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Preface to ”Management of Energy and

Manufacturing System”

This reprint aims to publish recent advances and technical challenges in, as well as novel design

methodologies for, energy manufacturing systems. Key to the present conception of sustainability is

the capacity to meet current needs without sacrificing the future ability to do so. Maintaining this

principle, which until now has been a key sustainability concept, is becoming more challenging than

ever, with an increasing population rate, energy poverty, global warming, and surging demand for

products and services each presenting their own unique challenges. Manufacturing is in a prime

position to address this challenge, making a significant economic contribution to the global GDP and

having a high influence over the environment and humanity.

These published papers can provide references for engineers, scholars, and business managers

in the field of energy optimization.

Tangbin Xia, Ershun Pan, Rongxi Wang, Yupeng Li, and Xi Gu

Editors
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Abstract: Energy-saving scheduling is a well-known issue in the manufacturing system. The flexibil-
ity of the workshop increases the difficulty of scheduling. In the workshop schedule, considering the
collaborative optimization of multi-level structure product production and energy consumption has
certain practical significance. The process sequence of parts and components should be consistent
with the assembly sequence. Additionally, the non-production energy consumption (NPEC) (such
as the energy consumption of workpiece handling, equipment standby, and workpiece conversion)
generated by the auxiliary machining operations, which make up the majority of the total energy
consumption, should not be ignored. A sub-batch priority is set according to the upper and lower
coupling relationship in the product structure. A bi-objective batch scheduling model that minimizes
the total energy consumption and the total completion time is developed, and the multi-objective
gray wolf optimizer (MOGWO) is employed as the solution to obtain the optimal schedule scheme.
A case study is performed to demonstrate the potential possibilities concerning NPEC in regard to
reducing the total energy consumption and to show the effectiveness of the algorithm. Compared
with the traditional optimization model, the joint optimization of NPEC and PEC can reduce the
energy consumption of standby and handling by 9.95% and 22.28%, respectively.

Keywords: multi-level structure; non-production energy consumption (NPEC); sub-batch priority;
multi-objective gray wolf optimizer (MOGWO)

1. Introduction

Scheduling has been certified to be critical in manufacturing for improving the pro-
ductivity of the manufacturing system and utilization of equipment, as well as shorting
the manufacturing cycle [1]. Traditional machining scheduling typically envisions prod-
uct processing phases where jobs are independent of each other and are not sequence
constrained. In the conventional processing scheduling method, the two processes of
processing and assembly are separated from each other, which will lead to the destruction
of the original parallel relationship between processing and assembly [2]. Generating a
processing sequence on the base of the assembly process would reduce the frequency of this
phenomenon. Nevertheless, because the process is complicated (such as product hierarchy,
number of workpieces, and processing steps), the resolution of these problems considered
processing sequence in machining systems is more difficult than traditional machining
scheduling. Moreover, it is an NP-hard problem [3].

Temporally, the completion time of workpieces is affected by the hierarchy of the
product tree. For example, a product that includes 10 levels is processed from the bottom
up. If each level is processed when the previous level is finished, without a doubt, it will
prolong the entire production cycle. Therefore, batching the workpieces and making the
scheduling scheme in the production of the multi-level structures have practical significance
for reducing the completion time.

Energies 2021, 14, 6079. https://doi.org/10.3390/en14196079 https://www.mdpi.com/journal/energies1



Energies 2021, 14, 6079

The manufacturing industry has consumed large amounts of energy in the process
of transforming resources into products or services, leading to many environmental prob-
lems [4]. The realization of low-carbon manufacturing is extremely important for improving
the sustainability of the manufacturing industry [5]. Energy-efficient scheduling, which
can be approved in the manufacturing industry, has achieved energy conservation and
emissions reduction [6]. Therefore, the scheduling scheme should not only consider the ra-
tionality of the process sequence for the workpieces but also reduce the energy consumption
of the production system.

The processing energy consumption (PEC) and non-processing energy consumption
(NPEC) of the machine are the two components of the production energy consumption of
the workshop. PEC stands for the energy consumption of the machine at the processing
stage, which is related to the processing power and processing time of the machine. NPEC
is the sum of standby energy consumption, conversion energy consumption, and handling
energy consumption. Compared with the energy consumed by the machine in other
operating phases, the equipment consumes less energy when processing workpieces,
especially in mass production, which generally only accounts for approximately 10% of the
total energy consumption [7].

Most of the energy consumption in production is generated by auxiliary operations.
Here, auxiliary operations are defined as operations that are not directly involved in
processing but indispensable in the production process, such as those for equipment
standby, state conversion, and workpiece handling. Compared with the energy consump-
tion generated by the processing phase, the energy consumption generated by auxiliary
operations can be large. Therefore, if the focus of energy conservation is on developments
in processing and energy-saving equipment [8], the considerable energy-saving potential
of auxiliary operations will be ignored. In addition, relative to changing a processing
technology or researching and developing more energy-saving processing, an optimized
workshop scheduling scheme can provide good application value with a low investment [9].
Therefore, in a production system based on processing sequences of workpieces, compre-
hensively considering the energy consumption composition in the production process,
optimizing the allocation of workshop resources, and formulating reasonable scheduling
arrangements will be more conducive to reducing energy consumption and improving
efficiency in manufacturing enterprises.

Gray wolf optimization [10] (GWO) is a new intelligent optimization algorithm pro-
posed in recent years. Compared with the genetic algorithm (GA) and particle swarm
optimization (PSO), GWO algorithm results are more competitive [11]. At present, the
gray wolf algorithm has been widely applied in thermodynamics [12], power systems [13],
energy and fuels [14], cloud technology [15], and workshop scheduling [16–18]. Lu [16]
embedded genetic operators into the multi-objective GWO to enhance the searchability of
the algorithm. Qin [17] used the improved multi-objective gray wolf algorithm to solve the
casting shop scheduling to minimize the production cycle, total production cost, and total
delivery delay. Lu [18] added a random search model based on traditional GWO search
to enhance global search capability. Although GWO has been successfully used in many
different types of production environments, there is limited literature on GWO to solve
energy-saving scheduling problems in a machine-shop, especially to optimize auxiliary
production energy consumption. Therefore, we extended the single-objective GWO to the
multi-objective GWO to consider completion time and total energy consumption minimization.

Reducing energy consumption through NPCE optimization and minimum completion
time are major design goals. The research motivation and research problem will be clearer
in the discussion of background research, and then the related mathematical model will
be introduced, followed by the MOGWO algorithm and how it is applied to optimize the
bi-objective scheduling problem; finally, a presentation of a case study will demonstrate
the model and algorithm in the case of two different energy consumption optimization
objectives and different algorithms.
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In the rest of this paper, the current research progress will be introduced in Section 2
and a bi-objective model based on the research problem is established in Section 3. In
Section 4, the working procedure of MOGWO of this optimization problem is described.
Section 5 conducts case analysis and comparison. Finally, Section 6 summarizes this article.

2. Literature Review

The scheduling research of multi-level structure products was first studied for an
assembly workshop [19,20]. Li et al. [21] developed four batch strategies to solve three
different multi-level product assembly problems. Lu et al. [22] studied tree-like products
scheduling problems in an assembly workshop, aiming to minimize the assembly comple-
tion time. Wan et al. [23] proposed a visual modeling and scheduling model for assembly
processing based on a workflow for the assembly process of complex products and de-
signed heuristic scheduling rules. Suharyanti et al. [24] investigated the optimal lot size
of complex products in the job shop. Batching can effectively reduce product production
cycles. However, the scheduling research on multi-level structure products is not enough
to solve the problem of collaboration production because sequence constraint scheduling
should be compatible with the assembly sequence and has higher complexity.

A scheduling problem that comprehensively considers the optimization of the energy
consumption with the traditional targets (completion time/production cost) is complex,
and it is particularly important to carry out in-depth research on this [25]. At present,
a large amount of energy waste occurring in processes that have nothing to do with
equipment processing operations has been found. Dahmus and Gutowski [7] analyzed the
energy consumption of machining and proved that the actual processing operations only
accounted for a small part of the total energy consumption, whereas auxiliary operation
energy consumption accounted for 30–50%. The idle time of the machine occupied 16%
of the total completion time [26]. Thus, the NPEC is large. Based on the knowledge
regarding total energy consumption, it has become a trend to decompose the total energy
consumption and reduce energy waste through optimization of the scheduling scheme.
Wang [27] simulated a processing process and classification of energy consumption by
product quality. In general, the total energy consumption can divide into PEC and NPEC,
where NPEC, as indicated above, refers to the energy consumption generated by auxiliary
operations such as equipment start-up, shutdown, and idling.

In recent years, more and more research of NPEC has been conducted thoroughly.
Luan et al. [28] studied the energy consumption of non-cutting status and established an
accurate power model to accurately predict the power of the feed motion. Liu et al. [29] im-
proved the machine utilization rate by 8.2% by optimizing the processing sequence for the
workpieces. Peng et al. [30] considered standby energy consumption. Wu et al. [31] studied
a renewable energy scheduling problem of a flow shop and established a multi-objective
renewable energy power supply model, intending to reduce the processing and idle en-
ergy consumption during processing. Gilles et al. [32] investigated the impacts of batch
production on energy consumption and order completion time. It was considered that
batching could effectively reduce the number of conversions and equipment standby time,
thereby reducing the conversion energy consumption and standby energy consumption.
Che et al. [25] used a clustering algorithm to determine whether a shutdown operation was
required between two tasks to reduce the standby energy consumption and/or optimally
sort the processing tasks. Liu et al. [29] integrated scattered short standby periods into a
long standby time and judged whether off or assigned other tasks. Wang et al. [33] consid-
ered the power changes in the standby state and processing states of the machine. However,
the above research mostly focused on the conversion and standby energy consumption
separately. In the research of NPEC, they should be considered more systematically.

In the research articles above, most of the influences of workpiece handling on the
energy consumption of the workshop were ignored. However, it is more realistic to consider
the scheduling and optimization of such handling. The impact of handling on energy
consumption has generally not been considered [34–36]. The handling of workpieces

3
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between machines is also part of auxiliary processing, and its energy consumption should
belong to the NPEC in the system. Different from previous studies, the NPEC would be
determined based on the energy consumption of the equipment standby, conversion, and
workpiece handling. In addition, a machine may perform many processing tasks, and
the frequent shutdown and start-up of the equipment will increase energy consumption.
Therefore, this part of the energy consumption is generally not considered.

Based on the above discussion, the research on multi-level product production and
energy-conscious scheduling in the machining workshop is limited. The existing work-
shop scheduling methods cannot meet the requirements of production and energy saving
because each mode has its characteristics. The research on NPEC should be considered
when proposing a scheduling method that is different from the traditional optimal energy
consumption scheduling. Therefore, the scheduling model of the machining workshop is
more complicated than that of the traditional workshop. To bridge this gap, a scheduling
method was introduced specifically for machining workshops to minimize completion
time and energy consumption.

3. Problem Statement

3.1. Related Product Structure

In real-world production, a product is a combination of a group of parts/components
with order constraints and can be represented using a tree structure diagram. The pro-
cessing and assembly of products are conducted according to the tree structure. The
edges in the tree represent the assembly constraint relationships, the leaf nodes are the
parts/components, and the root node is the final product. Each level’s leaf node can be
called a child node of its upper-level node, and the processing starts from the lowest-level
leaf node. It is composed of n parts/components with order constraints. The production of
components includes several processes, each process is handled by a machine (in M), and
the alternative processing equipment for different processes can be identical.

According to the structural characteristics and commonalities between products, the
literature [37] has generally summarized product structures into three types: flat, tall, and
complex. The corresponding product structure trees are shown in Figure 1. The flat type is
a single-layer product and is directly assembled from first-level parts into products. The
tall type has multiple levels of parts/components, and each sub-workpiece contains at
most two nodes. The complex type is a multi-layer composite of flat- and tall-type tree
structures, in which at least one parent node contains more than two child nodes, as shown
in Figure 1. The nodes of each tree are arranged hierarchically, where level 0 represents
the complete product, and level 1 is the hierarchical arrangement of parts. For example,
the structure of the B product is divided into 1–3 levels, and the branch nodes under it are
called components, such as P1 and P2. The production sequence is as follows: first produce
the workpieces J3 and J4, and then the superior P2 and J2 for production, and so on.

Based on the coupling relationship(s) between the parts/components in the product
structure, batch production and handling are conducted, in which each type of workpiece
is divided into equal batches, and the numbers and size of the sub-batch of each product
are determined, as well as the sub-batch production and handling sequence. A batch
scheduling problem based on the product structure will face difficulties caused by the
coordination of the processing times between the workpieces. The arrangement of the
production sequence of each sub-batch to meet the coupling sequence of the products is
very important. For example, in the mass production of the workpieces in a machining
workshop, each type of workpiece can be divided into an equal number of sub-batches.
According to the coupling relationship between the workpieces and the production time
of the workpiece, the lower-level workpieces are produced first, and then the start pro-
cessing time of the upper-level workpieces will be later than the next level of workpieces,
minimizing machine standby while optimizing handling equipment to reduce NPEC.

4
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P1

P2

Flat Tall

P1

Complex

J1

J2

J3 J4

J1

J1

J1 J2 J3 J4

J3J2

Pi

Ji 

Pi Ji

Figure 1. Three types of product structure.

3.2. Problem Definition and Assumptions

The problem can be expressed as follows. Related sets and decision variables are
shown in the Appendix A.

1. The product contains n types of workpieces J = {J1, J2, J3... Jn}, the number of work-
pieces Jj is Qj, and each workpiece contains Oj processes.

2. There are h types of handling equipment in the workshop. A specific piece of handling
equipment is expressed as Hh. The handling speed and power of the same type of
handling equipment are the same; the speed of Hh is Vh, the power when handling
parts/components j is Ph

j , and the rated capacity of the workpiece j on the handling
equipment is Sjh.

3. After a certain process of the workpiece is processed on equipment m, it needs to
be transported to the selected equipment m’ of the next process. The locations of all
equipment in the workshop are fixed, and the distance between equipment m and
equipment m’ is dmm’. After the last process of a batch of workpieces is processed
on equipment m, they are transported to assembly workshop P for assembly. The
distance between equipment m and assembly workshop P is dmp.

The following assumptions are used in the scheduling.

• Alternating machines for different processes can be the same.
• Each type of sub-batch of workpieces can only be transported to the next process

processing equipment for processing/waiting after the previous process is completed
according to the process sequence.

• At most, one workpiece is processed on each machine at a time, and one workpiece is
processed on at most one piece of equipment at any time.

• The processing and handling equipment are available at the initial moment.
• A process is not interrupted once it starts processing.
• The equipment requires preparation time before processing different types of work-

pieces successively; in contrast, processing the same types of parts does not require
preparation time.

• The number of pieces of handling equipment is limited. If the number of sub-batches
of workpieces is greater than the rated capacity of the handling equipment, multiple
pieces of equipment must be moved simultaneously or multiple times by one piece
of equipment.

5
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• The time required for loading and unloading workpieces is ignored.

3.3. Problem Formulation
3.3.1. Objectives

During workpieces processing, there are three main states of equipment: the process-
ing state, conversion state, and standby state. The equipment power and state vary with
time [25], as shown in Figure 2. Si

m and Ci
m represent the start and completion times of

the ith operation on device m, respectively, and Om
j(1)i(1)

represents the Oji processing on
equipment m.

P m

Time

Time

m

NPEC

processing conversion

standby

P1

P2

P3

P3

con con consatandb
y

Sm1 Cm1 Sm2 Cm
2 Sm3 Cm3 Sm4 Cm4 Sm5

Gantt 
Chart

Oj i
m
1 1 Oj i

m
2 2 Oj i

m
3 3 Oj i

m
4 4 Oj i

m
5 5

Figure 2. Gantt chart of m and the distribution of corresponding power.

The total energy consumption of the production system is composed of the PEC
(Ep) and NPEC (En) during the processing of components and parts. Of these, the NPEC
consists of the state transition energy consumption (Es), the standby energy consumption
(Ew), and the handing energy consumption (Ed) (including the energy consumption of
the moving parts/components between machines and moving to the assembly workshop
when finished).

• The energy consumption criterion E

It consists of the PEC and NPEC. Specifically, this energy consumption metric is given
as follows:

E = Ep + En (1)

6
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The PEC consumed by all workpieces owing to the processing, as shown in Equation (2),
as follows

Ep = ∑n
j=1 ∑

Bj
k=1 ∑

Oj
i=1 ∑w

m=1 αjTBjkim (2)

The NPEC consists of the equipment standby energy consumption (Ew), conversion
energy consumption (Es), and handling energy consumption (Ed). The equation is given by
Equation (3), as follows:

En = Ew+ES+Ed (3)

Among them, Ew refers to the idling state where the equipment is on non-stop, and no
parts/components are processing on the machine. The formula for the energy consumption
during the standby period is shown as follows:

Ew = ∑
Bj
k=1 ∑n

j=1 ∑w
m=1(SB j(k+1)im −CBjkim)Pw

m

)
(4)

In the above, SBj(k+1)m represents the start time of the (k + 1)th sub-batch of j on the
processing equipment m, represents the kth sub-batch on equipment m completion time,
and Pw

m is the standby power of the machine.
Es represents the energy consumption of the equipment state transition. In Equation (5),∣∣αj − αj′

∣∣ is the absolute value of the difference in energy consumption involved in switch-
ing power owing to processing different types of workpieces (j→j′); Rjj′m is a 0–1 variable.
If the processing of the workpiece on equipment m is different from the workpieces to be
processed, Rjj′m = 1; otherwise, Rjj′m = 0.

Es = ∑n
j=1 ∑

Bj
k=1 ∑

Oj
i=1 ∑M

m=1 RjkimRjj′m
∣∣∣αj − αj′

∣∣∣ (5)

The workshop handling energy consumption is related to the sub-batch quantity Bpj
and sub-batch Qpjk of j, selected handling equipment Hh, distance dmm

′ between the equip-
ment, and distance dmP between the equipment and assembly workshop P. Ed represents
the energy consumption during handling. The transportation of workpieces includes two
parts: one part comprises transporting the current sub-batch process to the next processing
machine after the completion of the current sub-batch process, and the other comprises
transporting it to assembly workshop P after the last process of the sub-batch process is
completed. The two parts of energy consumption are described in detail as follows. This
can be expressed using Equation (6).

Ed = Eh
jkimm′ + Eh

jkmP (6)

After the process Oji is processed on equipment m, the workpiece will be transported
to the next process Oj(i+1). The energy consumption Eh

jkimm′ of the transportation equipment
Hh at the selected equipment m′ is shown in Equation (7).

Eh
jkimm′ = ∑n

j=1 ∑
Bj
k=1 ∑

Oj
i=1 ∑w

m=1 ∑H
h=1 S1

jkihH1
jkimhnjkPh

j th
jkimm′

= ∑n
j=1 ∑

Bj
k=1 ∑

Oj
i=1 ∑w

m=1 ∑H
h=1 S1

jkihH1
jiamh

⌈Qpjk
sjh

⌉
Ph

j
dmm′

Vh

(7)

Here, njk represents the number of pieces of handling equipment required for the kth
sub-batch of j, and th

jkimm′ indicates the time that Hh moves j from process Oji of equipment

m to m’. Sβ
jkih is a 0–1 variable. If Hh was selected to handle the ith process of the kth

sub-batch of j, then Sβ
jkih = 1; otherwise, Sβ

jkih = 0. Hβ
jkimh is also a 0–1 variable. β can take two

values, 1 and 2; β = 1 indicates that the workpieces are transported between equipment;
β = 2 indicates that the workpieces are transported from the last piece of equipment m
to assembly shop P. If the ith process of the kth sub-batch of j is transported by Hh, then
Hβ

jkimh = 1; otherwise, Hβ
jkimh = 0.

7
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After the workpieces j are processed, they are transported from equipment m to
assembly workshop P by Hh. The energy consumption Eh

jkmP of Hh is given by Equation (8),
as follows:

Eh
jkmP = ∑n

j=1 ∑
Bj
k=1 ∑H

h=1 XjkOjmS2
jkhH2

jkimhnjkPh
j th

jkmP= ∑n
j=1 ∑

Bj
k=1 ∑H

h=1 XjkOjmS2
jkhH2

jlimh

⌈Qpjk
Sjh

⌉
Ph

j
dmP
Vh

(8)

In the above, th
jkmP represents the time taken by Hh to transport the kth sub-batch

of j from m where the last process is located to the assembly workshop P. XjkOjm is a 0–1
variable. If the last process of the kth sub-batch of j is completed on equipment m, then
XjkOjm = 1; otherwise, XjkOjm = 0.

• The makespan criterion C

The makespan criterion is defined as the maximum time for the last sub-batch for the
equipment in the workshop to be processed and transported to the assembly workshop;
CBjBjOjm represents the completion time of the last process Oj of the last sub-batch Bj of the

workpiece j on the equipment m. In addition, XjkOjmS2l
jBjOjh

H2
jBjOjh

represents the completion

of the processing of the part j after choosing the handling equipment h and transporting it
to the assembly workshop. The calculation is shown in Equation (9), as follows.

C =∑n
j=1 ∑M

m=1 CBjBjOjm + ∑n
j=1 ∑M

m=1 ∑H
h=1 XjkOjmS2

jBjOjh H2
jBjOjh

dmP
Vh

(9)

The multi-objective model is shown in Equations (10) and (11).

f1 = min Cmax (10)

f2 = min E (11)

3.3.2. Constraints

Two issues should be considered in the scheduling:

• The influences of the division of the workpieces into sub-batches, process equipment
selection, equipment standby, and state transition in the processing process on the
energy consumption and completion time must be considered.

• The number of handling equipment types is limited, and a type of handling equipment
needs to be selected during the handling process. If a sub-batch of workpieces is
larger than the rated capacity of the handling equipment, multiple pieces of handling
equipment must be selected for simultaneous or multiple handling.

The batches of workpieces should satisfy the condition that the sum of the divided
sub-batch batches is equal to the processing quantity of the workpieces; moreover, the
number of divided sub-batches should not exceed the total quantity of workpieces.⎧⎪⎨

⎪⎩ Qj =
Bj

∑
k=1

Qjk

2 ≤ Bj ≤ Qjk

(12)

The workpieces are split into equal batches. If the number of batches is not an integer,
it is rounded down, and the remaining workpieces comprise a single batch.

Qjk =

{ ⌊
Qj÷Bj

⌋
k ≤ Bj−1

Qj−�Q j÷Bj

⌋
×(B j −1) k = Bj

(13)

8
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If the processing type of the current workpieces is the same as that of the workpieces
being processed, there is no need to switch the state of the machine; otherwise, the state
needs to be switched.

Rjj′m =

{
0, Pj′k′i′m = NPjkim
1, Pj′k′i′m �= NPjkim

(14)

The scheduling is performed according to the sub-batch priority relationships of the
parts/components in the product structure tree. The process starts processing time at the
completion time of the last sub-batch process in the selected equipment, and the sub-batch
workpieces after the previous process are completed and transported according to the
maximum value between the device moments.⎧⎨

⎩
SBjkOj1m= CBjkojm= 0

SBjkim= max{CB n−1
m , CBjk(i−1)m′+th

jkimm′
} (15)

The production process of the same sub-batch should not be interrupted.

CBjkim= SBjkim+TBjkim (16)

The part production sequence should meet the requirement that the production
time of the lower-level parts/components is earlier than the start-up time of the upper-
level parts/components; that is, the start-up time of the first process in the n-level parts/
components sub-batch should be later than the (n + 1) level parts/components.

Sjn1 ≥ Sj(n+1)1 (17)

Among them, Sjn1 is the start time of the first process of the n-level parts/components,
and Sj(n+1)1 is the start time of the first process of the first sub-batch of the (n + 1)
parts/components j.

For two adjacent processes for the same workpiece, the processing sequence con-
straints between the processes need to be met, and the next process can only be conducted
after the previous process is completed and the workpiece is transported to the selected
equipment m′ for the start of the next process.

SBjk(i+1)m′ ≥ Rjj′mRjkim +TBpjkoji
+th

jkimm′ (18)

In each process, Oji can only select one piece of machine for processing.

w

∑
m=1

MPjim= 1 (19)

One type of handling equipment is selected for each handling instance.

H

∑
h=1

Hβ
jkimh= 1 (20)

4. Multi-Objective Gray Wolf Optimization Algorithm

4.1. Basic Gray Wolf Optimization Algorithm

Mirjalili [10] proposed the gray wolf optimizer (GWO) in 2014. The core of the
algorithm is to manage an optimization problem by imitating the hunting process of a gray
wolf population. Owing to its balance of local and global search capabilities, convergence
speed, and depth balancing, it has attracted widespread attention since its proposal.

The basic idea is that α wolf was chosen to be the most suitable plan, and β wolf and
δ wolf were the second and third optimal plans. The rest are ω. α and β are the guiders

9
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of hunting, followed by δ and ω wolf. The equation for simulating the corresponding
behaviors is defined as follows.

→
D =

∣∣∣∣→C · →
Xp(t)−

→
X(t)

∣∣∣∣ (21)

Among them,
→
D represents the distance to the prey, t indicates the current iteration,

→
Xp represents the prey’s position vector, and

→
X represents the wolf’s position vector. The

coefficient vectors are represented by
→
A and

→
C , and the formula is:

→
A = 2

→
a · →r1 −→

a (22)

→
C = 2

→
r2 (23)

In the search process,
→
a linearly decreases from 2 to 0 and is used to emphasize

detection and discovery of prey.
→
R1 and

→
r2 are selected in the range [0,1] randomly. α, β

are the guider in hunting, and δ wolves also can join the hunting. The location of the prey
(optimal) is unknown. Simulating the hunting behavior of gray wolves, α, β, and δ wolves
are assumed to be more familiar with the potential location of their prey. In each hunt for
prey, the three best solutions represented by α, β and δ wolves will be saved and used in
each search, guiding other wolves to the possible position of the prey. The hunting formula
is given by Equations (24)–(26).

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣, →

Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣, →

Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣ (24)

→
X1 =

→
Xα −

→
A1 ·

→
Dα,

→
X2 =

→
Xβ −

→
A2 ·

→
Dβ,

→
X3 =

→
Xδ −

→
A3 ·

→
Dδ (25)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(26)

All in all, GWO starts with guiding the search process by α, β, and δ. When
∣∣∣∣→A
∣∣∣∣ > 1,

they diverge and look for prey; otherwise, they find and attack the prey. Finally, if the
stopping criterion is met, the optimal solution (i.e., prey) is output. In brief, in each
iteration of the algorithm, individuals in the population were divided into α, β, δ and ω.
The first three belong to the individuals at the decision-making level, representing the
historical solution of optimal, suboptimal, and third optimal. ω corresponds to the other
individuals. In the algorithm iterations, α, β and δ are locating prey and guiding ω to
update its position, completing a sequence of actions including approaching, surrounding,
and attacking the prey.

4.2. Application of Multi-Objective Gray Wolf Algorithm

The multi-objective gray wolf algorithm (MOGWO) [38] added two new components
based on the gray wolf algorithm by Mirjalili in 2016. The first component is the archive,
which served to store the currently acquired non-dominant Pareto optimal solutions. Then
comes the leader selection strategy, which helps decision-makers to choose α, β and δ as
the leader of the search process from the archived results. The basic flow chart is shown in
Figure 3.

10
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Encoding and decoding

Evaluate solutions and sort the solutions 
based on Pareto relationship

Input parameters

Initial population

Is the stop condition 
satified?

YES Output the non-dominated 
solutions

NO

For each wolf and solution:
(1) social hierarchy
(2) looking for the prey

select three best solutions 
from the population

update operator

New population formation: merge the 
previous population with the new population

Sorting replacement strategy: sort the 
populations according to non-dominated 

sorting and crowding distance, and select the 
next-generation population from them

Figure 3. Multi-objective gray wolf algorithm flow chart.

4.2.1. Encoding and Decoding Mechanism

Before applying the MOGWO algorithm to a specific problem, we designed an encod-
ing and decoding scheme. It connects the solution space of the problem with the search
space under consideration. Hence, designing the correct codec scheme is an important
issue that affects the performance of the algorithm.

Code design is based on the types of parts/components and the number of batches.
In each chromosome, a gene is represented by three or four numbers. For example, “301”
represents the first sub-batch of the third parts/components, and “1003” represents the
third sub-batch of the tenth parts/components. In addition, the number sequence in the
chromosome represents the processing operations of each sub-batch of parts/components.
As shown in Figure 4, each type of part/component needs to go through multiple process-
ing operations. The first occurrence of “101” represents the first processing operation of the
first sub-batch of parts/components J1, and the second occurrence represents the second
processing operation, and so on. Taking an example for illustration, the optional processing

11
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equipment of three types of workpieces and the processing time for each process are shown
in Table 1.

1 3 5 3 2 3 1 4 3

101 201 101 301 201 101 301 201 301sub-batch

machine 
allocation

J1 J2 J3 J2 J1 J2 J2 J3J1

Job1 Job2 Job1

Figure 4. Chromosome coding, for example.

Table 1. Equipment scheduling problem, for example (unit: min).

Sub-Batch Quantity Operations M1 M2 M3 M4 M5

101 30
O11 2 - 5 - 6
O12 - 6 5 6 -
O13 4 3 - - 8

201 40
O21 5 - 4 - -
O22 9 5 - 6 -
O23 - 5 4 7 -

301 30
O31 6 - 9 10 -
O32 5 7 - 6 -
O33 - 8 6 - 7

According to the coding method of the part/component arrangement, it can be
assumed that the position of a gray wolf individual in this problem is [1–3], that is, the
processing order of the parts/components is 1-3-2. Then, the part/component placement
is decoded into a viable scheduling scheme. A Gantt chart corresponding to the first
sub-batch of parts/components is shown in Figure 5. Through the decoding process, a
suitable machine is selected for each process in each station for processing, and the order
of each part and the start time are determined to obtain the objective function value. In
Figure 5, initially, all the processes of the first sub-batch of J1 are arranged on the machine
that can process it earliest, and then the other sub-batches of other parts/components are
scheduled. The various processes of the parts/components are arranged on the machine
that can complete its processing earliest; if the processing completion time on the allocated
machine is less than the earliest processing start time of the scheduled parts/components,
it will be arranged before the scheduled parts/components (and so on for the remaining
parts/components). Each sub-batch of parts is arranged before the position of each machine;
otherwise, it is arranged behind the arranged parts/components.

12
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Figure 5. Gantt chart of first sub-batch.

4.2.2. Initialization

Initial solutions can affect the obtaining of the optimal solution to a degree. In our
study, the problem can be divided into two sub-problems: equipment selection and process
sequencing. Therefore, in the initialization phase, the most suitable processing equipment
with the lowest processing energy consumption and processing time is selected based on
the above encoding and decoding scheme. Then, the sorting plan is obtained according to
the processing priority rules of the workpiece and the remaining load at most.

4.2.3. Roulette Selection

In a multi-object search space, comparing solutions is usually not easy; thus, the
leader selection mechanism has been designed to solve this problem. The leader provides
the α, β, and δ wolves in the least crowded search places. The selection is performed by
using the roulette method. The probability of each hypercube is calculated as follows: two
individuals are randomly selected from N individuals each time, and the individuals with
the lower ranking levels are selected first. If the ranking levels are the same, the crowding
degree is the first large individual to generate a population of N/2 individuals. The process
merges the two generated populations into a new progeny population (population size
is N).

4.2.4. Social Hierarchy

Due to the Pareto advantage of multi-objective planning, the optimal result is usually
not a single, which is called a “trade-off solution” in multi-objective planning. According
to the Pareto dominance relationship, a population can be divided into several levels. The
first-level solution (non-dominant solution or compromise solution) can be expressed as
a solution. If there are more than three levels in the whole, β and δ are the second- and
third-level solutions. In this study, social stratification was conducted by assuming these
three situations:

• Select α, β and δ randomly from the non-dominated level or the first level.
• Select α and β from the current two levels.
• Select α, β, and δ wolves from the first three levels, respectively (only have two levels).

4.2.5. Update Operator

In this study, individuals are no longer updated according to the decision level, and a
hybrid search method combining local search and global search is adopted. The wolf pack
generated by each iteration of the algorithm is divided into two parts: the search and track-
ing operations are carried out, respectively. Then, in the process of searching, the number
in each group is dynamically adjusted to achieve the purpose of the individual update.

13
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4.2.6. Sorting Replacement Strategy

Different from the basic GWO algorithm, the newly generated solution is evaluated
based on two fitness values: maximum time to completion and total energy consumption.
The parent population and progeny individuals produced by global search and local search
operations combined to a large new species, then using the non-dominated sorting method
and crowded degree to sort the new species. Among them, based on the classification of
the solutions, the sorting method reduces the computing complexity, and the crowded
degree calculation can save with low levels of similar solution and keep the diversity
of the solution space. At the same time, the distribution of individuals on the current
Pareto frontier should be as broad and uniform as possible, and the introduction of an elite
retention mechanism is conducive to maintaining excellent individuals and improving the
overall evolution level of the population.

5. A Case Study

5.1. Data Preparation

Taking into account the following 10 × 10 production workshop example based on a
realistic situation, it comprehensively considers the quantity required for each type of part
or component, its handling energy consumption, and its level in the product structure.

For the three different types of products, their complex structures were different,
resulting in different processing priorities and handling complexities. As described above,
the flat product structure is a single layer, that is, all components have the same priority,
and the processing and handling scheduling are relatively simple; in contrast, tall and
complex products contain multi-layered parts/components structures. Taking a typical
tall product as an example, the specific product structure tree is shown in Figure 6. In
the figure, B represents the corresponding product, and the arrow in the figure represents
the position of part Ji. The part Pi in the product structure was divided into different
levels; each component or part had a certain demand; they were mixed in batches, and the
production was completed. Subsequently, it was transported to the assembly workshop by
a transport vehicle for assembly.

Table 2 displays the detail settings of the components, parts, and equipment. The parts
and the components are set to 6 and 4, respectively. The rated capacity of the workpiece
on the handling equipment is listed in Table 3. In batch scheduling, the production batch
had a U-shaped relationship with the production cycle. In general, production batches that
are excessively large or small will lead to a longer production cycle. In this study, each
workpiece was divided into 2–3 batches, as shown in Table 4. There were three types of
handling vehicles, each of which has three available equipment. The power of the handling
vehicle was 20 kW, the speed was 30 m/min, and the distance between the assembly
workshop and production workshop was 200 m. The information of each type of part and
component and the required power is shown in Table 4. In the workshop, the distance
between adjacent equipment is 5 m. All cases were simulated in MATLAB R2016b and
were tested many times. The algorithm was programmed using Matlab2016b on a personal
computer with an Intel(R) Core (TM) i5-930M CPU @ 2.50 GHz. The values of the algorithm
parameters were determined by preliminary experiments, and the specific parameters were
determined by comprehensive experiments as follows: number of iterations: 250; the
number of grids per dimension:15, and population size: 20.
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P1

P2

Tall

J1

J2 J3

B

J4

P3

P4

J5 J6

Figure 6. Product structure tree of tall.

Table 2. Parts/components information (10 × 10).

Parts/Components
Equipment (Preparation Time/Processing Time) (min)

Oji M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1

O11 [2,18] [3,15] — [3,20] — — — — — —
O12 — — — — — — — [3,20] [2,14] —
O13 [3,17] [2,20] — [3,21] — — — — — —

P1

O21 — [2,12] [3,20] — — — [2,15] — — —
O22 [2,15] [2,14] — — [3,18] — — — — —
O23 — — — — — — — [3,17] [2,20] —

P2
O31 — [3,20] [4,20] — — — [4,18] — — —
O32 — — — — — — — — [2,18] [3,15]

P3

O41 [1,15] [1,10] — [2,10] — — — — — —
O42 — — — — — — — [2,16] [2,14] —
O43 [2,15] [2.5,17] — [4,18] — — — — — —
O44 [2.5,16] [2,15] — — [3,15] — — — — —
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Table 2. Cont.

Parts/Components
Equipment (Preparation Time/Processing Time) (min)

Oji M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J2

O51 [2,20] [3,25] — [2.5,16] — — — — — —
O52 — — — — — — — — [3,20] [4,20]
O53 — [3,28] [3,30] — — — [5,25] — — —

J3

O61 — — — [1,15] [2,25] [2,30] — — — —
O62 — — — [2,22] [4,20] — — — — —
O63 [2,20] [1,10] — — — — [1,15] — — —

P4

O71 — — — [1,10] [2,25] [2,30] — — — —
O72 — — — [2,15] [3,10] [2,20] — — — —
O73 [3,15] [3,18] [4,30] — — — — — — —

J4

O81 — — — [1,20] [3,25] — — — — —
O82 [3,15] [3,25] — — — — [4,30] — — —
O83 — — [2,10] — [3,15] [2,16] — — — —

J5

O91 — — [1,10] — [2,15] [1,20] — — — —
O92 — — [3,15] — [2,20] — — — — —
O93 — [1,5] [2,5] — — — [2,7] — — —

J6

O101 — — [2,10] [3,15] — [3,20] — — — —
O102 — — [1,15] [2,10] — [2,18] — — — —
O103 [1,10] [3,15] — — — — — — — —

Table 3. The rated capacity of the workpiece on the handling equipment.

H

Workpiece J1 P1 P2 P3 J2 J3 P4 J4 J5 J6

H1 60 50 40 70 65 50 90 68 70 70

H2 40 60 80 85 70 70 110 80 60 70

H3 30 60 70 60 80 60 100 60 60 83

Table 4. Other information about workpieces.

Workpiece J1 P1 P2 P3 J2 J3 P4 J4 J5 J6

Types (part/com) part com com com part part com part part part

level 1 1 2 2 3 3 3 3 4 4

Quantity 300 300 600 300 600 300 900 300 600 300

αj(kW) 20 15 20 25 22 25 30 20 15 20

Symbols in Gantt chart Job1 Job2 Job3 Job4 Job5 Job6 Job7 Job8 Job9 Job10

Quantity of sub-lots in 5.2 2 2 3 2 3 2 2 2 2 2

Quantity of sub-lots in 5.3.1 2 3 3 2 3 2 3 2 3 2

5.2. Result Analysis

In the experiment, taking into account the total energy consumption and completion
time as the objective function and comprehensively considering all the energy consumption
involved in the production process, the MOGWO algorithm was used to solve the problem.
As shown in Figure 7, the values of the two optimization objectives stabilize at the 189th
iteration. Figure 8a shows the population distribution results after 200 iterations. There
are eight solutions set in Figure 8b. The point with lower energy consumption and early
completion time than others was a selection in Figure 8b. The Gantt chart of this scheme is
shown in Figure 9. As the total energy consumption optimization reduces the equipment
conversion and waiting time, the completion time is 38,400.86 min, and the total energy
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consumption is 356,750 kWh. Table 5 displays the handling process of the first sub-batch
of each workpiece between the machines and the workshop, where J01 (J = 1, 2, 3, . . . ,10)
represents the first sub-batch of the Jth workpiece.

  
(a) (b) 

Figure 7. Convergence process of two objectives: (a) convergence process of C objective; (b) convergence process of
E objective.

 
(a) (b) 

Figure 8. Results obtained considering PEC+NPEC: (a) final population distribution; (b) Pareto frontier distribution.

Figure 9. Gantt chart of the optimized schedule scheme.
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Table 5. One sub-batch handling process for each kind of workpiece.

J01 Quantity Operations M H
Start
Time
(min)

End
Time
(min)

Starting
Location

Arrival
Location

(J1) 101 150 O11 M2 H1 7756 7756.5 M2 M9
O12 M9 H1 20,907.5 20,907.8 M9 M4
O13 M4 H2 24,058 24,064.5 M4 P

(P1) 201 100 O21 M7 H2 2250 2250.5 M7 M2
O22 M2 H2 14,861 14,861.5 M2 M9
O23 M9 H3 33,914 33,920.5 M9 P

(P2) 301 200 O31 M3 H2 4004 4004.5 M3 M10
O32 M10 H3 7007.5 7014 M10 P

(P3) 401 150 O41 M2 H2 1500 1500.5 M2 M8
O42 M8 H2 3100.5 3101 M8 M1
O43 M1 _ 4601 4601 M1 M1
O44 M1 H1 6201 6207.5 M1 P

(J2) 501 200 O51 M2 H3 12,759 12,759.5 M2 M9
O52 M9 H3 16,759.5 16,759.7 M9 M7
O53 M7 H2 33,118 33,124.5 M7 P

(J3) 601 150 O61 M4 H1 21,115 21,115.1 M4 M5
O62 M5 H2 32,564 32,564.4 M5 M2
O63 M2 H1 38,965 38,971.5 M2 P

(P4) 701 300 O71 M6 - 12,005 12,005 M6 M6
O72 M6 H2 24,710 24,710.5 M6 M2
O73 M2 H3 37,464 37,470.5 M2 P

(J4) 801 150 O81 M4 H1 11,751 11,751.3 M4 M7
O82 M7 H1 23,224 23,224.2 M7 M5
O83 M5 H2 34,817 34,823.5 M5 P

(J5) 901 200 O91 M3 H2 18,865 18,865.3 M3 M5
O92 M5 H2 29,560 29,560.4 M5 M2
O93 M2 H2 30,560.4 30,566.9 M2 P

(J6) 1001 150 O101 M6 - 3003 3003 M6 M6
O102 M6 H2 18,708 18,708.5 M6 M1
O103 M1 H2 29,572 29,579.5 M1 P

5.3. Comparison Analysis
5.3.1. Comparison with the Traditional Model without Considering the NPEC

Different from the experiment above, only PEC is considered in the energy consump-
tion model in this section. As shown in Figure 10, the values of the two optimization
objectives stabilize at the 158th iteration. Figure 11a shows the population distribution
results after 200 iterations. There are 10 solutions set in Figure 11b. The point with lower
energy consumption and earlier completion time than others is selected in Figure 11b.
The Gantt chart of this scheme is as shown in Figure 12, the total completion time is
40,900.43 min, and the PEC is 227,000 kWh.
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(a) (b) 

Figure 10. Convergence process of two objectives: (a) convergence process of C objective; (b) convergence process of
PEC objective.

  
(a) (b) 

Figure 11. Results obtained in comparison experiment: (a) final population distribution; (b) Pareto frontier distribution.

Figure 12. Gantt chart of the optimized scheme from the traditional model.
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Table 6 displays the energy consumption values and completion times for the two
optimization schemes. As could be seen from the table, owing to the reduced standby
and conversion time, the total completion time is better than that of the comparative
experiment; in terms of energy consumption, the PEC values of the two schemes are very
close; the slight difference in processing times may be owing to the different preparation
times required on different equipment. The optimization of the handling equipment is
not considered in the comparative experiment. The handling energy consumption in the
comparative experiment is estimated through the historical handling time, and the energy
consumption in our experiment is optimized. As could be seen in Table 6, the optimization
of the handling energy consumption can significantly reduce the NPEC, thereby reducing
the total energy consumption. Compared to the comparative experiment, the standby
energy consumption and handling energy consumption are reduced by 9.95% and 22.28%,
respectively. The utilization rates of each machine in the two experiments are shown in
Figure 13. It can be seen from the figure that the machine utilization is mostly higher than
that in the comparative experiment.

Table 6. Comparison of energy consumption and time of two experiments. (unit: kWh).

Optimize (PEC + NPEC) Optimize PEC

Ep 2.33 × 105 2.27 × 105

Ew 4.75 × 104 5.33 × 104

Es 550 588
Ed 1.57 × 104 2.02 × 104

C 38,400.86 40,900.43

 
Figure 13. Comparison in Cp/C for machines.

5.3.2. Algorithm Comparison with the NSGA-II

In this section, the most popular multi-objective heuristic algorithm NSGA-II [39]
was selected in the experiment for comparative analysis. NSGA-II is an improvement
of the NSGA algorithm. It is one of the most outstanding evolutionary multi-objective
optimization algorithms so far. The parameters of the algorithm are set as follows: the
population size is 100, the maximum number of iterations is set to G = 200, crossover
probability Pc = 0.9, and the mutation probability Pm = 0.2. The parameters of MOGWO
are set in Section 5.1. They use the same initialization strategy and encoding scheme.
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Comparing the performance of multi-objective optimization algorithms is more based
on the following criteria: (a) the degree of similarity between the solution set obtained by
the operation result and the real Pareto solution set, that is, convergence; (b) the uniformity
of the solution set on the Pareto frontier, namely diversity; (c) comprehensively measuring
convergence and diversity. According to references [40,41], the following two indicators are
used for algorithm performance evaluation: Δ metric and inverted generational distance.
The real Pareto frontier of the research in this paper is the set of non-dominated solutions
in the final solution set. However, the real Pareto frontier is not known. The final solution
set is obtained by the calculation example through multiple independent operations of the
algorithm. The specific introduction and calculation formula of these two indicators are
given below.

Δ metric: Describe the uniformity of the Pareto front obtained by the algorithm. The
calculation method is as follows. The smaller Δ, the more even the solution is, and the
better the performance of the algorithm. When Δ is equal to 0, it indicates that the solution
obtained by the algorithm is uniformly distributed in the solution set space, generally only
appearing under ideal circumstances.

Δ =
d f + dt + ∑n−1

i=1

∣∣∣di − d
∣∣∣

d f + dt + (n − 1)d
(27)

Here, df and dt are the distances between the boundary point of the Pareto frontier
obtained by the algorithm and the actual Pareto frontier boundary point of the problem
to be solved; n represents the number of solutions in the Pareto frontier obtained by the
algorithm operation, and di represents the value obtained by the algorithm operation. d
represents the average value of all dt.

Inverted generational distance: A variant of iterative distance not only reflects the
convergence of the algorithm but also shows a diversity index, which is a comprehensive
evaluation index. The formula of IGD is as follows:

IGD(S, P∗) = ∑x∈P∗ dist(x, S )
|P∗| (28)

Among them, dist(x, S) represents the individual x ∈ P* to the nearest Euclidean
distance on S, and |P*| is the cardinality of the set P*. The smaller the value of IGD, the
more it can approach the entire PF. In addition, when IGD(S, P*) = 0, it means S is a subset
of P*.

In this paper, two intelligent optimization algorithms are selected for comparison. The
results are shown Table 7. The table counts the minimum, average, and standard deviation
of the indicators.

Table 7. Comparison of two algorithms.

Evaluation Index
MOGWO NSGA-II

Min Agv Sd Min Agv Sd

Spread 0.343 0.553 0.107 0.522 0.677 0.115
Inverted generational distance 0.074 0.089 0.021 0.090 0.125 0.029

From Table 7, we can draw the following two points:

• According to the spread value (Δ) in the table, MOGWO is better than the NSGA-II
algorithm, and the MOGWO algorithm is more evenly distributed than the solution
set obtained by NSGA-II. It is due to the neighborhood search mechanism of the
MOGWO, which can increase the probability of obtaining the optimal solution, thereby
improving the uniformity of the solution set distribution, and the algorithm has better
optimization capabilities.
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• According to the inverted generational distance value in the table, the solution ob-
tained by MOGWO has better convergence and distribution than the NSGA-II algo-
rithm. This is because of the unique hierarchical system of the MOGWO algorithm,
which can be selected from different dominance levels. The optimal solution to
improve the convergence and distribution of the algorithm was chosen.

The Pareto frontiers obtained by the two algorithms are shown in Figure 14. Obser-
vation shows that the solution obtained by using the MOGWO algorithm is numerically
smaller than the other solution set, that is, it can dominate the solutions obtained by NSGA-
II. Additionally, MOGWO proves to be effective in reducing the total energy consumption
of scheduling plans. Therefore, the selected algorithm has the best solution effect.

 
Figure 14. Comparison of two algorithms.

5.4. Sensitivity Analysis

Sensitivity analysis was used to compare the influence of energy consumption of
different auxiliary production operations in this section. If the objective function value and
fitness value of different optimization operations change greatly, the sensitivity coefficient
and the corresponding auxiliary production operation will be large and sensitive.

Sensitivity analysis is the importance of factor variables of the model to the value of
the optimization objective function. The calculation is shown in Equation (29), as follows.

SfA =
Δ f / f
ΔA / A

(29)

Here, SfA represents the sensitivity of target function value f to parameter A, and
ΔA/A means the rate of change of a parameter; Δf /f represents the change rate of the target
function value caused by the change of factor variable ΔA. The sensitivity of total energy
consumption to EW, Es, and Ed will be analyzed in our experiment. In this analysis, ΔA/A
represents the rate of change relative to historical observations when different auxiliary
operation optimizations are considered. The change rate of total energy consumption
due to different auxiliary operations of optimization is expressed by Δf/f. Table 8 shows
the sensitivity coefficients under different optimization schemes; the larger the sensitivity
coefficient, the higher the sensitivity of the target to the variation of parameters.
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Table 8. Sensitivity coefficients under different optimization combinations.

Schemes
MOGWO

ΔA/A Δf /f SfA
Ew Es Ed

A 5.33 × 104 588 2.02 × 104 - - -
A1 4.63 × 104 - - 13.13% 2.32% 0.18
A2 - 523 - 11.05% 0.22% 0.02
A3 - - 1.49 × 104 26.24% 1.76% 0.07

Table 8 compares the changes in total energy consumption when considering different
combinations of auxiliary optimization operations. Among them, A represents the schedul-
ing scheme without considering auxiliary operation optimization, where Ew, Es, and Ed are
historical forecast values. The standby time, conversion operation, and handling operation
are considered separately, and the scheme is expressed by A1, A2, and A3, respectively.
Data indicate the three sensitivity coefficients are all positive and the target function value
has a certain sensitivity to parameter changes, proving that the optimization model pro-
posed in our research can obtain satisfactory results in reducing energy consumption, but
there have been slightly different changes in the target function to the parameter between
three schemes. From Table 8, energy consumption is significantly reduced by optimizing
standby time, and the target quantity changes significantly to Ew; second is handling energy
consumption optimization, followed by conversion energy consumption. In this research,
due to the large standby time and handling times, the energy consumption optimization
effect is relatively significant, especially in the case of large total energy consumption.
Through the sensitivity analysis of the above optimization scheme, it is reasonable and
effective to comprehensively consider the NPEC in the optimization model.

6. Conclusions and Future Works

This study researched energy consumption optimization in the production process of
a machining workshop, starting from the assembly relationship between the parts/ compo-
nents of the multi-level product structure. By analyzing the existing energy consumption
research, we conducted a systematic study on the NPEC of the workshop. The research
was mainly conducted from the following two aspects.

• The production of a multi-level product structure is combined with energy consump-
tion optimization. The start processing times of different levels of workpieces are set,
and the characteristics of the PEC and NPEC in the production system are considered.
With the goal of minimum completion time and energy consumption, equipment
standby, workpiece conversion, and handling constraints are established, and the
MOGWO is adopted to solve the problem.

• The total energy consumption optimization results are compared with those of an op-
timization plan considering only the PEC. The results show that after considering the
NPEC optimization as proposed here, the standby energy consumption and handling
energy consumption are reduced by 9.95% and 22.28%, respectively. This provides a
feasible research direction for the study of energy-saving scheduling in workshops.

Production scheduling considering energy-saving measures is of great significance
for the realization of energy savings and emissions reduction. This study has a set of
limitations: for example, we suppose the same power during the standby time and there
is no interruption in the processing that limit the versatility of our method. For future
works, other possibilities, such as equipment failures and emergency order insertions, will
be further integrated into the optimization model.
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Nomenclature

C completion time
TP processing time
Ep energy consumption of processing
Ew energy consumption of stand by state
Ed energy consumption of handling
Eh

jkmP energy consumption of the kth sub-batch of j transported from m to P
Bjk the kth sub-batch of workpiece j
dmm’ distance between machines
Si

m start time of the ith operation on the machine m
Ci

m completion time of the ith process on the machine m
CBn

m completion time of the nth process on machine m
Oji the jth operation of the workpiece j
w each type of workpiece is processed on w sets of equipment
th
jkimm′ transportation time of from m to m′

SBjkim start time of the ith operation of the kth sub-batch about workpiece j on machine m
CBjkim completion time of the ith process of the kth sub-batch about workpiece j on machine m
Pj’k’i’m kth sub-batch ith operation of workpiece j is processed on equipment m
Sjh rated capacity of work j on equipment h
αj, αj’ the processing power of workpiece j, j’
Emax total energy consumption
TR setup time
En non-processing energy consumption
Es conversion energy consumption
Eh

jkimm′ energy consumption of the workpiece j transported from m to m’
Qj quantity of workpiece j
Qjk quantity of j of Bjk
dmP distance between processing workshop and P
Ph

j power of handling Hh

SBn
m start time of the nth process on the machine m

Om
j(1) i(1) ith operation of workpiece j processed on machine m

njk the number of h required for the kth sub-batch of workpiece j
Pw

m standby power of machine
Sjn1 start time of the first process of n-level parts/components
TBjkim processing time of the ith operation of the kth sub-batch about workpiece j on equipment m
Rjkim the set-up time of the ith operation of the kth sub-batch about workpiece j on equipment m
NPjkim the kth sub-batch and the ith operation of the jth workpiece are being processed on the m
Vh speed of Hh
MPjim each process Oji can only choose one piece of machine for processing

th
jkmP

the time it takes for Hh to transport the kth sub-batch of the workpiece j from the
equipment m where the last process to the assembly workshop P
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Appendix A

Table A1. Sets.

Nomenclature Description

J Parts set; J = {J1, J2, J3 . . . Jn} ∪ {P1, P2, P3, . . . Pn}, j ∈ J
M a finite set of M machines; m = 1,2,3 . . . M
H a finite set of H handle equipment; Hh ∈ H; h = 1,2,3
Oj Process set; Oji ∈ Oj, i = 1,2,3 . . . Oj
Bj Number of sub-batch of j; j = 1, 2, . . . n

Table A2. Decision variables.

Nomenclature Description

Rjj’m

If the currently processed part/component j of the processing equipment m
is different from the part/component j’ to be processed, then Rjj’m =1,
otherwise, Rjj’m = 0.

Sβ
jkih

If the equipment Hh is handling the ith process of the kth sub-batch of
parts/components, then Sβ

jkih= 1, otherwise, Sβ
jkih= 0.

Hβ
jkimh

If the ith process of the kth sub-batch of the part/component j is carried by
the equipment Hh, then Hβ

jkimh= 1, otherwise, Hβ
jkimh= 0.

XjkOjm
If the last process of the kth sub-batch of j is completed on machine m,
XjkOjm= 1, otherwise, XjkOjm= 0.
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Abstract: Power system health prognosis is a key process of condition-based maintenance. For the
problem of large error in the residual lifetime prognosis of a power system, a novel residual lifetime
prognosis model based on a high-order hidden semi-Markov model (HOHSMM) is proposed. First,
HOHSMM is developed based on the hidden semi-Markov model (HSMM). An order reduction
method and a composite node mechanism of HOHSMM based on permutation are proposed. The
health state transition matrix and observation matrix are improved accordingly. The high-order model
is transformed into the corresponding first-order model, and more node dependency information
is stored in the parameter group to be estimated. Secondly, in order to estimate the parameters
and optimize the structure of the proposed model, an intelligent optimization algorithm group
is used instead of the expectation–maximization (EM) algorithm. Thus, the simplification of the
topology of the high-order model by the intelligent optimization algorithm can be realized. Then, the
state duration variables in the high-order model are defined and deduced. The prognosis method
based on polynomial fitting is used to predict the residual lifetime of the power system when the
prior distribution is unknown. Finally, the intelligent optimization algorithm is used to solve the
proposed model, and experiments are performed based on a set of power system data sets to evaluate
the performance of the proposed model. Compared with HSMM, the proposed model has better
performance on the power system health prognosis problem and can get a relatively good solution in
a short computation time.

Keywords: high-order hidden semi-Markov model; composite node; model reduction; state duration;
polynomial fitting; residual life prognosis

1. Introduction

With the development of technology, the operation of power systems has an increasing
demand for higher reliability, lower environmental risks, and higher human safety. Power
system failures usually come at the cost of high maintenance costs and uncertain downtime.
However, it is difficult to obtain accurate health status and predict failures of a power
system in time. Thus, power system health prognosis is an important topic in reliability
and maintenance engineering, which determines how to properly integrate positioning
degradation data into power system fault detection and failure prevention [1]. Health
prognosis involves evaluating the current state, classifying the current state of several
failure modes, and predicting the residual lifetime of the power system. Residual lifetime
refers to the remaining life from the current health status to the functional failure of
the system.

As a probabilistic statistical method, the hidden Markov model (HMM) has a good
randomness representation ability and potential structural relationship description ability.
It is widely used in the field of complex system modeling. Carey first migrated HMM
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from the field of speech recognition to the field of power system fault diagnosis, creating a
new research direction of fault diagnosis [2]. Researchers proposed an improved hidden
Semi-Markov model (HSMM) to get rid of the constraints of HMM characteristics, which
further divided the macro-states into micro-states, and made a priori assumptions about
the time distribution of each macro-state to successfully realize the application of HMM in
the field of residual lifetime prediction. Liu et al. proposed an HSMM of information fusion,
completed the diagnosis and life prediction of equipment, and achieved good results [3].

System health prognosis is a complex process, and the real-time operation of the
power system is particularly difficult. Most of the methods in the field of reliability involve
intensive calculation and processing of a large number of historical data [4,5]. The methods
are usually divided into three categories: model-driven models, physical models, and
data-driven models.

The design of the physical model considers the operating conditions to model the
operating process of the system. The models integrate the physical features and numeric
features of the system under monitoring and develop the mappings between parameters
and prognostics features, such as rotating machinery [6,7] and lithium-ion batteries [8].
However, it is difficult to guarantee its accuracy. There is no perfect physical model to
adapt to the system.

The data-driven model is suitable for systems with little prior knowledge or a complex
structure because of the characteristics of using existing data to predict the health of the
system. Moreover, they rely solely on the past observed trajectories [9], including neural
networks [10–12], support vector machines [13,14], and Gaussian process regression [15].
Finding the effective part of the original data is an arduous task. The main disadvantages
of this model are slow convergence and the ease in which it falls into local minimums;
these shortcomings limit the application of this model.

Model-driven models focus on the prediction level fusion of information. For the
first time, Dong et al. used HSMM to conduct research on various sensor diagnoses [16].
Then, several variants of Markovian-based models were applied to the diagnosis and
prognostics of equipment. Yan et al. used HSMM-based equipment health estimation
and proposed several new methods to effectively predict equipment RUL [17]. Li et al.
proposed an improved HMM that is improved through performance degradation and
successfully applied it to the reliability evaluation of wind turbine bearings [18]. Huang
et al. proposed an improved HMM based on a predictive neural network and applied it
to a motor drive system to evaluate the proposed model [19]. These studies performed
well in different domains, whereas the modification was mostly done in the modeling
part, and little consideration was given to signal preprocessing and parameters estimation’
furthermore, the recognizing and training processes of model-driven models are usually
time-consuming, so they are applied to offline health prognosis.

In order to better refer to the historical statistical information to improve the model
recognition rate, a high-order hidden Markov model (HOHMM) was proposed by re-
searchers. For the problem of parameter explosion and a more complex derivation of
the high-order model, researchers have established an order reduction algorithm, ORED,
to simplify HOHMM. Basically, the fast incremental algorithm was proposed to train
HOHMM and the three problems were discussed, respectively [20]. Compared with the
successive order reduction of the ORED algorithm, Hadar proposed a more complex algo-
rithm based on the idea of equivalent transformation, which transformed any high-order
model into the corresponding first-order model [21]. The above researchers provide a
general research method for the research of the high-order model. However, in the process
of reducing the order of HOHMM to HMM, it is necessary to re-deduce each variable
of the model and re-evaluate the parameters based on the Baum–Welch algorithm. With
the increase of the order of the model, the workload will increase explosively. Dong et al.
established the HO-HMMAR model, deduced variables, and better solved the optimal
portfolio problem [22]. Heng et al. established the daily average temperature evolution
model and assumed that the asymmetric component was a high-order hidden Markov
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process. The results showed that the model can effectively capture the characteristics of
temperature data under various conditions Polynomial fitting was a simple tool for nonlin-
ear fitting, which has efficient data processing ability [23]. Ritesh et al. used the coefficients
of polynomial fitting to generate the feature vector of iris recognition and verified the
effectiveness of the polynomial method through the benchmark IITD and casia-v4 interval
iris data [24]. With the popularization of neural networks and various machine learning
methods, the flashpoint of polynomial fitting became dimmer and dimmer in the field
of fault diagnosis. However, the polynomial fitting is one of the few methods that can
directly write the analytical formula of a nonlinear relationship. It cannot be done by the
neural network.

The problem of parameter estimation has always been the most difficult link of the
probability model. The EM algorithm with a heavy workload depends on the initial value
and can easily fall into local optimization; thus, more and more researchers are turning
their attention to various intelligent optimization algorithms. The algorithm of Yu [13] and
other genetic algorithms were combined within the grey model. The numerical results
showed that the new method combined with a genetic algorithm (GA) can greatly improve
the prediction accuracy. Krause [14] et al. used the function approximator based on a
GA to estimate the parameters of the induction motor, which achieved better results than
other methods. Zhang [15] and others used the artificial immune algorithm to optimize
HMM and obtained the initial observation matrix with the highest identification degree.
Zhang [16] and others used an adaptive genetic particle swarm optimization algorithm
to optimize HSMM and obtained more accurate results than traditional HSMM. How an
intelligent simulation algorithm can be used to simplify the research process of HMM is a
point that should be paid attention to in future research.

In order to obtain more accurate and practical predictions under the premise of
unknown distribution, the contribution of this paper is to propose an improved HOHSMM
for the health prognosis of the power system. First, the framework of HOHSMM based
on HSMM is established. By considering the ORED algorithm and Hadar’s equivalent
transformation, a model reduction method based on permutation is proposed, which
uses the definition of the high-order hidden Markov group model to transform it into
the corresponding first-order model, and the solution of three problems of the low-order
model can be used in the high-order complex model. Moreover, the transition probability
matrix and observation probability matrix are deformed so that the interdependence
information of nodes in the high-order complex model is naturally integrated into the
model parameters, and the effect of simplifying the model is achieved. Then, the auxiliary
resident variables are defined and deduced, and the parameter group carrying more
dependency information is estimated by using the intelligent optimization algorithm
group. The maximizing occurrence probability of observation is described as objective,
the decomposition dependency of the high-order model is represented by the parameter
group, and the complexity is transferred from the model itself to the parameter group. The
polynomial fitting method is used to fit each resident variable sequence, and the residual
lifetime of the power system is predicted when the distribution is unknown. Finally, the
proposed model is verified and evaluated with one power system data set. The results
show that the method proposed in this paper is feasible and effective.

This article aims to develop a more superior power system health prognostics method.
The paper is organized as follows: Section 2 introduces first-order and high-order HMM,
and Section 3 develops an improved high-order hidden semi-Markov model. Then, the
residual lifetime prognosis method of this paper is proposed in Section 4. Section 5 analyzes
and discusses the case study of this article, and finally the article is concluded in Section 6.

