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1. Introduction

Remote sensing has played a pivotal role in advancing the fields of archaeology,
geography, and earth sciences, offering new perspectives and unparalleled opportunities
for research, analysis, and interpretation within these disciplines. With the continuous
development and refinement of sensors, these sophisticated tools can now be deployed
on various aerial platforms like satellites, aircrafts, and drones. This enables researchers
to acquire invaluable observational data that enhances our understanding of both the
Earth’s natural and cultural landscapes. These data sources encompass a wide array of
information, such as multispectral images, thermal data, LiDAR, radar data, and more.
By harnessing these diverse types of observational data, researchers can delve into the
study of environmental shifts, land use patterns, and archaeological sites with accuracy
and efficiency. This Special Issue comprises 11 papers that center around the pioneering
applications and advancements of remote sensing technology in areas such as monuments,
traditional architectural art, and environmental monitoring. Moreover, it explores the
integration of cutting-edge deep learning techniques to aid researchers in the detection and
identification of archaeological remnants. The papers presented in this collection showcase
the innovative utilization and extraction of insights from remote sensing data, contributing
to the expansion of knowledge and the refinement of methodologies in these domains.

2. Remote Sensing Applications in Archaeology, Geography, and the Earth Sciences

This Special Issue presents a comprehensive exploration of the latest advancements
in remote sensing detection technology, focusing on its applications in restoring and pre-
serving cultural relics, detecting landscape features, and recognizing landforms. Moreover,
it delves into the development of innovative algorithms specifically designed to tackle
challenges related to landscape feature observation and the establishment of guidelines
for the restoration and preservation of cultural relics. This Special Issue features four
papers focused on restoring and preserving cultural relics. The papers in this domain
emphasize the utilization of 3D file production techniques for the preservation and restora-
tion of cultural relics, particularly emphasizing the safeguarding of cultural assets and
buildings. The primary objective is to introduce the concept of “Digital Twin” to develop a
detailed historical building information model (HBIM) [1]. The production of 3D files for
cultural heritage preservation can be achieved through photogrammetry (structure from
motion) or Terrestrial Laser Scanning (TLS) techniques. Marín-Buzón et al. [2] conducted
a comparative analysis of the accuracy of archaeological excavation achieved by these
two production techniques. In the field of painting art preservation, Cozzolino et al. [3]
employed ground-penetrating radar (GPR) to assess the condition of paintings, serving
as the foundation for 3D reconstruction of the internal mosaic structure of the artworks.
Recognizing the importance of preserving the original painting style crafted by artists, Su
et al. [4] conducted a study that involved extracting texture characteristics from “door god”
paintings, a prominent form of Oriental architectural art. Their research aimed to delve into
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the genre of “door god” painting craftsmanship while striving to maintain the authenticity
of the restoration process.

In regard to the detection of landscape features or the landform recognition, this
Special Issue includes a total of five papers. Jiao et al. [5] proposed the utilization of
shoulder lines to effectively capture the morphological characteristics of the Loess Plateau.
However, the issue of maintaining continuous shoulder lines during the extraction process
remains unresolved. To address this concern, they introduced a method that combines
edge detection and regional growing algorithms, improving the extraction of shoulder
lines. Furthermore, passive remote sensing systems are inadequate for effectively observing
certain landscape features such as the distribution of underground military tunnels [6].
The application of deep learning techniques proves advantageous in enhancing the inter-
pretability and resolution of 2-D Electrical Resistivity Tomography (ERT) data, enabling the
clearer visualization of tunnel locations and paths. Bachagha et al. [7] effectively integrated
the advanced technology of very-high-spatial-resolution satellite (PB1) and SAR data,
showcasing the remarkable potential of satellite data and machine learning in uncovering
hidden archaeological sites from an archaeological standpoint. In the realm of water remote
sensing, Li et al. [8] presented a simulation method for generating a two-dimensional
sea surface current field, aiming to overcome the challenge of limited trajectory crossings
in spaceborne SAR data. Shi et al. [9] emphasized the significance of remote sensing re-
flectance as a crucial parameter in the remote sensing inversion of plateau inland water
colors. They highlighted the necessity of conducting Field Radiometric Calibration of a
Micro-Spectrometer to accurately measure the remote sensing reflectance in unmanned
areas of plateau inland regions.

Among the included papers, the sole review explores the intricacies of geographic
scene understanding in high-spatial-resolution remote sensing images, providing insightful
analysis on methodological trends and addressing the present challenges in the field [10].
They indicated the prevailing challenges associated with the utilization of high-spatial-
resolution remote sensing images in understanding geographic scenes. The main challenge
stems from the use of high-spatial-resolution remote sensing data, which provides finer
landscape details but simultaneously exacerbates the complexity of data processing for
intelligent image interpretation.

3. Future Applications

Although this Special Issue includes 11 papers on the applications of remote sensing
in archaeology, geography, and the earth sciences, there is still a future expectation for more
investigations on the integration of multi-sensor remote sensing data (such as LiDAR, radar,
and satellite imagery) with artificial intelligence and machine learning algorithms [11,12].
Besides assisting scientists in enhancing the efficiency of exploring landscape features in the
mentioned applications, these approaches can also help them gain a better understanding
and interpretation of the spatial distribution, interrelationships, and interactions between
archaeological sites/landscape features and the geographical environment.
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Abstract: Preservation of cultural heritage plays an important role in society, significantly contributing
to its sustainability, which is important for human development and quality of life. The issue of
cultural heritage digitization has recently been the subject of increasing research and is part of
the initiatives of the European Commission for the Promotion of Cultural Heritage. Therefore, it
is necessary to define the stages of the digitization process, which is crucial for cultural heritage
preservation. The aim of this article was to examine currently used technologies and their role in
the digitization workflow, and to present a detailed historical building information model (HBIM)
developed during the digitization project at the historic Kunerad Mansion. To meet these goals,
we will describe the best practices for each discussed technology. Special attention is paid to data
processing at the very end of the object modeling process. Additionally, particular findings alert the
reader to the need to create object element databases in terms of effective point cloud modeling and
present the advantages of the technologies examined over traditional ways of preserving cultural
heritage. In addition to predicting procedures, cooperation at a multidisciplinary level is needed in a
narrower context. On the whole, the article provides some useful suggestions for both practitioners
and stakeholders.

Keywords: cultural heritage; laser scanning; UAV; photogrammetry; BIM; point cloud

1. Introduction

The construction of new buildings includes modern methods that allow the creation
of 3D digital models and complete drawing documentation in a form that covers all the
necessary steps from idea to implementation. Tools used are mostly CAD (computer as-
sisted design) [1] for civil engineers and BIM (building information modeling) [2] software,
designed mostly for architects.

The situation is different in the case of old and historical buildings that are part
of the cultural heritage of the given country. Many of them are damaged by weather,
natural disasters, traffic impacts, air pollution, or destructive human activity. In many cases
they require partial or complete reconstruction. Detailed printed documentation of the
building is usually not available. During the reconstruction process, historical photographic
documentation is used but, in such cases, it must be detailed enough. It is also possible to
draw blueprints from detailed painted pictures. CAD and BIM [3] software cannot be used
for the abovementioned purpose, but offers reverse engineering functions to support the
reconstruction process. With the help of several modern technologies within the processes
of reverse engineering, a very accurate 3D digital model can be created from an existing real
object. At the end of the process, printed documentation can be generated from the created
model. In such case it is possible to archive the current state of the cultural monument and,
additionally, all steps of the reconstruction phase, where the model is updated according to
completed work, new discoveries, or unintentional changes in the structure. The resulting
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3D digital models can also be used for presentation and educational purposes and, in the
case of an unexpected destruction of the building, they also provide a source of information
for potential virtual models. They can be moved into virtual reality and enable virtual
tours not only for small VR devices but also for large CAVE (computer assisted virtual
environment) projection devices [4].

The SWA (School–Work Alternation) project [5], a training project focused on cultural
heritage, deals with the acquisition of technical and methodological tools for knowledge
access, preservation and enhancement of cultural heritage, with special regard to diagnostic
tools and information and communication technologies. It also assesses the technical–
professional and crosscutting skills that students have acquired or are expected to have.

The European Commission is active in the preservation of cultural heritage, not only
in its physical but 3D digital forms. One of the digital platforms is the Europeana [6], which
allows people to discover historic sites and hidden gems across Europe. It provides access
to more than 51 million items (including images, text, sound, video and 3D materials) from
the collections of more than 3700 libraries, archives, museums, galleries and audiovisual
collections across the Europe [7].

Research in 3D scanning and reconstruction covers the problem of cultural heritage
digitization. The authors of [8] present creation of a 3D model using photogrammetric and
geodetic measurements, data transfer to AutoCAD and Adobe Photoshop and production
of a final photorealistic digital model in 3D StudioMAX. However, they do not deal with
the creation of printed construction documentation.

A case study of the Museum of King Jan III’s Palace at Wilanów [9] describes the
creation of a 3D model using terrestrial laser scanning (TLS) and photogrammetry. Since
the building was in a good, fully functional state, it was not suitable for reconstruction
activities (undertaken when no printed documentation is available and thus must be
produced from an incomplete building).

A paper dealing with the digitization of the medieval castle of Haut-Andlau (Alsace,
France) [10] compares geodetic, TLS and photogrammetry techniques, but provides no clear
recommendation, since specific limitations were observed for each discussed method. The
building consisted only of stone walls; there were no windows, doors or other decorated
architectural style.

The Batawa project (Toronto, ON, Canada) [11] was very large project covering
600 hectares of an old manufacturing city with many buildings and the result provides
a digital BIM archive of that area. Source data were drawings and paper copies of hand-
drawn and computer-generated plans and documents with a black line, paper, digitized
photographs (some from 1939) and digital and paper texts. Furthermore, TLS was used
and a topographic study was created in AutoCAD Civil 3D. Other applications used
in the project were SketchUp and Navisworks. The final BIM model was created in
Autodesk Revit.

Data for the case study of the historical building Kurşunlu Khan in Turkey [12]
were photographs, textual data on architectural and spatial characteristics, and 2D digital
drawings and alterations created during construction and reconstructions. Another source
was point clouds from TLS. The tool for 2D drafting was AutoCAD 2011, while for BIM
modeling it was Revit Architecture 2013.

The authors of [13], who used the Mobile Mapping System to document cultural her-
itage, revealed that despite its great potential, human intervention is still needed to achieve
the desired results, with technical and methodological limitations causing skepticism about
the mobile mapping system for three-dimensional surveys.

Digital 3D modeling and visualization technologies have been widely used for more
than 30 years. Despite the enormous efforts made to establish information technologies and
especially 3D technologies for digital 3D modeling and visualization, the current situation
is still ambiguous and the knowledge and skills in practice concerning 3D technologies
pose a major challenge [14,15].
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Since literary sources do not clearly identify exact reverse engineering [16,17] methods
recommended for the creation of a 3D model of cultural heritage, it is necessary to consider
the utilization of several methods in a specific case study.

This paper demonstrates the potential of reverse engineering methods such as terres-
trial laser scanning (TLS), terrestrial (ground) (DSLR), aerial (UAV) photogrammetry, BIM,
as-built documentation for cultural heritage conservation, and scientifically examines the
impact and assessment of these modern technologies’ benefits throughout the process. This
is important, since the combination of these technologies can contribute to saving time,
maintaining security and providing high-precision digital archiving.

The advantages are explored over traditional ways of preserving cultural heritage.
There may be limitations in both methods of data acquisition, so space and lighting condi-
tions need to be considered. For photogrammetry, it is necessary to consider a sufficient
degree of overlap to avoid deformation of the corners of the object. With TLS, it is important
to optimize the number of scan positions to avoid unnecessary extension of the registration
process of scans in the postprocessing phase and thus the achievement of an excessively
dense point cloud.

The aim of this article was to examine currently used technologies and their role in the
digitization workflow, and present a detailed historical building information model (HBIM)
developed during the digitization project at the historic Kunerad Mansion (Slovakia).

This work is organized as follows: in Section 2, the subject of the case study and
scientific problem are discussed. Then, in Section 3, the used methodology is presented,
detailing three methods. TLS is described in Section 4, including the knowledge base,
planning and realization phases. Section 5 deals similarly with photogrammetry, including
ground and aerial data processing. In Section 6 follows data integration from TLS and both
photogrammetry methods. The BIM is described in Section 7 with the resulting 3D model
and as-built documentation. Finally, we draw conclusions in Section 8.

2. Subject of Case Study and Scientific Problem

The Kunerad Mansion National Cultural Monument was chosen for the case study and
impact and benefit assessment. The castle was built in 1914 by Count Valentín Balestrém
(1860–1920). The construction was inspired by the Art Nouveau architecture style of castles.
During the Slovak National Uprising in 1944, it served as headquarters for the Second
Partisan Staff of Milan Rastislav Štefánik. It was burned down on 25 September 1944. After
the end of World War II, it was confiscated and became the property of the state forests
department. Subsequently, in the years 1945–1948, it underwent extensive reconstruction
according to the project of Dipl. Acad. Arch. Ferdinand Čapek and became a medical
institute for the treatment of respiratory diseases. In 1959, the manor became part of the
Rajecké Teplice spa. On 25 May 1967, it was declared a national cultural monument together
with the adjoining park. During the repair of the roof on 11 March 2010, the manor house
was engulfed in a large fire. Since then, it has remained closed and dilapidated. On 20
October 2018, eight years after the devastating fire, the dilapidated mansion burned down
again (Figure 1) [18].

At the very beginning of the case study process, our first goal was to determine the
level of detail (LOD). LOD defines the amount and degree of building information that
needs to be placed in a BIM model. The determination of the LOD was complicated, as the
monument was in a desolate state and was surrounded by lush vegetation. Based on the
inspection and technical capabilities of the technologies we had at our disposal, the LOD
value was determined to be 300.
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Figure 1. Terrestrial photo of the Kunerad Mansion, captured by the authors.

One of the set goals was to create a 3D model and subsequently a photorealistic model,
which is one of the basic pillars for visualization of unique architecture resulting from
the requirements of the monument office. This 3D model is to be used for presentation
purposes as well as to document the state of the building before the actual reconstruction
of the monument. It was necessary to digitally record all the necessary visual aspects.

The next goal was to create a HBIM model of the building from the outputs obtained
from modern technologies used during the process, where the identified materials of
the building were documented and described, as well as the information related to the
building itself.

The final goal was to create new detailed project documentation in the shortest possible
time. It is important to note that the original project documentation did not exist and in
order to follow the rules of the monument office, it was necessary to visualize as much of
the historical details of the cultural monument as possible.

3. Methods

The used methodology is divided into 5 phases: planning, data collection, data
processing, data integration and 3D model construction. Three methods were used within
the methodology: TLS, photogrammetry and BIM. Each of the defined methods was
included in the individual phases of the methodology according to the implemented project
research. Some phases also interacted, while the as-built documentation was created from
a geometric model. The scheme of the methodology is shown in Figure 2.

 

Figure 2. The methodology.
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4. 3D Laser Terrestrial Scanning: Knowledge Base

Utilization of 3D laser scanners is nowadays one of the most accurate, fastest and
most efficient ways of obtaining 3D data (models) of existing objects. Obtained data are
the source of information for real objects’ transformation into an accurate 3D digital copy,
which can capture spatial geometry and can be used for various types of analysis and
further processing on a computer [19–21].

Terrestrial laser scanning, also known as terrestrial LiDAR (light detection and ranging)
or topographic LiDAR, works by the XYZ coordinate system for many points on the ground.
Laser pulses are projected to these points and the device–target distance is computed.

Laser scanning provides high accuracy when recording real-world objects. The scan
result is a point cloud that represents a 3D image of the scanned objects. This technology is
used in many areas of industry, but also in architecture [22].

The 3D model obtained by this process helps architects in the renovation planning
of buildings and structures and brings the possibility of testing various design variants.
These options are very effective in civil engineering too [23]. Designers can access data
from different parts of the world and work simultaneously on new projects without the
need for traveling and manual measurement in the case of potential changes evaluation.

Three-dimensional laser scanning is one of the reverse engineering techniques, which
is also used in the digitization of cultural heritage objects. Reverse engineering (RE) is
a way by which is possible to obtain the shape and the geometry of a given object and
thus create its 3D digital model based on a physical model. The scientific and technical
development of these methods brings many advantages applicable in almost the entire
field of protection and visualization of cultural heritage. The possibilities of using the
methods are, for example, digital twin creation, computer-aided repair, new educational
tools (virtual tours and virtual museums) and much more [24].

According to the authors of [25], research and new technologies in the field of image
processing, computer graphics and virtual reality have significantly progressed in creation
of 3D computer images of real objects.

4.1. Selection of Appropriate Digitization Technology

There are several sources [26,27] that indicate frequently used types of digitization
technologies. They enable the acceleration of the selection of a suitable technology, based on
defined selection criteria. The chosen technology can influence some important parameters
such as the results of digitization, time, overall price, etc.

Figure 3 shows the selection of digitization technology depending on the criteria of
accuracy range and object size. Since the accuracy is an important criterion when creating
project documentation, the dependence of these criteria is relevant to us. The object was
measured at the beginning of the process with a Leica DISTO D510 laser distance meter,
where approximate measures of 53.94 m × 27.35 m × 11.610 m (width × depth × height)
were determined. Based on the specified size of the object and the accuracy we had to
achieve, we have chosen the most suitable digitization technologies that met our require-
ments:

• Terrestrial laser scanning;
• Terrestrial (ground) photogrammetry;
• Aerial photogrammetry.
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Figure 3. Accuracy ranges of EFR hardware technologies.

4.2. Terrestrial Laser Scanning: Planning Phase

This phase can also be called the preliminary phase of the 3D laser scanning process.
It is necessary to obtain all available information about the object and its surroundings. The
following requirements, listed in Table 1, had to be considered.

Table 1. Requirements for the implementation of the case study and the planned estimate.

Case Study
Requirements

Description Planning Estimation

Project location

It is necessary to consider the
influence of weather in given
locality, availability, density of
vegetation around the object,
lighting and area conditions.

Kunerad Castle 2106, 013 13 Kunerad.
The building has an access road; there
is vegetation in the area that will not

interfere with data collection and
there is no electricity or lighting in the

building.

Project type It can determine the required
level of detail, cost, time, etc.

Reverse engineering, cultural heritage,
LOD 300.

Time required for the project

Thorough planning and
estimation of time consuming
can contribute to efficiency in

solving a project.

Outside–7 h
0 Floor–7 h
1 Floor–5 h
2 Floor–6 h

Basement–10 h
Total: 35 h. The need to divide the
scanning process into several days.

Scanning accuracy
Scanning accuracy is

determined by the type of
scanner.

<2 mm

Scanning object
The subjects of scanning are

objects and areas respectively
scanning scenery.

Outside area of the object, 2 floors
with ground floor and basement.

Planned estimation of study requirements is always performed after the physical
inspection of the object, which is necessary before the start of the scanning. The inspec-
tion was realized in October 2019. For high efficiency, it is important to plan the correct
placement of reference points, estimate the number of scan positions and plan their cor-
rect placement to achieve the expected results. It can be very helpful if there is project
documentation for the object, from which it is possible to draw the mentioned facts. In
our case, however, it was necessary to create project documentation and therefore we
created only a so-called site sketch, which is helpful for the registration and postprocessing
process when we can get quick information about the relationship between the scanner
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positions. Depending on the size of the object and its complexity, the scanner positions
were determined for each scenario separately. As mentioned above, the cultural heritage
site was in a dilapidated state after fires and weather conditions (collapsed parts of the
floor, collapsed roof, unstable parts, etc.) and it was also necessary to adjust the scanning
positions accordingly. From the position of the scanner, the fact that reconstruction work
will take place during the digitization was also considered. Other influences that could
affect the scan quality were the dusty environment and safety.

4.3. Terrestrial Laser Scanning: Realization Phase

To create 2D project documentation, it is necessary to set two important parameters,
resolution and quality. These two parameters are the most important for the whole process,
because they affect the level of detail captured and the time required to obtain data from one
scanner position, which is adequately reflected in the total time required to obtain all data
and help in the correct process of registering individual scans in postprocessing. The first
parameter, resolution, determines the point distance, which then determines the level of
detail. By increasing this parameter, we will achieve the capture of a larger number of points
and, at the same time, reduce their distance. Otherwise, lowering this parameter results in
a smaller number of points being captured while increasing the distance between them.
For our purposes, based on the required level of detail and time saving in calculating the
available distance to the object of interest, a resolution of 1/4 was chosen. This represented
the distance of the point 6.136 mm at 10 m from the scanner.

The quality setting primarily determines the measurement speed and ‘noise’ reduction
level, i.e., increased quality value increases the measurement time that the scanner spends
on each scan point, while performing multiple measurements to confirm the information
and then averaging the result. In addition to the above, this parameter also uses a noise
reduction algorithm that determines whether the differences in the scan points are an
accurate representation of detail or noise. The algorithm compares the scanned points at a
certain distance to each other and determines whether their difference is in the tolerance
specified by the quality setting. If not, the scan point is removed, resulting in noise
reduction. The setting of this parameter also largely depends on the scanning conditions,
such as interior or exterior spaces, weather conditions, etc. To meet the condition of
saving time, we tried to achieve optimal conditions and thus achieve the quality setting
parameter—2×.

Based on preliminary on-site measurements, it was necessary to determine the dis-
tance between the scanner positions and the distance of the reference points from the
scanner position.

Table 2 shows a comparison of the settings of various parameters (quality and res-
olution) and the resulting achieved number of scan points on reference objects (spheres)
at a given setting. Green values represent higher accuracy, yellow values represent lower
accuracy and gray values represent low (<20) or insufficient number of acquired scan
points required in the registration process. The minimum value for achieving green values
is 80 captured scan points. The following columns represent the average time required
to record data from a single scan position when scanning with RGB and when scanning
without RGB. Each area of scenery that was scanned (see Table 1) required specific settings
depending on the conditions. When scanning exterior scenery, it is always necessary to
consider weather conditions at a given time. These measurements also show that in ideal
weather it is sufficient to use the quality setting 2× at a resolution 1/4 and the location of
reference points and targets at a distance up to 10 m.
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Table 2. Comparison of quality and resolution parameters and average scan times.

Quality
Settings

Reference Point
Distance

5 m 15 m 30 m

Average Scan Time

Resolution Setting
with

RGB (min)
without RGB

(min)

2× 1/4 1150 120 25 5:01 2:47
1/8 235 22 - 3:40 1:26

3× 1/4 1175 126 27 6:48 4:34
1/8 239 25 - 4:07 1:53

4× 1/4 1390 135 25 10:23 8:09
1/8 200 27 - 5:01 2:47

Scanning was performed in November 2019 with the terrestrial laser scanner Faro
Focus X 330, with the possibility of scanning to a distance of 330 m and accuracy of 2 mm.

To achieve the highest possible accuracy, a combination of 140 mm reference balls
(spheres) and targets (checkboards) was used. When using this type of terrestrial laser
scanner, it is possible to scan without the use of reference spheres and targets, which can
ultimately save time and money, but at the expense of scanning accuracy of the object.
To achieve higher accuracy by scanning without reference balls and targets, it would be
necessary to place the scanning positions at a very short distance, which would require
a much larger number of final scanner positions and much more time spent on site. On
the other hand, the use of reference balls and targets will only slightly prolong the time
spent on site compared to the aforementioned previous case, and will also simplify the
registration process in the software environment.

Ball positions are used in data processing, where the software automatically recognizes
them as reference elements. Based on them, it automatically combines scans from different
angles and thus creates a complex point cloud of the scanned object. It is also important to
note that there had to be at least three common reference points between two scan positions.
The harmonization and coordination of individual scans within the postprocessing is
enabled by the integrated GPS receiver.

The most challenging scenery in terms of terrestrial laser scanning within the entire
building was the basement of the castle. There were several reasons for this, such as the
unavailability of electric power, very poor lighting conditions, high humidity, areas of
fragmentation, transitions between light and dark parts of the building, the occurrence
of dangerous shafts, surface condensation, falling plaster, etc. It was necessary to reduce
the time required to obtain data. The scanner settings were adjusted and scanning was
performed without RGB to ensure that the time required for data collection was minimal.
Due to the fragmentation of the premises, 61 scanning positions were performed in the
mansion basement. Figure 4 shows the correspondence view and the specific locations of
the scan positions after the individual scans were registered in the postprocessing. Corre-
spondence is the relationship between the same common reference object in multiple scans.
Faro Scene software (version 2019.1, FARO Technologies, Inc., Sarasota, FL, USA) uses
these objects to create correspondences. The result can then be visualized and evaluated
in the Correspondence View, the 3D View or the Structure View tool. Postprocessing took
place also in the FARO SCENE software environment, where the individual scenarios
were registered separately in individual clusters. Then, these clusters were registered
in the final point cloud. Finally, filters were applied in the software environment, and
unwanted points in the point clouds of individual scenarios were removed. During the
scanning itself, cleaning work also took place on the object and its surroundings, which led
to minor time plan changes and various noises. These externalities had to be filtered out
in the final process, as shown in Figure 5. It is important to mention that during the use
of the technology of terrestrial laser scanning, so-called death spots arise where the laser
beam does not hit the measured point on the object. These places must be added later in
the following photogrammetry process. The resulting point cloud in this phase met the
requirement of LOD 300 in terms of shape, orientation and location.
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Figure 4. Correspondence view of Kunerad Mansion basement in FARO SCENE software.

  
(a) (b) 

Figure 5. Comparison of raw (a) and denoised/filtered (b) point clouds.

5. Photogrammetry: Knowledge Base

Photogrammetry is the art, science and technology of obtaining reliable information
about physical objects and the environment through processes of recording, measuring and
interpreting photographic images and patterns of recorded radiant electromagnetic energy
and other phenomena [28]. Photogrammetry is divided according to:

1. Positions;
2. Method of evaluation;
3. Number of pictures taken;
4. Evaluations.

Figure 6 shows the scheme of photogrammetry organization.
Modern photogrammetry technologies, which are used to create a variety of environ-

ments and tools, have undergone tremendous development in recent decades. During this
period, they have passed several milestones from the visual side through the quality of
textures to large-scale 3D models. The basic principle of photogrammetry [29], which also
results from the above scheme, is convergent imaging. When a photogrammetric image is
taken, a central projection is created. The relationship between the subject and its captured
image at the time of exposure is given by a photogrammetric beam passing through the
center of the projection.
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Figure 6. Scheme of photogrammetry organizations.

The shape of these rays is determined mainly by the elements of the internal orienta-
tion [30] and their position in space is determined by six rays from the external orientation.
With respect to the elements of internal and external orientation and the sufficient offset, it
is possible to create a point cloud representing the digitized object. Further processing of
these points results in the creation of a triangulated irregular network (TIN) model, which
forms the basis for further postproduction to achieve required details. Finally, the obtained
texture based on the quality of the image is applied. It is important to note that the quality
of the data will significantly affect the result. The main advantages of photogrammetry are
high accuracy and massive collection of special data.

Like laser scanning, photogrammetry can be used in reverse engineering. Sufficient
photographs in ground and aerial photogrammetry form a good spatial model, but also
more detailed information about the individual details of the object [31]. The technology
can also be used in hard-to-reach and inaccessible places. Created photorealistic 3D models
(PR3DM) [32] find further application in the field of construction, architecture, medicine and
also in the gaming industry. Within the already mentioned architectural [33] and cultural
heritage digitization [34], sufficient interoperability is ensured, which allows integral use
of photogrammetry in the digitization process as one of the basic tools.

5.1. Photogrammetry General Principles: Planning Phase

During the digital processing of Kunerad manor house using the photogrammetric
method, it was necessary to consider that the 3D model itself had to be created in combi-
nation with laser scanning. This meant that the model was emphasized not only in terms
of visual details but also in terms of accuracy by the qualitative output of data from laser
scanning. This implies that in order to achieve the required outputs from the model, basic
recommendations have to be followed, based on the previous experience and knowledge
of the authors:

1. When capturing the subject, there is no relationship between the size of the subject
and the number of shots. If there are enough photos available, more details can
be captured and there is no need to return to the place and take a new picture of
the object.
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2. If possible, capturing should be performed at the highest possible resolution and
without using zoom during shooting. Our advice is to create captured images in RAW
format in terms of the larger range of adjustments.

3. Time, lighting, weather, haze and spatial conditions need to be considered so that
the object can be captured from every possible angle and under consistent lighting
conditions in the digitization process. This data can be used in combination with
laser scanning.

4. Try to avoid shadows, because the RGB information is lost during the 3D model
creation process and the model shape is incorrectly rendered.

5. When applying the convergent capturing method, it is necessary to ensure a sufficient
degree of image overlap. If the overlap level does not reach the value of at least 80%,
the detailing process may not be accurate. To ensure sufficient overlap between the
individual pictures and adjust for their distortion, the horizontal angle should be in
the range (−45◦, 45◦) and the vertical angle (−30◦, 30◦) [35].

6. Pictures should not show any signs of blur due to hand movement or instability of
the body and should also be taken with minimal noise. If there is the need for focus
only on the subject, shooting is then performed in automatic mode. In manual mode,
we gain control over the basic parameters of the camera (ISO, F, f) and a balance is
sought between them through the exposure triangle.

7. Capturing should be in the loop and with the same distance around the whole object if
possible due to the spatial arrangement. The shooting distance should copy the shape
of the subject throughout the loop. From the point of view of the vertical displacement,
these loops should be made at intervals, respecting the value of the overlap. The aim
is to achieve an even level of detail throughout the building.

8. Try to avoid panoramic shots because with these the depth information of each point in
the picture is not obtained. Therefore, it is necessary to take pictures at small distances.

9. When using unmanned aerial vehicles (UAV), it is necessary to perform a control
flight over and next to the building in the initial phase. Based on this flight, places
where additional detailed scanning is required are identified.

10. Evaluate the situation in terms of setting the UAV selection of individual modes,
both automatic and manual. It is also possible to create a combination of individual
modes when it is necessary to consider the time of flight, weather conditions, space
conditions or the phase of reconstruction carried out at the time.

11. In terms of flight speed in automatic flight mode, set the shutter speed and autofocus
points so that pictures are not blurred.

12. For accurate parameterization of the object, it is suitable to use alignment points with
known spacing distances, or to use a measuring tape or other tool of known size.

13. In order not to degrade the images, it is necessary to avoid moving objects, dust and
smoke during the whole digitization process.

14. The subject should be as large as possible in the photo.

According to the recommendations, it can be stated that during the processing of all
available pictures, the process of postproduction is minimized, such as adjusting white
balance, noise reduction, over/under exposure, and other settings. Another piece of advice
is to take some time for the sorting process, when you will create separate folders that
contain slides to align the object and the remaining folders to create textures.

The result of the interconnection and achieving LOD 300 is a sufficient acquisition of
information about the object such as shape, articulation and structure RGB.

5.2. Terrestrial (Ground) Photogrammetry: Realization Phase

It is possible to determine dimensions, positions and properties of objects and phe-
nomena from photographic images produced by ground photogrammetry. Capturing is
done from a stable position on the ground. Secured elements of the internal and external
orientation of the images allow determining the 3D position of each point [36].
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After the 3D laser scanning phase, terrestrial photogrammetry of the Kunerad manor
house was started (December 2019). Capturing was performed on a DSLR CANON EOS
60D with an APS-C sensor, the resolution of 18 Mpx, and EPS 18–75 mm lens. The output
format was RAW format for subsequent postprocessing to achieve image consistency
(exposure, shadows, overexposure or underexposure). By the combination of requirements
for accuracy and spatial arrangement from the project definition, the maximum distance of
5 m from the object was specified. At the maximum resolution and distance, a pixel size
value of 2 mm was determined. This parameter guaranteed sufficient additional points to
the laser scan point cloud.

From the basic setting parameters, the ISO value was fixed at 100 throughout the
shooting, the aperture was F8.0, and the shutter speed changed during the position and
orientation of the camera.

The ISO 100 value guaranteed that the sensor would not be too sensitive to light, and
at the higher value the remaining two parameters would not be compensated for and the
images would not produce higher noise intensity, which would result in a significant dete-
rioration of the 3D model [37]. The aperture number was based on the spatial arrangement,
as mentioned above. The relationship between the depth of field and the distance to the
object was also considered, which means that the shortest distance from the object could
be at a maximum 2.5 m. The hyperfocal distance, based on the well-known parameters
of the camera, lens, and distance, was 1.93 m, which ensured that all images would be
sufficiently focused.

Due to weather conditions, the capturing was performed during cloudy weather
and in almost no wind. These conditions ensured that the lighting of the object would
be diffuse, without significant sharp shadows. During the photo shoot, image checks
were performed, because, as already mentioned, the photo shoot took place during the
winter and in the proximity of the building. Moreover, there was snow on the building in
certain places. Snow in combination with daylight affected the camera’s basic parameters.
Therefore, it was necessary to change these values and at the same time to follow mentioned
recommendations when taking photos [38].

From the point of view of photography limitations, the same problem occurred as
for the laser scanning, when both reconstruction and cleaning work took place during the
process. It was necessary to avoid the mechanisms present during the capturing and at the
same time monitor them so that they were not captured in the images.

The combination of data from laser scanning and ground photogrammetry was en-
sured by targets that were on the object and in its proximity range.

The total number of images created during the day with the emphasis on even coverage
of the object was 1500. Photography was performed both by hand and using a monopod.
Figure 7 shows the detail from ground photogrammetry.

 

Figure 7. Detail from terrestrial (ground) photogrammetry.
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5.3. Aerial Photogrammetry: Realization Phase

Aerial photogrammetry [39] deals with the interpretation and evaluation of digital
images that have been created from aircraft or other UAVs. The term UAV photogrammetry
defines a remote measurement platform, which can be partially dependent or independent,
does not contain a pilot and is equipped with photogrammetric measurement systems.
These include small and medium video cameras, thermal or infrared camera systems and
LIDAR aeronautical systems. Within the UAV standard, it is possible to monitor and record
the position and direction of sensors that are applied in a local or global coordinate system.

In our case, to create a 3D model of the Kunerad manor it was necessary to implement
not only ground but aerial photogrammetry as well. The DJI Mavic 2 PRO drone with
an integrated Hasselblad L1D-20c camera with resolution of 20 Mpx and 1 inch CMOS
sensor was used for this phase. Captured photos were saved in DNG format for further
postprocessing.

To achieve the same pixel size (GSD) [40] as with the terrestrial photogrammetry, the
maximum distance between the UAV and the object was determined to be 20 m. Again,
the spatial conditions were considered, where part of the forest was in this radius. For this
reason, the object was captured in manual mode for the outer perimeter and from above in
automatic mode.

The photography was performed in a fully automatic mode, since the histogram
images were evaluated as uniform during the control flight. A total of eight images was
taken from each side, from above the building, and for details at the terraces.

Since it was not possible to combine two methods of photogrammetry in one day,
the weather forecast was monitored for upcoming days and the lighting conditions were
evaluated for the same parameters. It was not necessary to change the flight modes and the
way of flying, because the wind conditions were very favorable (approx. 5 m/s).

During the flight, attention was paid to the degree of capture details on terraces, tower,
external staircase, main entrance and individual details of the architecture. The essential
part was capturing of common goals for the combination of the two methods of digitization.

The total number of images created during the flight, with the emphasis on even
coverage of the object, was 670. Figure 8 shows the UAV positions in which the images
were taken.

 

Figure 8. Aerial photogrammetry positions.

5.4. Photogrammetry Data Processing

Having outputs from ground and aerial photogrammetry, image processing was
started. For each of the methods, it was necessary to check the output quality of each image.
The inspection was performed in Lightroom software (version 8.0, Adobe, San Jose, CA,
USA). Overexposed and underexposed images, exposure, shadows, chromatic aberration
and profile correction were monitored. Edited images created the base dataset for generat-
ing high-quality model textures. Produced slides were then sorted and the subset was used
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to align the object and the rest to texture the model. The processing of images into the 3D
model was carried out in the RealityCapture software environment [41,42]. After import-
ing folders containing slides to align the object, the first component that formed a point
cloud was created. Another component included folders containing image information
for textures. Both components were then merged into the form of a point cloud (60.7 mil.
points), representing the object’s shapes. The maximum deviation reprojection was set at
2.0 pixels, with a resulting component average re-projection deviation of 0.36 pixels. This
parameter represented the LOD for the individual object details. The secondary task was
to supplement the information from already mentioned dead spots. The point cloud model
reached the LOD 300 and formed the basis for additional information involvement, such as
cracks, deformations, etc.

Based on Figure 9, it can be stated that if the images were completely output, the
point cloud also represented the quality of the obtained data. This means that the quality
of the output model for further work depends on the quality of the result obtained at
the beginning.

 

Figure 9. Point cloud of the Kunerad manor.

6. Integration of Terrestrial Scanning, Terrestrial Photogrammetry and
Aerial Photogrammetry

The next processing step was the integration of point clouds from both 3D laser
scanning, ground scanning and aerial photogrammetry. Point cloud outputs from the laser
scanner contained so-called dead spots. This means that the model was not complete,
since the scanning laser beam did not receive all the information for each location in the
object during the scanning process. This was caused by both the angle and the position
of the scanner. However, these dead spots can be supplemented with information from
ground and aerial photogrammetry. Based on this fact, there were two cloud points that
needed to be combined. Exported point clouds data were imported into the open source
CloudCompare environment, where the process of cleaning and alignment was performed.
During the importing, the position of data was adjusted to the local coordinate system with
smaller coordinates [43]. Trimming of point clouds of gross errors was performed by the
segmentation function. The tool used allowed us to choose segmentation of individual
entities through polygons or rectangles. If the rotation was used, it was necessary to
define the polygon, since it is available only for 2D. Individual entities were represented
by surrounding vegetation, fencing, mechanisms (in photogrammetry) and paved areas.
Subsequently, the statistical outlier removal (SOR) noise filter was applied to each point
cloud [44]. The SOR algorithm calculates the average distance to each nearest neighbor
point selected. It evaluates as the noise points those points that are further than the average
distance and n-times the standard deviation. In this case, the basic settings defined by the
software were sufficient. Segmented point clouds could then be combined (interconnected).
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The reason for this was the difference in the coordinate systems of the software from
which data were originally exported. CloudCompare has several ways to align boundaries,
including bounding box alignment, manual point-to-point transformation and automatic
alignment. Mutual points between laser scanning and photogrammetry had already been
defined, so we applied alignment by using these points. To precisely specify individual
common points, it is advisable that each of them carries an RGB value for each point, which
will facilitate the search for points. The result of the alignment of the individual point
clouds is shown in Figure 10. The histogram shows that the largest part consisted of the
interconnection points with the smallest distance. The increasing distance was mostly
formed by data from photogrammetry, where the laser device was unable to digitize the
object. The created point cloud was exported in the structured E57 format and returned to
the PR3DM generation process.

 
(a) (b) 

Figure 10. Denoised and filtered point cloud connected with terrestrial and aerial photogrammetry
(a) and histogram of interconnection points (b).

The exported point cloud was reimported into the RealityCapture software envi-
ronment. The interconnection created a sufficiently detailed model represented by the
mean projection deviation of 0.35 pixels for mesh formation. It should be noted that in
the case of 3D model creation, the point cloud from laser scanning is used without RGB
and from photogrammetry with RGB for texturing the model (function provided by the
software). The point cloud forms the mesh that needs to be optimized. Performing this
step is necessary since the mesh itself also contains invalid points resulting from too thick
a point cloud. In this process, the predefined distance between two points was 2 mm,
which, despite sufficient detail, affected the size of the object itself. With the integrated
simplification function, the degree of optimization of the mesh model is considered until
there is a significant loss of details. The resulting number of triangles that contained the
model was 29.7 mil. Finally, unwrap was performed and the texture was applied in 4 K
resolution and texture quality at the level of 80%, which gives the object a photorealistic
look. The texture quality value informs us about the maximum detail that can be obtained
from the images.

The result is a 3D model that met the required output quality criteria, including
LOD 300, color and photorealism. The final model, shown in Figure 11, serves mainly for
presentation purposes as the digital twin of the real object, but also defined the basis for
further analysis and required outputs.
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Figure 11. The Kunerad Castle model connected with terrestrial and aerial photogrammetry.

7. Building Information Modeling: Knowledge Base

Building information modeling (BIM) is used to design and document building and
infrastructure designs. Every detail of the building is modeled in BIM. The model can be
used for analysis to explore design options and to create visualizations that help stakehold-
ers understand what the building will look like before it is built. The model is then used to
generate the design documentation for construction [45].

As mentioned, digitization brings benefits [46] in time and cost savings. The same is
true for BIM modeling. In our case, we used HBIM.

HBIM can be divided into two categories. The first category is the simplified model
that contains elements only defined as geometric shapes. The second category includes
modeling using repetitive parametric elements. The problem of creating HBIM models
is the absence of these elements and libraries, but also the mapping of the real state and
identification in the creation of these libraries. A combination of these methods is used to
make a HBIM.

This type of documentation is significantly more accurate than traditional, manually
created documentation (using measurement tape or a laser distance meter), since the
elements are captured in 3D space. In the case of historic buildings, it is very important
that all structures, including those that lie outside the section plane in 2D drawings, are
included in the project documentation.

7.1. Building Information Modeling: Planning Phase

The planning was divided into the three stages. During the first stage it was necessary
to achieve the required LOD, since it determines the quality of the other two stages and
respective goals. There are several levels of LOD in the field of cultural heritage, depending
on the purpose for which they are used [47]. In our case, the requested level was closely
related to its utilization in HBIM model creation and project documentation.

The second stage comprised the HBIM model’s creation with the required LOD. An
exported point cloud was created in the REVIT software, as it proved to be an effective
tool with number of libraries that can be used in the creation of BIM [48] and in facility
management (FM). In the next phase, segmentation took place for individual objects from
the point cloud model. This segmentation was divided according to standard primitives
integrated in the software environment.

Subsequently, the individual segments were modeled to the required level. In this
process, there were two modeling subprocesses, namely the already mentioned simple
shapes or using modeling tools. During this process, information from the texture of the
component (cracks, deformations, etc.) was added to the model.
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The final goal was to create a new project documentation of the existing state with the
capture of the necessary details for the monument office and architects, to serve as a basis
for the development of a project for the reconstruction of the Kunerad Mansion.

7.2. Building Information Modeling: Realization Phase

For the creation of the HBIM model, a point cloud from terrestrial laser scanning
and photogrammetry was registered and cleaned. Since the target was the historical
building, there were various ornaments on the facade, decorative casings, columns and
other structures. The scan-to-BIM method was used, i.e., a point cloud served directly as
the basis for the software in which the HBIM model was created. It was not appropriate
to create the mesh or solid model from a point cloud in the CAD environment, since
such modeling would only be time consuming and would not bring any benefits. Such
a procedure is suitable for buildings such as production halls or industrial buildings. As
mentioned several times, the emphasis was on both the accuracy of the data and the reliable
capture of the existing condition of the object. Therefore, in cases when the basic dimensions
of the object were directly modeled, it was no longer possible to simplify the structures
either in the dimensions or in the direction (i.e., there are no parallel walls in the building).

To add more information to the HBIM, two more geomagnetic and ferromagnetic
scanners were used during object scanning and photography. One scanned and determined
the material composition of individual structures, the other, ferromagnetic one, scanned
and determined the distribution and diameter of the reinforcement of load-bearing walls
and ceiling boards (decks). Due to the poor technical condition of the aboveground floors
of the building and factors such as humidity, and building materials containing metal,
substrates with cavities or tiles, the required data could not be obtained.

Due to the high year-round humidity, it was not even possible to scan the basement
using a geomagnetic scanner. Nevertheless, during scanning with a non-humidity-sensitive
ferromagnetic scanner, the results in specific areas of the basement were very skewed. We
assume that the entire measured area of the basement was made of reinforced concrete in
combination with steel elements, and the data were distorted due to the high content of
ferromagnetic metals. Therefore, invasive methods for the material composition determina-
tion were finally chosen (performed during the reconstruction). To conclude, at the time of
the HBIM model creation, it was not possible to bring this information into the design of
the model itself.

The system families of software were fully used in the creation of reinforced concrete
slabs and floors. These constructions were relatively easy to identify from the scan. This was
because of the fact that most of them were exposed by fire and the accuracy of technologies
used in construction at beginning of the last century.

A special group of objects examined during the creation of the HBIM model was
formed by walls, where it was not possible to determine their material composition, for the
same reason as already mentioned. Based on experience of similar projects, it was possible
to estimate with significant certainty the material composition of individual walls, and a
new wall type was created for each wall thickness. The walls of the building were made
of solid fired bricks and in the combination of their connections they differed only in the
thickness of the plaster.

From the architectural point of view, high-precision shapes were required for vaults,
so it was not possible to create a group for repetitive elements, as each vault differed in
details. Therefore, vaults were created by the model-in-place system. This is a problem of
HBIM where the ideal model is not achieved, but the process is reversed, and the model is
an abstraction of reality [49].

Windows were defined as a group of families. Despite the fact that they were destroyed
and only parts of them were preserved, it was possible to create a window with casing on
a facade frontage. Casings were categorized as the wall additions and fully parametric.
The door constructions were not sufficiently preserved and therefore it was not possible to
capture them sufficiently into the HBIM.
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The degree to which groups of objects were created reflects the level of detail (LOD).
Table 3 shows the level of detail for individual modeled structures. The roof and door
structures were devastated by the fire and therefore it was not possible to reliably capture
their shapes. The pillars and railings were made of reinforced concrete, fire resistant, and
could be modeled reliably. In the case of windows, it was possible to model them in a higher
LOD, because during extinguishing of several fires in the building, some parts of their
construction were revealed. In particular, the components of the wooden parts’ connection
(expansion joints for window linings), point-precise places of windows’ attachment to the
main structure and the interconnection of the wooden peripheral part of the window and
the masonry structure were preserved.

Table 3. Level of detail of individual object structures.

