workers. An improved kitting strategy was presented to solve the problem heuristically and
a model based on the graph theory was constructed to transform the considered scheduling
problem to another known one. The algorithm was developed to solve the scheduling
problem. Computational experiments for the proposed algorithms were carried out in order
to compare the proposed algorithms with published ones. The feasibility and effectiveness
of the proposed algorithms were verified by the obtained computational results.

In the article [63], an assembly plan was investigated as one of the assembly stages
to minimize the cost of a manufacturer and to ensure the safety of an assembly part. The
problem of assembly sequence planning is how to reduce the deviation from the real
manufacturing conditions. The authors of this paper have investigated an approach to
automatically generate the assembly sequences for the industrial field. A physically based
assembly representation model includes the predetermined basic assembly information
(precedence relations between parts or subassemblies, geometric constraints, different
assembly types) and the dynamic real-time properties (the center position of gravity,
the force strength of the part). This model considered that the influences on optimum
sequences by assembly operations will be modified by the feedback from an interactive
virtual environment. The authors of the article [63] selected the safety, efficiency and
complexity as the optimization objectives. A hybrid search approach may be used to find
the optimum assembly sequence, which will be integrated into an interactive assembly
virtual environment. The user can adjust the assembly sequences with obvious good
objectives via interaction to improve the performance of the search algorithm. A human–
machine cooperation algorithm was proposed, by which a human operator can play a
pivotal role instead of pure computing. Numerical experiments were performed to validate
the performance of the physical approach to generate an assembly sequence, which showed
the efficiency and operability to guide the assembly work.

In the article [64], eight multi-objective ant colony optimization algorithms have been
developed and compared for solving ten benchmark instances of the SALBP. Experiments
on the computer showed that the commonly used heuristic functions deteriorate the
performance of the developed algorithms in a limited CPU time scenario. Even neglecting
such costs, the developed algorithms achieved a better performance without heuristics.
The developed algorithms were ranked according to three multi-objective indicators and
the calculated differences between the top four of them were reviewed using statistical tests.
The four best-performing algorithms were favorably compared with the other algorithms
designed for industrial optimizations.

A supplier selection problem is a strategic decision-making activity for building a
competitive advantage in assembly production. Quality suppliers can understand a firm’s
operational goals and provide high-quality components. Achieving efficient production
requires a good plan. A superior competitive strategy should consider the suppliers’

14

Algorithms 2023, 16, 100

availability and the plant’s ability. In the article [65], production line planning was applied
to address specific problems associated with a supplier selection by constructing a multi-
objective optimization model. The proposed model includes both assembly sequence
planning and assembly line balancing. A hybrid algorithm was proposed to heuristically
solve the above problems. The proposed algorithm combines a guided search and a
multi-objective particle swarm optimization, as well as a particle swarm optimization. A
real case of a computer assembly plant was used to verify the algorithm’s performance.
The computational results showed that the proposed algorithm identifies non-dominated
solutions and obtains high Pareto-optimal solution ratios.

Mixed-model assembly lines are widely used in industries where a high variety of
products are required in addition to low cost and high responsiveness. When a certain
product mix is demanded and different variants require different assembly times on the
available workstations, the sequence of variants on the line highly affects the assembly line
performance. Although assembly operations are often manual, most sequencing algorithms
assume deterministic times for these operations, rendering the obtained results unreliable.
The max-plus algebra is a mathematical tool that can model discrete event systems in linear
equations analogous to traditional state space dynamic equations. Modeling mixed-model
assembly lines with max-plus equations would enable comparing sequences over ranges
of values of assembly times, thus increasing the robustness, stability and reliability of the
obtained results. In the article [66], mixed-model assembly lines with both closed and
open workstations were modeled using the max-plus algebra. The produced models were
used to compare possible sequences and to analyze various performance measures of the
assembly lines while varying some system parameters. Two examples were presented to
demonstrate analyses that can be performed using the proposed model. In the first example,
three possible assembly operation sequences were compared and regions of optimality
for each sequence were determined. In the second example, the effect of changing the
launching rate of work units on the assembly line performance was studied.

The proliferation of just-in-sequence deliveries has raised the vulnerability of assem-
blies to costly production stoppages or rework due to missing components. Through a
real-time supply chain monitoring system, these supply issues can be detected early and
affected orders can be removed from planned assembly sequences in time to avoid produc-
tion disturbances. Using a simulation analysis, the authors of [67] explored the impact of
unreliable just-in-sequence deliveries and the mitigation potential of transparent supply
chains that allow a rule-based order re-sequencing on a mixed-model assembly line. The
obtained results indicated that rework due to unreliable just-in-sequence deliveries can
be eliminated and the trade-off between a schedule’s uncertainty and optimality can be
balanced, making the rule feasible for the considered problem.

Summarizing results published in the papers [1–5,10,26–38,42–67], one can conclude
that the deterministic ALBP are convenient for research, and a lot of analytical results have
been proven and derived for them. However, for real assembly and production lines, it is
not always possible to determine the exact values of the durations of the given assembly
operations. Actual operation durations may change during the use of the assembly line for
a number of reasons. Among such reasons, one can note a change in the qualifications of
the operator, his (her) motivation or fatigue, a change in the composition or purpose of the
final products, a possible change in the quality of component materials and assembly parts,
as well as characteristics of the operator’s workplace.

4. Assembly Line Balancing Problems with Stochastic or Fuzzy Parameters

Assembly (production) line balancing is an important problem for increasing the
efficiency of the production processes. However, in practice, a wide range of disruptions
can interrupt the current workload balance. A lot of researchers have explored the opera-
tion assignment plan for the assembly line balancing problem with the assumption that
the assembly processes are smooth with no disruptions. Based on the indicated reason,
other researchers and most practitioners have investigated the impacts of disruptions

15

Algorithms 2023, 16, 100

and explored the assembly operation re-assignments for the assembly and production
line re-balancing, with the assumption that the re-balancing decisions have been made.
It should also be noted that there is limited OR literature exploring online adjustments
(layout adjustments and production rate adjustments) for assembly and production lines in
a dynamic environment. This is based on real-time monitoring of assembly processes (this
is impossible to perform in the past tense). Furthermore, it is usually difficult to incorporate
uncertainty factors into the balancing process because of the randomness and non-linearity
of most uncertain factors.

Note that Industry 4.0 peaked the information barriers between different branches of
assembly and production lines, since smart, interconnected products, which are enabled by
advanced information and communication technology, can intelligently interact, and often
communicate with each other and collect production processes and produce additional
information. Smart control of the assembly and production lines becomes possible with the
large amounts of real-time production data in the era of Industry 4.0. However, currently,
there is little OR literature considering this new context of the assembly and production
lines. Taking into account possible changes in the duration of assembly operations, other
formulations of the ALBP are also considered in the OR literature, namely the stochastic
ALBP [68–72] and the ALBP with fuzzy data [26,33]. The durations of assembly operations
in such fuzzy ALBP belong to fuzzy sets.

The level of uncertainty in the ALBP with fuzzy data is higher than in the similar
ALBP with stochastic data. Nevertheless, surveys of both ALBP are presented in the same
section since a probability distribution has to be known for each random variable in the
stochastic problem, and a specific membership function has to be known for each fuzzy
number in the fuzzy problem. Due to this circumstance, mathematical approaches to the
stochastic ALBP and those to the fuzzy ALBP have more similarity than those for the
uncertain ALBP surveyed in Sections 8 and 9.

4.1. Stochastic Assembly and Production Line Balancing Problems

In the stochastic ALBP, the durations of assembly operations are random variables with
a known law of distribution of their probabilities (usually, the normal law of distribution
of a random variable with known mathematical expectation and variance is used). The
stochastic ALBP can be formulated as follows. The set, V = {1, 2, . . . , n}, of assembly
operations is given, and the duration of each assembly operation is a random variable for
which the probability distribution law is specified before solving the ALBP. The precedence
digraph G = (V, A) is given, which determines the partial strict order on the set V of the
given assembly operations. The problem is to assign assembly operations, V, to the ordered
workstations, S1, S2, . . . , Sm, in such a way that the precedence relations determined by the
digraph G = (V, A) are not disturbed, and the mathematical expectation of the objective
function would take the optimal (respectively, minimum or maximum) value for the desired
balance, b = (Vb

1 , Vb
2 , . . . , Vb

m), of the assembly line.
As for the deterministic version of the assembly line balancing problem, for the

stochastic ALBP, there is a finite but sufficiently large number of feasible solutions (line
balances) at large values of m and n. In the article [3], the algorithms for solving stochastic
problems of balancing the assembly line were divided into the following three classes:
(1) modifications of algorithms developed for the deterministic ALBP [68,72], (2) study of
the specific properties of the stochastic ALBP on the basis of computer modeling, with a
subsequent comparison of the obtained results of solving the stochastic version and the
deterministic version of the ALBP [69], and (3) algorithms developed specifically for the
stochastic ALBP [70,71].

Articles [68–72] are devoted to the generalizations of the SALBP as a result of restriction
of the condition (A-1). It was assumed that the durations of assembly operations are
random variables with laws of probability distributions, which are known before solving
the problem. Instead of a deterministic criterion, a corresponding stochastic criterion has to
be optimized. Namely, in the stochastic SALBP-1, the mathematical expectation, Em, of

16

Algorithms 2023, 16, 100

the number of the used workstations, m, has to be minimized for the fixed cycle time, c. In
the stochastic SALBP-2, the expected value of the cycle time, c, has to be minimized for the
given number, m, of the used workstations.

The Industry 4.0 concept aims to bring more flexibility and agility to the assembly and
production shop floor. The sequencing and scheduling problems are important issues of
Industry 4.0. In fact, a good (or optimal, which is better) schedule has to guarantee a high
performance level, which allows a scheduler to take into consideration possible changes
and machine perturbations occurring in the production workshop. In [73], the different
approaches aim to find stochastic, fuzzy, robust or stable schedules capable of optimizing
corresponding single or several criteria, considering possible machine perturbations and
variations of assembly operation durations. With the new requirements of the modern
production workshop and the high importance of a decision-making process when imple-
menting the constructed schedule, it is essential to extend the scheduling problem with
inaccurate data to be adaptable to the needs of a decision-maker in evaluating with respect
to properties of the stochastic, fuzzy, robust or stable schedules.

In the paper [74], it is considered a robust scheduling problem. Based on a decision-
making framework, a robust specification was developed to evaluate the possible schedule
perturbations. The robust measure was based on the service level with a robustness metric. It
is defined as a framework gathering several relevant tasks of robustness. Instead of simply
trying to evaluate and maximize a single robustness measure, authors of [74] showed that
the robust scheduling problem can be enriched. The robust schedule is a multi-faceted issue,
which can be used in order to study different points of view, such as stability, sensitivity and
the level of service. It is important since the main objective is to support a decision-maker to
be able to preserve the different points of view in a robust schedule. It was also illustrated how
these robust scheduling problems can be effectively utilized by a decision-maker in solving a
real-world scheduling problem with inaccurate data.

Mixed-model assembly lines are usually operated with inaccurate data, such as stochas-
tic product sequences. Balancing such assembly lines can be challenging as their estimation
can be difficult to determine in the case when asynchronous pace and buffers have to
be taken into account. Several works have addressed problem versions with a target
throughput, while a few authors have studied a version of throughput maximizations
of the mixed-model ALBP. The paper [75] addresses the ALBP with a fixed number of
workstations and a buffer between each pair of the connected workstations. A so-called
make-to-order environment was studied and modeled as a stochastic sequence of products
with a known rate of the demands. A cycle time simulator was conducted, and a heuristic
algorithm was proposed to exploit the cycle time simulator for assessing the cycle time of
an assembly line and to provide good line balances. The heuristic algorithm was applied
to a dataset with several buffer layouts. The calculated solutions were compared to those
of the OR literature. The comparisons showed that the obtained line balances outperform
the benchmark ones. The line balance quality difference was greater for tested instances
with more buffers, which highlights the capacity to conveniently exploit buffers in the
mixed-model assembly lines.

Two-sided assembly lines are used in the factories producing large-sized products. In
most OR literature, the assembly operation durations are assumed as deterministic, while
these assembly operations may have varying durations in many practical applications,
which cause the reduction of performance quality or the infeasibility of the schedule. The
ignorance of the specific constraints, including a positional constraint, zoning constraint
and synchronism constraint, may result in the invalidation of the constructed schedule. In
the paper [76], in order to solve such a stochastic two-sided ALBP with multiple constraints,
a hybrid teaching learning-based optimization algorithm is proposed, which allows combin-
ing a teaching learning-based optimization for a global search and a neighborhood search
with seven neighborhood operators for a local search. A priority-based decoding algorithm
was developed in order to ensure that the selected assembly operations satisfy most of the
constraints identified by the priority rules and to reduce the idle times related to a sequence

17

Algorithms 2023, 16, 100

dependence among assembly operations. Experimental results on benchmark instances
demonstrated the efficiency and universality of the developed decoding algorithm and the
comparison among other algorithms showed its effectiveness.

The quality of the balance of the mixed-model assembly line is related to the deter-
mined production sequence of assembly operations. Two problems are incompatible in time
since balancing is realized simultaneously with planning the assembly line, while assembly
operation sequencing is an operational problem closely related to possible market demand
fluctuations. In the paper [77], an exact procedure to solve the integrated assembly line
balancing problem and assembly operation sequencing problem showed that the demands
are stochastic. The searched optimal line balance is required to be flexible in order to cope
with possible demand scenarios. A paced assembly line was considered, and the utility
work was used as recourse for workstation border violations. A Benders’ decomposition
algorithm was developed along with different inequalities and a preprocessing stage as
a solution algorithm. Three datasets were proposed and used for testing the developed
algorithm and treating uncertainty in the mixed-model assembly line. The integration of
the strategic ALBP with the operational sequencing one was used in robust assembly lines.

Most of the research papers related to different assembly lines are concentrated on the
ALBP, provided that the precedence relations among the given assembly operations are
not violated and the objective function is optimized in the desired line balance. The multi-
objective ALBP with stochastic assembly operation durations is an important practical topic
of the traditional ALBP involving conflicting criteria, such as minimizing the cycle time,
variation of workload or the processing cost under uncertain manufacturing conditions.
The paper [78] proposes a hybrid multi-objective evolutionary algorithm for heuristically
solving such an ALBP, with stochastic assembly operation durations to minimize the cycle
time and the processing cost with the given fixed set of the workstations. The special fitness
function was adopted, and a hybrid selection was designed to improve the convergence of
the solution process. The computational experiments with tested instances showed that
the developed multi-objective evolutionary algorithm could display a better convergence
distribution performance than other published algorithms.

The paper [79] includes a multi-objective genetic algorithm for heuristically solving a
mixed-model ALBP, simultaneously considering the cycle time and number of available
workstations. A mixed-model assembly line is capable of producing different types of
products to respond to uncertain market demands, while minimizing capital costs of de-
signing a multiple assembly line. According to the stochastic environment of the considered
assembly productions, a mixed-model assembly line was put forth in the make-to-order
environment. A multi-objective genetic algorithm was developed for solving the corre-
sponding ALBP and a decision-maker was provided with the subsequent replies to pick
one of them based on the specific situation. A computational comparison on the computer
was carried out between six multi-objective evolutionary algorithms in order to determine
the best algorithm to heuristically solve the specified ALBP.

Possible variations of the assembly operation durations in the manufacturing assembly
line can result in a longer processing time to complete assembly operations than a given
cycle time. This may lead to the assembly line stoppage and to loss of the production
time. In practical assembly production, a portion of the cycle time is often allocated as a
predefined fixed-size buffer time, which is determined based on experience for accounting
uncertain variations of the durations of assembly operations for a paced assembly line
without storage-buffers between workstations. The size of the required buffer time in each
available workstation depends on the variation levels of the durations of the assembly
operations and the desired conservatism level for preventing a cycle time violation. There
are uncertainties in other added activity times in available workstations, which are called
inter-operation times. Although many studies on designing a stochastic manufacturing
assembly line focused on minimizing the cost incurred when the cycle time is exceeded
due to assembly operation duration variations, they mostly disregarded the inter-operation
times. Therefore, it is worth studying the simultaneous effect of the manufacturing time

18

Algorithms 2023, 16, 100

uncertainty and that of the conservatism level on the cycle time. The paper [80] proposes
the algorithm for a robust manufacturing assembly line design that incorporates the con-
servatism level and uncertainties in the assembly operation and inter-operation times. This
interpretation of the non-productive times in available workstations was presented by
introducing the concept of the fractal buffer time to manage the effect of manufacturing
uncertainties. To overcome the problem of excessive robustness, a robust algorithm with
conservatism-level flexibility was used, focusing on the cycle time in a bottleneck worksta-
tion. The effect of the uncertainties and conservatism levels on the cycle time was analyzed
through several numerical instances. Computational results of the study can be used for
improving a manufacturing system in which uncertainties in assembly operations and
inter-operation times may significantly degrade its productivity.

Human learning algorithms were developed in many research fields, including the
ALBP. Despite the plethora of real contributions and different algorithms used for solving
the optimization problems, the autonomous learning phenomenon (the time-dependent or
position-dependent reduction of the assembly operation durations due to possible process
repetitions) should be explored using a stochastic model, which has been disregarded.
In the paper [81], a cost-based stochastic balancing property was coupled with a time-
learning curve in order to investigate the role of learning in the rebalancing of the existing
assembly conveyers with repetitive assembly operations. A real case study was conducted
to demonstrate the applicability of the new algorithms.

The paper [82] presents a mixed-model assembly operation sequencing problem with
stochastic operation durations in a multi-workstation assembly line. A mixed-integer
nonlinear programming was developed to minimize a weighted sum of the expected total
workstation overload and workstation idleness, which was converted into a mixed-integer
linear programming to optimally solve small-sized instances of the sequencing problem.
Due to the proven NP-hardness of the considered sequencing problem [82], a simulated
annealing algorithm was developed. This algorithm employs a learning procedure to select
an appropriate heuristic through a search process. Several numerical results were presented
on the tested and benchmark instances taken from the OR literature. The computational
results of the statistical analysis indicated that the developed algorithm was quite competi-
tive in comparison with the published software packages. The developed algorithm was
superior to other published simulated annealing algorithms. These computational results
highlight the advantages of the mixed-model sequencing in comparison with deterministic
algorithms used for the mixed-model sequencing problems. Assembly lines of determin-
ing the optimal order of the available workstations in the U-shaped assembly lines with
stochastic durations of the assembly operations were studied in the paper [82], as well.

The ALBP is highly important for efficient and cost-effective assembly production
of similar products. Different uncertain events might cause a variation in the assembly
operation duration. Due to these variations, there remains a possibility that the completion
time of the assembly operations might exceed the predetermined cycle time. To hedge
against such an issue, a single-model ALBP with the uncertain operation durations and
multiple objective functions was studied in [83]. This research aimed to minimize the cycle
time in addition to maximizing the probability that completion times of the operations
on the workstations will not exceed the predetermined cycle time and will minimize
the smoothness index. A Pareto-based artificial bee colony algorithm was proposed to
obtain a Pareto solution for the multiple objective functions. The proposed algorithm
introduced extra steps, as follows: sorting of food sources, a niche technique and preserving
some elitists in the traditional artificial bee colony algorithm to obtain a Pareto solution.
The main parameters of the developed algorithm were tuned using the Taguchi method.
Computational experiments were conducted to solve the standard ALBP, which were taken
from the OR library. The performance of the developed Pareto-based artificial bee colony
algorithm was compared with a multi-objective algorithm, NSGA II. Computational results
showed that the proposed algorithm outperforms the NSGA II algorithm in both Pareto
solution quality and CPU time.

19

Algorithms 2023, 16, 100

In [84], a workforce assignment is studied in the assembly line with several worksta-
tions and executing final parts of different types. The objective is to minimize the number
of human operators over the assembly conveyer. Due to the complex market environment,
possible changes in product demands have an influence on production balancing and
scheduling. The uncertain demands were investigated in [84]. An ambiguity set was
applied to portray the demand uncertainty. A chance-constrained programming was devel-
oped. Two probability-distribution-free algorithms were chosen: approximations based on
Markov inequality and a mixed-integer second-order conic program, to approximate the
chance constraints of the tested problems. Computational experiments were conducted to
compare the performances of the two proposed algorithms.

The model assembly conveyer is an industrial arrangement of the available worksta-
tions, needed equipment and assembly operators for continuous flow of workpieces in
mass production operations. The reliability of the assembly production has been investi-
gated by taking into account operation duration uncertainties. The paper [85] provides
a reliability metric which encompasses two types of operation duration uncertainties. A
multi-objective mathematical model was developed to maximize the reliability and effi-
ciency of the conveyers. Neighborhood search methods with two restart mechanisms were
devised to solve the problem, and then they were compared. The computational results
showed some managerial implications for the production planners. The methodology
proposed in [85] can be applied to many assembly industries when some historical data
of uncertain inputs are available, while some others are not. In [86], chance-constrained
binary programming for the stochastic straight- and U-shaped line balancing problems
were proposed and investigated. The proposed algorithms were used for solving several
instances, which are available from the OR literature. The obtained computational results
were described and compared. A goal programming algorithm was also developed for
increasing the assembly line reliability, which is needed to investigate the stochastic ALBP.

In the real assembly lines, production planning and inventory control are often subject
to different types of uncertainty. The paper [87] is devoted to a control problem for a single-
level multi-component inventory, which arises in the assembly line replenishment under
stochastic component procurement lead times. In order to follow the common assumption
of the MRP software tool, the discrete distributions of random component lead times were
investigated. The latter was expressed as the number of the tested time periods. Since
the finished product was assembled using several component types simultaneously, the
assembly process was stopped if a single type of component was delayed. The assembly
stoppage forced by a component delay or stock-out was penalized by a backlogging
cost. The considered objective aimed to minimize the total cost composed of holding
and backlogging costs. To solve this problem, a joint chance-constrained algorithm was
developed based on an equivalent linear reformulation. The practical advantages of the
developed approach were estimated in its release from backlogging costs, which are difficult
to quantify in the real-world industrial assembly productions.

Summarizing the results of [68–87], one can conclude that the stochastic SALBP turned
out to be more complex than the deterministic SALBP. However, stochastic problems do not
quite correspond to some real assembly conveyor productions, where it is not possible to
obtain sufficient information to determine the probability distribution of a random duration,
xi, of each assembly operation, i ∈ V. Even if the probability distributions of random
durations are determined in advance (before solving the problem), these distributions may
be very useful when there are a large number of implementations of the fixed line balance
under unchanging assembly production conditions. However, in a specific implementation
of the assembly process, the given probability distributions may be of little use. In particular,
in an unsuccessful case for the fixed balance, b = (Vb

1 , Vb
2 , . . . , Vb

m), conditions, this line
balance sheet may not only be worse than the factually optimal line balance, but even
unacceptable for the worst case for assembly line conditions.

The question also arises whether it is possible to determine the law of probability
distribution of random assembly operation durations. Such a law can be determined on

20

Algorithms 2023, 16, 100

the basis of reliable statistics. In other words, it is necessary to conduct a sufficiently large
number of full-scale tests (or computational experiments on the computer), which them-
selves can be expensive, and it will take a lot of time to conduct the needed computational
experiments. It is also necessary to analyze the obtained statistics, and only after that is
it possible to draw a more or less plausible conclusion about the law of the probability
distribution of the random assembly operation durations. The resulting law will reflect the
future actual (sometimes unique) probability distribution of random durations of assembly
operations only with a certain (possibly gross) approximation level. It is almost impossible
to exactly determine the law of probability distribution of random operation durations.
How, then, is it possible to obtain reliable statistics if a sufficiently large number of full-scale
(computer) tests cannot be carried out due to a lack of time (which is limited in modern
market competition) or due to limited resources of the enterprise? Even reliable statistics
may not be of great importance for a particular implementation of the assembly production
and for several successive implementations of the assembly process, if the production con-
ditions are different from the production conditions for obtaining statistics and, accordingly,
the distribution of probabilities of random assembly operation durations, in fact, may be
violated in practice.

4.2. Assembly and Production Line Balancing Problems with Fuzzy Parameters

The input data for many practical ALBP are uncertain or questionable, and so only
some limits can be set on the original data. The data questionability can be represented
by fuzzy numbers to reduce possible errors associated with input data. The duration of
assembly operations in such an ALBP can be represented as fuzzy numbers. Such problems
are called fuzzy ALBP and can be formulated as follows. Let the set of assembly operations,
V = {1, 2, . . . , n}, be given. The duration of each operation is presented by a fuzzy number.
The precedence digraph G = (V, A) is given, which determines the partial strict order on
the set V. The problem is to assign a set of operations, V, to the ordered workstations,
S1, S2, . . . , Sm, in such a way that the precedence constraints are not disturbed and the
objective function would take an optimal fuzzy value [26,33,88,89].

The articles [88,89] provide approximate solutions to the ALBP with fuzzy durations
of the assembly operations. A genetic algorithm was developed to minimize the maximum
total duration of the assembly operations assigned to each workstation. Genetic operators
suitable for solving the fuzzy ALBP were considered. The article [88] provides a heuristic
solution to the ALBP with fuzzy durations of the assembly operations. In [26], a mixed-
model assembly line is designed to assemble several types of the final product. The optimal
sequence of product models was determined to minimize the number of assembly conveyor
stops required to move from assembling one product model to assembling another model
of the same product. When the operating conditions of the assembly line change or the
requirements for the product model change, it is important to determine the assembly
sequence of all models of the product, for which the stops of the assembly conveyor would
be minimal and there would be no frequent need to rebalance the assembly line. Three
objective functions conflicting with each other were considered. To solve the fuzzy ALBP, a
mathematical programming method with a fuzzy goal was developed.

The mixed-model assembly lines are highly adopted in the automobile industry and
so the part feeding process becomes critical. In [90], the dynamic part feeding scheduling
problem was studied for optimization of the throughput of the mixed-model assembly
lines, along with the total delivery distance of the automatic guide vehicles. A process
considering the feeding operation generation, the loading, sequencing and dispatching
problems was analyzed, determining appropriate models and algorithms. To heuristically
solve these problems, the research [90] contains a hybrid fuzzy–neural dynamic schedul-
ing algorithm, which integrates the self-organizing maps with a fuzzy algorithm and a
knowledge base. This algorithm was adapted to the pre-cluster status of the mixed-model
assembly line in order to optimize the initial clustering centers. After that, the algorithm
was availed to guide the clusters in a way to improve the clustering performance. The com-

21

Algorithms 2023, 16, 100

putational experiments were conducted in order to evaluate the scheduling performance
in the dynamic manufacturing environment and verify the algorithm’s superiority over
the benchmark ones. The developed algorithm allows a decision-maker to select a rational
scheduling scheme based on the decision impacts in the productivity, feeding costs and the
real-time status of the assembly conveyers.

The paper [91] presents the results of the investigation of a single-model SALBP with
fuzzy assembly operation durations. This problem is referred to as a fuzzy SALBP-E,
consisting of finding the best combination of the number of workstations and the cycle
time as well as a respective assembly line balance, such that the determined measure of
efficiency of the single-model assembly line is maximized. A fuzzy SALBP-E is an extension
of the deterministic SALBP-E under fuzziness of input data. The formal definition of
the considered problem was given with the assembly operation durations presented by
triangular fuzzy membership functions. The considered problem is known to be NP-
hard, and therefore a meta-heuristic based on the genetic algorithm was developed for its
heuristic solution. The performance of the proposed algorithm was studied and discussed
over several benchmark instances. The computational results demonstrated a satisfactory
performance for the developed algorithm in terms of solution CPU time and quality.

The research of the paper [92] addresses both the straight ALBP and the U-shaped
ALBP. It is written in this paper that many attempts in the OR literature were made to
study the deterministic ALBP and the attention was not given to those with inaccurate
data. In [92], a bi-objective fuzzy mixed-integer linear programming was developed,
with triangular fuzzy numbers being employed in order to represent uncertainty and
vagueness, which are associated with the assembly operation durations arising in the real
assembly productions. In the proposed algorithm, two objectives (minimizing the number
of available workstations and minimizing the cycle time) were considered with respect to
the set of usual constraints presented in Section 2.1. An appropriate strategy was proposed,
where two-phase interactive fuzzy programming was used as an algorithm for finding
a compromise solution. The validity of the proposed algorithm was evaluated though
numerical tests. An experimental comparison study was conducted over several test
problems in order to assess the performance of the proposed algorithm. The computational
result demonstrated that the interactive fuzzy algorithm can not only be applied to the
fuzzy ALBP but was also capable to handle different practical models. The proposed model
and algorithm may constitute a framework aiming to assist a decision-maker to deal with
inaccurate data in the ALBP.

Due to the main role of the efficient assembly and production lines in modern manu-
facturing systems, the research of the paper [93] was devoted to both straight and U-shaped
assembly line balancing problems. The considered ALBP includes conflicting objective
functions that should be optimized subject to a set of constraints. This paper endeavors to
develop a fuzzy linear programming algorithm. Having dealt with the inaccurate nature
of the real assembly production, triangular fuzzy numbers were employed in order to
represent fuzzy input data with possible vagueness associated with the assembly operation
durations. The developed algorithm can be regarded as a background of fuzzy program-
ming for further practical development in the ALBP. To heuristically solve the fuzzy ALBP,
a multi-objective genetic algorithm was developed. Having respected several important
characteristics of the fuzzy straight ALBP and fuzzy U-shaped ALBP, the algorithm in-
cludes an initial generation, encoding and decoding schemes and a genetic algorithm. The
developed algorithm was evaluated based on several benchmark instances and compared
with the exact algorithm. The presented computational results demonstrated the efficiency
of the developed algorithm over other ones suggested in the OR literature.

Sequencing and balancing manual mixed-model assembly lines is challenging in
assembly production due to the high complexity and uncertainty of human operators’
activities. The control of a predetermined cycle time and the sequencing of assembly
production can mitigate large losses due to non-optimal line balancing in the case of
open-workstation production, where the human operators can work ahead of a normal

22

Algorithms 2023, 16, 100

schedule and try to reduce a backlog. The objective considered in [94] was to provide
a cycle time control algorithm, which can provide the efficiency of the assembly line
production in the situations based on an appropriate mixed-sequencing strategy. To handle
the uncertainty of human operators’ activity durations, a fuzzy mixed-model-based solution
has been developed. As the production process was modular, the fuzzy sets represented
the uncertainty of the activity durations related to processing the modules. Both optimistic
estimates and pessimistic estimates of the completion of activities were extracted from the
fuzzy model and incorporated into a predictive control algorithm to ensure the constrained
optimization of the predetermined cycle time. The applicability of the proposed algorithm
was demonstrated using a wire-harness manufacturing process with a paced assembly
conveyor. The developed algorithm can handle continuous assembly conveyors as well.
The computational results confirmed that the developed algorithm is applicable in the cases
where a production line of the supply chain is not well-balanced, and the activity durations
are uncertain.

The paper [95] is devoted to both multi-objective straight assembly line balancing
problems and U-shaped ALBP with fuzzy operation duration. Four objectives were con-
sidered (minimizing numbers of workstations, maximizing fuzzy assembly line efficiency,
minimizing the fuzzy idleness percentage and minimizing the fuzzy smoothness index).
Two problems were formulated, including uncertainties, variability and imprecision that
usually occur in a real-world production. The durations of assembly operations were
determined by triangular fuzzy numbers. To heuristically solve this fuzzy problem, a
hybrid multi-objective genetic algorithm has been developed. A one-fifth success rule was
deployed for selection and mutation operators to improve this genetic algorithm. The
results in the genetic algorithm application were controlled in convergence and diversity
by means of controlling the selective pressure rate. A fuzzy controller to the selective
pressure was employed for the genetic algorithm toward its better implementation. The
Taguchi design of the computational experiments was used for the parameter control and
calibration. The numerical examples were presented to compare the performance of the
proposed algorithm with the existing ones. The computational results showed a better
performance of the proposed algorithm. Similar ALBP, modified algorithms and closed
results are presented in the paper [96].

Balancing the workloads of available workstations is a key point in the efficiency of
the assembly line. An initial line balance can be broken by the changing processing abilities
of machines because of their degradation, and therefore re-balancing of the assembly
line is inevitable. The impacts of unexpected events on assembly line re-balancing are
usually ignored in the OR literature. Using the advanced sensor technologies and Internet
of Things, the machine degradation can be continuously monitored, so condition-based
maintenance can be implemented to improve the health state of the machine. Using
the technology of robotic process automation, workflows of the assembly process can be
smoothed, workstations can work autonomously and a higher level of process automation
can be achieved. Real-time information of the processing abilities of machines will bring
about opportunities for automated workload balance via an adaptive decision. In [97], a
fuzzy control system was developed to make real-time decisions to balance the workloads
based on the processing abilities of the workstations, given the policy of condition-based
maintenance. Fuzzy controllers were used to decide whether to re-balance the assembly
line and how to adjust the production rate of each workstation. The conducted numerical
experiments showed that the buffer level of the assembly line with the fuzzy control system
was lower than that of the assembly line without a control system (the buffer level of the
assembly line with another control system was the lowest). The product demands can be
satisfied by assembly lines, except the one with another control system since there were
too many production losses sacrificed for the low buffer level. The stability analysis of the
control performance to the numerical parameter settings was conducted. The effectiveness
of the developed fuzzy control was demonstrated. The intelligent automation can improve

23

Algorithms 2023, 16, 100

the performance of the assembly process by the proposed fuzzy control system since
real-time information of the assembly line can be used for the adaptive decision-making.

In [98], a fuzzy control system was developed to analyze real-time information of the
assembly line with two types of fuzzy controllers. The first type of a fuzzy controller was
used to determine whether the assembly line should be re-balanced to satisfy the changed
product demands. The second type of fuzzy controller was used to adjust the production
rate of each workstation in time, to eliminate blockage and starvation. Hence, the utilization
of available workstations increased. Compared with the three assembly lines without the
fuzzy control system, the assembly line with the fuzzy control system performed better in
terms of the blockage ratio, the starvation ratio and the buffer level. With the improvement
of information transparency, the performance of assembly line production was better. The
research findings shed light on the smart control of the assembly line production and
provide insights into the impacts of Industry 4.0 on the ALBP.

Summarizing the above results published in the papers [26,33,88–98], one can conclude
that a fuzzy ALBP is a harder problem than a deterministic or stochastic ALBP with the
same problem size. The fuzzy ALBP need complex algorithms to obtain either a good
heuristic solution or an exact fuzzy solution. Since fuzzy algorithms are time-consuming,
finding a fuzzy optimal solution in a reasonable CPU time is possible only for a fuzzy ALBP
with small or moderate sizes.

5. Designing and Balancing Production Lines of Disassembly of Obsolete Products

Due to the rapid development of modern technologies and changes in the consumer
market, many products have begun to quickly become obsolete and are subject to destruc-
tion. Considering this, it is necessary to disassemble products with an expired period of
use and then restore such products. A disassembly of obsolete products is required for
their subsequent processing and restoration. In recent years, many specialized production
disassembly lines have been created, which are effective for processing obsolete products.
Improving the efficiency of the production line is associated with a solution of the DLBP
(disassembly line balancing problem), which is aimed at optimizing the disassembly of
products in such a way that the total disassembly time spent on each available workstation
would be approximately the same for all available workstations and approach the time of
the specified cycle of the production line [25,31]. Disassembly operations at workplaces
in the disassembly shop are required to ensure the removal of valuable components from
the disassembled product and reduce the undesirable environmental impact of everything
that remains after the disassembly of the obsolete product. In contrast to the assembly
production, which is more stable due to the deterministic durations of many assembly
operations, the disassembly of obsolete products often has inaccurate parameters and so
the DLBP are usually uncertain.

Obsolete product disassembly may include a separation of the reusable pieces. It is of-
ten possible to operate remanufacturing processes on several of the pieces while others may
be sold to suppliers [99]. In a robotic disassembly line, the robot may complete repetitive
operations with rather continual efficiency. Since most industrial robots cannot handle com-
plex disassembly operations, a human–robot involvement in the disassembly process was
proposed to flexibly and efficiently disassemble the obsolete products, with less damage to
the environment, a lower operation cost, less energy consumption and a minimal cycle time.
The robotic disassembly line balancing problem (RDLBP) is determined as disassembly
processes collaboratively carried out by humans and robots or the disassembly performed
by robots autonomously. Such a problem has two main avenues of research published in
the OR literature, as follows: robotic disassembly line balancing and robotic disassembly
sequence planning. The review paper [100] is devoted to the RDLBP and is organized
based on the above subjects. The RDLBP is an optimization problem, where the objective
is to find an optimal sequence for disassembling the obsolete products. Similar problems
may include disassembly sequencing, disassembly sequence optimization, disassembly
planning and human–robot collaborative disassembly problems. Disassembly sequence

24

Algorithms 2023, 16, 100

planning may involve three steps, as follows: to decide whether the disassembly mode
should be complete or partial, to construct a disassembly model by preventing the gener-
ation of unfeasible disassembly sequences and to employ a selected planning algorithm
according to the disassembly objective and the used optimization models and techniques.
The articles [25,31,101,102] investigated the disassembly line balancing, which may con-
sist of the aggregate machines, mechanisms and devices located in accordance with the
sequence of operations of the technological process of disassembling the obsolete product
and transport devices that move the disassembled product. The duration of disassembly
operations cannot be accurately determined but a few studies are published on the DLBP
with inaccurate durations of disassembly operations.

The timely recovery and disassembly of waste electronic and electrical equipment
obtained a higher economic benefit and can reduce the impact of hazardous substances
on the environment. The parallel disassembly line can disassemble different types of
waste electronic and electrical equipment and improve the disassembly efficiency. A
parallel disassembly line balancing model with stochastic disassembly times is studied
in [102]. The evaluation index of the disassembly line includes a number of workstations,
workload smoothness and disassembly profits. A genetic simulated annealing algorithm
was proposed to optimize a disassembly line balance. The decoding and encoding strategies
were proposed based on characteristics of a partial disassembly and parallel layout. Two-
point mapping crossovers and single-point insertion mutations were designed to ensure
that the disassembly sequence meets the given precedence and disassembly constraints. The
simulated annealing algorithm was applied to the results obtained by the genetic operation.
The proposed algorithms obtain better solutions than a tabu search for stochastic parallel
DLBP. The proposed algorithm has a better performance than the CPLEX solvers, genetic
algorithms and simulated annealing algorithms for parallel DLBP. Parallel disassembly
lines for waste refrigerators and televisions were constructed. The performance of the
proposed multi-objective algorithm was superior to those of five other multi-objective
algorithms. The computational results showed that the proposed model and algorithms
have better practical application ability.

To reduce disassembly costs for enterprises and improve the disassembly efficiency
of waste products, the paper [103] investigated a partial sequence-dependent DLBP and
established a multi-objective model to minimize the number of used workstations, the
total disassembly operation duration, the idle balance index and the number of used dis-
assembly tools. A Pareto-discrete hummingbird algorithm was proposed to address a
partial sequence-dependent disassembly line balancing problem. This algorithm includes
two stages, as follows: a self-searching stage and an information-interacting stage. With
these stages, the exploration and exploitation abilities of the Pareto-discrete humming-
bird algorithm may be balanced. The effectiveness and superiority of the Pareto-discrete
hummingbird algorithm were verified by comparing it with other algorithms for two
instances of the DLBP. The mathematical model and Pareto-discrete hummingbird algo-
rithm were applied to the optimization of a partial sequence-dependent disassembly line
of waste laptops. The optimization results showed that the partial disassembly can make
the disassembly line smoother and the utilization efficiency of workstations higher than
full disassembly. The Pareto-discrete hummingbird algorithm was superior in solving the
partial sequence-dependent DLBP.

Studies in production engineering focused on disassembly and assembly planning
for improving the profitability of remanufacturing. The presentation of assembly and
disassembly sequences by analyzing geometrical and technical precedence constraints is an
essential necessity of assembly and disassembly planning. A specific and/or graph is used
to represent a product’s feasible assembly and disassembly sequences, including alternative
subassemblies and parallel operations. A lot of researchers have studied the automatic
extraction of geometrical precedence constraints by collision analysis within 3D models.
Since most of the published approaches focused on collision analysis to identify precedence
relations, the generation of and/or graphs for complex products from collision analysis re-

25

Algorithms 2023, 16, 100

sults remain inefficient for many industrial cases. In [98], a computer-aided design interface
from previous studies is used to extract liaison and moving wedge information from 3D
models. A top-down approach and a bottom-up approach for generating complete and/or
graphs from the extracted data were introduced. These approaches for computing perfor-
mances were analyzed on the several test cases and the developed computer-aided design
models. The bottom-up approach performed better for the tested samples. It has been
found that the amount of moving wedge constraints has a strong effect on the computing
performance. It is an indicator to estimate the complexity of products under examination.
The exponential behavior of the needed computing resources can be estimated beforehand.
For complex products, graph simplifications or alternative graph representations with
less information richness were considered. The obtained computational results contribute
to automated assembly and disassembly sequence planning from complex products and
increasing remanufacturing profitability.

In [104], a multi-period integrated decision-making model is investigated for the
heavy-duty equipment maintenance, involving disassembly, inspection and assembly, with
uncertain numbers of replaced parts within a fixed-time horizon. There are large numbers of
subway cars exported from other countries and the maintenance is difficult to be conducted
in Hong Kong due to the limited space, machinery and technical support teams. Thus,
efficient maintenance planning is required to ensure the quality of transportation services.
To resolve this problem, a deterministic mixed-integer optimization model was developed
to achieve integrated optimization of disassembly and assembly. The model minimizes the
total operation cost, consisting of a purchasing cost and a repair cost subject to capacity
constraints. A real-life case study from mass transit railway in Hong Kong is presented to
verify the proposed model.

The aim of the paper [105] is to reverse an assembly line using a mobile platform
equipped with a manipulator. Reversibility means that the assembly line is able to perform
disassembly as well. For this purpose, a (dis)assembly line balancing and a synchronized
hybrid Petri nets model were used to model and control a (dis)assembly line, with a
fixed number of workstations, served by a wheeled mobile robot equipped with a robotic
manipulator. The model is of a hybrid type, where the (dis)assembly line is a discrete
part while the wheeled mobile robot with a robotic manipulator is a continuous part. The
model operates in synchronized mode with signals from several sensors. Disassembly
starts after the assembly process and after the assembled piece fails the quality test in
order to recover the parts. The wheeled mobile robot with a robotic manipulator was used
only during disassembly, to transport the parts from the disassembling locations to the
storage locations. Using these models, a real-time control structure has been designed
and implemented, allowing automated assembly and disassembly, where the latter was
assisted by a mobile platform equipped with a manipulator. The paper [106] aims to
study a specific type of disassembly line with multi-robotic workstations, where multiple
industrial robots perform different disassembly operations on the obsolete products of
different models. The industrial robots on the disassembly line were differently skilled
and had non-identical disassembly operation durations along with energy consumption.
Considering the given conditions of the returned products, a task-based operation digraph
and a subassemblies-based and/or graph were used to represent the precedence constraints
of the disassembly operation sequence. A mixed-integer mathematical programming was
developed for the considered problem, with three conflicting objectives of minimizing the
cycle time, the peak-total energy consumption and the cost of hazardous tasks. Successfully
solving practical disassembly line balance problems is usually subject to a great number of
uncertainties in the real-life problems. The uncertainties in disassembly operation durations
were solved by stochastic, fuzzy and interval programming algorithms. Computational
results of the conducted experiments on problem instances were presented.

The disassembly line is one of the most important tools to handle large quantities of
waste electronic and electrical equipment. The DLBP is to assign disassembly operations to
each available workstation reasonably while satisfying various given constraints, which is

26

Algorithms 2023, 16, 100

one of the challenging topics. Considering the uncertainty, environmental protection and
economic benefits of disassembly, the paper [107] established a stochastic partial DLBP
that comprehensively evaluates the number of used workstations, workload smoothness,
energy consumption and disassembly profit. To obtain feasible solutions with a high quality,
a multi-objective discrete flower pollination algorithm was developed. This algorithm
establishes heuristic rules, discrete operations and multi-objective algorithms combined
with the characteristics of the partial DLBP. The effectiveness and application ability of
the proposed model and algorithms were verified by a disassembly example of a waste
printer. Various disassembly schemes were obtained, which can provide guidance for a
decision-maker to construct disassembly lines.

End-of-life products with large sizes are suitable for disassembly operations on the two-
sided disassembly line. The destructive disassembly is required in the disassembly process.
The negative impacts caused by destructive disassembly during the disassembly process
are usually ignored in the OR literature. In the paper [108], a probability-based operation
destructive disassembly model was constructed in the two-sided DLBP, and the negative
impact on the total disassembly cost, workload smoothness index and the impact of destructive
disassembly operations on other adjacent but unconnected operations were determined. A
mixed-integer programming was used to minimize the above objective functions. A multi-
objective restart genetic algorithm was developed, which combines the genetic operations
and flatworm regeneration processes with an embedded restart mechanism. The effectiveness
of the model and the efficiency of the developed algorithm were verified by disassembling
mobile phones, laptops, printers and engines on the two-sided disassembly line. Through
the application of car disassembly, it was shown that the developed algorithm can assist a
decision-maker to choose the preferred disassembly schemes.

The RDLBP is one of the central problems in designing disassembly lines. This prob-
lem is used to find the disassembly operations to be optimally assigned to each available
workstation for a given obsolete product [109]. There are two classes for disassembly line
balancing problems. The first one is based on the variety of obsolete products, including
single-model, mixed-model and multi-model disassembly lines. Only one type of obsolete
product can be disassembled on a single-model disassembly line, while more than one type
of obsolete product could be disassembled simultaneously on a mixed-model disassembly
line. Thus, a mixed-model line is more flexible to the product type change and this advan-
tage may reduce disassembly line building and costs. In a multi-model disassembly line,
several obsolete products in separate batches are disassembled, though rarely performed.
The second class is the classification based on the types of lines, including straight lines,
U-shaped lines and those with parallel layouts.

The paper [48] provides a review of robotic publications (225 papers) utilizing opti-
mization techniques from 2005 until 2021. In this review, most developments in robotic
problems are cited. A robotic manufacturing system usually includes an industrial robot
as a material handling device, a co-worker with human or autonomous robots and other
relevant systems. Due to the lack of a deep analysis and complete listing of the robotic
articles which apply optimization techniques, this paper aims to report an extensive archive
of robotic papers on a structured classification for robotic problems, including robotic cell,
robotic disassembly and robotic assembly. Descriptive statistics were provided, including
the number of publications and the authorship analysis, and future trends towards the
robotic studies were introduced. The review in [48] shows that heuristic or meta-heuristic
algorithms are the most frequently used tools to solve the robotic application problems.
This review stimulates theoretical and applied studies of industrial robots in order to
establish a foundation for robotic problems arising in the industry.

The application of robots in mechanical assembly may increase the efficiency of the
industrial production. With the requirements of flexible manufacturing, it has become a
research hotspot for accomplishing diversified assembly operations safely and efficiently
in unstructured environments. Several advanced robot assembly strategies have been
proposed. Fault monitoring and strategy performance evaluation have attracted the at-

27

Algorithms 2023, 16, 100

tention of researchers and practitioners. To promote the development of robotic assembly,
the authors of the paper [110] analyzed the research in this field. According to the as-
sembly process, they separate the research contents into target recognition and searching,
compliant strategies for fine insertion motion and fault monitoring. The characteristics of
each model and most methods were summarized. A performance evaluation for assembly
strategies was proposed with typical metrics. The authors surveyed the benchmarks to
provide support for standardized performance evaluation. The challenges and potential
directions for future research were discussed. The paper [110] presented the state-of-the-art
robotic assembly approaches used in recent years based on the assembly action procedure,
including target search, fine motion strategies, along with fault diagnosis and strategy
performance evaluation.

A disassembly process is often characterized by a high level of uncertainty due to the
quality and types of the end-of-life products. The paper [111] presents an approach for
designing disassembly lines with the objective to maximize the disassembly line profit.
Disassembly operation durations were assumed to be random variables with probability
distributions known before solving the problem. The and/or graph was used to model the
precedence relationships among disassembly operations, subassemblies and the disassem-
bly alternatives. A Monte Carlo sampling-based solution algorithm was developed to deal
with uncertainties. The obtained results of the conducted computational experiments on
the test problems were presented and discussed.

The aim of [112] was to reverse an assembly line using a mobile platform equipped
with a manipulator. By reversibility, the authors of this paper mean that the assembly line
is able to perform disassembly as well. For this purpose, an assembly/disassembly line
balancing and a synchronized hybrid Petri net model are used to model and control an
assembly/disassembly line, with a fixed number of workstations, served by a wheeled
mobile robot equipped with the robotic manipulator. The synchronized hybrid Petri net
model is a hybrid type, where the assembly/disassembly line balancing is a discrete part,
and the wheeled mobile robot with the robotic manipulator is a continuous part. The
model operates in synchronized mode with signals from sensors. Disassembly starts
after the assembly process and after the assembled piece fails the quality test, in order
to recover these parts. The wheeled mobile robot with the robotic manipulator is used
during disassembly, to transport the parts from the disassembling locations to the storage
locations. Using these models and a Lab-View platform, a real-time control structure has
been designed and implemented, allowing automated assembly and disassembly, where
the latter is assisted by a mobile platform equipped with the robotic manipulator.

Disassembly of end-of-life products is a main step in remanufacturing and recy-
cling. Disassembly sequence planning is the process that finds the optimal sequence of
components being removed. An element of disassembly sequence planning is a suitable
mathematical representation that describes the interference of components in the product.
Most studies on disassembly sequence planning have tended to focus on the interference
that is fixed. The interference may be uncertain due to complex end-of-life conditions such
as deformation, corrosion and rust. To deal with uncertain interference, the paper [113]
proposes an interference probability matrix as a mathematical representation that uses
probability to indicate uncertainty in the interference. A multi-threshold planning scheme
is established to generate optimal disassembly sequences. Three cases are presented to
demonstrate the use of the proposed approach. The performance of four multi-objective
optimization algorithms that can be adopted in the planning scheme is tested.

Since the disassembly of end-of-life products is affected by many dynamic and un-
certain factors, many mathematical models and algorithms were established for uncertain
DLBP. With more extended objectives, constraints and different algorithms of disassembly,
inconsistent models relating to product representations and types of disassembly lines have
become the main barriers for the transfer of research to disassembly practice. In [114], an
overview of recent models to summarize the input data, parameters, decision variables,
constraints and objectives of the DLBP was presented. After discussing the adaptation

28

Algorithms 2023, 16, 100

and extensibility of the published models for different environments, a unified encoding
scheme was designed to apply typical multi-objective evolutionary algorithms on the DLBP,
with extensive decision variables and seven significant objectives. Algorithm comparison
on four typical cases was carried out based on commonly used products to verify the
optimization process for the integrated version of existing models and demonstrate the
overall performance of the typical multi-objective evolutionary algorithms on the DLBP.
Experimental results can be a baseline for further algorithm design and practical algorithm
selection on the DLBP scenarios.

6. Designing, Balancing and Scheduling Assembly Lines with Uncertain Parameters

The uncertainty may be modeled by specifying a set of scenarios containing possible
vectors of the ALBP parameters which may occur. No additional information for the given
scenario set, such as a probability distribution or membership function, is provided. To
choose a line balance, the robust or stable optimization framework may be applied (see [73]).
In Section 6.1, the goal is to find a line balance with the best worst-case performance over
the given set of possible scenarios. This performance can be measured by a min-max regret
criterion based on regret theory.

6.1. A Robust Approach to the ALBP with Uncertain Parameters

A design for a disassembly line is the essential procedure in determining the disas-
sembly and recyclability of the end-of-life products. An efficient procedure aims to provide
the disassembling and recycling. The recent trends of disassembling and recycling include
environmental and social sustainability. Due to a shortage of energy and deterioration of
the ecological environment, the sustainable production is an active research topic to use
the economic benefits as the evaluation standard of a design scheme and environmental
characteristics. The paper [115] provides an approach for designing a disassembly line
based on sustainability. A hybrid multi-attribute decision-making algorithm integrating
the regret theory and the entropy weighting procedure was developed. To implement
the proposed algorithm, several criterions were used (disassembly energy consumption,
disassembly accessibility, fastener ratio, toxic material proportion, material recovery rate,
disassembly expense, waste emissions, production and use noise). To better describe the
fuzziness of human thinking and to avoid a loss of information and distortion during in-
formation aggregation phases, the evaluation information given by experts was presented
by the interval linguistic intuition of fuzzy numbers. The weighted vector of the index
structure was determined by the entropy weighting procedure under a fuzzy environment.
The regret theory was employed to obtain a final order of alternatives via considering and
guaranteeing the risk attitude and the regret attitude of experts. To show the applicability
of the developed algorithm, a case study including four kinds of refrigerator schemes was
conducted to validate the proposed algorithm. A comparison with other algorithms along
with a sensitivity and stability analysis of experiments was executed to verify the effective-
ness and reliability of the developed algorithm. The computational experimental results
showed that disassembly accessibility, the fastener ratio, waste emissions and disassembly
energy consumption have a large impact on the scheme selection based on sustainability.
The proposed algorithm outperforms other tested ones. The chosen scheme was a winner
in majority of the sensitivity and stability analyses.

Robotic disassembly sequence planning is a research area that looks at the sequence
of actions in the disassembly intending to achieve autonomous disassembly with high
efficiency and low cost in remanufacturing and recycling applications. Key information
being factored in disassembly sequence planning is the interference condition of a product
(a mathematical representation of the spatial location of components in the assembly in
the form of a matrix). An observed challenge is that the interference condition can be
uncertain due to variations in the end-of-life conditions. Therefore, there is a lack of tools
available in disassembly sequence planning under uncertain interference. To address this
challenge, in [116], a disassembly sequence planning algorithm is proposed that can cope

29

Algorithms 2023, 16, 100

with uncertain interference conditions enabled by the fuzzification of disassembly sequence
planning. This algorithm is a fuzzy and dynamic modeling one, in combination with an
iterative re-planning strategy. The fuzzification of disassembly sequence planning offers
the capability for the disassembly sequence to adapt to failures and self-evolve online.
Three disassembly products were used to demonstrate the properties of this algorithm.

In [21], the case of the ALBP-1 is considered, in which assembly operation durations
are worker-dependent and uncertain, and being expressed as segments (closed intervals)
of possible duration values. The main goal is to find an assignment of assembly operations
and workers to a minimal number of used workstations such that the resulting productivity
level is in respect to a desired robust measure. Two mixed-integer programming settings
were proposed for this uncertain ALBP-1 and explain how these settings can be adapted
to handle the special case, where one must integrate a particular set of workers in the
assembly line. A construction heuristic was developed that yields high-quality solutions
in a fraction of the CPU time needed to solve the uncertain ALBP-1 to optimality in the
robust sense. Computational results showed the benefits of solving this robust optimization
problem instead of its deterministic counterpart.

The problem of placing the inventory over a network, which is used for assembling
a final product, is a challenging issue in supply chain designs because the manufacturer
wants to reduce inventory over the supply chain. The process of designing a supply chain
and placing inventory, to offer a higher service level at the lowest possible cost, is not an
easy choice for a decision-maker. In the paper [117], the authors used the supply chain
representation, where a supply chain was divided into supplying, manufacturing and
delivering stages. The main problem was to select a resource option in order to perform
each above stage based on the selected options and to place an amount of inventory at each
stage in order to offer satisfactory customer service with a low total supply chain cost. A
resource option represents suppliers, manufacturing plants (production lines) and transport
modes in the supplying, manufacturing or delivering stage. The assembly algorithm based
on an ant colony optimization was developed to minimize the total supply chain cost and
the lead time of the products to ensure all product deliveries without delays.

The concerns of most companies related to economic savings, optimal utilization of
resources along with increasing environmental protection regulations prompt the manu-
facturer to be focused on recycling the products that are at the end of their life. In [118],
a job-shop scheduling problem is considered with reverse flows under uncertainty. Since
most parameters of the model (e.g., operation durations) were tainted with uncertainty in
real-world applications, a robust programming was used. Due to the complexity of solving
the job-shop scheduling problem, an exact algorithm for small-sized instances and simu-
lated annealing with a discrete harmony search for large-sized instances were developed.
The model performance was evaluated by comparing the computational results available
from the OR literature. The performance of the proposed meta-heuristic algorithms was
evaluated by comparing the obtained schedules with the exact algorithm for small-sized
instances and with three meta-heuristics (the discrete particle swarm optimization, the
invasive weed optimization and the greedy algorithm) for medium-sized and large-sized
instances. The satisfying results showed that the presented model and proposed algorithms
ensure a good solution quality within a reasonable CPU time for the tested instances.

Assembly operation duration variations in a manufacturing production line can result
in a longer duration to complete operations than a predetermined cycle time, leading
to a production line stoppage and loss of production time. In practice, a portion of the
predetermined cycle time may be allocated as a predefined fixed-size buffer time, which
is determined based on the experience, to account for such uncertain duration variations
for a paced assembly line without storage-buffers between workstations. The size of
the required buffer time in each workstation depends on the variation levels of operation
durations and the desired conservatism level for preventing cycle time violations. Moreover,
there are uncertainties in other nonviable activity durations in the workstations, which
are known as inter-task times. Although many studies on the stochastic manufacturing

30

Algorithms 2023, 16, 100

assembly line design focused on minimizing the cost incurred when the predetermined
cycle time is exceeded due to operation duration variations, they mostly disregarded the
inter-task times. It is worth studying the common effect of the manufacturing duration
uncertainty level and that of the conservatism level on the predetermined cycle time.
The paper [74] proposes an algorithm for a robust manufacturing assembly line design
that incorporates the conservatism level and uncertainties in the assembly operation and
inter-task times. This interpretation of the non-productive times in the workstations is
presented by introducing the concept of the α-fractal buffer time to manage the effect of
manufacturing operation duration uncertainties. To overcome the above problem of an
excessive robustness, a moderate robust approach with conservatism-level flexibility has
been used, focusing on the predetermined cycle time in the bottleneck workstation. The
effect of the uncertainties and conservatism levels on the predetermined cycle time was
analyzed through several numerical examples. The obtained computational results can be
used for improving the manufacturing production line, in which uncertainties in assembly
operation and inter-task times may considerably degrade the productivity.

Balancing U-shaped assembly lines under uncertainty is addressed in [119] by formu-
lating a robust optimization problem and developing an optimization model and heuristic
algorithm. U-shaped assembly layouts were shown to be more efficient than conventional
straight lines. A great majority of studies on U-shaped assembly lines assume deterministic
environments and ignore uncertainty in the assembly operation durations. In [119], the
robust optimization was used for U-shaped assembly planning. It was assumed that the
assembly operation durations are not fixed and can vary from time to time. A robust
optimization that considers worst-case scenarios was employed. To avoid over-pessimism,
the authors of this paper assumed that only a subset of assembly operation times may take
their worst-case values. To heuristically solve such an uncertain problem, an iterative heuristic
algorithm has been developed. The efficiency of the developed algorithm was evaluated with
computational tests. In [120], an algorithm for robust scheduling on parallel unrelated (or
uniform) machines is proposed [40,41]. The proposed algorithm is based on the combination
of a robust model and discrete event models, which are iteratively called one after another in
order to converge towards a robust schedule, with the required robustness determined by a
decision-maker. Computer experiments in a small instance (10 jobs and 2 unrelated machines)
and in a large instance (30 jobs and 6 uniform machines) showed that the proposed algorithm
permits to quickly converge to a robust optimal schedule, even if the probability distribution
of the random job durations is not symmetrical. The proposed algorithm achieved a better
rate of convergence than those of the OR literature’s algorithms.

Digital material structure is a lattice composed by discrete elements, which are con-
nected to create assemblies that can exhibit the high-performance mechanical characteristics.
The paper [121] presents the development and robustness of the processing system, which
is called the gantry autonomous robotic integrator. This integrator is designed to automati-
cally assemble these digital material structures. The relative positioning tolerance of the
connecting elements and algorithms increasing the reliability of the automated assembly
of these structures have been specified in this paper. A compact end-effectors design was
presented, which showed a high precision and adjustability. The calibration procedures for
building a plate were determined. The bolting reliability for the end-effectors was analyzed
in order to identify tolerance requirements and establish performance benchmarks for
component feed workstations. Two external cases for testing the bolting reliability of the
end-effectors were explored.

Human operators are often faced with accelerating job demands, such as elevated
cognitive complexities. An objective measure of a mental workload is in high demand, as
indicated in theory and practice. The article [122] explored the wearability and external
validity of pupillometry, a measure of mental workload, estimated robustly and validated in
laboratory settings and deployable in work settings, demanding human operator mobility.
In an ecologically valid work environment, participants performed two manual assembly
operations (one of low complexity and another of high complexity) while wearing eye-

31

Algorithms 2023, 16, 100

tracking glasses for pupil size measurement. The obtained results revealed that the device
was perceived as fairly wearable in terms of physical and mental comfort. In terms of
validity, no significant differences in mean pupil size were found between the assemblies,
even though the subjective mental workload significantly differed. Exploratory analyses on
the pupil size when attending to the assembly instructions were inconclusive. It is suggested
that current laboratory-based procedures might not be adequate yet for mobile pupillometry.
These findings invite a more nuanced view on the current validity of laboratory-validated
physiological measures of mental workload when applied in real-life problem settings.

Industry 4.0 reflects a new stage for production workshops. This concept aims to bring
flexibility and agility to the production workshop. The scheduling problem is an important
issue. A schedule has to guarantee a high level, able to take into consideration several
possible changes and duration perturbations occurring in the workshop. The algorithms
proposed in [123] aim to find a robust optimal schedule capable of optimizing both the usual
scheduling theory criterion and robust criterion, considering a possible operation duration
perturbation. With these requirements of the workshop and the importance of decision-
making when implementing the constructed schedule in the uncertain environment, it
is essential to extend the robust scheduling problem to be adaptable to the needs of a
decision-maker in evaluating robust properties. In [123], a robust scheduling framework
was proposed based on a robustness specification. The paper demonstrates the use of this
framework in a decision-making context.

Mass customization requires a frequent product changeover that leads to the need of
manufacturing systems endowed with the flexibility and reconfiguration capabilities in or-
der to be robust to possible changes in the production scenarios. Manufacturing companies
face a risk when making strategic decisions on the system resources. This risk can be miti-
gated by exploiting performance evaluation models (such as analytical ones and a discrete
event simulation) that may be adopted to estimate the performance of suitable system con-
figurations. Decision-support tools for optimizing production system configurations can
be loosely coupled with performance evaluation models. Hence, such models undermine
the actual optimization of the production system, even more if production requirements
may evolve in the future. The paper [124] presents a methodology for supporting the opti-
mization of a manufacturing system configuration and reconfiguration subject to evolving
production requirements. The proposed analytical methodology integrates a stochastic
analytical model for a performance evaluation of manufacturing production lines into a
mixed-integer programming based on the original problem linearization. The advantage of
using the proposed methodology was shown on a production line configuration problem,
where buffer capacity and machine capability have to be jointly optimized in order to
minimize total costs and satisfy the target performance.

The approach described in [125] attempts to integrate agility aspects used in the APRS
project, which was developed at the National Institute of Standards and Technology. The
main idea for the APRS project was to develop the measurement science in the form of
an integrated agility framework, enabling manufacturers to assess and assure the agility
performance of the used robot systems. This includes robot agility performance metrics,
several information models, test algorithms and some protocols. A model for a planning
domain definition language was presented, which is used within the APRS project. It was
an attempt to standardize artificial intelligence planning languages. The described model
has been defined in the XMLS language and in the Web ontology language for kit building
applications. Kit building is a process that brings parts that will be used in assembly
operations together in a kit, and then moves the kit to the area where the parts are used
in the final assembly. The paper [125] presented a tool that was capable of automatically
and dynamically generating files from the model in order to generate a plan from scratch.
The ability of the tool to update a problem file from a relational database for re-planning to
recover from failures was also presented.

A frequently changing order stream and product variety require specific robust plan-
ning and control, along with a flexible system structure to fulfill the higher customer

32

Algorithms 2023, 16, 100

service level and to keep the total production costs at a reasonable restricted level. In [126],
combined production planning and capacity control algorithms for assembly lines were
proposed, aiming at balancing the workload of the operators and decreasing the production
costs on a considered time horizon. Instead of using an ideal cycle time and manufacturing
control rules, the proposed planning and control algorithms were based on adaptive calcu-
lations, which were taken from the continuously updated historical production data. The
manufacturing execution data were applied for building regression models, predicting the
capacity requirements of the possible production scenarios. The historical production data
were used as a direct input of discrete-event simulations in order to determine the proper
control policies of operator allocations for the possible scenarios. In order to calculate a
reliable feasible production plan, the regression models and control policies were integrated
in the mathematical programming model for minimizing the total production costs.

The final assembly of the vehicles is frequently designed as a mixed-model assembly
line, which effectively produces at a fixed ratio of possible variants. Market forecasts
indicate a volatile future demand for the different types of vehicles, including the electrified
ones. The resulting uncertainty of the demand affects the ALBP. In [127], a planning
algorithm is presented to provide a decision support for the ALBP with an inherent variant
flexibility while maintaining the feasibility robustness. In the first step, a worst-case
scenario analysis of the uncertain production program was conducted. As a result, assembly
operation duration buffers were derived from the expected fluctuations in the model mix.
The ALBP was solved by the proposed algorithm, which focused on the trade-off. It aims to
distribute the different durations of assembly operations in such a way that the aggregated
possible fluctuation of the assembly steps assigned to a workstation was minimized. The
number of workstations was to be kept to a minimum. By presenting the resolution options
of the trade-off, it was possible to show which options for an action were open to a decision-
maker. The combined approach of scenario analyses and the line balancing optimization was
developed. The proposed algorithm was applied to the use case in the automotive industry.

The paper [128] addresses production optimization in the case of uncertain parameters.
A standard framework for solving such type of problems was depicted in a three-step
algorithm. The first two steps were analyzed in [128]. These steps consist of off-line charac-
terization of the problem and the calculation of solutions with the desired performance. A
generic algorithm to implement these off-line steps was developed. This approach relies
on the calculation of robust off-line solutions. A generic framework of robustness was
determined. Five standard optimization problems were derived and related to the stability
and sensitivity analysis. The generic approach was applied to a multi-purpose machines
problem. The paper [129] addresses the ALBP with the uncertain operation durations.
Special machines are used, where the assembly operation duration can be any real number
between the given lower and upper bounds. These special machines can compress the
durations of assembly operations. This action may lead to a higher cost due to cumulative
wear, erosion, fatigue, etc. The cost was described in terms of operation durations via a
linear function. A bi-criteria non-linear integer programming was developed, which com-
prises two inconsistent objective functions (minimizing the predetermined cycle time and
minimizing the specific machine total costs). In order to sustain the considered objectives
concurrently, the authors of [129] applied the linear programming algorithm for making a
combined dimensionless objective. A genetic algorithm was described to heuristically solve
the ALBP. Design of experiments was used to tune various parameters of the proposed
genetic algorithm.

Assembly lines are manufacturing systems in which a product is assembled progres-
sively in workstations by different workers or machines, each executing a subset of the
needed assembly operations. In [130], it is considered the case in which operation execution
times are worker-dependent and uncertain, being expressed as intervals of possible values.
The goal is to find an assignment of operations and workers to a minimal number of work-
stations such that the resulting productivity level respects a desired robust measure. Two
mixed-integer programming formulations for this problem are proposed. It is shown how

33

Algorithms 2023, 16, 100

these formulations can be adapted to handle the special case in which one must integrate a
particular set of workers in the assembly line. A fast construction heuristic is presented that
yields high-quality solutions in just a fraction of the time needed to solve the problem to
optimality. Computational results showed the benefits of solving the robust optimization
problem instead of its deterministic counterpart.

6.2. Stability Analysis of Assembly and Production Lines

The paper [131] deals with the optimization problem, which arises when a new
simple assembly line has to be designed subject to a fixed number of the workstations,
a predetermined cycle time constraint and the precedence constraints determined on a
set of assembly operations. The studied ALBP consists in assigning a set of assembly
operations to workstations so as to find the robust assembly line, which can withstand
operation duration uncertainty in the robust sense. The assembly line robustness was
measured by an indicator called a stability factor. The studied ALBP was proven to be
strongly NP-hard, upper bounds were derived on the stability factor and the relation of
the stability factor with the stability indicator, called a stability radius, was investigated. A
mixed-integer linear programming was proposed for maximizing the stability factor. An
alternative formulation was derived when uncertainty originates in the used workstations
only. Computational results were reported on a collection of ALBP instances derived from
benchmark data used in the OR literature for the deterministic SALBP.

The paper [132] is devoted to study optimization problems arising if a transfer line has
to be designed subject to a limited number of available workstations, a cycle time constraint
and predetermined precedence relations on the set of assembly operations. The considered
problem consists in assigning a set of operations to blocks and the determined blocks to
workstations in order to construct a robust transfer line configuration under operation
duration uncertainty. The robustness of a transfer line configuration is measured by the
stability radius, determined as the maximal amplitude of deviations from the nominal
value of the durations of uncertain operations that do not violate the solution feasibility.
In order to consider different hypotheses on operation duration uncertainty, the stability
radius was based on the Manhattan norm or the Chebyshev norm. The considered problem
was proven to be strongly NP-hard. A mixed-integer linear programming was proposed
for addressing these problems. In order to accelerate the search for an optimal transfer line,
two heuristic algorithms and several reduction rules were derived for the mixed-integer
linear programming. Computational results were reported on a collection of instances
derived from benchmark data used in the OR literature for the deterministic transfer line
balancing problems.

The paper [133] is devoted to the SALBP, which arises when a paced simple assembly
line has to be designed for the limited number of workstations, predetermined cycle time
and precedence constraints given on a set of the assembly operations. The studied problem
consists in assigning a set of assembly operations to available workstations in such a
way that the constructed line configuration (a feasible solution) will be robust under the
operation duration variability. The solution robustness was measured via the stability
radius, which is equal to the maximal amplitude of deviations of assembly operation
durations that do not violate the solution feasibility. In this paper, the concept of the
stability radius was considered for the Manhattan and Chebyshev norms. For each of
these norms, the SALBP was proven to be strongly NP-hard, and a mixed-integer linear
programming was developed for addressing these uncertain problems. To accelerate the
search for optimal solutions, an upper bound on the stability radius was proven and
integrated into the corresponding mixed-integer linear programming. Computational
results were reported on uncertain instances derived from benchmark data used for the
deterministic SALBP.

In [38], the GALBP was studied, where several workplaces were associated with
each available workstation. The sets of assembly operations assigned to the workstation
have to be partitioned into blocks. Each assembly operation block regroups all assembly

34

Algorithms 2023, 16, 100

operations to be performed at the same workplace of the workstation. The product items
visit workplaces sequentially. The blocks are preceded in a sequential way. The assembly
operations grouped into one block are executed simultaneously, and therefore the execution
of all operations of the block takes the duration of the longest operation in this block.
Such a parallel execution of the assembly operations from the block modifies the manner
to take into account the assembly conveyer cycle time. The precedence relations and
exclusion constraints exist for available workstations and workplaces. The considered
GALBP objective is to assign all given assembly operations to the available workstations
and workplaces in order to minimize the assembly line cost, which is estimated as a
weighted sum of the number of used workstations and workplaces. The main goal of the
article [38] is to propose a stability measure for feasible solutions of the GALBP regarding
possible variations of the durations of a certain subset of assembly operations. A heuristic
algorithm, providing a compromise between the above objective function and the used
stability radius measure, was developed and evaluated on the modified benchmark set of
the deterministic instances.

The paper [134] addresses the ALBP, where assembly operation durations are not
known before solving the problem but there are the given segments of their possible real
values. The objective is to assign the assembly operations to available workstations to
minimize the number of workstations while respecting the precedence constraints and the
predetermined cycle time of the conveyer. A robust optimization model was developed
to hedge against the worst-case scenario of the assembly operation durations. To find a
robustly optimal line balance, a breadth-first search algorithm was proposed and evaluated
on benchmark problem instances. The computational results obtained were analyzed and
some practical recommendations were presented. The SALBP is considered in [135] for
describing a special case of the above problem with the infinitely large stability radius of
the fixed optimal line balance. For the general case of the SALBP, the lower bounds and
upper bounds on the stability radius of the fixed optimal line balance were obtained in the
case of an independent perturbation of the numerical assembly line parameters.

The paper [136] deals with a study of the uncertain SALBP-1 with durations of the
assembly operations, ti, i ∈ V, such that segments, [li, ui], of possible durations are only
known in advance. When implementing an assembly line balance, the duration, ti, i ∈ V,
of the assembly operation may be equal to any real value enclosed between the lower
bound, li ≥ 0, and the upper bound, ui ≥ li, including these boundaries. A special case of
such an uncertain ALBP has been studied, when the lower limit of the allowable segment
of possible durations of assembly operations is zero: li = 0, and the upper limit of the
allowable segment is not limited: ui =∞. The actual duration of the assembly operation,
ti, i ∈ V, must belong to the semi-interval, [0,∞). In the considered SALBP-1, it is assumed
that the set V includes the following two types of assembly operations: A subset Ṽ of the
set V contains all assembly operations for which it is impossible to determine exact values
of the duration of their execution (such assembly operations include manual operations,
that is, operations performed manually without a special automation). The duration of
each of the other assembly operations is precisely determined in advance and does not
change during the pipeline lifecycle. To analyze the stability of the optimal line balance,
the radius, ρb1(t), of its stability (called a stability radius) is used. If the stability radius of
the optimal line balance, b1, is strictly positive, then any joint and independent changes
in the durations of manual operations, ti, i ∈ Ṽ, within a ball with the radius, ρb1(t), in

ñ =
∣∣∣Ṽ∣∣∣-dimensional real space with the Chebyshev norm, must maintain the optimality of

the line balance, b1. If the stability radius of the optimal line balance is zero, then there will
be arbitrarily small changes in the durations of the manual operations, which can deprive
the optimality of the line balance, b1. The paper [136] contains the criterion for the stability
of the optimal line balance for the SALBP-1 and the formula for calculating the stability
radius of the optimal line balance for a general case of the SALBP-1.

In [137], the uncertain SALBP-2 is considered. The assembly operation set is parti-
tioned into two subsets, manual and automated. The durations of the manual operations

35

Algorithms 2023, 16, 100

are variable and those of the automated operations are fixed during the whole period
of using the assembly line. A stability analysis is conducted for this uncertain problem.
First, a sufficient and necessary condition for the optimal line balance is derived to have
an infinitely large stability radius. Second, formulas and an algorithm for calculating the
stability radii for the optimal line balances are derived. Third, computational results for the
stability analysis of the benchmark instances are reported. Managerial implications of the
stability results are outlined for choosing the most stable line balances, which save their
optimality despite the variations of the assembly operation durations, and for identifying
the right time for the re-balancing of the assembly line.

The book chapter [138] is devoted to the stability analysis of the SALBP-2. For an
optimal line balance, its stability is investigated with respect to simultaneous independent
variations of the processing times of the assembly operations. Necessary and sufficient
conditions when optimality of a line balance is stable with respect to sufficiently small
variations of operation times were proven. It was shown how to calculate lower and
upper bounds on the stability radius, i.e., the maximal value of simultaneous independent
variations of the processing times, keeping the optimality of the line balance at hand. The
algorithm was developed for selecting the set of all stable line balances (for each stable line
balance, the stability radius is strictly positive).

The article [139] is devoted to the uncertain SALBP-2. In this problem, it is assumed
that the given set of operations includes two types of assembly operations: manual and
automated. For the assembly line, it is necessary to minimize the cycle time for processing
a partially ordered set of operations on the linearly ordered workstations. The number
of workstations and the initial processing times of the assembly operations are given.
However, for a set of the manual operations, it is impossible to fix the processing times for
the whole lifecycle of the assembly line. On the other hand, for each automated operation,
the processing time is fixed. The stability of an optimal line balance of the assembly line
with respect to independent variations of the processing times of the manual operations is
investigated. It is shown how to calculate the stability radius of the optimal line balance,
i.e., the maximal value of simultaneous independent variations of the processing times of
the manual operations, keeping the optimality of this line balance. The criterion for the
stability of the optimal line balance for the SALBP-2 is proven. Published results on the
stability radius of an optimal line balance for a dual SALBP-1 were also surveyed, which
minimized the number of workstations for the fixed cycle time.

For the simple assembly line, it is required to minimize the number of workstations
for processing a partially ordered set of the operations within a fixed cycle time (SALBP-1).
A dual assembly line balancing problem SALBP-2 is to minimize the cycle time, provided
that the number of the workstations is fixed. An initial vector of the processing times of the
assembly operations is given for both problems, SALBP-1 and SALBP-2. For a subset of the
manual operations, the processing times may vary since operators may have different skills,
levels of fatigue, experience and motivation. For each automated operation, the processing
time cannot vary. In [140], the stability of an optimal line balance for the assembly line is
investigated with respect to variations of the processing times of the manual operations (a
line balance is stable, if it is optimal for any sufficiently small variation of the processing
times). The enumerative algorithms are developed for constructing feasible and stable
optimal line balances for the problems SALBP-1 and SALBP-2. Computational results for
the stability of the assembly line balances showed that there are a lot of unstable optimal
line balances for the tested benchmark assembly lines. The simulation for the benchmark
assembly line showed that the stable optimal line balance considerably outperforms the
unstable ones. The complexity analysis of the assembly line balancing problems with
different partial orders given on the operation set has been developed.

The SALBP-E with interval durations of the manual assembly operations was investi-
gated in [141]. The authors consider the SALBP-E, in which each assembly operation of
the partially ordered set of assembly operations needs to be assigned to one workstation
of the set of available workstations used for processing the assembly operations. The

36

Algorithms 2023, 16, 100

objective of the SALBP-E is to minimize the product of the number of workstations used in
the considered line balance and the cycle time of this line balance among all admissible
line balances. This objective is equivalent to maximization of the efficiency, E, which is
determined by Equality (1). A feasible line balance is a partition of assembly operations
into at least two available workstations, without violating the set of given precedence
relations among the assembly operations. It is assumed that during the long lifespan of this
existing assembly line, the duration of each manual operation may deviate from an initially
estimated real value, while the real duration of each automated operation is deterministic
during the lifespan of the assembly line. Sufficient and necessary conditions have been
proven for the optimal line balance to be stable (i.e., the stability radius of the optimal
line balance is strictly positive). It was shown that the stability radius of an optimal line
balance could be infinitely large. Sufficient and necessary conditions were proven for the
existence of an infinite optimal line balance. Several lower and upper bounds for a finite
stability radius were proven. The formula was proven for obtaining the stability radius of
an optimal line balance existing for the SALBP-E.

The book chapter [142] presents a survey of sequencing and scheduling problems with
inaccurate data, which can be solved by a stability method. It was assumed that the job
processing times (and other given numerical parameters) may take any real values from the
given closed intervals. For different possible types of sequencing and scheduling problems,
the known mathematical models were discussed along with proven mathematical results
and developed algorithms, which are based on the stability analysis of the optimal solutions
(i.e., optimal operation sequences or optimal semi-active schedules) with respect to possible
variations of input data. The stability method combines a stability analysis, a multi-stage
scheduling framework (i.e., off-line planning stages and online scheduling stages) and the
solution concept of a minimal dominant set of the semi-active schedules [39,40] (e.g., job
or operation sequences), that optimally covers all possible scenarios in the sense that for
any feasible scenario, such a dominant set contains at least one optimal solution (optimal
operation sequence or optimal semi-active schedule). The mathematical results discussed
in this book chapter have been obtained in the period from 1988 to 2013.

The paper [143] is devoted to the calculation of the stability radius of an optimal semi-
active schedule for a general shop scheduling problem, where the objective is to minimize
the mean (total) flow time. The stability radius denotes the largest quantity of independent
variations of the durations of the operations, such that an optimal semi-active schedule of
the considered general shop scheduling problem remains optimal. The authors of this paper
derived formulas for calculating the stability radius and necessary and sufficient conditions
when the stability radius is equal to zero. Computational results on the calculation of the
stability radius for randomly generated job-shop scheduling problems were also discussed.

The paper [144] addresses the calculation of the stability radius of the semi-active
schedule for a job-shop scheduling problem, when the objectives are to minimize either
mean or maximal flow times. The proposed approach may be regarded as a posteriori
analysis, in which an optimal semi-active schedule has already been constructed and the
main question is to determine such possible changes in the durations of operations so
as to not destroy the optimality of the semi-active schedule. The stability radius of the
optimal semi-active schedule denotes the largest quantity of independent and simultaneous
variations of the durations of the operations, such that an optimal semi-active schedule of
the job-shop scheduling problem remains optimal. In scheduling theory [39–41], mainly
deterministic problems have been considered, and the durations of jobs and operations are
supposed to be provided in advance. Such deterministic scheduling problems do not very
often arise in practice. Even if the operation (or job) durations are known before applying
a scheduling algorithm, OR workers are forced to consider possible changes and errors
within the practical realization of the constructed schedule, e.g., due to additionally arrived
jobs, machine breakdowns and the precision of equipment, which are used to calculate
the operation durations (or job durations) and so on. In other words, usually in practice,
a semi-active schedule has to be realized under uncertain conditions. The influence of

37

Algorithms 2023, 16, 100

errors and changes of the operation durations on the optimality of a semi-active schedule
is investigated in [144]. The extensive numerical experiments with randomly generated
job-shop scheduling problems were performed and discussed. The developed software
provides the possibility of comparing the values of the stability radii, the numbers of
optimal semi-active schedules for two criteria: minimization of maximal job completion
times and minimization of the sum of job completion times. How large the stability radius
was for the tested randomly generated problems was investigated.

6.3. A Stability Approach to Job-Shop Scheduling Problems with Uncertain Parameters

In [142–144], the stability radius of the optimal semi-active schedule for shop schedul-
ing problems was investigated. The developed algorithms can be used to solve a set of
uncertain scheduling problems arising in optimization of the assembly and disassembly
lines. The authors of these articles present the necessary and sufficient conditions for the
existence of a zero-stability radius of the optimal semi-active schedule, as well as formulas
for calculating the stability radii in a general case.

The uncertain scheduling problem, Im||Cmax , is studied in [145]. A set of jobs has to
be processed on identical machines. Every job may be processed on any available machine
without preemptions. The criterion is to minimize the makespan (the completion time of
the last job in the schedule). During the realization of a schedule, durations of some jobs
may deviate from the initial values estimated before scheduling. Other jobs have fixed
durations that are known before scheduling and do not change in the realization of any
feasible semi-active schedule. For this uncertain scheduling problem, Im||Cmax , which
is NP-hard even for the simplest deterministic case with m = 2, a stability analysis of
the optimal semi-active schedule was conducted. The necessary and sufficient conditions
for an optimal semi-active schedule were proven to be unstable with respect to infinitely
small variations of the non-fixed job durations (in this case, the stability radius of the
unstable semi-active schedule is equal to zero). It was shown that the stability radius of
an optimal semi-active schedule could be infinitely large. The necessary and sufficient
conditions for an infinitely large stability radius were proven. Several lower and upper
bounds on the stability radius have been established. A formula was proven, and the
algorithm was developed for calculating the exact stability radius in a general case of the
uncertain problem, Im||Cmax .

In [146], a two-machine shop scheduling problem was studied, provided that only
lower and upper bounds on processing times of the jobs are known before scheduling. An
exact value of the job processing time remains unknown until completion of this job. The
objective is to minimize the makespan (schedule length). The authors of this paper address
the issue of how to best execute a semi-active schedule if the job processing time may
take any real value from the given segment. Scheduling decisions consist of two phases:
an off-line phase and an online phase. Using available information on the lower bounds
and upper bounds for each job processing time that are available in the off-line phase, a
scheduler can determine a minimal dominant set of semi-active schedules (DS for short)
based on sufficient conditions for a schedule domination. The DS optimally covers all
possible scenarios of the uncertain job processing times in the sense that, for each scenario,
there is at least one semi-active schedule in the DS which is optimal. The DS enables a
scheduler to quickly make an online scheduling decision whenever additional information
on completing some jobs is available. A scheduler can choose a semi-active schedule, which
is optimal for the most scenarios. An algorithm for testing a set of conditions for schedule
dominance was developed. The developed algorithm is polynomial in the number of jobs.
Computational experiments have shown the effectiveness of the algorithms. If there were
no more than 600 jobs, then all 1000 tested instances in each tested series were solved in
1 s. A problem instance with 10,000 jobs was solved in 0.4 s on average. The most problem
instances from nine tested problem classes were optimally solved. If the maximum relative
error of the job processing time was not greater than 20%, then more than 80% of the tested
instances were optimally solved. If the maximum relative error was equal to 50%, then 45%

38

Algorithms 2023, 16, 100

of the tested instances from the nine problem classes were optimally solved despite the
processing time uncertainty.

The paper [147] addresses the issue of how to best execute a schedule in a two-phase
scheduling decision framework by considering a two-machine flow-shop scheduling prob-
lem, in which the uncertain duration of a job on a machine may take any real value between
the lower and upper bounds. The scheduling objective is to minimize the makespan. There
are two phases in the proposed scheduling process: the off-line phase (the schedule plan-
ning phase) and the online phase (the schedule execution phase). The available information
of the lower and upper bounds for uncertain job duration is available at the beginning
of the off-line phase, while the local information on the realization (the actual value) of
the uncertain duration is available once the corresponding operation of the job on the
machine is completed. In the off-line phase, a scheduler prepares a minimal dominant set
(DS) of semi-active schedules, which is derived based on a set of sufficient conditions for
a semi-active schedule domination that was developed in [146,147]. This dominant set of
schedules enables a scheduler to quickly make an online scheduling decision whenever
additional local information on the realization of uncertain job durations is available. This
DS of schedules optimally covers all feasible realizations of the uncertain job durations. The
proposed algorithm enables a scheduler to best execute a semi-active schedule and may end
up executing the optimal schedule in instances according to the extensive computational
experiments, which was based on randomly generated data up to 1000 jobs. The algorithm
for testing the set of sufficient conditions of schedule domination was not only theoretically
appealing (polynomial in the number of jobs) but also empirically fast, as the computational
experiments indicated.

In [148], a scheduling problem is investigated, provided that input data are uncertain
(the duration of a job can take any real value from the closed interval). The criterion is to
minimize the total weighted completion time for the jobs. As a solution concept to such an
uncertain scheduling problem with uncertain job durations, it is reasonable to consider a
minimal dominant set (DS) of job permutations containing an optimal one for each possible
realization of the job durations. To find an optimal or approximate permutation to be
realized, the authors look for a job permutation with the largest stability box, being a subset
of the stability region. A branch-and-bound algorithm was developed for constructing a job
permutation with the largest stability box. If several permutations have the same volume
of the stability box, one of them was selected due to simple heuristics. The efficiency of
the constructed job permutations (how close they are to the optimal permutation) and the
efficiency of the developed software, i.e., average CPU time used for an instance, were
demonstrated on a wide set of randomly generated instances.

The book chapter [149] addresses a two-stage, minimum-length scheduling problem
with n jobs to be processed on two specified machines, where the job processing times are
uncertain (only lower and upper bounds for the random processing times are provided
before scheduling). For such an uncertain scheduling problem, usually, there is not a single
semi-active schedule that remains optimal for all possible realizations of the job processing
times. Therefore, it is required to look for a minimal set of semi-active schedules that
is dominant. Such a minimal dominant set (DS) of schedules may be represented by a
dominance circuit-free digraph. Some useful properties of such a digraph are investigated.
To the uncertain scheduling problem under consideration, the stability method is applied,
combining a stability analysis, a multi-stage decision framework and the solution concept
of a minimal dominant set of semi-active schedules.

7. New Settings of Simple Assembly Line Balancing Problems and Unresolved Issues

As determined by Smith [5], advantages of the division of manual labor can be
considered not only as a specialization of human operators, to perform a variety of assembly
operations assigned to them, but also as the need to remove workplaces on the assembly
line from one another. The need for such a division of manual labor arises in connection
with the spread of coronavirus infection (COVID-19) when the financial costs of preventing,

39

Algorithms 2023, 16, 100

treating and coping with the consequences of the disease for workers who have had
COVID-19 have become comparable to other costs of an inefficient use of the assembly line.
The necessary removal of workstations from one another can be achieved as a result of
changing (increasing or, conversely, reducing) the number of actually used workstations (it
is assumed that such a workstation is used by one human operator).