2. Hidden Markov Model

2.1. First-Order HMM

The first-order HMM can be described as λ = (π, A, B). It is composed of observable
nodes and hidden state nodes. The health state of the node at time t is represented by

29



Energies 2021, 14, 8208

Statet, then the transition between the hidden state of the hidden state node conforms to
the Markov property.

Prob(Statet|State1 · · · Statet−1) = Prob(Statet|Statet−1)

Note that the total number of health states is N and the total number of observa-
tions is M. π is the initial state distribution vector in the model, and it is the probability
value of each state of power system when t = 1, π = [π]1×N . A is the transition prob-
ability matrix, and A =

[
aij
]

N×N . aij is the probability value from state i to state j, and

aij = Prob(Statet+1 = j
∣∣Statet = i) ,

N
∑

i=1
aij = 1,

N
∑

j=1
aij = 1. B is the observation probability

matrix, and B = [bi(k)]N×M; it is the probability value of the observation generated by the
node under state i and Prob(ot = k|Statet = i) . ot represents the observation value at time

t, and meets
N
∑

i=1
bi(k)=1 and

M
∑

k=1
bi(k)=1.

In order to solve the evaluation problem of HMM, that is, Prob(O|λ), forward–
backward variables based on HMM are usually developed, and the evaluation problem is
decomposed into recursive expressions of forward–backward variables. In order to solve
the learning problem, the Baum–Welch algorithm is usually used to solve the parameter
set −λ, which may optimize the model and produce the current observations. Its idea is to
establish the Lagrange multiplier equation between the current parameter group λ and the
maximum parameter group λ, and calculate the partial derivative under the constraints
of each parameter to optimize the current parameters. In order to solve the prognosis
problem, dynamic programming is applied to HMM to produce the Viterbi algorithm to
find the most likely health state path. Due to its own characteristics, the conventional
HMM has the defects that it must obey the exponential distribution and cannot describe
the deterioration of the power system.

2.2. The High-Order HMM

The high-order hidden Markov model (HOHMM) is a generalization of the first-order
Markov model, and it retains more historical statistical information. It is assumed that the
current health state of the research object is related to the previous health states. Taking an
n-order hidden Markov model as an example, its health state at time t(t > n + 1) is related
to the health state at the previous n times, and it is expressed as

Prob(Statet|State1 · · · Statet−1) = Prob(Statet|Statet−N · · · Statet−1)

HOHMM is different from the conventional HMM, and it is described as λ =(
π, A, B, Ă, B̆

)
, where Ă is the state transition matrix only applicable to the previous

n times and B̆ is the observation probability matrix only applicable to the previous n times.
HOHMM also has three problems from HMM. However, due to relatively complex node
dependencies, the dependencies become more complex with the increase of orders, and the
model parameters will increase exponentially. Thus, the research on HOHMM generally
focuses on model order reduction. HOHMM improves the model recognition rate on the
basis of retaining more historical statistical information, but it still fails to overcome the
shortcomings of HMM.

3. Improved High-Order Hidden Semi-Markov Model

In this paper, by considering the shortcomings of HMM and the advantages of high-
order modeling, an improved high-order hidden semi-Markov model (HOHSMM) is
proposed based on HSMM.

Taking the second-order HSMM as an example, the model can be described as
λ =

(
π, A, B, Ă, B̆

)
. It is usually assumed that each sub-state conforms to the same time

distribution, and the topology of a second-order HSMM is described in Figure 1.
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Figure 1. The illustration of two-order HSMM.

3.1. The Model Order Reduction Based on Permutation Mapping

Similarly, taking the second-order HOHSMM as an example, due to the structural
changes of the second-order model, the model parameters and related algorithms can
be changed accordingly. The respective algorithms for solving the three problems of the
low-order model are not applicable to the high-order model. Thus, this paper proposes a
model reduction method based on combinatorial mapping, and it is essential to merge the
hidden state nodes corresponding to two adjacent time points in the second-order model
into one node; then, the merged nodes can be modeled by the Markov process, as shown in
Figure 2.

Figure 2. The illustration of the model reduction based on permutation. (a): Division of compound
nodes; (b): Markov chain model with reduced order after compound nodes.

In this paper, a health state in HSMM generates a segment of observations, as opposed
to a single observation in the HMM. Thus, the states in a segment semi-Markov model
are called super states. Each super state consists of several single states, which are called
son states, which can be seen in Figure 2. Figure 2a is a division of the model on the
second-order HOHSMM, and the adjacent state nodes can be combined into a new, larger
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node. The relationship between the two health states in the new node has no impact on the
Markov property of the whole model. The Markov property of the new model after order
reduction can be described as Equation (1).

Prob(Statet, Statet−1|Statet−1 · · · State1) = Prob(Statet, Statet−1|Statet−1, Statet−2)(t ≥ 3) (1)

The description of time in the new model also changes t to (t, t + 1). If the first element
of the time combination (t, t + 1) is the unique index of the time of the new model, the
time can also be expressed as t̆. t̆ is different from t in the mathematical sense, but in
the physical sense, t̆ = t. When the implicit state node of the new model combination
time t̆ is expressed as (Statet̆, Statet+1), it generates two groups of observations, ot̆ and
ot̆+1, where, ot̆+1 completely depends on (Statet̆, Statet+1) and ot̆ completely depends on(
State ˘t−1, Statet

)
. Moreover, at time t̆ − 1, the observations connected by dotted lines are

the same observation in Figure 2b, and the sub-state set connected by dotted lines is also
the same sub-state set. Thus, each group of observations can be obtained from the unique
combined hidden state node, while the unique determined observations corresponding to
the combined hidden state can be only retained (except the initial time) in its topology.

In the reduced order model, taking the combination of hidden states as the modeling
object, different states are essentially an arrangement problem. Based on the above partial
definitions of HMM parameters, if a second-order HOHSMM has N different super states,
and considering the power system has performance degradation and the state is irreversible,
then there are C2

N + N states appearing in the original model. In this paper, a simple
mapping between the arrangement scheme and natural numbers is introduced, as shown
in Equation (2), where i, j are states, respectively.

Index = Mapping(i, j) = 4i + j −
i

∑
z=0

(i, j ∈ (0, 1 · · · N − 1), j ≥ i) (2)

In the parameters of the second-order HOHSMM original model, the transition prob-
ability matrix becomes the transition probability cube of N × N × N and the observa-
tion probability matrix becomes the observation probability cube of N × N × M. The
initial probability distribution remains unchanged and the initial transition probability
matrix and the initial observation probability matrix are the same as the first-order model.
The new model parameters after order reduction are composed of a transition probabil-
ity matrix (C2

N + N)× (C2
N + N), observation probability matrix (C2

N + N)× M, initial
probability distribution, initial transition probability matrix, and initial observation prob-
ability matrix. Letting the reduced-order transition probability matrix be Â with the
element âij(i, j ∈ (0, · · · N − 1)), the reduced-order observation probability matrix is B̂,
and the element is b̂ij(i, j ∈ (0, · · · N − 1)). For λ =

(
π, A, B, Ă, B̆

)
, the element of π is

πi(i ∈ (0, · · · N − 1)), the element of Ă is ăij(i, j ∈ (0, · · · N − 1)), and the element of B̆ is
b̆i(j)(i, j ∈ (0, · · · N − 1)).

Based on the order reduction method in Section 3.1, the transition probability matrix
Â ((C2

N + N) × (C2
N + N)) after dimension reduction can be obtained. The transition

probability matrix Â is sparse, and the actual amount of effective data in the matrix that is
not 0 is

N−1

∑
j=0

(
−j2 + jN + N − j

)
(3)

where j is the second state in the state arrangement (i, j). Taking the second-order
HOHSMM with n = 4 as an example, the effective data of the reduced probability transfer
matrix of order reduction are 20. In Table 1, the positions represented by 1 and 1* are the
effective data, the composite state represented by the column header at the position of 1* is
the main state, and the composite state represented by the column header at the position of
1 is defined as the transition state, while the location represented by 0 is invalid data.
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Table 1. Sparse representation of two-order HOHSMM reduced-order transition probability matrix with 4 states.

From/To Perm (0,0) (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3) (3,3)

Perm index/index 0 1 2 3 4 5 6 7 8 9
(0,0) 0 1 * 1 1 1 0 0 0 0 0 0
(0,1) 1 0 0 0 0 1 * 1 1 0 0 0
(0,2) 2 0 0 0 0 0 0 0 1 * 1 0
(0,3) 3 0 0 0 0 0 0 0 0 0 1
(1,1) 4 0 0 0 0 1 * 1 1 0 0 0
(1,2) 5 0 0 0 0 0 0 0 1 * 1 0
(1,3) 6 0 0 0 0 0 0 0 0 0 1
(2,2) 7 0 0 0 0 0 0 0 1 * 1 0
(2,3) 8 0 0 0 0 0 0 0 0 0 1
(3,3) 9 0 0 0 0 0 0 0 0 0 1

*: Main state; Shadow: Valid data.

3.2. The Model Reasoning

In view of the idea of a forward–backward algorithm, a linger time (LT) mechanism is
introduced, and an auxiliary variable ξt(i) is established, as is described in Equation (4).

ξt(i, d) = Prob(O[1:t], LT((i, i)) = d
∣∣∣λ) (t ≥ d) (4)

The probability that the observation sequence O[1:t] is generated at the cut-off time t
and has stayed in the current state for d time under a given model parameter group λ can
be obtained by Equation (4).

In this section, the sparse representation of the transition probability matrix of the
general second-order HOHSMM is given, and the significance of the main state and the
transition state can be described, respectively. The transition among the different main
health states of the conventional second-order model is a gradual process.

Main state → (Transition state sequence) → Next main state
This transformation process needs at most j − i + 2 time points to be fully described.

Taking the transition from the health state (0,0) to (3,3) as an example, the transition process
needs five time points to be described, as shown in Figure 3.

Figure 3. Schematic diagram of main state transition process.

In order to facilitate model reasoning, a transition variable ϑt(j, i, Road) is defined,
representing the process intermediate value from the main state (j, j) to the time main state
(i, i) of t time. The main states, by being transferred out, can be defined as acceptance states,
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and the main states being transferred in can be defined as return states.
→
t is defined as the

time point when the acceptance states appear.

(1) For i = 0 and d = t, ξt(i) can be described as

ξt(0, d) = Prob(O[1:t], LT(0) = d
∣∣∣λ) (5)

The recursive initial value is

ξt(0, 1) = π0b̆0(o1)b̆0(o2)ă00 (6)

The inner transfer recursion is

ξt(0, d) = ξt−1(0, d − 1)â(0,0)(0,0)(t − 1) b̂(0,0)(ot) (7)

(2) For i = 1, ξt(i) can be described as

ξt(1, d) = Prob(O[1:t], LT(1) = d
∣∣∣λ) (8)

The acceptance state can only be (0,0) and the transition state can only be (0,1). Then,
the acceptance value is ξt−d(0, t − d), ϑt(0, 1, Road) = â(0,0)(0,1)(t − d + 1)b̂(0,1)(ot−d+1).
Thus, the recursive median is described as ξt(1, 0)=ξt−d(0, t − d)â(0,0)(0,1)(t − d + 1)b̂(0,1)

(ot−d+1)â(0,1)(1,1)(t − d + 2)b̂(1,1)(ot−d+2), and the recursive equation of internal trans-
fer is

ξt(1, d) = ξt−Δt(1, d − 1)â(1,1)(1,1)(t − Δt)b̂(1,1)(ot) (9)

(3) For I = 2, the acceptance states can be (0,0) and (1,1) and ξt(i) can be described as

ξt(2, d) = Prob
(

O[1:t], LT(2) = d
∣∣∣λ) (10)

The inner transfer recursion is

ξt(2, d) = ξt−1(2, d − 1)â(2,2)(2,2)(t − 1) b̂(2,2)(ot) (11)

Sit1: When the acceptance state is (0,0), it needs four time points to describe from (0,0)
to (2,2) and the acceptance value is

ξ→
t

(
0,

→
t
) →

t ∈ {t − d − 3, t − d − 2} (12)

The corresponding ϑt(0, 2, Road) can be described as

⎧⎨
⎩

â(0,0)(0,1)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(0,1)(1,2)

(→
t + 1

)
b̂(1,2)

(
o→

t +2

)
â(1,2)(2,2)

(→
t + 2

)
b̂(2,2)

(
o→

t +3

) →
t = t − d − 3

â(0,0)(0,2)

(→
t
)

b̂(0,2)(ot−d−1)â(0,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

) →
t = t − d − 2

(13)

The corresponding return value is given by Equation (14).

⎧⎨
⎩

ξ→
t

(
0,

→
t
)

â(0,0)(0,1)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(0,1)(1,2)

(→
t + 1

)
b̂(1,2)

(
o→

t +2

)
â(1,2)(2,2)

(→
t + 2

)
b̂(2,2)

(
o→

t +3

) →
t = t − d − 3

ξ→
t

(
0,

→
t
)

â(0,0)(0,2)

(→
t
)

b̂(0,2)(ot−d−1)â(0,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

) →
t = t − d − 2

(14)

Sit2: When the acceptance state is (1,1), it needs three time points to describe from

(1,1) to (2,2) and the corresponding
→
t = t − d − 2 acceptance value is

→
t −1

∑
du=1

ξ→
t
(1, du)
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ϑt(1, 2, Road) is

â(1,1)(1,2)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(1,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

)
(15)

The return value is

→
t −1

∑
du=1

ξ→
t
(1, du)â(1,1)(1,2)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(1,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

)
(16)

(4) For I = 3, the acceptance states can be (0,0), (1,1), and (2,2) and ξt(i) can be described as

ξt(3, d) = Prob
(

O[1:t], LT(3) = d
∣∣∣λ) (17)

Inner transfer recursion is

ξt(3, d) = ξt−1(3, d − 1)â(3,3)(3,3)(t − 1) b̂(3,3)(ot) (18)

Sit1: When the acceptance state is (0,0), it needs five time points to describe from (0,0)
to (3,3), and the corresponding acceptance value is

ξ→
t

(
0,

→
t
) →

t ∈ {t − d − 4, t − d − 3, t − d − 2} (19)

ϑt(0, 3, Road) can be described as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

â(0,0)(0,1)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(0,1)(1,2)

(→
t + 1

)
b̂(1,2)

(
o→

t +2

)
â(1,2)(2,3)

(→
t + 2

)
b̂(2,3)

(
o→

t +3

)
â(3,3)(3,3)

(→
t + 2

)
b̂(3,3)

(
o→

t +3

)→
t = t − d − 4

2
∑

i=1
â(0,0)(0,i)

(→
t
)

b̂(0,i)

(
o→

t +1

)
â(0,i)(i,3)

(→
t + 1

)
b̂(i,3)

(
o→

t +2

) →
t = t − d − 3

â(0,0)(0,3)

(→
t
)

b̂(0,i)(ot−d−1)â(0,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

) →
t = t − d − 2

(20)

The return value is the product of the corresponding acceptance value and the inter-
mediate value.

Sit2: When the acceptance state is (1,1), it needs four time points to describe from (1,1)
to (3,3), and the corresponding acceptance value is

ξ→
t

(
1,

→
t
) →

t ∈ {t − d − 3, t − d − 2} (21)

The corresponding intermediate value ϑt(0, 3, Road) is

⎧⎨
⎩

â(1,1)(1,2)

(→
t
)

b̂(1,2)

(
o→

t +1

)
â(1,2)(2,3)

(→
t + 1

)
b̂(2,3)

(
o→

t +2

)
â(2,3)(3,3)

(→
t + 2

)
b̂(3,3)

(
o→

t +3

) →
t = t − d − 3

â(1,1)(1,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(1,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

) →
t = t − d − 2

(22)

The recursive median is
⎧⎨
⎩

ξ→
t

(
1,

→
t
)

â(1,1)(1,2)

(→
t
)

b̂(1,2)

(
o→

t +1

)
â(1,2)(2,3)

(→
t + 1

)
b̂(2,3)

(
o→

t +2

)
â(2,3)(3,3)

(→
t + 2

)
b̂(3,3)

(
o→

t +3

) →
t = t − d − 3

ξ→
t

(
1,

→
t
)

â(1,1)(1,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(1,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

) →
t = t − d − 2

(23)

Sit3: When the acceptance state is (2,2), it needs three time points to describe from
(2,2) to (3,3), and the corresponding acceptance value is

ξ→
t

(
2,

→
t
) →

t ∈ {t − d − 2} (24)

The corresponding intermediate value ϑt(2, 3, Road) is
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â(2,2)(2,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(2,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

)
(25)

The recursive median is

ξ→
t

(
2,

→
t
)

â(2,2)(2,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(2,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

)
(26)

The general recursive equation of ξt(i, d) can be expressed by Equation (27):

ξt(i, d) =
i

∑
j=0

[(
t

∏
k=t−d

â(i,i)(i,i) b̂(i,i)(ok)

)
ct

∑
di=1

∑
Road∈R

ξct(j, di)ϑt(j, i, Road)

]
(27)

where ct = t − d − lr + 1, lr is the length of Road.
Based on the above classification and derivation of recursion, the auxiliary variables ξt

in the higher state are decomposed into the expression of lower auxiliary variables. In the
recursive process, all the transition process state paths meeting the main state transition can
be generated, and ξt(i, d) can calculated by traversing all possible transition state paths.
The transition state paths included by each main state are given in Table 2, where x is not
included in the path length.

Table 2. Path generator for each main state transition process.

From To Road From To Road

(0,0) (1,1) [0,0,1,1] (0,0) (3,3) [x,x,0,0,3,3]
(0,0) (2,2) [x,0,0,2,2] (1,1) (2,2) [1,1,2,2]
(0,0) (2,2) [0,0–2,2] (1,1) (3,3) [1,1–3,3]
(0,0) (3,3) [0,0–3,3] (1,1) (3,3) [x,1,1,3,3]
(0,0) (3,3) [x,0,0,1,3,3] (2,2) (3,3) [2,2,3,3]
(0,0) (3,3) [x,0,0,2,3,3] – – –

By the given model parameters, the probability of generating observations O is

Prob(O|λ) =
N−1

∑
i=0

D

∑
d=1

ξT(i, d)

Auxiliary variable τt(index) is the probability of being in Mapping−1(index) at time t
under the premise of the given model parameters and observations.

τt(index) = Prob(Statet = Mapping−1(index)
∣∣∣λ, O)

Where τ0(index) can be obtained by calculating π, Ă, B̆, and the τt(index) recursive
equation can be shown as follows.

τt+1(index) =
prob

(
o→

t +1
, Statet = Mapping−1(index)

∣∣∣λ)
∑9

indexi=0 prob
(

o→
t +1

, Statet = Mapping−1(indexi)
∣∣∣λ)=

b̂(index)

(
o→

t +1

)
∑9

i=0 τt(i)â(i)(index)

∑9
indexi=0 b̂(index)

(
o→

t +1

)
∑9

i=0 τt(i)â(i)(indexi)

(28)

For the corresponding low-order model, the probability in a single state i(i ∈ (1, 2, 3, 4))
at time t can be described by the high-order model.

Prob(St = i) = ∑
indexi∈I

τt−1(indexi)

I is the index set corresponding to the second sub state i under different composite
states, and the index correspondence is given in Table 3.
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Table 3. Index correspondence.

Son State Index Gather (I) Perm Gather

0 {0} {(0,0)}
1 {1,4} {(0,1),(1,1)}
2 {2,5,7} {(0,2),(1,2),(2,2)}
3 {3,6,8,9} {(0,3),(1,3),(2,3),(3,3)}

For the parameter estimation problem, this paper selects the intelligent simulation al-
gorithm group to replace the Baum–Welch algorithm and carries out a two-stage estimation.
First, a one-stage likelihood function L

(
λ, Ă, B̆

)
is established, and it is described as

L
(
λ, Ă, B̆

)
= Prob(O[1:2]

∣∣∣λ, Ă, B̆)

For the situation of the current λ, Ă, B̆, if the probability of the first two observations
is generated, then the optimal λ, Ă, B̆ in one stage is

λ, Ă, B̆ = argmax
λ,Ă,B̆

Prob(O[1:2]

∣∣∣∣λ, Ă, B̆)

The two-stage likelihood function is

L(A, B) = Prob(O[3:]

∣∣∣λ, Ă, B̆, A, B)

In the situation of the current λ, Ă, B̆, A, B, the probability from the third to the final
observation is generated, and the corresponding optimal parameters A, B in the second
stage are

A, B = argmax
A,B

Prob(O[3:]

∣∣∣∣λ, Ă, B̆, A, B)

Different intelligent simulation algorithms are used to optimize and compare the
two-stage likelihood function, and finally to select the best result.

4. Residual Life Prognosis under Uncertain Distribution

For the recursive reasoning on the duration of each state in Section 3.2, the system
duration of each health state and the joint probability value of the observation can be
obtained. In fact, there is a certain correlation between the observations generated by the
system and the system duration in a single state, and it can be described by the observation
and state transition matrix through a specific mode. In order to obtain the edge probability
of the system duration in each health state, it is advisable to assume that system observation
and dwell are independent of each other. For the above obtained ξt(i, d), by calculating
the generation probability of the corresponding observation, the conditional probability
equation can be obtained.

Prob(LT(i) = d|λ) = ξt(i, d)
Prob(O|λ)

The time represented by each time point is used to calculate the probability that a
certain state produces the duration, and a group of duration probability sequences are
obtained. Generally, when the discrete data points are known, an a priori distribution
assumption is conducive to study the continuity characteristics of the data. However, if
the data distribution is incorrectly assumed, there will be great errors in the fitting and
the original properties of the data will be lost. Thus, this paper proposes a method to fit
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the data under an unknown distribution based on polynomial regression. The polynomial
regression can be described as

f n(x) = w0 + w1x + w2x2 + w3x3 · · ·+ wmxm

Letting the m-order polynomial function fitted by duration probability sequences
generated by health i be described as Ldsm

i(t), the residual lifetime of system at time t can
be obtained.

RUL1(t) =
N−1

∑
i=0

⎡
⎣∫ D

t

Ldsn
i(x)Ri∫ D

0 Ldsni(y)dy
(x − t)dx +

N−1

∑
j=i+1

∫ D

t
xLdsm

j(x)Rjdx

⎤
⎦Prob(st = i) (29)

where, D is the maximum duration of each state and Prob(st = i) is the probability in health
state i at time t. Ri, Rj are the integral scaling coefficients after continuous discrete data.

5. Case Study

This paper verifies and evaluates the proposed model and method through the exam-
ple of the system health diagnosis and life prediction of one power station. A LW42A-40.5
high voltage circuit breaker system was selected as the experimental platform; it was
equipped with a CT14 spring operating mechanism, three-phase linkage during opening
and closing, and SF6 was used as the arc extinguishing medium. An LW42A-40.5 high
voltage circuit breaker system is mainly used in 35 kV power transmission and distribution
systems for protection and control. The vibration signals of the system in the laboratory
were collected by a hydraulic accelerometer installed parallel to the rotating shaft of the
power system. In the application example, the power system was filled with 20, 40, 60,
and 80 mg of micro dust, respectively, and a fixed length time window every 10 min to
collect a vibration signal (P6) of about 1 min was used, as shown in Figure 4. Then, the
vibration signal was divided into five layers by using 10 dB wavelets and the array of
high-frequency and low-frequency wavelet coefficients were obtained. The dimensionally
reduced wavelet coefficients were used as the input feature sequence vector of DGHMM.
During the whole experiment, the states of the power system could be divided into four
types: Baseline, Cont1, Cont2, and Cont3. Cont3 is the complete failure state of system. The
whole experimental analysis platform was Python 3 and the platform running environment
was Windows 10.

The power system state monitoring information was used to predict the state of health.
In order to obtain a reliable health prognosis, the features to be monitored should be sensi-
tive to vibration trends. We used wavelet transform to remove noise from the original signal
and perform feature extraction in this paper [25]. It can generate a suitable framework to
study the multi-scale transient representation of the signal. It is also good at time-frequency
analysis and processing non-stationary signals. More than one characteristic should usually
be used for a healthy prognosis. Here, a wavelet amplitude model based on the overall
monitoring signal was used to demonstrate how to use features for health prognosis.
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Figure 4. Experimental bench and signal acquisition.

5.1. Partial Data Preview

Using the vibration signal monitoring data from the hydraulic accelerometer, the
health status diagnosis and residual life prognosis of the power system were carried out.
Part of the vibration data (P6) after wavelet transform is shown in Table 4.

Table 4. Partial wavelet transform data of P6.

Time Spot Sen 1 Sen 7 Sen 15 Sen 23 Sen 32

1 2.62 19.53 5.66 0.06 0.96
3 2.65 20.24 6.10 0.06 1.04
5 2.39 17.45 4.92 0.06 0.87
7 2.07 16.15 3.98 0.06 0.75
9 2.25 18.53 4.51 0.06 0.81
11 2.24 21.44 4.38 0.06 0.87
13 2.41 5.37 6.84 0.08 1.66
15 2.58 6.16 7.96 0.09 1.84
17 2.53 6.07 7.63 0.09 1.84
19 2.44 6.24 7.71 0.10 1.84
21 20.66 9.68 8.42 0.11 2.17
23 5.06 8.75 7.20 0.10 1.89
25 7.53 8.82 8.15 0.10 2.00
27 5.74 8.37 7.19 0.10 1.89
29 3.46 8.25 7.16 0.10 1.92
31 41.78 7.98 7.12 0.15 1.86
33 31.08 7.90 6.98 0.14 1.84
35 60.15 7.99 7.03 0.15 1.85
37 77.27 7.80 7.12 0.17 1.84
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5.2. Parameter Estimation of the Intelligent Optimization Algorithm Group

Considering that the maximum expectation algorithm has a large dependence on
the initial value, we used a genetic algorithm (GA), particle swarm algorithm (PSO), and
artificial fish swarm algorithm (AFSA) to estimate the parameters of the proposed model
under the same set of full observations, respectively.

The maximum number of iterations was 300, and the number of population (the
number of particles in a particle swarm) was 30. The GA adopted a large parameter
adaptive value encoding and decoding strategy. The PSO adopted the fixed inertia weight
strategy, with an inertia weight of 0.5 and a learning factor of 2. The AFSA perception field
was 1 and the crowding factor was 0.6. The objective optimization model was to maximize
the occurrence probability of observation. The iterative process and results are shown in
Figure 5. Under the premise of the same population number and iteration times, GA had
good results with a continuous evolution and maximum likelihood. The likelihood values
of the parameter groups found by the three optimization algorithms are shown in Table 5,
and the reduced probability transition probability matrix is given in Table 6.

Table 5. The maximum likelihood of each algorithm.

Algorithm Maximum Likelihood

GA 9.8665 × 10−8

PSO 2.44412 × 10−13

AFSA 7.22939 × 10−13

Table 6. The optimal probability transfer matrix is represented sparsely.

From/To Perm (0,0) (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3) (3,3)

Perm index/
index 0 1 2 3 4 5 6 7 8 9

(0,0) 0 7.78 ×
10−1

4.45 ×
10−2

4.50 ×
10−1

2.67 ×
10−2 0.00 0.00 0.00 0.00 0.00 0.00

(0,1) 1 0.00 0.00 0.00 0.00 8.53 ×
10−1

1.40 ×
10−1

7.00 ×
10−3 0.00 0.00 0.00

(0,2) 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.44 ×
10−1

2.56 ×
10−1 0.00

(0,3) 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(1,1) 4 0.00 0.00 0.00 0.00 8.66 ×
10−1

1.32 ×
10−1

2.45 ×
10−3 0.00 0.00 0.00

(1,2) 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.97 ×
10−1

3.44 ×
10−3 0.00

(1,3) 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(2,2) 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.87 ×
10−1

1.13 ×
10−1 0.00

(2,3) 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
(3,3) 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

5.3. Residual Lifetime Prognosis

Based on the model reasoning, the duration of each state was analyzed, and the full
probability equation was used for equivalent replacement in the calculation process. The
different duration values of each state at different time points were separated according
to the state to obtain the duration probability sequence of each state, and the polynomial
regression was used to fit the sequence to obtain their respective analytical formulas. In the
fitting process, the order m with less of a resonance effect on the prediction of the residual
life of the subsequent state was preferentially selected (priority selection principle). The
polynomial fitting of four different states at the final time point is given as an example in
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Figure 6. The optimal values of fitting in the four states were 20, 15, 19, and 17 respectively,
and the detailed polynomial regression coefficients are given in Table 7.

Figure 5. Swarm intelligence algorithm iteration process.

Figure 6. The polynomial fitting of each state at the final time.
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Table 7. The polynomial fitting coefficients of each state at the final time.

Coeff. Index
State Type

State0(20) State1(15) State2(19) State3(17)

0 −2.38819 × 10−45 1.89034 × 10−32 −3.01553 × 10−41 −4.21246 × 10−37

1 7.47909 × 10−42 −6.14991 × 10−29 1.02846 × 10−37 1.23709 × 10−33

2 −9.90244 × 10−39 9.03133 × 10−26 −1.54556 × 10−34 −1.56243 × 10−30

3 6.85507 × 10−36 −7.90982 × 10−23 1.31921 × 10−31 1.0738 × 10−27

4 −2.21019 × 10−33 4.59824 × 10−20 −6.68384 × 10−29 −3.92341 × 10−25

5 −1.73946 × 10−31 −1.86838 × 10−17 1.65986 × 10−26 2.81649 × 10−23

6 4.20376 × 10−28 5.44157 × 10−15 2.2419 × 10−24 4.69387 × 10−20

7 −1.12487 × 10−25 −1.14607 × 10−12 −3.79886 × 10−21 −2.7376 × 10−17

8 −3.1407 × 10−23 1.73894 × 10−10 1.72559 × 10−18 8.37058 × 10−15

9 3.36199 × 10−20 −1.8709 × 10−8 −4.83436 × 10−16 −1.67201 × 10−12

10 −1.2786 × 10−17 1.3854 × 10−6 9.40639 × 10−14 2.29806 × 10−10

11 2.98005 × 10−15 −6.72669 × 10−5 −1.31442 × 10−11 −2.18798 × 10−8

12 −4.69272 × 10−13 1.982402 × 10−3 1.32469 × 10−9 1.41766 × 10−6

13 5.09843 × 10−11 −3.1177213 × 10−2 −9.50595 × 10−8 −6.00431 × 10−5

14 −3.77167 × 10−9 2.04641444 × 10−1 4.72263 × 10−6 1.5492 × 10−3

15 1.82137 × 10−7 −2.9072277 × 10−1 1.55018 × 10−4 2.1526379 × 10−2

16 −5.28119 × 10−6 — — 3.118172 × 10−3 1.26386828 × 10−1

17 7.74612 × 10−5 — — 3.3825859 × 10−2 1.61790099 × 10−1

18 4.00078 × 10−4 — — 1.54167196 × 10−1 — —
19 4.512709 × 10−3 — — 1.47377792 × 10−1 — —
20 6.50429 × 10−4 — — — — — —

In principle, negative values are not allowed for probability integration, but polyno-
mial regression shows obvious fluctuation characteristics, positive and negative values
have certain offset effect, and resonance also exists at the same time point in different states.
It is not difficult to predict that the predicted residual life value may have certain fluctuation
characteristics. In order to better fit the polynomial, the original data points were linearly
interpolated combined with the characteristics of the original data. In Figure 7, the red
point is the original data point, that is, the adaptive duration generation probability value,
the light blue is the interpolation point, and the yellow line is the polynomial fitting line.

Figure 7. Residual lifetime prognosis of P6.

Finally, the residual life prognosis of P6 is shown in Figure 7, in which the discrete
prediction points have been interpolated and smoothed. Mark 1 shows that there is a large
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deviation in the predicted value at the final time point. Corresponding to the phenomenon
of the initial fluctuation range of the polynomial regression formula in each subgraph
of Figure 7 being large but the fluctuation gradually decreasing with the increase of the
time point, this is the result of the priority selection principle. The phenomenon of early
damage appears at Mark 2, corresponding to the phenomenon of residence early reduction
in Figure 6d.

Compared with the low-order HSMM results [3], the residual life prognosis by the
proposed model in this paper is shown in Table 8. From the sampling time point, the overall
effect of the residual life prognosis method based on HOHSMM and polynomial fitting
is significantly better than that of the conventional HSMM. The case shows that the life
prognosis method based on HOHSMM and polynomial regression is effective and feasible.

Table 8. Relative error analysis of the predicted RU.

Actual RUL

Model of This Paper HSMM

Predicted RUL
The Relative

Error (%)
Predicted RUL

The Relative
Error (%)

300 357.010 19.00 302.558 0.85
260 266.729 2.59 299.643 15.25
220 180.068 18.15 297.954 35.43
170 142.383 16.25 194.981 14.69
150 120.147 19.90 192.081 28.05
120 98.159 18.20 188.666 57.22
110 102.573 6.75 102.471 6.84
90 79.956 11.16 100.291 11.43
50 39.600 20.80 97.675 95.35

Mean relative
error/% 14.76 29.4592

6. Conclusions

The diagnostic condition of mechanical systems is that the training data are sufficient
and the samples of different categories in the training data have a balanced distribution. In
the whole life cycle of a high-voltage circuit breaker system, it is in normal state most of
the time, and the number of normal samples in the actually monitored signal will be more
than the number of fault samples, resulting in the imbalance of training data and unknown
distribution. Thus, for the problem of large error in the residual lifetime prognosis of power
systems, a novel residual lifetime prognosis model based on HOHSMM and polynomial
fitting was proposed. Based on HSMM, an order reduction method and composite node
mechanism of HOHSMM based on permutation were proposed. The order reduction
method of the permutation and combination model is simple and intuitive and uses the
definition of the high-order hidden Markov group model. The high-order model can be
transformed into the corresponding first-order model by changing the observation angle,
and the solution of the three problems of the low-order model can be used in the high-order
complex model. The intelligent optimization algorithm group can be used to replace
the EM algorithm to estimate the parameters and optimize the structure of the proposed
model, and the simplification of the topology of the high-order model by the intelligent
optimization algorithm can be realized. The complex dependency information in the
high-order model is transferred to the deformed parameter group. It effectively simplifies
the model and provides a new idea for the study of this kind of model. Finally, a case
was studied to verify the proposed model. From the experimental results, the comparison
between the proposed model and HSMM showed several advantages of the proposed
model, indicating that the remaining life prediction based on polynomial fitting has better
performance for the health prognosis problem of the power system.
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Abstract: Wind turbines have a wide range of applications as the main equipment for wind-power
generation because of the rapid development of technology. It is very important to select a reasonable
maintenance strategy to reduce the operation and maintenance costs of wind turbines. Traditional
maintenance does not consider the environmental benefits. Thus, for the maintenance problems of
wind turbines, an opportunistic maintenance strategy that considers structural correlations, random
correlations, and carbon emissions is proposed. First, a Weibull distribution is used to describe the
deterioration trend of wind turbine subsystems. The failure rates and reliability of wind turbines are
described by the random correlations among all subsystems. Meanwhile, two improvement factors
are introduced into the failure rate and carbon emission model to describe imperfect maintenance,
including the working-age fallback factor and the failure rate increasing factor. Then, the total
expected maintenance cost can be described as the objective function for the proposed opportunistic
maintenance model, including the maintenance preparation cost, maintenance adjustment cost,
shutdown loss cost, and operation cost. The maintenance preparation cost is related to the economic
correlation, and the maintenance adjustment cost is described by using the maintenance probabilities
under different maintenance activities. The shutdown loss cost is obtained by considering the
structural correlation, and the operation cost is related to the energy consumption of wind turbines.
Finally, a case study is provided to analyze the performance of the proposed model. The obtained
optimal opportunistic maintenance duration can be used to interpret the structural correlation
coefficient, random correlation coefficient, and sensitivity of carbon emissions. Compared with
preventive maintenance, the proposed model provides better performance for the maintenance
problems of wind turbines and can obtain relatively good solutions in a short computation time.

Keywords: wind turbines; opportunistic maintenance; structural correlation; random correlation;
carbon emissions

1. Introduction

With the rapid development of wind-power generation technology, wind turbines
have a more comprehensive range of applications as the leading equipment for wind-
power generation. However, wind turbines operate in harsh environments, such as in
high temperatures, extreme cold, and high altitudes. Compared with other repairable
equipment, their operation and maintenance costs are higher, accounting for more than
15% of the life-cycle cost. Thus, it is essential to select a reasonable maintenance strategy to
formulate a scientific maintenance plan to reduce the operation and maintenance costs of
wind turbines.
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Currently, an opportunistic maintenance strategy can be applied to the maintenance of
large and complex equipment, such as general aircraft, rail transit trains, and port handling
systems [1–3]. For opportunistic maintenance (OM), when a system subsystem is shut
down or preventive maintenance needs to be adopted, if other subsystems meet the pre-
determined maintenance conditions, the opportunity to execute preventive maintenance
in advance is obtained. It can dynamically combine the subsystems for preventive main-
tenance based on the deterioration trend of subsystems to reduce the frequent shutdown
of the system and the scheduling of maintenance resources. A wind turbine is also a
large complex system, and there are three different correlation relationships among its
subsystems, including economic correlations, random failure correlations, and structural
correlations. Thomas provides the definition of correlation [4]. Economic correlation refers
to the replacement or maintenance costs of several components being less than the sum
of their individual replacement or maintenance costs. Random failure correlation means
that the failure rate or operation state of other components will be affected to a certain
extent when some components fail. Structural correlation implies that some components
must be replaced or at least removed in order to replace or repair failed components. Thus,
the correlation of subsystems is considered in comparison with traditional maintenance
strategies for maintaining a single component. The opportunistic maintenance strategy can
better meet the maintenance demands of wind turbines [5].

For the opportunistic maintenance strategy for wind turbines, to study the economic
correlation of subsystems [6–10], some references assume that the subsystems are indepen-
dent. In the actual operation of wind turbines, there is a coupling relationship between
subsystems, and failure does not occur independently. Thus, the references further study
the random failure correlation among subsystems. Li et al. used the copula function to
describe a joint risk model to establish a double-layer optimization model for wind turbine
preventive maintenance. The lower-level optimization model that considers the degree of
risk of wind turbines related to failure effectively reduces the risk degree in the whole life
cycle of wind turbines [11]. Yeter et al. considered the operation state of components in
wind turbines. The proportional failure model was used to describe the deterioration pro-
cess of components and established the state opportunistic maintenance model by setting
the state maintenance threshold and opportunistic maintenance threshold [12]. Zhong et al.
considered the failure correlation of wind turbines and used the affected degree to describe
the impact on one subsystem generated by the failure of other subsystems. The affected
degree was also used as the decision-making factor of the maintenance strategy. The results
showed that considering the fault correlation can solve over-repair and under-repair prob-
lems to a certain extent [13]. The above research considers one or two kinds of wind-turbine
subsystem correlations and fails to consider the structural correlation for an opportunistic
maintenance strategy for wind turbines. Moreover, research on structural correlation is
about mechanical engineering. The literature established the multi-component mainte-
nance model that considers structural correlation from the perspectives of the disassembly
sequence, the renewal method of the maintenance plan, and the importance of decision
variables [14–16]. However, the research on the opportunistic maintenance strategies that
consider structural correlation for wind-turbine maintenance is still in its infancy.

The extension of wind turbines’ operation time can reduce the preventive maintenance
cost per unit, and the performance can also degrade. A poor operation is accompanied
by increased energy consumption, intensified environmental damage, and increased en-
terprise operation cost. Thus, appropriate maintenance decisions can reduce operation
costs and carbon emissions. Minne and Crittenden evaluated the impact of residential
floor maintenance activities on the environment [17]. Giustozzi et al. proposed a road
maintenance strategy with the optimization objectives of environmental impact, cost, and
pavement performance [18]. Noland and Hanson used the life-cycle assessment method
to assess the greenhouse gas emissions from road maintenance. The study found that the
emissions from maintenance activities accounted for 10% of total emissions [19]. Sikos and
Klemes studied the relationship between system reliability, maintainability, and environ-
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mental impact, and showed that system reliability and maintainability played important
roles in the realization of cleaner production [20]. Liu et al. proposed a remanufactur-
ing maintenance model to minimize the global warming potential based on reliability
and replacement theory [21]. Chiara et al. established a regular preventive maintenance
model, integrated the circular economy concept, selected the most suitable spare parts for
maintenance activities from the perspective of sustainability, and proved the necessity of
introducing sustainability considerations into routine maintenance procedures through
described cases [22]. Jasiulewicz-Kaczmarek and Gola pointed out that the manufactur-
ing industry was undergoing relevant changes because of the challenges brought by the
sustainable economic development model. The maintenance function was also changing
its role to better support value creation and expand its attention to environmental and
social factors [23]. Hennequin and Ramirez Restrepo proposed a joint production and
maintenance strategy model to minimize the impacts on the environment, inventory, and
maintenance costs [24]. Afrinaldi et al. proposed a mathematical model to determine the
optimal plan for preventive replacement of components and to minimize the economic
and environmental impacts of the components [25]. Huang et al. integrated maintenance
and energy saving into the same model, and introduced the opportunistic maintenance
window mechanism [26]. Xia et al. proposed an oriented energy maintenance framework
based on the energy saving windows [27]. The relevant work can be seen in Table 1. Most
of the literature only evaluates the impact of maintenance activities on the environment
in a specific context, and does not consider the impact of maintenance activities on failure
rate and energy consumption, or the impact of recovery on the environment and cost rate.

Table 1. The relevant work.

Articles Wind Turbines
Correlations

Considerations
Economic Random Structural

Song et al. [6]
√ √

Farm layout design
Ren et al. [7]

√ √
Carbon emissions

Li et al. [8]
√ √

Multiple-component age
Li et al. [9]

√ √
Maintenance intervals

Zhu et al. [10]
√ √

Logistic delay & weather condition
Li et al. [11]

√ √ √
Failure mode

Zhong et al. [13]
√ √

Reliability & cost
Zhou et al. [14]

√ √
Stochastic failures & disassembly sequence

Iung et al. [15]
√

Multi-dependent components
Wu et al. [16]

√
Component importance

Current study
√ √ √ √

Carbon emissions

To devise more accurate and practical maintenance strategies for wind turbines, this
paper’s contribution is to propose an opportunistic maintenance (OM) model that con-
siders economic correlations, random correlations, and structural correlations among
wind-turbine subsystems and carbon emissions. Random correlation describes the failure
rate and reliability of wind turbines among the subsystems. The improvement factor is
introduced into the failure rate and carbon emission model to describe imperfect main-
tenance. Moreover, the operation energy consumption of wind turbines increases with
performance degradation. This paper further considers the reduction effect of wind-turbine
recovery on costs and emissions. The benefits of wind-turbine recovery and the emissions
of maintenance activities can be introduced into the proposed model by adopting the
dynamic failure rate function and carbon emission function. The total expected mainte-
nance cost can then be described as the objective function for the proposed opportunistic
maintenance model, including the maintenance preparation cost, maintenance adjustment
cost, shutdown loss cost, and operation cost. The operation cost is related to the energy
consumption of wind turbines. Finally, a case study is provided to analyze the performance
of the proposed model. The obtained optimal opportunistic maintenance interval can be
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used to interpret the structural correlation coefficient, random correlation coefficient, and
sensitivity of carbon emissions. Compared with preventive maintenance, the proposed
model provides better performance with wind-turbine maintenance problems and can
provide relatively good solutions in a short computation time.

2. The Notation and Problem Description

2.1. Notation

β, α: Weibull distribution parameters
χi,j: Random correlation coefficient
χ: Random correlation coefficient matrix
λ: Structural correlation coefficient matrix
Cmm: Total minor maintenance cost
Com: Total opportunistic maintenance cost
Cpm: Total preventive maintenance cost
ci,mm: Minor maintenance cost of subsystem i
ci,om: Opportunistic maintenance cost of subsystem i
ci,pm: Preventive maintenance cost of subsystem i
cl : Downtime loss per unit
T: Life cycle
EC: Total expected maintenance cost
ECF: Total expected maintenance preparation cost
ECL: Total expected downtime loss
ECM: Total expected maintenance adjustment cost
fi(t): Probability density distribution function of subsystem i
gi
(
to
i , t
)
: Opportunistic maintenance probability density function of subsystem i

hi(t): Probability density function of subsystem i
pi(m): Minor maintenance probability of subsystem i
pi(o): Opportunistic maintenance probability of subsystem i
pi(p): Preventive maintenance probability of subsystem i
Ri(t): Reliability function
to
i : Opportunistic maintenance time threshold

tp
i : Preventive maintenance time threshold

td: Downtime
tm: Maintenance time
tset: Maintenance preparation time
w: Opportunistic maintenance interval

2.2. Problem Description

The extension of wind turbine operation time will reduce the preventive maintenance
cost per unit, but the performance of the wind turbine will also degrade. For the life cycle
of the wind turbine, the probability of unexpected failure becomes lower with an increase
of the amount of preventive maintenance, and the amount of minor maintenance decreases.
Most preventive maintenance (PM) strategies are undertaken, and the cost will increase.
The preventive maintenance cost is inversely proportional to the minor maintenance cost,
as shown in Figure 1. The extension of wind turbine operation time will increase energy
consumption, environmental damage, and operation cost, as shown in Figure 2.
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Figure 1. Cost and carbon emission change with the amount of maintenance.

Figure 2. Cost and carbon emission change with the interval of maintenance.

The wind turbine is taken as the research object, and the optimization goal is to
minimize the expected total cost by considering the carbon emissions per unit. When
a wind turbine has a sudden failure, it is necessary to carry out minor maintenance to
ensure regular operation. Minor maintenance can only restore the function of the wind
turbine to the state before the failure, without changing the failure rate and emission rate.
Actually, wind turbine maintenance cannot affect a permanent repair as good as new, and
the improvement factor is introduced to describe the impact of the maintenance actions
on the wind turbine. The wind turbine consists of subsystems, and when preventive
maintenance is applied to one subsystem, opportunistic maintenance can be applied to
other subsystems.

Let tp
i denote the preventive maintenance time threshold of wind turbine subsystem i,

and to
i the opportunistic maintenance time threshold. Thus, the opportunistic maintenance

strategy of the wind turbine is shown in Figure 3.

Figure 3. Opportunistic maintenance strategies of wind turbines.
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Minor maintenance can be adopted for all failures of wind turbines before executing
preventive maintenance and restore their operation state to that of before the fault. The
instantaneous fault rate will not change. Preventive maintenance adopts the maintenance
mode of replacement, which is regarded as a repair opportunity. If other subsystems meet
the opportunistic maintenance conditions, they can be repaired simultaneously to the pre-
ventive maintenance of the subsystems when the wind turbine is shut down. Opportunistic
maintenance can share maintenance resources during downtime and effectively reduce
maintenance costs.

When the working age of subsystem i meets the condition 0 < t < tp
i , if the subsystem

i fails, minor repairs can be undertaken. This kind of maintenance aims to restore the state
of the subsystem without changing its instantaneous failure rate. When the working age
of subsystem i meets the preventive maintenance condition t ≥ tp

i , replacement can be
undertaken to maintain subsystem i, and it can restore it to its initial health state.

Additionally, during the wind-turbine shutdown, other subsystems obtain mainte-
nance opportunities. When the working age meets the condition to

i < t < tp
i , the conditions

of opportunistic maintenance are met, and all parts required for opportunistic maintenance
during one shutdown are recorded in the set O, O = {1, 2, . . . , n}. Replacement can be
undertaken to maintain subsystem i, and restore it to its initial health state.

3. The Model

3.1. Reliability Evolution

The traditional failure rate model usually takes the independence of component or
system failure as the premise, and usually uses two parameters of a Weibull distribution
to describe its degradation trend. The failure rate function and reliability function of
subsystem i are respectively expressed as:

hI
i (t) =

βi
αi
(

t
αi
)

βi−1
(1)

RI
i (t) = exp

[
−
∫ t

0
hI

i (t)dt
]

(2)

where βi and αi are the shape parameter and scale parameter of each subsystem, respec-
tively, and βi > 0, αi > 0.

During actual operation, there is a coupling relationship among subsystems, and their
faults are not independent of each other. Murthy et al. proposed three types of random
failure correlations [28,29]. Type I random failure correlation indicates that if a component
in the system fails, it will lead to the failure of other internal components according to a
certain probability. Type II random failure correlation indicates that one component failure
in the system will affect other internal components’ failure rates to some extent. Type III is
related to impact damage, specifically indicating that one component failure in the system
will cause random damage to other internal components. The components will fail after the
damage accumulates to a certain extent. In this paper, random correlation coefficient χi,j
is introduced to describe the type II random failure correlation. Thus, the comprehensive
instantaneous failure rate function of the subsystem can be expressed as:

hi(t) = hI
i (t) + ∑

j
χi,jhj(t) (3)

where, i, j = 1, 2 . . . n, i �= j, χi,j ∈ [0, 1]. χi,j = 0 indicates that there is no random failure
correlation between two subsystems, and hi(t) = hI

i (t). χi,j = 1 indicates that the two
subsystems are completely related, and the failure of one subsystem will inevitably lead to
the failure of the other subsystem.

Based on the failure transfer relationship among subsystems in a wind turbine, the
failure transfer relationship diagram is shown as Figure 4. The matrix χ is used to record
the quantized random correlation intensity coefficient χi,j.
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Figure 4. Fault transmission diagram of wind turbines.

χ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
χ2,1 0 0 0 0 0 0 χ2,8 0 χ2,10 0 0
χ3,1 χ3,2 0 χ3,4 χ3,5 χ3,6 0 0 0 χ3,10 0 0

0 0 0 0 0 0 0 χ4,8 0 χ4,10 0 0
0 0 0 0 0 0 0 χ5,8 0 0 0 0
0 0 0 0 χ6,5 0 0 0 0 0 0 0
0 0 0 0 0 χ7,6 0 χ7,8 0 0 0 0
0 0 0 0 0 0 0 0 χ8,9 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 χ10,8 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Based on Equations (2) and (3), the reliability of the subsystem under the influence of
comprehensive failure can be calculated. Thus, the comprehensive reliability function of
the subsystem i is obtained.

Ri(t) = exp
[
−
∫ t

0
hi(t)dt

]
= RI

i (t)∏
j

[
Rj(t)

]χi,j (4)

3.2. Improvement Factor

By adopting maintenance, the working age of a wind turbine will fall back to a
previous stage. The fallback degree is related to maintenance cost and the amount of
maintenance undertaken. The working age fallback factor is used to denote the effect of
maintenance on the working age of wind turbines, and it can be obtained for subsystem i
of a wind turbine.

ηl =

(
a

ci,om

ci,pm

)bl

(5)

where, l represents l-th maintenance interval. a is the cost adjustment coefficient, and it is
used to adjust the opportunistic maintenance cost rate, 0 ≤ a ≤ ci,pm/ci,om. The opportunis-
tic maintenance cost is higher, and the maintenance effect is better. ci,om is the opportunistic
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maintenance cost, ci,pm is the preventive replacement cost, and b > 1 represents the time
adjustment function. 0 ≤ ηl ≤ 1 and ηl = 0 represent minor maintenance and ηl = 1
shows preventive replacement. ηl is larger or smaller, and it indicates whether the working
age fallback after OM is more or less. When other parameters are determined, ηl changes
dynamically with the number of maintenance times. If the maintenance interval of a wind
turbine is T, the effective working age of subsystem i after the first OM can be expressed as:

L−
1 = T1L+

1 = t + (1 − η1)T1 (6)

t is the time. In an l-th opportunistic maintenance interval, the value range of t is t ∈ (0, Tl).
By adopting OM, the working age falls back η1T1, and the effective working age becomes
t + (1 − η1)T1 after maintenance. It can then be deduced that the effective working age
before and after the second OM can be expressed as:

L−
2 = L+

1 + T2 = t + (1 − η1)T1 + T2L+
2 = t + (1 − η1)T1 + (1 − η2)T2 (7)

The effective working age before and after l − th (l ≥ 2) maintenance can be seen in
Figure 5 and expressed as:

L−
l = t +

l−1

∑
j=1

(
1 − ηj

)
Tj + Tl L+

l = t +
l

∑
j=1

(
1 − ηj

)
Tj (8)

where, L−
l represents the working age of subsystem i before l − th maintenance and L+

l
represents the working age of subsystem i after l − th maintenance.

Figure 5. Changes of effective working age of subsystem i before and after maintenance.

The maintenance will increase the working age of subsystem i, and change its failure
rate curve. The failure rate increasing factor is used to express the impact of maintenance
on the failure rate curve for subsystem i. The relationship between the failure rate functions
before and after maintenance for subsystem i is as follows:

hl+1(t) = γlhl(t) =
l

∏
j=1

γjh1

(
t +

l

∑
j=1

(
1 − ηj

)
Tj

)
, t ∈ (0, Tl+1) (9)

where, γl is the change rate of the failure rate of subsystem i after adopting l-th maintenance,
γl ≥ 1. The failure rate curve changes under the action of different improvement factors, as
shown in Figure 6. The red line describes the failure rate curve that considers the failure
rate increasing factor. The blue line describes the failure rate curve that considers the
working age fallback factor. The green line describes the failure rate curve that considers
the working age fallback factor and the failure rate increasing factor.
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Figure 6. Change of failure rate curve before and after maintenance.

Considering the reliability limit Rmin of subsystem i of a wind turbine, when the
reliability is lower than Rmin, maintenance is undertaken to restore the performance of
subsystem i, and the reliability function can be obtained as follows:

exp
[
−
∫ T1

0
h1(t)dt

]
= exp

[
−
∫ T2

0
h2(t)dt

]
= · · · = exp

[
−
∫ TN

0
hN(t)dt

]
= Rmin (10)

Thus, the amount of minor maintenance for subsystem i in each maintenance interval
is − ln Rmin, and each maintenance interval [T1, T2, · · · , TN ] can be obtained by solving
Equation (10).

3.3. Carbon Emission Model

The impact on the environment during the life cycle of a wind turbine mainly consists
of carbon emissions from the energy consumption of using and recycling, and the recovery
is considered to reduce carbon emissions. Carbon emissions during the life cycles of wind
turbines are mainly generated by the energy consumed by operation and maintenance,
construction/installation, and the decommissioning of wind turbines. Thus, the carbon
emissions during the wind turbine life cycle can be expressed as follows:

GT = GuseX + (N + Nc)Gm +
(

1 − δN−1
)

Gp (11)

where Guse is the carbon emission generated by consuming an unit energy, X is the to-
tal energy consumed during wind turbine operation, N is the maintenance cycle, Nc is
the expected amount of minor maintenance undertaken, and Gm is the carbon emission
generated by undertaking one maintenance activity. Assuming that the carbon emissions
generated by minor maintenance, OM and PM, are the same, Gm is the same for each
maintenance activity, δN−1 is the recovery factor, and Gp is the carbon emission generated
by manufacturing a piece of a wind turbine.

X =
∫ T1

0
x1(t)dt +

∫ T2

0
x2(t)dt + · · ·+

∫ TN

0
xN(t)dt =

N

∑
l=1

∫ Tl

0
xl(t)dt (12)

Nc =
∫ T1

0
λ1(t)dt +

∫ T2

0
λ2(t)dt + · · ·+

∫ TN

0
λN(t)dt =

N

∑
l=1

∫ Tl

0
hl(t)dt (13)

where, xl(t) is the energy consumption function of wind turbine operation. It can be
obtained as follows:

x1(t) = yt + z (14)
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where, y and z are the parameters of the wind turbine energy consumption function. The
maintenance activities on wind turbines can restore performance and also change carbon
emissions. Thus, the improvement factor can be introduced into the energy consumption
function, and this is more in line with the actual situation. Before and after l-th maintenance,
the relationship between energy consumption functions can be obtained as follows:

xl+1(t) =
l

∏
j=1

γjx1

(
t +

l

∑
j=1

(
1 − ηj

)
Tj

)
=

l

∏
j=1

γj

(
y

(
t +

l

∑
j=1

(
1 − ηj

)
Tj

)
+ z

)
(15)

The carbon emissions per unit during a wind turbine life cycle can be expressed as:

GWP = GT
∑N

l=1 Tl
=

GuseX+Gm(N+Nc)+GP(1−δN−1)
∑N

l=1 Tl

=
Guse

(
∑N

l=1
∫ Tl

0 xl(t)dt
)
+Gm

(
N+∑N

l=1
∫ Tl

0 λl(t)dt
)
+GP(1−δN−1)

∑N
l=1 Tl

(16)

3.4. Expected Total Cost Model

Under the opportunistic maintenance strategy, the expected total maintenance cost
of a wind turbine can be described as the objective function. For each maintenance cycle,
the total maintenance cost is determined by the maintenance preparation cost CF, mainte-
nance operation cost TOC, maintenance adjustment cost CM, and downtime cost CL. The
maintenance cost expectation is expressed as:

EC = ECF + TOC + ECM + ECL (17)

3.4.1. Maintenance Preparation Cost and Operation Cost

Before subsystem maintenance, maintenance personnel, vehicles, tower cranes, and
other equipment are required to implement maintenance actions. Maintenance preparation
costs mainly include labor services, vehicle transportation, and equipment rental fees.
Assuming subsystem i ∈ M, M is the number of all the subsystems that require to be
maintained in a maintenance activity. For the traditional maintenance strategy, the mainte-
nance preparation cost depends on the total cost of the required maintenance subsystem,
ECF = ∑i∈M C0

i . Under the opportunistic maintenance strategy, the economic correlation
is considered when the subsystems are maintained. When multiple subsystems are main-
tained together, they share maintenance resources and allocate maintenance preparation
costs. The expression of the maintenance preparation cost can be shown as follows:

ECF = C0
i (18)

The wind-turbine performance degradation will increase its operation cost. The
operation cost is related to its energy consumption. Let Ce denote the consumption cost,
and the total operation cost can be shown as follows:

TOC = CeX = Ce

N

∑
l=1

∫ Tl

0
xl(t)dt (19)

3.4.2. Maintenance Adjustment Cost

In order to restore the subsystem to the normal operation state, different maintenance
activities will produce different maintenance costs by implementing the maintenance
strategy. These costs are collectively referred to as the maintenance adjustment cost,
which include minor maintenance costs, preventive replacement costs, and opportunistic
replacement costs. The maintenance probability is used to calculate the maintenance
adjustment cost.

p(m) indicates the probability for minor maintenance when the subsystem fails before
preventive maintenance. p(p) indicates the probability that subsystem k, which possibly
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executed PM, has no failure in interval t ∈
(

to
k, tp

k

)
, and subsystem i (i �= k), which obtained

OM, has good performance in this interval and does not need maintenance. p(o) indicates
the probability that subsystem k, which possibly executed PM in interval t ∈

(
to
k, tp

k

)
, is

in good condition, but the subsystem r (r �= i �= k) experiences failure in this interval and
needs to be replaced. The opportunistic maintenance time to

i of subsystem i approximately
obeys the exponential distribution, and its probability density function is:

gi(to
i , t) =

1
αi

exp
[
− t − to

i
αi

]
(20)

The expectation function of the maintenance adjustment cost is obtained as follows:

ECM = E
(
Cmm + Cpm + Com

)
=

n

∑
i=1

[
ci,mm pi(m) + ci,om pi(o) + ci,pm pi(p)

]
(21)

The maintenance probability pi(m), pi(p), pi(o) can be shown as follows:

pi(m) =

⎧⎨
⎩

∫ tk
0 fi(t)dt, i = k∫ tp

k
tk

fk(t)∏
i

[
1 − ∫ tp

k
ti

gi
(
ti, u

)
du
]

dt, i ∈ O

pi(o) =
∫ tp

k
tk

[(
1 − ∫ t

ti
fk(u)du

)
gr(to

r , t)∏i∈O,i �=r

(
1 − ∫ tp

k
ti

gi
(
ti, u

)
du
)]

dt

pi(p) =
[

1 − ∫ tp
k

ti
fk(t)dt

]
∏

i∈O

[
1 − ∫ tp

k
ti

gi
(
ti, t

)
dt
]

(22)

3.4.3. Shutdown Loss Cost

The preventive replacement and opportunistic maintenance of a subsystem require
the shutdown of a wind turbine to complete the maintenance activities. Thus, the wind
turbine cannot generate power normally during this period, so the shutdown loss cost is
calculated into the total maintenance cost. The downtime loss cost is equal to the loss cost
per unit multiplied by the downtime, and can be obtained as follows:

CL = cltd = cl
(
tset + tm) (23)

For the maintenance process of wind turbines, the structural correlation is mainly
demonstrated when multiple subsystems are maintained together, and one subsystem’s
disassembly and installation process will affect other subsystems to a certain degree. The
lost time of subsystem maintenance equals the summation of preventive maintenance tm

k
and opportunistic maintenance tm

i . The lost time of opportunistic maintenance is calculated
by considering the structural correlation, and the subsystem that takes the longest time
for opportunistic maintenance can be selected. The structure correlation matrix λ is used
to represent the strong relationships among the structures of subsystems. Thus, tm can be
expressed as:

λ =

⎡
⎢⎢⎢⎣

λ1,1 λ1,2 · · · λ1,i
λ2,1 λ2,2 · · · λ2,i

...
...

. . .
...

λi,1 λi,2 · · · λi,i

⎤
⎥⎥⎥⎦tm = tm

k + λk,imax{tm
i }, i ∈ O (24)

where structural correlation coefficient λi,j ∈ [0, 1), λi,j = λj,i. By combining with Equa-
tions (23) and (24), the expected shutdown loss cost can be obtained as follows:

ECL = E
(

cltd
)
= cl

[
tset + tm

k pk(p) + λk,imax{tm
i }pi(o)

]
(25)
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Assuming that there are N maintenance cycles in the whole life cycle T, the expected
total maintenance cost in the whole life cycle can be obtained as follows:

EC =
N
∑

l=1
EC(l) =

N
∑

l=1

M
∑

i=1

[
C0

i +
(
ci,mm pi(m) + ci,om pi(o) + ci,pm pi(p)

)
+ cltd

]
+ TOC

= ∑N
l=1 ∑M

i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0
i +

(
ck,mm

∫ tk
0 fk(t)dt + ci,mm

∫ tp
k

tk
fk(t)∏i

[
1 − ∫ tp

k
ti

gi
(
ti, u

)
du
]

dt
)

+ci,om
∫ tp

k
tk

[(
1 − ∫ t

ti
fk(u)du

)
gr(to

r , t)∏i∈O,i �=r

(
1 − ∫ tp

k
ti

gi
(
ti, u

)
du
)]

dt

+ci,pm

[
1 − ∫ tp

k
tk
[ fk(t)]dt

]
∏i∈O

[
1 − ∫ tp

k
ti

gi(t)dt
]

+cl
[
tset + tm

k pk(p) + λk,imax
{

tm
i
}

pi(o)
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ TOC

(26)

4. The Procedure of Solving Model

In the opportunistic maintenance model, when the opportunistic maintenance thresh-
old to

i is being changed, subsystem i ∈ O meeting the opportunistic maintenance conditions
will change, directly affecting the maintenance plan of the next cycle, and dynamically
changing the whole maintenance process and the total maintenance cost. It is assumed
that the length of the opportunistic maintenance interval of each subsystem is the same,
and this lets w denote the length of the opportunistic maintenance interval, to

i = to
i − w.

