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Preface

Differential equations naturally arise when modeling a large number of phenomena in optics,

radiophysics, biology, medicine, economics, and sociology.

It is well known that, for the adequate mathematical modeling of the dynamics of many

processes in various areas of science, it is crucial to take into account the influence of lags. That is

why delay differential equations play an important role in mathematical modeling. For example, they

are able to model gene networks, information transmission systems, population size, and infectious

diseases.

Qualitative properties of solutions to equations with delay are also of great interest.

The present book contains the 11 articles accepted for publication out of the 31 manuscripts

submitted to the Special Issue “Advances in Delay Differential Equations” of the MDPI journal

Mathematics.

The 11 articles cover a wide range of topics connected to the theory of differential equations with

delay. These topics include, among others, the construction of solutions and analytical and numerical

methods for; dynamical properties of; and applications of DDE to the mathematical modeling of

various phenomena and processes in physics, biology, ecology, and medicine.

It is hoped that the book will be interesting and useful for those working in the area of differential

equations with delays and nonlinear dynamics, as well as for those with the proper mathematical

background who are willing to become familiar with recent advances in mathematical modelling.

As the Guest Editor of the Special Issue, I am grateful to the authors of the papers for their

quality contributions, to the reviewers for their valuable comments towards the improvement of the

submitted manuscripts, and to the administrative staff of MDPI for the support needed to complete

this project. Special thanks are due to the Managing Editor of the Special Issue, Dr. Syna Mu, for

excellent collaboration and valuable assistance.

Alexandra Kashchenko

Editor
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Abstract: It is well known that Stochastic equations had many useful applications in describing
numerous events and problems of real world, and the nonlocal integral condition is important in
physics, finance and engineering. Here we are concerned with two problems of a coupled system
of random and stochastic nonlinear differential equations with two coupled systems of nonlinear
nonlocal random and stochastic integral conditions. The existence of solutions will be studied. The
sufficient condition for the uniqueness of the solution will be given. The continuous dependence of
the unique solution on the nonlocal conditions will be proved.

Keywords: stochastic processes; stochastic differential equation; coupled system; nonlocal stochastic
integral conditions

MSC: 34A12; 34A30; 34D20; 34F05; 60H10

1. Introduction

Let (Ω,�, P) be a fixed probability space, where Ω is a sample space, � is a σ-algebra
and P is a probability measure.

The aim of this article is to extend the results of A.M.A. El-Sayed [1,2] on the stochastic
fractional calculus operators defined on C([0, T], L2(Ω)) and the solution of stochastic
differential equations subject to nonlocal integral conditions which have been considered
in [3,4].

Moreover, we motivate the coupled system of integral equations in reflexive Banach
space by A.M.A. El-Sayed and H.H.G.Hashem [5] to the coupled systems with random
memory on the space of all second order stochastic process.

The continuous dependence of a unique solution has been studied on the random
initial data and the random function which ensures the stability of the solution.

Nonlocal problem of differential equation have been studied by many authors (see for
example [6–8]).

Let Z(t; ω) = Z(t), t ∈ [0, T], ω ∈ Ω be a second order stochastic process, i.e.,
E(Z2(t)) < ∞, t ∈ [0, T].

Let C = C([0, T], L2(Ω)) be the space of all second order stochastic processes which
is mean square (m.s) continuous on [0, T]. The norm of Z ∈ C([0, T], L2(Ω)) is given by

‖Z‖C = sup
t∈[0,T]

‖Z(t)‖2, ‖Z(t) ‖2 =
√

E(Z2(t)).

Let T ≥ 1. In this paper we study the existence of solutions (x, y) ∈ C([0, T], L2(Ω))
of the problem of the coupled system of random and stochastic differential equations

Mathematics 2021, 9, 2111. https://doi.org/10.3390/math9172111 https://www.mdpi.com/journal/mathematics
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dx(t)
dt

= f1(t, y(φ1(t))), t ∈ (0, T], (1)

dy(t) = f2(t, x(φ2(t)))dW(t), t ∈ (0, T] (2)

subject to each one of the two nonlinear nonlocal stochastic integral conditions

x(0) +
∫ τ

0
h1(s, y(s))dW(s) = x0, y(0) +

∫ η

0
h2(s, x(s))ds = y0 (3)

and
x(0) +

∫ τ

0
h1(s, x(s))dW(s) = x0, y(0) +

∫ η

0
h2(s, y(s))ds = y0 (4)

where x0 and y0 are two second order random variables.
Let X = C([0, T], L2(Ω)) × C([0, T], L2(Ω)) be the class of all ordered pairs

(x, y), x, y ∈ C with the norm

‖(x, y)‖X = max{ ‖x‖C, ‖y‖C} = max{ sup
t∈[0,T]

‖x(t)‖2, sup
t∈[0,T]

‖y(t)‖2}. (5)

Let φi : [0, T] → [0, T] be continuous functions such that φi(t) ≤ t and consider the
following assumptions

Assumption 1. fi : [0, T]× L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for all
x ∈ L2(Ω) and continuous in x ∈ L2(Ω) for all t ∈ [0, T]. There exist two bounded measurable
functions mi : [0, T] → R and two positive constants bi such that

‖ fi(t, x)‖2 ≤ |mi(t)|+ bi‖x(t)‖2, i = 1, 2. (6)

Assumption 2. hi : [0, T]× L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for all
x ∈ L2(Ω) and continuous in x ∈ L2(Ω) for all t ∈ [0, T]. There exist two bounded measurable
functions ki : [0, T] → R and two positive constants ci such that

‖hi(t, x)‖2 ≤ |ki(t)|+ ci‖x(t)‖2, i = 1, 2. (7)

Assumption 3. M = max{supt∈[0,T] |m1(t)|, supt∈[0,T] |m2(t)|}, b = max{b1, b2}.

Assumption 4. K = max{supt∈[0,T] |k1(t)|, supt∈[0,T] |k2(t)|}, c = max{c1, c2}.

Assumption 5. (b + c)T < 1.

Now, integrating the two random and stochastic differential Equations (1) and (2)
(see [1,2,9–14]) and using the nonlocal conditions (3) and (4) the following Lemma can
be proven.

Lemma 1. The integral representations of the solutions of the nonlocal problems (1) and (2) with
conditions (3) and (1) and (2) with conditions (4) are given by

x(t) = x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (8)

y(t) = y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (9)

and

x(t) = x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (10)

y(t) = y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (11)

2
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respectively.

2. Solutions of the Problem (1)–(3)

Define the mapping (F(x, y))(t) = (F1y, F2x)(t), t ∈ [0, T] where (F1y)(t), (F2x)(t)
are given by the following stochastic integral equations

(F1y)(t) = x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (12)

(F2x)(t) = y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (13)

Consider the set Q such that

Q = {x, y ∈ C([0, T], L2(Ω)), (x, y) ∈ X : ||(x, y)||X = max{||x(t)||2, ||y(t)||2} ≤ r.}

Now, we have the following two lemmas

Lemma 2. F : Q → Q.

Proof. Let y ∈ Q, ‖y(t)‖2 ≤ r1, then

‖(F1y)(t)‖2 ≤ ‖x0‖2 + ‖
∫ τ

0
h1(s, y(s))dW(s)‖2 + ‖

∫ t

0
f1(s, y(φ1(s)))ds‖2

≤ ‖x0‖2 +

√∫ τ

0
‖h1(s, y(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))‖2ds

≤ ‖x0‖2 +

√∫ τ

0
(|k1(s)|+ c1‖y(s)‖2)2ds +

∫ t

0
(|m1(S)|+ b1‖y(s)‖2)ds

≤ ‖x0‖2 + (K + cr1)
√

T + (M + br1)T < ‖x0‖2 + (K + cr1)T + (M + br1)T = r1

where

r1 =
‖x0‖2 + KT + MT

1 − (b + c)T
> 0.

Let x ∈ Q, ‖x(t)‖2 ≤ r2, then

‖(F2x)(t)‖2 ≤ ‖y0‖2 + ‖
∫ η

0
h2(s, x(s))ds‖2 + ‖

∫ t

0
f2(s, x(φ2(s)))dW(s)‖2

≤ ‖y0‖2 +
∫ η

0
‖h2(s, x(s))‖2ds +

√∫ t

0
‖ f2(s, x(φ2(s)))‖2

2ds

≤ ‖y0‖2 +
∫ η

0
(|k2(s)|+ c2‖x(s)‖2)ds +

√∫ t

0
(|m2(t)|+ b2‖x‖2)2ds

≤ ‖y0‖2 + (K + cr2)T + (M + br2)T < ‖y0‖2 + (K + cr2)T + (M + br2)T = r2

where

r2 =
‖y0‖2 + KT + MT

1 − (b + c)T
> 0.

Let r = max{r1, r2}, (x, y) ∈ Q, then

‖F(x, y)‖X = ‖(F1y, F2x)‖X

= max{‖(F1y)‖C, ‖(F2x)‖C} < r.

This proves that F : Q → Q and the class of functions {F(x, y)} is uniformly bounded
on Q.

3
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Lemma 3. The class of functions {F(x, y)} is equicontinuous on Q.

Proof. Let x, y ∈ Q, t1, t2 ∈ [0, T] such that |t2 − t1| < δ, then

‖(F1y)(t2)− (F1y)(t1)‖2 = ‖
∫ t2

0
f1(s, y(φ1(s)))ds −

∫ t1

0
f1(s, y(φ1(s)))ds‖2

≤
∫ t2

t1

‖ f1(s, y(φ1(s)))‖2

≤ (M + b‖y‖C)(t2 − t1) (14)

This proves the equicontinuity of the class {F1y} and

‖(F2x)(t2)− (F2x)(t1)‖2 = ‖
∫ t2

0
f2(s, x(φ2(s)))dW(s)−

∫ t1

0
f2(s, x(φ2(s)))dW(s)‖2

≤
√∫ t2

t1

‖ f2(s, x(φ2(s)))‖2
2ds

≤ (M + b‖x‖C)
√
(t2 − t1). (15)

This proves the equicontinuity of the class {F1x}.
Now

(F(x, y))(t2)− F(x, y))(t1)) = ((F1y)(t2), (F2x)(t2))− ((F1y)(t1), (F2x)(t1))

= ((F1y)(t2)− (F1y)(t1)), ((F2x)(t2)− (F2x)(t1))),

then from (14) and (15), we can deduce the equicontinuity of the class {F(x, y)} on Q.

2.1. Existence Theorem

Now, we have the following existence theorem

Theorem 1. Let the Assumptions 1–5 be satisfied, then there exists at least one solution (x, y) ∈ X
of the problem (1)–(3).

Proof. Firstly, from the results of Lemmas 2 and 3 and Arzela–Ascoli Theorem [9] we
deduce that the closure of FQ is a compact subset.

Let (xn, yn) ∈ Q be such that

L.i.mn→∞(xn, yn) = (x, y) w.p.1.

where L.i.m denotes the limit in the mean square sense of the continuous second order
process ([1,2,9]).

Now,

L.i.mn→∞F(xn, yn) = (L.i.mn→∞F1yn, L.i.mn→∞F2xn)

= (L.i.mn→∞{x0 −
∫ τ

0
h1(s, yn(s))dW(s) +

∫ t

0
f1(s, yn(φ1(s)))ds},

L.i.mn→∞{y0 −
∫ η

0
h2(s, xn(s))ds +

∫ t

0
f2(s, xn(φ2(s)))dW(s)})

= (x0 −
∫ τ

0
h1(s, L.i.mn→∞yn(s))dW(s) +

∫ t

0
f1(s, L.i.mn→∞yn(φ1(s)))ds,

y0 −
∫ η

0
h2(s, L.i.mn→∞xn(s))ds +

∫ t

0
f2(s, L.i.mn→∞xn(φ2(s)))dW(s))

4
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= (x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s))

= (F1y, F2x) = F(x, y).

Applying stochastic Lebesgue dominated convergence Theorem the operator F : Q →
Q is continuous.

Finally, applying Schauder Fixed Point Theorem [9], we can deduce that there exists
at least one solution (x, y) ∈ Q of the problem (1)–(3) such that x, y ∈ C([0, T], L2(Ω)).

2.2. Uniqueness Theorem

Replace the assumptions (A1) and (A2) by (A∗1) and (A∗2), respectively, such that
(A∗1) The functions fi : [0, T]× L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for
all x ∈ L2(Ω) and satisfy the Lipschitz condition with respect to the second argument

‖ fi(t, u)− fi(t, v)‖2 ≤ b‖u − v‖2.

(A∗2) The functions hi : [0, T]× L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for
all x ∈ L2(Ω) and satisfy the Lipschitz condition with respect to the second argument

‖hi(t, u)− hi(t, v)‖2 ≤ c‖u − v‖2.

Remark 1. Let the assumptions (A∗1) and (A∗2) be satisfied, then we can obtain

‖ fi(t, u)‖2 − ‖ fi(t, 0)‖2 ≤ ‖ fi(t, u)− fi(t, 0)‖2 ≤ b‖u‖2,

‖ fi(t, u)‖2 ≤ ‖ fi(t, 0)‖2 + b‖u‖2 ≤ M + b‖u‖2

and
‖hi(t, u)‖2 ≤ ‖hi(t, 0)‖2 + c‖u‖2 ≤ K + c‖u‖2.

Theorem 2. Let the assumptions (A∗1)− (A∗2) and (A3)− (A5) be satisfied, then the solution
of problem (1)–(3) is unique.

Proof. Let (x1, y1) and (x2, y2) be two solutions of the problem (1)–(3), then

(xi(t), yi(t)) = (x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s)), i = 1, 2 (16)

where

‖x1(t)− x2(t)‖2 ≤ ‖
∫ τ

0
[h1(s, y2(s))− h1(s, y1(s))]dW(s)‖2 + ‖

∫ t

0
( f1(s, y1)− f1(s, y2))ds‖2

≤
√∫ τ

0
c2‖y2 − y1‖2

Cds + Tb‖y1 − y2‖C ≤ T
√

c‖y1 − y2‖C + Tb‖y1 − y2‖C

≤ T(b + c)‖y1 − y2‖C,

≤ T(b + c)max{‖x1 − x2‖C, ‖y1 − y2‖C}

5



Mathematics 2021, 9, 2111

and

‖y1(t)− y2(t)‖2 ≤
∫ η

0
‖h2(s, x2(s))− h2(s, x1(s))‖2ds +

√∫ t

0
b2‖x1(s))− x2(s)))‖2

2ds

≤
√

Tb‖x1 − x2‖C + cT‖x2 − x1‖C

≤ T(b + c)‖x1 − x2‖C,

≤ T(b + c)max{‖x1 − x2‖C, ‖y1 − y2‖C}.

Hence,

‖(x1, y1)− (x2, y2)‖X = ‖(x1 − x2), (y1, y2)‖X

= max{‖(x1 − x2)‖C, ‖(y1, y2)‖C}
≤ T(b + c)max{‖x1 − x2‖C, ‖y2 − y1‖C}
≤ T(b + c)‖(x1, y1)− (x2, y2)‖X .

This implies that

(1 − T(b + c))‖(x1, y1)− (x2, y2)‖X ≤ 0

and
‖(x1, y1)− (x2, y2)‖X = 0,

then (x1, y1) = (x2, y2) and the solution of the problem (1)–(3) is unique.

2.3. Continuous Dependence

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then the solution (16) of the problem (1)–(3)
depends continuously on the two random data (x0, y0).

Proof. Let (x̂, ŷ) be the solution of the coupled system

x̂(t) = x̂0 −
∫ τ

0
h1(s, ŷ(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds

ŷ(t) = ŷ0 −
∫ η

0
h2(s, x̂(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s),

such that ‖(x0, y0)− (x̂0, ŷ0)‖X < δ1, then

‖x − x̂‖C ≤ ‖x0 − x̂0‖C + T(b + c)‖y − ŷ‖C

≤ δ1 + T(b + c)‖y − ŷ‖C

≤ δ1 + T(b + c)max{‖x − x̂‖C, ‖y − ŷ‖C}
‖y − ŷ‖C ≤ ‖y0 − ŷ0‖C + T(b + c)‖x − x̂‖C,

≤ δ1 + T(b + c)‖x − x̂‖C

≤ δ1 + T(b + c)max{‖x − x̂‖C, ‖y − ŷ‖C}.

Then

‖(x, y)− (x̂, ŷ)‖X = ‖(x − x̂, y − ŷ)‖X

= max{‖x − x̂‖C, ‖y − ŷ‖C}
≤ δ1 + T(b + c)max{‖x − x̂‖C, ‖y − ŷ‖C}
≤ δ1 + T(b + c)‖(x, y)− (x̂, ŷ)‖X .

6
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This implies that

‖(x, y)− (x̂, ŷ)‖X ≤ δ1

1 − T(b + c)
= ε

which completes the proof.

Theorem 4. The solution (16) of the problem (1)–(3) depends continuously on the two random
functions h1 and h2.

Proof. Let (x̂, ŷ) be the solutions of the coupled system

x̂(t) = x0 −
∫ τ

0
h∗1(s, ŷ(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds,

ŷ(t) = y0 −
∫ η

0
h∗2(s, x̂(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s)

such that ‖h∗i (s, .)− h(s, .)‖2 ≤ δ2, i = 1, 2, then

‖x(t)− x̂(t)‖2 = ‖
∫ τ

0
[h∗1(s, ŷ(s))− h1(s, y(s))]dW(s) +

∫ t

0
[ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds‖2

≤
√∫ τ

0
‖h∗1(s, ŷ(s))− h1(s, y(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
[‖h∗1(s, ŷ(s))− h∗1(s, y(s))‖2 + ‖h∗1(s, y(s))− h1(s, y(s))‖2]2ds

+
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
(c‖y(s)− ŷ(s)‖2 + δ2)2ds +

∫ t

0
b‖y(s)− ŷ(s)‖2ds

≤ (c
√

T + bT)‖y − ŷ‖C + δ2
√

T

≤ T(b + c)max{‖x − x̂‖C, ‖y − ŷ‖C}+ δ2T

Similarly we can obtain

‖y(t)− ŷ(t)‖2 = ‖
∫ η

0
[h∗2(s, x̂(s))− h2(s, x(s))]ds +

∫ t

0
[ f2(s, x(φ2(s)))− f2(s, x̂(φ2(s)))]dW(s)‖2

≤ (cT + b
√

T)‖x − x̂‖C + δ2T

≤ T(b + c)‖x − x̂‖C + δ2T

≤ T(b + c)max{‖x − x̂‖C, ‖y − ŷ‖C}+ δ2T

≤ T(b + c)max{‖x − x̂‖C, ‖y − ŷ‖C}+ δ2T.

Now

‖(x, y)− (x̂, ŷ)‖X = max{‖x − x̂‖C, ‖y − ŷ‖C

≤ T(b + c)max{(‖x − x̂‖C, ‖y − ŷ‖C}+ δ2T

≤ T(c + b)‖(x, y)− (x̂, ŷ)‖X + δ2T.

This implies that

‖(x, y)− (x̂, ŷ)‖X ≤ δ2T
1 − T(b + c)

= ε

which completes the proof.

7
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3. Solutions of the Problem (1), (2) and (4)

Define the mapping L(x, y) = (L1x, L2y) where L1x, L2y are given by the following
stochastic integral equations

L1x(t) = x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (17)

L2y(t) = y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (18)

Lemma 4. L : Q → Q.

Proof. Let x, y ∈ Q, , then we obtain

‖L1x(t)‖2 ≤ ‖x0‖2 + ‖
∫ τ

0
h1(s, x(s))dW(s)‖2 + ‖

∫ t

0
f1(s, y(φ1(s)))ds‖2

≤ ‖x0‖2 +

√∫ τ

0
‖h1(s, x(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))‖2ds

≤ ‖x0‖2 +

√∫ τ

0
(|k1(s)|+ c1‖x(s)‖2)2

∫ t

0
(|m1(s)|+ b1‖y(s)‖2)ds

≤ ‖x0‖2 + K
√

T + MT + c
√

T‖x‖C + bT‖y‖C)

≤ ‖x0‖2 + ‖y0‖2 + (K + M)T + 2rT(b + c)

and

‖L2y(t)‖2 ≤ ‖y0‖2 + ‖
∫ η

0
h2(s, y(s))ds‖2‖

∫ t

0
f2(s, x(φ2(s)))dW(s)‖2

≤ ‖y0‖2 =
∫ η

0
‖h2(s, y(s))‖2ds +

√∫ t

0
‖ f2(s, x(φ2(s)))‖2

2ds

≤ ‖y0‖2 +
∫ η

0
(|k2(s)|+ c2‖y(s)‖2)ds +

√∫ t

0
(|m2(t)|+ b2‖x‖2)2ds

≤ ‖y0‖2 + KT + M
√

T + cT‖y‖C + b
√

T‖x‖C

≤ ‖y0‖2 + (K + M)T + T(b + c)‖y‖C + T(b + c)‖x‖C

≤ ‖x0‖2 + ‖y0‖2 + (K + M)T + 2rT(b + c).

This implies that

‖L(x, y)‖X = ‖(L1x, L2y)‖X

= max{‖L1x(t)‖C, ‖L2y(t)‖C}
≤ ‖x0‖2 + ‖y0‖2 + (K + M)T + 2rT(b + c) = r

where

r =
‖x0‖2 + ‖y0‖2 + (K + M)T

1 − T(b + c)
,

then the class {L(x, y)} is uniformly bounded and L(x, y) : Q → Q.

Lemma 5. The class of function {L(x, y)(t)} , t ∈ [0, T] is equicontinuous.

8
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Proof. Let x, y ∈ Q, t1, t2 ∈ [0, T] such that |t2 − t1| < δ, then

‖L1x(t2)− L1y(t1)‖2 = ‖
∫ t2

0
f1(s, y(φ1(s)))ds −

∫ t1

0
f1(s, y(φ1(s)))ds‖2

≤
∫ t2

t1

‖ f1(s, y(φ1(s)))‖2ds

≤ (M + b‖y‖C)(t2 − t1) (19)

and

‖L2x(t2)− L2x(t1)‖2 = ‖
∫ t2

0
f2(s, x(φ2(s)))dW(s)−

∫ t1

0
f2(s, x(φ2(s)))dW(s)‖2

≤
√∫ t2

t1

‖ f2(s, x(φ2(s)))‖2
2ds

≤ (M + b‖x‖C)
√
(t2 − t1). (20)

However,

L(x(t2), y(t2))− L(x(t1), y(t1)) = (L1x(t2), L2y(t2))− (L1x(t1), L2y(t1))

= ((L1x(t2)− L1x(t1)), (L2y(t2)− L2y(t1))),

then from (19) and (20), we deduce the equicontinuity of the class {L(x, y)(t)} on Q.

3.1. Existence Theorem

Now, we have the following existence theorem

Theorem 5. Let the Assumptions (A1)–(A5) be satisfied, then there exists at least one solution
(x, y) ∈ X of the problem (1), (2) and (4).

Proof. Let {(xn, yn)} ∈ Q be such that

(xn, yn) → (x, y) w.p.1.

Using Lemmas 1–3, then applying stochastic Lebesgue dominated convergence Theo-
rem [9], we can obtain

L.i.mn→∞L(xn, yn) = (L.i.mn→∞L1xn, L.i.mn→∞L2yn)

= (L.i.mn→∞{x0 −
∫ τ

0
h1(s, xn(s))dW(s) +

∫ t

0
f1(s, yn(φ1(s)))ds},

L.i.mn→∞{y0 −
∫ η

0
h2(s, yn(s))ds +

∫ t

0
f2(s, xn(φ2(s)))dW(s)})

= (x0 −
∫ τ

0
h1(s, L.i.mn→∞xn(s))dW(s) +

∫ t

0
f1(s, L.i.mn→∞yn(φ1(s)))ds,

y0 −
∫ η

0
h2(s, L.i.mn→∞yn(s))ds +

∫ t

0
f2(s, L.i.mn→∞xn(φ2(s)))dW(s))

= (x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s))

= (L1x, L2y) = L(x, y).

This proves that the operator L : Q → Q is continuous.

9
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Then by the Arzela–Ascoli Theorem [9], the closure of LQ is a compact subset of
X, then applying Schauder Fixed Point Theorem [9], there exists at least one solution
(x, y) ∈ X of the problem (1), (2) and (4) such that x, y ∈ C([0, T], L2(Ω)).

3.2. Uniqueness Theorem

Theorem 6. Let the assumptions (A∗1)–(A∗2) and (A3)–(A5) be satisfied then the solution of
problem (1), (2) and (4) is unique.

Proof. Let (x1, y1) and (x2, y2) be two solutions of the problem (1), (2) and (4) on the form

(x(t), y(t)) = (x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s)), (21)

then we can obtain

‖x1(t)− x2(t)‖2 ≤ c
√

T‖x1 − x2‖C + bT‖y1 − y2‖C < cT‖x1 − x2‖C + bT‖y1 − y2‖C

≤ (b + c)T‖x1 − x2‖C + (b + c)T‖y1 − y2‖C

≤ (b + c)T max{‖x1 − x2‖C, ‖y1 − y2‖C}. (22)

Similarly, we can obtain

‖y1(t)− y2(t)‖2 ≤ (b + c)T max{‖x1 − x2‖C, ‖y1 − y2‖C}. (23)

Hence from (22) and (23)

‖(x1, y1)− (x2, y2)‖X = ‖(x1 − x2), (y1 − y2)‖X

≤ max{‖x1 − x2‖C, ‖y1 − y2‖C}
≤ (b + c)T max{‖x1 − x2‖C, ‖y1 − y2‖C}.

This implies that

(1 − (b + c)T)‖(x1, y1)− (x2, y2)‖X ≤ 0.

Then
‖(x1, y1)− (x2, y2)‖X = 0

and (x1, y1) = (x2, y2) which proves that the solution of the problem (1), (2) and (4) is
unique.

3.3. Continuous Dependence

Theorem 7. The solution (16) of the problem (1)–(2) and (4) depends continuously on the two
random data (x0, y0).