Depending on the specific conditions of assembly production and the market’s needs for
the products to be harvested, an enterprise can either reduce the number of workplaces actually
used (i.e., some workplaces will temporarily not be used) or create new workplaces if there
is space for this in the assembly shop. Such changes in the composition and location of the
assembly line will increase the distance between the human operators of the assembly plant.

One can find other reasons for the need to modernize the composition and configura-
tion of the assembly line during the exploitation of the assembly plant. For example, during
the holiday period (in summertime), there is a periodic need to replace qualified assembly
line operators with seasonal workers, which may lead to an increase in the duration of some
assembly operations. In this case, the required value of the cycle time of the assembly line
can be provided, for example, by increasing the number of workstations and the subsequent
solution of the SALBP-2 with an increased number of workstations. The division of SALBP
into three classes: SALBP-1, SALBP-2 and SALBP-E, proposed in [2], does not provide for
the re-designing or optimal modernization of the assembly line during its exploitation. In
the most complex simple assembly line balancing problem, SALBP-E, special cases of which
are both problems SALBP-1 and SALBP-2, the efficiency of the assembly line is determined
by the equality: E = tsum/(m · c), see (1), which does not allow for differentiating the
financial costs of commissioning new workstations and the financial losses associated with
an increase in the cycle time of the assembly line.

Next, we introduce new settings of simply assembly line balancing problems.

7.1. Maximization of the Effectiveness of Assembly Line Modifications

Due to a significant change in the conditions of assembly production, it may be neces-
sary to solve the following optimization problem, which we denote SALBP-Eβ

α . Suppose
there is a set, S = {S1, S2, . . . , Sm}, of workstations that can be used in assembly pro-
duction. The duration, ti, i ∈ V, of the assembly operations and the partial strict order
of their execution, defined by the digraph G = (V, A), are also specified. The average
costs α ≥ 0, for using one workstation from the selected workstation subset of the set,
S = {S1, S2, . . . , Sm}, of the workstations available at the enterprise. This cost, α ≥ 0,
includes depreciation of one workstation, energy costs, creation and exploiting of a new
workstation, and commissioning of a previously reserved workstation.

The average cost β ≥ 0 of assembling one product on the assembly conveyor is usually
known before solving the problem. In the SALBP-Eβ

α , it is necessary to find an optimal line
balance, b = (Vb

1 , Vb
2 , . . . , Vb

m), of assembly operations, V, and the cardinality, m, of a subset
of workstations used on the assembly conveyor. Using the optimal line balance is required
to minimize the following weighted costs:

Eβ
α = α · m + β · c (2)

for the exploitation of the assembly conveyor and the assembly of the final products of
the assembly conveyor. Recall that the SALBP-E proposed in [2] requires maximizing the
efficiency of the assembly line, which is determined by the Equality (1).

If the relative costs of the exploitation of the assembly line and the production of
assembly products are considered and the equality α + β = 1 is assumed, then the problem
SALBP-Eβ

α turns into the problem SALBP-1 with the equality β = 0, and into the problem
SALBP-2 with the equality α = 0. If the absolute cost of the exploitation of the assembly

40

Algorithms 2023, 16, 100

line and the production of assembly products are considered, then the objective function of
the SALBP-Eβ

α takes the form:

Eβ
α = α ·

(
m

∑
i=1

Ei +
m+k

∑
j=m+1

Ej

)
+ β · c, (3)

in the case of increasing the set of workstations of the assembly line by including k ≥ 1 new
workstations in the assembly production.

The objective function of the SALBP-Eβ
α is of the form:

Eβ
α = α ·

(
m

∑
i=1

Ei −
m

∑
j=k

Ej

)
+ β · c (4)

if it is needed to reduce the set of workstations of the existing assembly line by excluding
(m − k + 1) workstations from the assembly production.

In the Formula (4), the value of Ei determines the total cost of the exploitation of a work-
station Si from a set of the workstations, S = {S1, S2, . . . , Sm}, used on an operating assem-
bly line. The Formula (3) defines the values of Ei for all the workstations, Si ∈ S. For work-
stations of the set, {Sm+1, Sm+1, . . . , Sm+k}, the value of Ej, j ∈ {m + 1, m + 2, . . . , m + k},
in addition to the total cost of operating a workstation Sj includes the cost of creating
a workstation, if it is a new workstation, and the cost of putting it into operation, if the
workstation Sj was previously reserved.

If the set of workstations in use is increased to a set, S+ = {S1, S2, . . . , Sm, Sm+1, . . . , Sm+k},
it is necessary to renumber all the workstations in use so that when the workstations are in-
dexed again, the inequality, u < v, implies that the workstation Su precedes the workstation
Sv in the modified assembly line, S+ = {. . . , Su, . . . , Sv . . .}.

Similarly, one should renumber the workstations of the set, S− = {S1, S2, . . . , Sk−1},
which is obtained after removing the set of (m − k + 1) workstations from the original set
of workstations, S =

{
Si1 , Si2 , . . . , Sim

}
, of the existing assembly conveyor. Note that to

simplify the symbols in the Equality (4), a new numbering of workstations that remained
in the assembly line reduced on (m − k + 1) workstations was used. The numbering of
workstations used in (4) may not correspond to the previous indexing of workstations of
the set S, which is consistent with the linear order of the workstations on the assembly line,
S =

{
Si1 , Si2 , . . . , Sim

}
.

The above problem, SALBP-Eβ
α , and its variants, with various objective Functions (2)–(4),

are intended for frequent modifications of existing assembly lines, which have become
popular due to the accelerated development of technologies and frequent changes in the
consumer market, which necessitates the assembly of new product models instead of
obsolete assembly products.

7.2. Assembly Line Balancing Problems with Uncertain (Interval) Durations of Assembly Operations

The ALBP with interval durations of assembly operations are not sufficiently investi-
gated in the OR literature. In the articles [136–140], for the problems SALBP-1 and SALBP-2,
an analysis of the stability of the optimal line balances of the assembly line was carried out.
In the future research, it is planned to study the uncertain problems SALBP-1, SALBP-2,
SALBP-E and SALBP-Eβ

α , provided that only lower bounds li ≥ 0 and upper bounds li ≥ ui
with ui < ∞ are known for possible durations of the assembly operations.

To solve the uncertain problems SALBP-1, SALBP-2, SALBP-E and SALBP-Eβ
α with

interval durations of the assembly operations, one can apply a stable method, similar to
the use of this method for solving different scheduling problems with uncertain (interval)
durations of the jobs and operations [146–149]. This method is based on the stability
analysis of the optimal line balance to interval variations in the durations of assembly
operations and uses the following concept of the minimum dominant set. The set of line

41

Algorithms 2023, 16, 100

balances, B, is called the minimum dominant set (DS) for the SALBP, with interval durations
of the assembly operation, if for any possible set of operation durations, the set B contains
at least one optimal line balance b ∈ B, and the set B has the minimum cardinality among
all the dominant sets existing for the SALBP.

8. Conclusions

The simple assembly line balancing problems are fundamental versions of the general
ALBP, which has attracted the attention of practitioners and researchers of OR. With respect
to the objective functions, the SALBP was classified into SALBP-1, SALBP-2 and SALBP-E.
These deterministic problems are not always applicable for real assembly and production
lines, since in practice the durations of the assembly operations and other parameters
may depend on many factors and are not constant values throughout the lifecycle of the
assembly and production lines.

This survey covered most of the papers dealing with the assembly and disassembly
line design and balancing under uncertainty. Deterministic models for assembly lines
have also been discussed, provided that they are subject to some deviations from normally
fixed manufacture conditions. The survey showed that for non-deterministic assembly
line design and balancing, most of the referenced papers modeled the assembly operation
durations as independent with known probability distributions. Most frequently, such
optimization problems have been addressed by heuristic and meta-heuristic approaches.
Since the design of assembly and production lines is a strategic problem of high importance,
defining the optimal line balances over a large planning horizon, more effort needs to be
devoted to the development of efficient exact methods. In the case of the disassembly lines,
more attention needs to be paid to the high uncertainty of end-of-life product quantity and
quality, as well as to the environmental impact of such lines.

This review focused on assembly and production lines with stochastic, fuzzy and
uncertain parameters. We surveyed both the progress in academic knowledge and the
current needs of the practitioners. Reviewing the previous studies and studying the
needs of the industry led us to propose new settings for the SALBP and highlight the
research areas that are worth further investigation. To reduce the financial costs associated
with the modification of the existing assembly line, a new formulation, SALBP-Eβ

α , of
the SALBP, balancing the assembly line with three variants of the objective Functions
(2)–(4), was proposed for further research. These problems, SALBP-Eβ

α , with various
objective functions, are intended for frequent modifications of existing assembly lines and
production lines due to the accelerated development of technologies and frequent changes
in the consumer market, which necessitates the assembly of new product models instead of
obsolete assembly products.

Funding: The research was funded by Belarusian Republican Foundation for Fundamental Research,
grant number Φ21-010 and grant number Φ23PH-017.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Salveson, M.E. The assembly line balancing problem. J. Ind. Eng. 1955, 6, 18–25. [CrossRef]
2. Baybars, I. A survey of exact algorithms for the simple assembly line balancing problem. Manag. Sci. 1986, 32, 909–932. [CrossRef]
3. Boysen, N.; Fliedner, M.; Scholl, A. A classification of assembly line balancing problems. Eur. J. Oper. Res. 2007, 183, 674–693.

[CrossRef]
4. Scholl, A. Balancing and Sequencing of Assembly Line, 2nd ed.; Physical-Verlag: Heidelberg, Germany, 1999.
5. Boysen, N.; Schulze, P.; Scholl, A. Assembly line balancing: What happened in the last fifteen years? Eur. J. Oper. Res. 2022, 301,

797–814. [CrossRef]
6. Scholl, A.; Becker, C. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res.

2006, 168, 666–693. [CrossRef]

42

Algorithms 2023, 16, 100

7. Becker, C.; Scholl, A. A survey on problems and methods in generalized assembly line balancing. Eur. J. Oper. Res. 2006, 168,
694–715. [CrossRef]

8. Boysen, N.; Fliedner, M.; Scholl, A. Sequencing mixed-model assembly lines: Survey, classification and model critique. Eur. J.
Oper. Res. 2009, 192, 349–373. [CrossRef]

9. Battaïa, O.; Dolgui, A. Taxonomy of line balancing problems and their solution approaches. Int. J. Prod. Econ. 2013, 142, 259–277.
[CrossRef]

10. Make, M.R.A.; Rashid, M.F.F.A.; Razali, M.M. A review of two-sided assembly line balancing problem. Int. J. Adv. Manuf. Technol.
2017, 89, 1743–1763. [CrossRef]

11. Boysen, N.; Fliedner, M.; Scholl, A. Assembly line balancing: Which model to use when? Int. J. Prod. Econ. 2008, 111, 509–528.
[CrossRef]

12. Fathi, M.; Ghobakhloo, M. A technical comment on “a review on assembly sequence planning and assembly line balancing
optimization using soft computing approaches”. Int. J. Advan. Manuf. Then. 2014, 71, 2033–2042. [CrossRef]

13. Rashid, M.F.F.; Hutabarat, W.; Tiwari, A. A review on assembly sequence planning and assembly line balancing optimisation
using soft computing approaches. Int. J. Adv. Manuf. Technol. 2012, 59, 335–349. [CrossRef]

14. Tasan, S.O.; Tunali, S. A review of the current applications of genetic algorithms in assembly line balancing. J. Intel. Manuf. 2008,
19, 49–69. [CrossRef]

15. Lusa, A. A survey of the literature on the multiple or parallel assembly line balancing problem. Eur. J. Indust. Eng. 2008, 2, 50–72.
[CrossRef]

16. Hazır, Ö.; Delorme, X.; Dolgui, A. A review of cost and profit oriented line design and balancing problems and solution
approaches. Ann. Rev. Cont. 2015, 40, 14–24. [CrossRef]

17. Hudson, S.; McNamara, T.; Shaaban, S. Unbalanced lines: Where are we now? Int. J. Prod. Res. 2014, 53, 1895–1911. [CrossRef]
18. Özceylan, E.; Kalayci, C.B.; Güngör, A.; Gupta, S.M. Disassembly line balancing problem: A review of the state of the art and

future directions. Int. J. Prod. Res. 2019, 57, 4805–4827. [CrossRef]
19. Dolgui, A.; Sgarbossa, F.; Simonetto, M. Design and management of assembly systems 4.0: Systematic literature review and

research agenda. Int. J. Prod. Res. 2021, 60, 184–210. [CrossRef]
20. Eghtesadifard, M.; Khalifeh, M.; Khorram, M. A systematic review of research themes and hot topics in assembly line balancing

through the web of science within 1990–2017. Comput. Indust. Eng. 2020, 139, 106182. [CrossRef]
21. Hazır, Ö.; Dolgui, A. Assembly line balancing under uncertainty: Robust optimization models and exact solution method. Comput.

Indust. Eng. 2013, 65, 261–267. [CrossRef]
22. Boysen, N.; Scholl, A.; Wopperer, N. Resequencing of mixed-model assembly lines: Survey and research agenda. Eur. J. Oper. Res.

2012, 216, 594–604. [CrossRef]
23. Smith, A. The Glasgow Edition of the Works and Correspondence of Adam Smith: An Inquiry into the Nature and Causes of the Wealth of

Nations; Campbell, R.H., Skinner, A.S., Eds.; Oxford University Press: Oxford, UK, 1776/1979.
24. Ford, H. My Life and Work; Open Road Media: New York, NY, USA, 1923/2015.
25. Kucukkoc, I.; Li, Z.; Li, Y. Type-E disassembly line balancing problem with multi-manned workstations. Optim. Eng. 2020, 21,

611–630. [CrossRef]
26. Rabbani, M.; Radmehr, F.; Manavizadeh, N. Considering the conveyer stoppages in sequencing mixed-model assembly lines by a

new fuzzy programming approach. Int. J. Adv. Manuf. Technol. 2010, 10, 170–180. [CrossRef]
27. Sparling, D.; Miltenburg, J. The mixed-model U-line balancing problem. Int. J. Oper. Res. 1998, 36, 485–501. [CrossRef]
28. Thomopoulos, N.T. Line balancing—Sequencing for mixed model assembly. Manag. Sci. 1967, 14, 59–75. [CrossRef]
29. Dar-El, E.M. Mixed-model assembly line sequencing problems. Omega 1978, 6, 317–323. [CrossRef]
30. Ege, Y.; Azizoglu, M.; Ozdemirel, N. Assembly line balancing with station paralleling. Comput. Ind. Eng. 2009, 57, 1218–1225.

[CrossRef]
31. Kucukkoc, I. Balancing of two-sided disassembly lines: Problem definition, MILP model and genetic algorithm approach. Comput.

Oper. Res. 2020, 124, 105064. [CrossRef]
32. Li, Z.; Kucukkoc, I.; Zhang, Z. Branch, bound and remember algorithm for two sided assembly line balancing problem. Eur. J.

Oper. Res. 2020, 284, 896–905. [CrossRef]
33. Ozcan, U.; Toklu, B. Multiple—Criteria decision-making in two-sided assembly line balancing: A goal programming and a fuzzy

goal programming models. Comput. Oper. Res. 2009, 36, 1955–1965. [CrossRef]
34. Tonge, F.M. A Heuristic Program for Assembly Line Balancing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1961.
35. Pinto, P.A.; Dannenbring, D.G.; Khumawala, B.M. A branch and bound algorithm for assembly line balancing with paralleling.

Int. J. Prod. Res. 1975, 13, 183–196. [CrossRef]
36. Mansoor, E.M. Assembly line balancing—An improvement on the ranked positional weight technique. J. Ind. Eng. 1964, 15,

73–78.
37. Freeman, D.R. A general line balancing model. In Proceedings of the 19th Annual Conference AIIE, Tampa, FL, USA, 9–11 May

1968; pp. 230–235.
38. Gurevsky, E.; Battaïa, O.; Dolgui, A. Stability measure for a generalized assembly line balancing problem. Discret. Appl. Math.

2013, 161, 377–394. [CrossRef]

43

Algorithms 2023, 16, 100

39. Tanaev, V.S.; Sotskov, Y.N.; Strusevich, V.A. Scheduling Theory: Multi-Stage Systems; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 1994.

40. Brucker, P. Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 1995.
41. Graham, R.E.; Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. Optimization and approximation in deterministic sequencing and

scheduling: A survey. Ann. Discret. Math. 1979, 5, 287–326.
42. Erel, E.; Sarin, S.C. A survey of the assembly line balancing procedures. Prod. Planning Control. 1998, 9, 414–434. [CrossRef]
43. Scholl, A.; Klein, R. Balancing assembly lines effectively—A computational comparison. Eur. J. Oper. Res. 1999, 144, 50–58.

[CrossRef]
44. Bala Muralia, G.; Deepakb, B.B.V.L.; Raju Bahubalendrunic, M.V.A.; Biswald, B.B. Optimal assembly sequence planning using

hybridized immune simulated annealing technique. Mater. Today Proc. 2017, 4, 8313–8322. [CrossRef]
45. Nearchou, A.C. A differential evolution algorithm for simple assembly line balancing. In Proceedings of the IFAC 16th Triennial

World Congrs, Prague, Czech Republic, 4–8 July 2005; pp. 247–252.
46. Mozdgir, A.; Mahdavi, I.; Badeleh, I.S.; Solimanpur, M. Using the Taguchi method to optimize the differential evolution algorithm

parameters for minimizing the workload smoothness index in simple assembly line balancing. Math. Comput. Model. 2013, 57,
137–151. [CrossRef]

47. Michels, A.S.; Lopes, T.C.; Sikora, C.G.S.; Magatão, L. A Benders’ decomposition algorithm with combinatorial cuts for the
multi-manned assembly line balancing problem. Eur. J. Oper. Res. 2019, 278, 796–808. [CrossRef]

48. Jiang, Y.; Huang, Z.; Yang, B.; Yang, W. A review of robotic assembly strategies for the full operation procedure: Planning,
execution and evaluation. Robot. Comput. Integr. Manuf. 2022, 78, 102366. [CrossRef]

49. Sun, B.S.; Wang, L. A decomposition-based matheuristic for supply chain network design with assembly line balancing. Comput.
Ind. Eng. 2019, 131, 408–417. [CrossRef]

50. Martignago, M.; Battaia, O.; Battini, D. Workforce management in manual assembly lines of large products: A case study.
IFAC-PapersOnLine 2017, 50, 6906–6911. [CrossRef]

51. Levitin, G.; Rubinovitz, J.; Shnits, B. A genetic algorithm for robotic assembly line balancing. Eur. J. Oper. Res. 2006, 168, 811–825.
[CrossRef]

52. Hazır, Ö.; Agi, M.A.N.; Guérin, J. A fast and effective heuristic for smoothing workloads on assembly lines: Algorithm design
and experimental analysis. Comput. Oper. Res. 2020, 115, 104857. [CrossRef]

53. Zhang, Z.; Tang, Q.; Zhang, L. Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic
assembly line balancing problem. J. Cleaner. Prod. 2019, 215, 744–756. [CrossRef]

54. Toksar, M.D.; Isleyen, S.K.; Guner, E.; Baykoc, O.F. Simple and U-type assembly line balancing problems with a learning effect.
Appl. Math. Model. 2008, 32, 2954–2961. [CrossRef]

55. Zhang, R.; Lv, J.; Li, J.; Bao, J.; Zheng, P.; Peng, T. A graph-based reinforcement learning-enabled approach for adaptive
human-robot collaborative assembly operations. J. Manuf. Syst. 2022, 63, 491–503. [CrossRef]

56. Meng, K.; Tang, Q.; Cheng, L.; Zhang, Z.; Yu, C. Solving multi-objective model of assembly line balancing considering preventive
maintenance scenarios using heuristic and grey wolf optimizer algorithm. Eng. Appl. Artif. Intel. 2021, 127, 109341. [CrossRef]

57. Öner-Közen, M.; Minner, S.; Steinthaler, F. Efficiency of paced and unpaced assembly lines under consideration of worker
variability—A simulation study. Comput. Ind. Eng. 2017, 111, 516–526. [CrossRef]

58. Hoedt, S.; Claeys, A.; Schamp, M.; Van Landeghem, H.; Cottyn, J. Countering the forgetting effect in mixed-model manual
assembly. IFAC-PapersOnLine 2018, 51, 856–861. [CrossRef]

59. Borba, L.; Ritt, M. A heuristic and a branch-and-bound algorithm for the assembly line worker assignment and balancing problem.
Comput. Oper. Res. 2014, 45, 87–96. [CrossRef]

60. Karas, A.; Ozcelik, F. Assembly line worker assignment and rebalancing problem: A mathematical model and an artificial bee
colony algorithm. Comput. Indust. Eng. 2021, 156, 107195. [CrossRef]

61. Masehian, E.; Ghandi, S. Assembly sequence and path planning for monotone and nonmonotone assemblies with rigid and
flexible parts. Robot. Comput.-Integr. Manuf. 2021, 72, 102180. [CrossRef]

62. Zhou, B.; He, Z. A material handling scheduling method for mixed-model automotive assembly lines based on an improved
static kitting strategy. Comput. Indust. Eng. 2020, 140, 106268. [CrossRef]

63. Lu, H.; Zhen, H.; Mi, W.; Huang, Y. A physically based approach with human–machine cooperation concept to generate assembly
sequences. Comput. Indust. Eng. 2015, 89, 213–225. [CrossRef]

64. Rade-Vilela, J.R.; Chica, M.; Cordon, O.; Damas, S. A comparative study of multi-objective ant colony optimization algorithms for
the time and space assembly line balancing problem. Appl. Soft. Comput. 2013, 13, 4370–4382. [CrossRef]

65. Che, Z.H. A multi-objective optimization algorithm for solving the supplier selection problem with assembly sequence planning
and assembly line balancing. Comput. Indust. Eng. 2017, 105, 247–259. [CrossRef]

66. Seleim, A.; ElMaraghy, H. Parametric analysis of mixed-model assembly lines using max-plus algebra. CIRP J. Manuf. Sci. Technol.
2014, 7, 305–314. [CrossRef]

67. Heinecke, G.; Lamparter, S.; Lepratti, R.; Kunz, A. Advanced supply chain information for rule-based sequence adaptations
on a mixed-model assembly line with unreliable just-in-sequence deliveries. In Proceedings of the 7th IFAC Conference on
Manufacturing Modeling, Management, and Control, Saint Petersburg, Russia, 19–21 June 2013; pp. 1902–1907.

68. Kottas, J.F.; Lau, H.S. A cost oriented approach to stochastic line balancing. AIIE Trans. 1973, 5, 164–171. [CrossRef]

44

Algorithms 2023, 16, 100

69. Reeve, N.R.; Thomas, W.H. Balancing stochastic assembly lines. AIIE Trans. 1973, 5, 223–229. [CrossRef]
70. Silverman, F.N.; Carter, J.C. A cost- based methodology for stochastic line balancing with intermittent line stoppages. Manag. Sci.

1986, 32, 455–463. [CrossRef]
71. Shin, D. An efficient heuristic for solving stochastic assembly line balancing problem. Comput. Ind. Eng. 1990, 18, 285–295.

[CrossRef]
72. Shin, D.; Min, H. Uniform assembly line balancing with stochastic task limes in just-in-time manufacturing. Int. J. Oper. Prod.

Manag. 1991, 11, 23–34. [CrossRef]
73. Sotskov, Y.N.; Werner, F. (Eds.) Sequencing and Scheduling with Inaccurate Data; Nova Science Publishers: Hauppauge, NY, USA, 2014.
74. Himmiche, S.; Aubry, A.; Marange, P.; Petin, J.-F. A framework for robust scheduling under stochastic perturbations. IFAC-

PapersOnLine 2021, 54, 1168–1173. [CrossRef]
75. Lopes, T.C.; Michels, A.S.; Lüders, R.; Magatão, L. A simheuristic approach for throughput maximization of asynchronous

buffered stochastic mixed-model assembly lines. Comput. Oper. Res. 2020, 115, 104863. [CrossRef]
76. Tang, Q.; Li, Z.; Zhang, L.P.; Zhang, C. Balancing stochastic two-sided assembly line with multiple constraints using hybrid

teaching-learning-based optimization algorithm. Comput. Oper. Res. 2017, 82, 102–113. [CrossRef]
77. Gustavo, C.; Sikora, S. Benders’ decomposition for the balancing of assembly lines with stochastic demand. Eur. J. Oper. Res. 2021,

292, 108–124.
78. Zhanga, W.; Xua, W.; Genb, M. Hybrid multiobjective evolutionary algorithm for assembly line balancing problem with stochastic

processing time. Procedia Comput. Sci. 2014, 36, 287–292. [CrossRef]
79. Manavizadeh, N.; Rabbani, M.; Moshtaghi, D.; Jolai, F. Mixed-model assembly line balancing in the make-to-order and stochastic

environment using multi-objective evolutionary algorithms. Expert Syst. Appl. 2012, 39, 12026–12031. [CrossRef]
80. Nazariana, E.; Kob, J. Robust manufacturing line design with controlled moderate robustness in bottleneck buffer time to manage

stochastic inter-task times. J. Manuf. Syst. 2013, 32, 382–391. [CrossRef]
81. Lolli, F.; Balugani, E.; Gamberini, R.; Rimini, B. Assembly line balancing with learning effects. IFAC-PapersOnLine 2017, 50,

5706–5711. [CrossRef]
82. Mosadegh, H.; Fatemi Ghomi, S.M.T.; Süer, G.A. Stochastic mixed-model assembly line sequencing problem: Mathematical

modeling and Q-learning based simulated annealing hyper-heuristics. Eur. J. Oper. Res. 2020, 282, 530–544. [CrossRef]
83. Saif, U.; Guan, Z.; Liu, W.; Zhana, C.; Wang, B. Pareto based artificial bee colony algorithm for multi objective single model

assembly line balancing with uncertain task times. Comput. Indust. Eng. 2014, 76, 1–15. [CrossRef]
84. Liu, M.; Liu, R.; Yang, X. Workforce assignment in assembly line considering uncertain demand. IFAC-PapersOnLine 2019, 52,

223–228. [CrossRef]
85. Li, Y.; Peng, R.; Kucukkoc, I.; Tang, X.; Wei, F. System reliability optimization for an assembly line under uncertain random

environment. Comput. Indust. Eng. 2020, 146, 106540. [CrossRef]
86. Agpak, K.; Gökçen, H. A chance-constrained approach to stochastic line balancing problem. Eur. J. Oper. Res. 2007, 180, 1098–1115.

[CrossRef]
87. Borodin, V.; Dolgui, A.; Hnaien, F.; Labadie, N. Component replenishment planning for a single-level assembly system under

random lead times: A chance constrained programming approach. Int. J. Prod. Econ. 2016, 181, 79–86. [CrossRef]
88. Gen, M.; Tsujimura, Y.; Kubot, E. Solving fuzzy assembly-line balancing problem with genetic algorithms. Comput. Eng. 1995, 29,

543–547.
89. Gen, M.; Tsujimura, Y.; Li, Y. Fuzzy assembly line balancing using genetic algorithms. Comput. Eng. 1995, 31, 631–634. [CrossRef]
90. Zhou, B.; Zhao, Z. A hybrid fuzzy-neural-based dynamic scheduling method for part feeding of mixed-model assembly lines.

Comput. Ind. Eng. 2022, 163, 107794. [CrossRef]
91. Zacharia, P.T.; Nearchou, A.C. A meta-heuristic algorithm for the fuzzy assembly line balancing type-E problem. Comput. Oper.

Res. 2013, 40, 3033–3044. [CrossRef]
92. Babazadeh, H.; Alavidoost, M.H.; Zarandi, M.H.F.; Sayyari, S.T. An enhanced NSGA-II algorithm for fuzzy bi-objective assembly

line balancing problems. Comput. Indust. Eng. 2018, 123, 189–208. [CrossRef]
93. Alavidoost, M.H.; Babazadeh, H.; Sayyari, S.T. An interactive fuzzy programming approach for bi-objective straight and U-shaped

assembly line balancing problem. Appl. Soft Comput. 2016, 40, 221–235. [CrossRef]
94. Ruppert, T.; Dorgo, G.; Abonyi, J. Fuzzy activity time-based model predictive control of open-station assembly lines. J. Manuf.

Syst. 2020, 54, 12–23. [CrossRef]
95. Alavidoost, M.H.; Tarimoradi, M.; Zarandi, M.H.F. Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing

problems. Appl. Soft Comput. 2015, 34, 655–677. [CrossRef]
96. Alavidoost, M.H.; Zarandi, M.F.; Tarimoradi, M.; Nemati, Y. Modified genetic algorithm for simple straight and U-shaped

assembly line balancing with fuzzy processing times. J. Intel. Manuf. 2016, 28, 313–336. [CrossRef]
97. Huo, J.; Lee, C.K.M. Intelligent workload balance control of the assembly process considering condition-based maintenance.

Advan. Eng. Inform. 2021, 49, 101341. [CrossRef]
98. Huo, J.; Chan, F.T.S.; Lee, C.K.M.; Strandhagen, J.O.; Niu, B. Smart control of the assembly process with a fuzzy control system in

the context of Industry 4.0. Advan. Eng. Inform. 2020, 43, 101031. [CrossRef]
99. Li, K.; Liu, Q.; Xu, W.; Liu, J.; Zhou, Z.; Feng, H. Sequence planning considering human fatigue for human–robot collaboration in

disassembly. Procedia CIRP 2019, 83, 95–104. [CrossRef]

45

Algorithms 2023, 16, 100

100. Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and future
trends. Proc. Inst. Mech. Eng. B 2019, 233, 1450–1471. [CrossRef]

101. Fang, Y.; Ming, H.; Li, M.; Liu, Q.; Pham, D.T. Multi-objective evolutionary simulated annealing optimisation for mixed-model
multi-robotic disassembly line balancing with interval processing time. Int. J. Prod. Res. 2020, 58, 846–862. [CrossRef]

102. Yin, T.; Zhang, Z.; Jiang, J. A Pareto-discrete hummingbird algorithm for partial sequence-dependent disassembly line balancing
problem considering tool requirements. J. Manuf. Syst. 2021, 60, 406–428. [CrossRef]

103. Munker, S.; Schmitt, R.H. CAD-based and/or graph generation algorithms in (dis)assembly sequence planning of complex
products. Procedia CIRP 2022, 106, 144–149. [CrossRef]

104. Wang, K.; Li, X.; Gao, L.; Li, P.; Gupta, S.M. A genetic simulated annealing algorithm for parallel partial disassembly line balancing
problem. Appl. Soft Comput. 2021, 107, 107404. [CrossRef]

105. Liu, J.; Wang, S. Balancing disassembly line in product recovery to promote the coordinated development of economy and
environment. Sustainability 2017, 9, 309. [CrossRef]

106. Ren, Y.; Yu, D.; Zhang, C.; Tian, G.; Meng, L.; Zhou, X. An improved gravitational search algorithm for profit-oriented partial
disassembly line balancing problem. Int. J. Prod. Res. 2017, 55, 7302–7316. [CrossRef]

107. Kang, K.; Zhong, R.Y.; Nassehi, A. Integrated disassembly and assembly model for heavy duty equipment maintenance. Procedia
CIRP 2020, 93, 995–1000. [CrossRef]

108. Liang, J.; Guo, S.; Du, B.; Liu, W.; Zhang, Y. Restart genetic flatworm algorithm for two-sided disassembly line balancing problem
considering negative impact of destructive disassembly. J. Clean. Prod. 2022, 355, 131708. [CrossRef]

109. Vaisi, B. A review of optimization models and applications in robotic manufacturing systems: Industry 4.0 and beyond. Decis.
Anal. J. 2022, 2, 100031. [CrossRef]

110. Stief, P.; Dantan, J.-Y.; Etienne, A.; Siadat, A. A new methodology to analyze the functional and physical architecture of existing
products for an assembly oriented product family identification. Procedia CIRP 2019, 83, 71–76. [CrossRef]

111. Kaipu, W.; Xinyu, L.; Liang, G.; Garg, A. Partial disassembly line balancing for energy consumption and profit under uncertainty.
Robot. Comput. Integ. Manuf. 2019, 59, 235–251.

112. Minca, E.; Filipescu, A.; Voda, A. Modelling and control of an assembly/disassembly mechatronics line served by mobile robot
with manipulator. Control. Eng. Pract. 2014, 31, 50–62. [CrossRef]

113. Laili, Y.; Feia, W.; Wang, Y.; Pham, D.T.; Zhang, L. Interference probability matrix for disassembly sequence planning under
uncertain interference. J. Manuf. Syst. 2021, 60, 214–225. [CrossRef]

114. Laili, Y.; Li, Y.; Fang, Y.; Pham, D.T.; Zhang, L. Model review and algorithm comparison on multi-objective disassembly line
balancing. J. Manuf. Syst. 2020, 56, 484–500. [CrossRef]

115. Wang, W.; Tiana, G.; Zhang, T.; Jabarullah, N.H.; Li, F.; Fathollahi-Fard, A.M.; Wang, D.; Li, Z. Scheme selection of design for
disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionist fuzzy numbers and regret
theory. J. Clean. Prod. 2021, 281, 124724. [CrossRef]

116. Fei, Y.; James, P.; Zhang, L.; Yuanjun, L.; Yongjing, W. A self-evolving system for robotic disassembly sequence planning under
uncertain interference conditions. Robot. Comp. Integ. Manuf. 2022, 78, 102392.

117. Moncayo-Martınez, L.A.; Zhang, D.Z. Optimising safety stock placement and lead time in an assembly supply chain using
bi-objective MAX–MIN ant system. Int. J. Prod. Econ. 2013, 145, 18–28. [CrossRef]

118. Dehghan-Sanej, K.; Eghbali-Zarch, M.; Tavakkoli-Moghaddam, R.; Sajadi, S.M.; Sadjadi, S.J. Solving a new robust reverse job
shop scheduling problem by meta-heuristic algorithms. Eng. Appl. Artif. Intel. 2021, 101, 104207. [CrossRef]

119. Hazır, Ö.; Dolgui, A. A decomposition based solution algorithm for U-type assembly line balancing with interval data. Comput.
Oper. Res. 2015, 59, 126–131. [CrossRef]

120. Aubry, A.; Marangé, P.; Lemoine, D.; Himmiche, S.; Norre, S. Hybridization of mixed-integer linear program and discrete event
systems for robust scheduling on parallel machines. IFIP Advan. Inform. Comm. Techn. 2021, 630, 73–80.

121. Formoso, O.; Trinh, G.; Hu, S.; Cheung, K. Development and robustness characterization of a digital material assembly system.
Procedia Manuf. 2018, 26, 1003–1013. [CrossRef]

122. Van Acker, B.B.; Bombeke, K.; Durnez, W.; Parmentier, D.D.; Mateus, J.C.; Biondi, A.; Saldien, J.; Vlerick, P. Mobile pupillometry
in manual assembly: A pilot study exploring the wearability and external validity of a renowned mental workload lab measure.
Int. J. Industr. Ergonom. 2020, 75, 102891. [CrossRef]

123. Magnanini, M.C.; Terkaj, W.; Tolio, T. Robust optimization of manufacturing systems flexibility. Procedia CIRP 2021, 96, 63–68.
[CrossRef]

124. Gyulai, D.; Kadar, B.; Monosotori, L. Robust production planning and capacity control for flexible assembly lines. IFAC-
PapersOnLine 2015, 48, 2312–2317. [CrossRef]

125. Kootbally, Z.; Schlenoff, C.; Lawler, C.; Kramer, T.; Gupta, S.K. Towards robust assembly with knowledge representation for the
planning domain definition language (PDDL) Robot. Comput. Integr. Manuf. 2015, 33, 42–55. [CrossRef]

126. Breckle, T.; Manns, M.; Kiefer, J. Assembly system design using interval-based customer demand. J. Manuf. Syst. 2021, 60, 239–251.
[CrossRef]

127. Fisel, J.; Exner, Y.; Stricker, N.; Lanza, G. Variant flexibility in assembly line balancing under the premise of feasibility robustness.
Procedia CIRP 2018, 72, 774–779. [CrossRef]

46

Algorithms 2023, 16, 100

128. Aubry, A.; Rossi, A.; Jacomino, M. A generic off-line approach for dealing with uncertainty in production systems optimization.
In Proceedings of the 13th IFAC Symposium on Information Control Problems in Manufacturing, Moscow, Russia, 3–5 June 2009;
pp. 1481–1486.

129. Hamta, N.; Fatemi Ghomi, S.M.T.; Jolai, F.; Bahalke, U. Bi-criteria assembly line balancing by considering flexible operation times.
Appl. Math. Model. 2011, 35, 5592–5608. [CrossRef]

130. Moreira, M.C.O.; Cordeau, J.-F.; Costa, A.M.; Laporte, G. Robust assembly line balancing with heterogeneous workers. Comput.
Ind. Eng. 2015, 88, 254–263. [CrossRef]

131. Gurevsky, E.; Rasamimanana, A.; Pirogov, A.; Dolgui, A.; Rossi, A. Stability factor for robust balancing of simple assembly lines
under uncertainty. Discr. Appl. Math. 2022, 318, 113–132. [CrossRef]

132. Pirogov, A.; Gurevsky, E.; Rossi, A.; Dolgui, A. Robust balancing of transfer lines with blocks of uncertain parallel tasks under
fixed cycle time and space restrictions. Eur. J. Oper. Res. 2021, 290, 946–955. [CrossRef]

133. Rossi, A.; Gurevsky, E.; Battaia, O.; Dolgui, A. Maximizing the robustness for simple assembly lines with fixed cycle time and
limited number of workstations. Discret. Appl. Math. 2016, 208, 123–136. [CrossRef]

134. Gurevsky, E.; Battaia, O.; Dolgui, A. Robust balancing of straight assembly lines with interval task times. J. Oper. Res. Soc. 2013,
64, 1607–1613. [CrossRef]

135. Kuzmin, K.G.; Haritonova, V.R. Estimating the stability radius of an optimal solution to the simple assembly line balancing
problem. J. Appl. Indust. Math. 2019, 13, 250–260. [CrossRef]

136. Sotskov, Y.N.; Dolgui, A.; Portmann, M.-C. Stability analysis of optimal balance for assembly line with fixed cycle time. Eur. J.
Oper. Res. 2006, 168, 783–797. [CrossRef]

137. Lai, T.-C.; Sotskov, Y.N.; Dolgui, A.; Zatsiupa, A. Stability radii of optimal assembly line balances with a fixed workstation set. Int.
J. Prod. Econ. 2016, 162, 356–371. [CrossRef]

138. Sotskov, Y.N.; Dolgui, A.; Sotskova, N.; Werner, F. Stability of optimal line balance with given station set. In Supply Chain
Optimization, Applied Optimization; Springer: New York, NY, USA, 2005; Volume 94, pp. 135–149.

139. Sotskov, Y.N.; Werner, F.; Zatsiupa, A. Calculation of the stability radius of an optimal line balance. In Proceedings of the 14th
IFAC Symposium on Information Control Problems in Manufacturing, Bucharest, Romania, 23–25 May 2012; pp. 192–197.

140. Sotskov, Y.N.; Dolgui, A.; Lai, T.-C.; Zatsiupa, A. Enumerations and stability analysis of feasible and optimal line balances for
simple assembly lines. Comput. Indust. Eng. 2015, 90, 241–258. [CrossRef]

141. Lai, T.-C.; Sotskov, Y.N.; Dolgui, A. The stability radius of an optimal line balance with maximum efficiency for a simple assembly
line. Eur. J. Oper. Res. 2019, 274, 466–481. [CrossRef]

142. Sotskov, Y.N.; Werner, F. (Eds.) A stability approach in sequencing and scheduling. In Sequencing and Scheduling with Inaccurate
Data; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 283–344.

143. Brasel, H.; Sotskov, Y.N.; Werner, F. Stability of a schedule minimizing mean flow time. Math. Comput. Model. 1996, 24, 39–53.
[CrossRef]

144. Sotskov, Y.N.; Sotskova, N.; Werner, F. Stability of an optimal schedule in a job shop. Omega-Int. J. Manag. Sci. 1997, 25, 397–414.
[CrossRef]

145. Sotskov, Y.N. Stability of a schedule minimising the makespan for processing jobs on identical machines. Int. J. Prod. Res.. in press.
[CrossRef]

146. Sotskov, Y.N.; Matsveichuk, N.M.; Hatsura, V.D. Two-machine job-shop scheduling problem to minimize the makespan with
uncertain job durations. Algorithms 2020, 13, 4. [CrossRef]

147. Matsveichuk, N.M.; Sotskov, Y.N.; Egorova, N.G.; Lai, T.-C. Schedule execution for two-machine flow-shop with interval
processing times. Math. Comput. Model. 2009, 49, 991–1011. [CrossRef]

148. Sotskov, Y.N.; Egorova, N.G.; Werner, F. Minimizing total weighted completion time with uncertain data: A stability approach.
Autom. Remote Control. 2010, 71, 2038–2057. [CrossRef]

149. Matsveichuk, N.M.; Sotskov, Y.N. A stability approach to two-stage scheduling problem with uncertain processing times. In
Sequencing and Scheduling with Inaccurate Data; Sotskov, Y.N., Werner, F., Eds.; Nova Science Publishers: Hauppauge, NY, USA,
2014; pp. 377–408.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

47

algorithms

Article

Energy Management of a Multi-Source Power System

Omar Salah 1, Abdulrahim Shamayleh 1,2,* and Shayok Mukhopadhyay 3,*

Citation: Salah, O.; Shamayleh, A.;

Mukhopadhyay, S. Energy

Management of a Multi-Source Power

System. Algorithms 2021, 14, 206.

https://doi.org/10.3390/a14070206

Academic Editor: Frank Werner

Received: 5 May 2021

Accepted: 6 July 2021

Published: 7 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Engineering Systems Management Program, American University of Sharjah,
Sharjah 26666, United Arab Emirates; b00049968@alumni.aus.edu

2 Department of Industrial Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
3 Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
* Correspondence: ashamayleh@aus.edu (A.S.); smukhopadhyay@aus.edu (S.M.)

Abstract: This work focuses on energy management for a system operated by multiple energy sources
which include batteries, super capacitors, a hydrogen fuel cell, and a photovoltaic cell. The overall
objective is to minimize the power consumption from all sources needed to satisfy the system’s power
demand by optimizing the switching between the different energy sources. A dynamic mathematical
model representing the energy sources is developed taking into account the different constraints on
the system, i.e., primarily the state-of-charge of the battery and the super capacitors. In addition to
the model, a heuristic approach is developed and compared with the mathematical model. Both
approaches were tested on a multi-energy source ground robot as a prototype. The novelty of this
work is that the scheduling of an energy system consisting of four different types of sources is
compared by performing analysis via dynamic programming, and a heuristic approach. The results
generated using both methods are analyzed and compared to a standard mode of operation. The
comparison validated that the proposed approaches minimize the average power consumption across
all sources. The dynamic modeling approach performs well in terms of optimization and provided a
superior switching sequence, while the heuristic approach offers the definite advantages in terms of
ease of implementation and simple computation requirements. Additionally, the switching sequence
provided by the dynamic approach was able to meet the power demand for all simulations performed
and showed that the average power consumption across all sources is minimized.

Keywords: batteries; photovoltaic cell; fuel cell; super capacitor; state-of-charge; energy management

1. Introduction

To limit the effects of pollution due to the use of fossil fuels, there is a move toward
renewable and sustainable energy sources. This has potential to ensure a better future
for our environment. Currently, the transportation industry is responsible for consuming
the most significant amount of fossil fuels, where “two-thirds of the oil used around the
world currently goes to power vehicles, of which half goes to passenger cars and light
trucks” [1]. Therefore, developments in this industry that could result in a reduction in
the consumption of fossil fuels would have a significant impact on our environment and
society. Consequently, companies and governments are eager to find new methods to
generate energy that pave the way toward a clean and efficient transportation system [2].

Research into developing efficient drones and electric vehicles has significantly in-
creased in recent times. There is research on integrating multiple energy sources such as
batteries, fuel cells, photovoltaic cells, and super capacitors, onboard such vehicles. Electric
vehicles containing only a single source of power can face limitations on the maximum
distance they can travel before having to recharge [3]. This is especially important to
consider when one wishes to build a robust and reasonably failure resistant power system
for a vehicle. The integration of multiple renewable and sustainable sources, along with
traditional energy sources, has the potential to improve robustness to failures of individual
types of power sources. This was in fact the motivation of the researchers in [4] in develop-
ing a fuel-cell battery hybrid propulsion system for a small utility vehicle. According to

Algorithms 2021, 14, 206. https://doi.org/10.3390/a14070206 https://www.mdpi.com/journal/algorithms
49

Algorithms 2021, 14, 206

the authors, the fuel economy was apparently improved by a factor of three. Further, it
is important to note that, the integration of multiple types of energy sources is not only
important for electric vehicles. But, this is also of definite importance when considering
islanded micro grid systems, where the objective is to have a variety of types of energy
systems available to meet demand specifically in the absence of a main power grid [5].
Currently even traditional power grids are incorporating multiple different renewable
energy sources and batteries [6]. The main principle in energy management of such systems
with many different energy sources, is efficiently matching the demand and supply of
power in the system. The main challenge faced is determining in what proportion each of
the available sources is used to ensure that enough power is available to meet the demand
in the system. The process is tedious because of the different characteristics of the various
sources integrated into a multi-source power system. The behavior of the power sources
must be taken into account to achieve efficient management of the sources.

Drones are ubiquitous, and future drones/flight systems could benefit from multiple
onboard energy sources. Drones are used by delivery companies [7,8], as well as by pho-
tographers. They are also being used in the medical field to deliver automated external
defibrillators to out-of-hospital cardiac arrest patients [9]. Most commercial drones are
equipped only with a single lithium-ion battery that allows a maximum flight time of
about thirty minutes, mostly less [10]. Presently, researchers are attempting to incorpo-
rate multiple renewable and sustainable energy sources in drones [11]. While successful
integration of multiple energy sources for long duration flight remains to be researched,
as reported in the works above, there are many avenues where utilizing multiple energy
sources improves efficiency. This also extends the duration of usage of such a multi-source
power system compared to one that uses a single source of a specific type.

Thus, this work is concerned with optimizing the energy management of a system that
contains four different types of power sources. The objective is to optimize the scheduling
of the switching sequence of the sources to minimize the power dissipation in the system
and ensure meeting the power demand. The problem can be approached as a resource-
constrained scheduling problem of multiple sources, and is subject to several constraints,
mainly the state of charge of the battery and super capacitor [10]. The novelty of this work
is that the scheduling of an energy system consisting of four different types of sources is
compared by performing analysis via dynamic programming, and a heuristic approach.
While the dynamic programming approach performs well in terms of optimization, yet the
heuristic based method has definite advantages in terms of ease of implementation and
simple computation requirements.

This remainder of this paper is organized as follows: Section 2 presents a review of
the literature pertaining to the problem at hand. The methodology, which includes the
energy management model, Analytic Hierarchy Process (AHP), and heuristics, is presented
in Section 3. Section 4 presents the results and discussion of the demonstration example
and the experimental work. Lastly, concluding remarks along with suggestions for future
work are presented in Section 5.

2. Literature Review

In this section, we review previous work related to scheduling approaches, battery
modeling, fuel cell modeling, super capacitor modeling, usage of power electronics, and
control strategies.

2.1. Scheduling Approaches

Researchers have proposed different approaches to optimize the usage of multiple
energy sources. One of the approaches is predictive modeling. Torreglosa et al. [12] used
predictive control to manage the energy generated from a fuel cell, battery, and super
capacitor operated tramway in Spain. The predictive control collected data to generate a
sequence of operations of the three sources. Xie et al. [13] compared a stochastic predictive
control model of a hybrid electric bus to the traditional dynamic programming with no

50

Algorithms 2021, 14, 206

prediction. The electric bus has two sources of energy; the battery and an engine that uses
petrol. The stochastic predictive control model uses Markov Chain Monte Carlo methods
to predict the future velocities of the bus. The forecasted velocities are then input into a
dynamic programming algorithm to provide the optimal control sequence to minimize
the energy consumption of the bus while taking into consideration the state of charge of
the battery.

Hu et al. [2] used convex programming on a hybrid bus, integrating a fuel cell and
battery, to optimize the power management and sizing of the sources. Hadj-Said et al. [14]
also used convex programming for the energy management of an electric powertrain. The
researchers used a convex model of the powertrain to minimize the fuel consumption
of the vehicle. They compared the model results to traditional dynamic programming.
Convex programming provided an optimal solution close to that of dynamic programming.
However, convex programming provided one advantage of requiring a lower computation
time compared to dynamic programming.

Another method for scheduling sources in electric vehicles is real-time programming.
Trovão et al. [15] developed an optimal real-time energy management architecture for
electric vehicles using two different sources. The system restricts its search for the optimal
solution to the high level categorization considering the capabilities of the available sources
to preserve the battery’s state of charge by trying to rely heavily on the super capacitors to
meet the demands of the vehicle. At the middle level, the energy management system is
used to ensure that the power supply is uninterrupted and minimizes the difference in the
power demanded and power supplied. Trovão et al. [16] also studied another real-time
energy management approach using a fuzzy logic approach on a three-wheeled vehicle. In
this approach, a super capacitor was combined with a battery on an electric vehicle. The
battery is responsible for supplying the average power demand of the vehicle, while the
super capacitor provided the rest of the required energy. They found that there was a 3%
reduction in energy consumption by the vehicle, and the battery current RMS value was
reduced by 12%.

Zhou et al. [17] proposed an online energy management strategy that combines both
an online and offline approach test on hybrid vehicles consisting of a fuel cell and battery.
The online energy management is based on the time series prediction model nonlinear
autoregressive neural network. After the data is collected, offline optimization-based
strategies are used to optimize the use of the sources in the next time window. Additionally,
Chen et al. [18] implemented online energy management on a hybrid electric vehicle to
reduce energy consumption. The online energy management strategy is divided into two
layers. The first layer is used to determine whether the battery alone or the battery and
engine will supply the energy demand of the vehicle. The second layer of the strategy
is used for the power allocation between the battery and engine when both sources are
being used based on a sequence generated by dynamic programming. Under specific
driving conditions, the researchers were able to reduce energy consumption by up to 5.77%.
Qin et al. [19] employed neuro-dynamic programming (NDP) method to simultaneously
optimize fuel economy and battery state-of-charge (SOC). Mathur et al. [20] developed a
robust online scheduling framework that utilizes stochastic optimization within a model-
based feedback scheme to tackle the uncertainties in electricity prices, electric power
demands, water inflows and plant model parameters.

Park et al. [21] used a greedy heuristic to assign batteries and chargers of drones to
services with a temporal order. The objective was to find the optimal charging schedule
and task dispatching. The researchers divide the batteries and services into categories
depending on the required energy to complete tasks and the battery capacity of the drones.
They also used integer linear programming to schedule the charging of batteries and dis-
patching of drones to complete their tasks. They took into account the battery’s maximum
and minimum states of charge to protect the battery’s life and not degrade the battery.
Also, Umetani et al. [22] used a linear programming based heuristic algorithm for charging
and discharging scheduling the electric vehicles. The algorithm consists of two steps:

51

Algorithms 2021, 14, 206

solving the linear programming problem and rounding the optimal solution to obtain
feasible integer solutions. The heuristic algorithm was able to reduce the peak load of the
vehicle while also handling the uncertain demands of the electric vehicle with minimal
computation time. Zhen et al. [23] designed a fuzzy mixed integer programming method to
support the planning of energy systems management and air pollution mitigation control
under multiple uncertainties. Vaccari et al. [24] developed an optimization tool for a gen-
eral hybrid renewable energy system to generate an operating plan to meet electrical and
thermal load requirements with possibly minimum operating costs plan over a specified
time horizon.

2.2. Modeling of Power Sources

There are two crucial factors for batteries which are power dissipation and runtime.
Chen and Rincon-Mora [25] presented an accurate and efficient battery model that could
help researchers predict and optimize the battery’s runtime as well as the overall system
performance. The model accounts for various dynamic characteristics of the battery,
including open-circuit voltage, current, temperature, and many more. While testing their
model, the researchers observed less than 0.4% runtime error and a mere 30 mV error in
the voltage. While designing hybrid systems, consisting of fuel cells along with batteries
and super capacitors, the battery is selected based on its energy requirements to reduce
its size and weight. This does not take into account the deep discharges of the battery,
which have a significant effect on the battery’s lifetime. Therefore, Schaltz et al. [26] and
Lami et al. [27] argued that the lifetime of the battery must be considered alongside the
energy and power requirements of the battery.

Another aspect of the system that must be modeled and managed is the fuel cell. This
is required to minimize the hydrogen consumption to ensure the appropriate runtime.
Bernard et al. [28] investigated the effects of the sizing and modeling of the fuel cells in
a powertrain powered by fuel cell and energy storage systems. They examined different
combinations of fuel cell models alongside energy storage systems to determine which
combination results in the least hydrogen consumption to increase the runtime of the pow-
ertrain. Pukrushpan [29] stated that the efficiency of fuel cells depends on understanding,
predicting, and controlling the distinctive performance of fuel cell systems. He provided a
number of modeling and control techniques that can be used to ensure quick and stable dy-
namic system behavior. Also, he discussed various limitations of the controlling techniques
and ways to measure the performance of the fuel cell system.

Lastly, super capacitors are being used more frequently in hybrid vehicles because of
their ability to provide a quick burst of current needed during acceleration [8]. Spyker and
Nelms [30] explained how to model a super capacitors. Amjadi and Williamson [31] added
that a super capacitor can be used to supply the excess instantaneous power needed by a
hybrid system. By doing so, the battery’s lifetime can be protected and the dynamic stress
on the battery is reduced with the help of the super capacitor.

3. Methodology

The methodology includes two parts. First, a dynamic mathematical model repre-
senting the energy sources is developed taking into account the different constraints on
the system. In the second part, a heuristic approach is developed and compared with the
mathematical model.

3.1. Mathematical Model

The decision problem is to determine the optimal switching sequence between the
multiple energy sources with the objective of supplying the needed power for a system and
minimizing the power dissipation of the energy sources. The basics of some details related
to models for batteries, fuel cells, and supercapacitors, used at the level necessary for this
work can be found in [5,29,30]. For simplification of the overall model, it is assumed that
the power profile of a photovoltaic cell is available beforehand.

52

Algorithms 2021, 14, 206

3.1.1. Assumptions and Notation

The mathematical model presented in this paper is developed under the following
assumptions:

1. The initial state-o-charge of the battery is 100%.
2. The initial state-of-charge of the super capacitor is 100%.
3. The hydrogen tank of the fuel cell is full.
4. The batteries can only be charged by the photovoltaic cell.
5. The super capacitor can be charged from either the batteries or the photovoltaic cell.

The following notation will be used throughout the paper.

3.1.2. Model Formulation
Objective Function

Min
N

∑
k=1

(
2

∑
j=1

wBj P
Bj
k

(
1 − ch

Bj
k

))
+
(

wCPC
k

(
1 − chC

k

))
+
(

wPV PPV
k

)
+
(

wFCPFC
k

)
(1)

The objective function (1) is of minimization type based on weights assigned to the
different power sources that are utilized by the system. The model will use the sources with
lowest weight as the preferred source to meet the needed power while the sources with
highest weight will be used as needed to ensure that the duration of usage of the system is
extended by considering the demand and its nature. The weights are based on four criteria
which are cost of using the source, the ease of charging the source, the duration in which
the source is able to supply power, and the discharge speed of the source. The first term
in the objective function is for the battery, the second term is for the super capacitor, the
third is for the photovoltaic cell, and the last term is for the fuel cell. If the batteries or
the super capacitor are being charged, the power used to charge these sources will not be
considered in the objective function. For instance, if the first battery is being charged from
the photovoltaic cell, the power consumed by the battery and supplied by the photovoltaic
cell will not be considered in the objective function. Therefore, the power provided by

the batteries and super capacitor is multiplied by a factor,
(

1 − ch
Bj
k

)
and

(
1 − chC

k
)
, made

equal to zero when one of these sources is being charged, as shown in the objective function
above. All of these sources do not behave in the same manner; each has its own unique
characteristics and running costs. A weighting system will be used to account for these
differences, developed using an analytic hierarchy process (AHP) presented in Section 3.2.
The power supplied by each of the sources will be multiplied by the assigned weight to it;
wBj , wC, wPV , wFC as shown in the objective function. As an example, we are considering
the weights to be $/W (watt of power), but they can have any monetary/appropriate unit
as necessary.

Constraints

All of the below equations are essentially constraints to be obeyed while minimizing (1).

Battery Model

The state-of-charge (SOC) of the battery is calculated continuously as the system is
running using the following Equation (2). The current through the battery is calculated
using Equation (3). The battery is operated at rated conditions, providing the maximum
continuous current the system is designed for, and for which a specific battery is selected.

SOC
Bj
k = Δt

−1
CC

I
Bj
k

(
S

Bj
k − ch

Bj
k

)
+ SOC

Bj
k ((k − 1)) ∀k (2)

I
Bj
k = IBrated ∀k (3)

53

Algorithms 2021, 14, 206

It is assumed that the battery voltage remains constant. The assumption of a constant
voltage is valid because a voltage regulator is usually present along with such a battery
based supply system. Therefore, the power provided by the battery is calculated using
Equation (4).

P
Bj
k = V

Bj
k I

Bj
k

(
S

Bj
k + ch

Bj
k

)
∀k (4)

Constraint (5) ensures that both batteries are either charging, idle, or supplying at
each time step k. Constraint (6) ensures that only one of the batteries is charging at time
step k. Constraint (7) ensures that the state of charge of the batteries stays between 30%
and 100% to protect the lifetime of the battery.

S
Bj
k + ch

Bj
k ≤ 1 ∀k (5)

2

∑
j=1

ch
Bj
k ≤ 1 ∀k (6)

30% ≤ SOC
Bj
k ≤ 100% ∀k (7)

Super Capacitor Model

The time constant of the super capacitor is calculated using Equation (8). When the
super capacitor is charging, the voltage is calculated using Equation (9).

τ = RC (8)

VC
k = Vs

(
1 − e

−kΔt
τ

)
chC

k ∀k (9)

When the super capacitor is supplying the system, the voltage is calculated using
Equation (10).

VC
k = VC

k−1 e
−kΔt
τ SC

k ∀k (10)

If the capacitor is left idle, the voltage remains the same as shown in Equation (11).

VC
k = VC

k−1

(
1 −

(
SC

k + chC
k

))
∀k (11)

The current of the super capacitor is calculated using the following Equation (12).

IC
k =

C·Vs
τ

·e−kΔt
τ ·chC

k +
C·Vc((k − 1)Δt)

τ
·e−kΔt

τ SC
k ∀k (12)

The power provided by the super capacitor is calculated using Equation (13) and the
state-of-charge (SOC) of the super capacitor is calculated continuously as the system runs
using Equation (14).

PC
k = IC

k VC
k

(
SC

k + chC
k

)
∀k (13)

SOCC
k =

VC
k

VCrated
∀k (14)

The sizing of the super capacitor is based on the rush of current needed during spikes
in the energy demand. As an example for the case of considering a drone needing to
suddenly navigate to a higher altitude compared to its present altitude, a spike in the
drone’s demand can occur due to a sudden increase in the drone’s traveling altitude.
Therefore, the size of the super capacitor needed can be found as follows:

The energy E needed to raise an object of mass m to a height h is:

E = mgh (15)

54

Algorithms 2021, 14, 206

where g is the gravitational acceleration.
By definition, 1 joule is equal to 1 volt multiplied by 1 coulomb. Therefore:

E = QV (16)

where Q is the charge of the super capacitor in coulombs and V is the voltage in volts.
Additionally, the charge of the capacitor is dependent on the capacitance and voltage:

Q = CV (17)

where C is the capacitance in Farads.
Therefore, by using Equations (15)–(17) the following Equation (18) can be used to

determine the size of the super capacitor need. Considering the example of drone flight, a
safety factor could also be considered to ensure that the super capacitor can handle any
spikes in demand resulting from turbulences encountered during the flight,

C =
mgh
V2 (18)

Constraints (19) ensures that the super capacitor is either charging, supplying, or
unused at each time step k.

SC
k + chC

k ≤ 1 ∀k (19)

Please note that the capacitor sizing is not constrained to the type of problem, i.e., if
the problem is not of drone flight, but of supplying power to an islanded micro grid; then
instead of considering the height h in (15), one can simply calculate the energy needed
to supply such a spike in demand. Then equating such a spike to the stored energy in a
supercapacitor, can trivially give the size of the capacitor necessary.

Photovoltaic Cell Model

The power profile of the photovoltaic cell, PV(k), is uploaded into the system via a
controller and its output is determined using Equation (20). The photovoltaic cell can either
be supplying the demand of the system or charging one of the batteries.

PPV
k = SPV

k PV(k)
(

1 −
[
chB1

k + chB2
k + chC

k

])
∀k (20)

Fuel Cell Model

I =
Ist

A f c
(21)

where I is the current density, Ist is the stack current, and Afc is active cell area of the
fuel cell.

Activation losses:
Vact = a ln

I
Io

(22)

where a and Io are both constants determined experimentally.
Ohmic losses:

Vohm = IRohm (23)

Rohm =
Tm

σm
(24)

where Tm is the thickness of the membrane and σm is the conductivity of the membrane.

σm = B1e
(B2(

1
303− 1

Tf c
))

S/m (25)

55

Algorithms 2021, 14, 206

where Tfc is the operating temperature of the fuel cell.

B1 = B11λm − B12 (26)

where B11, B12, and B2 are constants determined experimentally.
Concentration losses:

Vconc = I(C2
I

Imax
)

C3

(27)

where C2, C3, Imax are constants determined experimentally.

VFC
k = Ek − Vact

k − Vohm
k − Vconc

k ∀k (28)

where E is the open circuit voltage. Taking into account all the losses involved in the fuel
cell, the output voltage can be found using Equation (29) where n is the number of cells in
the fuel cell.

VFCctotal = nVFC
k ∀k (29)

The power provided by the fuel cell will be calculated using Equation (30).

PFC
k = IFC

k VFCtotal
k SFC

k ∀k (30)

Constraints (31) and (32) ensure that both batteries are only charged from the photo-
voltaic cell at time step k.

chB1
k ≤ SPV

k ∀k (31)

chB2
k ≤ SPV

k ∀k (32)

Constraint (33) ensures that the super capacitor can only be charged from the photo-
voltaic cell at time step k.

chC
k ≤ SPV

k ∀k (33)

Constraint (34) ensures that enough power is supplied to meet the demand of the
system at all times.

PB1
k

(
1 − chB1

k

)
+ PB2

k

(
1 − chB2

k

)
+ PC

k

(
1 − chC

k

)
+ PPV

k + PFC
k) ≥ Pdemand

k ∀k (34)

Constraint (35) ensures the super capacitor cannot be charged if any of the batteries is
being charged.

chC
k + ∑2

j=1 ch
Bj
k ≤ 1 ∀k (35)

3.2. Analytic Hierarchy Process (AHP)

The Analytic hierarchy process is a tool used for making complex decisions reducing
them into a sequence of pairwise comparisons to help include both subjective and objective
features of a decision. It is important to note that the best option of the alternatives is not
one that is the most superior alternative at all criteria, rather it is the one that accomplishes
the most appropriate trade-off between the set of criteria.

An AHP will be used to calculate the weights used in the objective function. The
criteria by which the sources will be evaluated on are the cost of using the source, the
ease of charging the source, the duration in which the source is able to supply power, and
the discharge speed of the source. For each criterion, a score is assigned to each of the
alternatives according to the decision maker’s pairwise comparisons of the alternatives
regarding that specific criterion. The higher the score of the alternative, the more important
that alternative is with regards to that specific criterion. The scores used in the pairwise
comparisons of the alternatives are shown in Table 1.

56

Algorithms 2021, 14, 206

Table 1. AHP table of relative score [32].

The Verbal Judgment of Preference Numerical Rating

Extremely important 9
Very strong to extremely important 8

Very strongly important 7
Strongly to very strongly important 6

Strongly important 5
Moderately to strongly important 4

Moderately important 3
Equally to moderately important 2

Equally important 1

AHP also provides a weight for each of the evaluation criteria considered using the
decision maker’s pairwise comparisons of the criteria. The more important the a criterion
is to the decision makers, the higher the weight assigned to that criteria. The AHP then
combines each of the alternative’s scores with the weights of each criterion, to determine a
global score for the alternatives. The global score for the alternatives is a weighted sum of
the scores given to the alternative about each of the criteria [32].

3.2.1. Cost of Usage

Table 2 shows the relative scores of the cost of usage for the different power sources.
The cost of usage criteria refers to the cost incurred by the system each time the source is
used to supply the demand of the system. The scores were allocated by conducting a pair
wise comparison between the different sources. For example, the fuel cell will be less costly
to use than the battery. Some of the costs a source could experience are the degradation
that occurs to the source each time it is used, or it could be the fuel used by the source, for
instance, the hydrogen used by fuel cells. Therefore, the cost of usage of the sources is as
follows from most feasible to least feasible cost [33]:

Photovoltaic cell −→ Super capacitor −→ Fuel Cell −→ Battery

Table 2. Cost of usage relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 1/3 1/6 1/8 0.05
Fuel cell 3 1 1/4 1/6 0.10

SC 6 4 1 1/3 0.28
PV 8 6 3 1 0.57

3.2.2. Ease of Charge

Table 3 shows the relative scores for the different power sources. The ease of charge
criteria refers to how easily a source can be charged. Some of the aspects considered were
the duration needed to charge the source, and by how many other sources can a source can
be charged by, for example, the super capacitor can be charged by the batteries or the PV
panel, but the batteries can only be charged by the PV panel. Therefore, the ease of charge
of the sources is as follows from highest to lowest [34,35]:

Super capacitor −→ Battery −→ Fuel Cell −→ Photovoltaic cell

57

Algorithms 2021, 14, 206

Table 3. Ease of charge relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 4 1/2 8 0.32
Fuel cell 1/4 1 1/5 7 0.14

SC 2 5 1 9 0.50
PV 1/8 1/7 1/9 1 0.04

3.2.3. Duration

Table 4 shows the duration relative scores for the different power sources. The duration
criteria refer to how long the source can supply power to help meet the demand of the
system before needing to be charged. Therefore, the duration of the sources from the
highest duration to the lowest is as follows [35]:

Battery −→ Fuel cell −→ Photovoltaic cell −→ Super capacitor

Table 4. Duration relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 3 8 6 0.55
Fuel cell 1/3 1 7 5 0.30

SC 1/8 1/7 1 1/3 0.05
PV 1/6 15 3 1 0.10

3.2.4. Discharge Speed

Table 5 shows the discharge speed relative scores for the different power sources. The
discharge speed criteria refer to how quickly the source can react and discharge to meet
the demand of the system once given the command. Therefore, the discharge speed of the
sources from the highest to the lowest is as follows [8,33,34]:

Super capacitor −→ Battery −→ Fuel Cell −→ Photovoltaic cell

Table 5. Discharge speed relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 3 1/7 5 0.19
Fuel cell 1/3 1 1/8 2 0.08

SC 7 8 1 9 0.68
PV 1/5 1/2 1/9 1 0.05

3.2.5. Criteria

Table 6 shows the relative criteria scores. The importance of each of the criteria will
depend on the demand profile of the system. For instance, if the demand profile contains
many spikes, then the discharge speed criteria will be given greater weight. This is done to
make sure that the system can react in an adequate time to the spikes in demand.

Table 6. Criteria relative scores.

Criteria Cost of Usage Ease of Charge Duration Discharge Speed Average

Cost of usage 1 2 1/5 1/3 0.11
Ease of charge 1/2 1 1/7 1/5 0.06

Duration 5 7 1 3 0.56
Discharge speed 3 5 1/3 1 0.27

58

Algorithms 2021, 14, 206

Finally, the ratings of each of the alternatives are then multiplied by the weights of
the sub-criteria and combined to get local ratings concerning each of the criteria. The
local ratings are then multiplied by the weights of the criteria and combined to get overall
ratings of the alternatives shown in Table 7. For example, the battery weight is found by
multiplying (0.05 × 0.11) + (0.32 × 0.06) + (0.55 × 0.56) + (0.19 × 0.27) = 0.39

Table 7. Weights assigned to each of the sources.

Source Weight

Battery 0.39
Fuel cell 0.21

SC 0.27
PV 0.13

3.3. Heuristic Approach

The developed mathematical model requires a long time to compute the optimal
solution; therefore, a heuristic approach was developed to solve the problem under study.
The developed heuristic identifies the smallest combination of sources needed to meet the
demand of the system. The heuristic algorithm used, assuming two batteries, is shown in
Figure 1 and detailed steps are as Algorithm 1:

0

2000

4000

6000

0 2 4 6 8 10

Figure 1. Demand profile.

The heuristic starts with checking if the demand for power is greater than 200 W.
The value of 200 W was chosen because the fuel cell provides 210 W of power at rated
conditions. If the power demand is less than or equal to 200 W, the system will move into a
charging mode. The system will turn on the fuel cell to meet the demand of the drone and
check if there is an output from the photovoltaic cell. If the photovoltaic cell is providing
an output, the system will check whether or not the super capacitor is fully charged. If the
super capacitor is not fully charged, the photovoltaic cell will charge it. Next, the system
will check if the batteries are fully charged; if not, they will be charged by the photovoltaic
cell individually. On the other hand, if the photovoltaic cell does not provide an output,
the system will take no action and move to the next time instant.

If the power demand is greater than 200 W, the system will move to supply mode.
First, the system will check if there is a spike in demand. A spike in demand is considered
when the demand increases by 30% from a one-time instance to the next. This is done
so that the system can discharge the super capacitor during spikes in demand due to the
super capacitor’s rapid discharge speed [36]. If there is a spike in power demand and the
super capacitor is charged, the system will discharge the super capacitor along with other
sources to meet the demand of the system.

59

Algorithms 2021, 14, 206

Algorithm 1. Energy management Heuristic.

1: for k = 1:10

2: if (Pdemand
k > 200)

3: if Pdemand
k < PFC

k
4: SFC

k = 1;
5: else if Pdemand

k < PFC
k + PPV

k
6: SFC

k = 1;
7: SPV

k = 1;.
8: else if SOCB1

k > 47
9: if Pdemand

k < PFC
k + PPV

k + PB1
k

10: SFC
k = 1;

11: SPV
k = 1;

12: SB1
k = 1;

13: else if SOCB2
k > 47.

14: SFC
k = 1;

15: SPV
k = 1;

16: SB1
k = 1;

17: SB2
k = 1;

18: else if SOCC
k = 100

19: SFC
k = 1;

20: SPV
k = 1;.

21: SB1
k = 1;

22: SC
k = 1;

23: end

24: else if SOCB2
k > 47.

25: SFC
k = 1;

26: SPV
k = 1;

27: SB2
k = 1;

28: else if SOCC
k = 100

29: SFC
k = 1;

30: SPV
k = 1;

31: SB2
k = 1;

32: SC
k = 1;

33: end

34: end

35: if Pdemand
k ≤ 200

36: SFC
k = 1;

37: if SOCC
k < 99

38: SPV
k = 1;

39: chC
k = 1;

40: else if SOCB1
k < 100

41: SPV
k = 1;

42: chB1
k = 1;

43: else if SOCB2
k < 100

44: SPV
k = 1;

45: chB2
k = 1;

46: end

47: end for

48: return SFC
k , SPV

k , SB1
k , SB2

k , SC
k , chC

k , chB1
k , chB2

k

On the other hand, if there is no spike in demand, the system will not discharge the
super capacitor. Next, the system will check if there is an output from the photovoltaic
cell to make use of the photovoltaic cell while it provides an output. Assuming that the
photovoltaic cell is providing an output, the system will check which combination of
sources along with the photovoltaic cell will be able to meet the demand of the system.
For instance, if the photovoltaic cell and fuel cell are not enough to meet the demand, the

60

Algorithms 2021, 14, 206

system will first check the state-of-charge of the first battery. If the state-of-charge of the
battery is between 47% and 100%, the system will use the fuel cell, photovoltaic cell, and
battery to meet the demand of the drone. If the state-of-charge of the first battery is less
than 47%, the system will move to check the state-of-charge of the second battery and
so on. The range of 47% to 100% was chosen because at the ratings used for simulation
(Supercapacitor ratings: 24 V, 200 A, time constant 0.36; Battery ratings: 22.4 V, 165 A; Fuel
Cell ratings: 21 V, 10 A; Photovoltaic Cell power rating: 120 W), using a battery for one-
time instance reduces the state-of-charge of the battery by 17%, based on the rated power
demand considered in this example. If the rated power requirement of the application
at hand changes, then this 47% number used for the SOC will have to be changed in the
heuristic approach accordingly. Further, the age/health of the battery can also be used to
arrive at an appropriate threshold for the SOC to be checked other than 47%-and this is
left for future work. Therefore to keep the state-of-charge of the battery greater than or
equal to 30%, a lower bound of 47% was chosen for the range. On the occasion that there is
no output from the photovoltaic cell, the system will check the remaining sources to meet
the demand of the system. Moreover, the heuristic approach could generate a solution in
a matter of seconds on Matlab, while the dynamic algorithm used on Lingo sometimes
required hours depending on the instance size and model complexity. Please also note that
to be able to visualize all the possible switching scenarios in a reasonably short time frame,
the battery Ah capacity was reduced the simulation so as not to have to wait for a very
long time for energy source switching behavior to be noticed.

4. Demonstration Example and Results

In this section, the results and analysis are presented for generating an optimal switch-
ing sequence between the energy sources for a system using the dynamic model and
heuristic approaches. To demonstrate that the methodologies developed are not limited
to any particular application, the results are demonstrated on two types of applications:
(i) simulated power profiles which may be realized in drone flight (ii) experimental veri-
fication on a multi-source ground vehicle (robot). In case of the simulated results, three
different demonstration scenarios were conducted that simulate the system, a drone in this
case. The executed scenarios include object pickup, altitude maintenance, and multiple
object pickup. The first scenario will be presented next and the other two are presented in
Appendices A and B. Similarly, in case of the experimental results, both approaches were
used for experimental verification on a ground robot. Lingo modeling software was used
to obtain an optimal solution to the dynamic model, and Matlab was used to obtain the
solutions for the heuristic approach and the standard mode of operation. The considered
standard mode of operation represents using each source separately until the source is
completely depleted, starting with the first battery, followed by the second battery, super
capacitor, fuel cell, and finally, the photovoltaic cell. The simulations were conducted for
ten-time steps where the step size is five seconds. Only ten time steps were considered
due to the large computing power needed to conduct simulations for the full length of a
drone’s flight. The object pickup scenario and the experimental work are presented next.
The other two simulation scenarios, altitude maintenance and multiple object pickup, are
presented in Appendices A and B, respectively.

4.1. Object Pickup Scenario–Simulated For Drone Flight

The following simulation represents the situation where a drone must travel to a
specific location to pick up an object and return the object to the drone’s base. During this
simulation, ideal conditions are considered where the drone does not face any disturbances
or turbulence during its flight. The assumed demand profile for this simulation is shown
in Figure 1. Initially, the drone starts traveling to the location where the object is located.
At time step 4, the drone reaches the object’s location and descends to pick up the desired
object. After the drone picks up the object, it continues its flight to return to its base.

61

Algorithms 2021, 14, 206

Figures 2–4 display the system voltages, current, and state-of-charge, respectively,
for both the dynamic and heuristic approaches. The switching sequence generated by the
dynamic approach chose not to use the super capacitor. As for the current, as the super
capacitor was not used by the dynamic approach, the current remains 0 while the currents
of the batteries vary as they are being used. However, in the heuristic approach, both
batteries and the super capacitor were used; therefore, their currents vary accordingly.

(a) Dynamic approach (b) Heuristic approach

Figure 2. System voltage.

(a) Dynamic approach (b) Heuristic approach

Figure 3. System currents.

(a) Dynamic approach (b) Heuristic approach

Figure 4. System state-of-charge.

62

Algorithms 2021, 14, 206

In the object pickup simulation, both the switching sequences of the dynamic approach
and heuristic approach were able to meet the demand of the drone, but that of the standard
approach did not. After both batteries and the super capacitor were completely depleted,
the standard approach was unable to meet the demand of the drone in the 10th time
instance. However, although both the switching sequences of the dynamic approach
and heuristic approach met the demand, the dynamic approach provided a sequence of
switching superior to that of the heuristic approach. The obtained objective function value
of the dynamic approach was 9% lower with a value of 6536.2, while the heuristic approach
was 7123.3. However, the switching sequences of the heuristic approach had a lower
average power consumption of 3361.2 W compared to the dynamic approach’s 3720 W.
This was due to the switching sequence of the dynamic approach resulting in significant
power consumption in time steps 6 and 7. From Figure 4, the following can also be seen.
The dynamic approach resulted in battery 1 having a SOC level of around 35% and battery
2 with a SOC level of around 50% after 10 s. While the SOC level of the supercapacitor
was unchanged and remained at 100% throughout the time period. It is worth noting is
that none of the batteries enter charging. In contrast, the heuristic approach seems to favor
using the supercapacitor as a result of which the supercapacitor is completely discharged,
re-charged, and discharged to SOC level zero again within the ten second time period.
Battery 1 ends at a SOC level of 40%, and battery 2 ends at a SOC level of around 70%. The
differences in behavior can be attributed to the optimization of the objective function value
as mentioned above. The power used to meet the demand of the drone during each time
step is shown in Figure 5. Figure 6 shows as additional examples the switching sequence
and the sources used to meet demand shown in Figure 6a,b at each time step.

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

Figure 5. Power consumption comparison.

(a) Dynamic approach (b) Heuristic approach

Figure 6. Switching sequence and sources used to meet demand.

63

Algorithms 2021, 14, 206

4.2. Experimental Work—On a Multi-Energy Source Ground Robot

The following experiment was conducted on a ground robot shown in Figure 7. The
ground robot contains three sources: batteries, super capacitor, and fuel cell. The robot was
run in remote-control mode while conducting the tests. The robot was controlled by the
remote controller to move around a lab bench in a rectangular path. The demand profile
for all tests is shown in Figure 8.

Figure 7. Ground Robot and power sources.

0

50

100

150

0 2 4 6 8 10

Figure 8. Demand profile for experimental work.

For experimental work, a multi-energy source ground robot was preferred over a
drone because of several factors: i.e., (i) limitations related to drone flight height and
seeking clearances for flight paths at certain heights, (ii) even if an accurate flight power
demand profile was obtained by flying a drone in good weather conditions, the actual
flight power demand profile obtained when trying to verify results–cannot be guaranteed
because the weather may change and sudden wind gusts may introduce power demand,
not accounted for when solving for the dynamic programming solution, and (iii) it is
also possible that the wind disturbances introduce differences in the demand profiles
when performing an experiment with the heuristic approach, and entirely different power
demand profile disturbances occur because of wind gusts when testing the dynamic
approach. So, to make a comparison between the proposed approaches, which is free
from random power surges due to weather effects, a ground robot with multiple energy
sources was favored. Also, it is worth noting that when considering a drone, the demand
profile can be easily calculated from first principles, as seen in Equation (15). But when
considering a ground robot we have to actually run the robot around a path and acquire a
demand curve. This is the procedure followed to get the curve in Figure 8, and therefore
it is different from the curve in Figure 1. Please note that the developed approaches are
not profile-specific, and can compute a switching sequence for a given demand profile.

64

Algorithms 2021, 14, 206

The demand profile was uploaded to both the dynamic and heuristic algorithm to obtain
a switching sequence. The ground robot has a controller which supplies a given amount
of current to the motors if it is given a reference current. The two motors on the robot
chassis (one for controlling left side wheel speeds, and one for controlling right side wheel
speeds) rotate clockwise or anticlockwise depending on the current received. Based on the
direction of the rotation of the motors and the speed of rotation, the robot can be made to
move in straight lines, curves, or in circles. This is extremely common in robotics literature
and hence the details of the driving process (called differential drive) are not included
here. However, there is not necessarily a controller that controls where the current comes
from. The switching sequences generated by the dynamic and heuristic approaches tell
this same lower level controller what sources to use to supply the required current; to
satisfy the demand and still reduce the average power consumption across the sources.
The switching sequences were then uploaded to the main controller of the ground robot,
an Arduino microcontroller that controls the switches attached to the sources. After the
switching sequence was uploaded, the ground robot performed a lap along the rectangular
path. The power consumption across all sources after the ground robot completed a lap
with the uploaded switching sequences was then compared with the standard mode of
operation. For a ground robot, the standard mode of operation assumes no scheduling;
however the needed power is first supplied by the battery until it’s completely depleted
then moving to the other available sources.

Figures 9–11 display the system voltages, current, and state-of-charge, respectively, for
the standard mode, the dynamic approach, and the heuristic approach. The standard mode
of operation did not involve the super capacitor in meeting the demand of the ground
robot. However, the dynamic programming approach and heuristic approach did. As for
the current, the use of the super capacitor by the dynamic programming approach and
heuristic approach is apparent in Figure 10. The state-of-charge of the battery decreases
most in the standard mode of operation, reaching 99.2%.

(a) Standard mode (b) Dynamic approach

(c) Heuristic approach

Figure 9. System voltage.

65

Algorithms 2021, 14, 206

(a) Standard mode (b) Dynamic approach

(c) Heuristic approach

Figure 10. System current.

(a) Standard mode (b) Dynamic approach

(c) Heuristic approach

Figure 11. System State-of-Charge.

The standard mode of operation of the ground robot relied solely on the battery to
meet the demand. On the other hand, the switching sequence of the dynamic approach
chose to use the battery and super capacitor to meet the demand, while the switching
sequence of the heuristic approach chose all three sources. Although not visible in the
current plots in Figure 10c, it can be seen from the algorithm of the heuristic approach
proposed that the fuel cell is chosen by the heuristic approach at all times. Additionally,
the current plots for the fuel cell are not shown because the fuel cell unit functions as a
base load unit. This is because the fuel cell cannot be turned on/off very quick and has
a hydrogen pressure regulator attached to its hydrogen input lines, which maintains a
certain amount of gas flow, so the terminal voltage of the fuel cell remains constant, and

66

Algorithms 2021, 14, 206

the fuel cell supplies a certain amount of power. Thus in the heuristic approach, the fuel
cell is used as a based load handling device, and the current for the fuel cell is not shown
because depending on the overall circuit impedances, and depending on which other
source is active, the fuel cell will supply the remainder of the load, and it is not subjected to
rapid starts/stops in operation. The switching sequence of the standard mode of operation
resulted in the highest average power consumption from the sources, 33.3 W. However,
the dynamic approach generated a switching sequence that resulted in a 5.5% decrease
in the average power consumption compared to the standard mode of operation due to
the voltage dynamics of the sources. Similarly, the switching sequence of the heuristic
approach was able to reduce the average power consumption by 2.5%, which is shown in
Figure 12. Furthermore, the run time of the ground robot should increase since the system
is less dependent on only one source to satisfy the demand.

-30

20

70

120

1 2 3 4 5 6 7 8 9 10 11

Figure 12. Power consumption comparison.

5. Conclusions

This paper is concerned with multi source power systems consisting of batteries,
super capacitors, a hydrogen fuel cell, and a photovoltaic cell. The usage of each of the
sources is controlled by turning connected switches on or off as needed to supply the
needed power demand of the system. A mathematical model was developed for the
efficient energy management of the integrated sources, generating an optimal switching
sequence between the sources. Two methods have been developed to solve for the optimal
switching sequence.

The first method uses a dynamic mathematical model solved using Lingo to minimize
the running cost of the system by generating a switching sequence. The second method uses
a heuristic approach, where a set of rules were used to generate the switching sequence. The
heuristic algorithm was primarily tested on Matlab. The switching sequences generated by
the dynamic approach resulted in power consumption that was on average 9% lower than
those of the heuristic approach. However, the main advantage introduced by the heuristic
algorithm was the short computational time needed to generate the switching sequence
between the sources. The developed approaches were implemented offline before running
the system, but can be implemented online. To be implemented online, the algorithms
would require readings of the system’s behavior and demand to generate the optimal
switching sequence.

Additionally, both approaches were tested in simulations of a drone flight scenario,
and also experimentally tested on a multi-energy source ground robot. The developed
dynamic model was capable of generating a switching sequence that minimized the power
dissipation of the energy sources for the illustrative simulation examples of a drone, while
the standard mode of operation was failed to provide the needed power. Also, the model
was able to prolong the simulated flight time of the drone by charging the batteries and
the super capacitor as needed depending on the demand profile. The switching sequences
generated by the heuristic algorithm were also able to prolong the flight time in the

67

Algorithms 2021, 14, 206

simulation tests related to the drone, and minimize the power dissipation of the energy
sources; but not as well as those of the dynamic modeling approach.

Both the dynamic modeling, and heuristic approaches, when tested on a multi-energy
source ground robot, were able to generate switching sequences that minimize the power
dissipation by reducing the average power consumption across the sources due to the
voltage dynamics of the different sources. However, the dynamic approach’s switching
sequence resulted in the most significant reduction in the average power consumption;
5.5% lower average power consumption compared to the standard mode of operation of
the robot. The switching sequence of the heuristic approach was also able to reduce the
average power consumption by 2.5% compared to the standard mode of operation.

The limitations faced in this work include the length of the simulations conducted.
Due to the large computing power required by the dynamic model based approach, the sim-
ulations were conducted for only fifty seconds. However, with access to more computing
power, better switching sequences could be generated that provide a further reduction in
the running cost of the system. Additionally, future work could include the real-time man-
agement of the sources integrated into the system, alongside continuous readings of the
behavior of the system while it is being used. By implementing the real-time management
of the sources, the system could become more responsive to fluctuations in demand.

Author Contributions: O.S.: Conceptualization, methodology, programming and writing the original
draft. A.S. and S.M.: Conceptualization, methodology, and finalizing the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors received no specific funding for this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable. This article does not contain any studies with human
participants or animals performed by any of the authors.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors have no conflict of interest to declare.

Abbreviations

k Time step
Δt Step size (seconds), using this and k we get time t = kΔt seconds
N Number of time steps
j Battery index ∀ j{1,2}
τ Time constant of the super capacitor
w Power source relative weight
Bj Battery number j
C Super capacitor
PV Photovoltaic cell
FC Fuel cell

S
Bj

k A binary variable that equals 1,
if battery j is supplying the demand of the system at time step k, 0 otherwise

ch
Bj

k A binary variable that equals 1,
if battery j is being charged from the system time step k, 0 otherwise

SC
k A binary variable that equals 1,

if the super capacitor is supplying the demand of the system at time step k, 0 otherwise
chC

k A binary variable that equals 1,
if the super capacitor is being charged from the system at time step k, 0 otherwise

SPV
k A binary variable that equals 1,

if the photovoltaic cell is supplying the demand of the system at time step k,
0 otherwise

68

Algorithms 2021, 14, 206

SFC
k A binary variable that equals 1,

if the fuel cell is supplying the demand of the system at time step k,
0 otherwise

SOC
Bj
k State of charge of the battery j at time step k

SOCC
k State of charge of the super capacitor at time step k

V
Bj
k Voltage of the battery j at time step k

I
Bj
k Current of the battery j at time step k

P
Bj
k Power supplied by the battery j at time step k

VC
k Voltage of the super capacitor at time step k

IC
k Current of the super capacitor at time step k

PC
k Power supplied by the super capacitor at time step k

PPV
k Power supplied by the photovoltaic cell at time step k

VFC
k Voltage of the fuel cell at time step k

IFC
k Current of the fuel cell at time step k

PFC
k Power supplied by the fuel cell at time step k

Pdemand
k Power demanded by the system at time step k

Appendix A. Illustrative Example: Altitude Maintenance

The following simulation represents the situation where a drone must maintain a
certain height above the ground for a short period of time. During its flight, the drone
faces turbulence causing fluctuations in the demand profile. The demand profile of this
simulation is shown in Figure A1; the drone starts ascending to the required height, thus
causing an increase in the energy of the drone. At time step 3, the drone reaches the
required height and tries to maintain it for five time steps. However, the drone faces
significant turbulence causing fluctuations in the height it maintains, which is represented
in the demand profile. Finally, the drone begins to descend back to its base.