In w ∈
[
0, min

{
tp
i

}]
, the total maintenance cost EC under the opportunistic maintenance

threshold is minimized by traversing w. w∗ is the optimal opportunistic maintenance
duration and to∗

i = tp
i − w∗ is the optimal opportunistic maintenance threshold. Figure 7

is the solution flow chart, k describes the subsystem to possibly receive PM, and i (j �= k)
describes the subsystem to possibly receive OM simultaneously. The specific calculation
steps are as follows:

Step 1. Input the known condition, Weibull distribution parameters, failure correlation
coefficient, and maintenance cost.

Step 2. Judge whether the running time t reaches the preventive maintenance threshold
tp
k = min

{
tp
i

}
, i ∈ O. If t < tp

k , update the run time t = t + 1 and cycle the step until the
preventive maintenance conditions are met.

Step 3. For other subsystems i(i �= k) that have not experienced failure, calculate to
i and

judge whether the subsystem needs maintenance based on the value of w. If to
i < t < tp

i ,
subsystem i meets the opportunistic maintenance conditions, and group maintenance is
performed on subsystems i and k. If the opportunistic maintenance conditions are not met
by i, subsystem k shall receive preventive maintenance separately. Calculate maintenance
probability p(m), p(p), p(o) and maintenance cost expectation EC(l) of the l-th maintenance
cycle. Update Tl = tp

k + td.
Step 4. If ∑N

l=1 Tl < T, return to Step2 for the next cycle of maintenance. Until
∑N

l=1 Tl ≥ T. Exit the cycle.
Step 5. Calculate the expected total maintenance cost EC in the whole life cycle, deter-

mine the optimal opportunistic maintenance interval w∗, and the optimal opportunistic
maintenance threshold to∗

i .

58



Energies 2022, 15, 625

Figure 7. Solution flow chart.

5. Case Study

5.1. Data Preparation

This paper selects the same type of wind turbine in a wind farm for case analysis. The
key components of the subsystem are used to analyze the impeller system, spindle system,
gearbox, and generator, numbered 1–4. The specified service life of such wind turbines is
15 years. The Weibull distribution parameters, single maintenance cost, and maintenance
time of the subsystem are shown in Table 2.
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Table 2. Maintenance parameters.

No. i Subsystem

Weibull Distribution
Parameters

Maintenance Cost (Unit: 10,000 yuan)
Maintenance Time

(Unit: h)

αi βi C0 cmm cpm com cl tset tm
i

1 Impeller system 3000 3

3.5 0.65

63.2 63.2

0.24 2

240
2 Spindle system 3750 2 65.8 65.8 480
3 Gearbox 2400 3 180.0 180.0 360
4 Generator 3300 2 75.7 75.7 168

The joint risk degree among components is used to describe the correlation degree of
random failure among components. The random correlation coefficient matrix χ is obtained
by combining the failure correlation coefficient and the wind turbine failure transmission
diagram (Figure 4).

χ =

⎡
⎢⎢⎣

0 0 0 0
0.031 0 0 0
0.042 0.13 0 0.11

0 0 0 0

⎤
⎥⎥⎦ (27)

Based on the reliability requirements for failure-free operation of wind turbines and
referring to the reliability image of subsystems (see Figure 8), in Figure 8, the unit of values
in the abscissa is a day. The preventive maintenance time threshold of the subsystem is
obtained under this requirement (see Table 3).

Figure 8. Reliability of four subsystems.

Table 3. Preventive maintenance reliability threshold and its corresponding time threshold.

Subsystem No. i 1 2 3 4

Rp
i 0.94 0.95 0.96 0.96

tp
i (Unit: day) 823 536 619 529

5.2. Comparison of PM and OM

Compared with a preventive maintenance model based on the three-stage time de-
lay theory proposed in the literature [30], opportunistic maintenance mainly considers
the economic correlation among subsystems. The maintenance cost decreases with the
reduction of downtime. Table 4 gives the maintenance results of wind turbines under two
maintenance strategies: traditional preventive maintenance and opportunistic maintenance.
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Under the preventive maintenance strategy, the total number of wind turbine shutdowns
in the whole life cycle is thirty-four. In the opportunistic maintenance strategy, the total
number of wind turbine downtimes is fifteen, and the number of wind turbine downtimes
is reduced by nineteen, accounting for about 55.88%.

Table 4. Comparison of maintenance results between PM [30] and OM.

Cycle
PM [30] OM(w = 220)

t (Unit: day) Subsystem i t (Unit: day) PM Subsystem k OM Subsystem i

1 529 4 529 4 2
2 536 2 619 3 1
3 619 3 1058 4 2, 3
4 823 1 1442 1 2, 3, 4
5 1058 4 1971 4 2
6 1072 2 2061 3 1
7 1238 3 2500 4 2, 3
8 1587 4 2884 1 2, 3, 4
...

...
... — — —

15 2476 3 5384 4 2, 3
...

...
... — — —

34 5360 2 — — —

Figure 9 shows the changing trend of total maintenance costs with increasing oppor-
tunistic maintenance interval w. In Figure 9, the unit of values in the abscissa is a day, and
the unit of values in the ordinate is 10,000 yuan. For w = 0, opportunistic maintenance is
not considered. Thus, frequent downtime leads to high maintenance preparation costs, and
the expected value of the total maintenance cost is EC = 6244.01 (Unit: 10,000 yuan). After
considering opportunistic maintenance, the probability of subsystems increases with the
increase of w, and the cost of opportunistic maintenance increases continuously. Due to
the reduction of downtime, the maintenance preparation cost and downtime loss cost are
greatly reduced in opportunistic maintenance. For w∗ = 220 (unit: day), the optimal value
of the objective function is 2547.98 (unit: 10,000 yuan). Finally, compared with not consider-
ing opportunistic maintenance, the expected total maintenance cost can be decreased by
3696.03 (unit: 10,000 yuan), accounting for about 59.19%.

Figure 9. Expected cost under the opportunistic maintenance strategy.
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5.3. OM Considering Structural Correlation and Random Correlation

For opportunistic maintenance, the impact of random correlation on wind turbine
maintenance activities is considered. Type II random correlation accelerates the failure
speed of subsystems to varying degrees. The preventive maintenance time threshold of a
subsystem to meet the requirements of operation reliability will be affected by the random
correlation coefficient and change. Table 5 shows the preventive maintenance time thresh-
old calculated after considering the random correlation. Under the influence of subsystems
1, 2, and 4, subsystem 3 is 105 days ahead of that without considering the random correla-
tion, becoming the subsystem that takes the lead in meeting the preventive maintenance
reliability requirements, and the maintenance plan changes accordingly. Compared with
the opportunistic maintenance strategy without considering random correlation, taking
the maintenance plan when the length of opportunistic maintenance interval is 220 as an
example (see Table 6), the expected total maintenance cost is 2888.51 (unit: 10,000 yuan).
Due to the transformation of the maintenance action of subsystem 3 from OM to PM, the
maintenance cost increases by 340.53.

Table 5. PM time threshold with the consideration of stochastic dependence.

Subsystem No. i 1 2 3 4

tp
i (Unit: day) 823 530 514 529

Table 6. Maintenance results under OM considering stochastic dependence (w = 220).

Cycle t (Unit: day)
PM

Subsystem k
OM

Subsystem i Cycle t (Unit: day)
PM

Subsystem k
OM

Subsystem i

1 514 3 2, 4 9 3229 1 3
2 823 1 3 10 3449 4 2
3 1043 4 2 11 3788 3 2, 4
4 1382 3 2, 4 12 4052 1 —
5 1664 1 – 13 4307 3 2, 4
6 1901 3 2, 4 14 4812 3 1, 2, 4
7 2406 3 2, 3, 4 15 5326 3 2, 4
8 2920 3 2, 4 — — — —

Under OM by considering random correlation, when the opportunistic maintenance
time interval is 240 (unit: day), the objective function obtains the optimal value 2576.13
(unit: 10,000 yuan) (see Figure 10). In Figure 10, the unit of values in the abscissa is a day,
and the unit of values in the ordinate is 10,000 yuan. On this basis, the structural correlation
among subsystems is further considered. For w = 240 (unit: day), There are two types of
maintenance classification: M = {3, 2, 4}, PM for subsystem 3, and OM for subsystems
2 and 4, and M = {1, 2, 3, 4}, PM for subsystem 1, OM for subsystems 2, 3, and 4. Thus,
when k executed PM equals 3 or 1, max

{
tm
i
}
= tm

2 . The structural correlation coefficients
λ3,2 and λ1,2, and the impact on shutdown loss cost need to be considered.

λ3,2 and λ1,2 are taken in sequence in units of 0.1 in the interval [0, 1] to calculate
the shutdown loss cost. When the structural correlation coefficients are all 0, this means
that only random correlation and economic correlation are considered. The shutdown
loss cost is 993.24 (unit: 10,000 yuan). It can be seen from Table 7 that the shutdown loss
cost decreases with the increase of the structural correlation coefficient. When λ3,2 and
λ1,2 equal 0.9, the shutdown loss cost is 864.04 (unit: 10,000 yuan), which is reduced by
129.2 (unit: 10,000 yuan) compared with without considering the structural correlation.
For λ1,2 = 0.9, λ3,2 = 0, the shutdown loss cost is reduced by 71.5 (unit: 10,000 yuan). For
λ1,2 = 0, λ3,2 = 0.9, the shutdown loss cost is reduced by 57.7 (unit: 10,000 yuan). This
shows that the structural correlation between subsystem 2 and subsystem 1 has a greater
impact on the loss cost of a wind turbine.
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Figure 10. Expected cost under OM strategy before and after considering stochastic dependence.

Table 7. Downtime cost under different values of λ3,2 and λ1,2.

λ1,2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ3,2

0 993.24 985.30 977.36 969.41 961.47 953.53 945.59 937.65 929.70 921.76
0.1 986.83 978.88 970.94 963.00 955.06 947.12 939.17 931.23 923.29 915.35
0.2 980.41 972.47 964.53 956.59 948.65 940.70 932.76 924.82 916.88 908.94
0.3 974.00 966.06 958.12 950.17 942.23 934.29 926.35 918.41 910.46 902.52
0.4 967.59 959.64 951.70 943.76 935.82 927.88 919.93 911.99 904.05 896.11
0.5 961.17 953.23 945.29 937.35 929.40 921.46 913.52 905.58 897.64 889.69
0.6 954.76 946.82 938.87 930.93 922.99 915.05 907.11 899.17 891.22 883.28
0.7 948.34 940.40 932.46 924.52 916.58 908.64 900.69 892.75 884.81 876.87
0.8 941.93 933.99 926.05 918.11 910.16 902.22 894.28 886.34 878.4 870.45
0.9 935.52 927.58 919.63 911.69 903.75 895.81 887.87 879.92 871.98 864.04

5.4. Carbon Emission Analysis

The optimization results of the wind turbine carbon emission model indicates that the
number of PM reaches 11, and the objective function value of the carbon emission model is
the smallest and is GWP = 4015.7g CO2−eq. Economic benefit is an essential factor that
enterprises must consider. Under the comprehensive consideration of environmental and
economic benefits, the best amount of preventive maintenance is optimal, and the goal
involving carbon emissions is relatively good.

5.5. Sensitivity Analysis

This paper mainly analyzes the sensitivity of three parameters: carbon emission Guse
generated by wind turbine consumption per unit energy, carbon emission Gm generated by
wind turbine maintenance activities, and carbon emission Gp generated by manufacturing
one wind turbine.

(1) Guse. When Guse is being changed, the carbon emission per unit operation of a wind
turbine will also change, as will the optimal solution of the wind turbine carbon emission
model. The changing trend is shown in Figure 11.

63



Energies 2022, 15, 625

Figure 11. The change of GWP and N with the change of Guse.

In Figure 11, the abscissa represents maintenance cycle N (i.e., the total amount of
wind turbine downtime). The top line (green line) is Guse = 3195gCO2−eq, and the optimal
N∗ = 10. The middle line (black line) is Guse = 2695gCO2−eq, and N∗ = 11. The bottom
line (red line) is Guse = 1695gCO2−eq, and N∗ = 14. When the value of Guse becomes
larger (smaller), it means that the carbon emissions per unit of energy consumed by a wind
turbine become larger (smaller), which will release more (less) greenhouse gas pollution
into the environment during its operation. Thus, for a single carbon emission model, it is
necessary to reduce (increase) the amount of preventive maintenance. Considering the cost
rate comprehensively, when the value of Guse becomes smaller, the value of the optimal
solution of preventive maintenance times is more sensitive to the change. When the value
of Guse becomes larger, the value change of the optimal solution of preventive maintenance
times is not sensitive.

(2) Gm. When Gm is being changed, the change of wind turbine carbon emissions per
unit operation is shown in Figure 12.

Figure 12. The change of GWP and N with the change of Gm.

In Figure 12, the top line (green line) is Gm = 6450gCO2−eq, and N∗ = 11. The
middle line (black line) is Guse = 11, 450gCO2−eq, and N∗ = 11. The bottom line (red line)
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is Guse= 16, 450gCO2−eq, and N∗ = 11. It can be seen that when Gm is being changed, the
change of the optimal solution of the carbon emission model and the optimization decision
model is not sensitive, but the carbon emission per unit operation is changed.

(3) Gp. When Gp is being changed, the carbon emission per unit operation of a wind
turbine will also change, and the optimal solution of the wind turbine carbon emission
model will also change. The changing trend is shown in Figure 13.

Figure 13. The change of GWP with the change of Gp.

From top to bottom, the first line (pink line) is Gp= 1.6 × 108gCO2−eq, N∗ = 16, the
second line (green line) is Gp = 9 × 107gCO2−eq, N∗ = 12, the third line (black line) is
Gp = 8 × 107gCO2−eq, N∗

g = 11, and the fourth line (red line) is Gp = 7 × 107gCO2−eq,
N∗ = 10. When the value of Gp becomes larger (smaller), it means that the carbon emissions
generated by manufacturing one wind turbine become larger (smaller). For a single carbon
emission model, it is necessary to increase (reduce) the amount of preventive maintenance
to reduce the carbon emission per unit operation in the whole life cycle of a wind turbine.
Considering the cost rate comprehensively, when the value of Gp becomes larger, the value
of the optimal solution of the preventive maintenance times is more sensitive. When the
value of Gp becomes smaller, the value of the optimal preventive maintenance times is
not sensitive.

6. Conclusions

This paper mainly studies the opportunistic maintenance strategy of wind turbines.
The economic correlation, random correlation, and structural correlation among subsystems
and carbon emissions can be considered in the proposed maintenance model. The stochastic
correlation coefficient matrix is constructed by a failure chain to describe the reliability of
the subsystems, and the structural correlation coefficient is used to describe the downtime
loss cost in order to present the opportunistic maintenance model. Moreover, the operation
energy consumption of wind turbines increases with their performance degradation. The
environmental benefits are combined in the maintenance model of wind turbines. The
working age fallback factor and failure rate increasing factor are introduced to establish the
carbon emission model and the total expected cost model. This paper further considers
the reduction effect of wind turbines recovery on cost and emission. The benefits of wind
turbines can introduce recovery and emissions of maintenance activities into the proposed
model by adopting the dynamic failure rate function and carbon emission function. The to-
tal expected maintenance cost could be described as the objective function for the proposed
opportunistic maintenance model, including maintenance preparation cost, maintenance
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adjustment cost, shutdown loss cost, and operation cost. The operation cost is related to
the energy consumption of wind turbines. Finally, a case study is provided to analyze
the performance of the proposed model. Compared with preventive maintenance, the
proposed model demonstrates better performance on wind turbines maintenance problems
and can obtain a relatively good solution in a short computation time. The method pro-
posed in this paper provides certain significance for guiding the selection of a wind turbine
maintenance strategy.

The proposed model does not consider the complex external operation environment
and external impacts. Thus, the joint optimization model between the carbon emission
model and condition-based maintenance that considers the external operation environment
and effect needs to be developed in the future.
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Abstract: This paper proposes a fault diagnosis method for ship electrical power systems on the
basis of an improved convolutional neural network (CNN) to support normal ship operation. First,
according to the mathematical model of the ship electrical power system, the simulation model of the
ship electrical power system is built using the MATLAB/Simulink simulation software platform in
order to understand the normal working state and fault state of the generator and load in the power
system. Then, the model is simulated to generate the fault response curve, and the picture dataset of
the network model is obtained. Second, a CNN fault diagnosis model is designed using TensorFlow,
an open-source tool for deep learning. Finally, network model training is performed, and the optimal
diagnosis results of the ship electrical power system are obtained to realize structural parameter
optimization and diagnosis. The diagnosis results show that the established simulation model and
improved CNN can provide support for fault diagnosis of the ship electrical power system, improve
the operation stability and safety of the ship electrical power system, and ensure safety of the crew.

Keywords: fault diagnosis technology; improved convolutional neural network; ship electrical power
system; Simulink; synchronous generator

1. Introduction

With the continuous development of modern technology, ship electrical power sys-
tems that can realize overall coordination of the energy of the entire ship are expected to
constitute the development trend of ships in the future [1,2]. Ship electrical power systems
are significantly different from land power systems [3]. In particular, they are strongly
independent. Because ship electrical power systems have a smaller capacity than onshore
power systems, bus voltage fluctuation may occur under the application or removal of a
large load, which can easily cause serious faults. Any equipment fault in the system can
affect the entire power grid. If potential safety hazards occur during operation, they will
threaten the safety of the entire ship. Ship electrical power systems are regarded as the
core of the entire ship. They are independent and have high requirements in terms of safe
operation and fault diagnosis. They need faster and more accurate fault diagnosis than
land power systems in case of system faults [4]. Therefore, fault diagnosis technologies are
necessary to study ship electrical power systems [5].

Fault diagnosis of a ship electrical power system entails modeling and simulation of the
system. Early modeling methods mainly involved physical modeling, i.e., a physical model
was established using the similarity principle. At present, the mathematical modeling
method is mainly used. This method can abstract the internal characteristics of the system
into mathematical formulas, deduce the internal characteristics of the actual system, and
diagnose faults through changes in the relationship between the independent variables
and the dependent variables of the mathematical formulas. Research on modeling and
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simulation of ship electrical power systems is based on the power system model and
involves a series of studies on how to maintain system stability. The ship electrical power
system model is integrated with the modules of each basic unit. First, a mathematical
model is established for each basic unit of the power system according to the structure
and basic principles of the ship electrical power system. Then, a simulation model is built
to form a complete ship electrical power system model [6]. The research process should
include modeling and simulation technologies, automatic control, and other theoretical
methods. In particular, the generator and its excitation are related to the voltage stability
of the power system. The linear single variable control method, which was first used
in excitation control, has been subsequently modified into the nonlinear multivariable
control method. The development of the excitation control method has undergone several
stages [7], from the earliest classical proportional integral and differential (PID) control
method to the multivariable control method based on modern theory. At present, it is
applied as an intelligent control method. In [8], the authors proposed a T-S fuzzy-weighting-
based excitation switching control method for a tidal generator set, which can overcome the
dynamic and static performance defects in the excitation control of the tidal generator set
and improve its performance. In [9], feedback control was adopted for the field currents of
the two-phase brushless exciter, and speed reference control was adopted for the excitation
frequency and phase sequence; this method achieves a constant field current for the main
generator. In [10], the authors presented a nonlinear coordinated excitation and static
VAR compensator (SVC) control for regulating the output voltage and improving the
transient stability of a synchronous generator infinite bus (SGIB) power system. In terms
of the mathematical development of fault diagnosis methods for ship electrical power
systems, the author in [11] developed a higher-order mathematical model of the generator
to describe the generator state in greater detail. In [12], the authors proposed three different
mathematical models for the mathematical modeling of a synchronous generator, used the
models under different working conditions, and conducted a detailed comparative analysis
of the models to improve the simulation accuracy.

In general, fault diagnosis methods are currently categorized into three main types [13],
namely fault diagnosis based on analytical modeling, fault diagnosis based on signal
processing, and fault diagnosis based on artificial intelligence. Analytical modeling includes
state and parameter estimation as well as consistency testing. It has the characteristics
of real-time diagnosis and the essence of deep human systems. However, it also has
some defects, such as a large modeling error and significant noise interference. Signal
processing includes spectrum analysis and wavelet transformation. It has the advantages of
simple application and good real-time performance. However, it cannot deal with potential
faults. Artificial intelligence [14] includes neural networks, fuzzy theory, genetic algorithms,
rough sets, artificial immune systems and fuzzy cluster analysis algorithms, fault trees, and
support vector machines, which have strong learning and reasoning abilities. To overcome
key faults such as a broken rotor bar or electrical phase fault, a fault diagnosis method for
the electric drive of an electric ship has been proposed [15]; however, the number of fault
diagnosis objects is insufficient. In [4], the proposed load monitoring and fault detection
method outlines a data-clustering-based approach to extract unique feature vectors from
short-time Fourier transform analysis for any pulsed load; however, this method is not
suitable for any general load curve integrated solution. In [16], the location and severity
of a stator winding fault of a permanent magnet synchronous motor were modeled and
detected, and a mathematical model that can describe both the health state and the fault
state was established; however, the mathematical model is not suitable for other ship
electrical power system equipment. In [17], a remote system was introduced for online
condition monitoring and fault diagnosis of a gas turbine on an offshore oil well drilling
platform on the basis of a kernelized information entropy model. In [18], a multi-class
multi-core correlation vector machine fault diagnosis method based on manifold learning
and swarm intelligence optimization was proposed to improve the predictive maintenance
activities of diesel engines.
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This paper proposes an improved network fault diagnosis model based on a convolu-
tional neural network (CNN). This method can directly input the original image without
feature decomposition and extraction. It has significant advantages, such as simple ap-
plication, high operation speed, automatic parameter updates, and stable, convergent, and
accurate results. These advantages enable the method to overcome existing drawbacks in
the fault diagnosis of ship electrical power systems. First, based on the MATLAB/Simulink
(The MathWorks Inc., Natick, MA, USA) simulation software platform, the ship electrical
power system simulation model is established to understand the normal working state and
fault state of the generator and load. Then, the fault response curve is generated and the
picture dataset of the network model is obtained. Second, the CNN fault diagnosis model
is designed using TensorFlow, an open source tool for deep learning. Finally, network
model training is performed, and optimal diagnosis results are obtained to realize structural
parameter optimization and diagnosis.

The remainder of this paper is organized as follows. Section 2 describes the model and
simulation of the ship electrical power system. Section 3 discusses the development of the
improved CNN. Section 4 presents and analyzes the experimental results. Finally, Section 5
concludes the paper.

2. Ship Electrical Power System

2.1. Model of Excitation Control System

At present, most ships use AC electric propulsion systems. Because the electrical
equipment of the ship mainly comprises inductive loads, the load current will cause
demagnetization of the synchronous generator, and the load change will alter the power
grid voltage of the ship [19]. To ensure stable operation of the power system, the excitation
system will adjust the excitation current supplied to the generator according to the load
change, make the generator terminal voltage return to the given value, and realize stability
of the generator terminal voltage.

Currently, the most common excitation mode of generators in ship electrical power
systems is phase compound excitation of brushless excitation systems. The combination of
brushless excitation and automatic voltage regulation (AVR) can effectively enhance the
forced excitation capacity and reaction speed of the excitation system. The principle of the
excitation system is that the rotating exciter rotates at the same speed as the magnetic field
of the main generator, and the auxiliary exciter rotates with the rotating exciter.

AVR plays an important role in phase compound excitation systems [20]. The power
supply unit in AVR converts the output voltage of the generator into the voltage required by
the system through voltage transformation, rectification and other links, and then transmits
the results to the PID control unit and phase control unit. The synchronous control unit
controls and adjusts the phase change of the excitation current output through the exciter
to maintain the same change as the phase change of the applied thyristor excitation voltage.
The voltage difference detection unit monitors the error signal between the reference voltage
and the actual voltage in the system. The PID control unit amplifies the voltage error signal.
The phase control unit mainly amplifies the signal. The main thyristor rectifier unit mainly
rectifies the armature current of the static exciter.

Based on the above-mentioned principles and by referring to the excitation system
model recommended by IEEE [21], the mathematical model of the excitation system can be
obtained as follows:

(1) Mathematical model of phase compound excitation device is represented by d and q
components as follows:

Ur =
√
(Ud − KIdx)2 + (Uq − KIqx)2 (1)

where Ur is the output voltage of the phase compound excitation device, Ud is the armature
terminal voltage of generator axis d, Uq is the armature terminal voltage of generator axis q,
K = 9

√
2/π, and x is the moving reactance.
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(2) Mathematical model of voltage difference

The model of voltage difference is an adder model, which compares the effective
voltage signal input of other elements and obtains a voltage difference signal as a control
signal. The difference between the output terminal voltage and the set voltage satisfies
Equation (3):

Ut f =
√

U2
d + U2

q ·
1

1 + Trs
(2)

ΔU = Ure f +
Uf 0

Ke
− Ut f + Ustab − Uf f (3)

where Ut f is phase compound excitation voltage signal, Tr is the time constant of the
filter, Ure f is the reference voltage of the automatic voltage regulating device, ΔU is the
voltage difference between the output terminal voltage and the set voltage, Uf 0 is the initial
excitation voltage, ke is the effective gain of the exciter, Ustab is the grounding voltage of
power system (0), and Uf f is the feedback output voltage.

(3) Amplifier mathematical model The mathematical equation that the amplifier satisfies is:

Ua = Uc
Ka

1 + Tas
(4)

where Ua is the output voltage of the amplifier, Uc is the voltage output by the compensator,
Ka is the gain of the amplifier, and Ta is the time constant of the amplifier.

(4) Mathematical model of lead–lag compensator The mathematical equation that the
lead–lag compensator satisfies is:

Uc = ΔU
TcS + 1
1 + Tbs

(5)

where Tc and Tb are the lead compensation time constant and lag compensation time
constant of the compensator, respectively.

(5) Mathematical model of proportional saturation element The mathematical equation
of proportional saturation element is:

In 0 ≤ Ef ≤ Ef max, Ef = Ed, Ef max=

{
constant, Kp = 0
KpUt f , Kp ≥ 0 conditions

Then, Ef d = Ua + Ur (6)

where Ef d is the voltage output by the voltage regulating device, and Ef and Ef max
are the proportional saturation element output voltage value and maximum voltage
value, respectively.

(6) Simplified exciter mathematical model Exciter is usually represented by one-order
inertia element, as shown in Equation (7):

Uf = Ef d
1

Ke + Te
(7)

where Uf is the output voltage of the exciter and Te is the time constant of the exciter.

(7) The mathematical equation that the feedback stabilization element satisfies is:

Uf f = Uf
K f s

1 + Tf s
(8)

where K f and Tf are the gain and time constant of the feedback element.

2.2. Simulation Model of Diesel-Driven Synchronous Generator and Its Excitation System

According to the above-mentioned mathematical model, the simulation model of the
excitation control system [22] is established using simulation software as follows:
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As shown in Figure 1, the main regulator and lead–lag compensator, as the main
controller and damping feedback link, constitute a closed-loop PID control loop. Input vref
is the set value of the synchronous generator terminal voltage, vd and vq are the voltage
values on the d-axis and q-axis of the generator, respectively, and vstab is the synchronous
generator ground zero voltage. The output terminal Vf of the excitation control system is
the excitation voltage. In addition to the corresponding parameters of each link shown in
Figure 1, the initial excitation voltage Vf0 is set to 1, and the upper and lower limits of the
proportional saturation link for the limiting amplitude are 5 and 0, respectively.

 

Figure 1. Excitation control system simulation model.

The power unit of the power system of the ship adopts diesel fuel combination for
combined power. The main power unit is the synchronous generator driven by diesel,
while the auxiliary power unit is the asynchronous generator driven by a gas turbine.
The synchronous generator is the synchronous generator simulation model in the MAT-
LAB/Simulink/SimPowerSystems module library, and its parameters are listed in Table 1.
To ensure stability and correctness of the simulation graphics, it is also necessary to use the
built-in function of the powergui module in Simulink in order to initialize the generator.

Table 1. Simulation parameters of synchronous generator.

Parameter Value

Rated capacity, Pn 1560 kVA
Rated voltage, Vn 480 V

Power factor, cos θ 0.8
Rated frequency, fn 60 Hz
Polar logarithm, p 2

Stator winding resistance, Rs 0.022 (pu)
Direct axis synchronous reactance, Xd 2.49 (pu)

Quadrature axis synchronous reactance, Xq 1.22 (pu)
Direct axis transient reactance, Xd

′ 0.15 (pu)
Direct axis subtransient reactance, Xd

′′ 0.17 (pu)
Quadrature axis subtransient reactance, Xq ′′ 0.19 (pu)

D − axis transient open circuit time constant, Td0
′ 4.4754

D − axis subtransient open circuit time constant, Td0
′′ 0.0667

Q − axis subtransient open circuit time constant, Tq0
′′ 0.1

2.3. Simulation Model of Gas-Turbine-Driven Asynchronous Generator

The auxiliary power unit gas turbine has a complex structure. To better simulate the
operation, the turbine part of the of gas turbine is used to replace the entire gas turbine [23],
as shown in Figure 2.
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Figure 2. Turbine simulation model.

The turbine uses a two-dimensional look-up table to calculate the turbine torque
output (TM) as a function of the gas speed (w speed) and turbine speed (w turbo) of the
gas turbine.

The asynchronous generator is the asynchronous generator simulation model in the
MATLAB/Simulink/SimPowerSystems module library. Its parameters are listed in Table 2.

Table 2. Simulation parameters of asynchronous generator.

Parameter Value

Rated capacity, Pn 750 kVA
Rated voltage, Vn 480 V

Power factor, cos θ 0.8
Rated frequency, fn 60 Hz
Polar logarithm, p 2

Stator resistance, Rs 0.022 (pu)
Stator inductance, Ls 0.11 (pu)
Rotor resistance, Rr

′ 0.021 (pu)
Rotor inductance, Lr

′ 0.11 (pu)
Mutual inductance, Lm 3.7 (pu)

2.4. Discrete Frequency Regulator

Figure 3 shows the simulation model of the discrete frequency regulator [24]. The
frequency is controlled by the discrete frequency regulator module. The controller uses a
standard three-phase phase locked loop (PLL) system to measure the system frequency.
The measured frequency is compared with the reference frequency (60 Hz) to obtain
the frequency error. The error is then integrated to obtain the phase error. Further, the
proportional differential (PD) controller uses the phase error to generate an output signal
representing the required secondary load power. The signal is converted into an 8 bit digital
signal to control the switching of eight three-phase secondary loads. To minimize voltage
interference, switching occurs when the voltage crosses zero.

2.5. Ship Electrical Power System Simulation Model

The ship electrical power system model consists of the diesel-driven main generator
set module, gas-turbine-driven auxiliary generator set module, and power load. The main
load is 300 kW [25]. The secondary load block consists of eight groups of three-phase
resistors connected in series with the GTO thyristor switch. The nominal power of each
unit follows a binary series; thus, the load can be varied from 0 to 510 kW in steps of 2 kW.
The GTO is simulated by an ideal switch. In summary, the simulation model of the ship
electrical power system can be obtained as shown in Figure 4. A, B and C are phase lines.
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Figure 3. Discrete frequency regulator simulation model.

 

Figure 4. Ship electrical power system simulation model.

2.6. Typical Fault Simulation of Ship Electrical Power System

Ship electrical power systems are different from land power systems. In particular,
ship electrical power systems are strongly independent. A component fault in the ship
power grid may affect the entire power grid. Short-circuit faults and open-phase faults are
typical faults that pose serious threats. Such faults affect not only individual equipment
but also the power grid of the entire ship. In severe cases, they may lead to paralysis
of the ship power grid. As shown in Table 3 short-circuit faults include single-phase
short-circuit grounding, two-phase short circuit, two-phase short-circuit grounding, and
three-phase short circuit, while open-phase faults include single-phase disconnection and
two-phase disconnection. It is necessary to simulate and diagnose the state of short-circuit
and open-phase faults as typical faults in ship electrical power systems.

There are many reasons for short-circuit faults [26], such as line aging, component
damage, corrosion and ring breaking in the working environment of the ship, and com-
ponent insulation. Short-circuit faults pose serious threats, as they may burn important
equipment, interfere with nearby communication, endanger life, and even lead to power
grid collapse and loss of power supply for the entire ship. For ship electrical power systems,
any type of short-circuit fault can not only threaten the safety of the entire ship power grid
but also produce various problems such as electromagnetic interference. Open-phase faults,
similar to short-circuit failure, will also has devastating effects.

Based on the simulation model of the ship electrical power system, the “three-phase
fault” fault module of Simulink is added at the synchronous generator, asynchronous
generator, main load, and secondary load ends to set the time of fault occurrence and
simulate typical single-phase short-circuit grounding faults, two-phase short-circuit faults,
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two-phase short-circuit grounding faults, and three-phase short-circuit faults [27]. A “three-
phase breaker” is used to set the occurrence time of open-phase faults and simulate typical
single-phase disconnection and two-phase disconnection.

Table 3. Schematic diagram of faults.

Faults Type Schematic Diagram

Single-phase short-circuit grounding

 

Two-phase short circuit

Two-phase short-circuit grounding

 

Three-phase short circuit

Single-phase disconnection

Two-phase disconnection

This section describes single-phase short-circuit grounding faults at the synchronous
generator end. During normal operation, the three phases are symmetrical; hence, regard-
less of which phase of ABC is grounded, the changes in the short-circuit faults are basically
the same. The single-phase short-circuit grounding fault simulation is performed by taking
phase a as an example. The fault module is set to phase a grounding in 10 s, the fault
module is cut off in 10.5 s, and the total simulation time is 25 s. Before 10 s, the entire power
system was in stable operation. At 10 s, the fault module caused phase a short-circuit
grounding fault, and the fault was removed after 0.5 s. The simulation results are shown
as response curves in Figure 5. When different faults occur in different equipment of the
power system of the ship, the amplitudes of the four output response curves in the fault
time period are different from the normal waveform, and the differences are significant.
Therefore, this is used as the basis for fault diagnosis.

The abscissa represents time, and its unit is second (s). Vf (pu) is the unit value of the
excitation voltage, Frequency (Hz) is the system frequency, rotor speed wm (pu) is the unit
value of the synchronous generator speed, and ASM speed (pu) is the unit value of the
asynchronous generator speed.

It can be seen that in the initial stage of the ship electrical power system, the system
tends to be in stable operation after starting, and the speed, excitation voltage and frequency
of the two generators have not changed, and the entire power system has not fluctuated
significantly. At 10 s, the fault module “Three-Phase Fault” causes the single-phase short-
circuit grounding fault of Phase A, and the short-circuit current in phase A, generator speed,
excitation voltage and frequency fluctuate greatly. The single-phase short-circuit grounding
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fault affects the stability of the power system and makes the ship unable to run normally. At
10.5 s, the fault module “Three-Phase Fault” is removed, and the single-phase short-circuit
grounding fault disappears. After adjustment by the excitation control system, the ship
electrical power system returns to normal; the speed, excitation voltage, and frequency
of the two generators return to stability. Similarly, the simulation results of two-phase
short-circuit, two-phase short-circuit grounding, three-phase short circuit, single-phase
disconnection, and two-phase disconnection at the synchronous generator end are shown
in Figure 6. The faults at the asynchronous generator, main load, and secondary load ends
will not be repeated.

 

Figure 5. Response curve of single-phase short-circuit grounding fault at synchronous
generator terminal.

 
Figure 6. Response curve of five different faults at synchronous generator end.
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3. Construction of Improved CNN

3.1. CNN

CNN has emerged as a research hotspot in many scientific fields, especially pattern
classification [28]. CNN is composed of a series of layers, as well as data flows between the
layers. The basic structure is as follows: input layer, convolution layer, activation function,
pooling layer, and fully connected layer, i.e., INPUT-CONV-RELU -POOL-FC.

The convolution layer is a feature extraction layer. The input of each neuron is
connected to the local receptive field of the previous layer and extracts local features. The
convolution layer mainly convolutes the image according to the convolution kernel and
reduces noise [29]. It also involves the principle of “weight sharing”. The calculation
formula of the convolution layer is as follows:

xl
j = ∑

i∈Mj

xl−1
i × kl

ij + bl
j (9)

where l denotes the number of layers, Mj represents the feature graph set of the previous
layer associated with the jthe feature graph of the current layer, xl

j is the jth characteristic

diagram output by the lth layer, xl−1
i is the ith characteristic diagram of the output of the

l − 1th layer, kl
ij is the convolution kernel between the jth characteristic graph of the lth

layer and the ith characteristic graph of the previous layer, and bl
j is the offset of the jth

characteristic graph of the lth layer.
The activation function is used to add nonlinear factors, because the convolution

method is used to deal with linear operations, i.e., assign weights to each pixel. The
expression of the linear model is not sufficient; hence, an activation function is required.
Common activation functions include the sigmoid function, tanh function, ReLU function,
and leaky ReLU function.

The pooling layer is a feature mapping layer. After adding bias, a new feature map is
obtained in the pooling layer through a nonlinear function [30]. The functions of pooling
are as follows: (i) reducing the size of the characteristic diagram and simplifying the
computational complexity of the network; (ii) feature compression to extract the main
features. The operation formula of the pooling layer is as follows:

xl
j = βl

jsubdown
(

xl−1
i

)
+ bl

j (10)

where subdown(·) represents the pooled down-sampling function, βl
j is the ratio column

offset, and bl
j is the additive bias.

The fully connected layer is used to connect all the features and send the output value
to a classifier (such as a softmax classifier) for classification.

Finally, the test accuracy and error loss function value of the model are output. The
structure and parameters of CNN are shown in Figure 7.

3.2. Improved CNN

The traditional model has a complex structure, massive parameters, and low running
speed. Moreover, the convergence speed of the classification results is affected by the
method of initializing the parameters and the updating of the network weights, and there
are oscillation problems in the accuracy and loss rate curves. In summary, this study makes
the following improvements and proposes a CNN model with better performance, which
can avoid the above-mentioned issues.

(1) All local response normalization (LRN) layers are removed and the initial value
program is changed. It is proven by practice that the normalization operation of batch
normalization (BN) is used after simple parameter initialization. The use of BN is
conducive to the convergence of the samples and the stability of the network.
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(2) The number of nodes in the fully connected layer is adjusted; based on the reduction
and updating of parameters and weights, the running speed is improved and the
calculation time is shortened.

(3) Nesterov-accelerated adaptive moment estimation (NAdam) is used to update the
weights of the neural networks iteratively on the basis of the training data, and the
weights can be updated iteratively according to the output results.

(4) Kaiming initialization is used to initialize the normal_initializer. After testing, the
results will be improved.

CNN model parameters and improved CNN model parameters are listed in
Tables 4 and 5, respectively.

Figure 7. CNN structure.

Table 4. The parameters of the CNN.

Network Layer Input Filter Output

Conv 0 28 × 28 × 1 3 × 3 × 64 28 × 28 × 64
Maxpooling 0 28 × 28 × 64 2 × 2 14 × 14 × 64

Conv 1 14 × 14 × 64 3 × 3 × 32 14 × 14 × 32
Maxpooling 1 14 × 14 × 32 2 × 2 7 × 7 × 32

Conv 2 7 × 7 × 32 5 × 5 × 28 7 × 7 × 28
Conv 3 7 × 7 × 28 5 × 5 × 14 7 × 7 × 14

Maxpooling 2 7 × 7 × 14 2 × 2 3 × 3 × 14
FC 1 126 118
FC 2 128 10

Table 5. The parameters of the improved CNN.

Network Layer Input Filter Output

Conv 0 28 × 28 × 1 5 × 5 × 128 28 × 28 × 128
Maxpooling 0 28 × 28 × 128 2 × 2 14 × 14 × 128

Conv 1 14 × 14 × 128 3 × 3 × 4 14 × 14 × 4
Maxpooling 1 14 × 14 × 4 2 × 2 7 × 7 × 4

Conv 2 7 × 7 × 4 5 × 5 × 64 7 × 7 × 64
Conv 3 7 × 7 × 64 5 × 5 × 128 7 × 7 × 128

Maxpooling 2 7 × 7 × 128 2 × 2 3 × 3 × 128
FC 1 1152 512
FC 2 512 10

3.3. Flow of CNN Algorithm

The algorithm flow of the proposed CNN fault diagnosis model is shown in Figure 8.
It is mainly divided into four stages:

79



Energies 2022, 15, 1287

(1) Sample image preprocessing: First, the sample dataset is constructed. Second, the size
and color of the image are processed to facilitate network learning.

(2) Design network fault diagnosis model: Network programs are written and built in
the Python (Python Software Foundation, Delaware, USA) compilation environment
and TensorFlow (Google Brain, San Francisco, USA) learning framework.

(3) Training optimization network model: The weight and threshold are adjusted re-
peatedly according to the back propagation (BP) algorithm in order to minimize the
error signal.

(4) The optimized model is tested on the sample image dataset to output the diagnosis results.

Figure 8. Algorithm flow.

3.4. Data Preprocessing

This study employs MATLAB/Simulink to build the ship electrical power system
and takes the waveform of fault response curve as the input of the network fault model.
Data preprocessing is divided into the following parts: data acquisition, image culling and
data normalization.

(1) Data acquisition: In the simulation model, different faults in the “three-phase fault”
fault module are set for different generators and loads to output the fault response
curve. The file type is the JPG-format picture set recognized by CNN.

(2) Image culling: After converting the data into JPG-format pictures, some problems
such as image overlap or feature blur will occur. These interfering images must be
selected and eliminated to ensure the accuracy of the network training and test results.

(3) Data normalization: Owing to the difference between the orders of magnitude of
the images, this difference will affect the results of the data analysis. To eliminate
the influence between dimensions, data normalization is required. The min–max
standardization method used in this study is the commonly used linear transformation
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of data. The result value is mapped to the interval of (0,1). The transformation function
is as follows:

x∗ = x − min
max − min

(11)

where max and min are the maximum and minimum values of the sample data.
After preprocessing of the above-mentioned data, the image set with significant

characteristics is used as the input of the CNN. The CNN model performs convolution,
pooling, and other operations on the picture set to generate the output of the network model.

4. Experimental Results and Analysis

This study employed a Windows 10 system (Microsoft, Redmond, DC, USA) with the
Python 3.7.11 (Python Software Foundation, Wilmington, DE, USA) compiling environment
and TensorFlow learning framework to write the network programs. Because the image
dataset used in this study was simple and regular, and the amount of data was small,
the conventional method was used to adjust the parameters in order to optimize the
CNN model.

4.1. Learning Rate

In the training network model, the learning rate is an important super-parameter
that controls the speed of network weight adjustment. In general, the higher the learning
rate, the faster is the learning of the network. However, if it is too high and reaches
extreme values, the accuracy will be reduced; the loss value will stop falling and oscillate
repeatedly at a certain position. The lower the learning rate, the slower the decrease in
the loss gradient and the longer the convergence time. Therefore, it is crucial to choose an
appropriate learning rate. By referring to numerous experiments as well as the literature,
the learning rate of the network model was set to 0.0001.

4.2. Experimental Results

After several experiments, the optimal network fault diagnosis model is finally ob-
tained. Compared with the original CNN model proposed, the average accuracy of the
identification and classification of the ship electrical power system is up to 99%. This
method makes the fault diagnosis of the ship electrical power system more convenient
and reliable. The accuracy and loss variation diagrams were generated using PyCharm
and TensorFlow frameworks, as shown in Figure 9a,b, respectively. The accuracy and
loss variation diagrams of the original CNN are shown in Figure 9c,d, respectively. The
accuracy of each fault category is listed in Table 6.

As can be seen from Figure 9a,b, the overall identification accuracy of the improved
model for ship electrical power systems faults increases, and the loss rate decreases as
the number of training epochs increases. After the improved model is trained once, the
average accuracy of fault diagnosis reaches 97%, and the loss value is less than 0.1. After
4 times of model training, the average accuracy of fault diagnosis is 99%, and the loss value
is less than 0.05. A comparison of Figure 9a–d shows that the recognition accuracy of the
improved CNN after the first training epoch is higher than that of the original network
after four training epochs. At the same time, the convergence speed of the loss value curve
of the improved model is higher than that of the original model; the fluctuation range is
smaller and is more stable after convergence. As can be seen from Table 6, the accuracy
of the improved CNN for different faults at different locations is higher than that of the
original network, indicating that the improved CNN provides good classification results
for the fault identification of the ship electrical power systems; thus, it has considerable
potential for the fault diagnosis of ship electrical power systems.
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(a) (b) 

 
(c) (d) 

Figure 9. Experimental results of training network and original network: (a) accuracy of training
network, (b) loss of training network, (c) accuracy of original network and (d) loss of original network.

Table 6. Accuracy of each fault category.

Fault Category Fault Location Improved CNN CCN

Single-phase short-circuit grounding

Synchronous generator 99% 90%
Asynchronous generator 99% 86%

Main load 98% 91%
Secondary load 99% 86%

Two-phase short- circuit

Synchronous generator 99% 87%
Asynchronous generator 99% 90%

Main load 99% 91%
Secondary load 98% 88%

Two-phase short-circuit grounding

Synchronous generator 98% 90%
Asynchronous generator 99% 90%

Main load 99% 87%
Secondary load 99% 91%

Three-phase short circuit

Synchronous generator 99% 86%
Asynchronous generator 98% 87%

Main load 99% 85%
Secondary load 99% 88%

Single-phase disconnection

Synchronous generator 99% 86%
Asynchronous generator 99% 89%

Main load 98% 90%
Secondary load 99% 88%

Two-phase disconnection

Synchronous generator 98% 90%
Asynchronous generator 98% 87%

Main load 99% 91%
Secondary load 99% 87%

5. Conclusions

A fault diagnosis method for ship electrical power systems was proposed on the basis
of an improved CNN to support the normal operation of ships. According to the results,
the following conclusions can be drawn:
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(1) To achieve multi-class fault diagnosis of different components of ship electrical power
systems, this paper proposed an improved CNN fault diagnosis model, which can
completely eliminate the subjectivity of manual feature extraction and expert expe-
rience, directly take the original fault data as the model input, automatically extract
the fault features layer by layer in a nonlinear manner, and automatically output the
fault classification results. Thus, “end-to-end” diagnosis from the original data to the
fault category can be realized. The algorithm has a high fault recognition rate, and the
evaluation accuracy is 99%.

(2) Through image culling, the accuracy of the network training results is improved
significantly.

(3) The method used to realize fault diagnosis of the ship electrical power systems can
also be used for fault diagnosis of other parts of more complex power systems. The
simulation results showed that the improved model outperforms the original network.
In particular, this method achieves high accuracy and reliability in ship electrical
power systems fault diagnosis.

Nevertheless, there remains a scope for improvement in terms of the training time of
the model. In the future, the simulation model will be improved such that it is more in
line with actual ship electrical power systems. Based on the optimized CNN model, fault
diagnosis accuracy can be improved further.
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Abstract: With the development of intelligent manufacturing, automated data acquisition techniques
are widely used. The autocorrelations between data that are collected from production processes have
become more common. Residual charts are a good approach to monitoring the process with data
autocorrelation. An improved hidden Markov model (IHMM) for the prediction of autocorrelated
observations and a new expectation maximization (EM) algorithm is proposed. A residual chart
based on IHMM is employed to monitor the autocorrelated process. The numerical experiment
shows that, in general, IHMMs outperform both conventional hidden Markov models (HMMs)
and autoregressive (AR) models in quality shift diagnosis, decreasing the cost of missing alarms.
Moreover, the times taken by IHMMs for training and prediction are found to be much less than
those of HMMs.

Keywords: hidden Markov model (HMM); autocorrelation; residual chart

1. Introduction

Process monitoring plays an essential role in intelligent manufacturing [1,2]. Statis-
tical process control (SPC) is a quality control technique that uses statistical methods to
monitor and control processes. The aim of SPC is to ensure that the process runs efficiently,
producing more products that meet specifications, while reducing waste at the same time.
Shewhart control charts are a key SPC tool used to determine whether a process is in
control. If the observation value is within the upper and lower control limits, the process
is in control; otherwise, the process is out of control. Shewhart charts often assume that
the data collected from the process are independent. However, this assumption is not
true in a variety of processes. For example, consecutive measurements on chemical and
pharmaceutical processes or product characteristics are often highly autocorrelated, or the
chronological measurements of every characteristic on every unit in automated test and
inspection procedures are often autocorrelated. It has been shown in numerous studies
that conventional charts do not work well, in the form of giving too many false alarms if
the observations exhibit even a small amount of autocorrelation over time [3–9]. Clearly,
better approaches are needed. In the following paragraphs, three common ways to solve
the problems related to autocorrelation are introduced.

The first approach to solving an autocorrelation problem is simply to sample from
the observation data stream at a lower frequency [10]. This seems to be an easy solution,
although it has some shortcomings. Concretely speaking, it makes inefficient use of the
available data. For example, if every tenth observation is sampled, approximately 90%
of the information is discarded. In addition, since only every tenth datum is used, this
approach may delay the discovery of a process shift.

The second approach is to re-estimate the real process variance, aiming to revise the
upper and lower control limits. See, for example, [9,11–19].
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The third approach is to use residual charts. The statistics in these charts are resid-
uals; values are calculated by subtracting predicted values from observed values. In the
implementation of residual charts, the key step is choosing a reasonable prediction model
to obtain predicted values. Autoregressive integrated moving average (ARIMA) models
are mostly used to model autocorrelated data. See, for example, [3,8,20–26]. In addition,
multistage or multivariate autocorrelated processes are mostly studied by using Hotelling
T2 control charts, such as in [27–30]. Some exceptions include Pan et al., who proposed an
overall run length (ORL) to replace T2 charts [31], and S. Yang and C. Yang, who used a
residual chart and cause-selecting control chart [32].

With the rapid development of artificial intelligence, machine-learning methods are
becoming more and more popular in SPC in the case of observation autocorrelation [33–38].
Most of the related literature focuses on neural networks methods [39–42]. Some successful
applications have also been introduced, for example, the failure diagnosis of wind tur-
bine [43], and the prediction of the remaining useful life (RUL) of bearings [44]. Another
machine-learning approach proposed in SPC is the hidden Markov model (HMM). Lee
et al. proposed a modified HMM, combined with a Hotelling multivariate control chart
to perform adaptive fault diagnosis [45]. The HMMs, whose training sets contain autocor-
related data, were employed to forecast observation values for residual charts in process
monitoring [46]. However, although HMMs are supposed to deal with the autocorrelated
processes, the essence of the model itself is inconsistent with the case of autocorrelations.
This is because one key assumption in conventional HMMs is that the observations are
independent of each other. Therefore, it is worth developing a modified HMM, by account-
ing for observation autocorrelations in models themselves, and observing whether it is
better than a traditional HMM.

Therefore, to realize the goal of monitoring the autocorrelated process well, the residual
chart based on an improved hidden Markov model (IHMM) with autocorrelated observa-
tions considered is developed. Due to the autocorrelations, the conventional expectation
maximization (EM) algorithm for HMMs is not appropriate. A new EM algorithm is devel-
oped for the solutions. The Shewhart residual chart is employed in quality shift detection
in conjunction with the IHMM. The residual is defined as the deviation of the predicted
value by the IHMM and the current real observation value. Through the residual chart,
we are able to see whether the process is in control. If the chart initiates an alarm, one
running length is obtained. Thus, the average running lengths (ARLs) can be calculated
with sufficient samples. The ARL is set as the comparison index for different models,
including IHMM, HMM and AR.

The rest of this paper is organized as follows: Section 2 introduces the development
of the IHMM model and its algorithm. In addition, the comparison of the prediction
performances of different approaches is presented in Section 2. In Section 3, residual charts
are introduced. In Section 4, numerical examples and interesting results are presented. The
conclusions and possible areas for future research are given in Section 5.

2. Model Development

2.1. Hidden Markov Models

Denote a Markov chain with a finite state set {s1, s2, · · · , sN} by {Sn, n = 1, 2, · · ·}.
Let aij be the probabilities that the Markov chain enters state sj from state si (1 ≤ i, j ≤ N)
and πi = P{S1 = si}, i = 1, 2, · · · , N be the initial state probabilities. Denote a finite set of
signals by ζ, and suppose a signal from ζ is sent each time the Markov chain enters a state.
Suppose that when the Markov chain enters state sj independently of previous states and
signals, the signal sent is or with probability p

(
or
∣∣sj
)

that meets ∑or∈ζ p
(
or
∣∣sj
)
= 1. That is,

if On represents the nth signal, then it can be written by

P
{

O1 = or
∣∣S1 = sj

}
= p

(
or
∣∣sj
)
, (1)

P
{

On = or
∣∣S1, O1, · · · , Sn−1, On−1, Sn = sj

}
= p

(
or
∣∣sj
)
. (2)
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Such a model, in which the signal sequence O1, O2, · · · can be observed while the
underlying Markov chain state sequence S1, S2, · · · cannot be observed, is called a hidden
Markov model [47].

Normally, an HMM contains the following elements [48]:

• A finite hidden state set s = {s1, s2, · · · , sN}, where N is the hidden state number.
• A set of possible observation values (signals) q = {q1, · · · , qK}, where K is the num-

ber of possible observation values. Note that if the values of the observations are
continuous, K should be infinite.

• An observation sequence, o = (o1, · · · , oT), where T is the number of observations,
ot ∈ q, 1 ≤ t ≤ T.

• A distribution of state transition probabilities, A =
{

aij
}

, where

aij = P
{

St+1 = sj
∣∣St = si

}
, 1 ≤ i, j ≤ N, ∑

j
aij = 1. (3)

• A distribution of initial state probabilities, π = {πi}, where

πi = P{S1 = si}, i = 1, 2, · · · , N, ∑
i

πi = 1. (4)

• A conditional probability distribution of the observations, given St = si, B = {bi(qk)},
where

bi(qk) = P{ot = qk|St = si}, 1 ≤ i ≤ N, 1 ≤ t ≤ T, ∑
qk

bi(qk) = 1. (5)

In general, an HMM contains three elements, denoted by λ = {A, B, π}.

2.2. The Improved HMM with Autocorrelated Observations
2.2.1. The Selection for the Order of Autocorrelation

Different from the traditional HMMs, in which current observations are assumed
to be independent of previous states and observations, autocorrelated observations are
considered. The observations are assumed to follow a Gaussian distribution, and the
current observations are required to be dependent, not only on the current hidden state,
but also on the previous observations.

The autocorrelated data from production may be multi-order, and it seems not cost-
effective for judging this detailed order by using engineering experience and professional
knowledge. Therefore, it is hoped to find a suitable order that will keep the implementation
of the IHMM feasible, efficient and cost-effective.

The numerical experiment on the order selection for autocorrelated data in SPC
application is designed as follows:

Step 1. Generate stationary autocorrelated data by a dth-order autoregressive model,
AR(d), d ≥ 2;

Step 2. Use AR(p), p = d, d − 1, . . . , 1 models to fit the data, respectively, and obtain
the parameters that need to be estimated by least-squares estimation;

Step 3. Generate 2000 stationary data sequences with a same length of 2000 under the
processes with a mean shift magnitude of δ;

Step 4. Predict each sequence by using AR(p), p = d, d − 1, . . . , 1 models, respectively,
and calculate their residuals;

Step 5. Determine the central lines (CLs), upper control limits (UCLs) and lower
control limits (LCLs) of p residual charts;

Step 6. Generate stationary autocorrelated data by a dth-order autoregressive model;
Step 7. Calculate the average running lengths (ARLs) of p residual charts.
In this study, twelve AR(2) and eight AR(3) models are used to generate data. The

control limit coefficients of residual charts are 3. The shift magnitudes of the mean are set
by 0, 1.5 and 3, respectively.
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When data are generated by AR(2) models for an in-control process, the ARL of the
residual charts is 371.3803 if the data are fitted by AR(2) models, and the ARL is 361.1688 if
the data are fitted by AR(1) models. Thus, the probability of the type I error is increased by
2.83%. Similarly, when data are generated by AR(3) models, the ARL of the residual charts
is 371.8250 if the data are fitted by AR(3) models, the ARL is 358.5401 if the data are fitted
by AR(2) models, and the ARL is 345.8113 if the data are fitted by AR(1) models. Thus,
the probabilities of the type I error are increased by 3.7% and 7.51%, respectively.

The ARLs of different situations are shown in Figure 1, in which the numbers on the
x-axis represent the combinations of autocorrelation coefficients.

 

 

Figure 1. The ARL results of the order selection experiment.

From Figure 1, it is seen that generally, AR(1) models outperformed other AR(d),
d ≥ 2 models in shift detection regardless of the autocorrelation order. Although AR(1)
models lead to a slight increase in type I error, it seems to be insignificant compared
with their good performances in detecting quality shifts. Therefore, only the first-order
autocorrelation is considered in this study. As a result, there is no need to judge what order
the autocorrelation is so that the modeling cost can be saved.
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2.2.2. The Development of the IHMM

According to the analysis in Section 2.2.1, the construction of the IHMM, in which the
current observation is related to its previous observation, is shown in Figure 2.

ST STS S ...

o o oT oT...
 

Figure 2. The construction of the IHMM.

In Figure 2, arrows pointing to the right indicate the correlation between neighboring
states or observations. It is intuitive that the IHMM will become a traditional HMM if there
is no correlation between neighboring observations.

Let oi(t) be the observation value at time t given state si; oi(t) can be fitted with the
following function:

oi(t) = ςi + ciot−1 + εi, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (6)

where ci is the first-order autocorrelation coefficient, ςi is the constant term and εi is white
noise, following a normal distribution with mean zero and variance σ2

i .
Let μi(t) be the mean of oi(t) given state si, xt = (1, ot−1)

′, then Equation (6) can be
written as:

μi(t) = Cixt, (7)

where Ci is a 1 × 2 matrix consisting of {ςi} and {ci}.
Hence, we conclude that the states are a Markov process, and that the conditional

observations given state si follows a Gaussian distribution with mean Cixt and variance
σ2

i , i.e.,
P{St+1|S1, · · · , St, o1, · · · , ot} = p(St+1|St), (8)

bi(ot|ot−1) = P(ot|ot−1, St = si) =
1√

2πσi
exp

(
− (ot − Cixt)

2

2σ2
i

)
. (9)

If the current observation is not related to its previous observations, μi(t) is the
constant ςi. Thus, the IHMM becomes a traditional HMM.

2.3. Parameter Estimation

The aim of using an IHMM is to forecast observation values. Firstly, we estimate the
parameters to obtain an optimal λ̂ by maximizing the probability P(o|λ ).

The EM algorithm is a popular method to estimate the parameters for HMMs. How-
ever, since autocorrelation between observations is considered, the traditional algorithm
could not be used directly. We redefine the parameters as λ =

{
A, C, σ2, π

}
where

C = {Ci}, σ2 =
{

σ2
i
}

, and the definitions of Ci and σ2
i are provided in Section 2.2.2.

The flowchart demonstrating how to estimate the parameters in IHMM with an improved
EM algorithm is shown in Figure 3.
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Figure 3. The flowchart of the improved EM algorithm.

Firstly, we introduce two types of probabilities: forward probability, Ft(i), and back-
ward probability, Bt(i), defined as:

Ft(i) = P(o1, · · · , ot, St = si|λ ), (10)

Bt(i) = P(ot+1, · · · , oT |St = si, λ ). (11)

The calculation of the two probabilities here is similar to that of traditional HMMs.
Slightly different from traditional HMMs, the initial values are defined by Fd+1(i) =
πibi(od+1|o1, · · · , od ) and BT(i) = 1, respectively.

Based on the forward and backward probabilities, some intermediate probabilities
are computed. Given λ and o, denote the probability that the process is in state si at time
t by γt(i) and the probability that the process is in state si at time t and in state sj at time
t + 1 by ξt(i, j). γt(i) and ξt(i, j) can be written as Equations (12) and (13). Please refer to
reference [48] for the details of the derivations.

γt(i) =
Ft(i)Bt(i)

∑j Ft(i)Bt(i)
, (12)

ξt(i, j) =
Ft(i)aijbj(ot+1)Bt+1(j)

∑N
i=1 ∑N

j=1 Ft(i)aijbj(ot+1)Bt+1(j)
. (13)
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Next, we develop an improved EM algorithm for the IHMM, step by step.
Step 1. Determine the log-likelihood function for complete data.
The complete data are (o, S) = (o1, · · · , oT , s1, · · · , sT), and its log-likelihood function

is log P(o, s|λ ).
Step 2. E-step: determine Q functions.

Q1

(
λ, λ(n)

)
= Es

[
log P(o, s|λ )

∣∣∣o, λ(n)
]
= ∑

s
log P(o, s|λ )P

(
o, s

∣∣∣λ(n)
)

, (14)

where λ is the parameter that will maximize the Q1 function, while λ(n) is the current
parameter value.

With P(o, s|λ ) = πs1 bs1(o1)as1s2 bs2(o2) · · · asT−1sT bsT (oT), Q1

(
λ, λ(n)

)
can be writ-

ten by
Q1

(
λ, λ(n)

)
= ∑

s
πs1 log P

(
o, s

∣∣∣λ(n)
)

+∑
s

(
T−1
∑

t=1
log astst+1

)
P
(

o, s
∣∣∣λ(n)

)
+∑

s

(
T
∑

t=1
log bst(ot)

)
P
(

o, s
∣∣∣λ(n)

)
.

(15)

For the re-estimation of bi(qk), one more auxiliary function Q2 is proposed by taking
the conditional expectation of the log-likelihood of the observation sequence:

Q2

(
λ, λ(n)

)
= ∑

s

T

∑
t=1

γt(i)

(
ln
(

1√
2π

)
+ ln

1
σi

− (ot − Cixt)
2

2σ2
i

)
. (16)

Step 3. M-step: re-estimation.
Re-estimate λ that maximizes Q1

(
λ, λ(n)

)
, that is

λ(n+1) = argmax
λ

Q1

(
λ, λ(n)

)
. (17)

The state transition probabilities are derived as:

aij
(n+1) =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

. (18)

The initial state probabilities are derived as:

πi
(n+1) = γ1(i). (19)

By re-estimating λ that maximizes Q2

(
λ, λ(n)

)
, ci,τ

(n+1), ςi
(n+1), σ2

i
(n+1) can be

written as:

ci
(n+1) =

∑T
t=1 γt(i)ot−1

(
ot − ∑T

t=1 γt(i)ot

∑T
t=1 γt(i)

)

∑T
t=1 γt(i)ot−1

(
ot−1 − ∑T

t=1 γt(i)ot−1

∑T
t=1 γt(i)

) , (20)

ςi
(n+1) =

∑T
t=1 γt(i)ot − ∑T

t=1 γt(i)ot−1ci
(n+1)

∑T
t=1 γt(i)

, (21)

σ2
i
(n+1) =

∑T
t=1 γt(i)

(
ot − ci

(n+1)ot−1 − ςi
(n+1)

)2

∑T
t=1 γt(i)

. (22)

Repeat Step 2 and Step 3 until the log-likelihood function converges.
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2.4. Prediction

Once the parameter is determined by the improved EM algorithm, the model can be
employed to forecast the expected value of the next observation.