Proof. Let (x̂, ŷ) be the solution of the coupled system

x̂(t) = x̂0 −
∫ τ

0
h1(s, x̂(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds

ŷ(t) = ŷ0 −
∫ η

0
h2(s, ŷ(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s),

10
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such that ‖(x0, y0)− (x̂0, ŷ0)‖X < δ3. Then we have

x(t)− x̂(t) = x0 − x̂0 −
∫ τ

0
[h1(s, x̂(s))− h1(s, x(s))]dW(s)

+
∫ t

0
[ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds

and

‖x(t)− x̂(t)‖2 ≤ ‖x0 − x̂0‖C + c
√

T‖x − x̂‖C + bT‖y − ŷ‖C

≤ ‖x0 − x̂0‖C + cT‖x − x̂‖C + bT‖y − ŷ‖C

≤ ‖x0 − x̂0‖2 + cTmax{‖x − x̂‖C, ‖y − ŷ‖C}+ bTmax{‖x − x̂‖C, ‖y − ŷ‖C}
≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b + c)Tmax{‖x − x̂‖C, ‖y − ŷ‖C}.

By the same way we can obtain

‖y(t)− ŷ(t)‖2 ≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b + c)Tmax{‖x − x̂‖C, ‖y − ŷ‖C}

and

‖(x, y)− (x̂, ŷ)‖X = max{‖(x − x̂‖C, ‖(y − ŷ‖C}
≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b + c)Tmax{‖x − x̂‖C, ‖y − ŷ‖C}
≤ δ3 + (b + c)Tmax{‖x − x̂‖C, ‖y − ŷ‖C}

which gives our result

‖(x, y)− (x̂, ŷ)‖X ≤ δ3

1 − T(b + c)
= ε

and completes the proof.

Theorem 8. The solution (16) of the problem (1), (2) and (4) depends continuously on the two
random functions h1 and h2.

Proof. Let (x̂, ŷ) be the solutions of the coupled system of stochastic integral Equations (1), (2)
and (4) such that

x̂(t) = x0 −
∫ τ

0
h∗1(s, x̂(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds

ŷ(t) = y0 −
∫ η

0
h∗2(s, ŷ(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s).

Let ‖h∗i (t, u(t))− h(t, u(t))‖2 ≤ δ4, i = 1, 2 then

‖x(t)− x̂(t)‖2 = ‖
∫ τ

0
[h∗1(s, x̂(s))− h1(s, x(s))]dW(s) +

∫ t

0
[ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds‖2

≤
√∫ τ

0
‖h∗1(s, x̂(s))− h1(s, x(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
[‖h∗1(s, x̂(s))− h∗1(s, x(s))‖2 + ‖h∗1(s, x(s))− h1(s, x(s))‖2]2ds

+
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
(c‖x(s)− x̂(s)‖2 + δ4)2ds +

∫ t

0
b‖y(s)− ŷ(s)‖2ds

11
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≤ c
√

T‖x − x̂‖C + bT‖y − ŷ‖C + δ4
√

T)

≤ cT‖x − x̂‖C + bT‖y − ŷ‖C + δ4T.

≤ cT max{‖x − x̂‖C, ‖y − ŷ‖C}+ bT max{‖x − x̂‖C, ‖y − ŷ‖C}+ δ4T

≤ (b + c)T max{‖x − x̂‖C, ‖y − ŷ‖C}+ δ4T.

Similarly we can obtain

‖y − ŷ‖C ≤ (b + c)T max{‖x − x̂‖C, ‖y − ŷ‖C}+ δ4T

and

‖(x, y)− (x̂, ŷ)‖X = max{‖x− x̂‖C, ‖y− ŷ‖C} ≤ (b+ c)T max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ4T.

This implies that

‖(x, y)− (x̂, ŷ)‖X ≤ δ4T
1 − T(b + c)

= ε

which completes the proof.

Example 1. Consider the coupled system

dx
dt

(t) =
a(t) + y(t)

5(1 + ‖y(t)‖2)
, t ∈ (0, 1]

dy(t) =
tx(t)

2(1 + ‖x‖2)
dW(t), t ∈ (0, 1] (24)

subject to

x0 =
∫ τ

0

e−sy(s)
120 + s2 dW(s), y0 =

∫ η

0

x(s)√
s + 36

ds (25)

where

‖ f1(t, y(t))‖2 ≤ 1
5
[|a(t)|+ ‖y(t)‖2], ‖ f2(t, x(t))‖2 ≤ 1

2‖x(t)‖2

and

‖h1(t, y(t)‖2 ≤ ‖y(t)‖2

120
, ‖h2(t, x(t)‖2 ≤ ‖x(t)‖2

6
.

Easily, the coupled system (24) with nonlocal integral conditions (25) satisfies all the Assump-
tions 1–5 of Theorem 1. with b = 1

2 , c = 1
6 , then there exists at least one solution of the system

(24) on [0, 1].

4. Conclusions

Here, we proved the existence of solutions of a coupled system of random and
stochastic nonlinear differential equations with coupled nonlocal random and stochastic
nonlinear integral conditions. The sufficient conditions for the uniqueness of the solution
have been given. The continuous dependence of the unique solution has been studied.
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Abstract: In this paper, the Ulam stability of an n-th order delay integro-differential equation is given.
Firstly, the existence and uniqueness theorem of a solution for the delay integro-differential equation
is obtained using a Lipschitz condition and the Banach contraction principle. Then, the expression of
the solution for delay integro-differential equation is derived by mathematical induction. On this
basis, we obtain the Ulam stability of the delay integro-differential equation via Gronwall–Bellman
inequality. Finally, two examples of delay integro-differential equations are given to explain our
main results.

Keywords: Ulam stability; delay integro-differential equation; Gronwall–Bellman inequality

1. Introduction

In the year 1940, Ulam [1] put forward an abstract problem: under what conditions
is the exact solution of an equation closed to the approximate solution? In the year 1941,
in order to solve the problem raised by Ulam, Hyers [2] studied the functional equation in
Banach space and gave the definition of Hyers–Ulam stability. In the year 1978, based on
the work of Hyers, Rassias [3] gave the definition of Hyers–Ulam–Rassias stability. These
two kinds of stability are called Ulam stability. After that, scholars began to study the
Ulam stability of some solvable equations. See [4–7] and the references therein. Recently,
the Ulam stability of delay differential equations and delay integro-differential equations
has been discussed. See [8–13]. There are many results about the Ulam stability of delay
differential equations. However, there are a few results about the Ulam stability of delay
integro-differential equations.

In fact, delay integro-differential equations are usually used to describe many natural
phenomena in the fields of thermodynamics, mechanics, mechanical engineering and
control. See [14–17]. Mechanical processes, such as rigid heat conduction process [18]
and the motion of charged particles with a delayed interaction [19], can be modeled by
delay integro-differential equations. Furthermore, the delay integro-differential equation
is an appropriate model for studying the effect of tire dynamics on a vehicle shimmy [20]
and the optimal control of a size-structured population [21], which is one of its important
applications. The mathematical model related to the delay integro-differential equation
is an interesting memory effect model. However, new difficulties may arise when delay
and integro-differential equations are introduced simultaneously. Some topics about delay
integro-differential equations, such as the existence and uniqueness of solutions and Ulam
stability, have attracted the attention of many scholars. See [12,14,15,22].

In [23], Otrocol studied Ulam stability of a first-order delay differential equation:

u′(t) = g(t, u(t), u(τ(t))), t ∈ [t0, t1],

where g ∈ C([t0, t1]×R2,R); delay function τ(t) ≤ t, τ ∈ C([t0, t1], [t0 − l, t1]), l > 0.

Mathematics 2021, 9, 3029. https://doi.org/10.3390/math9233029 https://www.mdpi.com/journal/mathematics
14



Mathematics 2021, 9, 3029

In 2015, Kendre [24] discussed the existence of a solution for an integro-differential
equation: ⎧⎨⎩u′(t) = g

(
t, u(u(t)),

∫ t

t0

k(t, s)u(u(s))ds
)

, t ∈ [t0, t1],

u(t0) = u0,
(1)

where G = [t0, t1], g ∈ C(G3, G); k ∈ C(G2, G); t0, u0 ∈ G.
In 2016, Sevgin [25] investigated the Ulam stability of the Volterra integro-differential

equation:

u′(t) = f (t, u(t)) +
∫ t

0
g(t, s, u(s))ds, t ∈ [0, t0],

where f ∈ C([0, t0]×R,R); g ∈ C([0, t0]× [0, t0]×R,R).
In 2018, Kishor [26] established the Ulam stability of the semilinear Volterra integro-

differential equation:

u′(t) = Tu(t) + g
(

t, u(t),
∫ t

0
z(t, s, u(s))ds

)
, t ∈ [0, t0],

where T : U → U is the infinitesimal generator; U is Banach space; g ∈ C([0, t0]×R2,R);
z ∈ C([0, t0]×R2,R).

In 2019, Zada [27] obtained the Ulam stability for the following n-th order delay
differential equation:{

u(n)(s) = z(s, {u(0)}, {u(1)}, . . . , {u(n−1)}), s ∈ [s0, s0 + η],
u(s) = χ(s), s ∈ [s0 − ζ, s0],

(2)

where {u(j)} = {u(j)(s), u(j)(λ1(s)), u(j)(λ2(s)), . . . , u(j)(λk(s))}, j = 0, 1, . . . , n − 1; delay
functions λk ∈ C([s0, s0 + η], [s0 − ζ, s0 + η]), λk(s) ≤ s, k ∈ Z+; ζ > 0, η > 0, s0 are
constants; z ∈ C(B̃,R), B̃ ⊂ [s0, s0 + η]×Rn(k+1) is closed set; χ : [s0 − ζ, s0] → R.

However, the existence and uniqueness of solutions and Ulam stability for n-th delay
integro-differential equations have not been studied hitherto. Inspired by [24,25,27], we
study Ulam stability for the following n-th order delay integro-differential equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(n)(s) = z
(

s, u(0), . . . , u(n−1), u(0)(λ), . . . , u(n−1)(λ),
∫ s

s0

g(τ, u(0), . . . , u(n−1))dτ

)
,

u(s) = χ(s), s ∈ [s0 − ζ, s0],

u(j)(s0) = χ(j)(s0), j = 1, . . . , n − 1,

(3)

where the definition domain of the first formula of Equation (3) is [s0, s0 + η], where u(j) =
u(j)(s), u(j)(λ) = u(j)(λ(s)), j = 0, . . . , n − 1; delay function λ(s) ≤ s, λ ∈ C([s0, s0 + η],
[s0 − ζ, s0 + η]); z ∈ C(B,R), B ⊂ [s0, s0 + η] × R2n+1 is closed set; g ∈ C(H,R), H ⊂
[s0, s0 + η]×Rn is closed set; χ ∈ Cn([s0 − ζ, s0],R).

The aim of our paper is to study the Ulam stability and the existence and uniqueness
of solutions for Equation (3). The main tools used in this paper are Lipschitz conditions
and Gronwall–Bellman inequality.

The remainder of the paper is organized as follows: In Section 2, we give definitions
and lemmas, which are essential for Section 3. In Section 3, we state some Lipschitz
conditions, which will be helpful to prove the existence and uniqueness results for a delay
integro-differential equation; then the Ulam stability for the delay integro-differential
equation is given. In Section 4, we give two examples to illustrate main results.
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2. Preliminaries

In this paper, we denote R+ := [0, ∞), J1 := [s0 − ζ, s0 + η], J2 := [s0, s0 + η], J3 :=
[s0 − ζ, s0]. Let C(J1,R) be real Banach space of all continuous functions with norm:

‖u‖ = sup{|u(s)|; s ∈ J1}.

Definition 1. Equation (3) is Hyers–Ulam stable on J1 if there exists C > 0 such that for θ > 0
and each solution v(s) of the inequality⎧⎨⎩

∣∣∣∣v(n)(s)− z
(

s, v(0), . . . , v(n−1)(λ),
∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)∣∣∣∣ ≤ θ, s ∈ J2,

|v(s)− χ(s)| ≤ θ, s ∈ J3,
(4)

there exists a solution u(s) ∈ C(J1,R)
⋂

Cn(J2,R) of Equation (3) with

|v(s)− u(s)| ≤ C · θ, s ∈ J1.

Definition 2. Equation (3) is Hyers–Ulam–Rassias stable with respect to σ(s) on J1 if there exists
Kz,g,σ > 0 such that for each solution v(s) of the inequality⎧⎨⎩

∣∣∣∣v(n)(s)− z
(

s, v(0), . . . , v(n−1)(λ),
∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)∣∣∣∣ ≤ σ(s), s ∈ J2,

|v(s)− χ(s)| ≤ σ(s), s ∈ J3,
(5)

there exists a solution u(s) ∈ C(J1,R)
⋂

Cn(J2,R) of Equation (3) with

|v(s)− u(s)| ≤ Kz,g,σ · σ(s), s ∈ J1.

Lemma 1 (see [28]). Assume that f ∈ C(R, Q), then n-th repeated integrable of f based at s0,

f (−n)(s) =
∫ s

s0

∫ s1

s0

∫ s2

s0

∫ s3

s0

. . .
∫ sn−1

s0

f (sn)dsndsn−1 . . . ds2ds1,

is given by

f (−n)(s) =
1

(n − 1)!

∫ s

s0

(s − τ)n−1 f (τ)dτ.

Theorem 1. A function u(s)∈ C(J1,R)
⋂

Cn(J2,R) is a solution of the delay integro-differential
equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(n)(s) = z
(

s, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),
∫ s

s0

g(τ, u(0), . . . , u(n−1))dτ

)
, s ∈ J2,

u(s) = χ(s), s ∈ J3,

u(j)(s0) = χ(j)(s0), j = 1, . . . , n − 1,

(6)

if and only if u(s) is a solution of the integral equation

u(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1
∑

j=0

(s−s0)jχ(j)(s0)
j! + 1

(n−1)!

∫ s

s0

(s − τ)n−1

·z
(

τ, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ, s ∈ J2,

χ(s), s ∈ J3.

(7)
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Proof. For n = 1, from (6), we have

u(1)(s) = z
(

s, u(0), u(0)(λ),
∫ s

s0

g(τ, u(0))dτ

)
,

u(s0) = χ(s0),

then by integral formula, we have

u(s) = χ(s0) +
∫ s

s0

z
(

τ, u(0), u(0)(λ),
∫ τ

s0

g(r, u(0))dr
)

dτ, s ∈ J2.

This means that (7) holds for n = 1.
For n = k, from (6), we have

u(k)(s) = z
(

s, u(0), . . . , u(0)(λ), . . . , u(k−1)(λ),
∫ s

s0

g(τ, u(0), . . . , u(k−1))dτ

)
,

u(j)(s0) = χ(j)(s0), j = 1, . . . , k − 1.

Assume for n = k, (7) holds; that is,

u(s) =
k−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
+

1
(k − 1)!

∫ s

s0

(s − τ)k−1 · z
(

τ, u(0), . . . , u(0)(λ), . . . ,

u(k−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(k−1))dr
)

dτ, s ∈ J2.

Hence, for n = k + 1, from (6), we have

u(k+1)(s) = z
(

s, u(0), . . . , u(0)(λ), . . . , u(k)(λ),
∫ s

s0

g(τ, u(0), . . . , u(k))dτ

)
,

then by the integral formula, we have

u(k)(s) = χ(j)(s0) +
∫ s

s0

z
(

τ, u(0), . . . , u(0)(λ), . . . , u(k)(λ),
∫ τ

s0

g(r, u(0), . . . , u(k))dr
)

dτ.

From the inductive hypothesis and Lemma 1, we have

u(s) =
k−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
+

1
(k − 1)!

∫ s

s0

(s − τ)k−1 · χ(j)(s0)dτ

+
1

(k − 1)!

∫ s

s0

(s − τ)k−1
∫ τ

s0

z
(

r, u(0), . . . , u(0)(λ), . . . , u(k)(λ),∫ r

s0

g(t, u(0), . . . , u(k))dt
)

drdτ

=
k

∑
j=0

(s − s0)
jχ(j)(s0)

j!
+

1
k!

∫ s

s0

(s − τ)k · z
(

τ, u(0), . . . , u(0)(λ), . . . ,

u(k)(λ),
∫ τ

s0

g(r, u(0), . . . , u(k))dr
)

dτ.

Hence, by mathematical induction, the conclusion is estabilished.

Lemma 2 (see [23]). (abstract Gronwall lemma) Let (Y, d) be an ordered metric space and
A : Y −→ Y be an increasing Picard operator (FA = {xA

∗}). Then, for x ∈ Y, x ≤ A(x)
implies x ≤ xA

∗ and x ≥ A(x) implies x ≥ xA
∗.
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Lemma 3 (see [29]). (Gronwall lemma) Assume that u(s), b(s) ∈ C([a,+∞),R+), T > 0 is
constant. If u(s) ∈ C([a,+∞),R+) satisfies

u(s) ≤ T +
∫ s

a
b(τ)u(τ)dτ, s ∈ [a,+∞),

then

u(s) ≤ T exp
(∫ s

a
b(τ)dτ

)
, s ∈ [a,+∞).

Lemma 4 (see [30]). Assume that w(s), d(s), l(s), m(s), n(s) ∈ C(R+,R+) and d(s), l(s) are
nondecreasing functions on R+. If w(s) satisfies the delay integral inequality

wh(s) ≤ d(s) + l(s)
∫ s

0

[
m(τ)wa(σ(τ)) + n(τ)wb(τ) +

∫ τ

0
z(r)wc(r)dr

]
dτ, s ∈ R

+,

with initial conditions

w(s) = r(s), s ∈ [α, 0]; r(σ(s)) ≤ d(s)
1
h , s ∈ R

+and σ(s) ≤ 0,

where h �= 0, h ≥ a ≥ 0, h ≥ b ≥ 0, h ≥ c ≥ 0 and h, a, b, c are constants; σ(s) ∈ C(R+,R) and
σ(s) ≤ s; −∞ < α = inf{σ(s), s ∈ R+} ≤ 0 and r(s) ∈ C([α, 0],R+), then

w(s) ≤
[

d(s) + l(s)U(s) exp
(∫ s

0
V(τ)dτ

)] 1
h
,

where, for any H > 0, s ∈ R+,

U(s) =
∫ s

0
m(τ)

[(
a
h

H
a−h

h d(τ) +
h − a

h
H

a
h

)
+ g(τ, s)

(
b
h

H
b−h

h d(τ) +
h − b

h
H

b
h

)
+

∫ τ

0
z(r)

(
c
h

H
c−h

h d(r) +
h − c

h
H

c
h

)
dr

]
dτ,

V(s) =
(

a
h

H
a−h

h m(s) +
b
h

H
b−h

h n(s)
)

l(s) +
∫ s

0
z(τ)l(τ)

c
h

H
c−h

h dτ.

3. Existence and Stability Results for the Delay Integro-Differential Equation

Before stating the main theorems, we give the following Lipschitz conditions:
(S1):

|z(s, u(0), . . . , u(n−1), u(0), . . . , u(n−1), ũ)− z(s, v(0), . . . , v(n−1), v(0), . . . , v(n−1), ṽ)|

≤ Kz

n−1

∑
j=0

[|u(j) − v(j)|+ |u(j) − v(j)|] + M|ũ − ṽ|,

where Kz > 0, M > 0, u(j) = u(j)(λ), v(j) = v(j)(λ).
(S2):

|g(s, u(0), . . . , u(n−1))− g(s, v(0), . . . , v(n−1))| ≤ N
n−1

∑
j=0

|u(j) − v(j)|,

where N > 0.
(S3):

|z(s, u(0), . . . , u(n−1), u(0), . . . , u(n−1), ũ)− z(s, v(0), . . . , v(n−1), v(0), . . . , v(n−1), ṽ)|
≤ e(s)|u(0) − v(0)|l + k(s)|u(0) − v(0)|m + M(s)|ũ − ṽ|,
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where e(s), k(s), M(s) > 0, s ∈ J1; l, m ∈ (0, 1]; u(0) = u(0)(λ), v(0) = v(0)(λ).
(S4):

|g(s, u(0), . . . , u(n−1))− g(s, v(0), . . . , v(n−1))| ≤ N(s)|u(0) − v(0)|n,

where N(s) > 0 , s ∈ J1; n ∈ (0, 1].
(S5):
Assume σ(s) is a function from J2 to R+ and there exists Lσ > 0 such that∫ s

τ
σ(r)dr ≤ Lσ · σ(s), s ∈ J2.

Firstly, we give the existence and uniqueness of a solution for (3).

Theorem 2. Assume that (S1) and (S2) hold. If ηn

(n−1)! (2Kz + MNη) < 1, then Equation (3) has
a unique solution.

Proof. (i) We define the operator γ as follows:

(γu)(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1
∑

j=0

(s−s0)
jχ(j)(s0)
j! + 1

(n−1)!

∫ s

s0

(s − τ)n−1

·z
(

τ, u(0), . . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ, s ∈ J2,

χ(s), s ∈ J3.

(8)

Since z ∈ C(B,R), γ is well defined. Let u1(s), u2(s) ∈ C(J1,R)
⋂

Cn(J2,R), for any
s ∈ J3. Then we have

|(γu1)(s)− (γu2)(s)| = 0.

For all s ∈ J2, by condition (S1) and (S2), we have

|(γu1)(s)− (γu2)(s)|

=

∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1
[

z
(

τ, u(0)
1 , . . . , u(n−1)

1 (λ),
∫ τ

s0

g(r, u(0)
1 , . . . , u(n−1)

1 )dr
)

− z
(

τ, u(0)
2 , . . . , u(n−1)

2 , u(0)
2 (λ), . . . , u(n−1)

2 (λ),
∫ τ

s0

g(r, u(0)
2 , . . . , u(n−1)

2 )dr
)]

dτ

∣∣∣∣
≤ 1
(n − 1)!

∣∣∣∣ ∫ s

s0

(s − τ)n−1
[

Kz

n−1

∑
j=0

(
|u(j)

1 − u(j)
2 |+ |u1

(j) − u2
(j)|

)

+ MN
∫ τ

s0

n−1

∑
j=0

|u(j)
1 − u(j)

2 |dr
]

dτ

∣∣∣∣
≤
∣∣∣∣ ∫ s

s0

(s − τ)n−1

(n − 1)!

[
Kz

n−1

∑
j=0

(
sup |u(j)

1 − u(j)
2 |+ sup |u1

(j) − u2
(j)|

)

+ MN
∫ τ

s0

n−1

∑
j=0

sup |u(j)
1 − u(j)

2 |dr
]

dτ

∣∣∣∣
≤ 1
(n − 1)!

∣∣∣∣ ∫ s

s0

(s − τ)n−1
(

2Kzn‖u1 − u2‖+ MNηn‖u1 − u2‖
)

dτ

∣∣∣∣
≤ ηn

(n − 1)!
(2Kz + MNη)‖u1 − u2‖,

where u(j)
i = u(j)

i (λ), i = 1, 2, j = 0, 1, . . . , n.

19



Mathematics 2021, 9, 3029

Since ηn

(n−1)! (2Kz + MNη) < 1, for u1(s), u2(s) ∈ C(J1,R)
⋂

Cn(J2,R), the operator γ

is a Banach contraction. By Banach contraction principle, the operator γ has a unique fixed
point u∗ ∈ C(J1,R)

⋂
Cn(J2,R); thus, Equation (3) has a unique solution.

Next, we obtain the following Ulam stability results.

Theorem 3. If the assumptions of the Theorem 2 are satisfied, Equation (3) is Hyers–Ulam stable
on J1.

Proof. Let u(s) ∈ C(J1,R)
⋂

Cn(J2,R) be a unique solution of delay integro-differential
equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(n)(s) = z
(

s, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),
∫ s

s0

g(τ, u(0), . . . , u(n−1))dτ

)
, s ∈ J2,

u(s) = χ(s), s ∈ J3,
u(j)(s0) = χ(j)(s0), j = 1, . . . , n − 1.

(9)
Since z ∈ C(J2 ×R2n+1,R), λ ∈ C(J2, J1), from Theorem 1, we have

u(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1
∑

j=0

(s−s0)
jχ(j)(s0)
j! + 1

(n−1)!

∫ s

s0

(s − τ)n−1

·z
(

τ, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ, s ∈ J2,

χ(s), s ∈ J3.
(10)

Let v(s) ∈ C(J1,R)
⋂

Cn(J2,R) satisfy the following inequality:⎧⎨⎩
∣∣∣∣v(n)(s)− z

(
s, v(0), . . . , v(n−1)(λ),

∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)∣∣∣∣ ≤ θ, s ∈ J2,

|v(s)− χ(s)| ≤ θ, s ∈ J3.
(11)

Let

v(n)(s) = z
(

s, v(0), . . . , v(n−1)(λ),
∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)
+ F(s),

from (11), this implies that

|F(s)| ≤ θ, s ∈ J2.

By Theorem 1, we have

v(s) =
n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
+

1
(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1)(λ),

∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ +
1

(n − 1)!

∫ s

s0

(s − τ)n−1F(τ)dτ,

then ∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1)(λ),

∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣
=

∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1F(τ)dτ

∣∣∣∣
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≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1|F(τ)|dτ

≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1dτ · θ

≤ηnθ.

For all s ∈ J3,

|v(s)− u(s)| = 0.

For any s ∈ J2,

|v(s)− u(s)|

≤
∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1), v(0)(λ),

. . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣+ 1
(n − 1)!

∫ s

s0

(s − τ)n−1 ·
∣∣∣∣z(τ, v(0),

. . . , v(n−1), v(0)(λ), . . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)
− z

(
τ, u(0),

. . . , u(n−1), u(0)(λ), . . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)∣∣∣∣dτ

≤ηnθ +
1

(n − 1)!

∫ s

s0

(s − τ)n−1
[

Kz

n−1

∑
j=0

(
|v(j) − u(j)|+ |v(j) − u(j)|

)

+ MN
∫ τ

s0

n−1

∑
j=0

|v(j) − u(j)|dr
]

dτ,

where u(j) = u(j)(λ), v(j) = v(j)(λ).
From the above inequality, we define the operator A as follows:

for all s ∈ J2,

(
Ay(j)

)
(s) = ηnθ +

1
(n − 1)!