Type of Construction/LOD LOD 100 LOD 200 LOD 300 LOD 350 LOD 400 LOD 500

Wall x
Floor x
Roof x

Windows x
Doors x

Railings balusters x
Columns x

A fully usable HBIM model using parametric families was a good choice, especially for
elements and structures such as railings, windows and various ornaments on the facade.

After the creation of the geometric HBIM model, the creation of as-built documen-
tation followed, in which the building object was captured in the actual state. As-built
documentation captures changes in the design compared to the planned documentation.
This type of documentation contains the exact dimensions of the object as in the reality. The
content of the documentation is:

1. Changes in individual units in the dispositional solution of the building, including
changes in individual parts of structures, materials and location;

2. Unexpected complications that occurred during the construction and appropriate
solutions applied, including notes and dates of resolved changes;

3. Attached with all related shop drawings and appendices [50].

In our case study of the Kunerad Mansion, where the mentioned documentation
of construction drawings was not available, new, accurate as-built documentation was
created from the HBIM model as the result of the basic specified goal. This documentation
represents a digital model and is recognized as the main initial documentation. As shown in
Figure 12, the documentation is highly accurate, because errors from manual measurements
were eliminated. There are visible architectural elements, such as vaults, as well as the
basic characteristic dimensions of the building, including the floor level.

Finally, the HBIM model of the real condition was created, together with the draw-
ing documentation. The final situation shown in Figure 13 represents a built-up area of
736.97 m2 and including the area of the terrace, the overall area is 1012.67 m2. The com-
bination of the photorealistic model and the west view from the project documentation
demonstrates the achievement of a high degree of accuracy in object modeling.

Within the creation of the HBIM model, it was also possible to complete the phase
that represented the reconstructed state of some parts of the manor. As the example, we
present a reconstructed baluster in Figure 14, while Figure 15 shows parts of the baluster
with dimensions and numbers of pieces. This information was also used for the investor
and other professions involved in the reconstruction.
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Figure 12. As-built documentation floor plan.

 

Figure 13. West view of the researched object.

  
(a) (b) 

Figure 14. Original (a) and refurbished (b) baluster.
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Figure 15. New parts of the baluster.

The HBIM model can be exported to IFC format. IFC is the universal interchange file
used between individual software packages that serve only as browsers. Many of them are
also available online. By using IFC, it is possible to constantly inspect the project not only
in the design phase, but also in the reconstruction phase, and there is a possibility to inspect
the construction from anywhere in the world. Construction companies can make notes
to the HBIM/IFC model to intervene and solve problems with investors and architects.
Another use is in the management of the building where the model is, whether in HBIM or
IFC format, a valuable source of information.

8. Conclusions

Preservation of cultural heritage is one of the basic pillars of a country’s history and
intellectual wealth. In addition to storytelling, modern technology is currently contributing
to this effort to pass information from generation to generation. Cultural heritage buildings
and nearby objects are often notable parts of a city and transport infrastructure. It is
important to mention that the terrestrial laser scanning and photogrammetry approach has
a significant impact on other research and application areas. For example, laser scanning
is one of the fundamental technologies for smart mobility solutions, which integrate
operation of transport systems, overall sustainability [51], and safety of traffic. Vehicles
with a specific level of automation require precise information about nearby objects to make
real-time decision during driving, too [52]. Approaches and technologies mentioned in
this paper are substantial for creating data which can be further used within the intelligent,
digital infrastructure.

The presented paper demonstrates the utilization of the specific methods of terrestrial
laser scanning, terrestrial (ground) and aerial photogrammetry and BIM. The methodology
of digitization is divided into five steps: planning, data collection, data processing, data
integration and 3D modeling.

The individual partial goals of the Kunerad manor digitization project were reached.
Results were obtained by specific steps and integrated into the solution. The main part of
the result was a 3D photorealistic model, created by the combination of TLS, ground and
air photogrammetry. It has become a digital twin of the real object and is used mainly for
presentation purposes. It is important to mention that the defined level of detail (LOD) of
300 was reached for each method applied during the project. Another part of the result was
a HBIM model, using parametric families, especially for elements and structures such as
railings, windows and various ornaments on the facade. Finally, as-built documentation
was created reflecting the current state of the manor, and changes in individual units of
structure, materials and locations.
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Based on the implemented case study and experience gained by authors during the
project, some advantages and disadvantages were identified regarding the methods and
workflow used.

The advantages of the presented TLS approach are high accuracy and detailed object
capture, which did not require return and additional measurement. Disadvantages, on
the other hand, are expensive technology, high financial risk if the technology is damaged
during the project, and limited ability to use equipment in a highly dusty environment,
which is typical for construction sites.

For the photogrammetry, advantages come with the use of less expensive technol-
ogy, higher quality of details presented by textures, and ability to capture whole object
completely (terrestrial and aerial scanning). Disadvantages include the time factor, as
the photogrammetry approach requires more time to digitize objects (capture details and
specific individual parts), that the process needs to be performed by a person sufficiently
trained in the basic photogrammetry principles, and higher inaccuracy.

The following is a recommendation summary applicable for similar projects:

(1) If a monument is devastated by fire, a documentary safety analysis of the monument
is always required;

(2) Interior spatial conditions can be a limiting factor in the case of a devastated object
and it is necessary to consider which method to use for data collection (TLS or
photogrammetry);

(3) A 3D model obtained from aerial photogrammetry helps in the planning of recon-
struction works in terms of machines and mechanisms’ location;

(4) A BIM model becomes a necessary part of construction management for its monitoring
but also for other works associated with reconstruction or renovation;

(5) A HBIM model allows understanding of the state of the monument, the decay of
individual materials, and identifies cracks and deformations.

The digitization of the building contributed not only to archiving with an emphasis on
high accuracy, but also to the future direction in the field of NFT (non-fungible tokens). The
creation of the HBIM model of the Kunerad manor created a basis for individual professions,
so that they did not clash in the design and, finally, the pricing object was parameterized.

The outputs processed by proposed methodology fulfilled the achievement of research
tasks with a comprehensive view of the issue. In conclusion, we can state that the method-
ology and chosen procedures can be applied to similar cultural heritage buildings in order
to preserve them, whether in physical or digital form, for future generations.
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36. Dudoň, J. Návrh Učebného Textu v Predmete Fotogrametria a DPZ. SPŠS Žilina. 2009. Available online: http://www.pkgeo.eu/
files/fotogrametria-a-DPZ.pdf (accessed on 20 February 2022).

37. Photogrammetry Workflow Using a DSLR Camera. Available online: https://scholarslab.lib.virginia.edu/blog/documentation-
photogrammetry/ (accessed on 21 January 2022).

38. Srnec, K. M—Manuálny Expozičný Režim. Available online: https://www.ephoto.sk/fotoskola/clanky/zaciname-s-
fotografovanim/manualny-expozicny-rezim/ (accessed on 21 January 2022).
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Abstract: The discovery of a Roman mosaic from the 2nd century AD in Cantillana (Seville) gen-
erated interest and the need for exhaustive documentation, so that it could be recreated with real
measurements in a 3D model, not only to obtain an exact replica, but with the intention of analyzing
and studying the behavior of two main geomatics techniques. Thus, the objective of this study was
the comparative analysis of both techniques: near object photogrammetry by SfM and terrestrial laser
scanner or TLS. The aim of this comparison was to assess the use of both techniques in archaeological
excavations. Special attention was paid to the accuracy and precision of measurements and models,
especially in altimetry. Mosaics are frequently relocated from their original location to be exhibited in
museums or for restoration work, after which they are returned to their original place. Therefore, the
altimetric situation is of special relevance. To analyze the accuracy and errors of each technique, a
total station was used to establish the real values of the ground control points (GCP) on which the
comparisons of both methods were to be made. It can be concluded that the SfM technique was the
most accurate and least limiting for use in semi-buried archaeological excavations. This manuscript
opens new perspectives for the use of SfM-based photogrammetry in archaeological excavations.

Keywords: archaeology; photogrammetry; SfM; scanner; TLS; mosaic; marble

1. Introduction

In the 1980s, the Total Station without reflector (TPS) was introduced; in the 1990s
GPS (Global Positioning System) [1] was introduced; at the beginning of the century, in the
2000s, LiDAR (Light Detection And Ranging or Laser Imaging Detection And Ranging) [2]
was introduced. In the following decade, HDS (High Definition Surveying) emerged as a
powerful technology in terms of speed, accuracy, accuracy, detail, and cost. This system is
also often referred to as Terrestrial Laser Scanning (TLS), or sometimes as terrestrial LiDAR.
However, it has yet to prove its advantages over current technologies.

The first commercial TLS system was built by Cyra Technologies in 1998 and was
later acquired by Leica in 2001 [3]. TLS hardware has improved rapidly over the past two
decades [4]. The price, size, and weight of laser scanners have fallen at a rapid rate, and
the improvement of spatial resolution and measurement speed has also improved [5].

Instruments now classically known as TPS basically record single points individually,
while TLS systems involve three-dimensional laser scanning that can record thousands of
points per second of measurement [6]. With TLS, a point cloud is obtained that is similar
to a photograph, but each point has coordinates (X, Y, Z) and an associated color in the
well-known RGB (Red, Green, Blue) format [7]. The main advantages of TLS systems
are the high speed of data acquisition and the high level of detail linked to a very high
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theoretical accuracy. In summary, current TLS systems usually have a high millimeter
spatial resolution, with an observation distance of tens of meters from the station, and the
standard error is usually ±2 mm at 25 m [8].

The first manuscript on the application of TLS for archaeology was fairly recent,
according to the Scopus database, and dates from 2007 [9], where its possible use was
suggested, but no archaeological work was performed. Later, in 2008, it was applied
in an archaeological excavation in Egypt, and the results were combined with aerial
photogrammetry [10]. These applications are slowly starting to be used, as is shown in
the related literature. One application in 2009 [11] related to point cloud modeling, and
demonstrated that it is a complex task to extract its unstructured information, requiring
powerful software tools. In the 2010s, TLS was mostly used for archaeological applications
in caves, such as in the Upper Paleolithic cave of Parpalló in Gandía [12], or in the Bronze
Age cave “les fraux”, in Perigord (France) [13].

Regarding the comparison between both methods, it is worth mentioning studies
carried out in 2002 comparing TLS and SfM photogrammetry, usually in optimal conditions
for the recording of cultural heritage, and that both methods obtained similar results [14].
Only in 2012 was TLS compared with terrestrial photogrammetry in archaeological applica-
tions [15], in particular with measurements made on a part of the Palace of Phaistos on the
island of Crete. In this case, results showed that in the recording of the data set, there were
average differences of the order of a few centimeters, highlighting the superior ability of
TLS applied on surfaces to describe the undulating portions of the walls of that settlement.
On the other hand, recent studies have shown the advantage of SfM over TLS in the study
of archaeological sites on surfaces such as petroglyphs [16].

A study comparing TLS with SfM for the evaluation of bulk densities of bulk sam-
ples [17] showed the validity of both methods with a less than 4.5% variation, but the
authors of the study do not recommend either of the two methods. However, in recent
modeling applications for building structures, a comparison between the two techniques
has been performed on the ruins of the Church of the Annunciation of the Blessed Virgin
Mary on Mount Carmel in Zagórz (Poland) [18]. Here, the authors show the advantages of
the TLS technique over SfM in the following aspects: TLS needs less GCP; with SfM, the
interior and exterior of the building must be processed separately (with the subsequent
consumption of time spent on processing); TLS can be employed in low or no visibility
situations (even at night). It should also be noted that the studies on heritage conser-
vation used TLS to compare different methods performed with SfM, i.e., TLS was used
as a control method, where 99.99% of the points have an accuracy of 1.2 cm. Therefore,
these authors considered TLS a more accurate technique than SfM [19]. This approach
has also been claimed by authors comparing the two techniques for bridge inspection and
monitoring [20]. Where all authors agree is that the SfM technique is cheaper than TLS. Up
to now, no comparison has been made for archaeological mosaics. For this reason, this case
study presents a comparison of the results of both methods, TLS and SfM, applied to a
Roman mosaic for its 3D virtual re-creation.

2. Materials and Methods

2.1. Mosaic of Cantillana

The Cantilla mosaic was found in November 2017 in the village of Cantillana (Seville),
Figure 1, in southern Spain. The exact coordinates were UTM ETRS89 H30 (250502.350 W,
4165806.514 N), equivalent to EPSG25830.
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Figure 1. Location of the Mosaic of Cantillana (Spain).

The mosaic is part of the pavement of an interior courtyard of a Roman domus
from the 2nd century AD. This was surrounded by an arcaded gallery, supported by
columns, and there was the rim of a well, also decorated with the mosaic technique, and a
marble drain for the evacuation of rainwater. The mosaic decoration represents an aquatic
environment, a marine bottom with a large number of marine species with bright colors
on a white background of tesserae and black lines that simulate the movement of the fish
(see Figure 2).

 

Figure 2. Detail of the Cantillana mosaic (Spain).

This mosaic, crowned by a well, is also decorated and surrounded by other structures
in the Roman building to which it belongs, was extracted and restored in the Museum of
Local History, where it is currently on permanent exposition until it is returned to the site
where it was found after it has been adapted as an archaeological enclosure or crypt. It is,
therefore, of the utmost importance to know with the utmost precision its geometry and
relative positions.

2.2. Methods

The methods evaluated in this study, TLS and SfM, are shown in Figure 3. Previous
works have been carried out for both methods, such as georeferencing and acquisition of
ground control points (GCP) in the field.
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Figure 3. Methodology: TLS and SfM.

2.2.1. Georeferencing

Currently, all archaeological excavations must be georeferenced in order to have
absolute coordinates in the official reference frame (UTM ETRS89) and to be able to proceed
with their protection [21]. In this study, Leica GPS equipment, model 1200 with GX1230
antenna and RX1250 control unit on a pole, was used. The technical specifications of this
equipment have been described in a previous manuscript [22].

2.2.2. Ground Control Points (GCP)

One of the factors that can significantly improve the quality of the results is the use
of accurate and well distributed ground control points (GCP) [23]. This will allow us to
properly correlate the generated model to the values of the terrain or the object. To ensure
overall and internal accuracy, the location, distribution, and number of ground control
points must be taken into account when establishing them in the area of interest [24].

The GCPs taken were the corners of the mosaic and significant points of some fish
that appear as drawings in the mosaic, and of the well rim (see Figures 4 and 5). Table 1
lists the coordinates of the GCPs and the errors made in each of them once validated, in
distance and pixel.

 

Figure 4. GCP surveying with the TCR705 total station.
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Figure 5. Example of Ground Control Points recorded (O).

Table 1. GCP Coordinates (UTM ETRS89) and errors.

GCP X Y Z Edistance (mm) Epixel

1 250,501.239 4,165,808.807 30.225 1.7 0.352
2 250,503.802 4,165,808.644 30.201 0.9 0.285
3 250,504.121 4,165,808.976 30.199 0.7 0.175
4 250,504.042 4,165,806.570 30.134 0.6 0.313
5 250,504.003 4,165,805.965 30.148 3.6 0.265
6 250,503.921 4,165,804.518 30.208 1.5 0.424
7 250,501.001 4,165,804.747 30.251 0.6 0.559
8 250,500.937 4,165,805.000 30.252 08 0.308
9 250,503.342 4,165,807.727 30.177 04 0.213

10 250,501.945 4,165,807.384 30.204 04 0.198
11 250,502.596 4,165,806.482 30.185 24 0.289
12 250,503.031 4,165,804.971 30.201 15 0.463
13 250,502.005 4,165,805.997 30.748 02 0.275
14 250,502.448 4,165805.860 30.756 17 0.500
15 250,502.529 4,165805.234 30.747 15 0.600

A total station, model Leica TCR705, of angular precision 15 cc. and 2 mm + 2 ppm
linear, was used [25], (see Figure 4). The use of the total station is due to the fact that it has
greater precision than the methodologies analyzed in this study, SfM and HDS. The points
were marked with adhesive targets to fix with better precision the points to be taken with
the mini prism (see Figure 5).

2.2.3. Photogrammetry (SfM)

The photographs were taken from the ground with a CANON Powershot G3X camera,
focal length 8.8 mm and pixel size 2.4 × 2.4 microns. The cost of this equipment is usually
around EUR 500. Data acquisition was carried out following a displacement similar to
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that used in the programming of a photogrammetric flight, i.e., nadir shots (see Figure 6),
maintaining the necessary overlap both in rows and columns.

 

Figure 6. Data acquisition with SfM: (A) Taking photographs; (B) Overlapping of photographs.

The conditions for data collection using SfM techniques at the Cantillana site were
excellent, since, due to the characteristics of the environment, there was diffuse light and
consequently few shadows were produced. Likewise, the features of the object of study,
due to its rough texture and varied colors, made it possible to obtain potentially high
quality results. A total of 305 photos were taken within 30 min. The result obtained was an
overlap of more than 80% (see Figure 6), where the whole mosaic had an overlap of more
than 9 photographs. It should be remembered that the usual structure-from-motion (SfM)
techniques need, at the least, trifocal overlaps to calibrate the cameras and reconstruct a
scene [26].

Once all the photos had been taken, they were dumped and processed with the Agisoft
Metashape program, which is based on a series of automatic algorithms. The processing
time for the 305 photos was 14 h. Of these photos, only 15% needed technician assistance,
and the others were processed automatically by the software (see Figure 7).

Figure 7. SfM Processing workflow.

A virtual 3D representation of the mosaic done with SfM can be found at the link https:
//sketchfab.com/3d-models/mosaico-terramar-o-de-los-delfines-9d38178adae4403384f9
38cf25cbc51c (accessed on 11 December 2021).
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2.2.4. Terrestrial Laser Scanning (TLS)

The TLS methodology aimed to obtain 3D information of the mosaic to reconstruct
the scanned object. This methodology has, a priori, a number of drawbacks in relation
to accuracy. These are due to internal and external factors. The internal ones are due to
the type of equipment model used [27]. The external factors are due to the type of object
surface, i.e., the material itself, which mainly affects the angle of incidence of the TLS
laser [28].

Laser scanners use different technologies for their performance. Some are time-of-
flight processors, i.e., they measure the time it takes for the emitted laser beam to travel
from the scanner to the object and back, also known as pulse processors. Others work by
phase difference, which implies that they have a periodic base signal which is modified
depending on the object upon which it hits, and the existing modular difference between
the emitted and received phase is then used to determine the distance traveled by the laser.
The latest technological advances in TLS have allowed for the development of a technique
called Wave Form Digitization (WFD), which is based on mixing pulse and phase difference
measurement technology [29]. Lasers with WFD technology emit a multitude of pulses to
record a single point, from all the records of that single point they eliminate those whose
signal is very different from the majority. The signals that are optimal are added together,
thus obtaining the measured point [30].

A Leica Geosystems P20 based on WFD technology with linear accuracy ±1 mm and
angular, vertical and horizontal 8” accuracy was used in this study. This equipment is able
to record between 50,000 and 1,000,000 points per second (see Figure 8). The cost of this
equipment is around EUR 20,000.

 

Figure 8. Data acquisition with TLS from different points of view.

There were three parking points with the TLS scanner, two inside the mosaic and one
on the outside, since all the devices in the area related to the safety of the excavation, such
as struts and structure fastenings to keep the mosaic as stable as possible (see Figure 8).

The TLS parking points (Est-6 and Est-7) were at the level of the mosaic. The third
scan was made from the upper part (Est-5), that is to say at the street floor level, in order
to have a record from above, although a posteriori all the errors produced by the mosaic
excavation support props had to be eliminated. Figure 9 shows the location of the parking
lots for the three scans and that of the four targets used. The targets model GZT21, Figure 9
(D-01, D-02, D-03, D-04), were installed on their corresponding magnetic supports. The
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coordinates of these targets are listed in Table 2. The resolution was programmed to capture
points at a step of 3 mm at 10 m. Scanning conditions are listed in Table 3.

 

Figure 9. Target: (A) Target example; (B) Target positions.

Table 2. Coordinates of targets: D-01, D-02, D-03, D-04.

Target X Y Z

D01 250,504.887 4,165,802.485 34.710
D02 250,501.280 4,165,802.133 34.706
D03 250,500.799 4,165,807.835 34.615
D04 250,503.795 4,165,808.125 34.728

Table 3. Scanning conditions.

Parameter Value

Field of view Full vault
Hz/V Area (◦) 90◦/55◦

Scan Mode Scan Only
Resolution 25.0 mm @ 10 m

Quality 3
Number of Dots (Hz × V) 2514 × 1013

Image Exposure Auto
White Balance Cold Light

Image Resolution 1920 × 1920
HDR Image No

Estimated Time 7 min 22 s

Once the point acquisition was finished, the points were loaded into Leica’s Cyclone
program. This software merges the point clouds taken from the different positions with the
support of the control points, i.e., the four targets already mentioned. After all the data
had been grouped into a single point cloud and correctly georeferenced, it was exported in
a format readable by other programs to allow for its management and analysis.
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3. Results

3.1. SfM

The dense point cloud obtained with SfM were 8,246,650 points with RGB (Red, Green,
Blue) color. The results achieved with photogrammetry were: a dense point cloud (see
Figure 10A), mesh without texture (see Figure 10B), mesh with texture (see Figure 10C), and
a digital elevation model (see Figure 10D). A virtual 3D representation of the mosaic done
with SfM can be found at the link https://sketchfab.com/3d-models/mosaico-terramar-o-
de-los-delfines-9d38178adae4403384f938cf25cbc51c (accessed on 11 December 2021).

 
Figure 10. Results from SfM (A–D).

3.2. TLS

A cloud of 99,821 points with RGB (Red, Green, Blue) color was obtained with the
TLS once the scanning area was completed (see Figure 11). A virtual 3D representation of
the mosaic done with TLS can be found at the link https://www.pointbox.xyz/clouds/61
b1d56d99e6e097d35c48ba (accessed on 11 December 2021).

3.3. SfM vs. TLS

Figure 12 shows an overlay between the 3D model generated by SfM and the point
cloud obtained with TLS (in red). It reveals areas in which there is no representation of
the points obtained with TLS or, more precisely, that they remain hidden under the SfM
model. It is observed in Figure 12 that all the points measured by TLS on the smooth marble
surface corresponding to the sump of the mosaic are not shown in the model. Figure 13A
shows an enlargement of this area. Figure 13B shows an elevation showing that the points
taken with TLS are located below the model, with GCP406 located on the surface of the
sink as a reference.
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Figure 11. Point cloud obtained with TLS.

 
Figure 12. SfM model vs. TLS point cloud.

 
Figure 13. TLS points representation on SfM model on marble sink area. (A) 2D representation; (B) Altimetric profile.
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It is clear that there is a difference in elevation in several areas, so it was considered
necessary to perform a control measurement using a method that was not influenced by
materials or geometric layout. For this purpose, the same TCR705 total station used for
the georeferencing of the model was used. This total station was used to measure points
of the mosaic with the help of a mini prism, so that the orientation or characteristics of
the materials would not affect the measurement in any case. A total of 233 points were
taken with a wide variety in location, material, degree of inclination, and color, due to the
difference between shades represented in the tesserae of the mosaic. This method offered
an accuracy within the range provided by the total station used, i.e., ±2 mm + 2 ppm.

The comparison was made with a selected reduced area of the mosaic, (see Figure 13),
which contains all the elements where the main divergences were found (sump, base-
board, etc.).

To obtain the required area from the data obtained with TLS, the area of interest was
simply cut out of the point cloud obtained from the whole mosaic. In order to present the
chosen mosaic area with SfM, a new project with a total of 69 photographs was made. Of
the 233 GCPs measured with the total station, 18 were used, as they were marked with
stickers, so that identification was quick and accurate in the photographs (see Figure 14).

 

Figure 14. SfM model of the selected area with GCPs represented.

4. Discussion

The 3DReshaper software was used to analyze the accuracy of the points between TLS
and SfM. Figure 15 shows a comparison between both models analyzed, where 96% of the
points presented an error in the range of +3 mm to −5 mm (see Figure 15). The other 3.8%
of the points varied within a range of −5 mm and −17 mm. These results are not a priori
relevant and need to be compared with more precise data, such as the GCP taken with a
total station.
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Figure 15. TLS vs. SfM.

The analysis of the SfM with the GCPs using 3DReshaper is shown in Figure 16A. The
results show that the points had an absolute error greater than 1 mm, and that in no cases
did the error reach 2 mm. Considering the features of the total station used to take the
control points, where the error range is ±2 mm + 2 ppm in the determination of coordinates,
it can be concluded that the errors are below those seen in the reference materials.

By superimposing the GCPs on the high-definition mesh generated from the TLS
points, it can be observed in Figure 16B that 88.5% of the points have an error between
5 mm and −0.7 mm, while only 2.39% are between −0.7 mm and −2 mm. In addition,
9.17% of the points were between 5 mm and 13 mm. In this section, it can be observed that
these are the points of the marble sink. The cyan and red tones are where the largest range
of errors (between 5 mm and 1 cm) have appreciated, and it is there where the biggest
differences can be observed, likely because of the materials that compose the sump, such
as marble. The green tones of the baseboard are due to the angle of incidence, which in the
baseboard is different from the rest of the points of the mosaic.

Table 4 summarizes the error ranges of each method regarding the control points. It
can be observed that the technique that obtains the best results with respect to the GCPs
is SfM photogrammetry. This does not mean that the TLS method does not meet the
expectations of the GCPs, but that in the range of <2 mm, the percentage of points is higher.
In addition, it was found that there is a significant percentage of points that exceed the
threshold of ≥5 mm, in particular 9.17%, because they are points taken on the clean part
of the sink. The increase in error in this area is due to the material from which the sink is
composed, which is marble. It has been proven in the literature that the laser in materials
such as marble, goes through part of the surface and generates erroneous information in
the points measured [31]. Specifically, marble, being a porous material on its surface, causes
the laser to pass through the surface, generating an error in the altimetry of the points.
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Figure 16. Accuracy analysis. (A) GCP vs. SfM. (B) GCP vs. TLS.

Table 4. Absolute range of error.

≥5 mm <5 mm <2 mm <1 mm <0.5 mm

GCP vs. SfM - - 4.3% 95.6% 70.1%

GCP vs. TLS 9.17% 88.5% 2.39% - -

5. Conclusions

In this research, two geomatics techniques have been compared for the study of a
Roman mosaic in its original location for its transfer to a restoration area or museum, and
with the possibility of it being relocated in the future back to its original location. In the
present study, photogrammetry based on SfM and low-cost cameras, and terrestrial scanner
or TLS have been used, which are very widespread in archaeological excavations due to
the high precision obtained from their results and the massive collection of point clouds.
These have been compared with a more accurate method of obtaining coordinates, but that
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is limited in terms of production or amount of information, i.e., the total station, which has,
therefore, served as a control method.

In particular, it was observed that the marble area, that of the sink, was the one area
that was influenced the most in the data acquisition with TLS, obtaining points below the
elevation determined by the total station, probably because the porosity of the material
produced a slight delay in the reflection of the signal emitted by the scanner. It can be
concluded that the SfM technique is the one that comes closest to the optimal values
generated by the total station. This is not to say that TLS is not an accurate technique since
its accuracy values are very close.

In addition, the experiments performed in this study demonstrated the higher per-
formance level and simplicity of the SfM technique with respect to TLS performance. In
addition, the SfM technique is accessible to non-specialized personnel as it involves taking
photographs using a certain strategy but without the need for technical preparation. The
TLS technique, on the other hand, requires several stations and the measurement of control
points from all stations. When equipment costs are considered alongside these factors,
where the TLS technique is 40 times more expensive, but the SfM obtained 10 times more
points, photogrammetry techniques with SfM presented a clear advantage over TLS for the
accurate documentation of mosaics in archaeological excavations.

However, there are constraints to the technique of photogrammetry using SfM if it is to
be extended to other types of archaeological excavations, e.g., when the distance at which
the photographs are taken is not close to the object. In this case, the distance would be the
equivalent to the flight altitude of a photogrammetric flight. Another important limitation
is when environmental lighting conditions are not suitable; here, the TSL technique is
clearly better, for example, in caves or inside buildings.
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28. Marčiš, M. Quality of 3D models generated by SFM technology. Slovak J. Civ. Eng. 2013, 21, 13–24. [CrossRef]
29. Truong-Hong, L.; Gharibi, H.; Garg, H.; Lennon, D. Equipment considerations for terrestrial laser scanning for civil engineering

in urban areas. J. Sci. Res. Rep. 2014, 3, 2002–2014. [CrossRef]
30. Large, A.R.; Heritage, G.L. Laser scanning–Evolution of the discipline. In Laser Scanning for the Environmental Sciences; Wiley-

Blackwell: Oxford, UK, 2009; pp. 1–20.
31. Lerma García, J.L.; Van Genechten, B.; Santana Quintero, M. 3D Risk Mapping. Theory and Practice on Terrestrial Laser Scanning.

Training Material Based on Practical Applications; Universidad Politecnica de Valencia Editorial: Valencia, Spain, 2008; Available
online: https://lirias.kuleuven.be/1773517?limo=0 (accessed on 11 December 2021).

43





Citation: Cozzolino, M.;

De Simone, A.; Gentile, V.;

Mauriello, P.; Piezzo, A. GPR and

Digital Survey for the Diagnosis and

the 3D Representation of the Battle of

Issus Mosaic from the House of the

Faun, Pompeii (Naples, Italy). Appl.

Sci. 2022, 12, 6965. https://doi.org/

10.3390/app12146965

Academic Editor: Tung-Ching Su

Received: 7 June 2022

Accepted: 6 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

GPR and Digital Survey for the Diagnosis and the 3D
Representation of the Battle of Issus Mosaic from the House
of the Faun, Pompeii (Naples, Italy)

Marilena Cozzolino 1,*, Antonio De Simone 2, Vincenzo Gentile 1, Paolo Mauriello 1 and Amanda Piezzo 3

1 Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis Snc,
86100 Campobasso, Italy; vincenzo.gentile86@gmail.com (V.G.); mauriello@unimol.it (P.M.)

2 Department of Human Sciences, University Suor Orsola Benincasa, Corso Vittorio Emanuele 292,
80135 Napoli, Italy; desimone.prof@gmail.com

3 National Archaeological Museum of Naples (MANN), Ministry of Culture, Piazza Museo 19,
80135 Napoli, Italy; amanda.piezzo@beniculturali.it

* Correspondence: marilena.cozzolino@unimol.it

Abstract: The application of non-invasive geophysical techniques and digital surveys to explore
cultural heritage is becoming a very important research field. The capability to detect inner and
superficial changes in the inspected surfaces allows for imaging spatial inhomogeneity and material
features and planning targeted conservation and restoration interventions. In this work, the results of
a research project carried out on the famous Battle of Issus Mosaic, also known as the “Alexander
Mosaic”, are presented. It is a masterpiece of ancient art that was found in 1831 in the House of
Faun, the most luxurious and spacious house in Pompeii. It is notable for its size (3.41 × 5.82 m),
the quality of workmanship and the subject that represents the culminating phase of the battle
between Alexander Magno’s army and the Persian one of Darius. In 1916, it was moved inside the
National Archaeological Museum of Naples, where the original horizontal location was changed
with a vertical arrangement supported by an inner wooden structure, whose exact manufacture
is unclear. Today, the mosaic is affected by important instability phenomena highlighted by the
appearance of the significant detachment of tiles, superficial lesions and swelling of the surface.
Given the important need to preserve it, a high-detail diagnostic study was realized through a
digital survey and non-invasive geophysical surveys using ground-penetrating radar (GPR). The
investigation was repeated after two years, in 2018 and 2020, with the aim of verifying the evolution of
degradation. The work provided a high-resolution estimate of the state of the health of the mosaic and
allowed for obtaining a three-dimensional reconstruction of the internal mosaic structure, including
the formulation of hypotheses on the engineering supporting works of the twentieth century; this
provides an essential tool for the imminent conservation project, which also implies restoring the
original horizontal position.

Keywords: mosaic of alexander; GPR; digital survey; pre-conservation diagnosis

1. Introduction

In recent years, the use of non-invasive geophysical and geomatic techniques has
assumed an increasingly important role in the field of cultural heritage, especially by
supporting conservation and restoration projects. Geophysical methods are very useful
for assessing the presence of underground structures in preventive archeology at different
scales [1–6]; addressing conservation and stability issues of architectural monuments by in-
specting soil foundations; assessing the mechanical properties of structural elements [7–13];
and exploring internal and superficial structures of precious and delicate targets, such as
statues, wall paintings and mosaics [7,14–18]. Among these techniques, ground-penetrating
radar (GPR) is widely used thanks to the miniaturization of the instrumentation, the high
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investigation resolution and the minimal impact on the analyzed surfaces. For example,
Masini et al. [7] presented GPR prospecting on three different constructive elements that
are typical of historical buildings (a wall, a masonry pillar and a marble column), allowing
for the characterization of the masonry, the detection of cracks and the imaging of metallic
reinforcement bars. The obtained information was relevant for providing better knowledge
of the history of the monuments and their current internal state to be evaluated for in any
possible restoration intervention. Matias et al. [14] used GPR combined with seismic trans-
mission tomography to provide important results in an investigation of columns and walls
of a 14th-century UNESCO monument by giving information on the quality and spatial
distribution of the materials used in the construction of the monument. Manataki et al. [15]
applied different GPR systems with frequencies of 1600 MHz, 500 MHz and 250 MHz to
study the mosaics of Delos island, which holds a significant body of ancient Greek art of
the Hellenistic period that is on UNESCO’s World Heritage List. The 1600 MHz system
allowed for identifying the boundaries of the mosaic layers, as well as problematic areas,
such as bulges and high levels of moisture that may cause deterioration.

For the same topics, geophysical methods can also be applied jointly with geomatic
techniques that, thanks to the advances in data collection, processing and visualization, rep-
resent an important source of knowledge regarding diagnostics and documentation [19–26].
Cozzolino et al. [20] conducted a 3D metric survey through photogrammetry and ground-
penetrating radar (GPR) tests applied to the study of the trapezophoros with two griffins
attacking a doe of Ascoli Satriano, which is a masterpiece of ancient art that needs to be
protected. The work provided information on both visible and hidden defects, such as
numerous cracks that affect the sculpture. Arias et al. [21] showed the usefulness of a mul-
tidisciplinary approach to heritage documentation involving close-range photogrammetry
and ground-penetrating radar techniques, as well as the development of finite-element-
based structural models. The study was focused on the documentation of a medieval
bridge concerning the geometric shape, the building material, and the current damage and
its causes. Danese et al. [25] showed a spatial-analysis-based protocol for the interpretation
of data coming from different non-invasive tests to improve the extraction process of the
pattern’s decay. The case study was a frescoed wall of a Gymnasium in Pompeii, which
was investigated with the following non-invasive techniques: structure-from-motion pho-
togrammetry (SfM), ground-penetrating radar and multitemporal infrared thermography.
This approach enabled the extraction of decay patterns to construct a 3D model that consti-
tuted the deformation map of the painting analysis methodology and to establish the first
step for the restoration of an important multilevel characterization of a fresco that is useful
for the protection and mitigation of its deterioration risk.

In this study, a high-detail diagnostic investigation was realized through a digital sur-
vey and non-invasive geophysical survey using ground-penetrating radar (GPR) on the Bat-
tle of Issus Mosaic, also known as the “Alexander Mosaic”. It was found on 24 October 1831
in the exedra of the peristyle of the House of the Faun (Regio VI, 12, 2) in Pompeii, which
was the ancient city destroyed by the eruption of Vesuvius in 79 AD (Figures 1 and 2) [27].
In 2018, the National Archaeological Museum of Naples (MANN), where the mosaic is
exposed, set up a working group, mainly composed of personnel within the institute,
which is collaborating with the Central Institute for Restoration, as well as the University of
Molise and the Center for Research on Archaeometry and Conservation Science (University
of Naples Federico II and University of Sannio) for surveys and diagnostic investigations.
The study determining the state of conservation of the mosaic was aimed at supporting
the restoration project and the change of its placement. To this end, a high-detail survey
was realized by the University of Molise in 2018, and it was repeated in 2020 to verify the
evolution of degradation in compliance with the following workflow:

(1) The creation of a high-resolution 3D model and orthophotos of the external surfaces
through a photogrammetry digital survey in order to highlight the decay and even
the type of decay, which is not perceivable by direct sight.
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(2) An analysis of the inner surfaces through the implementation of non-invasive GPR
surveys with the purpose of detecting anomalies indicating voids or fractures.

(3) An analysis of the photographic documentation produced between 1916 and 1917
in relation to the GPR data to understand the type of internal structure of support
and carefully calculate its weight. This information is useful for facilitating the
organization of the movement of the mosaic.

(4) The production of new and detailed documentation, which has been non-existent so
far and is useful for the imminent conservation actions.

 

Figure 1. Location of Pompeii on the map of Italy (a), plan of the city with the position of the House
of Faun (b) and the exedra of the peristyle where the mosaic was found (c).

 

Figure 2. A close-up picture of the Battle of Issus Mosaic.

2. Test Site: The Battle of Issus Mosaic

The Battle of Issus Mosaic represents the triumph of Alexander the Great over Darius
III of Persia in 333 BC during the Battle of Issus in Turkey. The masterpiece was created at
the end of the second century BC in the opus vermiculatum technique with about 1,800,000
millimetric tesserae. In the left portion, Alexander the Great is depicted with his horse
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Bucephalus. Medusa is represented on the cuirass with her wavy hair. On the right, there
is Dario on a chariot as he tries to launch an assault with his men while the coachman
is already whipping the horses. We also note Dario Oxyathres, who sacrifices himself to
allow his brother Darius III to save himself by letting himself be pierced by the Macedonian
leader. The spears, the crowding of men and horses, the fallen horse and the Persian soldier
in the foreground who looks at himself in agony in a mirror bring to mind the dramatic
moment of the battle.

From the moment of its discovery, there was a debate between the court, the academi-
cians, the archaeologists, the architects and the mosaicists regarding its state of conservation
and the choice of keeping it at Pompeii in its original location or detaching and transferring
it to the Royal Bourbon Museum. The conservation events of the Alexander Mosaic from
the House of the Faun to its current location are described in detail in [28]: “At the end, after
many uncertainties, the King resolved to transfer the Mosaic in Naples and on 16 November
1843, under pouring rain, the crate containing the Mosaic of Alexander was placed on a
railway wagon coming from Maddaloni, near Caserta, pulled by sixteen oxen and escorted
by armed soldiers, and after a grueling journey of nine days finally came in the Royal
Museum where it was exhibited, not without controversy, in the ground floor of the Gallery,
in the so-called Room of the Balbi. The Mosaic remained in this place until 1916 when it
was moved to the western mezzanine where Vittorio Spinazzola, Director of the National
Archaeological Museum of Naples between 1910 and 1924, picked up the mosaics in a
new independent collection and where it still is exposed. A detailed documentation on
photographic plates, made between 1916 and 1917, is preserved in the Historical Photo
Archive of Special Superintendence for the Archaeological Heritage of Naples and Pompeii.
The photographs gather information relative to all phases of the moving and the final
installation”. However, the type of structure created at the base of the mosaic to support it
in a vertical position is not well understood as there are no shots of it.

The events briefly explained profoundly affected the state of conservation of the
work, which is currently affected by important instability phenomena highlighted by
the appearance of significant detachments of tiles (the occurrence is emphasized by the
vibrations transmitted by car and railway traffic outside the museum), superficial lesions
and swelling of the surface. In addition, it must be considered that the mosaic was designed
and built to be placed on the floor, and consequently, the detachment from the site of
discovery produced a significant alteration. In fact, the almost complete, albeit brief,
removal of the rudus (the layer of lime, sand and aggregates, such as gravel or pebbles,
which formed a concrete of consistent thickness) and the transport from the lower to the
upper floor significantly affected the nucleus (the layer of mortar mixed with fragments
of bricks that served as a support for the floor made of tiles). This procedure unnaturally
transformed a floor mosaic into a wall mosaic [29].

3. Material and Methods

3.1. Photogrammetric Digital Survey

The production of the three-dimensional model of the mosaic surface was carried out
through two photogrammetric surveys carried out in 2018 and 2020. The frames were
acquired along horizontal bands (ensuring an average overlap of 80% both horizontally
and vertically) at a distance of about 0.5 m from the mosaic surface using a Nikon D80
reflex camera (CCD sensor (23.6 × 15.8 mm) with 12.2 million pixels and a fixed focal
length of 24 mm). The camera was set in aperture priority mode (f/9 value) and with an
ISO sensitivity equal to 100. In order to reference the 3D model in Cartesian space in real
metric units, a survey with a total station was also created using 163 clearly recognizable
elements on the mosaic surface as markers. Therefore, a reference system was set up with
an origin (P = 0,0,0) located in the lower-left corner of the mosaic and all the project data
were implemented in an information system managed with Quantum GIS software (Version
3.16.11 Hannover, Open Source Geospatial Fundation, Beaverton, OR, USA).
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Data processing was carried out using the Photoscan software (Agisoft Metashape
Pro, Version 1.6.4, Agisoft LLC, St. Petersburg, Russia) through the following operations:

(1) Alignment of frames using the structure-from-motion (SfM) technique [30]. Three
datasets were generated: a discrete point cloud describing the object’s starting geom-
etry, the positions of the camera at the time of the acquisition of the frames and the
internal calibration parameters of the camera (focal length and three radial and two
tangential distortion coefficients relative to the main point).

(2) Geometry construction through the generation of a dense cloud.
(3) Positioning of the 3D model in Cartesian space. The points detected with the total

station were entered as ground control points (GCPs) within the software. The result
was the processing of a dense metric and georeferenced cloud, obtaining an average
registration error of 0.007 m for the 2018 survey and 0.005 m for the 2020 survey.

(4) Mesh generation by transforming the three-dimensional model from a point cloud to
the surface of triangulated points. In order to recognize and adapt the discontinuities
in the model, a “multi-resolution model” routine based on automated algorithms was
used. Furthermore, an “optimization method” and a “decimation filter” were applied
to reorganize and smooth the nodes of the triangles and to simplify the model and
generate a multi-resolution model, respectively.

(5) Construction of the texture through the application of digital images to the model and
the creation of metric and geo-referenced orthophotos exported in the GeoTIFF format.

(6) Generation and export in GeoTIFF format of the digital elevation model (DEM).

3.2. Ground-Penetrating Radar (GPR)

GPR is based on the diffusion of electromagnetic pulses into the soil and the recording
of those re-radiated by buried targets characterized by sufficient dimensions and electro-
magnetic properties different from those of the surrounding ground. The quantities that
are measured are the time required for the wave to travel the path from the transmitting
antenna to a discontinuity and return to the surface (double time or two-way time) and the
amplitude of the reflected wave. The double travel time depends on the speed with which
the wave propagates within the material and provides information on the depth at which
the reflectors are located. However, the amplitude, which represents how much energy
returns to the surface after reflection, depends on the initial energy of the sent wave, the
quantity that is dissipated along the way and the contrast of the electromagnetic properties
of the materials that comprise the surface of the reflection. A complete description of the
method is available in textbooks, such as [31–35].

The factors that influence the performance of the system in terms of the detectability
of existing targets are the electromagnetic properties of the propagation medium, which
determine the depth of investigation that can be reached, which varies from point to point.
Since the attenuation of the means is a function of the radiated frequency, the use of high-
frequency antennas generally allows for enhancing the resolution power, but at the expense
of the penetration depth of the signals.

The georadar surveys were carried out on the entire surface of the mosaic in its actual
vertical position. An IDS georadar RIS-K2 with a 3000 MHz high-resolution antenna was
used for the data acquisition, whose features were considered sufficient and suitable for
an overall assessment of the conservation status of the mosaic with respect to the type of
target to be investigated and the thicknesses of surfaces to be analyzed.

Technically, data acquisition took place on 114 lines, from top to bottom every 5 cm,
where instrumental readings were executed in continuous mode (Figure 3). In addition,
several horizontal profiles and some profiles on the sides of the mosaic were acquired.
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Figure 3. Grid data acquisition (a) with an IDS georadar (b).

Raw data were processed using GPR-SLICE 7.0 software (Screening Eagle Tecnologies
Ag, Zurich, Switzerland) [36] using standard methodological approaches. In the first step,
data and trace editing were executed, inserting information such as the temporal and spatial
sampling intervals (time window, 20 ns; samples/scan, 512; scan/mark, 25; unit/marker,
1). Data were recorded and processed as 16-bit data and were converted by subtracting
out the DC drift (wobble) in the data and, at the same time, adding a gain with time. A
time-zero correction was determined to designate the starting point of the wave and the
center frequency of the antenna was matched. Then, a bandpass filter and background
removal were respectively applied to reduce noise from the oscillating components that
had a regular frequency cycle in the frequency domain and to remove striation noises
that occurred at the same time. Processed radargrams were subsequently corrected with
an automatic gain control (ACG) function [37] that was applied to each trace based on
the difference between the mean amplitude of the signal in the time window and the
maximum amplitude of the trace. In the final step, the resulting filtered radargrams were
inserted into a three-dimensional matrix from which sections were obtained at a particular
double-time interval (measured in nanoseconds). Considering the complex layering and
the reduced length of the profiles, we preferred to not apply the migration filter and we
avoided presenting results converting time to depth using a mean value with the possibility
to obtain an arbitrary and inaccurate estimate.

4. Results and Discussion

Figure 4 shows the DEMs obtained in 2018 and 2020 and Figure 5 shows some details of
the last one transparently overlaid onto the processed orthophoto. The DEM analysis in 2018
(Figure 3a,b) highlighted depressions and reliefs relative to a hypothetical plane passing
through the point of origin of the reference system (P = 0,0,0) in a spatial range of 3.66 cm.
The reliefs were mainly located on the frame of the panel where the swellings responsible
for the detachment of some mosaic tiles were clearly highlighted. The depressions, on
the other hand, affected the central and right portions of the mosaic. The presence of an
internal iron frame at the edges of the panel could, on the one hand, have favored the
onset of bubbles and swelling as a consequence of the natural oxidation processes of the
metal; on the other hand, it could have resisted deformations due to volumetric variations
of the mortars in response to changes in temperature and humidity and/or deformations
triggered by kinematic stresses (natural or artificial). This could explain the existence of
depressions detected in the central part and the onset of lesions, especially on the edges
(most resistant points) and the points of greatest weakness of the panel (central and right
part). In order to identify the surface variations from 2018 to 2020, the point clouds of the
surveys were metrically compared through the CouldCompare software (Verison 2.11 beta,
Telecom ParisTech and the R&D division of EDF, Villeurbanne, France). Figure 6 shows
the absolute distances between the point cloud obtained by subtracting the 2020 data from

50



Appl. Sci. 2022, 12, 6965

those of 2018. On a global scale, a uniform swelling of the central part of the mosaic was
estimated to be in the range of about 4 mm.