The conditional probability distribution of the observation oT+1 can be derived as

P(oT+1|oT , · · · , o1 , λ) =
N
∑

i=1
P(oT+1|ST = si, oT , · · · , o1, λ )P(ST = si|oT , · · · , o1, λ )

=
N
∑

i=1

N
∑

j=1
P
(

oT+1

∣∣∣ST+1 = sj, oT , · · · , o1 , λ
)

P
(

ST+1 = sj|ST = si , λ
)

γT(i)

=
N
∑

i=1

N
∑

j=1
γT(i)aijbj(oT+1|oT , · · · , oT+1−d ).

(23)

Therefore, the expectation of oT+1 is computed by

ôT+1 =
∫

oT+1P(oT+1|oT , · · · , o1 , λ)doT+1. (24)

Given an observation sequence o = (o1, · · · , oT), ôt is predicted by

ôt =
∫

otP(ot|ot−1 , λ)dot =
∫

ot

N

∑
i=1

N

∑
j=1

γt−1(i)bjaij(ot|ot−1 )dot, t ≥ d. (25)

Thus, the predicted values of the observations can be denoted by ô = (o1, ô2, · · · , ôT).

2.5. Performance Comparison

The mean squared error (MSE), absolute mean error (AME) and mean absolute per-
centage error (MAPE) are common tools for measuring, fitting and predicting accuracy [49].
Both MSE and AME values determine the average deviation between fitting values and
original values, while MAPE provides a measurement for testing the relevant difference
between them. In this study, we use MSE as the criterion to evaluate the models. The
equation for MSE is:

MSE =
1

LT ∑L
l=1 ∑T

t=1(ot − ôt)
2, (26)

where L is the number of predicted samples, and T is the length of each sample.
We assume that a variable from a production process follows a normal distribution

with mean 100 and variance 25 when the process is under control, and that the observations
are first-order autocorrelated with a correlation coefficient of 0.6. We use IHMM, HMM and
AR(1) methods to predict observation values, respectively. The MSEs for the three models
are 15.1276, 16.1867 and 15.7861, respectively. Since these MSEs are very close, we conclude
that the predicted performances of the three approaches are similar. The predicted results
of an observation sequence with a length of 50 from the in-control process are shown in
Figure 4, from which we can see that the three models have close performances. However,
the time taken for prediction using the three models are quite different. For the prediction
of an observation sequence with a length of 50, IHMM is 14.6523 s, HMM is 93.6521 s, and
AR(1) is almost instantaneous under the environment of win10 OS (Microsoft, Redmond,
WA, USA) with CPU of Intel(R) Core(TM) i7-7500U (Santa Clara, CA, USA).
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Figure 4. The predicted results of three models under an in-control process.

Then, we suppose the process has a shift magnitude of 3. We still use the three methods
to predict observation values, respectively. The predicted results of an observation sequence
with a length of 50 from the out-of-control process are shown in Figure 5, from which we
can see distinctly different performances of the three models. By observing the distances
between the lines with different colors, obviously, if the MSEs are calculated, the MSE from
AR(1) is much less than that from IHMM, and the MSE from IHMM is much less than
that from HMM. The IHMM only results in a medium-level performance in the prediction
for the autocorrelated process. However, it is very interesting that the performances of
corresponding residual charts have the best performances in detecting quality shifts. This
seems to suggest that the residual charts integrating IHMM can achieve a surprising effect.
This result is verified in Section 3.

Figure 5. The predicted results of three models under an out-of-control process.

3. Statistical Process Control with Residual Chart

Residual control charts are an effective tool for online monitoring in the presence of
autocorrelations. A residual chart called e chart is developed in our study.

Residuals are obtained by subtracting the predicted values of observations from the
original values, that is e = o− ô = (e1, · · · , eT). The control limits of the e chart are given by

UCL = μe + kσe, (27)

LCL = μe − kσe. (28)
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where UCL represents the upper limit, while LCL represents the lower limit, k is the number
of σe, μe represents the mean of e, and σe represents the standard deviation of e. μe and σe
can be obtained by simulations based on sufficient samples.

If the value of et drops within UCL and LCL, the process is judged to be in control;
otherwise, it is judged to be out of control.

4. Numerical Examples

We consider that the variable from a production process followed a normal distribution
with mean 100 and variance 25 when the process is in control and that the observations
were first-order autocorrelated. The correlation coefficient varies between −0.6 and 0.6
with increments of 0.3. Two shift magnitudes of 1.5 and 3 are considered. According to the
definition of residual charts, the ARLs of in-control processes for all predicted methods are
370, so we focus our discussion on the out-of-control processes. By conducting multiple
experiments, we find that it is appropriate to make the state number with 5 for both IHMM
and HMM. The experimental results are shown in Figures 6 and 7.

Figure 6. The ARLs of residual charts obtained by different models when the shift magnitude is 1.5.

Figure 7. The ARLs of residual charts obtained by different models when the shift magnitude is 3.

As shown in Figures 6 and 7, when correlation coefficient changes from positive to
negative, ARLs decrease dramatically, regardless of the approach used. Compared with
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positive correlations, the ARLs of negative correlations are relatively very small, and ARLs
obtained by different models are very close to each other. Thus, the following discussions
focus on positive correlations.

As pointed out in Section 3, although the predictions of both the IHMM and HMM are
inferior to AR(1) models, the performances of residual charts from the former models are
much better than the latter ones. As seen in Figures 4 and 5, when the coefficients are larger
than zero, the ARLs by IHMMs are shorter than those by HMMs, and by HMMs shorter
than by AR(1) models.

As correlation coefficients increase, the ARLs generally increase, regardless of the
approach used, especially as the shift magnitude decreases.

Generally speaking, when detecting quality shifts, the performances of IHMM, HMM
and AR(1) models are ranked with IHMMs first, HMMs second and AR(1) last. Moreover,
as pointed out in Section 2, the times taken by IHMMs are much shorter than HMMs under
the same running environments.

5. Conclusions

In this paper, an IHMM with autocorrelated observations and a new EM algorithm
are proposed. Residual charts in conjunction with the IHMM are employed for detecting
quality shifts. The results demonstrates that: (1) the IHMM outperforms the HMM and
AR(1) method with positive correlations; (2) the IHMM has similar performances with
the HMM and AR(1) methods with negative correlations; (3) compared with positive
correlations, the ARLs of the IHMM under negative correlations are relatively very small,
as well as those of the HMMs and AR(1) models; (4) the IHMMs take a much shorter time
than HMMs, for both training and prediction, but still longer than the AR(1) models.

Future research might focus on further experimental validations for the IHMM and
its algorithm. The strict Gaussian distribution of observations could be extended to other
probability distributions. Since multistage systems are commonplace in the manufacturing
industry, it is worth extending this approach in this research direction.
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Abstract: Failure mode, effects and criticality analysis (FMECA) is a well-known reliability analysis
tool for recognizing, evaluating and prioritizing the known or potential failures in system, design,
and process. In conventional FMECA, the failure modes are evaluated by using three risk factors,
severity (S), occurrence (O) and detectability (D), and their risk priorities are determined by multi-
plying the crisp values of risk factors to obtain their risk priority numbers (RPNs). However, the
conventional RPN has been considerably criticized due to its various shortcomings. Although signifi-
cant efforts have been made to enhance the performance of traditional FMECA, some drawbacks still
exist and need to be addressed in the real application. In this paper, a new FMECA model for risk
analysis is proposed by using an integrated approach, which introduces Z-number, Rough number,
the Decision-making trial and evaluation laboratory (DEMATEL) method and the VIsekriterijumska
optimizacija i KOmpromisno Resenje (VIKOR) method to FMECA to overcome its deficiencies in
real application. The novelty of this paper in theory is that the proposed approach integrates the
strong expressive ability of Z-numbers to vagueness and uncertainty information, the strong point
of DEMATEL method in studying the dependence among failure modes, the advantage of rough
numbers for aggregating experts’ diversity evaluations, and the strength of VIKOR method to flexibly
model multi-criteria decision-making problems. Based on the integrated approach, the proposed risk
assessment model can favorably capture and aggregate FMECA team members’ diversity evaluations
and prioritize failure modes under different types of uncertainties with considering the failure prop-
agation. In terms of application, the proposed approach was applied to the risk analysis of failure
modes in offshore wind turbine pitch system, and it can also be used in many industrial fields for
risk assessment and safety analysis.

Keywords: failure mode; effects and criticality analysis; Z-number; rough number; DEMATEL
method; VIKOR method

1. Introduction

Failure mode, effects and criticality analysis (FMECA), also known as failure mode
and effects analysis (FMEA) when without referring to criticality analysis, is a risk and
reliability analysis tool based on multidisciplinary team cooperation [1]. The FMEA method
originates from the formal design methodology by NASA and first proposed in 1960s for
solving their obvious reliability and safety requirements [2]. In many fields, it can be used
to enhance the reliability and safety for a system by recognizing the various failure modes
and analyzing their reasons and effects in the system and process during product design
and manufacturing processes. The main task of FMEA is to evaluate the likelihood of
the potential failure modes and their impact and severity to identify weaknesses and key
projects in the system and then provide a basis for developing improved control measures.
Differing from some other reliability management approaches, FMEA emphasizes taking
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precautions against failures rather than finding a solution after the failures happen [3],
which can greatly reduce the frequency of occurrence of failure modes and avoid serious
accidents. As a widely used methodology in safety and reliability analysis, FMEA has
gained a widespread attention due to its visibility and simplicity, and up to now it has been
extensively used in various industries [4–11].

In traditional FMECA, each failure mode identified in a system is evaluated by three
risk factors of severity (S), occurrence (O) and detectability (D), and their risk priorities
are determined by sorting their risk priority numbers (RPNs) [12], which is obtained by
multiplying the values of S, O and D. Generally, S, O and D of failure modes are scored by
experts and a number ranged from 1 to 10 is given for each of the three risk factors, usually
the large the number, the worse the case is. Based on the values of RPNs, the risk priorities
of failure modes are determined, which can help the analyst to pinpoint system inherent
vulnerabilities. A failure mode with higher RPN is regarded as more important [13], which
means it has greater harm to the system and will be given a higher risk priority. Thus for
guaranteeing safety and reliability, some measures of prevention and improvement should
be taken preferentially to the failure modes with high risk priority to avoid their occurrence.
However, the crisp value of RPN has been highly criticized for various reasons [14–19],
most of which are listed as follows:

1. The relative importance of the three risk factors has not been considered or are
considered as equal importance, which may not consistent with the actual situation in
many cases.

2. Multiplying the values of S, O and D in different groups may produce the same RPN
value, but the hidden risk implications of each group can be completely different,
which may lead to the limited resources and time being inappropriately allocated, or
worse yet, some high risk failure modes being ignored.

3. The mean of computing RPN is debatable and hypersensitive to the variation of the
values of risk factors. In some cases, a subtle alteration in the value of one risk factor
may have a hugely different effect on RPN when the values of other risk factors are
very large.

4. The evaluations for risk factors of S, O and D are usually given based on discrete
ordinal scales of measure, on which the calculation of multiplication is meaningless
because the obtained RPNs may be not continuous with many holes and heavily
distributed ranged from 1 to 1000. In this case, the ranking results of failure modes
are meaningless and even misleading.

5. The three risk factors are often hard to be determined precisely. The evaluations
obtained from FMECA team members are expressed by linguistic items like high,
moderate or low and so on.

6. FMECA team members may provide their evaluations in different way for the same
risk factor due to their different expertise and backgrounds, and some of the assess-
ment information may be vagueness and uncertain. In conventional FMECA, there
is no means to describe the group judgment more comprehensively and explore the
intrinsic link between different judgments [20].

In order to conquer the shortcomings mentioned above and enhance the applicability
of traditional FMECA to real cases [3], much attention have been paid to its improvements
and a variety of theories and methods have been introduced to FMECA. For example, fuzzy
set has been introduced to FMECA for transforming the vagueness of experts’ evaluation
into a mathematical formula; information fusion method like Dempster–Shafer Theory and
rough number, etc., are introduced to FMECA for aggregating different evaluations; multi-
criteria decision making methods like the VIsekriterijumska optimizacija i KOmpromisno
Resenje (VIKOR) method and Technique for Ordering Preference by Similarity to Ideal
Solution (TOPSIS) method, etc., are introduced to FMECA for ranking failure modes. Some
of the main theories and methods are presented in Table 1.

In studies of FMECA in wind turbines, some experts take the structures of different
wind turbines, economic factors, costs and climatic regions into consideration. For example,
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Mahmood et al. [21] developed a mathematical tool for risk and failure mode analysis of
wind turbine systems (both onshore and offshore) by integrating the aspects of traditional
FMEA and some economic considerations such as power production losses, and the costs
of logistics and transportation. Samet et al. [22] proposed a FMECA methodology with
considering different weather conditions or climatic regions and different wind turbine
design types such as direct-drive model and geared-drive model. Nacef et al. [23] developed
a hybrid cost-FMEA by integrating cost factors to assess the criticality, these costs vary
from replacement costs to expected failure costs.

Table 1. Some of the theories and methods used in FMECA.

Categories Theories and Methods Roles in FMECA

Artificial intelligence
techniques

Fuzzy rule-base
system [24]

It can be used to deal with the drawback 5. in FMECA by transforming the
vagueness of the evaluation of failure modes into a mathematical formula,
which has the decision making ability by ranking the failure modes using

fuzzy rules.

Evidential reasoning
method (ER) [25]

It can be used to deal with the drawbacks 5. and 6. in FMECA by modeling
the diversity and uncertainty of experts’ evaluations, which enables

experts to evaluate failure modes in an independent way and aggregating
their evaluations in a rigorous yet nonlinear rather than simple addition or

multiplication manner.

Rough number [26]

It can be used to deal with the drawback 6. in FMECA by aggregating the
vague and uncertain evaluations of failure modes, which can reduce the

subjectively of experts’ opinion in aggregation process and make the
decision-making more objective.

Dempster–Shafer Theory
(DST) [27]

It can be used to deal with the drawbacks 5. and 6. in FMECA by
aggregating different types of subjective and uncertain evaluations using

Dempster’s rule, which has the ability of representing and handling
various uncertainty information using belief structure.

D number [28]

It can be used to deal with the drawbacks 5. and 6. in FMECA by
representing and aggregating the experts’ evaluations with cognitive

uncertainty and imprecision for failure modes, which is capable of
efficiently expressing various types of uncertainty.

Multi-criteria decision
making (MCDM)

Analytic hierarchy process
(AHP) method [29]

It can be used to deal with the drawbacks 2., 3. and 4. in FMECA, which
determines the risk priorities of failure modes by using eigen vectors for

synthesizing a series of paired comparison evaluations based on the
evaluation of failure modes in a hierarchical way.

TOPSIS method [30]

It can be used to deal with the drawbacks 2., 3. and 4. in FMECA, which
determines the risk priorities of failure modes by comparing the Euclid
distances simultaneously from the best evaluation value and from the

worst evaluation value.

VIKOR method [16]

It can be used to deal with the drawbacks 2., 3. and 4. in FMECA, which
determines the risk priorities of failure modes by using a compromise

solution of maximizing the group utility of the majority, and meanwhile
minimizing the individual regret of the opponent.

Decision making trial and
evaluation laboratory

(DEMATEL) method [31]

It can be used to deal with the drawbacks 2., 3., 4. and 7. in FMECA, which
determines the risk priorities of failure modes by studying the dependence

among failure modes in FMECA process using the graph theory and
matrix tools.

Grey theory method [32]

It can be used to deal with the drawbacks 2., 3. and 4. in FMECA, which
determines the risk priorities of failure modes by calculating the grey

relational coefficient between all comparability sequences and the reference
sequence of the ideal target sequence and negative ideal target sequence).

Although many theories and methods have been introduced to FMECA to eliminate
the defects of the traditional FMECA, the representation of expert’s judgments on the
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evaluation of failure modes, the aggregation of experts’ diversified evaluation information,
and the determination of risk priorities of failure modes are still open issues, especially
in terms of the defect of without considering the dependencies among different failure
modes. In this paper, an integrated approach-based risk assessment model for FMECA
was proposed to the existing defects, which integrates the strong expressive ability of
Z-numbers to vagueness and uncertainty information, the strong point of the DEMATEL
method in studying dependence among failure modes, the advantage of rough numbers in
aggregating experts’ diversity evaluation information, and the merit of VIKOR evaluation
structure in flexibly modeling multi-criteria decision-making. Based on the integrated
approach, the proposed risk assessment model can well capture and aggregate FMECA
team members’ diversity evaluations and prioritize failure modes under different types of
uncertainties with considering the failure propagation. The rest of this paper is organized
as follows. Some existing improvement methods to traditional FMECA are introduced in
Section 2. Section 3 introduces the proposed new risk assessment model for FMECA using
Z-number, rough number, DEMATEL method and VIKOR method. An illustrative case
and the comparison and discussion for the proposed FMECA approach are respectively
provided in Sections 4 and 5. Section 6 concludes the paper with a summary.

2. Literature Review

In the recent decades, scholars and researchers have done a lot of significant work to
the improvements of FMECA. Among these improvement methods we can find they are
mainly focusing on the following four aspects.

In term of the defect of traditional FMECA without considering the weights of risk
factors, Hua et al. [33] introduced fuzzy analytic hierarchy process (FAHP) approach to
FMECA for determining the weights of risk factors. Liu et al. [13] introduced a subjective
weight and objective weight for risk factors by integrating fuzzy analytic hierarchy process
(FAHP) and entropy method. Bozdag et al. [34] proposed a new fuzzy FMECA approach
based on IT2 fuzzy sets for obtaining the uncertainty both in intrapersonal and interper-
sonal, which considers the optimal weights of risk factors and synthetizes them by using an
ordered weighted averaging operator based on-cut. Liu et al. [35] introduced fuzzy digraph
and matrix approach to FMECA for developing a new FMECA model with considering
the relative weights of risk factors expressed by linguistic terms and transformed to fuzzy
numbers, which determines the risk priorities of failure mode using their risk priority
indexes that computed based on the formed corresponding fuzzy risk matrixes for failure
modes. Zhou et al. [36] proposed a new generalized evidential FMECA (GEFMECA) model
to handle the uncertain risk factors comprised of not only the conventional risk factors, but
also the other incomplete risk factors. Based on the generalized evidence theory, the relative
weights among all risk factors are well addressed. Liu et al. [37] proposed an integrated
FMECA approach for the improvement of its performance based on the interval-valued
intuitionistic fuzzy sets (IVIFSs) and multi-attributive border approximation area compari-
son (MABAC) method, in which the linear programming model is developed for obtaining
the optimal weights of risk factors even if the weight information among risk factors is
incompletely known.

In view of the defect that the evaluations obtained from FMECA team members are
expressed in a linguistic way which are difficult to be converted directly and correctly
into numerical value. To handle this case, fuzzy set theory and its improvement methods
were introduced to FMECA by many researchers, which can be well used to transform the
linguistic item into a mathematical formula and improve the decision making ability for
FMECA in real application. Bowles and Peláez [2] first introduced fuzzy set theory into
FMECA and proposed a technique based on fuzzy logic to prioritize failure modes in a
system FMECA, which enables analysts to evaluate the failure modes using the linguistic
terms directly and provides a more flexible structure to combine the parameters of risk
factors. For dealing with the drawbacks of traditional fuzzy logic (i.e., rule-based) methods
used in FMECA, Yang et al. [38] proposed a fuzzy rule-based Bayesian reasoning approach
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for the prioritization of failure modes. Jee et al. [39] presented a new fuzzy inference
system (FIS)-based risk assessment model for FMECA to prioritizing failure modes, in
which a new two-stage method is introduced for reducing the number of fuzzy rules
which need to be gathered. By integrating FMECA and fuzzy linguistic scale method,
Gajanand et al. [40] proposed a new strategy for the reliability-centered maintenance, in
which the failure modes are prioritized by using the weighted Euclidean distance and
centroid defuzzification based on fuzzy logic. Tooranloo et al. [41] proposed a new model
for FMECA based on intuitionistic fuzzy approach, which evaluates failure modes under
vague concepts and insufficient data. Jian et al. [42] proposed a new risk evaluation
approach for failure mode analysis in FMECA by integrating intuitionistic fuzzy sets (IFSs)
and evidence theory. In their method, linguistic items and intuitionistic fuzzy numbers are
used to evaluate the risk factors of failure modes and then the evaluations are transformed
into basic probability assignment functions based on evidence theory. Jiang et al. [43]
assessed the risk factors of failure modes using fuzzy membership degree in their proposed
fuzzy evidential method for FMECA, and ranked the failure modes by fusing the feature
information of risk factors with D–S theory of evidence.

Aiming at the controversial mathematical formula for RPN calculation and the ranking
problem of failure modes, many researchers have viewed the risk ranking problem of fail-
ure modes as a multiple criteria decision-making (MCDM) issue [16], and a lot of MCDM
methods such as Analytical Hierarchy Process (AHP), technique for ordering preference
by similarity to ideal solution (TOPSIS), Preference Ranking Organization Method for
Enrichment Evaluation (PROMETHEE), grey theory, and VIsekriterijumska optimizacija i
KOmpromisno Resenje (VIKOR) are introduced to FMECA. For example, Aydogan [44]
introduced an integrated approach by using the rough AHP and fuzzy TOPSIS method for
the performance analysis of organizations under fuzzy environment. Song et al. [20], taking
advantage of the merit of rough set theory in manipulating uncertainty and the strength
of the TOPSIS method in modeling multi-criteria decision making, proposed a new risk
assessment model for FMECA. Liu et al. [45] introduced an intuitionistic fuzzy hybrid TOP-
SIS method to FMECA for determining the risk priorities of failure modes. Silvia et al. [46]
proposed an maintenance approach based on by combining reliability analysis and MCDM
method to optimize maintenance activities of complex systems, in which the AHP is used
for weight evaluation of criteria and fuzzy TOPSIS method is responsible for risk ranking of
failure modes identified in the system. Vahdani et al. [47] integrated fuzzy belief structure
and TOPSIS method in FMECA to describe expert knowledge and rank failure modes in
risk analysis. Zhou et al. [48] introduced grey theory and fuzzy theory into FMECA for
the failure prediction of tanker equipment, in which the risk priorities of failure modes are
determined by two criteria of the fuzzy risk priority numbers (FRPNs) obtained by fuzzy set
theory and the grey relational coefficient obtained by grey theory. Liu et al. [28] introduced
a new FMECA approach based on grey relational projection method (GRP) and D numbers
for determining the risk priority orders of failure modes. Liu et al. [49] developed a frame-
work for FMECA by integrating cloud model and PROMETHEE method for handling the
representation of diversified risk evaluations of FMECA team members and the determi-
nation of the risk priorities of failure modes. Mandal et al. [50] presented a methodology
utilizing VIKOR approach for ranking the human errors. Baloch et al. [51] integrated fuzzy
VIKOR method and data envelopment analysis method into FMECA for determining the
rankings of potential manners and selecting the most important impairment manner.

For better capturing and aggregating different experts’ diversity evaluations which are
difficult to be handled by traditional FMECA, evidential reasoning and Dempster–Shafer
(D–S) Theory are introduced to FMECA in many literatures. Chin et al. [25] proposed an
FMECA approach based on group-based evidential reasoning (ER) for capturing experts’
diversity evaluations and prioritizing failure modes in the situation of various uncertainty.
Liu et al. [52] proposed an improvement approach for FMECA based on fuzzy evidential
reasoning (FER) and grey theory to solve the two shortcomings of traditional FMECA
with respect to the acquirement and aggregation of different experts’ evaluations and the
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determination of the risk priorities of failure modes. Liu et al. [53] proposed a new risk
assessment model for the prioritization of failure modes in FMECA based on FER and
belief rule-based (BRB) method. In their method, FER method is utilized to capture and
aggregate the diversified, uncertain evaluations provided by experts and the relationships
of nonlinear and uncertainty between risk factors and corresponding risk level are modeled
by BRB method. Du et al. [54] proposed a new method in fuzzy FMECA based on evidential
reasoning (ER) and TOPSIS method for precisely determining and aggregating the risk
factors. Li et al. [55] proposed a new method by integrating D–S Theory, DEMATEL,
and IFS method to prioritize alternatives and make risk assessment for system FMECA.
Yang et al. [27] introduced D–S Theory to FMECA for analyzing different failure modes in
the rotor blades of an aircraft engine under multiple evaluation sources with uncertainty.
Su et al. [56] aiming at the method of Yang et al. proposed a modification for dealing with
the combination of conflicting evidence by using the Gaussian distribution-based uncertain
reasoning method to reconstruct the basic belief assignments (BBAs) with considering
the weight of each expert. Shi et al. [57] proposed a aggregation method for aggregating
hybrid preference information based on IFS and D–S Theory, which determines the weight
of each expert based on the conflict degree that is obtained by computing the conflict
coefficient with Jousselme distance [58]. Jiang et al. [59] proposed a modified method for
improving the performance of evidence theory used in FMECA, which reassigns the basic
belief assignments by considering the reliability coefficients obtained based on evidence
distance to reduce the conflicts among expert’s opinion [60].

3. Proposed FMECA Approach

3.1. Methodologies

In this section, Z-number, rough number, DEMATEL method and VIKOR method are
briefly introduced. These methods will be used in the proposed risk assessment model.

(1) Z-number

Z-number, a 2-tuple fuzzy numbers that includes the restriction of the evaluation
and the reliability of the judgment, was first introduced by Zadeh in the year of 2011
for overcoming the limitation that fuzzy numbers does not consider the reliability of the
information [61]. The idea of a Z-number is providing a mode for calculation with numbers
that has partial reliability in the evaluation [62]. A Z-number can be utilized to express
the information of an uncertain judgement in the form of two fuzzy numbers that the
first fuzzy number indicates the fuzzy restriction and the second fuzzy number represents
an idea of confidence, reliability, and probability. Thus, Z-number is more efficient than
fuzzy number in describing the knowledge of human judgment since it describes both the
restraint and reliability. Due to the powerful ability in modeling uncertain information in
real world, Z-number has gained attention by some researchers and efforts have been made
to apply Z-number to various situations such as in computing with words (CWW) [63] and
decision making problems [64].

A Z-number can be denoted as Z = (A, R) where the first component is the fuzzy
restriction for the evaluation of objects and the second component is the reliability of the
first component. In Z-number, A and R are described in natural language using linguistic
terms and presented in a fuzzy number form such as triangular or trapezoidal fuzzy
numbers [61]. For example, in risk analysis, the severity of a failure mode is very high,
with a confidence of very sure, then the Z-number for evaluating the failure mode can be
written as Z = (Very high, Very sure).

(2) Rough number

Rough set theory as a mathematical tool for dealing with the imprecision, uncertainty
and vagueness knowledge [65] has been extensively applied in the fields of knowledge
discovery, data mining, decision analysis and pattern recognition. By using its lower ap-
proximation and upper approximation, rough set theory can fully express and describe
the ambiguity and randomness of uncertain information and can lessen the information
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loss of aggregation process to a certain extent. Based on rough set theory, rough number is
developed by Zhai et al. [66] for managing customers’ subjective judgments and determin-
ing their boundary intervals. By introducing rough number to FMECA, the evaluations
of experts in FMECA can be transformed to rough numbers by calculating their lower
approximation and upper approximation on the basis of original data without any require-
ment of auxiliary information. Since it can effectively extract experts’ actual opinion and
reduce their subjectively in decision-making [67], in this section, rough number is applied
to aggregate the evaluations of experts.

(3) DEMATEL method

Decision-making trial and evaluation laboratory (DEMATEL) method was first pro-
posed in 1973 to solve the fragmented and antagonistic issues of world societies [68]. It is a
method of system analysis using the structural modeling technique to find the influence
relation among complex elements. DEMATEL is a tool of based on the graph theory and
matrix, which constructs the direct influence matrix by means of the logical relation among
various elements in the system and calculates the effect degree and cause degree of each
element to other elements. Because of its ability to pragmatically visualize complicated
causal relationships [69], DEMATEL can be used as an effective tool in studying the inter-
dependence among elements in a complex systems and can be well used to identify the
dependence among failure modes in FMECA process.

(4) VIKOR method

The VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje) method was first
proposed by Opricovic [70] to rank and select the optimum solution among a set of choices
under different units criteria. As one of the MCDM method, VIKOR ranks alternatives
based on the multicriteria ranking index by calculating the particular measure of “closeness”
to the “ideal” solution [71]. It is an effective method in the field of multicriteria decision
making especially in the case where the decision makers may not have enough knowledge
to express their preferences at the beginning of system design [72]. Comparing to other
MCDM methods, VIKOR helps decision makers reach a feasible decision closest to the
ideal by proposing a compromised solution with an advantage rate. Moreover, it is facile
to conduct without any parameter settings. Thus, VIKOR has been extensively applied to
practical decision making issues.

3.2. The Proposed Risk Assessment Model for FMECA

In this paper, a new risk assessment model for FMECA by integrating Z-number,
Rough number, DEMATEL method and VIKOR method is proposed. In the proposed ap-
proach, Z-number is introduced to express experts’ judgements on the evaluation of failure
modes, which has a strong ability to describe the knowledge of human beings by using a
2-tuple fuzzy numbers and can be well used in representing vagueness and uncertainty
information. Rough number is applied to aggregate different types of evaluations trans-
formed by the given 2-tuple fuzzy numbers of experts and manipulate the subjectivity and
vagueness in the evaluation process. Based on its flexible boundary interval, the epistemic
uncertainty of evaluations can be generally represented and the different sources of uncer-
tainty can be effectively tackled in aggregation process. DEMATEL method is introduced to
calculate the effect degree and cause degree of each failure mode by constructing the direct
influence matrix of failure modes, which is a very effective tool to study the relationship
among various failure modes in complex systems. Finally, VIKOR method is utilized to
determine the risk priorities of failure modes under a compromise way, which can help
experts achieving a reasonable ranking results on the basis of maximizing the group utility
for the “majority” and minimizing the individual regret for the “opponent”.

The framework of the proposed approach is depicted in Figure 1, which comprises
four different stages. The first stage is to evaluate the failure modes by using Z-number, the
second stage is the aggregation of different experts’ evaluations based on rough number, the
third stage is to determine the dependency among failure modes on the basis of historical
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failure data, and the fourth stage is to rank the failure modes using VIKOR method. The
four stages are explained in detail as follows.

Figure 1. The framework of the proposed FMECA approach.
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Step 1: Identify the objectives of the risk assessment process and determine the
analysis level.

Step 2: Establish the FMECA team, list the potential failure modes and describe a finite
set of relevant risk factors.

Suppose there are m failure modes in FMECA needed to be ranked according to
the evaluations of failure modes and K experts are responsible for the evaluation with
respect to the risk factors of severity, occurrence, detectability and failure propagation of
failure modes.

Step 3: Evaluate the identified failure modes based on Z-number
In FMECA, failure modes are usually evaluated using linguistic variables such as very

high, high, moderate, low, and very low, these evaluations are usually expressed in a fuzzy
and imprecise way. In this section, failure modes are evaluated by using Z-number, which
can not only express the evaluation of failure modes in a fuzzy and imprecise way, but also
consider the confidence and reliability of the evaluations. In our work, failure modes are
first evaluated according to Table 2, then the given linguistic terms are converted to fuzzy
number according to Table 3. The transferred evaluations for failure mode in the form of
2-tuple fuzzy numbers are expressed as

Z = (A, B) = {(α1, α2, α3), (β1, β2, β3)} (1)

Table 2. Evaluation criterion for S, O, and D and the corresponding linguistic terms.

Severity Occurrence Detectability Linguistic Variables

Failure is hazardous and causes
system failure

Extremely high: Failure
almost inevitable

Design control cannot
detect failures

Extremely high
(EH)

Failure involves hazardous outcomes Very high Very remote chance to
detect failures

Very high
(VH)

System is inoperable with loss of
primary function Repeated failures Remote chance to detect failures Relatively high

(RH)
System performance is severely affected

but functions High Very low chance to
detect failures

High
(H)

System performance is degraded, of which
the comfort or convince functions may

not operate
Moderately high Low chance to detect failures Moderately high

(MH)

Moderate effect on system performance
and system requires repair Moderate Moderate chance to

detect failures
Moderate

(M)
Small effect on system performance and

system does not require repair Relatively low Good chance to detect failures Relatively low
(RL)

Minor effect on system performance Low High chance to detect failures Low
(L)

Very minor effect on system performance Remote Very high chance to
detect failures

Very low
(VL)

No effect Nearly impossible Design control will almost
certainly detect failures

None
(N)

Table 3. The relationship between linguistic terms and fuzzy numbers.

Linguistic Variables
Fuzzy Number

Fuzzy Restriction (A) Idea of Confidence (B)

High (EH) Exactly Sure (ES) (8.4, 10, 10)
Very High (VH) Very Sure (VS) (7.2, 8.4, 9.6)

High (H) Sure (S) (6, 7.2, 8.4)
Relatively High (RH) Relatively Sure (RS) (4.8, 6, 7.2)

Moderately High (MH) Not Sure (NS) (3.6, 4.8, 6)
Moderate (M) Uncertain (U) (2.4, 3.6, 4.8)

Relatively Low (RL) Relatively Uncertain (RU) (1.2, 2.4, 3.6)
Low (L) Very Uncertain (VU) (0, 1.2, 2.4)

Very low (VL) Exactly Uncertainty (EU) (0, 0, 1.2)
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Step 4: Convert Z-numbers into crisp number.
For effectively aggregating the evaluations of experts, the Z-number form evaluations

should be defuzzified to obtain a crisp value. The crisp value of evaluations can be obtained by

v =

∫
xμB(x)dx∫

10μB(x)dx
· (α1 + 4 × α2 + α3)

6
, (2)

μB(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ∈ (−∞, β1)
x−β1

β2−β1
, x ∈ [β1, β2]

β3−x
β3−β2

, x ∈ [β2, β3]

0, x ∈ (β3,+∞)

(3)

where
∫

is an algebraic integration, μB(x) is the membership function of triangular fuzzy
number (β1, β2, β3).

Step 5: Aggregate the evaluations of K experts for each failure mode by using
rough number.

For failure mode i (i = 1, 2, · · · , m) with respect to risk factor j (j = S, O, D), the
evaluations is denoted as Vij =

{
v1

ij, v2
ij, · · · , vK

ij

}
. The first step in the aggregation process

is to obtain the lower approximation and upper approximation of vk
ij(k = 1, 2, · · · , K) by

the following equations:

Apr(vk
ij) = ∪

{
vt

ij ∈ Vij/vt
ij ≤ vk

ij

}
, (4)

Apr(vk
ij) = ∪

{
vt

ij ∈ Vij/vt
ij ≥ vk

ij

}
. (5)

Based on the lower approximation and upper approximation of vk
ij, the lower limit

and upper limit of vk
ij are obtained by

Lim(vk
ij) =

1
ML

∑ vt
ij

∣∣∣∣vt
ij ∈ Apr(vk

ij) , (6)

Lim(vk
ij) =

1
MU

∑ vt
ij

∣∣∣∣vt
ij ∈ Apr(vk

ij) (7)

where ML is the number of elements contained in Apr(vk
ij), and MU is the number of

elements contained in Apr(vk
ij).

Then the rough number of vk
ij is obtained by its corresponding lower limit and upper

limit, namely
RN(vk

ij) = [Lim(vk
ij), Lim(vk

ij)]. (8)

The interval between Lim(vk
ij) and Lim(vk

ij) is the rough boundary interval denoted as

RBnd(vk
ij) = Lim(vk

ij)− Lim(vk
ij). (9)

With the obtained rough numbers of vk
ij(k = 1, 2, · · · , K), the rough sequence RS(Vij)

of Vij can be obtained by

RS(Vij) =
{
[vL

ij, vU
ij ]1

, [vL
ij, vU

ij ]2
, · · · , [vL

ij, vU
ij ]K

}
. (10)

Thus the rough number of the evaluation for failure mode i with respect to risk factor
j (Vij) is obtained by averaging the rough sequence, that is

RN(Vij) = [vL
ij, vU

ij ] =
1
K

(
[vL

ij, vU
ij ]1

+ [vL
ij, vU

ij ]2
+ · · ·+ [vL

ij, vU
ij ]K

)
. (11)
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Then the aggregated evaluation matrix EM for failure modes with respect to S, O and
D is given as:

EM =

∣∣∣∣∣∣∣
[vL

1S
, vU

1S
]

...
[vL

mS
, vU

mS
]

[vL
1O

, vU
1O
]

...
[vL

mO
, vU

mO
]

[vL
1D

, vU
1D
]

...
[vL

mD
, vU

mD
]

∣∣∣∣∣∣∣ (12)

In this step, DEMATEL method is applied to obtain the effect degree (R) and the cause
degree (C) of each failure mode. The first procedure in DEMATEL method is to obtain
the direct effect degree between any two failure modes, referred to as aij (i = 1, 2, · · · , m;
j = 1, 2, · · · , m), which can be obtained by making statistical analysis for the historical
failure data or the expertise and experience of experts. The value of aij represents the
degree that failure mode j influenced by failure mode i, and the value of aji represents the
degree that failure mode i influenced by failure mode j. In general, aij is not equal to aji.
Specifically, aij = 0 if i = j. For m failure modes in FMECA, the direct relation matrix among
these failure modes can be expressed as

A =

∣∣∣∣∣∣∣∣∣

0 a1m · · · a1m
a21 0 · · · a2m
...

...
. . .

...
am1 am2 · · · 0

∣∣∣∣∣∣∣∣∣
. (13)

The initial direct relation matrix A can be normalized by using the following equations [73]

D = A × S, (14)

S = Min

⎡
⎢⎢⎢⎣ 1

max1≤i≤m
m
∑

j=1
aij

,
1

max1≤j≤m
m
∑

i=1
aij

⎤
⎥⎥⎥⎦ (15)

where the value of each element in matrix D ranges from 0 to 1.
Then the total relation matrix is obtained by the following equation

T = D(I − D)−1 =
[
tij
]

m×m (16)

where I is the identity matrix.
The sums of rows and of columns in the total relation matrix T are the effect degree

(R) and the cause degree (C) of failure modes, respectively, which are obtained by using the
following equations

R = (r1, r2, · · · , rm) =

[
m

∑
j=1

tij

]
m×1

, (17)

C = (c1, c2, · · · , cm) =

[
m

∑
i=1

tij

]
1×m

(18)

where ri in vector R is the sum of ith row of matrix T, which represents both the direct and
indirect effects of failure mode i acting on the other failure modes, and cj in vector C is
the sum of jth column of matrix T, which represents both the direct and indirect effects of
failure mode j caused by other failure modes.

Step 7: Obtain the ultimate decision making matrix for failure modes.
The effect degree (R) and the cause degree (C) of each failure mode are regarded as the

risk factor for assessing the risk priority of failure mode, namely five risk factors as severity,
occurrence, detectability, effect degree and cause degree are chosen in the proposed FMECA
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approach for the prioritization of failure modes. Thus the ultimate decision making matrix
for failure modes is given as:

DM =

∣∣∣∣∣∣∣
[vL

1S
, vU

1S
]

...
[vL

mS
, vU

mS
]

[vL
1O

, vU
1O
]

...
[vL

mO
, vU

mO
]

[vL
1D

, vU
1D
]

...
[vL

mD
, vU

mD
]

v1R
...

vmR

v1C
...

vmC

∣∣∣∣∣∣∣ (19)

where viR = ri and viC = ci are the effect degree and the cause degree of failure
mode i respectively.

Step 8: Determine the weight of each risk factor.
As similar as the evaluations of failure modes, the relative weights among risk factors

need to be assessed by experts and aggregated using rough number, the rough numbers for
the weights of risk factors are expressed as

W =
[
[wL

S , wU
S ] [wL

O, wU
O ] [wL

D, wU
D] [wL

R, yU
R ] [wL

C, wU
C ]

]
. (20)

Step 9: Determine the risk rankings of failure modes using VIKOR method.
In this step, VIKOR method is applied to determine the risk rankings of failure modes.

Firstly the weights of risk factors in rough number form need to be converted to crisp value
by the following equation:

wj = λ(1 −
wU

j − wL
j

2(β − α)
) + (1 − λ)

wU
j + wL

j

2(β − α)
, j = S, O, D, R, C (21)

where wj is weight of risk factor j, wU
j and wL

j are the lower limit and upper limit of the

rough number of risk factor j, β = max
j

wU
j ,α = min

j
wL

j λ, is a discount factor, expressing the

effect degree of rough boundary interval imposing on the weight of risk factor. 0 ≤ λ ≤ 1,
and the greater the value of λ, the more effect is imposing on the weight of risk factor, here
suppose λ = 0.5.

The normalized weight of each risk factor is obtained by using the following equation:

w′
j =

wj
5
∑

l=1
wl

, j = S, O, D, R, C. (22)

In VIKOR method, the first step is to determine the optimal and the worst value of
each risk factor in DM, which is determined by

v∗j =

⎧⎨
⎩

max
i

vU
ij , j = S, O, D

max
i

vij , j = R, C
, (23)

v−j =

⎧⎨
⎩

min
i

vL
ij , j = S, O, D

min
i

vij , j = R, C
. (24)

Based on v∗j and v−j , the values of Si and Ri can be calculated by the following relations

Si =
3

∑
j=1

w′
j

{
(vL

ij − v∗j )
2
+ (vU

ij − v∗j )
2
}1/2
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∣∣∣ +

5

∑
j=4

w′
j

∣∣∣vij − v∗j
∣∣∣∣∣∣v∗j − v−j
∣∣∣ , j = S, O, D, R, C, (25)

Ri = max
j
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∣∣∣ ) , j = S, O, D, R, C. (26)
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Then the values of Qi (i = 1, 2, · · · , m) are determined by

Qi = v
Si − S∗

S− − S∗ + (1 − v)
Ri − R∗

R− − R∗ (27)

where S∗ is the minimum value of Si and S− is the maximum value of Si, R∗ is the minimum
value of Ri and R− is the maximum value of Ri, v is the weight of the strategy of “the
majority of criteria” (or “the maximum group utility”), whereas 1 − v is the weight of the
individual regret. Here suppose v = 0.5.

Based on the values of S, R and Q, the failure modes can be prioritized with three
ranking lists. Moreover, VIKOR method proposes a compromise solution, the failure
mode (FM(1)), which is the best ranked by the measure Q (Minimum) if the following two
conditions are satisfied:

C1. Acceptable advantage: Q(FM(2))− Q(FM(1)) ≥ 1/(m − 1), where FM(2) is the
failure mode with second position in the ranking list by Q.

C2. Acceptable stability in decision making: The failure mode FM(1) must also be
the best ranked by S or/and R. This compromise solution is stable within a decision
making process, which could be: “voting by majority rule” (when v > 0.5 is needed), or “by
consensus” v ≈ 0.5, or “with veto” (v < 0.5).

If one of the conditions is not satisfied, then a set of compromise solutions is proposed,
which consists of:

• Failure mode FM(1) and FM(2) if only the condition C2 is not satisfied,

or

• Failure mode FM(1), FM(2), . . . , FM(M) if the condition C1 is not satisfied.

FM(M) is determined by the relation: Q(FM(M))− Q(FM(1)) < 1/(m − 1) for maxi-
mum M.

4. Case Study: Application to the Risk Analysis of the Failure Modes in Offshore
Wind Turbine Pitch System

In this section, the proposed approach is used to the risk prioritization of the failure
modes in offshore wind turbine pitch system. There are seven main malfunctions of the
pitch system, namely, pitch bearing failure, pitch gearbox failure, pitch motor failure, pitch
actuator failure, backup power and charger failure, encoder and limit switch failure, and
control module failure. Each of the malfunctions could cause the pitch system failure and
eventually result in the turbine shutdown. In order to ensure the operation quality and
safety of the pitch system, it is necessary to analyze the malfunctions, excavate the potential
failure reasons, and identify the weak links and dangerous source of the system.

In this case, four experts with different backgrounds and professional knowledge were
invited to identify and evaluate the potential failure modes of pitch system. They are from
wind turbine manufacturer, pitch system manufacturer, wind farm and the operation and
maintenance enterprise for wind turbine respectively, and all of them have rich experience
and knowledge about the fault analysis and diagnosis of pitch system. Based on the analysis
of the historical data of pitch system in a wind farm subordinate to Huaneng Group and the
experts ‘experience knowledge, twenty-four failure modes which are able to cause the seven
kinds of malfunctions were identified, and the four experts are responsible for evaluating
the severity, occurrence, detectability and failure propagation of these failure modes.

For identifying the weak links and dangerous source of the system, the identified
failure modes should to be prioritized based on the values of their severity, occurrence,
detectability, effect degree, and cause degree. The twenty-four failure modes and the
corresponding code are given in Table 4, and the propagation relationship among different
failure modes are provided in Figure 2, which reveals the dependency of the failure modes
participated in the failure propagation.
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Table 4. The potential failure modes and their code.

Code Failure Modes Code Failure Modes

FM1 Bearing internal component failure FM13 IGBT damage
FM2 Crack or fracture of bolt connected with hub FM14 Backup battery or capacitor failure
FM3 Gear failure of the gearbox FM15 Charger failure
FM4 Bearing failure of the gearbox FM16 Pitch angle A/B encoder failure
FM5 Oil spill of the gearbox FM17 Pitch angle limit switch failure
FM6 Short circuit and open circuit of motor winding FM18 Blade angle failure
FM7 Bearing failure of the motor FM19 Hardware failure of controller module (PLC failure)
FM8 Motor brake failure FM20 Power conversion module failure
FM9 Motor fan failure FM21 Switches/contactors/relays failure
FM10 Motor wiring and interface problems FM22 heater and cooling fan failure
FM11 Motor overload FM23 Input/output line failure
FM12 Communication failure FM24 Pitch safety chain module failure

Figure 2. The propagation relationship among different failure modes.

The direct relation matrix among the failure modes obtained based on the historical
failure data is given as follows:

112



Energies 2022, 15, 1858

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0.3 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0.1 0.1 0.1 0 0 0 0 0 0
0.4 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0.1 0.1 0.1 0 0 0 0 0 0
0 0 0 0.3 0 0 0 0 0 0 0.4 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0
0 0 0.3 0 0 0 0 0 0 0 0.2 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0
0 0 0.4 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0 0 0.5 0 0 0 0 0.3 0 0 0.2 0.2 0.2 0 0.3 0.3 0.2 0 0.2
0 0 0 0 0 0 0 0 0 0 0.1 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
According to Table 2, the twenty-four potential failure modes were evaluated with

respect to severity, occurrence and detectability, and the evaluations for these failure modes
were transformed to Z-numbers according to Table 3. The evaluations given by expert 1
and the corresponding Z-numbers for these evaluations are presented in Tables 5 and 6,
respectively. For the sake of space, the other three experts’ evaluation information are
provided in Appendix A. It is necessary to mention that in our work, the weights of
importance of experts are considered as equal. Since each of them has his/her good points,
it is difficult to assign a subjective weight to each expert. After converting the Z-numbers
into the crisp values, the evaluations (in the form of crisp value) given by the four experts
were aggregated by using rough number. The aggregation results are presented in Table 7.

Table 5. The assessment on S, O and D of the twenty-four potential failure modes given by expert 1.

Code Severity Occurrence Detectability Code Severity Occurrence Detectability

FM1 (VH, VS) (RL, NS) (M, S) FM13 (MH, RS) (MH, NS) (L, NS)
FM2 (RH, S) (RL, NS) (RH, S) FM14 (L, NS) (RH, RS) (L, RS)
FM3 (MH, S) (M, RS) (M, NS) FM15 (L, NS) (L, NS) (RL, RS)
FM4 (MH, S) (L, NS) (M, NS) FM16 (VL, RS) (RH, U) (RL, U)
FM5 (L, NS) (MH, NS) (VL, S) FM17 (VL, NS) (MH, U) (RL, NS)
FM6 (MH, RS) (RH, U) (L, RS) FM18 (VL, U) (L, NS) (RL, U)
FM7 (RL, NS) (M, NS) (M, NS) FM19 (RL, RS) (L, RS) (L, RS)
FM8 (RL, RS) (M, U) (RL, S) FM20 (RL, NS) (VL, RS) (L, RS)
FM9 (L, U) (MH, NS) (RL, S) FM21 (L, NS) (M, U) (L, NS)

FM10 (L, RS) (M, NS) (RL, NS) FM22 (VL, RS) (L, NS) (L, RS)
FM11 (M, NS) (RL, NS) (L, RS) FM23 (L, RS) (RL, RS) (L, U)

According to the direct relation matrix among the failure modes, the effect degree and
the cause degree of each failure mode were obtained by using DEMATEL method. In this
paper, the effect degree and the cause degree are considered as two risk factors, which
reveal the correlation strength between each failure mode and the other failure modes. The
greater the effect degree of a failure mode, the more likely the failure mode will lead to
other failures/faults to happen, meaning it has a higher severity. The greater the cause
degree of a failure mode, the more likely the failure mode can be caused by other failure
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modes, meaning it has a higher probability of occurrence. The effect degrees and the cause
degrees of failure modes are presented in Table 7, thus the ultimate decision matrix for the
twenty-four potential failure modes with respect to five risk factors is formed. Similarly,
the evaluations of the weights of risk factors were aggregated and presented in Table 8.

Table 6. The transformed Z-numbers of the twenty-four potential failure modes given by expert 1.

Code Severity Occurrence Detectability

FM1 {(7.2, 8.4, 9.6),(7.2, 8.4, 9.6)} {(1.2, 2.4, 3.6), (3.6, 4.8, 6)} {(2.4, 3.6, 4.8), (4.8, 6, 7.2)}
FM2 {(4.8, 6, 7.2), (6, 7.2, 8.4)} {(1.2, 2.4, 3.6), (3.6, 4.8, 6)} {(4.8, 6, 7.2),(6, 7.2, 8.4)}
FM3 {(3.6, 4.8, 6), (6, 7.2, 8.4)} {(2.4, 3.6, 4.8), (4.8, 6, 7.2)} {(2.4, 3.6, 4.8), (3.6, 4.8, 6)}
FM4 {(3.6, 4.8, 6), (6, 7.2, 8.4)} {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(2.4, 3.6, 4.8), (3.6, 4.8, 6)}
FM5 {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(3.6, 4.8, 6), (3.6, 4.8, 6)} {(0, 0, 1.2), (6, 7.2, 8.4)}
FM6 {(3.6, 4.8, 6), (4.8, 6, 7.2)} {(6, 7.2, 8.4), (2.4, 3.6, 4.8)} {(0, 1.2, 2.4), (4.8, 6, 7.2)}
FM7 {(1.2, 2.4, 3.6), (3.6, 4.8, 6)} {(2.4, 3.6, 4.8), (3.6, 4.8, 6)} {(2.4, 3.6, 4.8), (3.6, 4.8, 6)}
FM8 {(1.2, 2.4, 3.6), (4.8, 6, 7.2)} {(2.4, 3.6, 4.8), (2.4, 3.6, 4.8)} {(1.2, 2.4, 3.6), (6, 7.2, 8.4)}
FM9 {(0, 1.2, 2.4), (2.4, 3.6, 4.8)} {(3.6, 4.8, 6), (3.6, 4.8, 6)} {(1.2, 2.4, 3.6), (6, 7.2, 8.4)}
FM10 {(0, 1.2, 2.4), (4.8, 6, 7.2)} {(2.4, 3.6, 4.8), (3.6, 4.8, 6)} {(1.2, 2.4, 3.6), (3.6, 4.8, 6)}
FM11 {(2.4, 3.6, 4.8), (3.6, 4.8, 6)} {(1.2, 2.4, 3.6), (3.6, 4.8, 6)} {(0, 1.2, 2.4), (4.8, 6, 7.2)}
FM12 {(0, 1.2, 2.4), (4.8, 6, 7.2)} {(4.8, 6, 7.2), (2.4, 3.6, 4.8)} {(1.2, 2.4, 3.6), (2.4, 3.6, 4.8)}
FM13 {(3.6, 4.8, 6), (4.8, 6, 7.2)} {(3.6, 4.8, 6), (3.6, 4.8, 6)} {(0, 1.2, 2.4), (3.6, 4.8, 6)}
FM14 {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(6, 7.2, 8.4), (4.8, 6, 7.2)} {(0, 1.2, 2.4), (4.8, 6, 7.2)}
FM15 {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(1.2, 2.4, 3.6), (4.8, 6, 7.2)}
FM16 {(0, 0, 1.2), (4.8, 6, 7.2)} {(4.8, 6, 7.2), (2.4, 3.6, 4.8)} {(1.2, 2.4, 3.6), (2.4, 3.6, 4.8)}
FM17 {(0, 0, 1.2), (3.6, 4.8, 6)} {(3.6, 4.8, 6), (2.4, 3.6, 4.8)} {(1.2, 2.4, 3.6), (3.6, 4.8, 6)}
FM18 {(0, 0, 1.2), (2.4, 3.6, 4.8)} {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(1.2, 2.4, 3.6), (2.4, 3.6, 4.8)}
FM19 {(1.2, 2.4, 3.6), (4.8, 6, 7.2)} {(0, 1.2, 2.4), (4.8, 6, 7.2)} {(0, 1.2, 2.4), (4.8, 6, 7.2)}
FM20 {(1.2, 2.4, 3.6), (3.6, 4.8, 6)} {(0, 0, 1.2), (4.8, 6, 7.2)} {(0, 1.2, 2.4), (4.8, 6, 7.2)}
FM21 {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(2.4, 3.6, 4.8), (2.4, 3.6, 4.8)} {(0, 1.2, 2.4), (3.6, 4.8, 6)}
FM22 {(0, 0, 1.2), (4.8, 6, 7.2)} {(0, 1.2, 2.4), (3.6, 4.8, 6)} {(0, 1.2, 2.4), (4.8, 6, 7.2)}
FM23 {(0, 1.2, 2.4), (4.8, 6, 7.2)} {(1.2, 2.4, 3.6), (4.8, 6, 7.2)} {(0, 1.2, 2.4), (2.4, 3.6, 4.8)}
FM24 {(1.2, 2.4, 3.6), (3.6, 4.8, 6)} {(0, 0, 1.2), (2.4, 3.6, 4.8)} {(0, 1.2, 2.4), (2.4, 3.6, 4.8)}

Table 7. Decision matrix for the twenty-four failure modes.

Code Severity Occurrence Detectability Effect Degree Cause Degree

FM1 [5.08, 6.58] [1.3, 1.58] [1.61, 2.78] 0.69 0.17
FM2 [4.01, 4.28] [1.19, 1.4] [2.25, 3.73] 0.74 0.14
FM3 [2.63, 3.37] [1.38, 2.09] [1.38, 1.88] 0.80 0.52
FM4 [2.63, 3.37] [0.63, 1.1] [1.37, 1.65] 0.74 0.34
FM5 [0.59, 0.7] [1.96, 2.2] [0.24, 0.48] 0.54 0
FM6 [2.48, 3.75] [3.33, 4.97] [0.83, 1.19] 0.37 0
FM7 [1.66, 2.56] [1.2, 1.91] [1.27, 1.55] 0.30 0
FM8 [1.91, 3.38] [1.33, 2.07] [0.96, 1.69] 0.20 0.47
FM9 [0.54, 0.9] [1.94, 2.7] [0.93, 1.46] 0.20 0.00
FM10 [0.59, 1.21] [1.05, 1.89] [0.65, 1.02] 0.20 0.20
FM11 [1.49, 1.97] [1.3, 1.58] [0.83, 1.19] 0.20 0.67
FM12 [0.67, 1.81] [2.61, 4.07] [0.86, 1.3] 0.27 0.19
FM13 [2.12, 2.7] [1.98, 2.25] [0.63, 0.9] 0.33 0.31
FM14 [0.61, 1.33] [3.74, 4.94] [1.14, 1.74] 0.52 0.21
FM15 [0.56, 0.98] [0.46, 0.7] [0.77, 1.04] 0.41 0.16
FM16 [0.2, 0.92] [2.37, 3.02] [0.78, 1.26] 0.13 0.72
FM17 [0.32, 1.63] [1.55, 1.91] [0.94, 1.6] 0.13 0.72
FM18 [0.18, 0.91] [0.58, 0.8] [0.96, 1.37] 0.13 0.96
FM19 [1.06, 1.39] [0.63, 0.9] [0.7, 1.06] 1.20 1.59
FM20 [0.72, 1.07] [0.09, 0.27] [0.69, 0.98] 0.38 0.71
FM21 [0.7, 1.4] [0.89, 1.08] [0.65, 1.08] 0.18 0.31
FM22 [0.34, 0.83] [0.47, 0.54] [0.83, 1.19] 0.19 0.24
FM23 [0.83, 1.28] [0.49, 0.97] [0.5, 0.83] 0 0
FM24 [0.98, 1.94] [0.07, 0.17] [0.58, 0.95] 0 0.24
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Table 8. The evaluations and weights for risk factors.

Experts S O D R C

Expert 1 0.4 0.3 0.3 0.3 0.3
Expert 2 0.5 0.3 0.2 0.2 0.2
Expert 3 0.35 0.35 0.3 0.3 0.2
Expert 4 0.4 0.35 0.35 0.3 0.2

Aggregation results [0.38, 0.44] [0.31, 0.34] [0.26, 0.32] [0.26, 0.30] [0.21, 0.24]
weights 0.27 0.21 0.19 0.18 0.15

After the aggregation process, VIKOR method was applied to sort the risks of the
failure modes based on the decision matrix. The risk priorities of the twenty-four failure
modes were determined by calculating the measure of closeness to the weighted vectors
of positive ideal point. In the stage of VIKOR method, the optimal and the worst value
of each risk factor were determined by Equations (22) and (23), and the values of S, R
and Q for all failure modes were computed by using Equations (24)–(26) and presented in
Table 9. A failure mode would be closer to the optimal values as the corresponding measure
values approaches to zero. Thus, the failure modes can be prioritized or ranked according
as the values of S, R, and Q in descending order. In order to make the ranking results
better accepted by decision-makers, VIKOR method provides a compromise solution as
illustrated in Section 3.2.

Table 9. The values and rankings of S, R and Q for all failure modes.

Code
S R Q

Value Ranking Value Ranking Value Ranking

FM1 0.614 1 0.214 2 0.013 1
FM2 0.655 2 0.223 4 0.079 2
FM3 0.736 3 0.215 3 0.128 3
FM4 0.822 7 0.249 6 0.322 5
FM5 1.038 16 0.354 21 0.871 20
FM6 0.765 4 0.210 1 0.140 4
FM7 0.940 11 0.268 8 0.494 8
FM8 0.881 8 0.239 5 0.343 6
FM9 1.008 15 0.350 20 0.829 17
FM10 1.058 18 0.339 18 0.840 18
FM11 0.951 12 0.290 9 0.576 10
FM12 0.905 10 0.320 12 0.636 12
FM13 0.902 9 0.249 7 0.397 7
FM14 0.798 6 0.335 15 0.586 11
FM15 1.084 21 0.347 19 0.890 21
FM16 0.951 13 0.360 23 0.809 15
FM17 0.967 14 0.337 16 0.747 13
FM18 1.038 17 0.361 24 0.893 22
FM19 0.794 5 0.320 11 0.531 9
FM20 1.059 19 0.339 17 0.841 19
FM21 1.067 20 0.331 14 0.820 16
FM22 1.117 22 0.358 22 0.957 24
FM23 1.154 24 0.330 13 0.898 23
FM24 1.137 23 0.307 10 0.805 14

By comparing the risk rankings of the twenty-four failure modes, we see that in the
pitch system the weakest link from a reliability standpoint is the pitch bearing, whose
failure modes are ranked first and second in all failure modes identified in pitch system,
and followed by the pitch gearbox and pitch motor. The failure of pitch bearing may lead
to blade pitch to be out of sync or cannot pitch, causing impeller aerodynamic imbalance
and fan speeding, which can result in the failure of safely starting and stopping the turbine,
and bring about the blade rupture and other accidents. The pitch gearbox is also the
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key component that affects the reliability of the pitch system, whose failures of gear and
bearing in the gearbox are ranked third and fifth in all failure modes. Through statistical
analysis of historical fault data of pitch system, we found that the failure of pitch bearing
and pitch gear accounts for 71% of the failure of the whole pitch system, which reveals
that attention should be paid to these failure modes, and necessary measures and controls
should be taken to lessen the possibility of their occurrence. There are many types of
failure of pitch motor, among which the most serious failure modes are short circuit and
open circuit of motor winding and motor brake failure, ranked fourth and sixth in all
failure modes, respectively. It can also be seen that the failures of bearings, gear and other
mechanical components have higher rankings, while the failures of switch, line and other
electrical components have relatively lower rankings. This is because mechanical failures
are difficult to be detected in time, and electrical failures are easy to be detected according
to the abnormal current and voltage signals. Thus, in the reliability design of pitch system,
higher reliability should be allocated to mechanical components, and in order to identify the
failures of the mechanical components such as bearings and gears early before accidents to
ensure the reliable operation of wind turbine, it is necessary to study the on-line monitoring
technology for the mechanical failures of pitch system.

From the above analysis, we see that the ranking results of the twenty-four potential
failure modes are in accordance with the practical engineering background, which proves
the effectiveness of the proposed approach in practical application.

5. Comparison and Discussion

To further demonstrate the validity and availability of the proposed approach, three
comparable method of traditional FMECA, fuzzy TOPSIS and combination weighting-
based fuzzy VIKOR were also applied in the case study. The ranking results of the three
methods are given in Table 10 and compared with that of the proposed FMECA approach.
Based on the rankings in Table 10, it can be seen that the four approaches have a certain
degree of similarity on the overall ranking trends of the twenty-four failure modes. For
example, FM1 is recognized as the most critical failure mode in the four approaches since it
has the highest or second-highest risk ranking. In each of approach, the top four ranked
failure modes all contain FM1, FM2, and FM3, and the lowest ranked failure mode is all
FM22. Moreover, failure mode FM15, FM17 and FM21 have very similar rankings in the
four approaches. However, there are also some failure modes whose rankings of are very
different in the four approaches, such as FM4, FM5, FM9, FM11, FM13, FM14, FM16, FM18,
FM19, FM20 and FM24. The reasons contributing to the different rankings are analyzed
as follows.