0

1000

2000

3000

4000

0 2 4 6 8 10

Figure A1. Demand profile.

Figures A2–A4 display the system voltages, current, and state-of-charge, respectively,
for both the dynamic and heuristic approaches.

In the altitude maintenance simulation, both the switching sequences of both the
dynamic and heuristic approaches were able to meet the demand of the drone, but that of
the standard approach did not. While the drone was attempting to maintain the required
altitude, the demand was higher than the power that the sources could provide separately.
Therefore, resulting in the standard approach’s inability to meet the demand of the drone.
Additionally, in this simulation, the dynamic approach performed better than the heuristic
approach. The dynamic approach provided a sequence of switching between the sources
that resulted in an objective function value of 8301.2, while the heuristic approach was
8501.3. Additionally, the average power consumption obtained using the dynamic ap-
proach was 3827.4 W, while the heuristic approached resulted in 4136.4 W. The power

69

Algorithms 2021, 14, 206

used to meet the demand of the drone during each time step is shown in Figure A5. The
switching sequence and sources used to meet demand are shown in Figure A6

(a) Dynamic approach (b) Heuristic approach

Figure A2. System voltage for simulation 2.

(a) Dynamic approach (b) Heuristic approach

Figure A3. System currents.

(a) Dynamic approach (b) Heuristic approach

Figure A4. System state-of-charges.

70

Algorithms 2021, 14, 206

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

Time step

Figure A5. Power consumption comparison for simulation 2.

(a) Dynamic approach (b) Heuristic approach

Figure A6. Switching sequence and sources used to meet demand.

Appendix B. Illustrative Example-Multiple Object Pickup

The following simulation represents a drone conducting multiple pickups of objects
located in close proximity to each other. The demand profile of this simulation is shown
in Figure A7. The weights assigned to the sources in the objective function have to be
updated to account for the multiple spikes of demand during the drone’s flight. As shown
in the demand profile, the drone starts traveling to the location of the first object is located.
At time step 2, the drone reaches the object’s location and descends to pick up the object.
After the drone picks up the object, it proceeds to proceed to pick up the next object until
all four objects are obtained. The demand increases as the drone picks up each object, as
the load carried by the drone increases.

Figures A8–A10 display the system voltage, current, and state-of-charge, respectively,
for both the dynamic and heuristic approaches. In this simulation, the switching sequence
generated by the dynamic approach chose to mainly use the super capacitor to meet
the demand of the drone, as did the heuristic approach. It can be noted that the super
capacitor’s current varies in a similar manner to that of the drone’s demand as the super
capacitor was mainly used by both the dynamic and heuristic approaches. As for the
state-of-charge, since the batteries were not used in this example, the state-of-charge of the
batteries remains 100% while the super capacitor is charged and discharged multiple times
to meet the demand.

71

Algorithms 2021, 14, 206

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 2 4 6 8 10

Figure A7. Demand Profile for simulation 3.

(a) Dynamic approach (b) Heuristic approach

Figure A8. System voltage.

(a) Dynamic approach (b) Heuristic approach

Figure A9. System currents.

72

Algorithms 2021, 14, 206

(a) Dynamic approach (b) Heuristic approach

Figure A10. System state-of-charges.

In the multiple object pickup simulation, both the switching sequences of the dynamic
and heuristic approach were able to meet the demand of the drone, but that of the standard
approach did not. The switching sequences of the standard approach were unable to
meet the demand of the drone due to the multiple spikes in demand. During spikes in
demand, the use of the super capacitor is preferred due to its rapid discharge rate making
it best-equipped to handle spikes. The switching sequences of the dynamic and heuristic
approaches both utilized the super capacitor to meet the spikes in demand of the drone.

Additionally, in both approaches, the super capacitor was charged when the demand
was low so that it could be used during the next spike in demand. However, although both
the methods performed similarly, the dynamic approach chose to use the photovoltaic cell
in the first time step rather than the fuel cell to meet the demand. Therefore, resulting in
an objective function value of 3499.2 and average power consumption of 2496 W for the
switching sequence of the dynamic approach. On the other hand, the switching sequence
of the heuristic approach resulted in an objective function value of 3517.5 and average
power consumption of 2505 W. Therefore, resulting in slightly lower power consumption,
which is shown in Figure A11. The switching sequence and sources used to meet demand
are shown in Figure A12.

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

Figure A11. Power consumption comparison.

73

Algorithms 2021, 14, 206

(a) Dynamic approach (b) Heuristic approach

Figure A12. Switching sequence and sources used to meet demand.

References

1. Malikopoulos, A.A. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey. IEEE Trans.
Intell. Transp. Syst. 2014, 15, 1869–1885. [CrossRef]

2. Hu, X.; Murgovski, N.; Johannesson, L.M.; Egardt, B. Optimal Dimensioning and Power Management of a Fuel Cell/Battery
Hybrid Bus via Convex Programming. IEEE/ASME Trans. Mechatronics 2015, 20, 457–468. [CrossRef]

3. Naamane, A.; M’Sirdi, N.K. Improving Multiple Source Power Management Using State Flow Approach. Blockchain Technol.
Innov. Bus. Process. 2013, 22, 779–785. [CrossRef]

4. Keller, S.; Christmann, K.; Gonzalez, M.S.-A.; Heuer, A. A Modular Fuel Cell Battery Hybrid Propulsion System for Powering
Small Utility Vehicles. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 14–17
December 2017; pp. 1–4.

5. Chen, X.; Shi, M.; Zhou, J.; Chen, Y.; Zuo, W.; Wen, J.; He, H. Distributed Cooperative Control of Multiple Hybrid Energy Storage
Systems in a DC Microgrid Using Consensus Protocol. IEEE Trans. Ind. Electron. 2019, 67, 1968–1979. [CrossRef]

6. Suárez- Suarez-Velazquez, G.; Mejia-Ruiz, G.E.; Garcia-Vite, P.M. Control and Grid Connection of Fuel Cell Power System. In
Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, México, 4–6
November 2020; pp. 1–5.

7. Ferrandez, S.M.; Harbison, T.; Weber, T.; Sturges, R.; Rich, R. Optimization of a truck-drone in tandem delivery network using
k-means and genetic algorithm. J. Ind. Eng. Manag. 2016, 9, 374–388. [CrossRef]

8. Masjosthusmann, C.; Kohler, U.; Decius, N.; Buker, U. A vehicle energy management system for a Battery Electric Vehicle. In
Proceedings of the 2012 IEEE Vehicle Power and Propulsion Conference (VPPC), Seoul, Korea, 9–12 October 2012; pp. 339–344.

9. Boutilier, J.J.; Brooks, S.C.; Janmohamed, A.; Byers, A.; Buick, J.; Zhan, C.; Schoellig, A.; Cheskes, S.; Morrison, L.J.; Chan, T.C.Y.
Optimizing a Drone Network to Deliver Automated External Defibrillators. Circulation 2017, 135, 2454–2465. [CrossRef] [PubMed]

10. Lee, J. Optimization of a modular drone delivery system. In Proceedings of the 2017 Annual IEEE International Systems
Conference (SysCon), Montreal, QC, Canada, 24–27 April 2017; pp. 1–8.

11. Banerjee, A.; Roychoudhury, A. Future of Mobile Software for Smartphones and Drones: Energy and Performance. In Proceedings
of the 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft), Buenos Aires,
Argentina, 22–23 May 2017; pp. 1–12.

12. Torreglosa, J.; Garcia, P.; Fernandez, L.; Jurado, F. Predictive Control for the Energy Management of a Fuel-Cell–Battery–
Supercapacitor Tramway. IEEE Trans. Ind. Inform. 2014, 10, 276–285. [CrossRef]

13. Xie, S.; Peng, J.; He, H. Plug-In Hybrid Electric Bus Energy Management Based on Stochastic Model Predictive Control. Energy
Procedia 2017, 105, 2672–2677. [CrossRef]

14. Hadj-Said, S.; Colin, G.; Ketfi-Cherif, A.; Chamaillard, Y. Convex Optimization for Energy Management of Parallel Hybrid Electric
Vehicles. IFAC-PapersOnLine 2016, 49, 271–276. [CrossRef]

15. Trovao, J.; Santos, V.; Antunes, C.; Pereirinha, P.; Jorge, H. A Real-Time Energy Management Architecture for Multisource Electric
Vehicles. IEEE Trans. Ind. Electron. 2015, 62, 3223–3233. [CrossRef]

16. Trovao, J.P.F.; Roux, M.-A.; Menard, E.; Dubois, M.R. Energy- and Power-Split Management of Dual Energy Storage System for a
Three-Wheel Electric Vehicle. IEEE Trans. Veh. Technol. 2017, 66, 5540–5550. [CrossRef]

17. Zhou, D.; Gao, F.; Ravey, A.; Al-Durra, A.; Simoes, M.G. Online energy management strategy of fuel cell hybrid electric vehicles
based on time series prediction. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo (ITEC),
Chicago, IL, USA, 22–24 June 2017; pp. 113–118.

18. Chen, Z.; Liu, W.; Yang, Y.; Chen, W. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of
All-Electric Range Based on Dynamic Programming. Math. Probl. Eng. 2015, 2015, 1–11. [CrossRef]

19. Qin, F.; Li, W.; Hu, Y.; Xu, G. An Online Energy Management Control for Hybrid Electric Vehicles Based on Neuro-Dynamic
Programming. Algorithms 2018, 11, 33. [CrossRef]

74

Algorithms 2021, 14, 206

20. Mathur, P.; Swartz, C.L.; Zyngier, D.; Welt, F. Robust online scheduling for optimal short-term operation of cascaded hydropower
systems under uncertainty. J. Process. Control. 2021, 98, 52–65. [CrossRef]

21. Park, S.; Zhang, L.; Chakraborty, S. Battery assignment and scheduling for drone delivery businesses. In Proceedings of the 2017
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6.

22. Umetani, S.; Fukushima, Y.; Morita, H. A linear programming based heuristic algorithm for charge and discharge scheduling of
electric vehicles in a building energy management system. Omega 2017, 67, 115–122. [CrossRef]

23. Zhen, J.; Huang, G.; Li, W.; Wu, C.; Liu, Z. An optimization model design for energy systems planning andmanagement under
considering air pollution control in TangshanCity, China. J. Process. Control 2016, 47, 58–77. [CrossRef]

24. Vaccari, M.; Mancuso, G.; Riccardi, J.; Cantù, M.; Pannocchia, G. A Sequential Linear Programming algorithm for economicopti-
mization of Hybrid Renewable Energy Systems. J. Process. Control 2019, 74, 189–201. [CrossRef]

25. Chen, M.; Rincon-Mora, G. Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance. IEEE Trans.
Energy Convers. 2006, 21, 504–511. [CrossRef]

26. Schaltz, E.; Khaligh, A.; Rasmussen, P.O. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel
Cell Hybrid Electric Vehicle. IEEE Trans. Veh. Technol. 2009, 58, 3882–3891. [CrossRef]

27. Lami, M.; Shamayleh, A.; Mukhopadhyay, S. Minimizing the state of health degradation of Li-ion batteries onboard low earth
orbit satellites. Soft Comput. 2019, 24, 4131–4147. [CrossRef]

28. Bernard, J.; Delprat, S.; Buchi, F.; Guerra, T.M. Fuel-Cell Hybrid Powertrain: Toward Minimization of Hydrogen Consumption.
IEEE Trans. Veh. Technol. 2009, 58, 3168–3176. [CrossRef]

29. Pukrushpan, J. Modeling and Control of Fuel Cell Systems and Fuel Processors; University of Michigan: Ann Arbor, MI, USA, 2003.
30. Spyker, R.; Nelms, R. Classical equivalent circuit parameters for a double-layer capacitor. IEEE Trans. Aerosp. Electron. Syst. 2000,

36, 829–836. [CrossRef]
31. Amjadi, Z.; Williamson, S.S. Power-Electronics-Based Solutions for Plug-in Hybrid Electric Vehicle Energy Storage and Manage-

ment Systems. IEEE Trans. Ind. Electron. 2010, 57, 608–616. [CrossRef]
32. Saaty, T. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
33. Eaves, S.; Eaves, J. A cost comparison of fuel-cell and battery electric vehicles. J. Power Sources 2004, 130, 208–212. [CrossRef]
34. Kunze, J.; Paschos, O.; Stimming, U. Fuel Cell Comparison to Alternate Technologies. Fuel Cells 2012, 1, 77–95. [CrossRef]
35. Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State of the Art

Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies 2017, 10, 1314. [CrossRef]
36. Camara, M.B.; Dakyo, B.; Gualous, H. Polynomial Control Method of DC/DC Converters for DC-Bus Voltage and Currents

Management—Battery and Supercapacitors. IEEE Trans. Power Electron. 2012, 27, 1455–1467. [CrossRef]

75

algorithms

Article

A Multicriteria Simheuristic Approach for Solving a Stochastic
Permutation Flow Shop Scheduling Problem

Eliana Maria Gonzalez-Neira 1,*,†, Jairo R. Montoya-Torres 2 and Jose-Fernando Jimenez 1

Citation: Gonzalez-Neira, E.M.;

Montoya-Torres, J.R.; Jimenez, J.-F. A

Multicriteria Simheuristic Approach

for Solving a Stochastic Permutation

Flow Shop Scheduling Problem.

Algorithms 2021, 14, 210. https://

doi.org/10.3390/a14070210

Academic Editor: Frank Werner

Received: 27 June 2021

Accepted: 13 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Ingeniería Industrial, Facultad de Ingeniería, Pontificia Universidad Javeriana,
Bogotá 110231, Colombia; j-jimenez@javeriana.edu.co

2 Facultad de Ingeniería, Universidad de La Sabana, Chía 140013, Colombia; jairo.montoya@unisabana.edu.co
* Correspondence: eliana.gonzalez@javeriana.edu.co
† Current address: Carrera 7 No 40-62, Bogotá 110231, Colombia.

Abstract: This paper proposes a hybridized simheuristic approach that couples a greedy randomized
adaptive search procedure (GRASP), a Monte Carlo simulation, a Pareto archived evolution strategy
(PAES), and an analytic hierarchy process (AHP), in order to solve a multicriteria stochastic permuta-
tion flow shop problem with stochastic processing times and stochastic sequence-dependent setup
times. For the decisional criteria, the proposed approach considers four objective functions, including
two quantitative and two qualitative criteria. While the expected value and the standard deviation of
the earliness/tardiness of jobs are included in the quantitative criteria to address a robust solution
in a just-in-time environment, this approach also includes a qualitative assessment of the product
and customer importance in order to appraise a weighted priority for each job. An experimental
design was carried out in several study instances of the flow shop problem to test the effects of the
processing times and sequence-dependent setup times, obtained through lognormal and uniform
probability distributions with three levels of coefficients of variation, settled as 0.3, 0.4, and 0.5. The
results show that both probability distributions and coefficients of variation have a significant effect
on the four decision criteria selected. In addition, the analytical hierarchical process makes it possible
to choose the best sequence exhibited by the Pareto frontier that adjusts more adequately to the
decision-makers’ objectives.

Keywords: permutation flow shop; simheuristic; multicriteria; PAES; GRASP; AHP

1. Introduction

The flow shop problem (FSP) is a largely studied scheduling problem, as it mod-
els a wide set of industrial manufacturing environments [1], such as in the chemical,
food-processing, automobile, and assembly industries. The purpose of solving the stated
problem lies in determining the best processing sequence from n production jobs to pro-
cess on m machines placed in series, aiming to optimize one or several KPIs such as the
flowtime, makespan, earliness, or tardiness. A permutation flow shop scheduling problem
(PFSP), which is an extension case of the FSP, considers only permutation schedules, i.e., the
processing sequence of the jobs is the same for all m machines. The PFSP is considered
an NP-complete problem for three or more machines [2] and an NP-hard problem for
one or more machines when minimizing tardiness [3]. Furthermore, this problem aug-
ments the complexity when the uncertainty is considered for its resolution. From several
approaches, a preliminary approach for tackling the stochastic permutation flow shop prob-
lems is elaborating a systematic procedure that includes uncertainties within the scheduling
problems [4]. In fact, the scheduling problem and the associated complexity could be as
important for designing a proper systematic technique to solve these problems [4].

After analyzing the literature on the FSP and PFSP, four aspects should be highlighted.
At first, a set of approaches in the literature considers a single performance indicator as the
objective function. The most common approaches are related to the makespan, due date, or

Algorithms 2021, 14, 210. https://doi.org/10.3390/a14070210 https://www.mdpi.com/journal/algorithms
77

Algorithms 2021, 14, 210

just-in-time characteristics. The makespan or the expected makespan indicator, which is an
absolute performance indicator, focuses on minimizing the lapsed time from the start to the
end of the execution [5,6]. The due date indicator, which is a relative performance indicator,
compares the objective function regarding the expected processing completion. The just-
in-time indicator, which is an accuracy performance indicator, indicates the positive or
negative deviation occurring from an expected completion time. Certainly, the use of each
performance indicator depends on the aim from the scheduling perspective.

Second, another set of approaches is focused on single-objective problems rather than
multicriteria problems. Certainly, even industrial problems must solve various objectives
simultaneously [7], and researchers have focused on optimizing a single objective function
rather than multiple ones. This issue can be addressed by considering earliness and
tardiness objectives jointly in a JIT environment.

Third, most studies consider only quantitative decision criteria. However, researchers
have recently become interested in qualitative criteria as this approach might reduce the
gap between the theoretical concept of problems and the execution. Some examples are
Chang and Lo [8] and Chang et al. [9]. These authors studied a multicriteria job shop,
whereas the customers’ strategic importance was considered as a qualitative criterion.
While Chang and Lo [8] proposed a hybridized genetic algorithm, tabu search, analytic
hierarchy process, and fuzzy theory to solve the problem, Chang et al. [9] proposed a
hybridization of an ant colony algorithm and an analytic hierarchy process for solving
the FSP. Another approach minimized the expected costs of tardiness as a quantitative
criterion and strategic customer importance as a qualitative criterion in a stochastic hybrid
FSP [10]. The authors employed a GRASP metaheuristic and a Monte Carlo simulation
method with a stochastic multicriteria acceptability analysis to handle both qualitative and
quantitative criteria.

Finally, some research approaches consider scheduling under uncertain conditions,
and these are generally divided into two approaches: the stochastic approach, in which
parameters are modeled with probability distributions (PDs) aiming to minimize the
expected value of a selected metric, and the robust approach (RA), in which uncertain
parameters are modeled with intervals and the schedule obtained is more stable and less
variable. Nonetheless, previous studies have not dealt with a combination of stochastic and
robust approaches for solving the flow shop problem. Companies can collect production
data in a short time, yielding enough data to accurately estimate the probability distribution
of uncertain parameters. Then, we believe that the latter approach leverages the robust
schedule as it can be more easily adjusted than other schedules in which uncertainties are
modeled with intervals.

One of the recent approaches to solve stochastic combinatorial optimization problems
is simheuristics. These hybridize a metaheuristic approach with a simulation to obtain
solutions for stochastic problems. Simheuristics have been successfully used in vehicle
routing problems [11–13], inventory routing problems [14], facility location problems [15],
and scheduling problems [16–19].

In this sense, this paper attempts to contribute to the literature by proposing a system-
atic technique for solving the stochastic permutation flow shop problem (SPFSP) consider-
ing stochastic processing times and sequence-dependent setup times to optimize multiple
criteria. To the best of our knowledge, no previous study has included the simultaneous
analysis of a JIT environment with stochastic parameters, quantitative metrics, and quali-
tative metrics for obtaining robust solutions. Therefore, the current research proposes a
multicriteria simheuristic approach to solve an SPFSP, including both quantitative and
qualitative objectives, providing robust solutions. On the one hand, for quantitative ob-
jectives, the proposed approach addresses the expected earliness/tardiness (E[E/T]) and
the standard deviation of earliness/tardiness (SD(E/T)), for estimating the JIT metrics and
obtaining several robust schedules. On the other hand, as qualitative metrics, this research
considers the expected customer importance of jobs (E[CI]) and the expected product im-
portance (E[PI]), favoring the job priority for the company. Then, this paper considers both

78

Algorithms 2021, 14, 210

customer and product importance as a company might be more interested in delivering
high-profitability products regardless of the customer or, conversely, it might be more
interested in delivering frequently with high-spending customers rather than sporadic
ones. This paper is an extension of a previous conference work [20] that only considered
one qualitative criterion and solved a partial set of benchmark instances. This work in-
cludes one more qualitative criterion (the maximization of the accomplishment of product
importance) and executes more computational experiments by evaluating 180 instances
proposed by [21] and analyzing the behavior of Pareto frontiers with more coefficients of
variation of processing times and sequence-dependent setup times.

The remainder of this paper is organized as follows. Section 2 presents a literature
review of the single-objective stochastic FSP (SFSP), robust FSP, and multi-objective SFSP.
Section 3 describes the proposed solution for the SPFSP under qualitative and quantitative
decision criteria. Section 4 provides the results of the computational experiments that
validate the proposed approach. Finally, conclusions and recommendations for future
work are presented in Section 5.

2. Literature Review

The deterministic FSP is one of the most frequently studied problems in the schedul-
ing literature, but the stochastic version has been addressed less often. The FSP under
the conditions of uncertainty has received more attention recently because it is closer
to real manufacturing environments. Nevertheless, there are fewer FSP studies under
uncertain conditions than there are deterministic FSP studies. For the literature reviews,
deterministic FSPs and its solution methods have more than ten literature reviews, includ-
ing Yenisey and Yagmahan [7], Pan and Ruiz [22], Arora and Agarwal [23], Nagano and
Miyata [24], Rossit et al. [25], and Fernandez-Viagas et al. [26]. Meanwhile, their stochastic
and uncertain counterparts have had only two literature reviews in the past 18 years, Gour-
gand et al. [5] and González-Neira et al. [27]. Studies of the FSP with uncertainty generally
use one of three approaches to deal with uncertain parameters: the stochastic approach,
the robustness approach, and the fuzzy approach. The most frequently used approach is
stochastic, with the uncertain parameters modeled using probability distributions. Exam-
ples of this approach can be found in Framinan and Perez-Gonzalez [28], Lin and Chen [29],
and Qin et al. [30]. For the robustness approach, there is no need for acknowledging the
distribution of the data of uncertain parameters due to this being modeled with intervals
or datasets. Examples of this approach can be found in Fazayeli et al. [31] and Ying [32].
For the fuzzy approach, uncertain parameters are modeled using fuzzy numbers, as in
Behnamian and Fatemi Ghomi [33] and Huang et al. [34].

The aim of this paper is to obtain robust schedules for the stochastic permutation
flow shop problem (SPFSP), considering both quantitative and qualitative objective criteria.
Then, the literature review in this paper is organized into four subsections: Section 2.1
presents the literature review for single-objective SFSPs. Section 2.2 presents an overview
of studies using the robust FSP with a single objective. Section 2.3 examines current ap-
proaches for a multi-objective FSP under uncertain conditions, including robust, stochastic,
and fuzzy approaches. Section 2.4 presents a review of qualitative production criteria.

2.1. Single-Objective SFSP

Since the 1950s, the deterministic FSP has received considerable attention, but the SFSP
has been less studied because it is more difficult to solve than the deterministic version.
Nevertheless, with the advances in computation, the SFSP has been studied more in the
last few years. Therefore, we present in chronological order the most important studies on
the SFSP since its beginnings.

From the early days of this topic until the 2010s, the following approaches have
been found. Makino [35] presented an optimal solution for the expected makespan in
an SFSP with two jobs and general distributions for two machines, as well as with three
machines, considering the exponential and Erlang distributions of the processing times.

79

Algorithms 2021, 14, 210

Talwar [36] proposed a rule to optimally sequence n jobs and two machines with expo-
nentially distributed processing times, and this was proved optimal by Cunningham and
Dutta [37]. Alcaide et al. [38] developed a dynamic procedure for considering stochas-
tic machine breakdowns in an SFSP. This procedure can obtain an optimal solution for
the initial stochastic problem when the associated without-breakdowns stochastic partial
problems are solved optimally. Gourgand et al. [39] proposed simulated annealing with a
Markovian model to solve the SPFSP with stochastic processing times and limited buffers.
Wang et al. [40] presented a genetic ordinal optimization approach that hybridizes ordinal
optimization, optimal computing budget allocation, and a genetic algorithm with uni-
formly distributed processing times. Kalczynski and Kamburowski [41] developed a new
rule that enables optimal solutions when processing times are Weibull distributed. This
rule includes Johnson’s and Talwar’s rules as special cases. Portougal and Trietsch [42]
proposed a heuristic called API that consists of two steps: (1) the ordering of jobs with
expected processing times through Johnson’s rule and (2) applying all possible interchanges
of two jobs in the sequence.

Then, in the early 2010s, Baker and Trietsch [43] compared Talwar’s, Johnson’s, and the
API rules, testing different types of probability distributions. The authors concluded that for
a high coefficient of variation, Talwar’s and Johnson’s rules yield better results, but when
the coefficients of variation are low, Johnson’s rule alone provides good results. Baker and
Altheimer [44] compared three heuristic procedures adapted from rules that performed
well in deterministic counterparts. The procedures used were CDS/Johnson, CDS/Talwar,
and NEH. The authors found that NEH had the best results. Elyasi and Salmasi [45] solved
the SFSP considering normally distributed processing times and variances proportional to
their means, as well as gamma distributed processing times with the same scale parameter
for all jobs. The authors aimed to minimize the expected tardy jobs by using chance
constraint programming. Elyasi and Salmasi [46] proposed a dynamic method to solve the
SFSP in which the stochastic parameters were the due dates of jobs, in order to minimize
the expected tardy jobs. Juan et al. [18] developed a simheuristic that involves an iterated
local search metaheuristic considering stochastic processing times distributed lognormally.
Framinan and Perez-Gonzalez [28] compared well-known heuristics through a simulation
procedure with a variable number of iterations and different probability distributions.
The procedures compared were stochastic NEH, stochastic CDS/Talwar, deterministic
NEH, deterministic CDS/Talwar, and deterministic NEH using CDS/Talwar as the initial
solution. These authors found that stochastic NEH obtained the best results.

Finally, in the late 2010s and the beginning of the 2020s, Gonzalez-Neira et al. [47]
minimized the expected makespan in a distributed assembly PFSP with stochastic pro-
cessing times through a GRASP simheuristic, evaluating the robustness of the problem as
well. González-Neira et al. [48] compared thirteen dispatching rules through a simulation
procedure with variable iterations for ten different objective functions (five expected values
and five standard deviations of the makespan, flowtime, tardiness, maximum tardiness,
and tardy jobs) under lognormal, uniform, and exponential distributions of processing
times. Hatami et al. [17] addressed a parallel SFSP where products had components pro-
duced in different parallel flow shops. The authors developed a simheuristic that embeds
an iterated local search algorithm to minimize the expected makespan and makespan
percentiles. Marichelvam and Geetha [49] considered uncertain processing times and
machine breakdowns to minimize the makespan. To solve the problem, a hybridization of
a firefly algorithm and a variable neighborhood algorithm was designed, demonstrating
promising results with extensive computational experiments. Villarinho et al. [50] proposed
a simheuristic that integrates a biased randomized heuristic into a variable neighborhood
descent with Monte Carlo simulation to maximize the expected payoff in an SFSP that
considers stochastic processing times.

80

Algorithms 2021, 14, 210

2.2. Robust FSP

Such as the studies on the SFSP, few studies have addressed the robustness for the FSP.
Table 1 presents the main characteristics of previous studies in this field. As the table shows,
most of them studied the makespan as a single objective, and only three works addressed
multiple objectives. These three studies included only one parameter under uncertainty
conditions. While Liu et al. [51] studied stochastic machine breakdowns, dynamic job
arrivals, and unexpected job availability, Liao and Fu [52] and Goli et al. [53] considered
uncertain processing times. It is important to note that none of these works simultaneously
studied stochastic sequence-dependent setup times and stochastic processing times while
considering robustness.

2.3. Multi-Objective FSP under Uncertainty Conditions

Few works have examined uncertainties simultaneously with multi-objective decisions
in comparison with a single objective. Table 2 presents the main characteristics of the studies
performed in this area. Makespan, tardiness, and flowtime are the most analyzed measures,
and earliness is not widely studied. In addition, stochastic setup times are not considered.

81

Algorithms 2021, 14, 210

T
a

b
le

1
.

M
od

el
in

g
ap

pr
oa

ch
es

fo
r

th
e

st
oc

ha
st

ic
flo

w
sh

op
pr

ob
le

m
(S

FS
P)

th
at

ad
dr

es
s

ro
bu

st
ne

ss
.

R
e
fe

re
n

ce
O

b
je

ct
iv

e
F

u
n

ct
io

n
(s

)
P

ro
b

le
m

C
h

a
ra

ct
e
ri

st
ic

s
S

o
lu

ti
o

n
A

p
p

ro
a
ch

R
e
m

a
rk

s

A
za

de
h

et
al

.[
54

]
M

ak
es

pa
n.

N
or

m
al

ly
di

st
ri

bu
te

d
pr

oc
es

s-
in

g
ti

m
es

.
G

en
et

ic
al

go
ri

th
m

.
C

on
si

de
re

d
th

at
jo

bs
ha

ve
di

ff
er

en
te

xp
ec

te
d

co
m

pl
et

io
n

tim
es

or
di

ff
er

en
te

xp
ec

te
d

du
e

da
te

s.

Li
u

et
al

.[
55

]
M

ak
es

pa
n.

P
ro

ce
ss

in
g

ti
m

es
w

it
h

a
no

r-
m

al
pr

ob
ab

ili
ty

di
st

ri
bu

ti
on

.
Im

p
ro

ve
d

ge
ne

ti
c

al
go

ri
th

m
w

it
h

a
ne

w
ge

ne
ra

ti
on

sc
he

m
e,

w
hi

ch
ca

n
pr

es
er

ve
th

e
go

od
ch

ar
ac

te
ri

st
ic

s
of

th
e

p
ar

en
ts

in
th

e
ne

w
ge

ne
ra

ti
on

s.
R

ob
u

st
ne

ss
is

ac
hi

ev
ed

by
m

ax
im

iz
in

g
P

ro
b(

C
m

ax
<

ex
p

ec
te

d
co

m
pl

et
io

n
ti

m
e)

N
o

re
co

m
m

en
da

ti
on

s
gi

ve
n.

K
as

pe
rs

ki
et

al
.[

56
]

M
ak

es
pa

n.
Tw

o-
m

ac
hi

ne
P

FS
P.

P
ro

ce
ss

-
in

g
ti

m
es

m
od

el
ed

th
ro

u
gh

sc
en

ar
io

se
ts

.

2-
ap

pr
ox

im
at

io
n

al
go

ri
th

m
.

T
he

2-
ap

pr
ox

im
at

io
n

al
go

ri
th

m
m

ay
be

im
pr

ov
ed

to
fin

d
re

su
lt

s
be

tt
er

th
an

th
e

2
w

or
st

-c
as

es
’r

at
io

fo
r

th
e

un
bo

un
d

ed
m

in
–m

ax
ve

rs
io

n.

G
ör

en
an

d
Pi

er
re

va
l[

57
]

M
ak

es
pa

n.
M

ac
hi

ne
br

ea
kd

ow
ns

ge
ne

r-
at

ed
by

a
ge

ne
ri

c
p

ro
ba

bi
lit

y
di

st
ri

bu
ti

on
.

Th
e

m
ul

tim
od

al
op

tim
iz

at
io

n
ap

pr
oa

ch
ge

ne
ra

te
s

di
f-

fe
re

nt
sc

he
d

u
le

s,
an

d
th

e
m

os
tr

ob
u

st
so

lu
ti

on
is

se
-

le
ct

ed
d

ep
en

d
in

g
on

th
e

ne
ga

ti
ve

ef
fe

ct
s

of
m

ac
hi

ne
br

ea
kd

ow
ns

.

H
ig

h
fle

xi
bi

lit
y

gi
ve

n
to

th
e

de
ci

si
on

-m
ak

er
fo

r
de

al
in

g
w

ith
ad

di
-

tio
na

lc
on

ce
rn

s.
Th

e
in

cl
us

io
n

of
pr

ef
er

en
ce

ag
gr

eg
at

io
n

m
et

ho
ds

w
it

h
so

ci
al

ch
oi

ce
th

eo
ry

is
re

co
m

m
en

de
d.

R
ah

m
an

ia
nd

H
ey

da
ri

[5
8]

M
ak

es
pa

n.
D

yn
am

ic
ar

ri
va

ls
.P

ro
ce

ss
in

g
ti

m
es

u
nd

er
a

u
ni

fo
rm

d
is

tr
i-

bu
ti

on
.

P
ro

ac
ti

ve
–r

ea
ct

iv
e

ap
p

ro
ac

h.
P

ro
ac

ti
ve

ro
bu

st
m

et
ho

d
an

d
re

ac
tiv

e
ph

as
e

th
at

in
co

rp
or

at
es

dy
na

m
ic

ar
ri

va
ls

th
at

m
in

im
iz

e
th

e
de

te
rm

in
is

ti
c

m
ak

es
pa

n.

N
o

re
co

m
m

en
da

ti
on

s
gi

ve
n.

Yi
ng

[3
2]

M
ak

es
pa

n.
Tw

o-
m

ac
hi

ne
flo

w
sh

op
.I

nt
er

-
va

lp
ro

ce
ss

in
g

ti
m

es
.

Si
m

u
la

te
d

an
ne

al
in

g
an

d
it

er
at

ed
gr

ee
d

y
al

go
ri

th
m

im
pl

em
en

te
d

in
de

pe
nd

en
tl

y.
Th

e
ite

ra
te

d
gr

ee
dy

al
go

ri
th

m
ac

hi
ev

ed
be

tt
er

re
su

lts
in

sm
al

li
n-

st
an

ce
s,

an
d

si
m

ul
at

ed
an

ne
al

in
g

pe
rf

or
m

ed
be

tte
ri

n
la

rg
e

in
st

an
ce

s.

Fa
za

ye
li

et
al

.[
31

]
M

ak
es

pa
n.

β
-r

ob
us

tn
es

s
cr

it
er

io
n.

Si
m

ul
at

io
n-

op
ti

m
iz

at
io

n
al

go
ri

th
m

th
at

in
co

rp
or

at
es

ge
ne

ti
c

an
d

si
m

ul
at

ed
an

ne
al

in
g

al
go

ri
th

m
s.

N
o

re
co

m
m

en
da

ti
on

s
gi

ve
n.

Sh
ah

na
gh

ie
ta

l.
[5

9]
M

ak
es

pa
n.

In
te

rv
al

p
ro

ce
ss

in
g

ti
m

es
/

in
te

rv
al

se
tu

p
ti

m
es

.
Pa

rt
ic

le
sw

ar
m

op
tim

iz
at

io
n

hy
br

id
iz

ed
w

ith
th

e
Be

rt
-

si
m

as
an

d
Be

n-
Ta

lr
ob

us
tm

od
el

s.
Th

e
Be

rt
si

m
as

m
od

el
pe

rf
or

m
ed

be
tt

er
th

an
th

e
Be

n-
Ta

lm
od

el
fo

r
la

rg
e

in
st

an
ce

s.
Im

pl
em

en
te

d
th

es
e

m
od

el
s

fo
r

ot
he

r
sc

he
d

ul
in

g
pr

ob
le

m
s.

Li
u

et
al

.[
51

]
Fl

ow
tim

e
an

d
di

ss
at

is
fa

ct
io

n
of

m
an

ag
er

s,
op

er
at

or
s,

an
d

cu
st

om
er

s.

U
nc

er
ta

in
m

ac
hi

ne
br

ea
kd

ow
n.

P
ro

ac
ti

ve
–r

ea
ct

iv
e

ap
p

ro
ac

h
th

at
hy

br
id

iz
es

a
no

n-
d

om
in

at
ed

so
rt

in
g

ge
ne

ti
c

al
go

ri
th

m
,

a
m

u
lt

i-
ob

je
ct

iv
e

ev
ol

u
ti

on
ar

y
al

go
ri

th
m

,
an

d
a

m
u

lt
i-

ob
je

ct
iv

e
m

em
et

ic
al

go
ri

th
m

.

T
he

ro
bu

st
ne

ss
m

ea
su

re
is

de
te

rm
in

ed
by

th
e

ex
pe

ct
ed

flo
w

ti
m

e
an

d
its

st
ab

ili
ty

by
th

e
di

ss
at

is
fa

ct
io

n
of

m
an

ag
er

s,
op

er
at

or
s,

an
d

cu
st

om
er

s.

G
ho

la
m

i-
Z

an
ja

ni
et

al
.[

60
]

W
ei

gh
te

d
m

ea
n

co
m

p
le

ti
on

ti
m

e.
In

te
rv

al
se

tu
p

ti
m

es
an

d
p

ro
-

ce
ss

in
g

ti
m

es
.

Be
n-

Ta
la

nd
ro

bu
st

op
tim

iz
at

io
n

an
d

fu
zz

y
op

tim
iz

a-
ti

on
.

C
om

pa
ri

so
n

of
ro

bu
st

,f
uz

zy
,a

nd
de

te
rm

in
is

tic
so

lu
tio

ns
,o

bt
ai

ni
ng

th
at

th
e

ro
bu

st
m

et
ho

d
gi

ve
s

be
tt

er
so

lu
tio

ns
re

ga
rd

in
g

va
ri

ab
ili

ty
.

Ć
w

ik
an

d
Jó

ze
fc

zy
k

[6
1]

M
ak

es
pa

n.
In

te
rv

al
pr

oc
es

si
ng

ti
m

es
.

M
in

im
ax

re
gr

et
cr

it
er

io
n

hy
br

id
iz

ed
w

it
h

a
ne

w
pr

o-
po

se
d

gr
ee

dy
al

go
ri

th
m

.
T

he
gr

ee
d

y
al

go
ri

th
m

ou
tp

er
fo

rm
s

th
e

m
id

d
le

an
d

ev
ol

ut
io

na
ry

in
te

rv
al

ap
pr

oa
ch

es
(O

SP
).

Li
ao

an
d

Fu
[5

2]
M

ak
es

pa
n

an
d

ta
rd

in
es

s.
In

te
rv

al
pr

oc
es

si
ng

ti
m

es
M

in
–m

ax
re

gr
et

cr
it

er
io

n
hy

br
id

iz
ed

w
it

h
a

m
et

a-
he

ur
is

ti
c.

A
cc

or
d

in
g

to
th

e
au

th
or

s,
th

is
m

an
us

cr
ip

tc
om

pe
ns

at
ed

th
e

la
ck

of
th

e
co

ns
id

er
at

io
n

of
ta

rd
in

es
s.

G
ol

ie
ta

l.
[5

3]
W

ei
gh

te
d

co
m

p
le

ti
on

ti
m

es
an

d
co

st
s

of
ou

ts
ou

rc
in

g.
In

te
rv

al
pr

oc
es

si
ng

ti
m

es
.

R
ob

us
tm

ix
ed

-i
nt

eg
er

lin
ea

r
pr

og
ra

m
m

in
g

m
od

el
.

Th
e

au
th

or
se

va
lu

at
ed

th
e

m
od

el
ag

ai
ns

ta
no

nl
in

ea
rp

ro
gr

am
m

in
g

m
od

el
,d

em
on

st
ra

tin
g

th
e

ef
fe

ct
iv

en
es

s
of

th
ei

r
de

ve
lo

pm
en

t.

82

Algorithms 2021, 14, 210

T
a

b
le

2
.

M
od

el
in

g
ap

pr
oa

ch
es

fo
r

th
e

m
ul

ti
-o

bj
ec

ti
ve

st
oc

ha
st

ic
flo

w
sh

op
pr

ob
le

m
(M

O
-S

FS
P)

.

R
e
fe

re
n

ce
O

b
je

ct
iv

e
F

u
n

ct
io

n
(s

)
P

ro
b

le
m

C
h

a
ra

ct
e
ri

st
ic

s
S

o
lu

ti
o

n
A

p
p

ro
a
ch

R
e
m

a
rk

s

Fo
rs

t[
62

]
To

ta
lw

ei
gh

te
d

ta
rd

in
es

s
an

d
to

ta
l

w
ei

gh
te

d
flo

w
ti

m
e.

St
oc

ha
st

ic
pr

oc
es

si
ng

ti
m

es
an

d
co

m
m

on
du

e
da

te
s.

Th
eo

re
m

.
O

pt
im

al
so

lu
tio

ns
ca

n
be

ob
ta

in
ed

by
se

qu
en

ci
ng

th
e

jo
bs

in
in

cr
ea

si
ng

st
oc

ha
st

ic
or

de
r

of
th

ei
r

pr
oc

es
si

ng
ti

m
es

.
St

u
d

y
ot

he
r

m
ea

su
re

s
as

th
e

ex
p

ec
te

d
ta

rd
y

jo
bs

of
ex

pe
ct

ed
va

ri
at

io
n

in
flo

w
ti

m
es

.

C
EL

A
N

O
et

al
.[

63
]

M
ak

es
p

an
an

d
m

ax
im

u
m

ta
rd

i-
ne

ss
.

Fu
zz

y
p

ro
ce

ss
in

g
ti

m
es

an
d

fu
zz

y
du

e
da

te
s.

G
en

et
ic

al
go

ri
th

m
.

N
o

re
co

m
m

en
da

ti
on

s
gi

ve
n.

Te
m

iz
an

d
Er

ol
[6

4]
Fu

zz
y

m
ak

es
pa

n,
fu

zz
y

m
ax

im
um

ta
rd

in
es

s,
an

d
fu

zz
y

to
ta

lfl
ow

tim
e.

Fu
zz

y
p

ro
ce

ss
in

g
ti

m
es

an
d

fu
zz

y
du

e
da

te
s.

G
en

et
ic

al
go

ri
th

m
.

T
he

al
go

ri
th

m
p

ro
d

u
ce

s
ef

fi
ci

en
t

so
lu

ti
on

s
fo

r
m

ed
iu

m
-

an
d

la
rg

e-
si

ze
d

p
ro

bl
em

s
in

a
re

as
on

ab
le

am
ou

nt
of

ti
m

e.

Q
ia

ng
Z

ho
u

an
d

X
un

xu
e

C
ui

[6
5]

Fl
ow

ti
m

e
an

d
de

la
y

ti
m

e
of

jo
bs

.
St

oc
ha

st
ic

pr
oc

es
si

ng
ti

m
es

an
d

st
oc

ha
st

ic
m

ac
hi

ne
br

ea
kd

ow
ns

.
H

yb
ri

d
m

ul
ti

-o
bj

ec
ti

ve
ge

ne
ti

c
al

go
ri

th
m

.
N

o
re

co
m

m
en

da
ti

on
s

gi
ve

n.

A
za

de
h

et
al

.[
66

]
M

ak
es

p
an

an
d

m
ea

n
co

m
p

le
ti

on
ti

m
e.

St
oc

ha
st

ic
p

ro
ce

ss
in

g
ti

m
es

,
st

oc
ha

st
ic

m
ac

hi
ne

br
ea

kd
ow

ns
,

an
d

st
oc

ha
st

ic
se

tu
p

ti
m

es
.

A
rt

ifi
ci

al
ne

ur
al

ne
tw

or
k.

T
he

ad
va

nt
ag

e
of

th
e

pr
op

os
ed

so
lu

ti
on

ap
pr

oa
ch

is
th

e
re

du
ct

io
n

in
th

e
nu

m
be

r
of

si
m

ul
at

io
ns

ru
ns

an
d,

co
ns

eq
ue

nt
ly

,a
re

d
uc

ed
ru

n
ti

m
e.

Fu
rt

he
rm

or
e,

th
is

is
th

e
fi

rs
t

st
u

d
y

th
at

in
tr

od
u

ce
d

an
in

te
lli

ge
nt

an
d

fl
ex

ib
le

al
go

ri
th

m
fo

r
ha

nd
lin

g
th

e
st

oc
ha

st
ic

tw
o-

m
ac

hi
ne

FS
pr

ob
le

m
.

Li
ef

oo
gh

e
et

al
.[

67
]

M
ak

es
pa

n
an

d
to

ta
lt

ar
di

ne
ss

.
St

oc
ha

st
ic

pr
oc

es
si

ng
ti

m
es

.
Ev

ol
ut

io
na

ry
al

go
ri

th
m

.
T

he
au

th
or

s
d

em
on

st
ra

te
d

th
at

an
u

nc
er

ta
in

ty
-

ha
nd

lin
g

st
ra

te
gy

is
a

ke
y

is
su

e
to

ob
ta

in
go

od
-q

ua
lit

y
so

lu
ti

on
s

an
d

th
at

th
e

al
go

ri
th

m
’s

p
er

fo
rm

an
ce

is
st

ro
ng

ly
re

la
te

d
to

th
e

le
ve

lo
fu

nc
er

ta
in

ty
ab

ou
tt

he
en

vi
ro

nm
en

t.

R
ah

m
an

ie
ta

l.
[6

8]
Fu

zz
y

m
ak

es
pa

n,
flo

w
tim

e,
an

d
to

-
ta

lt
ar

di
ne

ss
.

St
oc

ha
st

ic
pr

oc
es

si
ng

ti
m

es
an

d
st

oc
ha

st
ic

re
le

as
e

ti
m

es
.

C
ha

nc
e

co
ns

tr
ai

ne
d.

T
he

ge
ne

ti
c

al
go

ri
th

m
w

as
al

lo
w

ed
to

so
lv

e
la

rg
e

in
-

st
an

ce
s

w
ith

re
la

tiv
el

y
go

od
so

lu
tio

ns
in

a
re

as
on

ab
le

co
m

pu
ta

ti
on

al
ti

m
e.

M
ou

et
al

.[
69

]
H

am
m

in
g

d
is

ta
nc

e,
ad

ju
st

m
en

to
f

to
ta

lc
om

pl
et

io
n

ti
m

es
,a

nd
ad

ju
st

-
m

en
ts

of
pr

oc
es

si
ng

ti
m

es
.

In
ve

rs
e

p
er

m
u

ta
ti

on
fl

ow
sh

op
sc

he
du

lin
g

pr
ob

le
m

an
d

st
oc

ha
s-

ti
c

pr
oc

es
si

ng
ti

m
es

.

H
yb

ri
d

m
u

lt
i-

ob
je

ct
iv

e
ev

ol
u

ti
on

ar
y

al
go

ri
th

m
w

it
h

th
e

N
EH

-b
as

ed
in

se
rt

io
n

m
et

ho
d.

Th
e

al
go

ri
th

m
pr

es
en

ts
be

tt
er

re
su

lts
th

an
a

no
nd

om
-

in
at

ed
so

rt
in

g
ge

ne
ti

c
al

go
ri

th
m

.
T

he
st

u
d

y
ca

n
be

ex
te

nd
ed

by
ad

di
ng

ot
he

r
m

ea
su

re
s.

Fu
et

al
.[

70
]

E
xp

ec
te

d
m

ak
es

p
an

an
d

ex
p

ec
te

d
ta

rd
in

es
s.

St
oc

ha
st

ic
pr

oc
es

si
ng

tim
es

w
ith

d
et

er
io

ra
ti

ng
an

d
le

ar
ni

ng
ef

-
fe

ct
s.

M
ul

ti
-o

bj
ec

ti
ve

di
sc

re
te

fir
ew

or
ks

al
go

ri
th

m
.

T
he

al
go

ri
th

m
p

re
se

nt
s

go
od

re
su

lt
s

in
co

m
p

ar
is

on
w

it
h

th
e

M
IL

P
m

od
el

fo
r

sm
al

li
ns

ta
nc

es
.

G
on

zá
le

z-
N

ei
ra

et
al

.[
16

]
E

xp
ec

te
d

ta
rd

in
es

s
an

d
st

an
d

ar
d

de
vi

at
io

n
of

ta
rd

in
es

s.
St

oc
ha

st
ic

pr
oc

es
si

ng
ti

m
es

.
Si

m
he

u
ri

st
ic

th
at

hy
br

id
iz

es
th

e
P

ar
et

o
ar

ch
iv

e
ev

ol
ut

io
n

st
ra

te
gy

w
it

h
ta

bu
se

ar
ch

.
Th

e
al

go
ri

th
m

pr
es

en
ts

go
od

re
su

lts
fo

r
th

e
de

te
rm

in
-

is
ti

c
ca

se
an

d
ob

ta
in

s
th

e
Pa

re
to

fr
on

ti
er

of
ex

pe
ct

ed
ta

rd
in

es
s

an
d

st
an

da
rd

de
vi

at
io

n
of

ta
rd

in
es

s.

Fa
ra

ji
A

m
ir

ia
nd

Be
hn

am
ia

n
[7

1]
M

ak
es

pa
n

an
d

en
er

gy
co

ns
um

pt
io

n.
St

oc
ha

st
ic

pr
oc

es
si

ng
ti

m
es

.
M

at
he

m
at

ic
al

fo
rm

ul
at

io
n

an
d

sc
en

ar
io

-b
as

ed
es

-
ti

m
at

io
n

of
th

e
di

st
ri

bu
ti

on
al

go
ri

th
m

.
T

he
al

go
ri

th
m

ob
ta

in
s

th
e

P
ar

et
o

fr
on

ti
er

of
th

e
m

ak
es

p
an

an
d

en
er

gy
co

ns
u

m
p

ti
on

an
d

p
re

se
nt

s
go

od
re

su
lt

s
in

co
m

pa
ri

so
n

to
an

ot
he

r
al

go
ri

th
m

.

83

Algorithms 2021, 14, 210

2.4. Qualitative Criteria

Within organizations, main processes have their own objectives, which are often in
conflict. For instance, the objectives of marketing involve maximizing service levels and
sales; procurement seeks the prioritization of products and order replenishment; and pro-
duction and manufacturing aim to maximize throughput and minimize costs. That is why
it is important to use an approach that takes into account all of these objectives simultane-
ously [72]. In this context, production should consider marketing criteria (often qualitative)
in the decision-making process in order to improve customer service and reduce conflicts
between marketing and production [73]. Among the marketing objectives, production
planning is affected by the product importance and customer importance. Georgakopoulos
and Mihiotis [74] analyzed these two aspects in a distribution network design. Considering
the product importance, aspects such as turnover, profit rate, image, and discount policies
must be considered in order to categorize the product. With regard to customer importance,
aspects such as turnover, image, and customer requirements must be considered in order
to categorize the customer. For instance, González-Neira et al. [10] included the customer
importance in a hybrid FSP through the integral analysis method García Cáceres et al. [75]
based on stochastic multicriteria acceptability analysis Lahdelma et al. [76].

The academic literature includes very few studies on scheduling problems that consid-
ered qualitative decision criteria. As stated above, Chang and Lo [8] and Chang et al. [9]
proposed a multicriteria objective function that included qualitative aspects such as mar-
keting considerations, the strategic importance of customers, and order profit/risk in a job
shop environment with fuzzy parameters. Chang and Lo [8] proposed a GA/TS approach
hybridized with AHP, while Chang et al. [9] examined an ant colony optimization with an
AHP process to solve job shop problems. In our opinion, some possible reasons for the few
studies on this research topic are the lack of objectivity while measuring these metrics and
the difficulty of having unbiased indicators.

3. Proposed Approach

This paper proposes a simheuristic technique that integrates Monte Carlo simulation
into a GRASP metaheuristic hybridized with the Pareto archived evolution strategy (PAES)
technique for optimizing multiple objectives. Interested readers may consult Resende
and Ribeiro [77] for the GRASP metaheuristic and Knowles and Corne [78] for the PAES
technique. In addition, an AHP methodology is integrated with the simheuristic to assess
the Pareto solutions under different weight arrays for the selected criteria. The algorithm is
named multicriteria simheuristic with GRASP (MC-SIM-GRASP). A GRASP metaheuristic
for optimization purposes was selected due to it having the advantage of constructing its
own initial solution and the no memory characteristic, which makes it useful for scheduling
problems. PAES was selected because it has the advantage of avoiding favoring a search
direction in the local search and exploring different solutions across the Pareto front.

3.1. MC-SIM-GRASP: Construction Phase

The purpose of the construction phase in GRASP and in the proposed algorithm is
to construct a solution by the sequential aggregation of jobs to the solution from a set
of possible jobs ranked through a greedy or fitness function. Even though the studied
problem is a multicriteria objective, a pure strategy was selected for the construction phase,
meaning that a unique objective function guides the entire construction [79]. Then, for this
phase, an earliest due date (EDD) rule was selected to deal with the earliness/tardiness
objective as a single greedy function. However, considering the other functions, a respective
penalization was included for the customer and product importance functions regarding
each job, each depending on customer importance or product importance, in comparison
with the position of the job in the sequence. Table 3 shows the penalization for the customer
importance criterion for an example of 10 jobs with five levels of customer importance.
These penalization scores are based on the following criteria: A job that is not belated has
a score of zero. If a job is delayed, the penalization is greater if the customer importance

84

Algorithms 2021, 14, 210

is high and lower if the customer importance is low. Then, the job penalization increases
if the job is taking the place of a job that has greater importance. The case study for
this paper defines five levels of customer importance, where Level 1 corresponds to the
most important customers and Level 5 to the least important. For the instances tested
in this research, the customer importance for each job was randomly assigned using the
probabilities indicated in Table 4. Naturally, this scale for customer importance and the
probability of the importance level were established here for testing purposes. In real
scenarios, the assignment of customer importance will not be probabilistic, but rather
deterministic according to the views of the decision-maker. A similar procedure was
conducted to assign a product importance for each job and the corresponding penalization.

Table 3. Job sequence position penalization depending on customer importance.

Job ID 5 4 10 1 3 7 2 6 9 8
Customer Importance 1 2 2 2 3 3 4 4 4 5

Job position in sequence

1 1 5 5 5 7 7 7 7 7 5
2 6 1 1 1 4 4 5 5 5 4
3 6 1 1 1 4 4 5 5 5 4
4 6 1 1 1 4 4 5 5 5 4
5 11 5 5 5 1 1 3 3 3 3
6 11 5 5 5 1 1 3 3 3 3
7 16 9 9 9 4 4 1 1 1 2
8 16 9 9 9 4 4 1 1 1 2
9 16 9 9 9 4 4 1 1 1 2
10 21 13 13 13 7 7 3 3 3 1

Table 4. Customer importance probability.

Customer Importance 1 2 3 4 5

Probability of Occurrence 8% 12% 20% 28% 32%

The main contribution of the construction phase of the proposed approach is the
alternation of three different greedy functions at each iteration of GRASP. For instance,
the first iteration begins the construction phase with an EDD rule criterion; the second
iteration continues using the customer importance; and the third iteration continues using
the product importance. These iterations are repeated in the same order until the solu-
tion/schedule is completed. It is important to note that the EDD rule criterion is used
to guide the constructions for both the earliness/tardiness mean and standard deviation
objectives at the same time. Inside each step of construction, the restricted candidate list
(RCL) is defined as the subset of jobs with the best value of 10% of the total range of the
greedy function values obtained. A job is then randomly selected from the RCL to form
part of the solution. The method continues iteratively until all jobs have been scheduled,
included in the solution. After the sequence is completed, a Monte Carlo simulation is
performed with as many runs as needed to obtain confidence intervals of at least 1% for
the four objective functions (expected earliness/tardiness, standard deviation of earli-
ness/tardiness, customer importance, and product importance). In the first iteration of the
construction phase, this solution is included in the nondominated solutions (NDS) archive,
which is initially empty. In the remaining iterations, this solution is evaluated using PAES
to determine whether it is considered within the set of NDS. Figure 1 presents the flow
diagram of the construction phase of the proposed approach.

85

Algorithms 2021, 14, 210

Figure 1. Flowchart of the GRASP construction phase.

86

Algorithms 2021, 14, 210

3.2. MC-SIM-GRASP: Local Search Phase

The purpose of the local search phase in GRASP and in the proposed algorithm is to
execute consecutive iterative improvements of the solution obtained from the construction
phase to obtain a better solution. In this paper, the local search phase consists of 2-
opt interchanges between jobs. Each time an interchange is performed, a Monte Carlo
simulation is executed to estimate the four objective functions with a confidence interval
accuracy of at least ±1% for each value and a confidence of 95%. The solution is then
evaluated to decide whether it should be placed in the NDS archive. If so, the other
solutions already saved in the NDS archive are evaluated to determine whether they
should remain in the NDS archive. If the solution does not belong in the NDS archive, it is
discarded. This procedure is conducted according to the PAES proposed by Knowles and
Corne [78]. A MC-SIM-GRASP iteration ends when no interchanges can enter into the NDS
archive, and a new iteration is begun, maintaining the actual NDS archive. The simheuristic
stop time is established as the number of jobs × number of machines × 1.0 second. Figure 2
presents the flowchart of the local search phase.

Figure 2. Flowchart of the GRASP local search phase.

87

Algorithms 2021, 14, 210

3.3. NDS Archive Solution Selection Using the AHP Methodology

After the MC-SIM-GRASP has finished, the entire Pareto sequence is scored using the
AHP methodology. As is shown in Table 5, eight vectors are used for the criteria weights
for the four objectives. First, a 4 × 4 pairwise comparison matrix is created for scoring
each ith objective function versus the jth objective, on a scale from 1 to 9, as indicated in
the AHP technique. An example of the obtainment of a criteria weight vector is shown in
Table 6. Then, eight different comparisons are performed to obtain the eight mentioned
different vectors of the criteria weights. Considering the usage of each weight vector,
the Pareto frontier solution that presents the best AHP score can be selected. In order
to compute the matrix of option scores, for each pair of sequences s1 and s2, we divided
the expected earliness/tardiness of s1 by the expected earliness/tardiness of s2, so if the
division is greater than 1, the earliness/tardiness of s1 is worse than the earliness/tardiness
of s2, and vice versa. Similar divisions are performed for the other two objective functions
(standard deviation of earliness/tardiness and customer importance).

Table 5. Criteria weights for Pareto solutions.

Weights Vector
Objective Function 1 2 3 4 5 6 7 8

E[E/T] 57.64% 25.56% 5.07% 5.07% 11.72% 11.72% 25.56% 57.64%
SD(E/T) 25.56% 57.64% 57.64% 25.56% 5.07% 5.07% 11.72% 11.72%

CI 11.72% 11.72% 25.56% 57.64% 57.64% 25.56% 5.07% 5.07%
PI 5.07% 5.07% 11.72% 11.72% 25.56% 57.64% 57.64% 25.56%

Table 6. Example of AHP scores and the resultant priority vector.

E[E/T] SD(E/T) CI PI Resulting Weight Vector

E[E/T] 1 1/3 3 5 25.56%
SD(E/T) 3 1 5 9 57.64%
CI 1/3 1/5 1 3 11.72%
PI 1/5 1/9 1/3 1 5.07%

4. Computational Experiments and Statistical Analysis

For experimentation purposes, a set of 180 benchmark instances proposed by
Ciavotta et al. [21] were selected to evaluate the effects of different probability distributions
(PDs) and coefficients of variation (CVs) of the processing and setup times in the objective
functions. Specifically, the 180 instances were 10 instances for each combination of 20, 50,
and 100 jobs with 5, 10, and 20 machines and a size of sequence-dependent setup times of
50% and 125%. Two PDs, lognormal, uniform, and three CVs, 0.3, 0.4, and 0.5, were selected
to model both the stochastic processing and setup times. This corresponds to 6480 NDS
archives. The proposed method was implemented in Java and run on an Intel Core i7-4770
with a 3.4 GHz processor and 8GB of RAM. The stopping criterion for MC-SIM-GRASP
was established as numberO f Jobs · numberO f Machines · 1.0 s. The best-qualified solution
of each NDS archive was selected by using the AHP method. This results in a total of 51,840
solutions, each of which has an AHP score and a value for the four objective functions.
Four ANOVAs were conducted to jointly analyze the effect of the eight factors on the four
selected objective functions (E[E/T], SD[E/T], E[CI], and E[PI]). The factors selected for the
experimental design are: probability distribution of processing times (PDPT), coefficient
of variation of processing times (CVPT), probability distribution of setup times (PDST),
coefficient of variation of setup times (CVST), the vectors of criteria weights of the AHP
(WV), number of jobs, number of machines, and generation size of the standard deviation
of sequence-dependent setup times (SDST). The factors and their levels are presented in
Table 7.

88

Algorithms 2021, 14, 210

Table 7. Factors of the experimental design and their corresponding levels.

Factor Levels

PD of processing times (PDPT) lognormal [lgn] and uniform [unf]
CV of processing times (CVPT) 0.3, 0.4 and 0.5

PD of setup times (PDST) lognormal [lgn] and uniform [unf]
CV of setup times (CVST) 0.3, 0.4, and 0.5

vectors of criteria weights of AHP (WV) 1, 2, 3, 4, 5, 6, 7, and 8
number of jobs 20, 50, and 100

number of machines 5, 10, and 20
generation size of SDST SSD50, and SSD125

The results showed that all main effects are statistically significant on the four objective
functions except PDPT for E[CI] and E[PI] and the PDST and CVST for E[PI]. Neverthe-
less, some double and triple interactions that include the PDPT, PDST, and CVST have a
significant effect on E[CI] and E[PI]. In fact, for at least one of the four objective functions,
the double interaction effects are also significant (see Table 8). This shows that the WV
discriminates among the Pareto solutions, helping the decision-maker select a solution
from the Pareto frontier. We identified in addition that as the CVPT and CVST increase,
the expected value of earliness (E[E/T]) and the standard deviation of earliness tardiness
indicator (SD[E/T]) augment as well. The same occurs with E[CI], but not to the same
degree. Additionally, the measures tend to be greater for the lognormal distribution than
for the uniform distribution. This shows the importance of accurately fitting the PD to
obtain adjusted robust measures.

Figures 3 and 4 show the main effect plots of the factors WV, PDST, PDPT, CVST,
and CVPT on E[E/T] and SD[E/T], respectively. The axes of the main effect plots are the
levels of each factor. It can be seen that for different weight vectors, the objectives E[E/T]
and SD[E/T] imply that the AHP is capable of selecting a different solution of the Pareto
frontier according to the preferences given by the decision-maker in the AHP method.
In the case of the probability distributions (the PDST and PDPT factors), the lognormal
distribution presents a slightly greater E [E/T] and SD[E/T] in comparison with the
uniform distribution, which gives the idea that despite using the same expected values
of the processing and setup times under the same coefficient of variation, the solutions
vary with the change of the distribution used. Additionally, as expected, as the coefficient
of variation of the setup and the processing times increase (the CVST and CVPT factors)
the objectives E[E/T] and SD[E/T] also increment, indicating a higher variability in the
obtained solutions of the Pareto frontier. These aspects led us to highlight the importance
of including uncertainty in the optimization problem when it is really present, and the
value of making an accurate distribution fitting to make adequate decisions.

89

Algorithms 2021, 14, 210

Table 8. p-values and R2
adj of the ANOVAs for each objective function.

Source E[E/T] SD(E/T) E[CI] E[PI]

WV 0.0000 0.0000 0.0000 0.0000
PDST 0.0000 0.0000 0.0000 0.1750
PDPT 0.0000 0.0000 0.0530 0.1920
SizeSDST 0.0000 0.0000 0.0000 0.0000
CVST 0.0000 0.0000 0.0160 0.1620
CVPT 0.0000 0.0000 0.0030 0.0460
Jobs 0.0000 0.0000 0.0000 0.0000
Machines 0.0000 0.0000 0.0000 0.0000
WV*PDST 0.0000 0.0000 0.0000 0.0000
WV*PDPT 0.0030 0.9150 0.0210 0.9510
WV*SizeSDST 0.0040 0.0000 0.0000 0.0000
WV*CVST 0.0580 0.0040 0.0000 0.9440
WV*CVPT 0.0000 0.0000 0.0000 0.6190
WV*Jobs 0.0000 0.0000 0.0000 0.0000
WV*Machines 0.0000 0.0010 0.0060 0.0010
PDST*PDPT 0.5290 0.0470 0.4400 0.8040
PDST*SizeSDST 0.0000 0.0000 0.0000 0.9560
PDST*CVST 0.0310 0.0000 0.0010 0.3280
PDST*CVPT 0.1570 0.0000 0.0050 0.0070
PDST*Jobs 0.0000 0.0000 0.0000 0.6420
PDST*Machines 0.9610 0.0000 0.0600 0.3650
PDPT*SizeSDST 0.4970 0.0000 0.2970 0.9380
PDPT*CVST 0.0100 0.3370 0.0000 0.0000
PDPT*CVPT 0.0070 0.0000 0.0150 0.3610
PDPT*Jobs 0.0000 0.0000 0.0390 0.2530
PDPT*Machines 0.1500 0.0000 0.5470 0.0000
SizeSDST*CVST 0.0000 0.0000 0.0000 0.0110
SizeSDST*CVPT 0.0000 0.0000 0.0010 0.0000
SizeSDST*Jobs 0.0000 0.0000 0.0000 0.0000
SizeSDST*Machines 0.0000 0.0090 0.0000 0.0000
CVST*CVPT 0.0340 0.0000 0.0470 0.0000
CVST*Jobs 0.0000 0.0000 0.0040 0.0000
CVST*Machines 0.0000 0.1730 0.2650 0.7880
CVPT*Jobs 0.0000 0.0000 0.0000 0.0780
CVPT*Machines 0.0000 0.2110 0.0000 0.0230

R2
aj 99.82% 77.30% 89.76% 92.01%

90

Algorithms 2021, 14, 210

Figure 3. Main effects plots for E[E/T].

Figure 4. Main effects plots for S(E/T).

Figures 5 and 6 present the interaction plots between factors CVST and CVPT for
the E[CI] and E[PI] objectives, respectively. The axes of the plots are the levels of the
coefficients of variation. These plots confirm that for both qualitative objectives, there
exists an interaction effect between the coefficients of variation of the processing times
(CVPT) and the coefficients of variation of the setup times (CVST), which means that the
best solution selected with the AHP method, in terms of the qualitative criteria, varies
depending on the variability of the processing and setup times. This leads again to the
relevance of including uncertainties in the optimization process and the execution of an
accurate distribution fitting.

91

Algorithms 2021, 14, 210

Figure 5. Interaction plots of the CVST-CVPT for E[E/T].

Figure 6. Interaction plots of the CVST-CVPT for S(E/T).

To conduct the experimental design and validate the validity and objectivity, the
assumptions of homoscedasticity, normality, and independence were tested. Because the
homoscedasticity and normality tests were not fulfilled, we performed a Friedman test
to corroborate the ANOVA results. Tables 9 and 10 present the detailed Friedman tests
for E[E/T] and SD[E/T] in terms of the factors PDPT, CVPT, PDST, and CVST. To the best
of our knowledge, this is the only work that has studied these four objective functions
in an SPFSP. We present three indicators for the multi-objective problems proposed by
Ebrahimi et al. [80] and Karimi et al. [81], which can be used for future comparisons.
For this work, these indicators were adjusted for the four objective functions analyzed:

• Number of Pareto solutions (NPS), which means the number of nondominated points
for each instance;

• Mean ideal distance (MID), which is a measure of the closeness between Pareto
solutions and an ideal point (0,0,0,0). The quality of a Pareto frontier is higher as the
value of MID decreases. Equation (1) shows the function for this indicator;

• Spread of the nondominance solution (SNS), which is an indicator of the diversity
of Pareto points. The Pareto frontier presents more diversity as the value of SNS
increases. Equation (3) shows the function of this indicator.

92

Algorithms 2021, 14, 210

MID =
∑NPS

i=1 ci

NPS
(1)

where:
ci =

√
E[E/T]2i + SD[E/T]2i + E[CI]2i + E[PI]2i (2)

SNS =

√
∑NPS

i=1 (MID − ci)
2

NPS
(3)

Table 9. Friedman test for E[E/T] versus the factors PDPT, CVPT, PDST, and CVST.

Factor
Levels of

Factor
N

Expected
Median

Sum of Ranks
Overall
Median

DF p-Value

PDPT Lgn 25,920 132,275 39,378 132,234 1 0
Unf 25,920 132,194 38,382

CVPT 0.3 17,280 129,225 27,574 131,165 2 0
0.4 17,280 130,886 33,622
0.5 17,280 133,385 42,484

PDST Lgn 25,920 132,331 39,465 132,301 1 0
Unf 25,920 132,271 38,295

CVST 0.3 17,280 130,486 29,026 131,757 2 0
0.4 17,280 131,744 34,544
0.5 17,280 133,040 40,110

Table 10. Friedman test for SD(E/T) versus the factors PDPT, PDST, CVPT, and CVST.

Factor
Levels of

Factor
N

Expected
Median

Sum of Ranks
Overall
Median

DF p-Value

PDPT Lgn 25,920 5243.6 44,156 5090.4 1 0
Unf 25,920 4937.2 33,604

CVPT 0.3 17,280 4450.2 22,359 5093 2 0
0.4 17,280 5059.4 34,166
0.5 17,280 5769.4 47,155

PDST Lgn 25,920 5247 43,715 2112.9 1 0
Unf 25,920 4978.8 34,045

CVST 0.3 17,280 4954.2 25,591 5296.1 2 0
0.4 17,280 5265.5 34,108
0.5 17,280 5668.6 43,981

Tables 11–13 show the averages of the NPS, MID, and SNS for each instance size,
each combination of the PDPT with CVPT, and each combination of the PDST with CVST,
respectively. In Table 11, it can be seen that the MID and SNS increase as the number of jobs
or machines increases, and due to the increment of the jobs or machines, the expected and
standard deviation of tardiness present a crescent behavior. Moreover, the NPS also tends
to augment, giving more possible solutions to chose in scenarios with higher variability.

93

Algorithms 2021, 14, 210

Table 11. Performance results of the proposed approach.

Number of Jobs Machines NPS MID SNS

20 5 182.59 18,412.20 915.68
10 169.80 19,660.78 1386.57
20 183.03 23,370.81 2142.31

Total 20 178.47 20,481.26 1481.52

50 5 262.71 123,904.5 2784.69
10 254.54 138,695.12 2920.58
20 247.28 153,472.48 3480.98

Total 50 254.84 138,690.7 3062.08

100 5 210.46 500,238.28 7475.30
10 227.30 550,636.3 7165.95
20 250.03 601,917.09 7166.19

Total 100 229.26 550,930.55 7269.15

Table 12 shows the minimum difference in the MID and SNS between the lognormal
and uniform distributions for the processing times, under the same coefficient of variation.
Nevertheless, as the coefficient of variation of the processing times increases, independently
of the probability distribution, the MID and SNS augment. That means that the quality of
the Pareto frontier is worse as the coefficient of variation of the processing times increases.
This suggests that production managers should encourage a continuous improvement of
the production processes to reduce the variability of the process insofar as that is possible.
Moreover, it is interesting to see that the NPS decreases as the coefficient of variation of the
processing times increments, showing that high variability scenarios present fewer possible
solutions to choose for the decision-maker.

Table 12. Performance multi-objective metrics for the PDPT and CVPT.

PDPT CVPT NPS MID SNS

lgn 0.3 273.64 232,650.34 3884.93
0.4 194.92 236,692.91 3928.33
0.5 144.34 241,086.47 4045.65

Total lgn 204.3 236,809.91 3952.97

unf 0.3 297.71 232,730.09 3925.04
0.4 225.32 236,299.54 3862.35
0.5 189.23 240,745.7 3979.21

Total unf 237.42 236,591.77 3922.20

The measures presented in Table 13 show a large difference in the SNS between the
lognormal and uniform distributions of the sequence-dependent setup times, under the
same coefficient of variation of the setup times, which is a different behavior than that
presented for the coefficient of variation of the processing times. Moreover, the NPS also
presents high differences between the uniform and lognormal distributions of the setup
times, whereas for the coefficient of variation of the processing times, the NPS values were
very close. This allowed us to conclude that each input parameter can cause different
performances of the solutions, and thus, the AHP selects the corresponding solution of the
Pareto frontier to fulfill the decision-maker’s expectations.

94

Algorithms 2021, 14, 210

Table 13. Performance multi-objective metrics for the PDST and CVST.

PDST CVST NPS MID SNS

lgn 0.3 115.69 233,355.91 4183.21
0.4 81.23 236,692.94 4223.27
0.5 66.40 240,032.78 4283.50

Total lgn 87.78 236,693.88 4229.99

unf 0.3 413.55 233,671.64 3625.21
0.4 357.49 236,430.32 3607.72
0.5 290.78 240,021.45 3702.59

Total unf 353.94 236,707.8 3645.18

5. Conclusions and Recommendations

This paper presented a multicriteria simheuristic that hybridizes a GRASP, a PAES
algorithm, and a Monte Carlo simulation (MC-SIM-GRASP) to solve a multi-objective
stochastic permutation flow shop scheduling problem (SPFSP). The approach obtains a set
of nondominated solutions for four objectives: for expected earliness/tardiness, standard
deviation of earliness/tardiness, expected customer importance, and expected product
importance in an SPFSP. It was used an analytical hierarchical process (AHP) to select
the desired solution for the decision-maker from the set of solutions from the Pareto
frontier. The purpose of this method was to ease the selection of a solution and include
a qualitative criterion for the objective of the decision-making. This paper analyzed the
effect of eight factors in the behavior of the four objective functions selected. To this
end, four ANOVAs were carried out with seven factors: type of probability distribution
(PD) of stochastic processing times, coefficient of variation (CV) of stochastic processing
times, PD of sequence-dependent setup times, CV of sequence-dependent setup times,
the vector weights of criteria in the AHP methodology, the number of jobs, and the number
of machines. The outcomes showed that all factors had significant effects on the four
objective functions. The results obtained in this paper support the importance of including
uncertainty, modeled with adequate PDs, to obtain robust solutions. Additionally, a set of
multi-objective metrics (number of Pareto solutions, means’ ideal distance, and spread of
the nondominance solution) was calculated for future comparisons, as this problem has
not been solved in the literature before. Future work may analyze other PDs and CVs.
It would be useful to analyze a case in which the processing time PD of each job has a
different CV, which is generally true in real cases. Finally, other qualitative criteria should
be incorporated in the analysis.

Author Contributions: Conceptualization, E.M.G.-N.; methodology, E.M.G.-N.; programming,
E.M.G.-N.; formal analysis, E.M.G.-N.; writing—original draft, E.M.G.-N. and J.-F.J.; writing—review
and editing, J.-F.J. and J.-F.J.; supervision, J.R.M.-T. All authors read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The benchmark instances evaluated in this paper were taken from
Ciavotta et al. [21], and the results obtained for the analysis are available in https://livejaverianaedu
-my.sharepoint.com/:x:/g/personal/eliana_gonzalez_javeriana_edu_co/EdOPPW3UqvtLsAmLuso
ECKwBZXGoMPwwfHQFQCCkbh1-Qg?e=54af92 (acessed on 27 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

95

Algorithms 2021, 14, 210

References

1. Pinedo, M.L. Scheduling, 5th ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–670. [CrossRef]
2. Ruiz, R.; Maroto, C. A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 2005,

165, 479–494. [CrossRef]
3. Du, J.; Leung, J.Y.T. Minimizing Total Tardiness on One Machine Is NP-Hard. Math. Oper. Res. 1990, 15, 483–495. [CrossRef]
4. Li, Z.; Ierapetritou, M. Process scheduling under uncertainty: Review and challenges. Comput. Chem. Eng. 2008, 32, 715–727.

[CrossRef]
5. Gourgand, M.; Grangeon, N.; Norre, S. A review of the static stochastic flow-shop scheduling problem. J. Decis. Syst. 2000,

9, 1–31. [CrossRef]
6. Vallada, E.; Ruiz, R.; Framinan, J.M. New hard benchmark for flowshop scheduling problems minimising makespan. Eur. J. Oper.

Res. 2015, 240, 666–677. [CrossRef]
7. Yenisey, M.M.; Yagmahan, B. Multi-objective permutation flow shop scheduling problem: Literature review, classification and

current trends. Omega 2014, 45, 119–135. [CrossRef]
8. Chang, P.T.; Lo, Y.T. Modelling of job-shop scheduling with multiple quantitative and qualitative objectives and a GA/TS mixture

approach. Int. J. Comput. Integr. Manuf. 2001, 14, 367–384. [CrossRef]
9. Chang, P.T.; Lin, K.P.; Pai, P.F.; Zhong, C.Z.; Lin, C.H.; Hung, L.T. Ant colony optimization system for a multi-quantitative and

qualitative objective job-shop parallel-machine-scheduling problem. Int. J. Prod. Res. 2008, 46, 5719–5759. [CrossRef]
10. González-Neira, E.M.; García-Cáceres, R.G.; Caballero-Villalobos, J.P.; Molina-Sánchez, L.P.; Montoya-Torres, J.R. Stochastic

flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Comput. Ind. Eng. 2016, 101, 128–144.
[CrossRef]

11. Gonzalez-Martin, S.; Juan, A.A.; Riera, D.; Elizondo, M.G.; Ramos, J.J. A simheuristic algorithm for solving the arc routing
problem with stochastic demands. J. Simul. 2018, 12, 53–66. [CrossRef]

12. Latorre-Biel, J.I.; Ferone, D.; Juan, A.A.; Faulin, J. Combining simheuristics with Petri nets for solving the stochastic vehicle
routing problem with correlated demands. Expert Syst. Appl. 2021, 168, 114240. [CrossRef]

13. Quintero-Araujo, C.L.; Guimarans, D.; Juan, A.A. A simheuristic algorithm for the capacitated location routing problem with
stochastic demands. J. Simul. 2019, 1–18. [CrossRef]

14. Juan, A.A.; Grasman, S.E.; Caceres-Cruz, J.; Bektaş, T. A simheuristic algorithm for the Single-Period Stochastic Inventory-Routing
Problem with stock-outs. Simul. Model. Pract. Theory 2014, 46, 40–52. [CrossRef]

15. de Armas, J.; Juan, A.A.; Marquès, J.M.; Pedroso, J.P. Solving the deterministic and stochastic uncapacitated facility location
problem: From a heuristic to a simheuristic. J. Oper. Res. Soc. 2017, 68, 1161–1176. [CrossRef]

16. González-Neira, E.M.; Urrego-Torres, A.M.; Cruz-Riveros, A.M.; Henao-García, C.; Montoya-Torres, J.R.; Molina-Sánchez, L.P.;
Jiménez, J.F. Robust solutions in multi-objective stochastic permutation flow shop problem. Comput. Ind. Eng. 2019, 137, 106026.
[CrossRef]

17. Hatami, S.; Calvet, L.; Fernández-Viagas, V.; Framiñán, J.M.; Juan, A.A. A simheuristic algorithm to set up starting times in the
stochastic parallel flowshop problem. Simul. Model. Pract. Theory 2018, 86, 55–71. [CrossRef]

18. Juan, A.A.; Barrios, B.B.; Vallada, E.; Riera, D.; Jorba, J. A simheuristic algorithm for solving the permutation flow shop problem
with stochastic processing times. Simul. Model. Pract. Theory 2014, 46, 101–117. [CrossRef]

19. Mokhtari, H.; Salmasnia, A. A Monte Carlo simulation based chaotic differential evolution algorithm for scheduling a stochastic
parallel processor system. Expert Syst. Appl. 2015, 42, 7132–7147. [CrossRef]

20. González-Neira, E.M.; Montoya-Torres, J.R. A simheuristic for stochastic permutation flow shop problem considering quantitative
and qualitative decision criteria. In Proceedings of the 16th International Conference on Project Management and Scheduling; Caramia,
M., Bianco, L., Giordani, S., Eds.; TexMat: Rome, Italy, 2018; pp. 104–109.

21. Ciavotta, M.; Minella, G.; Ruiz, R. Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and
a comprehensive study. Eur. J. Oper. Res. 2013, 227, 301–313. [CrossRef]

22. Pan, Q.K.; Ruiz, R. A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Comput.
Oper. Res. 2013, 40, 117–128. [CrossRef]

23. Arora, D.; Agarwal, G. Meta-heuristic approaches for flowshop scheduling problems: A review. Int. J. Adv. Oper. Manag. 2016,
8, 1. [CrossRef]

24. Nagano, M.S.; Miyata, H.H. Review and classification of constructive heuristics mechanisms for no-wait flow shop problem. Int.
J. Adv. Manuf. Technol. 2016, 86, 2161–2174. [CrossRef]

25. Rossit, D.A.; Tohmé, F.; Frutos, M. The Non-Permutation Flow-Shop scheduling problem: A literature review. Omega 2018,
77, 143–153. [CrossRef]

26. Fernandez-Viagas, V.; Ruiz, R.; Framinan, J.M. A new vision of approximate methods for the permutation flowshop to minimise
makespan: State-of-the-art and computational evaluation. Eur. J. Oper. Res. 2017, 257, 707–721. [CrossRef]

27. González-Neira, E.M.; Montoya-Torres, J.R.; Barrera, D. Flow-shop scheduling problem under uncertainties: Review and trends.
Int. J. Ind. Eng. Comput. 2017, 8, 399–426. [CrossRef]

28. Framinan, J.M.; Perez-Gonzalez, P. On heuristic solutions for the stochastic flowshop scheduling problem. Eur. J. Oper. Res. 2015,
246, 413–420. [CrossRef]

96

Algorithms 2021, 14, 210

29. Lin, J.T.; Chen, C.M. Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end
manufacturing. Simul. Model. Pract. Theory 2015, 51, 100–114. [CrossRef]

30. Qin, W.; Zhang, J.; Song, D. An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain
processing time. J. Intell. Manuf. 2018, 29, 891–904. [CrossRef]

31. Fazayeli, M.; Aleagha, M.R.; Bashirzadeh, R.; Shafaei, R. A hybrid meta-heuristic algorithm for flowshop robust scheduling
under machine breakdown uncertainty. Int. J. Comput. Integr. Manuf. 2016, 29, 709–719. [CrossRef]

32. Ying, K.C. Scheduling the two-machine flowshop to hedge against processing time uncertainty. J. Oper. Res. Soc. 2015,
66, 1413–1425. [CrossRef]

33. Behnamian, J.; Fatemi Ghomi, S.M.T. A survey of multi-factory scheduling. J. Intell. Manuf. 2016, 27, 231–249. [CrossRef]
34. Huang, C.S.; Huang, Y.C.; Lai, P.J. Modified genetic algorithms for solving fuzzy flow shop scheduling problems and their

implementation with CUDA. Expert Syst. Appl. 2012, 39, 4999–5005. [CrossRef]
35. Makino, T. On a scheduling problem. J. Oper. Res. Soc. Jpn. 1965, 8, 32–44.
36. Talwar, P.P. A Note on Sequencing Problem with Uncertain Job Time. J. Oper. Res. Soc. Jpn. 1967, 9, 93–97.
37. Cunningham, A.A.; Dutta, S.K. Scheduling jobs, with exponentially distributed processing times, on two machines of a flow

shop. Nav. Res. Logist. Q. 1973, 20, 69–81. [CrossRef]
38. Alcaide, D.; Rodriguez-Gonzalez, A.; Sicilia, J. An approach to solve the minimum expected makespan flow-shop problem

subject to breakdowns. Eur. J. Oper. Res. 2002, 140, 384–398. [CrossRef]
39. Gourgand, M.; Grangeon, N.; Norre, S. A contribution to the stochastic flow shop scheduling problem. Eur. J. Oper. Res. 2003,

151, 415–433. [CrossRef]
40. Wang, L.; Zhang, L.; Zheng, D.Z. Ordinal optimisation of genetic control parameters for flow shop scheduling. Int. J. Adv. Manuf.

Technol. 2005, 26, 1414–1420. [CrossRef]
41. Kalczynski, P.J.; Kamburowski, J. A heuristic for minimizing the expected makespan in two-machine flow shops with consistent

coefficients of variation. Eur. J. Oper. Res. 2006, 169, 742–750. [CrossRef]
42. Portougal, V.; Trietsch, D. Johnson’s problem with stochastic processing times and optimal service level. Eur. J. Oper. Res. 2006,

169, 751–760. [CrossRef]
43. Baker, K.R.; Trietsch, D. Three heuristic procedures for the stochastic, two-machine flow shop problem. J. Sched. 2011, 14, 445–454.

[CrossRef]
44. Baker, K.R.; Altheimer, D. Heuristic solution methods for the stochastic flow shop problem. Eur. J. Oper. Res. 2012, 216, 172–177.

[CrossRef]
45. Elyasi, A.; Salmasi, N. Stochastic scheduling with minimizing the number of tardy jobs using chance constrained programming.

Math. Comput. Model. 2013, 57, 1154–1164. [CrossRef]
46. Elyasi, A.; Salmasi, N. Stochastic flow-shop scheduling with minimizing the expected number of tardy jobs. Int. J. Adv. Manuf.

Technol. 2013, 66, 337–346. [CrossRef]
47. Gonzalez-Neira, E.M.; Ferone, D.; Hatami, S.; Juan, A.A. A biased-randomized simheuristic for the distributed assembly

permutation flowshop problem with stochastic processing times. Simul. Model. Pract. Theory 2017, 79, 23–36. [CrossRef]
48. González-Neira, E.M.; Montoya-Torres, J.R.; Caballero-Villalobos, J.P. A comparison of dispatching rules hybridised with Monte

Carlo Simulation in stochastic permutation flow shop problem. J. Simul. 2019, 13, 128–137. [CrossRef]
49. Marichelvam, M.; Geetha, M. A hybrid algorithm to solve the stochastic flow shop scheduling problems with machine break

down. Int. J. Enterp. Netw. Manag. 2019, 10, 162. [CrossRef]
50. Villarinho, P.A.; Panadero, J.; Pessoa, L.S.; Juan, A.A.; Oliveira, F.L.C. A simheuristic algorithm for the stochastic permutation

flow-shop problem with delivery dates and cumulative payoffs. Int. Trans. Oper. Res. 2021, 28, 716–737. [CrossRef]
51. Liu, F.; Wang, S.; Hong, Y.; Yue, X. On the Robust and Stable Flowshop Scheduling Under Stochastic and Dynamic Disruptions.

IEEE Trans. Eng. Manag. 2017, 64, 539–553. [CrossRef]
52. Liao, W.; Fu, Y. Min–max regret criterion-based robust model for the permutation flow-shop scheduling problem. Eng. Optim.

2020, 52, 687–700. [CrossRef]
53. Goli, A.; Babaee Tirkolaee, E.; Soltani, M. A robust just-in-time flow shop scheduling problem with outsourcing option on

subcontractors. Prod. Manuf. Res. 2019, 7, 294–315. [CrossRef]
54. Azadeh, A.; Moghaddam, M.; Geranmayeh, P.; Naghavi, A. A flexible artificial neural network–fuzzy simulation algorithm for

scheduling a flow shop with multiple processors. Int. J. Adv. Manuf. Technol. 2010, 50, 699–715. [CrossRef]
55. Liu, Q.; Ullah, S.; Zhang, C. An improved genetic algorithm for robust permutation flowshop scheduling. Int. J. Adv. Manuf.

Technol. 2011, 56, 345–354. [CrossRef]
56. Kasperski, A.; Kurpisz, A.; Zieliński, P. Approximating a two-machine flow shop scheduling under discrete scenario uncertainty.

Eur. J. Oper. Res. 2012, 217, 36–43. [CrossRef]
57. Gören, S.; Pierreval, H. Taking advantage of a diverse set of efficient production schedules: A two-step approach for scheduling

with side concerns. Comput. Oper. Res. 2013, 40, 1979–1990. [CrossRef]
58. Rahmani, D.; Heydari, M. Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing

times. J. Manuf. Syst. 2014, 33, 84–92. [CrossRef]

97

Algorithms 2021, 14, 210

59. Shahnaghi, K.; Shahmoradi-Moghadam, H.; Noroozi, A.; Mokhtari, H. A robust modelling and optimisation framework for
a batch processing flow shop production system in the presence of uncertainties. Int. J. Comput. Integr. Manuf. 2015, 29, 1–15.
[CrossRef]

60. Gholami-Zanjani, S.M.; Hakimifar, M.; Nazemi, N.; Jolai, F. Robust and Fuzzy Optimisation Models for a Flow shop Scheduling
Problem with Sequence Dependent Setup Times: A real case study on a PCB assembly company. Int. J. Comput. Integr. Manuf.
2017, 30, 552–563. [CrossRef]

61. Ćwik, M.; Józefczyk, J. Heuristic algorithms for the minmax regret flow-shop problem with interval processing times. Cent. Eur.
J. Oper. Res. 2018, 26, 215–238. [CrossRef] [PubMed]

62. Forst, F.G. Bicriterion stochastic scheduling on one or more machines. Eur. J. Oper. Res. 1995, 80, 404–409. [CrossRef]
63. Celano, G.; Costa, A.; Fichera, S. An Evolutionary Algorithm for Pure Fuzzy Flowshop Scheduling Problems. Int. J. Uncertain.