∫ s

s0

(s − τ)n−1
[

Kz

n−1

∑
j=0

(y(j) + y(j)) + MN
∫ τ

s0

n−1

∑
j=0

y(j)dr
]

dτ,

for all s ∈ J3, (
Ay(j)

)
(s) = 0,

where ȳ(j) = y(j)(λ), j = 0, 1, . . . , n.
For all s ∈ J2,∣∣∣(Ay1

(j)
)
(s)−

(
Ay2

(j)
)
(s)

∣∣∣
≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1
[

Kz

n−1

∑
j=0

(
|y1

(j) − y2
(j)|+ |y1

(j) − y2
(j)|

)

+ MN
∫ τ

s0

n−1

∑
j=0

|y1
(j) − y2

(j)|dr
]

dτ

≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1ds(2Kzn + MNηn)‖y1
(j) − y2

(j)‖

≤ ηn

(n − 1)!
(2Kz + MNη)‖y1

(j) − y2
(j)‖,
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where ȳ(j)
i = y(j)

i (λ), i = 1, 2, j = 0, 1, . . . , n.
Since

ηn

(n − 1)!
(2Kz + MNη) < 1,

A is a strict contraction operator.
By the contraction mapping theorem, A has a unique fixed point {ω(j)}, so

ω(j)(s) = ηnθ +
1

(n − 1)!

∫ s

s0

(s − τ)n−1
[

Kz

n−1

∑
j=0

(
ω(j) + ω(j)

)
+ MN

∫ τ

s0

n−1

∑
j=0

ω(j)dr
]

dτ, s ∈ J2.

Since
(

ω(j)(s)
)′ ≥ 0, ω(j)(s) is a nondecreasing function, we have

ω(j)(λ(s)) = ω(j)(s) ≤ ω(j)(s),

ω(j)(s) ≤ ηnθ +
1

(n − 1)!

∫ s

s0

(s − τ)n−1
(

2Kz

n−1

∑
j=0

ω(j) + MN
∫ τ

s0

n−1

∑
j=0

ω(j)dr
)

dτ

≤ ηnθ +
1

(n − 1)!

n−1

∑
j=0

(2Kz + MNη)
∫ s

s0

(s − τ)n−1ω(j)dτ

≤ ηnθ +
n

(n − 1)!
(2Kz + MNη)

∫ s

s0

(s − τ)n−1ω(j)dτ.

From Lemma 3, we obtain

ω(j)(s) ≤ C · θ, C = ηnexp
(
(2Kz + MNη)ηn

(n − 1)!

)
.

Since

|v(s)− u(s)| ≤
(

Ay(j)
)
(s),

then

|v(s)− u(s)| ≤
(

Aw(j)
)
(s) = w(j)(s) ≤ C · θ.

From Definition 1, Equation (3) is Hyers–Ulam stable.

Theorem 4. Assume that (S3) and (S4) hold; then Equation (3) is Hyers–Ulam stable on J1.

Proof. Let u(s) ∈ C(J1,R)
⋂

Cn(J2,R) be a solution of delay integro-differential equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(n)(s) = z

(
s, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),

∫ s

s0

g(τ, u(0), . . . , u(n−1))dτ

)
, s ∈ J2,

u(s) = χ(s), s ∈ J3,
u(j)(s0) = χ(j)(s0), j = 1, . . . , n − 1.

(12)

Since z ∈ C(J2 ×R2n+1,R), λ ∈ C(J2, J1), from Theorem 1, we have

u(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1
∑

j=0

(s−s0)
jχ(j)(s0)
j! + 1

(n−1)!

∫ s

s0

(s − τ)n−1

·z
(

τ, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ, s ∈ J2,

χ(s), s ∈ J3.

(13)
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Let v(s) ∈ C(J1,R)
⋂

Cn(J2,R) satisfying inequality⎧⎨⎩
∣∣∣∣v(n)(s)− z

(
s, v(0), . . . , v(n−1)(λ),

∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)∣∣∣∣ ≤ θ, s ∈ J2,

|v(s)− χ(s)| ≤ θ, s ∈ J3.
(14)

Let

v(n)(s) = z
(

s, v(0), . . . , v(n−1)(λ),
∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)
+ F(s),

from (14), this implies that

|F(s)| ≤ θ, s ∈ J2.

By Theorem 1, we have

v(s) =
n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
+

1
(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1)(λ),

∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ +
1

(n − 1)!

∫ s

s0

(s − τ)n−1F(τ)dτ,

then ∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1)(λ),

∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣
=

∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1F(τ)dτ

∣∣∣∣
≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1|F(τ)|dτ

≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1dτ · θ

≤ηnθ.

For all s ∈ J3,

|v(s)− u(s)| = 0.

For any s ∈ J2,

|v(s)− u(s)|

=

∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, u(0), . . . , u(n−1), u(0)(λ),

. . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ

∣∣∣∣
=

∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1), v(0)(λ),

. . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣+ ∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0),
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. . . , v(n−1), v(0)(λ), . . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

− 1
(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, u(0), . . . , u(n−1), u(0)(λ),

. . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ

∣∣∣∣
≤
∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1),

v(0)(λ), . . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣
+

∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1
[

e(τ)|v(0) − u(0)|l + k(τ)|v(0)(λ)− u(0)(λ)|m

+
∫ τ

s0

M(τ)N(r)|v(0) − u(0)|ndr
]

dτ

∣∣∣∣,
then

|v(s)− u(s)| ≤ηnθ +
1

(n − 1)!

∫ s

s0

(s − τ)n−1
[

e(τ)|v − u|l + k(τ)|v(λ)− u(λ)|m

+
∫ τ

s0

M(τ)N(r)|v − u|ndr
]

dτ.

From Lemma 4, set h = 1, a = m, b = l, c = n, w(s) = |v(s) − u(s)|, d(s) = ηnθ,
l(s) = 1

(n−1)! , m(τ) = (s − τ)n−1k(τ), n(τ) = (s − τ)n−1e(τ),z(r) = (s − τ)n−1M(τ)N(r);
we have

|v(s)− u(s)| ≤ ηnθ +
1

(n − 1)!
U(s)exp

(∫ s

s0

V(τ)dτ

)
,

|v(s)− u(s)| ≤
[

ηn +
1

(n − 1)!
U(s)

θ
exp

(∫ s

s0

V(τ)dτ

)]
· θ ≤ Kz,θ · θ,

where for any H > 0,

Kz,θ = max
s∈J1

{
ηn +

1
(n − 1)!

U(s)
θ

exp
(∫ s

s0

V(τ)dτ

)}
,

U(s) =
∫ s

s0

[
(s − τ)n−1k(τ)

(
mHm−1ηnθ + (1 − m)Hm

)
+ g(τ, s)

(
lHl−1ηnθ + (1 − l)Hl

)
+

∫ τ

s0

(s − τ)n−1M(τ)N(r)
(

nHn−1ηnθ + (1 − n)Hn
)

dr
]

dτ,

V(s) =
1

(n − 1)!

∫ s

s0

(s − τ)n−1M(τ)N(τ)nHn−1dτ.

From Definition 1, Equation (3) is Hyers–Ulam stable.

Theorem 5. Assume that (S3), (S4) and (S5) hold; then Equation (3) is Hyers–Ulam–Rassias
stable with respect to σ(s) on J1.

Proof. Let u(s) ∈ C(J1,R)
⋂

Cn(J2,R) be a unique solution of delay integro-differential
equation
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(n)(s) = z

(
s, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),

∫ s

s0

g(τ, u(0), . . . , u(n−1))dτ

)
, s ∈ J2,

u(s) = χ(s), s ∈ J3,
u(j)(s0) = χ(j)(s0), j = 1, . . . , n − 1.

(15)

Since z ∈ C(J2 ×R2n+1,R), λ ∈ C(J2, J1), from Theorem 1, we have

u(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1
∑

j=0

(s−s0)
jχ(j)(s0)
j! + 1

(n−1)!

∫ s

s0

(s − τ)n−1

·z
(

τ, u(0), . . . , u(0)(λ), . . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ, s ∈ J2,

χ(s), s ∈ J3.

(16)

Let v(s) ∈ C(J1,R)
⋂

Cn(J2,R) satisfy the following inequality⎧⎨⎩
∣∣∣∣v(n)(s)− z

(
s, v(0), . . . , v(n−1)(λ),

∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)∣∣∣∣ ≤ σ(s), s ∈ J2,

|v(s)− χ(s)| ≤ σ(s), s ∈ J3.
(17)

Let

v(n)(s) = z
(

s, v(0), . . . , v(n−1)(λ),
∫ s

s0

g(τ, v(0), . . . , v(n−1))dτ

)
+ F(s),

from (17), this implies that

|F(s)| ≤ σ(s), s ∈ J2.

By Theorem 1, we have

v(s) =
n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
+

1
(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1)(λ),

∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ +
1

(n − 1)!

∫ s

s0

(s − τ)n−1F(τ)dτ;

then ∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1)(λ),

∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣
=

∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1F(τ)dτ

∣∣∣∣
≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1|F(τ)|dτ

≤ 1
(n − 1)!

∫ s

s0

(s − τ)n−1σ(τ)dτ.

By Lemma 1 and condition (S5), we obtain∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1)(λ),

∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣
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≤
∫ s

s0

∫ s1

s0

∫ s2

s0

∫ s3

s0

. . .
∫ sn−1

s0

σ(sn)dsndsn−1 . . . ds2ds1

≤Lσ
n · σ(s).

For all s ∈ J3,

|v(s)− u(s)| = 0.

For any s ∈ J2,

|v(s)− u(s)|

=

∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, u(0), . . . , u(n−1), u(0)(λ),

. . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ

∣∣∣∣
=

∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1), v(0)(λ),

. . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣+ ∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0),

. . . , v(n−1), v(0)(λ), . . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

− 1
(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, u(0), . . . , u(n−1), u(0)(λ),

. . . , u(n−1)(λ),
∫ τ

s0

g(r, u(0), . . . , u(n−1))dr
)

dτ

∣∣∣∣
≤
∣∣∣∣v(s)− n−1

∑
j=0

(s − s0)
jχ(j)(s0)

j!
− 1

(n − 1)!

∫ s

s0

(s − τ)n−1z
(

τ, v(0), . . . , v(n−1), v(0)(λ),

. . . , v(n−1)(λ),
∫ τ

s0

g(r, v(0), . . . , v(n−1))dr
)

dτ

∣∣∣∣
+

∣∣∣∣ 1
(n − 1)!

∫ s

s0

(s − τ)n−1
[

e(τ)|v(0) − u(0)|l + k(τ)|v(0)(λ)− u(0)(λ)|m

+
∫ τ

s0

M(τ)N(r)|v(0) − u(0)|ndr
]

dτ

∣∣∣∣;
then

|v(s)− u(s)|

≤Lσ
nσ(s) +

1
(n − 1)!

∫ s

s0

(s − τ)n−1
[

e(τ)|v − u|l + k(τ)|v(λ)− u(λ)|m

+
∫ τ

s0

M(τ)N(r)|v − u|ndr
]

dτ.

From Lemma 4, set h = 1, a = m, b = l, c = n, w(s) = |v(s)− u(s)|, d(s) = Lσ
nσ(s),

l(s) = 1
(n−1)! , m(τ) = (s − τ)n−1k(τ), n(τ) = (s − τ)n−1e(τ), z(r) = (s − τ)n−1M(τ)N(r);

thus, we have

|v(s)− u(s)| ≤ Lσ
nσ(s) +

1
(n − 1)!

U(s)exp
(∫ s

s0

V(τ)dτ

)
,
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|v(s)− u(s)| ≤
[

Lσ
n +

1
(n − 1)!

U(s)
σ(s)

exp
(∫ s

s0

V(τ)dτ

)]
· σ(s) ≤ Kσ · σ(s),

where for any H > 0,

Kσ = max
s∈J1

{
Lσ

n +
1

(n − 1)!
U(s)
σ(s)

exp
(∫ s

s0

V(τ)dτ

)}
,

U(s) =
∫ s

s0

[
(s − τ)n−1k(τ)

(
mHm−1Lσ

nσ(τ) + (1 − m)Hm
)
+ g(τ, s)

(
lHl−1Lσ

nσ(τ)

+ (1 − l)Hl
)
+

∫ τ

s0

(s − τ)n−1M(τ)N(r)
(

nHn−1Lσ
nσ(r) + (1 − n)Hn

)
dr

]
dτ,

V(s) =
1

(n − 1)!

∫ s

s0

(s − τ)n−1M(τ)N(τ)nHn−1dτ.

From Definition 2, Equation (3) is Hyers–Ulam–Rassias stable.

4. Examples

Example 1. We consider the delay integro-differential equation

du(s)
ds

= es
[

1
|u(s)|+ 8

+
1

|u(λ(s))|+ 8
+

1
64

∫ s

0
e−τ 1

|u(τ)|+ 8
dτ

]
and the inequality∣∣∣∣du(s)

ds
− es

[
1

|u(s)|+ 8
+

1
|u(λ(s))|+ 8

+
1
64

∫ s

0
e−τ 1

|u(τ)|+ 8
dτ

]∣∣∣∣ ≤ σ(s).

Set z(s, u(s), u(λ(s)), v) = es
[

1
|u(s)|+8 + 1

|u(λ(s))|+8 + 1
64 v

]
, g(s, u(s)) = e−s 1

|u(s)|+8 ,
s ∈ [0, 2].

For any s ∈ [0, 2], we obtain

|z(s, u1(s), u1(λ(s)), v1)− z(s, u2(s), u2(λ(s)), v2)|
= es

∣∣∣∣ (|u2(s)| − |u1(s)|)
(|u1(s)|+ 8)(|u2(s)|+ 8)

+
(|u2(λ(s))| − |u1(λ(s))|)

(|u1(λ(s))|+ 8)(|u2(λ(s))|+ 8)
+

1
64

(v1 − v2)

∣∣∣∣
≤ es

64
|u1(s)− u2(s)|+ es

64
|u1(λ(s))− u2(λ(s))|+ 1

64
|v1(s)− v2(s)|.

Here, e(s) = es

64 , k(s) = es

64 , M(s) = es

64 , l = m = 1.

|g(s, u1(s))− g(s, u2(s))| = e−s
∣∣∣∣ |u2(s)| − |u1(s)|
(|u1(s)|+ 8)(|u2(s)|+ 8)

∣∣∣∣ ≤ e−s

64
|u1(s)− u2(s)|.

Here, N(s) = es

64 , n = 1.
Thus, (S1) and (S2) hold, ηn

(n−1)! (2Kz + MNη) = 23
50 < 1. From Theorem 2, Equation has a

unique solution

u(s) =
∫ s

0
eτ

[
1

|u(τ)|+ 8
+

1
|u(λ(τ))|+ 8

+
1
64

∫ τ

0
e−t 1

|u(t)|+ 8
dt
]

dτ.

Let σ(s) = es,
∫ s

0 σ(τ) =
∫ s

0 eτ = es − 1 ≤ es, we have Lσ = 1 > 0.
As v(s) satisfies the inequality∣∣∣∣dv(s)

ds
− es

[
1

|v(s)|+ 8
+

1
|v(λ(s))|+ 8

+
1
64

∫ s

0
e−τ 1

|v(τ)|+ 8
dτ

]∣∣∣∣ ≤ es,
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we have∣∣∣∣v(s)− ∫ s

0
eτ

[
1

|v(τ)|+ 8
+

1
|v(λ(τ))|+ 8

+
1

64

∫ τ

0
e−t 1

|v(t)|+ 8
dt
]

dτ

∣∣∣∣ ≤ es.

Since (S3), (S4) and (S5) hold, from Theorem 5, we have

|v(s)− u(s)|

≤ es +
∫ s

0

[
eτ

64
|v(τ)− u(τ)|+ eτ

64
|v(λ(τ))− u(λ(τ))|+

∫ τ

0

e−r

642 |v(r)− u(r)|dr
]

dτ

≤ 57
500

es.

Hence, the equation is Hyers–Ulam–Rassias stable.

Example 2. Consider the equation

du(s)
ds

= −1
8

1
|u(s)|+ 1

− 1
8

1
|u(λ(s))|+ 1

− 1
64

∫ s

0

1
|u(τ)|+ 1

dτ.

Set z(s, u(s), u(λ(s)), v) = − 1
8

1
|u(s)|+1 − 1

8
1

|u(λ(s))|+1 − 1
64 v, g(s, u(s)) = 1

|u(τ)|+1 , s ∈
[0, 2].

For any s ∈ [0, 2], we obtain

|z(s, u1(s), u1(λ(s)), v1)− z(s, u2(s), u2(λ(s)), v2)|
=

1
8

∣∣∣∣ (|u2(s)| − |u1(s)|)
(|u1(s)|+ 1)(|u2(s)|+ 1)

+
1
8

(|u2(λ(s))| − |u1(λ(s))|)
(|u1(λ(s))|+ 1)(|u2(λ(s))|+ 1)

+
1

64
(v2 − v1)

∣∣∣∣
≤ 1

8
|u1(s)− u2(s)|+ 1

8
|u1(λ(s))− u2(λ(s))|+ 1

64
|v1(s)− v2(s)|,

|g(s, u1(s))− g(s, u2(s))| =
∣∣∣∣ |u2(s)| − |u1(s)|
(|u1(s)|+ 1)(|u2(s)|+ 1)

∣∣∣∣ ≤ |u1(s)− u2(s)|.

Thus, (S1) and (S2) hold, ηn

(n−1)! (2Kz + MNη) = 9
16 < 1. From Theorem 2, the equation

has a unique solution:

u(s) = −
∫ s

0

1
8

[
1

|u(τ)|+ 1
+

1
8

1
|u(λ(τ))|+ 1

+
1
64

∫ τ

0

1
|u(t)|+ 1

dt
]

dτ.

Let v(s) = es and choose θ = 9
32 . We have∣∣∣∣dv(s)

ds
−

[
−1

8
1

|v(s)|+ 1
− 1

8
1

|v(λ(s))|+ 1
− 1

64

∫ s

0

1
|v(τ)|+ 1

dτ

]∣∣∣∣
=

∣∣∣∣1
8

1
|v(s)|+ 1

+
1
8

1
|v(λ(s))|+ 1

+
1
64

∫ s

0

1
|v(τ)|+ 1

dτ − e−s
∣∣∣∣ ≤ 9

32
= θ.

Since (S3) and (S4) hold, from Theorem 4, we have

|v(s)− u(s)|
≤ 2θ +

∫ s

0

[
1
8
|v(τ)− u(τ)|+ 1

8
|v(λ(τ))− u(λ(τ))|+

∫ τ

0

1
64

|v(r)− u(r)|dr
]

dτ

≤ 16
5

θ.

Hence, the equation is Hyers–Ulam stable.
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5. Conclusions

Based on Gronwall–Bellman inequality, we have proved the Ulam stability of n-
th order delay integro-differential equations. By applying Lipschitz conditions and the
Banach contraction principle, the existence and uniqueness theorem of a solution was
given. In addition, the expression of the solution played a great role in the proof of the
main theorems. The Ulam stability of the n-th order delay integro-differential equation is
related to many applications, such as the effect of tire dynamics on vehicle shimmy and
optimal control of a size-structured population, and the research in this field is still open.
In future work, we recommend that interested scholars extend their work to the Ulam
stability of a fractional delay integro-differential equation with a Caputo derivative.
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Abstract: In this paper, we study semi-Hyers–Ulam–Rassias stability and generalized semi-Hyers–
Ulam–Rassias stability of differential equations x′(t) + x(t − 1) = f (t) and x′′(t) + x′(t − 1) = f (t),
x(t) = 0 if t ≤ 0, using the Laplace transform. Our results complete those obtained by S. M. Jung
and J. Brzdek for the equation x′(t) + x(t − 1) = 0.
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1. Introduction

The study of Ulam stability began in 1940, when Ulam posed a problem concerning
the stability of homomorphisms (see [1]). In 1941, Hyers [2] gave an answer, in the case of
the additive Cauchy equation in Banach spaces, to the problem posed by Ulam [1].

In 1993, Obloza [3] started the study of Hyers–Ulam stability of differential equations.
Later, in 1998, Alsina and Ger [4] studied the equation y′(x)− y(x) = 0. Many mathemati-
cians have further studied the stability of various equations. For a collection of results
regarding this problematic, see [5] or [6].

There are many methods for studying Hyers–Ulam stability of differential equations,
such as the direct method, the Gronwall inequality method, the fixed point method,
the integral transform method, etc.

We mention that the Laplace transform method was used by H. Rezaei, S. M. Jung and
Th. M. Rassias [7] and by Q. H. Alqifiary and S. M. Jung [8] to study the differential equation

y(n)(t) +
n−1

∑
k=0

αky(k)(t) = f (t).

This method was also used in [9], where Laguerre differential equation

xy′′ + (1 − x)y′ + ny = 0, n positive integer

and Bessel differential equation

xy′′ + y′ + xy = 0,

was studied. In [10], Mittag-Leffler–Hyers–Ulam stability of the following linear differential
equation of first order was studied with this method:

u′(t) + lu(t) = r(t), t ∈ I, u, r ∈ C(I), I = [a, b].

Mathematics 2021, 9, 3260. https://doi.org/10.3390/math9243260 https://www.mdpi.com/journal/mathematics
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In [11], the semi-Hyers–Ulam–Rassias stability of a Volterra integro-differential equa-
tion of order I with a convolution type kernel was studied via Laplace transform:

y′(t) +
∫ t

0
y(u)g(t − u)du − f (t) = 0, t ∈ (0, ∞),

f , g, y : (0, ∞) → F functions of exponential order and continuous and F the real field R

or the complex field C.
In [12], the semi-Hyers–Ulam–Rassias stability of the convection partial differential

equation was also studied using Laplace transform:

∂y
∂t

+ a
∂y
∂x

= 0, a > 0, x > 0, t > 0, y(0, t) = c, y(x, 0) = 0.

In [13], the delay equation

y′(t) = λy(t − τ), λ �= 0, τ > 0,

was studied, using direct method.
In the following, we will study semi-Hyers–Ulam–Rassias stability and generalized

semi-Hyers–Ulam–Rassias stability of some equations, with delay of order one and two,
with Laplace transform. We complete the results obtained in [13]. Delay differential
equations have many applications in various areas of engineering science, biology, physics,
etc. The monograph [14] contains some modeling examples from mechanics, chemistry,
ecology, biology, psychology, etc. For other applications, see also [15].

We first recall some notions and results regarding the Laplace transform.

Definition 1. A function x : R → R is called an original function if the following conditions
are satisfied:

1. x(t) = 0, t < 0;
2. x is piecewise continuous;
3. ∃M > 0 and σ0 ≥ 0 such that

|x(t)| ≤ M · eσ0t, ∀t ∈ R.

We denote by O the set of original functions. We denote by M(x) the set of all numbers
that satisfy the condition 3.

The number σx = inf{σ0 | σ0 ∈ M(x)} is called abscissa of convergence of x.
The functions that appear below are considered original functions. Hence, since in

definition of Laplace transform are involved only the values of x on [0, ∞), we may suppose
that x(t) = 0 for t < 0. So by x(t) we understand x(t)u(t), where

u(t) =
{

0, if t ≤ 0
1, if t > 0

is the unit step function of Heaviside. We write x(n)(0) instead the lateral limit x(n)(0+) for
n ≥ 0.

We denote by L(x) the Laplace transform of the function x, defined by

L(x)(s) = X(s) =
∫ ∞

0
x(t)e−stdt,

on {s ∈ R | s > σx}. It is well known that the Laplace transform is linear and one-to-one if
the functions involved are continuous. The inverse Laplace transform will be denoted by
L−1(X) or by L−1(L(x)).
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The following properties are used in the paper:

L(x(n))(s) = snL(x)(s)− sn−1x(0)− sn−2x′(0)− . . . − x(n−1)(0),

L(x(t − a))(s) = e−asX(s), a > 0,

L−1
(

1
sn

)
(t) =

tn−1

(n − 1)!
u(t),

L( f ∗ g)(s) = L( f )(s) · L(g)(s),

where ( f ∗ g)(t) =
∫ t

0 f (t − τ)g(τ)dτ is the convolution product of f and g.
In the following, we consider the original functions x, f : R → R.
The following Gronwall Lemma is also used in the paper ([16], p. 6):

Lemma 1 ([16]). Let x, v, h ∈ C[R+,R+], h nondecreasing. If

x(t) ≤ h(t) +
∫ t

t0

v(s)x(s)ds, t ≥ t0,

then
x(t) ≤ h(t)e

∫ t
t0

v(s)ds, t ≥ t0.

2. Semi-Hyers–Ulam–Rassias Stability of a Delay Differential Equation of Order One

Let f ∈ O. In what follows, we consider the equation

x′(t) + x(t − 1) = f (t), x(t) = 0 if t ≤ 0, (1)

x continuous, piecewise differentiable.
Let ε > 0. We also consider the inequality∣∣x′(t) + x(t − 1)− f (t)

∣∣ ≤ ε, t ∈ (0, ∞). (2)

According to [17], we give the following definition:

Definition 2. The Equation (1) is called semi-Hyers–Ulam–Rassias stable if there exists a function
k : (0, ∞) → (0, ∞) such that for each solution x of the inequality (2), there exists a solution x0 of
the Equation (1) with

|x(t)− x0(t)| ≤ k(t), ∀t ∈ (0, ∞). (3)

Remark 1. A function x : (0, ∞) → R is a solution of (2) if and only if there exists a function
p : (0, ∞) → R such that

(1) |p(t)| ≤ ε, ∀t ∈ (0, ∞),
(2) x′(t) + x(t − 1)− f (t) = p(t), ∀t ∈ (0, ∞).

Lemma 2. For s > 1 we have

L−1
(

1
s + e−s

)
(t) =

[t]

∑
n=0

(−1)n (t − n)n

n!
.

Proof. As in [18] (p. 15), for s > 1 we have e−s

s < 1, hence
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L−1
(

1
s + e−s

)
(t) = L−1

(
1
s
· 1

1 + e−s

s

)
(t) = L−1

(
1
s
·

∞

∑
n=0

(−1)n e−ns

sn

)
(t)

=
∞

∑
n=0

(−1)nL−1
(

e−ns

sn+1

)
(t) =

∞

∑
n=0

(−1)n (t − n)n

n!
u(t − n)

=
[t]

∑
n=0

(−1)n (t − n)n

n!
,

where [t] denotes the integer part of the real number t.