Figure 4. DEMs obtained in 2018 (a) and 2020 (c) and the same drawings transparently placed on the
orthophoto (b,d). The values in the legend are expressed in meters.

 

Figure 5. Details of the orthophoto obtained in 2020 (a–c) and DEMs transparently overlaid on
them (d–f).
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Figure 6. Absolute distance obtained by subtracting the 2020 data from 2018 data.

Figure 7 shows the images obtained in 2018 from the visual analysis of the orthophoto
in which the areas affected by restorations, the detachment of tesserae and fractures are
highlighted. The indication of the fractures was just quantitative and therefore they were
not classified by taking into account the elevation, thickness and dimensions. The visual
analysis of the orthophoto made it possible to detect in detail every single fracture and
the detachment of tesserae present on the surface. The latter phenomenon, caused by
multiple factors, was aggravated by the vertical position of the mosaic, which, compared
with the original horizontal position, determined the displacement on the ground and the
irreversible loss of the individual tiles or portions of the mosaic. The fractures had two
main alignments: one vertical/horizontal, which mainly affected the edges of the mosaic,
and one diagonal to the mosaic, which concerned the central/right portion of the panel.
The latter was particularly relevant and fell into the areas of greatest depression recorded
in the digital surface elevation model. The presence of restored and consolidated areas
on the left side may have increased the resistance of the surfaces, avoiding the onset of
superficial lesions.

 

Figure 7. Restorations, detachments of tesserae and fractures reported on the orthophoto (a) and the
DEM (b).

Regarding the GPR results, anomalies due to the presence of the iron support reinforce-
ment present under the frame stood out in the different time slices (Figure 8). The degrees
of amplitude variation in the time-slices were assigned a color scale that was chosen in
order to show sufficient contrast to make the anomalies easily recognizable: light green cor-
responded to low amplitudes, while red corresponded to high amplitudes. The anomalies
visible in these representations depicted the spatial distribution of the amplitudes of the
reflections at specific depths within the grid. Within the sections, low amplitude variations
expressed small reflections that indicated the presence of homogeneous material. High
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amplitudes, on the other hand, denoted significant discontinuities in the investigated sur-
face. In the most superficial part, we saw some anomalies of high amplitude that denoted
a variation in the consistency of the materials (Figure 8b), which were located mainly on
the left side of the mosaic. This aspect could be related to the presence of depressions and
diagonal fractures in the central area and right side of the panel. The anomaly on the right
side, near the border, was located at the point where there was swelling.

 

Figure 8. Details of the orthophoto obtained in 2020 (a) and slices relating to the time slices of
0.35–0.88 ns (b), 1.88–2.4 ns (c) and 3.34–3.87 ns (d).

In order to understand the inner structure, in the following part, the analysis of
photographic documentation, made between 1916 and 1917, which records all phases of
the moving and the final vertical installation, was jointly analyzed with GPR radargrams
and slices. Following the images, it is known that the mosaic was housed on some blocks of
rock. In Figure 9a, it is possible to note the original stratigraphy by recognizing, from top to
bottom, the nucleus, the rudus and the screed covering the stone beams. Subsequently, the
section was cleaned, the screed was removed and the stone structure was brought to light.
Some wedges separated the rudus from the blocks of rock (Figure 9b). Then, the surface of
the section was leveled and the rudus was cleaned of residual lime for the realization of
the support frame (Figure 9c). In the next phase, equally spaced holes were drilled in the
rudus, three of which are visible in Figure 9d.

From the analysis of the georadar results, it was assumed that these holes were drilled
to anchor the rudus to the frame under construction by means of pins. Figure 10b shows
the acquired radargram at the edge of the frame, as indicated by the green arrow on the
mosaic orthophoto (Figure 10d). With red circles, the positions of the holes visible in the
photos are indicated. At those points, hyperbolas are attributable to the presence of iron
pins. However, there are other anomalies (indicated with yellow arrows) of the same nature.
At the edges, the close hyperbolas reflected the positions of the nails used to fix the iron
L-bars (blue arrows) installed in the following stages. Figure 10c shows the radargram
acquired at the edge of the original frame, as indicated by the magenta arrow on the mosaic.
The anomalies persisted and another one was highlighted on the left (red arrow). There
were no more anomalies in the upper band. Then, the pins penetrated the mosaic by at least
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15 cm (a few cm in the original one). The radargram acquired in the upper band, again at
the edge of the original mosaic, highlighted the same anomalies found below (Figure 10a).
Here, the pins are still visible from the top of the frame.

 

Figure 9. Photo no. 4138-1916-EX 306 (a), photo no. 4131-1916-EX 299 (b), photo no. 4129-1917-EX
297 (c) and photo no. 4130-1916-EX 298 (d).

 

Figure 10. Location of the anchor pins (indicated by red circles) and further anomalies on three
horizontal radargrams (b–d) located at the positions of the colored arrows (a).

The same situation is found on the sides where two hyperbolas are visible (Figure 11),
in addition to the pins visible with the naked eye.

Figure 12 shows the digital model of the processes followed before applying the frame
and removing the stone.
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Figure 11. Orthophoto of the left and right sides of the mosaic and radargrams labeled 01 and 02.
Red dots indicate visible pins.

 

Figure 12. Digital model with the locations of the blocks of rock and the anchor pins.

The external frame was probably made using wooden crosspieces measuring 25 × 13 cm.
Figure 13a shows a detail of Figure 9d (photo no. 4130-1916-EX 298), where in the background,
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a wooden crosspiece appears with regular carvings. They were assumed to be about 10 cm
wide and placed at intervals of about 22 cm. Figure 13b shows the digital model of the carved
frame. It was assumed that this element is related to the underlying part of the longitudinal
crosspiece that was specially prepared to house the elements of the internal filling.

 

Figure 13. Photo no. 4130-1916-EX 298 (a) and digital model of the frame with indication of the
notches using red arrows (b).

The anchoring of the wooden crosspieces with the mosaic is described in the previous
section. To reinforce the structure, four angular iron bars were added (Figure 14). Holes
were also drilled to position the protective covering of the front part of the mosaic. A 2
cm board was placed under the wooden crosspieces, which were placed under the stone
crosspieces (Figure 14a). This table was probably removed in the next phases.

 

Figure 14. Photo no. 4132-1916-EX 300 (a), a digital model with the anchoring of the frame and
addition of iron angles (b) and a cross-section (c).

A protective sheet was added to the surface, which was blocked with a board on the
edge by means of nails in the pre-drilled points in the previous step (Figure 15a). Some
sides were added (10 cm wide and 5 cm high) in between where the wide boards were to
be placed (Figure 15b). The gaps were subsequently sealed with mortar (Figure 15c). After
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which, the lifting of the recessed mosaic began (Figure 14d), which was placed in a vertical
position on a support (Figure 15e).

 

Figure 15. Photo no. 4133-1916-EX 301 (a), photo no. 4134-1916-EX 302 (b), photo no. 4135-1916-EX
303 (c), photo no. 4157-1917-EX 325 (d) and photo no. 4173-1917-EX 341 (e).

On the back, from a historical photo, an alternation of narrow dark boards and wide
light boards, 10 cm and 22 cm wide, respectively, can be noted (Figure 16a). In the GPR slice
relating to the time window 1.88–2.4 ns (Figures 8b and 16b), a series of vertical anomalies
were highlighted that began directly in contact with the rudus. It was plausible that the
wooden structure placed at the rear of the mosaic traced this structure in some way. In
particular, it is likely that the narrow boards were actually beams or murals 10 cm wide
(with a maximum length of 14 cm, depending on the thickness of the shaving made under
the rudus), which rested directly under the mosaic. As can be seen from many of the
radargrams, some profiles seemed to be characterized by the presence of metal elements
as brackets to block the vertical wooden beams from the rudus. An example is shown in
Figure 17, where three identifiable hyperbolas emerged clearly with the rudus, the filling
lime and the closing table. Hyperbolas 1 and 2 (Figure 17a) often penetrated the mosaic and
probably represented a system for anchoring the possible wooden beam (vertical georadar
anomalies) directly to the mosaic. At approximately hyperbola 3, a sort of reinforcement
was evident under the vertical structures (Figure 18). The spaces were probably filled
with plaster and closed everything with the boards that were visible on the back. The
slice (Figure 17b), which was related to the time window between 3.34 ns and 3.87 ns, was
enhanced to visualize the three anomalies jointly, even if detected at different depths.
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Figure 16. Historical photo (photo no. 4172-1917-EX 340) straightened and positioned on the back of
the mosaic (a) and time slice relating to the time window 1.88–2.4 ns (b).

 

Figure 17. Main anomalies, labeled 1, 2 and 3, indicated on the radargram (acquired as indicated by
the magenta arrow) (a) and on the slice relating to the time window 3.34–3.87 ns (b).

 

Figure 18. Anchor system digital model.

Therefore, after the removal of the blocks of rock, the vertical beams would have been
housed (directly or indirectly) thanks to the notches located at the base of the longitudinal
beams of the frame. In this system, it is possible to make four hypotheses based on the
presumed depth of the notch, the location of the vertical beams and the closing plank.
The hypotheses in question took into account the position and shape of the acquired
georadar anomalies:

Hypothesis 1. (Figure 19): Support boards (25 × 12 cm) were inserted at regular intervals under
the rudus. The boards were closed in the lower part with boards (10 × 2 cm) that protrude by
2 cm outside. The empty space between the support boards was filled with plaster. We consider
this hypothesis the least probable, as it does not explain the presence of the georadar anomalies
previously discussed.

58



Appl. Sci. 2022, 12, 6965

 

Figure 19. Hypothesis 1 digital model: locations of support boards under the rudus (a), complete
support system (b), cross-section (c) and longitudinal section (d).

Hypothesis 2. (Figure 20): The vertical beams inserted at regular intervals were worked to be
housed and nailed to the frame. Between one beam and the other, closing tables were inserted through
brackets. The gaps left empty between the beams were filled with plaster.

 
Figure 20. Hypothesis 2: locations of vertical beams (a), locations of anchoring brackets (b), locations
of closing boards (c), complete support system (d), cross-section (e) and longitudinal section (f).

Hypothesis 3. (Figure 21): This differs from hypothesis 2 in that the incision was made to be 12 cm
in order to completely contain the vertical beam that rests directly under the rudus and protrudes
2 cm outside.
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Figure 21. Hypothesis 3 digital model: positions of vertical beams (a), locations of anchoring
brackets (b), arrangement of closing tables (c), complete support system (d), cross-section (e) and
longitudinal section (f).

Hypothesis 4. (Figure 22): The planks were anchored to the vertical beams by means of brackets
according to a “T” system. Closing tables were inserted between one plank and the other. The gaps
left empty between the beams were filled with plaster. This is the hypothesis that best matches the
shape and position of the georadar anomalies.
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Figure 22. Hypothesis 4 digital model: vertical beam positions (a), anchoring bracket locations (b),
board arrangements (c), external board positions (d), complete support system (e), cross-section
(f) and longitudinal section (g).

5. Conclusions

In this study, the issue connected to the conservation of the Alexander Mosaic was
investigated in an organic and exhaustive way, starting from the analysis of the available
knowledge framework. From an operational point of view, the adopted research methodol-
ogy provided for the recognition of all available documentation, an accurate survey of the
current state from the morphological point of view and non-invasive diagnostic investiga-
tions. This allowed for obtaining a further preliminary and in-depth knowledge phase of
the asset to also provide a framework for comparison with what emerged from previous
studies and, therefore, data on any changes in the state of conservation of the asset. In
detail, in addition to a slight progression of the degradation phenomena already recorded
in 2018, regarding the lesions, anomalies in the support emerged from the diagnostic results,
which suggested the presence of discontinuities in the background mortar. This could
have probably been due to the presence of different materials, with particular reference
to the mosaic embedding system put in place during the transfer in 1916, consisting of a
wooden frame placed along the perimeter, with interposed wooden joists reinforced with
metal elements. However, to date, insufficiently exhaustive data has emerged regarding
the state of conservation of the support that is not visible and cannot be inspected directly
and the actual state will be fully detected only after moving the mosaic from its current
position, making the back accessible. Currently, the first phase of the restoration can now
be considered completed, which was limited to interventions to make the mosaic surface
safe, which was necessary in the face of the detected degradation phenomena and limited
only to the elimination of the conditions that can generate critical issues during movement
(loose tiles, presence of continuity solutions between the layers, etc.). Subsequently, the
mosaic will be overturned, following which it will be possible to access the support to
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promptly check its conservation status, fine-tune the subsequent conservation interventions
and possibly provide for the construction of a new collection system should the existing
one prove to be no longer suitable. Subsequently, the mosaic will be placed in a horizontal
position that will allow for the restoration of the mosaic surface and the final rearrangement
to be carried out. The restoration operations, which will also affect the rear parts, will be
preceded by further diagnostic analyzes once the mosaic is overturned. In this way, at the
end of the project, a complete model will be obtained, which will integrate all the results
and will represent a precious source of knowledge on this important artifact.
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Abstract: Many studies in the literature have presented multiple remote sensing techniques for defect
inspection of paintings. At present, however, papers on defect inspection and restoration of oriental
architectural arts—such as door god paintings—are still rare. If an aged and damaged door god
painting needs a restoration, then following the style and treatment skill of the original artist as
much as possible is important for the restoration. Unfortunately, it is usually difficult to access the
original artists for some of the aged door god paintings. This paper considers the texture features of
auspicious patterns of armors on warrior door gods as useful information to recognize styles of door
god paintings by unknown artists. First, a two-level two-dimensional discrete wavelet transform
coupled with co-occurrence matrix calculation was adopted to analyze the texture features, based
on the descriptors of angular second moment (ASM), entropy (ENT), contrast (CON), homogeneity
(HOM), dissimilarity (DIS), correlation (COR), and cluster tendency (CLU), in the four orientations
of 0◦ (horizontal), 45◦ (vertical), and 90◦ and 135◦ (double diagonal). Second, a two-tailed t-test
based on the analyzed texture features was introduced into the hypothesis testing for demonstrating
the master and apprentice relationships between the surveyed artists, and for recognizing the door
god painting styles of unknown artists as well. The experimental results show that the proposed
method effectively describes the texture features of the auspicious patterns of the surveyed door god
paintings, and is able to determine the useful co-occurrence features for recognizing unknown artists’
painting styles.

Keywords: door god paintings; texture features; discrete wavelet transform; two-tailed t-test; painting
style recognition

1. Introduction

Door god paintings are frequently seen on the gates of traditional residences or temples,
and belong to one kind of Chinese architectural artworks (see Figure 1 [1]). Because of
Chinese people’s worship of animism in ancient times, some of the door god characters
are imaginary. Today, there are several pairs of door gods representing faith in home
safety and evil avoidance. The noun “door god” can be seen in the period as early as
before the Qin Dynasty [2]. Essentially, the door god characters can be separated into two
categories: warrior, and civil official. The greatest difference between warriors and civil
officials is that a set of armor is necessary for a warrior, but unnecessary for a civil official.
Shen Tu (Chinese transliteration: 神荼) and Yu Lei (Chinese transliteration: 鬱壘) are the
earliest warrior door gods and prevailed in the Han Dynasty [3]. In addition to Shen Tu
and Yu Lei, Chin Shu Pao (Chinese transliteration: 秦叔寶) and Yu Chih Kung (Chinese
transliteration: 尉遲恭) are also frequently seen warrior door gods in the temples of Taiwan.
Several auspicious patterns—such as lock chain, turtle back, fish scales, flowers, clouds,
and the Chinese characters of “回” and “卍” (see Figure 2)—have been adopted to decorate
warriors’ armor. For each of the above auspicious patterns, the displayed texture features
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may be different due to the creativity of different artists. The different texture features
mean that every artist has his/her own unique painting style via his/her special treatment
or skill with door god paintings [4].

Any famous door god painting generally has a long history, but that long history may
result in the impossibility of identifying the original artist. Additionally, door god paintings
use residence or temple gates as their support materials, and so the placed locations of
door god paintings belong to a semi-outdoor environment, where door god paintings are
apt to suffer as a result of climate factors—such as temperature, relative humidity, and
wind—or human factors, such as ritual activities and inadvertent collisions. Hence, the
conservation and maintenance of door god paintings are more challenging than for other
paintings or artworks collected in a well-controlled, indoor environment, such as an art
gallery or museum. When restoring an aged and damaged door god painting, the treatment
skill and the procedure must follow its original style as best as possible in order to preserve
the unique style of the door god painting. In case of the original artist being unknown, the
original style cannot be correctly followed by the painting restoration.

 
(a) (b) 

Figure 1. A pair of door god paintings: (a) Yu Chih Kung (Chinese transliteration: 尉遲恭): warrior
on the left door; (b) Chin Shu Pao (Chinese transliteration: 秦叔寶): warrior on the right door [1].
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 

 

(g)  

Figure 2. Example images of auspicious patterns on paintings of warriors’ armor: (a) lock chain pat-
tern; (b) turtle back pattern; (c) fish scales pattern; (d) flowers pattern; (e) clouds pattern; (f) Chinese
character pattern: “回”; (g) Chinese character pattern: “卍”.
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2. Research Aim

The types of deterioration of door god paintings usually include lifting, cracks, shrink-
age, atomization, chalking, etc. As far as we know, the current literature discussing
restorations of door god paintings is quite scarce. Related image processing methods have
also demonstrated their effectiveness in artwork defect detection by providing useful infor-
mation for artwork restoration [5–7]. This paper’s main contributions are as follows: First,
to apply an image-processing-based texture analysis method to extract the texture features
from the acquired auspicious pattern images. Second, hypothesis testing is implemented
on the texture feature dataset to see the similarity of the auspicious patterns between the
surveyed artists, and to demonstrate the master and apprentice relationship as well. Finally,
hypothesis testing also is applied to the texture feature dataset to see to which painting
style(s) among the surveyed artists the door god painting style(s) of the unknown artist(s)
are the closest. In this way, a door god painting restoration can retain its originality as
much as possible.

3. Backgrounds

3.1. Artists of Door God Paintings in Taiwan

Since around the 1960s, there have been certain famous artists who created door
god paintings for traditional residences or temples in Taiwan. However, most of these
famous artists are now deceased, and so their created door god paintings are regularly
restored by their apprentices, some of whom are even members of the famous artists’
family. For instance, the two famous artists of door god paintings—Yu-Feng Chen (Chinese
transliteration: 陳玉峰, 1900–1964) and Chun-Yuan Pan (Chinese transliteration: 潘春源,
1891–1972)—were both apprentices to an artist from Quanzhou, Fujian, China, and most of
their door god paintings are distributed over temples in southern Taiwan. Shou-Yi Chen
(Chinese transliteration: 陳壽彝, 1934–2012, the eldest son of Yu-Feng Chen) and his cousin,
Tsao-Ju Tsai (Chinese transliteration: 蔡草如, 1919–2007), were both apprentices of door
god painting to Yu-Feng Chen. Among the door god paintings of Yu-Feng Chen, Shou-Yi
Chen, and Tsao-Ju Tsai, there is a special painting style belonging to their family genre.
Similarly, Chun-Yuan Pan, Li-Shui Pan (Chinese transliteration: 潘麗水, 1914–1995, the son
of Chun-Yuan Pan), and Yueh-Hsiung Pan (Chinese transliteration: 潘岳雄, 1943–present,
the eldest son of Li-Shui Pan) also created door god paintings with a special painting style
belonging to their family genre. Consequently, a mentorship genealogy concerning the
creation of door god paintings in southern Taiwan can be established. As for artists in
other areas of Taiwan, Hung [2] established a mentorship genealogy for a famous artist in
Hsinchu, Taiwan, and compiled a list of the door god paintings created by the artist and
his apprentices.

There have been a few cases of door god painting restoration in Taiwan in the past. In
1968, S.-Y. Chen cooperated with two other artists to refurbish aged door god paintings
of the Qingshui Zushi (Divine Ancestor) Temple in New Taipei City, Taiwan [4]. Another
artist, Lien-Cheng Hsu (Chinese transliteration: 許連成, 1919–2002), created door god
paintings for a historic temple in northern Taiwan in 1975, and Hsu’s door god paintings
were refurbished in 1989 by Chia-Cheng Liu (Chinese transliteration:劉家正, 1955–present).
In fact, C.-C. Liu refurbished many of Hsu’s door god paintings, but Liu’s painting style
belongs to the family genre of Pan rather than Hsu, and so there is a little controversy about
the restoration approach.

The original artists of the door god paintings in Taiwan can almost always be identified
but, unfortunately, in Kinmen and Penghu—which are the outlying islands of Taiwan—the
original artists of door god paintings are mostly difficult to ascertain. Along with the
immigration of ancestors from southern Fujian (China) to Taiwan, Kinmen and Penghu
were selected as the relay stops. Therefore, there certainly should be some kind of master
and apprentice relationships between the artists in southern Fujian and Taiwan, including
the outlying islands.
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3.2. Texture Feature Analysis for Paintings

An image showing a frequency of tonal change, such as zebra crossings and knitting,
can be regarded as one with texture features [8]. Similarly, an auspicious pattern image
also shows the frequency of tonal change. Several studies in the literature have discussed
the applications of texture feature analysis to painting restoration [9–11], painting clas-
sification by artistic genre [12–14], painting style recognition [15,16], and raw material
investigation [11,17]. Cai and Siegel [9] explored two texture features—energy (or homo-
geneity) and entropy (or disorderliness)—to model the visual appearance of paintings
before and after surface varnishing. Based on a calculation of the gray-level co-occurrence
matrix (GLCM), energy and entropy demonstrated that they are sensitive to the effect
of varnishing—especially as entropy shows the increase in a painting’s contrast by var-
nishing. The statistic calculation of GLCMs is a common approach, and has been used to
extract texture features for the classification of traditional Chinese paintings based on the
painters [18].

Wavelet-based analysis, where multiscale and multiorientation image decomposition
is performed, has been applied to a collection of high-resolution digital scans of drawings
or paintings to describe the painting characteristics [19]. Cetinic and Grgic [20] introduced
various classifiers into automated painter recognition based on the texture features extracted
by GLCM and discrete wavelet transforms (DWTs). Undoubtedly, the statistical properties
of wavelet coefficients have demonstrated that they are successful in the stylistic analysis
of paintings [21,22]. Referring to related research [23,24], the process of texture feature
extraction first conducts image decomposition using DWT to obtain sub-band images
that are multiscale and multiorientation. Secondly, GLCMs are generated from sub-band
images, and finally the texture descriptors—such as energy, entropy, contrast, correlation,
and others—are calculated from GLCMs.

4. Research Material

Based on the investigations of Lee [25] and Kang [26] on door god paintings in Taiwan,
some of their investigated temples and other temples in Taiwan were selected as the study
sites, and smartphones (model ASUS_Z01HDA or Sony_J9110) were used to acquire the
auspicious pattern images. In total, 52 temples were visited and 453 auspicious pattern
images were acquired (see the zip folder in the Supplementary Materials). Table 1 lists the
number of acquired auspicious pattern images, which involve fish scales, lock chain, turtle
back, and “回” patterns by the 31 artists. Among the four auspicious patterns, lock chain
and fish scales are the most common patterns adopted in door god paintings, and so they
have a much greater number of acquired images than the others. Moreover, the stronger
the artist’s reputation, the greater the number of auspicious pattern images acquired.

In addition to the 453 auspicious pattern images of the surveyed artists, we also
acquired 12 auspicious pattern images of unknown artists from temples in Kinmen for
the study of painting style recognition. In order to avoid blurred imaging of the door
god paintings, support of the smartphones by a tripod instrument instead of a handheld
approach was necessary. Considering the different sizes of the door god paintings, the
appropriate instrument height and object distance had to be determined by trial and error
during the imaging process. Most of the trial and error results in the field indicate that
the appropriate instrument height and object distance are ~1.5 m and 1–2 m, respectively.
Because the door god paintings are located in semi-outdoor environments, sometimes
the imaging process suffers as a result of the structures of the temples, the azimuths of
sunshine, or the weather, leading to an inappropriate illuminated image. An inappropriate
illumination will result in an image with low quality in contrast and brightness. The f-stop
numbers (apertures) of the ASUS_Z01HDA and Sony_J9110 are f /1.7 and f /1.6 (f : lens
focal length), respectively. Thus, an automated adjustment of lens focal length was adopted
in order to acquire the auspicious pattern images with appropriate contrast and brightness.
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Table 1. Numbers of auspicious pattern images, with their corresponding artists.

Artist
Auspicious Pattern

Total
Fish Scales Lock Chain Turtle Back “回”

Lee, H.-C. (李漢卿) 6 - - - 6
Wang, H.-H. & Hung, C.-S. (王錫河 &洪純宋) 5 - - - 5

Lin, C.-H. (林中信) 8 3 - - 11
Chang, C.-K. (張劍光) 5 2 - - 7

Yu, C.-H. (游景賢) 3 3 - - 6
Liu, C.-C. (劉家正) 14 16 - - 30
Pan, Y.-H. (潘岳雄) 12 3 - - 15
Mei, Y.-S. (梅月杉) 4 2 - - 6

Hsu, M.-Y. (許明義) 6 5 - - 11
Tsai, M.-H. (蔡孟學) 4 1 - - 5

Tsai, H.-Y. & Tsai, W.-C.
(蔡海永 &蔡文傑) 3 4 - - 7

Yen, W.-P. (顏文伯) 4 2 - - 6
Su, T.-F. (蘇天福) 8 10 - - 18

Chung, Y.-S. (鐘銀樹) 4 1 - - 5
Cho, F.-T. (卓福田) 2 - - - 2

Chen, C.-S. (陳秋山) 5 1 - - 6
Wang, H.-H. (王錫河) 6 5 1 - 12

Chu, Y.-L. (朱銀) 5 4 1 - 10
Lu, S.-W. (呂石旺) 4 3 2 - 9
Kuo, F.-T. (郭佛賜) 12 7 4 - 23

Chen, Y.-C. (陳陽春) 11 11 4 - 26
Pan, L.-S. (潘麗水) 67 35 2 3 107

Chuang, W.-N. (莊武男) 5 11 1 - 17
Wang, J.-Y. (王瑞瑜) 2 4 - 2 8
Dragon (鹿港小龍) 1 4 - 1 6

Chang, H.-L. (張火爐) 2 3 - 3 8
Huang, M.-S. (黃名樹) 1 2 - 1 4

Tsai, L.-C. (蔡龍進) 15 5 - - 20
Hsu, L.-C. (許連成) 8 - 1 5 14
Chen, S.-Y. (陳壽彝) 13 20 6 4 43

Total 245 167 22 19 453

5. Methodology

5.1. Texture Feature Extraction

Figure 3 shows a diagram of the texture feature extraction proposed in this paper.
Before performing the 2-level 2-dimensional (2D) DWT, each RGB-wise auspicious pattern
image is transformed into a grayscale one. In other words, the color information is not taken
into consideration for our DWT operation. After the 2-level 2D DWT, an approximation
image and three detailed images in horizontal (0◦), vertical (90◦), and diagonal (45◦ or
135◦) orientations are derived. Based on the three detailed images, the GLCMs in the
4 orientations are calculated. Hereafter, each GLCM calculates the co-occurrence features,
consisting of angular second moment (ASM), entropy (ENT), contrast (CON), homogeneity
(HOM), dissimilarity (DIS), correlation (COR), and cluster tendency (CLU). In this research,
the co-occurrence features in a certain orientation can be expressed as a 1 × 7 vector, and
so the co-occurrence features in the 4 orientations are finally integrated into a 4 × 7 matrix.
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Figure 3. Scheme of texture feature extraction from auspicious pattern imagery.

5.1.1. Two-Level 2D DWT

Wavelet transform (WT) is a linear transform developed from Fourier transform,
where the basic functions are sinusoids, but the wavelet functions vary with frequency
and limit duration, thus offering better resolutions along the frequency scale [27,28]. In the
beginning, the development of WT was for signal processing, but not for image processing,
until Daubechies and Mallat provided the discretization of WT and established the con-
nection between WT and the multiresolution theory, respectively. This paper regards an
auspicious pattern image as the change in a discrete signal along a 2D scale. A 2D DWT can
decompose the auspicious pattern image into many scales, which range from the roughest
scale to the finest [29–31]. Through a decomposition of 2D DWT, which is implemented by
consecutive low-pass (L) and high-pass (H) filtering through one-dimensional convolution,
the auspicious pattern image I(m, n) can be divided into sub-band images, including an
approximation image (LL) and three detailed images in horizontal (HL), vertical (LH), and
diagonal (HH) orientations [28]. The parameters of m and n denote the number of pixels of
the image in the row and column directions, respectively.

The approximation image (LL) can be further decomposed in the next level to obtain
the images of LL, HL, LH, and HH, with the sizes of (m/2, n/2). For the decomposition
of each level, the alternative convolutions of the approximation image and the low-pass
or high-pass filters in the column or row directions are operated using a downsampling
function by 2. Thus, the 2D DWT finally produces the pyramid representations of the
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sub-band images, which occupy the same amount of storage as the original auspicious
pattern image [32].

Several studies in the literature indicate that the 2-level 2D DWT (i.e., 2D DWT in the
second level) can robustly extract the details of the image texture features from the original
images [23,24,28,33]. After decomposition in the second level, the 7 sub-band images,
including 6 detailed images (HL1, LH1, HH1, HL2, LH2, and HH2) and one approximation
image (LL2), are obtained. The indices of “1” and “2” signify the first and second levels,
respectively. Among the above 6 detailed images, HL2, LH2, and HH2 were chosen to
calculate the paper’s GLCMs.

5.1.2. Calculation of the Gray-Level Co-Occurrence Matrix (GLCM)

A GLCM is a one-dimensional square matrix, where each element in the row (i) and
column (j) directions records a relative occurrence frequency (Mij) of a pair of pixels with the
same element value, separated by a certain pixel distance (D) in one orientation (θ) [23,28].
Figure 4 shows an illustration of GLCM production at different orientations and pixel
distances for a pixel of interest in the square matrix, along with an example of statistics
for Mij at 90◦ (vertical direction) and one pixel distance. Figure 4b shows the GLCM of an
example detailed image, where the image size is 7-by-7 (but not limited to square) and the
number of gray levels is 8. In the GLCM, the element (3, 0) has a value of 1, because there
is only one instance in the example detailed image where the vertically adjacent pixels (2,
1) and (1, 1) have gray-level values of 3 and 0, respectively.

D

D
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i j

j
i

j
i

Figure 4. Illustration of GLCM production: (a) A pair of pixels with the same element value separated
by the different pixel distances in 4 orientations. (b) Relative occurrence frequency recording of gray
levels of digital images, using a GLCM with D = 1 and θ = 90◦.
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Except for the four necessary orientations of 0◦, 45◦, 90◦, and 135◦, several studies
have indicated that the different pixel distances (D) have a great influence on the accuracy
of GLCM-based texture description, and demonstrated that one pixel distance (D = 1) can
lead to better accuracy of the feature extractions [23,34]. This paper introduces an adjacent
distance of bordering on pixels instead of striding over pixels into the calculation of the
GLCMs.

5.1.3. Calculation of Co-Occurrence Features

The GLCMs obtained from the detailed images of HL2 and LH2 further calculate the
co-occurrence features in 0◦ and 90◦, respectively. Both of the GLCMs in 45◦ and 135◦
obtained from the detailed image of HH2 further calculate the co-occurrence features in the
double-diagonal orientations. The 7 aforementioned co-occurrence features can be obtained
using the following texture descriptors:

Angular Second Moment (ASM): The uniformity of distribution of the gray level in an
auspicious pattern image can be represented thus [35]. The texture descriptor of ASM is
expressed as follows:

n

∑
i=1

n

∑
j=1

P2
ij (1)

The value of ASM ranges from 1/n2 to 1. When the value is 1, it means a constant

image. Here, Pij is calculated as
Mij

∑n
i=1 ∑n

j=1 Mij
.

Entropy (ENT): A statistical measure of randomness determines the textural interfer-
ence in an auspicious pattern image [24,35]. The texture descriptor of ENT is obtained as
follows:

−
n

∑
i=1

n

∑
j=1

Pij· log
Pij
10 (2)

The larger the ENT value, the higher the textural complexity of the auspicious pattern.
Thus, there should be a highly negative correlation between ASM and ENT.

Contrast (CON): The local variations in an auspicious pattern image can be measured
by this descriptor, which is calculated as follows:

n

∑
i=1

n

∑
j=1

(i − j)2·Pij (3)

The higher the CON, the higher the image contrast will be. Hence, a CON of 0 means
a constant image.

Homogeneity (HOM): HOM can also be called an inverse differential moment, which
measures the similarity between the distributions of elements in a GLCM and those in the
diagonal GLCM [24]. The textural descriptor is defined as follows:

n

∑
i=1

n

∑
j=1

Pij

1 + (i − j)2 (4)

The representation of HOM is contrary to that of CON—the higher the HOM, the
lower the image contrast (or the more the image homogeneity) will be.

Dissimilarity (DIS): The degree of dissimilarity of the gray levels in an auspicious
pattern image is now measured. DIS is very sensitive to the arrangement of gray-level
values or tones in an imagery space, and is expressed as follows:

n

∑
i=1

n

∑
j=1

|i − j|Pij (5)

A higher DIS value means a greater dissimilarity of gray levels in the image.
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Correlation (COR): The spatial dependencies between the image pixels can be de-
fined [24] to indicate the textural directionalities of the auspicious patterns [36] by this
textural descriptor, which is calculated as follows:

∑n
i=1 ∑n

j=1(i·j)Pij − μxμy

σxσy
(6)

In other words, COR is a correlation coefficient of GLCM. The higher the COR is, the
greater is the spatial dependency of gray levels in a certain direction.

Cluster tendency (CLU): The degree of the textural clustering in an auspicious pattern
image is measured and can be obtained as:

n

∑
i=1

n

∑
j=1

(
i − μx + j − μy

)2·Pij (7)

It should be noted that a lower CLU value means higher textural clustering. Moreover,
there is an interrelationship between CLU and COR. When the values of CLU and COR are
large, there will be an indefinite textural directionality or a wide distribution of gray levels.
Here, μx, μy, σx, and σy are calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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j − μy
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(8)

5.2. Statistical Testing

This paper adopted a two-tailed t-test to test the similarity between any two auspicious
patterns, the similarity of an auspicious pattern between any two surveyed artists, or
the similarity of an auspicious pattern between the surveyed and unknown artists. The
hypotheses of the t-tests are described as follows:

5.2.1. Testing for Similarity between Any Two Auspicious Patterns

This paper aims to examine the similarities and differences between the auspicious
patterns in door god paintings in Taiwan by applying hypothesis testing to the obtained
co-occurrence features. As shown in to Figure 3, we calculated the co-occurrence feature
values for each auspicious pattern image, which were recorded as a 4-by-7 matrix. Thus, the
obtained co-occurrence feature values in a certain orientation can be arranged as an n-by-7
matrix, where n is the number of auspicious pattern images. In the fish scales pattern, for
example, the data size of its obtained co-occurrence feature values in one orientation is
245-by-7. The arrangement of the 245-by-7 matrix also means that the hypothesis testing
does not consider the different painting styles between the artists. For each orientation,
any 2 of the 4 auspicious patterns performed a two-tailed t-test, where the null (H0) and
alternative (H1) hypotheses were expressed as follows:{

H0 : Di = Dj
H1 : Di �= Dj

(9)

and Di and Dj are the n-by-7 data matrices of the extracted co-occurrence features of
auspicious patterns i and j, respectively. Thus, there is a total of C4

2 = 6 combinations for
the two-tailed t-test.
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5.2.2. Testing for Similarity of an Auspicious Pattern between Any Two Surveyed Artists

This paper demonstrates whether any two surveyed artists have a master and appren-
tice relationship by applying hypothesis testing to the extracted co-occurrence features of
the auspicious patterns of their door god paintings. For some artists, unfortunately, there
are extremely few images accessibly acquired, resulting in a non-normal distribution for
the number of tested samples. In order to control the risk of accepting a false hypothesis,
both α and β—which are the probabilities of rejecting and accepting the null hypothesis,
respectively—must be considered. For this paper, the values of α/2 = 0.05 and β = 0.1 were
introduced into the calculation of the minimum sample size (N) from the National Institute
of Standards and Technology [37]:

N ≥
(

t1−α
2
+ t1−β

)2( s
δ

)2
(10)

where s and δ denote the standard deviations of the samples and the population, respec-

tively. In this paper, s is equal to δ, so Equation (10) can be rewritten as
(

t1−α
2
+ t1−β

)2
.

Considering the degrees of freedom as 30, the values of t1−α
2

and t1−β are 1.6973 and 1.3104,
respectively; thus, the N value approximates to 9.

According to the above estimation for the minimum size of samples, this paper
considers the surveyed artists, from whom we can acquire more than 10 images (including
10 images) for some auspicious patterns, using a two-tailed t-test. Therefore, from Table 1,
only the fish scales and lock chain patterns satisfy the above condition, and there is a total of
Cna

2 (na: number of considered artists) combinations for the two-tailed t-test. In this paper,
the na values are 7 and 6 for the fish scales and lock chain patterns, respectively. The co-
occurrence features of the fish scales and lock chain patterns in an orientation are arranged
as an m-by-7 data matrix, where m (m ≥ 10) is the number of acquired auspicious pattern
images for a certain considered artist. Based on Equation (9), here Di and Dj represent the
m-by-7 data matrices of artists i and j, respectively.

5.2.3. Testing for Similarity of an Auspicious Pattern between Surveyed and
Unknown Artists

The two-tailed t-test was applied to the extracted co-occurrence features of the fish
scales or lock chain patterns of the unknown artists’ door god paintings to determine
whether there was a similar painting style between the surveyed and unknown artists.
Among the acquired 12 auspicious pattern images of the unknown artist(s), the number of
fish scales and lock chain pattern images was half each. Hence, the sample of just 6 images
is able to control the risk of accepting a false hypothesis by the two-tailed t-test, with
α/2 = 0.05, β = 0.05, and δ = 1.5s. In the two-tailed t-test, an l-by-7 (l = 6 in this paper)
data matrix was built for recording the co-occurrence features of the fish scales or lock
chain patterns in an orientation, where l is the number of acquired fish scales or lock chain
pattern images for the unknown artist(s). Based on Equation (9), here Di and Dj represent
the m-by-7 and l-by-7 data matrices of surveyed artist i and unknown artist j, respectively.

6. Results and Discussion

6.1. Texture Features of Surveyed Auspicious Patterns

The four auspicious patterns in Table 1, including fish scales, lock chain, turtle back,
and “回”, were surveyed and calculated for their co-occurrence features (texture features),
as shown in Figure 5. Here, each co-occurrence feature plotted in Figure 5 is a mean
of all of the calculated co-occurrence features of the acquired images for the auspicious
pattern. Figure 5 shows that for any auspicious pattern the co-occurrence features in the
double-diagonal orientations are approximately equal. This result demonstrates that all
four of the auspicious patterns have texture symmetry in the double-diagonal orientations.
The co-occurrence features of the four auspicious patterns are discussed as follows:
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Figure 5. Texture features of auspicious pattern examples in different orientations: (a) ASM. (b) CON.
(c) HOM. (d) ENT. (e) DIS. (f) COR. (g) CLU.

In ASM the fish scales and turtle back patterns obtained the highest and lowest co-
occurrence feature values, respectively. This result demonstrates that the fish scales pattern
images are more constant than the others. For any auspicious pattern, the distribution of
gray levels in the horizontal orientation is more uniform than those in the other orientations.

In CON, Figure 5b illustrates that the imagery contrasts of the auspicious patterns
in the double-diagonal orientations are higher than those in the horizontal or vertical
orientations. Except for the “回” pattern, the co-occurrence feature values in the vertical
orientation are lower than those in the other orientations, where the co-occurrence feature
values of the turtle back pattern are the highest. Thus, compared with the other patterns,
the turtle back pattern usually has the highest imagery contrast. Figure 5b,c illustrate that
the concave shapes of the obtained curves in HOM run contrary to the convex ones in CON.
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Due to the slightly higher HOM values of the fish scales pattern, the textural descriptor of
HOM demonstrates that the fish scales pattern has a lower contrast than the other patterns.
The lower imagery contrast also means a greater imagery constant.

In addition to CON and HOM, the shapes of the obtained curves between ENT and
ASM are also contrary. The ENT value of the “回” pattern in the vertical orientation is clearly
much larger than that of the other patterns in the different orientations. This result shows
that, compared with the other patterns, the “回” pattern in the vertical orientation has the
highest textural complexity. Excluding the vertical orientation, the turtle back pattern has
the highest textural complexity. However, there are similar shapes of the obtained curves
between CLU and COR. In COR, the values in the horizontal and vertical orientations are
far higher than those in the double-diagonal orientations. Among the auspicious patterns,
the “回” pattern has an extreme difference in the COR values between the horizontal or
vertical orientations and the double-diagonal ones. Thus, this paper demonstrates that
greater spatial dependency of gray levels in the auspicious pattern images means higher
CLU values, i.e., higher textural clustering.

In DIS, Figure 5e shows that the auspicious pattern images have higher dissimilarity
of the gray levels in the double-diagonal orientations than in the horizontal or vertical
orientations. It is noticeable that the shapes of the obtained curves between CON and
DIS are similar (see Figure 5b,e). Hence, textural analysis demonstrates that there is an
interrelationship between CON and DIS for the four auspicious patterns. A higher contrast
of an auspicious pattern image means a higher dissimilarity of the gray levels in the image.

6.2. Similarity between Any Two Auspicious Patterns

A two-tailed t-test was applied to the calculated co-occurrence features to see the
similarity between any two of the four auspicious patterns, and the results of the six
combinations are shown in Table 2. The results confirm that there is the most textural
difference between the fish scales and lock chain patterns, and the most textural similarity
between the lock chain and turtle back patterns. This result indicates that it is easy to
distinguish the fish scales patterns from lock chain patterns, but very difficult to distinguish
the lock chain patterns from turtle back patterns. In spite of that, the textures of the fish
scales and lock chain patterns were sometimes confused when considering some of the
textural descriptors in certain orientations, e.g., CON in the vertical orientation.

Table 2 also indicates that the fish scales and turtle back patterns in the horizontal
and vertical orientations almost have a significant texture similarity. However, applying
the textural descriptors of ASM, HOM, ENT, and DIS to the texture features in the double-
diagonal orientations confirms that there is a significant difference between the fish scales
and turtle back patterns. In other words, the four above textural descriptors in the double-
diagonal orientations are useful in recognition of the fish scales and turtle back patterns.
Finally, most of the textural descriptors in any orientation are inadequate to distinguish the
“回” pattern from the others unless one considers the textural descriptor of COR.
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Table 2. Two-tailed t-test results for similarity between any two auspicious patterns.

Tested Patterns Orientation
Co-Occurrence Feature

ASM CON HOM ENT DIS COR CLU

Fish scales
vs.

Lock chain

0◦ H1 H1 H1 H1 H1 H1 H0
45◦ H1 H1 H1 H1 H1 H0 H1
90◦ H1 H0 H1 H1 H0 H0 H0
135◦ H1 H1 H1 H1 H1 H0 H1

Fish scales
vs.

Turtle back

0◦ H1 H0 H0 H0 H0 H0 H0
45◦ H1 H0 H1 H1 H1 H0 H0
90◦ H0 H0 H0 H0 H0 H0 H0
135◦ H1 H0 H1 H1 H1 H0 H0

Fish scales
vs.

“回”

0◦ H0 H0 H0 H0 H0 H1 H1
45◦ H0 H0 H0 H0 H0 H1 H0
90◦ H0 H0 H0 H0 H0 H1 H1
135◦ H0 H0 H0 H0 H0 H1 H0

Lock chain
vs.

Turtle back

0◦ H0 H0 H0 H0 H0 H0 H0
45◦ H0 H0 H0 H0 H0 H0 H0
90◦ H0 H0 H0 H0 H0 H0 H0
135◦ H0 H0 H0 H0 H0 H0 H0

Lock chain
vs.

“回”

0◦ H0 H0 H0 H0 H0 H1 H0
45◦ H0 H0 H0 H0 H0 H1 H0
90◦ H0 H0 H0 H0 H0 H1 H1
135◦ H0 H0 H0 H0 H0 H1 H0

Turtle back
vs.

“回”

0◦ H0 H0 H0 H0 H0 H1 H0
45◦ H0 H0 H0 H0 H0 H1 H0
90◦ H0 H0 H0 H0 H0 H1 H1
135◦ H0 H0 H0 H0 H0 H0 H0

H0: supports the hypothesis that the texture features between the two auspicious patterns are similar; H1: supports
the hypothesis that the texture features between the two auspicious patterns are dissimilar. Confidence level
α: 0.05.