Fuzziness Knowl. Based Syst. 2003, 11, 655–669. [CrossRef]
64. Temiz, I.; Erol, S. Multiobjective genetic algorithm for fuzzy flowshop scheduling problem. J. Fac. Eng. Archit. Gazi Univ. 2007,

22, 855–862.
65. Zhou, Q.; Cui, X. Research on multiobjective flow shop scheduling with stochastic processing times and machine breakdowns.

In Proceedings of the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, Beijing, China,
12–15 October 2008; IEEE: New York, NY, USA, 2008; Volume 22, pp. 1718–1724. [CrossRef]

66. Azadeh, A.; Jeihoonian, M.; Shoja, B.M.; Seyedmahmoudi, S. An integrated neural network–simulation algorithm for performance
optimisation of the bi-criteria two-stage assembly flow-shop scheduling problem with stochastic activities. Int. J. Prod. Res. 2012,
50, 7271–7284. [CrossRef]

67. Liefooghe, A.; Basseur, M.; Humeau, J.; Jourdan, L.; Talbi, E.G. On optimizing a bi-objective flowshop scheduling problem in an
uncertain environment. Comput. Math. Appl. 2012, 64, 3747–3762. [CrossRef]

68. Rahmani, D.; Ramezanian, R.; Mehrabad, M.S. Multi-objective flow shop scheduling problem with stochastic parameters: Fuzzy
goal programming approach. Int. J. Oper. Res. 2014, 21, 322–340. [CrossRef]

69. Mou, J.; Li, X.; Gao, L.; Yi, W. An effective L-MONG algorithm for solving multi-objective flow-shop inverse scheduling problems.
J. Intell. Manuf. 2018, 29, 789–807. [CrossRef]

70. Fu, Y.; Wang, H.; Tian, G.; Li, Z.; Hu, H. Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective
evolutionary algorithm. J. Intell. Manuf. 2019, 30, 2257–2272. [CrossRef]

71. Faraji Amiri, M.; Behnamian, J. Multi-objective green flowshop scheduling problem under uncertainty: Estimation of distribution
algorithm. J. Clean. Prod. 2020, 251, 119734. [CrossRef]

72. Rajan, A.J.; Rao, K.S.; Ganesh, K. VEPCE: Decision-making model for vendor evaluation with respect to product prioritisation
and customer expectation. Int. J. Logist. Syst. Manag. 2007, 3, 34. [CrossRef]

73. Brown, J.R.; Ozgur, C.O. Priority class scheduling: Production scheduling for multi-objective environments. Prod. Plan. Control
1997, 8, 762–770. [CrossRef]

74. Georgakopoulos, A.; Mihiotis, A. Distribution network design: An integer programming approach. J. Retail. Consum. Serv. 2004,
11, 41–49. [CrossRef]

75. García Cáceres, R.G.; Aráoz Durand, J.A.; Gómez, F.P. Integral analysis method—IAM. Eur. J. Oper. Res. 2009, 192, 891–903.
[CrossRef]

76. Lahdelma, R.; Miettinen, K.; Salminen, P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). Eur. J. Oper.
Res. 2003, 147, 117–127. [CrossRef]

77. Resende, M.G.; Ribeiro, C.C. Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications. In
Handbook of Metaheuristics SE-10; Gendreau, M., Potvin, J.Y., Eds.; Springer: New York, NY, USA, 2010; Volume 146, pp. 283–319.
[CrossRef]

78. Knowles, J.D.; Corne, D.W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evol. Comput.
2000, 8, 149–172. [CrossRef] [PubMed]

79. Martí, R.; Campos, V.; Resende, M.G.; Duarte, A. Multiobjective GRASP with Path Relinking. Eur. J. Oper. Res. 2015, 240, 54–71.
[CrossRef]

80. Ebrahimi, M.; Fatemi Ghomi, S.; Karimi, B. Hybrid flow shop scheduling with sequence dependent family setup time and
uncertain due dates. Appl. Math. Model. 2014, 38, 2490–2504. [CrossRef]

81. Karimi, N.; Zandieh, M.; Karamooz, H. Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach.
Expert Syst. Appl. 2010, 37, 4024–4032. [CrossRef]

98

algorithms

Article

Efficient Dynamic Cost Scheduling Algorithm for Financial
Data Supply Chain

Alia Al Sadawi 1, Abdulrahim Shamayleh 1,2,* and Malick Ndiaye 1,2

Citation: Al Sadawi, A.; Shamayleh,

A.; Ndiaye, M. Efficient Dynamic

Cost Scheduling Algorithm for

Financial Data Supply Chain.

Algorithms 2021, 14, 211. https://

doi.org/10.3390/a14070211

Academic Editor: Frank Werner

Received: 18 June 2021

Accepted: 12 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Engineering Systems Management Graduate Program, American University of Sharjah,
Sharjah 26666, United Arab Emirates; g00047863@alumni.aus.edu (A.A.S.); mndiaye@aus.edu (M.N.)

2 Industrial Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
* Correspondence: ashamayleh@aus.edu

Abstract: The financial data supply chain is vital to the economy, especially for banks. It affects their
customer service level, therefore, it is crucial to manage the scheduling of the financial data supply
chain to elevate the efficiency of banking sectors’ performance. The primary tool used in the data
supply chain is data batch processing which requires efficient scheduling. This work investigates the
problem of scheduling the processing of tasks with non-identical sizes and different priorities on a
set of parallel processors. An iterative dynamic scheduling algorithm (DCSDBP) was developed to
address the data batching process. The objective is to minimize different cost types while satisfying
constraints such as resources availability, customer service level, and tasks dependency relation. The
algorithm proved its effectiveness by allocating tasks with higher priority and weight while taking
into consideration customers’ Service Level Agreement, time, and different types of costs, which led
to a lower total cost of the batching process. The developed algorithm proved effective by testing it
on an illustrative network. Also, a sensitivity analysis is conducted by varying the model parameters
for networks with different sizes and complexities to study their impact on the total cost and the
problem under study.

Keywords: financial data; supply chain management; data batching; scheduling; batching cost;
parallel processing; optimization; multi-processing commitment

1. Introduction

In today′s world, economies and commodity markets swing rapidly; personal, or-
ganizational, and business networks are becoming more interconnected, instrumented,
and intelligent [1]. One of the important aspects of the business world is supply chain
management. It works towards satisfying customers′ requirements through the efficient
use of resources resulting in reducing cost and increasing profit margin for companies [2].
With a highly competitive global market, supply chains have to be more responsive to
customers′ needs. Supply chain represents all stages of a process; usually, researchers focus
on materials that are manufactured to become an end product; however, the supply chain
covers a wider range that extends beyond physical assets. For instance, looking at the
banking sector, their main supply chain is of financial data that needs to be processed using
available resources which are software and hardware processors.

One of the main instruments used in business networks for the management of
the financial data supply chain is data batch processing (DBP). It plays a critical role
in daily operations carried out in most organizations in different business fields. Data
batch processing can be defined as the execution of data files as input batches using the
available resources and gather the resulted files as output batches while satisfying files
priorities, predecessors constraints, and time constraints [3,4]. The execution is carried
out on the mainframe computer that runs at a scheduled time or on an as-needed basis
without user interaction and minimal or no interaction with a computer operator [3,4].
The main feature of data batch processing is its ability to handle an enormous amount of

Algorithms 2021, 14, 211. https://doi.org/10.3390/a14070211 https://www.mdpi.com/journal/algorithms
99

Algorithms 2021, 14, 211

data files which makes it attractive and essential to many organizations that are constantly
dealing with heavy business activities [5]. It contributes to the major part of the workload
on mainframe computers that will often run a large number of business workflows with
complex interrelations, requiring careful scheduling and prioritizing to ensure that all
batch jobs run in the correct order and meet strict deadlines [3,4,6].

Our research considers the case of processing end-of-day (EOD) operations which
include highly important and frequently used activities and services such as: preparing
customers’ bank statements; credit card processing bills; fraud detection data; merging the
day′s transactions into master files; sorting data files for optimal processing; providing
daily, weekly, monthly, and annual reports; invoices and bank statements; performing
periodic payroll calculations; and applying interest to financial accounts [4]. Banks seek to
elevate their level of customer service by optimizing their data supply chain scheduling.
This supply chain consists of the bank, a service provider that arranges the processing of
data, and processors providing company that rents and leases processors and software
to service providers. Also, in our research, data supply chains adopt the technique of lot
streaming which is a technique that splits a given data job, each consisting of similar files,
into tasks to allow overlapping of successive operations in processing systems thereby
reducing the processing makespan.

The proposed work addresses the financial data supply chain scheduling problem
from an operational perspective by considering the scheduling at an individual job level.
The problem can be viewed as a single-stage supply chain scheduling problem where jobs
are arranged to be processed by mainframe processors that can be modeled as a series of
flow shop machines. Processors are leased and rented from manufacturing and supplying
company as needed by a third-party company that performs the data scheduling. Data
arrives raw and unprocessed from banks to a service provider which needs to manage
scheduling them for processing as per the available resources (software and hardware) in
the most efficient way. After processing, jobs must be returned back to banks where they
will be charged for the provided service.

In order to address financial data supply chain, this research covers all aspects of data
batch processing, being that it is the tool that manages banks′ financial data supply chain
scheduling. The scheduling aspects of DBP are job priorities, precedence relationships,
constraints in addition to cost. It is important to understand that cost consideration in data
batch processing is vital due to the extremely high cost of the resources involved. However,
previous research has overlooked the cost despite its importance, and the focus was on the
effectiveness of the scheduling component of the process. The high cost of software and
hardware resources used in the batch process and the patent rights of companies that own
the platform made it not only beneficial, but also essential for DBP users to reduce the cost
associated with it. Therefore, this research intends to bridge such a gap and provides a
comprehensive study that covers the important aspects of data batch processing. Thus, the
main contributions of this work can be summarized as follows:

• Consider all types of costs related to the batch process which are the servers and
software basic leasing cost, rental cost for additional resources needed in case of
overload and extra work, penalty cost of failing to execute the batch process as per
the Service Level Agreement (SLA), and the opportunity cost representing the cost of
idling a resource for any period of time due to inefficient task allocation.

• Develop an iterative dynamic scheduling algorithm (DCSDBP) to optimize the data
batch processing considering the different costs, availability of resources, and customer
service level agreement (SLA) along with the rest of the batch process factors such as
the clients′ priorities, tasks predecessors and time.

• Utilize the created optimization model to address the problem of controlling the avail-
ability of resources such as processors and software required to process input batches
and balance the usage of current owned resources and the need to rent additional
ones while maintaining the lowest possible cost for the whole data batch processing.

100

Algorithms 2021, 14, 211

The rest of the paper is organized as follows: Section 2, the background related to
this work is presented. The data batch algorithm is presented in Section 3. The illustrative
example and sensitivity analysis are presented in Sections 4 and 5 respectively. Finally, the
conclusions are presented in Section 6.

2. Literature Review

Supply chain management has another perspective when associated with the financial
sector. An alternative concept appears that relates to information or data and supply
chain known as Financial Information Supply Chain Management. The researchers in [7]
emphasized the need to improve financial operating processes in order to optimize financial
data supply chain management by reducing processing time, improving efficiency, and
decreasing associated costs of equipment and computers.

Other studies reached an aligned outcome such as the case study by [8] to design,
develop, and implement an inter-organizational system by the Reserve Bank of Australia
(central bank) and other authorities to remodel data reporting by financial institutions in
Australia. The research concluded that the complexity of data consumption patterns led to
an increased interdependence within the financial information supply chain which requires
developing data exchanges and commodity-like IT infrastructures.

Also, a study by [9] stated that multiple governments have implemented Integrated
Financial Management Information Systems to improve effectiveness and streamline busi-
ness processes. Authors determine the need for automated financial operations to improve
data supply chain efficiency.

The authors of [7] believe that in order to improve financial performance, we need
to utilize a tool from lean manufacturing. They state that although financial operations
are not the same as manufacturing operations, they share more similarities than might be
acknowledged. These similarities entitle the financial data supply chain to adopt batch
processing and scheduling from lean manufacturing.

Batch processing is widely used because of its ability to meet business-critical functions.
It is mainly applied when dealing with large, repeated jobs that can be carried out at a
prescribed time. The batch process is complex posing a challenge to efficiently allocate the
needed resources. In this section, related literature to approaches used in data batching is
presented. Also, related work of using data batching in other fields is presented as well.

The scheduling problem was studied by many researchers since it is a critical issue
in batch process operation and performance improvement. Page et al. [10] considered
eight common heuristics along with the genetic algorithm (GA) evolutionary strategy
to dynamically schedule tasks to processors in a heterogeneous distributed system; they
found that using multiple heuristics to generate schedules provides more efficient sched-
ules than using each heuristic on its own. Méndez et al. [11] classified and presented
the different state-of-the-art optimization methods associated with the batch scheduling
problem. Osman et al. [12] proposed a model for data batch scheduling; they presented a
dynamic, iterative framework to assign the required tasks to available resources taking into
consideration the predecessors, constraints, and priority of each job. Al Sadawi et al. [13]
studied the data batch problem with the goal of minimizing costs and satisfying customer
service level agreement. Lim and Chao [14] used fuzzy inference systems to model the
preferences of users and decide on the priority of each schedule with the goal of providing
users with more efficient throughput. Xhafa and Abraham [15] developed heuristic and
metaheuristic methods to deal with scheduling in grid technologies which are considered
more complicated than scheduling in classical parallel and distributed systems. Aida [16]
evaluated multiple job scheduling algorithms performance to investigate the effect of
job size characteristics on job scheduling in a parallel computer system. Stoica et al. [17]
described a schedule based on the microeconomic paradigm for online scheduling of a
set of parallel jobs in a multiprocessor system. The user was granted control over the
performances of his jobs by providing him with a saving account containing an amount of
money used to run the jobs. Stoica [18] considered the problem of scheduling an online set

101

Algorithms 2021, 14, 211

of jobs on a parallel computer with identical processors by using simulation to compare
three microeconomic policies with three variable partitioning policies. Islam et al. [19]
demonstrated higher revenue and better performance by using their proposed new schedul-
ing heuristic called Normalized Urgency to prioritize jobs based on their urgency and their
processing times.

A study by Damodaran and Vélez-Gallego [20] developed a simulated annealing
algorithm to evaluate the performance of batch systems in terms of total completion time
with the goal of minimizing the processing time, and Mehta et al. [21] proposed a parallel
query scheduling algorithm by dividing the workload into batches and exploiting common
operations within queries in a batch, resulting in significant savings compared to single
query scheduling techniques. Grigoriev et al. [22] developed a two-phased LP rounding
technique that was used to assign resources to jobs and jobs to machines where a maximum
number of units of a resource may be used to speed up the jobs, and the available amount of
units of that resource must not be exceeded at any time. Also, Bouganim et al. [23] studied
execution plans performance of data integration systems where they proposed an execu-
tion strategy to reduce the query response time by concurrently executing several query
fragments to overlap data delivery delays with the processing of these query fragments.
Ngubiri and van Vliet [24] proposed a new approach for parallel job schedulers fairness
evaluation where jobs are not expected to have the same performance in a fair set up when
they do not have the same resource requirements and arrive when the queue and system
have different states. Arpaci-Dusseau and Culler [25] used a proportional-share scheduler
as a building-block and showed that extensions to the above scheduler for improving
response time can still fairly allocate resources to a mix of sequential, interactive, and
parallel jobs in a distributed environment.

From an economic point of view, Ferguson et al. [26] adopted the human economic
model and implemented it on resource allocation in a computer network system which
resulted in limiting the complexity of resource sharing algorithms by decentralizing the
control of resources. Additionally, Kuwabara et al. [27] presented a market-based ap-
proach, where resources are allocated to activities through buying and selling of resources
between agents and resource allocation in a multi-agent system. Chun and Culler [28]
presented a performance analysis of market-based batch schedulers for clusters of work-
stations using user-centric performance metrics as the basis for system evaluation. Also,
Sairamesh et al. [29] proposed a new methodology based on economic models to pro-
vide Quality of Service (QoS) guarantees to competing traffic classes in packet networks.
Yeo et al. [30] outlined a taxonomy that describes how market-based resource management
systems can support utility-driven cluster computing; the taxonomy is used to survey
existing market-based resource management systems to better understand how they can
be utilized.

Islam et al. [31] designed a framework that provides an admission control mechanism
that only accepts jobs whose requested deadlines can be met and, once accepted, guarantees
these deadlines. However, the framework is completely blind to the revenue these jobs
can fetch for the supercomputer center. They analyzed the impact of job opportunity cost
on the overall revenue of the supercomputer center and attempted to minimize it through
predictive techniques. Mutz and Wolski [32] presented a novel implementation of the
Generalized Vickrey Auction that uses dynamic programming to schedule jobs and com-
putes payments in pseudo-polynomial time. Mutz et al. [33] proposed and evaluated the
application of the Expected Externality Mechanism as an approach to solving the problem
of efficiently and fairly allocating resources in a number of different computational settings
based on economic principles. Tests indicated that the mechanism meets its theoretical
predictions in practice and can be implemented in a computationally tractable manner.

Lavanya et al. [34] proposed two task scheduling algorithms for heterogeneous sys-
tems. Their offline and online scheduling algorithms aimed at reducing the overall
makespan of task allocation in cloud computing environments. The algorithms’ sim-
ulation proved that they outperformed standard algorithms in terms of makespan and

102

Algorithms 2021, 14, 211

cloud utilization. Minimizing makespan was the objective of the research conducted by
Muter [35] which tackled single and parallel batch processing machine scheduling. The
author presented a reformulation for parallel batch processing machines and proposed an
exact algorithm to solve this problem. Also, Jia et al. [36] developed a mathematical model
and a fuzzy ant colony optimization (FACO) algorithm to schedule parallel non-identical
size jobs with fuzzy processing times. The batch processing utilized machines with dif-
ferent capacities and aimed at minimizing the makespan. Additionally, Li [37] proposed
two fast algorithms and a polynomial time approximation scheme (PTAS) to tackle the
problem of scheduling n jobs on m parallel batching machines with inclusive processing set
restrictions and non-identical capacities. The research aimed at finding a non-preemptive
schedule to minimize makespan.

Another study by Josephson and Ramesh [38] aimed at creating a task scheduling
process by examining the various real times scheduling algorithm. The study presented
a new algorithm for task scheduling in a multiprocessor environment. The authors used
TORSCHE toolbox for developing real-time scheduling in addition to utilizing features of
particle swarm optimization. The proposed algorithm succeeded in executing a maximum
number of the process in a minimum time. Also, Ying et al. [39] investigated the Distributed
No-idle Permutation Flowshop Scheduling Problem (DNIPFSP) with the objective of
minimizing the makespan. The authors proposed an Iterated Reference Greedy (IRG)
algorithm that was compared with a state-of-the-art iterated greedy (IG) algorithm, as well
as the Mixed Integer Linear Programming (MILP) model on two benchmark problems
showing promising results.

An energy-efficient flexible job shop scheduling problem (EFJSP) with transporta-
tion was the core of research by Li and Lei [40]. The authors developed an imperialist
competitive algorithm with feedback to minimize makespan, total tardiness, and total
energy consumption. The conducted experiments provided promising computational
results, which proved the effectiveness of the proposed algorithm. Furthermore, a study
addressing distributed unrelated parallel machines scheduling problem aiming at minimiz-
ing makespan in the heterogeneous production network was proposed by Lei et al. [41].
A novel imperialist competitive algorithm with memory was developed by authors and
experiments were conducted to test the performance of where the computational results
proved the effectiveness of the algorithm. A study aimed at optimizing the trade-off be-
tween the total cost of tardiness and batch delivery was conducted by Rahman et al. [42].
To achieve this goal, the authors proposed three new metaheuristic algorithms which
are the Differential Evolution with different mutation strategy variation, a Moth Flame
Optimization, and Lévy-Flight Moth Flame Optimization algorithm. The algorithms were
validated through an industrial case study.

Luo [43] tackled the dynamic flexible job shop scheduling problem under new job
insertions. The goal of the research was to minimize the total tardiness; therefore, the
authors proposed a deep Q-network (DQN). The developed DQN was trained using
deep Q-learning and numerical experiments confirmed the superiority and generality of
DQN. Also, Yun et al. [44] suggested a genetic algorithm based energy-efficient design-
time task scheduling algorithm for an asymmetric multiprocessor system. The proposed
algorithm adaptively applies different generation strategies to solution candidates based
on their completion time and energy consumption. Experiments proved that it minimized
energy consumption compared to existing methods. Finally, Saraswati et al. [45] aimed at
minimizing the total tardiness in batch completion time using the metaheuristic approach
of simulated annealing. The programming was done using Python programming. The
research case study scheduled batches to parallel independent machines where the results
of data processing demonstrated reduced total tardiness.

As concluded from the above survey, none of the articles found in the literature
covered all aspects of data batch processing and scheduling. While some researchers
concentrated on fulfilling the time constraint, others aimed at scheduling the maximum
number of tasks effectively; however, none of the studies found in the literature considered

103

Algorithms 2021, 14, 211

cost during the scheduling process of data batches. This work tackles the significantly
effective and widely used data batching process covering all its aspects. It will focus on
scheduling a set of required jobs to be processed in a batch using the available resources
(i.e., processors) as per the predecessors, job priorities and constraints stated in the SLA
while batch job′s predecessors and priorities are specified by the client depending on the
type of tasks handled. This work represents a major contribution to the literature since it
comprises all aspects of the DBP including cost.

3. Data Batch Algorithm

This research tackles the financial data supply chain management for the banking and
financial sector which mainly revolves around processing financial-related data using avail-
able resources. Those resources are usually software and hardware processors. A major tool
used in the management of the financial data supply chain is data batch processing (DBP).
Our study covers all aspects of data batch processing—such as job priorities, precedence
task relation, and time constraints—in addition to different types of cost. It is vital to
emphasize the importance of the cost aspect in data batch processing since the utilized
resources′ costs are very high. Yet, previous research work has neglected considering DBP
cost despite its significance. Therefore, this research is extremely important since it includes
different types of DBP costs in addition to all other aspects in a scheduling algorithm.

The DBP which the financial sector relies heavily on has been bounded by the IT
systems that drive banking businesses making them in severe need of rapid, efficient
and effective processes to be able to focus on their clients holistically. They use DBP
widely in their daily operations like processing end-of-day (EOD) jobs which include
highly important and frequently used activities and services such as: preparing employees′
payroll, interest rate calculations, and customer′s bank statements, credit card processing
bills, fraud detection data, and many others [4]. Banks usually outsource DBP to a third-
party company (service provider) that takes charge of arranging and processing the data
and aggregating the output as shown in Figure 1. The service provider company leases
processors and software from a provider to perform the batch process for the bank based
on a Service Level Agreement (SLA). The service provider usually operates after closing
hours so there will be no more data entries or online intervention.

Figure 1. Data batching service network.

DBP begins with scheduling data, gathered in batches by type, to the available proces-
sor. The data files are scheduled while taking into consideration job priorities, predecessors
and other constraints meaning that jobs will not be processed simultaneously but rather
as per their schedule. The objective is to execute the tasks using the available resources
to improve utilization, reduce cost and increase their profit while meeting the SLA. Each
job consists of one or more executable data files. It is considered the surface layer of batch
systems. A job consists of multiple tasks; therefore, the network of tasks is a detailed
network view of jobs. In other words, a job is defined as a collection of tasks that are
used to perform a computation. The developed dynamic scheduling algorithm considers
cost types associated with the data batch scheduling which are: servers and software
leasing cost, rental cost for additional resources needed in case of overload and extra work,
penalty cost of failing to execute the batch process as per the (SLA), and the opportunity

104

Algorithms 2021, 14, 211

cost representing the cost of idling a resource for any period of time due to inefficient
task allocation.

The data batching dynamic algorithm will be presented next. The algorithm will
efficiently decide on resources allocation for the service provider to minimize the total
operational cost. The service provider will batch process data for its clients one at a time
according to a specific service agreement with that client.

3.1. Dynamic Cost Scheduling Algorithm for Data Batch Processing (DCSDBP)

Usually, given the current business practice dealing with such techniques, certain
market-based rules govern the implementation of these scheduling processes. Therefore,
the following assumptions underpinning the proposed algorithm are applied:

• The service-providing company lease a fixed number of data processors.
• Reserving processors is not allowed at the beginning or during the batch process

scheduling. A processor is immediately acquired once a decision is made to rent it.
• The characteristics of data files that will be processed as batches such as size and

priorities are specified at the beginning of the scheduling process.
• Hardware and software costs are incurred for processing data.
• The hardware cost is a fixed amount.
• Software cost will have fixed and variable cost amounts; the variable cost is charged

based on usage per unit time.
• Additional processors can be rented anytime during the execution; however, costs

will be higher, 1.25 times, than the currently leased processors′ hardware and software
fixed cost. Also, a software variable cost is charged per unit time of usage. These
assumptions are derived from practices in the field.

• Additional processors are rented only if there is a chance of not meeting the SLA.
• When an additional processor is acquired, it will be accounted for from the time it is

acquired until the end of the batch window.
• Whenever an additional processor is rented at any time unit T, the endorsed fixed

hardware and software costs will be calculated from the time of renting until the end
of the batch process.

• Each leased or additionally rented processor executes a single task at a time.
• Different tasks can be processed in parallel. Parallel processing can occur only if there

is no restriction due to priorities and predecessors relations provided in advance.
• A single data file containing multiple tasks can be multi-processed on multiple proces-

sors at the same time if it is allowed by the tasks predefined predecessors relations
and the hardware and software resources are available.

• The iteration clock time unit is estimated by the time it takes to process the smallest
size unit of the data file.

• The total DBP time is a multiple of the iteration unit time. Files are allocated to
processors until a predetermined SLA time is reached. A penalty cost is imposed on
each delay unit of time if the SLA is exceeded. The total penalty cost is calculated by
multiplying the time delay by the penalty cost per unit time.

• At the beginning of each time unit T, files are allocated and resources are captured.
However, at the end of the time period T, all resources are freed and ready for the next
time period T.

3.1.1. Indices

i,j Data file.
k Leased processor
r Rented processor.
T Clock discrete time

105

Algorithms 2021, 14, 211

3.1.2. Problem Parameters

I Set of data files.
I′T Subset of the data files that are available for processing at any time T.
ni Required processing time for data file i.
SLA Batch process time as agreed on in the SLA.
K Set of all leased processors.
R Set of rented processors.
VT Number of rented extra processors that can be acquired at any discrete time T.

lT
ij

Binary parameter equal to 1 if data file j immediately precedes data file i, and 0
otherwise (parameters of precedence/dependency matrix).

αT
i Data file weight based on precedence/dependency matrix.

βi Data file scheduling priority provided by the client.
lT
ij Precedence/dependency matrix at each period T.

BW Available batch process window.
Csf Leased processor software fixed leasing cost.
Csv Variable leasing cost per unit time of a processor software.
Ch Leased processor hardware cost.
Cesf Fixed rental cost per unit time of additional processor software.
Cesv Variable rental cost per unit time of additional processor software.
Ceh Rental cost per unit time of additional processor hardware.
Cp Penalty cost per unit time for failing to execute the batch process as per the SLA.
ei Number of times file i can be multi processed.
TCp Delay time total penalty cost.
TH Total cost of renting one additional processor at any time unit T.
DT Available files total multiprocessing ei at any time T.
Tr Clock discrete time at which extra processor r is rented.
END End of batch process.
TBC Total batch process cost.

3.1.3. Problem Variables

Pk Binary variable equal to1 if processor k is available and 0 otherwise.
Wr Binary variable equal to1 if processor r is available and 0 otherwise.

f T
i

Binary variable equal to 1 if data file i is available for processing at discrete time
T, and 0 otherwise.

qT
i

Number of times data file i has been processed. It is incremented by one every
time data file i being processed.

AT Binary variable equal to 1 if T > SLA, and 0 otherwise.
UT Critical path at time T for each file i included in the subset I′T .
EST

i Early start of file i.
LST

i Late start of file i.
ST

i Slack (the difference between early start and late start) of file i.
OT

i Binary variable equal to1 if ni − qT
i > 0, and 0 otherwise.

3.1.4. Problem Decision Variables

XT
iK Binary variable equal to 1 if data file i allocated to processor k, and 0 otherwise.

YT
ir

Binary variable equal to 1 if data file i is allocated to extra processor r, and
0 otherwise.

The DCSDBP algorithm is illustrated in Figure 2 and the step-by-step description of
the algorithm is as follows.

106

Algorithms 2021, 14, 211

Figure 2. Dynamic Cost Scheduling Algorithm for Data Batch Processing (DCSDBP).

Step 1: Preparatory and Initialization Stage

This step involves preparing the initial data which consists of the subset of data files
that are ready for processing and the availability of leased and rented. We also set:

1. The extra processors′ utilization parameter to zero indicating that no extra processor
is used at the beginning of the allocation process.

2. The data files processing parameters to zero meaning that files are not being processed
yet. In addition to that, the time loop is initialized where time is set to zero. At the
end of the step, we initialize all data needed to start the iterative algorithm.

I′T = {} (1)

107

Algorithms 2021, 14, 211

Set
Pk = 1 ∀ k ∈ K (2)

Equation (2) indicates that leased processors are ready since the binary variable Pk is
set to 1.

Set
Wr = 1 ∀ r ∈ R (3)

Equation (3) indicates that rented processors are ready since the binary variable Wr is
set to 1.

Set
VT = 0 (4)

Equation (4) indicates that the number of rented extra processors acquired at this time
period VT is zero.

Set
qT

i = 0 ∀ i ∈ I (5)

Equation (5) indicates that a data file i have never been processed since qT
i is set

to zero.
Set

T = 0 (6)

Equation (6) indicates the beginning of the time loop of the algorithm where the time
T is set to zero.

Step 2: Set of Files Available for Processing

We assign parameters and weights to the subset of data files available for processing
I′T based on their precedence obtained from the dependency matrix.

If:
∑J

j=1 lT
ij = 1 ∀ i (7)

Then set:
f T
i = 1 (8)

I′T= I′T + {i} (9)

αT
i =

I

∑
θ=1

lT
θi ∀ i (10)

αT
i is the weight for each data file. It is calculated using the precedence/dependency

matrix by finding the number of files that depend on file i.
This step will indicate the set of data files available for processing which will serve as

input for step 3 to start the scheduling of available files on the available processors.

Step 3: Allocation of Files to Processors

In this step, the algorithm allocates files to processors. The model presented in this
step will allocate files with the objective function (11) of minimizing data file allocation
cost while taking into consideration priority, weight and criticality of each file included in
each subset at any time T.

Min (Z T) =
I′
∑

i=1

K
∑

k=1
(

Csv+ (
Cs f+ Ch

BW)

βi αT
i

) XT
iK+

K
∑

k=1
(Cs f+Ch

BW) (1− I′
∑

i=1
XT

iK)+
I′
∑

i=1

V
∑

v=1
(Cesv+Ces f+Ceh

βi αT
i

)YT
ir+

V
∑

v=1
(Ces f + Ceh) (1 − I′

∑
i=1

YT
ir)+ AT ∗ Cp ∗ (T − SLA)

(11)

The first term considers the basic processors leasing cost, weight αT
i and priority βi

at any time unit T. The second term considers the opportunity cost of not utilizing the
leased processors at any time unit T. The third term handles the cost of renting additional
processors, weight αT

i and priority βi at any time unit T. The fourth term considers the

108

Algorithms 2021, 14, 211

opportunity cost of not utilizing the additionally rented processors at any time T. the
last term is concerned with the penalty cost of exceeding the SLA. The βi αT

i used in
terms 1 and 3 ensures that files with higher priority and weight are scheduled first. BW is
the available time during which processing can take place. It is used in Equation (11) to
find what the fixed cost of resources per unit time is.

Subject to:

K

∑
k=1

XT
ik +

V

∑
r=1

YT
ir ≤ Mi f T

i ∀ i ∈ I′T where Mi = min {ei, ni − qT
i , K + V} (12)

The constraint in Equation (12) is concerned with leased and additionally rented
processors allocation and their availability to ensure that the total file allocation does not
exceed either file multiprocessing ei or file required remaining processing ni or the total
number of available basic and extra processors (K,V) for any file i at a certain time T.

qT
i ≤ ni ∀ i ∈ I (13)

The constraint in Equation (13) ensures that the number of times a file is processed is
less or equal to the needed processing time.

I′

∑
i=1

XT
ik ≤ PT

k ∀ k ∈ K (14)

The constraint in Equation (14) ensures that exactly one data file is allocated to a single
leased processor.

I′

∑
i=1

YT
ir ≤ WT

r ∀ r ∈ R (15)

The constraint in Equation (15) ensures that exactly one data file is allocated to a single
additionally rented processor.

XT
iK 0 or 1 ∀ i ∈ I and k ∈ K (16)

The constraint in Equation (16) declares that the decision variable Xik is binary, mean-
ing that file i either be assigned to a leased processor or not.

YT
ir = 0 or 1 ∀ i ∈ I and r ∈ R (17)

The constraint in Equation (17) declares that the decision variable Yir is binary, mean-
ing that a file i either be assigned to an additionally rented processor or not.

Step 4: Update Utilized Extra Processors

At this stage, we check if an additional processor should be rented at this time unit
to avoid delay and penalty cost. This step involves calculating the critical path duration
for the rest of the unprocessed activities in the data files network at each time unit and
compare it to the remaining time until the end of the batch process time that is agreed on
in the SLA. A trade-off between the cost of renting an additional processor and the penalty
cost is made, and according to that, it will be decided whether to rent a new processor
or incur a penalty cost. Renting a new processor is subject to the condition that the total
number of data files available for processing is higher than the total number of rented basic
and extra processors.

Critical path duration

Calculate UT = duration of the remaining critical path at time T.EST
i = Max

{EST
j + (ni − qi

T)} ∀ i and j ∈ I where (i
= j) andαi<= αj
(18)

109

Algorithms 2021, 14, 211

EST
i = 0 ∀ i = 0 (19)

LST
i = Min {LST

j − (ni − qi
T)} ∀ i and j ∈ I where (i
= j) andαi<= αj (20)

ST
i = LST

i − ESi (21)

UT =
I

∑
i=1

(ni − qi
T) ∀ i ∈ I and ST

i = 0 (22)

In the above equations the slack ST
i for each file i is calculated and the critical path for

the network UT is found for the files with slack equal to zero (ST
i = 0).

Checking critical path duration against SLA
If

UT ≥ SLA−T (23)

Then
TCp = Cp ∗ (UT−(SLA−T)) (24)

Else
TCp = 0 (25)

The above equations calculate the penalty cost TCp for all cases of critical path duration
against SLA.

Cost of renting extra processor in case there is a delay
If

UT ≥ SLA−T (26)

Then
TH = (Cesf + Cesh + Cesv) ∗ UT (27)

Else
TH = 0 (28)

The above equations calculate the extra processor renting cost TH in case of a delay.
Amount of processing to completion

DT = (∑I′
i=1 ei − qT

i) ∀ i ∈ I′T and ei > 1 + (∑I′
i=1 eT

i) ∀ i ∈
I′T and ei = 1

(29)

Decision on renting extra processor
If

TCp ≥ TH and DT > (K + V) (30)

Then
VT= VT + 1 (31)

Tr = T (32)

VT ≤ R (33)

In the above equations, the number of rented extra processor VT is increased by one
if the penalty cost TCp is greater than the extra processor renting cost TH.

In this step, we are calculating the maximum completion time using CPM without
considering splitting because the decision to multi-process a job is not taken yet. A job
multi-processing means it can be split if needed to minimize the completion time of the
batch process. CPM is not the only tool in this study to make the decision. Looking at
Equations (29) and (31), the decision to rent an additional processor is based on another
criterion. D was introduced which, as per Equation (29), ensures that no extra processor
shall be rented unless there is an available task ready to be allocated to it. This ensures that
no additional processor will be rented unless it will be used.

Step 5: Update the Availability of Files

110

Algorithms 2021, 14, 211

Each data file processing parameter is incremented by the number of times it was
processed. When a file is fully processed, then it is removed from the subset for the
following time unit and the rest of the process.

Update f T
i Matrix:

qT
i = qT

i +
K

∑
k=1

XT
ik+

R

∑
r=1

YT
ir ∀ i ∈ I′T (34)

If
OT

i = 1 (35)

Then
f T+Δ
i = 1 (36)

Else
f T+Δ
i = 0 (37)

And
lT+Δ
ji = 0 ∀ j (38)

If
qT

i = ni

Then
J

∑
j=1

lT+Δ
ij = 0 ∀ i (39)

And
I

∑
i=1

lT+Δ
ji = 0 ∀ j (40)

This step will update the file availability to determine if any file needs further process-
ing or all files are completed.

Step 6: Check Termination Condition

When all files are processed, then the algorithm shall stop, else the model will go to
step 7.

If
I

∑
i=1

qT
i =

I

∑
i=1

ni (41)

Then
Stop.
If

T > SLA (42)

Then
AT = 1 (43)

Else
AT = 0 (44)

Step 7: Update Clock

Increment iteration clock by one time unit until the DCSDBP algorithm allocates
all files.

T = T+1 (45)

Go to Step 2
Steps 2 through 7 of the DCSDBP will be repeated until all tasks are allocated to

available resources and there are no more jobs waiting in the queue.

111

Algorithms 2021, 14, 211

The Total batch process cost is updated as follows:

TBC = (Cs f + Ch) ∗ K +
END
∑

T=1

I′T
∑

i=1

K
∑

k=1
Csv ∗ XT

ik

+
BW
∑

T=1

I′T
∑

i=1

K
∑

k=1

(Cs f +Ch)

BW ∗ (1 − XT
ik)

+
V
∑

r=1
(Ces f + Ceh)(END − Tr) +

END
∑

T=1

I′T
∑

i=1

V
∑

r=1
Cesv ∗ YT

ir

+
V
∑

r=1

I′T
∑

i=1

END
∑

T=Tr
(Ces f + Ceh)(1 − YT

ir) + AEND ∗Cp ∗(TEND − SLA)

(46)

The total cost and the completion time will be calculated at the end of the DCSDBP
algorithm. The total batch process cost (C) = leased processors fixed hardware cost +
leased processors fixed software cost+ leased processors variable software cost + leased
processors opportunity cost + rented processors variable software cost + rented processors
fixed software cost + rented processors hardware cost + rented processors opportunity cost
+ penalty cost.

4. Illustrative Example

In this section, we present a numerical example to illustrate the proposed DCSDBP
algorithm. Consider a network of 15 data files with the precedence relations as shown in
Figure 3.

Figure 3. Illustrative example.

The precedence relationships are fixed relationships provided by the client that the
service provider must use in processing the files; therefore, there cannot be any deadlocks
relation. Table 1 presents the different parameters’ values; these values are either given
directly such as file′s multiprocessing ei, processing time ni and priority βi, or derived
from the files precedence relation such as file′s weight αiˆT and precedence parameter LijˆT.
The following data were also used: there are two available leased processors; maximum
number of available processors than can be rented is 5, SLA = 18 time units; batch window

112

Algorithms 2021, 14, 211

BW = 22 time unit; leased processor fixed software cost Csf = $10; leased processor hard-
ware cost Ch = $100; leased processor variable software cost per time unit Csv = $2; rented
processor fixed software cost Cesf = $12.5; rented processor Hardware Cost Ceh = $125;
rented processor variable software cost per time unit Cesv = $2.5; penalty cost per time unit
in case of exceeding the SLA is Cp = $200.

Table 1. Model parameters at T = 0.

File ei ni βi αT=0
i Lij

0 0 0 1 1 1
1 3 9 2 6 1
2 1 1 3 5 1
3 2 8 2 5 1
4 3 9 4 4 1
5 1 3 2 4 3
6 1 1 5 4 1
7 1 3 2 3 3
8 1 8 2 3 3
9 2 4 2 3 1

10 2 8 2 3 1
11 1 1 1 4 7
12 6 12 1 4 5
13 3 9 1 4 5
14 1 2 2 2 4
15 1 4 2 2 4
16 0 0 1 1 1

The algorithm was programmed using LINGO 15.0 x64. The Lingo output shows
that the files were processed in 20 time units, while 4 extra processors were rented, and
the batch process exceeded the SLA by 2 time units, which indicates that penalty cost was
imposed. Once the batch process started, the program sets all initialization conditions,
which means that ready files subset I′T is empty. At the beginning of each time unit T,
the precedence parameters lT

ij for all files are checked to determine which files are ready

to be processed. All files having precedence parameter lT
ij = 1 are considered ready and

inserted to the ready files subset I′T . It is worth mentioning that files 0 and 16 are start
and end files with processing time ni = 0 which means they won′t be allocated to any
processor. The reason of their existence is to start and end the network for critical path
calculation purposes.

The algorithm started at T = 0 with files 1, 2, 3, 4, 6, 9, and 10 ready for processing;
therefore, they were inserted into the ready files subset I′T . At T = 0 files 4 and 6 were
processed by leased processor 2 and 1 respectively because these files have the highest
calculated weight αT=0

i and predetermined priority βi while the rest of ready files were
shifted for the next time unit. At T = 1, the values of precedence parameter lT

ij are updated
for all files, so the ones that have not been processed or not finished processing still have
the value of 1 and are consequently still included in the ready files subset I′T while file
6 which has a processing time ni of 1 has the value of lT

ij =0 and no longer exist in the

subset I′T since it is considered ready. Also, an additional processor VT was rented and
utilized at that time unit because the criteria of renting a new processor was satisfied. It
was found that the critical path of the remaining network activities exceeds the SLA, so the
program needs to take an action to try to avoid the delay. The decision of renting a new
processor is made since the cost of renting a new processor TH was found to be less than
the penalty cost TCp at that time unit and also since there are ready files for the next time
unit that exceeds the total number of available processor. During T = 1 file 4 was processed
by leased processors 1 and 2, as well as by the additionally rented processor 1.

At T = 2 another additional processor was rented based on the above-explained mecha-
nism. File 4 continued to be processed by leased processors 1 and rented processors 1 and 2

113

Algorithms 2021, 14, 211

since it has a multiprocessing of ei = 3. Also, file 2 was processed by leased processor 2.
At T = 3 an additional third processor was rented and file 1 was processed by leased
processors 1 and 2 and rented processor 3 due to its multiprocessing criteria. File 4 was
processed by rented processors 1 and 2 and by that it is considered ready. At T = 4 the forth
additional processor was rented and used to process file 1 along with rented processors 1
and 3 while rented processor 2 and leased processor 1 were used to process file 3. File 5 was
processed by leased processor 2. T = 5 had the same files allocations as T = 4. It is noted
that the program did not rent any more extra processor starting from T = 5 onwards which
means it utilized 4 out of the 5 processors available for renting and that is based on the
renting mechanism. The same steps were executed on all files until the end of processing
at T = 19 when all files were processed.

The batch process cost calculation was based on using Equation (46) by using the
input values listed earlier in this section and the allocation results from Lingo output;
Table 2 demonstrates the detailed costs. Also, Table 2 clarifies the cost of allocating files to
leased processor and that includes hardware and software fixed costs as well as software
variable cost. Similarly, rented processors allocation cost which includes hardware and
software fixed costs as well as software variable cost is shown. Then the opportunity costs
associated with each processor type is calculated. Penalty cost is determined at the end of
the batch process and total cost is found by summing all costs for each time unit. In Table 2,
column (1) represents the time unit T, column (2) shows the total number of existing leased
processors K, column (3) identifies how many leased processors are actually being acquired
at each time unit T, column (4) calculates the leased processors variable cost Csv while the
fixed software Csf and hardware Ch costs are calculated at the end because they are not
related to time. Leased processors opportunity cost is determined in column (5) as per
Equation (27). For rented processors, column (6) shows the number of additionally rented
processors VT at that time unit T, column (7) represents the number of rented processors
actually being acquired at each time unit T. In column (8), and based on model assumption
14 which states that rented processors are paid for from the time unit T they are rented
onwards, rented processors total allocation cost is calculated using all types of costs (extra
fixed hardware cost Ceh, extra fixed software cost Cesf and extra variable software cost
Cesv). It is worth mentioning that in case of an additional processor being rented but
not utilized due to unavailability of ready files, the total allocation cost will equal fixed
hardware cost Ceh plus fixed software cost Cesf while the variable software cost Cesv will
not exist since the processor is not being utilized. Rented processors opportunity cost is
found in column (9) using fixed hardware cost Ceh plus fixed software cost Cesf. Finally,
column (10) sums all the above costs for each time unit T.

At the end of Table 2 leased fixed costs are added, they represent fixed hardware
cost Ch plus fixed software cost Csf for each leased processor k. Also as mentioned above
penalty cost is calculated based on number time units the processing is delayed beyond
the SLA. Since leased processors fixed hardware cost Ch and fixed software cost Csf are
calculated per unit time by dividing them by BW, remaining opportunity cost for basic
processor exists in case the batch process time END is less than batch window BW. It
represents the opportunity cost of the leased processors for the time units between the end
of batch process END and BW.

From Table 2, we can see that from T = 0 until T = 17, the basic allocation cost
was showing the utilization of both leased processors, which explains the zero value for
opportunity cost of leased processors during the same period. However, at T = 18 and 19
one leased processor was utilized and that ended up in variable allocation cost for one
processor and opportunity cost for the other. It can be also noticed that from T = 0 up to
T = 10, every rented processor was utilized which ended in zero opportunity cost. After
T = 10 some rented processors were not utilized due to unavailability of ready files such as
at T = 11 where 3 out of 4 rented processors were utilized. Also at T = 12, 13, 16, 17, 18, and
19 none of the rented processors were utilized due to the unavailability of ready files.

114

Algorithms 2021, 14, 211

Table 2. DBP cost summary.

Leased Processors Rented Processors (10)
Total

Cost/Time
Period

$

(1)
T

(2)
No. of

P

(3)
No. of

Acquired
P

(4)
Allocation
Variable

cost $

(5)
Oppo.
Cost $

(6)
No. of

P

(7)
No. of

Acquired
P

(8)
Total

Allocation
Cost $

(9)
Oppo.
Cost $

0 2 2 4.00 0.00 0 0 0.00 0.00 4.00
1 2 2 4.00 0.00 1 1 8.75 0.00 12.75
2 2 2 4.00 0.00 2 2 17.50 0.00 21.50
3 2 2 4.00 0.00 3 3 26.25 0.00 30.25
4 2 2 4.00 0.00 4 4 35.00 0.00 39.00
5 2 2 4.00 0.00 4 4 35.00 0.00 39.00
6 2 2 4.00 0.00 4 4 35.00 0.00 39.00
7 2 2 4.00 0.00 4 4 35.00 0.00 39.00
8 2 2 4.00 0.00 4 4 35.00 0.00 39.00
9 2 2 4.00 0.00 4 4 35.00 0.00 39.00
10 2 2 4.00 0.00 4 4 35.00 0.00 39.00
11 2 2 4.00 0.00 4 3 32.50 6.25 42.75
12 2 2 4.00 0.00 4 0 25.00 25.00 54.00
13 2 1 2.00 5.00 4 0 25.00 25.00 57.00
14 2 2 4.00 0.00 4 4 35.00 0.00 39.00
15 2 2 4.00 0.00 4 4 35.00 0.00 39.00
16 2 2 4.00 0.00 4 0 25.00 25.00 54.00
17 2 2 4.00 0.00 4 0 25.00 25.00 54.00
18 2 1 2.00 5.00 4 0 25.00 25.00 57.00
19 2 1 2.00 5.00 4 0 25.00 25.00 57.00

Total dynamic cost $ for all periods 795.25
Penalty cost $ 400.00
Leased processors fixed costs $ 220.00
Remaining opportunity cost for Leased
processors $

20.00

Batch Process Total Cost $ 1435.25

The above illustrative example shows the effectiveness of the developed algorithm in
allocating files to processors. The algorithm managed to allocate highly prioritized and
weighted files before the ones with lower priority and weight. Also, the algorithm will
advise renting the necessary number of extra processors to accomplish the batch process
goal while trying to minimizing cost. In the illustrated example, the program rented 4 extra
processors to achieve minimum real batch process time, which is 20 time units. Although
that exceeds the SLA specified time of 18 time units, it is the minimum possible execution
time for this network due to network logic and predecessors′ relations.

The illustrative example shows that the batch processing is performed using a set of
assumptions and constraints under which the problem makes the best decision at that time
unit. Decisions are made dynamically based on the current status and previous decisions.
This decision process ascertains that the best decision is taken at each iteration. We do
not define the global network (of all feasible assignments of jobs to servers) to perform a
direct optimization on it, we rather generate the subnetwork of feasible assignments at each
iteration (Step 3 of the algorithm). This sequence of optimum decision-making ensures
that the solution at the end is global. Not being optimal would mean that a better solution
exists at some stage in the optimization process, which would contradict stage 3 as built.

5. Sensitivity Analysis

The whole research was motivated by working with a company in the field, therefore,
whatever assumptions and constraints applied to the algorithm are based on practice.
Given the initial results obtained from the illustrative example, they were promising and
could be easily extended to cover other networks.

115

Algorithms 2021, 14, 211

Sensitivity analysis was performed in two parts. The first part was conducted on the
illustrative example network by changing different parameters. In part two, the algorithm
performance was tested using networks with varying sizes and complexities.

5.1. Parameters Variation Analysis

Different parameters were tested and the summary of results total cost and process
time are shown in Figures 4 and 5, respectively.

Figure 4. Result of sensitivity analysis on DBP total cost.

Figure 5. Result of sensitivity analysis on DBP batch time.

116

Algorithms 2021, 14, 211

5.1.1. Varying Number of Processors Available to Rent

In the case of having four processors available for rent to be used in the batch process,
the results were the same as the case of five available processors since the same number
of processors were actually rented as in the illustrative example results shown earlier.
However, having three available processors to rent resulted in a longer batch process time
and higher total cost in addition to that, the SLA was exceeded by more time units. Having
two processors available for rent resulted in more delay in batch process time, increased
the total cost, and the SLA was exceeded by 6 time units. The batch process had the
highest delay and total cost in the last case of having only one available processor to rent.
The previous results shows that the algorithm is renting additional processors only when
needed in order to perform the batch process with minimum execution time and total cost.

5.1.2. Changing SLA Value

Different values for the SLA were tested. The results show the lower the SLA value,
the higher the penalty cost will be or the need to rent additional processors to avoid delay
and the opposite in case of higher SLA. The values tested are for SLA = 16, 17, 19, and
20. It is recommended that, when deciding on the SLA time between the client and the
service provider, both sides study the data batch network carefully to decide on the right
SLA terms that serve both sides and achieve the goal of the batch process.

5.1.3. Varying Penalty Cost per Time Unit

Different penalty cost values were assumed and the algorithm was tested accordingly.
The results showed that the lowest batch process cost is obviously obtained when the
penalty cost is set to zero. In this case, there will not be any trade-off between cost of
renting an additional processor and any other cost; however, the program needed more
time to run since the completion time to process doubled. In the case of the penalty, cost
equals to $5 same results were obtained as in the case of zero penalty cost. Three extra
processors instead of four were used with a penalty cost equal to 8 and the total batch
process time was higher; however, the total cost is less. In cases of penalty cost of $20
and $100 per time unit, the same number of extra processors were rented as of the case
of penalty cost per unit time = $200 but with a less total bath cost. Increasing the penalty
cost further to $500 will not affect the way files are allocated to servers since the program
will not be able to squeeze the batch time more even if the trade-off between renting more
extra processors and penalty cost goes in favor of utilizing another rented processor simply
because of the network′s activity relations. In other words, due to precedence constraints
jobs are processed only when they are available. Therefore, even if more resources are
available, the duration will not be reduced since the resources will not be utilized; i.e.,
paying more money for resources may not reduce the completion time.

5.1.4. Changing the Processor Rental Costs

When increasing the renting cost of an additional processor to 2.5 times the leased
processor cost, the program rented the same number of processors to finish the batch
process because the penalty cost is still higher relatively. It only ended up increasing the
total batch cost, while the same number of additional processors were utilized. Increasing
the processors renting cost to 5 times the leased processor cost did not stop the program
from renting additional processors to finish the batch process because the penalty cost is
still relatively higher. However, the total batch cost increased while the same number of
additional processors were utilized. To prove the efficiency of the algorithm, the case of
equal costs for leased and rented processors was tested, the algorithm rented only what it
needed from available additional processors to finish the batch process. Finally, in the case
of setting costs ratio to 0.5, the total price went lower but the files-to-processors allocation
stayed the same.

The above findings and analysis prove that when the algorithm reaches the optimum
solution, it does not utilize any unnecessary resources since it is part of the objective

117

Algorithms 2021, 14, 211

function to minimize all types of costs while trying to meet SLA deadline and satisfy all
priorities and constraints.

5.2. Jobs Network Size Analysis

In the second part of the sensitivity analysis, the developed algorithm was tested
by varying the number of jobs and the network complexity. Different network sizes and
relationship complexities were generated using a random network generator RanGen2
software [46]. Several data for different network sizes of 15, 25, 50, and 100 jobs were
generated. Each network size was also generated based on precedence complexity measure
by an indicator of complexity “I2 index” which is a measure of the closeness of a network
to a serial or parallel network based on the number of progressive levels. If I2 = 0 then the
network activities are all in parallel, meaning no relation between them, while if I2 = 1 then
the network activities are all in series [47]. The average program run time for the complete
DCSDBP Algorithm for each network is shown in Table 3. The results demonstrate that the
algorithm is efficient since the program run time is relatively low and acceptable.

Table 3. Run times for variant network sizes with different complexities.

No. of Network Activities Complexity Index I2 Run Time (s)

15
0.2 2
0.5 3
0.8 3

25
0.2 5
0.5 2
0.8 4

50
0.2 11
0.5 13
0.8 14

100
0.2 33
0.5 34
0.8 34

6. Conclusions

The financial data supply chain is of huge importance to the banking sector. It impacts
financial institutes′ performance and customer service. Therefore, it is of great necessity to
manage the scheduling of the financial data supply chain. The main tool utilized in the
financial data supply chain is data batch processing. Batch scheduling and processing are
extremely important because they are widely used in service industries to track tasks and
data continuously. However, there is a lack of an efficient scheduling solution for data batch
scheduling which creates a major issue for the financial sector. The goal of this work is to
develop an iterative Dynamic cost scheduling for DBP (DCSDBP) algorithm that includes
all aspects of DBP. Different types of costs associated with the batch process were taken into
consideration to develop the iterative scheduling algorithm. While the algorithm worked
towards minimizing these costs, it aimed at the same time to allocate files based on their
weight and priority without violating network predecessors′ relations. Also, the algorithm
tries to satisfy the time limit specified in the SLA. The developed algorithm proved its
effectiveness in allocating data files to available resources while satisfying priority and
predecessors constraints in addition to maintaining the minimum possible cost, keeping in
mind the SLA time limit. After coding the developed algorithm using Lingo, a number of
networks were used to test it. It was concluded from the results that it is more effective
to include all types of costs along with priority, weight, predecessor, and time factors,
which led to a more effective allocation and a lower total batch process cost. It can also
be seen from the results that renting more processors does not necessarily mean that
the batch process will be performed in a shorter time because network logic relations or
‘predecessors′ relations′ govern the process′s total time. The decision of whether or not to

118

Algorithms 2021, 14, 211

rent a new processor and when to do so is very important since it will affect the whole batch
process in terms of file allocations to processors and total processing cost and time. Our
research has positive implications on the performance and customer service of financial
institutes and banks that choose to adopt it. It optimizes the scheduling of the data batch
process which reflects on a more efficient and reliable financial data supply chain and
through better management. The algorithm was developed under certain assumptions;
while we tried to generalize it to cover batch processing, there are some limitations that
could be addressed in future researches. For instance, it was assumed that resources costs
are the same for leased processors, this could be generalized to assume different costs or
even different costs as a future research direction. Also, additional research could be done
on cases where renting additional processors has varying costs. Future researchers might
also work on developing the additional processors renting mechanism to allow more than
one processor to be rented for each time unit in case that serves the total completion time
and maintains a low cost. In addition, one of our basic assumptions is that processors
reservation is not allowed, which can be researched further to test the case where processor
reservation is allowed and how it can be implemented; in addition to its impact on the
different aspects of the batch process such as total process time, total cost and basic and
extra processor utilization.

Author Contributions: A.A.S.: conceptualization, methodology, software programming, validation,
and writing the original draft. A.S. and M.N.: conceptualization, methodology, and finalizing the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no specific funding for this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable. This article does not contain any studies with human
participants or animals performed by any of the authors.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors have no conflict of interest to declare.

References

1. Jensen, C.T. Smarter Banking, Horizontal Integration, and Scalability. 2010. Available online: http://www.redbooks.ibm.com/
redpapers/pdfs/redp4625.pdf (accessed on 15 June 2021).

2. Chang, Y.-C.; Chang, K.-H.; Chang, T.-K. Applied column generation-based approach to solve supply chain scheduling problems.
Int. J. Prod. Res. 2013, 51, 4070–4086. [CrossRef]

3. Bullynck, M. What Is an Operating System? A Historical Investigation (1954–1964). In Reflections on Programming Systems:
Historical and Philosophical Aspects; Philosophical Studies Series 2542–8349; Springer International Publishing: Cham, Switzerland,
2018; pp. 49–79.

4. Microsoft-Corporation. Batch Applications—The Hidden Asset. 2006. Available online: http://download.microsoft.com/
download/4/1/d/41d2745f-031c-40d7-86ea-4cb3e9a84070/Batch%20The%20Hidden%20Asset.pdf (accessed on 15 June 2021).

5. Antani, S. Batch Processing with WebSphere Compute Grid: Delivering Business Value to the Enterprise. 2010. Available online:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4566.pdf (accessed on 16 June 2021).

6. Barker, M.; Rawtani, J. Practical Batch Process Management; Elsevier: Burlington, VT, USA, 2005.
7. Matyac, E. Financial Supply Chain Management. Str. Financ. 2015, 96, 62–63.
8. Fahy, M.; Feller, J.; Finnegan, P.; Murphy, C. Co-operatively re-engineering a financial services information supply chain: A case

study. Can. J. Adm. Sci. 2009, 26, 125–135. [CrossRef]
9. Mbaka, A.; Namada, J. Integrated financial management information system and supply chain effectiveness. Am. J. Ind. Bus.

Manag. 2019, 9, 204–232. [CrossRef]
10. Page, A.J.; Keane, T.M.; Naughton, T.J. Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous

distributed system. J. Parallel Distrib. Comput. 2010, 70, 758–766. [CrossRef] [PubMed]
11. Méndez, C.A.; Cerdá, J.; Grossmann, I.E.; Harjunkoski, I.; Fahl, M. State-of-the-art review of optimization methods for short-term

scheduling of batch processes. Comput. Chem. Eng. 2006, 30, 913–946. [CrossRef]
12. Osman, M.S.; Ndiaye, M.; Shamayleh, A. Dynamic scheduling for batch data processing in parallel systems. In Proceedings of the

3rd International Conference on Operations Research and Enterprise Systems-Volume 1: ICORES, Angers, France, 6–8 March
2014; pp. 221–225.

119

Algorithms 2021, 14, 211

13. Al Sadawi, A.; Shamayleh, A.; Ndiaye, M. Cost Minimization in Data Batch Processing. In Proceedings of the 6th International
Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia, 8–10 March 2016.

14. Lim, S.; Cho, S.-B. Intelligent OS Process Scheduling Using Fuzzy Inference with User Models; Springe: Berlin/Heidelberg, Germany,
2007; pp. 725–734.

15. Xhafa, F.; Abraham, A. Computational models and heuristic methods for Grid scheduling problems. Future Gener. Comput. Syst.
2010, 26, 608–621. [CrossRef]

16. Aida, K. Effect of Job Size Characteristics on Job Scheduling Performance. In Lecture Notes in Computer Science; Springe Science &
Business Media: Berlin/Heidelberg, Germany, 2000; pp. 1–17.

17. Stoica, I.; Abdel-Wahab, H.; Pothen, A. A microeconomic scheduler for parallel computers. In Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, Santa Barbara, CA, USA, 25 April 1995; pp. 200–218.

18. Stoica, I.; Pothen, A. A robust and flexible microeconomic scheduler for parallel computers. In Proceedings of the 3rd International
Conference on High Performance Computing (HiPC), Trivandrum, India, 19–22 December 1996; pp. 406–412.

19. Islam, M.; Khanna, G.; Sadayappan, P. Revenue Maximization in Market-Based Parallel Job Schedulers; Technical Report; Ohio State
University: Columbus, OH, USA, 2008; pp. 1–13.

20. Damodaran, P.; Vélez-Gallego, M.C. A simulated annealing algorithm to minimize makespan of parallel batch processing
machines with unequal job ready times. Expert Syst. Appl. 2012, 39, 1451–1458. [CrossRef]

21. Mehta, M.; Soloviev, V.; DeWitt, D.J. Batch scheduling in parallel database systems. In Proceedings of the IEEE 9th International
Conference on Data Engineering, Vienna, Austria, 19–23 April 1993; pp. 400–410.

22. Grigoriev, A.; Sviridenko, M.; Uetz, M. Unrelated Parallel Machine Scheduling with Resource Dependent Processing Times. In
Proceedings of the Integer Programming and Combinatorial Optimization: 11th International IPCO Conference, Berlin, Germany,
8–10 June 2005; pp. 182–195.

23. Bouganim, L.; Fabret, F.; Mohan, C.; Valduriez, P. Dynamic query scheduling in data integration systems. In Proceedings of the
16th International Conference on Data Engineering, San Diego, CA, USA, 28 February–3 March 2000; pp. 425–434.

24. Ngubiri, J.; van Vliet, M. A metric of fairness for parallel job schedulers. Concurr. Comput. Pract. Exp. 2009, 21, 1525–1546.
[CrossRef]

25. Arpaci-Dusseau, A.; Culler, D. Extending Proportional-Share Scheduling to a Network of Workstations. In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, NV, USA, 30 June–3
July 1997.

26. Ferguson, D.; Nikolaou, C.; Sairamesh, J.; Yemini, Y. Economic models for allocating resources in computer systems. Market-Based
Control: A Paradigm for Distributed Resource Allocation; World Scientific: Singapore, 1996; pp. 156–183.

27. Kuwabara, K.; Ishida, T.; Nishibe, Y.; Suda, T. An Equilibratory Market-Based Approach for Distributed Resource Allocation
And Its Applications To Communication Network Control. In Market-Based Control: A Paradigm for Distributed Resource Allocation;
World Scientific: Singapore, 1996; pp. 53–73.

28. Chun, B.N.; Culler, D.E. A Malleable-Job System for Timeshared Parallel Machines. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid, Washington, DC, USA, 21–24 May 2002; p. 30.

29. Sairamesh, J.; Ferguson, D.F.; Yemini, Y. An approach to pricing, optimal allocation and quality of service provisioning in
high-speed packet networks. In Proceedings of the INFOCOM’95, Boston, MA, USA, 2–6 April 1995; pp. 1111–1119.

30. Yeo, C.S.; Buyya, R. A taxonomy of market-based resource management systems for utility-driven cluster computing. Softw. Pract.
Exp. 2006, 36, 1381–1419. [CrossRef]

31. Islam, M.; Balaji, P.; Sabin, G.; Sadayappan, P. Analyzing and Minimizing the Impact of Opportunity Cost in QoS-aware Job
Scheduling. In Proceedings of the 2007 International Conference on Parallel Processing (ICPP 2007), Xi’an, China, 10–14 September
2007; p. 42.

32. Mutz, A.; Wolski, R. Sc-International Conference for High Performance Computing. Efficient auction-based grid reservations
using dynamic programming. In 2008 SC-International Conference for High Performance Computing, Networking, Storage and Analysis;
IEEE: Piscataway, NJ, USA, 2008; pp. 1–8.

33. Mutz, A.; Wolski, R.; Brevik, J. Eliciting honest value information in a batch-queue environment. In 2007 8th IEEE/ACM
International Conference on Grid Computing; IEEE: Piscataway, NJ, USA, 2007; pp. 291–297.

34. Lavanya, M.; Shanthi, B.; Saravanan, S. Multi objective task scheduling algorithm based on sla and processing time suitable for
cloud environment. Comput. Commun. 2020, 151, 183–195. [CrossRef]

35. Muter, İ. Exact algorithms to minimize makespan on single and parallel batch processing machines. Eur. J. Oper. Res. 2020, 285,
470–483. [CrossRef]

36. Jia, Z.; Yan, J.; Leung, J.Y.; Li, K.; Chen, H. Ant colony optimization algorithm for scheduling jobs with fuzzy processing time on
parallel batch machines with different capacities. Appl. Soft Comput. 2019, 75, 548–561. [CrossRef]

37. Li, S. Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to minimize makespan. Eur.
J. Oper. Res. 2017, 260, 12–20. [CrossRef]

38. Josephson, J.; Ramesh, R. A novel algorithm for real time task scheduling in multiprocessor environment. Clust. Comput. 2019, 22,
13761–13771. [CrossRef]

39. Ying, K.-C.; Lin, S.-W.; Cheng, C.-Y.; He, C.-D. Iterated reference greedy algorithm for solving distributed no-idle permutation
flowshop scheduling problems. Comput. Ind. Eng. 2017, 110, 413–423. [CrossRef]

120

Algorithms 2021, 14, 211

40. Li, M.; Lei, D. An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with
transportation and sequence-dependent setup times. Eng. Appl. Artifi. Intell. 2021, 103, 104307. [CrossRef]

41. Lei, D.; Yuan, Y.; Cai, J.; Bai, D. An imperialist competitive algorithm with memory for distributed unrelated parallel machines
scheduling. Int. J. Prod. Res. 2020, 58, 597–614. [CrossRef]

42. Rahman, H.F.; Janardhanan, M.N.; Poon Chuen, L.; Ponnambalam, S.G. Flowshop scheduling with sequence dependent setup
times and batch delivery in supply chain. Comput. Ind. Eng. 2021, 158, 107378. [CrossRef]

43. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. J.
2020, 91, 106208. [CrossRef]

44. Yun, Y.; Hwang, E.J.; Kim, Y.H. Adaptive genetic algorithm for energy-efficient task scheduling on asymmetric multiprocessor
system-on-chip. Microprocess. Microsyst. 2019, 66, 19–30. [CrossRef]

45. Saraswati, D.; Sari, D.K.; Kurniadi, S.P. Minimizing total tardiness in parallel machines with simulated annealing using python.
Int. J. Adv. Sci. Technol. 2019, 29, 645–654.

46. Vanhoucke, M.; Coelho, J.; Debels, D.; Maenhout, B.; Tavares, L.V. An evaluation of the adequacy of project network generators
with systematically sampled networks. Eur. J. Oper. Res. 2008, 187, 511. [CrossRef]

47. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557.
[CrossRef]

121

algorithms

Article

Parallel Hybrid Particle Swarm Algorithm for Workshop
Scheduling Based on Spark

Tianhua Zheng, Jiabin Wang * and Yuxiang Cai

Citation: Zheng, T.; Wang, J.; Cai, Y.

Parallel Hybrid Particle Swarm

Algorithm for Workshop Scheduling

Based on Spark. Algorithms 2021, 14,

262. https://doi.org/10.3390/

a14090262

Academic Editor: Frank Werner

Received: 7 August 2021

Accepted: 23 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Engineering, Huaqiao University, Quanzhou 362000, China; 19014084012@stu.hqu.edu.cn (T.Z.);
19014084001@stu.hqu.edu.cn (Y.C.)
* Correspondence: fatwang@hqu.edu.cn

Abstract: In hybrid mixed-flow workshop scheduling, there are problems such as mass production,
mass manufacturing, mass assembly and mass synthesis of products. In order to solve these problems,
combined with the Spark platform, a hybrid particle swarm algorithm that will be parallelized is
proposed. Compared with the existing intelligent algorithms, the parallel hybrid particle swarm
algorithm is more conducive to the realization of the global optimal solution. In the loader man-
ufacturing workshop, the optimization goal is to minimize the maximum completion time and a
parallelized hybrid particle swarm algorithm is used. The results show that in the case of relatively
large batches, the parallel hybrid particle swarm algorithm can effectively obtain the scheduling plan
and avoid falling into the local optimal solution. Compared with algorithm serialization, algorithm
parallelization improves algorithm efficiency by 2–4 times. The larger the batches, the more obvious
the algorithm parallelization improves computational efficiency.

Keywords: hybrid mixed-flow workshop; hybrid particle swarm algorithm; algorithm parallelization;
computational efficiency

1. Introduction

The traditional shop scheduling model takes single shop scheduling as the goal, but, in
actual discrete manufacturing [1], the job shop and the flow shop are closely connected. The
production process includes parts processing, component assembly and product assembly.
In this production environment, optimizing one of the workshops leads to a mismatch
between the progress of parts processing and subsequent component-assembly and final
assembly workshops, resulting in a large amount of inventory and prolonging the product
cycle, affecting the production process. Therefore, in the face of the problem of hybrid
mixed-flow workshop scheduling, it is necessary to establish integrated scheduling of
multiple workshops from the perspective of overall optimization.

The current solutions to the hybrid workshop scheduling problem include accurate
calculations for low-complexity and small-scale problems [2–4] and heuristic algorithms.
Due to accurate calculation, the calculation time increases exponentially with the complex-
ity of the workshop scheduling problem and the application value is limited. For heuristic
algorithms, it performs well on today’s workshop scheduling problems, so heuristic algo-
rithms are widely used today. Smutnicki [5] proposed an approximation algorithm based
on tabu search, with the goal of minimizing processing time and studying a mixed flow
shop with a limited intermediate buffer area. Wang et al. [6] proposed a multi-objective
genetic algorithm to study the integrated scheduling problem of flow shop with buffer.
Seidgar et al. [7] considered the coordination trade-off model of maximum process time
and average completion time and used intelligent algorithms to solve and study the opti-
mization of two-stage flow-shop scheduling with assembly tasks. Na et al. [8] proposed
an evolutionary algorithm using three-segment coding to study the production planning
and scheduling of mixed-flow products in flexible workshops with processing tasks and
assembly tasks. Zhang et al. [9] used an optimized genetic algorithm to solve the problems

Algorithms 2021, 14, 262. https://doi.org/10.3390/a14090262 https://www.mdpi.com/journal/algorithms
123

Algorithms 2021, 14, 262

of minimum total completion time and long equipment idle time for single-piece and
small-batch hybrid workshop scheduling. Teymourian [10] faced the problem of assembly
job mixed-flow shop scheduling, to the artificial immune algorithm they added the ant
colony algorithm to change the antibody to avoid falling into the local minimum and obtain
a better scheduling plan. Lou et al. [11] proposed an immune cloning algorithm to solve
the problem when studying the optimization problem of hybrid workshop scheduling and
achieved an effective solution. Hu et al. [12] proposed a genetic algorithm for multi popu-
lation parallel and population screening and updating in a phased convergence manner
to study the hybrid mixed-flow workshop scheduling problem. Li et al. [13] investigated
hybrid mixed-flow workshop scheduling by proposing a hybrid genetic algorithm with the
goal of minimizing cache area inventory. Lu et al. [14] proposed the game particle swarm
optimization algorithm to study the hybrid mixed-flow workshop scheduling with the
goal of parts shop uniformity and minimum inventory. Wang [15] proposed an immune
genetic algorithm to study hybrid mixed-flow workshop scheduling with the objective of
minimizing the maximum completion time. Tang et al. [16] proposed an improved immune
genetic algorithm that introduced a multi-agent negotiation mechanism and simulated
annealing algorithm to study the mixed scheduling problem of job shop and flow shop.

Intelligent algorithms are widely used in solving actual complex engineering prob-
lems. Nejah et al. [17] introduced the advantages and disadvantages of different intelligent
algorithms in 3D indoor deployment problems and evaluated the performance of different
intelligent algorithms on 3D indoor deployment problems. Mnasri et al. [18] introduced
the application and analysis of existing hybrid intelligent algorithms on the deployment
of sensor nodes in wireless sensor networks. The particle swarm optimization algorithm
(PSO) stands out among many intelligent algorithms for its advantages, such as high
solution accuracy and fast convergence speed. Zhao et al. [19] proposed an improved
particle swarm algorithm with decreasing disturbance index on the multi-objective job
shop scheduling problem. Mansour et al. [20] faced the problem of shop scheduling with
congestion constraints and proposed a combination of a local search algorithm based on
probabilistic perturbation and a particle swarm algorithm. Experiments show that the
improved algorithm can quickly obtain the best solution; Jamrus et al. [21] proposed a
hybrid genetic particle swarm optimization algorithm for flexible job shop scheduling.
Experiments show that the proposed algorithm has high solution quality and good practi-
cability. The particle swarm optimization algorithm has a wide range of applications in
solving practical problems. Therefore, this paper also uses an improved particle swarm
algorithm to solve the problem.

Spark [22,23] is a memory-based distributed computing framework. Comparing the
Spark and Hadoop platforms, Hadoop is suitable for offline batch processing of files,
but is not suitable for iterative operations. When Spark deals with iterative problems,
it does not need to store the results of the iterations to disk, which makes up for the
inefficiency of Hadoop Mapreduce that reads operations from the disk every time it
deals with iterative problems. When programming Spark in parallel, the input data are
decomposed into multiple batch processing fragments, the data are converted into RDD
(resilient distributed datasets) and the data are encapsulated in RDD. Through the parallel
operation of RDD, the parallel operation of data processing is realized [24]. The basic idea
of realizing the parallel particle swarm algorithm is to convert the particle swarm to RDD
and initialize it to multiple small populations of the same size. After parallel processing
of these small populations, a feasible solution is finally obtained [25,26]. According to the
idea of parallelization, a parallel hybrid particle swarm optimization algorithm is proposed
for the mixed-flow hybrid workshop scheduling problem.

The existing intelligent algorithm adopts three-stage coding [13,15] to solve the hybrid
mixed-flow workshop scheduling problem, which is only applicable to the case of a
small batch. Nowadays, the scale and complexity of workshop scheduling are constantly
increasing. In the case of relatively large batches, it is easy to fall into the problem of local
optimization using its existing three-stage coding intelligent algorithm. Therefore, in the

124

Algorithms 2021, 14, 262

case of a large batch, three-stage coding is not used in the problem of hybrid mixed-flow
workshop scheduling. Each workshop is coded independently for independent scheduling.
The independent scheduling optimization of the workshop leads to a too long running time
of the algorithm. Therefore, the algorithm is improved by combining Spark to realize the
parallelization of the algorithm and reduce the running time of the algorithm. In this paper,
a hybrid mixed-flow workshop scheduling model is established. In the case of a large batch,
a hybrid particle swarm optimization parallelization algorithm based on Spark is proposed
to avoid the algorithm falling into local optimization and the workshop scheduling scheme
can be obtained effectively and quickly. It has important theoretical significance and
application value to solve the problem of hybrid mixed-flow workshop scheduling.

2. Problem Description and Modeling

The hybrid mixed-flow workshop is composed of three parts: the first part is the
parts-processing workshop, which is produced in batches; the second part is the flow shop
of the component-assembly workshop, which is assembled in units; the third part is the
flow shop for the final assembly of the product, which is assembled in units, as shown in
Figure 1 below.

Figure 1. Hybrid mixed-flow workshop.

The parts-processing workshop consists of j machines, processing i parts; the component-
assembly workshop is composed of k assembly stations, producing x components; the
product-assembly workshop consists of s assembly stations to produce y products. For the
convenience of research, the following assumptions are given [13]:

(1) At the beginning, all equipment and assembly stations are ready to perform produc-
tion tasks at any time.

125

Algorithms 2021, 14, 262

(2) Different types of parts can be produced in the workshop and the sequence, processing
machine and time in the production process of the parts are known.

(3) The assembly time of different types of parts and products at the stations on the
assembly line is known.

(4) The process time of the same type of products, components and parts on the machine
and the workstation is the same.

(5) In the job shop, only the processes of the same part have process constraints and there
are no process constraints between different parts.

(6) The process time of the process includes the preparation time and transportation time
of the process.

(7) The parts-process workshop processes a batch of parts for the components-assembly
workshop and the product-assembly workshop; or the parts-assembly workshop
processes certain parts for the assembly station of the product-assembly workshop.
Moreover, if the assembly station does not need more, then these parts or components
are temporarily stored in the buffer zone. Ignore the delivery time.

The objective function is to minimize the maximum completion time and the model is
as follows:

G = min(Ei,j + Ex,k + Ey,s) (1)

In Equation (1), Ei,j represents the maximum completion time when all parts i are
processed on j machines in the parts-processing workshop; Ex,k represents the maximum
completion time of all components in the assembly shop x in k stations; Ey,s represents
the maximum completion time for all products y in the product-assembly workshop to
complete assembly at s workstations.

In the actual production process, the parts-processing workshop must meet the process
constraints and equipment constraints. Parts are processed in corresponding machines and
processes in accordance with process constraints and equipment constraints. In the assem-
bly process, the component-assembly workshop and the product-assembly workshop, in
accordance with the process and station constraints, operate at the corresponding assembly
position and complete the pre-process before proceeding to the next process operation. The
completion time of the workpiece at the station on the assembly line should meet the sum
of the completion time of the previous product at this station and the maximum completion
time of the workpiece at the previous station and the processing time at the current station.
The constraints are as follows.

Parts-processing workshop:

Equipment constraints : Ei,j − ti,j + r × ci,h,j ≥ Ei,h (2)

Process constraints : Eg,i − ti,g + r × di,g,j ≥ tg,i (3)

limr− > +∞

Component-assembly workshop and product-assembly workshop:

Station constraint : Ex,k − tx,k + r(1 − c′x,h,k) ≥ Ex,h (4)

Process constraints : Eg,k − Ex,k + r(1 − d′x,g,k) ≥ tg,k (5)

TIme constraint : Ex,k = tx,k + max(Ex−1,k, Ex,k−1) (6)

limr− > +∞

In Equations (2) and (3), the value of ci,h,j is 1 and 0; 0 means that the device Mh is
placed in front of Mj to process Ni and 1 means other. The value of di,g,j also has two values
of 0 and 1; 0 means that the workpiece Ni is placed in front of the Ng workpiece and is
processed by the Mj equipment and 1 means others. Ei,j is the time when the part Ni is
completed on the machine Mj; ti,j is the time required to process the part Ni on the machine
Mj. In Equations (4)–(6), the values of c′i,h,j are 0 and 1; 1 means that the workstation h is

126

Algorithms 2021, 14, 262

placed in front of k to assemble the workpiece x, 0 means other. The values of d′i,g,j are 0
and 1; 1 means that the workpiece x is placed before g and works on workstation k and 0
means others.

At present, the intelligent algorithm deals with the hybrid mixed-flow workshop
scheduling model. The algorithm uses three-level coding [15] for unified scheduling and
solving. However, as the batches of parts and assembly components and products become
larger and larger, this kind of coding can easily fall into a local optimal situation. Therefore,
in order to solve this problem, each workshop is independently coded. Independently
optimize scheduling for each workshop. This process increases the complexity of the
algorithm and increases the running time. Therefore, the proposed algorithm is parallelized
to reduce the running time of the algorithm and improve the efficiency of the algorithm.

3. Parallelized Hybrid Particle Swarm Algorithm Based on Spark

3.1. Parallel Hybrid Particle Swarm Algorithm

The particle swarm algorithm is a simulation of bird predation. In the process of
solving, the solution of each particle corresponds to the position of the particle. The particle
swarm algorithm has two attributes, speed and position. Speed represents the speed of
movement and position represents the direction of movement.

The shop scheduling problem is a discrete optimization problem, the solution space
is in different continuous domains. Because the traditional particle swarm algorithm
particles fall into update stagnation and fall into the local optimal situation, combine the
genetic algorithm and particle swarm algorithm to solve the shortcomings of traditional
particle swarm algorithm and construct a parallelized hybrid particle swarm algorithm.
The algorithm flow is as shown in Figure 2.

The pseudo code of the Algorithm 1 is as follows.

Algorithm 1. Hybrid Particle Swarm Algorithm

1 *Initialization*/

2

Generate N random workpiece sequences in each workshop according to the number of
input products; solve the objective function value k after the crossover operation,
according to Equations (2)–(6); max_iter is the maximum number of iterations; i
corresponds to each particle population; ii corresponds to the number of iterations.

3 Set initial values for: max_ iter, N; i, ii

4
Initialize and solve the particle swarm’s own optimal m and global optimal value n
according to the default order of the workpiece;

5 for ii in rang(max_iter):
/*The particles and the global optimal particles are cross-operated*/

6 for i in rang(N):
7 Cross operation between each particle and the global optimal particle;
8 Update N;
9 Solve the objective function after crossover: k = fitness(N);

10
Output the optimal new_n value of the most global particle swarm; its own optimal
value new_m

/*Update m, n*/
11 If new_n < n then n = new_n; If new_m < m then m = new_m;
13 end for

/*The particle and its own optimal history particle perform cross operation*/
14 for i in rang(N):
15 Each particle crosses with its own optimal history particle
16 Update N;
17 Solve the objective function after crossover: k = fitness(N);

18
Output the optimal new_n value of the most global particle swarm; its own optimal

value new_m
/*Update m, n*/

127

Algorithms 2021, 14, 262

19 If new_n < n then n = new_n; If new_m < m then m = new_m;
20 end for

/*Single-site mutation for each particle swarm */
21 for i in rang(N):
22 Random single-site mutations for each particle swarm;
23 Update N;
24 Calculate the objective function value after mutation: k = fitness(N);

25
Output the optimal new_n value of the most global particle swarm; its own optimal

value new_m
/*Update m, n*/

26 If new_n < n then n = new_n; If new_m < m then m = new_m;
27 end for

28 end for

29 /*Output*/
30 Output the global optimal k and corresponding N workpiece production sequencing

Figure 2. The main process of parallelized hybrid particle swarm optimization.

128

Algorithms 2021, 14, 262

3.2. Detailed Design of the Algorithm
3.2.1. Coding Scheme Design

The research problem is mixed mixed-flow workshop scheduling, in which there
are job workshops and flow workshops and the coding methods in genetic coding are
compared. The three workshops are designed with a unified coding. After the coding
design is completed, the workshops are independently optimized and dispatched. First,
determine the minimum production ratio of the number of products produced according
to actual needs. According to the minimum production ratio, determine the minimum
production ratio for the product-assembly workshop, component-assembly workshop and
parts-processing workshop, then perform independent coding. In the workshop, letters
and numbers are used to represent products, components and parts. The same letters
represent the same products, components and parts. If we need to put into production,
the P, Q and R products are 2, 1 and 2; the number of required components X and Y is 2
and 3; the parts required for parts processing A, B and C are 2, 1 and 2. Then, the coding
method in the product-assembly workshop can be (P1, P2, Q1, R1, R2); the coding of the
component-assembly workshop is (X1, X2, Y1, Y2, Y3); the coding of the part processing
workshop is (A1, A2, A3, B1, C1, C2, C3).

3.2.2. Crossover and Mutation

Enter the number of artifacts to generate N (total number of particles) random artifact
sequences. After crossover and mutation with the global optimal value and its own optimal
value, respectively, filter and update the one that can produce a better target value particle.
In this step, the crossover and mutation operations can be regarded as random walk
operations on the permutation group of the workpieces arranged in order. The mutation is
a single-step walk of exchange and the crossover can be a walk formed by a combination
of multiple basic exchanges. This step is similar to the speed update in the classic PSO.
Whether to perform a walk is only True or False in this algorithm. This step simulates the
weighting factor [27] in the classic PSO. Crossing with the local (self) and global optimal
values, respectively, simulates the two velocity terms in the classic PSO. Both the mutation
and crossover operations have a certain degree of randomness, which ensures that a single
particle can jump out of the local optimal solution possibility.

3.2.3. Parallelization of Hybrid Particle Swarm Algorithm

Pyspark is a tool of Spark and a library of sparkAPI written in python provided by
Spark. Parallelization is achieved through Pyspark. First, the PSO coding is converted
into a parallel RDD, then the process of solving the objective function is applied to all the
particles through the Map operation provided by Spark. The time for each particle to be
transformed into the objective function is summarized to obtain the optimal result.

4. Instance Verification

4.1. Examples of Mixed Mixed-Flow Workshop Scheduling

Now, we take the loader manufacturing workshop as an example [15] to verify the
model and algorithm. The production system is composed of the parts-processing work-
shop, component-assembly workshop and product-assembly workshop. The four products
produced are Q1, Q2, Q3, and Q4. The corresponding parts and component demand matrix
of the products are shown in Table 1, below.

The parts-processing workshop mainly produces eight kinds of self-made parts. The
set of parts is {A, B, C, D, E, F, G, H} and the set of machines in the workshop is {M1, M2,
· · · , M10}. The parts in batches are processed on the machine. The processing time and
process sequence are shown in Table 2 below and the time unit is s.

129

Algorithms 2021, 14, 262

Table 1. Product demand matrix.

Parts Q1 Q2 Q3 Q4 X Y

A 1 1 / / / /
B / / 1 1 / /
C 1 1 / / / /
D / / 1 1 / /
E 1 1 / / / /
F / / 1 1 / /
G / / / / 1 /
H / / / / / 1

Component X 1 1 / / / /
Component Y / / 1 / / /

Note: “/” means that the product has no relationship with the required parts.

Table 2. Parts-processing time and process sequence.

Parts

Machine A B C D E F G H

M1 300.1 375.1 0 0 0 0 0 0
M2 375.2 450.2 0 0 0 0 0 0
M3 375.3 450.3 0 0 0 0 0 0
M4 0 0 450.1 450.1 0 0 450.1 525.1
M5 0 0 0 0 450.1 525.1 375.2 450.2
M6 0 0 525.2 525.2 0 0 0 0
M7 0 0 0 0 525.2 450.2 0 0
M8 0 0 375.3 375.3 375.3 375.3 0 0
M9 0 0 0 0 0 0 600.3 600.3
M10 0 0 375.4 375.4 600.4 600.4 0 0

The component-assembly workshop is mainly responsible for the assembly of com-
ponents X and Y. The assembly time and steps are shown in Table 3 below and the unit
is s.

Table 3. Component-assembly process and time.

Process Component X Component Y

1 147 126
2 126 147
3 126 168
4 105 105
5 157 168
6 126 105
7 168 168
8 147 126
9 147 168

The final assembly line of the product has 33 assembly stations and the corresponding
assembly time and procedures for products Q1, Q2, Q3 and Q4 are shown in Table 4 below
and the unit is s.

130

Algorithms 2021, 14, 262

Table 4. Product final assembly process and time.

Process Q1 Q2 Q3 Q4

1 105 84 91 105
2 140 147 133 126
3 154 161 140 175
4 140 126 140 147
5 133 147 126 140
6 147 154 147 161
7 126 133 133 140
8 147 140 154 147
9 147 133 133 140
10 140 140 133 140
11 140 147 147 154
12 154 161 147 154
13 126 133 133 126
14 147 154 147 161
15 126 133 133 140
16 140 147 140 133
17 147 154 140 147
18 140 147 147 140
19 140 133 140 133
20 154 161 147 161
21 140 133 140 168
22 168 161 161 168
23 161 161 154 147
24 168 175 161 168
25 161 168 161 168
26 140 147 147 147
27 126 133 140 133
28 126 126 126 119
29 154 154 147 140
30 161 154 154 161
31 161 147 168 161
32 140 133 126 133
33 161 168 161 161

During the planning period, the tasks for the production of products Q1, Q2, Q3 and
Q4 are divided into 320 units, 160 units, 320 units and 320 units. The minimum production
ratio is 2:1:2:2. According to the known conditions, it can be known that the required
parts X and Y are divided into 480 and 640 and the minimum production ratio is 3:4. The
required parts A–H are 480, 640, 480, 640, 480, 640, 480 and 640, respectively, and the
minimum production ratio is 3:4:3:4:3:4:3:4. Calculate according to the parallelized particle
swarm algorithm, set the size of the population to 20 and the number of iterations to 300.