Applying a method used in [19], we prove now that the Laplace transform exist for
the functions satisfying (1) and (2).

Theorem 1. Let f ∈ O. Let σf be abscissa of convergence of f and Mf > 0 such that | f (t)| ≤
Mf · eσf t, ∀t > 0. Then the Laplace transform of x, which is the exact solution of (1) and of x′ exist

for all s > σ, where σ = max
{

σf + 1, 2
}

.

Proof. Integrating the relation (1) from 0 to t, we obtain

x(t)− x(0) +
∫ t

0
x(u − 1)du =

∫ t

0
f (u)du,

hence

x(t) +
∫ t

0
x(u − 1)du =

∫ t

0
f (u)du.

Changing the variable v = u − 1 in the first integral, we have

x(t) +
∫ t−1

−1
x(v)dv =

∫ t

0
f (u)du,

hence

x(t) +
∫ t−1

0
x(v)dv =

∫ t

0
f (u)du.

If σf > 0, we obtain

|x(t)| ≤
∣∣∣∣∫ t−1

0
x(v)dv

∣∣∣∣+ ∣∣∣∣∫ t

0
f (u)du

∣∣∣∣ ≤ ∫ t

0
|x(v)|dv +

∫ t

0
| f (u)| du

≤
∫ t

0
|x(v)|dv +

∫ t

0
Mf eσf udu =

∫ t

0
|x(v)|dv +

Mf

σf

(
eσf t − 1

) ≤ ∫ t

0
|x(v)|dv +

Mf

σf
eσf t.

Applying now Gronwall Lemma 1, we obtain

|x(t)| ≤ Mf

σf
eσf te

∫ t
0 dv =

Mf

σf
eσf tet =

Mf

σf
e(σf +1)t,

that is the function x is of exponential order.
If σf = 0, we obtain

|x(t)| ≤
∫ t

0
|x(v)|dv +

∫ t

0
Mf du =

∫ t

0
|x(v)|dv + Mf t.

Applying now Gronwall Lemma, we obtain

|x(t)| ≤ Mf te
∫ t

0 dv = Mf tet < Mf etet = Mf e2t, t > 0

that is the function x is of exponential order.

34



Mathematics 2021, 9, 3260

From (1), we have∣∣x′(t)∣∣ ≤ |x(t − 1)|+ | f (t)| ≤ Mxeσxt + Mf eσf t ≤ 2Meσt,

where M = max
{

Mx, Mf

}
and σ = max

{
σx, σf

}
. Hence, x′ is of exponential order.

Theorem 2. Let f ∈ O. Let σf be abscissa of convergence of f and Mf > 0 such that | f (t)| ≤
Mf · eσf t, ∀t > 0. Then the Laplace transform of x (which is a solution of (2) and of x′ exist for all

s > σ, where σ = max
{

2σf , 2
}

.

Proof. From (2), we have

−ε ≤ x′(t) + x(t − 1)− f (t) ≤ ε.

Integrating from 0 to t, we obtain

−εt ≤ x(t) +
∫ t

0
x(u − 1)du −

∫ t

0
f (u)du ≤ εt,

hence

−εt −
∫ t

0
x(u − 1)du +

∫ t

0
f (u)du ≤ x(t) ≤ εt −

∫ t

0
x(u − 1)du +

∫ t

0
f (u)du,

Changing the variable v = u − 1 in the first integral, we have

−εt −
∫ t−1

0
x(v)dv +

∫ t

0
f (u)du ≤ x(t) ≤ εt −

∫ t−1

0
x(v)dv +

∫ t

0
f (u)du,

hence

|x(t)| ≤ εt +
∫ t

0
|x(v)|dv +

∫ t

0
| f (u)|du

If σf > 0, we obtain

|x(t)| ≤ εt +
∫ t

0
|x(v)|dv +

∫ t

0
Mf eσf udu = εt +

∫ t

0
|x(v)|dv +

Mf

σf

(
eσf t − 1

)
≤

∫ t

0
|x(v)|dv + εt +

Mf

σf
eσf t.

Applying now Gronwall Lemma, we obtain

|x(t)| ≤
(

εt +
Mf

σf
eσf t

)
e
∫ t

0 dv =

(
εt +

Mf

σf
eσf t

)
et ≤

(
εeσt +

Mf

σf
eσt

)
eσt =

(
ε +

Mf

σf

)
e2σt,

where σ = max
{

1, σf

}
, that is the function x is of exponential order.

If σf = 0, we obtain

|x(t)| ≤ εt +
∫ t

0
|x(v)|dv +

∫ t

0
Mf du = εt +

∫ t

0
|x(v)|dv + Mf t,

or

|x(t)| ≤
(

ε + Mf

)
t +

∫ t

0
|x(v)|dv,

Applying now Gronwall Lemma, we obtain

|x(t)| ≤
(

ε + Mf

)
te

∫ t
0 dv =

(
ε + Mf

)
tet <

(
ε + Mf

)
etet =

(
ε + Mf

)
e2t, t > 0

that is the function x is of exponential order.
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From (2), we have∣∣x′(t)∣∣ ≤ ε + |x(t − 1)|+ | f (t)| ≤ ε + Mxeσxt + Mf eσf t ≤ (ε + 2M)eσt,

where M = max
{

Mx, Mf

}
and σ = max

{
σx, σf

}
. Hence, x′ is of exponential order.

Theorem 3. If a function x : (0, ∞) → R satisfies the inequality (2), where f ∈ O, then there
exists a solution x0 : (0, ∞) → R of (1) such that

|x(t)− x0(t)| ≤ ε

(
t +

(t − 1)2

2!
+ · · ·+ (t − [t])[t]+1

([t] + 1)!

)
, ∀t ∈ (0, ∞),

that is the Equation (1) is semi-Hyers–Ulam–Rassias stable.

Proof. Let p : (0, ∞) → R,

p(t) = x′(t) + x(t − 1)− f (t), t ∈ (0, ∞). (4)

We have
L(p) = sL(x)− x(0) + e−sL(x)−L( f ),

hence

L(x) =
L(p)

s + e−s +
L( f )

s + e−s .

Let

x0(t) = L−1
( L( f )

s + e−s

)
(t), ∀t ∈ (0, ∞).

We remark that x0(0) = 0.
Hence, we obtain

L[
x′0(t) + x0(t − 1)− f (t)

]
= sL(x0)− x0(0) + e−sL(x0)−L( f )

= s
L( f )

s + e−s + e−s L( f )
s + e−s −L( f ) = 0.

Since L is one-to-one, it follows that

x′0(t) + x0(t − 1)− f (t) = 0,

that is x0 is a solution of (1).
We have

L(x)−L(x0) =
L(p)

s + e−s ,

hence

|x(t)− x0(t)| =
∣∣∣∣L−1

( L(p)
s + e−s

)∣∣∣∣ = ∣∣∣∣L−1(L(p)) ∗ L−1
(

1
s + e−s

)∣∣∣∣
=

∣∣∣∣p ∗ L−1
(

1
s + e−s

)∣∣∣∣ = ∣∣∣∣∫ t

0
p(τ) · L−1

(
1

s + e−s

)
(t − τ)dτ

∣∣∣∣
≤

∫ t

0
|p(τ)| ·

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ ≤ ε
∫ t

0

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ.

From Lemma 2, we obtain
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ε
∫ t

0

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ = ε
∫ t

0

∣∣∣∣∣
[t−τ]

∑
n=0

(−1)n (t − τ − n)n

n!

∣∣∣∣∣dτ

≤ ε
∫ t

0

[t−τ]

∑
n=0

∣∣∣∣(−1)n (t − τ − n)n

n!

∣∣∣∣dτ = ε
∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n

n!
dτ.

For t > 1, we have

[t − τ] =

⎧⎪⎪⎨⎪⎪⎩
[t], τ ∈ [0, t − [t]]
[t]− 1, τ ∈ (t − [t], t − [t] + 1]
· · ·

0, τ ∈ (t − 1, t]

hence

∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n

n!
dτ =

∫ t−[t]

0

[t]

∑
n=0

(t − τ − n)n

n!
dτ +

∫ t−[t]+1

t−[t]

[t]−1

∑
n=0

(t − τ − n)n

n!
dτ + · · ·+

∫ t

t−1

0

∑
n=0

(t − τ − n)n

n!
dτ

=
∫ t−[t]

0

(
(t − τ − 0)0

0!
dτ +

(t − τ − 1)1

1!
+ · · ·+ (t − τ − [t])[t]

[t]!

)
dτ

+
∫ t−[t]+1

t−[t]

(
(t − τ − 0)0

0!
dτ +

(t − τ − 1)1

1!
+ · · ·+ (t − τ − [t]− 1)[t]−1

([t]− 1)!

)
dτ

· · ·

+
∫ t

t−1

(t − τ − 0)0

0!
dτ.

We obtain

∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n

n!
dτ =

∫ t

0

(t − τ − 0)0

0!
dτ +

∫ t−1

0

(t − τ − 1)1

1!
dτ + · · ·+

∫ t−[t]

0

(t − τ − [t])[t]

[t]!
dτ

= t − (t − τ − 1)2

2!

∣∣∣∣t−1

0
− · · · − (t − τ − [t])[t]+1

([t] + 1)!

∣∣∣∣t−[t]

0

= t +
(t − 1)2

2!
+ · · ·+ (t − [t])[t]+1

([t] + 1)!

For t ∈ [0, 1), we have [t − τ] = 0, hence

∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n

n!
dτ =

∫ t

0
dτ = t.

3. Semi-Hyers–Ulam–Rassias Stability of a Delay Differential Equation of Order Two

Let f ∈ O. Next, we consider the equation

x′′(t) + x′(t − 1) = f (t), x(t) = 0 if t ≤ 0, x′(0) = 0, (5)

x continuous, piecewise twice differentiable.
Let ε > 0. We also consider the inequality∣∣x′′(t) + x′(t − 1)− f (t)

∣∣ ≤ ε, t ∈ (0, ∞). (6)
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Definition 3. The Equation (5) is called semi-Hyers–Ulam–Rassias stable if there exists a function
k : (0, ∞) → (0, ∞) such that for each solution x of the inequality (6), there exists a solution x0 of
the Equation (5) with

|x(t)− x0(t)| ≤ k(t), ∀t ∈ (0, ∞). (7)

Remark 2. A function x : (0, ∞) → R is a solution of (6) if and only if there exists a function
p : (0, ∞) → R such that

(1) |p(t)| ≤ ε, ∀t ∈ (0, ∞),
(2) x′′(t) + x′(t − 1)− f (t) = p(t), ∀t ∈ (0, ∞).

Lemma 3. For s > 1, we have

L−1
(

1
s2 + se−s

)
(t) =

[t]

∑
n=0

(−1)n (t − n)n+1

(n + 1)!
.

Proof. For s > 1, we have e−s

s < 1, hence

L−1
(

1
s2 + se−s

)
(t) = L−1

(
1
s2 · 1

1 + e−s

s

)
(t) = L−1

(
1
s2 ·

∞

∑
n=0

(−1)n e−ns

sn

)
(t)

=
∞

∑
n=0

(−1)nL−1
(

e−ns

sn+2

)
(t) =

∞

∑
n=0

(−1)n (t − n)n+1

(n + 1)!
u(t − n)

=
[t]

∑
n=0

(−1)n (t − n)n+1

(n + 1)!
.

Theorem 4. Let f ∈ O. Let σf be abscissa of convergence of f and Mf > 0 such that | f (t)| ≤
Mf · eσf t, ∀t > 0. Then the Laplace transform of x, which is the exact solution of (5) and of x′, x′′
exist for all s > σf .

Proof. We can apply Theorem 3.1 from [19].

Theorem 5. Let f ∈ O. Let σf be abscissa of convergence of f and Mf > 0 such that | f (t)| ≤
Mf · eσf t, ∀t > 0. Then the Laplace transform of x, which is a solution of (6) and of x′, x′′ exist for
a certain σ > σf , for all s > σ.

Proof. The proof is similar to that of Theorem 2.

Theorem 6. Let f : R → R such that f ∈ O and
(
L−1

( L( f )
s2+se−s

))′
(0) = 0. If a function

x : (0, ∞) → R satisfies the inequality (6), then there exists a solution x0 : (0, ∞) → R of (5)
such that

|x(t)− x0(t)| ≤ ε

(
(t − 1)2

2!
+

(t − 1)3

3!
+ · · ·+ (t − [t])[t]+2

([t] + 2)!

)
, ∀t ∈ (0, ∞),

that is the Equation (5) is semi-Hyers–Ulam–Rassias stable.

Proof. Let p : (0, ∞) → R,

p(t) = x′′(t) + x′(t − 1)− f (t), t ∈ (0, ∞). (8)
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We have

L(p) = s2L(x)− sx(0)− x′(0) + e−s[sL(x)− x(0)]−L( f ),

hence

L(x) =
L(p)

s2 + se−s +
L( f )

s2 + se−s .

Let

x0(t) = L−1
( L( f )

s2 + se−s

)
(t), ∀t ∈ (0, ∞).

We remark that x0(0) = 0 and x′0(0) = 0
Hence, we obtain

L[
x′′0 (t) + x′0(t − 1)− f (t)

]
= s2L(x0)− sx0(0)− x′0(0) + e−s[sL(x0)− x0(0)]−L( f )

= s2 L( f )
s2 + se−s + se−s L( f )

s2 + se−s −L( f ) = 0.

Since L is one-to-one, it follows that

x′′0 (t) + x′0(t − 1)− f (t) = 0,

that is x0 is a solution of (5).
We have

L(x)−L(x0) =
L(p)

s2 + se−s ,

hence

|x(t)− x0(t)| =
∣∣∣∣L−1

( L(p)
s2 + se−s

)∣∣∣∣ = ∣∣∣∣L−1(L(p)) ∗ L−1
(

1
s2 + se−s

)∣∣∣∣
=

∣∣∣∣p ∗ L−1
(

1
s2 + se−s

)∣∣∣∣ = ∣∣∣∣∫ t

0
p(τ) · L−1

(
1

s2 + se−s

)
(t − τ)dτ

∣∣∣∣
≤

∫ t

0
|p(τ)| ·

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ ≤ ε
∫ t

0

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ.

From Lemma 3, we obtain

ε
∫ t

0

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ = ε
∫ t

0

∣∣∣∣∣[
t−τ]

∑
n=0

(−1)n (t − τ − n)n+1

(n + 1)!

∣∣∣∣∣dτ

≤ ε
∫ t

0

[t−τ]

∑
n=0

∣∣∣∣∣(−1)n (t − τ − n)n+1

(n + 1)!

∣∣∣∣∣dτ = ε
∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n+1

(n + 1)!
dτ.
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For t > 1, we have

∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n+1

(n + 1)!
dτ

=
∫ t−[t]

0

[t]

∑
n=0

(t − τ − n)n+1

(n + 1)!
dτ +

∫ t−[t]+1

t−[t]

[t]−1

∑
n=0

(t − τ − n)n+1

(n + 1)!
dτ + · · ·+

∫ t

t−1

0

∑
n=0

(t − τ − n)n+1

(n + 1)!
dτ

=
∫ t−[t]

0

(
(t − τ − 0)1

1!
dτ +

(t − τ − 1)2

2!
+ · · ·+ (t − τ − [t])[t]+1

([t] + 1)!

)
dτ

+
∫ t−[t]+1

t−[t]

(
(t − τ − 0)1

1!
dτ +

(t − τ − 1)2

2!
+ · · ·+ (t − τ − [t]− 1)[t]

[t]!

)
dτ

· · ·

+
∫ t

t−1

(t − τ − 0)1

1!
dτ.

We obtain

∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n+1

(n + 1)!
dτ =

∫ t

0

(t − τ − 0)1

1!
dτ +

∫ t−1

0

(t − τ − 1)2

2!
dτ + · · ·+

∫ t−[t]

0

(t − τ − [t])[t]+1

([t] + 1)!
dτ

= − (t − τ − 0)2

2!

∣∣∣∣t

0
− (t − τ − 1)3

3!

∣∣∣∣t−1

0
− · · · − (t − τ − [t])[t]+2

([t] + 2)!

∣∣∣∣t−[t]

0

=
(t − 1)2

2!
+

(t − 1)3

3!
+ · · ·+ (t − [t])[t]+2

([t] + 2)!

For t ∈ [0, 1), we have [t − τ] = 0, hence

∫ t

0

[t−τ]

∑
n=0

(t − τ − n)n+1

(n + 1)!
dτ =

∫ t

0

(t − τ − 0)1

1!
dτ =

(t − 1)2

2!
.

4. Generalized Semi-Hyers–Ulam–Rassias Stability of a Delay Differential Equation
of Order One

We continue to study generalized semi-Hyers–Ulam–Rassias stability of the Equation (1).
Let ϕ ∈ O. We consider the inequality∣∣x′(t) + x(t − 1)− f (t)

∣∣ ≤ ϕ(t), t ∈ (0, ∞). (9)

Definition 4. The Equation (1) is called generalized semi-Hyers–Ulam–Rassias stable if there
exists a function k : (0, ∞) → (0, ∞) such that for each solution x of the inequality (9), there exists
a solution x0 of the Equation (1) with

|x(t)− x0(t)| ≤ k(t), ∀t ∈ (0, ∞). (10)

Remark 3. A function x : (0, ∞) → R is a solution of (9) if, and only if, there exists a function
p : (0, ∞) → R such that

(1) |p(t)| ≤ ϕ(t), ∀t ∈ (0, ∞),
(2) x′(t) + x(t − 1)− f (t) = p(t), ∀t ∈ (0, ∞).

Theorem 7. If a function x : (0, ∞) → R satisfies the inequality (9), where f , ϕ ∈ O, then there
exists a solution x0 : (0, ∞) → R of (1) such that

|x(t)− x0(t)| ≤
∫ t

0
ϕ(τ)

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ, (11)

40



Mathematics 2021, 9, 3260

that is the Equation (1) is generalized semi-Hyers–Ulam–Rassias stable.

Proof. Let p : (0, ∞) → R,

p(t) = x′(t) + x(t − 1)− f (t), t ∈ (0, ∞). (12)

As in Theorem 3, for x that is a solution of (9) and Laplace transform of x, x′ exists,
we have

L(x) =
L(p)

s + e−s +
L( f )

s + e−s ,

and

x0(t) = L−1
( L( f )

s + e−s

)
(t), ∀t ∈ (0, ∞),

is a solution of (1).
We have

L(x)−L(x0) =
L(p)

s + e−s ,

hence

|x(t)− x0(t)| =
∣∣∣∣L−1

( L(p)
s + e−s

)∣∣∣∣ = ∣∣∣∣L−1(L(p)) ∗ L−1
(

1
s + e−s

)∣∣∣∣
=

∣∣∣∣p ∗ L−1
(

1
s + e−s

)∣∣∣∣ = ∣∣∣∣∫ t

0
p(τ) · L−1

(
1

s + e−s

)
(t − τ)dτ

∣∣∣∣
≤

∫ t

0
|p(τ)| ·

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ ≤
∫ t

0
ϕ(τ)

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ.

Theorem 8. Let ϕ : (0, ∞) → (0, ∞), ϕ(t) = tn. If a function x : (0, ∞) → R satisfies the
inequality (9), where f ∈ O, then there exists a solution x0 : (0, ∞) → R of (1) such that

|x(t)− x0(t)| ≤ tn+1

n + 1
+

(t − 1)n+2

(n + 1)(n + 2)
+

(t − 2)n+3

(n + 1)(n + 2)(n + 3)
+ · · ·+ (t − [t])n+[t]+1

(n + 1)(n + 2) · · · (n + [t] + 1)
.

Proof. From Theorem 7, we have that if x : (0, ∞) → R satisfies the inequality (9), then
there exists a solution x0 : (0, ∞) → R of (1) such that

|x(t)− x0(t)| ≤
∫ t

0
τn

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ

is satisfied. We have

∫ t

0
τn

∣∣∣∣L−1
(

1
s + e−s

)
(t − τ)

∣∣∣∣dτ =
∫ t

0
τn

[t−τ]

∑
n=0

(t − τ − n)n

n!

=
∫ t

0
τn (t − τ − 0)0

0!
dτ +

∫ t−1

0
τn (t − τ − 1)1

1!
dτ + · · ·+

∫ t−[t]

0
τn (t − τ − [t])[t]

[t]!
dτ.

We have ∫ t

0
τn (t − τ − 0)0

0!
dτ =

τn+1

n + 1

∣∣∣∣t

0
=

tn+1

n + 1
.
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Integrating by parts, we have

∫ t−1

0
τn (t − τ − 1)1

1!
dτ =

∫ t−1

0

(
τn+1

n + 1

)′
(t − τ − 1)dτ =

τn+1

n + 1
(t − τ − 1)

∣∣∣∣t−1

0︸ ︷︷ ︸
0

+
∫ t−1

0

τn+1

n + 1
dτ

=
τn+2

(n + 1)(n + 2)

∣∣∣∣t−1

0
=

(t − 1)n+2

(n + 1)(n + 2)
,

∫ t−2

0
τn (t − τ − 2)2

2!
dτ =

∫ t−2

0

(
τn+1

n + 1

)′
(t − τ − 2)2

2!
dτ =

τn+1

n + 1
(t − τ − 2)2

2!

∣∣∣∣t−2

0︸ ︷︷ ︸
0

+
∫ t−2

0

τn+1

n + 1
2(t − τ − 2)

2!
dτ

=
∫ t−2

0

(
τn+2

(n + 1)(n + 2)

)′
(t − τ − 2)

1!
dτ =

τn+2

(n + 1)(n + 2)
(t − τ − 2)

1!

∣∣∣∣t−2

0
+

∫ t−2

0

τn+2

(n + 1)(n + 2)
dτ

=
(t − 2)n+3

(n + 1)(n + 2)(n + 3)
,

· · ·

∫ t−[t]

0
τn (t − τ − [t])[t]

[t]!
dτ =

∫ t−[t]

0

(
τn+1

n + 1

)′
(t − τ − [t])[t]

[t]!
dτ

=
τn+1

n + 1
(t − τ − [t])[t]

[t]!

∣∣∣∣t−[t]

0︸ ︷︷ ︸
0

+
∫ t−[t]

0

τn+1

n + 1
[t](t − τ − [t])[t]−1

[t]!
dτ

=
∫ t−[t]

0

(
τn+2

(n + 1)(n + 2)

)′
(t − τ − [t])[t]−1

([t]− 1)!
dτ = · · · = (t − [t])n+[t]+1

(n + 1)(n + 2) · · · (n + [t] + 1)
.

5. Generalized Semi-Hyers–Ulam–Rassias Stability of a Delay Differential Equation
of Order Two

We are now studying the generalized semi-Hyers–Ulam–Rassias stability of the Equation (5).
Let ϕ ∈ O. We consider the inequality∣∣x′′(t) + x′(t − 1)− f (t)

∣∣ ≤ ϕ(t), t ∈ (0, ∞). (13)

Definition 5. The Equation (5) is called generalized semi-Hyers–Ulam–Rassias stable if there
exists a function k : (0, ∞) → (0, ∞) such that for each solution x of the inequality (13), there
exists a solution x0 of the Equation (5) with

|x(t)− x0(t)| ≤ k(t), ∀t ∈ (0, ∞). (14)

Remark 4. A function x : (0, ∞) → R is a solution of (13) if, and only if, there exists a function
p : (0, ∞) → R such that

(1) |p(t)| ≤ ϕ(t), ∀t ∈ (0, ∞),
(2) x′′(t) + x′(t − 1)− f (t) = p(t), ∀t ∈ (0, ∞).

Theorem 9. Let f : R → R such that
(
L−1

( L( f )
s2+se−s

))′
(0) = 0. If a function x : (0, ∞) → R

satisfies the inequality (13), where f , ϕ ∈ O, then there exists a solution x0 : (0, ∞) → R of (5)
such that

|x(t)− x0(t)| ≤
∫ t

0
ϕ(τ)

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ, (15)
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that is the Equation (5) is generalized semi-Hyers–Ulam–Rassias stable.

Proof. Let p : (0, ∞) → R,

p(t) = x′′(t) + x′(t − 1)− f (t), t ∈ (0, ∞). (16)

As in Theorem 6, for x that is a solution of (13) and Laplace transform of x, x′, x′′ exists,
we have

L(x) =
L(p)

s2 + se−s +
L( f )

s2 + se−s ,

and

x0(t) = L−1
( L( f )

s2 + se−s

)
(t), ∀t ∈ (0, ∞),

is a solution of (5).
We have

L(x)−L(x0) =
L(p)

s2 + se−s ,

hence

|x(t)− x0(t)| =
∣∣∣∣L−1

( L(p)
s2 + se−s

)∣∣∣∣ = ∣∣∣∣L−1(L(p)) ∗ L−1
(

1
s2 + se−s

)∣∣∣∣
=

∣∣∣∣p ∗ L−1
(

1
s2 + se−s

)∣∣∣∣ = ∣∣∣∣∫ t

0
p(τ) · L−1

(
1

s2 + se−s

)
(t − τ)dτ

∣∣∣∣
≤

∫ t

0
|p(τ)| ·

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ ≤
∫ t

0
ϕ(τ)

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ.

Theorem 10. Let f : R → R such that f ∈ O and
(
L−1

( L( f )
s2+se−s

))′
(0) = 0. Let ϕ : (0, ∞) →

(0, ∞), ϕ(t) = tn. If a function x : (0, ∞) → R satisfies the inequality (13), then there exists a
solution x0 : (0, ∞) → R of (5) such that

|x(t)− x0(t)| ≤ tn+2

(n + 1)(n + 2)
+

(t − 1)n+3

(n + 1)(n + 2)(n + 3)
+ · · ·+ (t − [t])n+[t]+2

(n + 1)(n + 2) · · · (n + [t] + 2)
.

Proof. From Theorem 9, we have that if x : (0, ∞) → R satisfies the inequality (13), then
there exists a solution x0 : (0, ∞) → R of (5) such that

|x(t)− x0(t)| ≤
∫ t

0
τn

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ

is satisfied. We have

∫ t

0
τn

∣∣∣∣L−1
(

1
s2 + se−s

)
(t − τ)

∣∣∣∣dτ =
∫ t

0
τn

[t−τ]

∑
n=0

(t − τ − n)n+1

(n + 1)!