6.3. Similarity of an Auspicious Pattern between Any Two Surveyed Artists

Figure 6 shows a diagram of master and apprentice relationships for the surveyed
artists, who acquired more than 10 auspicious pattern images for the fish scales or turtle
back patterns. Some of the artists shown in Figure 6 were not surveyed for this paper,
but they are/were the teachers of the surveyed artists, and are necessary to display in the
diagram of the master and apprentice relationships. Figure 6 illustrates that the surveyed
artists can be approximately separated into two family genres, i.e., Y.-F. Chen and C.-Y.
Pan. Indeed, C.-C. Liu not only apprenticed to his uncle (belonging to the family genre
of Pan), but also learned from S.-Y. Chen (belonging to the family genre of Chen) and the
other artists by observing their treatment skills with the door god paintings. Thus, the
theory is that the painting style of C.-C. Liu should involve those of the two family genres.
On the other hand, F.-T. Kuo (Chinese transliteration: 郭佛賜) and Y.-C. Chen (Chinese
transliteration: 陳陽春) do not have any master and apprentice relationships with the other
surveyed artists, including with one another. Therefore, the theory is that there should be a
great difference in the painting styles of F.-T. Ku or Y.-C. Chen from the others, including
one another.

The two-tailed t-test results for the similarities between any two surveyed artists’
fish scales and lock chain patterns in the four orientations are recorded in the symmetric
matrices as shown in Tables 3 and 4, respectively. Excluding the diagonal elements of the
matrices, each element uses a vector to record the two-tailed t-test result. In a vector of [],
the elements express the acceptances of the hypotheses based on the co-occurrence features
of ASM, CON, HOM, ENT, DIS, COR, and CLU in sequence, and the symbols of “0” and
“1” indicate confirmation of the H0 and H1 hypotheses, respectively.
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Figure 6. A diagram of master and apprentice relationships between the surveyed artists (black
coloring) and their mentors (gray coloring).

Table 3. Two-tailed t-test results for similarity between any two surveyed artists’ fish scales patterns
in the orientations.

Orientation Artist Liu, C.-C. Kuo, F.-T. Chen, Y.-C. Pan, L.-S. Tsai, L.-C. Chen, S.-Y. Pan, Y.-H.

0◦

Liu, C.-C. [1,1,1,1,1,0,1] [1,0,0,1,0,1,0] [1,1,1,1,1,1,0] [1,1,1,1,1,0,1] [0,0,0,0,0,1,0] [0,1,1,0,1,1,0]
Kuo, F.-T. [1,1,1,1,1,1,0] [1,1,1,1,1,1,1] [0,0,0,0,0,1,0] [1,0,1,1,1,1,0] [1,1,1,1,1,1,0]

Chen, Y.-C. [1,1,1,1,1,1,1] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0] [1,1,1,1,1,1,0]
Pan, L.-S. [1,1,1,1,1,1,1] [1,1,1,1,1,1,0] [1,1,0,1,0,1,1]
Tsai, L.-C. [1,0,1,1,0,0,0] [1,1,1,1,1,1,1]
Chen, S.-Y. [0,1,1,0,1,1,0]
Pan, Y.-H.

45◦

Liu, C.-C. [1,0,1,1,1,0,1] [0,0,0,0,0,0,0] [1,1,1,1,1,1,1] [1,0,1,1,0,1,1] [0,0,0,0,0,1,0] [0,1,1,1,1,1,1]
Kuo, F.-T. [1,1,1,1,1,0,1] [1,1,1,1,1,1,1] [0,0,0,0,0,0,0] [1,0,1,1,1,0,0] [1,1,1,1,1,1,1]

Chen, Y.-C. [1,1,1,1,1,1,1] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0] [1,1,1,1,1,1,1]
Pan, L.-S. [1,1,1,1,1,0,1] [1,1,1,1,1,0,1] [1,0,0,1,0,1,1]
Tsai, L.-C. [1,0,0,1,0,0,0] [1,1,1,1,1,1,1]
Chen, S.-Y. [1,1,1,1,1,1,1]
Pan, Y.-H.

90◦

Liu, C.-C. [1,1,1,1,1,0,1] [0,0,0,0,0,0,1] [0,1,1,1,1,1,0] [1,1,1,1,1,0,1] [0,0,0,0,0,1,0] [0,1,1,0,1,1,1]
Kuo, F.-T. [1,1,1,1,1,0,1] [1,1,1,1,1,1,1] [0,0,0,0,0,0,0] [1,1,1,1,1,1,1] [1,1,1,1,1,1,0]

Chen, Y.-C. [1,1,1,1,1,1,1] [1,1,1,1,1,1,1] [0,0,0,0,0,1,0] [0,1,1,0,1,1,1]
Pan, L.-S. [1,1,1,1,1,1,1] [0,1,1,0,1,1,0] [1,1,0,1,0,1,1]
Tsai, L.-C. [1,1,1,1,1,0,1] [1,1,1,1,1,1,0]
Chen, S.-Y. [0,1,1,0,1,1,1]
Pan, Y.-H.

135◦

Liu, C.-C. [1,0,1,1,1,0,1] [0,0,0,0,0,0,0] [1,1,1,1,1,1,1] [1,0,1,1,1,0,1] [0,0,0,0,0,0,0] [0,1,1,1,1,1,1]
Kuo, F.-T. [1,1,1,1,1,0,1] [1,1,1,1,1,1,1] [0,0,0,0,0,1,0] [1,0,1,1,1,0,0] [1,1,1,1,1,1,1]

Chen, Y.-C. [1,1,1,1,1,0,1] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0] [1,1,1,1,1,1,1]
Pan, L.-S. [1,1,1,1,1,1,1] [1,1,1,1,1,0,1] [1,0,0,1,0,1,1]
Tsai, L.-C. [1,0,1,1,0,0,0] [1,1,1,1,1,1,1]
Chen, S.-Y. [1,1,1,1,1,1,1]
Pan, Y.-H.

Confidence level α: 0.1. The elements in a vector of [] indicate the hypotheses supported based on the co-
occurrence features of ASM, CON, HOM, ENT, DIS, COR, and CLU, in sequence, and “0” and “1” denote H0 and
H1, respectively.
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Table 4. Two-tailed t-test results for similarity between any two surveyed artists’ lock chain patterns
in the orientations.

Orientation Artist Liu, C.-C. Su, T.-F. Chen, Y.-C. Pan, L.-S.
Chuang,

W.-N.
Chen, S.-Y.

0◦

Liu, C.-C. [1,0,1,1,1,0,1] [0,0,0,0,0,1,0] [1,1,1,1,1,1,0] [1,1,1,1,1,0,1] [0,0,0,0,0,1,0]
Su, T.-F. [1,1,1,1,1,0,1] [1,1,1,1,1,1,1] [0,0,0,0,0,0,0] [1,0,1,1,1,0,1]

Chen, Y.-C. [1,1,1,1,1,1,0] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0]
Pan, L.-S. [1,1,1,1,1,1,1] [1,1,1,1,1,1,1]

Chuang, W.-N. [1,0,1,1,1,0,1]
Chen, S.-Y.

45◦

Liu, C.-C. [1,0,0,1,0,0,0] [0,0,0,0,0,1,0] [1,1,1,1,1,1,1] [1,0,1,1,1,1,1] [0,0,0,0,0,1,0]
Su, T.-F. [0,0,0,0,0,0,0] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0] [0,0,0,0,0,0,0]

Chen, Y.-C. [1,1,1,1,1,0,1] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0]
Pan, L.-S. [1,1,1,1,1,0,1] [1,1,1,1,1,0,1]

Chuang, W.-N. [1,0,0,0,0,0,0]
Chen, S.-Y.

90◦

Liu, C.-C. [1,1,1,1,1,0,1] [0,0,0,0,0,1,0] [1,1,1,1,1,1,0] [1,1,1,1,1,0,1] [1,0,0,1,0,1,1]
Su, T.-F. [1,1,1,1,1,1,1] [1,1,1,1,1,1,1] [0,0,0,0,0,0,0] [0,1,1,0,1,0,0]

Chen, Y.-C. [1,1,1,1,1,1,0] [1,1,1,1,1,1,1] [0,0,0,0,0,1,1]
Pan, L.-S. [1,1,1,1,1,1,1] [1,1,1,1,1,1,1]

Chuang, W.-N. [1,1,1,1,1,1,0]
Chen, S.-Y.

135◦

Liu, C.-C. [1,0,0,1,0,0,0] [0,0,0,0,0,0,0] [1,1,1,1,1,1,1] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0]
Su, T.-F. [0,0,0,0,0,0,0] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0] [0,0,0,0,0,0,0]

Chen, Y.-C. [1,1,1,1,1,0,1] [1,1,1,1,1,0,1] [0,0,0,0,0,0,0]
Pan, L.-S. [1,1,1,1,1,0,1] [1,1,1,1,1,0,1]

Chuang, W.-N. [1,0,0,0,0,0,0]
Chen, S.-Y.

Confidence level α: 0.1. The elements in a vector of [] indicate the hypotheses supported based on the co-
occurrence features of ASM, CON, HOM, ENT, DIS, COR, and CLU, in sequence, and “0” and “1” denote H0 and
H1, respectively.

Based on the diagram of the master and apprentice relationships in Figure 6, the
two-tailed t-test results in Tables 3 and 4 are discussed. Most of the two-tailed t-test results
successfully indicate the differences in the painting styles between the two main family
genres of Chen and Pan. For instance, Table 3 demonstrates that the painting style of S.-Y.
Chen is significantly different from those of L.-S. Pan, L.-C. Tsai, and Y.-H. Pan. Moreover,
Table 4 shows that the painting style of L.-S. Pan is robustly different from those of S.-Y.
Chen and W.-N. Chuang. However, there is an unreasonable result of recognizing the
painting styles between the two main family genres of Chen and Pan as W.-N. Chuang
versus T.-F. Su (see Table 4); W.-N. Chang and T.-F. Su belong to the family genres of Chen
and Pan, respectively, but the two-tailed t-test result indicates that they have a robust
similarity in painting style.

In the same family genre, this paper notes that the painting styles of the direct relatives
of master and apprentice—such as L.-S. Pan versus L.-C. Tsai, T.-F. Su, or Y.-H. Pan—should
be extremely similar. Unfortunately, Tables 3 and 4 cannot effectively demonstrate that
a similar painting style exists among the above direct relatives of master and apprentice.
For the collateral relatives of apprentices, Table 4 shows in the family genre of Chen that
the painting styles of S.-Y. Chen and W.-N. Chuang have higher textural similarity in the
double-diagonal orientations than in the horizontal and vertical orientations. The above
characteristic also exists in the family genre of Pan, such as with C.-C. Liu versus T.-F. Su,
but excludes L.-C. Tsai versus C.-C. Liu or Y.-H. Pan.

For the fish scales pattern, the co-occurrence features of ASM, HOM, ENT, and DIS
have higher applicability to demonstrate the master and apprentice relationships in Figure 6
than the others. Based on the four above co-occurrence features, however, L.-C. Tsai
and Y.-C. Chen, relative to the other surveyed artists in Table 3, seem to obtain fewer
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reasonable demonstrations of master and apprentice relationships between them and the
other artists. For the lock chain pattern, except for COR, the other co-occurrence features
have approximate applicability to demonstrate the master and apprentice relationships.
Furthermore, among the surveyed artists in Table 4, T.-F. Su shows the fewest reasonable
demonstrations of master and apprentice relationships between him and the other artists.
Consequently, in this paper the three artists L.-C. Tsai, Y.-C. Chen, and T.-F. Su were
excluded from the following two-tailed t-test to observe the similarity of the fish scales and
lock chain patterns between the surveyed and unknown artists. Moreover, ASM, HOM,
ENT, and DIS were considered in the two-tailed t-test based on the fish scales pattern, and
in addition to the four above co-occurrence features, CON and CLU were considered in the
test based on the lock chain pattern.

6.4. Similarity of Auspicious Patterns between Surveyed and Unknown Artists

The two-tailed t-test was also used to assist in the painting style recognition of the
unknown artists’ door god paintings in Kinmen. If a robust similarity of an auspicious
pattern between the surveyed and unknown artists is obtained, this suggests that the door
god paintings of the unknown artist(s) could be restored by referring to the painting style of
the surveyed artist. Tables 5 and 6 show the two-tailed t-test results for the similarities of the
fish scales and lock chain patterns between the surveyed and unknown artists, respectively,
and demonstrate that F.-T. Kuo and W.-N. Chuang have the most similar painting styles to
the unknown artists’ fish scales and lock chain patterns, respectively.

To further observe the painting styles of each surveyed artist, we performed an
interquartile range calculation for the co-occurrence features extracted from the acquired
auspicious pattern images. Therefore, one co-occurrence feature in the four orientations
can calculate four medians via the interquartile range analysis, and this paper adopts a
mean value of the four medians of the co-occurrence feature to describe the painting style.
The charts shown as Figure 7 plot the means of the medians of the extracted co-occurrence
feature values for the surveyed artists’ fish scales and lock chain patterns, respectively. By
discussing Figure 7, the painting styles of the fish scales and lock chain patterns of the
unknown artists in Kinmen could be surmised.

Table 5. Two-tailed t-test results for similarity between surveyed and unknown artists’ fish scales
patterns in the orientations.

Orientation Artist Liu, C.-C. Kuo, F.-T. Pan, L.-S. Chen, S.-Y. Pan, Y.-H.

0◦

Unknown

[1,1,1,1] [0,0,0,0] [1,1,1,1] [1,1,1,1] [1,1,1,1]
45◦ [1,1,1,1] [0,0,0,0] [1,1,1,1] [1,1,1,1] [1,1,1,1]
90◦ [1,1,1,1] [1,0,0,0] [1,1,1,1] [1,1,1,1] [1,1,1,1]
135◦ [1,1,1,1] [0,0,0,0] [1,1,1,1] [1,1,1,1] [1,1,1,1]

Confidence level α: 0.1. The elements in a vector of [] indicate the hypotheses supported based on the co-occurrence
features of ASM, HOM, ENT, and DIS, in sequence, and “0” and “1” denote H0 and H1, respectively.

Table 6. Two-tailed t-test results for similarity between surveyed and unknown artists’ lock chain
patterns in the orientations.

Orientation Artist Liu, C.-C. Pan, L.-S. Chuang, W.-N. Chen, S.-Y.

0◦

Unknown

[1,1,1,1,1,1] [1,1,1,1,1,1] [0,0,0,0,0,0] [1,1,1,1,1,0]
45◦ [1,1,1,1,1,1] [1,1,1,1,1,1] [0,1,1,0,1,0] [1,1,1,1,1,1]
90◦ [1,1,1,1,1,1] [1,1,1,1,1,1] [0,0,0,0,0,0] [0,1,1,0,1,1]

135◦ [1,1,1,1,1,1] [1,1,1,1,1,1] [0,1,0,0,1,0] [1,1,1,1,1,1]

Confidence level α: 0.1. The elements in a vector of [] indicate the hypotheses supported based on the co-
occurrence features of ASM, CON, HOM, ENT, DIS, and CLU, in sequence, and “0” and “1” denote H0 and H1,
respectively.
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Figure 7. Means of medians of co-occurrence feature values in four orientations extracted from
acquired auspicious pattern images of surveyed artists: fish scales pattern (upper chart); lock chain
pattern (lower chart).

The upper chart of Figure 7 shows that F.-T. Kuo’s fish scales patterns have lower ASM
and HOM and higher ENT and DIS than those of the other surveyed artists. The lower
ASM and HOM mean that the acquired fish scales pattern images of F.-T. Kuo exhibit lower
images constancy, leading to a higher image contrast. Based on the higher ENT and DIS,
this paper finds that F.-T. Kuo’s fish scales patterns (or the unknown artists’ fish scales
patterns in Kinmen) have higher textural complexity and higher hue gradient than those of
the other surveyed artists.

In addition to ASM, HOM, ENT, and DIS, CON and CLU can help describe the
painting style of W.-N. Chuang’s lock chain patterns (or the unknown artists’ lock chain
patterns in Kinmen). The lower chart of Figure 7 shows that W.-N. Chuang’s lock chain
patterns also have lower ASM and HOM and higher ENT and DIS than those of the other
surveyed artists. Because the representation of HOM is contrary to that of CON, the lower
chart illustrates that W.-N. Chuang’s lock chain patterns have higher CON than those of the
other surveyed artists. The lower chart also shows that W.-N. Chuang’s lock chain patterns
have the highest CLU among the surveyed artists. Thus, this result indirectly explains why
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the unknown artists’ lock chain patterns in Kinmen have higher textural clustering than
the surveyed artists.

From the above discussion, this paper finds that there should be a similar door god
painting style between F.-T. Kuo and W.-N. Chuang, because both of their auspicious
patterns have the same characteristics of lower ASM and HOM and higher ENT and DIS.
Thus, the door god paintings in Kinmen could be restored by referring to the painting
styles of F.-T. Kuo or W.-N. Chuang.

7. Conclusions

Based on a two-level two-dimensional DWT and gray-level co-occurrence matrix
calculation, this research proposes a texture feature extraction procedure and, coupled with
a two-tailed t-test to analyze the door god painting styles, demonstrates the master and
apprentice relationships between the surveyed artists so as to recognize unknown artists’
painting styles. In total, 52 temples in Taiwan were visited to acquire 453 images for the
auspicious patterns—including fish scales, lock chain, turtle back, and “回”—on the armor
of door god warriors created by the surveyed artists. Additionally, 12 auspicious pattern
images of unknown artists’ door god paintings in Kinmen, which is an outlying island of
Taiwan, were also acquired.

In the door god painting style analysis, the result indicates that all four auspicious
patterns have texture symmetry in the double-diagonal orientations. The texture of the fish
scales patterns is more constant (i.e., lower contrast) than that of the other patterns. For any
auspicious pattern, the textural contrast in the double-diagonal orientations is higher than
those in the horizontal or vertical orientations and, among the four auspicious patterns,
the turtle back pattern usually has the highest textural contrast. Except in the vertical
orientation, the turtle back pattern has the highest textural complexity. In the vertical
orientation, the highest textural complexity exists in the “回” pattern. Generally, there is
the most textural difference between the fish scales and lock chain patterns, and the most
textural similarity between the lock chain and turtle back patterns. The analysis herein also
successfully demonstrates the interrelationships between the seven co-occurrence features.

The results of our analysis effectively demonstrate the differences in the painting
styles between the family genres of Chen and Pan. In a family genre, however, the re-
sults of our analysis fail to indicate that artists with a direct relationship of master and
apprentice are expected to have a similar painting style. As for the collateral relatives of
apprentices, our findings confirm that the artists’ auspicious patterns seem to have higher
textural similarity in the double-diagonal orientations than in the horizontal and vertical
orientations. Through the two-tailed t-test, based on the fish scales pattern, we found that
the co-occurrence features of ASM, HOM, ENT, and DIS are useful to demonstrate the
apprentice relationships between the five artists of C.-C. Liu et al. Based on the lock chain
pattern, except for COR, the other six co-occurrence features are useful to demonstrate the
apprentice relationships between the four artists of C.-C. Liu et al.

Among the surveyed artists, F.-T. Kuo and W.-N. Chuang have the most similar
painting styles to the unknown artists’ fish scales and lock chain patterns, respectively.
Thus, the door god paintings in Kinmen could be restored by referring to the painting
styles of F.-T. Kuo or W.-N. Chuang. According to the analyzed painting styles of Kuo and
Chuang, this paper surmises the painting styles of unknown artists in Kinmen, indicating
that the unknown artists’ fish scales patterns exhibit higher textural contrast, textural
complexity, and hue gradient than those of the surveyed artists. Furthermore, the unknown
artists’ lock chain patterns also have higher textural contrast and clustering than those of
the surveyed artists.

The hypothesis testing method can currently determine the useful co-occurrence
features for recognizing the unknown artists’ painting styles. In the future, the useful
co-occurrence features will be input into neural networks in order to recognize the style of
every single door god painting. We also believe that deep learning convolutional neural

83



Appl. Sci. 2022, 12, 2637

networks based on the human visual system would be useful in recognizing the style of
every single door god painting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//drive.google.com/file/d/1ax76s22qelbdEmsi5ILhCKe3HlrvhAoP/view?usp=sharing (accessed
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Abstract: Shoulder lines can best depict the morphological characteristics of the Loess Plateau. More-
over, a shoulder line depicts the external appearance of spatial differentiation of loess landforms and
the internal mechanism of loess landform evolution. The efficient and accurate extraction of shoulder
lines can help to deepen the re-understanding of the morphological structure and differentiation of
loess landforms. However, the problem of shoulder line continuity in the extraction process has not
been effectively solved. Therefore, based on high-resolution satellite images and digital elevation
model (DEM) data, this study introduced the regional growing algorithm to further correct edge
detection results, thereby achieving complementary advantages and improving the accuracy and
continuity of shoulder line extraction. First, based on satellite images, the edge detection method
was used to extract the original shoulder lines. Subsequently, by introducing the regional growing
algorithm, the peaks and the outlet point extracted with the DEM were used as the growth points
of the positive and negative (P-N) terrains to grow in four-neighborhood fields until they reached
a P-N terrain boundary or a slope threshold. Finally, the P-N terrains extracted by the regional
growing method were used to correct the edge detection results, and the “burr” was removed using
a morphological image-processing method to obtain the shoulder lines. The experimental results
showed that the method proposed in this paper can accurately and effectively complete the extraction
of shoulder lines. Furthermore, the applicability of this method is better and opens new ideas for
quantitative research on loess landforms.

Keywords: satellite images; shoulder line; edge detection; regional growing algorithm; positive and
negative (P-N) terrain

1. Introduction

One of the most significant recent discussions has been the study of spatial differentia-
tion in the Loess Plateau [1–5]. Shoulder lines are the topographic structural lines that best
depict loess landform characteristics. The shape, grade, spatial distribution, development
trend, and other characteristics of shoulder lines reflect the regional variations in loess
landforms, as shown in Figure 1. However, due to the complexity of the Loess Plateau,
the effective extraction of shoulder lines is influenced by a variety of factors, such as the
accuracy of the source data, the local discontinuity of the lines, and the applicability of the
method [6–10]. Consequently, a more efficient and accurate shoulder line extraction method
is still needed. The traditional method of extracting shoulder lines is to use the contour
lines of topographic maps or aerial images to directly delineate them [11–15]. Although the
precision is excellent, the efficiency of this method is low, and the workload is heavy.
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Figure 1. An illustration of shoulder line of the Loess Plateau.

In recent years, with the support of RS and GIS technologies, the characteristic terrain
elements in a landform can be automatically extracted and analyzed, and the extraction of
shoulder lines has become one of the hot spots for study [16–21]. Researchers have studied
the automatic extraction of shoulder lines. The extraction methods can be classified into
three types: The first method is the geometric morphological method. Terrain parameters,
such as slope, slope aspect, and curvature, are used for regular judgment to obtain shoulder
lines based on the given rule of shoulder lines in the geometric form. For example, Evans
used DEM data as the basis for extracting shoulder lines by combining areas of low differ-
ence between mean elevation and high positive plan curvature [22]. Lei obtained shoulder
lines by comparing the slopes of upstream and downstream grids on the same slopes [23].
Xiao proposed a method for extracting shoulder lines based on slope aspect orientation
according to the slope-turning characteristics of loess landforms [24]. This method is sim-
pler, faster, and easier to implement compared with the traditional approach. However, the
actual effect obtained is not ideal. The second method is the hydro-geomorphologic method.
The constraint and drawing of shoulder lines are achieved as a result of the interaction
between the hydrological process and the landform and are based on the principle of a flow
analysis of the terrain surface. For example, Lv applied a surface-flow digital simulation
method and a contour vertical-line-tracking method to achieve shoulder line extraction
based on the principle of a terrain surface flow analysis [25]. Liu used water flow paths for
distributed water flow computation to extract shoulder lines [26]. Yang used the direction
of confluence to determine the streamline of a slope and drew a shoulder line based on the
inflection point of the streamline [27]. The shoulder lines obtained by this method have a
certain geological significance compared with the geometric morphological method, and
the problem of shoulder line continuity is overcome to a certain extent. However, the
digital simulation of surface water is influenced by several factors, including water flow
direction and catchment threshold, which increase the uncertainty of a slope’s flow path,
making judging points on a characteristic shoulder line difficult, lacking in precision, and
necessitating substantial calculations. The third method is based on an image-processing
method. The edge detection method achieves the purpose of detecting sudden edge change
by comparing the changing characteristics in the image brightness value and detecting
the sudden change point of the image brightness. For example, Vrieling used the super-
vised classification approach for the maximum likelihood classifier to classify gullies and
non-gullies [28]. Yan used image binarization and various edge detection operators to
extract shoulder lines [29]. Wang extracted a shoulder line by combining the P-N opening
of the terrain and the threshold segmentation of a difference image [30]. Compared to the
previous two methods, edge detection operators can quickly and effectively extract such
changing features, and some operators can even extract weak mutation features to better
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reflect details; this provides a method for indistinct shoulder line extraction. However, the
shoulder lines extracted with edge detection methods tend to be less closed, and the line
segments are fragmented and do not match the actual shoulder lines. In conclusion, the
above methods share the same problem in that they require a means to effectively balance
continuity and accuracy. Drawing on the advantages of the good applicability of the edge
detection method, finding ways to further improve the integrity of shoulder lines is an
urgent problem to be solved. The regional growing algorithm, a fundamental feature in
image segmentation research, can produce continuous, closed regions with relatively little
domain information [31,32]. The regional growing method has advantages for solving the
continuity problem of shoulder lines based on DEM data [33]. However, the resolution of
DEM data has a great influence on the extraction results, and it is difficult to obtain high-
precision DEM data, especially in large areas. Hence, a shoulder line extraction method
that combines the edge detection method and regional growing algorithm is proposed here
to comprehensively improve the continuity and accuracy of shoulder lines. Based on high-
resolution satellite images, this study uses the advantages of edge detection in highlighting
details to complete the extraction of an original shoulder line. At the same time, based
on DEM data, the regional growing algorithm is used to realize the determination of P-N
terrain, to overcome the discontinuities of the original shoulder line, and to complete the
accurate extraction of the shoulder line.

2. Materials and Methods

2.1. Study Areas

The study area is one of the key national governance regions for soil and water
conservation and is located in Yijun and Luochuan counties, Shaanxi Province, China, with
latitudes between 35◦25′ N and 34◦42′ N and longitudes between 109◦20′ E and 109◦37′ E,
as shown in Figure 2. The topography of this place is the Loess Plateau. In this area, the
elevation ranges from 85 m to 3719 m. The watershed unit is usually used as the basic
landform analysis unit due to its relative internal homogeneity; hence, in this study, the
extraction of shoulder lines was also presented with small watersheds as the sample area.

Figure 2. Location of the study area: (a,b) location of Loess Plateau; (c,c1–c4) hillshade map of the
study area.
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2.2. Data

In this study, high-resolution satellite images were used to produce higher-density
spectral and textural information. Imagery of 3 m resolution downloaded from Planet Explorer
(https://www.planet.com/explorer/, (accessed on 1 September 2021)) was used. The image
data were mainly captured between June and September 2021. During this period, the images
had less cloud content, and crops were harvested on the land surface; therefore, the boundaries
of objects with loess morphologies were more obvious, which aided image edge detection and
shoulder line extraction. The Advanced Land-Observing Satellite (ALOS) Digital Elevation
Model with a spatial resolution of 12.5 m was used to calculate the peak point and outlet point
of the sample area. The DEM data were downloaded from the National Aeronautics and Space
Administration (NASA, https://search.asf.alaska.edu/#/, (accessed on 1 October 2016)). The
horizontal and vertical accuracies of the elevation data could reach 12.5 m. These were the
most accurate data from open-source DEM data. More details on the data are shown in Table 1.

Table 1. Details of data used in this study.

Data Name Type Resolution Data Resource

Satellite images Raster 3 m https://www.planet.com/explorer/ (accessed on 1 September 2021)
DEM Raster 12.5 m https://search.asf.alaska.edu/#/ (accessed on 1 October 2016)

Vector boundaries data Vector — 1:250,000 national basic geographic database

2.3. Edge Detection

In image-processing technology, commonly used edge detection operators include
the Roberts operator, Sobel operator, Prewitt operator, Laplace operator [34], and Canny
operator [35]. These operators have different edge detection capabilities for images with
different characteristics. In an image, shallow gullies appear as linear features with weak
feature information. The Canny operator has the characteristics of good anti-interference
ability and accurate positioning and can effectively identify and locate edges on slope
data. Compared with other edge detection operators, the Canny operator can seek the best
solutions for anti-noise solutions and precise positioning. Therefore, this study selected
the Canny operator to complete detection of the experimental sample area. To make the
shoulder line features more obvious and to avoid image noise interference, the images
needed to be preprocessed.

2.3.1. Image Grayscale

Performing grayscale operations on images can reduce the amount of computation
needed. The maximum value of three image components is taken as the result of image
grayscale processing, as shown in Formula (1):

Gray(i, j) = max[R(i, j), G(i, j), B(i, j)] (1)

where Gray(i, j) represents the gray value of an image, and R(i, j), G(i, j), B(i, j) represent
the three components of the image.

2.3.2. Binary Image

A target image has a large difference in gray value from its background image, and it
is partitioned according to the gray value. The gray value of a target image is marked as 0,
and the gray value of a background image is marked as 1. If F(x, y) is the gray value of a
pixel in the image, the transformation function of the gray threshold Th is as follows:

F(x, y) =
{

1, F(x, y) > Th
0, F(x, y) ≤ Th

(2)
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2.3.3. Canny Edge Detection

To perform edge detection on the preprocessed target images, the Canny edge detec-
tion method included the following four steps: The first step was to smooth the image.
We constructed a filter with a Gaussian function, performed convolution filtering on the
images, removed noise, and obtained smooth images. The second step was to calculate
the gradient magnitude and gradient direction of the images. The gradient magnitude and
gradient direction of the smoothed images were calculated by the finite difference in the
first-order partial derivatives. The third step was to perform non-maximum suppression on
the gradient amplitude. To determine the edge, it was necessary to keep the point with the
largest local gradient and to suppress the non-maximum value, that is, we set the non-local
maximum value point to zero in order to obtain a refined edge. If the gradient value of the
neighborhood center point was larger than the value of the two adjacent points along the
gradient direction, the current neighborhood center point was determined as a possible
edge point. Otherwise, it was assigned a value of zero, and the pixel point was judged as
a non-edge point. The fourth step was double threshold detection. After applying non-
maximal suppression, the remaining edge pixels provided a more accurate representation
of the true edges in the images. However, some edge pixels were still caused by noise and
color variations. To account for these spurious responses, edge pixels must be filtered out
with weak gradient values, as well as edge pixels with high gradient values. This was
achieved by choosing high and low thresholds. If the gradient value of an edge pixel was
higher than the high threshold, it was marked as a strong edge pixel. If the gradient value
of an edge pixel was less than the high threshold and greater than the low threshold, it was
marked as a weak edge pixel. If the gradient value of an edge pixel was less than the low
threshold, it was suppressed.

2.4. Regional Growing Algorithm

The regional growing algorithm is a process of merging pixels or sub-regions into a
larger area according to similarity criteria [36]. This algorithm is based on the theory that
regions start with a group of growing points and that the same or similar adjacent pixels
merge into new growing points. This process is continuously repeated until there are no
more points to merge. The three steps are as follows: (1) choosing the appropriate growing
points, (2) determining the similarity criteria, and (3) establishing the stop rules.

2.4.1. Identifying Growing Points for P-N Terrain

Shoulder lines lie on the boundaries of P-N terrain. Accordingly, extracting the P-N
terrain boundary is considered a premise of shoulder line extraction. Positive terrain is an
area that is higher than the adjacent region or that is located in a tectonic uplift region. The
P-N terrain method can be used to classify positive terrain. Errors in the positive terrain can
be classified into two categories, as follows: (1) depressions, where the condition is caused
by artificial modification or slight topographic relief in small regions, and (2) flatland,
where a small difference can be observed between the original elevation and the elevation
after smoothing when using a filter window slide on a nearly flat DEM. Slight elevation
changes can affect the results. This phenomenon is especially evident in the Loess Plateau
area, which means that peaks located in positive terrain must be correctly classified. Hence,
peaks should be chosen as the growing points of positive terrain and should grow until
there are no more points of the same type to merge. The above-mentioned positive terrain
was extracted using the P-N terrain method. The size of the analysis window depended on
the fragmentation of the landform. If the landform had more fragments, then we tended
to choose a smaller analysis window. Negative terrain is an area that is lower than the
adjacent region or an area that is located at a tectonic down-lift region. The test area was a
complete watershed, and the negative terrain was connected. Accordingly, one growing
point for negative terrain was enough. The outlet was the lowest elevation point and was
located in negative terrain. On this basis, the outlet point was chosen as the growing point
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of the negative terrain and grew until there were no more points of the same type to merge.
The above-mentioned negative terrain was extracted using the P-N terrain method.

2.4.2. Growth Criteria

We assumed that the pixel with a gray value of 8 was the initial growth point, as
shown in Figure 1, where the numbers in the figure indicate the gray levels of pixels. The
growing criterion for the four neighborhoods of 8 was that the calculated result should be in
the range between −1 and 1 when the growing point was less than the neighbor point. If no
difference could be found between the adjacent growing results, then the growing process
stopped. Figure 3 illustrates four stages of the regional growing algorithm. Figure 3a
depicts an original image, and the numbers are gray values. Figure 3b–d represents the
growth process.

Figure 3. Illustration of regional growth: (a–d) represent the four steps of the regional growing
algorithm, respectively.

The regional growing algorithm can avoid most misclassification areas. Still, for those
regions that are connected to the correct area, it remains difficult to accurately identify
them. This problem results in the inaccurate position of the shoulder line, and it is serious
in the Loess Plateau area. To improve this concept, this study introduced slope gradient,
and defined the following rules: if the slope gradient of the negative terrain was smaller
than the given threshold and the negative terrain was adjacent to the positive terrain, then
this negative terrain could be considered as positive terrain, as shown in Figure 4. The
threshold of the slope gradient depended on the type of loess landform. This study tested
different thresholds, compared the test results with the manual visual interpretation results,
and chose 7◦ as the final slope threshold.

Figure 4. Slope’s influence on the positive and negative terrain classification results: (a) represents
the classification map of positive and negative terrain; (b) represents the results after slope correction.

2.5. Burr Removal

The resulting shoulder line had some parasitic components in line corners, as shown
in Figure 5. These parasitic components are called burrs. These burrs can lead to uncertain
positions of the shoulder line. When the shoulder line was transformed from a grid to a
vector, this defect became more prominent.

Figure 5. Contrast between before (a) and after (b) burr removal.
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This study used a morphological image-processing method to remove burrs. The basic
principle of this method was that fixed structure elements were used to detect and thin the
endpoint (Equation (3)). Structure elements were used to detect and remove burrs. The
algorithm was as follows: (1) The threshold of endpoint thinning was determined. We
observed the image; if the length of a burr was less than 3 pixels, the threshold was set to
5 pixels to guarantee the reliability of the experimental results. (2) The structure elements
were determined. The diagonal pixels could be ignored because the growing method only
used four neighbor pixels. This study used the structure elements as shown in Figure 6.
In these elements, “×” represents ignored pixels, “1” depicts shoulder line pixels, and “0”
denotes background pixels. In an analysis window, if the image value agreed with any
structure element in Figure 6, then “0” was set as the center pixel value (Equation (4)). The
whole image was scanned using structure elements that could only remove one endpoint
pixel at once. The above operation was repeated five times to ensure that the burrs were
completely removed. The difference between before and after the above-mentioned steps
is shown in Figure 5. (3) The correct end points were recovered. Given that this method
processed all the end points, the correct end points were also removed, as were the burrs.
The next step was to recover the correct end points. Structure elements were used to scan
the whole image and remove the end points again. The burrs were already removed after
the previous five scans. Accordingly, the pixels removed at this time were the correct end
points. Thereafter, we performed four neighbor expansions and obtained the intersection
with the original shoulder line (Equation (5)). The expansion time was the same as the
thinning time. The complete process of this study method is shown in Figure 7.

X1 = A � {B} (3)

where A is the original shoulder line, B is the structure elements, � is the thinning, and
X1 is the thinning result.

X2 =
8∪

k=1

(
X1 � Bk

)
(4)

where X2 is the end point, Bk (k = 1, 2, 3, 4) are the structure elements, and � is the hit-miss
transformation.

X3 = (X2 ⊕ H) ∩ A (5)

where X3 is the shoulder line, H is a four-neighborhood structure element, A is the original
shoulder line, and ⊕ is the expansion.

Figure 6. Structure elements.
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Figure 7. The complete process of our experiment.

2.6. Accuracy Assessments

To objectively evaluate and verify the superiority of the method in this paper, the
following indicators were used to evaluate the edge detection method, the regional growing
algorithm, and the method in this paper. Class pixel accuracy (CPA) is the percentage of
correct pixels out of all the extracted result pixels; the closer the value is to 100%, the better.
Pixel accuracy (PA) is the percentage of correctly extracted pixels in an image, that is, the
proportion of correctly extracted pixels out of the total pixels; the larger the value, the better.
The dice similarity coefficient (Dice) is a measure of set similarity, indicating the ratio of the
area where two objects intersect the total area; the value range is (0, 1), and the effect is best
when it is 1. Intersection over union (IOU) is the overlapping area between the extraction
results and the real value divided by the joint area between the extraction results and the
real value; the value is between (0, 1), and the larger the value, the better the effect. The
formulas for each indicator are as follows:

CPA =
TP

(TP + FP)
× 100% (6)

PA =
(TP + TN)

(TP + TN + FP + FN)
× 100% (7)

Dice(A, B) =
2|A ∩ B|
|A|+ |B| (8)

IOU =
|A ∩ B|
|A ∪ B| (9)

where A is the method extraction result; B is the manual visual interpretation result;
TP = (A ∩ B) is the method correctly extracting the region; FN = A − (A ∩ B) is the target
area missed by the method; TN = I − A is the real background area; and I is the set of
image pixels.

3. Results

3.1. Parameter Settings

When using edge detection to detect high-precision remote-sensing images, to identify
the edges of gullies more accurately, it was necessary to set appropriate parameters for the
Canny operator function. The Canny function had two parameters: The first parameter
represented the first threshold, and the calculated boundary points were greater than
this threshold to be the real boundary. The second parameter represented the second
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threshold; the calculated boundary points below this threshold were discarded. Based on
the understanding of the terrain features of the study sample area, the parameters were
adjusted, and the final optimal first and second parameters were 50 and 210, respectively,
when using the regional growing algorithm to generate positive and negative terrain based
on DEM data. Based on the comparison of extraction results that used different window
sizes, the window size of 13 × 13 was the best size for shoulder line extraction [37]. Positive
and negative terrain growth points were set as peaks and outlet points, respectively.

3.2. Results Analysis

In this study, the Canny operator was used to complete the detection of the gully range
on high-resolution satellite images, and the extraction results were superimposed on the
image data, as shown in Figure 8. Based on the DEM data, the regional growing algorithm
was used to complete the extraction of positive and negative terrain for each sample area.
This study chose peaks and outlets as P-N terrain growing points, respectively. The peak
and outlet points could be detected through neighborhood analysis and the watershed
boundary method. In the process of growing, the same values of pixels were merged until
there were no points to merge. The generated results were also superimposed on hillshade
data, as shown in Figure 9. Overall, compared with high-resolution satellite images and
hillshade data, the extraction results of edge detection and the regional growing algorithm
were better.

Figure 8. The result of extracting Negative terrain by edge detection method. (a–d) represent 4 sam-
ple areas.

Figure 9. The results of extracting P-N terrain using the regional growing algorithm: (a–d) represent
4 sample areas.

To compare the performance of the regional growing and edge detection methods for
the extraction of the shoulder line, the real shoulder line needed to be defined. In this paper,
manual visual interpretation supported by expert knowledge was employed to extract
the real shoulder line. The shoulder line extracted using the manual visual interpretation
method based on high-resolution satellite images was used as the evaluation criterion. The
extraction results of the regional growing and edge detection methods were evaluated
by comparing the negative terrain areas of these two methods with the real shoulder line
results. It can be seen from Table 2 that, for the four sample areas, the regional growing
algorithm was generally better than the edge detection method when the negative terrain
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areas were used as the evaluation indicator. For example, sample area a, the difference
between the results obtained by the regional growing algorithm and the standard results
was within 12 ha, and the error was within 5%; the difference between the results obtained
by the edge detection method and the standard results was within 41 ha, and the error
was within 13%. These results also showed that the results of shoulder line extraction
are credible when studying the characteristic indicators related to area, such as gully
erosion. However, in the details, we can find that there were still differences between the
two methods. The specific analysis was as follows. It can be found from Figure 10 that
the regional growing algorithm was more advantageous in the detailed expression of the
shoulder line, such as the turning point of the shoulder line. However, it can be found from
Figure 11 that, although the edge detection method could reflect more details, the extraction
results were fragmented, resulting in inaccurate positioning of the shoulder line in some
places, and the generated shoulder line was discontinuous. Although DEM data do not
contain more information than high-resolution satellite images, they become an advantage
for the positive and negative terrain generated by the regional growing method. This is
because the core of the regional growing algorithm is the determination of the growing
point. We could accurately find the lowest point (the outlet) and the highest point (the
peak) as the positive and negative topographic growth points based on the DEM data using
the digital terrain analysis method. Furthermore, for shoulder line continuity obtained
through extraction, the regional growing algorithm had more advantages.

Table 2. Comparison of extracted negative terrain area with standard area differences.

Method Indicator Sample Area a Sample Area b Sample Area c Sample Area d

Manual visual interpretation negative terrain area (ha) 320.912 328.762 347.209 197.833

Regional growing algorithm
negative terrain area (ha) 328.624 317.811 334.249 189.325

percent error 2.403% 3.331% 3.733% 4.301%
absolute error 7.712 10.951 12.960 8.508

Edge detection
negative terrain area (ha) 280.713 290.678 317.581 176.741

percent error 12.526% 11.584% 8.533% 10.662%
absolute error 40.199 38.084 29.628 21.092

Figure 10. Results of edge detection compared to the regional growing algorithm: (a–d) represent
4 sample areas; (a1,b1,c1,d1) represent the results of the edge detection method; (a2,b2,c2,d2) repre-
sent the results of the regional growing algorithm.
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Figure 11. Results of the regional growing algorithm compared to edge detection: (a–d) represent
4 sample areas; (a1,b1,c1,d1) represent the results of the edge detection method; (a2,b2,c2,d2) repre-
sent the results of the regional growing algorithm.

By comparing and analyzing the shoulder line obtained by manual visual interpre-
tation of the shoulder line based on high-resolution satellite images shown in Figure 12,
we can see that the shoulder line extracted by edge detection under positive and negative
terrain constraints was closer to the artificial shoulder line. Therefore, the advantages of
edge detection in detail and the advantages of the regional growing algorithm in continuity
were combined. By using the P-N terrain constrained edge detection results obtained by the
regional growing method and removing the burrs, we could finally obtain better detailed
and continuous shoulder line extraction results, as shown in Figure 13.

Figure 12. Comparison of shoulder lines between edge detection, regional growing algorithm, and
manual visual interpretation. (a) represents the results of edge detection method and regional growing
algorithm; (b) represents the results of manual visual interpretation; (c) represents the overlay of
extraction results from different methods.
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Figure 13. Results of improved shoulder line: (a–d) represent 4 sample areas.

3.3. Precision Evaluation

By comparing the CPA, PA, Dice, and IOU values, it can be seen from Table 3 that the
extraction method in this study was better than edge detection and the regional growing
algorithm. For example, in sample area a, the CPA value of the proposed method was
7.1% and 5.6% higher than those of the edge detection method and the regional growing
algorithm, respectively. The largest PA value obtained was for the method proposed in
this study, which was closer to 1, and the effect was better than those of the other methods.
Similarly, both the Dice and IOU values were closer to 1, which was better than the other
methods. Therefore, the reliability and accuracy of the method proposed in this study
were verified.

Table 3. Comparison of accuracy evaluation index values of different algorithms.

Sample Area Method CPA PA Dice IOU

Edge detection 0.814 0.791 0.818 0.734
a Regional growing algorithm 0.829 0.807 0.820 0.813

Method in this study 0.885 0.864 0.877 0.907
Edge detection 0.837 0.797 0.820 0.828

b Regional growing algorithm 0.831 0.845 0.815 0.836
Method in this study 0.897 0.858 0.871 0.891

Edge detection 0.776 0.801 0.843 0.794
c Regional growing algorithm 0.819 0.836 0.833 0.857

Method in this study 0.867 0.917 0.866 0.897
Edge detection 0.801 0.799 0.791 0.747

d Regional growing algorithm 0.811 0.781 0.831 0.811
Method in this study 0.873 0.911 0.859 0.909

4. Discussion

4.1. Comparison of Different Operators

For edge detection operators for different images, there are differences in edge de-
tection. It is the premise of accurate shoulder line extraction to select an operator that
is suitable for the study sample area from among many operators. Therefore, we chose
sample area a to discuss the effects of common operators on the shoulder line extraction
results, and the experimental results are shown in Figure 14. In this study, the line-related
parameters of the shoulder line were used to further compare the detection results of each
edge detection operator. These parameters were mainly used to describe the fineness of
the line segment extracted by the operator. As shown in Table 4, the overall effect of the
line segment extracted by the Canny operator was better than the other operators. We
found that the Prewitt operator and the Sobel operator both performed differential and
filtering operations on the image and only had some differences in the selection of weights
for smoothing. However, the image was blurred to a certain extent, and some edges could
not be detected. Therefore, the detection accuracy was relatively low, and this type of
operator was deemed more suitable for situations where the gray value of an image edge
is relatively obvious. The detection accuracy of the Roberts operator was relatively high,
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but it was easy to lose part of the edge, which made the detection results incomplete.
At the same time, the image was not smoothed, and the noise could not be suppressed;
thus, this operator had the best response to images with steep, low noise. The Laplace
operator smoothed the image through the Gaussian function and had a relatively obvious
effect on noise suppression. However, the original edge could also be smoothed during
processing, resulting in some edges that could not be detected. In addition, the noise had a
great influence on it; the detected image details were very rich, but at the same time, false
edges could appear. If the false edges were reduced, the detection accuracy could also
be reduced; many true edges could be lost, and different parameters should be selected
for different images. The Canny operator was more accurate than the Laplace operator in
detecting edges. Although some edge information could be lost, this operator had the best
effect among the above-mentioned edge detection operators and could identify small edges
more clearly.