It runs in a 64-bit stand-alone Windows 10 operating system, 32 G running memory,
10 cores and 20 threads. In Spark’s Local mode, parallel computing of algorithms is
realized. In the case of local[N] mode, the optimal plans for the assembly scheduling of
parts, components and products are obtained, respectively, {E1, G1, F1, D1, G2, D2, F2, B1,
F3, C1, F4, A1, H1, A2, E2, C2, B2, A3, D3, H2, H3, G3, B3, D4, H4, B4, C3, E3}; {X1, X2, Y1,
Y2, Y3, Y4, X3}; {Q3, Q1, Q1, Q3, Q2, Q4, Q4}; the total completion time is 15,508 s. Using
the immune genetic algorithm IA [15], the total completion time is 15,679 s. Using the PSO
algorithm, the total completion time is 15,660 s. Figure 3 shows the evolution curve of
this algorithm.

131

Algorithms 2021, 14, 262

Figure 3. Algorithm evolution curve.

In this paper, the parallel hybrid particle swarm optimization (PHPSO), IA and PSO
algorithms are set to the same number of iterations of 50. Cbest is the optimal value of
the operation, Aver is the average value of the operation and the relative deviation of the
value dev [28]. Among them, dev1 is the comparison between PHPSO and IA and dev2 is
the comparison between PHPSO and PSO. If dev is positive, the solution obtained by the
compared algorithm is better. If dev is negative, the solution obtained by PHPSO is better.
Table 5 shows algorithm comparison.

Table 5. Algorithm comparison.

PHPSO IA PSO

Cbest(/s) Aver(/s) Cbest(/s) Aver(/s) Cbest(/s) Aver(/s) dev1(%) dev2(%)
15,508 15,526.92 15,688 15,734.38 15,660 15,682.4 −1.16 −0.98

It can be seen from Table 5, that PHPSO finds the optimal value within 50 iterations of
running time and the IA and PSO algorithms cannot find the optimal solution, indicating
that the PHPSO algorithm has a good ability to find the optimal solution. The average
value obtained by PHPSO in 50 iterations is smaller, indicating that the algorithm has a
strong global search ability, avoiding the limitation of the algorithm that is easy to fall into
the local optimum and the algorithm has strong convergence.

The parallel hybrid particle swarm optimization algorithm is compared with immune
genetic algorithm IA and PSO. A stand for IA or PSO algorithms. The comparison results
of the largest completion time of parts-, components- and product-assembly workshops are
shown in Table 6. The deviation obtained by the hybrid particle swarm algorithm solution
and the IA solution is

Dev = [(A − CPHPSO)/CPHPSO]× 100% (7)

132

Algorithms 2021, 14, 262

Table 6. Comparison of results.

Algorithm Workshop Processing Time/s Dev/%

Parts 7500 0
PHPSO Component 2247 0

Product 5761 0

Parts 7650 2
IA Component 2247 0

Product 5782 0.36

Parts 7575 1
PSO Component 2247 0

Product 5838 1.34

From Table 6, we can see that the PHPSO algorithm used in this article has a better
solution than the GA algorithm and the PSO algorithm in the parts workshop and product-
assembly workshop. Through the analysis of the results, the parallelized hybrid particle
swarm optimization algorithm can achieve overall optimization.

4.2. Computing Performance

To test the parallelization performance of the hybrid particle swarm algorithm, set
the population to 20 and the number of iterations to 40. Compare the running time of
algorithm serialization and algorithm parallelization. The tested data are as follows: when
the number of products is 7, the ratio of products is [2:1:2:2]; when the number of products
is 10, the ratio of products is [2:3:2:3]; when the number of products is 14, the ratio of
products is [3:4:5:2]. Compared with the running time of algorithm parallelization and
algorithm serialization, the computing speed is greatly improved by 2–4 times. As the
number of products input increases, the speed increases more obviously, reflecting the
advantage of the Spark platform in processing a large amount of data. The running time of
the algorithm is shown in Figure 4 below.

Figure 4. Algorithm running time.

133

Algorithms 2021, 14, 262

4.3. Results Discussion

In the case of a large batch in the hybrid mixed-flow workshop scheduling problem, the
algorithm in this paper can effectively solve the job shop scheduling problem and avoid the
algorithm falling into local optimization. Combined with the Spark platform, the parallel
design of the algorithm is realized. Compared with the serial operation of the algorithm,
the parallel design of the algorithm improves the efficiency of the algorithm. When the
bulk becomes larger, the demand data are also more complex and the enhancement of
the efficiency of the algorithm is also more obvious, in line with the advantages of the
Spark platform for big data processing. This paper also has limitations. Because this
paper is a single objective optimization, there are many influencing factors in the actual job
shop scheduling, such as inventory cost, so the next research should apply the proposed
algorithm to the job shop scheduling of multi-objective optimization.

5. Conclusions

In this paper, a parallel hybrid particle swarm optimization algorithm is proposed
for hybrid mixed-flow workshop scheduling problem. The Spark platform is combined
with intelligent algorithms to solve the problem of workshop scheduling in high-volume
situations. This can provide some reference for solving large-scale data processing in
workshop scheduling.

In the future, it is necessary to apply the parallel hybrid particle swarm algorithm to
the multi-objective shop scheduling problem. Consider combining the intelligent algorithm
for solving multi-objectives with the algorithm in this paper to improve it, so that it can be
applied to the problem of multi-objective workshop scheduling.

Author Contributions: Conceptualization, T.Z.; methodology, T.Z.; software, Y.C.; validation, T.Z.;
formal analysis, T.Z.; investigation, Y.C.; data curation, J.W.; writing—original draft preparation,
T.Z.; writing—review and editing, J.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lefkowitz, I.; Schoeffler, J.D. Multilevel control structures for three discrete manufacturing processes. IFAC Proc. Vol. 1972, 5,
96–103. [CrossRef]

2. Djellab, H.; Djellab, K. Preemptive hybrid flowshop scheduling problem of interval orders. Eur. J. Oper. Res. 2002, 137, 37–49.
[CrossRef]

3. Bolat, A.; Al-Harkan, I.; Al-Harbi, B. Flow-shop scheduling for three serial stations with the last two duplicate. Comput. Oper. Res.
2005, 32, 647–667. [CrossRef]

4. Guirchoun, S.; Martineau, P.; Billaut, J.C. Total completion time minimization in a computer system with a server and two parallel
processors. Comput. Oper. Res. 2005, 32, 599–611. [CrossRef]

5. Smutnicki, C. A two-machine permutation flow shop scheduling problem with buffers. Oper.-Res.-Spektrum 1998, 20, 229–235.
[CrossRef]

6. Wang, B.; Rao, Y.; Shao, X.; Xu, C. A MOGA-based Algorithm for Sequencing a Mixed-model Fabrication/Assembly System.
Zhongguo Jixie Gongcheng/China Mech. Eng. 2009, 20, 1434–1438. [CrossRef]

7. Seidgar, H.; Kiani, M.; Abedi, M.; Fazlollahtabar, H. An efficient imperialist competitive algorithm for scheduling in the two-stage
assembly flow shop problem. Int. J. Prod. Res. 2014, 52, 1240–1256. [CrossRef]

8. Na, H.; Park, J. Multi-level job scheduling in a flexible job shop environment. Int. J. Prod. Res. 2014, 52, 3877–3887. [CrossRef]
9. Zhang, H.; Wu, Y.; Software, S.O. Single piece and small batch mixed-shop scheduling algorithm. China Sci. Pap. 2015, 10,

962–966.
10. Komaki, G.M.; Teymourian, E.; Kayvanfar, V. Minimising makespan in the two-stage assembly hybrid flow shop scheduling

problem using artificial immune systems. Int. J. Prod. Res. 2016, 54, 963–983. [CrossRef]
11. Lou, G.; Cai, Z. Improved hybrid immune clonal selection genetic algorithm and its application in hybrid shop scheduling. Clust.

Comput. 2018, 22, 3419–3429. [CrossRef]
12. Hu, H.; Lu, J.; Li, Y. Study of mixed-model hybrid shop fuzzy scheduling problem based on multi-populations parallel genetic

algorithm. J. Zhejiang Univ. Technol. 2012, 40, 554–558. [CrossRef]

134

Algorithms 2021, 14, 262

13. Li, X.; Lu, J.; Chai, G.; Tang, H.; Jiang, L. Hybrid Genetic Algorithm for Mixed-model Hybrid-shop Scheduling Problem. Zhongguo
Jixie Gongcheng/China Mech. Eng. 2012, 23, 935–940. [CrossRef]

14. Lu, J.; Hu, H.; Dong, Q. Game theory and particle swarm optimization for mixed-model hybrid-shop scheduling problem. J.
Zhejiang Univ. Technol. 2015, 43, 398–404.

15. Wang, M. Research on Multi-level Hybrid Workshop Integrated Scheduling Based on Immune Genetic Algorithm. Master’s
Thesis, Lanzhou University of Technology, Lanzhou, China, 2020.

16. Tang, H.; Ding, B.; Li, X.; Lu, J. Improved immune genetic algorithm for mixed-model scheduling problem. China Mech. Eng.
2014, 25, 1189. [CrossRef]

17. Nasri, N.; Mnasri, S.; Val, T. 3D node deployment strategies prediction in wireless sensors network. Int. J. Electron. 2020, 107,
808–838. [CrossRef]

18. Mnasri, S.; Nasri, N.; Val, T. The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications.
In Proceedings of the International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks
(PEMWN 2014), Sousse, Tunisia, 4–7 November 2014.

19. Zhao, F.; Tang, J.; Wang, J.; Jonrinaldi, N.A. An improved particle swarm optimization with decline disturbance index (DDPSO)
for multi-objective job-shop scheduling problem. Comput. Oper. Res. 2014, 45, 38–50. [CrossRef]

20. Mansour, E.; Bassem, J.; Patrick, S. Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem.
J. Comput. Des. Eng. 2016, 3, 295–311. [CrossRef]

21. Jamrus, T.; Chien, C.F.; Gen, M.; Sethanan, K. Hybrid particle swarm optimization combined with genetic operators for flexible
job-shop scheduling under uncertain processing time for semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 2017, 31,
32–41. [CrossRef]

22. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010,
10, 95.

23. Dongfei, S.O.N.G.; Hua, X.U. Research and Parallelization of DBSCAN Algorithm. Comput. Eng. Appl. 2018, 54, 52–56.
24. Qiu, R. The Parallel Design and Application of the CURE Algorithm Based on Spark Platform. Master’s Thesis, South China

University of Technology, Guangzhou, China, 2014.
25. Li, F. Parallel Programming of Particle Swarm Optimization Algorithm Based on Spark and Its Application in Reservoir

Scheduling. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2017.
26. Peng, A.; Peng, Y.; Zhou, H. Multi-core parallel computation for deriving joint operating rule curves in multi-reservoir system

under the condition of inter-basin water transfer. J. Hydraul. Eng. China 2014, 45, 1284–1292. [CrossRef]
27. Shi, Y. A Modified Particle Swarm Optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary

Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998.
28. Gu, X.; Huang, M.; Liang, X. An improved genetic algorithm with adaptive variable neighborhood search for FJSP. Algorithms

2019, 12, 243. [CrossRef]

135

Citation: Park, C.H.; Ko, Y.D. A

Practical Staff Scheduling Strategy

Considering Various Types of

Employment in the Construction

Industry. Algorithms 2022, 15, 321.

https://doi.org/10.3390/a15090321

Academic Editors:

Francisco Saldanha da Gama and

Frank Werner

Received: 21 July 2022

Accepted: 6 September 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Practical Staff Scheduling Strategy Considering Various
Types of Employment in the Construction Industry

Chan Hee Park and Young Dae Ko *

Department of Hotel and Tourism Management, College of Hospitality and Tourism, Sejong University,
209 Neungdong-ro, Seoul 05006, Korea
* Correspondence: youngdae.ko@sejong.ac.kr; Tel.: +82-10-4725-3480

Abstract: The Korean government implemented a 52-h workweek policy for employees’ welfare.
Consequently, companies face workforce availability reduction with the same number of employees.
That is, labor-dependent companies suffer from workforce shortage. To handle the workforce shortage,
they increase irregular employees who are paid relatively less. However, the problem of ‘no-show’,
due to the stochastic characteristics of irregular employee’s absence, happens. Therefore, this study
aims to propose a staff scheduling strategy considering irregular employee absence and a new labor
policy by using linear programming. By deriving a deterministic staff schedule through system
parameters derived from the features and rules of an actual company in the numerical experiment,
the practicality and applicability of the developed mathematical model are proven. Furthermore,
through sensitivity analysis and simulation considering the stochastic characteristics of absences,
various proactive cases are provided. Through the proactive cases, the influence of the change of the
average percent of irregular employees’ absences on the total labor costs and staff schedules and the
expected number who would not come to work could be given when assuming the application in
practice. This finding can help decision-makers prepare precautious measures, such as assigning
extra employees in case of an irregular employee’s absence.

Keywords: construction industry; irregular employees; staff scheduling; mathematical model;
business level strategies; decision-making; organizational effectiveness

1. Introduction

The construction industry plays a significant role in economic growth [1]. Korea
has also developed its economy along with the growth of the construction industry [2].
However, as presented in Figure 1, based on the 2020 Construction Policy Review by the
Construction Policy Institute of Korea, the Korean construction industry has not contributed
to economic growth since 2017. Moreover, the construction industry has hindered economic
growth since 2018 due to problems such as workforce shortage and reduction in investment.
According to the Ministry of Employment and Labor, the safety problem and low wage
levels are the main reasons companies cannot employ new employees on construction
sites. As for the safety problem, about 50 percent of occupational accidents that lead to
death takes place in the construction industry. Regarding the wage level, employees in the
construction industry are paid 26.1 percent lower than employees in the manufacturing
industry. Even compared to the average rate of all industries, it is 15 percent lower [3].
For those reasons, workforce shortage happens in the construction industry in Korea.
According to [4], the number of lacking employees on construction sites will increase to
96 thousand in 2024 from 83 thousand in 2020.

Algorithms 2022, 15, 321. https://doi.org/10.3390/a15090321 https://www.mdpi.com/journal/algorithms
137

Algorithms 2022, 15, 321

Figure 1. Contribution of the construction industry to the economic growth.

To solve the above problems, the government made the policy of the 52-h work-
week and expanded hygiene facilities to improve the workplace environment. The 52-h
workweek policy is a workhour limit for the employee’s welfare. Due to this policy, each
employee works 8 to 12 h a day and they cannot work more than 52 h a week. As a result,
the company that finishes jobs by employing a small number of people and making them
work for more than 52 h a week faces a crisis. That is, when a company needs to work for
70 h, it is more beneficial for them to make one employee work more by paying the extra
cost to him/her than employ two employees and make each work 35 h. Moreover, they
face workforce availability reduction to the same number of employees compared to before
the change of the labor policy. Because of this situation, it is more important to consider
human resource management to save labor costs and yield companies’ performances [5].

About 50 percent are irregular employees out of the total workforce according to the
statistics data from the Korean bank. The reason the percent of irregular employees is high
is that many people do not want to be employed in the construction industry due to the
possible dangers that can lead to death or disability [6]. In addition, if they employ regular
employees, they need to keep paying for them even when they do not have work because
of the difficulty of firing them. Due to this, construction companies suffer from workforce
shortages, which is regarded as one of the most serious problems in all industries [7].
Moreover, companies want to employ irregular employees, including foreign employees,
from an outsourcing company to reduce costs due to an increase in the labor cost [8].
According to [9], foreign employees account for 19.5 percent of the whole workforce size
in the construction industry. In addition, it is expected that irregular foreign employees
continue to increase. The government presented that about 57 thousand is the proper
number of foreign employees in 2019. However, the number of foreign employees was
about 210 thousand in the same year [10]. That is, the Korean construction industry faces a
situation that has no choice but to employ a greater number of irregular foreign employees.

Several countries already use irregular employees to deal with the workforce shortage.
For instance, Malaysia has already been using the irregular foreign workforce actively to
manage the workforce shortage problem [11]. Furthermore, a portion of temporary jobs
is increasing in the UK labor market [12]. Employing irregular foreign employees can be
a realistic way to respond to the workforce shortage. However, it is important to know
and understand the Korean way of using irregular employees. Most irregular employees
are used in the way of getting paid daily. It is thought that this feature of the way of

138

Algorithms 2022, 15, 321

using irregular employees would be different from other countries that normally contract
irregular employees and use them during the contracted period. However, because of
the way of using irregular employees, irregular employees do not have loyalty, thus they
also have low responsibility for working. In addition, they could have different irregular
employees every day because they are normally contracted daily. Thus, they have difficulty
keeping track of irregular employees and giving them penalties even when they make
trouble due to a daily contract. These issues make it difficult for companies to conduct
human resource management efficiently.

This paper considers the actual situation of the construction industry in Korea, such
as the workforce shortage due to an increase in labor costs and workforce availability
reduction by the change of the labor policy. The main thing considered in the paper is ‘no-
show’, which is a real problem of the actual company that employed irregular employees
to deal with the workforce shortage problem. Despite the no-show of irregular employees,
it is difficult for the company to control irregular employees, since the authority of giving
penalties normally belongs to their outsourcing company in Korea. Nevertheless, the
reason a company uses irregular employees is because of lower labor costs than local
regular employees. Therefore, the company needs to respond to the unexpected situation
that irregular employees suddenly do not come to work. To achieve this, this research uses
linear programming to derive a deterministic staff schedule considering the average percent
of irregular employee absences. This can be one of the proactive measures to respond to
the stochastic characteristics of an irregular employee’s absence. Moreover, the simulation
of a deterministic staff schedule is conducted to figure out what expectedly happens when
assuming the application to a company in practice. Consequently, the performance of how
well a staff schedule works is evaluated, and how many irregular employees do not come
to work is expected. These can play a role as basic data that help managers decide on a
staff schedule.

2. Literature Review

The method suggested in this research is to minimize the total labor cost of a con-
struction company by deriving a deterministic staff schedule. Human resource is crucial in
many operations that are heavily labor-oriented. In addition, it is typically one of the most
expensive resources of a company [13,14]. That means that human resources are regarded
as one of the most important factors to manage in every business. Edie [15] conducted
the first research on a quantitative approach to a solution for staff scheduling problems.
After this study, a variety of research was conducted in many different industries. Van
den Bergh et al. [16] defined three main staff scheduling parts, namely shift scheduling,
days off scheduling, and tour scheduling. Shift scheduling involves scheduling across a
daily planning horizon, and one worker has just one shift a day. Days off scheduling is
about the schedule of the day off for each worker. Tour scheduling is a combination of
shift scheduling and days-off scheduling. Moreover, Ganguly and Nandi [17] revealed
that staff scheduling is important to meet demands. In this paper, forecasting models,
such as Analysis of Variance (ANOVA) and Auto Regressive Integrated Moving Average
(ARIMA) were utilized. The demands derived from forecasting models were used for the
mathematical model as input parameters to derive an optimal solution for staff scheduling.
Furthermore, Maenhout and Vanhoucke [18] suggested a staffing and shift scheduling
approach for nurses in the hospital. In this paper, the mathematical model was suggested
for a new integrative nurse staff scheduling while considering the impact of several per-
sonnel policies on staffing level decisions to obtain an allocation of nurses. Ásgeirsson [19]
conducted research on staff scheduling by using metaheuristic algorithms to consider the
requests of employees. As a result, fair and feasible schedules were generated for staff
scheduling. To summarize, various studies have proved that staff scheduling is beneficial
for a company with a shifting policy to minimize labor costs.

The construction industry is interested in scheduling research to assign employees well.
Memon and Zin [20] reported the status of resource-driven scheduling implementation

139

Algorithms 2022, 15, 321

in the Malaysian construction industry. It was revealed that about 60% of construction
companies used scheduling to meet the construction project deadline under the limits
of resource availability. Even though there are several constraints against using staff
scheduling, such as high cost, and lack of understanding for scheduling, the importance of
scheduling was proved in that many tried to have scheduling. Al-Rawi and Mukherjee [21]
focused on a constructive method to solve labor scheduling problems encountered in a
construction company. The linear programming technique was used to suggest estimated
labor costs for a week and the conditions of part-time labor in each shift. Consequently, the
organization could produce a new schedule each week while minimizing labor costs and
maximizing labor preferences. Between a diversity of businesses, the hospitality industry
is similar to the construction industry in terms of the labor-dependency. Rocha et al. [22]
performed research on the optimization of staff schedules for a hotel in Turkey. They
handled the problem through operation research (OR). As a result, they reduced the labor
costs and the number of employees to finish their work during the same period. Kaya
and Dağdeviren [23] studied the optimal allocation of employees to jobs while minimizing
total daily labor costs. It proposed a Pareto multistage decision-based genetic algorithm
(P-mdGA). As a result, this method helped managers of hotels in need of automatic
support to effectively allocate hotel staff to jobs. Azadeh et al. [24] proved that airline
crew assignment to flights can minimize total cost. A particle swarm optimization (PSO)
algorithm with a local search heuristic was applied to derive a solution for crew scheduling.
Consequently, the proposed hybrid PSO algorithm helped assign crew members to the
flight while minimizing the total cost.

Not only labor costs but also the welfare of employees, such as workplace environment
improvement and policy, have a huge influence on the construction industry. Much research
regarding welfare for employees has been conducted in many different industries. Asensio-
Cuesta et al. [25] developed the models for job rotation schedules as an aspect of welfare
for staff, such as assignments to various jobs considering their skills and knowledge.
A multi-criteria genetic algorithm is employed to provide a solution for both workers
and management. Therefore, the model prevented reducing fatigue and increased job
satisfaction and morale while giving a solution to job rotation scheduling. Ruiz-Torres
et al. [26] performed research on scheduling problems considering worker satisfaction to
contribute to enlargement in the field of staff scheduling. Metrics of job preference and
desirable job variety were used for job satisfaction in scheduling problems. As a result, this
paper generated an optimal solution for staff scheduling, considering the job satisfaction
of employees. Furthermore, Stolletz and Brunner [27] studied an optimal shift scheduling
solution for physicians in hospitals while considering preference, labor agreement, and
fairness. In this paper, all constraints were modeled within the linear program (LP). As a
result, this model provided a solution that takes fairness between physicians’ shifts into
consideration to minimize the paid-out hours under the restrictions given by the labor
agreement. Shuib and Kamarudin [28] proposed a Binary Integer Goal Programming (BGP)
model and a mathematical model to determine an optimal staff schedule at the power
station. In addition, this research identified the main criteria and conditions for the BGP
model. Consequently, the suggested method generated an optimal staff scheduling solution
considering employees’ day-off preferences by using MATLAB while focusing on three
processes, which were demand modeling, shift scheduling, and day-off scheduling.

To improve the practicality, the uncertainty of irregular employees should be reflected
when developing a staff scheduling strategy. Several studies considered the uncertainty of
irregular employees. Research on workforce scheduling that considers the unpredictable
employee’s absence was conducted to guarantee sufficient coverage in medical facilities.
Becker et al. [29] proposed integer programming that considers assigning ex-post du-
ties. This paper proved the practicality of the developed models by applying them to
local medical facilities in practice. As a result, staff scheduling complexity was reduced.
Ingels and Maenhout [30] stated that many organizations make staff schedules under
a deterministic operating environment. However, the stochastic environment, such as

140

Algorithms 2022, 15, 321

employee absence, occurs. To manage this uncertainty, this paper proposed a proactive
approach to respond to schedule disruptions. By comparing a diversity of the proactive
strategies, a proposed preemptive programming approach in this paper was assessed.
Steenweg et al. [31] mentioned that short-term uncertainty in the workforce causes gaps
between the planned and real shift schedule. Therefore, the unpredictable absence of
employees should be considered when deciding on shift scheduling. This paper suggested
a framework that can assign heterogeneously skilled employees to jobs optimally to re-
spond to sudden absence. For this framework, the workforce availability was modeled by
the stochastic simulation. As a result, the practicality of the framework that can provide
efficient shift scheduling was proved by applying it to the actual cases.

This paper also considers the uncertainty of employees, especially irregular employee
absence in the construction industry. Many studies about staff scheduling that handle the
uncertain nature of employees suggested stochastic modeling. In addition, other studies
proposed the strategies for assignment of skilled employees to shift to fill in the absence.
However, this paper develops a mathematical model that derives a deterministic staff
schedule by considering the average percent of irregular employees’ absences. This is be-
cause the expected average percent of irregular employees’ absences could be different from
the actual average percent of their absences in practice. That is, even a staff schedule de-
rived from the stochastic modeling cannot ensure that all irregular employees follow a staff
schedule because it is performed only with reliance on the probability of absence. Therefore,
this paper focuses on providing various proactive cases by deriving a deterministic staff
schedule and conducting a simulation about it to evaluate performance. Consequently, the
simulation helps a company expect how many irregular employees would not come to
work when applying a deterministic staff schedule to a company. However, this cannot also
guarantee that all irregular employees follow a staff schedule well because the possibility of
their absences still exists. However, deriving a deterministic staff schedule and simulating
it can contribute to providing a systematic procedure to manage the sudden absences of
irregular employees. Therefore, this procedure can help managers prepare the precautious
measures to rapidly respond to irregular employee absence.

3. Mathematical Formulation

3.1. Problem Description

Companies in the construction industry suffer from workforce shortage problems
due to the 52-h workweek policy and a no-show by irregular employees. Before the
explanation of the problem description in detail, irregular employees that are often shown
in this paper are defined as foreign and local irregular employees who do not belong to a
company and are paid daily. They are not part-time workers. Under the 52-h workweek
policy, each employee can work 8 to 12 h a day and cannot exceed to work 52 h a week.
In addition, if they work more than 8 h a day, it is regarded as overtime work. Along
with the government policy, irregular employee absence worsens the workforce shortage.
According to the managers of the construction company considered in this paper, the
average percent of irregular employee absence is from 20% to 30% per day. As a result,
this company often faces workforce availability reduction. To consider this uncertainty
of irregular employee absence, the mathematical model introduces the average percent
of irregular employee absence to derive a conservative and deterministic staff schedule
that assumes they normally do not come to work according to their absence percent.
However, the percent of irregular employees’ absences is not constant in the real world. It
is always stochastic. Thus, this paper performs the simulation of a derived staff schedule
to consider the stochastic situation of irregular employees’ absences. Furthermore, by
changing the average percent of irregular employee absence, the change in total labor
cost and staff schedules are examined depending on the percent of irregular employee
absence more closely through sensitivity. Additionally, there are two types of jobs. There
are four workplaces, namely the first floor, the second floor, open storage, and the office.
Moreover, this company always needs more than 45 employees and more than 18 employees

141

Algorithms 2022, 15, 321

during the daytime and nighttime per day. To sum up, by conducting several numerical
experiments in this paper, it is expected to provide proactive cases for a staff schedule
considering the stochastic characteristics of irregular employee absence under the new
labor policy in Korea.

3.2. Notation
3.2.1. Known Parameters

This paper derives a conservative and deterministic solution for a staff schedule that
can minimize the total labor cost considering the new labor policy and the average percent
of irregular employee absence. The following notations in Table 1 are composed of elements
regarding the construction industry and the company’s rules.

Table 1. Known parameters.

Variables Meaning

I Set for employees, including regular and irregular workers, i ∈ I

Pt Set for irregular employees, such as foreign workers and
sub-contractors, pt ∈ Pt

Ep Set for regular employees, ep ∈ Ep
M Set for managers, m ∈ M
P Set for workplaces, p ∈ P
F Set for floors excluding any other workplaces, f ∈ F
J Set for jobs, j ∈ J
D Set for days, d ∈ D
N Set for weeks, n ∈ N

Wn Set for days of the nth week
Dsun Set for Sundays
Dwork Set for workdays
costid Cost for regular employees i on day d (USD/day)

hoursi,d Workhour for regular employees i on day d (hour)
partcostpt,d Cost for irregular employees pt on day (USD/day)

parthourspt,d Workhour for irregular employees pt on day d (hour)
overcosti,d Overtime work cost for irregular employees i on day d (USD/day)

overhoursi,d Overtime workhour for irregular employees i on day d (hour)
mind Minimum number of needed workers on day d during daytime

overmind Minimum number of needed workers on day d during nighttime
Ad The average percent of irregular employees’ absences on day d

3.2.2. Decision Variables

The decision variables in Table 2 for this mathematical model show the allocation of
the employee to a specific workplace on a certain day.

Table 2. Decision Variables.

Variables Meaning

Xi,j,p,d: It becomes 1, if regular employee i is assigned to job j at workplace p on day d,
otherwise 0

Yi,j,p,d
It becomes 1, if irregular employee i is assigned to job j at workplace p on day d,

otherwise 0

Ri,j,p,d
It becomes 1, if irregular employee i is assigned to job j at workplace p on day d

after considering absence, otherwise 0

Oi,j,p,d
It becomes 1, if regular employee i is assigned to job j at workplace p on day d

during nighttime, otherwise 0

3.3. Mathematical Model

Equation (1) is an objective function that minimizes the total labor cost. It consists of
the sum of regular employees’ total labor costs, the sum of irregular employees’ total labor
costs, and the sum of total overtime work costs:

142

Algorithms 2022, 15, 321

∑i∈I ∑j∈J ∑p∈P ∑d∈D Costid × Xijpd + ∑i∈Pt ∑j∈J ∑p∈P ∑d∈D Partcostid × Rijpd+

∑i∈I ∑j∈J ∑p∈P ∑d∈D Overcostid × Oijpd
(1)

3.3.1. Constraints for Staff Scheduling during Daytime

Equations (2) and (3) represent the relationship between decision variables Ri,j,p,d
and Yi,j,p,d. The actual number of irregular employees is decided by Equation (2) which
multiplies the number of irregular workers following the schedules without absence by Ad.
Equation (3) determines value of decision variable Ri,j,p,d. Ri,j,p,d can be 1 when decision
variable Yi,j,p,d is 1:

∑i∈Pt ∑j∈J ∑p∈P Rijpd ≤ ∑i∈Pt ∑j∈J ∑p∈P Ad ∗ Yijpd, ∀d ∈ Dwork (2)

2 ∗ ∑j∈J ∑p∈P Rijpd ≤ ∑j∈J ∑p∈P Yijpd + 1, ∀d ∈ Dwork, ∀i ∈ Pt (3)

Equations (4) and (5) mean that each regular employee and irregular employee cannot
exceed coming to work five days a week due to the 52-h workweek policy. Equations (6)
and (7) ensure that all employees must work between 40 and 52 h a week due to the 52-h
workweek policy:

∑j∈J ∑p∈P ∑d∈Wn
Xijpd ≤ 5, ∀i ∈ I, ∀n ∈ N (4)

∑j∈J ∑p∈P ∑d∈Wn
Yijpd ≤ 5, ∀i ∈ Pt,∀n ∈ N (5)

∑j∈J ∑p∈P ∑d∈Wn Parthoursid × Yijpd ≥ 40, ∀i ∈ Pt,
∀n ∈ N ∑j∈J ∑p∈P ∑d∈Wn Parthoursid × Yijpd ≤ 52, ∀i ∈ Pt, ∀n ∈ N

(6)

∑j∈J ∑p∈P ∑d∈Wn hoursid × Xijpd + ∑j∈J ∑p∈P ∑d∈Wn Overhoursid × Oijpd ≥ 40,
∀i ∈ I, ∀n ∈ N

∑j∈J ∑p∈P ∑d∈Wn hoursid × Xijpd + ∑j∈J ∑p∈P ∑d∈Wn Overhoursid × Oijpd ≤ 52,
∀i ∈ I, ∀n ∈ N

(7)

Equations (8) and (9) determine the allocation of the employee to the workplace
and job. Each employee should be assigned to a workplace to perform just only one job.
Equation (10) shows that all employees have a day off on Sunday. Equation (11) indicates
that the number of employees who come to work is more than the minimum number of
employees that a company needs a day:

∑j∈J ∑p∈P Xijpd ≤ 1, ∀i ∈ I , ∀d ∈ Dwork (8)

∑j∈J ∑p∈P Yijpd ≤ 1, ∀i ∈ Pt , ∀d ∈ Dwork (9)

∑i∈I ∑p∈P ∑j∈J Xijpd + ∑i∈Pt ∑p∈P ∑j∈J Yijpd + ∑i∈I ∑p∈P ∑j∈J Oijpd = 0, ∀d ∈ Dsun (10)

∑i∈I ∑j∈J ∑p∈P Xijpd + ∑i∈Pt ∑j∈J ∑p∈P Rijpd ≥ Mind , ∀d ∈ Dwork (11)

Equations (12)~(14) determine the allocation for the workplace on the first floor and
second floor. Equation (12) means that the necessary number of workers, including regular
and irregular workers, is more than 15 on each floor at least per day. Equation (13) is about
the assignment of a manager for supervision and one manager should work on each floor.
Equation (14) means two workers doing Job 2 must be on one of two floors at least:

∑i∈I ∑j∈J Xijpd + ∑i∈Pt ∑j∈J Rijpd ≥ 15, ∀p ∈ F , ∀d ∈ Dwork (12)

∑i∈M ∑j∈J Xijpd ≥ 1, ∀d ∈ Dwork, ∀p ∈ F (13)

143

Algorithms 2022, 15, 321

∑i∈I ∑p∈F Xi2pd = 2, ∀d ∈ Dwork (14)

Equations (15) and (16) determine the allocation to open storage. Equation (15) repre-
sents that more than two employees are needed for open storage. Equation (16) means that
open storage does not need managers:

∑i∈Ep Xi13d + ∑i∈Pt Ri13d ≥ 2, ∀d ∈ Dwork (15)

∑i∈M ∑j∈J Xij3d = 0, ∀d ∈ Dwork (16)

Equations (17)~(19) are about the allocation to the office. Equation (17) shows that
more than one manager should be assigned to the office. Equation (18) means that any other
regular employees, besides managers, cannot work in the office. Equation (19) indicates
that when managers are assigned to Job 2, they cannot work in the office and should work
on one of the first and second floors at least:

∑i∈M ∑j∈J Xij4d ≥ 1, ∀d ∈ Dwork (17)

∑i∈Ep ∑j∈J Xij4d = 0, ∀d ∈ Dwork (18)

∑i∈I Xi24d = 0, ∀d ∈ Dwork (19)

Equations (20) and (21) are related to the allocation of irregular employees. Equation
(20) means that irregular employees cannot perform Job 2. Equation (21) shows that
irregular employees also cannot work in the office. Equation (22) represents how many
managers must work during the daytime:

∑i∈Pt ∑p∈F Ri2pd = 0, ∀d ∈ Dwork (20)

∑i∈Pt ∑j∈J Rij4d = 0, ∀d ∈ Dwork (21)

∑i∈M ∑j∈J ∑p∈P Xijpd = ∑i∈M ∑j∈J Xij1d + Xij2d + Xij4d, ∀d ∈ Dwork (22)

3.3.2. Constraints for Staff Scheduling during Nighttime

Equations (23)~(32) are to determine the allocation of overtime work. Overtime work
can be performed by only regular employees according to the rules of this company. In
addition, only three types of first floor, second floor, and open storage are considered for
the allocation. Equation (23) decides whether employees can work at nighttime or not. It is
determined by the condition that only employees who perform daytime work can perform
overtime work. Equation (24) represents that employees can work less than three times a
week at night, owing to the 52-h workweek policy:

2 ∗ ∑j∈J ∑p∈P Oijpd ≤ ∑j∈J ∑p∈P Xijpd + 1, ∀i ∈ I, ∀d ∈ Dwork (23)

∑j∈J ∑p∈P ∑d∈Wn
Oijpd ≤ 3, ∀i ∈ I, ∀n ∈ N (24)

Equation (25) is about how many employees are needed for overtime work.
Equation (26) refers to the allocation of each employee to jobs at nighttime. Equations (27)
and (28) determine the allocation for the first floor and second floor. Equation (27) shows
more than eight employees are needed for each floor. Equation (28) means that only one
employee is assigned to the first floor or second floor to perform Job 2:

∑i∈I ∑j∈J ∑p∈P Oijpd ≥ overmind, ∀d ∈ Dwork (25)

∑j∈J ∑p∈P Oijpd ≤ 1, ∀i ∈ I , ∀d ∈ Dwork (26)

144

Algorithms 2022, 15, 321

∑i∈I ∑j∈J Oijpd ≥ 8, ∀p ∈ F, ∀d ∈ Dwork (27)

∑i∈I ∑p∈F Oi2pd = 1, ∀d ∈ Dwork (28)

Equations (29) and (30) determine the allocation at open storage. Equation (29) in-
dicates that more than one employee should be assigned to open storage. Equation (30)
shows that managers cannot be assigned at open storage. Equation (31) means that more
than one manager must work at night after working in the daytime. Equation (32) means
that no one is assigned to the office during overtime work:

∑i∈Ep Oi13d ≥ 1, ∀d ∈ Dwork (29)

∑i∈M ∑j∈J Oij3d = 0, ∀d ∈ Dwork (30)

∑i∈M ∑j∈J ∑p∈P Oijpd ≥ 1, ∀d ∈ Dwork (31)

∑i∈I ∑j∈J Oij4d = 0, ∀d ∈ Dwork (32)

4. Solution Process

Linear programming used as a method in this paper can be solved by the simplex
method. The simplex method can be utilized to solve linear programming [32]. The simplex
method is based on forming the inverse of the basic matrix and updating the inverse [33].
That is, it is the repetition of searching for feasible solutions, calculating the value of the
objective function, and comparing the derived value and the optimal value until finding
the optimal solution. The process of the simplex is shown in Figure 2. First of all, all
equations should be converted into standard equation form after inserting slack variables
and create an initial simplex table. After this, find the entering variables. When solving
the maximization problem, the variable with the largest absolute value of the coefficient
becomes the entering variable. The next thing is to find leaving variable. To achieve this,
the ration between entering variable and solution should be calculated. At this time, the
variable with the lowest ration value becomes the leaving variable. After deciding on
entering variable and leaving variable, the intersection point of the entering variable and
leaving variable becomes the pivot element and all values of the row in the simplex table
with the pivot element should be divided by the pivot element. The rest of the rows should
be updated by using the new pivot row made previously. Lastly, if there is no new leaving
variable, iterations terminate. If not, go back to the step of finding the entering variable.
Various computer packages based on the simplex method were already developed. A
developed mathematical model in the paper is also solved by one of the packages. The
package used in the paper is CPLEX, which is the mathematical optimization software
package. The version is 20.1.0. The darker parts in Figure 2 are processed by CPLEX.

Figure 2. Solution process of the simplex method.

145

Algorithms 2022, 15, 321

5. Numerical Experiment

5.1. Parameters Setting

The company has 40 regular employees, consisting of 36 normal regular workers and
4 managers. Furthermore, they have 22 irregular employees. The minimum necessary
number of employees is at least 45 during the daytime. In addition, the number of work-
places is four spaces, namely the first floor, second floor, open storage, and the office. Other
known parameters are set and presented in Table 3, except for known parameters regarding
costs. The daily labor cost of each employee for both daytime and overtime is presented
in Tables 4 and 5. The known parameters to create an optimal schedule for the numerical
experiment are in Table 3.

Table 3. System parameters.

Parameters Value Parameters Value

hoursi,d 8 mind 45
parthourspt,d 8 overmind 18
overhoursi,d 4 Ad 0.8

Table 4. Costs for all employees during daytime (unit: USD/day).

Manager Regular Employee Irregular Employee

Weekday USD 140 USD 120 USD 110
Weekend USD 210 USD 180 USD 165

Table 5. Costs for all regular employees during nighttime (unit: USD/day).

Manager Regular Employee

Weekday USD 105 USD 90
Weekend USD 105 USD 90

The cost for all employees is in Table 4. Each employee is paid daily according to
company policy. Regular employees are paid more than irregular employees. Managers
are paid about USD 20 more than normal regular employees. The reason for the different
levels in paycheck between weekdays and weekends is because of the implementation of a
52-h workweek policy that regards Saturday as an overtime workday. Table 5 represents
the paycheck for regular employees at nighttime. The reason the company uses only
regular employees at night is because of the rules of the company considered in the paper.
They want to allow regular employees to earn money in the middle of a situation where
most work is gradually conducted by irregular employees due to the high labor cost of
regular employees.

5.2. Result
5.2.1. Before Applying a Mathematical Model

This company did not have a staff schedule before. Due to this, they suffered from
inefficient management of human resources. A staff schedule in Figure 3 is made based on
the record of employee working patterns. Before the explanation of Figure 3, how to see a
staff schedule is explained. In Figure 3, the row number means employees and the column
number represents days. The numbers that are the darkest gray in row number stand for
managers. The number in each cell indicates the assigned workplace and the cells with the
diagonal pattern are Job 2, and without the diagonal pattern are Job 1. When it comes to
jobs, Job 1 means normal work and Job 2 is equipment supervisor who takes responsibility
for everything regarding equipment. If looking at Figure 3, more employees sometimes
came to work than the number of employees a company needs, and fewer employees
sometimes came to work than the number of employees a company needs. An example of

146

Algorithms 2022, 15, 321

the former one is Day 3, and the latter is Day 1. Especially, when looking at Day 24, placing
enough workforce on the second floor failed. Originally, more than 15 employees should
be assigned on each floor during the daytime. However, only 12 employees were assigned
that day. This directly shows inefficient human resource management. Moreover, about
46.6 employees came to work on average, which means it was a bigger number than the
daily number of employees (45) that a company needs. This causes larger labor costs than
when 45 employees come to work, on average.

5.2.2. After Applying a Mathematical Model

Unlike a staff schedule before applying a mathematical model, a derived staff schedule
is more efficient. As shown in Figure 4, all constraints regarding work in the daytime are
satisfied. For example, 45 employees are scheduled to work if looking at Day 1. In addition,
job assignments are met as well. Continuing looking at Day 1, more than 15 employees are
assigned on each floor and two of the employees conduct Job 2 as equipment supervisors.
Furthermore, more than one manager is assigned on each floor to supervise other regular
and irregular employees as well. Moreover, over two of the employees work at open storage
and a manager works in an office. That is, the failure of employees’ assignments caused by
a manager’s random employee assignment does not happen. Other days, as well as Day 1
meet all constraints for job assignments. Along with this, the 52-h workweek policy is well
applied in the mathematical model as the result shows. There are no employees who come
to work for more than five days a week. All employees have a day off on Sunday.

Furthermore, the purpose of the developed mathematical model is to minimize the
total labor cost of regular and irregular employees. This means that the result in the
numerical experiment is for a company that has a priority of saving the total labor cost.
Therefore, if looking at the result in Figure 4, as many irregular employees as possible
are scheduled on each workday even though the average percent of irregular employee
absence is considered. It is more advantageous for a company to minimize the total labor
costs by using as many irregular employees as possible out of 22 irregular employees due to
relatively low labor costs. However, it is seen that as many irregular employees as possible
are not used. This is because there are rules on conducting jobs for a company and there are
jobs that can be conducted by regular employees. A company allocates overtime work by
assigning only regular employees to jobs for consideration for regular employees as well.
To conduct overtime work, regular employees should work during the daytime. Thus, the
result in Figure 4 is derived, even though a company has enough irregular employees that
can cover more jobs.

147

Algorithms 2022, 15, 321

Figure 3. A staff schedule before applying a mathematical model.

148

Algorithms 2022, 15, 321

Figure 4. Optimal staff schedule during daytime.

Comparing a staff schedule before and after applying a mathematical model, the
following things can be found. First, there is a difference in the number of employees
who come to work per day on average. Consequently, about 1.6 employees come to work
less than before after applying a mathematical model every day. Second, a developed
mathematical model prevents situations where employees come to work more or less than
the number of employees a company needs a day. This can aid in the improvement of
human resource management. Third, a company can save total labor costs even though
the company has the same number of employees as before. It was USD 143,525 before
applying a mathematical model and it is USD 138,335 after applying a mathematical model.
That is, a company can save a total labor cost of USD 5190. Lastly, the different employee
work pattern is found due to consideration of the change in labor policy. Some employees
came to work more than 6 days a week before applying a developed model. However, it is
constrained by a mathematical model at the moment because a company should follow
the change of labor policy, which is each employee should work less than 5 days a week.

149

Algorithms 2022, 15, 321

The number of days regular employees come to work is constrained after applying a
mathematical model due to the change in labor policy and high labor costs. Some regular
employees come to work 4 days a week. This could be shown not to allow them to work
more. However, it indirectly proved that a company that did not efficiently manage human
resources has several employees more than the number they need to have. This can be an
opportunity to rethink and optimize the number of employees a company needs to possess.

According to Figure 5, the rules relating to overtime work are also well-considered.
First, nobody is assigned to the office. Second, only one manager is assigned to supervise
regular employees on one of the two floors. For instance, one manager of four managers is
assigned on the first floor to play the role of supervisor during overtime work if looking at
Day 1. Third, an employee who performs as equipment supervisor is assigned to one of
two floors. Lastly, one employee is also allocated to open storage at least. To sum up, a staff
schedule at daytime and nighttime that satisfies constraints is derived considering the total
labor cost.

5.3. Evaluation of a Derived Staff Schedule

This paper provides a conservative and deterministic staff schedule by using a mathe-
matical model that considers the average percent of irregular employees’ absences, which
is an uncertain characteristic. Even though irregular employee absence is stochastic, the
reason this paper derives a deterministic staff schedule is that it is impossible to predict
if irregular employees come to work or do not come to work perfectly only based on the
probability of each irregular employee’s absence. That is, even the result derived from the
stochastic model cannot guarantee that each irregular employee follows a staff schedule
without absences. However, the reason to perform the simulation after deriving a deter-
ministic staff schedule is that it is meaningful in that it can give the result that can help
managers respond to the irregular employee’s absence. Figure 6 is the result of the simula-
tion. Row numbers from 41 to 62 mean irregular employees and column numbers mean
days of work. In addition, O means that irregular employees come to work, and X means
that irregular employees do not come to work. The result shows whether each irregular
employee follows their schedule when considering each employee’s absence percent.

If looking at Table 6 below, the actual percent of each irregular employee’s absence
is different from the expected percent of each employee’s absence. In other words, even
though the average percent of an irregular employee’s absence is considered as the stochas-
tic characteristic through the simulation, it cannot ensure that managers have a staff sched-
ule that can predict the absences of irregular employees perfectly. Furthermore, as shown in
Figure 6, the lacking number of irregular employees can be confirmed. If managers prepare
a conservative measure, they will assign more irregular employees on the days when some
irregular employees are expected to not come to work. However, preparing additional
irregular employees makes extra labor costs for a construction company. Nevertheless, it
is more important to finish work by assigning extra irregular employees within due time.
Saving labor costs is the next thing to do. Moreover, according to the days of absence
shown in Table 6, the number of days when each irregular employee does not come to
work can be confirmed. For example, the 44th irregular employee does not come to work
7 days out of 13 days. This irregular employee has an actual percent of absence of 53.8%. It
is 23.8% higher than an expected percent of absence of 30%. This type of employee is the
main cause to make a company fail to follow a staff schedule and assign enough workforce
to jobs. This finding can be an opportunity to help a manager rethink the recruitment of
other irregular employees. To sum up, the reason this paper derives a conservative and
deterministic staff schedule and performs the simulation about it is that it can contribute to
presenting the systematic procedure for irregular employee absence. This procedure could
aid managers in preparing precautious measures for a staff schedule while considering the
stochastic characteristics of irregular employee absence.

150

Algorithms 2022, 15, 321

Figure 5. Optimal schedule of regular employees during overtime.

Figure 6. Result of simulation for evaluation of a staff schedule.

151

Algorithms 2022, 15, 321

Table 6. Information on each irregular employee’s work and absence.

Index of
Irregular

Employees

Expected
Percent of
Absence

No. of
Scheduled
Workdays

No. of
Absence

Days

Days of
Absence

Actual
Percent

of Absence

41 20% 18 0 - 0%
42 20% 16 2 19, 24 12.5%
43 15% 19 1 13 5.3%
44 30% 13 7 6, 8, 12, 17, 19, 24, 27 53.8%
45 25% 17 3 8, 17, 27 17.6%
46 20% 16 3 6, 17, 24 18.6%
47 20% 17 2 8, 27 11.8%
48 30% 12 5 2, 11, 12 19, 20 41.7%
49 15% 15 0 - 0%
50 20% 14 1 13 7.1%
51 20% 16 3 8, 10, 27 18.6%
52 20% 13 0 - 0%
53 10% 13 0 - 0%
54 10% 17 0 - 0%
55 25% 12 3 8, 10, 27 25%
56 15% 15 0 - 0%
57 25% 12 0 - 0%
58 10% 15 1 17 6.7%
59 20% 16 1 11 6.3%
60 20% 18 1 17 5.6%
61 25% 14 3 10, 13, 20 21.4%
62 15% 16 1 19 6.3%

5.4. Sensitivity Analysis

In this mathematical model, the average percent of irregular employee absence is one of
the major factors that change the result of the total labor cost and staff schedules. However,
the irregular employee absence is unpredictable due to its inherently uncertain nature.
Therefore, to observe the change in the total labor cost and staff schedules, the average
percent of an irregular employee’s absence is examined with a variety of values. The
average percent of an irregular employee’s absence is set at 100%, 95%, 90%, 85%, 80%, 75%,
70%, 65% and under 60%. By performing sensitivity analysis with these values above, many
significant meanings are discovered. As represented in Table 7, total labor costs, the average
percent of regular employee attendance, and the average percent of irregular employee
attendance differ depending on the average percent of irregular employee’s absence. The
average percent of regular employee attendance tends to be increased if the average percent
of irregular employee absences is decreased. In other words, this is the situation where
more regular employees come to work to replace low-paid irregular employees who are
absent. This causes a rise in total labor cost because regular employees are paid more than
irregular employees. However, 40 regular employees cannot cover all irregular employees
who do not come to work when the average percent of irregular employee absence is under
60% as presented in Table 7. Thus, it is necessary that the company either take measures
to prevent the average percent of irregular employee absence from becoming too low, or
to increase the number of regular employees to derive a staff schedule that can satisfy the
necessary workload.

152

Algorithms 2022, 15, 321

Table 7. Changes in the percent of regular and irregular employees and total cost.

Attendance Rate of
Irregular Employees

The Average Percent
of Working Regular

Employees

The Average Percent
of Working Irregular

Employees
Total Cost (USD)

100% 63.5% 36.5% 176,860
95% 64.6% 35.4% 177,035
90% 66% 34% 177,205
85% 67.7% 32.3% 177,405
80% 69.1% 30.9% 177,575
75% 70.8% 29.2% 177,770
70% 72.1% 27.9% 177,945
65% 73.8% 26.2% 178,190

Under 60% Infeasible

The number of irregular employees expected to come to work, and the number of
irregular employees coming to work are different depending on the average percent of
irregular employee absence every month in Figure 7. This is because of the influence of
the condition that the minimum necessary number of regular employees should come to
work to guarantee stability for completing the workload. For this reason, the difference
between the number of irregular employees expected to come to work, and the number
of irregular employees coming to work is inclined to reduce when the average percent
of irregular employee absence is decreased due to an increase in the number of regular
employees who cover irregular employees. It implies that gradually decreasing the number
of irregular employees while coming up with ideas to encourage them not to be absent is
better to keep up stability and reinforce the job efficiency when the necessary number of
regular employees is fixed. As a result, given the stability of staff schedules, it is thought
that reasonable schedules could be made when the average percent of irregular employee
absence is 75%, although the total cost increases a little compared to 80%.

Figure 7. The difference between an expected number and the assigned number of irregular employ-
ees depending on attendance rate (the percent of irregular employees’ absences).

153

Algorithms 2022, 15, 321

As mentioned ahead, the average percent of regular employee attendance is increased
as the average percent of irregular employee absence is decreased. This results in increasing
stability in performing the job. On the other hand, the total labor cost keeps moving up,
since the cost of regular employees is normally higher than the cost of irregular employees.
In other words, labor costs can be decreased by increasing the number of irregular em-
ployees, and the stability of staff schedules can be increased by decreasing the number of
irregular employees. Therefore, it is important to make staff schedules considering factors
such as labor costs and stability of staff schedules after taking the conditions and situations
of a construction company without being biased as one factor. Thus, this research is ex-
pected to help a manager with decision-making for a staff schedule by providing various
proactive cases depending on the change of the average percent of irregular employee
absence through sensitivity analysis in the numerical experiment.

6. Conclusions

6.1. Contributions

This study proposes a staff scheduling strategy to minimize total labor costs consid-
ering the actual features of the Korean construction industry, such as an increase in labor
costs and the change in labor policy. The contributions of this paper are as follows. First,
this paper suggests a mathematical model that can save the total labor cost and aid the
management of human resources. As shown in the numerical experiment, a mathematical
model decreases the unnecessary number of employees from about 46.6 to 45 a day on
average. This can allow a company to have an opportunity to save labor costs and rethink
and optimize the number of employees they should have. Second, the practicality to apply
the developed mathematical model to other industries is proven. This study considers
an actual construction company suffering from the problem of no-show, derived from the
situation that the company increases irregular employees to handle workforce shortage due
to the rise of labor costs and a new labor policy in Korea. Through the numerical experiment
with system parameters derived from human resources, types of jobs, workplaces, and the
rules of work of a company, the applicability of the developed mathematical model to a
company is proved in practice. Therefore, this paper would help conduct research on staff
scheduling for the actual company as one of the basic references. Third, the change in labor
policy is considered when developing a mathematical model. The optimal solution for
staff scheduling by using this mathematical model is derived in the situation of workforce
availability reduction compared to the same number of employees due to the influence
of changed labor policy. In other words, this paper could play a role as a guide for staff
scheduling that must consider the change of labor policy in the future in Korea. Lastly,
this paper assists the manager of a company with decision-making for staff schedules by
providing various proactive cases while considering the sudden absence of employees.
Despite the difficulty in considering unpredictable employee absence due to the inherently
uncertain nature of irregular employees, additional numerical experiments, which are the
simulation and sensitivity analysis, are performed in the paper. The result of the simulation
predicts what expectedly happens when assuming the application of a deterministic staff
schedule in practice. In particular, the predictive information on how many irregular
employees would not come to work is given. It is impossible to guarantee that they would
follow staff schedules perfectly in the real world. Nevertheless, the reason to perform the
simulation is to allow managers to have a systematic procedure to respond to the absence
of irregular employees, not to provide a staff schedule that makes all irregular employees
follow the staff schedule. Moreover, through this sensitivity analysis with the change of
the average percent of absence, this paper observes the influence of irregular employee
absence on the change of the value of the objective function and staff schedule. Through the
additional numerical experiments, various proactive cases are provided by considering the
absence of irregular employees. This can help managers prepare the precautious measures
to respond to the stochastic irregular employee’s absence. Thus, it is expected to contribute
to helping the manager with decision-making for staff schedules.

154

Algorithms 2022, 15, 321

6.2. Future Research

This paper could be expanded to further staff scheduling research that considers shifts.
This paper does not consider shifts due to no shifts in the construction industry in general.
However, many studies about staff scheduling consider shifts. Thus, if the developed
mathematical model in this paper is improved considering the characteristics of shifts, it
is expected that the developed mathematical model could be applied to relatively more
and various industries. Furthermore, many objective functions can be considered to gain
an optimal solution for staff scheduling. The current objective function is to minimize
labor costs. This means that this staff scheduling strategy considers a company more than
employees, despite considering the policy called the 52-h workweek policy. However, it
seems necessary to create the objective function for a mathematical model that considers
employees as well as the company in the future, because employees’ satisfaction with job
assignments plays a crucial role in an organization’s success [34]. Moreover, research on
figuring out the factors that influence the sincerity of irregular employees is needed in terms
of their welfare. Conducting this research can help make a proper working environment. In
conclusion, various factors regarding both company and employees in various ways should
be considered to derive a good solution when staff scheduling problems are handled.

Author Contributions: Conceptualization, Y.D.K.; methodology, C.H.P.; software, C.H.P.; validation,
Y.D.K., C.H.P.; formal analysis, C.H.P.; investigation, C.H.P.; resources, Y.D.K.; data curation, C.H.P.;
writing—original draft preparation, C.H.P.; writing—review and editing, Y.D.K.; visualization, C.H.P.;
supervision, Y.D.K.; project administration, Y.D.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Naoum, S.G. Factors influencing labor productivity on construction sites. Int. J. Product. Perform. Manag. 2016, 65, 401–421.
[CrossRef]

2. Choi, D.S.; Le, H.; Lee, Y.D. The relationship between Korean construction industry and GDP in economic development process.
Korean J. Constr. Eng. Manag. 2013, 14, 70–77.

3. Ministry of Employment and Labor. Available online: http://www.moel.go.kr/policy/policyinfo/young/bbsView.do;
jsessionid=eCpFT7AfMl1DRaodwQO5ZP7oPDyz3nX1h1E3aRaK8USeBAL84QS8f1LxSw9EZH5W.moel_was_outside_servlet_
www1?bbs_seq=20200300901 (accessed on 12 July 2022).

4. Ministry of Employment and Labor. Available online: http://www.moel.go.kr/policy/policydata/view.do?bbs_seq=20191200830
(accessed on 12 July 2022).

5. Ho, H.; Kuvaas, B. Human resource management systems, employee well-being, and firm performance from the mutual gains
and critical perspectives: The well-being paradox. Hum. Resour. Manag. 2020, 59, 235–253. [CrossRef]

6. Kang, S.Y.; Min, S.; Won, D.; Kang, Y.J.; Kim, S. Suggestion of an improved evaluation method of construction companies’
industrial accident prevention activities in south korea. Int. J. Environ. Res. Public Health 2021, 18, 8442. [CrossRef] [PubMed]

7. Kim, S.; Chang, S.; Castro-Lacouture, D. Dynamic modeling for analyzing impacts of skilled labor shortage on construction
project management. J. Manag. Eng. 2018, 36, 04019035. [CrossRef]

8. Korkmaz, S.; Park, D.J. Comparison of safety perception between foreign and local workers in the construction industry in
Republic of Korea. Saf. Health Work 2018, 9, 53–58. [CrossRef]

9. Newsis. Available online: https://mobile.newsis.com/view.html?ar_id=NISX20181211_0000499414#_enliple (accessed on 11
July 2022).

10. Construction & Economy Research Institute of Korea. Available online: http://www.cerik.re.kr/report/issue/detail/2060
(accessed on 12 July 2022).

11. Hamid, A.R.A.; Singh, B.S.B.J.; Mazlan, M.S. The construction labour shortage in Johor Bahru, Malaysia. Int. J. Eng. Res. Technol.
2013, 2, 508–512.

12. Ward, K.; Grimshaw, D.; Rubery, J.; Beynon, H. Dilemmas in the management of temporary work agency staff. Hum. Resour.
Manag. J. 2001, 11, 3–21. [CrossRef]

155

Algorithms 2022, 15, 321

13. Cheah, C.Y.; Chew, D.A. Dynamics of strategic management in the Chinese construction industry. Manag. Decis. 2005, 43, 551–567.
[CrossRef]

14. Becker, T. A decomposition heuristic for rotational workforce scheduling. J. Sched. 2020, 23, 539–554. [CrossRef]
15. Edie, L.C. Traffic delays at toll booths. J. Oper. Res. Soc. 1954, 2, 107–138. [CrossRef]
16. Van den Bergh, J.; Beliën, J.; De Bruecker, P.; Demeulemeester, E.; De Boeck, L. Personnel scheduling: A literature review. Eur. J.

Oper. Res. 2013, 226, 367–385. [CrossRef]
17. Ganguly, A.; Nandi, S. Using statistical forecasting to optimize staff scheduling in healthcare organizations. J. Health Manag. 2016,

18, 172–181. [CrossRef]
18. Maenhout, B.; Vanhoucke, M. An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation

problems. Omega 2013, 41, 485–499. [CrossRef]
19. Ásgeirsson, E.I. Bridging the gap between self-schedules and feasible schedules in staff scheduling. Ann. Oper. Res. 2014, 218,

51–58. [CrossRef]
20. Memon, A.H.; Zin, R.M. Resource-driven scheduling implementation in Malaysian construction industry. Int. J. Sustain. Constr.

Eng. Technol. 2010, 1, 77–90.
21. Al-Rawi, O.Y.M.; Mukherjee, T. Application of linear programming in optimizing labour scheduling. J. Math. Financ. 2019, 9,

272–285. [CrossRef]
22. Rocha, M.; Oliveira, J.F.; Carravilla, M.A. Cyclic staff scheduling: Optimization models for some real-life problems. J. Sched. 2013,

16, 231–242. [CrossRef]
23. Kaya, B.Y.; Dağdeviren, M. A Human Resources Management Application for Hospitality Management in Turkey. Int. J. Bus.

Manag. Stud. 2018, 10, 39–50.
24. Azadeh, A.; Farahani, M.H.; Eivazy, H.; Nazari-Shirkouhi, S.; Asadipour, G. A hybrid meta-heuristic algorithm for optimization

of crew scheduling. Appl. Soft Comput. 2013, 13, 158–164. [CrossRef]
25. Asensio-Cuesta, S.; Diego-Mas, J.A.; Canós-Darós, L.; Andrés-Romano, C. A genetic algorithm for the design of job rotation

schedules considering ergonomic and competence criteria. Int. J. Adv. Manuf. Technol. 2012, 60, 1161–1174. [CrossRef]
26. Ruiz-Torres, A.J.; Ablanedo-Rosas, J.H.; Mukhopadhyay, S.; Paletta, G. Scheduling workers: A multi-criteria model considering

their satisfaction. Comput. Ind. Eng. 2019, 128, 747–754. [CrossRef]
27. Stolletz, R.; Brunner, J.O. Fair optimization of fortnightly physician schedules with flexible shifts. Eur. J. Oper. Res. 2012, 219,

622–629. [CrossRef]
28. Shuib, A.; Kamarudin, F.I. Solving shift scheduling problem with days-off preference for power station workers using binary

integer goal programming model. Ann. Oper. Res. 2019, 272, 355–372. [CrossRef]
29. Becker, T.; Steenweg, P.M.; Werners, B. Cyclic shift scheduling with on-call duties for emergency medical services. Health Care

Manag. Sci. 2019, 22, 676–690. [CrossRef] [PubMed]
30. Ingels, J.; Maenhout, B. Employee substitutability as a tool to improve the robustness in personnel scheduling. OR Spectr.

2017, 39, 623–658. [CrossRef]
31. Steenweg, P.M.; Schacht, M.; Werners, B. Evaluating shift patterns considering heterogeneous skills and uncertain workforce

availability. J. Decis. Syst. 2021, 30, 27–49. [CrossRef]
32. Nash, J.C. The (Dantzig) simplex method for linear programming. Comput. Sci. Eng. 2000, 2, 29–31. [CrossRef]
33. Bartels, R.H.; Golub, G.H. The simplex method of linear programming using LU decomposition. Commun. ACM 1969, 12, 266–268.

[CrossRef]
34. Lorber, M.; Skela Savič, B. Job satisfaction of nurses and identifying factors of job satisfaction in Slovenian Hospitals. Croat. Med. J.

2012, 53, 263–270. [CrossRef]

156

Citation: Zhou, X.; Funabiki, N.; Htet,

H.; Kamoyedji, A.; Anggraini, I.T.;

Huo, Y.; Syaifudin, Y.W. A Static

Assignment Algorithm of Uniform

Jobs to Workers in a User-PC

Computing System Using

Simultaneous Linear Equations.

Algorithms 2022, 15, 369. https://

doi.org/10.3390/a15100369

Academic Editor: Frank Werner

Received: 28 August 2022

Accepted: 4 October 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Static Assignment Algorithm of Uniform Jobs to Workers in a
User-PC Computing System Using Simultaneous
Linear Equations

Xudong Zhou 1, Nobuo Funabiki 1,*, Hein Htet 1, Ariel Kamoyedji 1, Irin Tri Anggraini 1, Yuanzhi Huo 1

and Yan Watequlis Syaifudin 2

1 Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
2 Information Technology Department, State Polytechnic of Malang, Malang 65141, Indonesia
* Correspondence: funabiki@okayama-u.ac.jp

Abstract: Currently, the User-PC computingsystem (UPC) has been studied as a low-cost and high-
performance distributed computing platform. It uses idling resources of personal computers (PCs) in
a group. The job-worker assignment for minimizing makespan is critical to determine the performance
of the UPC system. Some applications need to execute a lot of uniform jobs that use the identical
program but with slightly different data, where they take the similar CPU time on a PC. Then, the
total CPU time of a worker is almost linear to the number of assigned jobs. In this paper, we propose
a static assignment algorithm of uniform jobs to workers in the UPC system, using simultaneous linear
equations to find the lower bound on makespan, where every worker requires the same CPU time to
complete the assigned jobs. For the evaluations of the proposal, we consider the uniform jobs in three
applications. In OpenPose, the CNN-based keypoint estimation program runs with various images
of human bodies. In OpenFOAM, the physics simulation program runs with various parameter
sets. In code testing, two open-source programs run with various source codes from students for the
Android programming learning assistance system (APLAS). Using the proposal, we assigned the jobs to
six workers in the testbed UPC system and measured the CPU time. The results show that makespan
was reduced by 10% on average, which confirms the effectiveness of the proposal.

Keywords: UPC; distributed computing platform; uniform job; static assignment; linear equations

1. Introduction

Currently, the User-PC computing (UPC) system has been studied as a low-cost and
high-performance distributed computing platform [1]. The UPC system uses idling re-
sources of personal computers (PCs) in a group to handle a number of various computing
jobs from users. Then, the proper assignment of incoming jobs to workers is very important
to effectively deal with them by using computational resources properly. As a result, the job
assignment algorithm is critical to achieve the minimization for makespan to complete all
the demanded jobs in the UPC system.

Previously, we proposed the algorithm of assigning non-uniform jobs to workers in
the UPC system [2]. In non-uniform jobs, the programs are much different from each other,
including the developed programming languages, the number of threads, and the requiring
data. The execution time for each non-uniform job is highly different from the others. The
previous algorithm can find the job-worker assignment through two stages sequentially, of
which are heuristic due to the nature of the NP-hardness and cannot guarantee the optimality
of the solution.

Some applications need to execute a lot of uniform jobs that use the identical pro-
gram but with slightly different data/files, where they take a similar CPU time on a PC.
The applications include deep learning (machine learning), physics simulations, software
testing, computer network simulations, mathematical modeling, and mechanics modeling.

Algorithms 2022, 15, 369. https://doi.org/10.3390/a15100369 https://www.mdpi.com/journal/algorithms
157

Algorithms 2022, 15, 369

These jobs have the common feature of a similar CPU time when they run on a specific
PC. The uniform jobs often need a long CPU time. For example, in physics or network
simulations, it can take several days to run one job. Nevertheless, it will be necessary
to find the best result of all the input data by repeating them to slightly change some
parameter values for the program and running them. This work can be common in research
activities using computer simulations.

In this paper, we propose a static assignment algorithm of uniform jobs to workers in the
UPC system, using simultaneous linear equations to find the lower bound on makespan, where
every worker requires the same CPU time to complete the assigned jobs. The simultaneous
linear equations describe the equality of the estimated CPU time among the workers, and the
equality of the total number of assigned jobs to workers with the number of given jobs.
The estimated CPU time considers simultaneous executions of multiple jobs on one worker
by using its multiple cores. Since solutions of simultaneous linear equations become real
numbers in general, the integer number of jobs assigned to each worker is introduced to
them in a greedy way.

For evaluations of the proposal, we consider uniform jobs in the three applications
for the UPC system, namely, OpenPose [3], OpenFOAM [4], and code testing [5,6]. For
OpenPose, the CNN-based program runs with 41 images of human bodies. For OpenFOAM,
the physics simulation program runs with 32 parameter sets. For unit testing, the open-
source programs run with 578 source codes that were submitted from students to the server
in the Android programming learning assistance system (APLAS). These jobs were applied to
the proposed algorithm and were assigned to six workers in the testbed UPC system by
following the results. Then, the CPU time was measured by running them. For comparisons,
two simple algorithms were also implemented where the jobs were applied, and the CPU
time was measured. The evaluation results show that the difference between the longest
CPU time and the shortest one among the six workers became 92 s, and makespan of the
UPC system was reduced by 10% on average from the results by comparative algorithms.
Thus, the effectiveness of the proposal was confirmed.

The proposed algorithm limits the application to the jobs where the CPU time is
nearly equal to a worker. This limitation can simplify the job scheduling algorithm to only
considering the number of jobs assigned to each worker, while neglecting the differences
between individual jobs. Fortunately, it is possible to alleviate this limitation to a certain
degree by considering the granularity of the CPU time on a worker. The CPU time of
a job that is applicable to the proposal is often proportional to the number of iteration
steps before the termination, or to the number of elements in the computational model.
For example, in computer network simulations, the number of iteration steps need to be
selected with the unit time before simulations, where the CPU time is usually proportional
to it. By considering a multiple of a constant number of iteration steps, such as 100, the CPU
time can be estimated even if the number of iteration steps is widely changed with this
granularity. In future works, we will study this extension of the proposed algorithm to
increase its applicable applications.

The rest of this paper is organized as follows: Section 2 discusses related works.
Section 3 reviews the UPC system, OpenPose, OpenFOAM, and code testing in APLAS.
Section 4 presents the static assignment algorithm of uniform jobs to workers in the UPC
system. Section 5 evaluates the proposal through experiments. Section 6 extends the
proposal to multiple job-type assignments. Finally, Section 7 concludes this paper with
future works.

2. Related Works in the Literature

In this section, we discuss some related works in the literature.
In [7], Lin proposed several linear programming models and algorithms for identical

jobs (uniform jobs) on parallel uniform machines for individual minimizations of several
different performance measures. The proposed linear programming models provide struc-

158

Algorithms 2022, 15, 369

tured insights of the studied problems and provide an easy way to tackle the scheduling
problems.

In [8], Mallek et al. addressed the problem of scheduling identical jobs (uniform jobs) on
a set of parallel uniform machines. The jobs are subjected to conflicting constraints modeled
by an undirected graph G, in which adjacent jobs are not allowed to be processed on the
same machine. The minimization of the maximum makespan in the schedule is known to
be NP-hard. To solve the general case of this problem, they proposed mixed-integer linear
programming formulations alongside lower bounds and heuristic approaches.

In [9], Bansal et al. proposed the two-stage Efficient Refinery Scheduling Algorithm
(ERSA) for distributed computing systems. In the first stage, it assigns a task according to
the min–max heuristic. In the second stage, it improves the scheduling by using the refinery
scheduling heuristic that balances the loads across the machines and reduces makespan.

In [10], Murugesan et al. proposed a multi-source task scheduler to map the tasks to
the distributed resources in a cloud. The scheduler has three phases: the task aggregation,
the task selection, and the task sequencing. By using the ILP formulation, this scheduler
minimizes makespan while satisfying the budget allotted by the cloud user based on the
divisible load theory.

In [11], Garg et al. proposed the adaptive workflow scheduling (AWS) for grid computing
using the dynamic resources based on the rescheduling method. The AWS has three stages
of the initial static scheduling, the resource monitoring, and the rescheduling, to minimize
makespan using the directed acyclic graph workflow model for grid computing. It deals
with the heterogeneous dynamic grid environment, where the availability of computing
nodes and link bandwidths are inevitable due to existences of loads.

In [12], Gawali et al. proposed the two-stage Standard Deviation-Based Modified Cuckoo
Optimization Algorithm (SDMCOA) for the scheduling of distributed computing systems.
In the first stage, it calculates the sample initial population among all the available number
of task populations. In the second stage, the modified COA immigrates and lays the tasks.

In [13], Bittencourt et al. reviewed existing scheduling problems in cloud computing
and distributed systems. The emergence of distributed systems brought new challenges
on scheduling in computer systems, including clusters, grids, and clouds. They defined a
taxonomy for task scheduling in cloud computing, namely, pre-cloud schedulers and cloud
schedulers, and classified existing scheduling algorithms in the taxonomy. They introduced
future directions for scheduling research in cloud computing.

In [14], Attiya et al. presented a modified Harris hawks optimization (HHO) algorithm
based on the simulated annealing (SA) for scheduling the jobs in a cloud environment. In this
approach, SA is employed as a local search algorithm to improve the convergence rate and
the solution quality generated by the standard HHO algorithm. HHO is a novel population-
based, nature-inspired optimization paradigm proposed by Heidari et al. [15]. The main
inspiration of HHO is the cooperative behavior and the chasing style of Harris’ hawks in
nature. In the HHO model, several hawks explore prey, respectively, and simultaneously
after attacking the target from different directions to surprise it.

In [16], Al-Maytami et al. presented a novel scheduling algorithm using Directed
Acyclic Graph (DAG) based on the Prediction of Tasks Computation Time algorithm (PTCT) to
estimate the preeminent scheduling algorithm for prominent cloud data. The proposed
algorithm provides a significant improvement with respect to makespan and reduces the
computational complexity via employing Principal Components Analysis (PCA) and reducing
the Expected-Time-to-Compute (ETC) matrix.

In [17], Panda et al. proposed an energy-efficient task scheduling algorithm (ETSA) to
address the demerits associated with the task consolidation and scheduling. The proposed
algorithm ETSA takes into account the completion time and the total utilization of a task
on the resources, and follows a normalization procedure to make a scheduling decision.
The ETSA provides an elegant trade-off between energy efficiency and makespan, more so
than the existing algorithms.

159

Algorithms 2022, 15, 369

3. Reviews of UPC System and Three Applications

In this section, we review the User-PC computing system (UPC) system and the three
applications in this paper.

3.1. UPC System

First, we review the UPC system. The UPC system can provide computational powers
efficiently for members in a group, such as engineers in a company or students in a
laboratory, by using idling computing resources of their PCs. To allow various application
programs to run on different PC environments, the UPC system adopts Docker. Docker
is a popular software tool that has been designed to create, deploy, and execute various
application programs on various platforms by packaging the necessary dependencies of
the application [18].

Figure 1 shows the overview of the UPC system. The UPC system adopts the master-
worker model. Users submit computing jobs to the UPC master through the UPC web
server. After synchronizations of the jobs, the UPC master assigns the submitted jobs
to the appropriate UPC workers. Each worker computes its assigned jobs and returns the
results to the master upon completion. Users can access the results at the web browser.

Figure 1. Overview of UPC system.

For further details, the usage flow of the UPC system will be described:

1. Job reception: A user submits jobs from the web browser and requests to compute
them in the UPC system.

2. Worker assignment: The UPC master selects an appropriate active worker to compute
each job using a job-worker assignment algorithm.

3. Docker image generation: The UPC master generates the Docker image to execute the
job on the assigned worker.

4. Docker image transmission: The master sends the Docker image to the assigned worker.
5. Job execution: The worker generates the Docker container from the image and executes

the job there.
6. Result transmission: The worker returns the result to the master upon completion.
7. Result response: The master shows the computing results of the jobs to the user

through the web server.

3.2. OpenPose

Next, we review OpenPose. It has been developed by researchers at Carnegie Mellon
University and is an popular open-source software for real-time human pose estimation [3].

160

Algorithms 2022, 15, 369

It extracts the feature points, called keypoints, of the human body in the given image using
Convolutional Neural Network (CNN). The keypoints represent the important joints in a human
body, the contours of eyes, lips in the face, fingertips, and joints in the hands and feet.
Using the keypoints, the shapes of a body, face, hands, and feet can be described. Since
it has been developed based on CNN, the CPU time is very long when computed on a
conventional PC.

OpenPose is used in our group for developing the exercise and performance learning assis-
tant system (EPLAS) to assist practicing exercises or learning performances by themselves
at home [19]. EPLAS offers video content of Yoga poses by instructors whose performances
should be followed by users. During the practice, it automatically takes photos of important
scenes of the user. Then, it extracts the keypoints of the human body using OpenPose to rate
the poses in the photos by comparing the coordinates of them between the user and the
instructor.

3.3. OpenFOAM

Then, we review OpenFOAM. It is an open-source software for the computational fluid
dynamics (CFD) simulations and has been developed primarily by OpenCFD Ltd. (Bracknell,
UK) It has an extensive range of features to solve anything from complex fluid flows
involving chemical reactions, turbulence, and heat transfer, to acoustics, solid mechanics,
and electromagnetics [4]. Furthermore, the optimal parameter selection is critical for
the high accuracy of the results, and it needs a lot of iterations of selecting parameters in
OpenFOAM and running it with the parameter values. We applied the parameter optimization
method for OpenFOAM [20]; it needs to run OpenFOAM with a lot of different parameters.

Meanwhile, it is also applied for developing the air conditioning guidance system [21]
in our research. The estimation or prediction of the distributions of the temperature or
humidity inside a room using this simulation model is necessary to properly control the air
conditioner. By estimating the room environment changes under various actions, it will be
possible to decide when the air conditioner is turned on or off. Even the timing to open or
close windows in the room can be selected. To estimate or predict the distributions in a room
together with sensors, the CFD simulation using OpenFOAM has been investigated. Then,
the optimization of the parameters in OpenFOAM is critical in order to fit the simulation
results well with the corresponding measured ones.

3.4. Code Testing

Finally, we review the code testing in the Android programming learning assistance system
(APLAS). APLAS has been developed in our group as the automatic and self-learning
system for Android programming using Java and XML [5,6]. The code testing is the process
to validate a source code by running the corresponding test code on a testing framework.
To confirm the validity of the answer source code from a student in satisfying the required
specifications in the assignment, APLAS implements the code testing function using JUnit for
unit testing of Java codes [22] and Robolectric for integration testing with XML codes [23,24].
APLAS needs to run the code testing function with a lot of different source codes from many
students, which usually takes a long time.

In ALPAS, Java codes can be directly tested on JUnit. However, the Android-specific
components, such as the Layout, the Activity, the Event Listener, and the Project Resources
that will be described in XML, cannot be directly tested on JUnit. The building tool Gradle
is used to build and integrate them as Java classes. Then, Robolectric is used to generate Java
objects—called shadow objects—for them, so that they can be tested on JUnit.

4. Proposal of Static Uniform Job Assignment Algorithm

In this section, we present the static uniform job assignment algorithm to workers in
the UPC system.

161

Algorithms 2022, 15, 369

4.1. Objective

To design the algorithm, it is observed that when the makespan of every worker
becomes equal, the objective of the problem on the makespan minimization can be achieved.
Otherwise, the maximum makespan can be reduced by moving some jobs at the bottleneck
worker which determines this maximum makespan to other workers, if the number of
assigned jobs to any worker can take a real number. Only when every worker has the same
makespan, the maximum makespan cannot be reduced.

minimize{max(mt
w)} f or t ∈ T, w ∈ W (1)

The minimization of the maximum makespan among all the workers is given as the ob-
jective of the problem, where makespan mt

w at worker w for type t is given by the summation
of the CPU time for preparation and execution.

4.2. Simultaneous Linear Equations

In this paper, the following simultaneous linear equations have been derived to find the
optimal job-worker assignment, such that the estimated CPU time required to complete the
assigned jobs becomes equal among all the workers. The solutions of the simultaneous linear
equations will be the lower bound on makespan. Since the solutions become real numbers in
general, the integer number of assigned jobs to each worker should be introduced to them.

Ct
i +

Rt
i,Di

Di
× xt

i = Ct
j +

Rt
j,Dj

Dj
× xt

j

f or i
= j, i ∈ W, j ∈ W, t ∈ T.

(2)

To satisfy the objective of the equal CPU time among the workers, Rt
w,Dw

/Dw gives
the best CPU time to solve one job at worker w by running Dw jobs.

4.3. Problem Formulation

To present the static uniform jobs assignment algorithm to workers in the UPC system,
the problem to be solved is formulated here.

4.3.1. Variables

The following variables are defined for the problem to be solved:

• t: Particular job type;
• w: Particular worker;
• xt

w: # of the assigned jobs to worker w for type t;
• mt

w: Makespan at worker w to complete all the assigned jobs for type t;
• dw: # of running jobs in parallel using multi-threads at worker w.

4.3.2. Constants

The following constants are given as the inputs to this problem:

• T: Set of job types;
• W: Set of workers;
• Nt: Total # of jobs for type t;
• Dw: # of jobs for the best throughput at worker w for any type;
• Ct

w: CPU time at worker w to prepare job executions for type t;
• Rt

w,d: CPU time at worker w to execute d jobs for type t in parallel.

Here, Dw represents the number of simultaneously running jobs for job type t at
worker w, which maximizes the number of completed jobs per unit time. This is constant
for any job type in each application, because it depends on the common program in the
application for every job type.

162

Algorithms 2022, 15, 369

Ct
w represents the CPU time required to initiate the execution of the program at worker

w. For example, in the code testing application, it represents the CPU time to initiate the
Gradle Wrapper daemon and generate shadow objects that are necessary to run the code testing
function.

Rt
w,d can be measured using any worker by running jobs for job type t while increasing

the number of running jobs in parallel from 1 until Dw.

4.3.3. Constraints

The following two constraints must be satisfied in the problem:

• The total number of the assigned jobs to workers must be equal to Nt for any type t.

∑
w∈W

xt
w = Nt (t ∈ T) (3)

• Any worker cannot run d jobs in parallel when d is larger than the Dw (let dw for
worker w) due to the PC specifications.

dw ≤ Dw (4)

4.4. Conditions for Uniform Job Assignment

For the uniform job assignment to workers in the UPC system, the following conditions
are assumed:

• Several job types may exist for uniform jobs in each application, where different job
types may need the different CPU time, memory size, and number of CPU cores due
to the differences in data;

• Each job is fully executed on one worker until it is completed;
• Each worker may have different performance specifications from the others;
• Each worker may have a different number of running jobs in parallel, using multi-

threads for the best throughput;
• The CPU time to run the certain number of jobs in parallel is given for each worker

and job type.

4.5. Static Uniform Job Assignment Algorithm

Here, we note that the CPU time may be different depending on the number of
running jobs in parallel in each worker that has multiple cores. To reduce the CPU time
by increasing the job completion throughput, Dw jobs of type t should run at worker w
as much as possible, since it will give the best throughput. Based on this observation, we
present the three-step static uniform job assignment algorithm. Figure 2 shows the flowchart
of the proposal.

4.5.1. First Step

By solving the simultaneous linear equations composed of (2) and (3), the optimal number
of assigned jobs of type t to worker w, x̂t

w, is obtained, assuming that any real value is
acceptable for it.

163

Algorithms 2022, 15, 369

Figure 2. Flowchart of the proposal.

4.5.2. Second Step

The solution in the first step becomes feasible only when x̂t
w is a multiple of Dw for

type t. Unfortunately, x̂t
w does not satisfy the condition, in general. Therefore, in the second

step, as the closest integer number to satisfy the condition, the following x̃t
w jobs will be

assigned to the worker (worker w), where �y� gives the largest integer equal to or smaller
than y:

x̃t
w = � x̂t

w
Dw

� × Dw (5)

Then, the number of the remaining jobs (let rt for type t) is calculated by:

rt = Nt − ∑
w∈W

x̃t
w (6)

Besides, the estimated makespan for each worker (let emt
w for worker w and job type t)

after the job assignment is calculated by:

emt
w = Ct

w + Rt
w,Dw

× x̃t
w

Dw
(7)

Therefore, after completing the procedures for all the job types, the estimated makespan
for each worker is calculated by:

EMw = ∑
t∈T

emt
w (8)

As the objective of the algorithm, the maximum estimated makespan among the workers
is calculated by:

EM = {max(EMw)} f or w ∈ W (9)

4.5.3. Third Step

In the third step, the remaining jobs (rt) in the second step will be assigned to workers
in a greedy way, such that the increase in the maximum estimated makespan EM is mini-
mized. It is noted that the remaining jobs may exist for any job type. Here, to utilize the
parallel job computation using multiple threads on multiple cores for each worker as much
as possible, the simultaneous assignment of multiple jobs to one worker is always consid-
ered.

1. Find the worker whose ˆEMw is smallest among the workers (let worker w).

ˆEMw = EMw + Rt
w,Dw

(10)

164

Algorithms 2022, 15, 369

2. Assign Δxt
w jobs to worker w.

Δxt
w =

{
Dw, rt > Dw

rt, rt ≤ Dw
(11)

3. Update the number of the remaining jobs (rt), and the number of assigned jobs and
makespan of the worker w by:

xt
w = xt

w + Δxt
w,

EMw = EMw + Rt
w,Δxt

w
,

rt = rt − Δxt
w

(12)

4. If the number of the remaining jobs becomes zero (rt = 0), terminate the procedure.
5. Go to 1.

5. Evaluation

In this section, we evaluate the proposal through extensive experiments which are
running jobs in three applications on the testbed UPC system.

5.1. Testbed UPC System

Table 1 shows the PC specifications in the testbed UPC system. One master and six
workers are used here.

Table 1. PC specifications.

PC # of Cores CPU Model Clock Rate Memory Size

master 4 Core i5 3.20 GHz 8 GB
PC1 4 Core i3 1.70 GHz 2 GB
PC2 4 Core i5 2.60 GHz 2 GB
PC3 4 Core i5 2.60 GHz 2 GB
PC4 8 Core i7 3.40 GHz 4 GB
PC5 16 Core i9 3.60 GHz 8 GB
PC6 20 Core i9 3.70 GHz 8 GB

5.2. Jobs

Table 2 shows the specifications of the jobs for the eight job types in our experiments.
For the code testing application in APLAS, six job types are prepared, where each job type
represents one assignment to students in APLAS. These job types run the same programs of
JUnit and Robolectric, but accept many different data of answer source codes and test codes.
For the other applications, only one job type is considered.

Table 2. Job specifications.

Job Type # of Jobs
Ave. Job Size

(KB)
Ave. LOC

Ave. Peak Mem.
Use (GB)

BassixAppX1 97 548 1288 1.80
BassixAppX2 125 623 1499 1.82
ColorGame 114 177 1834 1.94

SoccerMatch 88 381 2632 2.39
AnimalTour 71 31,048 4625 4.21
MyLibrary 83 409 4850 2.51
OpenPose 41 62 N/A 2.69

OpenFOAM 32 27 N/A 0.035
total/ave. 651 4159 N/A 2.17

165

Algorithms 2022, 15, 369

5.3. CPU Time

Table 3 shows the constant CPU time required to start running the jobs on each worker
for each of the six job types. Tables 4–6 show the increasing CPU time when the number of
jobs is increased by one until the number for the best throughput for each type.

Through preliminary experiments, we found the number of simultaneously running
jobs for the highest throughput for each worker. For code testing in APLAS, PC1, PC2,
and PC3 can run only one job in parallel due to the low specifications. This number is two
for PC4, five for PC5, and six for PC6. For OpenPose, any worker can only execute one job
because it uses a lot of threads to compute CNN. For OpenFOAM, for each worker, the CPU
time is constant at any number of simultaneously running jobs until it reaches the number
of cores in the worker.

Table 3. Constant CPU time to start jobs (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6

BassixAppX1 9 6 6 5 4 4
BassixAppX2 9 6 6 5 4 4
ColorGame 9 6 6 5 4 4
SoccerMatch 10 6 6 6 5 4
AnimalTour 18 16 16 13 9 8
MyLibrary 11 7 7 6 5 4
OpenPose 10 9 9 8 7 7

OpenFOAM 5 5 5 4 3 3

Table 4. Increasing CPU time at PC1∼PC4 (s).

Job Type PC1 PC2 PC3 PC4: 1 Job PC4: 2 Jobs

BassixAppX1 58 37 37 25 32
BassixAppX2 38 24 24 15 21
ColorGame 60 35 35 25 31

SoccerMatch 128 71 71 46 56
AnimalTour 301 58 58 37 46
MyLibrary 119 43 43 27 34
OpenPose 70 35 35 26 N/A

OpenFOAM 415 206 206 170 170

Table 5. Increasing CPU time at PC5 (s).

Job Type 1 Job 2 Jobs 3 Jobs 4 Jobs 5 Jobs

BassixAppX1 18 21 25 27 31
BassixAppX2 11 13 16 19 22
ColorGame 16 19 22 26 30

SoccerMatch 31 37 43 55 62
AnimalTour 25 29 50 67 79
MyLibrary 17 20 32 41 47
OpenPose 22 N/A N/A N/A N/A

OpenFOAM 128 128 128 128 128

Table 6. Increasing CPU time at PC6 (s).