First, the weights of risk factors are different in the four approaches. The traditional
FMECA reckons the weights of risk factors as equal, which is not reasonable in actual
case. Since under the hypothesis of equal weights, some risk factors may be overestimated
and others may be underestimated. In the fuzzy TOPSIS, fuzzy VIKOR and the proposed
approach, such equal weight assumption is abandoned by determining the real weights
of risk factors based on evaluations of experts. In the three kinds of approaches, the
weights of risk factors are evaluated by experts using linguistic items. Meanwhile, the
fuzzy TOPSIS determines the weight of risk factors by fuzzy AHP method, in which the
weight of risk factors is (wS = 0.41, wO = 0.31, wD = 0.28). The fuzzy VIKOR determines
the weight of risk factor based on a combined weighting method integrated by fuzzy
AHP and entropy method, in which the weight of risk factors is (wS = 0.4, wO = 0.38,
wD = 0.22). The proposed approach determines the weight of risk factors based on rough
number and Equations (20) and (21), in which the weight of risk factors is (wS = 0.27,
wO = 0.21, wD = 0.19, wR = 0.18, wC = 0.15). Take the FM14 as an example, although
experts evaluate FM14 with respect to occurrence with high value, they put relatively
low importance on occurrence. Thus, FM14 gets relatively high ranking in the traditional
FMECA compared to the rankings in the other three approaches, since occurrence is
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overestimated when regarding the weights of severity, occurrence and detectability as
equal in traditional FMECA.

Table 10. The values and rankings of S, R and Q for all failure modes.

Code
Traditional FMECA Fuzzy TOPSIS Fuzzy VIKOR Proposed Approach

RPN Ranking CC Ranking Q Ranking Q Ranking

FM1 115.28 1 0.211 1 0.194 2 0.013 1
FM2 110.91 2 0.192 3 0.258 3 0.079 2
FM3 74.38 4 0.177 4 0.260 4 0.128 3
FM4 48.13 10 0.159 9 0.528 9 0.322 5
FM5 18.56 17 0.104 19 0.822 17 0.871 20
FM6 105.00 3 0.209 2 0.018 1 0.140 4
FM7 56.00 7 0.157 10 0.427 7 0.494 8
FM8 52.59 9 0.175 5 0.348 6 0.343 6
FM9 32.81 14 0.128 14 0.737 13 0.829 17

FM10 25.00 15 0.125 15 0.799 16 0.840 18
FM11 35.00 12 0.128 13 0.506 8 0.576 10
FM12 52.94 8 0.160 8 0.584 11 0.636 12
FM13 56.11 6 0.151 11 0.271 5 0.397 7
FM14 60.00 5 0.166 6 0.577 10 0.586 11
FM15 11.39 21 0.076 23 0.952 23 0.890 21
FM16 35.44 11 0.160 7 0.743 14 0.809 15
FM17 33.75 13 0.145 12 0.723 12 0.747 13
FM18 14.22 18 0.113 17 0.941 22 0.893 22
FM19 13.92 20 0.086 20 0.846 18 0.531 9
FM20 10.00 23 0.083 22 0.937 21 0.841 19
FM21 24.06 16 0.121 16 0.771 15 0.820 16
FM22 8.59 24 0.065 24 0.987 24 0.957 24
FM23 14.06 19 0.085 21 0.887 19 0.898 23
FM24 10.16 22 0.104 18 0.908 20 0.805 14

The second reason is the different representation and aggregation method for ex-
perts’ evaluation information in the four approaches. As we know, FMECA is a team
collaboration behavior which cannot be implemented alone on an individual basis [25].
On one hand, traditional FMECA, fuzzy TOPSIS and fuzzy VIKOR aggregate different
experts’ evaluations by average method. The aggregation results by this method are largely
influenced by expert’s opinion with subjectively and uncertainly. In fact, because of the
different experience and backgrounds of experts, the evaluations of experts may be dif-
ferent and diverse, and some of which may be vague, imprecise and uncertain. In the
proposed approach, the evaluations of different experts were aggregated by rough number,
which could effectively aggregate the diversity evaluations and reduce the subjectivity and
uncertainly in aggregation process. On the other hand, traditional FMECA, fuzzy TOPSIS
and fuzzy VIKOR evaluate failure modes in the form of crisp number or triangular fuzzy
number. Although fuzzy numbers are able to deal with the human vagueness evaluation to
some extent, it does not consider the reliability of the restricted evaluation. In the proposed
approach, the limitations of fuzzy number are overcome by Z-number, which describe the
evaluations of failure modes by using 2-tuple fuzzy numbers. Compared to fuzzy number,
Z-number has a stronger ability to express vague and uncertain information.

The third reason is the different ranking mechanism for failure modes in the four
approaches. The traditional FMECA ranks the failure modes by multiplying the values of
S, O, and D, which is questionable as mentioned in Introduction section. While the fuzzy
TOPSIS, fuzzy VIKOR and the proposed approach take the ranking problem of failure
modes as a multiple criteria decision-making (MCDM) issue and rank the failure modes
by TOPSIS and VIKOR method. One difference between TOPSIS and VIKOR method
is the different mechanism of aggregation function for ranking in the two methods. The
aggregation function of VIKOR method represents the distance from the optimal values [72]
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with the ranking index of aggregating all risk factors, the weights of risk factors, and the
balance between group and individual satisfaction. While the aggregation function of
TOPSIS method represents the distances from the optimal value and from the worst value,
which introduces the ranking index by summing these distances without considering their
relative importance. The other difference between these two methods is the different means
of normalization. The VIKOR method utilizes linear normalization method for normalizing,
while the TOPSIS method uses vector normalization method. Moreover, the VIKOR method
proposes a compromise solution with an advantage rate.

The last and most critical reason is that the traditional FMECA, fuzzy TOPSIS and
fuzzy TOPSIS do not consider the propagation effect among failure modes, while the
proposed approach considers. The failure propagation takes into account how a failure of a
component could spread within a system, leading other components to failure. In fact, the
practical impact to system reliability of the failure propagation is to increase the severity
and occurrence of failure modes which can cause the occurrence of other failure modes or
be affected by other failure modes. It can be seen that a very different ranking of failure
mode is found in FM19 between the proposed approach and the other three approaches,
which is ranked as twentieth in the traditional FMECA and fuzzy TOPSIS, eighteenth in the
fuzzy VIKOR and ninth in the proposed approach. The remarkably different ranking for
FM19 result from its high effect degree and cause degree. The high effect degree indicates
that FM19 has a large possibility of causing other failures, which means its severity can be
increased through the failure propagation. The high cause degree indicates that FM19 is
more likely to be caused by other failures, which means its occurrence can be increased
through the failure propagation. Thus, due to consideration of the failure propagation, the
ranking of FM19 has greatly increased in the proposed approach compared to the ranking
in the other three approaches, and so does the other failure modes such as FM3, FM4,
FM20, etc.

6. Conclusions

Although FMECA has been extensively used in many fields for risk analysis, there
are still some flaws that limit its performance of application in actual case, especially in
terms of the issues of the representation of expert’s opinions on the evaluation of failure
modes, the aggregation of experts’ diversity evaluations, and the determination of risk
priorities of failure modes. In this paper, a new risk assessment model is proposed by using
an integrated approach, which integrates the strong expressive ability of Z-numbers to
vagueness and uncertainty information, the strong point of DEMATEL method in studying
the dependence among failure modes, the advantage of rough numbers for aggregating
experts’ diversity evaluations, and the strength of VIKOR method to flexibly model multi-
criteria decision-making problems. Based on the integrated approach, the proposed risk
assessment model has the follow advantage features compared to the traditional FMECA
and its variant:

1. The proposed model can well describe the judgements of experts on the evaluation
of failure modes by using 2-tuple fuzzy numbers (Z-number) that the first fuzzy
number represents the fuzzy restriction of the evaluation and the second fuzzy number
represents its confidence or reliability.

2. The proposed model can effectively aggregate the diversity evaluations of experts by
using rough number, which can reduce the subjectivity and uncertainty of evaluations
in aggregation process and help to inspect the consistency of experts’ perspective in
decision making.

3. The proposed model takes the dependency among failure modes into consideration to
identify the effect degree and cause degree of each failure mode by using DEMATEL
method, which can recognize the potential high risk failure modes by analyzing the
effects of failure propagation.

4. The proposed model determines the risk priorities of failure modes by using VIKOR
method, which ranks the failure modes in a compromise way and helps experts in
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FMECA team to reach a feasible ranking results based on maximizing the group utility
for the “majority” and minimizing the individual regret for the “opponent”.

To validate the performance of application in real case of the proposed FMECA
approach and verify its effectiveness, the proposed risk assessment model is applied to the
risk analysis of the failure modes in offshore wind turbine pitch system. By analyzing the
ranking results of the twenty-four potential failure modes, we see that the proposed FMECA
approach can be well used in real case, especially in the situations that the evaluations
of experts are vague and uncertain and the failure modes are interacted with each other.
Through the comparison with other approaches, we see that the ranking results obtained
by proposed approach are more rational and more consistent with the actual results.

As a recommendation for future research, it is suggested that the evaluations of
different experts for failure modes should be aggregated in the form of Z-number without
converting the Z-numbers into crisp value, and some efficient fusion approaches should be
excavated and applied to aggregation process. Moreover, the complexity of the proposed
approach needs to be optimized to make it more applicable in practice. Moreover, in future
work, the proposed model will be applied for risk management decision making in other
fields of quality and reliability engineering to further verify its effectiveness.
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Nomenclature

v Crisp value of evaluation
μB(x) Membership function of a triangular fuzzy number
(α1, α2, α3) Triangular fuzzy number for fuzzy restriction in Z-number
(β1, β2, β3) Triangular fuzzy number for idea of confidence in Z-number
Apr(v) Lower approximation of v
Apr(v) Upper approximation of v
Lim(v) Lower limit of v
Lim(v) Upper limit of v
ML Number of elements contained in Apr(v)
MU Number of elements contained in Apr(v)
RN (v) Rough number of v
Bnd (v) Boundary region of v
aij Degree that a failure mode influenced by another failure mode
R Effect degree
C Cause degree
wj Weight of criterion (or risk factor)
v∗j Optimal value of risk factor
v∗j Optimal value of risk factor
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Appendix A

Table A1. The assessment on S, O and D of the twenty-four potential failure modes given by expert 2.

Code Severity Occurrence Detectability Code Severity Occurrence Detectability

FM1 (RH, S) (M, NS) (RH, RS) FM13 (M, RS) (MH, NS) (RL, NS)
FM2 (RH, RS) (RL, NS) (M, U) FM14 (M, RS) (RH, NS) (RL, RS)
FM3 (MH, RS) (MH, U) (M, RS) FM15 (RL, RS) (L, NS) (L, RS)
FM4 (MH, RS) (M, U) (M, NS) FM16 (M, NS) (RH, U) (M, NS)
FM5 (L, NS) (RH, U) (VL, RS) FM17 (RH, RS) (M, U) (L, NS)
FM6 (RH, S) (RH, NS) (RL, NS) FM18 (M, NS) (RL, U) (M, NS)
FM7 (MH, RS) (M, U) (M, U) FM19 (RL, RS) (L, NS) (RL, RS)
FM8 (H, RS) (MH, NS) (L, RS) FM20 (RL, NS) (L, U) (RL, NS)
FM9 (RL, NS) (RH, NS) (L, RS) FM21 (M, NS) (RL, U) (M, NS)

FM10 (M, NS) (M, U) (RL, NS) FM22 (L, NS) (L, NS) (RL, RS)
FM11 (M, NS) (M, NS) (RL, RS) FM23 (RL, RS) (L, NS) (RL, NS)
FM12 (MH, RS) (RH, U) (L, NS) FM24 (MH, RS) (VL, U) (RL, NS)

Table A2. The assessment on S, O and D of the twenty-four potential failure modes given by expert 3.

Code Severity Occurrence Detectability Code Severity Occurrence Detectability

FM1 (EH, S) (M, NS) (RL, NS) FM13 (RH, NS) (RH, U) (L, RS)
FM2 (H, RS) (M, NS) (MH, RS) FM14 (L, U) (EH, U) (RL, RS)
FM3 (RH, RS) (MH, NS) (RL, RS) FM15 (L, U) (RL, U) (L, RS)
FM4 (RH, RS) (RL, NS) (RL, RS) FM16 (VL, NS) (VH, U) (L, NS)
FM5 (RL, U) (RH, U) (L, NS) FM17 (VL, NS) (RH, U) (M, RS)
FM6 (RH, RS) (EH, NS) (L, RS) FM18 (VL, NS) (RL, U) (RL, NS)
FM7 (MH, RS) (MH, NS) (RL, RS) FM19 (RL, RS) (RL, NS) (L, RS)
FM8 (MH, S) (MH, NS) (L, RS) FM20 (RL, U) (VL, U) (L, NS)
FM9 (RL, U) (RH, NS) (L, S) FM21 (RL, RS) (M, RU) (L, NS)

FM10 (L, NS) (MH, NS) (L, NS) FM22 (RL, NS) (L, U) (L, RS)
FM11 (MH, NS) (M, NS) (L, RS) FM23 (RL, RS) (RL, RU) (L, NS)
FM12 (L, U) (VH, NS) (RL, RS) FM24 (RL, NS) (L, RU) (L, NS)

Table A3. The assessment on S, O and D of the twenty-four potential failure modes given by expert 4.

Code Severity Occurrence Detectability Code Severity Occurrence Detectability

FM1 (VH, RS) (RL, NS) (M, NS) FM13 (M, NS) (MH, U) (L, NS)
FM2 (RH, RS) (RL, NS) (RH, RS) FM14 (L, NS) (EH, RS) (M, RS)
FM3 (M, RS) (RL, U) (RL, NS) FM15 (L, NS) (L, RU) (L, RS)
FM4 (M, RS) (L, U) (RL, NS) FM16 (VL, NS) (H, NS) (RL, U)
FM5 (L, NS) (MH, U) (L, NS) FM17 (VL, NS) (MH, U) (RL, NS)
FM6 (M, NS) (EH, RS) (RL, RS) FM18 (VL, U) (L, U) (RL, U)
FM7 (RL, RS) (RL, U) (RL, NS) FM19 (L, NS) (L, NS) (L, NS)
FM8 (RL, RS) (RL, U) (M, RS) FM20 (L, U) (VL, RU) (RL, U)
FM9 (L, U) (M, U) (RL, RS) FM21 (L, U) (RL, U) (L, NS)

FM10 (L, U) (RL, RU) (L, U) FM22 (L, U) (L, U) (RL, NS)
FM11 (RL, NS) (RL, NS) (RL, NS) FM23 (L, NS) (L, RU) (L, U)
FM12 (L, NS) (VH, RS) (RL, RS) FM24 (L, NS) (VL, RU) (RL, U)
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Abstract: Climate change is progressing faster than previously envisioned. Efforts to mitigate the
challenges of greenhouse gas emissions by countries through the establishment of the Intergov-
ernmental Panel on Climate Change has resulted in continuous environmental improvements in
the energy efficiency and carbon emission signatures of products. In this paper, an energy–carbon
emissions nexus causal model was applied using the Leontief Input–Output mathematical model for
low-carbon products in future transport-manufacturing industries., The relationship between energy
savings, energy efficiency, and the carbon intensity of products for the carbon emissions signature of
the future transport manufacturing in South Africa was established. The interrelationship between
the variables resulted in a 29% improvement in the total energy intensity of the vehicle body part
products, 7.22% in the cumulative energy savings, and 16.25% in the energy efficiency. The scope
that has been examined in this paper will be interesting to agencies of government, researchers,
policymakers, business owners, and practicing engineers in future transport manufacturing and
could serve as a fundamental guideline for future studies in these areas.

Keywords: energy–carbon emissions nexus; causal model; low-carbon product; future transport-
manufacturing industries

1. Introduction

Today’s fast-paced manufacturing industry is increasingly characterized by technology.
The manufacturing sector accounts for about 33% of the primary energy use and 38% of the
CO2 emissions globally [1]. Concerning transport manufacturing, energy purchases have a
major impact on the production costs and, ultimately, on the industry’s competitiveness [2].
Energy efficiency becomes a driver for the manufacturing industry since it is historically
one of the greatest energy consumers and carbon emitters in the world [3]. Author [4]
argues that promoting efficiency without any curbs on the consumption will not tackle the
problem of reducing CO2 emissions. The targets for the reduction of CO2 emissions have a
great effect on the manufacturing industry. South African sectoral electricity, specifically
for the industry sector, sits at 49% vs. a supply of 43.7% [5]. South Africa is committed
to reducing emissions through the introduction of smart manufacturing as an essential
route to meet the greenhouse gas (GHG) emissions target that was out in the agreements
on climate change by the International Panel on Climate Change [6]. However, it is not
only the introduction of smart manufacturing that will aid the achievement of the CO2
emission target, but the main enabler of the commission of these technologies, namely the
policies that recognize the energy efficiency and carbon emission reduction system with
the benefits of digital technologies to overcome the barriers to the implementation and the
accelerated technology deployment in South Africa. Du Plessis 2015 [7] presented a study
that explored the nature and the extent of the various policy instruments and legislation
that relate to energy efficiency.
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Several publications have focused on the application of energy efficiency in the dif-
ferent sector’s policies [8–10], general trading, decision making [11,12], ICT [13], and the
building sector [7]. Other energy efficiency-related research includes the industry applica-
tion in the supply chain [14], the impact on the South African energy crisis on emissions [15],
carbon accounting [16], and predicting carbon emissions [17,18]. A review of the literature
that is related to carbon emissions in most of the applications, in general, accounts for
carbon emission [19], integrated energy efficiency, and the carbon emissions in the industry,
focusing on the implication of improvement for emissions [20], conducted an experiential
study and modeling of energy efficiency by [21], while the reviewed literature focused on a
causal relationship of energy consumption, price, and emissions. The manufacturing sector
consumes a high amount of energy and emits even more [22], and extensive research has
been carried out on the energy efficiency of manufacturing, focusing on improvement [23],
low-cost energy efficiency measures [24], energy efficiency development in manufactur-
ing [25], and energy management that includes energy efficiency [26]. Further studies have
focused on the energy efficiency of manufacturing systems and processes [3,27,28]. The
research has observed that the literature that has been presented on energy efficiency has a
high interest in modeling energy efficiency in manufacturing, including rail manufactur-
ing [29–32] and carbon dioxide prediction [33]. Energy efficiency is recognized globally
as a critical solution toward the reduction of energy consumption, while the management
of global carbon dioxide emissions complements climate change policies, abates the costs
of reducing carbon emissions, and the improves economic competitiveness. Built on the
existing reviews on energy efficiency and carbon emissions, this paper considers the causal
relationship between energy consumption, energy intensity, and carbon emission in future
transport manufacturing. The research considers an investigative study that explores the
implications of energy efficiency improvement for CO2 emissions in the energy-intensive
industries and includes the element of prediction, to advise the decision makers on low-
carbon products. The outline of the paper is structured as follows: Section 2 reviews the
systematic pieces of the literary techniques in transport manufacturing and the future
transport sector regarding energy resource consumption and carbon dioxide emission.
The model for the asymmetric energy–carbon emission and energy and carbon emissions
efficiency regression-based approach are formulated in Section 3. Section 4 expounds on
the results and the discussion. Section 5 presents a conclusion.

2. Literature Review

The transport-manufacturing sector is one of the most important sectors in the industry
and is considered to shape the economic growth and job creation that supports policies
that are related to energy consumption [34], however, the policies that support energy
systems through digital technologies are rare. A new framework for driving analytical data
to reduce energy consumption and carbon emission in energy-intensive manufacturing
has been suggested [35]. Authors [36] investigated the causal relationship between energy
resource consumption, energy prices, and carbon dioxide emission in the building sector
to determine the effects of energy sources and prices on carbon emissions, thus, further
research is required in the industrial and transportation sectors. A structured literature
review technique was used in the collection of empirical evidence in a particular field for
the study to assert the evidence of the co-benefits between energy consumption and carbon
emission to determine the current state of knowledge. It required a critical assessment of
the evidence and the identification of both the potential for energy and carbon efficiency,
with direct economic savings, and the ability to summarize the findings. To achieve the
objective, we have adopted the following three-step approach to identify the relevant
research literature: search term, filtering approach, and information removal.

2.1. Future Transport Manufacturing

The report ‘European Commission’ has emphasized the importance of the transport
sector for economic growth and has widely acknowledged that targeted innovations and

126



Energies 2022, 15, 6322

targeted research activities are key factors for fostering competitiveness in the future
transport sector [37]. Research that was conducted in United States has highlighted that
transport manufacturing is the eighth largest industrial energy consumer; the energy
expenditure increased by 20%, and the purchases of electricity went up by nearly 10% [2].
The modern/smart manufacturing industry is investing in new technologies, such as
the Internet of Things (IoT), big data analytics, cloud computing, and cybersecurity, to
cope with system complexity, to increase information visibility, to improve production
performance, and to gain competitive advantages in the global market [8,38].

2.2. Energy Efficiency and Carbon Emission in Future Transport Manufacturing

The impact of the energy efficiency of emissions in the transport-manufacturing sector
in South Africa can be seen from the recent technological improvements. Giampieri et al.,
2019 [39] suggested that automotive manufacturers are facing economic and environmental
pressure for the realization of a sustainable low carbon process, therefore, improved energy
efficiency is necessary to decrease greenhouse gas emissions, and the carbon risks are
mainly related to the emissions from the purchased electricity in Korean automobile manu-
factures [40]. The application of a conceptual model of the wind turbine into the transport
sector to produce energy for powering the car has also been suggested [41]. However, there
have been studies on a causal relationship between energy consumption and CO2 emission
in building sectors [36].

2.3. Recent Studies on Energy and Carbon Emission

Botts et al., 2021 [42] developed a decision tool for the energy efficiency of a blower
heater on a normalized basis, in terms of the performance and the cost. The energy
consumption estimation in Indian refineries based on empirical-analytical-based panel
data econometrics was postulated by [43], which concluded on the formulation of a policy
to reduce the energy consumption. An energy planning and carbon dioxide estimation
system dynamic model was presented for Nigeria’s power sector by [44]. The model
investigated ways to bridge the demand gaps and the electricity supply through the
simulation of variables, real socio-economic factors, and the estimation of CO2, in various
performance scenarios. Sunde, 2020 [45] investigated the economic growth and the energy
consumption of SADC countries using causality analysis to model the growth variables with
the implied notion of an increased level of energy consumption leading to an economic
output increase. Brahmana and Ono [46] justified the need for energy efficiency as a
significant part of company performance in Japanese listed companies, which affects the
market-based performance with significant impacts on the return on assets (accounting-
book performance), thereby debunking the energy-efficiency paradox. Olanrewaju et al.
developed a forecast model that was dependent on an artificial neural network to model
the energy consumption between 2002 and 2009, which was based on the gross domestic
product and the population [47]. It was discovered that an artificial neural network is a
better modeling technique compared to regression analysis. The link between an energy-
restricted environment and the emissions in South Africa was evaluated by [15], with
findings of undeniable facts on the negative impact of the emissions that are caused by
energy production. Gamede et al., [48] proposed a business model for intergrading the
energy efficiency performance in the manufacturing industry by using a rail car case study
that was recommended for energy service companies. Authors [49] proposed the energy
efficiency analysis modeling system (EEAMS) in transport manufacturing, focusing on rail.
The tool provides an estimate of the energy costs by using the rail car manufacturing plan
load profiles as a case study to provide a consumer-oriented analysis to produce a first-cut
energy-efficient program baseline cost.

This paper examined the use of the casual relationship between energy consumption,
energy intensity, and carbon dioxide emission in the future transport-manufacturing sectors,
respectively.
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3. Methodology

In this section, the concepts and specifications of the mathematical model development
and the measurement and verification integration model for energy efficiency and the
carbon emission signatures approach proposed in this work are presented. The integration
of the high volume of data used was in real-time in the determination of energy intensity
on the realization of the low-carbon product. The proposed architecture of the framework
was based on the Leontief Input–Output mathematical model approach for energy savings.
The entire architecture’s key components are presented here to understand how it works.
The components that constitute the architecture are the physical layer, communication
layer, middleware layer, database layer, and the application and management layer. The
moving average over the past year, i.e., the last 12 values, was determined with specific
functions for rolling statistics in Pandas in the determination of the time series techniques
for the actual data-processing method. We collected Tier 2 automotive company data
for 2015 to 2018 and examined the results of IoT-based energy monitoring devices using
an asymmetric energy causal mathematical model for the analysis through decomposing
into the following components: prediction, testing, and forecasting, for decision making
and policy formulation. We used the vehicle body productions’ energy intensity with
the expected energy consumption and savings, with the expected energy consumption
adjustment from the 2015 to 2016 energy performance data, to compare the results.

3.1. Asymmetric Energy–Carbon Emission Causal Mathematical Model

The asymmetry energy causal mathematical model is an order of the dependency
variables characteristics of the energy variables and vehicle production parts from a heuris-
tic assumption. The definition represents inferences from the statistical data of energy
consumed in producing one unit (inputs) as an exogenous variable, which is determined
by embodied energy intensity per unit as an output variable.

Energy Analysis—Input and Output Theory

The following equilibrium structure predicts the future transport manufacturing
energy consumption over carbon and energy intensity, thereby entailing probabilistic
independence or dependence of the process variables. The adoption of the asymmetric
energy–carbon emission causal mathematical models, which are presented in Figure 1, is the
heuristic dependency determines the observed probabilistic correlations among variables,
or the outcomes of the lowest influence variables. We then manipulate the variables within
the equations to produce asymmetric causal equations as follows:

Figure 1. Causal graph embodied energy intensity in an input and output equilibrium structure.

Xij = transaction from sector i to sector j, Xj = total output of sector j, £j = embodied
energy intensity per unit of Xj (amount of energy consumed in producing one unit), and
Ej = energy consumed to restate the demand of the reporting periods under a common set
of conditions. Es = energy savings in Equation (1), βpeu = baseline energy usage for a period
of use, ρpeu = reported energy usage for a period of use, and A = sum of the adjustment as
Equation (2)
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ES = βpeu − ρpeu ± A (1)

A = 1 −
(

1 − R2
)n−1

/n − pp
−1 (2)

Carbon Emissions converted from Energy

Evaluating the carbon footprint relative to the energy consumption during the pro-
duction of vehicle bodies using applicable emission factors (7.0555 ∗ 10−4) to estimate the
carbon emissions signature (CESTM) for the energy mix for a particular year.

Carbon emission [kgtCO2)]= £j ∗ CESTM [kg tCO2 /GJ] (3)

The annualized non-baseload CO2 output emission rate is used to convert reductions
in hours into avoided units of carbon dioxide emissions. The average carbon intensity
factor of 0.4 kgCO2/GJ is adopted for the equivalent of emission reductions from energy
efficiency programs that are assumed to affect non-baseload generation (power plants that
are brought online, as necessary to meet demand).

Energyconsumption = f
(
Ec, CO2 , Vop, Ei,

)
CO2 (4)

Energyconsumption = f (Ec, Vb, Ei, Nc) (5)

Ec = electricity consumed, Vb = vehicle bodies, Ei = energy intensity, Nc = normaliza-
tion coefficient in CUSUM savings (895.56) to produce parts body.

Carbon Emission Savings

CO2 savings = f
(
Es, Vop, Ei,

)
(6)

Considering the variables required in total internal requirements within the model,
the equation was X = AX, that is, the total input is equal to the total output. X = AX + D (I
− A) X = D, where I is a 3 by 3 identity matrix X = (I−A) − 1D, all consumption is within
the industries. There is no external demand.

Producing P1 units of Es required Esp1 units of CO2 savings; producing P2 units of
Vop required Vopp1 units of CO2 savings; producing P3 units of Ei required Eip1 units of
CO2 savings.

Definition 1. ⎡
⎣P1

P2
P3

⎤
⎦ = P1

⎡
⎢⎣Esp1

Esp2

Esp3

⎤
⎥⎦+

⎡
⎢⎣Vopp1

Vopp2

Vopp3

⎤
⎥⎦+

⎡
⎢⎣

Eip1

Eip2

Eip3

⎤
⎥⎦ ∗

⎛
⎝P1

P2
P3

⎞
⎠ (7)

Total required units of CO2 savings

Esp1 + Vopp1 + Eip1 (8)

Definition 2. The matrix M is the consumption matrix.
Applying the Leontief Input–Output Model implies the following:

P = MP + d (9)

The consumption matrix is made up of consumption vectors. The jth column is the jth
consumption vector and contains the necessary input required from each of the sectors for sector j to
produce one CO2-saving. Vector P = production, vector d = external demand, and vector MP =
internal demand.
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The case is open if d = 0 and closed if d = 0 ; since cases of d = 0 are rare, the case of d = 0
and I − M are as follows:

P = (I − M)−1 d (10)

P =
(

I + M + M2 + M3 +−−−−
)−1

d (11)

3.2. Energy and Carbon Emissions Efficiency Regression-Based Approach

The adoption of the regression-based approach (RBA) for this study requires defining
the boundary through the production operations, including energy savings commitment.
The international performance measurement and verification protocol (IPMVP) framework
is used in the determination of energy intensity on the realization of the low-carbon
product. The compared consumption was measured before and after implementation to
make suitable adjustments following the measurement and verification integration. The
processes were carried out as follows:

Step 1. Secondary energy data from the electricity generated were obtained for
produce vehicles in automotive plants for a 3-year–period was obtained through the
quantitative method.

Step 2. Baseline year was established using 2015 and 2018 data for tracking the energy
performance to capture the energy savings and energy intensity of vehicle production
bodies to determine the energy improvement in energy intensity.

In step 3. Relevant variables were determined, including output units for the produc-
tion. The considered variables of production variability, product variability, feedstock qual-
ity, and quantity were dependent on the processes and outputs. Energy performance was
normalized using a regression approach for these variables to track the energy consumption
and baseline year consumption. Before the normalization, variables were identified by
observations using the best technical judgments, in this case, the production level and units.
Energy performance indicator (EnPI) tools were used to automate the process of evaluating
all possible variables for a given year.

Step 4. Gathering of energy consumption data was performed for the baseline year
and subsequent year for annual reporting. In this study, energy analysis was carried out
using the input and output theory for equating energy consumption as the total of energy
sources for vehicle part production, excluding feedstock in million thermal units (MMBtu),
as presented in Equation (1). Electricity was valued by the primary energy required for the
generation, transmission, and distribution of energy. Monthly energy consumption was
collected on production data and relevant variable data for the regression model.

Step 5. Using regression analysis to normalize the data, the techniques were used to
estimate the dependence of actual energy consumption as a dependent variable (kWh per
unit of vehicles) for a given period and the production levels of parts as an independent
variable, while controlling other variables simultaneously. The regression linear model
in Equation (2) was used based on the strength of estimating energy savings through
the measurement and verification of projects when the variations in operation conditions
included the input data, as follows:

Ec = m1x1 + m2x2 + m3x3 + b (12)

where m1, m2, m3 = kWh per unit of vehicles, x1, x2, x3 = independent variables, and
b = energy use when x1, x2, x3 are 0 (kWh per month).

The linear equation is developed to model the energy consumption for a given period
when an independent variable is set to zero using a known set of conditions. Comparing
the actual energy consumed to the modeled energy consumption can help to estimate
the energy performance improvements of the produced parts. Equation (2) presents the
energy savings.
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Step 6. Requires the determination of energy intensity from the baseline year. Equation (3)
presents the total improvements in energy intensity depending on the regression method
analysis, as follows:

Ei= ∑ (el1∗ ec1) + (e12∗ ec2) + (e1n∗ ecn)/(ec1 + ec2 − ecn) ∗ 100% (13)

where Ei = total improvement in energy intensity, el1, = modeled baseline energy use
per product, ec1 = actual energy consumption per product, and n represents the number
of products.

4. Results and Discussions

A balance between the manufacturing sector’s expansion and energy efficiency can be
achieved through interventions such as cogeneration plants and energy-efficient measures
in enterprises, which will give the businesses the chance to become ready for the industrial
policy consequences to be incorporated. The predicted energy consumption with carbon
emissions quantifies the case company’s future energy needs and serves as a benchmark
for the implementation of some important energy consumers’ small-scale renewable tech-
nology needs. When applying Equation (12), the analysis provides a direct energy and
carbon relationship, which implies larger tax burdens.

A detailed analysis of the model projects the future climate policy on the vehicle
production energy econometric as an industry response to climate policy over a medium to
long-term time scale. Figure 2 shows the energy intensity for the vehicle bodies’ production
model based on the data, will help the industry to become more competitive in lower energy
consumption and carbon intensity for production without a greenhouse gas emission
constraint.

Figure 2. Energy intensity for the vehicle bodies production model based on the collected data.

This paper applied univariate TS analysis as a regression model based on 1086 ob-
servations of data with a 385 minimum sample size of vehicle body production energy
intensity, as shown in Figure 3. Figure 4 presents a graphic representation of the energy
consumption (MWh) and CO2 emissions (Mt), while Figure 5 is the energy (MWh) and
CO2 emission (Mt) profiles.
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Figure 3. Analysis of the energy performance indicator based on energy intensity of the manufactured
product.

Figure 4. Graphic representation of the energy consumption (MWh) and CO2 emissions (Mt).

Figure 5. Graphic representation of the energy (MWh) and CO2 emission (Mt) profiles.

Figure 6 shows that there is a significant positive trend that exhibits less than the
10% critical value margin of error, with a 95% confidence and correlation coefficient as the
fraction of the total variation in the regression of the results.
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Figure 6. Significant positive trend that exhibits less than the 10% critical value margin of error with
95% confidence.

Table 1 presents the test statistics and the results for the vehicle body production, the
energy intensity with the expected energy consumption, and the savings. Although the
variation in the standard deviation is small, the mean is increasing with time, and this is not
a stationary series, as presented in Figure 7. It shows that there is seasonality that exhibits
less than the 10% critical value margin of error with 95% confidence. in energy (MWh) and
CO2 emission (Mt) profiles that exhibits less than the 10% critical value margin of error,
with a 95% confidence and correlation coefficient as the fraction of the total variation in
regressing the results.

Table 1. Test statistics and results for vehicle body production, carbon intensity with expected energy
consumption, and energy savings.

Test Statistics Test Results
Smaller than the
1% Critical Value

Less than the 10%
Critical Value

Lower than the
1% Critical Value

Test statistics −3.602351 −9.397422 −7.793783 −7.590148
p-value 0.005716 6.319220 7.815122 2.544113

#Lags used 6.000000 1.50000 8.000000 1.300000
Number of

observations used 1086.000 1.066000 1.084000 7.0400000

Critical value (1%) −3.436386 −3.436499 −3.436397 −3.439673
Critical value (5%) −2.864205 −2.864255 −2.864210 −2.865654

Critical value (10%) −2.568189 −2.568216 −2.568192 −2.568961

Figure 7. Seasonality that exhibits less than the 10% critical value margin of error with 95% confidence.

The test statistic is less than the critical values. It is important to note that the signed
values should be compared and not the absolute values. TS has even smaller variations
in the mean and the standard deviation in magnitude. The test statistic is smaller than
the 1% critical value, which is better than in the previous case. In this case, there are no
missing values as all the values from the beginning are given as weights. It will not work
with the previous values. The mean and the standard deviations have small variations
with time. The result is less than the 10% critical value, thus, the TS is stationary with
95% confidence. We can take second or third-order differences, which might obtain better
results in certain applications.

Figure 8 is the representation of the simulation of the test and training root mean
square error (RMSE) values of five years of energy and CO2 emission prediction using the
Dickey–Fuller test statistic to determine heuristically the RMSE as the normalized distance
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between the vector of the predicted values and the vector of the observed values. The test
RMSE was evaluated on unused test data, which use the energy-carbon dioxide causal
regression model that was fitted to the training data as a measure of how well fitted the
model is, but not simply how well the training RMSE fits the data that were used to train
the model. This study proves the expert’s prediction that CO2 emissions from transport
manufacturing are the largest cause of climate change that is expanding at the quickest
rate. At the same time, the expansion of CO2 intensity may result in more greenhouse gas
(GHG) pollution from the increased energy use. The test statistic is smaller than the 1%
critical value, which is better than in the previous case.

Figure 8. The actual trained RMSE and prediction test RMSE.

5. Conclusions

In this paper, we employed a statistical approach to establish the baseline demand for
future transport manufacturing to anticipate the electricity demand and CO2 emissions
for that industry. To increase the forecast accuracy, we used the errors to train the causal
model for the energy–carbon nexus. To accurately estimate the CO2 emissions for effective
mitigation and reduction by climate change targets, it is essential to identify the flaws
in previous data using the notion of demand intelligence. The model used here will aid
in lowering CO2 emissions, which is necessary for ongoing technological advancement,
for investing in cutting-edge energy and resource efficiency, for setting up programs to
lower greenhouse gas emissions, and for contributing to climate science research. The
contribution of this study is threefold. Firstly, we have demonstrated the energy-efficiency
paradox in manufacturing, concerning whether the energy efficiency and carbon emissions
signature of the manufactured products. Secondly, we have contributed to the literature
by extending the understanding of the low carbon emission of products with an approach
towards adoption in a production facility. Thirdly, we have carefully studied the energy
performance by testing the moving average over the past year, i.e., the last 12 values
were determined with specific functions for rolling statistics in Pandas. The energy effi-
ciency of production industries and the carbon emissions signature of a manufactured
product is bringing a revolution to manufacturing industries by using big data in industry
4.0 technologies. This study has evaluated research that has been conducted in future
transport-manufacturing literature, establishing that minimal research has been conducted
on the relationship between energy efficiency, energy savings, and carbon intensity for
the future transport manufacturing industries. The interrelationship between the exam-
ined variables resulted in a 29% improvement in the total energy intensity in the vehicle
body part products, 7.22% in the cumulative energy savings, and 16.25% in the energy
efficiency. At a micro level, industries’ adoption of energy efficiency in terms of fuel is
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still limited in responses to climate change campaigns, while EE marginal abatement cost
could provide an insight into incentives for industries to exploit investments in EE through
this study. The study will encourage companies to optimize their profits through more
cash in hand, due to the energy savings, the energy intensity reduction, and a low carbon
footprint of products. As evidenced in the reviewed literature, the harmful effects of GHG
pollution and local air pollution on the environment and human health is growing to pose
a threat to development, if no changes are made to investment strategies and legislation
to enforce cleaner environmental practices, due to a perceived threat to their profits. The
scope that has been examined in this paper will be interesting to agencies of government,
researchers, policymakers, business owners, and practicing engineers in future transport
manufacturing, and it could serve as a fundamental guideline for future studies in these
areas. Future research will concentrate on the incorporation of energy and carbon emission
prediction efficiency into a data monitoring device for online and mobile applications for
the manufacturing of future transportation systems.
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Abstract: There are many factors affecting the assembly quality of rotate vector reducer, and the
assembly quality is unstable. Matching is an assembly method that can obtain high-precision products
or avoid a large number of secondary rejects. Selecting suitable parts to assemble together can improve
the transmission accuracy of the reducer. In the actual assembly of the reducer, the success rate of
one-time selection of parts is low, and “trial and error assembly” will lead to a waste of labor, time
cost, and errors accumulation. In view of this situation, a dendritic neural network prediction model
based on mass production and practical engineering applications has been established. The size
parameters of the parts that affected transmission error of the reducer were selected as influencing
factors for input. The key performance index of reducer was transmission error as output index.
After data standardization preprocessing, a quality prediction model was established to predict the
transmission error. The experimental results show that the dendritic neural network model can
realize the regression prediction of reducer mass and has good prediction accuracy and generalization
capability. The proposed method can provide help for the selection of parts in the assembly process
of the RV reducer.

Keywords: RV reducer; assembly quality; dendrites; neural network; transmission accuracy

1. Introduction

Rotate vector (RV) reducer has the advantages of small size, compact structure and
large transmission ratio [1]. The quality of its assembly determines the performance,
production cost, and production efficiency of the product. It is mainly used in robot joints
with high precision and large load. At present, foreign countries already have a relatively
complete theoretical system for RV reducers. Domestic RV reducers have been developed
for many years without major breakthroughs in accuracy. The dynamic transmission
error of RV reducers depends on the manufacturing error of each component, assembly
errors, and elastic deformation. However, the material properties of parts are easy to
determine and the manufacturing accuracy is difficult to ensure. In this case, companies
generally measure parts and assemble parts to improve the dynamic transmission accuracy
of the reducer.

In 2007, Kannan SM et al. used particle swarm algorithm to obtain the best combination
of parts [2] and successfully made the assembly deviation less than the sum of the tolerances
of the parts. Gentilini et al. established a finite element model; this method can predict
and show the final shape of the assembly [3]. There is no need for physical assembly in
future practice, reducing the time and cost of product quality inspection. S.Khodaygan
et al. proposed to estimate the tolerance assembly and the reliability of the mechanical
assembly to meet the quality requirements through the Bayesian modeling [4], which can
formulate accurate assembly functions for complex mechanical assemblies. At present,
artificial neural networks are widely used in the field of speech recognition, computer
vision, and bioinformatics, etc. In recent years, some scholars have used neural networks to
develop assembly models, which avoids the complicated operation and heavy workload of
traditional methods to solve the accuracy. Steinberg Fabian [5] utilized a gradient boosting
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classifier to identify assembly start delayers. Stark Rainerr et al. selected three approaches
based upon regression, natural language processing, and clustering into intelligent services
in the digital production process to reduce the time for resolving upcoming issues in
assembly [6]. It has certain guiding significance for improving the assembly quality.

The current neuron model relies on the McCulloch–Pitts structure. This neuron uses
the weight between the synapses, and then obtains the output through the activation
function. It does not consider the local interaction played by the dendritic structure as
a part of the neuron and is only used to transmit signals. Experiments had shown that
dendrites play an important role in information processing in biological neurons, which
can nonlinearly integrate postsynaptic signals and filter out irrelevant background infor-
mation [7–9]. The dendrites receive signals (action potentials) from upstream neurons.
After the information is integrated and processed, it is transmitted to the neuron soma.
The powerful information processing capabilities of dendrites enable individual neurons
to process thousands of different synaptic inputs unequally [10]. Inspired by biological
phenomena, Yuki Todo et al. proposed a single dendritic neuron with synaptic, dendritic,
membranous, and somatic layers [11]. A synapse performs a sigmoid non-linear operation
on its input, the nodes in the synaptic layer contain the initial weights and thresholds of
the dendritic neural network, each branch receives a signal and performs a multiplication
operation at its synapse, the membrane sums the results of all branches, ultimately trans-
mitting the signal to the cell body. When the threshold is exceeded, cells send signals to
other neurons through the axon. At present, this model has been widely used, such as
computer-aided medical diagnosis [12] and morphological hardware implementation [13].
Gang et al. believed that the dendritic neuron model proposed by Yuki Todo and Gao [14]
is not enough to be expressive, can only express first-order input, and is not conducive
to computer operation [15]. Considering that the definition of multivalued logic and the
integration of potentials in biological neurons can be described in a multiplicative form, a
dendrite (DD) containing only matrix multiplication and Hadamard product was proposed
to simulate the function of data interaction processing. Gang [16] developed a Taylor series
using the dendritic network proposed by him and constructed a relational spectrum model
to analyze the synergy and coupling of hand muscles, which is helpful for the design of
prosthetic hands. In this article, the DD module is used to develop a prediction model to
capture the internal structure dependence and increase the interaction between information,
which provides a new idea for the prediction of reducer assembly accuracy.

2. Analysis of Quality Influencing Factors

Transmission error (TE) is an important index to evaluate the gear meshing mass,
which is directly related to working accuracy, reliability, vibration noise, and service life of
gear transmission [17]. In the actual manufacturing and installation process of the reducer,
transmission errors are inevitable and the main sources include their own processing
errors and assembly errors. According to the different specifications of the RV reducer, the
transmission error is strictly limited within (1~1.5′).

The RV reducer has a sophisticated and complex structure, and its components mainly
include input shaft, planetary gear, planet carrier, flange, crankshaft, pin teeth, etc. Figure 1
is a schematic diagram of the RV-40E reducer. Figure 1a shows the component assembly
structure of the reducer. The transmission of the RV reducer is divided into two stages,
which are the first-stage involute planetary gear transmission and the second-stage cycloidal
pinwheel transmission [18,19]. The movement of the input shaft drives the planetary gear
to achieve first-level deceleration. The planetary gear drives the crankshaft, then drives
the swivel arm bearing, and transmits the power to the cycloidal pinwheels. Under
the combined action of the swivel arm bearing and the pin teeth, the cycloid pinwheel
produces a revolution motion that rotates around the central circular axis of the pin tooth
and an autorotation motion that rotates around its own axis. The autorotation drives the
flange and output planet carrier to achieve 1:1 speed ratio output to complete the second-
stage of deceleration. Since the influence of the cycloidal pinwheel transmission on the
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transmission error is directly reflected on the output shaft, the first-stage planetary gear
reduction mechanism is far from the output, and its transmission ratio is only the reciprocal
of the second-stage cycloidal pinwheel transmission ratio. Therefore, the RV reducer
transmission accuracy mainly depends on the second transmission. Figure 1b shows the
schematic diagram of the transmission principle mechanism of the reducer [20,21]. The
key parts involved in cycloidal pinwheel transmission include: cycloidal wheel, pinwheel,
crankshaft, and crank bearing. However, in actual engineering assembly, the crank bearing
clearance is usually adjusted to a small value, and the influence on the transmission
error can be ignored. The influence of error factors of remaining key components on
transmission error were analyzed, and the influence degree of each factor on the output
shaft error were obtained. The parameters of each influencing factor θ = [θ1, θ2, · · · , θn]
have errors Δθ = [Δθ1, Δθ2, · · · , Δθn]. The transmission error of RV reducer can be recorded
as ϕ(θ) = ϕ(θ1, θ2, · · · , θn), and each error sensitivity index can be defined as [22,23]:

SN = ∇ϕ(θ) =

[
∂ϕ

∂θ1
,

∂ϕ

∂θ2
, · · · ,

∂ϕ

∂θn

]
= [S1, S2, · · · , Sn] (1)

1. Needle housing 2. Flange 3. Cycloidal pinwheel
4. Swivel arm bearing 5. Planetary gear 6. Crankshaft
7. Input shaft 8. Output planet carrier 9. Crankshaft

(a) (b)

Figure 1. Schematic diagram of RV-40E reducer structure: (a) structure diagram; and (b) schematic
diagram.

This article takes the RV-40E type reducer as an example. Taking the center circle radius
error of the needle tooth as reference error. The sensitivity index of the needle tooth center
circle radius error is 1, the sensitivity index of other error parameters is compared with
the reference error parameter. Through the calculation of sensitivity. It can be concluded
that the factors that have a larger sensitivity index to the transmission error are: needle
tooth center circle radius error δrp, needle tooth pin radius error δrrp, needle tooth pin
hole circumferential position error δt∑, equidistant modification error δΔrp, shift distance
modification error δΔrrp.
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3. Development a Network Model

In the back propagation feed-forward neural network, each neuron takes the output
of the node in the upper layer as the input. The input is activated by linear weighting and
nonlinear function to obtain the output of this node, then pass the output to the node in the
next layer. When using McCulloch–Pitts neurons to learn the relationship between input
space and output space, it ignores the function of dendritic structure as a part of neurons
to process information. For this phenomenon, this article uses the logic extractor DD
proposed by gang to realize data interaction processing function and constructs a dendrite
neural network (DDNN) model for the reducer transmission error prediction. In this model,
the dendrites first to perform interactive preprocessing on the signals transmitted from
upstream neurons, and then transmit them to the cell body for linear weighting. Finally, the
axons are activated by nonlinear functions, then the signals are transmitted to downstream
neurons. Compared with McCulloch–Pitts neuron, the neuron model constructed by
DD module has lower computational complexity, stronger network generalization, and
fitting capability.

3.1. Back Propagation Feed-Forward Neural Network

In the artificial neuron, X = {x1, x2, · · · , xn} is feature input, n is the number of input
features, xi is the ith influencing factor. The input value of the neuron is transmitted by the
connection of the weighting coefficient. The positive and negative values of the weighting
coefficient simulate the excitation and inhibition of the synapse. The size indicates the
strength of the connection, ∑n

i=1 wixi is the integration of all input signals by the cell body.
The threshold b controls the activation of neurons. When the sum of the inputs exceeds the
threshold, the neuron is activated and an output signal is generated to transmit information.
f represents nonlinear activation function, the output ŷ can be expressed as:

ŷ = f (W2,1X + b) (2)

where W2,1 is the weight matrix from the first layer to the second layer, b is the bias.
Back propagation feed-forward (bp) neural network is a multi-layer feed-forward

network trained according to the error back propagation algorithm, which is widely used
at present. The network usually composed of three layers: input layer, hidden layer, and
output layer. Its learning rule is gradient descent, which gradually adjusts weights and
thresholds between layers through back propagation error signals to minimize the loss
function of the network.

Firstly, define E as the loss function of the latter layer in back propagation and a as the
learning rate. The weights from the input layer to the hidden layer is represented by vj,
and from the hidden layer to the output layer is represented by wj. insp is the input of the
pth neuron in the output layer, and insq is the input of the qth neuron in the hidden layer.
The output vector of the output layer is o, the expected output vector is e, l represents the
lth layer of the network model. The output error is:

E =
1
2 ∑l

p=1

(
ep − op

)2
=

1
2 ∑l

p=1

{
ep − f

[
m

∑
q=0

wqp f

(
n

∑
i=0

vjqxn

)]}2

(3)

It can be seen from the above formula that the size of the output error of the network
is related to the weights vj and wj of each layer. The size W =

{
vj, wj

}
of the output error

E can be changed by adjusting the weights. The weight matrix update can be simplified as:

W2,1(new) = W2,1(old) − a
∂E

∂W2,1(old)
(4)
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3.2. Dynamic Adam Optimization Algorithm

For machine learning problems in high-dimensional parameter spaces or large datasets,
Jimmy Ba et al. proposed a dynamic Adam optimization algorithm based on gradient
optimization of the objective function with variable learning rate during iterations [24]. It
continues the strengths of Adagrad and RMSprop. Independent adaptive learning rates
are set for different parameters through the first and second moments of the gradient,
which makes the algorithm converge faster. It improves problems, such as objective func-
tion fluctuations, and maintains prediction performance in non-dense gradient problems
and unstable data. The first-order and second-order moment deviations are calculated
as follows:

mt = β1mt−1 + (1 − β1)dWl,l−1 (5)

vt = β2mt−1 + (1 − β2)(dWl,l−1)2 (6)⎧⎨
⎩

m̂ = mt
1−βt

1

n̂ = nt
1−βt

2

(7)

where t is the number of iterations, mt is the first-order moment vector, nt is the second-
order moment vector. m̂ is the first-order moment deviation, n̂ is the second-order moment
deviation, β1 is the first-order moment attenuation coefficient, β2 is the second-order
moment attenuation coefficient. This article takes 0.9 and 0.999, respectively. Wl,l−1 is the
weight matrix from the (l − 1)th layer to the lth layer in the DD module. The weight matrix
using the Adam optimizer can be updated as:

W2,1(new) = W2,1(old) − a2,1 m̂√
n̂ + ε

(8)

where ε = 10−8 prevents the divisor from becoming 0.

3.3. Dendritic Unit

In biological nervous systems, dendrites had been shown to have logical opera-
tions [25]. The dendritic used in this article is the 0 product between the current input and
the previous input. The Hadamard product can be used to establish the logical relationship
between inputs, so DD is the expression of the logical relationship between features. DD
can capture the logical relationship between features. The DD module can not only be used
to extract the local relationship between inputs, but they also use the internal correlation in-
formation to strengthen the connection between the two features and improve the network
accuracy while capturing the internal structural dependencies. The DD module is shown
in Figure 2.

Figure 2. Dendrite module.

The expression of the dendrite module is as follows:

Zl = Wl,l−1Zl−1 X (9)

where Zl−1 is the input of the module, Zl is the output of the module. Wl,l−1 is the
weight matrix from the (l−1)th layer to the lth layer. X = {x1, x2, · · · , xn} represents the
original input. “ ” represents the Hadamard product, which represents the multiplication
of corresponding elements. It is used to establish the logical relationship between inputs.
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So, it produces another matrix with the same dimensions as the original product matrix.
The features are deeply fused by multiplying corresponding elements, which can better
reflect the meaning of feature intersection.

The DD module is essentially an information processing method, similar to a variant of
the self-attention mechanism. It pays attention to the input feature variable itself, increases
the interaction between information, and strengthens the connection between features.
By training its own information to update the parameters, it gives the network stronger
information processing capability and better generalization capability.

3.4. Developing a Dendritic Neural Network Model

The artificial neuron structure ignores the capability of dendrites to process infor-
mation interaction and only uses dendrites to transmit information. However, in actual
biological information, each neuron can have one or more dendrites. In this article, multiple
DD modules are used to simulate dendritic functions to form a single dendritic neuron [26].
The dendrite extracts logical information from the data transmitted by the upstream neu-
rons. Then, the information is interactively preprocessed and passed to the cell body
for linear weighting. The signal is nonlinearly activated and, finally, output by the axon.
Figure 3 shows the structure of neurons. As shown in Figure 3a, the biological neurons
have dendrites, cell bodies, axons, and other organizations. Figure 3b shows the filter,
accumulator, and balancer in dendritic neurons to simulate the organizational function of
biological neurons, and the expression is as follows:

{
Z1 = W1,0X X

ŷ = f
(
W2,1Z1 + b

) (10)

where X = {x1, x2, · · · , xn} is the feature input, n is the number of influencing factors, W1,0

and W2,1 represent the weight matrix from layer 0 to layer 1 and the weight matrix from
layer 1 to layer 2, respectively. b is bias, f is nonlinear activation function, where ReLU is
selected as the activation function.

(a) (b)

Figure 3. The structure of neurons: (a) biological neuron structure; and (b) functional structure
diagram of dendritic neuron model.

According to the source of the transmission error, five influencing factors are divided
into two dimensions. The information of different dimensions was represented by differ-
ent neurons. Figure 4 shows the fusion of information from different neurons, and the
transmission error prediction model was constructed.
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Figure 4. Dendritic neural network (DDNN) model.

The architecture of DDNN can be expressed as follows:

{
Z1

v = W1,0
v X X

h1 = f (W2,1
v Z1

v + b)
(11)

{
Z1

e = W1,0
e X X

h2 = f (W2,1
e Z1

e + b)
(12)

{
Ah = W1,0

h H H

ŷ = f (W2,1
h Ah + b)

(13)

where V = {v1, v2, v3}, v1 represents the radius error of needle tooth center circle δrp,
v2 represents the needle tooth pin radius error δrrp, v3 represents the needle tooth pin
hole circumferential position error δt∑, all from the component pin wheel. E = {e1, e2},
e1 represents the equidistant modification error δΔrp, e2 represents the shift distance
modification error δΔrrp, all from components cycloid wheel. H = {h1, h2}. Feature vectors
are combined into tensor, which is fed into DDNN model for training. The information
is interactively preprocessed in the DD module, and then transmitted to the cell body for
linear weighting. Finally, the axon performs nonlinear function activation and transmits
information h1 and h2 to the next layer of DD module. Each DD module selects input units
from upper layer without repeating to connect and repeats the above learning rules. Finally,
axon output the predicted value. The overall process of DDNN model prediction is shown
in Figure 5. Firstly, the sample data set is divided into training set and test set. Secondly,
the factors affecting the quality of reducer in the training set and test set are denoted as
eigenvalues, and the transmission errors are denoted as labels. The training set is imported
into DDNN model for training. Equations (11)–(13) aim to obtain the minimum value
of the loss function. They use the dynamic Adam optimization algorithm and the error
signal back propagation algorithm to update threshold and weight parameters. When the
convergence of the loss function of model training reaches the expectation, the training is
stopped and the model is saved. Finally, the test set is brought into the trained model to
obtain prediction results.
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Figure 5. Prediction flow chart of the DDNN model.

4. The Model Solution

4.1. Preprocessing of Test Data

This article takes the RV-40E-121 reducer as an example to analyze. Five influencing
factors related to transmission error during assembly were selected: needle tooth center
circle radius error δrp, needle tooth pin radius error δrrp, needle tooth pin hole circumfer-
ential position error δt∑, equidistant modification error δΔrp, shift distance modification
error δΔrrp. The design upper and lower limits of the five influencing factors are shown in
Table 1. Dimensions of parts are in millimeters.

Table 1. Design upper and lower limits of parameter error of main parts (mm).

Parameter δrrp δt∑ δrp δΔrp δΔrrp

Upper limits 0.03 0.001 0.015 0.078 0.048
Lower limits 0.01 −0.003 0.005 0.026 0.016

In order to avoid the large difference in the value range of each feature affecting the
efficiency of the gradient descent method. The data set needs to be preprocessed before
model training. First, removing the data that deviate too much, then using the Max–Min
normalization method to linearly transform the sample eigenvalues. Thus, making the
result mapped in the interval [0, 1], and the scaling function is as follows:

xnew =
x − min(x)

max(x)− min(x)
(14)

where x is the original data, max(x) is the maximum, and min(x) is the minimum values
in the data. xnew is the standardized data.

Through the error test platform, the size parameters of the above-mentioned main
components were collected as characteristic inputs of the influencing factors, and the
transmission error of the reducer was used as the output index. A data set was constructed
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with a total of 300 samples information. Some sample point data are shown in Table 2,
where the unit of transmission error is angular minutes.

Table 2. Some sample data example (mm).

Serial Number δrrp δt∑ δrp δΔrp δΔrrp Transmission Error/′

1 0.025 0.001 0.015 0.038 0.036 1.880
2 0.017 −0.001 0.023 0.040 0.041 2.151
3 0.015 0.001 0.020 0.032 0.036 1.193
4 0.020 0 0.020 0.038 0.068 1.419
5 0.010 −0.001 0.010 0.016 0.026 0.786
6 0.025 −0.002 0.020 0.026 0.052 1.762
7 0.020 −0.003 0.020 0.040 0.063 2.001
8 0.023 0.001 0.017 0.040 0.041 2.508
9 0.027 −0.002 0.027 0.032 0.052 1.952
10 0.020 0.001 0.013 0.032 0.031 1.166

Firstly, 300 groups of samples were randomly shuffled, and then the data set was
divided. A total of 90% of the samples were set as the training set, and 10% of the samples
were set as the test set.

4.2. Parameter Selection

The framework used in the experiment in this chapter is TensorFlow2.0, and the test
was implemented through Python3.6. The specific hardware environment is: the CPU is
Intel i7, the GPU model is NVIDIA 2080Ti, the CUDA version is 11.2.1, and the CUDNN
version is 8.1.1.33.

The loss function can measure the difference between the output value of the model
and the true value. It is a measure to evaluate the fitting capability of the model. The
advantage of using Log-Cosh function as loss function is that when the feature errors
between samples is small, the Log-Cosh function converges faster. when the feature errors
between samples is large, the Log-Cosh function is not susceptible by outliers. Compared
with other functions, the characteristic curve is smoother and can be derivable twice. To
a certain extent, the robustness of the model can be improved [27]. The expression of the
Log-Cosh function is as follows:

Loss(yi, ŷi) =
m

∑
i=1

log(coth(ŷi − yi)) (15)

where yi is the label vector of the ith training sample, ŷi represents the predicted value
of the ith output sample, m represents the total number of training samples. The relevant
training parameter conditions: the loss function was the Log-Cosh function, the batch-size
was 128, the training epoch was 200, the initial learning rate was 0.001, the optimizer was
Adam. After iterative training according to the settings of the above training parameters,
the loss function convergence curve of DDNN model, as shown in Figure 6, was obtained.

When the convergence of the loss function of model training reached the expectation,
the training was stopped and the model was saved; the weight parameters were extracted
from the saved model. Table 3 shows the weight information of each layer of the model
parameters of the last training (keep values to three decimal places); here, symbol “—”
means no weight value. Finally, the test set was brought into the trained model to get the
prediction result and compared with the label.
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Figure 6. Convergence of loss function of reducer transmission accuracy error.

Table 3. Optimal weights.

The Weight of
Each Layer

Weight Value

The first layer

0.183 −0.070 −0.745 0.478 −0.765

The second layer

0.826 0.465 0.205
−0.601 0.091 −0.313 −0.006 −0.498 0.656 −0.973 —
0.146 −0.325 −0.538 −0.181 −0.119 — — —
0.484 1.127 −0.681 −0.747 0.447 — — —
−0.412 0.665 0.513 0.280 0.117 — — —

The third layer 0.987 0.756 — — — The fourth layer 1.029 −0.725 —
−1.273 0.987 — — —

The prediction curve of the DDNN model is shown in Figure 7, where the blue line
represents real sample values, the red line represents the predicted values.

Figure 7. Prediction result of transmission error sample of RV-40E-121 reducer.
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4.3. Predictive Performance Analysis

In order to further quantify the prediction accuracy of DDNN model, the mean abso-
lute error and mean square error were introduced as performance evaluation indicators.
The effectiveness of the DDNN prediction method was verified by analyzing the perfor-
mance of model predictions. The specific definitions are as follows:
MSE (Mean squared error)

MSE =
1
m

m

∑
i=1

(ŷi − yi)
2 (16)

MAE (Mean absolute error)

MAE =
1
m

m

∑
i=1

|ŷi − yi| (17)

where yi is the label vector of the ith training sample, ŷi represents the predicted value of
the ith output sample, and m represents the total number of training samples.

MSE reflects the mean squared prediction error of the model. MAE describes the
average value of the absolute error between the predicted value and the observed value [28].
The smaller the value of MSE and MAE, the better. The method proposed in this paper was
compared with the other three commonly used prediction models, which are BP neural
network, support vector regression with Gaussian kernel (SVR-R) and general regression
neural network (GRNN) [29]. The initial parameter settings for all models are shown in
Table 4.

Table 4. The initial parameter values of models.

Model Parameter Value

BP neural network
Learning rate 0.001

Optimizer Stochastic Gradient Descent
GRNN Smooth factor 0.03

SVR-R
Penalty term 40

Gamma 4

Dendritic Neural Network
Learning rate 0.001

Optimizer Adam

Table 5 shows the comparison results of the prediction performance and computational
efficiency of the above four models. From the error results in the table, it can be concluded
that for transmission error prediction, the prediction accuracy of the DDNN model is better
than the other three models. For computational efficiency, the running time of GRNN and
SVR-R outperforms the remaining two models. Considering the prediction performance
and calculation efficiency comprehensively, the DDNN model has the highest prediction
accuracy and can also meet the time requirements of actual assembly.

Table 5. Comparison of the DDNN with other models.