Figure 14. (a) represents sample area a; (b–f) represent the extraction results of the Roberts, Prewitt,
Sobel, Laplace, and Canny operators, respectively.

Table 4. Comparison of evaluation index values of different edge detection operators.

Operator Type Number of Lines Maximum Length (m) Total Length (m)

Prewitt 427 12,116 21,033
Sobel 514 6283 23,877

Robert’s 441 9867 23,196
Laplace 154 17,421 22,966
Canny 87 19,308 22,393.8

4.2. Applications and Future Research

The landform types of the Loess Plateau in northern Shaanxi show significant regional
differences, and the dominant factors of landform influence vary for different landform
types. Loess landform types are mainly divided into tableland, ridges, and hills [38–40],
and there were challenges in realizing the fully automatic extraction of the Loess Plateau
shoulder line. For the Loess Plateau, it can be seen from the previous accuracy evaluation
results that the proposed method had good applicability. To further verify the applicability
of this method in extracting shoulder lines, we selected a loess tableland area with an
area of 35,975.531 ha. The results are shown in Figure 15. By superimposing the extracted
results onto high-precision images, it can be seen that the extracted shoulder lines were
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effective and reasonable, which verified that this method had good universality in Loess
tableland area.

Figure 15. Shoulder lines extracted by applying the method proposed in this study.

In loess ridge and hill regions, the terrain was more complex. As shown in Figure 16,
there were many seriously discontinuous shoulder lines due to occasional gravity erosion
factors, such as landslides and scattering. Some areas were also affected by artificial land-
forms, such as terraced fields, dams, etc., resulting in the existence of multilevel shoulder
lines (Figure 16a). At the same time, in loess ridge and hill regions, due to the influence
of vegetation, the slope of the shoulder line’s up- and down-slopes showed little change,
and there were invisible shoulder lines (Figure 16b,c). Even if there is no interference from
vegetation, in autumn and winter the continuity and visibility of shoulder lines are poor
due to the impact of gravity, such as landslides, strays, and collapses, or even human
factors (Figure 16d). Therefore, the application of this method in loess ridge and hill areas
is also a problem that needs to be discussed and solved in the future. In future research, it
is necessary to further analyze the applicability of this method for different data sources
and different landform types. To better apply the method to different landform types
over a large area, we could try to divide different areas according to the different land use
characteristics (soil erosion characteristics and land use directions) of each landform type.
On this basis, we could establish quantitative models of different shoulder lines to achieve
the high-efficiency and high-precision extraction of shoulder lines.
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Figure 16. Examples of landforms in loess ridge and hill regions. (a–d) show the distribution of
shoulder lines in loess ridge and hill regions, respectively

5. Conclusions

Aiming to improve the poor continuity and inaccuracy of extracted shoulder lines,
this study proposed an extraction method that fused edge detection and the regional
growing algorithm. The experimental results showed that the CPA and PA values of the
edge detection method were in the ranges of 77.6~83.7% and 79.1~80.1%, respectively; the
CPA and PA values of the regional growing algorithm were in the ranges of 81.1~83.1%
and 78.1~84.5%, respectively; the CPA and PA values of the method proposed in this study
were in the ranges of 86.7~89.7% and 85.8~91.7%, respectively. Moreover, the Dice and IOU
values of the method studied in this paper were closer to 1 than those of the edge detection
method and the regional growing algorithm. This method could guarantee shoulder line
continuity and integrity. Meanwhile, burr removal reduced errors when the grid shoulder
line was transformed into a vector.

Shoulder lines have obvious turning points above and below the line, and the terrain
factors (slope, curvature, etc.) also change accordingly. The geomorphic mechanisms of the
P-N terrain above and below the line are significantly different. The positive terrain above
the line basically maintains the original slope state after loess accumulation, and slope
erosion is mainly surface erosion. The negative terrain below the line is dominated by gully
erosion and gravity erosion, and various gravity landforms are widely developed. In sum-
mary, shoulder lines can be used as an important topographic index for regional soil erosion
intensity and landform division. The accurate extraction of shoulder lines can provide a
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new perspective for the quantitative study of loess landforms and is very important for the
study of Loess Plateau landforms, soil erosion characteristics, and ecological environments.
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Abstract: Kinmen Island was in a state of combat readiness during the 1950s–1980s. It opened for
tourism in 1992, when all troops withdrew from the island. Most military installations, such as
bunkers, anti airborne piles, and underground tunnels, became deserted and disordered. The entries
to numerous underground bunkers are closed or covered with weeds, creating dangerous spaces
on the island. This study evaluates the feasibility of using Electrical Resistivity Tomography (ERT)
to detect and discuss the location, size, and depth of underground tunnels. In order to discuss the
reliability of the 2D-ERT result, this study built a numerical model to validate the correctness of in situ
measured data. In addition, this study employed the artificial intelligence deep learning technique
for reprocessing and predicting the ERT image and discussed using an artificial intelligence deep
learning algorithm to enhance the image resolution and interpretation. A total of three 2D-ERT survey
lines were implemented in this study. The results indicate that the three survey lines clearly show the
tunnel location and shape. The numerical simulation results also indicate that using 2D-ERT to survey
underground tunnels is highly feasible. Moreover, according to a series of studies in Multilayer
Perceptron of deep learning, using deep learning can clearly show the tunnel location and path and
effectively enhance the interpretation ability and resolution for 2D-ERT measurement results.

Keywords: Electrical Resistivity Tomography (ERT); deep learning; underground tunnel

1. Introduction

Kinmen is a small island. During the 43 years of military control, the Kinmen gov-
ernment constructed various defence works and military camps, as well as many spiritual
landmarks. Military installations, bunkers, and tunnels can be seen across the island. Dur-
ing the military administration, there were at least 1000 barracks, 22 large-scale monuments,
28 memorial pavilions, and 10 large underground Halls in the Kinmen area [1]. As it was
in a state of combat readiness for an extended period, 120,000 soldiers were stationed in
Kinmen. After the 1990s, the government regained local autonomy and democratic gover-
nance, and the original historical sites became the resources of local tourism development.
In recent years, with the reduction of military garrison and opening of military spaces, the
pace of development has accelerated. It is estimated that over 1000 vacant barracks will be
released over the coming years. At least 300 barracks have been or are in the process of
being released, and about 50 to 80 barracks are planned for annual release.

Although the vacant barracks are being released, the numerous underground bunkers
are still closed or covered with weeds. In recent years, there have been frequent occurrences
of collapsing underground bunkers that endanger private property [2]. Public works were
frequently halted due to the discovery of underground bunkers during excavation [3] and
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ammunition depots excavated during public works [4]. The original data on these under-
ground bunkers, including their planimetric positions, massing sizes, and underground
depths, are difficult to obtain or simply incorrect. These difficulties and inconsistencies
result from frequent changes of documents keepers and mistakes in handover during army
withdrawal. Therefore, the Kinmen County Government faces a challenge in providing
a detailed report on underground bunker investigation necessary when planning public
works, thus delaying the planning and design schedule. If an underground bunker is
discovered during the construction, the works must be halted. Without such reports, the
building schedule cannot resume, which significantly delays the construction progress
and affects the efficiency of government administration. In addition, the army faces simi-
lar problems of unknown or unclear locations of underground bunkers when returning
the land to private owners, thus affecting the military handover schedule. Civilians also
worry about whether there are any underground bunkers nearby, endangering their homes
and safety.

Over the past decades, despite societal progress, urban disasters occurred frequently.
The collapse of underground bunkers across Kinmen is an example of such disasters. De-
tailed and correct geological data of the site can enhance the effectiveness of urban disaster
prevention and reduce the potential damage these disasters may cause. The geotechnical
engineering investigation targets the geological conditions of the site. The conventional
geotechnical investigation uses mainly the geological drilling method, but the drilling cost
is high and provides only a single point of information. Sometimes it needs to be combined
with the geophysical exploration method to gain the complete geological picture.

In recent years, nondestructive geophysical technology has been gradually introduced
in different underground environmental surveys. In combination with document informa-
tion, the information of underground “surface and space” can be obtained [5]. In the past,
geophysical exploration was used in the geotechnical investigation primarily for seismic
detection (refraction, reflection, and surface wave techniques). The elastic wave velocity of
strata is closely bound with the material engineering characteristics [6–8], but the seismic
detection is likely to be influenced by ambient vibration noise. Moreover, seismic refraction
detection cannot positively detect the low-velocity layer under the high-velocity one, and
the shallow layer (less than 50 m) reflection seismic detection is challenging to implement.
The surface wave seismic detection is mainly 1D and 2D probing technique, and the 3D
detection method is still in the preliminary research stage. Ground-penetrating radar
is an electromagnetic method similar to seismic reflection detection. Here detecting the
distribution of bed boundary and the localisation of depth and the depth of investigation
are limited. If a Bistatic antenna is used, it can increase the detection depth capability [9–12].
The ground-penetrating radar has been used in underground structure and archaeolog-
ical investigations to a great extent, for instance, in underground tunnel mining [13,14],
underground pit mining [15,16], and historical building mining [17,18]. However, the
ground-penetrating radar only judges the location of possible tunnel structures derived
from the discontinuity of radar wave velocity. The shape, size, depth, and distribution
range of underground blockhouses are unknown.

Electrical Resistivity Tomography (ERT) is a geophysical method of mapping under-
ground structures using electrodes placed in boreholes or electrical resistivity measure-
ments from the surface. The present electrical resistivity tomography technique can explore
2D and even 3D resistivity distribution, and the depth of investigation can be adjusted
easily by the length of the measuring line. The resistivity is highly correlated with the
geomaterial and groundwater characteristics, so it has gradually become one of the primary
geophysical methods of geotechnical investigation. In the past decade, the ERT has been
extensively used in a variety of geotechnical and environmental engineering investigation
and monitoring, for instance, in geologic surveys [19,20], fault line surveys [21–25], slipping
plane survey and monitoring [26–28], groundwater investigation and pollution monitor-
ing [29,30], reservoir/dam leakage investigation and monitoring [31,32], refuse landfill
leakage investigation and monitoring [33–35], and underground tunnel mining [36–38].
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Kinmen Island is located between Taiwan and China. The test site is located in an
abandoned barracks area in the central region of Kinmen Island, shown in Figure 1. A large-
scale military defensive infrastructure was built in this area, including multiple underground
tunnels. The Shuangru Mountain Tunnel was built in 1949. It is 1142 m long, extending in all
directions, and had a significant strategic position and value. After the troops’ withdrawal,
the Kinmen County Government declared this tunnel an important cultural heritage in
2019, as it had significant historical value. However, the site has been in disrepair; multiple
tunnel intersections have collapsed, and it is difficult to determine the tunnel path and true
underground location. This study attempts to evaluate the feasibility of using ERT to detect
the basic data on the location, size, and depth of the underground tunnel.

Figure 1. Test site location and measurement wiring diagram.

The measurement results of ERT in the geotechnical investigation is influenced by soil
water content, geological structure, groundwater level, and ambient noise, among other
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things. These factors affect the sensitivity of ERT measurement and spatial analysis, so
this technology still faces problems in spatial resolution capability. Therefore, this study
intends to construct a numerical model with the collected data to discuss the reliability of
ERT results for detecting underground tunnels.

As all geologic configurations are essentially 3D, theoretically, the 3D resistivity survey
is supposed to obtain the most accurate result [39]. At present, the 3D ERT survey has been
studied by most scholars actively, but it is not yet as extensively used as 2D ERT. The main
reason is that the Conduct 3D ERT test needs a larger area site, 3D ERT has a relatively
higher cost, and field tests take a long time. Therefore, the use of the 3D ERT survey is not
yet widespread.

In recent years, artificial intelligence has been extensively used in various domains [40].
This study uses the deep learning algorithm of artificial intelligence for reprocessing several
2D-ERT images from a field test. The Multilayer Perceptron (MLP) of the deep learning
method is used to approximate resistivity value. More profiles are developed from the
original 2D-ERT images, and the 3D resistivity value information is approximated by different
profiles to establish the 3D resistivity model. This study aims to enhance the image resolution
capability and interpretation capability of deep learning and discusses the feasibility of this
type of artificial intelligence algorithm for enhancing 2D-ERT image resolution.

2. Research Method

2.1. Electrical Resistivity Tomography (ERT)

In terms of the measuring principle of ERT, the direct current or low-frequency alter-
nating direct current is conducted to the ground through a pair of current electrodes, C1
and C2, to establish a man-made electric field. The electric field is measured using another
pair of potential electrodes, P1 and P2, so as to measure the potential difference between
P1 and P2, different configurations of electrodes (e.g., Wenner, pole-dipole, Schlumberger,
dipole-dipole, and pole-pole), and the movement of electrodes that correspond to different
space geometry factors. Thus, apparent resistivity can be obtained. The resistivity mea-
sured infield is not the true resistivity of the subsurface structures. Therefore, the apparent
resistivity needs to be calculated via an inversion analysis to obtain the approximately real
resistivity profile [39].

The direct current resistivity method includes 1D, 2D, and 3D detection methods. The
advantage of a 1D survey is a rapid measurement, but the defect is that it cannot consider
the transverse resistivity variation, thus affecting the reliability of measurement results and
interpretation. In the last few decades, to enhance the accuracy of the electrical prospecting
method in result interpretation, the researchers developed the 2D survey from the pseudo
depth composed of the VES and profiling results of the 1D survey. As the 2D-ERT has a
low cost and short test time, the apparent underground resistivity is obtained by wiring
laid, and the resistivity of subsurface soil is obtained by appropriate inverse calculation. In
recent years, more research has been devoted to the research on 3D measurement, leading
to higher accuracy of 3D detection. However, the effectiveness of 3D detection is still
under investigation and is limited to the measurement of space and time [41–45]. Thus, 2D
detection is still the most economical and feasible measurement method at present.

To select the test site, several underground tunnel vent holes were found on the surface
of a site according to the tunnel literature, indicating a possible presence of an underground
tunnel. In order to evaluate the location, size, and depth data of this tunnel, this study
attempted ERT detection.

Therefore, three survey lines, L1, L2, and L3, were laid in the Shuangru Mountain
Barrack Field, as shown in Figure 1. The overall length of each survey line was 46 m,
the electrode spacing was 2 m. The three survey lines were parallel with each other. The
distance between L1 and L2 was 5 m, the distance between L2 and L3 was 8 m. The
electrode configuration used Wenner Array for data collection infield measurement. This
test used the SYSCAL PRO Switch 48 ground resistance instrument of France IRIS. In this
experiment, the analysis software Res2dinv (version 3.54 z) [39] developed by Geotomo

108



Appl. Sci. 2022, 12, 639

was used for inverse analysis. The inverse analysis method used the optimal least square
method (L2 norm). To ensure the measurement quality, each survey line was measured
repeatedly to ensure the deviation was below 3%.

2.2. Reliability Analysis

To analyse the reliability of the 2D-ERT result, this study attempts to build a numerical
model to validate the correctness of in situ measured data. The numerical model was built
using RES2DMOD developed by Geotomo [46]. The in situ geologic configuration was
simulated in the built mesh, and an appropriate resistivity value was given. The numerical
solution was calculated using the finite element method to obtain apparent resistivity, and
the apparent resistivity profile inverse calculation was carried out using the Optimal least
square method (Res2dinv [47]). The numerical simulation resistivity profile can be obtained
and compared with the in situ actual resistivity profile result.

The numerical model resistivity can be obtained from the collected geologic data, such
as geologic maps, drilling data, the resistivity distribution range of geomaterial, and the
preliminary detection result of ERT. Different depths, positions, or specific regions of the model
are given appropriate resistivity values according to experience and professional judgment.

According to the analysis of the collected geologic data of the site, the geology around
the Shuangru Mountain Tunnel mainly comprises two kinds of strata, which are silty
sand within 15 m below the earth’s surface and silty clay at 15–30 m below the earth’s
surface. This study referred to the geologic drilling data of the site and took the silty sand
as background to build the numerical model of a tunnel and simulate the tectonics stratum
of the tunnel.

2.3. Deep Learning

The MLP is one of the basic types of deep learning architecture. Its architecture follows
the neural network system principle, learns, and predicts data. The MLP learns in the
perceptron; the weight is changed after each data processing. The weight is adjusted using
an algorithm, and the deviation in the training process is reduced to minimize the error
in the amount of output and prediction results. The main advantage is the ability to solve
complex problems rapidly. The MLP is a feedforward neural network composed of the
multilayer structure of linear and nonlinear activation functions. Each layer is composed of
basic elements of neurons, and each neuron is fully connected to all others in the previous
and subsequent layers. Neurons in the network have a bias value b and an activation
function f. The connection between neurons in different layers is defined by connection
weight, wi ∈ R, i ∈ {1, 2, . . . , n}. These parameters are updated during the training of MLP.
The general activation functions are ReLU, TANH, sigmoid, and softmax. The output value
y of a neuron is defined as:

y = f

(
n

∑
i=1

wixi + b

)
(1)

where xi is the output value of neuron i of the previous layer, i ∈ {1, 2, . . . , n}. The MLP
network generally includes one input layer, one output layer, and one or more dense layers,
detailed below.

1. Input layer: the number of neurons of the input layer is determined by the point k of
input data.

2. Hidden layer: fully connected layer between the input layer and output layer.
3. Output layer: the neuron of the output layer is determined by the number of classes

or the output of the approximation function.
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In the training process of MLP, the weight wi and offset parameter b are updated in
every iteration, and the update target is a minimum loss function. After network training,
it can be used for classification or function approximation. The architecture is shown in
Figure 2 [48–52].

Figure 2. MLP architecture diagram.

In this study, we used Adaptive Moment Estimation (Adam) optimization to train
MLP and minimize the Mean Squared Error (MSE). Adam optimization was applied to
calculate the adaptive training rate of the parameters [53]. This method, in addition to
storing the descending mean of the square of the past of the gradient or vt and the mean
of the descending of the past of the gradient or mt, is kept as momentum. This is why the
momentum can be seen as a ball sliding on a sloping surface with no friction and, therefore,
can be placed at the minimum error level [54]. Both parameters of the mean descending
average of the square of the gradient and the average of the descending of the past of the
gradient can be calculated as follows:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

where gt is the gradients at subsequent time steps, mt and vt are estimates of the first
moment (the mean) and the second moment (the uncentered variance) of the gradients,
respectively (hence the name of the method). As mt and vt are initialized as vectors of
zeros, the authors of Adam observe that they are biased towards zero, especially during
the initial time steps, especially when the decay rates are low (i.e., β1 and β2 are close to 1).

The prediction of unknown data has always been a complex problem, and it is also
an important application in neural networks. The high-level network architecture of deep
learning can more accurately predict and describe the distribution and changes of unknown
data. The ERT profile is an inverted trapezoid; two sides are blank and short of resistivity
data. This study used machine learning, data prediction, and computational ability to
reduce the error between the actual value and prediction value of MLP for the blank in
the field test ERT profile by MLP. The result was obtained after reiteration to convergence,
forming a complete rectangular section. More profiles of different positions were developed
from MLP, and the in situ 3D resistivity model was built last. In this study, we used only
three-layer (discrete) 2D-ERT data to predict that multilayer (continuous) 3D ERT data is
itself a complex and challenging problem. We hope that the 3D resistivity image predicted
by MLP will enhance image resolution and interpretation capability.
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3. Results and Discussion

3.1. ERT Field Acquisition and Data Analysis
3.1.1. L1 Survey Line

The result of the L1 survey line, according to Wenner, is shown in Figure 3 (RMS Error = 2.3%).
The electrical property of the stratum is approximately divided into two layers, and the
resistivity profile descends as the depth increases. There are two higher resistivity regions
located at the survey line 10–18 m and 34–42 m, within 1.5 m depth from the surface.
Because Kinmen Island had been free of rain for a long time in the measurement period, the
topsoil was very dry. The other region shows low resistivity values at 3–18 m and 32–42 m
of survey line and within 1.5–7.9 m underground. As the geology of this region is silty
sand stratum, the geology is relatively loose and has higher water content. Notably, at
18–25 m of survey line and 2.5–6.5 m of depth, the resistivity value increases suddenly, the
resistivity value of this region increases inwards, indicating this may be the tunnel location,
according to preliminary analysis. According to Figure 3, the tunnel may be located at
2.5 m underground, with a height of about 2.5 m and a width of about 4 m, indicated by
red dotted lines in Figure 3.

Figure 3. L1 result.

3.1.2. L2 Survey Line

Figure 4 shows the result of the L2 survey line (RMS Error = 2.3%). It shows the same
trend as Figure 3 because the L2 survey line is close to L1. The stratum is divided into
two layers, in which the middle region has relatively high resistivity, while the rest is a
stratum of lower resistivity. As the geology of this region is silty sand stratum, the geology
is relatively loose and has higher water content. At 18–28 m of survey line and 2.5–5.5 m of
depth, the resistivity value increases suddenly, the resistivity value of this region increases
inwards, indicating this may be the tunnel location according to preliminary analysis. As
shown in Figure, the tunnel may be located at 2.5 m underground, with a height of about
2.5 m and width of about 4 m, indicated by red dotted lines in Figure 4.

Figure 4. L2 result.

3.1.3. L3 Survey Line

The result of the L3 survey line, according to Wenner, is shown in Figure 5 (RMS
Error = 1.87%). It shows the same trend as Figure 4 because of the proximity of the L3
survey line to L2. The electrical property of the stratum is approximately divided into
two layers. The resistivity profile descends as the depth increases, and there is a region of
relatively high resistivity in the middle. At 3–14 m of survey line and within the earth’s
surface to 1.5 m underground, this region showed higher resistivity. Because Kinmen
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Island had been free of rain for an extended period during measurement, the topsoil was
extremely dry. The other region showed a low resistivity value at 22–42 m of survey line
and within the distance of 7.9 m from the earth’s surface. As the geology of this region is
silty sand stratum, the geology is relatively loose and has higher water content. At 12–20 m
of the survey line and 2–5 m of depth, the resistivity value increases suddenly, and the
resistivity value of this region increases inwards. This indicates a possible tunnel location,
according to preliminary analysis. As shown in Figure 5, the tunnel may be located at 2 m
underground, the height is about 2.5 m, and the width is about 4 m, indicated by red dotted
lines in Figure 5.

Figure 5. L3 result.

3.1.4. Comprehensive Interpretation

According to the measurement results of three survey lines, L1, L2, and L3, there is a
high resistivity region in the earth resistivity profile. In order to analyse whether the high
resistivities are correlated with each other in space, a 2.5D simulated diagram of the three
survey lines in relative positions is drawn, as shown in Figure 6. It is observed that if the
high resistivity regions of various profiles are selected and connected in line, the selected
region and path correspond to the tunnel location and path in the literature.

Figure 6. 2.5D simulated diagram of three survey lines.
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3.2. Reliability Analysis

To verify the reliability of the 2D-ERT images, this study constructed a numerical model
to validate the correctness of in situ measured data. To simulate the onsite strata condition,
this study used the same measurement parameters as in situ measurement, referred to the
geologic drilling data of site, and took the silty sand as background to build the numerical
model of a tunnel to simulate the stratum tectonics of the tunnel in the stratum. Referring
to the site concrete tunnel size, a 3 m high and 5 m wide square tunnel was built at 2 m
underground, and the reasonable resistivity of each unit was assumed. The resistivity value
of the concrete tunnel was assumed to be 1000 ohm-m, dry air inside a tunnel, the resistivity
was assumed to be 2000 ohm-m, the resistivity of the soil layer covering the tunnel was
assumed to be 400 ohm-m. The numerical model is shown in Figure 7.

Figure 7. Numerical simulation model.

Figure 8 shows the numerical simulation result (RMS Error = 0.46%). As seen, the
background silty sand shows low resistivity distribution, and relatively low resistivity
values are shown at 2–18 m and 26–42 m of the survey line. Relatively high resistivity
distribution is shown at 20–25 m of a survey line and 2–5 m of depth, indicated by red
dotted lines in Figure 8. The numerical simulation result in Figure 8 is compared with the
in situ test results in Figures 3–5. The four figures are very similar to each other, proving
that the stratum tectonics in Figures 3–5 match the stratum tectonics assumed by numerical
simulation, proving high reliability. Therefore, the high resistivity region is identified as
the tunnel location and path.

Figure 8. Numerical simulation result.

4. Deep Learning Prediction

The 2D ERT test result mainly shows a 2D profile; the tunnel location and path cannot
be interpreted directly. To establish a 3D electrical resistivity model, this study used MLP
for calculation. The computational ability of learning, data prediction, and reducing the
error between the actual value and prediction value of MLP was used to build the in situ
3D electrical resistivity model.
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Figure 9a–g shows a series of results of deep learning prediction. Before artificial
intelligence calculation, the measured data in this research must be converted into an MLP
data format. The L1, L2, and L3 in situ measurement results are inputted to establish the
graph of the relation of relative positions of L1, L2, and L3 for the initial model. Figure 9a
shows the initial model of the original data of L1, L2, and L3; the result is similar to Figure 6.
Table 1 shows the MLP network structure parameters. The MLP is a three-layer architecture,
including two hidden and one output layer. Figure 9b shows the training result of the MLP
network. The MLP is reiterated during training to reduce the error amount of output and
prediction results and performs calculations until the network converges. Through the
nonlinear iterative calculation of the MLP, as seen in Figure 9b, the error value is converged
slowly after each iterative computation. Figure 9c shows the result of the original data
after MLP data prediction. This is the output of the training data, which can be compared
with the original data in Figure 9a. It can be seen that the training results can faithfully
present the original data characteristics. Figure 9d shows the results of using the trained
MLP to predict the unknown regions of L1, L2, and L3. Figure 9d shows the initially
blank areas and without onsite measurement data, such as the lower left corner and the
lower right corner, which can be predicted by the MLP network to predict the resistance
value. Figure 9e shows the result of using the trained MLP to predict successive profiles.
When the predicted number of profiles increases, the 3D resistivity model is built, and
14 profiles are predicted in this study. Due to the narrow scope of this study, the 14 layers
of data are predicted by three layers of original data of the resistivity values predicted
by the MLP network, which is sufficient to establish a 3D model. Figure 9f shows the 3D
resistivity model result. The tunnel is a reinforced concrete structure; it is characterized by
unlikely electrical conduction and high resistivity, especially in the 2D ERT result. In order
to highlight the location of high resistivity, this study concealed the low resistivity colour of
the 3D resistivity model in Figure 9f. After repeated tests and the resistivities are arranged,
the 60% of the resistance value is taken as a boundary, the colour of resistivity value lower
than 60% is hidden, and the colour of resistivity value higher than 60% is displayed. The
result, after adjustment, is shown in Figure 9g; the tunnel location and path have been
shown clearly.

Table 1. MLP network structure parameter list.

Structure Parameter

Number of layers 3

Number of Neurons in the layers
Input = 2,

Hidden1 = 32, Hidden2 = 32
Output = 1

Initial weights and biases Random

Activation function Sigmoid

Optimization Adam

From the existing literature, we already know the approximate location and direction
of the underground tunnel in reality. The results of the MLP study show that a few (three
layers) 2D-ERT data to predict the 3D ERT data can be seen and that the location of the
tunnel is consistent with the actual location.
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(g) 

Figure 9. Deep learning prediction results (a–g). (a) Original data of L1, L2, and L3; (b) Error rate
of MLP network training process; (c) Result of the original data of L1, L2, and L3 after MLP data
prediction; (d) Result of unknown regions of L1, L2, and L3 after MLP data prediction; (e) Result of
successive profiles after MLP data prediction; (f) Result of 3D resistivity model; (g) MLP predicted
tunnel location and path.
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5. Conclusions

Most of the extensively hidden underground tunnels in Kinmen Island have been
abandoned and unoccupied to avoid the damage to human life and property caused by
tunnel breakdown and prevent accidental destruction of the precious cultural heritage.
This study used 2D-ERT for in situ measurement to find the location of tunnels hidden
underground. To test the reliability of 2D-ERT in tunnel survey, a numerical model was
built. The actual configuration of the onsite strata and the shape of the underground tunnel
were simulated to analyze and validate the accuracy of in situ measurement. In addition,
to enhance the measurement result interpretation ability and resolution to determine the
actual position and path of the tunnel, this study used an artificial intelligence algorithm to
estimate and build a 3D electrical resistivity model.

The results indicate that three survey lines were used for 2D ERT measurement in
this study. As the tunnel is a reinforced concrete structure, it is characterized by unlikely
electrical conduction and high resistivity, especially in the 2D ERT result. The three survey
lines have high resistivity regions in the profiles. According to the numerical simulation
result, this high resistivity region is highly likely to be the tunnel location, and the tunnel
location, height, and width have been displayed clearly. The three survey lines are displayed
in 2.5D mode. The high resistivity regions of various profiles are selected and connected
in line, and the selected region and path are similar to in situ tunnel location and path.
According to the results of this study, using 2D-ERT to survey underground tunnels is
highly feasible.

With the 2D-ERT test result showing a 2D profile, the tunnel location and path cannot
be interpreted directly. As the 3D electrical resistivity survey is limited by space, time, and
economy, the measurement is not yet frequently used. In recent years, artificial intelligence
has been extensively used in various domains. To establish a 3D resistivity map, this study
used the MLP of artificial intelligence deep learning algorithm for calculation and used
the computational ability of learning, data prediction. The error between the actual value
and prediction value of MLP was reduced to complete the building of in situ 3D electrical
resistivity model. According to a series of findings, the tunnel location and path can be
displayed using an artificial intelligence algorithm. The measurement result interpretation
ability and resolution are enhanced effectively. This study can further discuss different types
of tunnels in the future to enhance the feasibility of 2D-ERT for underground tunnel surveys.
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Abstract: This study focuses on an ad hoc machine-learning method for locating archaeological sites
in arid environments. Pleiades (P1B) were uploaded to the cloud asset of the Google Earth Engine
(GEE) environment because they are not yet available on the platform. The average of the SAR data
was combined with the P1B image in the selected study area called Blad Talh at Gafsa, which is
located in southern Tunisia. This pre-desert region has long been investigated as an important area of
Roman civilization (106 BCE). The results show an accurate probability map with an overall accuracy
and Kappa coefficient of 0.93 and 0.91, respectively, when validated with field survey data. The
results of this research demonstrate, from the perspective of archaeologists, the capability of satellite
data and machine learning to discover buried archaeological sites. This work shows that the area
presents more archaeological sites, which has major implications for understanding the archaeological
significance of the region. Remote sensing combined with machine learning algorithms provides an
effective way to augment archaeological surveys and detect new cultural deposits.

Keywords: archaeological; machine learning; Google Earth Engine; remote sensing; fortified sites

1. Introduction

Similar to most research-driven fields, archaeology fundamentally depends on the
following two precious and scarce resources: time and money [1]. Archaeologists often
travel long distances to reach areas of interest and devote a considerable amount of time to
excavations and surveys. Additionally, the discovery of archaeological sites is among the
most time-consuming and labour-intensive activities. Archaeologists often use advanced
technologies to search for less expensive and faster methodologies for archaeological
research. Southern Tunisia is a vast region with difficult access to the investigation area
and limited opportunities for in-person data collection. Consequently, land managers
spend precious and dwindling resources conducting expensive surveys that result in
very few representative samples. One way to address this problem is to develop survey
strategies that focus on archaeological potential. Satellite image analysis is a relatively
low-cost method with great potential for addressing these needs. The application of
remote sensing technology is an effective method for producing relatively complete records
of archaeological settlement patterns and human activity at the landscape scale. The
literature concerning archaeological remote sensing (RS) has shown that multispectral
satellite sensors and airborne LiDAR are particularly useful for addressing survey coverage
and positioning issues [2–7]. In many regions worldwide, RS has been used to detect
and map archaeological proxy indicators [8–12] by leveraging multisource imagery and
spatial pattern analyses. RS technologies enable the discovery of new sites and maps
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of ancient remnants and can be used to assist with the digital reconstruction of ancient
monuments and their environmental backgrounds. For example, in Mediterranean regions,
such as Greece and Croatia, several studies have demonstrated excellent performance
using a variety of passive and active remote sensing data (including multispectral imagery,
thermal images, and UAV-based LiDAR data) to identify ancient Roman remains [13–17].
Fonte et al. [18] evaluated and debated the use of digital modelling tools in northwestern
Iberia to identify and define Roman roads through GIS-based spatial analyses.

In recent years, RS-based progressive archaeological studies have steadily integrated
machine-learning algorithms that enable automated feature finding [19]. Most applications
of these methods have focused on small-scale feature detection using LiDAR [20–22] or
WorldView satellite data [8,23,24]. In the east, Menze and Ur [25] applied a random
forest (RF) classifier to a multitemporal collection of ASTER imagery to classify probable
anthrosols. In the Cholistan Desert, Hector et al. [19] applied an RF classifier that integrates a
multisensor, multitemporal machine learning approach to detecting archaeological mounds,
and Abdulmalik et al. [26,27] used an artificial neural network model combined with a
geographic information system (GIS) and remote sensing for surface water detection. Other
studies have used multiple types of information to identify archaeological remains or
threats to archaeological heritage, such as urban sprawl and archaeological looting [28–30].
Combined with machine learning algorithms, remote sensing provides an effective way
to expand investigation areas and detect new cultural deposits [31–34]. In particular, the
application of this technology allows researchers to (1) investigate remote areas that are
not easy to access due to harsh geography and (2) survey vast and complex environments
(characterised, for example, by otherwise challenging topography). Platforms, such as
Google Earth Engine (GEE) [35], provide a scalable, cloud-based, geospatial retrieval
and processing platform, particularly in remote areas with little or almost no ground
information. Google Earth Engine is a cloud-based platform that makes it simple to
access high-performance computing resources for covering geospatial datasets. Once
an algorithm is developed on GEE, users can produce regular data products or deploy
interactive applications powered by Google Earth Engine resources. Archaeologists have
only recently begun to search for more complex models, drawing on innovative analysis
of spatial and statistical computing and machine learning methods [36,37]. To date, these
studies are increasing when dealing with the detection of archaeological sites based on
high-resolution satellite or drone imagery and in pottery classification [38–40]. Several
studies have applied different methods for the identification of buried structures [5,41].
For instance, in arid or desert environments, satellite remote data provides very reliable
results that can be used to analyse archaeological sites and their environments. According
to previous research, there are more Roman civilisation sites in this area [8], but only a few
have been uncovered by remote sensing methods and identified the major distinguishing
features of Roman settlements, such as villa and tower walls. In this context, the discovery
of archaeological features using machine learning classification algorithms has emerged as
one of the most important topics regarding remote sensing; it is an important method to
better understand and reconstruct ancient landscapes. Thus far, these topics have mainly
been studied by experts, sometimes with the help of automated tools, which results in
a very costly and time-consuming process. Therefore, in recent years, many automation
methods combining satellite image processing with machine learning models have been
developed [19,42–45].

Due to the difficult geography, the investigation of ancient sites in this region is not
easy; therefore, machine learning via satellite can play an important role in the detection
and documentation of archaeological sites. The aim of this study is to evaluate the potential
offered by the combined use of remote sensing data and machine learning to discover
fortified sites in arid areas. An innovative aspect of our approach is the combination of
very high spatial resolution satellite (PB1) technology with SAR data for better detection
and to help obtain enhanced results.
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2. Materials and Methods

2.1. Study Area

The study area is positioned in Blad Talh (see Figure 1). The weather is hot, and the
average temperature is 19.6 ◦C; the location receives less than 100 mm of precipitation
annually [46,47]. The climate is characterised by extremely irregular rainfall that varies across
seasons and within the same season. The alternation of rainy and dry years occurs without a
defined pattern, and periods of prolonged drought often occur. The location of Blad Talh
(between 34◦26′8.18′′ N and 34◦21′36.52′′ N and between 9◦20′3.93′′ E and 9◦30′56.12′′ E) is
shown in Figure 1. It is formed by a series of high plains that are separated by mountains
and gradually descend towards the south. Blad Talh has a maximum height of 1165 metres
and is characterised by a unique morphology. Blad Talh has been the subject of several
studies, mostly geological in nature, that assessed the tectonic and structural formation of
two mountain ranges, the Orbita-Bouhedma and Chemsi-Belkhir. Despite its geographical
position, located less than 40 km from the Mediterranean and more than 100 km north of
the Sahara, Blad Talh is part of pre-Saharan Tunisia, bordered to the north by the Orbita-
Bouhedma link, and is classified in the arid bioclimatic stage. This region played an important
historical role in the Roman era and was part of the sensitive defence system (Limes) located
along the desert border, as attested by the several forts that provided protection [8,46–49].
Many sites that appear to be military structures—forts or towers of various sizes—have
been identified at these locations based on their layouts and the methods used to construct
them. The study area, Blad Talh, was a region of great importance in Roman times. In a
report by Toussaint on the campaign of 1902–1903 [50], we found that the fortification of
KSAR GROUECH was especially important. The general assessment of this report leads to
the conclusion that the Roman ruins in the region of Blad Talh are very numerous in the
plains and much rarer and even less important in the mountainous regions.

Figure 1. (A) Study area location in Tunisia (North Africa); (B) Archaeological sites in the Roman
Fort area; (C) Fort of KSAR GRAOUECH surrounding wall and remains.
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2.2. Methodology

The study describes the process of archaeological site detection and the development
of an integrated approach that includes remote sensing, a geographic information system,
and random forest to achieve these objectives. First, we selected Blad Talh for this research
because of the authenticated archaeological remains and the opportunity to gather survey
information for this project in November 2021. In total, 101 known archaeological sites are
located in Sebkhet Nouail (Figure 1B). Based on a field survey of the entire study area, the
archaeological sites in this area were classified. After the field sample collection was carried
out by GNSS, satellite imagery was used to locate the archaeological sites at each selected
location using ArcGIS based on the actual locations identified by the GNSS instrument.
The second step is to use very high resolution (VHR) data to delineate and map study area
sites, as well as Sentinel-1 data, which is used as input to help achieve better results. For
geometric corrections, these images were imported into the ArcGIS 10.4 package using WGS
84 and UTM zone 32. In the third step, a random forest was applied using a combination
of VHR and SAR data in this study, while employing Google Earth Engine as a platform
to decrease the computational time and avoid any other barriers. These sensors were a
crucial factor in ensuring that the features that would generate values analogous to those of
spots in one source were distinguished from the other features. The final step was survey
validation and determining archaeological site significance using remote sensing-based
archaeological surveys. Remote sensing, machine learning, and GNSS allow us to identify
unknown sites and provide new directions for future archaeological research in our study
area in the ancient Roman period. The overall methodology is presented in Figure 2, while
the specifics of each major section are given in the subsequent sections.

 

Figure 2. Framework approach.

2.3. Field Investigation Sample Collection

We selected Blad Talh for this research because of the authenticated archaeological
remains and the opportunity to gather survey information for this project. The database
recaptured from the historic record of the region allowed an overview of the literature
review of the Roman period. The GIS integration of the results of these different steps was
critical to planning a systematic field survey focused on specific areas of interest, for which
the primary results are presented. In November 2021, the search team arrived at the study
area of interest. A number of ceramic African sigils were found at these sites. Along these
roads, we have classified these sites of interest as being Roman fortified structures based
on the ancient remains observed at these sites. By coordinating our findings with GIS,
remote sensing, and machine learning, the importance of these new fortifications allowed
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speculation regarding their ancient conditions. By confirming our results with remote
sensing images and machine learning, we aimed to study the spatial distributions of the
archaeological remains and reconstruct the Roman settlement in the region.

2.4. Data Preprocessing
2.4.1. Pleiades

These images were obtained from the Pleiades sensor (P1B) in a strip of the Blad Talh
region with the simultaneous acquisition of panchromatic and multispectral information
in the Universal Transverse Mercator (UTM) planar projection, Zone 32 N, and WGS 84
datum on 16 July 2021. Of course, the two sets of bands had two different geometric
resolutions (Table 1). While the multispectral bands had a ground resolution of 2.14 m, we
used 2.14 * 2.14 m/px. The acquisition in the multispectral mode was subdivided into the
following four bands of the spectrum: NIR, red, green, and blue. In the first stage of the
analysis, P1B images were used to study the archaeological landscape [51] and highlight
the most important areas where the cartographic features were determined (boundaries,
forts, sites, etc.).

Table 1. Pleiades data from Blad Talh acquired on 16 July 2021.

Band Name Wavelength (nm) Spatial Resolution (m)

Blue 430–550 2.14
Green 500–620 2.14
Red 590–710 2.14

Near-infrared 740–940 2.14

2.4.2. Sentinel-1

Sentinel-1 (S1) in the band C imagery contains a 12- or 6-day revisit cycle depending
on the availability of images 1A and 1B with 10 m spatial resolution. The analysis presented
here selected the interferometric wide swath mode, which is the main operational mode
and produces data in single (HH or VV) or double (HH + HV or VV + VH) polarisation
in both ascending and descending modes. Each scene available at GEE was preprocessed
using the Sentinel-1 Toolbox to (1) remove low-intensity noise and invalid data from scene
edges and (2) remove thermal noise [19]. The edge of S1 was omitted using the ‘connected
components’ method in GEE, which hides sets of contiguous pixels processed with values
less than −25 dB in the VV polarisation [52,53]. The VV and VH noises were filtered using
the refined Lee filter [54]. We collected S1 data on 13 and 18 July 2021. In this study, the
mean of both images was combined with the Pleiades image. In addition, Sentinel-1 data
helped obtain better results. SAR is able to reflect the soil’s roughness, texture, and the
different physical conditions of the ground. Another benefit of using SAR is that it has a
certain amount of soil penetration in dry sand, which makes it particularly suitable for this
specific area.

2.4.3. Processing Environment

The Google Earth Engine (GEE) platform is currently a free answer to the matter of
restricted access to processing power [19,35]. GEE is a cloud-based platform that enables a
planetary-scale analysis of petabytes of freely obtainable satellite imagery. Combining this
large amount of information with the parallel computing strength of Google’s infrastructure
facilitates the rapid and easy evaluation of satellite images. GEE parallelises and executes
code developed in JavaScript or Python, exploiting Google’s cloud computing infrastructure
and allowing work with intensive processes at new scales. This study used GEE for the
following three reasons: (1) it is a free platform that has many built-in functions for
geospatial analysis and provides quick results without downloading datasets to a local
storage system; (2) it has been widely used in several environmental studies [55–57]; and
(3) it uses one processing environment and may reduce the uncertainties introduced by
various techniques, such as temporal aggregation, resampling (e.g., downscaling and
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upscaling), and data reprojection. Notably, the final results from the GEE could be used
to create maps (raster.tif) and tables (table.csv) in Google Drive for further processing in
the Google Collaboratory (Colab) cloud service [58]. Pleiades bands (blue, green, red, and
NIR) were uploaded to the cloud asset of the GEE environment because they are not yet
available in the Earth Engine. Thus, the overall framework of the research can be applied
to other regions to achieve related aims.

2.4.4. Random Forest Classifier and Accuracy Report

Several artificial intelligence models can be used to process geospatial data when
searching for sites in different environments [34,59–62]. The present study aims to detect
and map fortified archaeological sites using an integrated method composed of RS data,
GIS, field surveys, and a random forest algorithm. The steps of this model followed to
classify archaeological sites included categorising the image composite, collecting training
data, training the classifier model, and validating the classifier with a separated dataset.
We use a selection of 101 archaeological sites linked in Blad Talh’s investigation on pre-
desert zones as our training (n = 76) and confirmation (n = 25) sets. Notwithstanding the
existence of quality problems in Blad Talh’s data, we sort out those sites that might be
evidently specified and precisely situated in the high-resolution imagery obtainable in GEE.
These matched up with large and well-preserved sites. Polygons were drawn in GEE to
outline the areas of the designated sites from which pixel values in the image composite
could be extracted for algorithm training. The random forest classification algorithm was
applied in this study [56,63,64]. An RF classifier was chosen for the GEE machine-learning
implementation. The RF establishes a number of 128 trees on preliminary training samples,
but it takes every split in a tree into consideration. For instance, a new subset of predictors
is considered randomly in every split when splitting nodes. In addition, the average of the
resulting trees helps to evade overfitting and is therefore more stable and reliable than the
other decision tree-based classifiers [63,65]. Moreover, RF classifiers can handle a small
number of training samples, and it is possible to get the number of votes for each class.
These are two advantages that are particularly useful for RS-based archaeology with limited
land-use and cover information. In the current GEE algorithm, the RF is combined with
trees, which is considered a sufficient value to gain perfect results without unnecessarily
increasing the computational cost. The probability mode of the RF was set to evaluate,
filter, and refine the results to ameliorate the algorithm’s detection potential.

Usually, 75% of the samples are used for the training tree, while the remaining 25%
are used for confirmation [63,65]. Herein, the machine-learning process went through three
iterations. The original iteration of the algorithm generated pleasant results in that it had
the ability to explicitly categorise known sites used as training data and many potential
sites by high RF probability values. However, two additional iterations were necessary to
adjust the pixels to higher percentages that did not correspond to archaeological sites. RF
classifier analysis is a probability domain in bitmap format, where each value records the
probability that a given pixel is a “vulnerable site.” The RF probability limit for the site
values was determined after careful examination of the test data on high-resolution images,
which produced a raster map of the clusters (“fortified sites”). A higher threshold resulted
in better identification of large, clear sites, but many small pixel clusters corresponding to
the small sites covered were lost. Confusion metrics were used to calculate RF accuracy,
including the overall accuracy and kappa coefficient. Several researchers demonstrated the
perfect application of the GEE platform for training and applied an RF classifier due to its
high performance [19,66].

3. Results

Using the proposed methodology, we succeeded in detecting fortified sites that were
previously unknown in Blad Talh. The automated detection of fortified sites exhibited
high accuracy, equal to that of human detection. The results show that machine learning
performed with high accuracy (see Table 2).

128



Appl. Sci. 2023, 13, 2613

Table 2. Classification results of the study area.