=
∫ t

0
τn (t − τ − 0)1

1!
dτ +

∫ t−1

0
τn (t − τ − 1)2

2!
dτ + · · ·+

∫ t−[t]

0
τn (t − τ − [t])[t]+1

([t] + 1)!
dτ.
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Integrating by parts, we have

∫ t

0
τn (t − τ − 0)1

1!
dτ =

∫ t

0

(
τn+1

n + 1

)′
(t − τ)dτ =

τn+1

n + 1
(t − τ)

∣∣∣∣t

0︸ ︷︷ ︸
0

+
∫ t

0

τn+1

n + 1
dτ

=
τn+2

(n + 1)(n + 2)

∣∣∣∣t

0
=

tn+2

(n + 1)(n + 2)
,

∫ t−1

0
τn (t − τ − 1)2

2!
dτ =

∫ t−1

0

(
τn+1

n + 1

)′
(t − τ − 1)2

2!
dτ =

τn+1

n + 1
(t − τ − 1)2

2!

∣∣∣∣t−1

0︸ ︷︷ ︸
0

+
∫ t−1

0

τn+1

n + 1
2(t − τ − 1)

2!
dτ

=
∫ t−1

0

(
τn+2

(n + 1)(n + 2)

)′
(t − τ − 2)

1!
dτ =

τn+2

(n + 1)(n + 2)
(t − τ − 1)

1!

∣∣∣∣t−1

0
+

∫ t−1

0

τn+2

(n + 1)(n + 2)
dτ

=
(t − 1)n+3

(n + 1)(n + 2)(n + 3)
,

· · ·

∫ t−[t]

0
τn (t − τ − [t])[t]+1

([t] + 1)!
dτ =

∫ t−[t]

0

(
τn+1

n + 1

)′
(t − τ − [t])[t]+1

([t] + 1)!
dτ

=
τn+1

n + 1
(t − τ − [t])[t]+1

([t] + 1)!

∣∣∣∣t−[t]

0︸ ︷︷ ︸
0

+
∫ t−[t]

0

τn+1

n + 1
([t] + 1)!(t − τ − [t])[t]

([t] + 1)!
dτ

=
∫ t−[t]

0

(
τn+2

(n + 1)(n + 2)

)′
(t − τ − [t])[t]−1

[t]!
dτ = · · · = (t − [t])n+[t]+2

(n + 1)(n + 2) · · · (n + [t] + 2)
.

6. Conclusions

The use of the Laplace transform in the study of Hyers–Ulam stability of differential
equations is relatively recent (2013, see [7]). This method was not used to study the stability
of equations with delay. In this paper, we have studied semi-Hyers–Ulam–Rassias stability
and generalized semi-Hyers–Ulam–Rassias stability of Equations (1) and (5) using the
Laplace transform. Some examples were given. The results obtained complete those of S.
M. Jung and J. Brzdek from [13]. This method can be used successfully in the case of other
equations with delay, integro-differential equations, partial differential equations or for
fractional calculus. In [11], we have already studied a Volterra integro-differential equation
of order I with a convolution type kernel and, in [12], the convection partial differential
equation. In [20], the Poisson partial differential equation was studied via the double
Laplace transform method. We intend to further study other equations.
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Abstract: Immuno-epidemiological models with distributed recovery and death rates can describe
the epidemic progression more precisely than conventional compartmental models. However, the
required immunological data to estimate the distributed recovery and death rates are not easily
available. An epidemic model with time delay is derived from the previously developed model
with distributed recovery and death rates, which does not require precise immunological data. The
resulting generic model describes epidemic progression using two parameters, disease transmission
rate and disease duration. The disease duration is incorporated as a delay parameter. Various
epidemic characteristics of the delay model, namely the basic reproduction number, the maximal
number of infected, and the final size of the epidemic are derived. The estimation of disease duration
is studied with the help of real data for COVID-19. The delay model gives a good approximation of
the COVID-19 data and of the more detailed model with distributed parameters.

Keywords: epidemic model; disease duration; time delay; COVID-19

MSC: 34K60; 92D30

1. Introduction

Mathematical modeling of infectious diseases attracts much attention due to successive
epidemics, such as HIV, emerging in the 1980s and still continuing [1,2], SARS epidemic in
2002–2003 [3,4], H5N1 influenza in 2005 [5,6] and H1N1 in 2009 [7,8], Ebola in 2014 [9,10].
The ongoing COVID-19 pandemic has stimulated unprecedented efforts of mathematical
modeling in epidemiology. A wide variety of mathematical approaches are developed to
study epidemiological problems. However, sufficiently simple and validated models still
remain in the focus of mathematical modeling in epidemiology.

Modern studies in mathematical epidemiology begin with the SIR model developed
in the works by W. O. Kermack and A. G. McKendrick [11–13], stimulated by the Spanish
flu epidemic in 1918–1919. Among many developments of such models, we can cite
multi-compartment models [14–16], models with a time-varying or nonlinear disease
transmission rate [17,18], multi-patch models [19–21], multi-group models incorporating
the effect of the heterogeneity of the population [22], and epidemic models with vaccination
and other control measures [23,24]. Random movement of individuals in the population is
considered in spatiotemporal models in order to describe spatial distributions of susceptible
and infected individuals [25,26]. A more detailed literature review can be found in the
monographs [27,28] and review articles [29,30].

The conventional SIR model, which includes susceptible (S), infected (I), and recovered
(R) compartments, and similar models assume that recovery and death rates at time t are
proportional to the number of actively infected individuals I(t) at the same moment of
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46



Mathematics 2022, 10, 2561

time. This assumption does not take into account disease duration, and it can lead to
a large error. In our previous work [31], we showed that this assumption leads to an
overestimation of actual recoveries and deaths. Instead, if we use distributed recovery and
death rates, properly chosen from real data, the description of the epidemic progression
becomes more precise. However, since distributed recovery and death rates are not easily
available, we develop a simpler delay model in this work. It gives close results, but it does
not require precise immunological data. The model considered in [31] involves distributed
recovery and death rates. The model considered in [32] is an extension of the model by
incorporating the vaccinated compartment, and the resulting model is an immuno-epidemic
model. The delay model, with disease duration delay, considered here is derived from the
model proposed in [31] with an appropriate assumption on the recovery and death rate
functions. The present model is quite different from the delay model considered in [33] as
the delay parameter involved with the earlier model was the measure of the incubation
period and the departure of infected individuals from the infected compartment was due
to the imposition of quarantine measure. The model proposed and analyzed here is solely
dependent on the disease duration period and without imposed quarantine.

Most of the existing delay epidemic models consider time delay either in the disease
incidence function or in the susceptible recruitment function (Appendix A). The delay in the
recovery and death rates has not been studied yet thoroughly. In this work, we introduce
time delay in recovery and death rates with the average disease duration considered as the
delay parameter.

In Section 2, we discuss the distributed model and derive the delay model where the
discrete time delay estimates average disease duration. We obtain epidemic characterization
of the delay model in Section 3. Then, in Section 4, we perform a numerical comparison
among the distributed model, delay model, and conventional SIR model with the equivalent
parameter values. Next, we discuss a method to estimate the value of disease duration
using the real data of disease incidence in Section 5. In Section 6, we validate our delay
model with epidemiological data collected during the COVID-19 epidemic. The main
outcomes of the proposed model and its epidemiological implications are discussed in the
concluding section.

2. Model Formulation

In contrast with the existing compartmental epidemiological models, we start the
model derivation by the introduction of the class of newly infected individuals instead of
the total number of infected individuals. This approach is appropriate to evaluate daily
recovery and death rates. We recall in this section the model with a distributed recovery
and death rate [31,33]. We then use this model to derive the delay model and study its
properties in the next sections.

2.1. Model with Distributed Parameters

The number of newly infected individuals J(t) is determined by the rate of decrease
of the number of susceptible individuals, J(t) = −S′(t). Assuming that

N = S(t) + I(t) + R(t) + D(t) (1)

is constant, where I(t) is the total number of infected at time t and R(t) and D(t) denote,
respectively, recovered and dead, we can write

I(t) =
∫ t

0
J(η)dη − R(t)− D(t). (2)

Following conventional epidemiological models, we set

dS(t)
dt

= −β
S(t)
N

I(t),
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where β is the disease transmission rate. Let r(η) and d(η) be the recovery and death rates
depending on the time-since-infection η. Then, the number of infected individuals who
will recover at time t is given by the expression:

dR(t)
dt

=
∫ t

0
r(t − η)J(η)dη,

and the number of infected individuals who will die at time t:

dD(t)
dt

=
∫ t

0
d(t − η)J(η)dη.

Differentiating Equality (1), we obtain

dI(t)
dt

= β
S(t)
N

I(t)−
∫ t

0
r(t − η)J(η)dη −

∫ t

0
d(t − η)J(η)dη.

Thus, we obtain the following integro-differential equation model:

dS(t)
dt

= −β
S(t)
N

I(t) (= −J(t)), (3a)

dI(t)
dt

= β
S(t)
N

I(t)−
∫ t

0
r(t − η)J(η)dη −

∫ t

0
d(t − η)J(η)dη, (3b)

dR(t)
dt

=
∫ t

0
r(t − η)J(η)dη, (3c)

dD(t)
dt

=
∫ t

0
d(t − η)J(η)dη, (3d)

with the initial condition S(0) = N, I(0) = I0 > 0 (I0 is sufficiently small as compared to
N), R(0) = 0, D(0) = 0.

2.2. Reduction to SIR Model

In a particular case, if we assume the uniform distribution of recovery and death rates:

r(t − η) =

{
r0 , t − τ < η ≤ t
0 , η < t − τ

, d(t − η) =

{
d0 , t − τ < η ≤ t
0 , η < t − τ

,

where τ > 0 is disease duration, r0 and d0 are some constants, and if r0 and d0 are small
enough, then the model (3) can be reduced to the conventional SIR model (see [31]):

dS(t)
dt

= −β
S(t)
N

I(t), (4a)

dI(t)
dt

= β
S(t)
N

I(t)− (r0 + d0)I(t), (4b)

dR(t)
dt

= r0 I(t),
dD(t)

dt
= d0 I(t). (4c)

However, the approximation of a uniform distribution of recovery and death rates may
not be precise since infected individuals are unlikely to recover or die at the beginning of
the disease. In the following subsection, we consider another choice of recovery and death
rates, which will approximate the real scenario of recovery and death more accurately.

2.3. Delay Model

Let us assume that disease duration is τ, and the individuals J(t − τ) infected at time
t − τ recover or die at time t with certain probabilities. This assumption corresponds to the
following choice of the functions r(t − η) and d(t − η):
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r(t − η) = r0δ(t − η − τ), d(t − η) = d0δ(t − η − τ),

where r0, d0 are constants, r0 + d0 = 1, and δ is the Dirac delta-function. Then,

dR(t)
dt

=
∫ t

0
r(t − η)J(η)dη = r0 J(t − τ),

dD(t)
dt

=
∫ t

0
d(t − η)J(η)dη = d0 J(t − τ).

Note that J(t) is the number of newly infected individuals appearing at time t. If we assume
that the first infected case was reported at time t = 0, then we can set J(t) = 0 for all t < 0.
Now, integrating the above two equations from 0 to t and assuming that R(0) = D(0) = 0,
we obtain

R(t) = r0

∫ t

0
J(s − τ)ds = r0

∫ t−τ

−τ
J(y)dy = r0

∫ t−τ

0
J(y)dy,

D(t) = d0

∫ t

0
J(s − τ)ds = d0

∫ t−τ

−τ
J(y)dy = d0

∫ t−τ

0
J(y)dy.

Then, instead of (2), we have

I(t) =
∫ t

t−τ
J(s)ds, (5)

and from (3b),
dI(t)

dt
= β

S(t)
N

I(t)− J(t − τ). (6)

From (5) we obtain

J(t) = β
S(t)
N

∫ t

t−τ
J(s)ds,

dS(t)
dt

= −J(t). (7)

Hence,

dS(t)
dt

= −β
S(t)
N

∫ t

t−τ
J(s)ds = β

S(t)
N

∫ t

t−τ

dS(s)
ds

ds = −β
S(t)
N

(S(t − τ)− S(t)). (8)

Once we obtain the solution S(t) from (8), then we can find I(t) using the following relation:

I(t) =
∫ t

t−τ
J(s)ds = −

∫ t

t−τ

dS(s)
ds

ds = S(t − τ)− S(t).

Hence, System (3) is reduced to the following delay model:

dS(t)
dt

= −J(t), (9a)

dI(t)
dt

= J(t)− J(t − τ), (9b)

dR(t)
dt

= r0 J(t − τ), (9c)

dD(t)
dt

= d0 J(t − τ), (9d)

J(t) = β
S(t)
N

I(t), (9e)

with J(t) = 0 for all t < 0. A similar model was proposed in [33] without derivation from
the distributed model.
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3. Epidemic Characteristics

In this section, we determine the basic reproduction number, the final size of the
epidemic, and maximum number of infected individuals for the delay model (9).

3.1. Basic Reproduction Number

To determine the initial exponential growth rate and the basic reproduction number
R0, we use the equations for the infected compartments I(t) considered in the form:

dI(t)
dt

= β
S(t)
N

I(t)− β
S(t − τ)

N
I(t − τ). (10)

Suppose that, at the beginning of the epidemic, S(t) ≈ S0 and S(t − τ) = S0. Then,
from (10), we have

dI(t)
dt

= β
S0

N
(I(t)− I(t − τ)).

Substituting I(t) = I0 eλt, we have

λ = β
S0

N
(
1 − e−λτ

)
. (11)

Let G(λ) = β S0
N
(
1 − e−λτ

)
. Clearly, (11) has a solution λ = 0 and a non-zero solution

with the sign determined by G′(0). Denote

R0 = G′(0) = βτ
S0

N
.

Let R0 > 1. This implies, G′(0) > 1. We observe that G(λ) is an increasing function
of λ and G(λ) → β S0

N as λ → ∞. This implies that Equation (11) has a positive solution,
i.e., there exists λ∗ > 0 such that G(λ∗) = λ∗. If R0 < 1, i.e., G′(0) < 1, then

G′(λ) = βτ
S0

N
e−λτ < 1

for all λ ≥ 0. Therefore, the equation G(λ) = λ has no positive solution.
Hence, the basic reproduction number is given by the following expression:

R0 = βτ
S0

N
. (12)

Letting λ̂ = λ/(β S0
N ), we can write Equation (11) in the following form:

λ̂ = 1 − e−R0λ̂.

The solution of this equation determines the initial exponential growth rate, which depends
on the single parameter R0.

3.2. Final Size of the Epidemic

Next, we determine the final size of the susceptible compartment S f = limt→∞ S(t).
From (3a), we obtain:

dS(t)
dt

= −β
S(t)
N

∫ t

t−τ
J(η)dη.

Then, integrating from 0 to ∞, we obtain

∫ ∞

0

dS
S

= − β

N

∫ ∞

0

( ∫ t

t−τ
J(η)dη

)
dt.
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Changing the order of integration, we get

ln
S0

S f
=

β

N

[ ∫ 0

−τ

( ∫ η+τ

0
J(η)dt

)
dη +

∫ ∞

0

( ∫ η+τ

η
J(η)dt

)
dη

]
=

β

N

[ ∫ 0

−τ
(η + τ)J(η)dη +

∫ ∞

0
τ J(η)dη

]
.

Now, integrating (9a) from 0 to ∞, we have:∫ ∞

0
J(η)dη = S0 − S f . (13)

Since J(t) = 0 for all t ∈ [−τ, 0], then

ln
S0

S f
=

β

N

[ ∫ ∞

0
τ J(η)dη

]
=

β

N
τ
(
S0 − S f

)
. (14)

Thus, the final size can be obtained from the equation:

ln
S0

S f
=

β

N
τ
(
S0 − S f

)
. (15)

Integrating (9c) and (9d) from 0 to ∞ and using (13), we obtain:

R f ≡ lim
t→∞

R(t) = r0

∫ ∞

0
J(s − τ)ds = r0

∫ ∞

0
J(η)dη = r0(S0 − S f ),

Df ≡ lim
t→∞

D(t) = d0

∫ ∞

0
J(s − τ)ds = d0

∫ ∞

0
J(η)dη = d0(S0 − S f ).

Final size S f obtained from the numerical simulation and using the Formula (15) is
verified for three different values of τ and a range of values of β (Figure 1). Observe that
Equation (15) can be written as:

ln
S0

S f
= R0

(
1 − S f

S0

)
. (16)

Note that the SIR model (4) gives the same equation for the final size, and also in the SIR
model (4), if we assume that r0 + d0 = 1/τ, then the expression of R0 is equivalent for both
the SIR model (4) and the delay model (9).
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Figure 1. Dependence of S f on β found analytically by Formula (15) and in numerical simulations of
(8) for τ = 3 (upper curves), τ = 4 (middle curves), and τ = 5 (lower curves). The analytical and
numerical solutions coincide.

3.3. Maximum Number of Infected Individuals

We now derive an approximate formula for the maximal number of infected individu-
als for the delay model (9). We have I(t) = S(t − τ)− S(t). Suppose that I(t) attains its
maximum at t = tm. Set Im = I(tm), Sm = S(tm). From the equality I′(tm) = 0, we obtain
S′(tm − τ) = S′(tm). This implies

βS(tm − τ)I(tm − τ)

N
=

βS(tm)I(tm)

N
. (17)

Substituting the relation I(tm) = S(tm − τ)− S(tm) in (17), we obtain

I(tm − τ) =
Sm Im

Sm + Im
. (18)

From (8), we have
dS
dt

= − βS(t)
N

(
S(t − τ)− S(t)

)
. (19)

Integrating (19) from 0 to tm and changing the variable inside the first integral of the
right-hand side, we obtain:

∫ tm

0

dS
S

= − β

N

( ∫ 0

−τ
S(t)dt −

∫ tm

tm−τ
S(t)dt

)
. (20)

We assume that S(t) = S0 for all t ∈ [−τ, 0] and use the approximation (Figure 2):∫ tm

tm−τ
S(t)dt ≈ τ

2
Im + τSm.

Then from (20) we have

ln
Sm

S0
= − β

N

(
τS0 − τ

2
Im − τSm

)
.
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Figure 2. The red curve represents S(t). The integral
∫ tm

tm−τ S(t)dt, i.e., the area under the red curve
(yellow color region + cyan color region), is approximated by the sum of the areas of the cyan color
region, the yellow color region, and the green color region.

Let x = Im
S0

, y = Sm
S0

and S0
N ≈ 1. Then we have

ln y = −βτ

(
1 − 1

2
x − y

)
. (21)

Again, integrating (19) from tm − τ to tm, we obtain:∫ tm

tm−τ

dS
S

= − β

N

( ∫ tm

tm−τ
S(t − τ)dt −

∫ tm

tm−τ
S(t)dt

)
.

Changing the variable inside the first integral of the right-hand side, we get:

ln
Sm

S(tm − τ)
= − β

N

( ∫ tm−τ

tm−2τ
S(t)dt −

∫ tm

tm−τ
S(t)dt

)
.

Now, using the approximation described in Figure 2, we conclude that

ln
Sm

S(tm − τ)
= − β

N

(
τS(tm − τ) +

τ

2
I(tm − τ)− τSm − τ

2
Im

)
. (22)

Using the relation I(tm) = S(tm − τ) − S(tm), after some transformations, (22) can be
written as:

ln
Sm

Sm + Im
= − β

N
τ

2

(
Im + I(tm − τ)

)
.

Using (18), we obtain:

ln
Sm

Sm + Im
= − β

N
τ

2

(
Im +

Sm Im

Sm + Im

)
.

Substituting x = Im
S0

, y = Sm
S0

and S0
N ≈ 1, we have

ln
y

x + y
= − βτ

2

(
x +

xy
x + y

)
. (23)

Solving (21) and (23), we can find x, y and, consequently, Im, Sm.
In Figure 3, we show a comparison between the maximum number of infected obtained

by Equations (21) and (23) and the maximum number of infected obtained by direct
numerical simulation of the delay model (9). From Figure 3, we can observe that the
approximation gives a very close upper bound to the maximum number of infected.
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Figure 3. The red curve and the blue curve show the maximum number of infected using the direct
numerical simulation of the delay model and using Equations (21) and (23) respectively. Parameter
values: N = 105, τ = 4, S0 = N − 1, I0 = 1.

4. Comparison of Models (3) and (9) and SIR (4)

We compare the results obtained from the distributed model (3), the delay model (9),
and the conventional SIR model (4). In [31], we showed that Model (3) can describe the
epidemic spread more precisely, and it can exactly capture the recovery and death dynamics
by using suitable distributed recovery and death rates. However, the main constraint in
using the distributed model (3) is the availability of distributed recovery and death rates.
Instead, the average duration of the disease is easier to determine. We show that, in the
delay model (9), if we take τ as the mean of the recovery and death distribution functions
involved in the distributed model (3), then the delay model (9) gives a close solution to the
distributed model (3).

To estimate the recovery and death distributions in the model (3), we use the function
fitdist(:,gamma) in MATLAB. This function is used to fit a vector of data X = (x1, x2, · · · , xn)
by a gamma distribution of the form 1

baΓ(a) xa−1e−x/b, where a and b are the shape and
scale parameters. This function gives the maximum likelihood estimators of a and b for the
gamma distribution, which are the solutions of the simultaneous equations

log â − Ψ(â) = log
(

X̄/
( n

∏
i=1

xi
)1/n

)
,

b̂ = X̄/â,

where X̄ is the sample mean of the data X and Ψ is the digamma function given by

Ψ(x) = Γ′(x)/Γ(x).

The function fitdist(:,gamma) estimates the shape and scale parameters with the 95% con-
fidence interval. Using this statistical technique, we estimated the recovery and death
distributions for the model (3) for the data used in [31] and given by the formulas

r(t) =
p0

ba1
1 Γ(a1)

ta1−1e−
t

b1 , d(t) =
(1 − p0)

ba2
2 Γ(a2)

ta2−1e−
t

b2 ,

(Figure A1 in Appendix C), where the estimated parameter values are given in Table 1.
Here, p0 is the survival probability, and its estimated value, from the data, is p0 = 0.97 [34].

54



Mathematics 2022, 10, 2561

Table 1. Estimated parameter values (gamma distributions).

Parameters Estimated Value 95% Confidence Interval

a1 8.06275 [6.15314, 10.565]
b1 2.2140 [1.67523, 2.92623]
a2 6.00014 [3.69566, 9.74161]
b2 2.19887 [1.32639, 3.64526]

The estimated average time to recovery is 17.85 days and to death is 13.19 days.
The value of survival probability p0 is 0.97 [34], that is, out of 100 infected individuals, 97
infected will recover. This estimate matches with most of the COVID-19 epidemic data
from various countries [34,35]. Thus, we can take average disease duration τ as 17.7 days.
The corresponding value in the SIR model is r0 + d0 ≈ 1/17.7 days−1.

It is essential to mention here that, instead of a gamma distribution, we can use the
Erlang distribution Ek = λkxk−1e−λx

(k−1)! , x, λ ≥ 0 and k ∈ N. Since, for lower values of k,
e.g., E1, E2 distributions, with a reasonable choice of λ, give a significant probability of
recovery or death at the beginning of infection, we should look for an Erlang distribution
with higher values of k.

We found that the Erlang-8 distribution

E8 =
λ8x7e−λx

(7)!
,

with λ = 0.4545, and the Erlang-6 distribution

E6 =
λ6x5e−λx

(5)!
,

with λ = 0.4548, closely match with the gamma distributions for recovery and death rates
respectively, as estimated above. The estimated values of the shape parameters a1 and a2
associated with the gamma distributions can be approximated as a1 ≈ 8 and a2 ≈ 6 for
the recovery and death rate distributions, respectively. Thus, one can use the E8 and E6
distributions instead of the gamma distributions for recovery and death rates. However,
the result will be similar in both cases, and we continue our numerical simulation with the
gamma distributions.

Though the parameters of the three models correspond to each other, the distributed
model (3) and the delay model (9) both give far different dynamics as compared to the SIR
model (4), whereas the distributed model (3) and the delay model (9) give reasonably close
dynamics to each other (Figure 4).
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(a) (b)

(c) (d)

Figure 4. Comparison of the solutions of the distributed model (3) (blue curve), the delay model (9)
(green curve), and the conventional SIR model (4) (red curve). (a) Susceptible S(t), (b) infected I(t),
(c) recovered R(t), and (d) dead D(t). The values of parameters: N = 105, I0 = 1, β = 0.2, for the SIR
model r0 + d0 = 1/17.7; for the delay model τ = 17.7; for the distributed model (3): a1 = 8.06275,
b1 = 2.21407, a2 = 6.00014, b2 = 2.19887, p0 = 0.97.

The comparison of the final size of epidemic S f , maximal number of infected Im, and
the time to the maximal number of infected tm of the distributed model (3) with the gamma
distribution, the delay model (9), and the SIR model (4) is shown in Figure 5 for different
values of the transmission rate β. As before, the maximal numbers of infected individuals
Im in the models (3) and (9) are sufficiently close, but they are much higher than for the
SIR model (4). The times to maximum infected tm in the models (3) and (9) are reasonably
close, but less than for the SIR model (4). The final size of the epidemic S f is more or less
the same for all three models. Similar properties are observed if the gamma distribution is
replaced by the Erlang distribution with the corresponding parameters.

This result indicates the relevance of the delay model. If we do not have sufficient
individual-level data to estimate the recovery and death distributions, but we have an
approximate value of disease duration, then we can describe the epidemic progression in a
sufficiently precise way.
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(a) (b)

(c)

Figure 5. Comparison of the maximal number of infected individuals Im (a), the time to reach the
maximal number tm (b), and the final size of the epidemic S f (c) for the distributed model (3) (blue
curves), the delay model (9) (green curves), and the SIR model (4) (red curves) for different values
of β. The values of parameters: N = 105, I0 = 1, for the SIR model r0 + d0 = 1/17.7; for the delay
model τ = 17.7; for the distributed model (3): a1 = 8.06275, b1 = 2.21407, a2 = 6.00014, b2 = 2.19887,
p0 = 0.97.