Model Mean Squared Error Mean Absolute Error Computational Efficiency/s

BP neural network 0.1411 0.2545 13.708
GRNN 0.051 0.229 0.057
SVR-R 0.048 0.216 0.036

Dendritic Neural Network 0.032 0.121 9.751

5. Conclusions and Future Work

In the actual production and assembly process of reducer, the success rate of one-time
selection of parts is low, and repeated disassembly and assembly will lead to the generation
and accumulation of errors. Through the analysis of the factors affecting the quality of RV
reducer, five factors with larger sensitivity indices were selected as sample eigenvalues in
the data set, and transmission error was noted as sample label. The prediction results show
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that DDNN model can capture the logical relationship between features and strengthen the
internal information correlation; it can effectively avoid the failure of the loss function to
converge due to large fluctuations of parameters when updating; it has better generalization
ability and can effectively predict reducer dynamic transmission error. The research in this
article has practical guiding significance for the selection of parts and components in the
RV reducer assembly, which can improve the assembly qualification rate, avoid repeated
disassembly and assembly, and reduce the waste of labor and time costs.

However, there is still room for improvement in this study, such as the deficiencies in
selection of quality influencing factors, and the applicability of the method for different
examples. In the follow-up, the influence of quality factors on transmission error of reducer
will be comprehensively analyzed to obtain a more ideal DDNN prediction model.
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Abstract: With the increasing attention paid to sustainable development around the world, improving
energy efficiency and applying effective means of energy saving have gradually received worldwide
attention. As the largest energy consumers, manufacturing industries are also inevitably facing
pressures on energy optimization evolution from both governments and competitors. The rational
optimization of energy consumption in industrial operation activities can significantly improve the
sustainability level of the company. Among these enterprise activities, operation and maintenance
(O&M) of manufacturing systems are considered to have the most prospects for energy optimiza-
tion. The diversity of O&M activities and system structures also expands the research space for it.
However, the energy consumption optimization of manufacturing systems faces several challenges:
the dynamics of manufacturing activities, the complexity of system structures, and the diverse inter-
pretation of energy-optimization definitions. To address these issues, we review the existing O&M
optimization approaches with energy management and divide them into several operation levels.
This paper addresses current research development on O&M optimization with energy-management
considerations from single-machine, production-line, factory, and supply-chain levels. Finally, it
discusses recent research trends in O&M optimization with energy-management considerations in
manufacturing systems.

Keywords: sustainable; energy optimization; operation and maintenance; manufacturing systems

1. Introduction

With the rising concern about the environmental pollution of fossil energy, the concept
of sustainable development has gained worldwide attention. A huge number of measures
have been proposed to achieve the global sustainable goal from various perspectives of
energy policy, technology, etc. [1–3]. Renewable energy is recommended to gradually
replace fossil energy, and the calls for applications of energy efficiency increases and
effective energy saving have become much more urgent [4]. As the important pillar of
development as well as the main sector of energy consumption, industry consumed 28.9%
of the world’s total final energy, 38% of total electricity consumption, and especially 81.9%
of coal consumption [5]. Therefore, reasonably improving the sustainable development
level of the industry, especially the optimization of energy consumption, plays an important
role in promoting the transformation to a sustainable manufacturing mode [6].

Under the background of sustainable development, industrial enterprises not only
need to improve their energy efficiency and reduce waste to obtain greater competitiveness
but also have to face a more challenging energy transformation environment such as
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energy source changes and emission punishment, which brings more considerations and
constraints for the decision-making process. Effective energy-saving measures can help
enterprises save costs, resist the risk of policy changes, and can also reflect the social
responsibility of enterprises, driving long-term sustainable development [7].

For a classical industrial enterprise, the energy consumption sources can be mainly
divided into two categories according to the usage purpose of the consumption terminal [8].
One is used to support the normal functioning of enterprises, such as lighting and heating
of all buildings, which is more stable and easier to predict. This kind of energy consumption
can be reduced through the systematic application of green building and management [9,10].
The other is mainly consumed in operation and maintenance (O&M) activities, which are
directly related to the manufacturing process and have a strong correlation with the energy
consumption of the system [11]. Compared with the former energy consumption source,
O&M-related energy optimization faces more severe challenges. Since the production
activities involve both products and machines, the randomness of production orders,
the diversity of production-line structures, and the complexity of the machine working
environment all increase the difficulty of O&M decision-making.

In recent years, O&M decision-making with energy-management considerations has
been noticeable and studied from various perspectives. Many valuable reviews have
been published to summarize different ways of energy management in manufacturing
systems. Park et al. [12] reviewed energy consumption reduction strategies and energy-
saving technologies in different countries. Jasiulewicz [13] concluded recent maintenance
technologies for sustainable manufacturing to avoid sudden breakdown and decrease
energy and material consumption. In addition, Gham et al. [14] constructed a study
framework for energy-efficient scheduling and made a sufficient review. These studies on
energy management in the O&M field usually focus on totally different objects and are
scattered among different processing stages. However, they have not carried out more
specific and systematic generalizations for the concrete optimization problems and solving
methodologies.

This paper classifies various energy management approaches in the field of O&M,
focusing on the energy optimization of manufacturing systems, and reviews from mainly
four processing levels: machine level, production-line level, factory level, and supply-
chain level. The remainder of this paper is arranged as follows: In Section 2, the O&M
methods for manufacturing systems with an energy-saving consideration are reviewed,
and the challenge factors are elaborated. Sections 3 and 4 summarize the new research on
energy optimization in the field of O&M from the machine level and production-line level,
respectively. Section 5 briefly introduces current developments of O&M optimization with
energy management in the factory level and supply-chain level. Section 6 further discusses
the future development trend in this research field, and, finally, Section 7 summarizes the
work of the full text.

2. O&M Methods for Manufacturing Systems with Energy-Saving Consideration

O&M are the main business activities within manufacturing enterprises. In a broad
sense, they refer to all related activities needed to preserve the functioning and productivity
of a system. For a manufacturing system, O&M are the collection of a series of system
management activities, including product scheduling, machine management, product qual-
ity control, inventory control, and supply-chain management, as well as after-sale service.
These are used to analyze the characteristics of different manufacturing system structures,
apply systematic optimization methods, and make improvements to the performance of
the whole system, including production cost, system efficiency, machine reliability, and
product quality.

Since O&M activities are carried out in multiple forms at different levels of manu-
facturing systems, the optimization can be categorized according to the organization of
manufacturing systems [15], which can also be defined as the manufacturing process. In
this context, the manufacturing optimization activities can be decomposed into several
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levels: the machine level where unit optimization is carried out, the production-line level
with the consideration of interactions between machines and products, and the factory
level, which is defined as monitoring the whole performance of the factory through various
aspects, including building energy monitoring and manufacturing system energy optimiza-
tion, and the multi-factory and supply-chain level, where energy management is applied
from suppliers to customers. The main activities and elements concerning in different
decision levels are presented in Figure 1.
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Figure 1. Decision levels of O&M in a manufacturing process.

The O&M research on the machine level mainly studies the degradation trend and
machine status through in-depth analysis of the processing details, so as to improve the
processing performance. Inputs for a machine processing procedure are the processing
parameters and operation schemes, and some noticeable performance outputs include
machine degradation status, product quality, and processing costs. Therefore, O&M on a
single-machine system usually focuses on the process parameters of machines, degradation
of machines [16], production schedules, and single-machine maintenance strategies [17,18],
which can be further divided into sub-tool replacement, whole-machine maintenance, etc.
Many studies also take product quality into consideration and perform joint modeling
and optimization [19,20]. The analysis of the single machine is also the foundation for
system-level optimization and provides a more specific optimization angle to realize energy
savings.

The system research on the production-line level pays more attention to the structure
of the production line and the processing sequence. In addition to the machine status
and scheduling problems, which are considered at the machine level, production-line-
level optimization starts to concentrate on the interaction among procedures and between
machines and products.

At the same time, the application of the Manufacturing Execution System (MES)
broadens the meaning of O&M to the factory level [21]. Through additional management
systems, the synchronous optimization can be accomplished by real-time monitoring
and precise simulation, combined with systematic analysis. In addition, building energy
optimization can be included in the operational activities of enterprises. Moreover, energy
optimization between factories within the supply chain is also considered to be a promising
research field, which includes supplier management, logistics optimization, and so on.

This review focuses on the O&M optimization strategies in the manufacturing system,
that is, the related activities at the machine level and production-line level. Since the system
profit and energy consumption are directly related to the product production schemes
and machine maintenance behaviors, O&M optimization in the manufacturing system
pays more attention to the production scheduling and system maintenance strategies. As
two key activities in the manufacturing system management, these two kinds of activities
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are coupled with each other through the reliability and availability of the machine [22].
Maintenance aims to ensure the health of the machine and thus ensure production efficiency
and product quality [23], whereas production scheduling can in turn affect the formulation
of machine degradation. Therefore, the difficulties of joint decision-making of maintenance
and production scheduling are mainly reflected in three aspects:

• The independence of the machine degradation

The function and working environment differ between machines in different proce-
dures among the whole system, and the fact that the degradation distributions of any two
machines are independent of each other due to the variation among machine components
further proves the necessity of full consideration of independent machines’ degradation
modeling [24].

• Multiple couplings brought by production operation

The production of workpieces often needs to go through multiple processes; as a
result, the machine in each process is connected through the processing sequence of the
workpieces. It also unexpectedly influences the reliability of machines and increases the
difficulty of overall decision-making at the system level in the formulation of production
and maintenance strategies. Moreover, maintenance actions are performed in machines,
which occupies the feasible time for product processing and influences the final productivity
of the system.

• Interactions between energy consumption and O&M operation

Maintenance and production are related to machine status and thus related to the
energy consumption levels of machines. The processing machine usually consumes more
energy when it is on for production, and is shut down or kept idle during maintenance.
Therefore, reasonable and effective maintenance and production scheduling can reasonably
utilize the status of each machine in the system, so as to find the opportunity for energy
balance, thereby reducing energy consumption.

Meanwhile, more and more attention has been paid to energy consumption and
energy efficiency during processing in the context of sustainable development [25]. The
consideration of energy savings in O&M optimization of the manufacturing system also
brings changes to the traditional joint decision-making of production and maintenance:

1. Additional targets or constraints brought from energy consideration

The consideration of energy consumption can usually be added to the model in two
ways, one as an optimization objective and the other as a model constraint. However, no
matter what form the addition takes, it increases the solution complexity of the original
model. In particular, when energy consumption is taken as the optimization objective, it
may greatly affect the original solution space and the optimization direction of the solution.

2. Changes in modeling methods under a new energy policy background

Simple additional goals or constraints will not change the original model too much.
However, with the gradual deepening of energy-saving considerations, the updated energy
consumption policies will also become a new research point for system optimization. Under
the influence of these circumstances, in addition to the revision of the original model, it is
more likely to completely subvert the original model, and force researchers to build a new
system optimization model and seek new energy-saving opportunities.

Based on the difficulties and changes mentioned above, the following sections will
give a detailed overview of O&M optimization methods with the consideration of energy
management from the perspective of single-machine and production-line levels.

3. New Research Developments on Machine Level

The manufacturing system is formed by series and parallel connections of machines
with different functions in different processes. Therefore, the machine can be regarded as the
most important part, constituting the production line. At the same time, the machine itself
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is a complex system. From the structural aspect, typical machining equipment is composed
of tools, spindles, motors, and other components. In addition, from the perspective of
the machining process, it can be divided into rotation, positioning, feeding, and other
processes, which have different energy consumption characteristics. Therefore, machine-
level operations can be divided into two categories. One is to optimize the processing
parameters for different processes to reduce energy consumption and the other is to achieve
energy consumption minimization through whole-machine actions such as on/off control
and single-machine production scheduling. Similarly, the maintenance of machines can
also be summarized into two types. On the one hand, the machine can be taken as a
whole, and data-driven methods can be used to optimize the overall maintenance action.
On the other hand, each component can be taken as the focus of optimization to study
the maintenance and replacement strategies of each part. In addition, some researchers
also additionally introduce reliability assessment or optimization with product quality
control consideration [26]. Therefore, the O&M optimization of energy management on the
machine level can usually be summarized into three main aspects:

3.1. Process Parameters Optimization

The most common type of processing in manufacturing systems is machining, and
nearly 99% of the environmental impact is caused by the energy consumption of CNC
machines [27]. Typically, the machining process can be divided into a set of steps including
positioning, spindling, tool feeding, cutting, and leaving [28,29]. And a typical machine
tool power usage in a complete machining process is calculated and shown in Figure 2 [30].
Of these, inherent energy consumption plays a dominant role in total consumption [31].

 

Figure 2. Machine tool power usage in a complete machining process.

Optimization in terms of non-value-added behavior, therefore, has greater potential
for energy savings, such as tool path optimization and position location optimization.
Research in this area can not only improve machining efficiency but also achieve energy
savings. However, it usually requires a balance between the goals of faster movement
speeds and more accurate positioning accuracy. Xu et al. [32] developed a model of the
machine-dependent energy potential field and modeled specific power requirements at any
contact point with any feed direction, thus finding a balance between the minimum energy
consumption and tool path planning.
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At the same time, the machining process refers to the process of chipping material
from the surface of an object and the energy consumption in this process is related to
numerous factors [27]. From the perspective of process parameter optimization, many
papers focus on the optimal design of cutting parameters [27,33–35]. This kind of research
is mainly carried out in three ways:

1. Real experimental-design-based optimization

The first is based on the experimental design of machining, such as the Taguchi
method, in order to explain the influence of cutting parameters on energy consumption and
to obtain the optimal combination of parameters for energy consumption. Bilga et al. [36]
investigated the influence of process parameters on the turning process with the aid of
Taguchi’s experimental design and signal-to-noise ratio analysis. From the experiment, it
was pointed out that the cutting depth variable was the largest influencing factor in the
energy consumption of the turning process.

2. Optimization based on fitting experimental data

The second method is based on fitting experimental data to obtain a regression model
between parameters and energy consumption. Classical methods include the response
surface method. Campatelli et al. [37] established a regression equation between milling
parameters and energy consumption by the response surface method and obtained the
optimal combination through experimental analysis. They also demonstrated that energy
consumption decreases with increases in the material removal rate. Zhong [27] identified
energy consumption as the optimization objective, denoted as a function of spindle speed,
cutting speed, feed rate, and cutting depth. A decision rule for selecting the best cutting
parameters to achieve the lowest energy consumption was also proposed based on the
candidate options of the experimental design.

3. Impact-analysis-based optimization

The last kind of approach to construct an energy consumption optimization is by
analyzing the impact characteristics of cutting parameters on energy consumption. For
example, He et al. [38] established a multi-objective optimization model for process pa-
rameters with energy consumption, cutting force, and machining time as three objectives,
and solved the problem based on a matching genetic algorithm. Bi [35] developed an
energy consumption evaluation model based on the kinematic and dynamic behavior of
the machine tool to dynamically evaluate the machine’s posture and dynamically optimize
the process parameters to reduce energy consumption. Simulation experiments were con-
ducted to verify the accuracy of the method concerning energy consumption and machine
posture.

In addition, there is a complex mapping of machining energy consumption to tool
selection and tool usage conditions in the machining process. It has been demonstrated
that both cutting parameters and energy consumption also vary significantly depending on
the tool wear conditions when using worn tools [39]. Therefore, tool selection [29,40], tool
wearing conditions [41–43], and machining quality control [26,44,45] are usually also taken
into account in new studies. Chen et al. [40] developed an integrated approach for cutting
tool and cutting parameter optimization to analyze the energy footprint by considering
the flexibility of multiple tool selection and cutting parameters, and the multi-objective
cuckoo search algorithm was used to find the optimal solution. The effectiveness was
proved through an actual milling process with a step feature. They also proved that the
optimization result of minimum production time does not necessarily satisfy minimum
energy consumption.

In contrast, Xie et al. [43] proposed a co-optimization multi-objective model to select
the optimal cutting parameters in order to consider the effects of tool wear and cutting
parameter combinations at a certain material removal rate for energy saving and quality
assurance and used the NSGA-III algorithm to solve the problem.

The state of the processing machine in turn also greatly affects the quality of the
product, and, for machined products, the main embodiment of quality is surface roughness.
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Therefore, Wang et al. [33] classified the energy in the machining process into direct energy
and embodied energy, and considered the cost items such as operation cost, consumables
cost, tool cost, etc. They established a multi-objective optimization model with surface
roughness as the embodiment of machining quality and solved it by using a non-dominated
classification genetic algorithm to obtain the optimal set of cutting parameters. Ma et al. [34]
developed an energy prediction and optimization model for three-axis milling machines,
characterizing the material removal rate as an energy consumption function, and controlling
the cutting width and cutting depth parameters by optimizing the spindle speed.

3.2. Energy-Efficient Maintenance Optimization

The most common maintenance actions used in maintenance optimization decisions
for a single machine can be divided into two categories: corrective maintenance (CM) and
preventive maintenance (PM). CM, which is also known as minimal maintenance [46],
refers to actions of taking the necessary repairs to restore the machine to function when
a failure has already occurred. This type of maintenance action is not effective enough in
ensuring machine reliability because failures are unpredictable and happen randomly. In
contrast, PM is a pre-act maintenance strategy, in which the machine is overhauled and
repaired according to a pre-defined strategy before a failure occurs, thereby eliminating
the failure in advance and avoiding major economic losses caused by sudden breakdown.
In the construction of a single-machine maintenance strategy, the above two actions are
usually considered at the same time, and the strategy is optimized mainly for preventive
maintenance.

For the construction of the maintenance optimization model, machine reliability,
productivity, maintenance cost, etc., are usually considered as objectives. The impact of
energy consumption is also integrated into the decision model in order to fully consider
the impact of sustainability objectives on the decision-making process. Yan et al. [47]
modeled the relationship between reliability and energy consumption based on historical
data to calculate the energy consumption of machine tools, thus accurately analyzing
the relationship between energy consumption and machine reliability. Hoang et al. [48]
proposed a state maintenance model based on energy-efficiency thresholds, thus directly
considering energy impact in maintenance optimization and combining the degradation of
the machine with energy conversion efficiency.

Focusing on the machine itself, it is also composed of multiple sub-components. There-
fore, some constructions of the model also address the machine maintenance optimization
integrated preventive maintenance and component replacement strategies to achieve a
system improvement. For example, Xia et al. [49] integrated energy consumption mecha-
nisms of tool wear and the degradation of machine systems to optimize the combination of
machine maintenance and tool replacement strategies. The application of this approach
effectively reduced non-value-added energy consumption in sustainable manufacturing
systems compared with traditional maintenance strategies.

In terms of the solution methods, the models mentioned above usually use mathemat-
ical modeling methods, which construct objective functions, add constraints, and perform
model solving to obtain optimal maintenance policies. However, some studies choose
model stochastic process simulation methods. An increasing number of studies use Markov
methods for detailed modeling and optimization of machine condition transformation. Xu
et al. [50] used a partially observable Markov decision process (POMDP) framework to
develop a decision model to infer the status of the machine tool through joint observations
of machining energy consumption and manufactured workpiece quality. It was proved to
be an optimal strategy that maximizes the total expected energy efficiency return of the
production process in a limited range. Wu et al. [51] developed a proactive maintenance
framework with two dimensions—service age and severity of energy consumption—to
guide repairment and spare parts replacement. A semi-Markov chain was constructed to
model the energy consumption process and analyze the energy consumption optimization
process.
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3.3. Energy-Efficient Production Optimization

Production-related energy consumption optimization usually consists of two aspects:
one is the production scheduling problem and the other is the machine on/off state switch-
ing problem.

1. Production scheduling

The single-machine scheduling problem is the set of all scheduling problems that
perform sequencing on a single machine and is usually used to guide the optimization
of the workpiece processing order. The general description is as follows: A number of N
and mutually independent workpieces are sorted according to specific sorting rules and
scheduled to be processed on a single machine. Each workpiece can only be processed once
on that machine and the machine can only process one workpiece at the same time.

In a sustainable manufacturing context, machining energy consumption is usually
added to the model as a goal or constraint. Che et al. [52] designed a method to obtain
the exact Pareto front based on minimizing the total energy consumption and maximum
tardiness. The constructed model considered the differences in workpiece release times of
different types and used the production scheduling plan and machine switching operations
as decision variables for the systematic optimization of production operations. Some
studies also took time-dependent energy costs as research background and carried out the
production schedule. Chen [53] solved the single-machine scheduling problem for a set
of independent jobs under time-of-use tariffs and designed the corresponding scheduling
rules and pseudo-polynomial-time algorithm to solve it. In contrast, Zhou [54] conducted a
study on the energy-efficient scheduling problem of a single batch processing machine in
the context of time-of-use tariffs, where a model was constructed for different job sizes and
release times, taking power cost and productivity into account, and a hybrid multi-objective
metaheuristic algorithm based on particle swarm optimization (PSO) was designed to solve
it.

2. On/off control

In addition to considering production scheduling sequence optimization, some studies
were also devoted to energy consumption optimization with the help of machine state
switching. For machines with high standby power and long production waiting intervals,
through timely machine status switching, the standby energy consumption of machines
can be saved by a certain amount. Moreover, production scheduling can be further used to
optimize the energy consumption of machines systematically. Mouzon [55] considered the
fact that a significant amount of energy can be saved when non-bottleneck machines are
switched off after a period of inactivity. Then, several scheduling rules based on the ma-
chine on/off status switching were proposed, while a set of non-dominated solutions was
obtained through multi-objective optimization to determine the most efficient production
sequence for the joint optimization of total completion time and energy consumption.

3. Joint optimization

Single-machine production scheduling does not always bring a significant effect on
energy consumption reduction; in this context, some studies have explored a series of joint
optimization considering both machine status and production-related elements. Usually,
a multi-objective model with energy and productivity objectives is designed in these
kinds of studies. Aghelinejad et al. [56] reduced the energy cost of a production system
through multi-layer modeling. The model divided the optimization step into two layers:
the first layer uses the machine state transition matrix to evaluate the machine state and
thus reduce the energy consumption of idle machines; the second layer performs the
energy consumption optimization of production scheduling. Wang et al. [57] designed
the optimization objective of minimizing the makespan and total energy consumption
under the condition that workpieces are machined in batches. In addition, an ε-constraints
method was adapted to get the Pareto front of the problem.
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All O&M optimization topics at the single-machine level mentioned above are sum-
marized in Table 1.

Table 1. Energy-optimization opportunities and challenges in O&M at single-machine level.

Area Sub-Area Energy-Optimization Principles Challenges

Process
Parameters

Optimization

Feed parameters Reduce energy consumption by improving
machining efficiency and quality . Processing steps’ division

. Energy consumption calculation

. Optimization modelingTool movement
trajectory

Reduce energy consumption during
movement through efficient path planning

Machine
Maintenance

Tool replacement
Reduce excess energy consumption due to
machine degradation by improving
machine reliability

. Machine degradation modeling

. Reliability threshold
determination

. Maintenance strategy selectionSystem maintenance

Machine
Production

Machine state
control Reduce idle time by switching on/off . Settings of switch principles

Batch scheduling Reduce idle time through efficient
production scheduling

. Construction of efficient
scheduling modelsProduction

scheduling
State analysis Reduce idle time using simulation analysis

. State transition analysis

4. New Research Developments on Production-Line Level

With the widespread use of complex manufacturing systems consisting of different
types of multiple machines in series and parallel construction forms according to process
requirements, production-line level O&M optimization strategies have become a hot topic
for urgent research. O&M optimization at the production-line level is usually planned
using traditional operations research methods and solved by intelligent algorithms.

Compared with single-machine O&M planning, production-line-level optimization
scheduling is more complex in terms of decision constraint consideration, overall optimiza-
tion objectives, machine-related analysis, and dynamic optimization processes. If there is
no dependency between machines, the single-device optimization model can be directly
adopted. However, the multi-device optimization strategy not only needs to consider the
characteristics of each machine itself, but also should comprehensively analyze the interde-
pendencies between machines, which include economic dependencies (the productivity of
the system is dependent on the bottleneck machine with the lowest production efficiency),
fault dependencies (different health decline processes of the machine may interfere with
the health status of other devices), and structure dependency (downtime of one machine in
the system structure can mean simultaneous downtime of several machines).

In the production-line-level optimization stages, it is necessary to systematically
analyze the interdependencies between machines and perform the systematic scheduling
of each machine planning to achieve the decision goal of improving the overall system
efficiency. At the same time, as the system structure becomes more complex, it also expands
the research space on sustainable optimization. The system structure can be fully utilized to
find new opportunities for energy savings. Production-line-level O&M optimization with
energy management has been studied to some extent, and the most widely used methods
among this research can be summarized into three main categories: system maintenance
strategy, production scheduling optimization, and system performance optimization. Based
on the above three categories of studies, joint optimization in multiple directions is often
performed. New angles of energy savings are also explored to add to the traditional model
in order to make certain extensions to the current study.

4.1. System Maintenance

The energy-consumption-oriented system maintenance strategy is an extension of the
single-machine maintenance strategy, and the rational scheduling of the maintenance plan
has a positive effect on the optimization of the system energy consumption [58]. In the
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process of production-line level maintenance planning, it is necessary to fully consider
the maintenance synchronization between machines and the energy-saving opportunities
brought by production, effectively use group maintenance and opportunity maintenance
strategies to take advantage of system scale, and reduce system energy-consumption costs.

Maintenance planning at the production-line level has been maturely studied, and
the research was mainly optimized to ensure system reliability and production efficiency.
While the research on maintenance planning considering energy consumption optimization
is limited, the related current research methods are mainly carried out in the following
areas:

1. Group maintenance

Group maintenance means that in a multi-machine manufacturing system, if one
of the same types of machines under the same operating conditions fails or undergoes
maintenance, the system maintenance can be performed together on the same type of
machines that have not yet failed [59,60]. Group maintenance strategies can be classified
into static and dynamic group maintenance strategies according to the different decision
modes [61]. In the energy-consumption-oriented maintenance optimization, this group
maintenance timing can be used to adjust the system reliability status, so as to reduce the
energy cost caused by maintenance operations and the degradation impacts on the system
energy utilization efficiency. Zhou [62] utilized the timing of sudden machine failures
as a group maintenance opportunity window for serial production systems with finite
buffers. In addition, the continuous degradation of the system and the impact of different
maintenance thresholds on energy efficiency were analyzed by Monte Carlo simulation.

2. Opportunistic maintenance

The basic idea of the opportunistic maintenance policy is that the existence of inter-
machine dependencies means that the decision analysis of a production machine in a
manufacturing system should be carried out in a comprehensive way, taking into ac-
count the influence of its interaction with related machines [63]. Since the difference in
system structures produce various types of inter-machine dependencies, opportunistic
maintenance can be used to dynamically schedule the maintenance plan for multi-machine
production lines based on different structural configurations of the system [64]. Vari-
ous system downtime opportunities can be utilized to achieve comprehensive system
energy savings. Research on opportunistic maintenance has flourished in recent years for
production-line-level optimization.

Among all research, Zou [65] used machine shutdown during production for energy
consumption control as an opportunity window for identifying preventive maintenance
tasks. Through the application of this strategy, the desired production throughput and
energy efficiency were maintained and the maintenance costs during non-production shifts
was greatly minimized. Zhou [66] developed a maintenance model with a degradation
constraint threshold, energy constraint threshold, and quality constraint threshold for a
batch production system, using the transition time between batches as an energy-saving
window, and obtained the optimal maintenance combination scheme with maximum energy
saving through a Monte Carlo simulation. Xia et al. [67] minimized energy consumption
through an energy-oriented selective maintenance policy. The modeling was constructed
with the constraints of limited maintenance resources and the objective of minimizing the
total energy consumption during the whole processing time. The basic idea was to select
the machine and corresponding maintenance actions at each production shift time window.

3. Maintenance in conjunction with production

Both maintenance and production bring changes to the machine’s status. In actual
industrial practice, machine failures during the operation of a multi-machine production
line can interrupt normal production, which requires maintenance operations to ensure
system reliability; and the maintenance activities inevitably consume production time
and disrupt the original production schedule. Therefore, in recent years, academics have
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attempted to analyze these two research areas in an integrated model and establish a system-
level interactive optimization strategy that combines maintenance planning and production
scheduling. At the same time, since the energy consumption related to production accounts
for a larger proportion of the total system energy consumption than that of maintenance,
maintenance strategies in conjunction with production are more likely to achieve better
energy savings at the production-line level.

Sun et al. [68] considered energy control and maintenance implementation jointly to
address the problem of energy consumption, smart maintenance, and throughput improve-
ment simultaneously. Multiple measures were evaluated using a single objective (cost
minimization). An et al. [69] developed an integrated model for flexible job shop systems
to solve a series of problems including flexible job shop scheduling, forklift transporta-
tion scheduling, and imperfect cutting tool maintenance. The superiority of the proposed
method was demonstrated by a hybrid multi-objective evolutionary algorithm.

4.2. System Production Scheduling

In the optimization of production systems, production scheduling is another corner-
stone of system O&M management in addition to maintenance planning. Research in
production scheduling is also mature enough. In recent years, with the promotion of
sustainable manufacturing, the optimization of production energy consumption has been
added to the modeling of production scheduling, which can be reflected in three main
aspects:

1. Energy-constraint-based scheduling

One type is to model production scheduling under a finite energy consumption
constraint. This type of approach is mainly applied in industries where there may be strict
constraints on the peak power demand, and such methods can be further extended to the
optimization of other sustainability indicators such as carbon emissions.

Artigues [70] discussed the production scheduling problem involving electrical energy
constraints and designed a two-step programming approach to solve the problem. It
was demonstrated that this model can accurately characterize the energy demand in
production activities and has a strong application value in industrial environments with
power-constrained system scheduling. Modos [71] conducted a study on the energy-
constrained discrete manufacturing scheduling problem by integrating the peak energy
demand constraint, and designed an adaptive local search algorithm for solving the mixed-
integer linear programming model. Masmoudi [72] considered a comprehensive energy
consumption optimization job shop scheduling problem that not only sets the objective
to minimize energy and production costs but also considers the peak limit of processing
power. The dual optimization of energy consumption from both constraint and objective
perspectives effectively addresses the importance of energy optimization.

2. Energy-target-based scheduling

Often, it is more common to introduce energy consumption as an objective into the
original production scheduling model. For example, Zhang et al. [73] introduced the
energy-consumption objective into the job shop scheduling model and proposed a multi-
objective genetic algorithm with a local improvement strategy. The overall solution quality
was improved by locally solving two constrained sub-problems of the original problem.

Wang [74] carried out effective process planning and production scheduling optimiza-
tion from both process and system stages and applied artificial neural networks to achieve
multi-objective optimization, providing an effective sustainable development example for
enterprises. Han et al. [75] constructed an energy-saving integrated model by combining
production scheduling and ladle scheduling in the steel industry. They fully considered the
time dependence of the two scheduling decisions and designed an enhanced migrating
birds optimization algorithm for a high-quality solution to achieve effective energy saving.

3. Time-dependent energy-cost-based scheduling

163



Energies 2022, 15, 7338

As sustainable energy becomes more widely used, energy guidance policies such as
demand-side management (DSM) have gained a fast promotion. Among all DSM strategies,
time-of-use (TOU) tariffs are the most widely used worldwide [76]. It is a power charging
model that divides the 24 h power supply into several periods and charges the electricity
fee according to the average marginal cost of system operation, in order to encourage
customers to optimize their ways of electricity consumption [77]. Taking into account the
changes in energy prices during a day, high energy-consuming behaviors can be shifted
to off-peak periods (with a lower energy charging price) through joint control of machine
status switching, maintenance, and production scheduling, thus realizing a power shift
from peak to off-peak periods and significantly reducing energy costs and lowering the
environmental impact of operations.

In 2014, Shrouf [78] was the first to introduce demand response into a single-machine
production scheduling problem. A mathematical model that minimizes energy cost was
established to decide the start-up time, idle time, and on/off time of machines, thus reduc-
ing energy costs during periods with high energy prices. Fang [79], after that, proved that
the single-machine scheduling problems under both uniform and non-uniform processing
rates are strongly NP-hard, and studied the structural properties of optimal scheduling
for both problems. Optimization under TOU tariffs was also gradually extended to more
complex system organizations. Wang [80] considered a two-machine permutation flow
shop scheduling problem and designed a heuristic algorithm based on Johnson’s rule to
achieve the optimal power cost under TOU tariffs. In contrast, Tan [81], constructed a
mixed integer linear programming model integrating parallel machine batch load adjust-
ment and production scheduling under TOU tariffs. Production scheduling optimization
under TOU tariffs was also studied in the hybrid flow shop system. Schulz [82] integrated
three objectives—makespan, total energy cost, and peak load—into the model of a hybrid
flow shop, and used a multi-stage iterative local search algorithm to obtain the integrated
optimal solutions. The result proved that the energy awareness in the multi-objective model
shows great competitiveness in solution quality.

4.3. System Performance Optimization

In addition to maintenance and production decisions, direct control of machine con-
ditions and other energy-saving opportunities have been studied to some extent. To take
full advantage of energy-saving opportunities, in addition to taking maintenance and
production actions, it is also possible to proactively adjust the machine’s working states.
Therefore, this type of production-line-level optimization often draws on changes to ma-
chine status, using operations such as switching on and off, to actively find and even create
energy-saving opportunities and achieve effective reductions in system energy costs.

From the switching management perspective, Huang et al. [83] developed a multi-
stage data-driven model of a manufacturing system with data obtained from distributed
sensors so as to evaluate the real-time losses or benefits of maintenance on energy savings.
The maintenance operation is performed based on real-time maintenance cost rates while
switching on and off the machines, thus achieving system energy savings. Gong et al. [84]
designed a joint maintenance–production scheduling problem based on switching control,
aiming to simultaneously optimize three objectives—makespan, number of switching
actions, and energy consumption—to achieve effective system control. The designed rules
and algorithms can both effectively solve the problem with robustness.

From the system optimization perspective, researchers have used system simulation
and analytical models to find the space for energy consumption optimization. Fernan-
dez [85] proposed a “just-for-peak” buffer inventory management method for serial pro-
duction lines to minimize inventory and energy costs and achieve productivity balance
under TOU tariffs. Li et al. [86] established a method for monitoring the energy efficiency
status of a manufacturing system integrating multiple machines and buffers using Markov
chains, and performed real-time system management and optimization for the control of
energy efficiency to achieve the real-time output of optimization strategies. Wang et al. [87]
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used a Petri net with dynamic adaptive fuzzy reasoning to define the system machine
state decision reasoning and performed real-time model validation based on production
information of discrete stochastic manufacturing systems.

The energy-optimization opportunities and challenges in O&M optimization at the
production-line level are summarized below in Table 2.

Table 2. Energy-optimization opportunities and challenges in O&M at production-line level.

Area Sub-Area
Energy-Optimization

Opportunities
Challenges

System
Maintenance

Group
maintenance

. Machine maintenance
shutdown

. Grouping strategies

. Maintenance energy
calculation

Opportunistic maintenance . Machine breakdown
. Opportunity searching
. Maintenance energy

calculation

Maintenance and production

. Preventive maintenance
schedule

. Sudden breakdown

. Production changeover

. Multi-objective
scheduling

. Action interactivities

System
Production
Scheduling

Energy target and constraints
. Production scheduling

(machine selection,
processing period
selection)

. Adding
objectives/constraints to
the original model

Energy usage background
. Innovative modeling

and analysis

System
Performance
Optimization

Machine states . Machine on/off control

. Effects on production
scheduling

. Effects on machine
reliability

Buffer states . Buffer threshold . System structure
analysis

Dynamic observation . Integrated methods . Observation index
selection

5. New Research Developments on Factory and Supply-Chain Levels

In addition to the O&M optimization for manufacturing systems considering machines
and production lines, in a broader sense, systems at any level in the manufacturing pro-
cess can be identified as manufacturing-related systems, such as manufacturing factories
and supply-chain systems. The O&M optimization of these two levels often faces more
difficulties in coordination between system elements, and the scenarios are more complex,
bringing more diverse problems into the research field.

The O&M at the factory level is mainly aimed at the management of system com-
ponents beyond the production lines, such as inventory systems, and building facilities.
Such management includes but is not limited to factory facility control, such as lighting
and heating control, floor layout optimization, and energy monitoring of the whole fac-
tory [15]. With the advancement of Industry 4.0, data-driven management methods have
also been identified as the main contributors to factory monitoring and optimization [88,89].
Ebrahimi et al. [90] investigated an energy-aware scheduling–layout optimization prob-
lem, both energy consumption from machining and transportation were considered in the
model, and a hybrid ant colony and simulated annealing algorithm were proposed to solve
the problem. Gourlis [91] explored the combination of building information modelling and
building energy modeling methodology in the optimization of energy-efficient industrial
buildings, through which 50% of energy savings can be obtained in the overall energy
consumption of the industrial facility. It also showed great potential in the application of
building energy management and design.
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For the O&M optimization at the multi-factory and supply-chain level, the coordi-
nation and collaboration between factories are usually considered, and typical problems
involve logistics management, warehousing location optimization, etc. These optimization
problems focus on objectives such as logistics cost and transportation efficiency. In the
context of sustainable manufacturing, energy-related objectives are gradually considered
in the modeling of the original problems. For example, Macrina et al. [92] studied a green
vehicle routing problem (VRP) considering partial battery re-charging with mixed fleet and
time windows, in which a joint energy-related cost objective consisted of battery recharging
cost during the route, recharging cost to the depot, traveling cost, and fuel cost. Hoosh-
mand [93] introduced a time-dependent cost function of each arc in the green VRP problem
to model the various traffic conditions in real scenarios and used fuel consumption cost as
the objective since CO2 emission is proportional to fuel consumption. Then, a two-phase
heuristic algorithm was developed to efficiently solve the problem.

6. Summary and Future Research Trends

This paper aims at providing an overview and classification of O&M energy-optimization
methods for manufacturing systems under a sustainable background. The sustainable man-
ufacturing paradigms have been promoted with the deepening of the energy revolution to
ensure the competitiveness of enterprises. Moreover, a more urgent and specific methodol-
ogy for O&M optimization with energy management needs to be constructed. This paper
mainly focuses on the energy optimization of O&M activities at the single-machine and
production-line levels. In such studies, operations research methods have been applied to
different levels of O&M strategies.

At the single-machine level, current energy consumption analysis focuses on the
machine itself and the machining process, where the energy consumption of each stage is
modeled and analyzed according to the actual physical processing stages of machining.
The energy-consumption level of a single machine often depends on multiple factors such
as process parameters, machine selection, machine status, tool selection, etc. Among them,
the optimization of process parameters has been widely and deeply studied, while less
research has been devoted to maintenance and production strategies, and there is still much
space for improvement.

At the production-line level, the main consideration is the system consumption struc-
ture and the interaction between workpieces and machines, often taking the system pro-
ductivity and energy consumption as objectives, modeling the problem using optimiza-
tion methods, and solving it using exact or heuristic algorithms. The research at the
production-line level focuses more on the scheduling problems of production and mainte-
nance. Through effective scheduling strategies, scheduling optimization is used to reduce
the cost of sustainable production and achieve energy savings without over-changing the
system structure.

At the system level, energy consumption optimization is often based on the application
of management systems and overall policy considerations. Compared with the above two
levels, its optimization is more inclined to the upgrading of management methods and
innovation of management modes, and there is still a long way for improvement with
practical implementation and application.

Based on the above analysis, we believe that future research trends are mainly reflected
in the following points:

1. From the methodology perspective:

• Unification of the analysis and evaluation system

The current model construction is more individualized, and the actual energy con-
sumption flow and energy consumption transformation relationship of the research object
have not yet been comprehensively described clearly, either at the single-machine level or
at the production-line level. Therefore, the subsequent research can consider unifying the
definition of process energy consumption calculation, defining system boundaries, unifying
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input and output variables, and finally establishing a unified evaluation system to provide
systematic guidance for the research of sub-problems.

• Construction of systematic theory

At present, the optimization at each level is basically isolated. Through the construc-
tion of systematic energy consumption optimization theory such as the manufacturing
system energy flow model, the relationship of each sub-problem can be clarified and further
interaction between more decision variables can be discovered.

• Refinement of management theory

To put these energy-optimization methodologies into practice, we need to rely on
the efficient management tools of enterprises. At present, the consideration of energy
optimization at the system management level is not sufficient; hence, the promotion of
technology application is somewhat limited. Innovations in energy management theory
can be made in the future to promote energy-saving methods.

2. From the application perspective:

• Development of control and management software

As a key driving factor of Industry 4.0, the development of industrial software is an
important measure of the manufacturing competitiveness of countries. In a sustainable
background, good industrial software can not only improve production efficiency but also
achieve energy savings. From the machine level, machines are driven by control software.
Therefore, in addition to focusing on production efficiency and quality, the development of
control software can put more attention on the combining of the optimization of process
parameters and energy consumption. Moreover, from the factory level, the combination of
energy management in the MES is also gradually becoming an essential part of the industry
site management measures.

• Application of new technologies

With the progress of science and technology, the iteration of machine tools and the up-
grading of manufacturing paradigms bring challenges to optimizing energy consumption.
Industry 5.0, characterized by being human-centric, resilient, and sustainable, further pro-
motes the industrial transformation toward an environment-friendly manufacturing model.
Explorations on clean production technology, energy savings, environmental protection
technology, and recycling manufacturing all have great prospects.

7. Conclusions

The problem of energy consumption optimization in manufacturing systems has
received attention with the rising concern of sustainability. This paper reviews articles in
the field of energy optimization of O&M of manufacturing systems, covering several aspects
related to the optimization procedures such as model construction, solution methods, and
application areas. The main contributions of this paper are as follows:

1. The current research perspectives on energy optimization of O&M are described.
2. A detailed classification and problem overview of energy-optimization methods of

the O&M of manufacturing systems are outlined.
3. The current research framework is summarized and future research trends are pro-

posed.

For the research related to energy optimization, we believe that it has high application
value and vast research space. Through reasonable O&M scheduling, energy savings can
be achieved without changing production system structures, which will pave the way for
the progressive promotion of sustainable manufacturing paradigms. Research in this area
is expected to achieve greater attention and policy preferences. The systematic review of
this paper can provide some references for future studies.

167



Energies 2022, 15, 7338

Author Contributions: Conceptualization, methodology, investigation, writing—original draft prepa-
ration, X.A.; editing, visualization, G.S.; validation, formal analysis, Q.L.; writing—review, super-
vision, project administration, funding acquisition, T.X.; data curation, Y.L.; resources, funding
acquisition, R.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (No. 2022YFF0605700),
National Natural Science Foundation of China (No. 51875359 and 71971139), Natural Science Foun-
dation of Shanghai (No. 20ZR1428600), Shanghai Science and Technology Innovation Center for
System Engineering of Commercial Aircraft (No. FASE-2021-M7), Oceanic Interdisciplinary Program
of Shanghai Jiao Tong University (No. SL2021MS008), and CSSC-SJTU Marine Equipment Forward
Looking Innovation Foundation (No. 22B010432).

Data Availability Statement: Not applicable.

Acknowledgments: The authors are indebted to the reviewers and editors for their constructive
comments, which greatly improved the contents and exposition of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mitlin, D. Sustainable Development: A Guide to the Literature. Environ. Urban. 1992, 4, 111–124. [CrossRef]
2. Hopwood, B.; Mellor, M.; O’Brien, G. Sustainable Development: Mapping Different Approaches. Sustain. Dev. 2005, 13, 38–52.

[CrossRef]
3. Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D. Energy Saving and Energy Efficiency Concepts for Policy Making. Energy

Policy 2009, 37, 4787–4796. [CrossRef]
4. Tanaka, K. Review of Policies and Measures for Energy Efficiency in Industry Sector. Energy Policy 2011, 39, 6532–6550. [CrossRef]
5. IEA. Energy Statistics Data Browser, IEA, Paris. 2022. Available online: https://www.iea.org/data-and-statistics/data-tools/

energy-statistics-data-browser (accessed on 15 August 2022).
6. Yadav, G.; Kumar, A.; Luthra, S.; Garza-Reyes, J.A.; Kumar, V.; Batista, L. A Framework to Achieve Sustainability in Manufacturing

Organisations of Developing Economies Using Industry 4.0 Technologies’ Enablers. Comput. Ind. 2020, 122, 103280. [CrossRef]
7. Ke, J.; Price, L.; Ohshita, S.; Fridley, D.; Khanna, N.Z.; Zhou, N.; Levine, M. China’s Industrial Energy Consumption Trends and

Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. Energy Policy 2012, 50,
562–569. [CrossRef]

8. Hesselbach, J.; Herrmann, C.; Detzer, R.; Thiede, L.M.S.; Hesselbach, J.; Herrmann, C.; Detzer, R.; Martin, L.; Thiede, S.; Lüdemann,
B. Energy Efficiency through Optimized Coordination of Production and Technical Building Services. In Proceedings of the 15th
Conference on Life Cycle Engineering, Sydney, Australia, 17–19 March 2008; pp. 624–628.

9. Smarra, F.; Jain, A.; de Rubeis, T.; Ambrosini, D.; D’Innocenzo, A.; Mangharam, R. Data-Driven Model Predictive Control Using
Random Forests for Building Energy Optimization and Climate Control. Appl. Energy 2018, 226, 1252–1272. [CrossRef]

10. González-Briones, A.; De La Prieta, F.; Mohamad, M.S.; Omatu, S.; Corchado, J.M. Multi-Agent Systems Applications in Energy
Optimization Problems: A State-of-the-Art Review. Energies 2018, 11, 1928. [CrossRef]

11. Xia, T.; Dong, Y.; Pan, E.; Zheng, M.; Wang, H.; Xi, L. Fleet-Level Opportunistic Maintenance for Large-Scale Wind Farms
Integrating Real-Time Prognostic Updating. Renew. Energy 2021, 163, 1444–1454. [CrossRef]

12. Park, C.-W.; Kwon, K.-S.; Kim, W.-B.; Min, B.-K.; Park, S.-J.; Sung, I.-H.; Yoon, Y.S.; Lee, K.-S.; Lee, J.-H.; Seok, J. Energy
Consumption Reduction Technology in Manufacturing—A Selective Review of Policies, Standards, and Research. Int. J. Precis.
Eng. Manuf. 2009, 10, 151–173. [CrossRef]

13. Jasiulewicz-Kaczmarek, M.; Gola, A. Maintenance 4.0 Technologies for Sustainable Manufacturing—An Overview. IFAC-
PapersOnLine 2019, 52, 91–96. [CrossRef]

14. Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-Efficient Scheduling in Manufacturing Companies: A Review and Research
Framework. Eur. J. Oper. Res. 2016, 248, 744–757. [CrossRef]

15. Reich-Weiser, C.; Vijayaraghavan, A.; Dornfeld, D. Appropriate Use of Green Manufacturing Frameworks. In Proceedings of the
17th CIRP International Conference on Life Cycle Engineering, Hefei, China, 19–21 May 2010.

16. Yang, Z.; Djurdjanovic, D.; Ni, J. Maintenance Scheduling in Manufacturing Systems Based on Predicted Machine Degradation. J.
Intell. Manuf. 2008, 19, 87–98. [CrossRef]

17. Cui, W.-W.; Lu, Z.; Pan, E. Integrated Production Scheduling and Maintenance Policy for Robustness in a Single Machine. Comput.
Oper. Res. 2014, 47, 81–91. [CrossRef]

18. Sortrakul, N.; Nachtmann, H.L.; Cassady, C.R. Genetic Algorithms for Integrated Preventive Maintenance Planning and
Production Scheduling for a Single Machine. Comput. Ind. 2005, 56, 161–168. [CrossRef]

19. Lu, B.; Zhou, X.; Li, Y. Joint Modeling of Preventive Maintenance and Quality Improvement for Deteriorating Single-Machine
Manufacturing Systems. Comput. Ind. Eng. 2016, 91, 188–196. [CrossRef]

20. Yin, H.; Zhang, G.; Zhu, H.; Deng, Y.; He, F. An Integrated Model of Statistical Process Control and Maintenance Based on the
Delayed Monitoring. Reliab. Eng. Syst. Saf. 2015, 133, 323–333. [CrossRef]

168



Energies 2022, 15, 7338

21. Shojaeinasab, A.; Charter, T.; Jalayer, M.; Khadivi, M.; Ogunfowora, O.; Raiyani, N.; Yaghoubi, M.; Najjaran, H. Intelligent
Manufacturing Execution Systems: A Systematic Review. J. Manuf. Syst. 2022, 62, 503–522. [CrossRef]

22. Hu, J.; Jiang, Z.; Liao, H. Joint Optimization of Job Scheduling and Maintenance Planning for a Two-Machine Flow Shop
Considering Job-Dependent Operating Condition. J. Manuf. Syst. 2020, 57, 231–241. [CrossRef]

23. Gu, X.; Jin, X.; Guo, W.; Ni, J. Estimation of Active Maintenance Opportunity Windows in Bernoulli Production Lines. J. Manuf.
Syst. 2017, 45, 109–120. [CrossRef]

24. Xia, T.; Dong, Y.; Xiao, L.; Du, S.; Pan, E.; Xi, L. Recent Advances in Prognostics and Health Management for Advanced
Manufacturing Paradigms. Reliab. Eng. Syst. Saf. 2018, 178, 255–268. [CrossRef]

25. Gutowski, T.; Dahmus, J.; Thiriez, A. Electrical Energy Requirements for Manufacturing Processes. In Proceedings of the 13th
CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, 31 May–2 June 2006; Volume 31, pp. 623–638.

26. Guo, Y.; Loenders, J.; Duflou, J.; Lauwers, B. Optimization of Energy Consumption and Surface Quality in Finish Turning. Procedia
CIRP 2012, 1, 512–517. [CrossRef]

27. Zhong, Q.; Tang, R.; Peng, T. Decision Rules for Energy Consumption Minimization during Material Removal Process in Turning.
J. Clean. Prod. 2017, 140, 1819–1827. [CrossRef]

28. Tuo, J.; Liu, F.; Liu, P. Key Performance Indicators for Assessing Inherent Energy Performance of Machine Tools in Industries. Int.
J. Prod. Res. 2019, 57, 1811–1824. [CrossRef]

29. Wang, H.; Zhong, R.Y.; Liu, G.; Mu, W.; Tian, X.; Leng, D. An Optimization Model for Energy-Efficient Machining for Sustainable
Production. J. Clean. Prod. 2019, 232, 1121–1133. [CrossRef]

30. Li, W.; Zein, A.; Kara, S.; Herrmann, C. An Investigation into Fixed Energy Consumption of Machine Tools. In Proceed-
ings of the 18th CIRP International Conference on Life Cycle Engineering, Braunschweig, Germany, 2–4 May 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 268–273. [CrossRef]

31. Gutowski, T.; Murphy, C.; Allen, D.; Bauer, D.; Bras, B.; Piwonka, T.; Sheng, P.; Sutherland, J.; Thurston, D.; Wolff, E. Envi-
ronmentally Benign Manufacturing: Observations from Japan, Europe and the United States. J. Clean. Prod. 2005, 13, 1–17.
[CrossRef]

32. Xu, K.; Luo, M.; Tang, K. Machine Based Energy-Saving Tool Path Generation for Five-Axis End Milling of Freeform Surfaces. J.
Clean. Prod. 2016, 139, 1207–1223. [CrossRef]

33. Wang, Q.; Liu, F.; Wang, X. Multi-Objective Optimization of Machining Parameters Considering Energy Consumption. Int. J. Adv.
Manuf. Technol. 2014, 71, 1133–1142. [CrossRef]

34. Ma, F.; Zhang, H.; Cao, H.; Hon, K.K.B. An Energy Consumption Optimization Strategy for CNC Milling. Int. J. Adv. Manuf.
Technol. 2017, 90, 1715–1726. [CrossRef]

35. Bi, Z.M.; Wang, L. Energy Modeling of Machine Tools for Optimization of Machine Setups. IEEE Trans. Autom. Sci. Eng. 2012, 9,
607–613. [CrossRef]

36. Bilga, P.S.; Singh, S.; Kumar, R. Optimization of Energy Consumption Response Parameters for Turning Operation Using Taguchi
Method. J. Clean. Prod. 2016, 137, 1406–1417. [CrossRef]

37. Campatelli, G.; Lorenzini, L.; Scippa, A. Optimization of Process Parameters Using a Response Surface Method for Minimizing
Power Consumption in the Milling of Carbon Steel. J. Clean. Prod. 2014, 66, 309–316. [CrossRef]

38. He, K.; Tang, R.; Jin, M. Pareto Fronts of Machining Parameters for Trade-off among Energy Consumption, Cutting Force and
Processing Time. Int. J. Prod. Econ. 2017, 185, 113–127. [CrossRef]

39. Zhou, G.; Yuan, S.; Lu, Q.; Xiao, X. A Carbon Emission Quantitation Model and Experimental Evaluation for Machining Process
Considering Tool Wear Condition. Int. J. Adv. Manuf. Technol. 2018, 98, 565–577. [CrossRef]

40. Chen, X.; Li, C.; Tang, Y.; Li, L.; Du, Y.; Li, L. Integrated Optimization of Cutting Tool and Cutting Parameters in Face Milling for
Minimizing Energy Footprint and Production Time. Energy 2019, 175, 1021–1037. [CrossRef]

41. Shi, K.N.; Zhang, D.H.; Liu, N.; Wang, S.B.; Ren, J.X.; Wang, S.L. A Novel Energy Consumption Model for Milling Process
Considering Tool Wear Progression. J. Clean. Prod. 2018, 184, 152–159. [CrossRef]

42. Tian, C.; Zhou, G.; Zhang, J.; Zhang, C. Optimization of Cutting Parameters Considering Tool Wear Conditions in Low-Carbon
Manufacturing Environment. J. Clean. Prod. 2019, 226, 706–719. [CrossRef]

43. Xie, N.; Zhou, J.; Zheng, B. Selection of Optimum Turning Parameters Based on Cooperative Optimization of Minimum Energy
Consumption and High Surface Quality. Procedia CIRP 2018, 72, 1469–1474. [CrossRef]

44. Yan, J.; Li, L. Multi-Objective Optimization of Milling Parameters—The Trade-Offs between Energy, Production Rate and Cutting
Quality. J. Clean. Prod. 2013, 52, 462–471. [CrossRef]

45. Verma, A.; Rai, R. Energy Efficient Modeling and Optimization of Additive Manufacturing Process. In Proceedings of the
2013 International Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, TX, USA, 12–14 August 2013.
[CrossRef]

46. Barlow, R.; Larry, H. Optimum Preventive Maintenance Policies. Oper. Res. 1960, 8, 90–100. [CrossRef]
47. Yan, J.; Hua, D. Energy Consumption Modeling for Machine Tools after Preventive Maintenance. In Proceedings of the 2010

IEEE International Conference on Industrial Engineering and Engineering Management, Macao, China, 7–10 December 2010; pp.
2201–2205. [CrossRef]

48. Hoang, A.; Do, P.; Iung, B. Investigation on the Use of Energy Efficiency for Condition-Based Maintenance Decision-Making.
IFAC-PapersOnLine 2016, 49, 73–78. [CrossRef]

169



Energies 2022, 15, 7338

49. Xia, T.; Shi, G.; Si, G.; Du, S.; Xi, L. Energy-Oriented Joint Optimization of Machine Maintenance and Tool Replacement in
Sustainable Manufacturing. J. Manuf. Syst. 2021, 59, 261–271. [CrossRef]

50. Xu, W.; Cao, L. Optimal Maintenance Control of Machine Tools for Energy Efficient Manufacturing. Int. J. Adv. Manuf. Technol.
2019, 104, 3303–3311. [CrossRef]

51. Wu, D.; Han, R.; Ma, Y.; Yang, L.; Wei, F.; Peng, R. A Two-Dimensional Maintenance Optimization Framework Balancing Hazard
Risk and Energy Consumption Rates. Comput. Ind. Eng. 2022, 169, 108193. [CrossRef]

52. Che, A.; Wu, X.; Peng, J.; Yan, P. Energy-Efficient Bi-Objective Single-Machine Scheduling with Power-down Mechanism. Comput.
Oper. Res. 2017, 85, 172–183. [CrossRef]

53. Chen, B.; Zhang, X. Scheduling with Time-of-Use Costs. Eur. J. Oper. Res. 2019, 274, 900–908. [CrossRef]
54. Zhou, S.; Jin, M.; Du, N. Energy-Efficient Scheduling of a Single Batch Processing Machine with Dynamic Job Arrival Times.

Energy 2020, 209, 118420. [CrossRef]
55. Mouzon, G.; Yildirim, M.B.; Twomey, J. Operational Methods for Minimization of Energy Consumption of Manufacturing

Equipment. Int. J. Prod. Res. 2007, 45, 4247–4271. [CrossRef]
56. Aghelinejad, M.; Ouazene, Y.; Yalaoui, A. Production Scheduling Optimisation with Machine State and Time-Dependent Energy

Costs. Int. J. Prod. Res. 2018, 56, 5558–5575. [CrossRef]
57. Wang, S.; Liu, M.; Chu, F.; Chu, C. Bi-Objective Optimization of a Single Machine Batch Scheduling Problem with Energy Cost

Consideration. J. Clean. Prod. 2016, 137, 1205–1215. [CrossRef]
58. Xu, W.; Cao, L. Energy Efficiency Analysis of Machine Tools with Periodic Maintenance. Int. J. Prod. Res. 2014, 52, 5273–5285.

[CrossRef]
59. Bruns, P. Optimal Maintenance Strategies for Systems with Partial Repair Options and without Assuming Bounded Costs. Eur. J.

Oper. Res. 2002, 139, 146–165. [CrossRef]
60. Feng, H.; Xi, L.; Xiao, L.; Xia, T.; Pan, E. Imperfect Preventive Maintenance Optimization for Flexible Flowshop Manufacturing

Cells Considering Sequence-Dependent Group Scheduling. Reliab. Eng. Syst. Saf. 2018, 176, 218–229. [CrossRef]
61. Dekkert, R.; Smit, A.; Losekoot, J. Combining Maintenance Activities in an Operational Planning Phase: A Set-Partitioning

Approach. IMA J. Manag. Math. 1991, 3, 315–331. [CrossRef]
62. Zhou, B.; Qi, Y.; Liu, Y. Proactive Preventive Maintenance Policy for Buffered Serial Production Systems Based on Energy Saving

Opportunistic Windows. J. Clean. Prod. 2020, 253, 119791. [CrossRef]
63. Zhou, X.; Lu, Z.; Xi, L. A Dynamic Opportunistic Preventive Maintenance Policy for Multi-Unit Series Systems with Intermediate

Buffers. Int. J. Ind. Syst. Eng. 2010, 6, 276–288. [CrossRef]
64. Xia, T.; Jin, X.; Xi, L.; Ni, J. Production-Driven Opportunistic Maintenance for Batch Production Based on MAM–APB Scheduling.

Eur. J. Oper. Res. 2015, 240, 781–790. [CrossRef]
65. Zou, J.; Arinez, J.; Chang, Q.; Lei, Y. Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems.

J. Manuf. Sci. Eng. 2016, 138, 121009. [CrossRef]
66. Zhou, B.; Yi, Q. An Energy-Oriented Maintenance Policy under Energy and Quality Constraints for a Multielement-Dependent

Degradation Batch Production System. J. Manuf. Syst. 2021, 59, 631–645. [CrossRef]
67. Xia, T.; Si, G.; Shi, G.; Zhang, K.; Xi, L. Optimal Selective Maintenance Scheduling for Series–Parallel Systems Based on Energy

Efficiency Optimization. Appl. Energy 2022, 314, 118927. [CrossRef]
68. Sun, Z.; Dababneh, F.; Li, L. Joint Energy, Maintenance, and Throughput Modeling for Sustainable Manufacturing Systems. IEEE

Trans. Syst. Man Cybern. 2020, 50, 2101–2112. [CrossRef]
69. An, Y.; Chen, X.; Zhang, J.; Li, Y. A Hybrid Multi-Objective Evolutionary Algorithm to Integrate Optimization of the Production

Scheduling and Imperfect Cutting Tool Maintenance Considering Total Energy Consumption. J. Clean. Prod. 2020, 268, 121540.
[CrossRef]

70. Artigues, C.; Lopez, P.; Haït, A. The Energy Scheduling Problem: Industrial Case-Study and Constraint Propagation Techniques.
Int. J. Prod. Econ. 2013, 143, 13–23. [CrossRef]

71. Módos, I.; Šucha, P.; Hanzálek, Z. On Parallel Dedicated Machines Scheduling under Energy Consumption Limit. Comput. Ind.
Eng. 2021, 159, 107209. [CrossRef]

72. Masmoudi, O.; Delorme, X.; Gianessi, P. Job-Shop Scheduling Problem with Energy Consideration. Int. J. Prod. Econ. 2019, 216,
12–22. [CrossRef]

73. Zhang, R.; Chiong, R. Solving the Energy-Efficient Job Shop Scheduling Problem: A Multi-Objective Genetic Algorithm with
Enhanced Local Search for Minimizing the Total Weighted Tardiness and Total Energy Consumption. J. Clean. Prod. 2016, 112,
3361–3375. [CrossRef]

74. Wang, S.; Lu, X.; Li, X.X.; Li, W.D. A Systematic Approach of Process Planning and Scheduling Optimization for Sustainable
Machining. J. Clean. Prod. 2015, 87, 914–929. [CrossRef]

75. Han, D.; Tang, Q.; Zhang, Z.; Cao, J. Energy-Efficient Integration Optimization of Production Scheduling and Ladle Dispatching
in Steelmaking Plants. IEEE Access 2020, 8, 176170–176187. [CrossRef]

76. Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE
Trans. Ind. Inform. 2011, 7, 381–388. [CrossRef]

170



Energies 2022, 15, 7338

77. Cheng, J.; Chu, F.; Xia, W.; Ding, J.; Ling, X. Bi-Objective Optimization for Single-Machine Batch Scheduling Considering Energy
Cost. In Proceedings of the 2014 International Conference on Control, Decision and Information Technologies, CoDIT 2014, Metz, France,
3–5 November 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 236–241. [CrossRef]

78. Shrouf, F.; Ordieres-Meré, J.; García-Sánchez, A.; Ortega-Mier, M. Optimizing the Production Scheduling of a Single Machine to
Minimize Total Energy Consumption Costs. J. Clean. Prod. 2014, 67, 197–207. [CrossRef]

79. Fang, K.; Uhan, N.A.; Zhao, F.; Sutherland, J.W. Scheduling on a Single Machine under Time-of-Use Electricity Tariffs. Ann. Oper.
Res. 2016, 238, 199–227. [CrossRef]

80. Wang, S.; Zhu, Z.; Fang, K.; Chu, F.; Chu, C. Scheduling on a Two-Machine Permutation Flow Shop under Time-of-Use Electricity
Tariffs. Int. J. Prod. Res. 2018, 56, 3173–3187. [CrossRef]

81. Tan, M.; Duan, B.; Su, Y. Economic Batch Sizing and Scheduling on Parallel Machines under Time-of-Use Electricity Pricing. Oper.
Res. 2018, 18, 105–122. [CrossRef]

82. Schulz, S.; Neufeld, J.S.; Buscher, U. A Multi-Objective Iterated Local Search Algorithm for Comprehensive Energy-Aware Hybrid
Flow Shop Scheduling. J. Clean. Prod. 2019, 224, 421–434. [CrossRef]

83. Huang, J.; Chang, Q.; Arinez, J.; Xiao, G. A Maintenance and Energy Saving Joint Control Scheme for Sustainable Manufacturing
Systems. Procedia CIRP 2019, 80, 263–268. [CrossRef]

84. Gong, G.; Chiong, R.; Deng, Q.; Han, W.; Zhang, L.; Huang, D. Energy-Efficient Production Scheduling through Machine on/off
Control during Preventive Maintenance. Eng. Appl. Artif. Intell. 2021, 104, 104359. [CrossRef]

85. Fernandez, M.; Li, L.; Sun, Z. “Just-for-Peak” Buffer Inventory for Peak Electricity Demand Reduction of Manufacturing Systems.
Int. J. Prod. Econ. 2013, 146, 178–184. [CrossRef]

86. Li, L.; Sun, Z. Dynamic Energy Control for Energy Efficiency Improvement of Sustainable Manufacturing Systems Using Markov
Decision Process. IEEE Trans. Syst. Man Cybern. 2013, 43, 1195–1205. [CrossRef]

87. Wang, J.; Fei, Z.; Chang, Q.; Li, S. Energy Saving Operation of Manufacturing System Based on Dynamic Adaptive Fuzzy
Reasoning Petri Net. Energies 2019, 12, 2216. [CrossRef]

88. Karnouskos, S.; Colombo, A.W.; Martinez Lastra, J.L.; Popescu, C. Towards the Energy Efficient Future Factory. In Proceedings of
the 2009 7th IEEE International Conference on Industrial Informatics, Cardiff, Wales, UK, 23–26 June 2009; pp. 367–371. [CrossRef]

89. Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Sustainable Industry 4.0 Framework: A Systematic Literature Review Identifying
the Current Trends and Future Perspectives. Process. Saf. Environ. 2018, 117, 408–425. [CrossRef]

90. Ebrahimi, A.; Jeon, H.W.; Lee, S.; Wang, C. Minimizing Total Energy Cost and Tardiness Penalty for a Scheduling-Layout Problem
in a Flexible Job Shop System: A Comparison of Four Metaheuristic Algorithms. Comput. Ind. Eng. 2020, 141, 106295. [CrossRef]

91. Gourlis, G.; Kovacic, I. Building Information Modelling for Analysis of Energy Efficient Industrial Buildings—A Case Study.
Renew. Sustain. Energy Rev. 2017, 68, 953–963. [CrossRef]

92. Macrina, G.; Laporte, G.; Guerriero, F.; Di Puglia Pugliese, L. An Energy-Efficient Green-Vehicle Routing Prob-lem with Mixed
Vehicle Fleet, Partial Battery Recharging and Time Windows. Eur. J. Oper. Res. 2019, 276, 971–982. [CrossRef]

93. Hooshmand, F.; MirHassani, S.A. Time Dependent Green VRP with Alternative Fuel Powered Vehicles. Energy Syst. 2019, 10,
721–756. [CrossRef]

171





Citation: Lu, J.; Xu, L.; Jin, J.; Shao, Y.