Type Overall Accuracy Kappa Coefficient

Validation 0.93 0.91

The image combines SAR bands (a single VV and VH and a dual VH–VV band) and
P1B bands (b1–b4) (as shown in Figure 3). The high-quality P1B and Sentinel-1 bands are
not affected by specific environmental or vision conditions.

 

Figure 3. Feature importance in the classification model.

To the best of our understanding, as of mid-2021, the P1B image received on 16
July 2021 was the most current VHR optical satellite image covering Blad Talh that was
accessible online through the GEE. The GEE and machine learning have proven to be
applicable instruments for automatically detecting archaeological sites in satellite images.
The GEE, machine learning, and remote sensing were highly effective at the site scale
and identified pixels of archaeological remains. Furthermore, pixels of fortified structures
were successfully detected in Blad Talh, confirming the ability of the GEE to quickly run
an analysis on a substantial scale. The discovery and distribution of archaeological sites
extended towards the southern part of the Blad Talh area and the surrounding pre-desert
towards the east, which was a region that was relatively unreachable in past investigations.
Predictably, the allocation of the fortified sites detected by the algorithm was concentrated
in the Blad Talh area. Sentinel-1 texture differences between layers were accentuated in the
area (see Figure 3).

The algorithm’s ability to detect fortified archaeological sites is likely due to polarisa-
tion bands and the capacity of the SAR C-band to penetrate soil. Because of vegetation and
sand cover, the RF potential produced only some well-illustrated square shapes. The major-
ity of the newly proposed fortified sites presented segmented square shapes or amorphous
groups of pixels. It is quite possible that in addition to these five detection sites, there are
also remains of sand-covered archaeological sites with low RF probability values. Notably,
when high-resolution visible images were used, the algorithm still assisted in identifying
small pixels or backscattering. SAR alone showed no significant change in land cover. As a
result, SAR alone cannot give enough information to identify archaeological sites. Also, the
Pleiades images are not capable of segregating the spectral structures of the sites on their
own using an RF classifier. Furthermore, our algorithm was designed to integrate Sentinel-1
and PB1 images for better archaeological discovery, an approach that showed accurate
results (see Figure 4). Comparing the results between high-resolution imagery PB1 without
SAR images and the virtual absence of sites, their combination for archaeological detection
of the known fortified site was used as a validation set (see Figure 4). When possible, the
new detection was matched to previous research on past archaeological sites [8,47,67]. The
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archaeological sites relative to the existence of sand dunes suggested that many more sites
can be covered or located underground in the pre-desert, and thus, the aeolian sediments
in southern Tunisia may have played an important role in both the field records of the
area and the discernibility of the archaeological ruins. Regions with a large number of
sites were located in open mudflats that were distributed throughout the area, while many
sites were still relatively covered underground. Five newly detected fortified sites were
identified (see Figure 5). The distribution of the archaeological sites extended towards
the southern part of the Blad Talh area and the surrounding pre-desert towards the east,
which was a region that was relatively unreachable in past investigations. The resulting
cluster of high-RF probability pixels showing fortified sites was used to rebuild the regions.
Image interpretation was performed using P1B, SAR data, and machine learning. The
blend of these data secured enough environmental variability and time to estimate and
determine the potential extent of the fortified sites that the algorithm specified. Because of
the sand cover, the RF probability yielded only a few well-defined square shapes. Most of
the newly proposed sites present fragmentary square shapes and elongated bands of pixels.
It is quite possible that in addition to these discovered sites, there are also the remains of
archaeological sites covered by sand or shrub vegetation with low RF probability values. It
is worth emphasizing that the algorithm helped to identify small groups of site pixels.

Figure 4. (A) The study area, showing the distribution of sites. (B) A Google Earth base map locating a
well-preserved fort. (C) Dual Sentinel-1 band [VV, VH] in ascending mode. (D) Single Sentinel-1 band
[VV] in ascending mode. Results of the RF classifier: (E) Visible high-resolution PB1 imagery without
SAR images compared to the virtual absence of sites. (F) An example of SAR images combined with
PB1 that detected a known fortified site used as a validation set; note that the white dots scattered
through the region indicate high-RF probability sites.
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Figure 5. RF probability results. (A) Illustration of fortified detection sites. (B) Clustering of high-
probability pixels in the area showing the detection structures of fortified sites. (C) Pan sharpened
Pleiades imagery. Image was interpreted as signifying the existence of a fort hidden underground.
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4. Discussion

The RF method, which has been used in the classification of remote sensing data
since the early 2000s, was chosen as the classification algorithmic rule for this study due
to its simplicity of implementation, robustness, and possible predictability [63,68,69]. The
challenge we faced was the discovery of fortified sites. Our objective was to develop a
straightforward yet efficient methodology that combined remote sensing techniques and
automated archaeological remains discovery, as well as to evaluate the potential offered by
the combined use of remote sensing data and machine learning to discover fortified sites
in arid areas. Using a substantive approach, we confirmed an advantage similar to that
of other applications of machine learning techniques, and we show that the RF potential
field-detected sites may be considered ancient settlements. In this research, given the high
likelihood of improvement in the classification accuracy, we assessed the RF’s performance
in a wider context (different archaeological features or sites). As shown in the results
section, the performance of the RF classifier is highly satisfactory, with a kappa coefficient
of 0.91 and a precision and overall accuracy of 0.93 in the “fortified site group.” The RF
potential area highlights five unknown locations shown on historical maps. The sites are
partly hidden by sand, and the RF potential only shows different parts of the structures’
fortified sites, which was verified by a field survey. The discovery of these sites is very
important because it documents the existence of ancient Roman fortifications. Based on
previous studies, there are more sites of Roman civilisation in this area [8,47], and only some
small sites have been uncovered by remote sensing methods. Currently, new sites could
be included with those previously identified and dated by Bachagha et al. [8,47,67]. To try
to understand the changes in the settlement distribution over time, research in southern
Tunisia documented all sites encountered, including those of the Roman era. Considering
that most of the previously reported sites were settlements attributed to periods of Roman
civilisation, there is a high possibility that most of the newly discovered sites were also
occupied during the same period. Fortified structures such as fortresses and defensive
works are fairly common features of the archaeological landscape in southern Tunisia. Such
features have previously been uncovered in the city of Gafsa. In this study, we were able to
locate five fortified sites situated south of the Blad Talh area. The fortified sites were built
on approximately level ground in a nearly square form that is covered by sand dunes. The
layout showed visible signs of erosion on all sides, and loot pits were visible, especially on
the south side. Based on our findings in the literature, we propose a suitable reconstruction
of the ancient settlement in Gafsa, indicating that the fortifications in the locale were a
defence project planned to defend, protect, and control the Limes [8,70–74]. We found
fortified sites located in the same area and close to each other, in contrast to previous
research [8]. The fortified sites were separated by a distance of approximately 2.5 km. From
the machine learning and P1B data of the study area, a red-dashed line rectangle can be
seen in Figure 5. Using machine learning and P1B data surveying, we demonstrate the
detection of hidden fortified sites in Gafsa, which is well-situated across the frontier of the
Roman or Byzantine era in southern Tunisia.

Surveys: Validation and Archaeological Site Significance

Building on recent advances in digital image analysis and feature detection, we de-
veloped an RF algorithm that allows the automated detection of these types of enclosures
in Pleiades images with high resolution and Sentinel-1 for better archaeological detection.
We also used SAR images to increase the accuracy of classification, which provided good
results. In addition, we only used the Google Earth Engine for the view, so we cannot use
it for building a machine learning detection model. We successfully used the RF model
to detect new sites in satellite imagery. The model detected these sites, which we verified
and confirmed in the field. We built the training dataset using both Pleiades and Sentinel-1
images in the Google Earth Engine. Of course, the identification of any object or location
as archaeological remains based on images requires confirmation from the ground. The
discovered sites described above were confirmed in the area of Blad Talh in southern
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Tunisia by machine learning, remote sensing data, and field investigation. Other than
the surrounding wall and the ruins of the fortified sites, no other archaeological ruins
were seen above ground. Almost all the visual features in the analysed RF results were
determined to be micro-topographical results of archaeological importance. As a result, our
approach reveals a different layout of archaeological sites, and the algorithms identified
structures in the area very well. In November 2021, the exploration team arrived at sites
approximately 10 km north of the suspected location of the ancient Roman fortification,
KSAR GRAOUECH (a square-shaped mark). Each side of the suspected location was
measured to be around 50 m long. These anomalies have no intact walls, but the remains
of some wall piers were investigated to identify anomalies. Shards of ancient ceramics
were scattered among the walls, and their environs date back to the Roman period, as
shown in Figure 6G,I,N,L. Buried walls at these five fortified sites were also unearthed,
representing the appearance of concealed remains, as shown in Figure 6C,F,H,J,M. The
field investigation conducted in this region reveals the existence of a farm dating back
between the Roman Empire and Byzantine times based on the discovery of tiles and shards
of ancient ceramics from the Roman period. These fortified sites are situated between
Capsa (Gafsa) and the coastal towns of Iunci and Lariscus. Controlling one of the passes
to the north would have been of obvious strategic importance during the Roman era, a
consideration that strongly supports their inclusion in the list of official fortifications of that
period. In addition, these sites have common topographical and archaeological features,
and their dimensions are relatively similar to each other. According to Trousset [74], these
fortified sites are widely spread in the rear Limes area and are located on the immediate
edge of a Roman road or in a control location of a passage; some have been identified as
military works that are a part of the defensive system. In the report by Rebuffat et al. [75],
these were probably fortified farms that adopted a plan inspired by the military project.
The parallels between military architecture and these fortified sites, namely Mattingly Qsur,
are very evident in the adoption of the rectangular form with towers projecting from two
or four facades [76]. The results of studies investigating this type of site in Fazzan and
Cyrenaica in eastern and western Libya, respectively, confirm that the peak occupation of
fortified sites occurred after the end of the third century and continued in some regions in
later times. More specifically, the majority were occupied between the 4th and 6th centuries
(350–540 AD) [77].

Indeed, the general landscape of the Blad Talh was a highly important part of the
ancient Roman period. As a result, based on our fortified sites and the literature, we firmly
conclude that Blad Talh has played a critical historical role in migration between ancient
cities located in current-day north and south Tunisia, as attested by the caravan roads. It
was also a part of the sensitive defence system (Limes) located along the desert border, as
attested by the several forts that protected the area (Figure 7).

133



Appl. Sci. 2023, 13, 2613

Figure 6. Magnified views of anomalies 1 to 5. (A,B) Landscape of the study area. (G,I,N,L) Shards
of ancient ceramics. (E) Ancient Architectute element (K) Lintel photographed at the entrance to a
fortress. (C,D,F,H,J,M) Field photos of wall remains.
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Figure 7. Comprehensive archaeological map of the Blad Talh landscape in the ancient Roman period:
localities and ancient road networks. Modified from [71].

5. Conclusions

In summary, we present an integrated workflow that combines SAR images and optical
Pleiades imagery with basic spatial analysis in the Google Earth Engine for automatically
detecting fortified sites. The random forest-based approach demonstrates that it is a useful
tool for overcoming problems with data size and structure. Our research illustrates the
applicability of this detection technique to fortifications and demonstrates that it is possible
to automate fortification discoveries for the first time in Tunisia. It is possible to summarise
insights and knowledge directly from the data, and the algorithm is able to highlight
relationships between archaeological sites. The machine-learning algorithm we use is
capable of identifying all the currently known sites in the study area and the accurate
locations of new fortified sites. The approach provides outputs that are significantly
superior to those obtained with a single-source RS technique. RS-based applications in
arid and semi-arid regions elsewhere can benefit from the integration of globally available
Pleiades and Sentinel data into an accessible, flexible, and repeatable GEE environment
to perform and evaluate machine learning workflows. Even though the approach shows
accurate results, the limited availability of VHR data and the expense to obtain the data are
considered a limitation of this study that can be improved in the future. Archaeological
data, along with landscape analysis and mapping items affecting site visibility, indicates
that these are only a few of the fortified sites in the region, many of which may be covered
by sand in the surveyed area. We discovered fortified sites hidden by thick vegetation and
confirmed these sites using field investigation, remote sensing, and machine learning. The
outcome of the work presented here provides advances in the technology and archaeology
domains. Technologically, using these methods, various derived models are used to
evaluate their abilities in investigating the micro-topography of a site of archaeological
importance under a sand dune. The results viewed from an archaeological perspective are
interesting. The machine learning-based method enabled us to detect five fortified sites
for which only some data was obtainable from past records and shed new light on the
fortified KSAR GROUECH structure dating back to the Byzantine period (6th century), for
which only the presence of a fort was well-known. The findings are validated by on-site
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processing, demonstrating that the automatic procedure can identify and extract the major
distinctive characteristics of Roman settlements, such as villas and tower walls. Notably,
the exploration elaborated in this research is promising in terms of technological invention.
By providing for previous quantitative examinations in this region, our exploration raises
awareness of the need to use quantitative styles to address more pressing questions, similar
to those about the protection and preservation of threatened archaeological sites. As a
result, one of the benefits of this research is that it demonstrates, from the perspective of
archaeologists, the capability of satellite data and machine learning to discover buried
archaeological sites. While this study focuses on archaeological sites in southern Tunisia,
the proposed approach is effective in terms of time and cost, particularly in locations
where data availability is scarce. Validation of this approach was proved using the nature
and characteristics of the study area, and we expect that the classification accuracy of our
approach would be further improved by using a convolutional neural network (CNN) and
images obtained by the Google Earth Engine.
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Abstract: The trajectory-crossing method is an important and effective method for spaceborne
SAR (synthetic aperture radar) to detect a two-dimensional current field. However, in practical
applications, there are few spaceborne SAR data that meet the requirements of close acquisition
time and overlapping trajectories, which makes it difficult to comprehensively analyze the impact
of different systems and environmental parameters on current measurement results from real data
processing. With the proposal of a SAR constellation plan in the future, the data resources will be
constantly enriched, and the trajectory-crossing method will be widely used. It is, thus, necessary to
lay some theoretical foundation at present. A two-dimensional sea-surface-current-field simulation
method for trajectory crossing spaceborne SAR is proposed in this paper. Based on the principles
of the trajectory-crossing method, the proposed method can realize the simulation of two-dimensional
sea-surface-current field under given spaceborne SAR system and environmental parameters. In this
paper, the simulation process of this method is given, and the simulation experiment is performed.
Compared with the current measurement results of SAR data, the simulation experiment shows that
the current velocity error is less than 0.03 m/s and the direction error is less than 10 degrees, which
proves the reliability of the proposed simulation method. The proposed method lays a foundation
for analyzing the influence of various parameters in the application of the trajectory-crossing method.

Keywords: synthetic aperture radar; trajectory-crossing method; sea-surface current; simulation analysis

1. Introduction

As an important ocean dynamic parameter, the sea-surface-current field has a profound
impact on climate change, ocean engineering, fishery resources, energy, offshore target
detection and so on [1,2]. Therefore, monitoring of ocean currents is becoming crucial.
Spaceborne synthetic aperture radar (SAR) has the ability to observe the earth all day, in all
weather and at high-resolution, which makes it an important remote-sensing tool that can
retrieve the sea-surface-current field.

Currently, along-track interferometry (ATI) [3] and Doppler centroid analysis (DCA) [4]
are the two main techniques for spaceborne SAR to detect ocean current fields; however,
they can only retrieve the range velocity component of the current, i.e., they cannot directly
obtain the current vector—that is, the two-dimensional current field. Generally, two sets
of SAR data with crossed trajectories can be used to synthesize the velocity components
in two different directions on the overlapping sea-surface area to thus obtain the current
vector. This is an important two-dimensional current field detection method, which is
denoted as a trajectory-crossing method in this paper.

However, due to the requirement that the overlapping area needs to cover the research
scope and as the data acquisition time is close, there are fewer real spaceborne SAR data to
meet this feature. The current measurement ability of the trajectory-crossing method is only
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verified in some airborne [5] and spaceborne [6] SAR data processing, and there is a lack
of further research for the impact of different system and environmental parameters on the
current measurement effect. Therefore, simulation is an effective research method. At
present, to the best of knowledge, there is no specific simulation method for the trajectory
crossing current measurement process.

Due to the complexity of sea-surface electromagnetic scattering, the simulation of sea-
surface SAR data usually does not start from the original echo but mainly considers the
modeling using wave spectrum and modulation transfer function. In 2000, Romeiser and
Thompson [7] proposed a sea-surface Doppler spectrum model based on the improved
combined sea-surface model, in which the wave–current interaction and the modula-
tion transmission process of sea-surface backscattering were considered [8,9]. Then, the
model was integrated into SAR ocean imaging model and widely used in sea-surface
current measurement and simulation [10–12]. Therefore, this model provides a possibil-
ity for the simulation of two-dimensional sea-surface-current field for trajectory crossing
spaceborne SAR.

Based on the principle of the sea-surface SAR imaging process and trajectory-crossing
method, a two-dimensional current field simulation method is proposed in this paper.
In the second part, the specific process of the proposed simulation method is given. In the
third part, the simulation experiment and verification are conducted. Finally, the above
is summarized.

2. Simulation Method of Two-Dimensional Sea-Surface Current Field for Trajectory
Crossing Spaceborne SAR

The trajectory-crossing method needs to use two sets of spaceborne SAR data with
overlapping areas, usually from ascending and descending passes, respectively, and their
acquisition time should be close. Geometric relationships of different velocity components
of sea-surface motion over overlapping area are shown in Figure 1, where the blue and
red thick arrows indicate the flight direction of the ascending and descending satellite,
respectively. The sea-surface imaging range is S and G, bounded by blue and red dashed
lines, respectively. The middle is the overlapping area of S and G, where Vtot and Dtot rep-
resent the magnitude and direction of current velocity, respectively. Sea-surface movement
produces projection components in four directions, where VS and VG represent horizontal
radial velocity components along beams far from the ascending and descending satellites.
VV and VU represent surface velocity components along the north–south and east–west di-
rections, respectively. In addition, α represents the intersection angle between the direction
of the beam center line and the east–west direction on the horizontal plane.

Figure 1. Schematic diagram of the geometric relationship between the sea-surface velocity and its
components in the trajectory-crossing method.
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The simulation method proposed in this paper is mainly divided into three parts: radial
velocity simulation, wave velocity simulation and current vector simulation. The flow chart
is shown in Figure 2. The first step is to calculate the radial velocity using the SAR ocean
imaging model, the second step is to calculate the wave motion component, and the third
step is to calculate the two-dimensional current field combined with the trajectory-crossing
method. The radar parameters include the signal frequency, look direction of the beam and
incident angle. Platform parameters include the satellite orbit height and flight speed.

Figure 2. Flow chart of two-dimensional sea-surface-current-field simulation for trajectory crossing
spaceborne SAR.

Based on the SAR ocean imaging model [7–9] proposed by Romeiser, University
of Hamburg, Germany, the sea-surface horizontal radial velocity components along the
spaceborne SAR beam look in directions with the ascending and descending passes simu-
lated. The model supports simulation in the frequency range of 0.4 to 35 GHz. The main
processes include the calculation of the wave–current interaction model, sea-surface scat-
tering model and sea-surface SAR Doppler model.

Wave–current interaction is a physical process that must be considered in the real sea
motion environment. We need to first give the sea-surface-current field and wind field
parameters and then solve the action spectrum balance equation and calculate the modu-
lated wave spectrum according to the weak hydrodynamic interaction theory. The action
spectrum balance equation to be solved is [9,13,14]

∂N(x, k, t)
∂t

+
[
cg(k) + U(x, t)

]∂N(x, k, t)
∂x

− k
∂U(x, t)

∂x
∂N(x, k, t)

∂k
= Q(x, k, t) (1)

where t represents time, x = (x, y) represents the sea-surface spatial position, k =
(
kx, ky

)
represents the wave number, and kx and ky represent the wave numbers in the X and Y
directions, respectively. N represents the action spectral density of sea-surface micro scale
wave, U represents the surface current field, and Cg represents the modulated wave group
velocity. These variables about ocean waves are related to the conditions of sea-surface
wind field. Q represents the source function:

143



Appl. Sci. 2022, 12, 5900

Q(x, k, t) = μ(k)N(x, k, t)
(

1 − N(x, k, t)
N0(k)

)
(2)

where N0 represents the action spectral density in the sea-surface equilibrium state, and
μ represents the relaxation rate.

The relationship between the wave spectrum and action spectral density is [15]

N(x, k, t) =
ρω0(k)

k
ψ(x, k, t) (3)

where ψ represents the modulated wave spectrum. The natural angular frequency

ω0(k) =
√

gk + (τs/ρ)k3, g is the gravitational acceleration, ρ is the seawater density,
and τs is the seawater surface tension.

The sea-surface scattering model is based on the improved combined sea-surface
model [8,9] proposed by Romeiser and Alpers, which considers the modulation effect
of large-scale wave on small-scale Bragg waves. The normalized scattering coefficient can
be calculated by taking the modulated wave spectrum and the given radar parameters as
the input of the scattering model [8,16]
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where the symbol 〈·〉 represents the statistical average; σ(0) represents the normalized
backscattering coefficient when the sea-surface slope is zero;

〈
σ(2)

〉
is the sum of second-

order Bragg scattering caused by sea-surface slope; s =
(
sp, sn

)
represents the sea-surface

slope vector; kp and kn, respectively, represent the Bragg wave number components parallel
and perpendicular to the radar look direction; ψ(k) represents the wave number spectrum;
∧ and ∨ denote the Fourier transform and its conjugate of σ to wave number k; and ∧∨ and
∨∧ denote the Fourier transform and its conjugate of σ to combined wave number k1 − k2.

The Doppler spectrum and variance can be calculated using the double Gaussian
Doppler spectrum model [7] proposed by Romeiser and Thompson, which divides the
sea-surface echo into the superposition of the Bragg wave Doppler spectrum far from and
towards the radar. Each Doppler spectrum component is defined as a Gaussian shape and
expressed as

S( fD) =
〈σ+〉√
2πγ2

D+

e−( fD−〈 fD+〉σ)
2
/

γ2
D+

+ 〈σ−〉√
2πγ2

D−
e−( fD−〈 fD−〉σ)

2
/

γ2
D−

(5)

where ± represents the Bragg wave components away from and towards the radar, respec-
tively; 〈 fD±〉σ is the Doppler center weighted by the normalized backscattering coefficient;
and γD± is the variance of Doppler spectrum. The specific calculation formulas of 〈 fD±〉σ
and γD± can be found in [7]. Then, the horizontal Doppler velocity Vdop along the beam
radial direction can be expressed as
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Vdop =
π · 〈 fD±〉σ

ke sin θ
(6)

where ke is the wave number of the electromagnetic waves, and θ is the incident angle.
Therefore, the radial horizontal sea-surface Doppler velocity along the ascending and
descending satellite beam represented by VS and VG in Figure 2 is calculated successively
by the above process.

The radial velocity is actually the Doppler velocity that reflects the average motion
state of scatterers in the sea-surface resolution unit. In the range of medium incident angles,
the radial Doppler velocity ur includes not only the current velocity but also the component
of the sea-surface wave motion [17].

ur = uc + uo + ub (7)

where uc is the current velocity, uo is the large-scale wave orbital velocity, and ub is the net
Bragg wave phase velocity.

At present, the related wave motion model is not perfect, and thus it is difficult to
extract the current velocity component by directly calculating the accurate wave veloc-
ity [10]. The authors in [18] stated that when there is no current field, the sea-surface
velocity obtained by using the SAR ocean imaging model comes from the wave motion.
Therefore, in the second step, the input current field velocity is set to zero, combined with
the same wind field, and through the calculation process similar to the radial velocity,
the wave motion velocities in the ascending and descending beam direction are obtained,
which are Vw

S and Vw
G , respectively. Since the influence of large-scale waves is considered

in the previously used wave spectrum and scattering model, the simulated wave velocities
include the sum of the last two velocity components of Equation (7).

By making a difference between the radial Doppler velocity and the wave velocity, the
current velocity components Vc

S and Vc
G in the ascending and descending beam direction

can be obtained:
Vc

S = VS − Vw
S (8)

Vc
G = VG − Vw

G (9)

Then, combined with the trajectory crossing current measurement geometric model in
Figure 1, the east–west velocity component VU and north–south velocity component VV
of the sea-surface current can be calculated:

VU =
Vc

S − Vc
G

2 cos α
(10)

VV =
Vc

S + Vc
G

2 sin α
(11)

Finally, the magnitude and direction of the current vector are, respectively, expressed as:

Vtot =
√

V2
U + V2

V =

√
V2

S + V2
G − 2VSVG cos(2α)

sin(2α)
(12)

Dtot = arctan
(

VV
VU

)
= arctan

(
VS + VG

(VS − VG) tan α

)
(13)

3. Simulation Experiment and Verification

In this section, a simulation experiment was conducted based on the spaceborne SAR
system and sea environment parameters. The effectiveness of the simulation method was
verified by comparing the simulation results with the measurement results using SAR
data. First, the spaceborne SAR data, system parameters and input sea environment data
involved in the experiment are introduced. The geographical location of the spaceborne
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SAR data used in this paper is shown in Figure 3. This is the Mozambique strait be-
tween southeast Africa and Madagascar, where the sea surface is affected by the warm
current of Mozambique, and the motion state is relatively stable. The red box indicates the
stripmap SAR data range of ESA sentinel-1 satellite’s ascending pass, the acquisition time
is 8 October 2019, 15:35 UTC (orbit number: 018385), the black box indicates the stripmap
SAR data range of China Gaofen-3 (GF-3) satellite’s descending pass, and the acquisition
time is 9 October 2019, 02:43 UTC (orbit number: 016651). Although these two SAR data
were not acquired at the same time, the time interval is short, the current motion status
is basically unchanged here, and these two SAR images overlap partially in this sea area,
which meets the requirements of the trajectory-crossing method.

Figure 3. Spatial geographic location of the actual SAR data.

Figure 4 shows the SAR amplitude image of Sentinel-1 satellite and the horizontal
radial Doppler velocity image of its secondary product. The dimmer brightness in the lower
left corner of Figure 4a is due to the lower wind speed and the weaker echo energy due to
the oil spill on the sea, which also results in errors in the Doppler velocity, as shown in the
corresponding position in Figure 4b. The absolute values are small in the lower right part
of the Doppler velocity map, and the overall velocity includes the influence of sea-surface
wind and wave motion, which needs to be further removed.

(a) (b)

Figure 4. Sentinel-1 SAR (a) amplitude image and (b) radial Doppler velocity.

Figure 5 shows the SAR amplitude image of the GF-3 satellite and the Doppler velocity
estimated from the single look complex (SLC) data. The dark part of the right corner
of Figure 5a is obviously affected by the sea oil film, which reduces the signal-to-noise ratio
of the image. The Doppler velocity of Figure 5b is estimated from the Doppler processing in
reference [19]. It can be seen that the absolute value in the lower left corner of the image is
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small, in addition to the anomaly in the oil film position, and the overall velocity overlaps
with the influence of the wind and wave motion.

(a) (b)

Figure 5. GF-3 SAR (a) amplitude image and (b) radial Doppler velocity.

Although the overlap range of the above SAR data is small, it has clear velocity
characteristics, which is conducive to the validation of simulation method. Therefore,
a simulation experiment was performed in this sea area. The input system parameters are
consistent with the real SAR data parameters, representing the ascending Sentinel-1 satellite
and the descending GF-3 satellite, respectively, as shown in Table 1. It should be noted that,
at present, there are few ascending and descending data from a single satellite that can
meet the requirements of irradiating the same sea area at a short time, and it is difficult to
obtain them directly. In future applications, two or more satellites must cooperate to obtain
the ascending and descending passes data of the same space-time sea area for current
measurement. Therefore, the following dual satellite SAR data processing and system
simulation are of practical significance.

Table 1. Simulation parameters.

Parameters Sentinel-1 (Ascending) GF-3 (Descending) Units

Radar Frequency 5.4 5.4 GHz
Incident Angle 26.3 35 deg
Beam Direction 15 165 deg
Platform Speed 7590 7568 m/s
Orbit Altitude 707 713 km

The hybrid coordinate ocean model (HYCOM) reanalysis current field data and the
European centre for medium-range weather forecasts (ECMWF) wind field data are ob-
tained for the simulation input, respectively, as shown in Figure 6. The HYCOM model
reanalysis data, which combines satellite altimeter data with temperature and salt data
obtained by a buoy, is widely used in ocean current research [20–22]. The date selected
for the HYCOM data is the same as Sentinel-1 SAR data acquisition date with spatial
resolution of 1/12 degree. Wind field data at the same time and place were obtained from
the ECMWF website with spatial resolution of 1/4 degree, and interpolated to ensure the
same number of data points as the input current field. From the input data, it is known
that the velocity in the overlapping area is small, and the sea-surface wind speed is mainly
in the range of 2–7 m/s, which belongs to the moderate wind speed.
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(a) (b)

Figure 6. Simulation input sea-surface environment data. (a) current field and (b) wind field.

The given current and wind data are input into the SAR ocean imaging model to
calculate the radial Doppler velocity VS under the parameters of ascending Sentinel-1
satellite and the radial Doppler velocity VG under the parameters of descending GF-3
satellite, as shown in Figure 7a,b, respectively. It can be seen that, due to the same orbital
inclination of these two satellites, the distribution of the relative value of the velocity in the
look direction of the two beams is approximately symmetrical; however, the absolute value
is different due to the influence of wind and wave motion. Figure 7c,d shows the wave
velocity when the current field is set to zero under the same wind field conditions, in which
the absolute value of the velocity changes due to the change of the relationship between
wind direction and beam look direction. When the wind direction is perpendicular to
the beam look direction, the wave velocity is zero, which is consistent with the research
conclusion in the literature [11].

(a) (b)

(c) (d)

Figure 7. (a) Sea-surface radial velocity along the ascending beam. (b) Sea-surface radial velocity
along the descending beam. (c) Wave velocity along the ascending beam. (d) Wave velocity along the
descending beam.
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According to the flow chart in Figure 2, the corresponding sea-surface radial velocity
and wave velocity of ascending and descending passes in Figure 8 are subtracted, and
the current vectors are calculated using the trajectory-crossing method. The simulated
two-dimensional current field is shown in Figure 8. Comparing with the input current
field given in Figure 6a, we found that they were in good agreement. Note that, as for the
computational demand, the calculation process of this method takes only a few minutes, the
calculation amount of wave spectrum is the largest. The calculation times will be different
according to the amount of input current and wind data.

Figure 8. Simulation results of two-dimensional current field.

To quantitatively validate the experimental results, we selected eight geographic
locations in the overlap area (Figure 9) and compare the simulation results with the SAR
data measurement results, as shown in Table 2. As the size of the simulated current field
resolution unit is about 8 km and that estimated from Sentinel-1 and GF-3 SAR data is about
1 km, the 8 × 8 Doppler velocities around the corresponding eight latitude and longitude
positions in Figures 4b and 5b are averaged. After subtracting the simulated wave velocity
in Figure 7 from the average data, the two-dimensional current field results of the SAR data
are calculated in combination with Equations (8)–(13). It can be seen that the corresponding
current velocity and direction are close. However, because the current and wind data input
by the simulation will be different from the instantaneous environment in the real SAR
data, there will also be discrepancies between the data in Table 2.

Figure 9. Location points in the current field as verification.
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Table 2. Comparison between the simulated and measured current data.

Location Point Coordinate
Simulated Data Measured Data

Velocity Direction Velocity Direction

1 (42.32−18.04) 0.260 m/s −9.66◦ 0.250 m/s −16.74◦
2 (42.32−18.12) 0.293 m/s −12.68◦ 0.261 m/s −17.59◦
3 (42.32−18.20) 0.322 m/s −19.78◦ 0.299 m/s −24.05◦
4 (42.32−18.28) 0.312 m/s −33.06◦ 0.275 m/s −37.45◦
5 (42.32−18.36) 0.317 m/s −42.84◦ 0.294 m/s −47.56◦
6 (42.24−18.36) 0.295 m/s −55.31◦ 0.263 m/s −58.59◦
7 (42.40−18.36) 0.285 m/s −47.69◦ 0.256 m/s −59.21◦
8 (42.40−18.44) 0.297 m/s −72.36◦ 0.268 m/s −80.77◦

The statistical analysis of the experimental data is shown in Figure 10. Figure 10a
shows a scatterplot of the velocity of the simulated current field compared with that
of the measured current field from SAR data, with a correlation coefficient greater than
0.9 and a root mean square error (RMSE) of 0.028 m/s. Figure 10b shows the scatterplot
comparing the direction of the simulated current compared with that of the measurement
data. The correlation coefficient is greater than 0.98 and the root mean square error (RMSE)
is 6.05 degrees. It can be seen that the simulated current field is in good agreement with the
measured current of SAR data.

We also notice that there is a visible deviation between these two data, which will not
only come from the difference of input data but also be limited by the model. For example,
the wave spectrum is different from the real sea-surface state. Nevertheless, we believe that
the simulation results are consistent with the measurement results. Therefore, the proposed
method in this paper can effectively simulate the two-dimensional sea-surface-current field
in the given spaceborne SAR system and marine environment parameters. The results also
show that the proposed simulation method is conducive to the parameter analysis process
of the trajectory-crossing method in the application of current measurement in the future.

(a) (b)

Figure 10. Statistical comparison between the simulated current field and SAR data measured current
field. (a) Velocity and (b) direction.

4. Conclusions

With the continuous enrichment of spaceborne SAR data in the future, the trajectory-
crossing method to measure the two-dimensional current field on the sea surface will be
widely used. However, at present, it is difficult to comprehensively analyze the influence
of system and environmental parameters on the current measurement effect from the real
SAR data. In this paper, a simulation method of two-dimensional sea-surface-current field
for trajectory crossing spaceborne SAR is proposed, which can realize two-dimensional
current field simulation under the given spaceborne SAR system and environmental pa-
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rameters. In the simulation process, the wave–current interaction and the influence of sea-
surface backscattering on the SAR Doppler centroid frequency are considered, and the
influence of the wave motion on the current measurement results is removed.

The simulation experiment selected the real spaceborne SAR system and sea-surface
environment parameters, and the results are in good agreement with the SAR data pro-
cessing results, which shows the effectiveness of the simulation method in this paper.
Therefore, the proposed method is conducive to the parameter analysis process of the
trajectory-crossing method in the application of current measurement. However, because
the influence of the wave-breaking scattering mechanism under high wind speed and sea
conditions was not considered, the simulation method in this paper is not suitable for two-
dimensional current field simulation in extreme marine environments. In future work,
more scattering mechanisms will be considered to improve the scope of application and
promote the development of application research for two-dimensional sea-surface-current
field measurements.
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Abstract: Remote sensing reflectance (Rrs), which is currently measured mainly using the above-
water approach, is the most crucial parameter in the remote sensing inversion of plateau inland water
colors. It is very difficult to measure the Rrs of plateau inland unmanned areas; thus, we provide a
measurement solution using a micro-spectrometer. Currently, commercial micro-spectrometers are
not factory calibrated for radiation, and thus, a radiometric calibration of the micro-spectrometer
is an essential step. This article uses an Ocean Optics micro-spectrometer (STS-VIS) and a tradi-
tional water spectrometer (Trios) to simultaneously measure the irradiance and radiance of diffuse
reflectance plates with different reflectance values for field calibration. The results show the fol-
lowing: (1) different fiber types have different calibration coefficients, and the integration time is
determined according to the diameter of the fiber and the type of fiber, and (2) by comparing the
simultaneous measurement results of STS-VIS with Trios, the mean absolute percentage difference
(MAPD) of both reached 18.64% and 5.11% for Qinghai Lake and Golmud River, respectively, which
are accurate Rrs measurements of water bodies. The Rrs of the Hoh Xil and Qarhan Salt Lake water
bodies in unmanned areas of China was measured, and this was the first collection of in situ spectral
information with a micro-spectrometer. This article shows that the micro-spectrometer can perform
the in situ measurement of water Rrs in unmanned inland areas. With this breakthrough in the
radiometric performance of the micro-spectrometer, we are able to obtain more accurate remote
sensing reflectance results of unmanned water bodies.

Keywords: field radiometric calibration; micro-spectrometer; remote sensing reflectance; plateau
inland waters

1. Introduction

Remote sensing reflectance (sr−1) of water bodies is an important apparent optical
quantity that can be detected in water color remote sensing and is one of the important
parameters to quantify the spectral information of water bodies [1]. The field measurement
of water remote sensing reflectance is a key step in the remote sensing of water color, and
is widely used in the research and commercialization of satellite authenticity verification,
water quality parameter inversion [2], cyanobacterial bloom [3] and black-odor water body
identification [4]. The remote sensing of water color can be divided into the remote sensing
of marine water bodies and the remote sensing of inland water bodies, with the remote
sensing of marine water bodies being utilized to mainly observe the surface chlorophyll-a
(Chl-a) concentration [5], suspended particular matter (SPM) concentration [6] and colored
dissolved organic matter (CDOM) [7]. The remote sensing of inland water bodies has been
used to estimate, in addition to the parameters mentioned above, total phosphorus (TP),
total nitrogen (TN), the trophic state index (TSI) and, more recently, dissolved organic
carbon in an eutrophic lake [8] and methane emissions in a lake [9].
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Current spectrometers dedicated to Rrs based on water bodies include the Analytical
Spectral Devices (ASD) series from Malvern Panalytical in the UK [10], the Profiling
Reflectance Radiometer (PRR) series from Biospherical in the USA [11], the PAMSES series
from Trios in Germany [12] and the Satlantic series from a subsidiary of SeaBird in the
USA [13]. Measuring the Rrs is an essential step in both marine remote sensing and inland
water remote sensing. In oceanic remote sensing, the spectrometer is mainly carried on
board a research vessel for walk-around measurements, and the same method is applied in
inland lakes. There is a great deal of preparation before the measurement is carried out:
firstly, the spectrometer is charged; secondly, the instruments are inventoried for transport;
and finally, the spectrometer is deployed on board the research vessel. All of the above
spectrometers can be utilized for the measurement of parameters in water bodies. However,
they all are of a large size and weight and require a power supply, and thus, we cannot bring
the spectrometer to lakes or rivers in unmanned areas such as the Tibetan Plateau. Therefore,
there has been a gap in our knowledge on the water spectra of lakes or rivers in unmanned
areas of the Tibetan Plateau. Furthermore, in inland water environments there are often
unpopulated waters and waters that cannot be measured by using large vessels, and the
above-mentioned water body Rrs cannot be measured. Micro-spectrometers have the
advantage of being small in size [14], and instead of spectrometers, they have been carried
on board unmanned aerial vehicles or unmanned ships for Rrs measurements to solve
these problems. Nowadays, scholars often use imaging spectrometers for spectrometric
measurements via unmanned aerial vehicles, and there are empirical linear-based [15] and
look-up table methods [16] for radiometric calibrations of imaging spectrometers. The main
applications are in vegetation and crop studies [17], and scholars have also used them to
perform techniques for estimating water quality parameters [18,19]. However, imaging
spectrometers tend to have a low signal-to-noise ratio for measuring the remote sensing
spectra of water bodies. However, none of the current commercial micro-spectrometers
are radiometrically calibrated; thus, we need to carry out a radiometric calibration of
the micro-spectrometer.

The radiometric calibration of the micro-spectrometer can be performed by using a
high-precision spectrometer and a micro-spectrometer to simultaneously measure high-
precision stable irradiance and irradiance sources and to solve for the conversion relation-
ship between the digital number (DN) recorded by the micro-spectrometer and the radiance
and irradiance values received by the micro-spectrometer. The main radiometric calibra-
tion methods used thus far for remote sensing sensors are laboratory integrating sphere
calibration [20–22], on-station calibration [23], diffuse reflectance plate calibration [24,25],
etc. Laboratory integrating sphere calibration is mainly a high-precision test of parameters,
such as the remote sensor electronic gain and bias, central wavelength and bandwidth
of each channel, signal-to-noise ratio, spatial resolution and spectral response function
using relevant laboratory equipment, which is traceable with a low-temperature absolute
radiometer or a standard blackbody uniform radiation quantification standard. On-station
calibrations use a calibration system mounted on a satellite platform to periodically moni-
tor changes in the radiation response of the satellite during its orbital operation. Diffuse
reflectance plate calibration uses a diffuse reflectance plate and a spectrometer probe for
simultaneous fixed-point continuous observation. Concerning the radiometric calibration
methods for remote sensing sensors, only laboratory integrating sphere calibration and field
diffuse reflectance plate calibration methods can meet the requirements for the radiometric
calibration of micro-spectrometers. The field diffuse reflector calibration method is simple
and easy to operate, whereas the laboratory integrating sphere calibration requires a lot of
time and money, and our group does not meet the conditions for conducting laboratory
integrating sphere calibration. Therefore, the field diffuse reflector calibration method is
chosen for the radiation calibration of the micro-spectrometer.

The main purpose of this article is a preliminary evaluation of the feasibility and
accuracy of micro-spectrometer measurements of the Rrs of plateau inland water colors.
Specifically: (1) we calculated the micro-spectrometer radiometric calibration coefficients
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using different fiber types; (2) we quantified the accuracy of measuring the Rrs of clear and
turbid waters in plateau inland water bodies and (3) we provided a case study of the appli-
cation of the micro-spectrometer to Rrs of plateau inland water bodies in unmanned areas.

2. Data and Methods

2.1. Equipment and Methods

The equipment used in the micro-spectrometer radiometric calibration is shown
in Figure 1 and includes the following: the micro-spectrometer (STS-VIS, Ocean Optics
company, Orlando, FL, USA), an optical fiber, a cosine receiver, a spectrometer (Trios, TriOS
Mess, Rastede, Germany), a diffuse reflectance plate with different reflectance values and
a target cloth, a micro-spectrometer linked to the optical fiber to measure radiance and a
micro-spectrometer linked to the optical fiber and cosine receiver to measure irradiance.
The diffuse reflectance plate and the target cloth provide stable and varying values of
irradiance and radiance. The measured spectral ranges and spectral resolution of Trios
and STS-VIS are shown in Table 1. The Trios can measure spectra from 200 nm up to
1100 nm with a spectral resolution of 3.3 nm, whereas the STS-VIS can measure spectra
from 350 to 810 nm with a spectral resolution of 2.2 nm. There are three common methods
of field measurements of remotely-sensed reflectance ratios in water bodies: the in-water
approach [26], the above-water approach [27] and the skylight-blocked approach [28].
The in-water approach generally uses more expensive instruments, which are complex to
operate and deploy, and are subject to a certain amount of self-shadowing and uncertainty
in the data results. This method can generally only be used in water depths greater than
10 m, and thus, this method is very widely used in pelagic Class I waters, but rarely in
inland waters. The skylight-blocked approach uses a mask to directly block the sky light
from the field of view of the observation sensor, thus enabling the direct measurement
of the off-water irradiance of a water body. This method avoids the geometrical errors
in observation caused by the complexity of the field and the uncertainties associated
with the skylight rejection method. However, it requires a continuous power supply, and
therefore, cannot measure water spectra in the unmanned areas of the Tibetan Plateau.
The above-water method has the advantages of a simple field operation and the low cost
of field experiments, and is currently the most commonly used measurement method in
the study of the spectral properties of water bodies; however, it is affected by water and
weather conditions. The details of this method of measurement can be found in Figure A1
in Appendix A. The main zenith angle conditions met by the instrument are that the
downward irradiance sensor should point vertically towards the sky, the radiance sensor
for measuring sky light should be equal to 50◦ and the radiance sensor for measuring sky
light should be equal to 140◦. The main azimuth angle conditions met by the instrument
are that the angle between the left and right sunlight should be equal to 45◦. This helps
avoid sun glint. This method is the easiest water body measurement method to implement
in unmanned lakes on a plateau; therefore, the above-water method was selected for this
paper to carry out spectral measurements of water bodies in unmanned areas on the Tibetan
Plateau, and the formula for measuring Rrs is as follows (Equation (1)):

Rrs(λ) =
Lw(λ)

Ed(λ)
=

Lu(λ)− rsky(λ)Lsky(λ)

Ed(λ)
(1)

Rrs is equal to the ratio of the off-water radiance to the downward irradiance, and
in the above formula, Lu(λ) is the total off-water radiance, rsky(λ) can be derived from the
look-up table [29], Lsky(λ) is the skylight radiance and Ed(λ) is the downward irradiance.
They are measured simultaneously using a micro-spectrometer, using (a)-1 for sky radiance,
(a)-2 for total off-water radiance and (a)-3 for downward irradiance, so as to avoid the
effects of weather variations.
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Figure 1. (a) Ocean Optics micro-spectrometers (STS-VIS); (a)-1 sensor for measuring sky radiance;
(a)-2 sensor for measuring water radiance; (a)-3 sensor for measuring downward irradiance. (b) Ocean
Optics and Hygirel fiber. (c) Cosine Correctors. (d) Trios. (e) Diffuse reflectance plates and target
cloth (99%, 95%, 30%, 20%, 5%, and 2%).

Table 1. Parameter table of Trios and STS-VIS.

Trios STS-VIS

Wavelength (nm) 200–1100 350–810

Optical Resolution (nm) 3.3 nm 2.2 nm

The procedure for field calibration is to use the Trios sensors and micro-spectrometer to
simultaneously measure diffuse reflectors with different reflectance values against a target
cloth, and to obtain the simultaneously measured Trios radiance, irradiance and micro-
spectra with their corresponding DN values. The formula for field-calibrated radiance is
presented in Equation (2) and for field-calibrated irradiance in Equation (3).

LTrios = gain × DNSTS−VIS + o f f set (2)

EdTrios = gain × D̃NSTS−VIS + o f f set (3)

In Formula (2) above, LTrios is the radiance of the different diffuse reflection plates
measured by Trios, and DNSTS-VIS is the DN of the different diffuse reflection plates mea-
sured by the micro-spectrometer. EdTrios in Formula (3) is the irradiance of the different
diffuse reflectors measured by Trios and D̃NSTS−VIS is the the DN of the different diffuse
reflection plates measured by the micro-spectrometer.