5. Determination of Disease Duration from Data

In this section, we determine the disease duration τ from the epidemiological data for
the daily number of infected J(t) and the total number of infected individuals I(t), using
the equation

dI(t)
dt

= J(t)− J(t − τ).

Let I(t) have the maximum at t = tm. Set I(tm) = Im. Then, J(tm) = J(tm − τ), i.e., the
daily number of infected is the same at two different time points t = tm and t = tm − τ.
From the real data of the infected individuals I(t), we can find the day on which the daily
number of active cases is maximal, and it determines tm. From the data of daily reported
cases J(t), we can observe that J(t) crosses its maximum at some time before tm. Now,
we have to find the value of J(t) such that J(tm) will be equal to J(tm − τ), which in turn
determines the disease duration τ. Hence, considering the delay model, using the real
data of daily new cases J(t) and active cases I(t) around a peak, we can find the disease
duration τ.

We illustrate this method using the data of J(t) and I(t) taken from [35] for COVID-19
in Italy. We collected the daily new reported data J(t) and active case data I(t) for Italy
from 21 February 2020 to 31 May 2021 (which capture the first three peaks in Italy) and
from 10 November 2021 to 28 February 2022 (which capture the peak due to Omicron
in Italy). To have smoother data, we used the 7-day moving average, the data on the
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j-th day replaced by the average data from the (j − 3)th day to the (j + 3)th day. As the
concerned method is focused on the peaks, the error at the beginning and end of the time
interval is not essential. In Italy, during the first peak (in April 2020), the peak of I(t) is
attained at tm = 51 (Figure 6a) and the peak of J(t) is attained before on t = 51, which
is less than tm (Figure 6b). First, we find that J(tm = 51) = 4.17 × 103 and then find
J(32) = 4.15 × 103 ≈ J(tm = 51). This implies J(tm − τ) = J(32), and consequently, we
can calculate τ = 19 as the disease duration during the first peak. Similarly, during the
second peak (in November 2020) and third peak (in March 2021), we estimated the disease
duration as τ = 20 days and τ = 14 days, respectively. The peak of epidemic progression
due to Omicron in January 2022 is shown in Figure 6c,d, and we estimated the value of τ as
11 days. Similarly, the value of τ is estimated for some other countries (Table 2).

(a) (b)

(c) (d)

Figure 6. Estimation of the disease duration τ using the data around different peaks of COVID-19 in
Italy. (a,b) Time t = 0 corresponds to 21 February 2020. The obtained value of τ is 19 days for the
first peak, 20 days for the second peak, and 14 days for the last peak. (c,d) Time t = 0 corresponds
to 10 November 2021 (which corresponds to the Omicron outbreak), and the obtained value of τ

corresponding to the Omicron outbreak is 11 days.
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Table 2. Estimated value of τ for different countries during different outbreaks of the COVID-
19 epidemic. The months indicated in the table correspond to the time when the corresponding
peak appeared.

Country Estimated Value Estimated Value Estimated Value Estimated Value
of τ (in Days) of τ (in Days) of τ (in Days) of τ (in Days)

during Peak 1 during Peak 2 during Peak 3 during Peak 4

Italy 19 (April 2020) 20 (November 2020) 14 (March 2021) 11 (January 2022)

Russia 25 (May 2020) 24 (January 2021) 26 (November 2021) 9 (February 2022)

China 16 (February 2020) - - -

Romania 16 (November 2020) 14 (March 2021) 18 (October 2021) 12 (February 2022)

Sweden 20 (July 2020) 20 (December 2020) 19 (April 2021) 14 (February 2022)

Iran 14 (December 2020) 24 (May 2021) 28 (August 2021) 10 (February 2022)

Remark 1. It is important to note that in the case of the combination of strains, the estimated
value of τ corresponds to the weighted average of the strain-specific disease duration. Furthermore,
note that this method depends on how the daily cases of infection were reported. However, in many
cases, there is a dominant variant during epidemic outbreaks. Thus, the estimated value of τ can
be considered as the disease duration corresponding to the dominant variant during a specific
epidemic wave.

Remark 2. Note that the delay model (9) does not take into account the difference in duration
to recovery and the duration to death. If we assume that the death cases are relatively rare (e.g.,
approximately ≤ 2% in the case of COVID-19), then this difference may not be very essential.

Remark 3. Note that this method of the estimation of τ remains the same for time-varying β = β(t).
Thus, the method discussed above does not depend on whether β is a constant or β varies with
respect to time. Since the time-varying β(t) is capable of incorporating the effect of all possible
infected compartments (i.e., exposed E(t), asymptomatic IA(t), symptomatic IS(t), hospitalized
H(t), etc.) on disease transmission, we can use this method to obtain an estimation of τ for any
infectious disease with available data.

6. Model Validation with Epidemiological Data

In order to validate the delay model (9) and the method of estimation of τ, we com-
pared the results with the epidemiological data. We used the estimated value of τ obtained
by the method described above during different peaks of COVID-19.

In Italy, the estimated value of τ is 19 days, 20 days, 14 days, and 11 days during the
first peak (April 2020), the second peak (November 2020), the third peak (March 2021),
and the fourth peak (January 2022), respectively. We assumed that the disease duration
τ remains τ = 19 days from 21 February 2020 to 15 August 2020; τ = 20 days from 16
August 2020 to 19 February 2021; τ = 14 days from 20 February 2021 to 21 May 2021; and
11 days from 10 November 2021 to 28 February 2022 (during Omicron in Italy).

Once these parameter values were determined, we took the number J(t) of daily in-
fected individuals from the epidemiological data [35] and found the sum of daily recoveries
and deaths from the expression

Σ(t) = J(t − τ). (24)

These results were compared with the sum of recoveries and deaths in the data. Figure 7
shows the result of such a comparison for Italy from 21 February 2020 to 21 May 2021
and from 10 November 2021 to 28 February 2022, with the data from [35] (7-day moving
average). Recoveries and deaths can also be determined as a proportion of active cases
σ(t) = (r0 + d0)I(t), as is done in the SIR model. Here, I(t) is taken from the data and
r0 + d0 = 1/τ, and we observed that the SIR model overestimates the sum of recovered
and dead. Thus, the delay model (9) gives a good description of the recovery and death
compared with the epidemiological data, while the SIR model overestimates them.
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(a) (b)

(c) (d)

Figure 7. The blue curves show the number Σ(t) of recovered and dead in the delay model; the ma-
genta curves correspond to σ(t) in the SIR model; the black dots correspond to the 7-day moving
average of daily recoveries and death in Italy.

7. Discussion

We proposed a delay model under the assumption that the infected individuals
recover or die exactly after an average disease duration τ. Generally, in the case of COVID-
19, we observed that the recovery and death distributions follow unimodal or bimodal
gamma distributions [34,36]. Estimating these gamma distributions requires individual-
level data with the date of onset of disease and the date of recovery or death, which may
be very difficult to gather for every country or province. Instead, the only information
about the disease duration can help us to obtain sufficiently good results using the delay
model. Furthermore, we developed a method to estimate the disease duration from
the epidemiological data. It is important to mention here that one can use the Erlang
distributions, instead of the gamma distributions, for a compartmental epidemic model
with multi-phase disease transition [37].

Let us note that we consider only symptomatic individuals in the model. The influence
of asymptomatic individuals is widely discussed in the COVID-19 literature. According
to some estimates, they can constitute between 25% and 50% of the total number of
cases [38,39]. On the other hand, the infectivity of asymptomatic individuals is much lower
than the infectivity of symptomatic individuals because infectivity is proportional to the
viral load in the upper respiratory tract [40] and symptoms correlate with viral load. Hence,
in the first approximation, we can consider only symptomatic individuals. Further studies
are needed to take into account asymptomatic individuals more precisely.

We noticed that during different peaks of COVID-19, the estimated value of τ was
different. This difference might be due to different strains or the change of proportion of
different infected compartments (such as asymptomatic, hospitalized) that we counted in
the same compartment.
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The presence of exposed individuals can be taken into account by means of time-
dependent infectivity rate β(t − η). For the individuals infected at time η, their infectivity
at time t depends on the difference t − η. The function β(t − η) is small if the difference
t − η is small, which is the case of exposed individuals. This case was studied in [32]. We
did not consider the time-dependent infectivity rate in this work since its main objective is
to compare the model with distributed recovery and death rates with the delay model.

We compared the final size of the epidemic and maximal number of infected obtained
in the Formulas (15), (21), and (23), respectively. Note that these formulae depend on
τ and β. Since the outbreak due to Omicron is the only one when the social distancing
measures such as lockdowns or isolation were not strictly imposed, we can assume that the
transmission rate β is approximately constant. We took the data of the Omicron outbreak
in Italy from [35] from 10 November 2021 to 10 December 2021, and we fit the delay model
to these 40 days of data and estimated the disease transmission rate β as 0.118. We took the
value of disease duration τ = 11 days, which was obtained by using the method discussed
in Section 5. Then, using the formula (15), we calculated the final size of the epidemic as
3.387× 107. Using the formulae (21) and (23), we calculated the maximal number of infected
as Im = 3.4139 × 106, whereas the maximal number of infected was Im = 2.7317 × 106

in the data. Thus, the formulae (21) and (23) give a reasonable estimate of the maximal
number of infected. Similarly, we obtained an accurate estimate of the maximal number of
infected for some other countries (not shown).

Let us finally note that the delay model presented in this work is simple and generic. It
describes epidemic progression with two parameters β and τ, which can be easily estimated
from the data. Our next goal will be to apply the proposed modeling approach to multi-
compartment models consisting of different groups of susceptible and/or infected and to
immuno-epidemic models with time-varying recovery and death rates [32]. It is also
interesting to check the applicability of the proposed model to other transmissible diseases.
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Appendix A. Review of Delay Models

Time delay in epidemic models accounts for the delay for an individual to become
infectious after being infected. Time delay for vector-born diseases characterizes the time
needed for the pathogen to reach a certain threshold sufficient for infection transmission.
Under the assumption that the infection transmission rate at time t depends on the number
of infected at time t − τ and the number of susceptible at time t, the delay SIR model
for vector-born diseases is given by the following system of equations (see [41] and the
references therein):

dS(t)
dt

= − f
(
S(t), I(t − τ)

)
,

dI(t)
dt

= f
(
S(t), I(t − τ)

)− δI(t),

where S(t) represents susceptible and I(t) infectious compartments, the function
f (S(t), I(t − τ)) characterizes the disease transmission rate, δ is the clearance rate, and τ is
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the time delay from the moment of infection to disease transmission. Another type of delay
model describes temporary immunity [28]:

dS(t)
dt

= − f
(
S(t), I(t)

)
+ δI(t − ω),

dI(t)
dt

= f
(
S(t), I(t)

)− δI(t),

where ω is the time period after which an infected individual becomes susceptible again.
For long-lasting epidemics such as HIV, new generations of susceptible individuals

influence epidemic dynamics. In this case, time delay corresponds to the maturation period
after which young adults become susceptible to infection (see [42–44] and the references
therein):

dS(t)
dt

= g(N(t − τ))− h(
(
S(t), I(t)

)
,

dI(t)
dt

= h
(
S(t), I(t)

)− δI(t).

Here, N(t) = S(t) + I(t), g(N(t − τ)) is the susceptible recruitment function, which
incorporates the maturation delay τ and h(S, I) is the disease transmission rate.

Appendix B. Positiveness of the Delay Model (9)

We show the positiveness of the solution of the delay model (9). Note that, as per our
assumption, J(t) is a positive function. From (9a), we observe that, if S(t∗) = 0 at some
time point t∗, then dS

dt |t=t∗ = 0. This implies that S(t) ≥ 0 for t > 0. From (3c) and (3d),
we obtain that R(t) and D(t) are both increasing functions, and hence, R(t) and D(t) also
remain positive for all t. Next, we prove that I(t) > 0. Integrating (9c) from 0 to t, we
obtain

I(t) = I(0) +
∫ t

0
J(η)dη −

∫ t

0
J(η − τ)dη

= I(0) +
∫ t

0
J(η)dη −

∫ t−τ

−τ
J(η)dη.

Since, J(t) = 0 for t < 0, we can write:

I(t) = I(0) +
∫ t

t−τ
J(η)dη ≥ 0.

Therefore, I(t) is positive for all t. This shows the positiveness of the solution of System (9).
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Appendix C. Gamma Distributions for Recovery and Death Rates

(a) (b)

Figure A1. Probability distribution of recovery (a) and death (b) as a function of time (in days) after
the onset of infection. The red curves show the best-fit gamma distributions using the function
“fitdist(:,’gamma’)” in MATLAB.
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Abstract: In this paper, chains of coupled logistic equations with delay are considered, and the local
dynamics of these chains is investigated. A basic assumption is that the number of elements in the
chain is large enough. This implies that the study of the original systems can be reduced to the study
of a distributed integro–differential boundary value problem that is continuous with respect to the
spatial variable. Three types of couplings of greatest interest are considered: diffusion, unidirectional,
and fully connected. It is shown that the critical cases in the stability of the equilibrium state have an
infinite dimension: infinitely many roots of the characteristic equation tend to the imaginary axis
as the small parameter tends to zero, which characterizes the inverse of the number of elements of
the chain. In the study of local dynamics in cases close to critical, analogues of normal forms are
constructed, namely quasinormal forms, which are boundary value problems of Ginzburg–Landau
type or, as in the case of fully connected systems, special nonlinear integro–differential equations.
It is shown that the nonlocal solutions of the obtained quasinormal forms determine the principal
terms of the asymptotics of solutions to the original problem from a small neighborhood of the
equilibrium state.

Keywords: logistic equation; delay; quasinormal form; asymptotic behavior; dynamics

MSC: 34K11

1. Introduction

Currently, special attention is paid to important objects such as chains of interacting
oscillators. Such chains arise when modeling many applied problems in radiophysics
(see [1–3]), laser optics (see [4–6]), mechanics (see [7,8]), neural network theory (see [9–13]),
biophysics (see [14]), mathematical ecology (see [15–18]), etc. This paper investigates
the chains of coupled logistic equations with delay that are relevant for biophysics and
mathematical ecology.

As a basic example describing certain population size changes, the well-known logistic
equation with delay

u̇ = r[1 − u(t − T)]u (1)

is considered. Here, u(t) > 0 is the normalized population or the population density,
r > 0 is the Malthusian parameter, T > 0 is the delay associated with the reproductive age
of individuals.

Let us recall some well-known facts (see, for example, [19]). In (1), the equilibrium
state u0 ≡ 1 is asymptotically stable as rT � π/2, but this equilibrium state is unstable
and there is a stable cycle u0(t) as rT > π/2. Under the condition

0 < rT − π

2
� 1
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its asymptotic behavior is:

u0(t) = 1+
√

rT − π

2

[
ξ0(τ(1 + O(ε))) exp

(
i
2π

T0
t
)
+

ξ̄0(τ(1 + O(ε))) exp
(
− i

2π

T0
t
)]

+ . . . .

This cycle is relaxational as rT � 1. Its asymptotic behavior is presented in [20].
We examine two types of chains of the coupled logistic equations with delay.
Type 1: The chains of the 2N + 1 coupled equations

v̇j(t) = r[1 − vj(t − T)]vj(t) + r
N

∑
m=−N

amj
(
vm(t − h)− vj(t − h)

)
. (2)

Here, j, m = 0,±1,±2, . . . ,±N, amm = 0, and h ≥ 0. Certain constraints may be
imposed on the coupling coefficients amj. For example, the biologically derived conditions
uj(t) ≥ 0 must be satisfied for h = 0. Therefore, the solutions must keep the quadrant uj ≥
0 (j = 0,±1,±2, . . . ,±N) invariant for nonnegative initial conditions uj(s) ∈ C[−T,0] (j =
0,±1,±2, . . . ,±N). Hence,

amj ≥ 0. (3)

System (2) has the equilibrium state uj0 = u0 = 1 (j = 0,±1,±2, . . . ,±N). The substi-
tution

vj = 1 + uj (4)

leads to the system of equations

u̇j(t) = −ruj(t − T) + r
N

∑
m=−N

amj
(
um(t − h)− uj(t − h)

)− ruj(t − T)uj. (5)

Type 2: Here, the site of couplings is the only difference between the chains of coupled
equations and (2):

v̇j(t) = r
[
1 − vj(t − T) +

N

∑
m=−N

amj
(
vm(t − h)− vj(t − h)

)]
vj(t). (6)

Substitution (4) converts this system to the system of equations

u̇j(t) = − ruj(t − T) + r
N

∑
m=−N

amj
(
um(t − h)− uj(t − h)

)−
ruj(t − h)uj + ruj(t)

N

∑
m=−N

(
um(t − h)− uj(t − h)

)
.

(7)

The last term of System (7) distinguishes it from System (5).
It is convenient to associate the element uj(t) with the value of the two-variable

function u(t, xj). Here, xj is the point of some circle with the angular coordinate xj =

2π(2N + 1)−1 · j. Further, the periodicity condition uj+2N+1(t) = u(t, xj + 2π) = uj(t) =
u(t, xj) and am+2N+1,j = am,j+2N+1 = amj (m, j = 0,±1,±2, . . .) holds.

We assume the coupling between elements to be homogeneous, i.e.,

amj = am−j. (8)

The basic assumption is that the quantity (2N + 1) of elements is large enough:

0 < ε = 2π(2N + 1)−1 � 1. (9)
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The above condition gives ground for moving from the discrete spatial variable x to
the continuous variable x.

In this paper, the three most important cases in terms of applications will be considered.
In the first case, it is assumed that the system is fully connected and all coupling coefficients
are the same: the equalities

amj = γ(2N + 1)−1(2π)−1 (10)

hold for some coefficient γ. The expression γ
(
2π(2N + 1)

)−1
N

∑
j=−N

f (xj) is the partial

Darboux sum for the expression γ(2π)−1
∫ 2π

0
f (x)dx. Thus, under condition (10), the

boundary value problem

∂u
∂t

= − ru(t − T, x) + rγ
[
(2π)−1

∫ 2π

0
u(t − h, s)ds − u(t − h, x)

]
−

ru(t − T, x)u + rδγu ·
[
(2π)−1

∫ 2π

0
u(t − h, s)ds − u(t − h, x)

] (11)

is the asymptotic approximation for Systems (5) and (7) as ε → 0. Here, δ = 0 in the case of
(5), and δ = 1 in the case of (7).

For Equation (11), the periodic boundary conditions

u(t, x + 2π) ≡ u(t, x) (12)

hold. Note that in the case when coefficients ai−j are not identical, the integral term becomes

more complicated. We obtain the expression 1
2π

∫ 2π
0 a(s)u(t − h, x + s)ds instead of the

expression 1
2π

∫ 2π
0 u(t − h, s)ds, and 1

2π

∫ 2π
0 a(s)ds = 1.

The local (i.e., in the zero equilibrium state neighborhood) dynamics of the boundary
value problem (11) and (12) are studied in Section 2.

Then, we consider the case of so-called diffusional coupling, where

a1 = a−1 = γ and ak = 0 for k �= ±1. (13)

Now, from systems (5) and (7), we arrive at the boundary value problem

∂u
∂t

=− ru(t − T, x) + rγ
[
u(t − h, x + ε)− 2u(t − h, x) + u(t − h, x − ε)

]−
ru(t − T, x)u(t, x) + rδγ

[
u(t − h, x + ε)−

2u(t − h, x) + u(t − h, x − ε)
]
u(t, x), u(t, x + 2π) ≡ u(t, x).

(14)

If the coefficients ak (k �= ±1) do not differ much from zero, the dynamic behavior
of (14) could change significantly. Thus, we examine a more general (compared to (14))
boundary value problem

∂u
∂t

= −ru(t − T, x)− ru(t − T, x)u(t, x) +

rγ
( ∫ +∞

−∞

(
Fε(s)− 2F0(s) + F−ε(s)

)
u(t − h, x + s)ds

)
×[

1 + δu(t, x)
]
, u(t, x + 2π) ≡ u(t, x).

(15)

Here,

F±ε(s) =
1

σ
√

2π
exp

[
− (2σ2)−1(s ± ε)2

]
,

F0(s) =
1

σ
√

2π
exp

[
− (2σ2)−1s2

]
.
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Undoubtedly, the integral expression in (15) can be presented in the form of integrals
from 0 to 2π of some function F̃(s). However, the form of (15) is preferable. Firstly,
the asymptotic equality∫ +∞

−∞

(
Fε(s)− 2F0(s) + F−ε(s)

)
w(x + s)ds = w(x + ε)− 2w(x) + w(x − ε) + o(1)

holds for the fixed function w(x) as δ → 0. Secondly, it is technically convenient to calculate
the importance of further usage of integrals explicitly. For example,∫ +∞

−∞
Fε(s) exp(iks)ds = exp

(
ikε − 1

2
δ2(εk)2

)
. (16)

In Section 3, the boundary value problem (15) is examined.
According to the equalities in (13), interactions with one ‘neighbor’ on the right

and one ‘neighbor’ on the left make a dominating contribution to the couplings between
elements as ε → 0. In the next, fourth, section, the case of coupling coefficient interactions
for unidirectional couplings is studied. For a1 = γ, aj = 0 as j �= 1, the resulting boundary
value problem assumes the form

∂u
∂t

= −ru(t − T, x)− ru(t − T, x)u(t, x)+

rγ
( ∫ +∞

−∞

(
Fε(s)− F0(s)

)
u(t − h, x + s)ds

)
· [1 + δu(t, x)

]
,

u(t, x + 2π) ≡ u(t, x).

(17)

The paper is devoted to the investigation of the behavior of the solutions to the bound-
ary value problems (11), (12); Equations (15) and (17) with initial conditions from some
sufficiently small metric C[−T,0] × W[0,2π] (T0 = max(T0, h)) ε-independent zero equilib-
rium state neighborhood for small ε. In each of the problems, critical cases are identified in
the study of the stability of the zero solution. In critical cases, the characteristic equations of
the linearized-at-zero problems have infinitely many roots, with real parts tending to zero
as ε → 0. This is a distinctive feature of the problems under consideration. Thereby, we
may speak of the infinite-dimensional critical cases implementation. The standard methods
of integral manifolds (see, for example, [21–23]) and normal forms (see, for example, [24])
are not directly applicable for their study. Thus, we employ the methods developed by
the author in [25–28]. Their essence lies in the construction of special first-approximation
equations called quasinormal forms (QNFs), whose nonlocal dynamics determine the local
structure of the initial boundary value problems’ solutions. These QNFs are nonlinear
boundary value problems of neutral or parabolic types with either one or two spatial
variables. The solutions of these QNFs make it possible to determine the principal terms of
the asymptotic representations of the considered boundary value problems’ solutions.

Section 5 is a natural extension of Section 4. It studies the model of a chain with a
unidirectional coupling under the condition that the coupling coefficient between elements
takes sufficiently large values. It is about the boundary value problem

Ṅ = r[1 − N(t − T, x)]N + γ
[ ∫ ∞

−∞
F(s)N(t, x + s)ds − N

]
, (18)

N(t, x + 2π) ≡ N(t, x), (19)

where γ � 1. We note that (18) is interpreted as a logistic delay equation with spatially
distributed control. The function F(s) describing spatial interactions is given by

F(s) =
1√
μπ

exp[−μ−1(s + h)2], μ > 0.
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We demonstrate that the dynamic properties of the problem under consideration
change significantly depending on the various relations between γ, μ, and h.

We present without proof two analogs of the classical Lyapunov stability theorems in
the first approximation statements.

For the linearized-at-zero Equations (11), (15), (17) and (18) with periodic boundary
conditions (12), the characteristic equation has the form

λ + r exp(−λ) = d
( ∫ ∞

−∞
F(s, ε) exp(iks)ds − 1

)
, k = 0,±1,±2, . . . . (20)

Statement 1. Let the roots of Equation (20) have a negative real part and be separated from the
imaginary axis as ε → 0. Then, an ε0 > 0 can be found such that, for ε ∈ (0, ε0), the solutions to
the problem under consideration from the sufficiently small ε-independent zero equilibrium state
neighborhood tend to zero as t → ∞.

Statement 2. Let Equation (20) have a root with a positive real part separated from zero as ε → 0.
Then, the zero equilibrium state of the boundary value problem is unstable for small ε, and there is no
attractor of this boundary value problem in some sufficiently small ε-independent zero neighborhood.

Thus, in the posed problem about local conditions in the zero equilibrium state
neighborhood, the dynamics are trivial under the condition of Statement 1, and it cannot
be studied by local analysis methods under the condition of Statement 2.

2. Dynamics of Fully Connected Spatially Distributed Chain

In this section, the local dynamics of the boundary value problem (11), (12) are studied.
The linearized at zero boundary value problem

∂v
∂t

= −rv(t − T, x) + rγ
[
M

(
v(t − h, s)− v(t − h, x)

)]
,

v(τ, x + 2π) ≡ v(τ, x)
(21)

has the characteristic equation

λ = −r exp(−λT) + rγ exp(−λh)[δk − 1], k = 0,±1,±2, . . . , (22)

where

δk =

{
1, k = 0,
0, k �= 0.

We obtain this equation from (21) by substituting the elementary Euler solutions
vk = exp(ikx + λt) (k = 0,±1,±2, . . .).

The case of the small parameter γ is studied in Section 2.1. We fix some γ1 in such a
way that

γ = μγ1 and 0 < μ � 1. (23)

The general case is studied in Section 2.2.

2.1. Case of Small γ Values

Under the conditions rT < π/2 and (23), the roots of Equation (22) have separated
from zero negative real parts as μ → 0. For rT > π/2, Equation (22) has a root with a
positive real part separated from zero as μ → 0. The local dynamics of (11), (12) are not
considered in these cases.