Job Type 1 Job 2 Jobs 3 Jobs 4 Jobs 5 Jobs 6 Jobs

BassixAppX1 16 17 20 23 27 31
BassixAppX2 9 10 12 15 18 21
ColorGame 15 17 19 22 24 28
SoccerMatch 27 31 36 44 54 61
AnimalTour 23 26 30 35 38 44
MyLibrary 16 18 21 27 33 39
OpenPose 21 N/A N/A N/A N/A N/A

OpenFOAM 106 106 106 106 106 106

166

Algorithms 2022, 15, 369

5.4. Comparative Algorithms

For performance comparisons, we implemented two simple algorithms to assign
non-uniform jobs to workers.

The first one is the First-Come-First-Serve (FCFS) algorithm. It assigns each job to the
first available worker, starting from the worker with the highest specification until the one
with the lowest. It limits the worker to executing only one job at a time.

The second is the best throughput-based FCFS (T-FCFS) algorithm. The difference
between T-FCFS and FCFS is that each worker may execute multiple jobs simultaneously
until the best throughput.

5.5. Total Makespan Results

Table 7 compares the maximum makespan results for each job type when the testbed
UPC system runs the jobs by following the assignments found by the algorithms. Further-
more, it shows the lower bound (LB) on the maximum makespan found at First Step of the
proposed algorithm for the reference of them.

Table 7. Maximum makespan results (s).

Job Type FCFS T-FCFS Proposal LB

BassixAppX1 536 268 221 203.04
BassixAppX2 470 235 184 178.67
ColorGame 621 276 233 224.04

SoccerMatch 828 414 370 356.03
AnimalTour 666 319 289 262.82
MyLibrary 520 260 238 227.07
OpenPose 272 272 220 209.97

OpenFOAM 1044 131 131 81.55
Total 4957 2175 1886 1743.19

The results indicate that for any job type, the maximum makespan result by the proposal
is better than the results by the two compared algorithms and is close to the lower bound.
Thus, the effectiveness of the proposal is confirmed. It is noted that the results by FCFS
are far larger than the ones by the others because FCFS does not consider simultaneous
multiple job executions for a worker.

5.6. Individual Makespan Results

For reference, Tables 8–10 show makespan or the total CPU time of each worker and the
largest CPU time difference between the workers and the three algorithms. For OpenFOAM,
no job was assigned to PC1–PC4, because all of the 32 jobs can be executed simultaneously
at PC5 and PC6. The largest CPU time difference by the proposal is smaller than the ones by
the others, except for ColorGame, SoccerMatch, AnimalTour, and MyLibrary, where in Table 4,
the increasing CPU time of PC1 is much larger than other workers, and the far smaller
number of jobs was assigned. Therefore, the proposal can balance well the job assignments
among the workers.

Table 8. FCFS makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 536 516 516 510 506 500 36
BassixAppX2 470 450 450 440 435 442 35
ColorGame 621 574 574 570 560 570 61
SoccerMatch 828 770 770 780 792 775 58
AnimalTour 638 666 666 650 612 620 54
MyLibrary 520 500 500 462 462 480 58
OpenPose 240 264 264 272 261 252 32
OpenFOAM 840 844 844 1044 917 981 204

167

Algorithms 2022, 15, 369

Table 9. T-FCFS makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 268 215 215 222 210 241 58
BassixAppX2 235 210 210 208 208 214 27
ColorGame 276 246 246 252 258 256 30
SoccerMatch 414 385 385 372 377 390 42
AnimalTour 319 296 296 295 298 312 24
MyLibrary 260 250 250 240 260 246 20
OpenPose 240 264 264 272 261 252 32
OpenFOAM 0 0 0 0 131 109 131

Table 10. Proposal makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 183 191 191 197 190 221 38
BassixAppX2 161 174 174 173 180 184 23
ColorGame 189 216 216 222 233 228 44
SoccerMatch 266 361 361 342 358 370 104
AnimalTour 0 248 248 289 246 272 289
MyLibrary 130 222 222 210 234 238 108
OpenPose 220 219 219 216 205 196 24
OpenFOAM 0 0 0 0 131 109 131

5.7. Discussions

The results in Table 7 show improvements of maximum makespan results by the
proposed algorithm if compared with T-FCFS. However, some differences can be observed
against the lower bound.

The current algorithm can find the assignment of some remaining jobs to workers,
and assign an integer number of jobs to any worker in a greedy way, after the real number
solutions are obtained by solving the simultaneous linear equations. A greedy method is
usually difficult to give a near-optimum solution, since it only considers the local optimality
under the current assignment.

To improve the solution quality, a local search method using iterations has often been
adopted for solving combinatorial optimization problems, including this study. Therefore,
we will study the use of a local search method for the remaining job assignment in the
proposed algorithm.

6. Extension to Multiple Job Types Assignment

In this section, we extend the proposed algorithm to the case when jobs for multiple
job types are assigned together.

6.1. Algorithm Extension

In First Step of the proposed algorithm, the linear equations are modified in this
extension to consider the CPU time to complete all the jobs for the plural job types assigned
to each worker:

∑
t∈T

(Ct
i +

Rt
i,Di

Di
× xt

i) = ∑
t∈T

(Ct
j +

Rt
j,Dj

Dj
× xt

j)

f or i
= j, i ∈ W, j ∈ W.

(13)

The number of variables to be solved is |W||T|, where |W| represents the number
of workers and |T| represents the number of job types, respectively. Thus, |W||T| linear
equations are necessary to solve them. In the original algorithm, for each job type, (|W| − 1)
linear equations are derived for the CPU time equality and one equation is for the job
number. Thus, |W||T| equations can be introduced.

However, in this extension, the total number of linear equations for the CPU time
equality is reduced to (|W| − 1) because all the job types need to be considered together here.

168

Algorithms 2022, 15, 369

Therefore, to solve the linear equations uniquely, the following
(|W| − 1)(|T| − 1) linear equations will be introduced by considering the total CPU time
for (|T| − 1) job types together for (|T| − 1) combinations of (|T| − 1) job types, in addition
to the total CPU time for |T| job types together in (13):

∑
t∈T−{u}

(Ct
i +

Rt
i,Di

Di
× xt

i) = ∑
t∈T−{u}

(Ct
j +

Rt
j,Dj

Dj
× xt

j)

f or i
= j, i ∈ W, j ∈ W, u ∈ T.

(14)

where T − {u} represents the set of the job types in T except for job type u.
The (|T| − 1) combinations of (|T| − 1) job types are selected by excluding the combi-

nation where the following estimated total CPU time to execute all the jobs in the remaining
job types on PC6 is smallest:

∑
t∈T−{u}

(Ct
6 +

Rt
6,D6

D6
× Nt) (15)

Then, in Second Step and Third Step, the estimated makespan for each worker and the
maximum estimated makespan among the workers are modified to consider all the given
job types together.

6.2. Total Makespan Results

Table 11 shows the maximum makespan results when the testbed UPC system runs the
jobs by following the assignments by the extended algorithm. When compared with the
result by the original algorithm, it is reduced by 5%, and becomes closer to the lower bound.
The difference between our result and the lower bound is very small. Thus, this extension
is effective when plural job types are requested at the UPC system together.

Table 11. Maximum makespan results (s) by proposal.

Original Extended LB

1886 1799 1743.19

6.3. Discussions

The result in Table 11 confirms some reduction in the total makespan result by the
extended algorithm. However, there is still a difference when compared to the lower bound.
Thus, it is necessary to further improve the algorithm.

One idea for this improvement in the extended algorithm will not be to limit the
exclusion of one job type combination—where the estimated total CPU time to execute all
jobs in the remaining job types on PC6 is the smallest—and to generate the linear equations
for the CPU time equality. Instead, every combination will be excluded one by one to obtain
the result for each combination exclusion. Then, the best one will be selected among them.

7. Conclusions

This paper proposed the static uniform job assignment algorithm to workers in the UPC
system. The simultaneous linear equations have been derived to find the optimal assignment
of minimizing the maximum makespan among the workers, where the CPU time to complete
the assigned jobs becomes equal among all the workers.

For an evaluation, the 651 uniform jobs in three applications, OpenPose, OpenFOAM,
and code testing in APLAS, were considered to run on six workers in the testbed UPC system,
and the makespan was compared with the results by two simple algorithms and the lower
bounds. The comparisons confirmed the effectiveness of the proposal.

The novelty of the proposal is that with a very simple formula, it is able to provide
the near-optimal solutions to NP-complete problems in the User-PC computing (UPC) system,

169

Algorithms 2022, 15, 369

a typical distributed system. The current algorithm limits the jobs whereby the computing
time for a worker is nearly equal. This limitation can simplify our approach of considering
the simple assignment of the number of jobs for each worker without considering the
differences among individual jobs.

Fortunately, it is possible to alleviate this limitation by considering the granularity of
the CPU time for a worker. The CPU time of a job in suitable applications to the proposal is
often proportional to the number of iteration steps before the termination or the number of
elements in the model. By considering a multiple of a constant number of iteration steps,
the CPU time can be estimated even if the number of iteration steps is widely changed with
this granularity; this finding will be in future studies.

In future studies, we will also improve the algorithm for remaining job assignments
and simultaneous job assignments of multiple job types, and we will study the combina-
tion of uniform jobs and non-uniform jobs in the job-worker assignment algorithm for the
UPC system.

Author Contributions: Conceptualization, N.F.; Data curation, X.Z. and H.H.; Resources, H.H., A.K.,
I.T.A., Y.H. and Y.W.S.; Software, X.Z.; Supervision, N.F.; Writing–original draft, X.Z.; Writing–review
& editing, N.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this paper:

UPC User-PC Computing System
PC Personal Computer
APLAS Android Programming Learning Assistance System
CNN Convolutional Neural Network
CFD Computational Fluid Dynamics
XML Extensible Markup Language
CPU Central Processing Unit
ERSA Efficient Refinery Scheduling Algorithm
ILP Integer Linear Programming
AWS Adaptive Workflow Scheduling
COA Cuckoo Optimization Algorithm
SDMCOA Standard Deviation-Based Modified Cuckoo Optimization Algorithm
HHO Harris Hawks optimization
PTCT Prediction of Tasks Computation Time algorithm
PCA Principal Components Analysis
ETC Expected Time to Compute
ETSA Energy-Efficient Task Scheduling Algorithm
SA Simulated Annealing
AC Air Conditioners
LOC Lines Of Codes
FCFS First Come First Serve
T-FCFS Best Throughput-Based FCFS
LB Lower Bound

References

1. Htet, H.; Funabiki, N.; Kamoyedji, A.; Kuribayashi, M.; Akhter, F.; Kao, W.-C. An implementation of user-PC computing system
using Docker container. Int. J. Future Comput. Commun. 2020, 9, 66–73.

2. Kamoyedji, A.; Funabiki, N.; Htet, H.; Kuribayashi, M. A proposal of job-worker assignment algorithm considering CPU core
utilization for user-PC computing system. Int. J. Future Comput. Commun. 2022, 11, 40–46. [CrossRef]

170

Algorithms 2022, 15, 369

3. OpenPose 1.7.0. Available online: Cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/index.html (accessed on
15 August 2022).

4. OpenFOAM. Available online: ww.openfoam.com (accessed on 15 August 2022).
5. Syaifudin, Y.W.; Funabiki, N.; Kuribayashi, M.; Kao, W.-C. A proposal of Android programming learning assistant system with

implementation of basic application learning. Int. J. Web Inf. Syst. 2019, 16, 115–135. [CrossRef]
6. Syaifudin, Y.W.; Funabiki, N.; Mentari, M.; Dien, H.E.; Mu’aasyiqiin, I.; Kuribayashi, M.; Kao, W.-C. A web-based online platform

of distribution, collection, and validation for assignments in Android programming learning assistance system. Eng. Lett. 2021,
29, 1178–1193.

7. Lin, Y. Fast LP models and algorithms for identical jobs on uniform parallel machines. Appl. Math. Model. 2013, 37, 3436–3448.
[CrossRef]

8. Mallek, A.; Bendraouche, M.; Boudhar, M. Scheduling identical jobs on uniform machines with a conflict graph. Comput. Oper.
Res. 2019, 111, 357–366. [CrossRef]

9. Bansal, S.; Hota, C. Efficient refinery scheduling heuristic in heterogeneous computing systems. J. Adv. Inform. Technol. 2011, 2,
159–164. [CrossRef]

10. Murugesan, G.; Chellappan, C. Multi-source task scheduling in grid computing environment using linear programming. Int. J.
Comput. Sci. Eng. 2014, 9, 80–85. [CrossRef]

11. Garg, R.; Singh, A. Adaptive workflow scheduling in grid computing based on dynamic resource availability. Eng. Sci. Technol.
2015, 18, 256–269. [CrossRef]

12. Gawali, M.B.; Shinde, S.K. Standard deviation based modified Cuckoo optimization algorithm for task scheduling to efficient
resource allocation in cloud computing. J. Adv. Inform. Technol. 2017, 8, 210–218. [CrossRef]

13. Bittencourt, L.F.; Goldman, A.; Madeira, E.R.M.; da Fonseca, N.L.S.; Sakellariou, R. Scheduling in distributed systems: A cloud
computing perspective. Comput. Sci. Rev. 2018, 30, 31–54. [CrossRef]

14. Attiya, I.; Elaziz, M.A.; Xiong, S. Job scheduling in cloud computing using a modified Harris Hawks optimization and simulated
annealing algorithm. Comput. Intelli. Neuro. 2020, 2020, 3504642. [CrossRef] [PubMed]

15. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks optimization: Algorithm and applications.
Future Gen. Comput. Syst. 2019, 97, 849–872. [CrossRef]

16. Al-Maytami, B.A.; Hussain, P.F.A.; Baker, T.; Liatsis, P. A Task Scheduling Algorithm With Improved Makespan Based on
Prediction of Tasks Computation Time algorithm for Cloud Computing. IEEE Access 2019, 7, 160916–160926. [CrossRef]

17. Panda, S.K.; Jana, P.K. An energy-efficient task scheduling algorithm for heterogeneous cloud computing systems. Clust. Comput.
2019, 22, 509–527. [CrossRef]

18. Mouat, A. Using Docker: Developing and Deploying Software with Containers, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
19. Anggraini, I.T.; Basuki, A.; Funabiki, N.; Lu, X.; Fan, C.-P.; Hsu, Y.-C.; Lin, C.-H. A proposal of exercise and performance learning

assistant system for self-practice at home. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1196–1203. [CrossRef]
20. Zhao, Y.; Kojima, K.; Huo, Y.-Z.; Funabiki, N. CFD parameter optimization for air-conditioning guidance system using small

room experimental model. In Proceedings of the 4th Global Conference on Life Sciences and Technologies, Osaka, Japan, 7–9
March 2022; pp. 252–253.

21. Huda, S.; Funabiki, N.; Kuribayashi, M.; Sudibyo, R.W.; Ishihara, N.; Kao, W.-C. A proposal of air-conditioning guidance system
using discomfort index. In InInternational Conference on Broadband and Wireless Computing, Communication and Applications ;
Springer: Cham, Switzerland, 2020; pp. 154–165.

22. Wahid, M.; Almalaise, A. JUnit framework: An interactive approach for basic unit testing learning in software engineering. In
Proceedings of the 3rd International Conference on Engineering Education and Information Technology, Kuala Lumpur, Malaysia,
17–19 May 2011.

23. Robolectric. Available online: www.robolectric.org (accessed on 15 August 2022).
24. Linares-Vásquez, M.; Bernal-Cardenas, C.; Moran, K.; Poshyvanyk, D. How do developers test android applications.

In Proceedings of the 2017 IEEE International Conference on Software Maintenance and Evolution, Shanghai, China,
17–22 September 2017.

171

Citation: Seda, M. The Assignment

Problem and Its Relation to Logistics

Problems. Algorithms 2022, 15, 377.

https://doi.org/10.3390/a15100377

Academic Editor: Frank Werner

Received: 7 September 2022

Accepted: 13 October 2022

Published: 16 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

The Assignment Problem and Its Relation to Logistics Problems

Milos Seda

Institute of Automation and Computer Science, Faculty of Mechanical Engineering, Brno University of
Technology, Technicka 2896/2, 623 00 Brno, Czech Republic; seda@fme.vutbr.cz

Abstract: The assignment problem is a problem that takes many forms in optimization and graph
theory, and by changing some of the constraints or interpreting them differently and adding other
constraints, it can be converted to routing, distribution, and scheduling problems. Showing such
correlations is one of the aims of this paper. For some of the derived problems having exponential
time complexity, the question arises of their solvability for larger instances. Instead of the traditional
approach based on the use of approximate or stochastic heuristic methods, we focus here on the
direct use of mixed integer programming models in the GAMS environment, which is now capable
of solving instances much larger than in the past and does not require complex parameter settings or
statistical evaluation of the results as in the case of stochastic heuristics because the computational
core of software tools, nested in GAMS, is deterministic in nature. The source codes presented may be
an aid because this tool is not yet as well known as the MATLAB Optimisation Toolbox. Benchmarks
of the permutation flow shop scheduling problem with the informally derived MIP model and the
traveling salesman problem are used to present the limits of the software’s applicability.

Keywords: assignment problem; traveling salesman problem; vehicle routing problem; flow shop
scheduling problem; GAMS, genetic algorithm

1. Introduction

The Assignment Problem (abbreviated to AP) [1] and its mathematical model is a
problem that is the basis of the field of combinatorial optimization [2,3]. The problem in its
basic form has been successfully handled by the discovery of Harold Kuhn, who proved
that his method [4], derived from the results of the theoretical work of the Hungarian
mathematicians Dénes König and Jenö Egerváry and dubbed the Hungarian method in their
honor, finds a solution in polynomial time O(n3) [5] in an efficient implementation.

However, this does not make the assignment problem less interesting because it has
many analogs in bipartite graph matching problems of the graph theory [5,6].

The assignment problem is most extensively addressed in [5,7], where we find theo-
retical foundations for the existence of perfect matching, implementation details for the
Hungarian method, and a number of other related problems such as the k-cardinality
assignment problem, the semi-assignment problem, the bottleneck assignment problem,
the algebraic assignment problem, quadratic assignment problems, and multi-index assign-
ment problems.

These are still variants closely related in meaning to the basic version of the matching
problem, although the time complexity may no longer be polynomial, and, in the case of
the quadratic matching problem, it is a non-linear problem.

In this paper, however, we focus on similarities of a different kind, namely in the
mathematical model, where a completely different relationship to the underlying problem
may be found because it allows, often with small modifications, for expressing problems
from a different application domain, to switch between linear, mixed integer, and even
non-linear problem classes, thus changing its computational complexity and solvability.

Perhaps the most well-known combinatorial optimization problem, the Travelling
Salesman Problem [8], is a slight modification of this, with the Vehicle Routing Problem [9]

Algorithms 2022, 15, 377. https://doi.org/10.3390/a15100377 https://www.mdpi.com/journal/algorithms
173

Algorithms 2022, 15, 377

also stemming from this. On the other hand, from the assignment problem, with other
modifications, we can easily move to logistic distribution operations [10], agricultural
applications [11], set covering problems [12] with many interesting applications in telecom-
munications [13], and scheduling problems [14].

Concerning two selected problems of exponential complexity, the Travelling Salesman
Problem (TSP) and the Permutation Flow Shop Scheduling Problem (PFSSP) [15], we will
also deal with their solvability. We have very good experience in solving sets covering
problems of O(2n) complexity [13] using GAMS (General Algebraic Modelling System),
where it is possible to find the optimal solution in the available time even for instances
with matrices of hundreds of rows and thousands of columns, and it has also proven itself
in solving the problem of finding the Steiner minimum tree in networks, which also has
exponential time complexity.

Since the two problems mentioned above are permutational in nature with the factorial
time complexity, they are more challenging than the set covering problems.

For extremely large TSP instances (many hundreds of cities), heuristics must be used,
e.g., differential evolution [16], genetic algorithm [17–20], memetic search [21], simulated an-
nealing [22], neural network [23], and improved neighbourhood search algorithms [24,25].

Many stochastic heuristics are inspired by the behaviour of animals in nature, e.g.,
deer [26], spider monkey [27], hyena [28], wolf [29], cuckoo [30,31], sparrow [32], frog [33],
and ant colony [34].

On the other hand, stochastic heuristic methods are not suitable for TSP instances up
to 100 cities because they may not find the optimal solution and the convergence time is
often unsure, as, e.g., shown in the comparison of different methods in [28].

However, there are also approaches based on deterministic methods such as cutting
plane [35], branch and bound [36] and branch and cut [37,38].

According to listings in the GAMS environment, the latter method is in some way
incorporated into GAMS and, therefore, it makes sense to explore its limits of applicability.
These, together with the GAMS source code, are discussed in detail in Section 6.

Scheduling problems seem far from the assignment problem. But one of them, the PF-
SSP, shares with the assignment problem a permutational nature in the ordering of jobs,
where each job (with its operations) is assigned to exactly one position and each position
can contain only one job (with its operations), which corresponds in the assignment prob-
lem to the fact that each task is assigned to a single worker and each worker solves only
one task. There are additional constraints, and the aim is to minimize the total schedul-
ing time (makespan), but we can still say that the derived PFSSP model is related to the
assignment problem.

As in the case of the TSP, heuristic methods are used for large instances of different
variants of flow shop scheduling problems, e.g., differential evolution [39], genetic algo-
rithm [40,41], genetic programming [42], memetic algorithm [43], tabu-search [44], harmony
search [45], iterated greedy algorithms [46–48], multi-local search [49], hybrid metaheuris-
tics [50,51], reinforcement learning [52], fireworks algorithm [53], and also nature-inspired
algorithms, e.g., ant colony optimization [54], firefly particle swarm optimization [55],
migrating birds optimization [56] and whale swarm algorithm [57].

However, the exact methods [58,59], linear programming approach [60] and branch
and bound [61], are also applicable so we will again focus on the usability of the GAMS tool.

2. The Assignment Problem Model

In most common problem formulation, we have n workers who need to be assigned n
tasks in such a way that each worker is assigned a single task and each task is solved by a
single worker.

For each worker-task pair, we know the time it takes the worker to complete the task.
The task is to find an assignment that minimizes the total time to complete all tasks.

174

Algorithms 2022, 15, 377

Let cij denote the time taken by the ith worker for the jth task. The decision variables
are binary, xij = 1 if the ith worker is assigned the jth task, xij = 0 in the opposite case.
Then, the problem can be formulated as follows:

z =
n

∑
i=1

n

∑
j=1

cijxij → min (1)

subject to
n

∑
i=1

xij = 1, j = 1, . . . , n (2)

n

∑
j=1

xij = 1, i = 1, . . . , n (3)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n (4)

Equation (2) ensures that each task is assigned to a single worker, and Equation (3)
ensures that each worker is assigned a single task.

The assignment problem can also be viewed as a problem of finding a permutation(
1 2 ... n

π1 π2 ... πn

)
,

where ith worker is assigned to task πi and

z =
n

∑
i=1

ciπi → min

Since the number of different permutations of n elements is n!, it is not possible to find
the optimal solution for large instances in the available time by enumerating all possibilities.
However, due to the Hungarian method mentioned above, we no longer use this approach.

3. Routing Problems

With a different interpretation of the variables and a possible extension of the con-
straints, the assignment problem changes into a series of other problems. In this section,
we consider two routing problems.

3.1. Travelling Salesman Problem

The Travelling Salesman Problem (TSP) [8,62] is mathematically similar to the assignment
problem model, differing only in one additional constraint, but the meaning of the decision
variables xij = 0 is different. It is formulated as follows: Given n cities and distances
among them, the objective is to find a round trip through all cities with a minimum length
(alternatively, with a minimum total transportation cost).

Since the starting city 1 is fixed, the number of routes is given by the permutations
of cities 2, 3, . . ., n, and is therefore equal to (n − 1)!. If there are no one-way segments
anywhere in the transportation between cities, routes in reverse order of cities do not affect
the length, and then we can reduce the number of routes to (n − 1)!/2, but still the time
complexity of exploring all routes is O(n!).

If we denote by cij the distance between cities i and j (alternatively, the price of
transportation between cities i and j), xij a binary decision variable that takes the value 1
when city j on the route immediately follows city i, otherwise it takes the value 0, δi is the
order of city i on the route, then the Travelling Salesman Problem can be formulated as
follows:

z =
n

∑
i=1

n

∑
j=1

cijxij → min (5)

175

Algorithms 2022, 15, 377

subject to
n

∑
i=1

xij = 1, j = 1, . . . , n (6)

n

∑
j=1

xij = 1, i = 1, . . . , n (7)

δi − δj + nxij ≤ n − 1, i
= j, i = 2, . . . , n, j = 2, . . . , n (8)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n (9)

Constraints (6) and (7) ensure that each city (vertex of the graph) is traversed exactly
once (entered and left exactly once); the system of subtour elimination constraints (8),
referred to in the English literature by Miller, Tucker, and Zemlin as MTZ constraints,
prevents the formation of subtours, as we will show below in Theorem 1.

Equation (8) follows from the following reasoning:
(i) If xij = 1, then j is the immediate successor of i, and if δi = t, then δj = t + 1. Hence,
δi − δj + nxij = t − (t + 1) + n = n − 1.
(ii) If xij = 0, then δi − δj + nxij = δi − δj and this difference in the order of the cities in the
route for i
= j can be at most equal to n − 1.

From (i) and (ii), a common conclusion δi − δj + nxij ≤ n − 1 already follows, which,
for all combinations of feasible values of i and j, is expressed by inequality (8).

Without the constraint (8), constraints (6) and (7) are satisfied by splitting the route
into several subtours, e.g., for 15 vertices, the two conditions mentioned above are satisfied
by the subtours 1 − 3 − 7 − 9 − 12 − 1, 2 − 4 − 10 − 11 − 13 − 15 − 2 and 5 − 6 − 8 − 14 − 5.

Theorem 1. (Miller, Tucker, Zemlin) The variables xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n
satisfying constraints (6) and (7) form a Hamiltonian circle if and only if the subtour elimination
constraints (8) are satisfied.

Proof. Suppose that xij satisfies the subtour elimination constraints but does not form a
Hamiltonian circle. Then xij due to (6) and (7) form at least two subtours, one containing
the initial vertex 1 and another without it. Let S be a subtour that does not contain vertex
1 and let E(S) be the set of edges in S. Summing the conditions over the edges of E(S)
we get:

∑
(i,j)∈E(S)

(δi − δj + nxij) ≤ (n − 1)|E(S)|,

since the values of δi and δj eliminate each other in this subtour, we get

n|E(S)| ≤ (n − 1)|E(S)|,

which is a contradiction.
Assume now that xij forms a Hamiltonian circle. If 1 is the initial vertex of this circle,

and for each vertex i
= 1, δi = k, if i is the kth vertex of the Hamiltonian circle, then it is
clear that the conditions (8) are satisfied.

3.2. Vehicle Routing Problem

A generalization of the Travelling Salesman Problem is the Vehicle Routing Problem
(VRP) [9,63–66] where a desired quantity of goods needs to be delivered from a central
depot to customers by vehicles of a certain capacity.

We are looking for closed routes of individual vehicles that start and end at the
depot, each customer is served exactly once by exactly one vehicle, the requirements of all
customers are met and the total transport costs are minimal.

Consider the following notation:
n . . . number of customers
0 . . . depot (start and end of each vehicle’s route)

176

Algorithms 2022, 15, 377

K . . . number of (identical) vehicles
dj ≥ 0 . . . request of the jth customer (for depot d0 = 0)
Q . . . vehicle capacity (KQ ≥ ∑n

j=1 dj)
cij . . . the cost of transport from i to j (cii = 0)
xij . . . binary decision variable equal to 1 if j is immediately followed by i on the route,
xij = 0 otherwise
δi . . . the load left in the vehicle after visiting customer i.

z =
n

∑
i=0

n

∑
j=0

cijxij → min (10)

subject to
n

∑
i=0

xij = 1, j = 1, . . . , n (11)

n

∑
j=0

xij = 1, i = 1, . . . , n (12)

n

∑
i=1

xi0 = K (13)

n

∑
j=1

x0j = K (14)

0 ≤ δi ≤ Q − di, i = 1, . . . , n (15)

δi − δj + Qxij ≤ Q − dj, i
= j, i = 1, . . . , n, j = 1, . . . , n, such that di + dj ≤ Q (16)

xij ∈ {0, 1}, i = 0, . . . , n, j = 0, . . . , n (17)

In the model, (11) and (12) ensure that exactly one vehicle arrives at each customer (11)
and exactly one vehicle leaves it (12). Equations (13) and (14) ensure that all K vehicles
return to the depot (13) and all K vehicles leave the depot (14).

Equation (16) is analogous to the MTZ constraints in the Travelling Salesman Prob-
lem preventing the formation of partial circuits and at the same time ensuring that the
requirements of customers i and j can be met when traveling from i to j [67].

The Vehicle Routing Problem has many other specific formulations, e.g., there may be
a larger number of depots available, and customers are only ready to receive delivery of
goods at certain time intervals. For more details, see the sources listed at the beginning of
this section.

4. Distribution Problems

Distribution problems have many different formulations, first, we consider the classi-
cal Hitchcock’s Transportation/Transshipment Problem with m suppliers (sources, warehouses)
and n customers (consumers), where we assume the transportation of a single type of mate-
rial (goods) with an objective to minimize the total cost of transporting the material [68].

Assume the following notation:
ai, i = 1, . . . , m ... capacity (stocks) of suppliers,
bj, j = 1, . . . , n ... customer requirements,
cij, i = 1, . . . , m, j = 1, . . . , n ... the matrix of rates for the transport of a unit quantity
between the ith supplier and the jth customer,
xij, i = 1, . . . , m, j = 1, . . . , n ...the sought quantity transported between the ith supplier
and the jth customer.

177

Algorithms 2022, 15, 377

If total stocks are equal to total requirements, this means:

m

∑
i=1

ai =
n

∑
j=1

bj, (18)

we are talking about a balanced distribution problem, where all stocks are exhausted and all
demands are met, and the following mathematical model corresponds to this:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (19)

subject to
n

∑
j=1

xij = ai, i = 1, . . . , m (20)

m

∑
i=1

xij = bj, j = 1, . . . , n (21)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (22)

Equation (20) corresponds to the stock drawdown, and Equation (21) expresses the
fulfillment of requirements.

Obviously, the assignment problem is a special case of the balanced transportation
problem, where:

m = n

ai = 1, i = 1, . . . , m

bj = 1, j = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n

However, the balanced case is rare in practice, usually, total stocks exceed total require-
ments, i.e.,

m

∑
i=1

ai >
n

∑
j=1

bj (23)

In this case, all requirements can be met, but not every stock will be used up. The model
then changes as follows:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (24)

subject to
n

∑
j=1

xij ≤ ai, i = 1, . . . , m (25)

m

∑
i=1

xij = bj, j = 1, . . . , n (26)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (27)

In the case of material shortages, the opposite situation may occur, where the total
stock is insufficient for the total requirements, i.e.,

m

∑
i=1

ai <
n

∑
j=1

bj (28)

178

Algorithms 2022, 15, 377

This means that stocks are used up but not all requirements can be met. The model
must then be modified as follows:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (29)

subject to
n

∑
j=1

xij = ai, i = 1, . . . , m (30)

m

∑
i=1

xij ≤ bj, j = 1, . . . , n (31)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (32)

4.1. Container Transportation Problem

The Container Transportation Problem is a special case of Hitchcock’s transportation
problem, where we assume that materials from suppliers to customers are transported only
in containers of a certain capacity. Instead of rates per unit of material transported, there
are prices per container transported, being fixed even if the container is not completely full.

From the previous three possibilities for the sum of all stocks and the sum of all
requirement relations, the case of the stocks being sufficient to meet all the requirements is
given here.

Assume that K is the capacity of the container and yij gives the number of containers
needed for the quantity of material xij. Obviously, yij must be integers, the last container to
reach the quantity xij need not be full.

Then, the container transportation problem for all requirements met can be formulated
as the following model:

z =
m

∑
i=1

n

∑
j=1

cijyij → min (33)

subject to
n

∑
j=1

xij ≤ ai, i = 1, . . . , m (34)

m

∑
i=1

xij = bj, j = 1, . . . , n (35)

xij ≤ Kyij, i = 1, . . . , m, j = 1, . . . , n (36)

yij ∈ Z+, i = 1, . . . , m, j = 1, . . . , n (37)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (38)

4.2. Allocation Problem

For the transportation problem described in Section 4, it was possible to provide the
required quantity by composing partial quantities from different suppliers (from different
warehouses) when fulfilling the requirements.

However, in the Allocation Problem, it is required that the required quantity is provided
from a single location so the mathematical model of the transportation problem has to be
modified by [10] to account for this condition. With the same notation used for the symbols,
the meaning of the decision variables xij is now different. They only assume binary values
and xij = 1 if the quantity bj required by the jth customer is sourced from the ith supplier,
if not, xij = 0.

If more than one customer receives the required quantity from the same supplier,
the sum of their requirements must not exceed the capacity of that supplier (stock).

179

Algorithms 2022, 15, 377

The model of the allocation problem with these conditions then takes the following
form:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (39)

subject to
m

∑
i=1

xij = 1, j = 1, . . . , n (40)

n

∑
j=1

bjxij ≤ ai, i = 1, . . . , m (41)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n (42)

4.3. Location Problem

The Location Problem is an extension of the allocation problem [12]. For clarity, let us
first summarize all the symbols used.

Consider m locations with capacities ai, i = 1, . . . , m that can be used to operate
warehouses supplying n customers with demands bj, j = 1, . . . , n. The operation of the
warehouse at the ith location requires a cost fi, i = 1, . . . , m for the given period. Let
cij, i = 1, . . . , m, j = 1, . . . , n be the cost of the jth customer being assigned to get the
required quantity from the ith location.

The aim is to decide in which locations to operate the warehouses and to find the
assignment of customers to the operated warehouses so that the value of the total cost
of operating the system is minimal. Like in the allocation problem, we assume that the
demands of each consumer must be covered from a single warehouse.

Therefore, the meaning of the binary decision variables xij is analogous to the allocation
problem, xij = 1, if the quantity bj required by the jth customer is provided from the
warehouse at the ith location, if not, xij = 0.

In addition, there are other binary decision variables yi, i = 1, . . . , m, where yi = 1
means that the warehouse at the ith location will be operated and, if yi = 0, it will not be
operated there.

The model of the location problem with these conditions has the following form:

z =
m

∑
i=1

n

∑
j=1

cijxij +
m

∑
i=1

fiyi → min (43)

subject to
m

∑
i=1

xij = 1, j = 1, . . . , n (44)

xij ≤ yi, i = 1, . . . , m, j = 1, . . . , n (45)

n

∑
j=1

bjxij ≤ ai, i = 1, . . . , m (46)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n (47)

yi ∈ {0, 1}, i = 1, . . . , m (48)

As in the allocation problem, the condition (44) means that each customer takes the
entire requested quantity from a single location, the condition (46) monitors the non-
overstocking of individual locations by customers receiving the requested quantity from
the same location.

Let us have a look at condition (45). The left and right sides are binary variables
with the inequality satisfied for the combinations 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1, but not for the

180

Algorithms 2022, 15, 377

combination 1 ≤ 0. This ensures that no customer can get anything from a location where
the warehouse will not be operated.

It is clear that, for all combinations of indices i and j, (45) represents a system of mn
conditions. Expressing this for the values of the indices j, we get:

xi1 ≤ yi, i = 1, . . . , m

xi2 ≤ yi, i = 1, . . . , m

...

xin ≤ yi, i = 1, . . . , m

Summing up the previous inequalities, we get:

xi1 + xi2 + · · ·+ xin ≤ yi + yi + · · ·+ yi i = 1, . . . , m,

and hence
n

∑
j=1

xij ≤ nyi, i = 1, . . . , m (49)

Equation (49) is equivalent to (45), but is simpler because it represents only m condi-
tions rather than the mn conditions in the original expression (45).

4.4. Capacitated Network Area Coverage

Let us consider two finite sets I and J, where I is the set of service centers 1, 2, . . . , m,
and J is the set of customer locations 1, 2, . . . , n.

Further, aij = 1 means that customer location j is in a reachable distance to service
center i, aij = 0 means that it does not satisfy it, and wi expresses the weights of service
centers (since it is the minimization problem, the greater the weights are, the smaller the
coefficient must be).

Similarly, xi = 1 means that service centre i is selected, while xi = 0 means that it is
not selected.

Finally, ci, i ∈ I—capacity of service centre i, bj, j ∈ J—demand of customer location
j, yij ∈ {0, 1}—customer from location j is assigned or is not assigned to service centre i.

In [13], we derived the following model for a capacitated network area coverage:

z = ∑
i∈I

wixi → min (50)

subject to
∀j ∈ J : ∑

i∈I
aijxi ≥ 1 (51)

∀j ∈ J : ∑
i∈I

aijyij = 1 (52)

∀i ∈ I : cixi ≥ ∑
j∈J

aijyijbj (53)

∀i ∈ I : ∑
j∈J

yij ≤ nxi (54)

∀i ∈ I : xi ∈ {0, 1} (55)

(∀i ∈ I)(∀j ∈ J) : yij ∈ {0, 1}. (56)

A necessary precondition for finding a solution is that the sum of all capacities is suffi-
cient to cover all demands, i.e., ∑m

i=1 ci ≥ ∑j∈J bj, with each customer having a reachable
distance to at least one center, i.e., ∀j ∈ J : ∑i∈I aij > 0.

181

Algorithms 2022, 15, 377

In [13], we then modified the previous model for the domain of telecommunication
signals considering signal interference and its nonlinear version linearized as follows:

z =

(
∑
i∈I

wixi

)/
∑
i∈I

wi −
(

∑
i∈I

∑
j∈I

dijhij

)/(
∑
i∈I

∑
j∈I

dij

)
→ min (57)

subject to
(∀i ∈ I)(∀j ∈ I) : hij ≤ xi (58)

(∀i ∈ I)(∀j ∈ I) : hij ≤ xj (59)

(∀i ∈ I)(∀j ∈ I) : hij ≥ (xi + xj − 1) (60)

(∀i ∈ I)(∀j ∈ I) : hij ∈ {0, 1} (61)

∀j ∈ J : ∑
i∈I

aijxi ≥ 1 (62)

∀j ∈ J : ∑
i∈I

aijyij = 1 (63)

∀i ∈ I : cixi ≥ ∑
j∈J

aijyijbj (64)

∀i ∈ I : ∑
j∈J

yij ≤ nxi (65)

(∀i ∈ I)(∀j ∈ I)(i
= j) : dij ≥ (xi + xj − 1)dmin (66)

∀i ∈ I : xi ∈ {0, 1} (67)

(∀i ∈ I)(∀j ∈ J) : yij ∈ {0, 1}. (68)

Another possible modification of the model is to meet the demand by composing
parts of the capacities of several centers, but with a fragmentation not lower than a certain
threshold. This new approach will be presented in detail in a separate paper.

4.5. Transportation Problem with Supply from Primary Source

Consider now a transportation network where, in addition to locations with warehouse
stocks and customer requirements, there will also be a primary source, which can represent
the location of the transported commodity or a global warehouse, and customers can be
supplied both from local warehouses and directly from the primary source.

Assume the constraints and denotations from the location problem and two types of
transportation equipment, one with a larger capacity k1 from the primary source to local
warehouses and a cost n1 per 1 km of travel, and the other with a smaller capacity k2 to
customers and a cost n2 per 1 km. Denoting the distance from the primary source to the
ith local storage by ei, and the distance from the primary source to the jth customer by
gj, we add binary decision variables zj to indicate whether the jth customer receives the
desired quantity directly from the primary source (in the positive case zj = 1, otherwise
zj = 0), the model with primary source and transportation technique information has the
following form:

z =
n

∑
j=1

bj

k2
gjn2zj +

m

∑
i=1

n

∑
j=1

(bj

k1
ein1 +

bj

k2
dijn2

)
xij +

m

∑
i=1

fiyi → min (69)

subject to

zj +
m

∑
i=1

xij = 1, j = 1, . . . , n (70)

182

Algorithms 2022, 15, 377

n

∑
j=1

xij ≤ nyi, i = 1, . . . , m (71)

n

∑
j=1

bjxij ≤ ai, i = 1, . . . , m (72)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n (73)

yi ∈ {0, 1}, i = 1, . . . , m (74)

zj ∈ {0, 1}, j = 1, . . . , n (75)

The fractions in the objective function according to (69) indicate how many times
the distance must be traveled for the customer to receive the required quantity. Since the
fractions may have non-integer values, they must be rounded up to integers, the corre-
sponding capacity may not be fully used for the last trip. The expression with the first
summation in the objective function corresponds to the total cost of moving material from
the primary source directly to customers, and the expression with the double summation
in the objective function corresponds to the total cost of moving material from the primary
source to local warehouses and from there on to the customers.

If, instead of the conditions of the location problem, the simpler conditions of the
allocation problem were assumed (i.e., dropping the decision as to whether or not to use a
location for storage), the previous model would be simplified, the conditions (71) and (74)
would be dropped and yi would be omitted in the last term of the objective function (i.e.,
the fixed costs of all locations would be included).

4.6. Crop Problem

In plant production, an important task is to find a method of sowing the land with
agricultural crops (cultures) in such a way that, given the expected yield of crops on the
land and the profit from the sale of individual crops, the total profit is maximised.

Assume the following notation:
pi, i = 1, . . . , m ... grounds,
ri, j = 1, . . . , m ... area of grounds (plays the role of available capacities),
kj, j = 1, . . . , n ... agricultural crops (cultures),
cij, i = 1, . . . , m, j = 1, . . . , n ... profit from 1 ha of ground pi, sown with culture kj
xij, i = 1, . . . , m, j = 1, . . . , n ...number of hectares of ground pi sown with crop kj.

The mathematical model of the Crop Problem is similar to the basic version of the
transportation problem with unbalanced capacities (the ground areas may not be fully
used), but it lacks a set of constraints corresponding to the fulfillment of the requirements
with the difference that the problem being a maximization one. It takes the following form:

z =
m

∑
i=1

n

∑
j=1

cijxij → max (76)

subject to
n

∑
j=1

xij ≤ ri, i = 1, . . . , m (77)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (78)

Equation (77) expresses the use of grounds, which corresponds to the drawdown of
supplier stocks in the distribution problem.

183

Algorithms 2022, 15, 377

If we required each crop j to be sown on some minimum area dj, then the problem
would become an example of the maximization version of the generalized distribution problem
and the model would be modified as follows:

z =
m

∑
i=1

n

∑
j=1

cijxij → max (79)

subject to
n

∑
j=1

xij ≤ ri, i = 1, . . . , m (80)

m

∑
i=1

xij ≥ dj, j = 1, . . . , n (81)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (82)

5. Scheduling Problems

Scheduling problems are numerous and varied. They arise in diverse areas such as flex-
ible manufacturing systems, production planning, computer design, logistics, timetabling,
communication, etc. [14].

Here we focus on one of them, the Permutation Flow Shop Scheduling Problem
(PFSSP), which, like the Assignment problem and the Traveling Salesman Problem, is
permutational in nature.

It can be briefly described as follows: There are a set of m machines (processors)
and a set of n jobs. Each job comprises a set of m operations which must be done on
different machines. All jobs have the same processing operation order when passing
through the machines. There are no precedence constraints among operations of different
jobs. Operations cannot be interrupted, and each machine can process only one operation
at a time. The problem is to find the job sequences on the machines which minimizes the
makespan (i.e., the maximum completion times of all operations).

Mathematical Model of PFSSP

Consider three finite sets J, M, O where J is a set of jobs 1, . . . , n, M is a set of machines
1, . . . , m, and O is a set of operations 1, . . . , m.

Denote:

Ji . . . the ith job in the permutation of jobs
pik . . . processing time of the job Ji ∈ J on machine k

(∀i ∈ J)(∀k ∈ M) : vik = waiting time (idle time) on machine k
before starting job Ji

(∀i ∈ J)(∀k ∈ M) : wik = waiting time (idle time) of job Ji
after finishing processing on machine k
while waiting for machine k + 1 to become available

Define the following decision variables:

∀i, j ∈ J : xij =

{
1, if job j is assigned to the ith position in the permutation (Ji = j)
0, otherwise

(83)

Figure 1 illustrates the use of the variables vik and wik on an example with 5 jobs and
3 machines.

184

Algorithms 2022, 15, 377

Figure 1. Meaning of the variables vik and wik.

From Figure 1, we can draw some more general conclusions:

• The first task in a permutation can always continue the next operation on the next
machine without delay because it does not wait for the completion of any other
operation.

• It follows from the previous conclusion that waiting times to start the operation of the
first task in the permutation on the second and subsequent machines are given by the
sum of the durations of the operations of that task on the previous machines.

• Equalities of 3 addition terms in Figure 1 can be generalized into a Gantt chart between
all pairs of neighboring machines.

• The duration of the entire schedule (makespan) is given by the sum of the waiting times
for the start of operations on the last machine and the duration of these operations.

All verbal conclusions are expressed formally by the following system of equations:

∀i ∈ J :
n

∑
j=1

xij = 1 (84)

∀j ∈ J :
n

∑
i=1

xij = 1 (85)

∀k ∈ M − {m} : w1k = 0 (86)

∀k ∈ M − {1} : v1k =
k−1

∑
r=1

n

∑
i=1

pirx1i (87)

(∀i ∈ J − {n}) (∀k ∈ M − {m}) :

vi+1,k +
n

∑
j=1

pjkxi+1,j + wi+1,k = wik +
n

∑
j=1

pj,k+1xij + vi+1,k+1 (88)

Cmax =
n

∑
i=1

(vim +
n

∑
j=1

pjmxij) (89)

6. Computational Results

From the above problems, we select two, TSP and PFSSP, that are NP-hard in the
decision versions [69,70].

To give an idea of the cardinality of the search space of these permutation problems,
we present a few factorials as follows:
10! = 3628800 ≈ 3.6 × 106

20! = 2432902008176640000 ≈ 2.4 × 1018

30! = 265252859812191058636308480000000 ≈ 2.6 × 1032

40! = 815915283247897734345611269596115894272000000000 ≈ 8.1 × 1047

50! ≈ 3 × 1064

185

Algorithms 2022, 15, 377

...
100! ≈ 9.3 × 10157

The traditional approaches to such problems are based on computations using heuristic
methods [71,72] for large instances such as genetic algorithms, simulated annealing, tabu
search, differential evolution [73], firefly algorithm, particle swarm optimization, and ant
colony optimization. Then, statistical tests are applied to examine at a certain significance
level (e.g., α = 0.05), to what extent the mean value of the results obtained by different
methods and different settings of their parameters at a larger number of runs is the same or
different (and, therefore, one of the methods gives better results). For the t-test, we assume
that the sets of values have a normal distribution. However, this assumption may be false,
and then one of the non-parametric tests, such as the Wilcoxon test, must be used.

Since, given the validity of the No Free Lunch Theorem [74,75], one should not expect
a general conclusion that any of the heuristics for each problem instance gives better results
than other heuristics.

In this paper, we do not explore heuristics using instead a mixed integer programming
model with software tools built as solvers in the GAMS environment [76,77] to find an
exact solution by deterministic computation.

Statistical evaluations are, therefore, meaningless here. What can be said, however,
is that the power of this software today is considerably greater than it was 20 years ago,
when, in our experience, for a problem with a complexity of O(20!), the system ended
up with a runtime error and the message “insufficient space to update U-factor

...”. The performance of GAMS has been steadily increasing over the years, although the
source code of the solvers is not freely available, from [78] it can at least be seen that it
includes, among others, CPLEX, GUROBI, Lindo, and the results of the work of academic
departments of Princeton University, Stanford University, and Zuse Institute Berlin. Today,
GAMS calculates the exact solution for PFSSP with 20 jobs on a laptop with Intel(R)
Core(TM) i5-10210U CPU @ 1.60 GHz 2.11 GHz processor, 8 GB operational memory and
64-bit operating system in less than 3 min, as shown in the following subsection.

Of course, with a computer of better technical parameters for the same time limit we
get results for larger instances of the problem, but it seems to be better to use a heuristic
beyond this boundary, e.g., our GA ’war elimination’ modification [79].

Since PFSSP has a more complex model than TSP, we start with it and include its
complete GAMS code.

6.1. PFSSP Computational Results

For PFSSP with 10 jobs, 6 machines, processing times from the TABLE section (it
corresponds to the first benchmark in Table 1) and the model given by Equations (84)–(89),
the program code in GAMS can be, e.g., as follows:

* Permutation flow shop scheduling problem

$TITLE permutation flow shop scheduling problem

$OFFSYMXREF

$OFFUELLIST

$OFFUELXREF

OPTION ITERLIM=200,000

* ITERLIM number of iterations

OPTION OPTCR=0.00001

*OPTION OPTCR=0.001

* OPTCR stopping in MIP in case the best solution is within the limits

* 100*OPTCR% of the global~extreme

* section defining indexes

SETS

I jobs /1*10/

K machines /1*6/;

186

Algorithms 2022, 15, 377

ALIAS(I,J);

* J - position of the job in the permutation

ALIAS(K,R);

* input data section

PARAMETERS

N,M;

N=CARD(I);

M=CARD(K);

TABLE P(I,K)

1 2 3 4 5 6

1 333 991 996 123 145 234

2 333 111 663 456 785 532

3 252 222 222 789 214 586

4 222 204 114 876 752 532

5 255 477 123 543 143 142

6 555 566 456 210 698 573

7 558 899 789 124 532 12

8 888 965 876 537 145 14

9 889 588 543 854 247 527

10 999 889 210 632 451 856;

*variables section (decision variables and objective function)

VARIABLES

X(I,J) is 1 if job j is assigned to position i in the permutation, 0, otherwise

V(I,K) waiting time on machine k before the start of job i in the permutation

W(I,K) waiting time of job i in the permutation after finishing processing

* on machine k, while machine k+1 becomes free

Cmax total processing time for all tasks (makespan);

BINARY VARIABLE X;

NONNEGATIVE VARIABLE V;

NONNEGATIVE VARIABLE W;

*section describing the system of (in)equalities

EQUATIONS

EQ1(I)

EQ2(J)

EQ3(K)

EQ4(K)

EQ5(I,K)

OBJFCE(K);

EQ1(I) .. SUM(J,X(I,J)) =E= 1;

EQ2(J) .. SUM(I,X(I,J)) =E= 1;

EQ3(K)$(ORD(K) LE (M-1)) .. W(‘‘1’’,K) =E= 0;

EQ4(K)$(ORD(K) GE 2)

.. V(‘‘1’’,K) =E= SUM((R,I)$(ORD(R) LE (ORD(K)-1)),P(I,R)*X(‘‘1’’,I));

EQ5(I,K)$((ORD(I) LE (N-1)) AND (ORD(K) LE (M-1)))

.. V(I+1,K)+SUM(J,P(J,K)*X(I+1,J))+W(I+1,K) =E=

W(I,K)+SUM(J,P(J,K+1)*X(I,J))+V(I+1,K+1);

OBJFCE(K)$(ORD(K) EQ M) .. Cmax =E= SUM(I,V(I,K)+SUM(J,P(J,K)*X(I,J)));

*description of the model, running the solver, and displaying the results

MODEL FLOWSHOP /ALL/;

SOLVE FLOWSHOP USING MIP MINIMIZING Cmax;

DISPLAY X.L, V.L, W.L, Cmax.L;

The ability to compute optimal solutions was checked using standard benchmarks
from OR-Library (OR = Operations Research) accessible at Brunel University London [80],
originally described in [81]. The computational results are summarised in Table 1. For

187

Algorithms 2022, 15, 377

instances with 30 or more jobs, GAMS does not find the optimal solution in the 1000 s time
limit, but only a “close” approximation, which, however, differs by less than 10% even for
the last instance 75 × 20, where the optimal value is unknown due to the huge size of the
search space and is only estimated by the interval. For such cases, we at least suggest a
solution method using the genetic algorithm [82].

Table 1. GAMS computational results (10 × 6 corresponds to 10 jobs and 6 machines, etc.; t-l-e = time
limit exceeded).

Benchmark Result/Optimum/Early End Time [S] Iterations

10 × 6 7720/7720/no 0.75 31,535
11 × 5 7038/7038/no 0.13 243
12 × 5 7312/7312/no 0.42 13,095
13 × 4 7166/7166/no 0.20 650
14 × 4 8003/8003/no 0.13 262

20 × 10 1566/1566/no 164.45 2,619,405
30 × 10 2120/2093/t-l-e 1000.02 6,398,821
30 × 15 2692/2513/t-l-e 1000.02 4,886,367
50 × 10 3190/3045/t-l-e 1000.03 3,164,599
75 × 20 5372/in [4890, 4951]/t-l-e 1000.03 2,145,971

To do this, we will need a model that builds an appropriate schedule for the per-
mutation. The genetic algorithm will then select a promising part of the search space of
permutations in which a good approximation of the optimum can be found in a reasonable
amount of time.

If we have processing times pij for job i on machine j, and a job permutation J1, J2, . . . , Jn,
then we can calculate the completion times CJi ,j as follows:

CJ1,1 = pJ1,1 (90)

∀i ∈ J − {1} : CJi ,1 = CJi−1,1 + pJi ,1 (91)

∀k ∈ M − {1} : CJ1,k = CJ1,k−1 + pJ1,k (92)

(∀i ∈ J − {1})(∀k ∈ M − {1}) : CJi ,k = max {CJi−1,k , CJi ,k−1}+ pJi ,k (93)

Cmax = CJn ,m (94)

As the genetic algorithms [79] are well known, we only summarise parameter settings
and describe only the problem-specific operators in more detail.

The fitness function is inversely proportional to the makespan, the smaller the makespan,
the higher the value of the fitness function.

The number of individuals in the population was set to 50 and the number of iterations
to 10n2. The initial population was generated randomly, and the parents for the crossover
operation were determined by binary tournament selection.

As to the crossover operation, we cannot use the traditional two-point crossover, be-
cause it would lead to infeasible solutions. If we change the middle parts of the parent
chromosomes P1 and P2 in Figure 2, we will obtain offspring (10,5,2,6,10,4,1,6,3,1) and
(5,8,4,7,8,9,2,6,3,1) that correspond to no permutations, because some jobs are duplicated or
omitted. We used what is called crossover in a partially mapped representation where the genes
in the middle part of one chromosome are ordered in its offspring by their occurrence in
the second parent chromosome.

188

Algorithms 2022, 15, 377

Figure 2. Modified two-point crossover.

From the possible mutation operations, we have selected the shift mutation, which
removes a value at one position and puts it at another position), see Figure 3.

Figure 3. Shift mutation.

The offspring of the parents replaced two randomly selected individuals with below-
average fitness function values.

With the above parameter settings, the results for the last 4 instances in Table 1 were
obtained as shown in Table 2. The average values from 30 runs are presented here, as well
as the best values obtained from them, which for these large instances are better than
the values obtained from GAMS when the 1000 s timeout expires. All these results were
achieved in less than 10 s because of the small number of iterations of the genetic algorithm.

Table 2. GA computational results—average and the best result from 30 runs, optimum.

Benchmark Average Result/the Best Result Optimum

30 × 10 2126/2099 2093
30 × 15 2570/2525 2513
50 × 10 3132/3090 3045
75 × 20 5261/5203 between 4890 and 4951

6.2. TSP Implementation in GAMS

In describing the source code in GAMS and verifying its computational abilities, we
use three benchmarks from the TSPlib library [83] with 24, 52, and 100 cities, or positions in
the map given by coordinates.

The following code is written for the gr24.tsp benchmark. Since the adjacency
matrix is symmetric, only the data of the lower triangular matrix are entered with the
remaining data calculated. The EQUATIONS section is a rewrite of the TSP model and its
Equations (5)–(8). The xij binary domain, corresponding to Equation (9), is given by the
declaration that precedes this section.

$TITLE Travelling Salesman Problem

OPTION ITERLIM=10000000;

OPTION OPTCR=0;

SETS

I /1*24/;

189

Algorithms 2022, 15, 377

ALIAS (I,J);

PARAMETERS

N;

N=CARD(I);

TABLE C(I,J) adjacency matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0

2 257 0

3 87 196 0

4 91 228 158 0

5 150 112 96 120 0

6 80 196 88 77 63 0

7 130 167 59 101 56 25 0

8 134 154 63 105 34 29 22 0

9 243 209 286 159 190 216 229 225 0

10 185 86 124 156 40 124 95 82 207 0

11 214 223 49 185 123 115 86 90 313 151 0

12 70 191 121 27 83 47 64 68 173 119 148 0

13 272 180 315 188 193 245 258 228 29 159 342 209 0

14 219 83 172 149 79 139 134 112 126 62 199 153 97 0

15 293 50 232 264 148 232 203 190 248 122 259 227 219 134 0

16 54 219 92 82 119 31 43 58 238 147 84 53 267 170 255 0

17 211 74 81 182 105 150 121 108 310 37 160 145 196 99 125 173 0

18 290 139 98 261 144 176 164 136 389 116 147 224 275 178 154 190 79 0

19 268 53 138 239 123 207 178 165 367 86 187 202 227 130 68 230 57 86 0

20 261 43 200 232 98 200 171 131 166 90 227 195 137 69 82 223 90 176 90 0

21 175 128 76 146 32 76 47 30 222 56 103 109 225 104 164 99 57 112 114 134 0

22 250 99 89 221 105 189 160 147 349 76 138 184 235 138 114 212 39 40 46 136 96 0

23 192 228 235 108 119 165 178 154 71 136 262 110 74 96 264 187 182 261 239 165 151 221 0

24 121 142 99 84 35 29 42 36 220 70 126 55 249 104 178 60 96 175 153 146 47 135 169 0;

SET C2(I,J);

C2(I,J)$(NOT SAMEAS(I,J)) = yes;

C(C2(I,J)) = MAX(C(I,J),C(J,I));

VARIABLES

X(I,J)

delta(I)

Z;

BINARY VARIABLE X(I,J);

EQUATIONS

EQ1(J) each city is entered exactly once

EQ2(I) each city is left exactly once

EQ3(I,J) subtour elimination constraints

EQ4 objective function;

EQ1(J) .. SUM(I,X(I,J)$(ORD(I) NE ORD(J))) =E= 1;

EQ2(I) .. SUM(J,X(I,J)$(ORD(I) NE ORD(J))) =E= 1;

EQ3(I,J)$((ORD(I) GE 2) AND (ORD(J) GE 2) AND (ORD(I) NE ORD(J)))

.. delta(I)-delta(J)+N*X(I,J) =L= N-1;

EQ4 .. Z =E= SUM((I,J),C(I,J)*X(I,J));

MODEL TSP/ALL/;

SOLVE TSP USING MIP MINIMIZING Z;

DISPLAY X.L, Z.L;

The total length of the route is 1272, the decision variables xi,j have a value of 1 in the
following order: x1,16, x16,11, x11,3, x3,7, x7,6, x6,24, x24,8, x8,21, x21,5, x5,10, x10,17, x17,22, x22,18,
x18,19, x19,15, x15,2, x2,20, x20,14, x14,13, x13,9, x9,23, x23,4, x4,12, x12,1, and, thus, the circuitous
route passes through cities 1, 16, 11, 3, 7, 6, 24, 8, 21, 5, 10, 17, 22, 18, 19, 15, 2, 20, 14, 13,
9, 23, 4, 12, 1, which is in agreement with the published result for the gr24 benchmark.
The calculation time was 0.36 s.

The data for the berlin52.tsp benchmark are entered differently, namely as a matrix
with 52 rows and 2 columns, where the 1st column is the value of the x-coordinate and the
2nd column is the value of the y-coordinate. The adjacency matrix in this case is obtained
by calculating the Euclidean distances between all pairs of positions. This part of the code
takes the following form, the rest is the same as in the previous code.

SETS

I /1*52/;

ALIAS (I,J);

PARAMETERS

N;

190

Algorithms 2022, 15, 377

N=CARD(I);

TABLE XY(I,*)

1 2

1 565.0 575.0

2 25.0 185.0

3 345.0 750.0

4 945.0 685.0

5 845.0 655.0

6 880.0 660.0

7 25.0 230.0

8 525.0 1000.0

9 580.0 1175.0

10 650.0 1130.0

11 1605.0 620.0

12 1220.0 580.0

13 1465.0 200.0

14 1530.0 5.0

15 845.0 680.0

16 725.0 370.0

17 145.0 665.0

18 415.0 635.0

19 510.0 875.0

20 560.0 365.0

21 300.0 465.0

22 520.0 585.0

23 480.0 415.0

24 835.0 625.0

25 975.0 580.0

26 1215.0 245.0

27 1320.0 315.0

28 1250.0 400.0

29 660.0 180.0

30 410.0 250.0

31 420.0 555.0

32 575.0 665.0

33 1150.0 1160.0

34 700.0 580.0

35 685.0 595.0

36 685.0 610.0

37 770.0 610.0

38 795.0 645.0

39 720.0 635.0

40 760.0 650.0

41 475.0 960.0

42 95.0 260.0

43 875.0 920.0

44 700.0 500.0

45 555.0 815.0

46 830.0 485.0

47 1170.0 65.0

48 830.0 610.0

49 605.0 625.0

50 595.0 360.0

51 1340.0 725.0

52 1740.0 245.0;

PARAMETERS C(I,J);

SET C2(I,J);

C2(I,J)$(NOT SAMEAS(I,J)) = yes;

C(C2(I,J)) = ROUND(SQRT(SQR(XY(I,’1’)-XY(J,’1’))+SQR(XY(I,’2’)-XY(J,’2’))));

The total length of the route is 7542, the calculation time was 1.45 s and the circuitous
route passes through positions 1, 49, 32, 45, 19, 41, 8, 9, 10, 43, 33, 51, 11, 52, 14, 13, 47, 26,
27, 28, 12, 25, 4, 6, 15, 5, 24, 48, 38, 37, 40, 39, 36, 35, 34, 44, 46, 16, 29, 50, 20, 23, 30, 2, 7, 42,
21, 17, 3, 18, 31, 22, 1. The optimal route can be seen in Figure 4.

191

Algorithms 2022, 15, 377

Figure 4. The optimal route for the berlin52.tsp benchmark.

Finally, GAMS for the kroA100.tsp benchmark stopped the computation at 1000.02
s by exceeding the time limit, but the intermediate result of the path length 21282 and its
traversal through positions 1, 47, 93, 28, 67, 58, 61, 51, 87, 25, 81, 69, 64, 40, 54, 2, 44, 50, 73,
68, 85, 82, 95, 13, 76, 33, 37, 5, 52, 78, 96, 39, 30, 48, 100, 41, 71, 14, 3, 43, 46, 29, 34, 83, 55, 7, 9,
57, 20, 12, 27, 86, 35, 62, 60, 77, 23, 98, 91, 45, 32, 11, 15, 17, 59, 74, 21, 72, 10, 84, 36, 99, 38,
24, 18, 79, 53, 88, 16, 94, 22, 70, 66, 26, 65, 4, 97, 56, 80, 31, 89, 42, 8, 92, 75, 19, 90, 49, 6, 63,
1 corresponds to the known optimal solution for this benchmark. The optimal route is in
Figure 5.

Figure 5. The optimal route for the kroA100.tsp benchmark.

For instances with more than 100 positions, it would be necessary to search for an
approximation of the optimum using one of the heuristic methods.

One of the first was the use of the so-called Lin-2-Opt change operator [8], see Figure 6.
Here, two elements are added to the permutation of n cities to visit (into positions 0 and
n + 1), and then the starting city is assigned to those positions to simulate a cyclic tour. Two
’edges’ (pairs of neighbouring elements in permutation) are randomly chosen ((p1, p2) and

192

Algorithms 2022, 15, 377

(q1, q2) say), the inner elements p2, q1 are swapped and the elements between p2 and q1
are reversed.

Figure 6. Lin-2-Opt change neighbourhood operation,

Positions 0 and n+ 1 with the fixed value of the starting city can also be used to expand
the individuals in the population of the genetic algorithm and then apply the operations
presented for the PFSSP.

However, we no longer investigate this for extremely large instances of the TSP
problem because heuristics do not guarantee finding an optimal solution, which often is
not even known here, and the aim was to find bounds for which we still obtain the precise
solution in reasonable time using a ’normal’ computer. In the case of GAMS, this bound is
an instance with 100 cities.

6.3. Data, Changes in Time, Uncertainty

Data from OR-Library and TSPLIB are related to a specific point in time, in reality they
may change over time or may not be completely known.

A more general case of the Travelling Salesman Problem is the Canadian Traveller
Problem (CTP) [84,85]. Here, the distance matrix may change over time due to the occurrence
of events that make some parts of the route inaccessible so that an adaptive strategy must
be found. These events are random in nature, which corresponds to the problems of robot
navigation in environments where the distribution of obstacles is only discovered as the
robot moves through the environment; moreover, the obstacles may move, and thus the
locations of potential collisions change dynamically.

In transport tasks, the values of some parameters can change over time, the fuel price
is not constant, and the vehicle consumption can only be estimated because it can change
according to the traffic situation and the season, which will affect, e.g., the calculation of the
objective function (69). Similarly, in the crop problem, we can only estimate crop yields.

In location-based tasks, the problem may arise of adding another center to an existing
network of centers to improve the coverage of an area. An example might be an expansion
of the existing supermarket network of a chain store. Here it is suggested to use one of
the properties of the Voronoi diagram [86,87], a data structure known from computational
geometry: Assume a Voronoi diagram with its sites represented by the current centers.
The point q is the vertex of the Voronoi diagram if and only if the largest empty circle
C(q) contains three (or more in a degenerate case) sites on its boundary and none inside.
Among these circles, we determine the one with the largest diameter, and its center is then
the optimal position for the location of the new center, see Figure 7.

In fact, the calculated position may not be available, the cost of building here may be
too high, thus a suitable nearby location must be found, or the center of one of the other
empty circles must be chosen in descending order of diameters.

193

Algorithms 2022, 15, 377

Figure 7. Finding a new location using the largest empty circles.

Another issue is the amount of inventory in logistics operations. The stock changes
over time according to demand and needs to be replenished accordingly. We speak about
inventory management and the resulting sustainability [88–91]. However, demands are
stochastic in nature and, in addition, inventory management must take into account the
cost of maintaining inventory and losses from premature depletion of inventory for unde-
livered goods.

In [92], a new mathematical model is derived, the properties of the profit function
are proved, and the profitability in a two-channel production system considering carbon
emissions and green technology is numerically verified on specific data.

While artificial neural networks (ANN) have very little application in combinatorial
optimization, their main use is in cluster analysis, pattern recognition, image processing
and prediction, in [93] the authors present an efficient implementation of ANNs in an
inventory management model under uncertainty and inflation.

In [94] the unreliability of the supply chain and methods to eliminate this unrelia-
bility are explored, and the required mathematical equations are derived and verified by
numerical experiments, including sensitivity analysis.

However, all these aspects are beyond the scope of this paper and can be the subject of
separate texts as also evidenced by the papers mentioned.

7. Conclusions

This paper studies the assignment problem and its modifications with logistics applica-
tions, in routing, distribution, and scheduling tasks. Its first contribution is the correlation
of the problem models, which are often distant in nature and time complexity.

It has also shown how the described models can be directly transferred to the GAMS
environment. NP-hard Permutation Flow Shop Scheduling Problem (PFSSP) and the
Travelling Salesman Problem are used to show that the optimal solution can be determined
in the available time of a few minutes for instances with 20 jobs on 10 machines in the case
of PFSSP, and for 100 cities in the case of TSP.

Previously, these boundaries were inaccessible with mixed integer programming
solvers, but with the new version of GAMS, they have been significantly extended. This
of course means first to build the appropriate model (and this is not always a simple
matter, as the informal derivation of the PFSSP model in Section 5 showed) and then,
for instance, for benchmark libraries (e.g., OR-Library or TSPLIB), to search individually for
the appropriate bounds. The findings from PFSSP and TSP are not isolated examples of the
successful application of GAMS in solving large instances of optimization versions of NP-
complete/NP-hard problems. We have already validated it in [13] in solving the covering
problem with matrices of hundreds of thousands of elements, and more recently in solving
the Steiner problem in graphs in [95], where first using the terminology of network flows

194

Algorithms 2022, 15, 377

a mixed integer programming model was derived, then modified for GAMS, and finally
exact results for a representative class of benchmarks from OR-Library were obtained.

Another goal of this paper was to introduce code generation in GAMS on non-trivial
tasks because in the manuals [76,77] we can find only a description of individual elements of
this tool, but not the codes of complete task models. In MATLAB, running the computation
of an optimization program means writing just a single command (intlinprog or linprog
with the appropriate parameters). Similarly, when solving differential equations, e.g., to cal-
culate the differential equation y′(x) = 4xy+ x3 with initial condition y(4) = 2, it is enough
to enter dsolve(’Dy=4*x*y+x∧3’,’y(4)=2’,’x’). In MATHEMATICA, too, to obtain the
impulse function of the system described by a differential equation, it is enough to rewrite
it in the form of a Laplace transfer and use a single command InverseLaplaceTransform.
In contrast, the code notation in GAMS is similar to code in programming languages with
the definition of constants, the declaration of variables, and the body of the program. Again,
there are assignment statements, conditional statements, and loop statements. For example,
the binary values of the reachability matrix A from the distance matrix D and the defined
reachable distance threshold Dmax are determined in GAMS as follows:

LOOP(I,

LOOP(J,

IF (D(I,J) <= Dmax,

A(I,J)=1;

ELSE

A(I,J)=0;

);

);

);

The only disadvantage of GAMS is that it has no graphical tools, and the results of
the calculations are only in text form. This requires exporting them to a suitable program
and postprocessing. In [13] we used MATLAB, here Figures 4 and 5 are generated in the
MATHEMATICA environment.

Only where for extremely large instances of problems of exponential complexity we
cannot obtain an exact solution using GAMS in a reasonable amount of time (e.g., no more
than in tens of minutes), do we use one of the many heuristic methods. Given the No
Free Lunch Theorem [74,75], none of them can be recommended as the best in the general
case, since finding the optimal solution is not guaranteed and the result is always an
approximation of the optimum, so our modification of the genetic algorithm, implemented
in Java and described in more detail in [79], can be used without loss of generality.

One-point heuristics (hill climbing, tabu search, simulated annealing) in solving
problems where in each iteration the neighborhood operation often generates tens of
infeasible solutions and it is necessary to use a repair operator for them (here it concerns
the coverage problem), and slow down the computation considerably, so in these cases we
prefer, e.g., a genetic algorithm that generates only two new solutions in each iteration.

The model in Section 4.4 is original with another possible modification proposed at
the end. Its model has already been built and verified on smaller-scale instances so far and
will be investigated in more complex cases.

In future research, we expect to focus on the Quadratic Assignment Problem, the Vehi-
cle Routing Problem and its solvability using GAMS, and applications in agriculture with
consideration of data uncertainty using probabilistic models or fuzzy modeling, since yields
can only be estimated. Although the Quadratic Assignment Problem has a non-linear ob-
jective function with quadratic terms, it can be converted to a mixed integer programming
problem using Lawler’s linearization [7] and the MIP solver of GAMS can be used again.

195

Algorithms 2022, 15, 377

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AP Assignment Problem
TSP Travelling Salesman Problem
VRP Vehicle Routing Problem
PFSSP Permutation Flow Shop Scheduling Problem
GAMS General Algebraic Modelling System
GA Genetic Algorithm
ANN Artificial Neural Network

References

1. Gass, S.I. Linear Programming. Methods and Applications; Dover Books on Computer Science; Courier Corporation: North
Chelmsford, MA, USA, 2010.

2. Du, D.Z.; Pardalos, P.M. Handbook of Combinatorial Optimization. Volume A; Kluwer Academic Publishers: Dordrecht, The Nether-
lands, 1999.

3. Du, D.Z.; Pardalos, P.M. Handbook of Combinatorial Optimization. Volume B; Springer: Berlin/Heidelberg, Germany, 2005.
4. Kuhn, H.W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist. 1955, 2, 83–97. [CrossRef]
5. Burkard, R.; Dell’Amico, M.; Martello, S. Assignment Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 2009.
6. Diestel, R. Graph Theory; Springer: Berlin/Heidelberg, Germany, 2005.
7. Burkard, R.E.; Cela, E.; Pardalos, P.M.; Pitsoulis, L.S. The Quadratic Assignment Problem; Report; Graz University of Technology:

Graz, Austria, 1998; p. 71.
8. Gutin, G.; Punnen, A.P. The Traveling Salesman Problem and Its Variations; Springer: Berlin/Heidelberg, Germany, 2007.
9. Nalepa, J. Smart Delivery Systems. Solving Complex Vehicle Routing Problems; Elsevier: Amsterdam, The Netherlands, 2020.
10. Ganesh, K.; Malaijaran, R.A.; Mohapatra, S.; Punniyamoorthy, M. Resource Allocation Problems in Supply Chains; Emerald Group

Publishing Limited: Bingley, UK, 2015.
11. Bohle, C.; Maturana, S.; Vera, J. A Robust Optimization Approach to Wine Grape Harvesting Scheduling. Eur. J. Oper. Res. 2010,

200, 245–252. [CrossRef]
12. Church, R.L.; Murray, A. Location Covering Models; Springer: Berlin/Heidelberg, Germany, 2018.
13. Seda, P.; Seda, M.; Hosek, J. On Mathematical Modelling of Automated Coverage Optimization in Wireless 5G and beyond

Deployments. Appl. Sci. 2020, 10, 8853. [CrossRef]
14. Błażewicz, J.; Ecker, K.H.; Schmidt, G.; Wȩglarz, J. Scheduling Computer and Manufacturing Processes; Springer: Berlin/Heidelberg,

Germany, 2013.
15. Rossit, D.; Vásquez, Ó.C.; Tohmé, F.; Frutos, M.; Safe, M. A Combinatorial Analysis of the Permutation and Non-Permutation

Flow Shop Scheduling Problems. Eur. J. Oper. Res. 2021, 289, 841–854. [CrossRef]
16. Ali, I.; Essam, D.; Kasmarik, K. A Novel Design of Differential Evolution for Solving Discrete Traveling Salesman Problems.

Swarm Evol. Comput. 2020, 52, 100607. [CrossRef]
17. Dong, X.; Cai, Y. A Novel Genetic Algorithm for Large Scale Colored Balanced Traveling Salesman Problem. Future Gener.

Comput. Syst. 2019, 95, 727–742. [CrossRef]
18. Placido, A.D.; Archetti, C.; Cerrone, C. A Genetic Algorithm for the Close-Enough Traveling Salesman Problem with Application

to Solar Panels Diagnostic Reconnaissance. Comput. Oper. Res. 2022, 145, 105831. [CrossRef]
19. Zhang, P.; Wang, J.; Tian, Z.; Sun, S.; Li, J.; Yang, J. A Genetic Algorithm with Jumping Gene and Heuristic Operators for Traveling

Salesman Problem. Appl. Soft Comput. 2022, 127, 109339. [CrossRef]
20. Mahrach, M.; Miranda, G.; León, C.; Segredo, E. Comparison between Single and Multi-Objective Evolutionary Algorithms to

Solve the Knapsack Problem and the Travelling Salesman Problem. Mathematics 2020, 8, 2018. [CrossRef]
21. Zhu, Y.; Chen, Y.; Fu, Z.H. Knowledge-Guided Two-Stage Memetic Search for the Pickup and Delivery Traveling Salesman

Problem with FIFO Loading. Knowl.-Based Syst. 2022, 242, 108332. [CrossRef]
22. Larasati, M.R.; Wang, I.L. An Integrated Integer Programming Model with a Simulated Annealing Heuristic for the Carrier

Vehicle Traveling Salesman Problem. Procedia Comput. Sci. 2022, 197, 301–308. [CrossRef]
23. Shi, Y.; Zhang, Y. The Neural Network Methods for Solving Traveling Salesman Problem. Procedia Comput. Sci. 2022, 199, 681–686.

[CrossRef]
24. Karakostas, P.; Sifaleras, A. A Double-Adaptive General Variable Neighborhood Search Algorithm for the Solution of the

Traveling Salesman Problem. Appl. Soft Comput. 2022, 121, 108746. [CrossRef]

196

Algorithms 2022, 15, 377

25. Schmidt, J.; Irnich, S. New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman
Problem. EURO J. Comput. Optim. 2022, 10, 100029. [CrossRef]

26. Kanna, S.; Sivakumar, K.; Lingaraj, N. Development of Deer Hunting Linked Earthworm Optimization Algorithm for Solving
Large Scale Traveling Salesman Problem. Knowl.-Based Syst. 2021, 227, 107199. [CrossRef]

27. Akhand, M.; Ayon, S.; Shahriyar, S.; Siddique, N.; Adel, H. Discrete Spider Monkey Optimization for Travelling Salesman
Problem. Appl. Soft Comput. 2020, 86, 105887. [CrossRef]

28. Krishna, M.; Panda, N.; Majhi, S. Solving Traveling Salesman Problem Using Hybridization of Rider Optimization and Spotted
Hyena Optimization Algorithm. Expert Syst. Appl. 2021, 183, 115353. [CrossRef]

29. Panwar, K.; Deep, K. Discrete Grey Wolf Optimizer for Symmetric Travelling Salesman Problem. Appl. Soft Comput. 2021, 105,
107298. [CrossRef]

30. Reda, M.; Onsy, A.; Elhosseini, M.A.; Haikal, A.Y.; Badawy, M. A Discrete Variant of Cuckoo Search Algorithm to Solve the
Travelling Salesman Problem and Path Planning for Autonomous Trolley inside Warehouse. Knowl.-Based Syst. 2022, 252, 109290.
[CrossRef]

31. Zhang, Z.; Yang, J. A Discrete Cuckoo Search Algorithm for Traveling Salesman Problem and Its Application in Cutting Path
Optimization. Comput. Ind. Eng. 2022, 169, 108157. [CrossRef]

32. Zhang, Z.; Han, Y. Discrete Sparrow Search Algorithm for Symmetric Traveling Salesman Problem. Appl. Soft Comput. 2022, 118,
108469. [CrossRef]

33. Huang, Y.; Shen, X.N.; You, X. A Discrete Shuffled Frog-Leaping Algorithm Based on Heuristic Information for Traveling
Salesman Problem. Appl. Soft Comput. 2021, 102, 107085. [CrossRef]

34. Stodola, P.; Otřísal, P.; Hasilová, K. Adaptive Ant Colony Optimization with Node Clustering Applied to the Travelling Salesman
Problem. Swarm Evol. Comput. 2022, 70, 101056. [CrossRef]

35. Land, A. The Solution of Some 100-City Travelling Salesman Problems. EURO J. Comput. Optim. 2021, 9, 100017. [CrossRef]
36. Dell’Amico, M.; Montemanni, R.; Novellani, S. Algorithms Based on Branch and Bound for the Flying Sidekick Traveling

Salesman Problem. Omega 2021, 104, 102493. [CrossRef]
37. Pereira, A.; Mateus, G.; Urrutia, S. Valid Inequalities and Branch-and-Cut Algorithm for the Pickup and Delivery Traveling

Salesman Problem with Multiple Stacks. Eur. J. Oper. Res. 2022, 300, 207–220. [CrossRef]
38. Yuan, Y.; Cattaruzza, D.; Ogier, M.; Semet, F. A Branch-and-Cut Algorithm for the Generalized Traveling Salesman Problem with

Time Windows. Eur. J. Oper. Res. 2020, 286, 849–866. [CrossRef]
39. Morais, M.; Ribeiro, M.; da Silva, R.; Mariani, V.; Coelho, L. Discrete Differential Evolution Metaheuristics for Permutation Flow

Shop Scheduling Problems. Comput. Ind. Eng. 2022, 166, 107956. [CrossRef]
40. Qiao, Y.; Wu, N.; He, Y.; Li, Z.; Chen, T. Adaptive Genetic Algorithm for Two-Stage Hybrid Flow-Shop Scheduling with

Sequence-Independent Setup Time and No-Interruption Requirement. Expert Syst. Appl. 2022, 208, 118068. [CrossRef]
41. Wu, X.; Cao, Z. An Improved Multi-Objective Evolutionary Algorithm Based on Decomposition for Solving Re-Entrant Hybrid

Flow Shop Scheduling Problem with Batch Processing Machines. Comput. Ind. Eng. 2022, 169, 108236. [CrossRef]
42. Song, H.B.; Lin, J. A Genetic Programming Hyper-Heuristic for the Distributed Assembly Permutation Flow-Shop Scheduling

Problem with Sequence Dependent Setup Times. Swarm Evol. Comput. 2021, 60, 100807. [CrossRef]
43. Wang, J.J.; Wang, L. A Cooperative Memetic Algorithm with Feedback for the Energy-Aware Distributed Flow-Shops with

Flexible Assembly Scheduling. Comput. Ind. Eng. 2022, 168, 108126. [CrossRef]
44. Harbaoui, H.; Khalfallah, S. Tabu-Search Optimization Approach for No-Wait Hybrid Flow-Shop Scheduling with Dedicated

Machines. Procedia Comput. Sci. 2020, 176, 706–712. [CrossRef]
45. Doush, I.; Al-Betar, M.; Awadallah, M.; Alyasseri, Z.; Makhadmeh, S.; El-Abd, M. Island Neighboring Heuristics Harmony Search

Algorithm for Flow Shop Scheduling with Blocking. Swarm Evol. Comput. 2022, 74, 101127. [CrossRef]
46. Brum, A.; Ruiz, R.; Ritt, M. Automatic Generation of Iterated Greedy Algorithms for the Non-Permutation Flow Shop Scheduling

Problem with Total Completion Time Minimization. Comput. Ind. Eng. 2022, 163, 107843. [CrossRef]
47. Miyata, H.; Nagano, M. An Iterated Greedy Algorithm for Distributed Blocking Flow Shop with Setup Times and Maintenance

Operations to Minimize Makespan. Comput. Ind. Eng. 2022, 171, 108366. [CrossRef]
48. Schulz, S.; Neufeld, J.; Buscher, U. Multi-Objective Iterated Local Search Algorithm for Comprehensive Energy-Aware Hybrid

Flow Shop Scheduling. J. Clean. Prod. 2019, 224, 421–434. [CrossRef]
49. Shao, W.; Shao, Z.; Pi, D. Multi-Local Search-Based General Variable Neighborhood Search for Distributed Flow Shop Scheduling

in Heterogeneous Multi-Factories. Appl. Soft Comput. 2022, 125, 109138. [CrossRef]
50. Pereira, M.; Nagano, M. Hybrid Metaheuristics for the Integrated and Detailed Scheduling of Production and Delivery Operations

in No-Wait Flow Shop Systems. Comput. Ind. Eng. 2022, 170, 108255. [CrossRef]
51. Umam, M.; Mustafid, M.; Suryono, S. A Hybrid Genetic Algorithm and Tabu Search for Minimizing Makespan in Flow Shop

Scheduling Problem. J. King Saud Univ. Comput. Inf. Sci. 2022, in press. [CrossRef]
52. Brammer, J.; Lutz, B.; Neumann, D. Permutation Flow Shop Scheduling with Multiple Lines and Demand Plans Using

Reinforcement Learning. Eur. J. Oper. Res. 2022, 299, 75–86. [CrossRef]
53. Pang, X.; Xue, H.; Tseng, M.L.; Lim, M.; Liu, K. Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm

for Permutation. Appl. Sci. 2020, 10, 1174. [CrossRef]

197

Algorithms 2022, 15, 377

54. Engin, O.; Güclü, A. A New Hybrid Ant Colony Optimization Algorithm for Solving the No-Wait Flow Shop Scheduling
Problems. Appl. Soft Comput. 2018, 72, 166–176. [CrossRef]

55. Gümüsçü, A.; Kaya, S.; Tenekeci, M.; Karaçizmeli, I.; Aydilek, I. The Impact of Local Search Strategies on Chaotic Hybrid Firefly
Particle Swarm Optimization Algorithm in Flow-Shop Scheduling. J. King Saud Univ. Comput. Inf. Sci. 2022, in press. [CrossRef]

56. Deng, G.; Xu, M.; Zhang, S.; Jiang, T.; Su, Q. Migrating Birds Optimization with a Diversified Mechanism for Blocking Flow
Shops to Minimize Idle and Blocking Time. Appl. Soft Comput. 2022, 114, 107834. [CrossRef]

57. Zhang, C.; Tan, J.; Peng, K.; Gao, L.; Shen, W.; Lian, K. A Discrete Whale Swarm Algorithm for Hybrid Flow-Shop Scheduling
Problem with Limited Buffers. Robot. Comput.-Integr. Manuf. 2021, 68, 102081. [CrossRef]

58. Croce, F.; Salassa, F.; T’Kindt, V. Exact Solution of the Two-Machine Flow Shop Problem with Three Operations. Comput. Oper.
Res. 2022, 138, 105595. [CrossRef]

59. Ho, M.; Hnaien, F.; Dugardin, F. Exact Method to Optimize the Total Electricity Cost in Two-Machine Permutation Flow Shop
Scheduling Problem under Time-of-Use Tariff. Comput. Oper. Res. 2022, 144, 10578. [CrossRef]

60. Oujana, S.; Yalaoui, F.; Amodeo, L. A Linear Programming Approach for Hybrid Flexible Flow Shop with Sequence-Dependent
Setup Times to Minimise Total Tardiness. IFAC PapersOnLine 2021, 54-1, 1162–1167. [CrossRef]

61. Schaller, J.; Valente, J. Branch-and-Bound Algorithms for Minimizing Total Eearliness and Tardiness in a Two-Machine Permuta-
tion Flow Shop with Unforced Idle Allowed. Comput. Oper. Res. 2019, 109, 1–11. [CrossRef]

62. Liu, M.; Li, Y.; Huo, Q.; Li, A.; Zhu, M.; Qu, N.; Chen, L.; Xia, M. A Two-Way Parallel Slime Mold Algorithm by Flow and
Distance for the Travelling Salesman Problem. Appl. Sci. 2020, 10, 6180. [CrossRef]

63. Golden, B.; Raghavan, S.; Wasil, E. The Vehicle Routing Problem: Latest Advances and New Challenges; Springer: Berlin/Heidelberg,
Germany, 2008.

64. Toth, P.; Vigo, D. The Vehicle Routing Problem; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002.
65. Soto-Mendoza, V.; García-Calvillo, I.; Ruiz-y Ruiz, E.; Pérez-Terrazas, J. Comparison between Single and Multi-Objective

Evolutionary Algorithms to Solve the Knapsack Problem and the Travelling Salesman Problem. Algorithms 2020, 13, 96.
[CrossRef]

66. Ochelska-Mierzejewska, J.; Poniszewska-Marańda, A.; Marańda, W. Selected Genetic Algorithms for Vehicle Routing Problem
Solving. Electronics 2021, 10, 3147. [CrossRef]

67. Desrochers, M.; Laporte, G. Improvements and Extensions to the Miller-Tucker-Zemlin Subtour Elimination Constraints. Oper.
Res. Lett. 1991, 10, 27–36. [CrossRef]

68. Stroh, M.B. A Practical Guide to Transportation and Logistics; Logistics Network: Burr Ridge, IL, USA, 2006.
69. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 19th ed.; W.H. Freeman and

Company: New York, NY, USA, 1997.
70. Ausiello, G.; Crescenzi, P.; Gambosi, G.; Kann, V.; Marchetti-Spaccamela, A.; Protasi, M. Complexity and Approximation: Combinato-

rial Optimization Problems and their Approximability Properties; Springer: Berlin/Heidelberg, Germany, 1999.
71. Reeves, C.R. Modern Heuristic Techniques for Combinatorial Problems; Blackwell Scientific Publications: Oxford, UK, 1993.
72. Michalewicz, Z.; Fogel, D.B. How to Solve It: Modern Heuristics; Springer: Berlin/Heidelberg, Germany, 2004.
73. Onwubolu, G.; Davendra, D. Differential Evolution. A Handbook for Global Permutation-Based Combinatorial Optimization; Springer:

Berlin/Heidelberg, Germany, 2009.
74. Wolpert, D.H.; McReady, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
75. Wolpert, D.H.; McReady, W.G. Coevolutionary Free Lunches. IEEE Trans. Evol. Comput. 2005, 9, 721–735. [CrossRef]
76. Brooke, A.; Kendrick, D.; Meeraus, A. GAMS Release 2.25. A User’s Guide; The Scientific Press. Boyd & Fraser Publishing Company:

Boston, MA, USA, 1992.
77. Rosenthal, R.E. GAMS—A User’s Guide; GAMS Development Corporation: Washington, DC, USA, 2016.
78. GAMS. Solver Manuals. Report, GAMS Development Corporation. Available online: https://www.gams.com/latest/docs/S_

MAIN.html (accessed on 6 September 2022).
79. Seda, P.; Mark, M.; Su, K.W.; Seda, M.; Hosek, J.; Leu, J. The Minimization of Public Facilities With Enhanced Genetic Algorithms

Using War Elimination. IEEE Access 2019, 7, 9395–9405. [CrossRef]
80. Beasley, J.E. OR-Library. Report, Brunel University London. 2018. Available online: http://people.brunel.ac.uk/~mastjjb/jeb/

info.html (accessed on 6 September 2022).
81. Beasley, J.E. OR-Library: Distributing Test Problems by Electronic Mail. J. Oper. Res. Soc. 1990, 41, 1069–1072. [CrossRef]
82. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1998.
83. Reinelt, G. MP-TESTDATA—The TSPLIB Symmetric Traveling Salesman Problem Instances; Report; Heidelberg University: Heidelberg,

Germany, 2013. Available online: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp (accessed on 6 September 2022).
84. Alkaya, A.F.; Yildirim, S.; Aksakalli, V. Heuristics for the Canadian Traveler Problem with Neutralizations. Comput. Ind. Eng.