We used the micro-spectrometer to obtain the Rrs of plateau lakes as follows: firstly,
the DN values obtained with the micro-spectrometers (a)-1, (a)-2 and (a)-3 are converted
into radiance and irradiance according to Formulas (2) and (3), and then the Rrs of the
micro-spectrometer is calculated according to Formula (1).

The micro-spectrometer needs to be physically connected to the micro-computer in
the unmanned ship using a USB cable; additionally, we also need to use professional
software to identify the sensor, and only after the identification is passed can the data
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acquisition parameters be set. The main parameters to be set are integration time, multiple
scan averaging, sliding average width and other parameters. It is also necessary to set
the address where the spectrum file is to be saved. Once the settings are complete, the
micro-spectrometer can be used for water spectrum acquisition.

2.2. Data Processing and Evaluation Metrics

We used the Oceanview 6.0 software for hardware control and we needed to set
the integration time before collection. The integration times of the micro-spectrometer
for measuring radiance and measuring irradiance are described in detail in Section 3.1.
The micro-spectrometer and Trios both measure different floating-point wavelength data;
therefore, we needed to resample the Trios and STS-VIS spectrometer data to the same
integer wavelength for field radiation calibration. The cubic spline interpolation method
has a small error (we have also compared the results of the other three resampling methods
plotted in Figure A2 Appendix A). Thus, we used this method and obtained a result that is
very small, as shown in Figure 2.

Figure 2. Comparison of raw and resampled data.

The following statistics were used to evaluate the spectral results, including the
correlation coefficient (r), bias and mean absolute percentage difference (MAPD).

r =

n
∑

i=1
(Si,1 − S1)(Si,2 − S2)√

n
∑

i=1
(Si,1 − S1)

2
+

n
∑

i=1
(Si,2 − S2)

2
(4)

bias = (Si,1 − Si,2)/Si,2 × 100% (5)

MAPD =
1
N

N

∑
i=1

|(Si,1 − Si,2)/Si,2| × 100% (6)

where Si,1 and Si,2 denote the DN values corresponding to the measured diffuse reflectance
plates, the gain and offset observed under different conditions and the Rrs measure with
the Trios and micro-spectrometer.

In this article, we compare the effects of different fibers on the gain and offset, which
is followed by a quantitative analysis to measure the spectra of different diffuse reflectors
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with clear water and turbid water, and finally, we perform a first application demonstration
in an unmanned area.

3. Results

We first determined the important acquisition parameter integration times for the
micro-spectrometer under sunny conditions, then compared the gain and offset of two
fiber types using a Hygirel fiber-optic micro-spectrometer (detailed parameters of the two
types of micro-spectrometers are given in Section 3.2) and Trios under sunny conditions,
and finally, we evaluated the simultaneous measurements of 95% and 20% for the diffuse
reflectance plates, and 5% and 2% for the target cloth.

3.1. Effect of Integration Time on Spectral Acquisition of Water

We all know that when a spectrometer performs electro-optical conversion it is mainly
influenced by three main parameters [30]: the integration time, aperture and temperature
of the micro-spectrometer. The longer the integration time, the more energy is collected
by the micro-spectrometer; the larger the aperture, the more energy is collected by the
micro-spectrometer; the temperature of the micro-spectrometer creates thermal noise; and
different temperatures bring about different thermal noises. When measuring in the field,
we pre-warmed the micro-spectrometer for 60 min to keep it below normal operating
temperature to avoid the effects of thermal noise caused by temperature. For dealing with
the effects of the aperture, micro-spectrometers are often used with a fixed fiber; thus, we
use a fixed fiber diameter to control the effect of the aperture on the spectrum.

The signal-to-noise ratio (SNR) of a spectrometer is a very important metric when using
micro-spectrometers for the spectral acquisition of water bodies. The current international
water color satellites MODIS Terra/Aqua (spatial resolution: 250 m and 500 m), MERIS
Envisat (spatial resolution: 300 m), VIIRS (spatial resolution: 750 m) and Sentinel-3A/B
(spatial resolution: 300 m) all have SNRs greater than 1000 for measurements that occur in
the ocean [31]; measurements in inland lakes mainly use Landsat OLI (spatial resolution:
30 m) HJ-1 (spatial resolution: 30 m), etc., all of which have SNRs greater than 100 [32]. The
use of Landsat as a data source for lake water observations on the Qinghai–Tibet Plateau
requires that the signal-to-noise ratio of the micro-spectrometer be greater than 100 for
application in field measurements.

We believe that in the electro-optical conversion of a micro-spectrometer, the noise
of the micro-spectrometer is caused by the dark current; thus, we calculated the SNRs as
the total signal ratio over the dark current signal (Equation (7)). The SNRs are the ratio of
the useful signal to the noisy signal in the total signal. The higher the signal-to-noise ratio,
the better.

SNRs =
Ltotal

Ldarkcurrent
(7)

We first measured the dark current at different integration times after warming up
the micro-spectrometer for 60 min (Figure 3a) and found that the dark current increased
in a logarithmic fashion with integration time. The micro-spectrometer is considered to
operate at a stable maximum temperature after 60 min of operation. As we used a reference
plate with a maximum reflectance of 95% for field calibrations, but the DN range of the
micro-spectrometer is 0–65,535, we first needed to ensure that we did not exceed the DN
limit when collecting 95% of the reference plat and that our integration time was not too
long, as the state of the water body changes rapidly. We should ideally be able to measure
a water body spectrum within 2 s, but in a full water body spectrum measurement, the
effects of waves, boat wake, etc., need to be taken into account. We generally took several
measurements to average the water body spectra for field measurements.
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Figure 3. Dark current diagram for different integration times (a), SNR diagram for radiance mea-
surement of DN values (b), SNR diagram for irradiance measurement of DN values (c).

Two schemes were used to measure 95% of the reference plate, the first using a micro-
spectrometer and optical fiber to measure the DN values corresponding to radiance, and
the second using a micro-spectrometer, optical fiber and cosine receiver to measure the
DN values corresponding to irradiance. The SNR plot of the DN values corresponding to
radiance (Figure 3b) shows that the integration time exceeds the SNRs ~100:1 at 500 ms,
but that there are higher SNRs at 1000 ms and 1500 ms; therefore, we chose 1000 ms as
the integration time for the DN values of radiance. The SNR diagram for the irradiance
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corresponding to the DN value (Figure 3c) shows that the integration time exceeds the
SNRs ~100:1 at 500 ms, and has similar SNRs at 500 ms, 1000 ms and 1500 ms; thus, we
chose 500 ms as the integration time for the DN value of the irradiance.

3.2. Comparison of Gain and Offset Via Two Fiber Types

We performed field radiometric calibrations using different fiber types (Table 2).
The two different fibers are from Ocean Optics (OC) and Hygirel (HY). The OC fiber is
manufactured by Ocean Optics and has a spectral range of 200–1000 nm, and its core
diameter is 600 μm and its length is 2 m; HY is manufactured by HAIJILEKEJI and has
a spectral range of 200–1100 nm, and its core diameter is 1000 μm and its length is 2 m.
Figure 4 shows the results of the field radiometric calibration coefficients gain and offset,
which we evaluated using r for least squares regression coefficient accuracy. We found
that (a)-1, (a)-2 and (a)-3 have a large variation in gain coefficients across fiber types, but
there is a linear relationship, with r reaching 0.99 for Ocean Optics’ gain and Hygirel’s gain.
The gain data are again noticeably jittery at 760 nm, which we attribute to the different
integration times measured by Trios and STS-VIS at the time of measurement and to the
variation in atmospheric gases. We post-processed the gain data by means of smoothing in
subsequent processing. We also found for (a)-1, (a)-2 and (a)-3 that the offset coefficients
vary considerably across fiber types and do not have any linear relationship, with r reaching
0.99 for offset obtained on sunny days. We found that the overall offset coefficient of HY is
much larger than that of OC, which we believe is due to the different core diameters of the
two fibers and the different amounts of sunlight energy entering the micro-spectrometer at
the same integration time for HY and OC.

Table 2. Parameter table of different fiber types.

Ocean Optics (OC) Hygirel (HY)

Wavelength (nm) 200–1100 200–1100

Core Diameter (μm) 600 1000

Length (m) 2 2

 

Figure 4. Graphs of gain and offset of micro-spectrometer connection with different fiber types.

We found that for a fixed integration time and different fiber types, there are different
field radiometric calibration coefficients for gain and offset. We have made the gain and
offset for sunny days for Ocean Optics and Hygirel fiber types publicly available for use
so that a field radiometric calibration can be performed before use if a more accurate
Rrs is required. Different fiber types mainly affect the calibration coefficients of gain and
offset, and the field radiometric calibration coefficients of gain and offset for different
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fiber types can be found at https://github.com/765302995/FRC_Micro-spec (accessed on
15 November 2022).

3.3. Comparison of Radiance/Irradiance Measured in Four Diffuse Reflector/Target Cloths

When measuring four different reference plates using Trios and STS-VIS, we used the
vertical measurement method because the reference plates are diffuse light sources. The
results of the simultaneous measurements of the diffuse reflectance plate/target cloth using
the micro-spectrometer and Trios under sunny conditions are shown in Figure 5. It can
be seen that the micro-spectrometer and Trios have a large error at 760 nm in the oxygen
absorption. In 95% of the diffuse reflectance plate results, the bias error of Rrs measured by
the micro-spectrometer and Trios ranged from 0.5 to 1.6%; in 20% of the diffuse reflectance
plate results, the bias error of Rrs measured by the micro-spectrometer and Trios ranged
from −4.15 to −7.44%; in 5% of the target cloth results, the bias error of Rrs measured by
the micro-spectrometer and Trios ranged from −1.87 to −12.63%; and in 2% of the target
cloth results, the bias error of Rrs measured by the micro-spectrometer and Trios ranged
from −22.9 to −47.41%. The lower the reflectance, the poorer the signal-to-noise ratio of
the micro-spectrometer and, therefore, the greater the error in the measured reflectance.

Figure 5. Diffuse reflectance plate results with bias plots for 95%, 20%, 5% and 2% measurements
using Trios and micro-spectrometer.

4. Discussion

The Rrs accuracy and availability of micro-spectrometer measurements are evaluated
here. We firstly evaluate the simultaneous measurements from Qinghai Lake and Golmud
River waters using the micro-spectrometer and Trios, and finally, we carry the calibrated
micro-spectrometer in the unmanned boat to perform the first measurement of the water
body in plateau unmanned lakes.

The water body has a clear bidirectional reflectance distribution, so when we measure
the water body, the measurement angle needs to meet the zenith angle of the sun at 40◦ and
the solar azimuth angle at 135◦ or 45◦ to eliminate the influence of sun glint. We use the
above-water approach to measure water bodies from the same angles as described above.

4.1. Comparison of Rrs Measured in Two Plateau Inland Water Body Types

We carried out and compared Rrs measurements by using the micro-spectrometer and
Trios on Qinghai Lake and in the Golmud city River, and the comparison results are shown
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in Figure 6: there is an overestimation of Rrs when measured using the micro-spectrometer
in Qinghai Lake (Figure 6a), where the r of Rrs measured by the micro-spectrometer and
Trios is 0.99; the MAPD reaches 18.64%; and the bias is at 400–450 nm, 590–610 nm and
700–750 nm, all which exceeded 20%. We can see from the in situ photo (a) that this inland
lake of the Qinghai–Tibet Plateau is a clean type. The cleaner the water body, the lower the
reflectivity of the water body and the lower the SNR of the micro-spectrometer, meaning
that the MPAD is larger. However, we can see by the shape of the water body spectrum
that we obtained a complete measurement of the spectral shape of the clean water body.
There is an underestimation of Rrs in the Golmud River when measured with the micro-
spectrometer (Figure 6b); the micro-spectrometer and Trios reached an r of 0.99 for Rrs, an
MAPD of 5.11% and a bias of over 10% at 700–750 nm. We can see from the in situ photo
(b) that this inland river of the Qinghai–Tibet Plateau has a turbid type. The more turbid
the water body, the higher the reflectance of the water body, and the higher the SNR of the
micro-spectrometer. We can see by the shape of the water body spectrum that we obtained
a complete measurement of the spectral shape of the clean water body. For the turbid water
body, not only is the water body shape the same, but the value of the water body spectrum
is also very similar; thus, the water body spectrum measured by the micro-spectrometer
can be used for quantitative water body parameter research.

Figure 6. Micro-spectrometer measurements of clear water and turbid water Rrs and bias, and in situ
photos of (a) spectrum of Qinghai Lake, (b) spectrum of Golmud city River.

4.2. Unmanned Area Applications

In field experiments that are carried out in plateau inland waters, many lakes and rivers
are in unmanned areas and, therefore, cannot be measured with spectrometers such as Trios.
Instead, we can use micro-spectrometers to measure the spectra of unmanned water bodies.
The calibrated micro-spectrometer is carried on unmanned boats for the measurements.
We designed the route according to the GPS of the unmanned boat and in accordance with
the experiment time to ensure that the three probes of the micro-spectrometer met the solar
zenith angle of 40◦ and the solar azimuth angle of 135◦, or met the 45◦ water measurement
angle requirements. When the unmanned boat arrives at the predetermined point, the
unmanned boat will stop and sway according to the water waves; thus, we arrived at
the point moving slowly in order to obtain the measurement of the point walking water
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body spectrum. Here, the water spectra of the Qarhan Salt Lake (DBX,NHBX) and the
Hoh Xil Salt Lake (KKXL) were measured, as shown in Figure 7. From the in situ photos,
it can be seen that DBX3 is the most turbid, with the highest water reflectance at 590 nm
at 0.055 sr−1, and at 500–700 nm exceeding 0.03 sr−1, resulting in a heavy greyish-brown
color. DBX8 is also more turbid, with the highest water reflectance at 600 nm at 0.039 sr−1,
and 550–720 nm. The reflectance of DBX6 reached the highest value at 600 nm at 0.02 sr−1,
and had a grey-green color; the reflectance of KKXL1 and KKXL2 reached the highest value
at 580 nm, and the reflectance was more stable at 400–580 nm, and thus, the color of the
water body was blue.

Figure 7. Micro-spectrometer measurements of unmanned areas of Qarhan and Hoh Xil Salt Lake
Rrs and in situ photos.

5. Conclusions

Radiation calibration is needed to carry out irradiance and radiance measurements
with micro-spectrometers. This work introduces the method of field radiation calibration
for micro-spectrometers, analyzes the effect of different types of connected fibers on the
radiation calibration, and analyzes the performance of micro-spectrometers in measuring
Rrs in inland waters. The main findings are as follows: (1) Different fiber types mainly
affect the calibration coefficients of gain and offset, and the field radiometric calibration
coefficients of gain and offset for different fiber types can be found at https://github.com/
765302995/FRC_Micro-spec (accessed on 15 November 2022). (2) The MAPD of the micro-
spectrometer reached 18.64% and 5.11% for clear water and turbid water, respectively, and
the water body Rrs values of unmanned plateau lakes were obtained for the first time
using the micro-spectrometer. This article shows that the micro-spectrometer can meet the
requirements for field measurements of Rrs of water bodies in inland unmanned areas, and
with this breakthrough in the radiation performance of the micro-spectrometer, we can
obtain more accurate Rrs measurements of water bodies in unmanned areas.
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Appendix A

  

Figure A1. Conceptual view of the unmanned ship carrying a micro-spectrometer to collect water
body spectrum; the side view details the angle of measurement of the zenith angle of the three sensors
followed for spectrum collection and the top view details the angle of measurement of the azimuth of
the three sensors for spectrum collection.

 

Figure A2. Comparison figure of different spectral resampling methods, (a) zero spline interpolation;
(b) linear spline interpolation; (c) quadratic spline interpolation; (d) cubic spline interpolation.
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Abstract: As one of the primary means of Earth observation, high-spatial-resolution remote sensing
images can describe the geometry, texture and structure of objects in detail. It has become a research
hotspot to recognize the semantic information of objects, analyze the semantic relationship between
objects and then understand the more abstract geographic scenes in high-spatial-resolution remote
sensing images. Based on the basic connotation of geographic scene understanding of high-spatial-
resolution remote sensing images, this paper firstly summarizes the keystones in geographic scene
understanding, such as various semantic hierarchies, complex spatial structures and limited labeled
samples. Then, the achievements in the processing strategies and techniques of geographic scene
understanding in recent years are reviewed from three layers: visual semantics, object semantics
and concept semantics. On this basis, the new challenges in the research of geographic scene
understanding of high-spatial-resolution remote sensing images are analyzed, and future research
prospects have been proposed.

Keywords: geographic scene; high-spatial-resolution remote sensing image; scene understanding;
semantic hierarchy of geographic scene; remote sensing image processing

1. Introduction

Remote sensing, as a comprehensive modern surveying and mapping technology,
plays an important role in Earth observation. In recent years, as a result of the rapid
development of sensor technology, aerospace platform technology and data communication
technology, as well as the vigorous promotion of relevant international organizations,
the global observation capability of the space–air–ground integration has been greatly
enhanced [1]. At present, a large number of high-spatial-resolution (HSR) remote sensing
images with meters, or even sub-meters, can be obtained. In HSR remote sensing images,
various realistic geographic scenes are clearly presented: for instance, artificial construction
scenes such as urban residential areas, ports and airports; disaster scenes such as landslides,
mudslides and earthquakes; and natural scenes such as forests and beaches [2]. This small-
scale observation means that HSR remote sensing images can provide more complex surface
structure information and more sophisticated texture and size information. Consequently,
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it has been applied to urban planning, disaster management, environmental monitoring,
military activities and many other fields [3,4].

As a collection of multiple objects and their surroundings in the real world, under-
standing the semantics of scenes is an important task in remote sensing image interpretation.
Scene understanding is based on the perception of remote sensing image data, combined
with visual analysis, image processing, pattern recognition and other technical means, to
mine the characteristics and patterns in the image from different levels such as computa-
tional statistics, behavioral cognition and semantics, so as to realize the effective analysis,
cognition and representation of the scene. However, due to the limitations of space imaging
technology, HSR remote sensing images, although of higher spatial resolution, are relatively
deficient in spectral information [5]. In HSR remote sensing images, the spectral heterogene-
ity of the same type of ground objects is enhanced, and the spectral diversity of different
ground objects is reduced, which leads to the decline in statistical separability of different
types of ground objects in the spectral domain [6]. Therefore, understanding the geographic
scenes in the HSR remote sensing images includes the identification of both objects and
the relationships between objects, as well as the analysis of themes categories with richer
concepts and content implied in the geographic scene. Because of the complexity and
intersection of these tasks, the research on geographic scene understanding of HSR remote
sensing images still faces many challenges, mainly including the following three aspects:

(1) In terms of the basic principles of geographic scene understanding, the machine will
identify the objects or targets contained in the scene according to the similarity of
image data. In contrast, humans analyze the semantic information of scene content
through the category and spatial distribution of ground objects, and form high-level
features through abstract concepts [7]. There is a semantic gap between the conceptual
similarity of human understanding and the digital storage form similarity of machine
identify. This makes it impossible to relate low-level visual features (such as color,
shape, texture, etc.) to high-level semantic information directly.

(2) In terms of the data characteristics of HSR remote sensing images, the improved spatial
resolution makes the ground objects in the images have more fine texture features,
more obvious geometric structure and clearer location layout. Correspondingly, it
also aggravates the difficulty of data processing in intelligent image interpretation. In
high resolution images, the spectral heterogeneity of similar objects is enhanced, and
the spectral difference of different objects is reduced. This leads to a decrease in the
statistical separability of different ground objects in the spectral domain [8]. A high
resolution does not necessarily promote an improvement in interpretation accuracy.

(3) In terms of the sophistication of geographic scenes, the structure and composition of
the geographic scenes in the HSR remote sensing images are complex, highly variable
and even messy. The types of geographic scenes with the same ground objects may be
different. However, different types of ground objects also appear in similar geographic
scenes [9]. Consequently, understanding the semantic information of the geographic
scene and constructing the corresponding semantic feature description is crucial.

As an extension of remote sensing image interpretation, the complexity and com-
prehensiveness of geographic scene understanding based on HSR images is beyond the
general processing task of remote sensing. Although significant progress has been made in
the research of feature extraction, target detection, scene classification and other sub-tasks,
these sub-tasks lack a unified framework to cross the “semantic gap” to understand the
high-level semantics of the geographic scenes. Thus, it is necessary to integrate these
sub-tasks according to the human cognitive model in understanding the geographic scenes
of HSR remote sensing images. In recent years, many researchers who are engaged in
computer vision have realized the importance of a “holistic understanding” of geographic
scenes and put forward the research approaches of task integration and feature integration.
However, there is no systematic research on the geographic scene of HSR remote sensing
images as a comprehensive and complete field of intelligent information processing. This
paper is focused on answering the following research questions:
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(1) What are the objectives of geographic scene understanding?
(2) How are remote sensing approaches being used for geographic scene understanding?
(3) What are the current gaps in HSR remote-sensing-based geographic scene understanding?

The rest of the paper is organized as follows: Section 2 describes the basic ideas of geo-
graphic scene understanding based on HSR remote sensing images; Section 3 presents the
semantic understanding approaches of the visual layer; Section 4 presents the semantic un-
derstanding approaches of the object layer; Section 5 presents the semantic understanding
approaches of the concept layer; and Section 6 discusses the open problems and challenges
in the future. The paper closes with a conclusion in Section 7.

2. Basic Ideas

The concept of geographic scene understanding of remote sensing images includes
two aspects, namely, “remote sensing image understanding” and the “geographic scene”.
Remote sensing image understanding is a cognitive process to realize the objective things
and their laws reflected by remote sensing images through observing, distinguishing,
identifying and reasoning remote sensing images and interpreting the content of remote
sensing images semantically. The geographic scene is a regional complex with a specific
structure and function, which is composed of various natural and human factors in a certain
region [10]. In remote sensing images, the geographic scene is a closed region composed
of different ground objects. The geographic scene generally involves three aspects: (1) the
constituent elements of the scene structure, (2) the relationship between these elements and
(3) the function of the set of these elements. Therefore, the research object of geographic
scene understanding of remote sensing images is the regional complex composed of ground
objects with certain spatial distribution patterns. The research objective is to interpret the
research object as a series of meaningful and understandable semantic information.

HSR remote sensing images can reflect the more detailed composition and spatial
distribution of the ground objects, which is a microcosm of the real geographic scene.
Owing to increased spatial resolution and unique imaging methods, geographic scenes in
HSR remote sensing images have the following characteristics:

(1) The categories of ground objects in the geographic scene are diverse. The same
category of geographic scene can contain different ground objects, and different
geographic scenes can also contain the same ground objects. Different objects also
have different characteristics in terms of spectrum, texture and structure [11].

(2) The categories of ground objects in the geographic scene have variability. The change
in the categories of some ground objects in geographic scenes does not necessarily
lead to a change in the whole semantic information of geographic scenes [12].

(3) The spatial relationship between ground objects in geographic scenes is complex.
Different distribution forms between ground objects lead to different semantic infor-
mation of geographic scenes. Other relevant characteristics are shown in Figure 1.

The characteristics of HSR remote sensing images also make the following special
features in understanding geographic scenes:

(1) The semantic information of geographic scenes in HSR remote sensing images is
hierarchical. The content description of HSR remote sensing images has the hierarchical
inclusion relation of “Pixel-Region-Target-Scene”. Different levels of image content reflect
the semantic information with different levels of abstraction, which can be divided into the
visual layer, object layer and concept layer (Figure 2). The visual layer is the description
of pixel-level image content, including color, texture, shape and other original visual
characteristics. The semantic information of the visual layer can be obtained directly from
image processing without any external knowledge and experience [13]. The object layer
is the description of region-level and target-level image content, including the individual
features of objects and the local features of spatial relations among objects [14]. The semantic
information of the object layer needs to be obtained through simple reasoning, and it is
necessary to use external knowledge and experience to assist this reasoning. The concept
layer is a description of the scene-level image content, including the abstract attributes of
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the image. The semantic information of scene level involves the semantic features of scene
representation or higher-level behavior or emotion analysis, and it needs to link image
content with abstract concepts through complex reasoning and subjective judgment [15].

  

(a) (b) 

  

(c) (d) 

Figure 1. Image characteristics of geographic scenes in HSR remote sensing: (a) reflects the diversity
of the ground objects in the geographic scene; (b) reflects the diversity of imaging conditions of HSR
remote sensing images; (c) reflects the differences in the types of ground objects in the same category
of geographic scenes; (d) reflects the similarity in the types of ground objects in different categories of
geographic scenes.

 
Figure 2. Semantic hierarchy model of three layers structure.

There is a dialectical relationship between the tasks of geographic scenes understand-
ing at different semantic layers. The input of geographic scene understanding is the original
HSR remote sensing images, and the output is semantic information of the geographic
scene. In the tasks of geographic scene understanding, it is necessary to combine the seman-
tic processing of the visual layer and object layer (feature extraction and target recognition)
with the semantic reasoning of the concept layer (scene description and classification), the
different tasks are interdependent on each other [16]. The cognition of visual and object
layer semantics can form the inference of concept layer semantics, and the cognition of
concept layer semantics can be used as knowledge to guide the extraction of visual and
object layer semantics.

170



Appl. Sci. 2022, 12, 6000

(2) Spatial structure characteristics play an important role in the geographic scene
understanding of HSR remote sensing images. Because of the global and polysemy of the
geographic scene, the geographic scene understanding is not a simple stacking of some local
semantics [17]. In the same category of the geographic scene, the objects of the same type
have similar individual characteristics and spatial distribution patterns. However, there are
different structural features among different categories of geographic scenes. In Figure 3,
these two geographic scenes of “residential area” and “industrial area” contain similar
visual features and object types, which are composed of buildings, roads and vegetation.
However, there are great differences in spatial structures between objects, which is a critical
factor to distinguish the categories of geographic scenes. Therefore, the spatial structure
characteristics of geographic scenes are relatively stable, and making full use of spatial
information such as geometry, texture and context of HSR remote sensing images is an
effective way to improve the understanding of geographic scenes [18,19].

Figure 3. Understanding differences of geographic scenes at different semantic layers.

(3) The data characteristics of HSR remote sensing images have both opportunities and
challenges for the geographic scene understanding. The amount of HSR remote sensing
images increases significantly. As the spatial resolution increases, the area of the ground
covered by each pixel decreases significantly. This makes the ground object details and
spatial distribution of HSR remote sensing images clearer. Compared with medium–low-
resolution remote sensing images, HSR remote sensing images can be interpreted at the
scene level, where semantic information is more abstract. However, compared with natural
images, the HSR remote sensing images used for geographic scene understanding are
less accessible in terms of data availability, except for the differences in shooting distance,
shooting angle and imaging sensors. Natural images can be easily and quickly obtained
from the Internet, and a large amount of data has been given the relevant label information
when uploaded to the Internet [20]. For example, the ImageNet dataset [21,22] contains
more than 14 million labeled samples in 1000 categories. HSR remote sensing images are
not freely available for political, military and security reasons. HSR remote sensing images
often rely on professional interpretation or even field research to obtain the correct label,
the available sample size is limited. For instance, the UC-Merced dataset contains only
21 categories, with a total of 2100 labeled samples. Currently, the HSR remote sensing
image datasets commonly used for geographic scene understanding are shown in Table 1.
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Table 1. Comparison of existing public datasets.

Datasets
Spatial

Resolution (m)
Image Size

Number of
Categories

Number of Samples
per Category

Total Number
of Samples

Year of
Publication

UC-Merced [23] 0.3 256 × 256 21 100 2100 2010
WHU-RS19 [24] 0.5 600 × 600 12 50 950 2010

RSSCN7 [25] - 400 × 400 7 400 2800 2015
RSC11 [26] 0.2 512 × 512 11 About 100 1232 2016

SIRI-WHU [27] 2 200 × 200 12 200 2400 2016
NWPU-RESISC45 [28] 0.2–30 256 × 256 45 700 31,500 2017

PatternNet [29] 0.062–4.693 256 × 256 38 800 - 2017
AID [30] - - 30 - 10,000 2017

EuroSAT [31] - 64 × 64 10 2000–3000 27,000 2019

3. Semantic Understanding of Visual Layer

The semantic understanding of the visual layer of the geographic scene is the extraction
of basic characteristics from remote sensing image data. The essence of geographic scene
understanding is to establish the mapping relationship between low-level visual features
and high-level scene semantics. Thus, extracting the visual features of HSR remote sensing
images is the basis of the content description of geographic scenes, which includes local
features and global features.

The global feature is the feature that can represent the whole image, and it has good
invariance, simple calculation and intuitive representation. Common global features
include color features, texture features and shape features. Among them, color features
such as color sets, color moments, color correlation diagrams, color histograms [32] and
color aggregation vectors [33–35] are insensitive to size and orientation and have good
stability [36]. Texture features such as gray level co-occurrence matrix (GLCM) [37], the
grayscale difference [38], autocorrelation function [39], gray-level run-length [40], local
binary pattern (LBP) [41], etc., are characterized by local irregularity, but macroscopic
regularity. Visual features cannot only describe the basic attributes of the image such as
color, texture and shape, but also reflect the deep structure information of the image. In
2001, GIST was proposed by Aude Oliva et al. simulating human vision to roughly extract
the image and its context information [42]. GIST can extract spectral information from the
image globally as its representation without segmenting the image or detecting the target
in advance. GIST is simple and easy to use. However, with the increasing complexity of
image content and structure, such as the analysis granularity being too coarse to ignore
the details of the objects in the scene, the result of image processing is far from the correct
result. In general, the global features are sensitive to the actual imaging conditions, and the
robustness and generalization ability are relatively poor.

The local feature can effectively resist various affine transformations and have some
invariance. David Lowe has come up with a landmark local feature descriptor, the scale
invariant feature transform (SIFT), which has good scale invariance and rotational in-
variance [43]. Thus, SIFT is one of the most widely used features in image processing.
Bay et al. present an accelerated robust feature descriptor (SURF) inspired by SIFT [44].
While SURF is inferior to SIFT in scale scaling and rotational invariance, it is superior in
blur and illumination variation and is several times faster than SIFT. With the advancement
of research, the instability of color, light and gradient features in the process of recognition
became an obstacle to image classification. The histograms of oriented gradients (HOG)
feature proposed in 2005 continue the high recognition accuracy characteristic of the local
feature; the gradient histogram method is used to effectively solve the problem of the
low recognition rate of local scene contours due to the sensitivity of light and gradient
features [45]. However, HOG features have high dimensions, low computational efficiency
and great redundancy and do not consider the effect of scale transformation on classification
results. The CENTRIST feature proposed by Wu et al. in 2010 solves this problem well [46].
Through the census transformation of the acquired pixels, these pixels are transformed
into statistical histograms to form the CENTRIST feature to extract the object’s local shape
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structure. After the CENTRIST transformation, the image still retains the global and local
structure information. Therefore, it can simulate the human visual system and describe the
shape and texture of objects accurately.

Global features and local features have their own advantages and disadvantages.
Different visual features are suitable for different tasks of geographic scene understanding.
In HSR remote sensing image description, visual feature extraction should not only keep the
invariance of features but should also fuse the spatial structure information of the features.

4. Semantic Understanding of Object Layer

Object layer semantics mainly describe the logical concepts of scenes in images, usually
based on a large number of visual layer descriptors. Compared with the visual layer, the
object layer is closer to the human understanding of the geographic scene. For instance,
in the process of geographic scene understanding, we rely more on the houses and roads
in the images, rather than recognizing that there are small dense and regular highlighted
areas, narrow and long gray-banded areas and so on in the image. Houses, roads, sky
and grass, which conform to human cognition, constitute the object layer semantics of
geographic scenes. In addition, object layer semantics can also be abstract local areas, such
as visual words generated by feature detection algorithms. There is also a certain context
structure between different objects, forming a corresponding spatial relationship. Thus, a
geographic scene is a combination of a set of specific objects. According to the different
semantic forms of objects, there are three types: target object semantics, local area semantics
and spatial structure semantics.

4.1. Target Object Semantics

The object layer semantics of the geographic scene are usually concentrated on the
basic level of human cognition, which can be represented by many target objects (Figure 4).
For the semantic understanding of the target object, it is necessary to use the target detection
algorithm to clarify the types of each object. In the fields of computer vision and pattern
recognition, many target detection algorithms have been developed, for instance: the
threshold-based detection method [47], the template-based detection method [48], target
detection based on Hough transform or Hough forest [49], target detection based on
classifiers [50], etc. For the target detection of HSR remote sensing images, the method of
target detection in the computer vision field is usually used for reference, and the research
is carried out around the object of special interest, in particular, the artificial structures
closely related to human activities, such as buildings [51], ports [52], airport runways [53],
roads [54], warships [55] and so on. For artificial structures with obvious shape features, it
is generally possible to directly use their unique shape features for detection, for instance,
extracting straight lines to detect linear targets in images [56]. For complex targets, the
corresponding models can be constructed; for instance, the “Building” target model can
be constructed by texture, shape and SIFT features, and the “Port” target model can be
constructed by combining the information of coastline, wharf and embankment [57].

For the target detection of HSR remote sensing images, it is more challenging to detect
objects with large image sizes and various details. Target detection of HSR remote sensing
images is studied from different perspectives. A multi-layer SVM classifier is used to
exclude non-target regions to improve the speed of target detection in high-resolution
remote sensing images [58]. The large remote sensing image is divided into smaller blocks,
the salient and synopsis features of each block are extracted, and the target detection is
realized by classification [59]. Target detection is also accomplished by first segmenting
HSR remote sensing images and then merging regions related to the target based on
knowledge [60]. In addition, the successful application of visual selective attention to the
target location in large-format remote sensing images, and the results show that the visual
attention mechanism can quickly focus on the place where the object to be detected appears
in the complex large image. These methods are all beneficial explorations in the target
detection of HSR remote sensing images [61].
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Figure 4. Target detection schematic. (a) is the original remote sensing image; (b) reflects that the
candidate locations of the targets are found in the image; (c) reflects the results of target identifications.

The existing target detection methods have strong pertinence and lack universal and
robust target detection models and algorithms. The motion characteristics of the target to
be detected (such as ship wake, submarine track), the use of the shadow of the target in the
image, the removal of the visible cloud cover and so on need to improve the target detection
model with pertinence. To realize the practicality of target detection, it is necessary to
establish a target detection model and a fast algorithm for multi-source data fusion.

4.2. Local Area Semantics

Remote sensing images can also be divided according to specific rules. By extract-
ing the local image descriptor of each sub-block, the correspondence between the local
descriptor and the local semantic concept is established, and the object layer semantics are
extracted. Due to the differences of descriptors, feature extraction methods of the local area
can be divided into three categories: visual dictionary, feature mapping and topic model.

4.2.1. Visual Dictionary

The visual dictionary, also known as the visual codebook, maps feature data onto indi-
vidual codewords to generate feature vectors with codebook length [62]. The construction
of a visual dictionary is essentially a cluster problem, and the visual codewords correspond
to the cluster center. In the task of geographic scene understanding, the visual dictionary
connects the image visual features with the scene semantics.

Whether the design of a visual dictionary is effective mainly includes three aspects:
resolution, compactness and universality. (1) The resolution of the visual dictionary is
reflected in the similarity between visual words. The lower the similarity, the higher
the resolution. (2) The compactness is reflected in the choice of codebook length, which
corresponds to different classification accuracies. A high recognition rate can be achieved
by selecting a suitable visual dictionary. (3) The universality mainly refers to whether the
visual dictionary needs to be relearned if the data of new categories are added. Existing
dictionary learning includes generative (unsupervised) and discriminative (supervised)
approaches. Perronnin et al. design a universal visual dictionary and a category visual
dictionary to compete for the description of image content. The universal visual dictionary
is used to describe all image scene classes, and the category visual dictionary for a certain
scene class can be obtained by adaptive learning from the universal visual dictionary [63].
If an image belongs to a given class, a category visual dictionary is more suitable for
describing the image than a general visual dictionary. On the contrary, the general visual
dictionary is more suitable to describe the image than the category visual dictionary.
However, traditional visual dictionaries are prone to a lack of clear meaning or polysemy.
To solve the above problems, Su et al. use semantic attributes to clarify semantic meaning
and integrate semantic attributes into the visual dictionary to remove the ambiguity of
visual words [64].
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4.2.2. Feature Mapping

After constructing the visual dictionary, it is necessary to encode and map the local
features of the image, and to represent the semantic information of the image by trans-
forming the local features into some organized form of visual words. In addition, there
are some problems such as the low efficiency of dictionary generation, serious quantiza-
tion errors and the lack of spatial information of visual words. Furthermore, the image
semantic representation based on the visual dictionary is a linear representation, which
only performs well in the case of the classifier with the nonlinear kernel, such as support
vector machine (SVM). This will undoubtedly reduce its usefulness, making it difficult to
apply to large-scale data set classifications. In recent years, a semantic representation based
on feature mapping has attracted more attention. Feature mapping is used to quantize and
code the visual features according to the visual words and generate the representation of
the visual features in the visual dictionary.

Vector quantization (VQ) is simple and convenient, but its constraint conditions are
too strict, resulting in the lack of information after visual feature quantization. To overcome
this shortcoming, the sparse regularization approach can be used to loosen the constraints
in the VQ, which translates into a sparse coding [65,66]. Sparse coding (SC) uses a sparse
regularization method to reduce quantization errors and improve the uniqueness of feature
coding. However, sparse coding is only a shallow learning model with a single hidden
layer. The visual dictionary acquired by shallow learning lacks the selectivity of features,
which will reduce the semantic resolution of image content. On the basis of SC, the local-
constrained linear coding (LLC) is proposed [67]. The sparsity of feature coding cannot
guarantee its locality, while the locality of feature coding can guarantee its sparsity. As a
result, LLC is more efficient and has a better refactoring effect and local smooth sparsity [68].

4.2.3. Probabilistic Topic Model

In order to improve the performance of image semantic expression, a visual language
model is proposed [69], which is inspired by the probabilistic topic model (PTM) of natural
language understanding. Based on the visual language model, an image can be divided into
many blocks as visual words according to certain rules, and these visual words have certain
grammatical rules and spatial dependencies, also called visual grammar. The semantic
information is represented by the co-occurrence frequency and spatial dependence of local
features in the image. Common PTMs include probabilistic Latent Semantic Analysis
(pLSA) [70] and Latent Dirichlet Allocation (LDA) [71].

To ameliorate the robustness of the visual language model to the change of target scale,
Wu et al. extended the original model to multi-scale, and proposed the scale-invariant
visual language model (m-VLM) [72]. Jing et al. use LDA to realize the scene classification
of optical remote sensing images and compare it with the bag of visual words (BOVW)
model [73]. The results show that LDA can provide more concise and abundant semantic
information for image representation. In the parameter training stage, the probability of a
visual language model is estimated by counting the frequency of a visual word or visual
word combinations in the image. This approach equates the visual words in the target area
of the image with the visual words in the background area, thus ignoring the negative
impact of background noise on the target semantic representation [74]. Therefore, if we can
distinguish the visual words in the background and assign the weight according to their
contribution to the target, we can enhance the resolution of the visual language model to
image semantic representation.

4.3. Spatial Structure Semantics

The different arrangements of the objects that comprise the geographic scene will make
the geographic scene have a different spatial structure. Spatial structure information in
HSR images is contained in spectral features and prior knowledge. For the understanding
of spatial structure semantics, it is necessary to describe, model and extract them and obtain
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a vector model representing the structural features of processing units (pixels, primitives
and targets).

4.3.1. Pixel-Neighborhood-Window-Based Method

Taking a pixel as the basic processing unit, a window is defined for each pixel (also
called the central pixel) in the image, which describes the spatial distribution pattern of
the pixel values in the window area. The spatial structure features of the pixels in the
window area are used as the spatial structure features of the central pixel [75]. This method
describes the spatial structure of pixel neighborhoods. It can make up for the lack of spectral
information of the central pixel by using the information of neighboring pixels, but it is
important and uncertain for the reasonable selection of window size [76].

Among the existing methods, two kinds of neighborhood structure patterns are com-
mon. One is the interactive mode between the central pixel and its neighbor pixels, which
is a “one-to-multiple” relationship. This relationship is represented using methods such as
random fields, local spatial autocorrelation statistics and data fields [77,78]. The other is the
spatial structure relationship of multiple pixels in the neighborhood window. The method
equates the center pixel with its neighbor pixel, and is a “multiple-to-multiple” relationship,
which is represented using methods such as the gray level co-occurrence matrix, global
spatial autocorrelation statistic and the spatial semi-variogram function [79,80].

4.3.2. Object-Oriented Method

The basic unit of object-oriented processing is homogeneous objects (image blocks,
homogeneous areas or patches) with certain semantic information in images [81]. The
method needs to segment the image to obtain the objects to further describe the spatial
structure of the objects in the images [82]. The advantage of this method is that it has more
abundant spatial relationships for the objects themselves and is convenient for extracting
spatial features [83,84]. The deficiency of this method lies in its serious dependence on
the quality of image segmentation. In fact, inaccurate image segmentation results in error
accumulation when understanding spatial structure semantics [85].

4.3.3. Rule-Partition-Based Method

The rule-partition-based method is similar to grid division. Firstly, the image is
divided into regular (generally square) image blocks. Then, each image block is used as
the processing unit to describe the spatial structure features of each image block [86]. This
method is especially suitable for the detection of the spatial structure semantics of complex
objects such as residential areas and aircraft. It does not focus on the detailed structure of
objects in the image block but only on the statistical properties of the overall structure [87,88].
The deficiency of this method lies in how to determine the suitable partition of image blocks,
especially when it cannot locate the object boundary accurately [89].

4.3.4. Global Organization Method Based on Local Structure

In this method, firstly, the local structural features, such as feature points, feature lines
and feature surfaces, are obtained. Then, according to the spatial structure of the objects,
the global structure model of the objects is constructed by using certain organization rules
and mathematical models [90]. The process is mainly based on the geometric structure
of the object itself, spatial relationship information and prior knowledge of the object
structure [91]. For instance, when extracting building targets in HSR remote sensing
images, we can make full use of the feature that the building roof is a rectangular structure.
Firstly, local structure features such as corners, lines and ridges are extracted. Then, the
method of perceptual organization is used to organize it into a complete roof contour of
the building [92,93]. This method accords with the cognition rule of people to things, but
it has a higher request for the construction of mathematical models and the realization of
calculation methods [94].
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5. Semantic Understanding of Concept Layer

The concept layer belongs to high-level abstract semantics. The concept layer semantics
of the geographic scene is the comprehensive judgment and representation of concepts
such as function and pattern. The main application of the remote sensing image processing
method is scene classification. In general, high-level semantic information can be acquired
based on low-level information analysis, and low-level information can be transferred to
higher-level by modeling. Through layer-by-layer refinement, the final representation of
the concept layer semantics is closer to the abstract thinking of human beings, and then
the geographic scene semantics in the HSR remote sensing images have more practical
significance. Therefore, the concept layer semantics of geographic scenes are derived from
the visual layer semantics or the object layer semantics.

5.1. Visual Features Based Method

The concept layer semantics of the geographic scene can be directly described by
low-level visual feature attributes. The scene classification algorithm based on visual
features extracts the low-level visual features (such as color, shape and texture), then
describes the features and designs the classifier to infer the semantic information of the
geographic scene. According to the different sources of low-level feature extraction, scene
classification based on low-level features includes two categories: global-feature-based
methods and local-feature-based methods. The extraction methods of global features and
local features in visual features are detailed in Section 3 (Table 2). Common classifiers used
for visual features include maximum likelihood [95], minimum distance [96] and K-means
clustering [97].

Table 2. Comparison of main methods in visual features.

Name Type Output Advantage Disadvantage Applicable

GIST Global Spectral information Low computational
complexity and easy to use

Poor performance in complex
scenes with dense targets Simple natural scenes

SIFT

Local

Neighborhood
histogram

Suitable for translation,
rotation, scale transformation

Poor performance in complex
scenes with overall layout Natural scenes

HOG Vector Representation of contours
and edges

Poor performance in scenes
with unstable shape structure

Scenes with global
structural stability

CENTRIST Census transformed
value

Highlight local characteristics
and reflect position

information

Poor performance in complex
and volatile scenes

Scenes with clear
layout and sparse
target distribution

A single low-level visual feature is not suitable for the complicated task of geographic
scene classification, and more methods of multi-feature fusion are applied. Feature fusion
combines color, texture and other features into high-dimensional feature descriptors, and
then uses a neural network to achieve feature dimension reduction [98]. In addition, on
the basis of local features, the image is divided into local blocks, and the low-level visual
features of each block are taken to establish the multi-feature fusion descriptors [99,100].
Nevertheless, the method based on local or global visual features and their fusion of visual
features is not effective. The core problem is that the concept layer semantics need to infer
from the low-level features to obtain the high-level semantic representation, while the
visual-features-based method just lacks this semantic representation.

5.2. Object Semantics Based Method

In order to fully describe the complex characteristics of the geographic scene, the
extraction method of concept layer semantics based on object semantics is widely used in
geographic scene understanding of HSR remote sensing images. By extracting the local
features in the geographic scene, the local features are mapped to the visual dictionary or
parameter space to obtain more distinguishable object layer features. Then, these features
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are input into the classifier to obtain the comprehensive description features of the whole
geographic scene.

5.2.1. Target-Recognition-Based Method

Geographic scenes involve the interaction of many objects in complex semantic pat-
terns. According to the experience of human visual perception, images containing similar
objects may represent the same geographic scene. When defining the category of the
geographic scene, different objects have different importances in the scene. This prior
knowledge provides ideas for the classification of geographic scenes.

The method based on object recognition will identify the semantics of each object in the
geographic scene and train the classifier for concept semantic understanding based on the
semantic information of each object. Typical approaches include Object Bank [101], Latent
Pyramidal Regions [102], Bag of Parts [103] and Latent Semantic Analysis [104] (Table 3).
These approaches assume that a scene consists of a series of targets, and that by identifying
and recognizing those targets with significant discrimination, the category of the scene can
be inferred from the semantics of those targets [105]. In these approaches, the problem
of semantic understanding of the concept layer is first transformed into the problem of
target recognition, and then the geographic scene is represented by image blocks containing
multiple targets. However, the errors caused by target recognition will further result in
“error propagation”, which will affect the semantic understanding of the geographic scene.