We assume that the conditions

r0T0 =
π

2
, r = r0 + μr1, T = T0 + μT1, γ = μγ1 (24)

69



Mathematics 2022, 10, 2648

hold for some positive r0 and T0. In this case, vk = exp(iπ(2T0)
−1t + ikx) is the solution of

the linear boundary value problem (21) as well as

v(t, x) =
+∞

∑
k=−∞

ξk exp
(
iπ(2T0)

−1t + ikx
)
=

exp
(
iπ(2T0)

−1t
) +∞

∑
k=−∞

ξk exp(ikx) = exp
(
iπ(2T0)

−1t
)
ξ(x).

(25)

Then, we seek the solution to the nonlinear boundary value problem (11), (12) in
the form

u(t, x, μ) =μ1/2
(

ξ(τ, x) exp
(
iπ(2T0)

−1t
)
+ cc

)
+

μu2(t, τ, x) + μ3/2u3(t, τ, x) + . . . ,
(26)

where τ = μt is the ‘slow’ time, ξ(τ, x) is the unknown complex amplitude, the functions
uj(t, τ, x) are 4T0-periodic with respect to t and 2π-periodic with respect to x. Here, cc
means the complex conjugate to the previous term expression.

We insert the formal expression (26) into (11) and collect the coefficients at the same
powers of μ. At the first step, we equate the coefficients of μ1/2 and obtain an identity.
Then, we collect the coefficients at the first power of μ and obtain the equation for u2

u̇2 = −ru2(t−T, x)− r
[
ξ exp

(
− i

π

2
+ i

π

2T0
t
)
+ ξ̄ exp

(
i
π

2
− i

π

2T0
t
)]

·
(

ξ exp
(

i
π

2T0
t
)
+ ξ

)
.

Hence,

u2 = Aξ2 exp(iπ(T0)
−1t) + cc, A = − exp(−ir0)

(
2(i + exp(−2iT0))

)−1.

At the third step, we obtain the equation for determining u3, the solvability condition
of which in the indicated class of functions is formulated as

∂ξ

∂τ
= bξ + γ0

(
M(ξ)− ξ

)
+ βξ|ξ|2,

ξ(τ, x + 2π) ≡ ξ(τ, x).
(27)

Here, M(ξ) stands for the mean value with respect to x ∈ [0, 2π] of the function
ξ(τ, x):

M(ξ) =
1

2π

∫ 2π

0
ξ(τ, x)dx.

The following equalities hold for the coefficients in (27):

b =
(

1 +
π2

4

)−1[(
π
2 + i

)
r1 + λ2

0T1

(
1 − i π

2

)]
,

γ0 = γ1r0 exp
(− iπh(2T0)

−1) · [iπ(2T0)
−1 − r0 exp

(− iπ(2T0)
−1)]−1,

β = −λ0[3π − 2 + i(π + 6)]
(

10
(

1 +
4

π2

))−1
, �β < 0.

In the considered case, the next statement indicates the boundary value problem (27)
to be the QNF for the boundary value problem (11), (12).

Theorem 1. Let the conditions (23) and (24) be satisfied, and let the boundary value problem (27)
have the solution ξ(τ, x) for τ ≥ τ0. Then, the function

u(t, x, μ) = μ1/2
(

ξ(τ, x) exp
(
iπ(2T0)

−1t
)
+ cc

)
+ μ

(
Aξ2(τ, x) exp(iπ(T0)

−1t) + cc
)

satisfies the boundary value problem (11), (12) up to O(μ3/2).
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We note that the conditions of zero solution in (27) asymptotic stability consist in the
fulfillment of the inequalities

�b < 0, �(b − γ0) < 0. (28)

For �b > 0, the QNF (27) has the homogeneous cycle ρ0 exp(iω0t), and

ρ0 =
(−�b · (�β)−1)1/2, ω0 = �b + ρ2

0�β.

The same cycle under the same condition exists in the logistic
Equation (1). The cycle in Equation (1) is orbitally stable, while the orbital stability in (27)
requires the following inequalities to be valid:

(1) ρ0�β −�γ0 < 0, (29)

(2) |γ0|2 − 2ρ2
0
(�β · �γ0 +�β · �γ0

)
> 0. (30)

A value of γ0 can be selected such that either (29) or (30) does not hold. We note that
stability (instability) condition fulfillment can be achieved by delay coefficient h variation.

In addition to one cycle, the QNF (27) can have the cycles

ρk exp(iωkt + ikx) (k = 0,±1,±2, . . .).

These cycles exist under the condition �(b − γ0) > 0 and

ρk = ρ0 =
(
−�(b − γ0) · (�β)−1

)1/2
, ωk = ω0 = �(b − γ0) + ρ2

k�β. (31)

The above cycles are orbitally stable if the inequalities

(1) (ρ0)2�β +�γ0 < 0,
(2) |γ0|2 + 2(ρ0)2(�β · �γ0 +�β · �γ0

)
> 0

hold. Strict unfulfillment of at least one of these inequalities implies instability of all cycles.
The problem of the spatially inhomogeneous step-like cycle’s existence is more intriguing.
At the first instance, we note that Equation (27) is periodic with respect to t and

2π-periodic piecewise continuous with respect to x solution

ρ(x) exp(iω0t), ρ(x) =

{
ρ0, x ∈ (0, π),
−ρ0, x ∈ (π, 2π).

One can construct families of 2πω−1
0 -periodic with respect to t and 2π-periodic piece-

wise continuous with respect to x solutions ρ(x, k1, k2, α) exp(iω0t), where

ρ(x, k1, k2, α) =

{
ρ0 exp(i2πα−1k1x), x ∈ (0, α), k1 = ±1,±2, . . . ,
ρ0 exp(i2π(2π − α)−1k2x), x ∈ (α, 2π − α), k2 = ±1,±2, . . . .

Obviously, constructions of this kind extend to solutions with an arbitrary number
of ‘steps’.

What is more intriguing, these are the cycles consisting of two different steps with
respect to ‘amplitude’ on the interval [0, 2π]. To construct them, we arbitrarily fix the
parameters α ∈ (0, 2π) and ϕ1,2 ∈ (0, 2π). We assume

u0(t, x) = ρ(x) exp(iωt), ρ(x) =

{
ρ1 exp(iϕ1), x ∈ (0, α),
ρ2 exp(iϕ2), x ∈ (α, 2π).

(32)
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Let ϕ = ϕ2 − ϕ1. We insert (32) into (26). Then, we obtain the system of polyno-
mial equations

iωρj = (b − γ0)ρj + γ0P + βρ3
j , (j = 1, 2). (33)

Here, P = (2π)−1γ0
(
αρ1 + (1 − α)ρ2 exp(iϕ)

)
.

The system (33) represents two complex or four real equations of five real variables
ρ1, ρ2, α, ϕ and ω. We proceed with the real-valued notation of this system:

ρ1 = �(b − γ0)ρ1 + ρ3
1�β +�γ0P, (34)

ωρ1 = �(b − γ0)ρ1 + ρ3
1�β +�γ0P, (35)

ρ2 = �(b − γ0)ρ2 + ρ3
2�β +�(

γ0 exp(−iϕ)P
)
, (36)

ωρ2 = �(b − γ0)ρ2 + ρ3
2�β +�(

γ0 exp(−iϕ)P
)
, (37)

First, we provide the expressions for ρ3
1,2 from (34) and (36):

ρ3
1 =

[(
1 −�(b − γ0)

)
ρ1 −�(γ0P)

]
(�β)−1,

ρ3
2 =

[(
1 −�(b − γ0)

)
ρ2 −�(γ0 exp(−iϕ)P)

]
(�β)−1.

Then, we substitute them into (35) and (37) instead of ρ3
1,2, respectively. As a result,

we obtain the linear system with the 2 × 2 matrix B of the form

B
(

ρ1
ρ2

)
= ω

(
ρ1
ρ2

)
.

If the real positive eigenvalue ω = ω(α, ϕ) of this matrix can be determined, we obtain
the eigenvector ρ2 = c(α, ϕ)ρ1. Taking this equality into consideration in (34) and (36), we
obtain the expressions for ρj = ρj(α, ϕ) (j = 1, 2). Finally, another variable is eliminated
via the equality

c(α, ϕ) = ρ2(α, ϕ)
(
ρ1(α, ϕ)

)−1.

Numerical investigations are carried out in this way.

2.2. Case of Parameter γ ‘Middle’ Values

We restrict ourselves to considering the boundary value problem (11), (12) in the case
when the parameters h and T coincide, namely h = T, which is interesting for mathematical
ecology problems. Then, the characteristic Equation (22) splits into two:

(1) λ = −r exp(−λT),
(2) λ = −r(1 + γ) exp(−λT).

Moreover, each root of the last equation is repeated infinitely many times. Let the
inequality rT < π/2 hold. Thus, the size of each isolated population does not oscillate in
the positive equilibrium state neighborhood. We assume that the problem of the stationery
stability in (11), (12) has a critical case: the relations

r0(1 + γ0)T0 =
π

2
(38)

hold for some r = r0, γ = γ0 and T = T0. From here, the linear boundary value prob-
lem (21) has infinitely many periodical solutions uk(t, x) = exp(ikx + iω0t), k = 1, 2, . . .,
ω0 = π(2T0)

−1 = r0(1 + γ0). This implies that under the condition M(ξ(x)) = 0, the
function u0(t, x) = ξ(x) exp(iω0t) is also a solution of (21). We introduce a small parameter
μ : 0 < μ � 1. Let

r = r0 + μr, γ = γ0 + μγ, T = T0 + μT1
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in (11), (12). We seek solutions to this boundary value problem in the form of formal
asymptotic series

u(t, x, μ) = μ1/2
(

ξ(τ, x) exp
(
iω0t

)
+ cc

)
+ μu2(t, τ, x) + μ3/2u2(t, τ, x) + . . . , (39)

where τ = μt, ξ(τ, x) is the unknown amplitude, and the functions uj(t, τ, x) are 2π/ω0-
periodic with respect to t and 2π-periodic with respect to x. The key condition is that the
function ξ(τ, x) has a zero mean with respect to the spatial variable:

M(ξ(τ, s)) = 0. (40)

We insert (39) into (11). First, we perform standard actions to obtain the equation
for u2:

∂u2

∂t
= −r0u2(t − T, x) + r0γ0

[
M

(
u2(t − T, s)

)− u2(t − T, x)
]
−

r0(1 + δγ0)ξ
2(τ, x) exp(−iω0T0 + 2iω0t) + cc.

(41)

We seek the solution of (41) in the form

u2(t, τ, x) = u20(t, τ) exp(2iω0t) + cc + u21(t, τ, x) exp(2iω0t) + cc

and M(u21(t, τ, s)) = 0. Then,

u20(t, τ) = C1M(ξ2(τ, s)),

u21(t, τ, x) = C2
(
ξ2(τ, x)− M(ξ2(τ, s))

)
,

C1 = −(
2iω0 + r0 exp(−iω0T0)

)−1r0(1 + δγ0) exp(−iω0T0),

C2 = −(
2iω0 + r0(1 + γ0) exp(−iω0T0)

)−1r0(1 + δγ0) exp(−iω0T0).

At the next step, we collect the coefficients at μ3/2 in the formal identity and obtain
the equation for u3 in the form

∂u3

∂t
= −r0u3(t − T, x) + r0γ0

[
M

(
u3(t − T, s)

)− u3(t − T, x)
]
+

D1(τ, x) exp(iω0t) + cc + D3(τ, x) exp(3iω0t) + cc.

The D3(τ, x)-independent in the indicated class of functions solvability condition of
this equation is the validity of the equality

D1(τ, x)− M(D1(τ, x)) = 0.

We take into account the explicit form of D1(τ, x) and obtain from this equality the
boundary value problem as the QNF to find ξ(τ, x):

∂ξ

∂τ
= b1ξ + β1ξ|ξ2|+ β2ξ̄M(ξ2), (42)

ξ(τ, x + 2π) ≡ ξ(τ, x), M(ξ(τ, s)) = 0. (43)
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The formulas

b1 =
(

1 +
π2

4

)−1[(π

2
+ i

)
(r1(1 + γ0) + γ1r0) + r2

0(1 + γ2
0)T1

(
1 − i

π

2

)]
,

β1 = −r(1 + δγ0)
(

exp(−2iω0T0) + exp(iω0T0)
)
C2

(
1 + i

π

2

)−1
,

β2 = −r
[
(1 + δγ0)

(
exp(−2iω0T0) + exp(iω0T0)

)
(C1 − C2) +

δγ0 exp(−2iω0T0)C1

](
1 + i

π

2

)−1

hold for the coefficients in (42).
Let us sum things up.

Theorem 2. Let condition (38) be satisfied, and the boundary value problem (42), (43) has the
bounded solution ξ(τ, x) as τ → ∞. Then, the function

u(t, x, μ) = μ1/2
(

ξ(τ, x) exp
(
iω0t

)
+ cc

)
+ μu2(t, τ, x)

satisfies the boundary value problem (11), (12) up to O(μ3/2).

Periodic with respect to t and 2π-periodic piecewise continuous with respect to x
solutions to the boundary value problem (11), (12) could also be determined in explicit
form. However, it is not considered in this paper. We only refer to the paper [29]. In a
similar situation, families of step-like solutions to the QNF are constructed, its stability is
studied, and a comparison with experimental data is performed.

3. Chain Dynamics in Case of Diffusional Couplings

The boundary value problem (15) is examined. Let δ = 0 for definiteness. Then,
the linearized on the zero equilibrium state boundary value problem has the form

∂u
∂t

= −ru(t − T, x) + rγ
∫ +∞

−∞
F(s, ε)u(t − h, x + s)ds, (44)

u(t, x + 2π) ≡ u(t, x). (45)

Here, we assume that function F(s, ε) is given by

F(s, ε) = Fε(s)− 2F0(s) + F−ε(s). (46)

Depending on the parameter σ, three fundamentally different events can be distin-
guished. The first and the simplest of them assumes the parameter σ > 0 to be somehow
fixed and, naturally, independent of the small parameter ε. This case is studied in Section 3.1.
In Section 3.2, we assume that there is a value of σ0 > 0 such that

σ = εσ0. (47)

The critical case of infinite dimension mentioned above is realized under this condition.
Finally, in Section 3.3, we assume the parameter σ to be even smaller: σ = o(ε). More
precisely, for some fixed σ0 > 0, we consider the relation

σ = ε2σ0. (48)

This case is the most complicated and intriguing. It naturally generalizes the case of
‘purely diffusional’ couplings for which σ∼0.
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3.1. Chain Dynamics for Fixed σ Value

In Formula (46), we arbitrarily fix the value σ0 > 0. The inequality

0 < r <
π

2
(49)

is the necessary and sufficient condition for the real parts of all eigenvalues of the charac-
teristic Equation (20) to be negative.

For r = π/2, Equation (20) has exactly two pure imaginary roots λ± = ±iπ/2, and
the real parts of the remaining roots are negative and separated from zero as ε → 0. Thus,
the conditions of the well-studied Andronov–Hopf bifurcation are satisfied. Let

r =
π

2
+ ε2r1 (50)

for the arbitrarily fixed value r1.
Then, for ε � 1, the roots λ±(ε) of Equation (20) close to λ± are as follows:

λ+(ε) =λ−(ε),

λ+(ε) =i
π

2
+ ε2λ10 + O(ε4),

where λ10 =(1 +
π2

4
)−1(

π

2
+ i)r1.

(51)

Under these conditions and for sufficiently small ε, the boundary value problem (15)
has a two-dimensional stable local integral invariant manifold M(ε) in the zero equilibrium
state neighborhood, on which this boundary value problem can be written as a special
scalar complex ordinary differential equation

dξ

dτ
= λ10ξ + gξ|ξ|2, (52)

where τ = ε2t is a slow time, and ξ(τ) is a slowly varying amplitude in the asymptotic
presentations of solutions on the manifold M(ε)

u = ε
[
ξ(τ) exp

(
i
π

2
t
)
+ ξ̄(τ) exp

(
− i

π

2
t
)]

+ ε2u2(t, τ) + ε3u3(t, τ) + . . . . (53)

Here, the functions uj(t, τ) are 4-periodic with respect to t. We insert the formal
expression (53) into (15) and collect the coefficients at the same powers of ε. First, we equate
the coefficients at ε2 to obtain

u2 =
2 − i

5
ξ2 exp(iπt) +

2 + i
5

ξ2 exp(−iπt). (54)

At the next step, from the solvability condition of the resulting equation with respect
to u3, we obtain the necessity of satisfying the relation (52), where

g = −π

2

[
3π − 2 + i(π + 6)

]
·
(

10
(

1 +
4

π2

))−1
. (55)

Let us formulate the resulting statements. Their proofs are well-known (see, for exam-
ple, [19]).

Theorem 3. Let r1 < 0. Then, for all sufficiently small ε, the solution of the boundary value
problem (15) from some sufficiently small ε-independent equilibrium state u0 = 0 neighborhood
tends to zero as t → ∞.
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Theorem 4. Let r1 > 0. Then, all the solutions of Equation (52) except the zero solution tend to
an orbitally stable cycle

ξ0(τ) =
[
10

π

2
r1(3π − 2)−1

] 1
2
ξ0 exp(iφ0τ),

φ0 =�λ10 + ξ2
0�g,

(56)

and the solutions ( �≡ 1) from M(ε) tend to cycle

u0(t, ε) = ε
[
ξ0(ε

2t) exp
(

i
π

2
t
)
+ ξ̄0(ε

2t) exp
(
− i

π

2
t
)]

+ O(ε2) (57)

as t → ∞.

Thus, in the considered case, the boundary value problem (15) can have only a homo-
geneous cycle 1 + u0(t, ε) in a zero neighborhood, which is a logistic Equation (1) under
the condition (50). Apparently, the case considered here is of no interest.

3.2. Chain Dynamics for σ Values of ε Order

Here, we assume that the condition (47) holds. Then, the characteristic Equation (20)
has the set of roots λm(ε) and λm(ε) (m = 0,±1,±2, . . .), the real parts of which tend to
zero as ε → ∞. The representation

λm(ε) +
(π

2
+ ε2r1

)
exp(−λm(ε)) =d

(∫ ∞

−∞
F(s, ε) exp(ims)ds − 1

)
=

d(cos(εm) exp(−ε2m2σ2
0 )− 1).

(58)

holds for these roots.
From here, we obtain that the asymptotic equality

λm(ε) = i
π

2
+ ε2λ1 + . . . , λ1 = λ10 −

(
1 + i

π

2

)−1
d
(1

2
+ σ2

0

)
m2

holds for each integer m.
Each of the above roots corresponds to the solution vm(t, x) of the boundary value

problem (44), (45) for which

vm(t, x) = exp(i
π

2
t + imx)νm(τ),

where νm(τ) = νm exp((−ε2λ1 + O(ε4))t).
Let us introduce the formal series

u(t, x, ε) =ε
[

exp
(

i
π

2
t
) ∞

∑
m=−∞

ξm(τ) exp(imx) +

exp
(
− i

π

2
t
) ∞

∑
m=−∞

ξ̄m(τ) exp(−imx)
]
+

ε2u2(t, τ, x) + ε3u3(t, τ, x) + . . . .

(59)

Here, τ = ε2t is a slow time, ξm(τ) are the unknown slowly varying amplitudes,
and the functions uj(t, τ, x) are periodic with respect to t and x. We note that Formula (59)
defines a solution set of the linear boundary value problem (44), (45) in the linear approxi-
mation, i.e., for uj ≡ 0.
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Expression (59) can be significantly simplified. For this purpose, we assume

ξ(τ, x) =
∞

∑
m=−∞

ξm(τ) exp(imx).

Then, it follows from (59) that

u(t, x, ε) =ε
[
ξ(τ, x) exp

(
i
π

2
t
)
+ ξ̄(τ, x) exp

(
− i

π

2
t
)]

+

ε2u2(t, τ, x) + ε3u3(t, τ, x) + . . . .
(60)

We insert (60) into (15) and equate the coefficients of the same powers of ε in the
resulting formal identity. At the first step, the identity holds for ε1. At the second step, we
collect the coefficients at ε2 and obtain the equality (54), where ξ = ξ(τ, x). At the next
step, we obtain the boundary value problem for determining ξ(τ, x) from the solvability
condition of the resulting equation with respect to u3:

∂ξ

∂τ
= d0

∂2ξ

∂x2 + λ10ξ + gξ|ξ|2,

ξ(t, x + 2π) ≡ ξ(τ, x).
(61)

Here, d0 = (1 + iπ/2)−1(1/2 + σ2
0 ) and the coefficients λ10 and g are the same as in

(51) and (55), respectively.
We formulate the basic results.

Theorem 5. Let the boundary value problem (61) have the bounded solution ξ0(τ, x) as τ → ∞.
Then, the function

u0(t, x, ε) =ε
[
ξ0(τ, x) exp

(
i
π

2
t
)
+ ξ̄0(τ, x) exp

(
− i

π

2
t
)]

+

ε2 2 − i
5

ξ2 exp(iπt) +
2 + i

5
ξ2 exp(−iπt)

satisfies the boundary value problem (15) up to O(ε4).

The problem of the existence and stability of an exact solution to (15), which is close
to the corresponding solution of the boundary value problem (61) as ε → 0, arises. It can
be solved, for example, if ξ0(τ, x) is a periodic solution with the property of coarseness.
By coarseness, we mean the following: If ξ0(τ, x) ≡ const · exp(iωτ + imx), then only
one multiplier of the linearized on ξ0(τ, x) boundary value problem is equal to Modulo 1.
In other cases, the coarseness condition is that only two multipliers of the linearized on
ξ0(τ, x) boundary value problem are equal to Modulo 1.

Theorem 6. Let ξ0(τ, x) be the coarse periodic solution of the boundary value problem (61) with
period ω0. Then, for all sufficiently small ε, the boundary value problem (15) has the periodic
with respect to t solution u0(t, x, ε) with period ω0 + O(ε) with the same stability as ξ0(τ, x).
The asymptotic equality

u0(t, x, ε) = ε(ξ0((1 + O(ε))ε2t, x) exp
(

i
π

2
t
)
+

ξ̄0((1 + O(ε))ε2t, x) exp
(
− i

π

2
t
)
+ . . . + O(ε4).

(62)

holds for this solution.

77



Mathematics 2022, 10, 2648

The proof of Theorem 5 follows directly from the above construction of the boundary
value problem (15) solution asymptotics. The justification of Theorem 6 is standard but
cumbersome, so we omit it.

3.3. Chain Dynamics for σ = O(ε2)

Here, we assume that the condition (48) holds. We distinguish the roots of the char-
acteristic Equation (20) with real parts tending to zero as ε → 0. This equation’s roots
λ = λ(k) are calculated from the formula

λ + (r0 + ε2r1) exp(−λ) =d
( ∫ ∞

−∞
F(s, ε) exp(iks)ds − 1

)
=

d(cos(z) exp(−ε4σ2
0 z2)− 1),

(63)

where z = εk. The vanishing of the right-hand side in (63) up to O(1) (as ε → 0) is
responsible for the real parts of the roots tending to zero. Those numbers k = k(ε) satisfy
this condition for which cos(z) ∼ 1. We introduce the notation to describe such numbers.
We fix an arbitrary integer n and let θn = θn(ε) ∈ [0, 1) be the expression that complements
the value 2πnε−1 to an integer. It appears that the function θn(ε) can be considered
identically zero. The point is that the parameter ε introduced above is determined as
ε = 2π(1 + 2N)−1. Therefore, 2πnε−1 = n(1 + 2N), which is an integer.

Then, the set of numbers k(ε) of the roots λ(k(ε)) consists of the values

k(ε) = 2πnε−1 + m, m, n = 0,±1,±2, . . . (64)

in the considered case.
It is convenient to denote these roots by λm,n(ε). We obtain the asymptotic expression

λm,n(ε) = i
π

2
− ε2

(
1 + i

π

2

)−1
(m2 + 4π2σ2

0 n2) + O(ε4)

for them.
We follow the algorithm investigated above and introduce the formal series

u = ε
[

exp
(

i
π

2
t
) ∞

∑
m=−∞

∞

∑
n=−∞

ξm,n(τ) exp(i(2πnε−1 + m)x) +

ε
(
− i

π

2
t
) ∞

∑
m=−∞

∞

∑
n=−∞

ξ̄m,n(τ) exp(−i(2πnε−1 + m)x)
]
+

ε2u2(t, τ, x) + ε3u3(t, τ, x) + . . . ,

(65)

where τ = ε2t, and the functions uj(t, τ, x) are periodic with respect to t and x.
Let y = 2πε−1x and

ξ(τ, x, y) =
∞

∑
m=−∞

∞

∑
n=−∞

ξm,n(τ) exp(iny + imx).

Then, we can simplify expression (65)

u = ε
[

exp
(

i
π

2
t
)

ξ(τ, x, y) + exp
(
− i

π

2
t
)

ξ̄(τ, x, y)
]
+ ε2u2 + ε3u3 + . . . . (66)

We insert (66) into (15) and equate the coefficients at the same powers of ε. First, we
determine u2(τ, t, x). Then, from the solvability condition of the equation with respect to
u3, we obtain the expression for ξ(τ, x, y), determining:

∂ξ

∂τ
=

(
1 + i

π

2

)−1 ·
( ∂2ξ

∂x2 + 4π2σ2
0

∂2ξ

∂y2

)
+ λ10ξ + gξ|ξ|2, (67)
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ξ(τ, x + 2π, y) ≡ ξ(τ, x, y + 2π) ≡ ξ(τ, x, y), (68)

where the coefficients λ10 and g are the same as in (52).
Ideologically, the basic results of this subsection repeat Theorems 5 and 6. We cite an

analogue of Theorem 5 as an example.

Theorem 7. Let ξ0(τ, x, y) be the bounded solution of the boundary value problem (67), (68) as
τ → ∞. Then, the function

u0(t, x, ε) = 1 + ε
[

exp
(

i
π

2
t
)

ξ0(ε
2t, x, 2π−1x) +

exp
(
− i

π

2
t
)

ξ̄0(ε
2t, x, 2πε−1x)

]
+ ε2u2

(69)

satisfies the boundary value problem (15) up to O(ε3).

The boundary value problems (61) and (67), (68) have been numerically investigated
by many authors (see, for example, [30]). It has been shown that complicated and irreg-
ular oscillations are typical for such boundary value problems, especially for (67), (68).
The formulas (60) and (66), which couple these boundary value problem solutions with the
boundary value problem (15) solutions, allow us to formulate the same conclusion about
the solutions of (15).