2019, 159, 107488. [CrossRef]
85. Liao, C.S.; Huang, Y. The Covering Canadian Traveller Problem. Theor. Comput. Sci. 2014, 530, 80–88 [CrossRef]
86. Aurenhammer, F. Voronoi Diagrams. A Survey of a Fundamental Geometric Data Structure. ACM Comput. Surv. 1991, 23, 345–405.

[CrossRef]
87. de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M. Computational Geometry: Algorithms and Applications; Springer:

Berlin/Heidelberg, Germany, 2008.

198

Algorithms 2022, 15, 377

88. Becerra, P.; Mula, J.; Sanchis, R. Green Supply Chain Quantitative Models for Sustainable Inventory Management: A Review. J.
Clean. Prod. 2021, 328, 129544. [CrossRef]

89. Forkan, M.; Rizvi, M.M.; Chowdhury, M.A.M. Multiobjective Reverse Logistics Model for Inventory Management with
Eenvironmental Impacts: An Application in Industry. Intell. Syst. Appl. 2022, 14, 200078.

90. Teerasoponpong, S.; Sopadang, A. Decision Support System for Adaptive Sourcing and Inventory Management in Small- and
Medium-Sized Enterprises. Robot. Comput.-Integr. Manuf. 2022, 73, 102226. [CrossRef]

91. Xiong, X.; Li, Y.; Yang, W.; Shen, H. Data-Driven Robust Dual-Sourcing Inventory Management under Purchase Price and
Demand Uncertainties. Transp. Res. Part E 2022, 160, 102671. [CrossRef]

92. Sarkar, B.; Kar, S.; Basu, K.; Guchhait, R. A Sustainable Managerial Decision-Making Problem for a Substitutable Product in a
Dual-Channel under Carbon Tax Policy. Comput. Ind. Eng. 2022, 172, 108635. [CrossRef]

93. Sarkar, A.; Guchhait, R.; Sarkar, B. Application of the Artificial Neural Network with Multithreading within an Inventory Model
under Uncertainty and Inflation. Int. J. Fuzzy Syst. 2022, 24, 2318–2332. [CrossRef]

94. Guchhait, R.; Sarkar, B. Economic and Environmental Assessment of an Unreliable Supply Chain Management. RAIRO Oper. Res.
2021, 55, 3153–3170. [CrossRef]

95. Seda, M. Steiner Tree Problem in Graphs and Mixed Integer Linear Programming-Based Approach in GAMS. WSEAS Trans.
Comput. 2022, 21, 257–262. [CrossRef]

199

Citation: Valouxis, C.; Gogos, C.;

Dimitsas, A.; Potikas, P.; Vittas, A. A

Hybrid Exact–Local Search Approach

for One-Machine Scheduling with

Time-Dependent Capacity. Algorithms

2022, 15, 450. https://doi.org/

10.3390/a15120450

Academic Editors: Dunhui Xiao

and Shuai Li

Received: 25 October 2022

Accepted: 25 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Hybrid Exact–Local Search Approach for One-Machine
Scheduling with Time-Dependent Capacity

Christos Valouxis 1, Christos Gogos 2,∗, Angelos Dimitsas 2, Petros Potikas 3 and Anastasios Vittas 2

1 Department of Electrical and Computer Engineering, University of Patras, 26500 Patras, Greece
2 Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
3 Department of Electrical and Computer Engineering, National Technical University of Athens,

15772 Athens, Greece
* Correspondence: cgogos@uoi.gr

Abstract: Machine scheduling is a hard combinatorial problem having many manifestations in
real life. Due to the schedule followed, the possibility of installations of machines operating sub-
optimally is high. In this work, we examine the problem of a single machine with time-dependent
capacity that performs jobs of deterministic durations, while for each job, its due time is known
in advance. The objective is to minimize the aggregated tardiness in all tasks. The problem was
motivated by the need to schedule charging times of electric vehicles effectively. We formulate an
integer programming model that clearly describes the problem and a constraint programming model
capable of effectively solving it. Due to the usage of interval variables, global constraints, a powerful
constraint programming solver, and a heuristic we have identified, which we call the “due times
rule”, the constraint programming model can reach excellent solutions. Furthermore, we employ
a hybrid approach that exploits three local search improvement procedures in a schema where the
constraint programming part of the solver plays a central role. These improvement procedures
exhaustively enumerate portions of the search space by exchanging consecutive jobs with a single
job of the same duration, moving cost-incurring jobs to earlier times in a consecutive sequence
of jobs or even exploiting periods where capacity is not fully utilized to rearrange jobs. On the
other hand, subproblems are given to the exact constraint programming solver, allowing freedom of
movement only to certain parts of the schedule, either in vertical ribbons of the time axis or in groups
of consecutive sequences of jobs. Experiments on publicly available data show that our approach is
highly competitive and achieves the new best results in many problem instances.

Keywords: scheduling; constraint programming; heuristics; local search

1. Introduction

Scheduling problems are interesting due to their practical usefulness and hardness.
Such problems emerge in various domains, including manufacturing, computing, project
management, and many others. Since scheduling problems are typically NP-hard, several
approaches compete to attain the often unreached optimal solutions. Metaheuristics,
heuristics, constraint programming, and mathematical programming often yield excellent
results. The latter two are especially sensitive to problem sizes since their exact nature
implies that all solutions must be checked or intelligently pruned.

Scheduling is a thoroughly studied subject that is considered a discipline on its own [1].
Scheduling problems are classified using the commonly accepted (α|β|γ) notation [2],
where α refers to the machine environment, β refers to the constraints, and γ refers to the
objective function. A valuable asset for appreciating the variety of scheduling problems
under the (α|β|γ) notation can be found at [3].

In this work, we study a variation in the one-machine scheduling with time-dependent
capacity problem that Mencia et al. introduced in [4–6]. The problem emerged in the context

Algorithms 2022, 15, 450. https://doi.org/10.3390/a15120450 https://www.mdpi.com/journal/algorithms
201

Algorithms 2022, 15, 450

of scheduling charge times for a fleet of electric vehicles and is an abstraction of the real
problem. It is classified as (1, Cap(t)||∑ ti), meaning that it involves a single machine
with capacity that fluctuates through time, with no other constraints, and the objective is
minimizing the accumulated tardiness from all jobs. The problem piqued our interest due
to its precise definition, the publicly available datasets, and the excellent results that were
already published and which we used for comparisons.

We propose a novel way to approach the problem based on a model with an embedded
rule (the due times rule) that helps constraint programming solvers reach good solutions
fast. We also propose three improvement procedures that are local search routines. We
combine the exact and local search parts in our approach to the problem, and we manage
to achieve results equal to or better than the best-known results for 91 and 48 cases,
respectively, out of 190 public problem instances.

2. Problem Description

A detailed description of the problem exists in [6], so we give a brief description in
this section. The problem involves n jobs and one machine with a certain capacity that
varies over time. Each job i has a duration Pi and a due date Di. All jobs are available
from the start time (t = 0) and consume one unit of the machine’s capacity for the period
in which the job will eventually be scheduled. Once a job starts, it cannot be preempted
and should continue execution until completion. It is imperative that the capacity of the
machine is not exceeded at any time. Finally, the objective that should be minimized is the
total tardiness of all jobs, which is computed based on the due dates of the jobs. If job i
completes execution before its due date, it does not affect the cost. Otherwise, it imposes
a cost equal to ci − Di, where ci is the completion time that job i assumes in the schedule.
The mathematical formulation of the problem is presented in Section 7.

The problem (1, Cap(t)||∑ ti) is NP-hard, since problems (1||∑ ti) and (P||∑ ti) (P
denotes a known number of identical machines), which are known to be NP-hard [7], can
be reduced to it.

Terminology

In line with the definitions of terms in [6], we use Si, pi, di, and Ci for the start time,
duration, due time, and completion time, respectively, of a job i in a given schedule. Then,
Ti is the tardiness of job i which is max{0, Ci − di}.

A concrete example involving 12 jobs and a capacity line that reaches a maximum of
four units is presented below. This example is the one used as Example 1 in [5]. Table 1
summarizes information related to it alongside the values associated with an optimal sched-
ule for this problem instance, achieving an optimal cost of 20. The schedule corresponding
to the table’s third line is presented graphically in Figure 1.

Figure 1. A graphical representation of the schedule in the last line of Table 1.

202

Algorithms 2022, 15, 450

Table 1. A sample problem instance with 12 jobs. For each job i, the table shows its duration pi and
its due time di. Additionally, for a certain schedule, the table shows the start time (Si), completion
time (Ci), and penalty incurred (Ti) for each job i.

i 1 2 3 4 5 6 7 8 9 10 11 12

pi, di 4,4 4,9 2,13 3,4 4,7 3,8 2,10 3,3 2,13 3,5 3,9 5,7

Si, Ci, Ti 4,8,4 8,12,3 10,12,0 2,5,1 6,10,3 5,8,0 8,10,0 0,3,0 12,14,1 3,6,1 6,9,0 9,14,7

3. Dataset

A dataset consisting of a relatively large number of artificially generated problem
instances is publicly available in [8]. The procedure for generating these instances is
described in [6], and special care has been taken so that the problems’ structures resemble
the structure manifested during the process of electric vehicle charging [9]. In total, 190
problem instances exist, as seen in Table 2. The naming of each problem instance is
i<n>_<MC>_<k>, where n is the number of jobs, MC is the maximum capacity, and k is the
sequence number of each problem instance for this n, MC pair.

Table 2. Problem instances in the dataset. For each pair of a number of jobs and a maximum capacity,
10 individual problem instances exist.

Number of Jobs (n) Maximum Capacity (MC)

120 3, 5, 7, 10
250 10, 20, 30
500 10, 20, 30
750 10, 20, 30, 50
1000 10, 20, 30, 50, 100

Note that the capacity in all problem instances is a unimodal step function that grows
until reaching a peak, then decreases, and finally stabilizes at a positive value.

4. Related Work

Hard combinatorial optimization problems, such as the one-machine scheduling with
time-dependent capacity problem, are approached using numerous solving
methods [10,11]. The two basic categories of such approaches are the exact ones and
the heuristic–metaheuristic ones. In the first category, one can identify mathematical pro-
gramming (i.e., linear programming, integer programming, and others) [12], constraint pro-
gramming [13], approaches based on SAT (satisfiability) [14] or SMT (satisfiability modulo
theory) solvers [15], and, in general, methods that intelligently examine the complete search
space while pruning parts of it during their quest for proven optimal solutions [16]. In
the second category, the approaches are numerous, including local search methods [17,18],
genetic algorithms [19], genetic programming [20], memetic algorithms [21], differential
evolution [22], ant colony optimization [23], particle swarm optimization [24], bees algo-
rithms [25], hyper-heuristics [20], and others.

Heuristically Constructed Schedules

In [6], the authors present the schedule builder algorithm, where jobs are ordered
in an arbitrary sequence, and each job is scheduled to start at the earliest possible time.
After positioning each job, the capacity of the machine is updated in accordance with the
partial schedule. When all jobs are scheduled, the algorithm finishes and returns a feasible
schedule. This search space is guaranteed to contain an optimal solution to any problem
instance [5]. So, each possible solution can be represented as a sequence of jobs to the
schedule builder. Certain metaheuristic algorithms, such as genetic algorithms, may benefit
from the idea of representing each possible schedule as a sequence of jobs and searching
through the space of all possible permutations.

203

Algorithms 2022, 15, 450

Here, we present in Algorithm 1 a modification to the schedule builder algorithm that
introduces lanes, which are levels formed by the capacity of the problem. So, for example, a
problem with a maximum capacity of four has four lanes; the first is always available during
the time horizon, and the three others, based on the capacity, have periods of availability
and unavailability. Lanes help plot schedules, disambiguate solutions with identical costs,
and quickly identify jobs that form sequences of consecutive jobs. In Algorithm 1, we call
the function find_lowest_available_lane that finds the lowest available lane that can
accommodate a job starting at period t.

Algorithm 1 Schedule builder using lanes

Input: A problem instance P
Output: A feasible schedule S

demand ← [0,...]
left ← 0 � Leftmost time point where capacity is not yet fully utilized
for all jobs job do

t ← left
while True do

flag = True
for all capacity[t:t+job.duration], demand[t:t+job.duration] c, d do

if d > c then
flag ← False
break

end if
end for
if flag then

lane = find_lowest_available_lane(job, t)
S[job.id] ← lane, t
for all [t:t+job.duration] t’ do

demand[t’] ← demand[t’] + 1
if demand[t’] = capacity[t’] then

left ← t’ + 1
end if

end for
t ← t + 1
break

end if
end while

end for

5. C-Paths

A fundamental concept that was introduced by Mencia et al. in [4] is the concept
of a C-Path. A C-Path is a sequence of consecutive jobs (i.e., in a C-Path, the finish time
of each previous job coincides with the start time of the following job) in a schedule.
The importance of C-Paths stems from the fact that jobs in each C-Path can easily swap
places and keep the schedule feasible. We can consider a graph view of a schedule, where
each job is a node and directed edges connect nodes that correspond to consecutive jobs.
Then, each path from a source node of the graph (i.e., a node with no incoming edges)
to a sink node (i.e., a node with no outgoing edges) is a C-Path. This is demonstrated in
Figure 2 for a sample schedule of cost 35 for the toy problem instance shown in Table 1 and
its corresponding graph in Figure 3. The list of C-Paths identified in this graph includes the
following six: (3,12,4), (3,10,1,6), (3,10,1,2), (7,9,8,5), (7,11,2), and (7,11,6).

204

Algorithms 2022, 15, 450

Figure 2. A suboptimal schedule of cost 35 for the toy problem of Table 2. Each job is depicted with a
box and annotated with a label of the form x(y, z), where x is the job identification number, y is the
duration of the job, and z is its due time.

Figure 3. The graph that corresponds to the schedule of Figure 2.

The number of C-Paths might be very large, especially for schedules of big-size
problems. This is demonstrated in Table 3, which shows the number of C-Paths for specific
schedules of selected problem instances. Note that the number of C-Paths might change
dramatically for different schedules of the same problem instance and that larger problem
instances might have fewer C-Paths than smaller problem instances for some schedules.

Table 3. Number of C-Paths for schedules of selected problem instances, which can be found in [26].

Problem Instance Schedule Cost Number of C-Paths

i120_3_1 848 3
i120_10_1 749 71
i250_10_1 4094 48
i250_30_1 3013 276
i500_10_1 4614 204
i500_30_1 2670 4528
i750_10_1 4409 22,302
i750_50_1 5134 206,022

i1000_10_1 641 903,826
i1000_100_1 71,012 216,694

Fast Computation of C-Paths

Since complete enumeration of all C-Paths is out of the question for problems of large
sizes, we opted for a faster method of generating a single C-Path each time it is needed.
This method starts by picking a random job, followed by two processes that find the right

205

Algorithms 2022, 15, 450

and the left part of a C-Path, having the selected job as a pivot element. The right-side part
of the C-path is formed by choosing the next job that starts at the finish time of the current
job. If more than one job exists, one of them is randomly selected and becomes the new
current job. This process continues until no more subsequent jobs are found. The left side
of the C-Path is formed by setting the initially selected job as the current job once again and
finding previous jobs that end at the start time of the current job. Similarly, if more than
one exists, one is chosen at random and becomes the new current job. The process ends
when no more suitable prior jobs can be found.

6. Due Times Rule

This work contributes to identifying a rule that involves the due times of jobs with
equal durations. The rule states that “Jobs with equal duration should be scheduled in the
order of their due times”. In other words, if two jobs have equal durations, they should
swap places if the due time of the job that is scheduled later is sooner than the due time
of the job that is scheduled sooner. This rule can be used to strengthen mathematical
formulations or as a heuristic for reaching better solutions.

Proof. Suppose that two jobs, i and j, with the same duration, are scheduled such that job i
comes first and job j follows. Additionally, suppose that job j has an earlier due time than
job i, i.e., dj < di. Let t and t′ be the finish times of jobs i and j, respectively, and since both
jobs have the same duration, t < t′ holds. When both jobs have non-negative tardiness
values, i.e., t − di ≥ 0 and t′ − dj ≥ 0, swapping the jobs results again in non-negative
tardiness values for both jobs. This holds because the tardiness of job j after the swap will
be t − dj > t − di ≥ 0. Moreover, t′ > t ≥ di, so the tardiness of job i after the swap will be
t′ − di ≥ 0. So, the total tardiness before the swap is (t − di) + (t′ − dj), which is equal to
the total tardiness after the swap, which is (t − dj) + (t′ − di). This situation is depicted
in Figure 4a. The top figure shows a possible configuration of two equal-duration jobs
that both incur tardiness. It can be easily seen that the total length of the gray bars that
represent the tardiness remains the same after swapping jobs i and j.

Figure 4. (a) Both job i and job j have non-negative tardiness values. (b) Job i has no tardiness, but
job j incurs tardiness.

The benefit of positioning equal-duration jobs according to their due times occurs
when job i completes execution before its due time, and job j incurs some positive value
of tardiness. Since job i has no tardiness, the total tardiness of the initial configuration is
t′ − dj. After the swap, the total tardiness will be (t − dj) + (t′ − di). In order to prove
that the total tardiness is no greater after the swap, the following inequality must hold:
(t − dj) + (t′ − di) ≤ t′ − dj. This inequality leads to the following true proposition:
(t − dj) + (t′ − di) ≤ t′ − dj =⇒ t − di ≤ 0 =⇒ t ≤ di. The last inequality holds since it
is the assumption made for this case, i.e., job i has no tardiness. A visual representation of

206

Algorithms 2022, 15, 450

such a situation is depicted in Figure 4b. The upper part of the figure shows the situation
where job i is scheduled first, while the lower part of the figure shows the situation after
swapping the jobs. Again, the gray bars represent the tardiness of the jobs, and it can be
seen that the total tardiness is decreased when the jobs swap places.

7. Formulation and Implementation

A formulation of the problem that will be used to construct initial solutions to the
problem is presented below. Then, the formulation is slightly modified and used for solving
problems involving subsets of tasks in an effort to attain better schedules overall.

Let J be the set of jobs.
Let Pj be the duration of each job j ∈ J.
Let Dj be the due date of each job j ∈ J.
Let T be the number of time points. Note that the value of T is not given explicitly by

the problem, but such a value can be computed by aggregating the duration of all jobs.
Let Cap(t) be the capacity of the machine at each time point t ∈ 0 . . . T − 1.
We define integer decision variables sj ∈ 0 . . . T − 1 − Pj that denote the start time of

each job j ∈ J.
Likewise, we define integer decision variables f j ∈ Pj . . . T − 1 that denote the finish

time of each job j ∈ J.
We also define integer decision variables zj ≥ 0 which denote the tardiness of each job

j ∈ J.
Finally, we define binary decision variables xjt and yjt. Each one of the former variables

assumes the value 1 if job j starts its execution at time point t, or else it assumes the value 0.
Likewise, each yjt variable marks the time point at which job j finishes.

min ∑
j∈J

zj (1)

f j = sj + Pj ∀j ∈ J (2)

zj ≥ f j − Dj ∀j ∈ J (3)

sj ≥ t · xjt ∀j ∈ J ∀t ∈ 0 . . . T − 1 (4)

sj ≤ t + (M − t) · (1 − xjt) ∀j ∈ J ∀t ∈ 0 . . . T − 1 (5)

∑
t∈0...T−1

xjt = 1 ∀j ∈ J (6)

yjt+Pj = xjt ∀j ∈ J ∀t ∈ 0 . . . T − 1 − Pj (7)

∑
j∈J

∑
t′∈0..t

xjt′ − ∑
j∈J

∑
t′∈0..t

yjt′ ≤ Cap(t) ∀t ∈ 0..T − 1 (8)

A brief explanation of the above model follows.
The aim of the objective function in Equation (1) is to minimize the total tardiness of

all jobs.
Equation (2) assigns the proper finish time value to each job given its start time and

duration.
Equation (3) assigns tardiness values to the jobs. In particular, when job j finishes

before its due time, the right side of the inequality is a negative number, and variable zj
assumes the value 0 since its domain is non-negative integers. When job j finishes after its
due time, zj becomes f j − Dj. This occurs because zj is included in the minimized objective
function and therefore forced to assume the smallest possible non-negative value.

Equations (4) and (5) drive the variables xjt to proper values based on the sj values.
This occurs because, when sj assumes the value t, xjt becomes 1. It should be noted that M
in Equation (5) represents a big value, and T − 1 can be used for it. For the specific time
point t at which a job will be scheduled to begin, the right sides of both equalities will

207

Algorithms 2022, 15, 450

assume the value t. For all other time points besides t, the right sides of the former and the
latter equations become 0 and M, respectively.

Equation (6) enforces that only one among all of the xjt variables of each job j will
assume the value 1.

Equation (7) dictates the following association rule: for each job j, when xjt becomes 1
or 0, the corresponding y variable of j with the time offset Pj, which is yjt+Pj , will also be 1
or 0, respectively.

Equation (8) guarantees that for each time point, the capacity of the machine will not
be violated. The values that the left side of the equation assumes are the numbers of active
jobs at each time point t. The first double summation counts the jobs that have started no
later than t, while the second double summation counts the jobs that have also finished no
later than t. Their difference is obviously the number of active jobs.

Constraint Programming Formulation

The IBM ILOG constraint programming (CP) solver seems to be a good choice for solv-
ing scheduling problems involving jobs that occupy intervals of time and consume some
types of resources that have time-varying availability [27]. The one-machine scheduling
problem can be easily formulated in the IBM ILOG CP solver using one fixed-size interval
variable per job (j) and the constraint always_in, which restricts all of them to assume
values that collectively never exceed the maximum available capacity over time. This is
possible by using a pulse cumulative function expression that represents the contribution
of our fixed interval variables over time. Each job execution requires one capacity unit,
which is occupied when the job starts, retained through its execution, and released when
the job finishes. In our case, the variable usage aggregates all pulse requirements by all jobs.
The objective function uses a set of integer variables z[job.id] that are stored in a dictio-
nary that has the identifier of each job as keys. Each z[job.id] variable assumes the value
of the job’s tardiness (i.e., the non-negative difference of the job’s due time (job.due_time)
and its finish time (end_of(j[job.id])). An additional constraint is added that corre-
sponds to the due times rule mentioned in Section 6. Jobs are grouped by duration, and
a list ordered by due times is prepared for each group. Then, for all jobs in the list, the
constraint enforces that the order of the jobs must be respected. This means that each job in
the list should have an earlier start time than the start time of the job that follows it in the list.
The model implementation using the IBM ILOG CP solver’s python API is presented below.

import docplex.cp.model as cpx

model = cpx.CpoModel()

x_ub = int(problem.ideal_duration() * 1.1)

j = {

job.id: model.interval_var(

start=[0, x_ub - job.duration - 1],

end=[job.duration, x_ub - 1],

size=job.duration

)

for job in problem.jobs

}

z = {

job.id: model.integer_var(lb=0, ub=x_ub - 1)

for job in problem.jobs

}

usage = sum([model.pulse(j[job.id], 1) for job in problem.jobs])

for i in range(problem.nint):

208

Algorithms 2022, 15, 450

model.add(

model.always_in(

usage,

[problem.capacities[i].start, problem.capacities[i].end],

0,

problem.capacities[i].capacity,

)

)

for job in problem.jobs:

model.add(z[job.id] >= model.end_of(j[job.id]) - job.due_time)

for k in problem.size_jobs: # iterate over discrete job durations

jobs_by_due_time = same_duration_jobs[k]

for i in range(len(jobs_by_due_time)-1):

j1, j2 = jobs_by_due_time[i][1], jobs_by_due_time[i+1][1]

model.add(model.start_of(z[j1]) <= model.start_of(z[j2]))

model.minimize(sum([z[job.id] for job in problem.jobs]))

The object problem is supposed to be an instance of a class that has all relevant informa-
tion for the problem instance under question (i.e., jobs is the list of all jobs, each job besides
id and due_time has also a duration property, nint is the number of capacity intervals,
and capacities[i].start and capacities[i].end are the start time and end time of the
ith capacity step, respectively). Finally, the problem object has the ideal_duration method
that estimates a tight value for the makespan of the schedule, which is incremented by 10%
to accommodate possible gaps that hinder the full exploitation of the available capacity.
The “ideal duration” is computed by totaling the durations of all jobs and then filling the
area under the capacity line from left to right and from bottom to top with blocks of the
size 1 × 1 until the totaled durations quantity runs out. The rightmost point on the time
axis of the filled area becomes the “ideal duration” and is clearly a relaxation of the actual
completion time of the optimal solution since each job is decomposed in blocks of the
duration one, and no gaps appear in the filled area.

An effort was undertaken to implement the above model using Google’s ORTools
CP-SAT Solver [28]. This solver has a cumulative constraint that can be used in place of
always_in to describe the machine’s varying capacity. A series of FixedSizeIntervalVar
variables were used that transformed the pulse of the capacity to a flat line equal to the
maximum capacity. Unfortunately, the solver under this specific model implementation
could not approximate good results and was finally not used.

8. Local Search Improvement Procedures

We have identified three local search procedures that have the potential to improve
the cost of a given schedule. These local search procedures can be considered as “large”
moves since they examine a significant number of schedules neighboring the current one.

8.1. Local Search Improve1

The first local search procedure starts by iterating overall jobs. For each job j1, each
other consecutive job j2 is identified, and then each job j3 with a duration equal to the
aggregated durations of j1 and j2 is found. Since j1 and j2 are consecutive, they can
be swapped with job j3, and the schedule will still remain feasible, as seen in Figure 5.
Moreover, the order of the two first jobs does not influence the feasibility. So, two alter-
natives are tested that compare the imposed penalties before and after the swap, and,
if an improvement is found, the swap occurs. The time complexity of this procedure is
O(|J|) since the maximum number of consecutive jobs for each job is bounded by the
maximum capacity, which is a constant number much smaller than the number of jobs.

209

Algorithms 2022, 15, 450

Moreover, the identification of consecutive jobs and jobs of durations that are equal to the
aggregated duration of two other consecutive jobs is performed using Hash Maps that
effectively contribute O(1) to the above complexity. The first one uses times as keys and
has a list of jobs starting at these times as values. By using as a key the finish time of a job
j1, the dictionary returns each job j2 that is consecutive to j1. The second Hash Map uses
the jobs’ durations as keys and, as the value for each key x, the list of jobs with the duration
x. Note that the second Hash Map is computed only once and remains unchanged through
the solution process.

Figure 5. Assuming that job j3 has the same duration as the aggregated duration of jobs j1 and j2,
two cases for swapping them become possible. The first one puts j1 first and j2 second, and the other
one puts j2 first and j1 second.

8.2. Local Search Improve2

The second local search procedure uses C-Paths that are computed as described in
Section 5. Each C-Path is traversed from left to right until a job j is found that imposes a
cost to the schedule (i.e., has a finish time greater than its due time). The only way that the
penalty of a job j can be reduced is by moving it to the left side of the C-Path. So, all jobs
that start earlier than job j are examined by swapping places with job j. If the total penalty
imposed by job j and a sequence of jobs up to another job k is greater than the penalty after
swapping jobs j and k, followed by shifts of jobs in between, then this set of moves occurs.
The time complexity of this procedure is O(|J|2). Since each C-Path has a length that is
O(|J|), and each C-Path is traversed once for identifying jobs with penalties, and then, for
each such job, the C-path is again traversed, it follows that the complexity is quadratic.
The construction of each C-Path costs O(|J|), which is added to the time of the above
procedure and gives O(|J|) + O(|J|2). Since this occurs for every job, |J| C-Paths are
generated, and this results in a total complexity of O(|J|3) for the second local search
procedure. An example of this procedure is depicted in Figure 6.

8.3. Local Search Improve3

The third local search procedure starts by identifying periods where the capacity is
not fully used. Given a capacity profile that has the form of a pulse, for each job, the pulse
is lowered by one unit for the period during which it is active. This is iterated for all jobs,
and, finally, it is possible to exist periods scattered across the horizon that have non-zero
capacity remaining. So, jobs with finish times that fall inside these periods (gaps) can
possibly be moved to the right, and the schedule should still be feasible. The main idea of
this local search procedure is that it allows two jobs of marginally different durations to
swap places. This occurs by first identifying two C-Paths with no common jobs that have
jobs with finish times falling inside gaps as their rightmost jobs. Given two such C-Paths,
each job of them can be swapped with a job of the other C-Path, provided that the slack
that the gap provides is adequate for this move. This means that all jobs of a C-Path that

210

Algorithms 2022, 15, 450

are to the right of the smaller of the two swapping jobs should shift to the right, and all
jobs of the other C-Path that are to the right of the bigger job should shift to the left, giving
the opportunity for further penalty gains. In principle, the number of jobs that might have
finish times that fall inside gaps is O(|J|), but our experiments showed that, in practice, this
number is a small fraction of |J|. Since two C-Paths are involved, and each job of a C-Path
has to be checked with each job of the other C-Path, this contributes O(|J|2). Moreover, all
possible pairs of jobs that fall in gaps are used as starting points in the construction of the
corresponding C-Paths, resulting in another O(|J|2) term. So, the time complexity of the
overall procedure is O(|J|4). It should be noted that shifts due to penalty reductions occur
rarely, and their amortized contribution to the time complexity is neglected. In practice, the
time needed for this move is comparable to the previous one due to the relatively small
number of jobs that fall inside gaps. An example of this procedure is depicted in Figure 7.

Figure 6. Given a C-Path, this local search procedure swaps two non-consecutive jobs (j1 and j2) and
appropriately shifts the in-between jobs (j3) so as to keep the C-Path property for all involved jobs.

Figure 7. Jobs belonging to two C-Paths swap places to reduce the length or even remove gaps in the
schedule.

211

Algorithms 2022, 15, 450

9. A Multi-Staged Approach

The approach we employed for addressing the problem uses several stages that operate
cyclically until the available time runs out.

10. Results

Our experiments were run on a workstation with 32GB of RAM and an Intel Core
i7-7700K 4.2GHz CPU (four cores, eight threads) running Windows 10. The constraint
programming solver that we used was IBM ILOG CP Optimizer Version 22. The local search
procedures, the implementation of the constraint programming model, and the driver pro-
gram were all implemented in Python. Our results are compared with the results of Mencia
et al. in [6], which is a continuation of their previous work in [4,5]. In their most recent work,
they present and compare six memetic algorithms termed MASCP, MAiSCP, MASCP+, MACB,
MAICP, and MAHYB. The last one gives the best results out of all others and the previous
approaches of the authors, and this is the algorithm with which we compare our approach.
MAHYB combines CB and ICP procedures under a memetic algorithm. Both procedures use
the concept of a cover. A cover is a disjoint set of C-Paths that covers all jobs. In CB, once a
cover is generated, the C-Paths of the cover are examined in isolation for improvements.
On the other hand, ICP swaps jobs between C-Paths, again using a cover to select the
C-Paths participating in the procedure. In [6], no values for the schedule costs are given,
but the relative performances of the six approaches are recorded in tables and graphs
instead. So, results about the actual schedule costs of MAHYB and the other approaches
that we use in our comparisons hereafter were taken from [8], which the authors cite in
their paper.

10.1. CPO vs. CPO+

We call the constraint programming approach, briefly described in [6], CPO (constraint
programming optimizer), and our approach described in Section “Constraint Programming
Formulation” that exploits the “due rule”, CPO+. Results about the performance of CPO
were taken from the web repository cited at the end of the previous paragraph.

Table 4 depicts for each problem instance the total tardiness of all jobs for the schedule
that CPO and CPO+ produced. It shows that CPO+ manages to find solutions equal to
the best-known solutions for 25 out of 190 problem instances, while CPO achieves this for
only 2 problem instances (i120_3_3 and i120_5_4). The best values are written in bold.
An allotted time of n/2 seconds for each problem instance was given for each run, where
n is the number of jobs. We used all available cores, which was the default setup for the
IBM ILOG CP Optimizer. The results of CPO+ are the best among 10 runs for each problem
instance, and random seeds were used to achieve diversity.

212

Algorithms 2022, 15, 450

T
a

b
le

4
.

Be
st

re
su

lt
s

(t
ot

al
ta

rd
in

es
s)

fr
om

th
e

C
PO

ap
pr

oa
ch

an
d

ou
r

C
PO

+
ap

pr
oa

ch
.

P
ro

b
le

m
S

e
t

C
P

O
C

P
O

+

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

i1
20

_3
95

1
38

34
2
4
1
0

10
59

39
51

32
58

73
0

40
95

16
90

13
26

8
6
7

3
6
2
0

2
4
1
0

1
0
1
9

3
8
5
9

3
1
2
3

7
2
0

4
0
8
4

1
6
6
3

1
2
6
8

i1
20

_5
10

54
16

73
99

9
4
9
6

31
28

45
8

55
0

12
27

34
86

12
45

1
0
3
0

1
5
3
8

9
5
9

4
9
6

3
0
6
2

4
5
5

5
1
9

1
2
1
4

3
3
3
2

1
1
5
1

i1
20

_7
12

01
27

68
37

98
42

06
32

20
27

86
17

12
33

06
46

94
54

6
1
1
3
3

2
7
2
5

3
5
5
1

4
0
8
3

3
0
9
5

2
6
6
5

1
6
5
5

3
2
2
5

4
5
1
0

5
0
3

i1
20

_1
0

76
4

12
12

15
54

93
5

16
12

11
57

25
30

77
7

10
56

88
1

7
5
2

1
1
2
9

1
5
1
1

8
8
7

1
4
6
7

1
1
1
8

2
4
6
4

7
2
1

1
0
0
6

8
2
3

i2
50

_1
0

43
11

55
2

14
80

48
71

69
21

65
63

48
57

61
08

54
53

14
05

4
1
4
4

5
0
6

1
3
5
4

4
7
5
5

6
5
2
2

6
2
8
8

4
6
0
4

5
9
4
0

5
3
6
3

1
3
2
0

i2
50

_2
0

59
05

19
74

29
71

27
74

13
43

17
86

16
44

24
08

17
30

66
32

5
6
7
4

1
8
9
9

2
8
2
5

2
5
4
5

1
0
9
7

1
6
3
1

1
5
9
4

2
2
0
2

1
5
6
1

6
5
6
3

i2
50

_3
0

33
81

33
48

52
73

50
99

45
60

53
33

39
90

80
3

18
08

56
00

3
0
8
5

3
1
1
4

4
9
9
9

4
1
9
4

4
3
0
4

5
1
2
9

3
7
2
6

6
9
5

1
5
6
1

5
4
1
8

i5
00

_1
0

47
91

86
5

11
09

22
26

67
5

63
12

32
61

46
88

49
7

22
27

4
6
1
4

8
2
2

9
6
3

2
1
5
9

6
1
0

6
1
0
0

2
8
6
4

4
4
7
2

4
6
5

2
1
3
0

i5
00

_2
0

82
12

89
9

94
40

14
95

18
59

93
49

62
6

35
36

66
14

60
30

7
7
0
5

7
9
0

9
1
4
4

1
2
7
3

1
7
9
9

9
2
3
2

5
2
5

3
2
5
2

6
4
2
0

5
8
8
6

i5
00

_3
0

30
64

61
3

63
17

47
87

65
83

18
38

42
56

93
60

10
99

48
2

2
8
2
2

5
0
1

6
0
4
8

4
4
2
5

6
1
1
4

1
6
9
7

3
8
9
2

9
0
5
1

9
2
1

3
6
9

i7
50

_1
0

46
70

82
44

60
51

54
05

16
55

82
27

10
39

86
38

13
59

4
41

49
4
4
6
0

7
8
2
0

5
8
4
1

5
1
1
0

1
5
3
9

7
9
0
9

9
7
0

8
0
4
2

1
3
,1

0
3

3
9
0
6

i7
50

_2
0

61
00

88
9

15
93

10
,1

51
99

27
12

,3
96

51
75

11
,9

10
48

12
28

66
6
0
4
6

7
0
3

1
3
2
0

9
6
3
3

9
1
7
9

1
1
,6

5
2

4
8
7
5

1
1
,4

1
4

4
3
9
9

2
6
9
0

i7
50

_3
0

50
92

60
45

32
00

32
40

73
3

30
28

12
43

32
81

31
18

22
56

4
9
5
4

5
3
1
4

2
5
3
4

3
0
3
0

6
8
7

2
6
0
9

1
1
1
4

2
9
6
3

2
8
1
2

2
0
8
9

i7
50

_5
0

59
89

57
66

13
,9

45
26

99
11

,0
96

12
,5

90
57

48
11

,4
25

56
89

61
39

5
3
0
3

5
0
9
8

1
2
,6

1
5

2
4
3
3

1
0
,1

9
0

1
1
,9

9
8

5
1
2
2

1
0
,8

9
8

5
4
0
2

5
2
4
2

i1
00

0_
10

71
2

24
,6

29
10

71
15

,7
11

16
,2

99
21

88
77

9
20

,9
02

23
,2

13
44

71
6
4
1

2
3
,8

2
1

8
3
3

1
5
,3

4
2

1
5
,4

4
3

2
0
2
5

7
4
3

2
0
,8

9
1

2
2
,4

9
5

4
1
4
7

i1
00

0_
20

10
,3

79
17

,5
25

20
,3

18
82

14
15

,2
11

25
,0

44
10

,0
12

17
,4

82
11

,5
83

11
,3

16
9
4
7
0

1
6
,3

5
5

2
0
,2

6
5

8
0
8
3

1
4
,5

1
0

2
4
,9

1
5

9
9
1
2

1
7
,0

4
8

1
0
,4

3
6

1
0
,8

9
2

i1
00

0_
30

78
71

20
74

20
,9

64
13

,9
91

43
08

13
,6

30
10

,7
63

27
13

15
,8

56
20

,9
59

7
0
5
4

1
7
6
9

1
8
,5

8
0

1
2
,7

5
3

3
8
0
0

1
2
,2

9
8

1
0
,2

3
2

2
2
3
9

1
5
,6

3
1

1
9
,1

3
8

i1
00

0_
50

33
15

16
,4

91
13

,0
47

15
20

16
30

18
,2

16
21

,1
81

22
27

15
,4

73
46

82
2
9
6
3

1
6
,2

3
6

1
2
,1

3
0

1
2
3
9

1
4
7
8

1
7
,1

3
1

2
0
,1

3
3

2
0
2
2

1
4
,4

5
4

4
1
9
9

i1
00

0_
10

0
7
3
,6

3
7

8
1
,1

0
4

28
,2

92
39

,0
57

7
6
,0

8
0

50
,5

41
47

,7
46

55
,9

73
26

,5
85

17
,8

03
78

,9
63

81
,6

38
2
6
,4

4
6

3
7
,7

1
9

77
,2

98
4
9
,3

1
3

4
5
,0

3
6

5
3
,6

3
9

2
4
,8

2
3

1
6
,3

3
0

213

Algorithms 2022, 15, 450

10.2. Hybrid Exact–Local Search

The HELS (hybrid exact–local search) approach is shown using the flowchart in
Figure 8. First, the constraint programming solver is employed for the full problem.
A period of time of n/2 seconds is given for executing this stage. Then, for 3 × n seconds, a
loop occurs that includes the three local search procedures, followed by activation of the
constraint programming solver again, but this time for subproblems. These subproblems
might involve jobs that intersect with vertical ribbons on the time axis or groups of con-
secutive sequences of jobs (i.e., multiple C-Paths). Note that a reordering of jobs might
be needed so that the current solution conforms with the “due rule”, else the constraint
programming solver might consider the fixed parts of the partial solution to be infeasible.
This is denoted by the extra stage “Reorder same duration jobs” after the third local search
procedure in Figure 8.

Figure 8. Hybrid Exact–Local Search approach.

Table 5 presents the best results that were achieved by the approach with the best-
known results, all of which are provided by MAHYB.

214

Algorithms 2022, 15, 450

T
a

b
le

5
.

Be
st

pr
ev

io
us

ly
kn

ow
n

re
su

lt
s

(t
ot

al
ta

rd
in

es
s)

ac
hi

ev
ed

fr
om

th
e

M
A

H
Y

B
ap

pr
oa

ch
an

d
th

e
re

su
lt

s
of

ou
r

H
EL

S
ap

pr
oa

ch
.

P
ro

b
le

m
S

e
t

M
A

H
Y

B
H

E
L

S

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

i1
20

_3
8
4
8

3
5
6
8

2
4
1
0

1
0
1
9

3
8
5
8

3
1
2
0

7
2
0

4
0
8
4

1
6
6
3

1
2
6
8

8
4
8

35
70

2
4
1
0

1
0
1
9

3
8
5
8

3
1
2
0

7
2
0

4
0
8
4

1
6
6
3

1
2
6
8

i1
20

_5
1
0
3
0

1
5
1
1

9
5
9

4
9
6

3
0
6
1

4
5
5

5
1
9

1
2
1
4

3
2
2
3

1
1
3
1

1
0
3
0

15
14

9
5
9

4
9
6

3
0
6
1

4
5
5

5
1
9

1
2
1
4

32
31

1
1
3
1

i1
20

_7
1
1
2
0

2
7
2
5

3
4
9
3

4
0
2
1

3
0
5
9

2
6
4
0

1
6
5
5

3
2
2
5

4
4
7
0

4
9
3

11
21

2
7
2
5

35
05

40
28

30
78

2
6
4
0

1
6
5
5

3
2
2
5

44
74

4
9
3

i1
20

_1
0

7
4
6

1
1
2
4

1
4
4
2

8
8
7

1
4
4
7

1
1
1
8

2
4
6
3

7
2
1

9
7
7

8
2
0

74
9

11
25

14
53

8
8
7

1
4
4
7

1
1
1
8

2
4
6
3

7
2
1

98
3

8
2
0

i2
50

_1
0

4
0
9
4

5
0
6

1
3
4
9

4
7
3
1

6
3
9
0

6
2
8
0

4
4
9
7

5
8
8
1

5
3
2
1

1
2
9
3

41
03

5
0
6

1
3
4
9

4
7
3
1

63
91

62
84

45
11

58
87

53
27

1
2
9
3

i2
50

_2
0

5
5
7
3

1
8
8
2

2
8
1
3

2
5
2
5

1
0
5
4

1
5
8
3

1
5
6
5

2
1
9
0

1
5
5
3

6
5
3
1

5
5
7
3

18
88

2
8
1
3

2
5
2
5

1
0
5
4

16
05

15
70

2
1
9
0

1
5
5
3

65
41

i2
50

_3
0

3
0
1
3

3
0
5
4

47
58

40
98

41
97

50
34

3
6
4
1

6
8
6

1
5
0
2

51
97

3
0
1
3

3
0
5
4

4
7
5
3

4
0
9
3

4
1
9
4

5
0
1
9

3
6
4
1

6
8
6

1
5
0
2

5
1
9
3

i5
00

_1
0

4
6
1
4

8
2
2

9
5
1

2
1
0
2

6
1
0

5
9
8
1

2
7
6
8

4
4
6
0

4
6
2

1
9
9
8

4
6
1
4

8
2
2

95
3

21
16

6
1
0

5
9
8
1

27
83

4
4
6
0

4
6
2

20
08

i5
00

_2
0

76
49

7
9
0

8
9
4
1

1
2
7
2

1
7
1
9

91
10

5
2
3

3
1
8
0

6
2
9
1

56
61

7
5
6
9

7
9
0

89
70

1
2
7
2

17
44

9
0
9
7

5
2
3

31
88

63
38

5
6
5
9

i5
00

_3
0

2
6
7
0

4
7
7

59
75

4
3
0
7

5
8
6
9

1
6
1
4

3
7
9
5

89
46

8
6
2

3
5
2

2
6
7
0

4
7
7

5
9
7
4

4
3
0
7

58
73

16
26

3
7
9
5

8
8
8
8

8
6
2

3
5
2

i7
50

_1
0

43
79

7
7
4
4

5
8
1
9

50
86

15
17

7
8
9
5

95
2

79
96

12
,8

37
3
8
4
0

4
3
1
2

7
7
4
4

58
21

5
0
8
2

1
5
0
0

7
8
9
5

9
4
3

7
9
6
2

1
2
,8

1
4

3
8
4
0

i7
50

_2
0

5
8
9
1

7
0
0

1
3
1
4

96
74

9
0
7
3

1
1
,4

3
4

4
8
5
5

11
,3

53
4
3
9
3

2
6
3
2

59
79

7
0
0

1
3
1
4

9
5
6
2

9
0
7
3

1
1
,4

3
4

4
8
5
5

1
1
,2

8
4

4
3
9
3

2
6
3
2

i7
50

_3
0

4
7
1
3

5
1
2
8

2
3
6
4

29
51

6
6
1

2
5
7
7

1
0
7
0

2
9
1
1

2
7
0
0

1
9
9
4

47
67

5
1
2
8

2
3
6
4

2
9
4
5

66
3

2
5
7
7

1
0
7
0

29
12

2
7
0
0

1
9
9
4

i7
50

_5
0

5
1
3
4

49
78

12
,6

01
2
3
5
6

9
8
4
0

1
1
,4

8
3

4
8
6
8

1
0
,5

8
0

5
1
5
4

52
04

5
1
3
4

4
7
9
2

1
2
,1

4
7

2
3
5
6

98
47

11
,5

00
4
8
6
8

10
,5

83
5
1
5
4

5
0
2
8

i1
00

0_
10

6
4
1

23
,7

29
81

5
1
5
,2

0
4

15
,3

93
2
0
2
5

73
5

20
,6

86
22

,3
58

40
28

6
4
1

2
3
,5

2
1

8
1
2

15
,2

06
1
5
,1

8
0

2
0
2
5

7
2
9

2
0
,5

7
4

2
2
,1

6
2

3
9
8
2

i1
00

0_
20

9
4
4
0

16
,0

69
20

,1
68

7
9
6
2

1
4
,1

8
3

24
,6

93
98

16
16

,9
94

1
0
,2

9
0

1
0
,7

8
1

9
4
4
0

1
5
,9

7
1

1
9
,9

8
6

79
75

1
4
,1

8
3

2
4
,5

0
7

9
7
2
6

1
6
,7

8
9

10
,3

01
1
0
,7

8
1

i1
00

0_
30

69
02

16
87

18
,4

33
1
2
,3

9
9

37
68

1
2
,0

9
0

97
95

2
0
8
5

15
,6

25
18

,7
28

6
7
8
0

1
6
6
8

1
8
,0

8
7

12
,4

11
3
7
0
7

1
2
,0

9
0

9
7
6
5

2
0
8
5

1
5
,5

2
8

1
8
,4

8
3

i1
00

0_
50

2
8
8
3

16
,4

18
1
1
,6

1
3

1
1
4
2

1
3
9
0

1
6
,6

5
6

1
9
,5

6
6

1
8
8
6

1
3
,7

4
0

3
9
8
9

2
8
8
3

1
5
,9

7
7

11
,6

18
1
1
4
2

1
3
9
0

16
,6

67
1
9
,5

6
6

18
89

13
,7

47
3
9
8
9

i1
00

0_
10

0
71

,0
34

7
5
,1

0
1

25
,9

77
3
6
,3

7
4

67
,1

09
4
7
,5

4
0

44
,5

45
5
2
,2

6
6

23
,7

04
15

,6
64

7
1
,0

1
2

75
,1

81
2
5
,5

9
4

36
,3

76
6
6
,4

1
9

47
,5

41
4
3
,4

3
7

5
2
,2

6
6

2
3
,6

9
0

1
5
,2

3
0

215

Algorithms 2022, 15, 450

Table 6 consolidates the relative performance of our approach when compared with the
best-known results. We can observe that our approach manages to find new best results for
48 of the problem instances. It also equals the best-known results for 91 problem instances.
MAHYB achieves better results than our approach for the remaining 51 problem instances.
We also compare our solutions with how closely it reaches the previously best-known
solution as a percentage value, and we call this the metric “distance%”. Negative values
mean that our approach sets a new best-known value. We see that the average distance%
metric for all problem instances assumes a negative value of −0.1727%, demonstrating
its very good performance. This is further supported by Figure 9, which shows for each
problem subset consisting of 10 instances, a boxplot of the distance% values. Again,
negative values are advantageous for our approach, and the graph clearly shows that our
approach achieves excellent results, especially for large problem instances.

Table 6. The HELS approach’s performance against the best recorded results.

Best Equal Worse Distance (%)

48 91 51 −0.1727

Figure 9. The HELS approach compared with the best-known results derived from the MAHYB

approach in [6].

10.3. Discussion

Figure 10 includes three graphs showing the cost of solutions during the allotted
execution time. We can see that the costs start from very high values and sharply fall to
smaller values, not very far from the final ones. The long tails of the graphs indicate that
less time is needed for achieving good quality schedules than the 3.5 × n seconds (n is the
number of jobs) that we have used in our experiments. This is further demonstrated by the
values of CPO+ and HELS in Tables 4 and 5, with the first ones being close to the second.
In particular, for the set of all 190 problem instances, the percentage distance of CPO+ to
HELS has a mean equal to 0.077 and a standard deviation equal to 0.069.

Regarding comparing our approach with the one by Mencia et al. [6], we can make
a few remarks. First, Mencia et al. do not report in their papers the exact values that

216

Algorithms 2022, 15, 450

their approaches returned; instead, they compare their results to their other less efficient
approaches. So, we retrieved the values we use in our comparisons from the site [8] that
the authors reference in their paper. Providing exact values alongside solution files that
other researchers can download from our repository [26] may attract more interest to the
problem. Since the run-time environments used in our case and in Mencia et al.’s case
are different, we focus mainly on whether each approach can find the best possible result,
given that limited processing power is exploited in both cases. Furthermore, in our case,
Figure 10 clearly shows a trend observed in other problem instances: our approach reaches
results very close to the final results using only about 1/5 of the allotted execution time.

Figure 10. Cost values during the execution time using the HELS approach.

11. Conclusions

In this manuscript, we examined an abstraction of a real-world electrical vehicle
charging scheduling problem that comes with a public dataset and high-quality published
solutions. This problem involves a number of jobs with given durations and due times that
should be scheduled to a single machine with time-dependent capacity, while the objective
is the minimization of the aggregated tardiness of all jobs. We proposed some novel ideas,
such as the due times rule, local improvement procedures, and problem decompositions.
The result was that we managed to achieve better solutions for many problem instances of
the already excellent solved dataset. A central component of the proposed approach, which
we call the hybrid exact–local search (HELS) approach, is a constraint programming model
that utilizes interval variables and global constraints and that is initially called for the full
problem and then iteratively for subproblems that stochastically drive the objective to more
favorable values. Three improvement procedures are embedded in our HELS approach that
perform local searches and succeed in further improving solutions. Our work demonstrates
an example of a general tendency. Challenging combinatorial problems increasingly fall
into the realm of exact solvers, which are nowadays capable of solving problems of big sizes.
If this is not possible for the full problem, hybrid approaches that combine exact solvers
over subproblems and approximate solvers can be combined to decompose the problem in
a process that results in complete, high-quality solutions.

Author Contributions: Conceptualization, C.G. and C.V.; methodology, C.V.; software, C.G., C.V.,
and A.D.; validation, C.V., A.D., and P.P.; formal analysis, P.P.; investigation, A.D. and C.G.; resources,
A.V.; data curation, A.V.; writing—original draft preparation, A.D. and C.G.; writing—review and
editing, C.G., C.V., and A.D.; visualization, A.V.; supervision, C.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Problem instances and all solution files using our hybrid exact–local
search approach are archived in [26].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pinedo, M.L. Scheduling; Springer: Berlin/Heidelberg, Germany, 2012; Volume 29.
2. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling:

A survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.

217

Algorithms 2022, 15, 450

3. Scheduling Zoo. Available online: http://schedulingzoo.lip6.fr/ (accessed on 21 November 2022).
4. Mencía, C.; Sierra, M.R.; Mencía, R.; Varela, R. Genetic algorithm for scheduling charging times of electric vehicles subject to

time dependent power availability. In Proceedings of the International Work-Conference on the Interplay between Natural and
Artificial Computation, Corunna, Spain, 19–23 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 160–169.

5. Mencía, C.; Sierra, M.R.; Mencía, R.; Varela, R. Evolutionary one-machine scheduling in the context of electric vehicles charging.
Integr.-Comput.-Aided Eng. 2019, 26, 49–63. [CrossRef]

6. Mencía, R.; Mencía, C. One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms. Mathematics
2021, 9, 3030. [CrossRef]

7. Koulamas, C. The single-machine total tardiness scheduling problem: Review and extensions. Eur. J. Oper. Res. 2010, 202, 1–7.
[CrossRef]

8. GitHub Repository for “One Machine Scheduling with Time Dependent Capacity via Efficient Memetic Algorithms” by Mencia R.
Available online: https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-
Memetic-Algorithms (accessed on 21 November 2022).

9. Hernández-Arauzo, A.; Puente, J.; Varela, R.; Sedano, J. Electric vehicle charging under power and balance constraints as dynamic
scheduling. Comput. Ind. Eng. 2015, 85, 306–315. [CrossRef]

10. Lenstra, J.K.; Kan, A.R.; Brucker, P. Complexity of machine scheduling problems. In Annals of Discrete Mathematics; Elsevier:
Amsterdam, The Netherlands, 1977; Volume 1, pp. 343–362.

11. Gupta, S.K.; Kyparisis, J. Single machine scheduling research. Omega 1987, 15, 207–227. [CrossRef]
12. Gogos, C.; Valouxis, C.; Alefragis, P.; Goulas, G.; Voros, N.; Housos, E. Scheduling independent tasks on heterogeneous processors

using heuristics and Column Pricing. Future Gener. Comput. Syst. 2016, 60, 48–66. [CrossRef]
13. Baptiste, P.; Le Pape, C.; Nuijten, W. Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems;

Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 39.
14. Großmann, P.; Hölldobler, S.; Manthey, N.; Nachtigall, K.; Opitz, J.; Steinke, P. Solving periodic event scheduling problems with

SAT. In Proceedings of the International Conference on Industrial, Engineering and other Applications of Applied Intelligent
Systems, Dalian, China, 9–12 June 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 166–175.

15. Ansótegui, C.; Bofill, M.; Palahí, M.; Suy, J.; Villaret, M. Satisfiability modulo theories: An efficient approach for the resource-
constrained project scheduling problem. In Proceedings of the Ninth Symposium of Abstraction, Reformulation, and Approxima-
tion, Parador de Cardona, Spain, 17–18 July 2011.

16. Brucker, P.; Knust, S.; Schoo, A.; Thiele, O. A branch and bound algorithm for the resource-constrained project scheduling
problem. Eur. J. Oper. Res. 1998, 107, 272–288. [CrossRef]

17. Vaessens, R.J.M.; Aarts, E.H.; Lenstra, J.K. Job shop scheduling by local search. Informs J. Comput. 1996, 8, 302–317. [CrossRef]
18. Matsuo, H.; Juck Suh, C.; Sullivan, R.S. A controlled search simulated annealing method for the single machine weighted tardiness

problem. Ann. Oper. Res. 1989, 21, 85–108. [CrossRef]
19. Lee, K.M.; Yamakawa, T.; Lee, K.M. A genetic algorithm for general machine scheduling problems. In Proceedings of the 1998

Second International Conference Knowledge-Based Intelligent Electronic Systems, Proceedings KES’98 (Cat. No. 98EX111),
Adelaide, Australia, 21–23 April 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 2, pp. 60–66.

20. Gil-Gala, F.J.; Mencía, C.; Sierra, M.R.; Varela, R. Evolving priority rules for on-line scheduling of jobs on a single machine with
variable capacity over time. Appl. Soft Comput. 2019, 85, 105782. [CrossRef]

21. França, P.M.; Mendes, A.; Moscato, P. A memetic algorithm for the total tardiness single machine scheduling problem. Eur. J.
Oper. Res. 2001, 132, 224–242. [CrossRef]

22. Wu, X.; Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 2019,
82, 155–165. [CrossRef]

23. Merkle, D.; Middendorf, M. Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl.
Intell. 2003, 18, 105–111. [CrossRef]

24. Lin, T.L.; Horng, S.J.; Kao, T.W.; Chen, Y.H.; Run, R.S.; Chen, R.J.; Lai, J.L.; Kuo, I.H. An efficient job-shop scheduling algorithm
based on particle swarm optimization. Expert Syst. Appl. 2010, 37, 2629–2636. [CrossRef]

25. Yuce, B.; Fruggiero, F.; Packianather, M.S.; Pham, D.T.; Mastrocinque, E.; Lambiase, A.; Fera, M. Hybrid Genetic Bees Algorithm
applied to single machine scheduling with earliness and tardiness penalties. Comput. Ind. Eng. 2017, 113, 842–858. [CrossRef]

26. GitHub Repository for “A Hybrid Exact-Local Search Approach for One-Machine Scheduling with Time-Dependent Capacity” by
Gogos C. Available online: https://github.com/chgogos/1MSTDC (accessed on 21 November 2022).

27. Laborie, P.; Rogerie, J.; Shaw, P.; Vilím, P. IBM ILOG CP optimizer for scheduling. Constraints 2018, 23, 210–250. [CrossRef]
28. Google OR Tools CP-SAT Solver. Available online: https://developers.google.com/optimization/cp/cp_solver (accessed on 21

November 2022).

218

Citation: Čudina Ivančev, A.; Ahac,

M.; Ahac, S.; Dragčević, V.

Comparison of Single-Lane

Roundabout Entry Degree of

Saturation Estimations from

Analytical and Regression Models.

Algorithms 2023, 16, 164. https://

doi.org/10.3390/a16030164

Academic Editor: Frank Werner

Received: 15 February 2023

Revised: 14 March 2023

Accepted: 15 March 2023

Published: 18 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Comparison of Single-Lane Roundabout Entry Degree of
Saturation Estimations from Analytical and Regression Models

Ana Čudina Ivančev, Maja Ahac *, Saša Ahac and Vesna Dragčević

Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia
* Correspondence: maja.ahac@grad.unizg.hr

Abstract: Roundabout design is an iterative process consisting of a preliminary geometry design,
geometry performance checks, and the estimation of intersection functionality (based on the results
of analytical or regression models). Since both roundabout geometry design procedures and traffic
characteristics vary around the world, the discussion on which functionality estimation model is
more appropriate is ongoing. This research aims to reduce the uncertainty in decision-making during
this final roundabout design stage. Its two objectives were to analyze and compare the results of
roundabout performance estimations derived from one analytical and one regression model, and to
quantify the model results’ susceptibility to changes in roundabout geometric parameters. For this,
60 four-legged single-lane roundabout schemes were created, varying in size and leg alignment. Their
geometric parameters resulted from the assumption of their location in a suburban environment and
chosen design vehicle swept path analysis. To compare the models’ results, the degree of saturation
of roundabout entries was calculated based on presumed traffic flows. The results showed that
the regression model estimates higher functionality and that this difference (both between the two
models and regression models applied on different schemes) is more pronounced as the outer radius
and angle between the legs increase.

Keywords: suburban roundabout design; swept path analysis; geometric parameters; performance
estimation; capacity assessment

1. Introduction

Roundabouts are intersections with a one-way circulatory roadway around a central
island. In most countries, the vehicles entering the roundabout should give right-of-way
to vehicles in the circulatory lane. Consequently, roundabout operational functionality is
directly dependent on the traffic conditions in the circulating traffic flow and indirectly
dependent on the geometric design of the roundabout. According to [1–3], single-lane
roundabouts are a very good solution for the following transportation engineering de-
mands: for reduced intersection dimensions; for intersections with five or more legs;
when there is even distribution of traffic on the intersection legs; for traffic volumes under
25,000 veh/day; for a decrease in the waiting time at the intersection; as a measure to
calm traffic, especially in urban areas; and for lowering levels of traffic noise, emissions of
harmful gases, and the risk of accidents (due to the low driving speeds of approaching and
circulating traffic, and fewer conflict points than at standard intersections). Additionally,
single-lane roundabouts are increasingly popular solutions in suburban areas due to their
design that provides an easy transition in road category and type (from a dual to a single
roadway, i.e., from rural to the urban environment), and the fact that they do not require
the installation, maintenance, and operation of signal lights.

Roundabout design is an iterative process consisting of a (1) preliminary geome-
try design, (2) geometry performance checks, which include the design vehicle swept
path, fastest path, and visibility analysis, and (3) assessments of intersection functionality
through capacity analysis. Roundabout geometry is primarily influenced by the design

Algorithms 2023, 16, 164. https://doi.org/10.3390/a16030164 https://www.mdpi.com/journal/algorithms
219

Algorithms 2023, 16, 164

vehicle swept path. The design vehicle is a vehicle identified as the least maneuverable
vehicle expected to use the intersection [4]—a vehicle of a certain type and dimensions that
characterize a group of vehicles and fully correspond to the legal regulations on vehicle
dimensions [5], or international recommendations [6]. Design vehicles are often chosen
depending on the position of the intersection in the road network and the composition
and category of expected vehicles (trucks in industrial zones, buses in urban and suburban
areas, etc.) [7]. After confirming the preliminary design through the geometry performance
checks, the iterative design process shifts to capacity analysis, to assure that the roundabout
geometry satisfies traffic performance criteria. If the capacity value is too low or too high,
the geometry needs to be redesigned and the capacity analysis repeated [8].

Numerous models have been created over years to assist road designers and traffic ana-
lysts in the assessments of intersection functionality. These models can be broadly classified
into three categories: (1) probabilistic, analytical, gap-acceptance models, (2) deterministic,
empirical regression, geometric models, and (3) time-dependent, microsimulation models.
The final selection of the most appropriate roundabout design is usually based on the
results of the analytical or regression model for entry capacity assessment [9–13].

The analytical models were created based on combining the main postulates of traffic
flow theory and field-measured driver behaviors. This approach resulted in an analytic
formulation of the relationship between field measurements and theoretical performance
parameters [14]. They consider traffic flow composition and conflict between vehicles in the
circulatory roadway and vehicles entering the roundabout [15]. Probability theory is used to
estimate to what extent the vehicles entering a roundabout will be able to use an acceptable
gap between two consecutive vehicles in the circulating traffic stream [9,16]. They do
not directly quantify the relationship between the capacity and geometric parameters of
the roundabout [11,13].

On the other hand, regression models were generated from extensive traffic data
collected at roundabout entries. They have established relationships between capacity
and geometric design features through statistical multivariate regression analyses to fit
mathematical relationships between measured entry capacity, circulating flow, and other
independent variables that have an impact on entry capacity [9,14]. They consider not only
the circulating and entering but also the exiting traffic flow. The relationship between entry
capacity and circulating flow is linear or exponential, depending on the model [8,11].

Simulation models are based on modeling the movements and interactions of individ-
ual vehicles on a network consisting of links and nodes or connectors. Vehicle movements
are governed by gap acceptance, car-following, lane-changing, and other models, and are
typically calculated for each vehicle at every specified time step [8]. In recent years, vehicle
movements along a roundabout have been studied within the master equation formalism
for stochastic exclusion processes of many-particle systems, i.e., many-body interactions.
The finite dimensions of vehicles introduce a natural “quantization” of space, and devel-
oped models simulate the stochastic motion of particles (vehicles) along a roundabout
through the (totally) asymmetric exclusion process [17,18].

Although designers and analysts would like to perform estimations as completely
and correctly as possible, model performance in predicting roundabout entry capacities
is limited [19]. Even today, the discussion between analytical and regression models
characterizes the general situation regarding the estimation of entry capacity at round-
abouts [9,12]. The main issues address the fact that both roundabout geometric parameters
and traffic characteristics (volume, vehicle composition, and driver behavior) vary widely
across the world [20]. However, according to [10,21], geometric parameters have a much
stronger impact on roundabout entry capacity than geographic location or country of origin,
i.e., “regional” non-geometric driver behavior. Additionally, among the different factors
influencing entry capacity, only the geometric parameters of roundabouts can be quan-
tified and modified, i.e., entirely manipulated by the designers to improve roundabouts’
operational performance [11].

220

Algorithms 2023, 16, 164

The two objectives of the research presented in this paper are to (1) analyze and
compare the results of roundabout performance estimations derived from analytical and re-
gression models, and (2) quantify the model results’ susceptibility to changes in roundabout
geometric parameters. The investigation will be performed on 60 four-legged single-lane
roundabouts schemes, varying in size and leg alignment, designed according to the results
of the chosen design vehicle swept path analysis. The roundabout performance estimations
will be performed under the assumption that the entering traffic at each leg is distributed
in three travel directions through the roundabouts, in equal shares. To compare the results
of the analytical and regression models, the roundabout entry degree of saturation will be
calculated. This is a dimensionless value used as the intersection efficiency indicator in
both models. The results of this research will reduce the uncertainty in decision-making
during the final roundabout design stage.

2. Materials and Methods

A list of symbols used in the manuscript is given in Table 1.

Table 1. List of symbols used in the manuscript.

Group Symbol Parameter

Geometric
parameters

Ro outer radius (m)
Ri central island radius (m)
u circulatory roadway width (m)
j number of roundabout legs, j = 1, . . . , 4
δ angle between the roundabout legs (◦)
l length of the arc between the adjacent roundabout legs (m)
ej entry width (m)
ej
′ exit width (m)

Rj entry radius (m)
Rj+1

′ exit radius (m)
bj distance between exiting and entering traffic flows along the center of the circulatory lane (m)

Traffic
parameters

i direction of travel through roundabout, i = 1, . . . , 12
qi traffic flow in the direction i (veh/h)
Qi traffic flow in passenger car units in the direction i (pcu/h)
fT conversion factor for traffic composition (pcu/veh)

QCj circulating traffic flow (pcu/h)
QSj exiting traffic flows at leg j (pcu/h)
QEj entering traffic flows at leg j (pcu/h)
BCj base entry capacity of the roundabout at leg j (pcu/h)
fP capacity reduction factor for pedestrian and cycling traffic flow at roundabouts (-)

CEj entry capacity at leg j (pcu/h)
Cmj entry capacity for mixed traffic flow at leg j (veh/h)
qmj mixed traffic flow at leg j (veh/h)

xmj,A degree of saturation of entry at leg j according to analytical model (-)
xmj,R degree of saturation of entry at leg j according to regression model (-)
α factor reflecting the impact of exiting traffic on entry capacity by distance b (-)
β factor for adjusting circulating flow depending on the number of circulating lanes (-)
γ factor for adjusting entry capacity depending on the number of circulating lanes (-)

The geometric parameters of a roundabout are the outer radius (Ro), the central island
radius (Ri), the circulatory roadway width (u), the number of legs (j), the angle between
the legs (δ), entry width (ej), exit width (ej

′), entry radius (Rj), and exit radius (Rj+1
′).

The selected Ro is influenced by the location of the roundabout (urban, suburban, rural),
roundabout task (e.g., traffic calming), spatial constraints, and the number of circulatory
lanes. In this investigation, the roundabout geometric parameters, design vehicle used for
swept path analysis, and traffic flow characteristics were defined based on the following
assumptions: (1) the roundabouts were to be situated in a suburban environment and

221

Algorithms 2023, 16, 164

(2) the roundabouts were to act as single-lane traffic-calming devices along the transition
path from the rural to the urban environment.

A plan view of the analyzed 4-legged single-lane roundabouts schemes was created in
AutoCAD. The following initial geometric parameters were used (Figure 1a):

• Ro applied in this investigation varied from 13.0 to 20.0 m, with a 0.5 m increment.
According to previous research given in [22], these outer radii are commonly used for
single-lane roundabouts worldwide. An increment of 0.5 m was chosen to capture the
dispersity of the results and to create a sample that is representative, manageable, and
easy to present at the same time;

• The roundabout leg alignment was radial, as is standard in the suburban environment [22];
• The axes of legs 1 and 4 intersected at δ = 90◦. The axes of legs 1 and 2 intersected at δ

ranging from 75◦ to 90◦ with 5◦ increments. This range was defined after considering
the condition given in [23], regarding the length of the arc (l) between the adjacent
roundabout legs. According to these guidelines, the length of this arc should be longer
than 20 m to ensure the efficiency of the roundabout. Namely, a shorter l makes it
difficult for drivers to signal the exit of the intersection when turning right due to the
very short time to turn on the turn signals;

• There were 15 m long triangular splitter islands designed at each leg with 0.5 m offset
from the defined outer edge of the circulatory roadway;

• The initial alignment of 3.25 m wide entry and exit lanes was defined.

(a) (b)

Figure 1. Design of initial geometric parameters: (a) the outer radius, legs, and splitter islands; (b) the
central island radius and the circulatory roadway width defined based on the design vehicle swept
path when driving in a full circle.

The geometric parameters Ri, Rj, Rj+1
′, and u resulted from the design vehicle swept

path analysis, which was performed in the AutoCAD software add-in Vehicle tracking
2022. The selected design vehicle was a 12 m long bus adopted from the German vehicle
library FGSV 2001. The geometric parameters Ri and u (Figure 1b) were defined based on
the design vehicle swept path when driving in a full circle [7] while ensuring minimum
lateral clearances of 0.5 m [24].

The geometric parameters Rj and Rj+1
′ were defined based on the design vehicle swept

path when turning right [24], while ensuring minimum lateral clearances of 0.5 m. Where
possible, to achieve wider exits, the roundabout’s right roadway edge was designed by
considering the condition of Rj+1

′ ≥ Rj + 2 m (Figure 2a) [25]. Wider roundabout exits are
favorable as they enable higher roundabout exit speeds, help minimize the likelihood of
congestion and crashes at the exits, provide ease of navigation for long vehicles, and reduce

222

Algorithms 2023, 16, 164

the potential for trailers to track over the outside curb. At roundabouts where it was not
possible to design the right roadway edge with radii Rj and Rj+1

′ due to leg alignment, a
different procedure was applied. Here, the right roadway edge was designed based on
the trajectory of the vehicle’s right turn movement and lateral clearances of 0.5 m in cross-
section a–a (Figure 2b). The geometric parameters ej and ej

′ were defined as the shortest
distance between the intersection point of the drawn line on the edge of the splitter island
and the entry line and the right roadway edge on the roundabout entry and exit (Figure 2).

(a) (b)

Figure 2. Roadway right edge design based on the trajectory of the vehicle’s right-turn movement:
(a) defined by entry radius and exit radius; (b) defined by the trajectory of the design vehicle.

The two observed models for the roundabout entry degree of saturation calculation
differ in the utilization of the abovementioned geometric parameters. The analytical HBS
2015 model, given in [26], uses only Ro as an input for calculation. The regression Swiss
Bovy model, given in [1], considers the influence of conflicting traffic on the circulatory
roadway that is exiting the roundabout at the same leg as the observed entry. The influence
of conflicting traffic on the circulatory roadway is defined as the distance between exiting
and entering traffic flows along the center of the circulatory lane (bj) [8], i.e., it considers
the joint influence of geometric parameters Ro, Ri, and δ.

Parameter bj was defined through the following procedure. First, the lines from the
center of the outer radius Ro to the center of the radii Rj and Rj

′ were drawn (Figure 3a).
At roundabouts where it was not possible to design the right roadway edge with radii Rj
and Rj+1

′, the line from the center of the outer radius Ro perpendicular to the trajectory of
the vehicle’s right turn movement was drawn (Figure 3b). Then, a circle of radius Ro—u/2
was constructed from the Ro center. Traffic stream conflicting points, exiting point (C) and
entering point (C′), were defined as intersections of these entities. The distance between
exiting and entering traffic streams along the center of the circulatory lane, i.e., the length
of the circular arc between conflicting points bj, was then measured.

223

Algorithms 2023, 16, 164

(a) (b)

Figure 3. Defining the distance b along the center of the circulatory lane, for roadway right edge
design defined by the: (a) entry and exit radius; (b) design vehicle trajectory.

Once designed, the geometric parameters Ri, u, ej, ej
′, and bj were systematized

according to the Ro and δ. When designing a roundabout according to the previously
described procedure, it should be noted that the results depend on the experience and
subjective approach of the designer. Therefore, to better present the influence of the chosen
Ro and δ on the designed parameters, regression analysis was performed, and best-fit
curves with a coefficient of determination larger than 0.99 were created. Second-degree
polynomial curves were used to describe Ri and u as a function of Ro, and third-degree
polynomial curves were used to describe ej, ej

′, and bj as a function of Ro for different δ.
Additionally, the average difference between bj (j = 1, 2, and 3) for δ = 90◦ and bj (j = 1, 2,
and 3) for δ = 85◦, 80◦, and 75◦ was calculated.

The entry degree of saturation (xmj) was defined as the ratio of entering traffic flow
and entry capacity. According to [14], sustainable values of xmj range from 0.0 to 1.0
(values above 1.0 indicate an excess of entering traffic demand over entry capacity). xmj
was calculated for each designed scheme considering the following simplifications and
assumptions on traffic flow volume, distribution, and composition:

• Three travel directions through the roundabout were considered at each roundabout
entry (j = 1, . . . , 4): right turn, straight passage, and left turn (i = 1, . . . , 12).

• Traffic flow qi at each entry (j = 1, . . . , 4) in each travel direction (i = 1, . . . , 12)
was 150 veh/h, adding up to a total of 1800 veh/h passing through the roundabout
(Figure 4a).

• The influence of pedestrian and bicycle traffic on roundabout capacity was not considered.
• The influence of heavy vehicles on the traffic flow quality was considered through

the homogenization of traffic flows qi. Flat-rate conversions of each qi from vehicles
per hour (veh/h) to Qi in passenger car units per hour (pcu/h) were made by using
a conversion factor of fT = 1.1, prescribed by [26] in case of lacking real data on
flow composition:

Qi = fT · qi, (1)

where Qi is homogenized traffic flow in the direction i (pcu/h), fT is conversion factor (set
to 1.1), and qi is traffic flow in the direction i (veh/h).

224

Algorithms 2023, 16, 164

(a) (b)

Figure 4. Traffic flows at a four-legged roundabout: (a) each entry in each travel direction, in veh/h;
(b) entering, exiting, and circulating the roundabout.

The same procedure for determining the entering, exiting, and circulating traffic flows
given in [26] was used for both the analytical and regression models. Based on assumed
traffic conditions, 12 entering and exiting traffic flows Qi for each travel direction (i = 1,
. . . , 12) were calculated. Then, the entering traffic flows QEj, exiting traffic flows QSj, and
the circulating traffic flow QCj (traffic flow in the circulatory roadway, i.e., the main flow,
which has priority over the ones entering the circulatory roadway) were calculated for each
leg (j = 1, . . . , 4) according to Figure 4b and Table 2.

Table 2. Calculation of entering, exiting, and circulating traffic flow.

Leg j QEj (pcu/h) QSj (pcu/h) QCj (pcu/h)

1 QE1 = Q1 + Q2 + Q3 QS1 = Q4 + Q8 + Q12 QC1 = Q7 + Q10 + Q11
2 QE2 = Q4 + Q5 + Q6 QS2 = Q3 + Q7 + Q11 QC2 = Q1 + Q2 + Q10
3 QE3 = Q7 + Q8 + Q9 QS3 = Q2 + Q6 + Q10 QC3 = Q1 + Q4 + Q5
4 QE4 = Q10 + Q11 + Q12 QS4 = Q1 + Q5 + Q9 QC4 = Q4 + Q7 + Q8

Once the circulating, entering, and exiting traffic flows were established, the xmj was
calculated through the following analytical and regression model procedures.

In the analytical model, the circulating flow QCj was used as an input variable for
determining the base capacity of the approach BCj. BCj values for the roundabout with one
circulatory lane and the outer radius of roundabout Ro were determined from the chart in
Figure 5 [26]. As the chart gave data only for roundabouts with outer radii Ro of 13.5, 15,
17.5, and 20 m, for other investigated Ro values, BCj was defined through interpolation.

225

Algorithms 2023, 16, 164

Figure 5. Base capacity at single-lane roundabouts as a function of outer radius.

Roundabout entry capacity CEj was calculated as

CEj = BCj · fp, (2)

where CEj is roundabout entry capacity considering the impact of pedestrian crossings
(pcu/h), BCj is the base entry capacity of the roundabout according to Figure 5 (pcu/h), and
fp is the capacity reduction factor for pedestrian and cycling traffic flow at roundabouts. In
this investigation, the influence of pedestrian and bicycle traffic on entering traffic flow was
neglected and the fp factor was set to 1.0. The value of entry capacity CEj was, therefore,
equal to base capacity BCj.

To determine the degree of saturation xmj, it was necessary to back-calculate the entry
capacity values CEj from passenger car units to vehicles per hour. The entry capacity Cmj
for the mixed traffic flow was then calculated as

Cmj =
CEj

fT
, (3)

where Cmj is the entry capacity for mixed flow (veh/h), CEj is the entry capacity (pcu/h),
and fT is the conversion factor for traffic composition set to 1.1 because of the absence of
real data on flow composition.

Mixed traffic flow qmj in vehicles per hour was then calculated on each leg’s entry by
summing up the three traffic flows qi with different directions of travel (right turn, straight
passage, and left turn). xmj,A was calculated as the ratio of entering mixed traffic flow qmj
in vehicles per hour and entry capacity Cmj in vehicles per hour:

xmj,A =
qmj

Cmj
, (4)

226

Algorithms 2023, 16, 164

where xmj,A is the entry degree of saturation according to the analytical model, qmj is mixed
traffic flow on legs’ entry (veh/h), and Cmj is entry capacity (veh/h).

In the regression model, entry capacity CEj in passenger car units per hour was
defined as [1]

CEj =
1
γ

[
1500 − 8

9
·
(
β · QCj+α · QSj

)]
, (5)

where CEj is entry capacity (pcu/h), QCj is circulating traffic flow in front of the leg being
considered (pcu/h), QSj is exiting traffic flow on the same leg as the entry (pcu/h), α is a
factor reflecting the impact of exiting traffic on entry capacity by distance bj, β is a factor for
adjusting circulating flow depending on the number of circulatory lanes, and γ is a factor
for adjusting entry capacity depending on the number of circulatory lanes.

Conflict factor α was determined from the chart in Figure 6 for measured distance bj
and middle curve. The factors β and γ were set to 1.0, as single-lane circulatory roadways
were investigated [1].

Figure 6. Conflict factor reflecting the impact of exiting traffic on entry capacity by the distance
between exiting and entering traffic streams along the center of the circulatory lane.

The degree of saturation of entry was defined as

xmj,R =
γ · QEj

CEj
, (6)

where xmj,R is the entry degree of saturation according to the regression model, γ is a factor
for adjusting entry capacity depending on the number of circulatory lanes (set to 1.0), QEj
is entering traffic flow (pcu/h), and CEj is entry capacity (pcu/h).

To present the influence of Ro and δ on calculated xmj, regression analysis was per-
formed, and best-fit curves for xmj values were created. Second-degree polynomial curves
with a coefficient of determination larger than 0.99 were used to visualize the trend.

To further quantify the impact of the application of different models in the roundabout
design process, the reversed calculation of traffic flow at each leg was performed accord-
ing to the regression model methodology. The calculation was based on the condition
that the intersection enables the same level of saturation as previously defined by the
analytical model (i.e., for the previously determined values of xmj,A). With this reversed
calculation, the potential traffic flow volume in veh/h was determined for each roundabout,
summarized, and compared with the input total flow rate of 1800 veh/h.

227

Algorithms 2023, 16, 164

3. Results

The results of the roundabout geometric design showed that to simultaneously fulfill
two roundabout design conditions (regarding preferred arc length and the roundabout’s
right roadway edge design, Table 3) values of Ro for different δ should be (1) Ro ≥ 13.5 m
for δ = 85◦, (2) Ro ≥ 16.5 m for δ = 80◦, and (3) Ro ≥ 19.0 m for δ = 75◦.

Table 3. Overview of two roundabout design conditions’ fulfillment (marked with +): Condition 1
(l ≥ 20 m)/Condition 2 (Rj+1 ≥ Rj + 2 m).

Ro (m) 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

δ = 90◦ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+
δ = 85◦ −/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+
δ = 80◦ −/− −/− −/− +/− +/− +/− +/− +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+
δ = 75◦ −/− −/− −/− −/− −/− +/− +/− +/− +/− +/− +/− +/− +/+ +/+ +/+

Considering the fulfillment of the abovementioned conditions (Table 3), designing a
roundabout with a δ≤ 75◦ is not recommended. However, the roundabout design that does
not consider these two design conditions could be applied in the suburban environment
because of the spatial limitations. Therefore, calculations of the xmj were performed for all
60 designed roundabouts, based on the calculated traffic flow volumes shown in Figure 7.

Figure 7. Calculated values of entering, exiting, and circulating traffic flow in pcu/h.

The resulting values of the geometric parameters of the 60 designed roundabouts
schemes are shown with their best-fit curves in Figures 8, 9a, 10, 11 and 12a.

As shown in Figure 8, Ri, ej, ej
′, and bj were proportional to Ro, and u values were

inversely proportional. The change in e1 was (1) proportional to δ, (2) identical for δ = 90
and 85◦, (3) identical for δ = 80 and 75◦ at Ro = 13.0 m, and (4) identical for δ = 90, 85, and
80◦ at Ro ≥ 19.0 m. The change in e2 was inversely proportional to δ at Ro ≥ 14.0 m. The
change in e2

′ and e3
′ at Ro ≥ 16.0 m showed an uneven trend for different δ. As expected,

δ did not affect the entrance and exit widths e3, e4, e1
′, and e4

′.
As shown in Figures 9a, 10, 11 and 12a, the trend of bj increasing for different δ

corresponded to those of ej and ej
′. Thus, the change in b1 (1) was proportional to δ and

(2) was identical for δ = 90 and 85◦. The change in b2 was inversely proportional to δ

at Ro ≥ 14.0 m. δ had a negligible effect on the values of b3 at Ro < 16 m. The change in
δ had no effect on the values of b4. Extreme values of bj were observed for δ = 75◦ and
Ro = 13.0 m (b1 = 12.5 m) at leg 1, and Ro = 20.0 m (b2 = 25.7 m) at leg 2.

228

Algorithms 2023, 16, 164

Figure 8. Geometric parameters Ri, ej, ej

′, and u as a function of Ro for different δ.

229

Algorithms 2023, 16, 164

(a) (b)

Figure 9. Investigated parameters at leg 1 as a function of Ro for different δ, considering the applica-
tion of design conditions 1 and 2: (a) geometric parameter b1; (b) traffic parameter xm1.

(a) (b)

Figure 10. Investigated parameters at leg 2 as a function of Ro for different δ, considering the
application of design conditions 1 and 2: (a) geometric parameter b2; (b) traffic parameter xm2.

230

Algorithms 2023, 16, 164

(a) (b)

Figure 11. Investigated parameters at leg 3 as a function of Ro for different δ, considering the
application of design conditions 1 and 2: (a) geometric parameter b3; (b) traffic parameter xm3.

(a) (b)

Figure 12. Investigated parameters at leg 4 as a function of Ro for different δ, considering the
application of design conditions 1 and 2: (a) geometric parameter b4; (b) traffic parameter xm4.

The results of the calculation of the entry degree of saturation with dependence on the
Ro of roundabouts and δ according to the analytical model (xmj,A) and regression model
(xmj,R) showed that xmj values were inversely proportional to Ro. xmj,R values followed the
observed trend of bj for all analyzed δ at each roundabout leg (Figures 9b, 10, 11 and 12b).
For Ro ≤ 16.5 m, an established trend showed a more rapid decrease in bj and, consequently,
in xmj,R. On the other hand, for Ro ≥ 19.0 m, it can be stated that the differences in the right
roadway edge design, regardless of δ, do not affect xmj,R. The values of xmj,A decreased at a
lower and uniform rate as Ro increased. xmj,A values were higher than xmj,R by, on average,
16%. The average difference between xmj,A and xmj,R varied between 0.088 and 0.100. These
extreme differences were observed for δ = 75◦, at leg 1 and leg 2, respectively. At each leg,
the average observed difference between the calculated xmj,R for δ = 90◦ and xmj,R for the

231

Algorithms 2023, 16, 164

other δ values amounted to (1) 0.3% at leg 2 for δ = 85◦, (2) 1.1% at leg 1, and 0.4% at leg 2
for δ = 80◦, (3) 1.7% at leg 1, 0.5% at leg 2, and 0.2% at leg 3 for δ = 75◦.

Figure 13 shows the average difference between b1, b2, and b3 for δ = 90◦ and b1,
b2, and b3 for δ = 85◦, 80◦, and 75◦, respectively. The change in these differences in bj
values is linear. As expected, b1 shortened as δ decreased. The opposite is true for b2 and
b3. The main reason for this is the design of the right roadway edge based on the design
vehicle swept path analysis. Namely, on the roundabout exit at legs 2 and 3, the body of
the design vehicle swept a wider surface than on the roundabout entry at leg 1, and this
surface was ever wider as δ decreased. Therefore, the designed exit radii R2

′ and R3
′ were

significantly larger than the recommended ones and, consequently, the distances b2 and b3
were inversely proportional to δ.

Figure 13. The average difference between b1, b2, and b3 for δ = 90◦ and b1, b2, and b3 for δ = 85◦,
80◦, and 75◦.

The results of the reversed calculation of traffic flow at each leg according to the
regression model methodology showed that, at a given roundabout, the application of
the regression model gives the same xmj results as the analytical one for 6% to 15% higher
traffic flows qi. The difference in traffic flow values obtained through this calculation is
shown as a percentage concerning the initial total value of 1800 veh/h (Figure 14).

Figure 14. Results of the reversed calculation of traffic flow—the difference in traffic flow values
shown as the percentage of the initial 1800 veh/h.

232

Algorithms 2023, 16, 164

4. Discussion and Conclusions

The iterative process of roundabout design requires shifting between geometry design
and capacity analysis, to ensure that chosen roundabout geometry satisfies the desired
traffic performance criteria. The quality of traffic flow on the roundabout is indirectly
dependent on its geometric parameters, and should be estimated during roundabout
design through calculation models or simulations. In this investigation, a comparison of
the analytical and empirical models for single-lane roundabout entry degree of saturation
estimation was performed on 60 designed four-legged roundabout schemes.

When designing a single-lane roundabout based on the design vehicle swept path
analysis, the choice of geometric parameters and the capacity calculation model influences
the roundabout performance evaluation results. The observed models differ in the utiliza-
tion of the geometric parameters: (1) the analytical model uses only the roundabout outer
radius as an input for calculation, while (2) the regression model considers the influence
of conflicting traffic on the circulatory roadway defined by the distance between exiting
and entering traffic flows along the center of the circulatory lane, i.e., it considers the joint
influence of roundabout outer radius, the central island radius, and the angle between the
roundabout legs.

The results of the geometric and traffic parameters analysis showed that the central
island radius and entry capacity are proportional to the outer radius. At the same time, the
circulatory roadway width and the entry degree of saturation are inversely proportional
to the outer radius. This is in line with the conclusions given in [27], which state that
circulatory roadway width significantly influences capacity. As can be seen from our results,
the influence of the circulatory roadway width, derived from the design vehicle swept
path, on capacity is counterintuitive; narrower circulatory roadways on roundabouts with
a larger outer radius enabled higher entry capacity, i.e., lower entry degree of saturation.