A Mixed Algorithm for Integrated

Scheduling Optimization in AS/RS

and Hybrid Flowshop. Energies 2022,

15, 7558. https://doi.org/10.3390/

en15207558

Academic Editor: George S.

Stavrakakis

Received: 30 August 2022

Accepted: 10 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Mixed Algorithm for Integrated Scheduling Optimization in
AS/RS and Hybrid Flowshop

Jiansha Lu, Lili Xu, Jinghao Jin and Yiping Shao *

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
* Correspondence: syp123gh@zjut.edu.cn

Abstract: The integrated scheduling problem in automated storage and retrieval systems (AS/RS)
and the hybrid flowshop is critical for the realization of lean logistics and just-in-time distribution in
manufacturing systems. The bi-objective model that minimizes the operation time in AS/RS and the
makespan in the hybrid flowshop is established to optimize the problem. A mixed algorithm, named
GA-MBO algorithm, is proposed to solve the model, which combines the advantages of the strong
global optimization ability of genetic algorithm (GA) and the strong local search ability of migratory
birds optimization (MBO). To avoid useless solutions, different cross operations of storage and
retrieval tasks are designed. Compared with three algorithms, including improved genetic algorithm,
improved particle swam optimization, and a hybrid algorithm of GA and particle swam optimization,
the experimental results showed that the GA-MBO algorithm improves the operation efficiency by
9.48%, 19.54%, and 5.12% and the algorithm robustness by 35.16%, 54.42%, and 39.38%, respectively,
which further verified the effectiveness of the proposed algorithm. The comparative analysis of the
bi-objective experimental results fully reflects the superiority of integrated scheduling optimization.

Keywords: automated storage and retrieval system; hybrid flowshop; genetic algorithm; migratory
birds optimization algorithm; GA-MBO

1. Introduction

With the development of intelligent logistics equipment and technology, automated
storage and retrieval systems (AS/RSs) are widely used in manufacturing enterprise
logistics due to the advantages of high efficiency and space utilization [1,2]. The use of
AS/RS in the factory warehouse is conducted with the just-in-time (JIT) contribution of
various materials in the workshop. To realize the JIT distribution, the AS/RS scheduling
must be closely connected with the production scheduling, which affects the efficiency of
the integrated scheduling. In addition, the different scheduling optimization objectives in
the AS/RS and hybrid flowshop are to maximize the efficiency of storage and retrieval and
minimize the makespan. With a high warehousing efficiency, the completion time of the
producing material distribution may not meet the required demand or may be unable to
greatly increase the line inventory. However, the production scheduling with the minimum
completion time may cause the warehouse scheduling tasks to be stacked at a certain time
and cannot meet the production demand. Therefore, it is important to cooperate with the
scheduling that contains the storage allocation, task sequences, and retrieval task sequences
in production, which is a significant practice in manufacturing systems.

At present, the main research in AS/RS concerns storage allocation and task schedul-
ing [3–5]. Roshan et al. [6] formulated a multi-objective model in AS/RS considering energy
consumption optimization and energy sustainability. Hachemi et al. [7] determined the in-
tegration of the storage allocation and picking paths based on storage and retrieval requests
with the objective of travel time. Song and Mu [8] studied the sequence sorting problem
with large-scale storage/retrieval requests in AS/RS and proposed a heuristic algorithm
based on assignment. Geng et al. [9] proposed a new improved Genetic Algorithm (GA)
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to solve the scheduling problem in AS/RS, and indicated that it is an effective approach.
Wu et al. [10] investigated the scheduling problem of retrieval jobs in double-deep type
AS/RS, whose objective is to minimize the working distance.

In the hybrid flowshop, Colak et al. [11] conducted a systematic literature survey
for hybrid flowshop scheduling problems, which provided a beneficial road map for
the following researchers. Zhang et al. [12] proposed a muti-objective migratory birds
optimization (MBO) algorithm based on the decomposition of the multi-objective flowshop
rescheduling problem, which has proven to be better than other evolutionary algorithms.
Zhang et al. [13] introduced lots of streaming into the hybrid flowshop scheduling problem
with consistent sublots to fit the real-world scenarios, which verified the feasibility to solve
the integrated scheduling problem with the hybrid flowshop. Li et al. [14] researched the
distributed hybrid flowshop scheduling problem with sequenced dependent setup time,
which was solved by a discrete artificial bee colony algorithm. Reddy et al. [15] solved
a muti-objective problem in a flexible manufacturing system, which considered machine
and vehicle scheduling. According to these studies in AS/RS and hybrid flowshop, most
researchers have ignored the related effects. However, the connection between AS/RS and
hybrid flowshop is important to develop smart manufacturing systems.

Problems with storage allocation, operation scheduling, and workshop scheduling are
NP-hard problems that lead to low efficiency and time-consumption by using exact algo-
rithms [16,17]. The intelligent optimization algorithm provides an effective and fast method
for solving the above complex problems [18–20]. Li et al. [21] conducted a comprehensive
survey of the learning-based intelligent algorithm. Katoch et al. [22] discussed the advances
and introduced the pros and cons of GA. Duman et al. [23] proposed a new nature-inspired
metaheuristic approach named MBO, which was proven to be an effective formation in
energy saving. The algorithms of GA, MBO, and their improvement algorithms are used to
solve the scheduling problems and achieve better performance. The scheduling objective
in AS/RS is usually the total operation time, but it has a shortcoming by neglecting two
situations. The first one is that the number of storage tasks is not equal to the number of
retrieval tasks, and the other one is that retrieval arrival time needs to be considered in
the connection of AS/RS and hybrid flowshop [24,25]. To obtain a better solution to the
integrated scheduling problem in AS/RS and hybrid flowshop, the main contributions in
this study include: (1) formulation of a bi-objective model to minimize the operation time
in AS/RS and the makespan in the hybrid flowshop; (2) proposal of a two-stage mixed
algorithm called GA-MBO that combines the strong global optimization ability of GA and
the strong local search ability of MBO.

The structure of this paper is as follows: In Section 2, we described and modeled
the integrated scheduling problem in AS/RS and hybrid flowshop. In Section 3, we
designed the GA-MBO and presented the operation details. In Section 4, experiments were
introduced in AS/RS and hybrid flowshop, and the results were analyzed to verify the
effectiveness of the GA-MBO. Finally, Section 5 presents the conclusions.

2. Materials and Methods

2.1. Problem Description

AS/RS is an information technology based on the Internet of Things, which is widely
used to store and retrieve materials without any human participation. An AS/RS mainly
consists of racks, cranes, input/output (I/O) points, and conveyors. The system has a crane
in each aisle and a main I/O point along a conveyor. The top view of the layout schematic
diagram is shown in Figure 1. The redesign of the material distribution connection in the
AS/RS and hybrid flowshop saves the storage area and lowers the handling cost of the
production material. The crane can be used to realize the distribution between different tiers.
Under the production conditions of the workshop, intelligent logistics equipment, such as
conveyors and automatic guided vehicles (AGVs), can be used to distribute materials with
JIT to achieve lean logistics. The material distribution problem with the connection between
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the AS/RS and the hybrid flowshop is researched. The material distribution diagram is
shown in Figure 2.

Figure 1. Layout schematic diagram of AS/RS. 1. Crane. 2. Rack. 3. Aisle. 4. Input point. 5.
Conveyor. 6. Output point.

Figure 2. Material distribution diagram in AS/RS and hybrid flowshop.

The integrated scheduling problem in AS/RS and hybrid flowshop is related to the
storage allocation, system scheduling, and flowshop scheduling. The objective of the
scheduling problem is to minimize the total operation time in AS/RS and the makespan in
hybrid flowshop. The research objects are AS/RS and multi-stage hybrid flowshop.

AS/RS can be described as: in a warehouse with a determined status that racks have
X rows, Y columns, and Z tiers. The corresponding material locations are the O retrieval
task locations, and the number of retrieval tasks is greater than the number of the retrieval
material types. The free rack locations are the I retrieval task locations. These storage and
retrieval tasks are operated by S cranes, whose operation time is related to task storage
allocations (multi-tasks with the same material) and the task operation sequence. Hybrid
flowshop can be described as: the O retrieval tasks with the same operation sequence
are processed at the K stages. Stage k has Ek > 1 independent parallel machines. At this
stage, the task processing time is related to both the task material type and the processing
machine type. The end operation time of the retrieval task in AS/RS directly affects the
starting time of the production task in the hybrid flow workshop scheduling.

In the scheduling of AS/RS, operation modes for storage and retrieval goods are:
single command (SC) where the crane completes for storage task or retrieval task and
double command (DC) where the crane completes for storage and retrieval tasks. The DC
operation should be adopted to improve the efficiency in the system. At the same time,
considering the deadline requirements of retrieval tasks, the SC has a shorter retrieval time.
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In addition, the mixed command of SC and DC is researched in the operation scheduling
problem, which exists under the assumption that the numbers of storage and retrieval tasks
are unequal. These situations form a mixed scheduling sequence.

The alternation of storage and retrieval tasks leads to the dwell-point change that
affects the task operation time. The location selections of storage and retrieval tasks affect
the operation sequence, the system efficiency, and the end operation time of retrieval tasks.
The retrieval sequence affects the product sequence and the production efficiency in the
hybrid flowshop. This paper integrates and optimizes a batch of storage and retrieval tasks
in AS/RS by determining the storage location so that the total operation time in AS/RS and
the makespan in workshop production are minimized. Storage selection, task sequences,
and production sequences need to be studied at the same time.

2.2. Problem Modelling
2.2.1. Assumption

In the integrated scheduling optimization problem in AS/RS and hybrid flowshop, the
main assumptions to simplify the problem under research and the formulated model are:

• An AS/RS has X rows, Y columns, and Z tiers, and the rack coordinates of x row, y
column, and z tier can be expressed as (x, y, z). The input point is at (0, 0, 1), and the
output point is at (X + 1, Y + 1, 1).

• In the AS/RS storage racks which have the same size. A rack stores one bin or one
pallet, and the crane can only load one bin or one pallet at a time.

• The velocity of a crane in the horizontal direction is vy and in the vertical direction is
vz. Movements in the two directions are independent. The start-up time and braking
time of crane can be ignored, while the picking time for any location is fixed.

• The crane stays in position after the task is completed.
• Considering the storage period of the material in the warehouse, it is not allowed to

directly check out without checking.
• The equipment failure is not considered during the operation, and the crane is not

allowed to interrupt the task.
• The equipment processing in the hybrid flowshop doesn’t consider production prepa-

ration time.
• The buffer in the equipment room has infinite capacity.

2.2.2. Notation

In order to describe the problem and build a model by a better way, the notations are
as follows:

X Number of rows, x = 1, 2, . . . , X
Y Number of columns, y = 1, 2, . . . , Y
Z Number of tiers, z = 1, 2, . . . , Z
J Number of racks, j = 1, 2, . . . , J
ZJ Material locations
L Rack’s length
W Rack’s width
H Rack’s high
U Aisle’s width
S Number of cranes, s = 1, 2, . . . , S
vy Velocity of the crane in the horizontal direction
vz Velocity of the crane in the vertical direction
C Load/Unload time of crane
p Material types, p = 1, 2, . . . , p
Np Number of in stock materials p in stock, n = 1, 2, . . . , Np
Ip Number of retrieval materials p in stock, i = 1, 2, . . . , Ip
K Number of production stages, k = 1, 2, . . . , K
Ek Number of machines at stage k, e = 1, 2, . . . , Ek
Tpke Operation time of material p at stage K in machine e
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Re Transportation time of output point to machine e
Ω Large positive number
stns Start time of task n in crane s
ctns End time of task n in crane s
stnoke Start time of task n at output point o and stage k in machine e
ctnoke End time of task n at output point o and stage k in machine e
αnj 1 if the location of task n is j, otherwise is 0
βnn’s 1 if the task n completes before task n’ in crane s, otherwise is 0
χnn’ke 1 if the task n completes before task n’ at stage k in machine e, otherwise is 0

2.2.3. Objective Function

The common operational efficiency in the AS/RS scheduling problem is to measure the
operation time, and in the hybrid flowshop scheduling problem, to measure the makespan.
The integrated scheduling optimization of these two scheduling problems presents a conflict
that needs to be evaluated in model objects.

The crane operates retrieval tasks from the dwell point to the location of the retrieval
task and then moves to the output point in the aisle, which becomes a new dwell point.
The retrieval operation time of the crane at SC is:

ctns = stns + 2C + max
(
(yo − ys) · W

vy
,
(zo − zs) · H

vz

)
+ max

(
yo · W

vy
,
(zo − 1) · H

vz

)
(1)

The crane operates storage tasks from the dwell point to the aisle output point to pick
up goods and then moves to the storage task location, which becomes a new dwell point.
The storage operation time of the crane at SC is:

ctns = stns + 2C + max
(

ys · W
vy

,
(zs − 1) · H

vz

)
+ max

(
yo · W

vy
,
(zo − 1) · H

vz

)
(2)

In the DC operation of the crane, the dwell point of input is the output point, which
reduces the operation time. The objective function of operation time in AS/RS is:

f1 =
S

∑
s=1

max(ctns) (3)

The end operation time is the task completion time at the last production stage in
hybrid flowshop. The objective function of the makespan is:

f2 = max(ctnoke) (4)

To eliminate the influence of different objective dimensions, the above two evaluation
objective functions need to be normalized as:

f (x) =
f (x)− min f (x) + 0.001

max f (x)− min f (x) + 0.001
(5)

Normalization needs to determine the extreme value of the objective function. The
researched problem is NP-hard and it is difficult to obtain the exact solution for which
optimization can be obtained by the single-objective function. The weight coefficient
method converts the multi-objective optimization into a single-objective description as:

F = w1 · f1 + w2 · f2 (6)

The total operating time of the warehouse and the makespan in production are the two
study targets of the study. The primary goal in enterprise management is to increase pro-
duction efficiency, which is also called the makespan. Increasing the operational efficiency
in AS/RS cannot directly improve production efficiency but can help to reduce operating
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costs. Therefore, the weights of the two evaluated objectives are taken as w1 = 0.3 and
w2 = 0.7.

2.2.4. Modelling

Based on the above descriptions, the integrated scheduling model of AS/RS and
hybrid flowshop can be given as follows:

min(F) = min(w1 · f1 + w2 · f2) (7)

which is subject to:
X·Y·Z
∑
j=1

αnj = 1 (8)

ctnoke = stnoke + Tpke; (p = pno) (9)

stn′s ≥ ctns − (1 − βnn′s) · Ω (10)

stn′o′ke ≥ ctn′o′ke − (1 − χnn′ke) · Ω (11)

stno′e ≥ ctns + Rs +
(2S − 1) ·

(
L + U

2

)
vx

(12)

stno(k+1)e′ ≥ ctnoke; (k �= K) (13)

Equation (7) indicates the bi-objective that contains the total operation time in AS/RS
and the maximum makespan in production. Equation (8) represents that each task can
only correspond to one position in racks. Equation (9) indicates the relationship between
the start operation time and the end operation time of the retrieval tasks. Equations (10)
and (11) each represent the constraints in the crane and production equipment at the start
of the operation time of the next task and at the end of the operation time of the previous
task. Equation (12) represents that the start operation time of the production task is larger
than the arrival time of the production material. Equation (13) indicates that the production
phase in which the start time of the next stage of the task is greater than or equal to the end
time of the previous stage of the operation.

3. GA-MBO Design

Intelligent optimization algorithms are more suitable than accurate algorithms to solve
NP-hard problems and are conducted to deliver fast solutions. GA is a classic intelligent
optimization algorithm which has been widely used in production scheduling, combinato-
rial optimization, etc. To fix the poor local search ability of GA, this paper adopts the MBO
algorithm which has high local search efficiency and outstanding convergence performance.
GA-MBO algorithm is proposed to solve the integrated scheduling optimization problem
in AS/RS and workshop.

The GA-MBO algorithm consists of three modules, including coding rules, GA rules,
and MBO rules. The flow chart of the GA-MBO is shown in Figure 3. The following
parameters are defined as: NG represents the number of populations in the GA phase;
Mgen represents the number of iterations in the GA phase; Pc represents the probability of
crossover; Pm represents the probability of mutation; NM is the number of flocks in the
MBO phase; a represents the number of neighborhood solutions generated by an individual;
b indicates the number of neighborhood solutions that each individual passes to the next
individual; and G represents the number of tours.
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Figure 3. Flow chart of GA-MBO.

3.1. Coding Rules

The real coding method is used to solve the problems, such as multiple storage loca-
tions in the AS/RS, various material types of storage and retrieval tasks, mixed operation
of storage and retrieval tasks, and complex operation sequences of production tasks. The
coding and the decoding mechanism are illustrated with the warehousing information in
the AS/RS with 6 rows, 6 columns, and 5 tiers, which are shown in Table 1. The storage
and retrieval tasks are numbered as shown in Figure 4. The storage racks are successively
numbered with rows, columns, and tiers, starting from 1. The total number of racks is:

J = X · Y · Z (14)

Table 1. The warehousing information.

Number of Retrieval
Types

Number of Bins
Number of Storage

Types
Number of Kins

1 2 3 4
2 3 4 2
3 2 5 3
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Figure 4. Mixed storage and retrieval tasks and material numbers.

3.1.1. Coding

Considering that coding of rack locations, which is much longer than storage and
retrieval tasks, increases the complexity of the algorithm and reduces the search efficiency,
coding is performed mainly for the storage and retrieval tasks, as shown in Figure 5.
The number of storage and retrieval tasks is used as the coding length, and the tasks are
arranged in the order of execution. In the retrieval tasks, it is randomly selected from the
corresponding material locations in AS/RS. In the storage tasks, it is randomly selected
from the free locations in AS/RS.

Figure 5. Coding diagram.

3.1.2. Decoding

Each code represents the storage locations of the storage and retrieval tasks and the
operation sequence in AS/RS. The code needs to be decoded to find the operation sequence
of the crane and the production stage of the machines. The crane number is determined by
the location number in multi-crane operations. The racks of a crane can store two rows,
which are numbered as:

S =

[
j

2Y · Z

]
+ 1 (15)

The decoding progress is:
Step 1: Determine the crane number by the location number in AS/RS and determine

the task sequence by the task number to obtain the operation sequence in cranes.
Step 2: The total operation time of cranes is obtained by the end operation time of the

task on each crane.
Step 3: The travel times of shelves in different rows to the production equipment are

calculated based on the end operation time of the crane retrieval tasks in step 1 and obtain
the arrival time from retrieval tasks to the production stage.

Step 4: According to the arrival time of the retrieval task to the production stage, the
operation time sequence of tasks can be obtained by the rules of “First-Come-First-Service”
of tasks, “First Idle”, and “Capacity Priority” (workpiece processing time) of machines.

Step 5: The makespan is obtained by the end operation time of each task at the final
production stage.

3.2. GA Rules

GA includes the operations of the population initialization, selection, crossover, and
mutation. The population initialization method is randomly generated according to the
encoding method. The selection mechanism is based on the elite reservation and the binary
tournament selection mechanism. The crossover and mutation operations are needed
because the coding method is two-layer coding. The operation tasks are allocated. The
retrieval tasks are constrained by the corresponding material storage locations in AS/RS,
and the storage tasks are constrained by the free locations in AS/RS.
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3.2.1. Crossover

The main purpose of the GA phase is to obtain a better solution, which is to make full
use of the global optimization performance of GA and to avoid the generation of useless
solutions. Crossover is designed as follows: In retrieval tasks, an improved crossover
operation that extracts the corresponding code in process coding is designed based on the
type of material. In storage tasks, a uniform crossover operation that extracts partial code
of different storage locations is adopted, which considers the same retrieval location under
different solutions. After that, the extraction code is put back to the original solution’s
extraction position accordingly, and the specific process is shown in Figure 6.

Figure 6. Schematic diagram of the intersection of storage and retrieval tasks.

Useless solutions can be avoided by the above operations under the constraints of task
locations. It is beneficial for the global search ability of the algorithm by fully adjusting the
old solutions according to different cross operations of storage and retrieval tasks.

3.2.2. Mutation

The sequence of storage and retrieval tasks is generated by four mutation operations,
namely random exchange, pre-insertion, post-insertion, and sequential pair exchange. The
allocation of storage and retrieval tasks is designed by the single-point mutation and the
exchange mutation. The single-point mutation randomly makes a location in a feasible
location set of a task to mutate a new location that is not in the solution. The exchange
mutation randomly exchanges the locations of two tasks in the set of retrieval tasks or the
set of storage tasks of the same material in the solution.
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3.3. MBO Rules

The MBO is a neighborhood search-based algorithm that performs a sufficient local
search on the neighborhood of each solution, and it compensates for the deficiency of the
GA’s local search ability. In addition, the MBO algorithm can deeply explore the optimal
solution at the late population convergence stage of the algorithm.

3.3.1. Neighborhood Structure Design

The neighborhood structure directly affects the MBO solution quality and the conver-
gence speed of the algorithm. An efficient neighborhood structure needs to be identified.
For the sequence of tasks, the formation of the sequence neighborhood structure considers
random exchange, pre-insertion, post-insertion, sequence pair exchange, optimal insertion,
and optimal exchange.

For the product allocation, the scale of the feasible storage location is larger than the
scale of the feasible retrieval locations. Therefore, different operations are designed to
construct different neighborhood structures for the storage and retrieval tasks.

• Neighborhood structure for retrieval tasks. A neighborhood structure based on an
improved optimal exchange operation is designed. The process is to randomly select
a retrieval task for its feasible location set, then delete the original location of the
task from that set, and the number of operations is the number that feasible storage
locations minus 1. If a storage location of other tasks in the code overlaps with the new
feasible storage location of the indicated task, this storage location of other tasks needs
to be replaced by the original location of the indicated task. The values of objective
function values for these new individuals are calculated respectively and the most
optimal one is chosen.

• Neighborhood structure for storage tasks. A neighborhood structure based on an
improved optimal exchange operation is designed. In a retrieval task, a new location
that is not in individual code is randomly selected from the free locations to replace the
original location and the number of operations is the number of retrieval tasks. The
values of objective function values for these new individuals are calculated respectively
and the most optimal one is chosen.

3.3.2. Adaptive Adjustment of Neighborhood Structure

The total of eight neighborhood structures above present different search effects in
the solution at different stages of the algorithm. At the early stage of the algorithm, the
effect of the eight neighborhood structures to get better solutions is not much different,
but the search efficiencies of random exchange, pre-insertion, post-insertion, and sequence
pair exchange are higher, which improve the application frequencies. At the late stage
of the algorithm, the two neighborhood structures based on optimal insertion, optimal
exchange, and storage assignment are better than the other four structures. The application
frequencies of these four structures should be increased. Therefore, an adaptive adjustment
strategy is introduced to control the usage frequency of each structure during the search
period to optimize the algorithm’s efficiency.

Weight ω0 is assigned to each neighborhood structure. The roulette method is used
to randomly select the neighborhood structure according to the neighborhood structure
weight ωi to generate the neighborhood solution, and the weight is updated after each
iteration. The adjust weight is contributed by:

ωi,seg+1 = (1 − ηi) · ωi,seg +
ηi · βi,seg

αi,seg
(16)

where αi is the number of times of structure i; βi is the cumulative score of structure i. If the
solution is better than the original solution generated by structure i, βi = βi + 1, ηi ∈ [0, 1]
is the speed of the response to the effect of structure i of weight ωi.
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4. Simulation Experiments

4.1. Test Examples

The algorithms for the integrated scheduling problem are coded in MATLAB2016a and
run on the Intel i7-7700 k CPU with 16 GB memory. The operation process in an AS/RS of
a manufacturing enterprise is used as an example to research the scheduling problem and
is modified to obtain the experimental data. The production process consisted of an AS/RS
and a hybrid flowshop. The AS/RS has 6 rows, 60 columns, and 15 layers, and the number
of racks is 5400. The coordinates of the input point and the output point is (0, 0, 1) and (7,
61, 1). The parameters of each index are shown in Table 2. There are 30 kinds of materials
in the system, and the quantity of each material is N ∈ U(30, 50); the types of storage and
retrieval materials are P ∈ {5, 10, 15, 20}; the quantity of each material is OP ∈ U(1, 5); the
number of scheduling stages is K ∈ {3, 5, 7}; the number of machines was Ek ∈ U(2, 6);
the material processing time is T ∈ U(10, 70); material weight is M ∈ U(10, 30), and the
frequency of storage and retrieval is f ∈ U(1, 10). There are 12 groups of experiments set
by the types of storage and retrieval materials and the number of scheduling stages. The
data format U[x, y] represents a discrete uniform distribution between x and y.

Table 2. Each index parameter of the AS/RS.

Describe Value

Rack length/width/high (m/m/m) 1/0.8/0.6
Velocity of the crane in the horizontal direction (m/s) 3

Velocity of the crane in the vertical direction (m/s) 1
Pick-up and set-down times of the crane (s) 5

Velocity of the conveyor (m/s) 0.5
Output point to production machine time (s) 60

4.2. Parameter Settings

The relevant parameters of the GA-MBO are NG, Mgen, Pc, Pm, NM, a, b, G. Some
parameters of reference were set: Pc = 0.8, Pm = 0.05, a = 3, b = 1 [25,26]. It was found
that this setting has a good effect on the solution of this paper by experiments. NG, Mgen,
NM, and G are related to the problem scale. The corresponding Taguchi experiment
was designed for the factor levels [27]. The parameter level table is shown in Table 3.
Experiments are carried out with an example of p = 10, K = 3, and the algorithm is run
10 times independently under each combination of parameters. The maximum running

time is 10(K + 1) ·
P
∑

p=1

(
Op + Ip

) · s [28]. The average values of 10 experimental results are

taken as the response values, as shown in Table 4.

Table 3. Parameter level of GA-MBO.

Parameters
Level Value

1 2 3 4

NG 150 200 250 300
Mgen 100 150 200 250
NM 25 51 81 101

G 5 8 10 15
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Table 4. Orthogonal matrix and response value.

Test Numbers
Parameters

Response Value
NG Mgen NM G

1 150 100 25 5 0.09346
2 150 150 51 8 0.09180
3 150 200 81 10 0.08936
4 150 250 101 15 0.09304
5 200 100 51 10 0.09175
6 200 150 25 15 0.09232
7 200 200 101 5 0.09175
8 200 250 81 8 0.08790
9 250 100 81 15 0.09397
10 250 150 101 10 0.08947
11 250 200 25 8 0.08876
12 250 250 51 5 0.08636
13 300 100 101 8 0.09258
14 300 150 81 5 0.09072
15 300 200 51 15 0.08941
16 300 250 25 10 0.08974

The results under the combinations of parameters are analyzed by Minitab 17 in
Figure 7, the parameter change trend diagram, and Table 5, the average response value.
It can be seen the performance of the algorithm is the best when NG = 250, Mgen = 250,
NM = 51, and G = 10. This parameter scheme is adopted in subsequent experiments.

Figure 7. The graph of parameter change trend.

Table 5. Response value of different parameters.

Level NG Mgen NM G

1 0.09191 0.09294 0.09107 0.09057
2 0.09093 0.09108 0.08983 0.09026
3 0.08964 0.08982 0.09049 0.09008
4 0.09061 0.08926 0.09171 0.09218

Delta 0.00227 0.00368 0.00188 0.0021
Rank 2 1 4 3

184



Energies 2022, 15, 7558

4.3. Algorithms Comparison

In the integrated scheduling optimization problem of AS/RS and hybrid flowshop, a
comparison with the improved GA, improved particle swarm optimization (PSO) algorithm,
and hybrid algorithm of GA and PSO (GA-PSO), the algorithm performance of GA-MBO is
verified. With the NP-hard characteristics of the problem, the evaluation indexes, including
average (Avg.) and the standard deviation (Std.), are solved by the repeated experiments
of 10 times of the four algorithms. The Avg. is used to measure the efficiency and the Std.
is used to measure the robustness of the algorithm. The 12 groups for the comparative
analysis are shown in Table 6, which set the types of storage and retrieval materials
P ∈ {5, 10, 15, 20} and the number of scheduling stages in AS/RS K ∈ {3, 5, 7}. From
Table 6, compared with three algorithms, including IGA, IPSO, and GA-PSO, it is obvious
that GA-MBO has the most optimal solutions of Avg. and Std.

Table 6. Comparison results of four algorithms.

Group p K
GA-MBO IGA IPSO GA-PSO

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

1
5

3 0.10159 0.00192 0.11131 0.00253 0.12152 0.00454 0.10707 0.00254
2 5 0.10440 0.00133 0.11919 0.00328 0.12981 0.00446 0.11451 0.00283
3 7 0.10805 0.00136 0.12076 0.00209 0.13058 0.00271 0.11423 0.00269
4

10
3 0.08701 0.00167 0.09689 0.00209 0.10896 0.00255 0.08997 0.00190

5 5 0.08678 0.00148 0.09920 0.00359 0.11416 0.00337 0.09318 0.00353
6 7 0.09021 0.00134 0.10475 0.00321 0.11856 0.00510 0.09533 0.00212
7

15
3 0.09872 0.00142 0.10968 0.00232 0.12371 0.00688 0.10662 0.00196

8 5 0.10328 0.00140 0.11177 0.00211 0.12789 0.00466 0.10536 0.00263
9 7 0.10548 0.00141 0.11464 0.00202 0.12960 0.00244 0.11135 0.00312
10

20
3 0.09766 0.00148 0.10865 0.00243 0.12666 0.00330 0.10449 0.00205

11 5 0.10741 0.00136 0.11451 0.00212 0.12855 0.00512 0.11194 0.00341
12 7 0.11153 0.00286 0.11568 0.00257 0.13227 0.00262 0.11306 0.00365

To display the promotion of the GA-MBO more clearly, the optimization results by
comparing with other algorithms are shown in Table 7. In Table 7, the experimental
results of IGA, IPSO, and GA-PSO show that: (1) compared with IGA, IPSO, and GA-
PSO, GA-MBO, the optimization efficiencies are achieved at 13.88% in Group 6, 23.98% in
Group 5, and 8.83% in Group 2, and the average promotions are 9.48%, 19.53%, and 5.12%,
respectively; (2) in Group 12, the GA-MBO is not as stable as IGA and IPSO; (3) compared
with IGA, IPSO, and GA-PSO, GA-MBO, the optimization robustness are achieved at 59.45%
in Group 2, 79.36% in Group 7, and 60.12% in Group 11, and the average promotions are
35.16%, 54.42%, and 39.38%, correspondingly. Although the robustness of GA-MBO is
poor in Group 12, it is much better in other groups, and the average value is much higher.
Therefore, it is still considered that the GA-MBO has the best robustness.

The T-test uses t-distribution theory to infer the probability of difference and compare
whether the difference between two averages is significant. In the test examples, the
normally distributed data are assumed, and the operation time is 10 in each group. The
t-test is studied to test the statistical difference of the GA-MBO with other three algorithms,
and the confidence is 0.95. The results are shown in Table 8. In Table 8, the values of upper
confidence and lower confidence between GA-MBO and other algorithms are negative
and within the confidence interval, which verifies the effectiveness of the GA-MBO. The
advantage of GA-MBO is further proved by indicating that the Avg. of the optimal solution
of GA-MBO is stably better than other algorithms again.
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Table 7. The optimization efficiency and robustness of algorithms.

Group OE_1 1 OE_2 2 OE_3 3 OR_1 4 OR_2 5 OR_3 6

1 8.73% 16.40% 5.12% 24.11% 57.71% 24.41%
2 12.41% 19.57% 8.83% 59.45% 70.18% 53.00%
3 10.53% 17.25% 5.41% 34.93% 49.82% 49.44%
4 10.20% 20.15% 3.29% 20.10% 34.51% 12.11%
5 12.52% 23.98% 6.87% 58.77% 56.08% 58.07%
6 13.88% 23.91% 5.37% 58.26% 73.73% 36.79%
7 9.99% 20.20% 7.41% 38.79% 79.36% 27.55%
8 7.60% 19.24% 1.97% 33.65% 69.96% 46.77%
9 7.99% 18.61% 5.27% 30.20% 42.21% 54.81%
10 10.12% 22.90% 6.54% 39.09% 55.15% 27.80%
11 6.20% 16.44% 4.05% 35.85% 73.44% 60.12%
12 3.59% 15.68% 1.35% −11.28% −9.16% 21.64%

Average promotion 9.48% 19.53% 5.12% 35.16% 54.42% 39.38%
1 OE_1 is the optimization efficiency promotion of the GA-MBO relative to IGA. It is calculated as OE_1 = (IGA
Avg. − GA-MBO Avg.)/IGA Avg. 2 OE_2 is the optimization efficiency promotion of the GA-MBO relative
to IPSO. 3 OE_3 is the optimization efficiency promotion of the GA-MBO relative to GA-PSO. 4 OR_1 is the
optimization robustness promotion of the GA-MBO relative to IGA. It is calculated as OR_1 = (IGA Std. −
GA-MBO Std.)/IGA Std. 5 OR_2 is the optimization robustness promotion of the GA-MBO relative to IPSO.
6 OR_3 is the optimization robustness promotion of the GA-MBO relative to GA-PSO.

Table 8. T-test of optimal solution between GA-MBO and other algorithms with confidence of 0.95.

Group

GA-MBO~IGA GA-MBO~IPSO GA-MBO~GA-PSO

Upper
Confidence

Lower
Confidence

Upper
Confidence

Lower
Confidence

Upper
Confidence

Lower
Confidence

1 −0.01212 −0.00765 −0.02377 −0.02014 −0.00496 −0.00097
2 −0.01305 −0.00893 −0.03178 −0.02622 −0.00868 −0.00498
3 −0.01298 −0.00894 −0.03000 −0.01999 −0.00968 −0.00614
4 −0.01186 −0.00758 −0.02290 −0.01697 −0.00799 −0.00299
5 −0.01522 −0.00962 −0.02981 −0.02494 −0.00933 −0.00347
6 −0.00903 −0.00517 −0.02496 −0.01732 −0.00748 −0.00159
7 −0.01038 −0.00662 −0.02766 −0.02157 −0.00425 0.00008
8 −0.01740 −0.01218 −0.02887 −0.02195 −0.01250 −0.00772
9 −0.01724 −0.01184 −0.03249 −0.02421 −0.00703 −0.00321
10 −0.00752 −0.00077 −0.02246 −0.01902 −0.00511 0.00204
11 −0.01102 −0.00730 −0.02622 −0.02202 −0.00814 −0.00361
12 −0.01476 −0.01067 −0.02468 −0.02039 −0.00819 −0.00417

To find the iteration situation of these algorithms, the convergence comparisons
between the GA-MBO and other three algorithms are carried out with the calculation
example of p = 10 and K = 3 as shown in Figure 8. In Figure 8, the abscissa is the iteration
times of the four algorithms, and the ordinate is the value of objective function which
calculated by the algorithms. The optimal solution of the GA-MBO is the best among the
other three algorithms when the iteration is greater than 276, and the iteration tends to be
flat when the iteration is greater than 350, which means the GA-MBO can find a best value
of objective function. Based on the above analysis, the GA-MBO is superior to IGA, IPSO,
and GA-PSO in terms of the efficiency and robustness of the solution.
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Figure 8. Iteration diagrams of four algorithms.

4.4. Bi-Objective Comparison

To verify the superiority of the integrated scheduling optimization of AS/RS and
hybrid flowshop, three experiments with p = 10 and K = 3 are tested and compared.
Objectives of these experiments are operation time in AS/RS, makespan in hybrid flowshop,
and the bi-objective. The results are shown in Table 9, which shows that while f2 only
changes 4.43%, f1 has a 26.34% improvement. This condition is more suitable for the actual
production which concerns the total profit and reflects the superiority of the integrated
scheduling optimization.

Table 9. Comparison of results between bi-objective optimization and single objective optimization.

Objective Value Variation Value Variation

f1 609.8 22.77% 595.4 −38.72%
f2 997.6 −26.34% 410.2 4.43%

f1 and f2 789.6 None 429.2 None

5. Conclusions

In this paper, considering the combination of distribution and production, the study of
the integrated scheduling problem of AS/RS and hybrid flowshop is conducted to establish
an integrated scheduling optimization model with the bi-objective of minimizing the total
operation time and makespan. A mixed optimization algorithm of GA-MBO combining
the global optimization performance and search capability of GA with a strong local search
ability of the MBO algorithm is proposed to improve the efficiency and robustness of the
algorithm solution.

In a simulation case of an AS/RS with 5400 storage locations, the model and algorithm
of repeat experiments were verified by a comparison of commonly intelligent algorithms
with GA-MBO. The experimental results of IGA, IPSO, and GA-PSO show that the average
promotions of efficiencies are 9.48%, 19.53%, and 5.12% and the average promotions of
robustness are 35.16%, 54.42%, and 39.38%, correspondingly. Comparative analysis of the
bi-objective verified the superiority of integrated scheduling optimization. This verification
helps to coordinate the scheduling in warehouse distribution and workshop production to
reduce distribution costs. The gap in the integrated scheduling optimization of AS/RS and
the hybrid flowshop is filled.

At present, the rapid development of intelligent warehousing systems makes the
AS/RS and hybrid flowshop closely connected. The integrated scheduling optimization
problem of the AS/RS and hybrid flowshop is one of the problems in the integrated AR/RS
and hybrid flowshop, which should be solved to build a complete intelligent factory, and
it is a critical problem facing the intelligent factory. The collaboration between machines
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and between the AS/RS and hybrid flowshop are hard to realize, and the system cannot be
actually used in the research [29].

The devices have the effect factors of energy consumption, delivery waste, machine
handling time, and maintenance when operated in the AS/RS and hybrid flowshop. In
the future, a corresponding optimization model in the scheduling problem should be
established by introducing factors that further conform to the real production situation.
In addition, different structures of AS/RS and hybrid flowshop as well as different types
and numbers of AGVs and cranes may also be researched to adapt the development of the
flexible manufacturing workshop and enhance the efficiency.
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Abstract: To date, along with the rapid development of urban rail transit (URT) in China, the
evaluation of operational efficiency and energy efficiency has become one of the most important
topics. However, the extant literature regarding the efficiency of URT at the line level and considering
carbon emissions is limited. To fill the gap, an evaluation model based on slacks-based measure (SBM)
data envelopment analysis (DEA) is proposed to measure the efficiencies, which is applied to 61 URT
lines in China’s four megacities. The findings are summarized as follows: (1) The average operational
efficiency and energy efficiency of URT lines are low, and both have great room for improvement.
(2) There are significant disparities in the efficiency of URT lines in the case cities. For instance, the
average operational efficiency of URT lines in Guangzhou is higher than that of other cities, while
the average energy efficiency of URT lines in Shanghai is higher than that of other cities. (3) The
URT lines operated by state-owned enterprises have higher average operational efficiency, while the
lines operated by joint ventures have higher average energy efficiency. Finally, some suggestions are
provided to improve the efficiencies.

Keywords: urban rail transit; operational efficiency; energy efficiency; carbon emission; data
envelopment analysis

1. Introduction

Over the past two decades, urban rail transit (URT) has rapidly developed to mitigate
traffic congestion in China’s megacities [1]. According to statistics, by the end of 2021,
50 cities on the Chinese mainland operated 283 URT lines with a total length of 9206.8 km [2].
Compared with other means of public transportation, URT is faster, more frequent, and
punctual, which is an important part of urban public transportation. Due to the rapid
increase in modernization and the advance of rail transit planning in urban agglomera-
tions, URT has a larger potential development space in China. Improving the operational
efficiency of URT makes a great impact on economic and social activities. Operational
efficiency evaluation can identify sources of inefficiency and improve URT’s operation,
which has become one of the most important investigation topics [3,4].

In the literature, URT is usually considered a complex system with multiple inputs
(e.g., train, line, station, and energy) to provide transit services and thereby produce mul-
tiple outputs (e.g., passenger kilometers, passenger volume, and train kilometers). The
efficiency evaluation of public transport is always investigated by comparing multiple
inputs and outputs comprehensively [5–8]. In this study, the operational efficiency of URT
can be defined as the conversion efficiency between the input system and the output system.
Multi-criteria decision analysis (MCDA) methods can be used to comprehensively evaluate
alternatives [9–11]. However, different MCDA methods often produce contradictory results
when comparing, and decisionmakers may obtain different decisions even using the same
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criteria weights and criterial evaluations of variants [11]. As one of the non-parametric ap-
proaches, data envelopment analysis (DEA) has the advantage of having no pre-determined
weights, which is applicable in estimating the relative efficiency of decision-making units
(DMUs) with multiple inputs and outputs. Since first proposed by Charnes et al. [12], DEA
has been successfully and widely applied to measure efficiency in the public transport
sector, such as railways (e.g., [13–15]), highway bus transit (e.g., [16–18]), shipping and
ports (e.g., [19–21]), and airlines and airports (e.g., [22–24]).

In terms of the efficiency of URT, it can be measured at different levels, such as the
city level and the company level. In this sense, Karlaftis [19] used the DEA model to
measure the efficiency and effectiveness of 256 US URT systems, and the results showed
that efficiency is positively correlated with effectiveness. Jain et al. [25] applied DEA to
explore the relationship between technical efficiency and ownership structure for 15 global
URT systems and found that privatization directly and positively impacts efficiency. Qin
et al. [26] adopted a slacks-based multi-stage network DEA to assess the efficiency of
17 URT systems in China in 2012 and found that lower average overall efficiency is more
related to inefficiencies in the earning stage and construction stage. Tsai et al. [27] used DEA
to measure the efficiency of 20 international URT systems from 2009 to 2011 and suggested
that the number of stations and population density impact efficiency significantly. Costa
et al. [28] utilized DEA to compute the efficiency of four URT systems in Portugal from
2009 to 2018 and explored the impact of the ownership model on efficiency. The findings
indicated that privately managed firms were more efficient than public firms. Although the
above studies made great progress, estimation at the city or company level cannot identify
the efficiency of specific lines or provide deeper insight into the improvement of efficiency
at the line level.

To the best of our knowledge, studies on the efficiency of URT at the line level are
scarce. Kang et al. [29] developed a mixed network DEA model and a hybrid two-stage
network DEA model to explore the efficiency of two metro systems, including six lines in
Taipei, and found that the efficiency results between the two models differed significantly.
Le et al. [30] used the DEA model to measure the operational efficiency, cost efficiency,
and revenue efficiency of 18 URT lines in the Tokyo Metropolitan Area in 2017. The results
indicated that the in-vehicle congestion rate can be a reflection of the service quality in
the operational efficiency measurement. Unfortunately, these two studies did not consider
carbon emissions in the efficiency evaluation process. Due to growing environmental
concerns, carbon emissions are considered an undesirable output in efficiency estimations
in the transportation sector [31–33]. An efficiency measurement without considering carbon
emissions may lead to imprecise operational efficiency results, which leaves a research gap.

In addition, with the increase in URT mileage, the corresponding energy consumption
is also rising. The measurement of URT’s energy efficiency can help operators save elec-
tricity and reduce operating costs and carbon emissions. However, while there are many
studies on energy efficiency in the transportation sector [7,33–35], few works focus on the
URT field. To the best of our knowledge, two studies are closely related to this topic. Xiao
et al. [36] applied the DEA model to evaluate the energy efficiency of URT in Beijing Metro
Lines 5 and 15 and the Batong Line without considering carbon emissions in the evaluation.
To et al. [37] used the dimensional indicator to discuss the energy efficiency of Hong Kong’s
mass transit railway over the period from 2008–2017 and found that the energy efficiency
was between 0.076 and 0.093 kWh per passenger–km and CO2 emissions were between
0.055–0.071 kg per passenger–km. Notably, the energy efficiency in this study was similar
to the energy intensity. The efficiency evaluation did not consider other inputs and outputs
and may not provide significant implications. Hence, there exists another gap related to
energy efficiency in URT lines, which needs to be explored.

To fill the gaps, this study aims to estimate operational efficiency and energy efficiency
considering CO2 emissions for URT at the line level, which is the novelty of this paper. To
achieve this, an evaluation model based on the slacks-based measure (SBM) is developed to
assess operational efficiency and energy efficiency synchronously. Furthermore, a method
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of detecting the improvement potentials of inputs and outputs is proposed. Then, this study
applies the proposed model to the URT lines in China’s four megacities (Beijing, Shanghai,
Guangzhou, and Shenzhen).

In summary, the contributions of this study are listed as follows. First, this study
measures the operational efficiency and energy efficiency of the URT in consideration of
CO2 emissions at the line level, which is a step further than previous studies have taken
on undesirable outputs. Second, the proposed model can evaluate operational efficiency
and energy efficiency simultaneously and provide more precise results. Third, an empirical
study of China’s 61 URT lines in four major cities verifies the effectiveness of the proposed
model. This micro-level research may enrich the theoretical literature and provide new
management enlightenment for efficiency improvement in URT operation.

The remainder of this paper is structured as follows. The methodology is presented
in Section 2. Section 3 presents the results, and Section 4 provides discussions. Finally,
Section 5 illustrates the conclusions and limitations.

2. Methodology

To clearly describe the evaluation method, the input and output variables and the
operation process of the URT system are introduced first. Then, the SBM model is developed
to measure the operational efficiency of URT lines. Furthermore, a measurement for energy
efficiency is proposed.

2.1. Input and Output Variables and Operation Process

Generally, a URT system is invested in by enterprises to provide travel services for
citizens. Its operation process is shown in Figure 1. According to previous studies, line
mileage, station, train, and energy are indispensable resources for transportation ser-
vices [19,26,29,38,39]. Hence, these four resources are considered input variables in the
operation process. Passenger transport volume and revenue passenger kilometers are taken
as the two desirable output variables, while energy-related CO2 emission is considered one
undesirable output variable.

Figure 1. The operation process of a URT system.

2.2. Efficiency Evaluation Model Based on SBM-DEA

This study aims to measure the operational efficiency and energy efficiency of Chinese
URT lines with the SBM model. As a non-radial DEA approach, the SBM model directly
captures each “input excess” and “output shortfall” to identify the inefficiency of DMUs
from an overall perspective [40]. Therefore, the SBM model has been widely used to evaluate
the efficiency of public transportation systems, such as by Zhang et al. [41], Chu et al. [42],
and Tavassoli et al. [43].

Suppose that there are n DMUs, which represent the URT lines, denoted by DMUj
(j = 1, 2, . . . , n). Each DMU utilizes line mileage (XL), station (XD), train (XT), and energy
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(XE) and then produces passenger transport volume (YP), revenue passenger kilometers
(YR), and CO2 emissions (YC). The evaluation model for the operational efficiency of the
URT line based on SBM can be expressed as follows:

θi = min
1− 1

4 (
s−l
XLi

+
s−d

XDi
+

s−t
XTi

+
s−e
XEi

)

1+ 1
3 (

s+p
YPi

+
s+r
YRi

+
s−c
YCi

)

s.t.
n
∑

j=1
λjXLj + s−l = XLi,

n
∑

j=1
λjXDj + s−d = XDi,

n
∑

j=1
λjXTj + s−t = XTi,

n
∑

j=1
λjXEj + s−e = XEi,

n
∑

j=1
λjYPj − s+p = YPi,

n
∑

j=1
λjYRj − s+r = YRi,

n
∑

j=1
λjYCj + s−c = YCi,

n
∑

j=1
λj = 1,

λj, s−l , s−d , s−t , s−e , s+p , s+r , s−c ≥ 0, j = 1, 2, . . . , n.

(1)

In Model (1), θi represents the operational performance score; s−l , s−d , s−t , s−e , s+p ,
s+r , and s−c are slacks of line mileage, station, train, energy, passenger transport volume,
revenue passenger kilometers, and CO2 emission, respectively, representing either the
excess of the input or the shortfall of the output. λj expresses the participation degree of
each DMU in constructing the production frontier. Note that Model (1) is non-linear. To
simplify the calculation, a linear form is transformed following the proposed method by
Tone [40] as follows:

θi = min(t − 1
4 (

S−
l

XLi
+

S−
d

XDi
+

S−
t

XTi
+ S−

e
XEi

))

s.t. t + 1
3 (

S+
p

YPi
+ S+

r
YRi

+ S−
c

YCi
) = 1

n
∑

j=1
ηjXLj + S−

l = tXLi,

n
∑

j=1
ηjXDj + S−

d = tXDi,

n
∑

j=1
ηjXTj + S−

t = tXTi,

n
∑

j=1
ηjXEj + S−

e = tXEi,

n
∑

j=1
ηjYPj − S

+

p = tYPi,

n
∑

j=1
ηjYRj − S

+

r = tYRi,

n
∑

j=1
ηjYCj + S

−
c = tYCi,

n
∑

j=1
ηj = t,

ηj, S−
l , S−

d , S−
t , S−

e , S+
p , S+

r , S−
c ≥ 0, j = 1, 2, . . . , n.

(2)
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The variables in Model (1) undergo the following transformations in Model (2): λt = η,
ts−l = S−

l , ts−d = S−
d , ts−t = S−

t , ts−e = S−
e , ts+p = S+

p , ts+r = S+
r , ts−c = S−

c . The optimal η∗
j ,

S−∗
l , S−∗

d , S−∗
t , S−∗

e , S+∗
p , S+∗

r , S−∗
c , and t∗ are measured for operational performance, θ∗i . If

θ∗i = 1 and all optimal slacks are equivalent to 0, the performance is efficient; otherwise, it
is inefficient. Moreover, if a larger performance score of a DMU is obtained, it indicates
that this DMU operates better than other DMUs.

In DEA theory, the projected point on the production frontier is the optimal target
for each inefficient DMU to pursue. Hence, the DEA method can be used to set the
optimization targets of inputs and outputs to improve performance. The target energy
expresses a minimum level of energy input to achieve optimal operational performance.
Naturally, the target energy input can be obtained with the following equation:

TEi =
n

∑
j=1

λjXEj (3)

Hence, energy efficiency, ρi, is defined as the ratio of target energy to its actual
consumed energy in this study. It is can be expressed as follows:

ρi =
TEi
XEi

(4)

For ease of reading, the formulas for calculating the improvement potentials of vari-
ables are provided in Appendix A.

3. Empirical Study

3.1. Data Source

As for the empirical analysis, the datasets from the URT lines were collected from
the yearbook of the China Urban Rail Transit Almanac 2021, which is an annual report
released by the China Association of Urban Rail Transit. In total, 61 URT lines from Beijing,
Shanghai, Guangzhou, and Shenzhen were considered for analysis. As shown in Figure 2,
Beijing, Shanghai, Guangzhou, and Shenzhen are the top four cities in terms of economic
strength on the Chinese mainland. Each city has a population of more than 10 million
and an urban rail network of hundreds of kilometers. A large number of people take
urban rail transit for their daily travel. Overall, data on line mileage, station, train, energy,
passenger transport volume, and revenue passenger kilometers were collected from the
aforementioned yearbook. While there are no official statistics on CO2 emissions, we
calculated the carbon emission based on energy consumption and the regional grid carbon
emission factor in 2019 following the approach of Yu et al. [44]. Descriptive statistics are
shown in Table 1.

Table 1. Descriptive Statistics 1.

Variable
Line

Mileage
(km)

Station Train
Energy

(104 kwh)

Passenger
Transport
Volume
(104 PT)

Revenue
Passenger

Kilometers
(104 PK)

CO2

(104 tons)

Max 81.40 45.00 116.00 29,997.00 56,139.00 499,058.00 24.49
Min 3.90 2.00 4.00 1046.00 180.10 1891.00 0.84

Mean 37.85 22.39 50.38 12,243.28 14,769.75 129,951.56 10.26
SD 15.63 9.96 26.70 6813.24 11,363.46 100,773.41 5.69

1 PT and PK are short for person-time and passenger kilometers, respectively.
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Figure 2. Four megacities in mainland China.

3.2. Efficiency Results

Table 2 and Figure 3 show the efficiency results at the line level and the city level,
respectively. As can be seen from Table 2, the average operational efficiency is 0.5634.
Overall, the average room for URT lines to improve operational efficiencies is 43.66%. From
a line angle, it can be seen that of the operational efficiencies of the 61 observed URT lines,
10 of which are evaluated as being an efficient level, another 15 lines are over the average
level, and 36 lines are under the average level. There is a significant difference between
URT lines in efficiency. From a city angle, Figure 3 suggests that the average operational
efficiency of the URT lines in Guangzhou (0.6453) tops the list. The average operational
efficiency of URT lines in Shanghai (0.5921) is higher than the average level, while those of
the URT lines in Beijing (0.5054) and Shenzhen (0.5157) are slightly lower than the average
level. That is to say, in terms of operational efficiency, there is a slight difference between
URT lines at the city level. The reason might be that these megacities are similar in terms of
their large population and high economic development level.

Table 2. The efficiency of the URT systems in case cities.

City Line Name Operational Efficiency Energy Efficiency

Beijing BJ-Line 1 0.4978 0.6264
BJ-Line 2 0.6100 0.9338
BJ-Line 4 0.5534 0.7648
BJ-Line 5 0.6363 0.7953
BJ-Line 6 0.4514 0.5669
BJ-Line 7 0.2978 0.3621
BJ-Line 8 0.2583 0.3937
BJ-Line 9 0.6827 0.8589

BJ-Line 10 0.5011 0.6816
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Table 2. Cont.

City Line Name Operational Efficiency Energy Efficiency

BJ-Line 13 1.0000 1.0000
BJ-Line 15 0.4755 0.7136
BJ-Line 16 0.2337 1.0000

BJ-Ba Tong Line 0.5034 0.7695
BJ-Changping Line 0.4839 0.7098
BJ-Fangshan Line 0.3897 0.7360

BJ-Capital Airport Express 1.0000 1.0000
BJ-Yizhuang Line 0.5210 0.7726

BJ-Line S1 0.4582 0.8313
BJ-Yanfang Line 0.1703 1.0000

Daxing Airport Express 0.3835 0.8522

Shanghai SH-Line 1 0.7284 0.8102
SH-Line 2 0.6271 0.6593
SH-Line 3 0.4579 0.6813
SH-Line 4 1.0000 1.0000
SH-Line 5 0.3441 0.5530
SH-Line 6 0.4503 0.8257
SH-Line 7 0.4973 0.7020
SH-Line 8 0.6560 0.8782
SH-Line 9 0.6037 0.9204
SH-Line 10 0.5341 0.7536
SH-Line 11 0.5230 0.8840
SH-Line 12 0.4086 0.6036
SH-Line 13 0.4006 0.5204
SH-Line 16 0.4028 0.8354
SH-Line 17 0.4325 0.6074

SH-Pujiang Line 1.0000 1.0000
SH-Maglev Line 1.0000 1.0000

Guangzhou GZ-Line 1 1.0000 1.0000
GZ-Line 2 1.0000 1.0000
GZ-Line 3 1.0000 1.0000
GZ-Line 4 0.3907 0.5833
GZ-Line 5 0.7386 0.7233
GZ-Line 6 0.5449 0.7320
GZ-Line 7 0.6451 0.6479
GZ-Line 8 0.6409 1.0000
GZ-Line 9 0.4179 0.7522
GZ-Line 13 0.4449 0.6373
GZ-Line 14 0.3138 0.4875
GZ-Line 21 0.3319 0.4218

GZ-APM Line 1.0000 1.0000
GZ-Guangfo Line 0.5657 0.7845

Shenzhen SZ-Line 1 0.5881 0.6987
SZ-Line 2 0.3099 0.5008
SZ-Line 3 0.5907 0.7982
SZ-Line 4 0.6102 0.8385
SZ-Line 5 0.6361 0.7252
SZ-Line 6 0.3345 0.7195
SZ-Line 7 0.4164 0.5595
SZ-Line 9 0.3310 0.3948
SZ-Line 10 0.3398 1.0000
SZ-Line 11 1.0000 1.0000

Average 0.5634 0.7641
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Figure 3. The average efficiency of the URT systems in case cities.

In particular, it can be seen that around five-sixths of the URT lines are inefficient. In
Beijing, the operational efficiencies of 2 out of 20 observed URT lines are efficient, another
3 lines are over the overall average level, and 15 lines are under the overall average level.
In Shanghai, the operational efficiencies of 3 out of 17 observed URT lines are efficient,
another 4 lines are over the overall average level, and 10 lines are below the overall average
level. In Guangzhou, the operational efficiencies of 4 out of 14 observed URT lines are
efficient, another 4 lines are over the overall average level, and 6 lines are below the overall
average level. In Shenzhen, the operational efficiencies of 1 out of 10 observed URT lines are
efficient, another 4 lines are over the overall average level, and 5 lines are below the overall
average level. Obviously, the operational efficiencies of most URT lines need to be improved
further, as they are underperforming. For instance, the operational efficiency of Beijing
Line 8 is 0.2583, suggesting that the operational efficiency can be improved by 30.51% and
76.17% to reach the overall average and optimal level, respectively. In a similar vein, in
other case cities, the operational efficiencies of SH-Line 5 (0.3441), GZ-Line 14 (0.3138),
and SZ-Line 2 (0.3099) can be improved by 65.59%, 68.62%, and 69.01%, respectively, to
reach the optimal level. These lines with poor performance should make great efforts to
improve operational efficiency to reach the overall average level first and then pursue a
higher efficiency.

Similar results are also observed in energy efficiency. Overall, the average energy
efficiency of the URT lines is 0.7641. That is to say, the URT lines are recommended
to improve their energy efficiency by 23.59% on average to reach the optimal energy
utilization level. From a line perspective, it can be found that of the energy efficiencies of
the 61 observed URT lines, 14 of which are evaluated as an efficient level, another 17 lines
are over the average level, and 30 lines are under the average level. There is a great disparity
among URT lines in energy efficiency. From a city perspective, Figure 3 suggests that the
average energy efficiency of the URT lines in Shanghai (0.7785) tops the list. The average
operational efficiencies of URT lines in Guangzhou (0.7693) and Beijing (0.7684) are higher
than the average level, while those of the URT lines in Shenzhen (0.7235) are lower than
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the average performance level. That being said, there is no significant difference in energy
efficiency between URT lines at the city level. It might be that these cities have developed
URT in similar periods, with a mixture of new and old facilities and equipment in the lines.

Additionally, the results illustrate that the energy efficiency of most URT lines is
inefficient. In Beijing, the operational efficiencies of 2 out of 20 observed URT lines are
efficient, another 10 lines are over the overall average level, and 8 lines are below the overall
average level. In Shanghai, the operational efficiencies of 3 out of 17 observed URT lines are
efficient, another 6 lines are over the overall average level, and 8 lines are below the overall
average level. In Guangzhou, the operational efficiencies of 4 out of 14 observed URT lines
are efficient, another 2 lines are over the overall average level, and 6 lines are below the
overall average level. In Shenzhen, the operational efficiencies of 2 out of 10 observed
URT lines are efficient, another 2 lines are over the overall average level, and 6 lines are
below the overall average level. Obviously, the energy efficiencies of most URT lines need
to be improved further, as they are underperforming. For instance, the energy efficiency
of some of the cases is much lower than the average level (e.g., the energy efficiency of
BJ-Line 7 is 0.3621), suggesting that the operational efficiencies can be improved by 40.2%
and 63.79% to reach the overall average and optimal level respectively. In a similar vein,
in other case cities, the operational efficiencies of SH-Line 7 (0.3092), GZ-Line 21 (0.4218),
and SZ-Line 9 (0.3974) can be improved by 69.08%, 57.82%, and 59.36%, respectively, to
reach the optimal level. These lines with worse performance should make more efforts to
improve operational efficiency to reach the overall average level first and then pursue a
higher efficiency.