Table 3. Comparison of main methods in target recognition.

Name Advantage Disadvantage Applicable

Object Bank Identifiable targets and natural
scenes

High computational complexity
and high feature dimension

Natural scenes with landmark
targets

Latent Pyramidal Regions Good performance for regions
with specific structures Focus on the shape structure of

the scene, lack of deep semantic
understanding

Scenes with complex background
and crowded targets

Bag of Parts Good performance for areas with
boundaries or corners

Latent Semantic Analysis
The synonym is characterized by
dimensionality reduction, and the

redundant data are used

Polysemous words have low
discrimination and high

computational complexity

Scenes with heterogeneous
information and clear boundaries

5.2.2. Local Semantics Based Method

To avoid the process of object detection and recognition, the HSR remote sensing image
can be divided according to rules and the local image descriptors of each sub-block can be
extracted. The correspondence between local descriptors and local semantic concepts is
established, and the scene classification is completed by using the probability distribution of
local semantic concepts. There are two main algorithms based on local semantic concepts:
the probabilistic topic-model-based method and the bag-of-visual-words-model-based
method. Because the feature of spatial structure expresses the relationship between objects,
it does not exist independently. Therefore, this feature is often used in conjunction with the
bag of visual words model or the probabilistic topic model to enhance semantics.

(1) Bag of visual words model

The visual codebook is defined in advance, and the image content is described by the
probability distribution of the appearance of the visual codewords. Then, the geographic
scenes are classified according to the probability distribution. In the process of constructing
the bag of visual words model, feature extraction, visual dictionary learning, feature map-
ping and whether to add spatial context information all have an impact on the classification
results [106].

In the aspect of feature extraction, we consider the construction of multi-feature scenes
in low-dimensional space under different perspectives and use feature complementarity
to carry out feature fusion to solve the problem of dimension reduction from a multi-
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perspective [107]. Existing visual dictionary learning includes generation (unsupervised)
and discriminant (supervised) methods [108,109]. After visual dictionary learning, the
image local descriptor is mapped to the visual dictionary. The modification of the mapping
method can improve the representation of local semantics [110]. In addition, feature
description can be incorporated into feature space partitioning to capture the high-order
structure inherent in the scene [111]. This makes the local semantics have both local gradient
information, local structure information [112] and global spatial information [113–115].

(2) Probabilistic topic model

The scene semantic content is first modeled by probability distribution based on
the codewords. Then, the latent semantic topics in the images are learned by using the
probability distribution model. In addition, the geographic scenes are classified according
to the probability distribution of latent semantic topics.

Semantic topic modeling includes the generative probabilistic model and the discrim-
inative probabilistic model. The generative probabilistic model of the geographic scene
is constructed according to the joint probability distribution of the scene category in the
feature space, using pLSA [116], LDA [117] and improved LDA (ts-LDA, css-LDA) to mine
the latent semantic information of visual words [118]. Because various scenes contain
different space-level structures, spatial information can undergo weighted fusion based on
local semantic content. The discriminative probabilistic model is based on the conditional
probability distribution of the category of the geographic scene in feature space, and its
core task is to design kernel function. Wu demonstrates that a support vector machine
based on a histogram intersection kernel (HIK) is more efficient than a radial basis function
kernel for histogram-based data [119].

The generative probabilistic model and the discriminative probabilistic model have
their respective advantages and complementary characteristics. The contradiction between
computational complexity and model complexity is the biggest problem in the generative
probabilistic model, but it is not a problem in the discriminative probabilistic model. The
discriminative probabilistic model does not consider the connection between geographic
scenes when modeling different categories of the scene, which belongs to independent
modeling. In [120], these two probabilistic models are combined to complete the task of
scene classification, and the classification effect is better than the single probabilistic model.

5.3. Feature-Learning-Based Method

Both the method based on visual features and object semantics rely mainly on artificial
design in feature extraction, which is not only subjective, and it is not enough for more
complex HSR remote sensing images. In recent years, feature learning, especially deep
learning, has been introduced into the field of remote sensing for semantic understanding of
geographic scenes due to its excellent performance in image classification [121]. The general
flow of geographic scene classification based on feature learning is shown in Figure 5.

 

Figure 5. Geographic scene classification diagram.
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Semantic understanding of the concept layer based on feature learning refers to the
process of learning a potential scene classification feature through a series of mapping and
transformation by using HSR remote sensing images as input of the model in machine learn-
ing tasks. Machine learning models can autonomously express and extract features from
image data, abandoning the previous pattern of extracting features based on pre-designed
rules [122,123]. Therefore, in the face of a complex surface environment, better classification
results of geographic scenes can be obtained. At present, the commonly used machine learn-
ing models include sparse coding [124], neural network [125], support vector machine [126]
and deep learning [127] (Figure 6). As a new intelligent method of pattern recognition
in recent years, a deep learning network composed of multilaminate nonlinear mapping
layers has become an especially important development direction in the field of remote
sensing image processing [128]. Deep Learning is a deep structure neural network, which
can extract the features of remote sensing images better than shallow structure models such
as artificial neural networks and support vector machine models. Moreover, deep learning
models can learn more abstract and distinguishable semantic features autonomously. The
deep learning approach converts the semantic understanding of the concept layer into an
end-to-end problem. On the one hand, the pre-trained deep learning network structure
can be directly used to learn the global features in the visual layer of images to understand
the semantics of the concept layer [129]. On the other hand, the deep learning network
can also be used as a local feature extraction operator to jointly complete the semantic
understanding of the concept layer with the help of feature code technology. Common deep
learning models include convolutional neural networks (CNN) [130–132], deep belief net-
work (DBN) [133], recurrent neural network (RNN) [134], automatic encoders [135], graph
convolutional networks (GCN) [136], generative adversarial networks (GANs) [137,138]
and so on. The deep learning method can be divided into three categories according to the
supervision mode: (1) full supervision, (2) semi-supervised and (3) weak supervision.

 
Figure 6. Development of feature learning methods.

5.3.1. The Method Based on Fully Supervised Deep Learning

Nowadays, most geographic scene classifications of HSR remote sensing images based
on deep learning can be classified as full supervision. The integration of multiple learning
models is one of the ways to improve the learning effect. Zhu et al. [139] proposed an
adaptive deep sparse semantic modeling (ADSSM), which combines the topic model with
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CNN and effectively integrates sparse topic features and deep features at the semantic
level. Cheng et al. [140] proposed a new loss function to train fused deep neural networks
by combining deep learning with metric learning. Zhang et al. [141] combined CNN and
CapsNet for scene classification. This approach combines the advantages of both networks
while leveraging the powerful feature extraction capabilities of CNN and the excellent
feature fusion and classification capabilities of CapsNet. He et al. [142] proposed a new
skip-connected covariance network (SCCov) for remote sensing image scene classification.
Sumbel et al. [143] presented the BigEarthNet, which is a new large-scale, multi-label
Sentinel-2 benchmark archive. The experimental results obtained in the framework of scene
classification problems show that a shallow CNN architecture trained on the BigEarthNet
provides much higher accuracy compared to a state-of-the-art CNN model pre-trained on
the ImageNet. Thus, the BigEarthNet opens up promising directions to advance operational
remote sensing applications and research in massive Sentinel-2 image archives.

5.3.2. The Method Based on Semi-Supervised Deep Learning

Semi-supervised learning can make use of a large number of unlabeled samples,
reducing the need for labeled samples, which, to some extent, solves the problem of
insufficient labeled samples in the field of deep learning [144]. Han et al. [145] proposed
a generic framework based on semi-supervised deep features from the perspective of
expanding the scale of labeled samples. In this framework, multiple support vector machine
(SVM) models are applied to the label recognition of easily confused category samples,
which improves the label precision and the number of labeled samples, thus improving the
generalization ability and classification precision of the network.

It is also an effective semi-supervised deep learning to construct a feature extraction
model based on unsupervised learning in the feature learning stage, then train the classifier
with labeled samples. Soto et al. [146] used a combination of labeled and unlabeled samples
to train generative adversarial networks (GAN) and then used the trained classifiers for
scene classification. At this point, the classifier has a large number of unlabeled samples of
information, which is helpful to improve the final classification effect. Fan et al. [147] used
the representative salient regions extracted from the image as unlabeled samples to train
the feature extractor. Then, the extractor is used to extract the features of the samples to be
classified. Finally, SVM is used to classify the extracted features.

5.3.3. The Method Based on Weak Supervised Deep Learning

In HSR remote sensing image scene classification tasks, weak supervision usually uses
labeled samples similar to target samples to train scene classification models. This method
divides the dataset into the source domain and target domain. The former is different from
the latter but similar. The latter can obtain labels through various transfer learning and
further be used for training scene classification models. Othman et al. [148] took the features
extracted from labeled images as the source domain, and the features extracted from
unlabeled images as the target domain. Then, apply them to network training and optimize
the specified loss function to classify labeled and unlabeled data. Gong et al. [149] further
improved deep structural metric learning (DSML) by proposing Diversity-Promoting-
DSML (D-DSML), which reduces the parameter redundancy produced by DSML and
improves the feature representation ability.

Some existing deep learning classification tools include OverFeat [150], DeCAF [151],
Caffe [152], AlexNet and so on (Figure 7). However, in these models, learning millions of
network parameters also requires millions of training data as input. In order to reduce
the over-fitting problem, a smaller network structure can be constructed. However, the
generalization ability of the network model trained by this method is limited, such as gradi-
ent enhancement convolutional neural network [153] and multi-perspective convolutional
neural network [154]. Therefore, the unsupervised feature-learning method directly uses
the network model trained on the data set of images as the feature extractor to extract the
deep features of the image directly, or after the feature transformation is input into the clas-
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sifier for classification, higher classification results could be obtained [155]. Furthermore,
the stacked covariance pooling method transforms the extracted multi-layer convolution
layer features to obtain the global deep features of the image, which can effectively fuse the
multi-layer deep features [156].

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7. Architectures of different ConvNets evaluated in [157]. Purple boxes indicate the layers from
where features were extracted in the case of using the ConvNets as feature extractors. (a) PatreoNet;
(b) AlexNet; (c) CaffeNet; (d) VGG16; (e) OverFeatS; (f) OverFeatL.

The method of deep feature fusion can further improve the accuracy of geographic
scene classification. The most direct way is to cascade the features of the fully connected
layers extracted from different network models [158]. In addition, discriminant correlation
analysis (DCA) can be used to fuse the features of different fully connected layers [159].
Alternatively, the classification results of multiple models are fused based on Choquet
fuzzy integral [160]. The UC-Merced dataset is one of the classic open resource sets for
classification tasks of geographic scenes. Using the UC-Merced dataset as experimental data,
the performance of existing geographic scene classification models is summarized (Table 4).
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Table 4. Comparison of main methods in geographic scene classification.

Method Accuracy (%) Other Indicators

Visual features-based method

Gabor texture [161] 76.91 -
Color-HLS [161] 81.19 -
NN-STSIM [162] 86 -

Quaternion orientation
difference [163] 85.48 ± 1.02 -

MS-CLBP [164] 90.6 ± 1.4 -

Object-semantics-based
method

BoVW [161] 76.81 -
BoVW + SCK [161] 77.71 -

SPM [161] 75.29 -
SPCK ++ [165] 77.38 -

HMFF [166] 92.38 ± 0.62 -
CCM-BoVW [167] 86.64 ± 0.81 -

Wavelet BoVW [168] 87.38 ± 1.27 -
UFL [169] 81.67 ± 1.23 -

COPD [170] 91.33 ± 1.11 -
FV [171] 93.8 -

VLAT [171] 94.3 -
SG-UFL [172] 82.72 ± 1.18 -

PSR [173] 89.1 -
UFL-SC [174] 90.26 ± 1.51 -

SAL-PLSA [175] 87.62 -
SAL-LDA [175] 88.33 -

Feature-learning-based
method

CaffeNet finetune [176] 95.48 -
GoogleNet finetune [176] 97.1 -

Multiview DL [177] 93.48 ± 0.82 84.35 (Sensitivity), 91.72
(Specificity)

GBRCN [178] 94.53 -
ADPM [179] 94.86 -
HCSAE [180] 97.14 ± 1.19 -

MARTA GANs [181] 94.86 ± 0.80 -
Fusion by addition [182] 97.42 ± 1.79 -

salM3LBP-CLM [183] 95.75 ± 0.80 -
TEX-Nets [184] 97.72 -
CCP-Net [185] 97.52 ± 0.97 -

CNN (LOFs+GCFs) [186] 99.00 ± 0.35 -
ARCNet-VGG16 [187] 99.12 ± 0.40 -

D-CNN with VGG16 [188] 98.93 ± 0.10 -
SAL-TS-Net [189] 98.90 ± 0.95 -

Two-stream deep fusion [190] 98.02 ± 1.03 -

PMS [191] 98.81 8.32 × 106 (Number of
neurons)

SSF-AlexNet [192] 92.43 ± 0.46 -
VGG16+MSCP+MRA [193] 98.40 ± 0.34 -

MCNN [194] 96.66 ± 0.90 -
Bidirectional adaptive feature

fusion [195] 95.48 -

Although great progress has been made in geographic scene classification using deep
learning algorithms, compared with the shallow algorithm, the classification effect has been
improved obviously. However, the application of deep learning still faces many problems,
such as the following:

(1) In terms of training data, the success of a deep neural network is that it can fit large-
scale samples without sacrificing generalization ability. In the field of geographic
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scene understanding, it is difficult to construct a large-scale, high-quality and com-
plete HSR remote sensing image dataset for training. Firstly, from the perspective of
time, a training sample can only represent the sampling of a time section. However,
the interpretations of objects are dynamic in different periods. This time heterogeneity
puts forward higher requirements for the quality, scale and completeness of sample
annotation [196]. Secondly, from the perspective of space, due to the differences in
climate and light conditions, the distribution of ground objects in different geographic
scenes has natural heterogeneity [197]. This spatial heterogeneity leads to the im-
balance of sample categories in the supervised learning process, whether within the
training set or between the training set and the test set, which leads to “over-fitting”
or “under-fitting” problems.

(2) In terms of learning mechanisms, supervised learning mainly relies on semantic sup-
port provided by manual annotation as the only learning signal for model training.
If human labeling is regarded as prior knowledge, the machine has been limited in
knowledge in the process of labeling [198]. However, for the huge amount of image
data, the intrinsic information should be much more abundant than the semantic in-
formation provided by sparse labels. Therefore, over-reliance on a manual annotation
will cause the risk of “inductive bias” in the trained model. Moreover, the computa-
tional cost is high, especially for small samples. Most of the deep learning models are
trained on the established network structure and are then fine-tuned to obtain better
network parameters. This training pattern is not suitable for ever-expanding datasets.

Although deep learning has a strong learning ability, compared with real artificial in-
telligence, it still lacks the ability of abstract knowledge representation, reasoning causality
and logical relationship. Therefore, there is a long distance to understand the geographic
scene automatically through feature learning.

6. Open Problems and Challenges

(1) Integrated system engineering for geographic scene understanding

The research of HSR remote sensing images is often only used the visual information
and a little semantic information, such as target detection, image classification, image
segmentation, scene classification and so on. These researchers can often only detect a
certain target contained in the image, or obtain the category labels of each pixel or the whole
image, but they do not make full use of the features of the image. Thus, it is difficult to mine
the attributes, characteristics and relationships among the objects in the image in detail. In
this way, images are not fully understood at the semantic level and HSR remote sensing
data are not fully utilized. The organic integration of single subtask or feature information
of HSR remote sensing image processing can enhance the performance of understanding,
and it is more suitable for people’s understanding mode of the geographic scene. The
multi-class feature information and multi-subtasks are not completely independent, and the
mutual influence and restriction factors should be considered comprehensively (Figure 8).
Therefore, the construction of system engineering for geographic scene understanding can
follow the following Formula (1):

Y = {( f eature1 ⊕ f eature2 ⊕ . . . ⊕ f eaturen)⊗ (task1 ⊕ task2 ⊕ . . . ⊕ taskn)} (1)

In the formula, Y is the system engineering for geographic scene understanding,
⊗ and ⊕ represent the different combinations of features and tasks.
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Figure 8. System engineering framework for geographic scene understanding based on HSR remote
sensing image.

(2) Comprehensive semantic representation of the geographic scene in HSR remote
sensing image

The purpose of geographic scene understanding based on HSR remote sensing image
is to semantically explain the content at all layers in the geographic scene. It is necessary
to construct a comprehensive semantic representation model of geographic scenes, and to
standardize and integrate the various layers and types of semantic information obtained
from the understanding of geographic scenes. The semantic parsing tree of a geographic
scene can be constructed, and the tree structure of and/or a graph can be used to represent
the semantic content of understanding. The semantic parsing tree of the geographic
scene follows a unified semantic specification, which is generally divided into four levels
“scene-object-part-pixel” (Figure 9). The “And” node represents the decomposition, such
as “scene→object”, “object→part” and so on, which is followed the syntactic rules of
“A→BCD”. Any geographic scene semantics can be represented by this parsing tree
structure, and the semantic hierarchy of geographic scene is clearly divided, which has
both semantic attributes and semantic relations between different levels.

Figure 9. Hierarchical representation structure of the semantic of geographic scene.

(3) Adaptability for large-scale complex geographic scenes

With the massive growth of image data and the continuous subdivision of scene
categories, the problem of geographic scene understanding is faced with unprecedented
challenges both in image quantity and scene category. The understanding of real geographic
scenes requires higher complexity and depth than scene classification, and the solution
to this problem will have a profound impact on artificial intelligence technology. For
the current semantic understanding approaches of geographic scenes, there are still the
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following problems to be solved: (1) The semantic extraction ability of the visual layer
is insufficient. Even considering multiple visual features, most of them are the simple
superposition of different features. (2) The semantic modeling of object layer is redundant
and lacks homogeneity in the description, which makes it difficult to take into account
the computational efficiency and effect. (3) The semantic understanding of concept layer
ignores spatial location information and globality. Whether it is visual-feature-based or
object-sematic-based method, it is difficult to obtain an accurate global description of spatial
location relationships and geographic scene characteristics at the same time. Thus, it is not
conducive to an accurate understanding of the geographic scene.

(4) Fusion application of abundant multi-source data

In the big data era, the accessibility of various types of data has been broken through,
creating conditions for the geographic scene understanding. On the one hand, the pro-
motion of big data technology in the field of remote sensing has promoted the arrival of
the era of remote sensing big data. Multi-source remote sensing data collaboration can
integrate the advantages of various remote sensing observation methods and make up
for the insufficient single sensor, which is one of the important research directions for the
breakthrough of remote sensing image processing. On the other hand, the remote sensing
image data record the natural environment of the surface, but the perception of changes in
the social environment is scarce. The fusion of multi-source data is not only limited to HSR
remote sensing data itself, but also needs to combine different types of data resources to
make up for the deficiency of remote sensing monitoring. Social media data represented
by Twitter, Facebook, Sina Weibo and Internet maps represented by GeoNames, GNIS,
OpenStreetMap, etc., have become important sources of data for depicting the scenes of
humanities and society. The fusion of HSR remote sensing images and multi-source data
provides a new idea and method for geographic scene understanding.

7. Conclusions

Geographic scene understanding is one of the core tasks for middle and high-level
cognition in remote sensing image processing tasks. Its complexity and comprehensiveness
make it difficult to accurately understand the semantic information of geographic scenes.
Based on the analysis of the basic concepts and core connotations of geographic scene
understanding, this paper reviews the research status of geographic scene understanding
from the tasks of different semantic layers in HSR remote sensing images. Geographic
scene understanding decomposes the information of HSR remote sensing images into
three semantic layers: based on the visual features of remote sensing images, the local
objects, spatial structure and scene functions of the geographic scene are analyzed in a
consistent cognitive system. This not only conforms to the logic and order of human
cognition but also has significant interpretability of various semantic information. In terms
of target detection, efficient and accurate feature representation and fusion of appropriate
attention mechanisms are the core of extracting object category semantics. In terms of
spatial structure description, pixel neighborhood window, object-oriented, rule partition
and local structure are the main methods for extracting spatial structure semantics. In terms
of scene classification, according to the semantic abstraction degree of extracted features,
it mainly includes the visual feature classification method, object semantic classification
method and feature learning classification method.

In future research, it is necessary to deeply study the intrinsic objective laws of various
objects, textures, spaces and other information in geographic scene understanding, in order
to reveal the relationship and influence mechanism between various features of images
and different subtasks of image processing. The system engineering of geographic scene
understanding is constructed from the global perspective, and the deep mechanism of
human understanding of the geographic scene is explored. This is not only conducive to
improving the adaptability of large-scale complex geographic scenes, but it also provides a
universal cognitive structure for other HSR remote sensing images processing tasks such as
image analysis and landscape investigation.
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163. Risojević, V.; Babić, Z. Orientation difference descriptor for aerial image classification. In Proceedings of the 2012 19th International
Conference on Systems, Signals and Image Processing (IWSSIP), Vienna, Austria, 11–13 April 2012.

164. Chen, C.; Zhang, B.; Su, H.; Li, W.; Wang, L. Land-use scene classification using multi-scale completed local binary patterns.
Signal Image Video Processing 2016, 10, 745–752. [CrossRef]

165. Yang, Y.; Newsam, S. Spatial pyramid co-occurrence for image classification. In Proceedings of the 2011 International Conference
on Computer Vision, Barcelona, Spain, 6–13 November 2011.

166. Shao, W.; Yang, W.; Xia, G.; Liu, G. A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categoriza-
tion. In Proceedings of the 9th International Conference, ICVS 2013, Saint Petersburg, Russia, 16–18 July 2013.

167. Zhao, L.; Tang, P.; Huo, L. Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4620–4631. [CrossRef]

168. Zhao, L.; Tang, P.; Huo, L. A 2-D wavelet decomposition-based bag-of-visual-words model for land-use scene classification. Int. J.
Remote Sens. 2014, 35, 2296–2310. [CrossRef]

169. Cheriyadat, A.M. Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2013, 52, 439–451.
[CrossRef]

170. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection
of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [CrossRef]

171. Negrel, R.; Picard, D.; Gosselin, P. Evaluation of second-order visual features for land-use classification. In Proceedings of the
2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI), Klagenfurt, Austria, 18–20 June 2014.

172. Zhang, F.; Du, B.; Zhang, L. Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote
Sens. 2014, 53, 2175–2184. [CrossRef]

173. Chen, S.; Tian, Y. Pyramid of spatial relatons for scene-level land use classification. IEEE Trans. Geosci. Remote Sens. 2015, 53,
1947–1957. [CrossRef]

174. Hu, F.; Xia, G.; Wang, Z.; Huang, X.; Zhang, L.; Sun, H. Unsupervised feature learning via spectral clustering of multidimensional
patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2015–2030. [CrossRef]

175. Zhong, Y.; Zhu, Q.; Zhang, L. Scene classification based on the multifeature fusion probabilistic topic model for high spatial
resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6207–6222. [CrossRef]

176. Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land use classification in remote sensing images by convolutional neural
networks. arXiv 2015, arXiv:1508.00092.

177. Luo, J.; Kitamura, G.; Arefan, D.; Doganay, E.; Panigrahy, A.; Wu, S. Knowledge-Guided Multiview Deep Curriculum Learning
for Elbow Fracture Classification. In Proceedings of the 12th International Workshop, MLMI 2021, Held in Conjunction with
MICCAI 2021, Strasbourg, France, 27 September 2021.

178. Zhang, F.; Du, B.; Zhang, L. Scene classification via a gradient boosting random convolutional network framework. IEEE Trans.
Geosci. Remote Sens. 2016, 54, 1793–1802. [CrossRef]

179. Liu, Q.; Hang, R.; Song, H.; Zhu, H.; Plaza, J.; Plaza, A. Adaptive deep pyramid matching for remote sensing scene classification.
arXiv 2016, arXiv:1611.03589.

180. Han, X.; Zhong, Y.; Zhao, B.; Zhang, L. Scene classification based on a hierarchical convolutional sparse auto-encoder for high
spatial resolution imagery. Int. J. Remote Sens. 2017, 38, 514–536. [CrossRef]

181. Lin, D.; Fu, K.; Wang, Y.; Xu, G.; Sun, X. MARTA GANs: Unsupervised representation learning for remote sensing image
classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2092–2096. [CrossRef]

182. Shawky, O.A.; Hagag, A.; El-Dahshan, E.S.A.; Ismail, M. A very high-resolution scene classification model using transfer deep
CNNs based on saliency features. Signal Image Video Processing 2021, 15, 817–825. [CrossRef]

183. Bian, X.; Chen, C.; Tian, L.; Du, Q. Fusing local and global features for high-resolution scene classification. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2017, 10, 2889–2901. [CrossRef]

184. Anwer, R.M.; Khan, F.S.; Van De Weijer, J.; Molinier, M.; Laaksonen, J. Binary patterns encoded convolutional neural networks for
texture recognition and remote sensing scene classification. ISPRS J. Photogramm. Remote Sens. 2018, 138, 74–85. [CrossRef]

185. Qi, K.; Guan, Q.; Yang, C.; Peng, F.; Shen, S.; Wu, H. Concentric Circle Pooling in Deep Convolutional Networks for Remote
Sensing Scene Classification. Remote Sens. 2018, 10, 934. [CrossRef]

186. Zeng, D.; Chen, S.; Chen, B.; Li, S. Improving Remote Sensing Scene Classification by Integrating Global-Context and Local-Object
Features. Remote Sens. 2018, 10, 734. [CrossRef]

187. Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 1155–1167. [CrossRef]

193



Appl. Sci. 2022, 12, 6000

188. Wang, W.; Du, L.; Gao, Y.; Su, Y.; Wang, F.; Cheng, J. A Discriminative Learned CNN Embedding for Remote Sensing Image Scene
Classification. arXiv 2019, arXiv:1911.12517.

189. Yu, Y.; Liu, F. Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification. Remote Sens.
2018, 10, 1158. [CrossRef]

190. Yu, Y.; Liu, F. A two-stream deep fusion framework for high-resolution aerial scene classification. Comput. Intel. Neurosc. 2018,
2018, 8639367. [CrossRef]

191. Ye, L.; Wang, L.; Sun, Y.; Zhao, L.; Wei, Y. Parallel multi-stage features fusion of deep convolutional neural networks for aerial
scene classification. Remote Sens. Lett. 2018, 9, 294–303. [CrossRef]

192. Chen, J.; Wang, C.; Ma, Z.; Chen, J.; He, D.; Ackland, S. Remote Sensing Scene Classification Based on Convolutional Neural
Networks Pre-Trained Using Attention-Guided Sparse Filters. Remote Sens. 2018, 10, 290. [CrossRef]

193. Akodad, S.; Vilfroy, S.; Bombrun, L.; Cavalcante, C.C.; Germain, C.; Berthoumieu, Y. An ensemble learning approach for the
classification of remote sensing scenes based on covariance pooling of CNN features. In Proceedings of the 2019 27th European
Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019.

194. Liu, Y.; Zhong, Y.; Qin, Q. Scene Classification Based on Multiscale Convolutional Neural Network. IEEE Trans. Geosci. Remote
Sens. 2018, 56, 7109–7121.

195. Lu, X.; Ji, W.; Liu, W.; Zheng, X. Bidirectional adaptive feature fusion for remote sensing scene classification. Neurocomputing 2019,
328, 135–146. [CrossRef]

196. He, H.; Garcia, E. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
197. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [CrossRef]
198. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A Survey on Contrastive Self-Supervised Learning. Technologies

2021, 9, 2. [CrossRef]

194



applied  
sciences

Article

Spatiotemporal Assessment of Air Quality and Heat Island
Effect Due to Industrial Activities and Urbanization in
Southern Riyadh, Saudi Arabia

Abeer Salman 1,*, Manahil Al-Tayib 2, Sulafa Hag-Elsafi 1, Faisal K. Zaidi 3 and Nada Al-Duwarij 1

Citation: Salman, A.; Al-Tayib, M.;

Hag-Elsafi, S.; Zaidi, F.K.; Al-Duwarij,

N. Spatiotemporal Assessment of Air

Quality and Heat Island Effect Due to

Industrial Activities and

Urbanization in Southern Riyadh,

Saudi Arabia. Appl. Sci. 2021, 11,

2107. https://doi.org/10.3390/

app11052107

Academic Editor: Tung-Ching Su

Received: 8 January 2021

Accepted: 19 February 2021

Published: 27 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geography, King Saud University, Riyadh 11564, Saudi Arabia;
shagelsafi@ksu.edu.sa (S.H.-E.); nadahamadmohammad@gmail.com (N.A.-D.)

2 Department of Quantitative Analysis, King Saud University, Riyadh 11564, Saudi Arabia; maltib@ksu.edu.sa
3 Department of Geology and Geophysics, King Saud University, Riyadh 11564, Saudi Arabia;

fzaidi@ksu.edu.sa
* Correspondence: abalsalman@ksu.edu.sa

Abstract: The aim of this paper is to evaluate the air and thermal pollution in the southern suburbs
of Riyadh, where people are suffering from poor air quality due to the rapid development of the
industrial facilities in the area. The study involved the distribution of questionnaires to 405 residents
living in that area in order to obtain their opinions about air pollution. In addition, land surface
temperature and 12 components of air were measured at 18 points. In addition, the air quality data
from 2016 to 2020 for Al Khaldya and Southern Ring Road air stations were assessed. Al Misfat
(Oil Refinery) and the Second Industry City are significant contributors to air pollution and also
result in the urban heat island effect from high temperature due to factories and industrial activities.
However, all the measured components of air quality are lower than the standard limits except the
element particulate matter (PM)10, which exceeds the standard limits in several parts of the study
area and during several months of the year. This can surely have a negative impact on the health of
residents. At the same time, this study found that the preventive measures taken to stop the spread of
COVID-19 infections have led to a positive impact in the area in terms of improvement in air quality.

Keywords: air pollution; Riyadh; industrial city; land surface temperature; geostatistic

1. Introduction

Urbanization and industrialization are the main sources of air pollution in the world.
Consequently, air pollution has become the main topic of many environmental studies [1–5].
The World Health Organization states that air pollution is a threat to human health and is
responsible for millions of deaths annually [6–9]. Annually, about 21,000 Canadians die
due to exposure to polluted air [10].

Several studies have shown a positive correlation between cancer and exposure to
polluted air in different parts of the world [11,12] and in the Arabian Peninsula [13]. The
industrial areas in the world are the main contributors to air pollution and are responsible
for the deteriorating health of the population.

In Riyadh, the capital of Saudi Arabia, industrialization has increased dramatically
during the past couple of decades in response to the increase in population and urban
development. Establishment of two industrial cities has resulted in better employment
opportunities and, consequently, a high population growth of about 4% in Riyadh [14].
The First Industrial City was established in 1973 and has an area of 0.5 km2. The Second
Industrial City was established in 1976 and has an area of 19 km2 [15].

Though the Second Industrial City and the Saudi Aramco Oil Refinery (Al-Misfat)
were established in the south of Riyadh, far from the city, urban expansion and associated
economical activities forced the people to live around the industrial cities. Accordingly,

Appl. Sci. 2021, 11, 2107. https://doi.org/10.3390/app11052107 https://www.mdpi.com/journal/applsci
195



Appl. Sci. 2021, 11, 2107

overcrowded buildings, especially along roads; an increase in traffic and vehicular emis-
sions; and frequent desert dust storms in the area were the principal sources that increased
the level of environmental pollutants [16], leading to air pollution [17]. The cumulative
effect of these factors resulted in deterioration of air quality indoors and outdoors at many
sites in Riyadh [18].

During several visits to the study area in southern Riyadh, it was evident that the
area is suffering from multiple aspects of pollution, reduction in visibility during the
mornings, and dirty and eroded buildings. Accordingly, residents and workers complained
of unhealthy air quality in the area.

Several efforts have been made to study the concentration of chemicals and particulate
matter in the air in Saudi Arabi [19–21]; however, most studies were limited and not
comprehensive due to insufficient data [18]. As a result, the Royal Commission for Riyadh
City and the General Authority of Meteorology and Environment Protection are operating
32 air quality control stations in Riyadh, over the past few years, to monitor the air quality.
Some of these monitoring stations are fixed, whereas others are mobile. In addition, the
General Authority of Meteorology and Environment Protection launched a dashboard for
Riyadh air quality [22] to visualize the air quality index (AQI).

Mapping techniques are useful to assist decision makers in quantifying and locating
pollution sites, even with limited measurements. (Geographic information system) GIS
and remote sensing are useful tools for spatial analysis and detection of thermal pollution.
Geostatistics is a strong technique to assess the spatial analysis of the studied variables [23].
The kriging technique is widely used for investigating sources of pollution as it is a reliable
technique with fewer errors, even with small samples [24–26]. In addition, remote sensing
imageries, especially in the thermal bands, provide simpler and more accurate information
about surface temperature and emissivity [27] to detect urban heat islands (UHIs) [28–30].

Accordingly, this study aims to shed light on the opinions of residents living in
southern Riyadh, near the industrial city, regarding emissions of oxides and particulate
matter from industrial areas and traffic congestion. Most studies when surveying about
the quality of life in cities do not take into account people’s opinions about air pollution
aspects. The spatial and temporal changes in thermal and air pollution were evaluated
from 2016 to 2020. Additionally, the impact of the lockdown on air quality during the
coronavirus pandemic was also assessed.

2. Materials and Methods

2.1. Study Area

The study area is located in the southern suburbs of Riyadh. It lies between the coor-
dinates 24.482–24.594 North and 46.759–46.946 East (Figure 1). It covers about 128.7 km2

and includes the following seven districts: Ad-Difa, Al-Iskan, the second Industrial City,
Al-Misfat, Al-Mansuriah, Ad-Dar Al-Baida, and Taybah.

The total number of inhabitants in the study area is 116,510 [31]. The Second Industrial
City, including Al Iskan and Ad Dar Al Baida, has a higher population due to better
infrastructure and amenities (Figure 2).
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Figure 1. Study area location.

Figure 2. Population of the study area.

In the study area, two major industrial factories were established, namely the Second
Industrial City and Al-Misfat (the Saudi Aramco Oil Refinery) (Figure 3). The Second
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Industrial City was established in 1979 and has more than 823 factories with different
activities [15]. The Al-Misfat refinery was established in 1974 and produces various kinds
of petroleum derivatives. Moreover, there is heavy vehicular traffic throughout the day to
support the industrial area.

Figure 3. Land-use map of the study area and location of air sampling.

The western part of the study area is bounded by Wadi Hanifa, where the treated
wastewater from Riyadh City is disposed. This water flows along the valley, with some
agricultural activities in the Mansuriah and Taybah districts, which are less densely populated.

2.2. The Questionnaire

The study involved a survey about people’s opinions regarding air pollution. The
survey was conducted through a questionnaire, which was prepared in accordance with
relevant guidelines and regulations and was approved by the Geography Department at
King Saud University. Random samples of the population were chosen from the seven sub-
urbs, and the questionnaire was distributed to 405 persons. The sub-samples, determined
by the study, were according to population, as shown in Table S1.

The questionnaire consists of three parts: inhabitants’ conditions, recognizing pollu-
tion, and pollution impact on the environment and health. The study applied chi-square
and Cramer’s V tests to understand the relationship between districts and pollution aspects.

2.3. Spatial and Temporal Analysis

Thermal analysis was carried out using the Landsat 8 satellite sensor image, and the
land surface temperature (LST) was calculated from band 10 and band 11 by using land
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surface emissivity (ε). In addition, the normalized difference vegetation index (NDVI) was
calculated using band 4 and band 5 to determine the proportion of vegetation (PV and ε)
to estimate the LST [32–35], as shown in Figure 4. Three images from May 2014, 2017, and
2020, with a ground resolution of 30 m, were selected.

Figure 4. Flowchart to determine land surface temperature.

At the same time, the study involved the measurement of particulate matter (PM10,
PM4, PM2.5, and PM1) and gases (CO, CO2, NO, NO2, SO2, O3, H2S, and Volatile organic
compounds VOCs) using portable instruments at 18 points from 18 to 25 May 2014. The
measuring was according to Presidency of Meteorology and Environment Protection
standards (PME) in Riyadh and performed by Geotechnical and Environmental Company
(GECO), as shown in Table S2. The distance between sample sites was 2–3 km, as shown in
Figure 3.

The study used descriptive analysis for air sampling, to picture and summarize the
data [36], and used correlation coefficients to assess the strength of linear relationship
between variables. Principal component analysis (PCA) was carried out to transform the
original set of variables into a smaller set of linear combinations [37].

Data analysis was carried out geostatistically, using ArcGIS 10.1, while ordinary
kriging was done by creating a semivariogram. The study estimated the central tendency,
dispersion, and shape to determine the type of distribution of numerical variables. A
semivariogram was created by building the spatial variability structure of each attribute,
as in shown in Equation (1).

γ(h) =
1

2N(h)

N(h)

∑
i=1

[(Z(x)− Z(x + h)]2 (1)

where γ(h) is the semi-variance, Z(x) is the value of initial potential at site x, Z(x + h) is
the value of potential at site (h) distance apart from (x), and N is the number of sample
pairs [38].

Ordinary kriging maps were established to predict values at a non-sampled point that
assumes a constant unknown meaning, Equations (2a) and (2b):

Z(X0) = μ + ε(X0) (2a)
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Z(X0) = ∑ λ i γ(xi) , ∑ λ i = 1 (2b)

where μ is an unknown constant, ε(X0) is the the error associated with an unknown
location X0, Z(X0) is the estimated value of Z at X0, and λi is the the weight that gives the
best-possible estimation from the surrounding points.

Finally, the trend of the monthly average of NO2 and PM10 concentrations was
determined for the Southern Ring Road air station from January 2016 to September 2018 and
the Al-Khaldiyah air station from September 2019 to May 2020. These two air stations were
selected as they are the closest to the study area and have air quality conditions similar to
those in the study area. Moreover, a continuous data set for the time period mentioned
above was available from these two air-quality-monitoring stations.

3. Results

3.1. The Questionnaire

Most respondents (nearly 64.85%) were in the age group of 20–40 years. Of these,
85.11% are employees (private sector or government), and their housing is near their
workplace. Half of them are professionals and are living in the study area for more than
10 years.

Most of the respondents reported that the buildings they live in are dirty, the plants
are dusty, and fine dusty clouds extending about 1–3 km or more are present around the
residential buildings, as shown in Figure 5.

Figure 5. Noticing the pollution aspects in the study area.

They reported that most of the aspects related to air quality are similar in many
residential districts of Riyadh; however, the problem of dirty buildings is specific to the
study area, as shown in Table S3. Al-Iskan, Ad-Dar Al-Baida, and the Second Industrial
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City are the most heavily polluted districts in the study area; and as a consequence, their
residents suffer from many respiratory and eye diseases, as shown in Figure 6.

Figure 6. Diseases the population suffers from due to air pollution.

The survey results confirm the existence of problems related to air pollution in the
study area. Field measurements and spatial analysis of gases and particulate matters,
suspended in the air, are required to determine the extent and concentration of pollutants.

3.2. Thermal Analysis

The study widely used the NDVI as an indicator of the vegetation index and to
calculate the LST. Generally, the study area shows a high variation in temperature. The
highest temperature is observed in Al-Misfat, the factories, and the Second Industry City.
The NDVI imageries from 2014 to 2020 (Figure 7) showed low values in most of the study
area, except in the agricultural area in Taybah and Al-Mansuriah. The NDVI showed a
gradual decrease in the study area, showing a steady increase in temperature. However, in
May 2020, a lower temperature was recorded as much of the activities had stopped due to
the lockdown to prevent the spread of COVID-19. This observation proves that human
activities and reduced vegetation cover are major reasons for the development of heat
islands in the region.
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Figure 7. Land surface temperature and the normalized difference vegetation index (NDVI) (2014–2020).
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3.3. Statistical and Geostatistical Analysis

The results of the descriptive statistics are given in (Table 1). The mean values of the
particulate matter observed in the study area during most days of the year exceed the
National Ambient Air Quality Standards (NAAQS).

Table 1. Descriptive statistics of air parameters.

PM10
ug/m3

PM2.5
ug/m3

CO
ppm

PM4
ug/m3

PM1
ug/m3

NO2

ug/m3
SO2

ug/m3
O3

ppm
H2S

ug/m3
VOC
ug/m3

CO2

ug/m3
NO

ug/m3

Mean 214 119 5 133.6 58.4 35 288 0.014 0.25 0.07 23.3 1.5
Minimum 78 28 2 38 11 9 110 0.01 0.07 0 4.7 0.2
Maximum 307 187 10 245 136 64 510 0.02 0.95 0.23 65 3.9

Std. deviation 79 58 2.8 62.5 44.2 15.5 108 0.005 0.23 0.06 15.7 0.99
Skewness −0.22 −0.28 0.36 0.2 0.52 0.54 0.45 0.24 1.9 1.1 1.4 0.99
Kurtosis −0.7 −0.7 −0.3 −0.2 −0.1 −0.55 0.05 −0.2 0.7 1 1.9 0.74
NAAQS 150 35 35 100 1300 0.075

PM, particulate matter; NAAQS, National Ambient Air Quality Standards.

The correlation coefficient shown in Table S4 shows strong-to-moderate correlation
between particulates, CO2, CO, and NO2 and indicates the same source of pollution.

Factor analysis (PC) helped in identifying four factors having eigen values of >1. The
four factors explain 82.046% of the total variance, as shown in Table S5. PC1 accounts
for 41.2% of the data variability and shows significant factor loadings of PM1, PM2.5,
PM4, PM10, CO, and NO2, as shown in Table S6. These variables have strong-to-moderate
correlation, as shown in Table S4. PC2 represents 14.5% of the total variability and has
significant factor loadings of SO2 and CO2. PC3 and PC4 represent 13.6% for O3 and VOCs
and 12.756% for H2S and NO, respectively.

Ordinary kringing maps were built, as shown in Figure 8, for the particulate matter
and gases, except O3 because there was no significant spatial variation, as seen in the
semivargrom model shown in Table S7. The distribution of all variables was lognormal for
different types of the chosen model, depending on the least mean square error.

High concentrations of pollutants and particulate matter are in Al-Misfat, the Second
Industrial City, and along the highway.

The concentration of PM varies in the study area, depending on land use and working
conditions. However, a high concentration of coarse particulate matter (PM10) covers large
areas, and its mean (214 ug/m3) exceeds the standard limit (150 ug/m3). Fine particulates
(smaller than 2.5) are more critical and may cause more respiratory problems. They are
concentrated in specific areas around Al-Misfat and the Second Industrial City. These fine
particulates, derived mostly from combustion, may remain suspended for weeks and drift
for many kilometers [39]. Moreover, spatial distributions of particulates are similar to those
of CO and NO2 and consequently considered to be within PC1.

A high variation in the concentration of oxides, CO2, NO2, and SO2, is observed in
the study area. The highest concentrations are around the Second Industrial City and
Al-Misfat, where industries and automobile emissions are considered as the major sources
of NO2 [20]; however, emissions remained below standard at all places. VOC emission is
concentrated in Al-Misfat and in the southeastern part of the Second Industrial City. The
oil and natural gases sector is the main source of VOCs. H2S is concentrated in the urban
area in the northern part of the study area and near Al-Misfat. The main sources of H2S are
petroleum refineries, Al-Misfat, and the sewage system. Ad-Dar Al-Baida suffers from the
leakage of an old sewage system, and the population suffers greatly from stagnant sewage
pools and bad smells.
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PM10 and NO2 concentrations showed a continuous increase from 2016 to 2019.
However, they clearly decreased during the spring of 2020 by 62% and 78%, respectively,
due to the lockdown imposed during the coronavirus pandemic, as shown in Figure 9,
wherever human activity decreased dramatically.

The southern part of the study area suffers from pollution, mainly particulate matter
from factories and dust storms. In addition, vehicles are one of the main causes of air
pollution and emissions of carbon from PM2.5 [21]. Ad-Dar Al-Baida, Taybah, and Al-
Mansuriah are the least affected due to their distance from the industrial area. Despite
that, Ad-Dar Al-Baida residents complain of pollution, and remeidial measures must be
adopted to reduce the seriousness of the situation. More studies should be conducted in
the study area to determine the general direction of the concentrations of oxides and to
identify the chemical composition of the particulate matter.

Moreover, citizens may change their lifestyle to mitigate the sources of air pollution,
such as transportation and energy consumption [40].

 

Figure 8. Cont.

206



Appl. Sci. 2021, 11, 2107

 

 

 
Figure 8. Ordinary kriging map of particulate matter and gases.
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Figure 9. Trend in PM10 and NO2 during 2016–2020 on the Southern Ring Road and the Al Khaldiyah air station.

4. Conclusions

This study based on the questionnaire responses of residents living in southern Riyadh
and air quality monitoring from 2016 to 2020 from a couple of air-monitoring stations close
to the area of interest reveals that the adverse effects of poor air quality due to urbanization
and industrialization are mostly felt by the residents of Al-Iskan, Ad-Dar Al-Baida, and
the Second Industrial City. Respiratory problems and irritation in the eyes were reported
by 49% and 50% of the residents, respectively, during the survey. A high concentration of
PM10 has been observed in many places in the study area, and it exceeds the permissible
limits. Thermal analysis of the area showed the maximum temperature in the Second
Industrial City and Al-Misfat, indicating the presence of the thermal island effect in these
regions due to industrial activities. The anthropogenic influence on air quality was evident
from the air quality data for 2020, which showed a marked decrease in parameters such as
NO2 due to the impacts of lockdown on various activities during the coronavirus pandemic.
The land surface temperature image for May 2020 showed a temperature range between
54 ◦C and 32.4 ◦C, which is less than the temperature recorded during the same period in
2014 and 2017 and clearly shows the positive impact of minimal commercial/industrial
activity during the lockdown period in 2020.
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