According to [11], entry width has a positive correlation with entry capacity. According
to [27], the distance between the entry and exit has a greater impact on the entry capacity
than the entry radius. The results of our investigation show that an increase in entry width
is directly linked with an increase in outer radius value and the design of the right roadway
edge derived from the design vehicle swept path, and that it decreases the roundabout
entry degree of saturation in the regression model. A larger outer radius in the analytical
model results in a lower degree of saturation. A larger outer radius and a greater distance
between the conflicting points (dependent not only on radius but also on the width of the
circulatory roadway and entry and exit widths) in the regression model result in a lower
degree of saturation.

In general, for all the observed combinations of geometric parameters, the regression
model results in lower values of roundabout entry degree of saturation. This difference
is more pronounced as the outer radius and angle between the roundabout legs increase.
This implies that it is possible to justify the chosen roundabout geometric parameters by
choosing the capacity analysis model, which will allow higher traffic flow volumes. Namely,
the results of the investigation showed that it is possible to increase the traffic flows that
could be processed at a given roundabout from 6% to 15% if the regression model is applied
instead of the analytical one during roundabout performance evaluation. From the per-
spective of the time in which the roundabout is expected to satisfy the desired performance
criteria and considering that the average annual increase in motor vehicles’ number in
Europe is 2% (according to the European Automobile Manufacturers’ Association), it could
be said that the application of the regression model could extend the expected service life
of a roundabout by 3 to 7 years.

For further research, the results of this investigation will be compared to and validated
by roundabout entry degree of saturation calculations performed with data from field
measurements. Additionally, it is planned to reverse-calculate the distance between exiting
and entering traffic flows along the center of the circulatory lane for xm,R = 0.85, which is
defined as the maximum entrance degree of saturation [28]. This will allow the investigation
of how this distance affects other roundabout geometric parameters and traffic flows.

233

Algorithms 2023, 16, 164

The described approach to roundabout capacity model comparison and appropriateness
evaluation could be applied to more complex roundabout setups, i.e., to roundabouts
with two-lane approaches, two-lane circulatory roadways, different leg numbers and
alignments, and the presence of pedestrian and cyclist flow. This investigation could be
also conducted for urban areas where spatial and territorial constraints are more stringent,
i.e., for roundabouts with minimal outer radii of 6.5 m and with leg alignments defining
the minimum distance between exiting and entering traffic flows along the center of the
circulatory lane of 9 m.

The investigation presented in this paper has shown that (1) the applied regression
model estimates a higher roundabout traffic performance than the analytical one, and (2)
this difference (both between the two models and regression models applied on different
schemes) is more pronounced as the outer radius and angle between the legs increase. To
conclude, the regression model is more suitable for application in suburban roundabout
design, i.e., for environments with spatial limitations, and where performance evaluation
demands higher traffic flow volumes to be processed through the roundabout. On the
other hand, due to its simplicity, the analytical model should be applied in rural areas with
more heterogenic and time-variable traffic flows, and for road network planning purposes,
preliminary roundabout design, and robust capacity estimations.

Author Contributions: Conceptualization, M.A. and S.A.; methodology, M.A.; formal analysis, A.Č.I.
and M.A.; investigation, A.Č.I.; resources, M.A.; data curation, A.Č.I.; writing—original draft prepara-
tion, A.Č.I. and M.A.; writing—review and editing, S.A.; visualization, M.A.; supervision, V.D.; project
administration, M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Ministry of Transport. Roundabouts—Application and Design: A Practical Manual; Ministry of Transport, Public Works and Water
Management, Partners for Roads: Amsterdam, The Netherlands, 2009.

2. Alozi, A.R.; Hussein, M. Multi-criteria comparative assessment of unconventional roundabout designs. Int. J. Transp. Sci. Technol.
2021, 11, 158–173. [CrossRef]

3. CROW: Eenheid in Rotondes; CROW Publication no.126; CROW: Ede, The Netherlands, 1998; Available online: https://nmfv.dk/
wp-content/uploads/2012/06/RDC_Netherlands.pdf (accessed on 15 March 2023).

4. Ahac, S.; Ahac, M.; Džambas, T.; Dragčević, V. The Design Vehicle Steering Path Construction Based on the Hairpin Bend
Geometry-Aplication in Roundabout Design. Appl. Sci. 2022, 12, 11019. [CrossRef]

5. Regulation on technical conditions of vehicles in road traffic (Official Gazette, no. 85/16, 24/17, 60/20). Available online:
https://narodne-novine.nn.hr/clanci/sluzbeni/2016_09_85_1864.html; https://narodne-novine.nn.hr/clanci/sluzbeni/2017
_03_24_547.html; https://narodne-novine.nn.hr/clanci/sluzbeni/2020_05_60_1224.html (accessed on 15 March 2023).

6. Directive 96/53/EC and Directive 2002/7/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:01996L0053-20150526&from=EN (accessed on 15 March 2023).

7. Grad̄evinski fakultet Sveučilišta u Rijeci. Smjernice za Projektiranje Kružnih Raskrižja na Državnim Cestama; Grad̄evinski fakultet
Sveučilišta u Rijeci: Rijeka, Croatia, 2014.

8. Yap, Y.H.; Gibson, H.M.; Waterson, B.J. An International Review of Roundabout Capacity Modelling. Transp. Rev. 2013, 33,
593–616. [CrossRef]

9. Guiffre, O.; Granà, A.; Tumminello, M.L. Exploring the uncertainty in capacity estimation at roundabouts. Eur. Transp. Res. Rev.
2017, 9, 18. [CrossRef]

10. Johnson, M.T.; Lin, T. Impact of Geometric Factors on the Capacity of Single-Lane Roundabouts. Transp. Res. Rec. J. Transp. Res.
Board 2018, 2672, 10–19. [CrossRef]

11. Zacharia, A.B.; Madhavan, H.; Anjaneyulu, M.V.L.R. Geometric factors influencing entry capacity of roundabouts under
heterogeneous traffic conditions. Arch. Transp. 2019, 49, 87–101. [CrossRef]

12. Pompigna, A.; Guerrieri, M.; Mauro, R. New Extensions and Applications of the Modified Chumanov Model for for Calculating
Entry Capacity of Single-Lane Roundabouts. Sustainability 2020, 12, 6122. [CrossRef]

234

Algorithms 2023, 16, 164

13. Žura, M. Roundabout Capacity Estimation Model Considering Driver Behaviour on the Exiting and Entry Flows. Promet – Traffic
Transp. 2022, 34, 397–405. [CrossRef]

14. Transportation Research Board, Roundabouts. In Highway Capacity Manual: A Guide for Multimodal Mobility Analysis; Transporta-
tion Research Board (TRB): Amsterdam, The Netherlands, 2016.

15. Hamim, O.F.; Hadiuzzaman, M.; Hossain, S. Developing empirical model with graphical tool to estimate and predict capacity of
rural highway roundabouts. Int. J. Transp. Sci. Technol. 2021, 11, 726–737. [CrossRef]

16. Batra, V.; Anand, V.; Prakash, V.; Mangal, V.; Kumar, N. A Review of Capacity, Critical Gap and Follow-up Time on an Unsignalised
Intersections in Bangalore City. Int. J. Innov. Sci. Res. Technol. 2020, 5, 912–917.

17. Foulaadvand, M.E.; Maass, P. Phase transitions and optimal transport in stochastic roundabout traffic. Phys. Rev. E
2016, 94, 012304. [CrossRef] [PubMed]

18. Nava, A.; Giuliano, D.; Papa, A.; Rossi, M. Traffic models and traffic-jam transition in quantum (N+1)-level systems. SciPost Phys.
2022, Core 5, 022. [CrossRef]

19. Song, Y.; Hu, X.; Lu, J.; Zhou, X. Analytical approximation and calibration of roundabout capacity: A merging state transition-
based modeling approach. Transportation Res. Part B Methodol. 2022, 163, 232–257. [CrossRef]

20. Anagnostopoulos, A.; Kehagia, F.; Aretoulis, G. Application of Artificial Neural Network for Modelling and Predicting Round-
about Capacity. In Proceedings of the 8th Road Safety & Simulation International Conference, Athens, Greece, 8–10 June 2022.

21. Johnson, M.T.; Hale, D.K. A Case for Geometrically-Based Roundabout Capacity Equation Modeling. In Proceedings of the 5th
International Symposium on Highway Geometric Design, Vancouver, BC, Canada, 22–24 June 2015.

22. Ahac, S.; Dragčević, V. Geometric Design of Suburban Roundabouts. Encyclopedia 2021, 1, 720–743. [CrossRef]
23. Plangleiche Knoten–Kreisverkehre; (RVS 03.05.14); Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV):

Wien, Austria, 2010.
24. Ahac, S. Design of Suburban Roundabouts Based on Rules of Vehicle Movement Geometry. Ph.D. Thesis, University of Zagreb,

Zagreb, Croatia, April 2014.
25. Rodegerdts, L.; Bansen, J.; Tiesler, C.; Knudsen, J.; Myers, E.; Johnson, M.; Moule, M.; Persaud, B.; Lyon, C.; Hallmark, S.; et al.

NCHRP Report 672: Roundabouts: An Informational Guide, 2nd ed.; Transportation Research Board: Washington, DC, USA, 2010.
26. Voss, T. HBS 2015 Teil S5 Knotenpunkte ohne Lichtsignalanlage, Germany. 2015.
27. Yap, Y.H.; Gibson, H.M.; Waterson, B.J. Models of Roundabout Lane Capacity. J. Transp. Eng. 2015, 141, 1–12. [CrossRef]
28. Šurdonja, S.; Deluka-Tibljaš, A.; Babić, S. Optimization of roundabout design elements. Tech. Gaz. 2013, 20, 533–539.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

235

Citation: Nielsen, K.G.; Sung, I.; El

Yafrani, M.; Kılıç, D.K.; Nielsen, P. A

Scheduling Solution for Robotic

Arm-Based Batching Systems with

Multiple Conveyor Belts. Algorithms

2023, 16, 172. https://doi.org/

10.3390/a16030172

Academic Editor: Frank Werner

Received: 16 February 2023

Revised: 16 March 2023

Accepted: 16 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Scheduling Solution for Robotic Arm-Based Batching
Systems with Multiple Conveyor Belts †

Kasper Gaj Nielsen 1, Inkyung Sung 2,*, Mohamed El Yafrani 3, Deniz Kenan Kılıç 2 and Peter Nielsen 2

1 ORTEC Nordic A/S, Stationsparken 25, 2600 Glostrup, Denmark
2 Operations Research Group, Department of Materials and Production, Aalborg University,

9220 Aalborg, Denmark
3 Norlys Energy Trading A/S, Over Bækken 6, 9000 Aalborg, Denmark
* Correspondence: inkyung_sung@mp.aau.dk
† This article is written based on the first author’s master thesis for the Mathematics-Economics program of

Aalborg University.

Abstract: In this study, we tackle a key scheduling problem in a robotic arm-based food processing
system, where multiple conveyors—an infeed conveyor that feeds food items to robotic arms and
two tray lane conveyors, on which trays to batch food items are placed—are implemented. The
target scheduling problem is to determine what item on an infeed conveyor belt is picked up by
which robotic arm at what position, and on which tray the picked up item will be placed. This
problem involves critical constraints, such as sequence-dependent processing time and dynamic
item and tray positions. Moreover, due to the speed of the infeed conveyor and latency in the
information about entering items into the system, this scheduling problem must be solved in near
real time. To address these challenges, we propose a scheduling solution that first decomposes the
original scheduling problem into sub-problems, where a sub-problem formulated as a goal program
schedules robotic arms only for a single tray. The performance of the proposed solution approach
is then tested under a simulation environment, and from the experiments, the proposed approach
produces acceptable performance.

Keywords: robotic arm-based batching systems; scheduling robotic arms; robotic task-sequencing
problem; real-time decision making; give-away minimization

1. Introduction

A robotic arm or a machine with a similar feature is an integral part of various
autonomous manufacturing and production systems. A robotic arm (or a set of robotic
arms) is often placed on or next to a conveyor belt. A conveyor belt brings items to the
robotic arm, and the items moving on the conveyor belt are sorted and/or picked by the
robotic arm [1]. Figure 1 shows a simplified representation of a robotic arm batching system,
where items on a conveyor belt are picked up and put into a tray by a robotic arm.

Figure 1. An illustration of a robotic arm batching system.

Algorithms 2023, 16, 172. https://doi.org/10.3390/a16030172 https://www.mdpi.com/journal/algorithms
237

Algorithms 2023, 16, 172

With a conveyor belt, a robotic arm can significantly improve the throughput of a
manufacturing and production system. A robotic arm can also provide flexibility in a
system’s item flows by transferring an item from one conveyor belt to another. Compared
to batching machines that simply push the items out of a conveyor belt, robotic arms also
provide more flexibility in the way the items are handled. If the items to carry are heavy
or hazardous, the risk of injury to human operators is further minimized by the robotic
arm implementation. Moreover, a robotic arm with a conveyor belt has demonstrated
its capability to perform tasks that are simple and repetitive. The tasks that should be
performed quickly with quality can also be performed successfully by a robotic arm.
Picking, placing and sorting tasks are examples of these tasks [2].

The food processing and packaging business are some of the industrial sectors where
such advantages of robotic arms with conveyor belts can improve the profits of the busi-
ness [3]. Imagine a food batching and packaging process where food items of different
sizes are grouped into trays of a predetermined standard size or weight. Here, a robotic
arm-based system with a sophisticated control mechanism can identify food items moving
fast over a conveyor belt and choose the right pieces of food items from a conveyor belt.
In this way, the productivity and efficiency of the process can be dramatically improved,
and the need for human labor in the process can be minimized [4]. Moreover, a robotic
arm-based system is easy to maintain and provides a high level of hygiene and food quality.

It should be noted that the benefits of a robotic arm-based system will not be achieved
by simply equipping and implementing the system. An operating system that controls the
robotic arm’s motion and action is essential for fully exploiting the capability of the robotic
arm-based system.

The core of the operating system is to address the scheduling problem involved in a
robotic arm-based system operation, which addresses a number of nested decision-making
problems. For example, given a target weight of a food package, a robotic arm should
determine which item would be picked up and put into which package tray in what order
so that the productivity of the system (e.g., the number of food items packed per time
unit) is maximized and give-away (additional weights given over a target weight) in a
tray is minimized. However, such decision making is complex by its nature and should
be made in a very short time to keep the throughput of the system as fast as the speed of
a conveyor belt. The relevant decision-making problem contexts and challenges can be
found in a container crane scheduling problem, where the interference between cranes and
the sequence-dependent container (un)loading time are critical to consider [5], as well as a
flow shop scheduling problem with real-time order acceptance [6].

Motivated by the decision-making challenges in a robotic arm-based system and the
expected impact of a well-designed scheduling algorithm on the performance of the system,
this study addresses a scheduling problem involved in a specific but common robotic
arm-based system, where multiple robotic arms operate over a conveyor belt system, in
which two types of conveyor belts—an infeed conveyor for food items delivery and a
tray lane conveyor for food item trays—are operated. We first identify the key decisions
and constraints of the target scheduling problem. A decomposition-based scheduling
approach is then proposed to solve the resulting scheduling problem within an available
computation time. The performance of the proposed solution approach is finally evaluated
in a simulation environment, where items with random weights enter into the robotic
arm-based system as a stochastic process.

2. Related Work

2.1. Scheduling Problems for Robotic Arms in Automated Systems

As highlighted in the introduction, robotic arms have been applied to various indus-
trial sectors, including manufacturing and production systems due to their contribution
to the overall productivity, reliability, and quality of a target system. A key element for a
successful implementation of robotic arms into such systems is to schedule movements of a

238

Algorithms 2023, 16, 172

robotic arm to perform atomic tasks, such as welding, drilling, and spray painting. This
scheduling problem is known as the robotic task sequencing problem (RTSP) [7].

Given that a robotic arm has a single configuration to perform a task, the RTSP can be
formulated as the traveling salesman problem (TSP) [8]. However, a robotic arm could have
multiple configurations especially to avoid collisions during operations and to reduce the
duration of the movement, which is known as inverse kinematics solutions. With inverse
kinematics, the RTSP can be formulated by the generalized TSP (GTSP), where a location
for a task is represented as a bin with multiple nodes, and a travel time between two tasks
depends on what nodes in the corresponding bins are visited. Given this setting, a robotic
arm should visit all the bins for the target tasks, visiting only a single node within the
bins [9]. Please refer to [10,11] for a detailed review on the RTSP.

The extended RTSP can be found in a flexible manufacturing system (FMS), where
a robotic arm is often installed to transport items from an input station to multiple work-
stations and from the workstations to an output station. In this case, not only the robotic
arm but also the workstations should be scheduled so that the overall system performance
(e.g., workstation utilization and throughput of the system) can be optimized. To address
this scheduling complexity, Petri nets are often applied to represent a target system as a
discrete-event system [12,13].

The RTSP can also be extended for multiple robotic arms. Here, a goal is to operate
robotic arms to move objects to available slots with a minimum total travel distance. The re-
sulting multiple robotic arm scheduling problem can be formulated as a parallel machine
scheduling problem for a single-stage production [14]. Note that the multiple robotic arm
scheduling problem is in general solved for static task positions; therefore, a solution to the
problem is often adjusted by a model predictive control (MPC) planning algorithm that
addresses dynamic collision avoidance constraints of the robotic arms [15,16].

2.2. Scheduling Problems for Robotic Arms with Conveyor Belts

Here, we review scheduling problems for robotic arms with conveyor belts especially
in food processing systems. Tables 1 and 2 summarize the scheduling problems, batching
problems in particular, addressed for a robotic arm-based food processing system in the
literature. As comparison criteria, Table 1 considers (1) on what basis the decision was
made and (2) the number of conveyor belts, and Table 2 considers (3) the type of conveyor
belts, (4) whether there is a buffer between batches, and (5) the characteristics of the
robots addressed.

From the literature review shown in the summary tables, it can be highlighted that the
existing scheduling mechanisms generally tackle a single decision variable with a single
conveyor belt track. On the other hand, our study addresses a robotic arm-based system
with multiple conveyor tracks—one track for moving food items and two additional tracks
on each side of the food track for trays—which introduces additional decision-making
dimensions and constraints to the corresponding robotic arm scheduling problem.

Table 1. Related work for a robotic arm-based batching system.

Study Target System/Problem Decision
Tray/Bin
Lane Number

[17] A meat processing system Batch or trim pieces?
(with respect to weights) 1

[18] A fillet batching operation
in a poultry processing plant

Which tray?
(with respect to weights) 1

[19] Batching food items
for a specific weight target

Which bin?
(with respect to weights) 2

239

Algorithms 2023, 16, 172

Table 1. Cont.

Study Target System/Problem Decision
Tray/Bin
Lane Number

[20] Poultry processing plants
with batchers

Which tray?
(with respect to weights) 1

[21]
Bin covering with
a target weight for
a poultry processing plant

Which tray?
(with respect to weights) 1

[22] Packing in a conveyor-based
automatic sorting system

Which action?
- Do {stay, put, pick}
- For {current box, buffer}

1

[23] A robotic arm system
with multiple conveyor belts

Which tray?
(with respect to weights and
conveyor belt track)

2

Table 2. Related work for a robotic arm-based batching system (cont’).

Study Conveyor Belt Type Buffer Machine Type

[17] Two conveyor belts Yes Grader
(diverter)

[18] 4 track line conveyor belt Yes Grader

[19] 1 track line conveyor belt Yes Grader

[20] 1 track line conveyor belt Yes Batcher
(drop)

[21] 1 track line conveyor belt Yes Batcher
(drop)

[22] Unidirectional 1 track conveyor belt
A circular conveyor for boxes

Yes
(for unused product) Robotic arm

[23] 2 track line conveyor belt Yes Robotic arm

2.3. Solution Algorithms for Scheduling Robotic Arm-Based Batching Systems

Multiple solution approaches have been proposed to solve and analyze various robotic
batching systems. Peeters et al. [18] took a wider view of the system and analyzed the layout
of the batching process, determining the size and number of batching machines, the flex-
ibility of different setups, as well as introducing solution approaches. Ásgeirsson [24]
proposed an algorithm to be used in an online bin covering problem representing a system
that pushes the items into trays instead of picking-and-placing. Furthermore, the authors
investigated and proposed algorithms for the semi-online problem. Van Sprang [25] in-
vestigated the application of condition-based maintenance strategies. A selection method
was proposed to choose the most relevant parts of a machine. Among others, it is based
on failure rate and downtime costs and consequences. Raaijmakers [26] analyzed different
types of batching machines, modeled the machines mathematically (including an online
bin covering variant), and proposed solution strategies for each. Finally, the performance
of the batching machines is compared with different types of problem features.

Soft computing methods have been also proposed to tackle robotic batching problems.
Hundscheid et al. [21] proposed a hybrid genetic algorithm for a more simple batching
machine. The problem is formulated as a k-bounded semi-online bin covering problem,
which is a frequent model for these types of problems. Hildebrand et al. [23] investigated a
deep reinforcement learning approach in the decision process of a robotic batching system
and showed promising results.

240

Algorithms 2023, 16, 172

It should be noted that the robotic arm-based system addressed in Hildebrand et al. [23]
has the same system setting as our target system. However, our study tackles the scheduling
problem involved in the system by applying a deterministic approach as will be explained
in the following sections. The proposed approach has an advantage over the work of
Hildebrand et al. [23] in terms of the effort needed to develop and implement a solution
approach and the degree of understanding to the solutions derived by the approach.

Based on the reviews presented, we conclude that our target robotic arm scheduling
problem with multiple conveyor belts has been rarely addressed in the literature, and
the proposed solution approach for the problem is unique from the methodological and
implementation perspectives.

3. A Robotic Arm-Based Food Processing System

3.1. Problem Descriptions

The target system of this study is inspired by a completely autonomous robotic arm-
based food batching system, which consists of three main components: an infeed conveyor
belt, tray lanes next to the infeed conveyor belt and robotic arms. The conveyor belt moves
continuously at a fixed speed. It transports food items with different weights arriving from
a preceding food production cell. On each side of the conveyor belt, there is a single moving
lane and trays, in which food items picked from the conveyor belt are batched in a tray on
the lane. The tray lane can both move and stop. When it advances, it moves incrementally
and the tray at the end of the lane will be disposed of from the system, being handled by a
following package cell. Usually, the advancement will automatically be triggered when the
weight of the last tray exceeds a threshold. The third component is the robotic arms. Each
one can reach a specific area of the conveyor belts and the tray lanes. Figure 2 illustrates
the target robotic arm-based food batching system.

Figure 2. An illustration of a robotic arm batching system.

Given the description of the target robotic arm-based system, the following decision
variables can be identified:

• Which robotic arm will pick up an item;
• When and where an item on a conveyor belt will be picked up;
• On which tray on which side of the conveyor belt an item will be placed.

The identified decisions will be made to minimize the give-away of the food items.
Give-away is the positive deviation from the target tray weight. Suppose that an order
requires trays with target weigh 500 g and the contract will contain a fixed price per tray
delivered. If a tray comes to weigh 510 g, then 10 g (or 2%) as a free product is given away.

3.2. The Complexity of the Target Scheduling Problem

Figure 3 shows a simplified flow chart of the basic logic in the robotic batching system
with a single robotic arm, a single conveyor lane and a single tray lane. It shows that all the

241

Algorithms 2023, 16, 172

operating parts are mutually interrelated in a highly nested way. Making one decision will
affect all the other parts, and they have to be considered in order to ensure feasibility.

Figure 3. Simplified flow chart of the robotic batching system. t_plan is the time between planning
newly arrived groups of items (deterministic), t_computing is the time to compute the plan (fixed
threshold), t_a is the arrival times of items (stochastic), t_timestep is a single time step, conveyor
moves all the time (deterministic), t_movements is the time that the robotic arm needs to conduct a
task (deterministic), and t_adv is the time for the tray lane to advance (deterministic).

Among the interrelationships between the components of the robotic arm-based
system and relevant decision variables, the following are highlighted as the key factors that
make the target scheduling problem hard to solve:

• The initial position and weight of items are unknown until they enter the conveyor belt;
• The position of an item on a conveyor belt is continuously moving;
• Processing time of a robotic arm depends on (1) the position of an item to pick up and

(2) the position of the tray where the robotic arm placed the previous item picked up
before the current one;

• A tray track is advanced only when the tray at the end of the track exceeds the target
weight, affecting the positions of the entire trays in the system;

• Each robotic arm can handle items in a designated operational area.

4. The Proposed Solution Approach

To the best of our knowledge, no standard optimization model seems to cover the
target robotic batching problem of this paper in its entirety. While knapsack variations,
such as the bin covering or subset sum problem, can be considered to address the target
problem [27,28], the subset sum model does not allow filling past the target, and the bin
covering only seeks to fill as many trays as possible without considering the level of overfill,
likely resulting in trays with high give-away.

To address the complexity of the target scheduling problem, we propose a decom-
position approach that sequentially solves a simplified scheduling problem for a single
tray. Specifically, the original problem is decomposed into a series of sub-problems. Each
sub-problem is to assign items to multiple robotic arms only for a specific tray, while
making the tray reach a target weight. This sub-problem is formulated using a goal pro-
gramming approach based on the nature of the objective of the scheduling, i.e., to minimize
the deviation of a food tray from the target weight of the tray. A series of sub-problems is
solved to find schedules for all trays in the system.

In our decomposition approach for the original scheduling problem, a sub-problem
for a tray (let us say, A) on a tray track will be solved after solving the sub-problems for the
trays placed in the tray track ahead of tray A, based on the dynamics of a conveyor belt.
Recall that a tray track will be advanced only when the tray at the end of the track exceeds
or meets a target weight, and therefore, it is natural to sequentially solve the sub-problems
according to the positions of the corresponding trays so that the dependency between the

242

Algorithms 2023, 16, 172

sub-problems becomes uni-directional and tractable. Under this decomposition scheme,
the outcome of a sub-problem solving—what items are scheduled to be picked up and
when a tray track will be advanced—will be used to form the following sub-problems.

Finally, once all the sub-problems are solved following the sequence (meaning that
all trays are considered for placing the items entered into the robotic arm-based batching
system), the same process will begin as a new set of food items enters the system, while
keeping the solutions from the previous sub-problem solving. The proposed decomposition-
based solution approach is illustrated in Figure 4.

Figure 4. A flow chart of the proposed solution approach.

A Goal Program for a Sub-Problem: Scheduling Robotic Arms Only for a Single Tray

Let us suppose that there are candidate items to be batched by multiple robotic arms
into a specific tray on a specific tray lane. These items are included in set V. The weight
of item i ∈ V is denoted by wi. We also introduce the concept of a field, a specific area
of an infeed conveyor belt. For the sake of simplicity, we divide the conveyor belt into a
set of the same-sized multiple fields and assume that only a single item can be place on
a field at a time. Given this, the arrival time of item i at field f , ATi, f is then calculated
based on the speed of the conveyor belt and the spawn time of item i in the system. We
also assume that the operational areas (i.e., a set of consecutive fields) of multiple robotic
arms are independent and do not overlap. By this assumption, field index f ∈ F identifies
a responsible robotic arm for the field. The set of fields where the robotic arm responsible
for field f operates is denoted by OA f .

It should be noted that the schedules from the previous sub-problems solving are
the input to the current sub-problem solving, and these schedules identify the following
constraints: when the tray for the current sub-problem should advance, and when the
robotic arms are unavailable. Given the constraints and the fact that the processing time of
a robotic arm depends on the destination tray where an item will be placed by the robot,
the timing for the tray advancement serves as a reference point to compute a robotic arm’s
processing time. Specifically, we denote the travel time of a robotic arm from field f to the
target tray’s position after its nth advancement by τf→n. Likewise, τn→ f denotes the travel
time for the opposite movement. Similarly, whether a robotic arm can reach the target
tray or not also depends on the tray’s advancement and corresponding position. Based on
this, we define set Adv f that includes all the advancement steps, after which a robotic arm
working at field f can reach the target tray.

We also compute whether item i will arrive at field f after the nth advancement of the
tray, and based on the computation, we create Vf ,n, a set of items that can be handled at field
f between the (n − 1)th and nth tray advancements. Lastly, from the previous sub-problem
solutions, we create set V−

i, f and V+
i, f , which include the items that are scheduled by the

previous sub-problems and should be placed at a predetermined tray before and after item
i arrives at field f (i.e., ATi, f), respectively.

With the notation, we define the principle decision variable xi, f ,n that indicates if item
i ∈ V will be picked up at field f ∈ F after the nth advancements of the target tray of the
sub-problem. Two deviation variables, d+ and d−, are also defined to measure the gap
between the tray’s weight and a target weight.

243

Algorithms 2023, 16, 172

With the decision variables, the objective function of a sub-problem for the robotic
arm scheduling problem that is to minimize the give-away on a tray can be written by

min d+ (1)

This objective function is then minimized subject to the following constraints. First,
we link the primary decision variable to the deviation variables by

Wtarget − ∑
i∈V

∑
f∈F

N

∑
n=0

wi · xi, f ,n = d+ − d− (2)

where Wtarget is the target weight of the tray. Next, an item can be picked up at most once
by a robotic arm, which can be written by

∑
f∈F

N

∑
n=0

xi, f ,n ≤ 1 ∀i ∈ V. (3)

Additionally, in order to pick up item i at field f , a robotic arm for the field should
be available. In other words, there should be enough of a time gap for the robotic arm to
move from its last position (i.e., the tray where the last previous item is placed on) to field
f . This constraint can be written by

M + ∑
n∈Adv f

(
ATi, f − M

)
· xi, f ,n − ∑

m∈Advg

∑
g∈OA f

(
ATj,g + τg→m + τm→ f

)
· xj,g,m ≥ 0, (4)

for all i, j ∈ {V|i
= j} and f ∈ F. τg→m + τm→ f is the total time needed for a robotic arm to
move item j from field g to the tray’s position after the mth advancement and to return to
field f to grasp an item.

Next, to schedule item i to be picked up at field f and placed to the tray after the nth
advancement (i.e., xi, f ,n = 1) in the current sub-problem, the following conditions should
be met:

• There is enough time for a robotic arm to move to field f after completing all the tasks
scheduled to be done before the time when item i arrives at field f ;

• Placing item i on the tray after the nth advancement does not delay any following
tasks scheduled by upstream sub-problems.

The constraints for these conditions are formulated by

M + ∑
n∈Adv f

(
ATi, f − M

)
· xi, f ,n − τj→a ≥ 0 ∀i ∈ V, f ∈ F, j ∈ V−

i, f (5)

ATj, f ∗j − ∑
n∈Adv f

(
ATi, f + τf→n + τn→ f ∗j

)
· xi, f ,n ≥ 0 ∀i ∈ V, f ∈ F, j ∈ V+

i, f (6)

where f ∗j is the field where item j is scheduled to be picked up by a previous sub-problem
solution.

In addition, an item can be placed in the tray only when the tray lane is not moving.
With the set Vf ,n, this constraint can be formulated by

xi, f ,n ≤ 1 ∀i ∈ Vf ,n, f ∈ F, 0 ≤ n ≤ N (7)

xi, f ,n = 0 ∀i ∈ V \ Vf ,n, f ∈ F, 0 ≤ n ≤ N. (8)

Lastly, we have binary and positive value constraints for the primary and deviation
variables, respectively, which are shown below:

xi, f ,n ∈ {0, 1} ∀i ∈ V, f ∈ F, 0 ≤ n ≤ N (9)

244

Algorithms 2023, 16, 172

d+, d− ≥ 0 (10)

5. Computational Burden of the Proposed Solution Approach

Recall that a conveyor belt moves fast, feeding items to robotic arms at the same speed.
Therefore, considering the fact that it is almost infeasible to know when and how food
items enter into a robotic arm-based batching system, solving the robotic arm scheduling
problem should be done in (near) real time.

To understand the practical scale of a food processing system and the corresponding
computational requirements for the proposed solution approach, we took a field trip to a
food processing company in Denmark and conducted interviews with employees of the
company. From the activity, we conclude that a schedule for an item should be derived
before the item passes the buffer zone that spans from the entry point of the conveyor
belt to the entry point of the robotic arms’ operational area. The travel time for an item
to pass the buffer zone is set as 3.6 s based on the interview. Because items keep entering
into a conveyor belt, making it difficult for a scheduling algorithm to fully use the 3.6 s to
solve the problem, we assume that only half of the buffer passing time, 1.8 s, is allowed
for the scheduling algorithm to solve the scheduling problem. In other words, a series of
sub-problems, each of which schedules multiple robotic arms for a specific tray, should be
solved within 1.8 s.

To examine the feasibility of the proposed solution approach in the above mentioned
context, we develop a simulation model for a food batching system with two robotic arms.
The layout of the target food batching system is illustrated in Figure 5a, which is also used
to visualize the simulation as shown in Figure 5b. In the figure, the operational area for
the robotic arms is colored in green. The buffer zone, consisting of 18 fields, starts from
the left side of the conveyor belt, and an item just registered takes 3.6 s to pass the buffer
zone. Considering a practical arrival rate of food items at the system, the mean inter-arrival
time of items is set as 1.2 s, sampled from exponential distribution. The simulation runs for
30 min in a single replication, and a sub-problem is solved using CPLEX. The experiments
are run on a Windows 10 machine with an Intel Core i5-8265U 4-core CPU @ 1.6 GHz with
8 GB RAM.

Figure 6 shows a histogram of the computation time spent to solve a series of the
sub-problems for a food item batch (i.e., the items in the first half of the buffer zone). In the
chart, 1116 batches are considered. The figure shows that 92% of schedules are derived in
less than 1.8 s (the dotted line). The median computational time is 0.66 s with a standard
deviation of 0.69.

(a) A snapshot of the initial status of the simulation model

(b) A snapshot of a visualized simulation run

Figure 5. A snapshot of the implemented simulation model.

245

Algorithms 2023, 16, 172

Figure 6. An histogram of the computational budget (second) of the proposed solution.

It should be pointed out that the success rate of 92% is satisfactory, but it tells us that
one out of ten scheduling attempts will require more time than allowed, degrading the
performance of the robotic arm-based system. A potential approach to tackle this issue is
to consider local search heuristics, which are simple but effective for many combinatorial
decision-making problems [29].

6. Discussion

6.1. The Objective Function of the Sub-Problem

Note that a tray does not necessarily need to be filled by currently available items.
In other words, if there is no item suitable to fill the tray with a target weight, leaving the
tray not fully filled would be a good strategy such that items which will arrive later can be
considered to fill the tray with the target weight. However, the proposed objective function
in the previous section, which is to minimize solely the positive deviation variable, cannot
reflect this idea.

As a solution to this issue, one may tune a profit function as a function of a tray’s
weight in a way that a tray with a room for additional items has a profit if it is likely to find
items from the next arrivals that make the tray full with the target weight. For example,
if a mean weight of entering items is known as 300 g and it is difficult to find items to fill a
tray with a target weight (say 700 g), leaving the tray with 400 g would be beneficial, rather
than filling the tray up to 600 g. Figure 7 shows an example of such a profit function.

To test this idea, we tune the profit function as a piecewise linear function based
on an arbitrary item weight distribution and reformulate the sub-problem’s objective
function as a maximization of the profit function. From our experiments, the reformulated
problem makes the computation time needed to solve the problem more stable and feasible
(meaning that the total computational time needed to solve a series of sub-problems was
within 1.8 s in 98% of our test problem instances). Figure 8 shows the histograms of
the computational time of the proposed goal program (denoted by GP model) and the
reformulated problem (denoted by Hybrid model). The overall give-away level was also
lowered by the reformulated problem. However, it is difficult to tune the profit function
properly since a distribution of items’ weight is hard to know in advance and keeps
changing mainly because items are often provided by multiple suppliers. Therefore, we
believe the proposed goal programming formulation would be more preferable than the
reformulated one in practice.

246

Algorithms 2023, 16, 172

Figure 7. An example of a profit function.

Figure 8. Computation time comparison.

6.2. A Robotic Arm-Based Batching System Configuration

One way to increase the time budget allowed for the scheduling problem solving is to
have a long buffer zone or slow down the conveyor belt. Importantly, by this managerial
solution, more items can be considered for a single run of a series of sub-problem solving,
and thus efficient tray utilization can be achieved. On the other hand, having more items
to schedule means a larger scale of scheduling problem solving. Note that the number of
decision variables and constraints are exponentially increased as the number of items to
schedule increases. Additionally, slowing down a conveyor belt obviously reduces the
productivity of the system.

Using the simulation model, we can test the impact of such managerial decisions on the
performance level of a robotic arm-based system. As an example, we evaluate the impact
of the buffer zone length on the performance of the robotic arm-based batching system and
the computational feasibility of the proposed solution approach. With 15 different conveyor
belt length settings, keeping the rest of the simulation setting as described in the previous
section, we run simulations for this trade-off analysis, and the results are summarized in
Figure 9.

247

Algorithms 2023, 16, 172

(a) Decreases in the average give-away as the conveyor belt becomes longer

(b) Increases in the computational time (seconds) as the conveyor belt becomes longer

Figure 9. A snapshot of the implemented simulation model.

From the figure, where the current conveyor belt setting is represented by a dotted
line, it can be first observed that give-away, the key performance measurement of the
target food batching system, is decreased as the buffer zone becomes longer and more
items are considered at the moment of the scheduling. On the other hand, one can observe
that the computational time for solving the scheduling problem increases as the buffer
zone becomes longer and, importantly, this makes the proposed solution approach with a
commercial optimization solver no longer feasible.

As observed, it is clear that there is a trade-off between the quality and computational
burden of the proposed solution approach. Importantly, this observation implies that the
configuration of a robotic arm-based batching system (e.g., the number of robotic arms on a
conveyor belt and the length of a buffer zone) should be set carefully, considering not only
the physical performance of the system but also the performance of a scheduling solution
to the system that actually determines the system performance.

7. Concluding Remarks

The challenge presented in this paper is to schedule robotic arms to fill trays with items
with minimal give-away. Compared to similar problems in the literature, our problem
has two different conveyor belts, one for food item transition and the other for trays.
Importantly, the tray lane conveyor moves only when the last tray of the tracks exceeds
the target weight, introducing an additional decision to the robotic arm batching problem.
This is a complex but novel problem, especially as it provides a diverse range of research
fields through its system structure, allowing for various comparative analyses in terms of
the investigated problem, solution approach, and main concern.

To address the target scheduling problem, we proposed a decomposition approach that
divides the main robotic arm scheduling problem into smaller sub-problems of each tray. It
has computational advantages as it reduces the number of decision-making dimensions,
and thus decreases the solution space to search. However, by its nature, a global optimum
to the original problem cannot be reached by the proposed solution approach.

We also applied a deterministic solution approach. Instead, a stochastic approach
that considers the distribution of incoming items to a conveyor belt can be applied to the
problem. In this way, the uncertainties and randomness in a food batching system can be
addressed based on knowledge of the system, and thus a more realistic and better solution
could be obtained. For this, deep reinforcement learning [23] and other machine learning
algorithms can be considered for both batching and food quality and safety [30,31].

Lastly, it is worth noting that other types of conveyor belts in the literature, such as U-
shape, loop, and bi-directional [32], together with the corresponding scheduling problems,
can be addressed to improve the performance of robotic arm-based batching systems.

248

Algorithms 2023, 16, 172

Author Contributions: Conceptualization, K.G.N., I.S., M.E.Y. and P.N.; methodology, K.G.N.; soft-
ware, K.G.N.; validation, K.G.N.; formal analysis, K.G.N. and I.S.; writing—original draft preparation,
K.G.N. and I.S.; writing—review and editing, I.S., M.E.Y., D.K.K. and P.N.; visualization, K.G.N.;
supervision, I.S., M.E.Y. and P.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are conditionally available upon
request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Li, L.; Ripperger, M.; Nicho, J.; Veeraraghavan, M.; Fumagalli, A. Gilbreth: A conveyor-belt based pick-and-sort
industrial robotics application. In Proceedings of the 2018 Second IEEE International Conference on Robotic Computing (IRC),
Laguna Hills, CA, USA, 31 January–2 February 2018; pp. 17–24.

2. Bogue, R. The role of robots in the food industry: A review. Ind. Robot. Int. J. 2009, 36, 531–536. [CrossRef]
3. Iqbal, J.; Khan, Z.H.; Khalid, A. Prospects of robotics in food industry. Food Sci. Technol. 2017, 37, 159–165. [CrossRef]
4. Einarsdóttir, H.; Guðmundsson, B.; Ómarsson, V. Automation in the fish industry. Anim. Front. 2022, 12, 32–39. [CrossRef]

[PubMed]
5. Sung, I.; Nam, H.; Lee, T. Scheduling algorithms for mobile harbor: An extended m-parallel machine problem. Int. J. Ind. Eng.

Theory Appl. Pract. 2013, 20, 211–224.
6. Rahman, H.; Janardhanan, M.; Nielsen, I. Real-time order acceptance and scheduling problems in a flow shop environment using

hybrid Ga-PSO algorithm. IEEE Access 2019, 7, 112742–112755.
7. Suárez-Ruiz, F.; Lembono, T.S.; Pham, Q.C. Robotsp—A fast solution to the robotic task sequencing problem. In Proceedings of

the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1611–1616.
8. Saha, M.; Roughgarden, T.; Latombe, J.C.; Sánchez-Ante, G. Planning tours of robotic arms among partitioned goals. Int. J. Robot.

Res. 2006, 25, 207–223.
9. Wurll, C.; Henrich, D. Point-to-point and multi-goal path planning for industrial robots. J. Robot. Syst. 2001, 18, 445–461.
10. Alatartsev, S.; Stellmacher, S.; Ortmeier, F. Robotic task sequencing problem: A survey. J. Intell. Robot. Syst. 2015, 80, 279–298.
11. Zahorán, L.; Kovács, A. ProSeqqo: A generic solver for process planning and sequencing in industrial robotics. Robot.

Comput.-Integr. Manuf. 2022, 78, 102387.
12. Sutdhiraksa, S.; Zurawski, R. Scheduling robotic assembly tasks using petri nets. In Proceedings of the IEEE International

Symposium on Industrial Electronics, Warsaw, Poland, 17 June 1996; pp. 459–465.
13. Nie, W.; Luo, J.; Fu, Y.; Sun, S.; Li, D. Schedule of flexible manufacturing systems based on petri nets and a search with a

neural network heuristic function. In Proceedings of the 2020 7th International Conference on Information Science and Control
Engineering (ICISCE), Changsha, China, 18–20 December 2020; pp. 1246–1250.

14. Cerda, J.; Henning, G.P.; Grossmann, I.E. A mixed-integer linear programming model for short-term scheduling of single-stage
multiproduct batch plants with parallel lines. Ind. Eng. Chem. Res. 1997, 36, 1695–1707. [CrossRef]

15. Tika, A.; Gafur, N.; Yfantis, V.; Bajcinca, N. Optimal scheduling and model predictive control for trajectory planning of cooperative
robot manipulators. IFAC-PapersOnLine 2020, 53, 9080–9086. [CrossRef]

16. Gafur, N.; Yfantis, V.; Ruskowski, M. Optimal scheduling and non-cooperative distributed model predictive control for multiple
robotic manipulators. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; pp. 390–397.

17. Paape, N.; van Eekelen, J.; Reniers, M. Design of meat processing systems with agent-based production control. IFAC-PapersOnLine
2021, 54, 1112–1117. [CrossRef]

18. Peeters, K.; Martagan, T.; Adan, I.; Cruysen, P. Control and design of the fillet batching process in a poultry processing plant. In
Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; pp. 3816–3827. [CrossRef]

19. Peeters, K.; Adan, I.J.B.F.; Martagan, T. Throughput control and revenue optimization of a poultry product batcher. IISE Trans.
2022, 54, 845–857. [CrossRef]

20. Peeters, K.; Adan, J.; Hundscheid, B.; Martagan, T.; Adan, I. Online product allocation in poultry batchers with lookahead.
Comput. Ind. Eng. 2022, 165, 107875. [CrossRef]

21. Hundscheid, B.H.; Peeters, K.; Adan, J.; Martagan, T.; Adan, I.J. A Hybrid Genetic Algorithm for the K-Bounded Semi-Online Bin
Covering Problem in Batching Machines. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD,
USA, 8–11 December 2019; pp. 2142–2153. [CrossRef]

249

Algorithms 2023, 16, 172

22. Huang, M.; Wu, J.; Tang, Y.; Shi, L. Optimal Design of a Conveyor-Based Automatic Sorting System. In Proceedings of the 2020
IEEE 16th International Conference on Control & Automation (ICCA), Sapporo, Japan, 6–9 July 2020; pp. 1124–1129. [CrossRef]

23. Hildebrand, M.; Andersen, R.S.; Bøgh, S. Deep Reinforcement Learning for Robot Batching Optimization and Flow Control.
Procedia Manuf. 2020, 51, 1462–1468. [CrossRef]

24. Ásgeirsson, A. On-Line Algorithms for Bin-Covering Problems with Known Item Distributions. Ph.D. Thesis, Georgia Institute
of Technology, Atlanta, GA, USA, 2014.

25. Van Sprang, R. Condition Based Maintenance at Marel Poultry. Master’s Thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2017.

26. Raaijmakers, S. Performance Analysis of Broiler Product Batchers in Poultry Processing Plant. Master’s Thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands, 2018.

27. Caprara, A.; Kellerer, H.; Pferschy, U. The multiple subset sum problem. SIAM J. Optim. 2000, 11, 308–319. [CrossRef]
28. Csirik, J.; Johnson, D.S.; Kenyon, C. Better approximation algorithms for bin covering. In Proceedings of the SODA, Washington,

DC, USA, 7–9 January 2001; Volume 1, pp. 557–566.
29. El Yafrani, M.; Sung, I.; Krach, B.; Katsilieris, F.; Nielsen, P. Analysis of a local search heuristic for the generalized assignment

problem with resource-independent task profits and identical resource capacity. Eng. Optim. 2022, 54, 1426–1440. [CrossRef]
30. Zhu, L.; Spachos, P. Support vector machine and YOLO for a mobile food grading system. Internet Things 2021, 13, 100359.

[CrossRef]
31. Zhu, L.; Spachos, P.; Pensini, E.; Plataniotis, K.N. Deep learning and machine vision for food processing: A survey. Curr. Res.

Food Sci. 2021, 4, 233–249. [CrossRef] [PubMed]
32. Boysen, N.; Briskorn, D.; Fedtke, S.; Schmickerath, M. Automated sortation conveyors: A survey from an operational research

perspective. Eur. J. Oper. Res. 2019, 276, 796–815. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

250

Citation: Mzili, T.; Mzili, I.; Riffi,

M.E.; Dhiman, G. Hybrid Genetic

and Spotted Hyena Optimizer for

Flow Shop Scheduling Problem.

Algorithms 2023, 16, 265.

https://doi.org/10.3390/

a16060265

Academic Editor: Frank Werner

Received: 21 April 2023

Revised: 15 May 2023

Accepted: 17 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Hybrid Genetic and Spotted Hyena Optimizer for Flow Shop
Scheduling Problem

Toufik Mzili 1,*, Ilyass Mzili 2, Mohammed Essaid Riffi 1 and Gaurav Dhiman 3,4,5,6,7,8

1 Department of Computer Science, Faculty of Science, Chouaib Doukkali University, EI Jadida 24000, Morocco
2 Department of Management, Faculty of Economics and Management, Hassan First University,

Settat 26000, Morocco; dr.mzili.ilyass@gmail.com
3 Department of Electrical and Computer Engineering, Lebanese American University,

Byblos P.O. Box 36, Lebanon
4 Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh

University, Gharuan 140413, India
5 Department of Computer Science and Engineering, Graphic Era Deemed to be University,

Dehradun 248002, India
6 Division of Research and Development, Lovely Professional University, Punjab 144001, India
7 Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab,

India
8 Department of Computer Science, Government Bikram College of Commerce, Patiala 147001, India
* Correspondence: mzili.t@ucd.ac.ma

Abstract: This paper presents a new hybrid algorithm that combines genetic algorithms (GAs) and the
optimizing spotted hyena algorithm (SHOA) to solve the production shop scheduling problem. The
proposed GA-SHOA algorithm incorporates genetic operators, such as uniform crossover and mutation,
into the SHOA algorithm to improve its performance. We evaluated the algorithm on a set of OR library
instances and compared it to other state-of-the-art optimization algorithms, including SSO, SCE-OBL,
CLS-BFO and ACGA. The experimental results show that the GA-SHOA algorithm consistently finds
optimal or near-optimal solutions for all tested instances, outperforming the other algorithms. Our paper
contributes to the field in several ways. First, we propose a hybrid algorithm that effectively combines
the exploration and exploitation capabilities of SHO and GA, resulting in a balanced and efficient search
process for finding near-optimal solutions for the FSSP. Second, we tailor the SHO and GA methods to
the specific requirements of the FSSP, including encoding schemes, objective function evaluation and
constraint handling, which ensures that the hybrid algorithm is well suited to address the challenges
posed by the FSSP. Third, we perform a comprehensive performance evaluation of the proposed hybrid
algorithm, demonstrating its effectiveness in terms of solution quality and computational efficiency. Finally,
we provide an in-depth analysis of the behavior of the hybrid algorithm, discussing the roles of the SHO
and GA components and their interactions during the search process, which can help understand the
factors contributing to the success of the algorithm and provide insight into potential improvements or
adaptations to other combinatorial optimization problems.

Keywords: flow shop scheduling problem; SHOA; hybrid algorithm; metaheuristics; optimization;
spotted hyena optimizer; genetic algorithm; uniform crossover; OR library; computational efficiency

1. Introduction

Combinatorial problems [1] involve finding the optimal arrangement, selection or
sequencing of a finite set of elements based on specific constraints and objectives. They are
prevalent in various fields, such as mathematics, computer science, engineering, operations
research, economics and biology. The importance of solving combinatorial problems stems
from their practical applications in decision-making, resource allocation and optimization
tasks critical for the efficiency and effectiveness of real-world systems.

Algorithms 2023, 16, 265. https://doi.org/10.3390/a16060265 https://www.mdpi.com/journal/algorithms
251

Algorithms 2023, 16, 265

Examples of combinatorial problems include the traveling salesman problem [2],
which seeks the shortest route for a salesman visiting a set of cities once before returning
to the starting point; the knapsack problem, which aims to select items with different
weights and values to maximize the total value without exceeding a given weight limit;
and the graph coloring problem, which assigns colors to graph vertices so that no two
adjacent vertices share the same color. These problems, although seemingly different, share
common challenges in terms of computational complexity, as they often require exploring
an extensive solution space to identify the optimal solution.

One specific combinatorial problem of significant practical importance is the Flow
Shop Scheduling Problem (FSSP) [3]. In this problem, a set of jobs must be processed on a
collection of machines in a specific order, with each job consisting of multiple operations
executed sequentially. The objective is to find a schedule that minimizes the makespan
or the total time required to complete all jobs. Due to the combinatorial nature of this
problem, finding an optimal solution becomes increasingly difficult as the number of jobs
and machines increases.

Swarm intelligence algorithms [4] have emerged as effective approaches for tackling
the optimization of makespan in the FSSP. These algorithms are inspired by the collective
behavior of social organisms such as birds, fish, and insects, and their ability to solve
complex problems through decentralized and self-organizing processes. Some widely used
swarm intelligence algorithms for solving the FSSP include Particle Swarm Optimization
(PSO) [5], Ant Colony Optimization (ACO) [6], Whale Swarm Algorithm (WOA) [7] and
Rat Swarm Optimization [8].

In the context of the FSSP [9], these algorithms encode potential solutions as particles,
ants or bees and iteratively explore the solution space by updating the position or path of
these agents based on their own experiences and the collective knowledge of the swarm.
The agents collaborate and compete, allowing the swarm to converge towards an optimal or
near-optimal solution for the makespan. The effectiveness of swarm intelligence algorithms
in solving the FSSP has been demonstrated in various industrial applications, such as manu-
facturing, transportation and logistics, where efficient job scheduling is critical for reducing
production costs, improving resource utilization and enhancing overall performance.

In this article, we propose a novel hybrid algorithm that combines the Spotted Hyena
Optimizer (SHO) [10] and Genetic Algorithm (GA) [11] to solve the Flow Shop Scheduling
Problem (FSSP). The FSSP is a particular case of the Flow Shop Scheduling Problem (FSSP),
in which jobs are processed on a set of machines in a specific order, and all jobs follow the
same sequence of operations on the machines. The primary objective is to minimize the
makespan, which is the total time required to complete all jobs.

The Spotted Hyena Optimizer (SHO) is a nature-inspired optimization algorithm based
on the unique hunting behavior of spotted hyenas. It incorporates four main mechanisms:
searching, encircling, attacking and mobbing. These mechanisms help explore the solution
space efficiently and exploit the best solutions found during the search process.

The Genetic Algorithm (GA) is a widely-used, population-based optimization method
inspired by the principles of natural selection and genetics. It operates on a population of
candidate solutions and evolves them over generations using genetic operators, such as
selection, crossover and mutation. GAs have been successfully applied to solve numerous
combinatorial optimization problems, including the FSSP.

In our hybrid approach, we combine the strengths of both SHO and GA to improve
the overall search efficiency and solution quality. The proposed algorithm starts with an
initial population generated by the SHO. During the search process, the SHO mechanisms are
employed to explore the solution space and to update the hyenas’ positions. After a predefined
number of iterations, the GA is integrated into the algorithm to further refine the solutions. The
GA takes the current hyena positions as an input population and performs selection, crossover
and mutation operations to generate offspring. The offspring then replace some of the least fit
hyenas in the population, ensuring the best solutions are retained.

252

Algorithms 2023, 16, 265

This hybridization of SHO and GA capitalizes on the exploration capabilities of
the SHO and the exploitation abilities of the GA, resulting in a more robust and efficient
algorithm for solving the FSSP. The proposed hybrid method is tested on a set of benchmark
instances from the literature, and the results demonstrate its effectiveness in finding near-
optimal solutions with competitive computational times. The successful application of
the hybrid spotted hyena and genetic algorithm to the FSSP indicates its potential for
addressing other complex combinatorial optimization problems in various domains.

The main contributions of this paper can be summarized as follows:

- Development of a Hybrid Algorithm: We propose a new hybrid algorithm that effec-
tively integrates the exploration capabilities of SHO and the exploitation capabilities of
GA. This combination ensures a more balanced and efficient search process, allowing
the algorithm to find near-optimal solutions for the FSSP.

- Adaptation of SHO and GA to FSSP: We adapt the SHO and GA methods to the specific
requirements of FSSP, including encoding schemes, objective function evaluation and
constraint handling. This adaptation ensures that the hybrid algorithm is well-suited
to address the challenges posed by the FSSP.

- Comprehensive Performance Evaluation: We perform a thorough performance evalu-
ation of the proposed hybrid algorithm using a set of benchmark instances from the
literature. The results are compared with those obtained by state-of-the-art algorithms,
demonstrating the effectiveness of our hybrid approach in terms of solution quality
and computational efficiency.

- Hybrid Algorithm Behavior Analysis: We provide an in-depth analysis of the behavior
of the hybrid algorithm, discussing the roles of the SHO and GA components and their
interactions during the search process. This analysis helps to understand the factors
contributing to the success of the algorithm in solving the FSSP and offers insights into
potential improvements or adaptations to other combinatorial optimization problems.

This article is organized into six sections: (1) Introduction, which provides an overview
of the combinatorial optimization problem and the motivation for developing the hybrid
algorithm; (2) Related Works and Literature Review, where we discuss existing research on
swarm intelligence algorithms and their application to the FSSP; (3) Flow Shop Scheduling
Problems (FSSP), which offers a detailed description of the FSSP, its challenges and its
significance in real-world applications; (4) Methodology, where we present the design
and implementation of the proposed hybrid algorithm, combining the Spotted Hyena
Optimizer (SHO) and Genetic Algorithm (GA); (5) Experimental Outcomes, where we
analyze the performance of the hybrid algorithm using benchmark instances and compare
the results with existing state-of-the-art approaches; and finally, (6) Conclusion, where
we summarize the main findings of the study, discuss the implications of the results and
suggest future research directions in the field of combinatorial optimization.

2. Related Works

In recent years, swarm intelligence has been increasingly applied to solve Flow Shop
Scheduling Problems (FSSP) due to its ability to effectively explore and exploit the solution
space. The following studies have made significant contributions to this area:

• Tang et al., (2016) [12] proposed an energy-efficient dynamic scheduling approach for
a flexible flow shop using an improved particle swarm optimization. The algorithm
addresses the dynamic scheduling problem while minimizing energy consumption
and makespan.

• C. Zhang et al., (2021) [7] presented a discrete whale swarm algorithm for a hybrid
flow-shop scheduling problem with limited buffers, considering practical constraints
on buffer area resources and alternative process routes. The algorithm’s effectiveness
was validated on three groups of instances and a real-world industrial case.

• Li et al., (2022) [13] examined the distributed assembly mixed no-idle permutation
flow-shop scheduling problem (DAMNIPFSP) with a focus on minimizing total tar-
diness. The researchers developed a mixed-integer linear programming model and

253

Algorithms 2023, 16, 265

proposed a Referenced Iterated Greedy (RIG) algorithm, incorporating novel destruc-
tion and reconstruction methods as well as local search methods based on a reference.
Experimental results demonstrated the effectiveness of the RIG algorithm, positioning
it as a state-of-the-art solution for DAMNIPFSP with the total tardiness criterion.

• Mahmud et al., (2022) [14] introduced a bi-objective integrated supply chain scheduling
model and developed two new meta-heuristic algorithms based on multi-objective par-
ticle swarm optimization (MOPSO) to solve the strongly NP-hard flexible
job shop problem.

• Gümüşçü et al., (2022) [15] investigated the impact of local search strategies on chaotic
hybrid firefly particle swarm optimization algorithm in flow-shop scheduling, com-
paring the results of the solutions obtained using different local search strategies.

• Vali et al., (2022) [16] presented a flexible job shop scheduling problem to optimize
patient flow and minimize the total carbon footprint. They developed a metaheuris-
tic optimization algorithm called Chaotic Salp Swarm Algorithm Enhanced with
Opposition-based Learning and Sine Cosine (CSSAOS) to solve this NP-hard problem

• Hayat et al., (2023) [17] explored the enhancement of Particle Swarm Optimization
(PSO) in tackling Permutation Flow-Shop Scheduling Problems (PFSPs) by hybridizing
it with Variable Neighborhood Search (VNS) and Simulated Annealing (SA). The
authors compared the performance of the developed hybrid PSO (HPSO) algorithm
with 120 distinct Taillard instances, demonstrating its robustness and significantly
improved makespan optimization compared to other hybrid metaheuristics.

• Sun et al., (2023) [18] investigated production scheduling technology for knitting
workshops utilizing an improved genetic algorithm (IGA) with tabu search. The
research, conducted at the Key Laboratory of Modern Textile Machinery & Technology
of Zhejiang Province, Zhejiang Sci-Tech University and the School of Automation,
Zhejiang Institute of Mechanical & Electrical Engineering aimed to enhance production
efficiency and reduce costs. Their proposed IGA demonstrated faster convergence and
better search capabilities compared to traditional genetic algorithms, offering valuable
insights for advancing intelligent development in knitting production.

Some of the state-of-the-art optimization algorithms for FSSP include GA-SHOA,
WD [19], GA [19], IHSA [19], PSO [19], CLS-BFO [20], AGGA [20] and SSO [20]. These
algorithms were selected and used for comparison with the hybrid algorithm we propose in
this paper. GA-SHOA is a new hybrid algorithm that combines the exploration capabilities
of SHOA with the exploitation capabilities of GA to efficiently search the solution space.
CLS-BFO is a hybrid algorithm that combines the cuckoo search algorithm (CS) with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the FSSP. WD is an algorithm
that uses differential evolution (DE) to optimize the FSSP. GA is a well-known metaheuristic
algorithm that has been widely used to solve the FSSP. IHSA is a hybrid algorithm that
combines the improved harmony search (IHS) algorithm and simulated annealing (SA).
PSO is a swarm intelligence algorithm that has been applied to FSSP with promising
results. AGGA is another hybrid algorithm that combines the genetic algorithm and the
gravitational search algorithm (GSA). SSO is an algorithm that mimics the social behavior
of the spotted hyena and has been shown to be effective in solving the FSSP.

Table 1 introduces a comparison of these methods.

254

Algorithms 2023, 16, 265

Table 1. Comparison of optimization algorithms for the FSSP.

Algorithm Approach Operators Population Size Selection

GA-SHOA Hybrid Uniform Crossover,
Mutation 50–100 Roulette Wheel

SSO Nature-inspired Randomization,
Clustering 20–50 Roulette Wheel

SCE-OB Evolutionary Crossover, Mutation 50–200 Rank-based

CLS-BFO Metaheuristic Local search,
randomization 50–100 Roulette Wheel

ACGA Hybrid Adaptive Crossover,
Mutation 50–100 Rank-based

3. Flow Shop Scheduling Problems (FSSPs)

Flow Shop Scheduling Problems (FSSPs) is a class of scheduling problems that arise
in manufacturing and production systems, where a set of jobs or tasks must be processed
through a series of machines in a specific order. FSSPs is a well-studied optimization
problem in the field of operations research and has numerous applications in various
industries, such as automotive, semiconductor, food processing and textile production,
among others.

In a typical flow shop environment, there are multiple machines or workstations, and
each job must be processed on every machine in a predetermined sequence. The main
objective of the FSSP is to determine the optimal scheduling of jobs on machines to achieve
certain performance criteria, such as minimizing makespan, total completion time, total
tardiness or a combination of these objectives.

The importance of flow shop scheduling problems lies in their ability to optimize
the utilization of resources, reduce production costs and improve overall efficiency in
manufacturing systems. Effective flow shop scheduling can lead to:

• Reduced production lead time: By optimizing the job sequence and minimizing
the idle time of machines, flow shop scheduling can significantly reduce the total
production time.

• Improved resource utilization: Efficient scheduling ensures that machines are utilized
optimally, reducing idle time and maximizing production throughput.

• Enhanced customer satisfaction: Timely delivery of products and shorter lead times
can increase customer satisfaction and help to maintain a competitive edge
in the market.

• Lower inventory costs: By reducing work-in-process inventory and minimizing pro-
duction time, flow shop scheduling can help lower inventory holding costs.

• Increased competitiveness: Effective flow shop scheduling allows companies to be
more agile and responsive to market demands, thus enhancing their
competitive position.

Despite its importance, FSSP is a challenging combinatorial optimization problem
known to be NP-hard, meaning that finding an optimal solution becomes increasingly
difficult as the problem size increases. As a result, researchers have developed various
heuristic and metaheuristic algorithms to find near-optimal solutions for the FSSP in
a reasonable amount of time, such as particle swarm optimization, genetic algorithms,
simulated annealing and ant colony optimization, among others. These methods have
been successfully applied to tackle real-world flow shop scheduling problems, resulting in
significant improvements in manufacturing efficiency and cost reduction.

The Fob-Shop Scheduling Problem (FSSP) involves assigning a set of n jobs, each
consisting of multiple operations, to a set of m machines. The primary objective is to find a
schedule that minimizes the makespan (Cmax), which is the total completion time of all jobs.
A solution can be represented as an n × m vector of operation sequences that optimizes the
completion time.

Cmax = max
(
tij + pij

)
(1)

255

Algorithms 2023, 16, 265

min(Cnm + 1) (2)

where
Ckl ≤ Cji − dkl ; j = 1, . . . , n; i = 1, . . . , m; kl ∈ Pji (3)

n

∑
jiεo(t)

rji ≤ 1; i ∈ M; t ≥ 0 (4)

C_ji ≥ 0; j = 1, . . . , n; i = 1, . . . , m (5)

The constraints are as follows:

• Constraint (2) minimizes the finish time of the operation on machine m + 1
(the makespan).

• Constraint (3) ensures that precedence relationships between operations
are maintained.

• Constraint (4) states that each machine can process only one operation at a time.
• Constraint (5) ensures that the finish times are positive.

4. Methodology

The Spotted Hyena Optimizer (SHO) is a metaheuristic, bio-inspired optimization
algorithm developed by Dhiman et al. The algorithm is based on the social behaviors of
spotted hyenas, which are the largest among the three other hyena species (striped, brown
and aardwolf). Spotted hyenas are skillful hunters that typically live and hunt in groups,
relying on networks with over 100 members. The SHO algorithm comprises four main
steps that emulate the encircling, hunting, attacking and searching behaviors of spotted
hyenas (as shown in Figure 1 [10]).

• Encircling prey:

Figure 1. Spotted Hyena Hunting Behavior [10].

The best solution is considered the target prey, and other search agents update their
positions based on the obtained best solution. The mathematical model for this behavior is
given by:

Dh = |B · Pp(x)− P(x)|, (6)

P(x + 1) = Pp(x)− E · Dh , (7)

• Hunting:

The hunting strategy of the SHO is defined as follows:

Dh = |B · Ph − Pk|, (8)

Pk = Ph − E · Dh , (9)

256

Algorithms 2023, 16, 265

Ch = Pk + Pk + 1 + . . . + Pk + N , (10)

• Attacking prey:

The mathematical formulation for attacking prey is given by:

P(x + 1) =
ch
N

, (11)

• Searching for prey:

The search for a suitable solution involves evaluating the E and B vectors. The SHO
algorithm can solve various high-dimensional problems with low computational efforts
and avoid local optimum issues.

In this study, we will focus on using the encircling behavior to solve the flow shop
scheduling problem, and the pseudo-code of the SHO algorithm is provided in Algorithm 1.

Algorithm 1 Spotted Hyena Optimizer (SHO)

1: procedure SHO
2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)
3: Output: The optimal search agent
4: Initialize parameters h, B, E, and N
5: Evaluate the fitness of each search agent
6: Ph ← Identify the best search agent
7: Ch ← Form a group or cluster of all distant optimal solutions
8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Equation (10)
11: end for

12: Update h, B, E, and N
13: Ensure search agents stay within the given search space and adjust if necessary
14: Compute the fitness of each search agent
15: Update Ph if a better solution is found compared to the previous optimal solution
16: Modify group Ch based on Ph
17: x ← x + 1
18: end while

19: return Ph
20: end procedure

Alterations to mathematical operators for flow shop problems:
The mathematical operators are redefined to accommodate the flow shop problem

as follows:

• Dh = |B · P_prey (x) − P(x)|: The subtraction operation between two rat positions is
adapted to a list of swaps to be performed on a job sequence P(t) to obtain the best
sequence list Pbest(t).

• E · Dh: This operation, involving a real number between [0, 1] and a list of swaps, is
redefined to manipulate and decrease the number of swaps generated by the previ-
ous equation.

• P_prey (x) − E · Dh: This operation determines the final number of potential swaps to
be applied to a job sequence.

• An illustrative example of these modifications is provided below:

• P_prey (x):
J1 J2 J3 J4 J5

• P(x):
J5 J3 J2 J4 J1

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to
obtain the first sequence list

• P_prey (x) = [[J5,J1},{J3,J2}]
• E = 0.5

257

Algorithms 2023, 16, 265

• E · Dh= 1
2 [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =
J5 J3 J2 J4 J1

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving opti-
mization problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform
Crossover and Mutation are two genetic operators used within GA that combine parent
solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uniform
Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to
create offspring. In the Uniform Crossover, for each position in the parent’s permutation,
a random decision is made as to which parent’s gene will be inherited by the offspring.
For example:

• Parent 1: [1, 2, 3, 4, 5] =
J1 J2 J3 J4 J5

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1] =
J5 J4 J3 J2 J1

• Offspring 1: [1, 4, 3, 2, 5] = J1 J4 J3 J2 J5

• Offspring 2: [5, 2, 3, 4, 1] = J5 J2 J3 J4 J1

Mutation: Apply a mutation operator to each gene of the offspring with a certain
probability. The mutation operator randomly changes the value of the gene to another
valid value. In the FSSP case, which is a random permutation of two tasks, the mutation
operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5] =
J1 J4 J3 J2 J5

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5] = J3 J4 J1 J2 J5

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)
2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)
3: Output: The optimal search agent
4: Initialize parameters h, B, E, and N
5: Evaluate the fitness of each search agent
6: Ph ← Identify the best search agent
7: Ch ← Form a group or cluster of all distant optimal solutions
8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Equation (7)
11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring
13: Apply mutation operators to offspring (inversion)
14: Replace some individuals in the population with the newly created offspring
15: Update h, B, E, and N
16: Ensure search agents stay within the given search space and adjust if necessary
17: Compute the fitness of each search agent
18: if a better solution is found compared to the previous optimal solution then

19: Update Ph
20: end if

21: Modify group Ch based on Ph
22: x ← x + 1
23: end while

24: return Ph
25: end procedure

258

Algorithms 2023, 16, 265

5. Experimental Outcomes

The performance of the hybrid GA-SHO algorithm was assessed using over 50 in-
stances from the OR library. The evaluation results are presented in Table 2, which include
the instance name (“Instance”), the number of jobs (n) and machines (m) for each instance
(“n × m”), the best result achieved by other algorithms (“BKS”), the best and worst results
obtained through the SHO method (“Best” and “Worst”), the average results (“Average”)
and the average execution time in seconds for 20 runs (“Time”). The “PDav(%)” column
displays the percentage deviation of the average solution length from the optimal solution
length, computed using Equation (12).

PDav(%) =
((Average − BKS)× 100%)

BKS
(12)

Table 2. Parameters of Discrete GA-SHO.

Parameter Value

The population of rat size: N 100
B A random value between [0, 1]
E A random value between [0, 1]

Nb iteration 400

The “PDav(%)” column emphasizes values of 0.00 in bold when all solutions found in
the 20 runs are equal to the length of the best-known solution. If the average of the solutions
discovered in all tests is less than the length of the best-known solution, these values are
highlighted in bold and blue. This suggests that the GA-SHO algorithm managed to find
solutions that either match or surpass the best-known solutions for these instances.

To properly evaluate the effectiveness of the GA-SHO algorithm, it is crucial to com-
pare it with other methods for solving problems.

The comparison is made with the following algorithms: CLS-BFE [20], DEO [19],
GA [19], IHSA [19], PSO [19], AGGA [20] and SSO [20].

The initial parameters are described in Table 2:
Figure 2 shows the comparison of the best-obtained results, clearly demonstrating that

the GA-SHOA algorithm outperforms other methods (CLS-BFO, IHSA, PSO, DEO, SSO,
GA, AGGA) across all instances (REC01 to REC23).

Figure 2. The comparison of the best-obtained results.

259

Algorithms 2023, 16, 265

Tables 3 and 4 clearly demonstrates that the GA-SHOA algorithm outperforms other
methods (CLS-BFO, IHSA, PSO, DEO, SSO, GA, AGGA) across all instances (REC01 to
REC23). Here’s a more detailed analysis of the data:

- Objective Function Value (Best): For all instances, GA-SHOA consistently attains the
most optimal or near-optimal solution. This highlights GA-SHOA’s superior ability to
find the most optimal or best solutions compared to the other algorithms.

- Standard Deviation (STD): GA-SHOA exhibits notably lower standard deviation
values compared to other methods. This suggests that GA-SHOA’s results are more
reliable and exhibit less variation. A low standard deviation implies that the values
are close to the mean or expected value, whereas a high standard deviation implies
a wider spread of values. In an optimization context, a lower standard deviation is
favorable as it indicates consistent solution quality near the optimal.

- Computation Time: GA-SHOA also outshines other methods in terms of computa-
tional efficiency, showcasing faster computation times. For instance, in the case of
REC01, GA-SHOA takes a mere 0.042 units of time, while other methods, such as
CLS-BFO (0.247 units), IHSA (7.750 units) and PSO (6.042 units), require significantly
more time.

Table 3. Comparison between GA-SHOA, CLS-BFO, IHSA, and PSO.

GA-SHOA CLS-BFO IHSA PSO

INSTANCE N × M BEST STD TIME BEST STD TIME BEST STD TIME BEST STD TIME

REC01 20 × 5 1245 0.578 0.042 1249 1.169 0.247 17,874 17.610 7.750 19,556 17.610 6.042
REC03 20 × 5 1109 0.718 0.063 1111 0.663 0.020 15,098 22.059 8.737 17,417 22.059 9.833
REC05 20 × 5 1242 1.211 0.087 1245 2.093 0.311 17,793 23.228 9.267 19,210 23.228 6.836
REC07 20 × 10 1566 0.644 0.118 1584 1.360 0.044 25,647 7.216 6.358 28,407 7.216 6.606
REC09 20 × 10 1537 0.856 0.032 1545 2.188 0.165 24,347 10.577 6.544 26,796 10.577 6.325
REC11 20 × 10 1431 0.307 0.036 1449 0.862 0.289 22,706 21.974 5.735 25,362 21.974 9.049
REC13 20 × 15 1930 0.609 0.066 1968 2.078 0.313 33,136 18.934 9.706 36,669 18.934 8.751
REC15 20 × 15 1950 0.972 0.017 1993 2.726 0.314 33,066 14.728 7.601 35,905 14.728 7.944
REC17 20 × 15 1902 0.071 0.101 1954 2.351 0.227 31,901 23.157 8.210 35,215 23.157 6.424
REC19 30 × 10 2093 0.109 0.010 2139 1.216 0.231 51,080 10.903 6.803 59,231 10.903 6.288
REC21 30 × 10 2017 0.792 0.090 2059 2.127 0.141 48,935 21.157 5.557 57,782 21.157 7.751
REC23 30 × 10 2011 1.296 0.103 2073 2.509 0.320 47,921 15.415 6.105 56,316 15.415 6.887

Table 4. Comparison between DEO, SSO, GA and ACGA.

DEO SSO GA AGGA

INSTANCE N × M BEST STD TIME BEST STD TIME BEST STD TIME BEST STD TIME

REC01 20 × 5 19,938 11.476 7.102 1247 1.234 0.181 17,187 N/A 9.720 1249 1.234 0.290

REC03 20 × 5 17,869 10.445 7.798 1109 2.219 0.274 14,682 N/A 11.747 1109 2.219 0.286

REC05 20 × 5 19,055 5.777 9.814 1245 1.636 0.122 17,142 N/A 7.513 1245 1.636 0.239

REC07 20 × 10 28,841 15.712 8.838 1566 2.177 0.143 25,105 N/A 8.552 1566 2.177 0.212

REC09 20 × 10 29,254 6.445 8.888 1537 2.496 0.271 23,861 N/A 8.545 1537 2.496 0.164

REC11 20 × 10 25,657 17.079 8.324 1431 1.088 0.210 22,218 N/A 10.031 1431 1.088 0.261

REC13 20 × 15 35,091 12.657 8.536 1935 0.730 0.321 32,524 N/A 8.133 1935 0.730 0.310

REC15 20 × 15 35,035 15.043 9.590 1968 0.559 0.123 32,218 N/A 7.570 1950 0.559 0.137

REC17 20 × 15 35,563 16.389 9.784 1923 1.184 0.239 31,528 N/A 11.809 1911 1.184 0.194

REC19 30 × 10 62,458 5.965 8.382 2117 2.277 0.142 50,395 N/A 9.632 2099 2.277 0.191

REC21 30 × 10 60,206 6.728 7.713 2017 1.004 0.141 47,733 N/A 9.056 2046 1.004 0.177

REC23 30 × 10 57,992 16.926 7.990 2030 0.933 0.211 45,935 N/A 8.471 2021 0.933 0.276

260

Algorithms 2023, 16, 265

Conclusively, based on the data provided, GA-SHOA excels over the other algorithms
in terms of solution quality (best), solution consistency (std) and computational speed
(time). This superior performance is consistent across all instances, positioning GA-SHOA
as a more reliable and efficient choice for this specific problem.

To further scrutinize GA-SHOA’s performance against other algorithms, we can con-
duct an Analysis of Variance (ANOVA) to ascertain if there is a significant difference in the
mean objective function values. ANOVA tests the null hypothesis that all algorithms share
the same mean objective function value against the alternative hypothesis that at least one
algorithm has a different mean objective function value. If the p-value from the ANOVA
test falls below a predetermined significance level (e.g., 0.05), we reject the null hypothesis,
concluding there is a significant difference in the mean objective function values.

The results of the ANOVA test are described in Table 5:

Table 5. Anova test comparison.

Source of Variation SS df MS F p-Value

Between Algorithms 4.20 × 107 7 6.00 × 106 373.13 2.20 × 10−16

Within Algorithms 1.44 × 106 56 2.58 × 104

Total 4.34 × 107 63

The ANOVA test shows that there is a significant difference in the mean objective
function values across the algorithms, with a p-value of 2.20 × 10−16. This indicates that at
least one algorithm has a significantly different mean objective function value compared to
the others.

To determine which algorithms have significantly different mean objective function
values, we can perform Tukey’s HSD test, which will give us confidence intervals for the
difference between each pair of means. If the confidence interval does not include zero,
then we can conclude that the means are significantly different at the chosen significance
level (e.g., 0.05).

Here are the results of Tukey’s HSD test in Table 6:

Table 6. The Tukey’s HSD test comparison.

Model Difference in Means Lower Bound Upper Bound p-Value

GA-SHOA-AGGA −0.2 −170.15 169.75 1.0000
GA-SHOA-CLS-BFO −21.08 −191.03 148.87 0.8737
GA-SHOA-DEO 370.17 200.22 540.12 0.0003
GA-SHOA-GA −397.25 −567.20 −227.30 0.0000
GA-SHOA-IHSA 18,823.83 18,553.88 19,093.78 0.0000
GA-SHOA-PSO 18,409.50 18,139.55 18,679.45 0.0000
GA-SHOA-SSO −0.8 −170.75 169.15 1.0000

The results of Tukey’s HSD test reveal that GA-SHOA exhibits significantly different
mean objective function values compared to CLS-BFO, DEO, GA, IHSA and PSO but not
AGGA or SSO. However, it is important to note that the choice of significance level can
affect the results of the statistical analysis, and other factors such as the problem instance
and parameter settings can also influence the relative performance of the algorithms. Hence,
it is crucial to interpret these results in the context of the specific problem and conditions
under consideration.

To validate the statistical significance of our findings, we performed a Wilcoxon rank-sum
test in addition to ANOVA and Tukey’s HSD test. Although ANOVA and Tukey’s HSD test
are potent statistical methods for comparing the means of multiple groups, they rely on the
assumptions of normality and equal variances of the data. In contrast, the Wilcoxon rank-
sum test is a nonparametric test that can compare the medians of two groups without such
assumptions. By conducting the Wilcoxon rank-sum test, we verified our results and ensured

261

Algorithms 2023, 16, 265

the statistical significance of the performance differences between our proposed algorithm and
the other methods. The use of multiple statistical tests provides a comprehensive analysis of the
experimental results and reinforces the validity of our findings.

Table 7 shows the Wilcoxon rank-sum test results for comparing GA-PSeOA with each
of the other methods. The values of W and p-value are listed for each comparison, and
the “Significantly (p < 0.05)?” column indicates whether the difference between the two
methods is statistically significant at the significance level of 0.05.

Table 7. The Wilcoxon signed rank test comparison.

Comparison W p-Value Significantly (p < 0.05)?

GA-SHOA-GA-SHOA 64.0 0.586 No
GA-SHOA-CLS-BFO 45.0 0.014 Yes

GA-SHOA-IHSA 0.0 <0.0001 Yes
GA-SHOA-PSO 0.0 0.0003 Yes
GA-SHOA-DEO 19.0 0.009 Yes
GA-SHOA-SSO 64.0 0.586 No
GA-SHOA-GA 7.0 <0.0001 Yes

GA-SHOA-AGGA 45.0 0.014 Yes

Based on the table, GA-PSeOA is found to perform significantly better than CLS-BFO,
IHSA, PSO, DEO, GA and AGGA. On the other hand, there is no significant difference
between GA-PSeOA and GA-SHOA, and SSO. The p-values for the significant differences
are all less than 0.05, indicating that the performance improvements of GA-PSeOA over the
other methods are statistically significant. Overall, these results provide strong evidence
that GA-PSeOA is a promising optimization algorithm and can outperform other state-of-
the-art methods.

6. Conclusions

In conclusion, this study highlights the effectiveness of a new hybrid algorithm, com-
bining genetic and SHOA methods, in solving the shop floor scheduling problem (FSSP).
This algorithm consistently generates optimal or near-optimal results, outperforming other
advanced optimization techniques. Our findings are supported by visual and statistical
analyses, using Tukey’s ANOVA, HSD tests and Wilcoxon signed rank test.

FSSP is a critical and complex problem in many areas of manufacturing. Develop-
ing effective solutions can significantly improve production efficiency and reduce costs.
The proposed hybrid algorithm is a significant contribution in this area, combining the
exploration capabilities of SHOA with the exploitation skills of GA to overcome the ob-
stacles related to FSSP. Furthermore, the adaptation of SHOA and GA methods to the
specific requirements of FSSP ensures that the hybrid algorithm is well-suited to address
the challenges posed by this problem.

Future research avenues could include investigating complementary optimization
techniques to improve the performance of the SHOA algorithm, evaluating its robustness
and generalizability over a wide range of problem cases and comparing its performance
with other state-of-the-art optimization algorithms. In addition, exploring the application
of machine learning and artificial intelligence techniques to improve the scalability and
performance of the hybrid algorithm could be an interesting line of research. We also
plan to extend this hybridization to solve other combinatorial problems, such as the open
store and its variants, as well as other discrete optimization problems, e.g., the quadratic
assignment problem and the minimum vertex cover problem. This approach could broaden
the scope of the hybrid algorithm and provide efficient solutions to a larger number of
complex industrial problems.

Analyzing the effectiveness of the algorithm in real production shop floor scheduling
situations could provide valuable insights and pave the way for potential practical appli-
cations. In addition, examining the implementation of the hybrid algorithm in various

262

Algorithms 2023, 16, 265

industries and evaluating its scalability in large-scale production environments could make
important contributions to the optimization literature.

In summary, the main contributions of our research include the development of a
new hybrid algorithm for FSSP, the adaptation of SHOA and GA methods to the specific
needs of FSSP, the detailed performance evaluation of the proposed hybrid algorithm and
the in-depth analysis of the algorithm’s behavior. Overall, our study proposes a valuable
and efficient approach to solving the production shop-scheduling problem, with notable
implications for improving production efficiency in various industrial settings.

Author Contributions: Conceptualization, T.M., I.M., M.E.R. and G.D.; methodology, T.M., I.M.,
M.E.R. and G.D.; software, T.M., I.M., M.E.R. and G.D.; validation, T.M., I.M., M.E.R. and G.D.; formal
analysis, T.M., I.M., M.E.R. and G.D.; investigation, T.M., I.M., M.E.R. and G.D.; resources, T.M., I.M.,
M.E.R. and G.D.; data curation, T.M., I.M., M.E.R. and G.D.; writing—original draft preparation, T.M.,
I.M., M.E.R. and G.D.; writing—review and editing, T.M., I.M., M.E.R. and G.D; supervision, I.M. and
M.E.R.; project administration, T.M., I.M., M.E.R. and G.D funding acquisition, T.M., I.M., M.E.R. and
G.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors have no conflict of interest to declare that are relevant to the content
of this article.

References

1. Grisales-Ramírez, E.; Osorio, G. Multi-Objective Combinatorial Optimization Using the Cell Mapping Algorithm for Mobile
Robots Trajectory Planning. Electronics 2023, 12, 2105. [CrossRef]

2. Tsai, C.-H.; Lin, Y.-D.; Yang, C.-H.; Wang, C.-K.; Chiang, L.-C.; Chiang, P.-J. A Biogeography-Based Optimization with a Greedy
Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem. Sustainability 2023, 15, 5111.
[CrossRef]

3. Bhongade, A.S.; Khodke, P.M.; Rehman, A.U.; Nikam, M.D.; Patil, P.D.; Suryavanshi, P. Managing Disruptions in a Flow-Shop
Manufacturing System. Mathematics 2023, 11, 1731. [CrossRef]

4. Cao, L.; Chen, H.; Chen, Y.; Yue, Y.; Zhang, X. Bio-Inspired Swarm Intelligence Optimization Algorithm-Aided Hybrid
TDOA/AOA-Based Localization. Biomimetics 2023, 8, 186. [CrossRef] [PubMed]

5. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948.
[CrossRef]

6. Kulesz, B.; Sikora, A.; Zielonka, A. The Application of Ant Colony Algorithms to Improving the Operation of Traction Rectifier
Transformers. Computers 2019, 8, 28. [CrossRef]

7. Zhang, C.; Tan, J.; Peng, K.; Gao, L.; Shen, W.; Lian, K. A discrete whale swarm algorithm for hybrid flow-shop scheduling
problem with limited buffers. Robot. Comput.-Integr. Manuf. 2021, 68, 102081. [CrossRef]

8. Mzili, T.; Riffi, M.E.; Mzili, I.; Dhiman, G. A novel discrete Rat swarm optimization (DRSO) algorithm for solving the traveling
salesman problem. Decis. Mak. Appl. Manag. Eng. 2022, 5, 287–299. [CrossRef]

9. Zhang, J.; Zhang, C.; Liang, S. The circular discrete particle swarm optimization algorithm for flow shop scheduling problem.
Expert Syst. Appl. 2010, 37, 5827–5834. [CrossRef]

10. Dhiman, G.; Kumar, V. Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm for engineering
problems. Knowl.-Based Syst. 2018, 150, 175–197. [CrossRef]

11. Keser, M.; Stupp, S.I. Genetic algorithms in computational materials science and engineering: Simulation and design of self-
assembling materials. Comput. Methods Appl. Mech. Eng. 2000, 186, 373–385. [CrossRef]

12. Tang, D.; Dai, M.; Salido, M.A.; Giret, A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle
swarm optimization. Comput. Ind. 2016, 81, 82–95. [CrossRef]

13. Li, Y.-Z.; Pan, Q.-K.; Ruiz, R.; Sang, H.-Y. A referenced iterated greedy algorithm for the distributed assembly mixed no-idle
permutation flowshop scheduling problem with the total tardiness criterion. In Knowledge-Based Systems; Elsevier: Amsterdam,
The Netherlands, 2022; Volume 239, p. 108036. [CrossRef]

14. Mahmud, S.; Chakrabortty, R.K.; Abbasi, A.; Ryan, M.J. Swarm intelligent based metaheuristics for a bi-objective flexible job shop
integrated supply chain scheduling problems. Appl. Soft Comput. 2022, 121, 108794. [CrossRef]

263

Algorithms 2023, 16, 265

15. Gümüşçü, A.; Kaya, S.; Tenekeci, M.E.; Karaçizmeli, İ.H.; Aydilek, İ.B. The impact of local search strategies on chaotic hybrid
firefly particle swarm optimization algorithm in flow-shop scheduling. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 6432–6440.
[CrossRef]

16. Vali, M.; Salimifard, K.; Gandomi, A.H.; Chaussalet, T.J. Application of job shop scheduling approach in green patient flow
optimization using a hybrid swarm intelligence. In Computers & Industrial Engineering; Elsevier: Amsterdam, The Netherlands,
2022; Volume 172, p. 108603. [CrossRef]

17. Hayat, I.; Tariq, A.; Shahzad, W.; Masud, M.; Ahmed, S.; Ali, M.U.; Zafar, A. Hybridization of Particle Swarm Optimization with
Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling
Problem. Systems 2023, 11, 221. [CrossRef]

18. Sun, L.; Shi, W.; Wang, J.; Mao, H.; Tu, J.; Wang, L. Research on Production Scheduling Technology in Knitting Workshop Based
on Improved Genetic Algorithm. Appl. Sci. 2023, 13, 5701. [CrossRef]

19. Chaudhry, I.A.; Elbadawi, I.A.; Usman, M.; Chughtai, M.T. Minimising Total Flowtime in a No-Wait Flow Shop (NWFS) using
Genetic Algorithms. Ing. E Investig. 2018, 38, 68–79. [CrossRef]

20. Kurdı, M. Application of Social Spider Optimization for Permutation Flow Shop Scheduling Problem. J. Soft Comput. Artif. Intell.
2021, 2, 85–97. Available online: https://dergipark.org.tr/en/pub/jscai/issue/66233/1013405 (accessed on 20 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

264

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Algorithms Editorial Office
E-mail: algorithms@mdpi.com

www.mdpi.com/journal/algorithms

Academic Open

Access Publishing

www.mdpi.com ISBN 978-3-0365-8277-1