In other words, the efficiency of the energy consumption of these URT systems is
optimized. Furthermore, of the 61 observed URT systems, 31 of them are above the average
level; the energy efficiency of 14 observed URT systems is optimized. For those higher than
the average level, the energy efficiency of 3 out of 20 URT systems in Beijing is optimized;
the energy efficiency in 11 URT systems is above the average level). Likewise, 3 out of
17 URT systems in Shanghai are optimized in terms of energy efficiency; nine URT systems
in Shanghai perform better than the average level in terms of energy efficiency. Meanwhile,
in Guangzhou, 5 out of 14 URT systems reach the ideal level of energy consumption
efficiency; the energy efficiency of nine URT systems in Guangzhou is higher than the
average level. In Shenzhen, 2 out of 10 URT systems are fully optimized; the energy
utilization level of four URT systems in Shenzhen is higher than the average level. In these
cases, some of them are close to the optimal level. For example, the energy efficiency of
BJ-Line 2 is 0.9338, which demonstrates a significant potential to reach the ideal energy
consumption efficiency. In other cases, some of them are under the average level of energy
consumption efficiency. For instance, the energy efficiency of the BJ-Fangshan Line is 0.736,
which is close to the average value. In other words, there is a potential to further improve
performance beyond the average level. Furthermore, the energy efficiency of some of the
cases is much lower than the average level (e.g., the energy efficiency of SZ-Line 9 is 0.3948).

In addition to the efficiencies across cities, Table 3 reports a comparison of the effi-
ciencies of URT lines operated by joint ventures and state-owned enterprises. The average
operational efficiency of the state-owned lines (0.5684) is higher than that of the joint lines
(0.4658). Specifically, there are three lines operated by joint ventures (i.e., BJ-Line 4, BJ-
Yanfang Line, and SZ-Line 4). Only the operational efficiency of SZ-Line 4 (0.6102) is higher
than the average level.

Table 3. The average efficiency of the URT systems in case cities.

Type Operational Efficiency Energy Efficiency

Joint venture 0.4658 0.8678
State-owned enterprise 0.5684 0.7587

Overall 0.5634 0.7641
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Regarding energy efficiency, the average energy efficiency of URT lines operated by
joint ventures is 0.8678, which is higher than the overall energy efficiency (0.7641), while
the average energy efficiency of URT lines operated by state-owned enterprises (0.7587)
is slightly lower than the overall value. The reason may be that the joint-owned lines
were built in a more recent period, with more new energy-saving technologies. To sum up,
state-owned enterprises are better at improving operational efficiency, while joint ventures
are more concentrated on energy efficiency. This may be due to the difference between the
two ownership models. In this sense, operators are encouraged to learn from each other’s
management and technology advantages so as to maximize their efficiencies.

3.3. Improvement Analysis

As shown in Table 4 and Figure 4, the improvement potentials of inputs and outputs
for the URT lines and case cities are presented. As mentioned in the previous methodology
section, line mileage and station are not discussed in the adjustment analysis, as they cannot
be easily changed after they are built.

Table 4. The improvement values of the URT systems in case cities.

City Line Name Train Energy (104 kwh)
Passenger Transport

Volume (104 PT)
Revenue Passenger
Kilometers (104 PK)

CO2 (104 tons)

Beijing BJ-Line 1 −56.63% (−39.64) −37.36% (−5503.57) 0.00% (0.00) 0.00% (0.00) −46.57% (−6.46)
BJ-Line 2 −51.20% (−25.60) −6.62% (−593.65) 0.00% (0.00) 67.99% (55475.85) −20.27% (−1.71)
BJ-Line 4 −57.68% (−49.60) −23.52% (−4126.99) 10.42% (2489.35) 0.00% (0.00) −34.70% (−5.73)
BJ-Line 5 −52.85% (−32.24) −20.47% (−2571.82) 0.00% (0.00) 0.00% (0.00) −32.09% (−3.80)
BJ-Line 6 −50.63% (−42.53) −43.31% (−11258.96) 35.91% (7660.91) 0.00% (0.00) −51.62% (−12.64)
BJ-Line 7 −71.66% (−48.73) −63.79% (−10938.69) 0.00% (0.00) 5.20% (4802.56) −69.08% (−11.16)
BJ-Line 8 −80.87% (−89.77) −60.63% (−8717.98) 5.76% (566.00) 0.00% (0.00) −66.46% (−9.00)
BJ-Line 9 −50.70% (−19.26) −14.11% (−982.93) 0.00% (0.00) 30.79% (21903.56) −26.66% (−1.75)

BJ-Line 10 −60.80% (−70.53) −31.84% (−8025.87) 0.00% (0.00) 0.00% (0.00) −41.80% (−9.93)
BJ-Line 15 −32.19% (−10.94) −28.64% (−3132.13) 67.37% (6002.66) 0.00% (0.00) −39.07% (−4.02)

BJ-Line 16 −43.35% (−16.47) 0.00% (−0.00) 322.69% (8138.21) 259.66% (65798.21) −14.82% (−0.81)
BJ-Ba Tong Line −53.53% (−19.81) −23.05% (−1153.24) 21.12% (1163.62) 0.00% (0.00) −34.55% (−1.63)

BJ-Changping Line −37.77% (−12.09) −29.02% (−2072.49) 64.82% (3608.44) 0.00% (0.00) −39.56% (−2.66)
BJ-Fangshan Line −59.57% (−26.21) −26.40% (−1476.97) 78.65% (3180.23) 0.00% (0.00) −37.38% (−1.97)
BJ-Yizhuang Line −41.39% (−9.52) −22.74% (−1110.60) 40.54% (1926.50) 0.00% (0.00) −34.03% (−1.57)

BJ-Line S1 0.00% (−0.00) −16.87% (−455.47) 119.00% (1161.69) 178.52% (9366.26) −29.63% (−0.75)
BJ-Yanfang Line −30.64% (−4.90) 0.00% (−0.00) 579.51% (3000.11) 520.04% (20791.87) −14.81% (−0.31)

Daxing airport express −46.73% (−5.61) −14.78% (−1055.11) 273.57% (1595.43) 8.57% (1805.91) −28.15% (−1.89)

Shanghai SH-Line 1 −44.50% (−36.94) −18.98% (−3803.09) 5.19% (1592.55) 0.00% (0.00) −17.74% (−2.82)
SH-Line 2 −40.11% (−35.29) −34.07% (−10220.53) 4.29% (1616.63) 0.00% (0.00) −33.08% (−7.86)
SH-Line 3 −56.07% (−27.48) −31.87% (−3348.62) 5.14% (664.59) 0.00% (0.00) −30.83% (−2.57)
SH-Line 5 −65.84% (−32.92) −44.70% (−3071.10) 31.34% (1567.34) 0.00% (0.00) −44.07% (−2.40)
SH-Line 6 −69.64% (−43.87) −17.43% (−1297.95) 0.00% (0.00) 30.46% (22440.93) −16.17% (−0.95)
SH-Line 7 −62.17% (−49.11) −29.80% (−4531.66) 0.93% (190.95) 0.00% (0.00) −28.72% (−3.46)
SH-Line 8 −55.80% (−47.99) −12.18% (−1843.22) 0.00% (0.00) 0.00% (0.00) −10.84% (−1.30)
SH-Line 9 −51.77% (−53.84) −7.96% (−1611.06) 34.10% (9404.77) 0.00% (0.00) −6.58% (−1.06)

SH-Line 10 −42.56% (−23.41) −24.64% (−3725.59) 0.00% (0.00) 15.99% (26597.23) −23.49% (−2.81)
SH-Line 11 −39.92% (−32.73) −11.60% (−2392.19) 60.66% (13652.48) 0.00% (0.00) −10.28% (−1.68)
SH-Line 12 −63.97% (−46.70) −39.64% (−6021.89) 0.00% (0.00) 32.01% (36809.27) −38.72% (−4.66)
SH-Line 13 −59.88% (−37.12) −47.96% (−7897.27) 0.00% (0.00) 21.57% (24977.69) −47.17% (−6.15)
SH-Line 16 −55.89% (−34.09) −16.46% (−1616.47) 170.52% (9836.12) 0.00% (0.00) −15.30% (−1.19)
SH-Line 17 −34.49% (−9.66) −39.26% (−2822.11) 68.25% (3136.13) 0.00% (0.00) −38.53% (−2.19)

Guangzhou GZ-Line 4 −55.07% (−31.39) −41.67% (−5447.91) 23.78% (2768.70) 0.00% (0.00) −41.77% (−4.39)
GZ-Line 5 −27.88% (−17.28) −27.67% (−5869.81) 0.00% (0.00) 0.00% (0.00) −27.67% (−4.72)
GZ-Line 6 −40.13% (−22.07) −26.80% (−4378.77) 0.00% (0.00) 30.83% (47904.33) −26.80% (−3.52)
GZ-Line 7 −26.64% (−6.13) −35.21% (−2014.83) 0.00% (0.00) 9.73% (4676.85) −35.47% (−1.63)
GZ-Line 8 −26.27% (−10.25) 0.00% (−0.00) 0.00% (0.00) 61.87% (61432.57) −0.08% (−0.01)
GZ-Line 9 0.00% (−0.00) −24.78% (−1471.49) 157.10% (4923.21) 123.30% (36153.98) −24.84% (−1.19)
GZ-Line 13 0.00% (−0.00) −36.27% (−2710.67) 144.62% (5111.42) 46.95% (22703.99) −36.34% (−2.18)
GZ-Line 14 −35.21% (−11.27) −51.25% (−7174.10) 121.65% (7087.50) 0.00% (0.00) −51.25% (−5.77)
GZ-Line 21 −37.15% (−11.14) −57.82% (−8272.38) 75.70% (4869.10) 0.00% (0.00) −57.82% (−6.65)
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Table 4. Cont.

City Line Name Train Energy (104 kwh)
Passenger Transport

Volume (104 PT)
Revenue Passenger
Kilometers (104 PK)

CO2 (104 tons)

GZ-Guangfo Line −39.83% (−15.14) −21.55% (−2120.81) 0.00% (0.00) 4.42% (5293.87) −21.55% (−1.71)

Shenzhen SZ-Line 1 −52.26% (−44.42) −30.13% (−6193.01) 0.00% (0.00) 0.00% (0.00) −30.13% (−4.98)
SZ-Line 2 −68.87% (−52.34) −49.92% (−8033.73) 0.00% (0.00) 33.50% (32952.38) −49.92% (−6.46)
SZ-Line 3 −50.58% (−37.94) −20.18% (−3226.14) 9.10% (2079.68) 0.00% (0.00) −20.24% (−2.60)
SZ-Line 4 −50.38% (−24.18) −16.15% (−1564.35) 0.00% (0.00) 6.23% (7771.33) −16.15% (−1.26)
SZ-Line 5 −30.23% (−17.53) −27.48% (−5734.49) 1.75% (513.67) 0.00% (0.00) −27.48% (−4.61)
SZ-Line 6 −53.24% (−14.91) −28.05% (−1407.52) 74.48% (2708.38) 0.00% (0.00) −28.05% (−1.13)
SZ-Line 7 −41.95% (−17.20) −44.05% (−6390.59) 0.00% (0.00) 80.58% (59081.94) −44.05% (−5.14)
SZ-Line 9 −54.02% (−25.93) −60.52% (−11326.23) 0.00% (0.00) 49.71% (39498.59) −60.52% (−9.11)

SZ-Line 10 −39.21% (−10.20) 0.00% (−0.00) 120.56% (4742.59) 143.44% (41412.43) 0.00% (−0.00)

 

Figure 4. The average improvement values of the URT systems in case cities.

3.3.1. Input Adjustment Plan

In terms of the number of allocated trains, the average improvement value of 51 ineffi-
cient lines is 46.07% (27.53). Only three URT lines (i.e., BJ-Line S1, GZ-Line 9, and GZ-Line
13) reach the optimal level. In total, 20 URT lines are under the average level, while 28 lines
are above the average level. From the perspective of operation, there is a need to calculate
the optimal number of trains and develop a dynamic scheduling mechanism. Different
types of trains (e.g., short trains can be used during the off-peak period) should be used to
optimize overall efficiency. For instance, for SZ-Line 10, 39.21% (10.20) of trains can be re-
duced based on optimal efficiency. Furthermore, some lines, such as BJ-Line 8 (80.87%) and
SH-Line 6 (69.64%), show a high improvement potential to reach the maximized resource
utilization level. In this sense, attention should be paid to such URT lines to optimize the
number of allocated trains. At the city level, the average improvement values of the number
of allocated trains for Beijing, Shanghai, Guangzhou, and Shenzhen are −48.79%, −53.04%,
−28.82%, and −46.07%, respectively. Namely, Shanghai tops the list, while Guangzhou is
closer to the ideal level compared with other case cities.

Regarding energy, the average improvement value of the lines is 28.22% (39.35 million
kWh). Only four URT lines (i.e., BJ-Line 16, BJ-Yanfang Line, GZ-Line 8, and SZ-Line 10)
reach the optimal level. In total, 24 lines are under the average level, while 23 lines are
above the average level. That is to say, for most of the URT lines, there is a lot of room to
improve overall efficiency by reducing energy. For instance, based on the benchmark, the
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energy consumed by BJ-Line 6 can be reduced by around 43.31% (11.26 million kWh) to
minimize energy wastage. Particularly, some lines (e.g., BJ-Line 7, BJ-Line 8, SH-Line 5,
GZ-Line 14, GZ-Line 21, and SZ-Line 9) should take measures to improve the utilization of
energy for their greater potential. At the city level, the average improvement values of the
energy of Guangzhou (−32.30%) and Shenzhen (−30.72%) are larger than the average level,
while those of Beijing (−25.73%) and Shanghai (−26.90%) are smaller than the average
level. This indicates that the inefficient URT lines in Guangzhou and Shenzhen deserve
more attention in terms of energy conservation.

3.3.2. Output Adjustment Plan

In addition to the input plan, an improvement plan to maximize outputs is demon-
strated. Firstly, in terms of passenger transport volume, the average improvement value of
the passenger transport volume of observed lines is 53.50% (22.93 million person-times). In
total, 21 URT lines (e.g., BJ-Line 1, SH-Line 6, GZ-Line 5, and SZ-Line 1) reach the optimal
level. However, 16 lines are under the average level, while 14 lines are above the average
level. Some lines (e.g., BJ-Yanfang Line, Daxing Airport Express, and SH-Line 16,) should
improve passenger transport volume as much as possible for the lower output. At the city
level, the average improvement value of the passenger transport volume of Shenzhen’s
URT lines is the closest to the optimal level among the case cities (i.e., 22.88%). By contrast,
based on the results, the improvement values of Beijing (i.e., 89.96%) and Guangzhou
(i.e., 52.28%) are lower than the average level. The lines with great improvement potential
should be encouraged to expand passenger transport volume.

As for revenue passenger kilometers, the average improvement value of the URT
lines is 34.54% (127.38 million passenger kilometers). In total, 29 URT lines (e.g., BJ-Line
1 and SZ-Line 1) are optimized, while 3 lines are above the average level and 19 lines are
lower than the average value. It can be seen that most of the URT lines have produced
sufficient passenger turnover output, while some lines have great improvement potential
in passenger turnover, such as BJ-Line 16 (i.e., 259.66%) and BJ-Yanfang Line (i.e., 520.04%).
From the city perspective, the average improvement value of URT lines in Shanghai is
7.15%, which is closer to the optimal level. At another extreme, the average improvement
value of the URT lines in Beijing is 59.49%, which is much lower than the optimal level. The
situations for Guangzhou and Shenzhen are between them.

Concerning CO2 emissions, the average improvement value of URT lines is 31.82%
(36.5 kilotons). Only SZ-Line 10 reached the optimal level, while another 25 lines are above
the average value and 26 are less than the average value. In particular, some lines are
significantly lower than the optimal level, such as BJ-Line 7 (69.08%) and SZ-Line 9 (60.52%).
There is a lot of room for these lines to decline CO2 emissions to maximize environmental
sustainability. At the city level, compared with other cities, the average improvement value
of CO2 emissions for the URT lines in Shanghai (25.82%) is closer to the ideal level. On the
contrary, the largest gap between the actual CO2 emissions and the ideal emissions can be
found in Beijing’s URT lines (36.74%).

4. Discussion

First, the improvement values reveal that the efficiency of the URT systems can be
improved by reducing unessential wastage on the input side. In this sense, the number
of the same type of trains can be appropriately reduced, and redundant trains can be
sent to other lines or other cities to improve utilization. In terms of energy, for one thing,
the application of new energy-saving technologies and the dynamic marshaling of trains
according to real-time passenger flow can reduce the energy consumption of train traction.
For another, new technology in heating and air conditioning equipment can be used to
reduce the operation energy consumption of station facilities for heating and cooling.
Reducing energy consumption reduces the corresponding undesirable carbon emissions,
which is conducive to improving efficiency. In this sense, the infrastructure and facilities can
be updated by adopting new technologies or management techniques. In response to this,
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for the URT lines built in the early period (e.g., BJ-Line 1 and SH-Line 2), the local authorities
should encourage operators to upgrade the trains and station facilities by adopting new
technologies to improve energy efficiency and reduce carbon emissions. Therefore, in
addition, there is also a need for operators to collaborate with other stakeholders (e.g., the
local government and research institutions) to develop a multi-dimensional method to
improve passenger turnover efficiency for stations in different locations (e.g., a preference
policy can be developed for those using other means of transportation during rush hours).
Moreover, the efficiency of the URT systems can be enhanced by increasing desirable
outputs. Based on the results, it can be seen that the operational efficiency of new lines is
relatively lower than those built in the earlier period. Taking Shanghai as an example, the
average operational efficiency of SH-Line 1 and SH-Line 2 is higher than that of SH-Line
16 and SH-Line 17. One reason might be that operational efficiency is associated with
passenger volume. The operational efficiency of lines close to the city center is relatively
high compared with the operational efficiency of those close to suburban areas. This
provides a management implication, in that increasing passenger volume can help improve
operational efficiency. On the one hand, the government should encourage URT operators
to strengthen cooperation with other transportation service providers (e.g., bus companies,
taxi companies, bike-sharing companies) and promote their joint operation to provide
convenient transfer conditions to attract passenger flow. On the other hand, operators can
develop a preference policy and adjust ticket prices, such as discount sales for inefficient
lines at certain fixed times, in order to entice citizens to take rail transit. This may be an
effective way to improve operational efficiency in the short term.

In addition, more investment should be made in advanced technologies, such as 5G
communication technology, big data, artificial intelligence, and industrial Internet, to build
smart URT systems to enhance efficiency. In terms of stations, existing stations can be
upgraded to smart stations, which can provide passengers with intelligent security checks,
intelligent customer service centers, intelligent guidance, and other services. A series
of intelligent systems, such as intelligent passenger guide screens, multimedia platform
screens, intelligent ticket machines, and intelligent customer service centers, can be installed
to provide passengers with refined and intelligent travel services through the real-time
perception, acquisition, and transmission of operation information. In terms of lines, on the
one hand, new intelligent technologies should be applied to the operation and maintenance
of lines to reduce relevant costs. On the other hand, new lines should be fully automated,
which can save labor costs and improve efficiency. From this angle, the construction of
smart URT systems is an important way to improve operational efficiency and energy
efficiency and achieve better development in the URT sector.

5. Conclusions

With the unprecedented development of the URT in China, a certain number of studies
have explored the evaluation of URT efficiencies. However, carbon emissions are rarely
taken into account in the estimation process in existing studies. Considering the importance
of emission reduction and URT line heterogeneity, this paper considers CO2 as undesirable
output and constructs an efficiency evaluation model based on the SBM, which can estimate
the operational efficiency and energy efficiency for URT lines.

The proposed model was applied to evaluate the efficiency of 61 URT lines in four megaci-
ties in China. The empirical findings show that the URT lines in Guangzhou perform better
in terms of operational efficiency, while the average energy efficiency of URT systems in
Shanghai is higher than in other case cities. In addition, the average overall operational
efficiency of URT lines in case cities is relatively low compared with energy efficiency, and
there is a lot of room for improvement. A comparison of the efficiency of URT systems op-
erated by state-owned enterprises and joint ventures indicates that state-owned enterprises
are better at improving operational efficiency, while joint ventures are better at improving
energy efficiency.
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The limitations of this current paper should also be clarified, and some further research
can be extended in the future. First, we only adopted the 2020 data of 61 URT lines in
China to evaluate operational efficiency and energy efficiency in this paper. A study with
more URT lines and multi-year panel data may explore the long-term dynamic changes in
efficiency and obtain new management implications. Second, this paper does not consider
service quality indicators from the passenger’s perspective. URT systems aim to provide
comfortable, convenient, and fast transport services for citizens. In future research, service
quality factors such as transport congestion and service satisfaction degree can be adopted
as outputs to comprehensively evaluate performance. Third, energy efficiency at the station
level may provide a new perspective on energy saving and emission reduction for URT
operations. In other words, more investigations can be conducted to provide deeper
insights regarding energy efficiency at the station level. Last but not least, the convenience
of transfer and joint operations between URT and bus systems may be important ways to
improve operational efficiency and energy efficiency, which are also two important research
directions that need to be further investigated.
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Appendix A

Based on the proposed model, the indicator of energy improvement potential can be
defined as the ratio of the difference between the actual value and the target value to the
actual value, i.e.:

PEi =
TEi − XEi

XEi
(A1)

Generally speaking, the infrastructures of the URT system are difficult to adjust further
in the short term once they have been constructed. Therefore, we aim to investigate the
improvement potentials for train, energy, passenger transport volume, revenue passenger
kilometers, and CO2 emissions. Similarly, the targets of train, passenger transport volume,
revenue passenger kilometers, and CO2 emissions are expressed as follows:

TTi =
n

∑
j=1

λjXTj (A2)

TPi =
n

∑
j=1

λjYPj (A3)

TRi =
n

∑
j=1

λjYRj (A4)

TCi =
n

∑
j=1

λjYCj (A5)
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Likewise, the improvement potentials of train, passenger transport volume, revenue
passenger kilometers, and CO2 emissions can be formulated as follows:

PTi =
TTi − XTi

XTi
(A6)

PPi =
TPi − YPi

YPi
(A7)

PRi =
TRi − YRi

YRi
(A8)

PCi =
TCi − YCi

YCi
(A9)
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Abstract: Climate change is a serious challenge facing the world today. Countries are already
working together to control carbon emissions and mitigate global warming. Improving energy
efficiency is currently one of the main carbon reduction measures proposed by the international
community. Within this context, improving energy efficiency in manufacturing systems is crucial to
achieving green and low-carbon transformation. The aim of this work is to develop a new preventive
maintenance strategy model. The novelty of the model is that it takes into account energy efficiency,
maintenance cost, product quality, and the impact of recycling defective products on energy efficiency.
Based on the relationship between preventive maintenance cost, operating energy consumption, and
failure rate, the correlation coefficient is introduced to obtain the variable preventive maintenance
cost and variable operating energy consumption. Then, the cost and energy efficiency models are
established, respectively, and finally, the Pareto optimal solution is found by the nondominated
sorting genetic algorithm II (NSGAII). The results show that the preventive maintenance strategy
proposed in this paper is better than the general maintenance strategy and more relevant to the actual
situation of manufacturing systems. The scope of the research in this paper can support the decision
of making energy savings and emission reductions in the manufacturing industry, which makes the
production, maintenance, quality, and architecture of the manufacturing industry optimized.

Keywords: preventive maintenance; energy efficiency; quality cost; multiobjective optimization;
manufacturing system

1. Introduction

Climate change is a serious challenge facing the world today. Since the industrial
revolution, energy consumption has increased year by year. With the increase in carbon
dioxide emissions, the global temperature is gradually rising. Carbon dioxide-based
greenhouse gas emissions are the main cause of global warming [1,2]. Thus, controlling
carbon emissions and mitigating global warming has become an important global issue
and is gradually becoming a global consensus. Taking China as an example, to cope with
climate change, carbon peaking and carbon neutrality goals have been proposed to promote
the construction of an ecological civilization and achieve high-quality development [3].

By comparing the carbon emissions of various industries, it can be found that the man-
ufacturing industry has long accounted for a large proportion, with relevant data showing
that over 70% of the carbon dioxide emissions from China come from industrial production
or generative emissions [4,5]. As a result, industry, especially the manufacturing sector,
has become the main battleground for reducing carbon emissions in China and the key to
achieving carbon peak and neutrality targets. As the main body of the national economy,
the manufacturing industry needs to carry out green and low-carbon transformation and
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development to achieve carbon peak and neutrality targets and realize green manufacturing
and intelligent manufacturing [6]. Hassan T et al. [7] found that technology to improve
energy efficiency is a crucial method to achieve lower carbon emissions and mitigate global
warming. Thus, it is critical to improve energy efficiency in the manufacturing system.

Energy consumption in manufacturing is mainly from production equipment. Thus,
we need to pay close attention to the energy efficiency of production equipment. Mainte-
nance plays a crucial role in the normal operation of equipment, and maintenance activities
affect the reliability of equipment, indirectly affecting the energy efficiency of the equipment.
For this reason, it is crucial to take into account energy efficiency in the optimization of main-
tenance strategies, gradually achieving a transition from condition-centered maintenance
to energy-centered maintenance [8]. Many maintenance methods have been proposed
in previous studies, such as breakdown maintenance where maintenance is performed
after the equipment has failed to return to its normal function. However, this type of
maintenance can affect the production schedule, so preventive maintenance is proposed,
which predicts the status of equipment and maintains the equipment in advance to keep
it in continuous production [9]. As the detailed literature review below shows, there is a
wide range of literature that focuses on the cost of preventive maintenance and the quality
of the products produced by the equipment. However, only a few focus on the energy
consumption and environmental impact of maintenance, and even fewer articles combine
cost, quality, and energy consumption. This paper proposes a new preventive maintenance
strategy model. The innovation of this paper is that not only the cost is considered in
maintenance activities but also the quality loss cost is introduced to constrain the product
quality of equipment, the energy consumption is modeled and calculated, and the recovery
of defective products is taken into account. The maximization of energy efficiency and
the minimization of maintenance costs are taken as the overall optimization objectives to
develop the maintenance strategy.

The remainder of the paper is organized as follows. Section 2 presents a short litera-
ture review and shows the contributions of this paper. Section 3 describes the problems
associated with equipment maintenance and makes some assumptions about the model.
Section 4, a multiobjective decision model is constructed in four steps based on identifying
decision variables and optimization objectives and then solved according to the NSGAII
algorithmic process. Section 5 validates the model using a numerical case. Conclusions,
managerial impacts, and future research scopes are discussed in Section 6.

2. Literature Review

Quality control in equipment maintenance has been studied by scholars for a long time.
The relationship between maintenance and quality is discussed, and a broad framework
is proposed. Two approaches to connecting and modeling this relationship are discussed
in the article. The first approach is based on the idea that maintenance affects the failure
modes of the equipment and that it should be modeled with the concept of imperfect
maintenance. The second approach is based on the quality approach of Taguchi [10].
Subsequent scholars began to link maintenance and quality closely together. On the one
hand, excessive maintenance can lead to unnecessary costs. On the other hand, if the
equipment is not correctly maintained, this will lead to failures and result in defective
products. In an integrated model of maintenance and quality, the literature [11] correlates
the failure rate of equipment with the quality of the product to obtain a function of the
variation of the product quality. The control of quality is also reflected in costs such as
quality loss and maintenance thresholds, and these models can minimize the total cost and
ensure high quality products [12–14].

Scholars have researched energy consumption and environmental impact in equip-
ment maintenance. Jiang et al. [15] considered the ecological impact of equipment degra-
dation, the excessive emissions of equipment, and the energy consumption and obtained
maintenance thresholds and inspection intervals that were optimal considering energy
consumption and CO2 emissions by minimizing the average expected cost. Tlili et al. [16]
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considered the penalties to be incurred when equipment degradation exceeds a critical level
and developed two inspection strategies (periodic and nonperiodic), with separate preven-
tive maintenance thresholds and inspection sequences obtained to reduce cost. Chouikhi
et al. [17] proposed a condition-based maintenance strategy for production systems to
reduce excess greenhouse gas emissions, translated environmental constraints into mainte-
nance thresholds, and determined optimal maintenance inspection cycles by minimizing
maintenance costs. Huang et al. [18] developed a data-driven model from the date of
distributed sensors to integrate energy conversation and maintenance to determine the
optimal level of maintenance. Liu et al. [19] considered the maintenance of wind turbines
and correlated energy consumption with the operating costs of equipment to obtain a
maintenance strategy by minimizing the expected costs. Horenbeek et al. [20] developed an
economic and ecological analysis tool covering a wide range of maintenance policies. The
model developed was validated using the example of a turning machine tool. Saez et al. [21]
studied the relationship between production environment, quality, reliability, productivity,
and energy consumption and proposed a modeling framework for manufacturing systems
that integrates systems, machines, and parts.

The above studies are based on the maintenance cost, where the energy consumption
and the environmental impact are regarded as the threshold or other influencing factors
in the maintenance cost. The modeling and calculation of the specific energy consump-
tion of equipment are not involved. In terms of modeling the energy consumption of
equipment, Yan et al. [22] proposed a method for modelling the energy consumption of a
machine tool, using the model to obtain the energy consumption of the machine tool during
and after maintenance and converting the energy consumption into carbon emissions,
thus effectively controlling the impact on the environment. Zhou et al. [23] analyzed the
energy consumption of machine tools commonly found in manufacturing, dividing the
machine tool energy consumption model into three parts: a linear cutting energy model,
a process-oriented machining energy model, and cutting energy consumption for vari-
ous specific parameters. After summarizing the power consumption characteristics of
heavy machine tools, Shang et al. [24] developed a generic power consumption model for
heavy machine tools to predict the power consumption and assess the energy consumption
state and developed corresponding energy saving strategies, but they did not take into
account the variation of energy consumption. Zhou and Yi [25] have linked energy con-
sumption to equipment degradation, elaborated on the variability of energy consumption,
and introduced energy quality thresholds to create an energy-oriented decision model.
Mawson and Hughes [26] used new technologies such as digital twins to simulate the
energy consumption of equipment. Using a digital twin strategy, Bermeo-Ayerbe et al. [27]
proposed an online data-driven energy consumption model. Xia et al. [28] modelled the
energy consumption of machine tools and tools and proposed an energy-oriented machine
tool maintenance and tool replacement strategy to save energy. Aramcharoen and Ma-
tivenga [29] carried out a detailed analysis and calculation of the energy consumption of
the entire process of machining a machine, including machine start-up, workpiece set-up,
machine warm-up, tool change and cutting, and machine shutdown.

In terms of the energy efficiency calculation of equipment, Zhou et al. [30] proposed
the concept of effective energy efficiency by considering the energy saving opportunities
arising from machine downtime, obtained the optimal maintenance threshold based on
the energy saving opportunity window to maximize energy efficiency, and verified the
superiority of the model by comparison. Xia et al. [31] modeled the energy attributes
to obtain the multiattribute model (MAM), used the energy savings window (ESW) and
constructed the MAM-ESW maintenance policy model by considering energy consumption,
mass production, and maintenance. Brundage et al. [32] proposed a control scheme where
energy opportunity windows were inserted into various machines to reduce the energy
consumption and increase profits. Xia et al. [33] proposed a selective maintenance model for
energy-oriented series-parallel systems to find a maintenance strategy for each equipment
to maximize the energy efficiency. Hoang et al. [34] defined the concepts of the energy
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efficiency index (EEI) and remaining energy-efficient lifetime (REEL), calculated the various
energy consumptions of equipment, and constructed a model to maximize the energy
efficiency index. Frigerio and Matta [35] proposed an aggregate control policy framework
that determines the optimal control policy by calculating the energy consumption in each
machine state and minimizing the expected energy required by the equipment.

The above literature analysis shows that fewer studies integrate equipment mainte-
nance costs, energy efficiency, and product quality, which still need more attention and
research. Most of the existing papers examined several of these components. The main
contributions of this article include: (1) a preventive maintenance decision optimization
model that takes into account energy efficiency, product quality, and maintenance cost with
preventive maintenance thresholds and maintenance efficiency as decision variables; (2) a
link between preventive maintenance costs, equipment operation energy consumption,
and equipment failure rates to obtain more realistic variable preventive maintenance costs
and variable operation energy consumption; (3) a recovery model for defective products
produced by equipment to reduce energy consumption, which describes the reduction in
the number of defective products to be recovered as the equipment degrades by introducing
a recovery factor.

3. Problem Description and Hypotheses

3.1. Problem Description

In reality, equipment cannot be restored to a new health state after use; it is in con-
tinuous degradation, and the failure probability of equipment is increasing. The failure
rate function of equipment can be obtained by simulating the historical data of equip-
ment. The degradation of equipment failure rate is influenced by controllable factors such
as maintenance activities and production schedules and uncontrollable factors such as
changes in the production environment. The specific impact of maintenance activities
will be described in the hypothesis section, and the impact of the production schedule on
equipment degradation can be obtained through historical data analysis. As for the impact
of environmental changes in the field, only the degradation of equipment under normal
environmental conditions is considered in this paper because the environment in which
equipment is located varies and is full of randomness.

Generally speaking, the life cycle of production equipment is relatively long. For
the convenience of calculation, the time interval between the brand-new condition of
equipment and the next replacement is selected as a period to be considered in this paper.
During the operational cycle of equipment, only three maintenance actions are adopted,
including breakdown maintenance, preventive maintenance, and replacement, as shown
in Figure 1. The different conditions of equipment will determine the adopted type of
maintenance actions, and the effect of each type of maintenance varies. When equipment
reliability reaches the preventive maintenance threshold, preventive maintenance will be
executed, and equipment cannot be restored to a new health state but a state between the
new state and the state before adopting maintenance. Breakdown maintenance occurs when
equipment fails during preventive maintenance intervals. It is impossible that preventive
maintenance is always carried out when the number of preventive maintenance reaches a
certain amount. The equipment needs to be replaced to reduce the maintenance cost and
improve energy efficiency.

Similarly, in actual production, the product quality decreases as the equipment de-
grades, and as the equipment continues to operate, the number of defective products will
increase, resulting in a large portion of the cost of quality loss. Therefore, the problem
of recycling defective products is considered in this paper by introducing the recovery
coefficient because recycling defective products can save a part of the energy consumption.
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Figure 1. The variation in equipment failure rates and maintenance actions.

3.2. Assumptions

When equipment fails during the preventive maintenance period, it is supposed to be
shut down for breakdown maintenance. The time and cost of breakdown maintenance are
fixed, and the breakdown maintenance will not change the failure rate of the equipment.
By adopting maintenance, equipment will return to the state before failure.

(1) Preventive maintenance is required when equipment reliability reaches the threshold,
and the equipment is in a standby state during maintenance. The cost continues to
increase with the degradation of equipment, and the health state of equipment after
maintenance cannot be repaired to a like-new state.

(2) When the number of preventive maintenance reaches N, equipment will be shut down
for replacement at the time of the next preventive maintenance. The time and cost
of replacement are fixed, and the health state of the equipment is restored to a brand
new condition after replacement.

(3) Equipment-operating energy consumption is variable and increases with degradation.
After equipment is shut down and restarted, it needs a warm-up time, expressed as
the time required for equipment to run from power to normal operation.

(4) During the production of equipment, the rate of defective products produced increases
with degradation.

4. Modeling of the Maintenance Strategy Optimization

The multiobjective maintenance model considering equipment energy efficiency under
the variable of cost is described as follows: first, the degradation failure model of equipment
is developed by using the Weibull distribution and introducing the failure increasing rate
factor and the age reduction factor to simulate the degradation process. Furthermore, based
on the relationship between the reliability and failure rate, preventive maintenance intervals
are calculated, which lays the foundation for the construction of equipment cost model and
energy efficiency model. Then, the variable cost model is developed by considering the
cost of different maintenance activities of equipment and considering the quality loss of
the products produced by the equipment. Third, by calculating the energy consumption
of equipment in each state to obtain the total energy consumption and introducing the
recovery coefficient to obtain the effective output of equipment, the energy efficiency model
of equipment is constructed. Fourth, the decision variables and optimization goals of the
proposed model are determined to build a multiobjective decision-making model. Finally,
the NSGAII algorithm is selected, and the model is solved based on the algorithm process.
The modeling of the maintenance strategy optimization process is shown in Figure 2.
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Figure 2. Modeling of the maintenance strategy optimization process.

4.1. Degradation Failure Model

The performance of equipment is continuously degrading as equipment operates.
The Weibull distribution is widely used to simulate the cumulative failure analysis of
mechanical and electrical equipment. In this paper, the Weibull distribution is used to
describe the degradation level of equipment. The failure rate function at running time t is
expressed as:

λ(t) =
β

α
(

t
α
)

β−1
(1)

where α, β are the scale parameters and shape parameters of the Weibull distribution,
respectively, which are obtained from the historical maintenance data of equipment. As the
health rate of equipment cannot be restored to a new state after preventive maintenance,
the failure rate increasing factor bi(bi > 1) and service age decreasing factor ai(0 < ai < 1)
are introduced to express the change in the failure rate. The failure rate increasing factor
indicates that the equipment failure rate at each operating moment will increase after
preventive maintenance. The service age decreasing factor indicates that the health state of
equipment after preventive maintenance will return to a state between the new state and
the state before adopting maintenance. The failure rate expression of equipment after the
ith preventive maintenance can be obtained:

λi+1 = biλi(t + aiTi) (2)

There is a certain relationship between the reliability of equipment and the failure rate
function. When the equipment reaches the preventive maintenance threshold R∗, preven-
tive maintenance will be carried out. Assuming that N times of preventive maintenance
are carried out, each preventive maintenance interval can be obtained:

e−
∫ Ti

0 λi(t)dt = R∗ i = {1, 2, . . . , N} (3)

where Ti represents the operational time of equipment from i − 1th preventive maintenance
to ith preventive maintenance.

4.2. Variable Cost Model

In this section, the maintenance cost in each condition is calculated, and the quality
loss of the defective products produced is considered. Then, the total cost is divided by the
cycle time to obtain the maintenance cost per unit, which is obtained by dividing the total
cost by the cycle time T. In this paper, the total maintenance cost is mainly composed of
preventive maintenance cost, breakdown maintenance cost, replacement cost, and quality
loss cost.
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(1) Preventive maintenance cost

According to the assumption of the model, when the reliability of equipment reaches
the threshold of preventive maintenance, preventive maintenance will be carried out. In
previous research, the cost of preventive maintenance was fixed. However, the cost of
preventive maintenance cannot be fixed due to the deteriorating performance of equipment.
When equipment performance significantly deteriorates, it will inevitably cost more to
maintain. It means that the cost of preventive maintenance will continue to increase
with the degradation of equipment, which is fluctuating. Thus, the cost of ith preventive
maintenance of equipment is composed of both fixed costs and variable costs, and it is
expressed as:

Cpmi
m = Cpm

s + Cpm
vi = Cpm

s + γλi(Ti) (4)

where Cpm
s represents the fixed cost of preventive maintenance, Cpm

vi represents the variable
cost of ith preventive maintenance, which is linearly related to the amount of equipment
degradation indicated by λi(Ti), and the correlation coefficient is γ.

Assuming that the maintenance time for each preventive maintenance is tpm
m , the total

cost and total time of preventive maintenance in the cycle is therefore expressed as:

TCpm
m =

N

∑
i=1

Cpmi
m =

N

∑
i=1

Cpm
s + γλi(Ti) (5)

Tpm
m = N × tpm

m (6)

(2) Breakdown maintenance cost

According to assumption 1, the total cost of breakdown maintenance is equal to
the number of failures multiplied by each breakdown maintenance cost. The number of
failures in a preventive maintenance cycle can be calculated from Equation (3), which is
expressed as:

Ni
c =

∫ Ti

0
λi(t)dt = − ln R∗ (7)

The time and cost of each breakdown maintenance are tpm
m , Ccm

m , respectively. The total
time and total cost of breakdown maintenance can be obtained according to Equation (7):

TCcm
m = Ccm

m × ((N + 1)× (− ln R∗)) (8)

Tcm
m = tcm

m × ((N + 1)× (− ln R∗)) (9)

(3) Quality loss cost

Generally, equipment will produce a certain amount of substandard products during
the production process. Most of these substandard products can be caused by equipment
designed so that it cannot be reduced, and some are caused by equipment degradation. The
cost of quality loss is the loss of inferior products that cannot be sold properly due to quality
problems. With the degradation of equipment, the product quality will continue to degrade.
At this time, the number of defective products will continue to increase, resulting in a
particular cost. According to past sales data, the revenue of each product can be measured,
and the cost of quality loss can be measured by the original sales revenue of defective
products. Thus, it is necessary to calculate the number of defective products closely related
to the defective product rate. According to Assumption 5, the defective rate of equipment
varies, and it can be expressed as:

p(λi(t)) = p0 + μ[1 − e−σλi(t)
θ

] (10)

where p0 represents the defective rate in the new state of equipment,μ represents the
boundary of quality deterioration, and σ and θ are constants [36].
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Assuming that the loss cost of a single product is Cd
v , and the production rate is v, the

quality loss cost of equipment in the period T is:

TCd = Cdv ×
N+1

∑
i=1

Ti × v × pi (11)

In Equation (11), pi represents the average defective rate of products produced by
equipment during i − 1th and ith preventive maintenance intervals. The calculation
equation of the average defective rate is as follows:

pi =
p(λi(0)) + p(λi(Ti))

2
(12)

According to Assumption 3, replacement cost and time are Cr and Tr, respectively.
Currently, the total cost of equipment can be obtained. The next cycle time needs

to be calculated. As is shown in Figure 1, the period T from the new state of equipment
to the next replacement is composed of preventive maintenance time, equipment normal
operation time, breakdown maintenance time, and replacement time. Finally, based on the
above analysis, the variable cost model can be developed expressed by the maintenance
cost per unit obtained by dividing the total cost during the cycle time T. The expression is
as follows:

ETC = TCpm
m +TCcm

m +Cr+TCd
N+1
∑

i=1
Ti+Tpm

m +Tcm
m +Tr

=

N
∑

i=1
Cpm

s +γλi(Ti)+Ccm
m ×((N+1)×(− ln R∗))+Cr+

N+1
∑

i=1
Cdv×v×pi×Ti

N+1
∑

i=1
Ti+N×tpm

m +Tr+tcm
m ×((N+1)×(− ln R∗))

(13)

4.3. Energy Efficiency Model

The key to achieving carbon neutrality lies in energy conservation and emission
reduction. In order to achieve energy conservation and emission reduction, it is necessary to
explore the problem of excessive energy consumption in the process of product production
and equipment maintenance and to improve energy efficiency. Energy efficiency is an
important indicator to measure the input–output ratio of the manufacturing industry. The
energy efficiency in the manufacturing process is expressed as the ratio between the total
output capacity and the total input energy [37]. Thus, in order to obtain the energy efficiency
of equipment, the total energy consumption and the total effective output of equipment
need to be calculated. The first step is to find out the energy consumed by equipment. It is
common knowledge that the energy consumption of equipment in different states varies.
According to the difference, the state of equipment can be divided into normal operation
state, standby state, warm-up state, power-on state, and power-off state. Since the time of
power-on and power-off is very short, the energy consumption is negligible. The energy
consumption of equipment is shown in Figure 3.

The energy consumption considered in this paper includes two parts, the energy
consumption of equipment and the energy consumption of maintenance. The energy
consumption of equipment includes the energy consumption of the normal operation, the
standby energy consumption, and the warm-up energy consumption. The maintenance
energy consumption is mainly the energy consumption of three maintenance activities. The
various energy consumptions are calculated below.
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Figure 3. Different energy consumption states of equipment.

(1) Operation energy consumption of equipment

The energy consumption of equipment during operation increases with degradation,
which is linearly related to the failure rate. The energy consumption per unit before ith
preventive maintenance is expressed as:

Xi(t) = X0 + ωλi(t) (14)

where X0 represents the energy consumption of equipment at the initial stage, and ω
represents the linear relationship between the variation of equipment energy consumption
and equipment failure rate. Thus, the total operation energy consumption of equipment in
period T is expressed as:

Eo =
N+1

∑
i=1

∫ Ti

0
Xi(t)dt =

N+1

∑
i=1

∫ Ti

0
X0 + ωλi(t)dt (15)

(2) Standby energy consumption of equipment

According to Assumption 2, equipment is on standby while preventive maintenance
is being performed. The standby time of equipment can be measured by the preventive
maintenance time. Assuming that the standby energy consumption per unit of equipment
is Eiv, the total standby energy consumption can be expressed as:

Ei = Eiv × Tpm
m = Eiv × N × tpm

m (16)

(3) Warm-up energy consumption of equipment

According to Assumption 4, the equipment needs to go through a warm-up time after
it is turned on. The equipment needs to be shut down for maintenance and replacement.
Assuming that the energy required to warm up equipment once is Ewv, then the total
warm-up energy consumption of equipment is expressed as:

Ew = Ewv ×
N+1

∑
i=1

Ni
c = Ewv × ((N + 1)× (− ln R∗)) (17)
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(4) Equipment maintenance energy consumption

When equipment performs maintenance activities, it needs to consume other energy
such as electricity. Assuming that the energy consumption of each breakdown maintenance
and preventive maintenance is Epv, and the energy consumption of equipment replacement
is Epr, then the maintenance energy consumption of equipment in the period T is:

Ep = Epv × (N + (N + 1)× (− ln R)) + Epr (18)

The above equation has calculated the total energy consumption of equipment, and
then the total effective output of equipment needs to be obtained. The total effective output
of equipment includes qualified products and defective products that can be recycled.
With the deterioration of equipment, the defective rate is increasing, and the recovery
factor will change correspondingly. The recovery factor τi is introduced to describe the
gradual decrease in the amount of recovery. Thus, the final effective output of equipment
is obtained by subtracting the number of defective products that cannot be recovered and
is expressed as:

Y =
N+1

∑
i=1

Ti × v −
N+1

∑
i=1

v × pi × Ti × (1 − τi) (19)

The final energy efficiency model can be obtained and expressed as:

EE = Y
Eo+Ei+Ew+Ep

=

N+1
∑

i=1
Ti×v−N+1

∑
i=1

v×pi×Ti×(1−τi)

N+1
∑

i=1

∫ Ti
0 X0+ωλi(t)dt+Eiv×N×tpm

m +Ewv×((N+1)×(− ln R∗))+Epv×(N+(N+1)×(− ln R))+Epr

(20)

4.4. Multiobjective Maintenance Model

In order to achieve a balance between the economic benefits and social benefits of the
enterprise, not only maintenance costs but also energy efficiency need to be considered.
Thus, this paper aims to minimize the maintenance cost per unit and maximize energy
efficiency, using the preventive maintenance threshold and preventive maintenance times as
the decision variables. In addition, a multiobjective maintenance model can be constructed.
The expression is as follows:

D =

{
minETC(R∗, N∗)
maxEE(R∗, N∗) (21)

4.5. Solution of the Maintenance Strategy Optimization

NSGAII is a multiobjective genetic algorithm widely used to analyze and solve mul-
tiobjective optimization problems due to its advantages of fast solution speed and good
convergence of solutions. In this paper, the relationship between energy efficiency and cost
per unit needs to be reconciled to satisfy each objective as far as possible. For this reason,
the NSGAII algorithm is used to solve the model; the model solution process is shown in
Figure 4. Its processes are as follows.
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Figure 4. NSGAII algorithm processes.

Step 1: Parameter input. Input relevant parameters of the algorithm such as the number of
populations, the maximum number of iterations, upper and lower bounds on the
preventive maintenance threshold, crossover rate, and variation rate. Initialize the
population and generate a random population P of N individuals.

Step 2: Calculate the maintenance cost and energy efficiency per unit for each individual
in the population.

Step 3: Fast nondominated sorting. The individuals in the population P are classified by
the fast nondominated sorting algorithm. According to the dominance relationship
between the objective function values, the current optimal solution is selected and
marked as rank 1. Then after excluding the solutions in the dominant rank 1, the
optimal solution is selected from the remaining population and marked as rank 2,
and so on, until the whole population is graded. The nondominated solution sets of
different levels are constructed, such as F1, F2, . . . Fn. As the optimization objective
of this paper is to minimize the maintenance cost per unit and maximize energy
efficiency, when the target value of energy efficiency is the vertical coordinate, and
the target value of maintenance cost per unit is the horizontal coordinate, the higher
the rank of the points on the axis to the upper left.

Step 4: Crowding distance calculation. In order to select the better individuals of the
population and prevent falling into local maxima and local minima, the crowding
distance of individuals needs to be calculated. It is defined as the sum distance
of the two points on either side of this point along each of the objectives, denoted
by id. As shown in Figure 5, the crowding distance of the ith point is expressed
as the sum of the variable lengths of the rectangular rectangle, that is, the sum of
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the distance along the direction of the first objective and the distance along the
direction of the second objective. The formula is expressed as:

id = [ f1(i + 1)− f1(i − 1)] + [ f2(i − 1)− f2(i + 1)] (22)

Step 5: Elite retention strategy. In order to prevent the loss of outstanding individuals
during the evolution of the population, an elite retention strategy for individuals is
required. The total crowding distance for each individual is equal to the sum of the
distances for each single target metric. According to the elite retention strategy, in-
dividuals are selected sequentially from the highest ranked nondominated solution
set to the lower ranked solution set. If two individuals are in the same rank, the
crowding distance between them is compared, and the individual with the greater
crowding is selected. N individuals are eventually selected to form a new parent
population Q.

Step 6: Determine if the maximum number of iterations has been reached. If the maximum
number of iterations is reached, the Pareto solution set is output; if not, the new
parent population Q is crossed and mutated, the resulting child population Q′ is
merged with the parent population Q, and the operation in Step 2 is repeated.

Figure 5. The crowding distance of the ith point.

5. Case Study

5.1. Data Preparation

The validity and adaptability of the multiobjective decision model are verified by
a case study. In this paper, the production equipment of a manufacturing company is
selected for the study. The production equipment produces products at a fixed rate every
day. The equipment will produce a small number of defective products that can be recycled
to a certain extent. Meanwhile, the defective product rate will increase with equipment
degradation, and equipment operation and maintenance consume more energy. Referring
to the historical data of the equipment, it can be found that the failure rate of the equipment
obeys the Weibull distribution with the shape parameter of 3 and the size parameter of 110,
and then referring to the general calculation of comprehensive energy consumption, the
following parameters related to maintenance and energy consumption are obtained. As
the types of products produced by the equipment will change with customer demand, the
defective data of each product varies. In this paper, one of the products is selected, and
the initial defective rate is obtained by analyzing the defective data. Other parameters of
defective products are determined by referring to the literature [36]. Furthermore, due to
the change in customer demand, the production rate of the equipment is not fixed. We
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assume that the production rate of the equipment is 100 pieces per day, thus obtaining the
total parameter table, as shown in Table 1.

Table 1. Value of related parameters.

Maintenance
Parameters

Energy Consumption
Parameters

Production
Parameters

Cpm
s 400 x0 180 P0 0.008

Ccm
mv 150 ω 1.2 μ 0.075

Cdv 10 Eiv 25 σ 20
Cr 2000 Ewv 15 θ 1.1
tpm
m 1 Epv 50 τ 0.4

tcm
m 0.5 Epr 300 v 100
Tr 2
γ 1.2

5.2. Results Analysis

In order to narrow the search for multiobjective solution sets and ensure the accuracy
and convenience of the solution, the maintenance cost per unit and energy efficiency
of equipment under different combinations of preventive maintenance thresholds and
maintenance times were obtained by numerical simulation.

The results can be seen in Figure 6. When the preventive maintenance threshold is
in the range (0.6, 0.8), and the number of preventive maintenance is in the range (0, 6),
there is a minimum value of maintenance cost per unit and a maximum value of energy
efficiency. In addition, the graph of simulation results shows that the maintenance cost per
unit tends to decrease and then increase as the number of maintenance increases. When
preventive maintenance is less frequent, the time from the beginning of use to the replace-
ment of equipment is shorter, and the equipment maintenance cost is mainly composed of
replacement cost and breakdown maintenance cost, which makes the maintenance cost per
unit higher. With the increase in maintenance times, the cycle time will gradually become
longer, while the maintenance cost slowly increases, and the maintenance cost per unit
shows a downward trend. When the number of maintenance exceeds a certain threshold
due to frequent maintenance, the preventive maintenance cost of equipment significantly
increases, and the cycle time slowly increases at this time, which makes the maintenance
cost per unit show an upward trend.

Figure 6. Maintenance cost per unit and energy efficiency under different threshold combinations.

Similarly, energy efficiency tends to increase and then decrease as the number of
maintenance increases. When the number of preventive maintenance times is small, the
energy consumption of equipment maintenance is mainly composed of replacement energy
consumption and operation energy consumption, which makes the increase in equipment
output exceed the increase in energy consumption, and the energy efficiency shows an
upward trend. When the number of maintenance times exceeds a certain threshold, the
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cycle will gradually become longer as the number of maintenance increases. At this time,
the effective output of the equipment slowly increases, but the energy consumption rapidly
increases due to frequent preventive maintenance and breakdown maintenance, which
makes the energy efficiency show a downward trend.

The optimal solution for the single objective can be obtained by conducting a simula-
tion in the interval of the preventive maintenance thresholds of (0.6, 0.8) and the preventive
maintenance times of (0, 6), as shown in Tables 2 and 3. The simulation results show that
when the preventive maintenance threshold is 0.77 and the number of maintenance visits is
4, the lowest maintenance cost per unit is achieved at 25.81566. When the preventive main-
tenance threshold is 0.73 and the number of maintenance visits is 2, the highest equipment
energy efficiency is achieved at 0.542660.

Thus, in this paper, we set the range of preventive maintenance threshold as (0.6, 0.8),
the range of maintenance times as (2, 4), the number of individuals in the population as 100,
the crossover rate as 0.9, the variation rate as 0.1, and the maximum number of iterations as
200. The above parameters were input into the algorithm of NSGAII, and the following
results were obtained by a simulation using python, as shown in Figure 7. By comparing
them, it is found that when N = 2, the energy efficiency of the equipment is the highest, but
the maintenance cost per unit of equipment is also high. When N = 3, the energy efficiency
of the equipment is lower than when N = 2, and the maintenance cost per unit of equipment
is reduced more. When N = 4, the energy efficiency of the equipment is the lowest, but
the maintenance cost per unit of equipment is not significantly reduced. Therefore, the
comprehensive analysis yields that the energy efficiency and maintenance cost per unit of
equipment is generally better for different maintenance thresholds at N = 3, so the Pareto
curve at N = 3 is the final set of Pareto solutions for the model.

Table 2. Simulation results for maintenance costs per unit.

R N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

0.6 30.733 28.83966 26.97263 26.50926 26.65826 27.13605 27.80899
0.61 30.85359 28.80936 26.91436 26.43532 26.57268 27.04048 27.7043
0.62 30.98098 28.78345 26.85985 26.36491 26.49058 26.9484 27.60315
0.63 31.11558 28.76212 26.80925 26.29816 26.41207 26.85993 27.50566
0.64 31.25781 28.74557 26.76272 26.23523 26.3373 26.7752 27.41196
0.65 31.40815 28.73406 26.72046 26.17628 26.26642 26.69437 27.3222
0.66 31.5671 28.72785 26.68267 26.1215 26.19961 26.6176 27.23655
0.67 31.73525 28.72725 26.6496 26.07111 26.13707 26.5451 27.15522
0.68 31.91322 28.73258 26.62151 26.02533 26.07903 26.47708 27.07842
0.69 32.10173 28.74424 26.59871 25.98445 26.02574 26.41381 27.00641
0.7 32.30155 28.76263 26.58153 25.94877 25.97751 26.35557 26.93948
0.71 32.51357 28.78824 26.57036 25.91863 25.93465 26.30268 26.87794
0.72 32.73875 28.82161 26.56564 25.89444 25.89755 26.25552 26.82218
0.73 32.97822 28.86334 26.56786 25.87662 25.86664 26.2145 26.77261
0.74 33.2332 28.91411 26.57757 25.86571 25.84239 26.1801 26.72972
0.75 33.50512 28.97472 26.59542 25.86226 25.82536 26.15288 26.69407
0.76 33.79558 29.04606 26.62213 25.86696 25.81621 26.13348 26.66628
0.77 34.10643 29.12916 26.65856 25.88057 25.81566 26.12261 26.6471
0.78 34.43977 29.22522 26.70568 25.90398 25.82457 26.12114 26.63738
0.79 34.79807 29.3356 26.76462 25.93823 25.84395 26.13004 26.63811
0.8 35.18419 29.46194 26.83671 25.98453 25.87495 26.15049 26.65046
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Table 3. Simulation results for energy efficiency.

R N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

0.6 0.540185 0.542253 0.542420 0.542160 0.541726 0.541198 0.540612
0.61 0.540153 0.542267 0.542452 0.542204 0.541779 0.541258 0.540678
0.62 0.540119 0.542279 0.542483 0.542245 0.541829 0.541315 0.540743
0.63 0.540081 0.542289 0.542511 0.542285 0.541877 0.541371 0.540805
0.64 0.540040 0.542296 0.542538 0.542323 0.541924 0.541425 0.540865
0.65 0.539995 0.542301 0.542562 0.542359 0.541968 0.541476 0.540923
0.66 0.539946 0.542303 0.542584 0.542392 0.542010 0.541525 0.540978
0.67 0.539894 0.542303 0.542603 0.542424 0.542050 0.541572 0.541032
0.68 0.539837 0.542299 0.542620 0.542452 0.542087 0.541617 0.541082
0.69 0.539775 0.542292 0.542634 0.542478 0.542122 0.541658 0.541130
0.7 0.539708 0.542282 0.542646 0.542502 0.542154 0.541697 0.541176
0.71 0.539636 0.542269 0.542654 0.542523 0.542183 0.541734 0.541218
0.72 0.539558 0.542251 0.542659 0.542540 0.542209 0.541767 0.541257
0.73 0.539474 0.542230 0.542660 0.542554 0.542232 0.541797 0.541293
0.74 0.539384 0.542204 0.542658 0.542565 0.542251 0.541823 0.541325
0.75 0.539286 0.542173 0.542652 0.542571 0.542267 0.541845 0.541353
0.76 0.539179 0.542137 0.542640 0.542574 0.542278 0.541863 0.541377
0.77 0.539064 0.542094 0.542624 0.542571 0.542285 0.541877 0.541396
0.78 0.538940 0.542046 0.542603 0.542564 0.542287 0.541885 0.541411
0.79 0.538804 0.541991 0.542576 0.542551 0.542283 0.541888 0.541419
0.8 0.538657 0.541927 0.542541 0.542532 0.542273 0.541885 0.541421

Figure 7. Pareto curve at different N.

5.3. Results Comparison

Then, in order to verify the superiority of the model, a comparison with a single target
is required. By comparing the results of the single objective decision with the multiobjective
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decision, we can see that when only the cost of maintenance is considered, the optimal
solution is obtained with an objective value of (25.8157, 0.5423). It is clear that improvements
in energy efficiency need to be made. When only energy efficiency is considered, the optimal
solution obtained corresponds to an objective value of (26.5679, 0.5427), a decision that
is clearly not optimal in terms of maintenance costs. In comparison, the compromise
solution is (25.8622, 0.5426), where the energy efficiency is not much different from the
single objective and the maintenance cost per unit is better, thus showing that the integrated
consideration of maintenance cost and energy efficiency can help enterprises to achieve the
goals of energy conservation and emission reduction.

5.4. Sensitivity Analysis

Finally, in order to analyze the relationship between the objective function and the
parameters, this paper selects the maintenance cost parameters for sensitivity analysis by
changing one maintenance cost parameter, keeping the other parameters constant, and
observing the sensitivity of the objective function to the maintenance cost parameter. In this
paper, the fixed cost of preventive maintenance, breakdown maintenance, and replacement
cost affect the objective function. The range of parameter variation is −50~+50%. The
analysis results obtained are shown in Table 4.

Table 4. Sensitivity analysis results.

Parameters
Range of
Changes

ETC
Variation of

ETC
EE

Variation of
EE

\ \ 25.8622 \ 0.5426 \

Cpm
s

−50% 22.9814 −11.15% 0.5422 −0.7%
−25% 24.6962 −4.6% 0.5425 −0.2%
+25% 26.9908 4.3% 0.5425 −0.2%
+50% 28.0859 9.3% 0.5425 −0.2%

Ccm
m

−50% 25.5247 −1.3% 0.5425 −0.2%
−25% 25.6952 −0.7% 0.5425 −0.2%
+25% 26.0260 0.6% 0.5425 −0.2%
+50% 26.1867 1.2% 0.5425 −0.2%

Cr

−50% 21.7022 −16.1% 0.5425 −0.2%
−25% 23.8954 −7.6% 0.5425 −0.2%
+25% 27.4742 6.2% 0.5422 −0.7%
+50% 29.0641 12.4% 0.5421 −0.9%

According to the sensitivity analysis results, the maintenance cost per unit is more
sensitive to the fixed cost of preventive maintenance and the replacement cost, and it
varies positively with both parameters. When the fixed cost of preventive maintenance
and the replacement cost decrease, the change in cost is more obvious than when they
increase, which means that the maintenance costs per unit can be reduced by reducing the
fixed costs of preventive maintenance and replacement costs when making maintenance
decisions. In addition, the maintenance costs per unit and energy efficiency are not sensitive
to breakdown maintenance cost, and changes in the fixed cost of preventive maintenance,
breakdown maintenance cost, and replacement cost do not have a significant impact on
changes in energy efficiency.

6. Conclusions

A methodological framework and a new preventive maintenance model were pro-
posed that make it possible to optimize maintenance strategies in manufacturing production
equipment. More generally, in the context of reducing carbon emissions and mitigating
global warming, this paper focuses on solving the problem of equipment maintenance and
energy efficiency in production systems by modeling and calculating the costs and various
energy consumptions in the process of equipment maintenance to achieve the goal of
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optimizing maintenance strategies. In addition, the difference between considering energy
efficiency and not is shown in this paper. The main findings of the article are the following:
(1) compared with a maintenance strategy that only considers maintenance costs, the inte-
grated consideration of maintenance costs, energy efficiency, and product quality is more
suitable for manufacturing systems; (2) the modeling of dynamic preventive maintenance
costs as well as dynamic operational energy consumption makes the calculation of costs
and energy consumption more accurate; (3) the recycling of defective products is consistent
with the goal of energy saving and emission reduction, and the amount of recycling is
closely related to the state of the equipment. The framework and methods presented in
this paper can be applied to production, maintenance, quality, and architecture mainte-
nance optimization in manufacturing, which makes it possible to support management
decisions. The decision process regarding production, quality control, and maintenance
will be influenced by the results of the contribution. For example, the energy efficiency
in maintenance will influence the maintenance policy, and the manufacturing system will
specify new solutions for recycling defective products.

However, there are also limitations of the study. In many cases, manufacturing systems
often include much equipment, which may be connected in series, parallel, or groups. The
limitations of this paper, which considers only single-device preventive maintenance, also
indicate potential directions for further research. In further research, the model can be
extended to more complex equipment models and the use of opportunistic maintenance.
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