4. Cooperative Dynamics in Chains with Unidirectional Coupling

We consider the boundary value problem (17) in which the equality

F(s, ε) = Fε(s)− F0(s)

holds for the function F(s, ε). Further, relation (47) holds for the parameter σ.
We assume that the equilibrium state u0 = 1 of logistic Equation (1) is asymptotically

stable in the absence of couplings. Thus, the values of parameter r satisfy the inequality

0 < r <
π

2
. (70)

Section 4.1 analyses the linearized at zero boundary value problem, and the nonlinear
boundary value problem, which is the QNF, is constructed in Section 4.2.

4.1. Linear Analysis

In the considered case, the characteristic equation for the linearized on u0 boundary
value problem takes the form

λ + r exp(−λ) = d(exp(iz − σ2
0 z2)− 1), (71)

where d > 0, z = εk, k = 0,±1,±2, . . . . We study the location of the roots of Equation (71)
in order to make a conclusion about the stability of the equilibrium state in the boundary
value problem (17).

We present several simple statements about the roots of (71) without proofs.

Lemma 1. For z ∈ [π(2n + 1), π(2n + 2)] (n = 0,±1,±2, . . .) Equation (71) has no roots with
a zero real part as d > 0.

Lemma 2. For every z ∈ (2πn, π(2n + 1)), there exists d > 0 such that Equation (71) has a root
with a zero real part as d = dz.

We introduce the notation: d(r) = min−∞<z<∞
dz = dz(r).
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Then, the equilibrium state of the boundary value problem (17) is asymptotically
stable as d ∈ (0, d(r)). For d = d(r) and z = z(r), Equation (71) has roots λ±(r) with zero
real part: λ±(r) = ±iω(r) (ω(r) > 0).

Lemma 3. The inequalities

0 < z(r) < π,
π

2
< ω(r) <

3π

2

hold for the values of ω(r) and z(r).

We consider the questions about the asymptotic behavior of the expressions d(r), ω(r)
and z(r) for r → 0 and for r → π/2 separately.

First, let r → 0. We denote by ω0 the root from the interval (π/2, π) of the equation
tan ω = −ω−1. Let

c0 = (1 + σ2
0 )ω

2
0(ω

2
0 + 4), z0 = ω0c−1

0 .

Lemma 4. The asymptotic equalities

d(r) = c0r−1(1 + o(1)), ω(r) = ω0 + o(1), z(r) = z0r(1 + o(1))

hold as r → 0.

Then, let r = π/2 − μ and 0 < μ � 1. Now, by z00 ∈ (0, π/2), we denote the least
root of equation cos z = (π/4 + 1)−1/2. Then, min z00 = π/2(π2/4 + 1)−1/2. We assume

c00 =
π

2

[(π2

4
+ 1

) 1
2

exp(−σ2
0 z2

00)− 1
]
, (c0 < 0),

ω00 = c00
π

2

(π2

4
+ 1

)− 1
2 exp(−σ2

0 z2
00) − 1.

Lemma 5. For all sufficiently small μ, the asymptotic equalities

d(r) = c00μ(1 + o(1)),

ω(r) =
π

2
+ ω00μ(1 + o(1)),

z(r) = z00 + o(1)

hold.

The justifications of Lemmas (4) and (5) are quite simple but cumbersome. Therefore,
we omit them.

Further, we fix the value r0 ∈ (0, π/2) and arbitrary values r1 and d1. Let

r = r0 + ε2r1, d = d(r0) + ε2d1 (72)

in (17).
Below, let θ = θ(ε) ∈ [0, 1) be the expression that complements the quantity z(r0)ε

−1

to an integer. We study the asymptotic behavior of the close to imaginary axis roots of
Equation (71). We denote them by λm(ε) and λm(ε) (m = 0,±1,±2, . . .). The equalities

λm(ε) = iω(r) + εiR1(θ + m) + ε2(R20 + (θ + m)2R2) + . . . (73)
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hold, where

R1 = (1 − r0 exp(−iω(r0)))
−1d(r0)z(r0)×

(1 + 2iσ2
0 ) exp(−σ2

0 z2(r0) + iz0(r0)),

R20 = (1 − r0 exp(−iω(r0)))
−1 ×

[d1(1 − exp(−σ2
0 z2(r0) + iz0(r0))− 1)− r1 exp(−iω(r0))],

R2 = (1 − r0 exp(−iω(r0)))
−1

[1
2

r0 exp(−iω(r0))R2
1 +

d(r0)
(

2σ2
0 z2(r0)−

(
σ2

0 +
1
2

))
exp(−σ2

0 z2(r0) + iz(r0))
]
.

It is significant that
�R1 = 0 and �R2 < 0. (74)

4.2. Construction of Quasinormal Form

We introduce the formal series

u = ε
(

exp(iω(r0)t)
∞

∑
m=−∞

ξm(τ) exp(i(z(r0)ε
−1 + θ + m)x + εiR1(θ + m)t) +

exp(−iω(r0)t)
∞

∑
m=−∞

ξ̄m(τ) exp(−i(z(r0)ε
−1 + θ + m)x −

εiR1(θ + m)t)) + ε2u2(t, τ, x, ε) + ε3u3(t, τ, x, ε) + . . . , τ = ε2t.

(75)

The above expression can be simplified significantly. Let

ξ(τ, y) =
∞

∑
m=−∞

ξm(τ) exp(imy), y = x + εR1t.

Then, it is possible to proceed from (75) to the presentation

u = ε(exp(i(ω(r0) + εR1θ)t + i(z(r0)ε
−1 + θ)x)ξ(τ, y) +

exp(−i(ω(r0) + εR1θ)t − i(z(r0)ε
−1 + θ)x)ξ̄(τ, y)) +

ε2u2(t, τ, x, y) + ε3u3(t, τ, x, y) + . . . .

(76)

The functions appearing here, uj(t, τ, x, y), are periodic with respect to t, x, and y.
We insert (76) into (17). Then, performing standard techniques, we determine

u2(t, τ, x, y):

u2(t, τ, x, y) = u20|ξ(τ, y)|2 + u21ξ2(τ, y) exp((2i(ω(r0) + εR1θ)t + 2i(z(r0)ε
−1 + θ)x) +

ū21ξ̄ 2(τ, y) exp((−2iω(r0) + εR1θ)t − 2i(z(r0)ε
−1 + θ)x),

where

u20 = −2 cos ω(r0),

u21 = −2r cos(2ω(r0))[2iω(r0) + r0 exp(−2iω(r0))−
d(r0)(exp(−2iω(r0)− 4σ2

0 z2(r0))− 1)]−1.

At the next step, we obtain the equation for u3(t, τ, x, y). From its solvability condition
in the indicated class of functions, we arrive at the boundary value problem for ξ(τ, y),
determining:

∂ξ

∂τ
= R2

∂2ξ

∂y2 − iθR2
∂ξ

∂y
+ (R20 + θ2R2)ξ + qξ|ξ|2, (77)

ξ(τ, y + 2π) ≡ ξ(τ, y). (78)
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The equality

q = r0(1 − r0 exp(−iω(r0)))
−1[2 cos(ω(r0))(1 + exp(−iω(r0))−

u21(exp(iω(r0)) + exp(−2iω(r0)))].

holds for the coefficient q.
We introduce the notation to formulate the basic result. We arbitrarily fix the value

θ0 ∈ [0, 1), and let εn(θ0) be a sequence such that εn(θ0) → 0 as n → ∞, and the equality
θ(εn(θ0)) = θ0 holds for each n.

From above, we obtain the following statement.

Theorem 8. Let, for some θ = θ0, the boundary value problem (77), (78) have the bounded solution
ξ0(τ, y) as τ → ∞, y ∈ [0, 2π]. Then, under condition (47) and for ε = εn(θ0), the function

u0(t, x, ε) = ε(exp(i(ω(r0) + εR1θ0)t + i(z(r0)ε
−1 + θ0)x)ξ0(τ, y) +

exp(−i(ω(r0) + εR1θ0)t − i(z(r0)ε
−1 + θ0)x)ξ̄0(τ, y)),

τ = ε2t, y = x + εR1t

satisfies the boundary value problem (17) up to O(ε2).

Therefore, the boundary value problem (77), (78) is the QNF for (17).

5. Dynamics of Logistic Delay Equation with Large Coefficient of Spatially
Distributed Control

In this section, we study the logistic delay equation with large coefficient of spatially
distributed control of the form

Ṅ = r[1 − N(t − T, x)]N + γ
[ ∫ ∞

−∞
F(s)N(t, x + s)ds − N

]
. (79)

The dependence of the functions N(t, x) on the spatial variable x is assumed to
be periodic:

N(t, x + 2π) ≡ N(t, x). (80)

Thus, we fix the space C[−T,0]×[0,2π] as a phase space of the boundary value prob-
lem (79), (80).

Function F(s) describing spatial interactions is defined by

F(s) =
1√
μπ

exp[−μ−1(s + h)2], μ > 0. (81)

We note that
∫ ∞
−∞ F(s)ds = 1. Apparently, study of the problem (79) and (80) is of

great interest, provided that parameter μ appearing in (81) is sufficiently small:

0 < μ � 1. (82)

This condition arises naturally in many applied problems (see, for example, [31]).
The assumption that the coefficient γ is large enough, i.e.,

γ � 1 (83)

allows us to apply special asymptotic methods. In the next section, we study the local dy-
namics of solutions to the boundary value problem (79) and (80) under the conditions (82)
and (83). The corresponding constructions are based on the results from [28]. Section 5.2
considers the local dynamics (i.e., in a small equilibrium state neighborhood) of the prob-
lem (79), (80). Critical cases are distinguished in the stability problem. The distinctive
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feature of these critical cases is that they have infinite dimension. As a basic result, nonlin-
ear boundary value problems of parabolic type are constructed that do not contain small
and large parameters. Their nonlocal dynamics determine the behavior of the solutions of
problem (79), (80) from small equilibrium state neighborhood N0 = 1. The corresponding
investigation is based on the papers [26,28]. We immediately pay attention to one of the
conclusions obtained in Sections 5.1 and 5.2. As it turns out, complicated bifurcation
phenomena in the problem (79), (80) can appear even for sufficiently small values of the
delay time T. Here, we use the results obtained in the paper [32].

5.1. Boundary Value Problem Reduction to Parabolic-Type Equation

This section is divided into three parts. The first two sections assume that the deviation
h is asymptotically small, i.e., function F(s) is close to symmetric. In Part 1, the parameters
γ−1, μ and h2 are assumed to be of the same order. It is shown that the nonlocal dynamics
of specially constructed boundary value problems of parabolic type determine, in general,
the dynamic properties of problem (79), (80). The corresponding structures are called
slowly oscillating since they are formed mainly on low modes. The diffusive properties of
the initial equation are assumed to be small in Part 2. In terms of problem coefficients, this
means the qualified smallness of parameters μ and h2 compared to γ−1. The appropriate
range of their change is indicated below. In this case, we demonstrate that the rapidly
oscillating (i.e., formed on asymptotically large modes) regimes are distinctive for the
boundary value problem (79), (80). In order to find them, special families of nonlinear
parabolic boundary value problems are constructed. In Part 3, we study the dynamics of
problem (79), (80) under the condition of F(s) essential dissymmetry when parameter h is
not small.

Thus, we demonstrate that the boundary value problem (79), (80) dynamics essentially
depend on the relations between parameters γ−1, μ, and h.

5.1.1. Slowly Oscillating Structures

Let
ε = γ−1, 0 < ε � 1.

Here, we assume that the parameters ε, μ, and h2 are of the same order: for some fixed,
positive k and h1, we obtain

μ = kε, h = ε1/2h1. (84)

After dividing (79) by γ, we consider the resulting ‘main’ part, which is the linear
boundary value problem

ε
∂u
∂t

=
∫ ∞

−∞
F(s)u(t, x + s)ds − u, u(t, x + 2π) ≡ u(t, x). (85)

The characteristic equation of (85) is of the form

ελm = exp[iε1/2h1m − εkm2]− 1, m = 0,±1,±2, . . . . (86)

Hence, we obtain the asymptotic formulas

λm = iε−1/2h1m −
(

k +
1
2

h2
1

)
m2 + O(ε1/2) (87)

for the roots λm = λm(ε). Thus, infinitely many roots of Equation (86) tend to the imaginary
axis as ε → 0. This gives us reason to regard the considered critical case in the stability
problem to be infinite-dimensional. The methodology of studying such systems is devel-
oped in [26,28]. We use the appropriate results here. For this purpose, we introduce the
formal series

u =
∞

∑
m=−∞

ξm(t) exp(imy) + εu1(t, y) + . . . , (88)
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where y = x + ε1/2h1t. We insert (88) into (79) and equate the coefficients at the same
power of ε. We obtain the infinite system of ordinary differential equations to determine
the function ξm(t). As it turns out, this system can be written as one complex parabolic
equation of the Ginzburg–Landau type for the function

ξ(t, y) =
∞

∑
m=−∞

ξm(t) exp(imy)

∂ξ

∂t
=

(
k +

1
2

h2
1

) ∂2ξ

∂y2 + r[1 − ξ(t − T, y − Δ)]ξ, (89)

ξ(t, y + 2π) ≡ ξ(t, y), (90)

where Δ = Δ(ε) = (ε−1/2h1T) mod 2π .

Theorem 9. Let, for some fixed Δ = Δ0 ∈ [0, 2π], the boundary value problem (89), (90) be
bounded together with the time derivative solution ξ0(t, y) as t → ∞. Then, as determined from the
equality Δ(ε) = Δ0, for the sufficiently small εn, the function

N(t, x, εn) = ξ0(t, x + ε−1/2
n h1t)

satisfies the boundary value problem (79), (80) up to O(ε1/2
n ).

Theorem 10. On conditions of Theorem 9, let ξ0(t, y) be a periodic solution of the problem (89),
(90), and let only two of its multipliers be equal to Modulo 1. Then, for all sufficiently small εn,
the boundary value problem (79), (80) has a periodic solution N0(t, x, ε) of the same stability as
ξ0(t, y), and

N0(t, x, ε) = ξ0((1 + o(ε1/2
n ))t, x + ε−1/2

n h1t) + O(ε1/2).

5.1.2. Rapidly Oscillating Structures

Here, we demonstrate that the decrease of diffusion coefficients (k and h1) can lead
to the appearance of rapid oscillation with respect to spatial and time variable families
of structures. Conditionally, we can divide them into two types. Proportional decrease
of coefficients k and h1, which play the role of diffusion, leads to the appearance of the
first type. The structures are formed in the neighborhood of asymptotic large modes.
However, the product of diffusion coefficients and the (asymptotically large) value of the
corresponding modes is of an asymptotically small quantity. In other words, the squares
of the corresponding modes coincide in order with the reciprocal of deviation of spatial
variables. The second type of structures arises only when one diffusion coefficient, k,
decreases. Here also, rapidly oscillating structures are formed due to the interaction of a
large number of modes far apart from each other. However, the principal difference from
structures of the first type is that the values of modes themselves coincide in order with the
reciprocal of the deviation of the spatial variable but not the values of the squares of the
modes. Let us consider these cases separately.

Case 1. Structures of the ‘first’ type.
Let

μ = ε2k1, h = εh2 (91)

for some fixed positive k1 and h2.
We arbitrarily fix z as real, and let θ = θ(ε, z) be the value from the semi-open interval [0, 1)

that complements the expression zε−1/2 to an integer. We consider the integer set

(zε−1/2 + θ)m + n, m, n = 0,±1,±2, . . . .

84



Mathematics 2022, 10, 2648

For these numbers, the characteristic Equation (86) has the set of roots similar to (87)

λm,n = iε−1/2h2zm + i(θm + n)h2 −
(

k1 +
1
2

h2
2

)
z2m2 + O(ε1/2).

Then, the family of the boundary value problems depending on the parameter z

∂ξ

∂t
= z2

(
k1 +

1
2

h2
2

) ∂2ξ

∂y2 + h2

(
θ

∂ξ

∂y
+

∂ξ

∂v

)
+ rξ[1 − ξ(t − T, y − δ, v)], (92)

ξ(t, y + 2π, v) ≡ ξ(t, y, v) ≡ ξ(t, y, v + 2π) (93)

plays a role in the boundary value problem (89), (90) in the considered case. Here,
δ = (ε−1/2h2z + h2θ) mod 2π .

Theorem 11. Let, for some fixed δ = δ0 and z = z0, the boundary value problem (92), (93)
be bounded together with a derivative with respect to t solution ξ0(t, y, v) as t → ∞. Then, as
determined from the equality δ(ε) = δ0, for the sufficiently small εn, the function

N(t, x, ε) = ξ0
(
t, (z0ε−1/2 + θ)x + (ε−1/2h2z0 + h2θ)t, x

)
satisfies the boundary value problem (79), (80) up to O(ε1/2).

The ‘first’ type of structure can also be formed by the interaction of a larger number of
modes. We use constructions from [32] to demonstrate this.

We fix an arbitrarily natural number m0 and real numbers z1, . . . , zm0 . We consider the
set of integer numbers

m0

∑
j=1

(zjε
−1/2 + θj)mj + nj, mj, nj = 0,±1,±2, . . . .

For modes with these numbers, the equation

∂ξ

∂t
=
[
z1

∂

∂y1
+ . . . + zm0

∂

∂ym0

]2(
k1 +

1
2

h2
2

)
ξ + h2

(
θ1

∂ξ

∂y1
+ . . . + θm0

∂ξ

∂ym0

+

∂ξ

∂v1
+ . . . +

∂ξ

∂vm0

)
+ r[1 − ξ(t − T, y1 − δ1, . . . , ym0 − δm0 , v1, . . . , vm0)]ξ

plays the role of the boundary value problem (92), (93) with 2π-periodic boundary condi-
tions with respect to each spatial variable, and

δj = (ε−1/2h2zj + h2θj) mod 2π .

Similarly to Theorem 11, the corresponding statement about coupling with the so-
lutions of the boundary value problem (79), (80) is formulated for the solutions of this
boundary value problem.

Remark 1. The structures considered here that rapidly oscillate with respect to spatial variables
arise when the coefficients k and h1 in (89) are also asymptotically small.

In this part, the case of k = εk1 and h1 = ε1/2h2 is considered. Of course, one can
investigate a more general case, when for some positive α, k1 and h2, the equalities

k = ε1+αk1, h1 = ε
1+α

2 h2

hold. For such k and h, the changes in the corresponding constructions are not fundamental,
so we do not dwell on them.
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Case 2. Structures of the ‘second’ type.
Here, the coefficient h is assumed to be the same as in (84). Further,

μ = ε2k1.

We consider the integer set (2πh−1
1 ε−1/2 + θ)m + n, where θ ∈ [0, 1) is such that the

expression in brackets is an integer, m, n = 0,±1,±2, . . . . The characteristic Equation (86) has the
set of roots λm,n for which

λm,n = ih1(θm + n)ε−1/2 −
(

4π2

h2
1

k1m2 +
1
2

h2
1(θm + n)2

)
+ O(ε1/2).

We apply the above construction and obtain the resulting boundary value problem

∂ξ

∂t
= 4π2h−2

1 k1
∂2ξ

∂y2 +
h2

1
2

(
θ

∂

∂y
+

∂

∂v

)2
ξ + r[1 − ξ(t − T, y − δ, v − κ)]ξ, (94)

ξ(t, y + 2π, v) ≡ ξ(t, y, v) ≡ ξ(t, y, v + 2π), (95)

where
δ = (h1Tθε−1/2) mod 2π , κ = (h1Tε−1/2) mod 2π .

We introduce some notation in order to formulate an analogue of Theorem 9 in the considered
situation. We fix an arbitrary κ = κ0 ∈ [0, 1) and the sequence εp → 0 of the roots of equation
κ(εp) = κ0. Let θ0 be the arbitrary limit point of the sequence θ(εp). Let θ(εpq) → θ0 for the
sequence εpq . Finally, σ0 ∈ [0, 1) denotes the arbitrary limit point of the sequence σ(εpq), and let
εR ⊂ εpq and σ(εR) → σ0.

Theorem 12. Let, for some θ0, σ0, and κ0, the boundary value problem (94), (95) be bounded
together with a derivative with respect to t solution ξ0(t, y, v). Then, for σ = σ0, κ = κ0, θ = θ0,
and ε = εR → 0, the function

N(t, x, ε) = ξ0
(
t, (2πh−1

1 ε−1/2
R + θ0)x + h1θ0ε−1/2

R t, x + h1ε−1/2t
)

satisfies the boundary value problem (79), (80) up to O(ε1/2).

5.1.3. Case of Essentially Asymmetric Function

Here, we assume parameter h to not be small but to be close to some number rationally
commensurate with π. This means, that for some relatively prime integers m1 and m2,

h =
πm1

m2
− ε1/2h1. (96)

We assume that m = Mn, where n = 0,±1,±2, . . ., M = 2m2 if m1 is even, or M = 2m2
if m1 is odd. Here, we repeat the constructions from Section 5.1.1 and obtain, similar to (89),
(90), the boundary value problem

∂ξ

∂t
= M2

(
k +

1
2

h2
1

) ∂2ξ

∂y2 + r[1 − ξ(t − T, y − Δ)]ξ,

ξ(t, y + 2π) ≡ ξ(t, y).

The formula
N(t, x, ε) = ξ

(
t, M(x − ε−1/2h1t)

)
+ O(ε1/2)
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establishes a relation between its solutions and the solutions of problem (79), (80). Accord-
ingly, for (91), we arrive at the boundary value problem

∂ξ
∂t = z2M2

(
k1 +

1
2

h2
2

)
∂2ξ
∂y2 + h2M ∂ξ

∂v + r[1 − ξ(t − T, y − δ, v)]ξ,

ξ(t, y + 2π, v) ≡ ξ(t, y, v) ≡ ξ(t, y, v + 2π).
(97)

The solutions of this boundary value problem and of the boundary value prob-
lem (79), (80) are coupled by the equality

N(t, x, ε) = ξ
(
t, M(zε−1/2 + θ)x + M(ε−1/2h2z + h2θ), Mx

)
+ O(ε1/2).

Satisfaction of only one condition μ = ε2k1 (h = ε1/2h1) is a more interesting situa-
tion. Let θ = θ(ε) ∈ [0, M) be a value which complements the expression πm1(m2h1ε1/2)−1

to an integer multiple of M. We examine the set of integers K = {(πm1(m2h2ε1/2)−1 + θ)p},
p = 0,±1,±2, . . . . Then, for the roots of Equation (86) with numbers m from K and
n = 0,±1,±2, . . ., we obtain

λm,n = ih1(θp + n)ε−1/2 −
[

π2m2
1

m2
2

k1 p2 − 1
2

h2
1(θp + n)2

]
+ O(ε1/2).

Here, the boundary value problem

∂ξ
∂t =

π2m2
1

m2
2

k1
∂2ξ
∂y2 +

1
2 h2

1

(
θ ∂

∂y + ∂
∂v

)
ξ + r[1 − ξ(t − T, y − δ, v − κ)]ξ,

ξ(t, y + 2π, v) ≡ ξ(t, y, v) ≡ ξ(t, y, v + 2π)

is the analogue of problem (97). Definitely in the situations under consideration, there is
also a connection between the solutions of the constructed boundary value problems and
the asymptotic (with respect to residual) solutions of the boundary value problem (79),
(80). As in Section 5.1.1, boundary value problems similar to those given but with a large
number of spatial variables appear when taking into account the larger number of modes.
We do not dwell on this in more detail.

5.2. Large Coefficient γ-Induced Bifurcations

Upon condition (83), we study the behavior of solutions of the boundary value problem
(79), (80) in a sufficiently small equilibrium state N0 ≡ 1 neighborhood. The characteristic
quasipolynomial of a boundary value problem linearized on N0 has the form

ελ = −εr exp(−λT) + exp(ihm − μm2)− 1, 0 < ε � 1, m = 0,±1,±2, . . . . (98)

As in Section 5.1, we restrict ourselves to the most interesting and important situations
depending on the relationship between the parameters ε, h, and μ. In Section 5.2.1, we
assume that condition (84) holds: h =

√
εh1, μ = kε. Below, we demonstrate that Andronov–

Hopf bifurcation occurs in (79), (80) even for small values of the delay parameter T ∼ ε1/2.
The periodic solution bifurcating from the equilibrium state N0 turns out to be rapidly
oscillating in time. In Section 5.2.2, the relations h = εh2, μ = k1ε2 are assumed to
be valid. In this case, the corresponding bifurcation process has an infinite dimension:
infinitely many roots of the characteristic Equation (98) tend to the imaginary axis as ε → 0.
We construct quasinormal forms, i.e., the families of complex parabolic (and degenerate
parabolic) boundary value problems whose nonlocal dynamics determine the behavior
of the initial boundary value problem (79), (80) solutions in the small neighborhood of
N0 for small ε. In Section 5.2.3, even more complicated families of quasinormal forms are
constructed to determine the dynamic properties of problem (79), (80) under the constraint
μ = k1ε2. The conclusions are given in Section 5.2.4.
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It is natural to choose the delay time T as the main bifurcation parameter. We recall
that the bifurcation value for T is determined from the equality 2rT = π in Equation (79).
In the cases considered here, we demonstrate that the bifurcation parameter can be asymp-
totically small.

5.2.1. Bifurcation Analysis upon Condition h = ε1/2h1, μ = kε

In (98), we assume

λ = iω (ω > 0), ω = ε−1/2h1 + ω2, T = ε1/2T1.

Then, we obtain

r cos(h1T1m) = −(
k +

1
2

h2
1
)
m2,

r sin(h1T1m) = ω2.
(99)

up to O(ε1/2). If it exists, let T1m, m = 1, 2, . . . be the least positive root of Equation (99).
Obviously, there is a finite number of such roots. Let T0

1 be the least of them. Let T0
1 =

T1m0 . We formulate two statements about the roots of Equation (98) that are simple but
cumbersome proofs that are omitted.

Lemma 6. Let T1 < T0
1 . Then, for all sufficiently small ε, the Equation (98) roots separate from

zero negative real parts as ε → 0.

Lemma 7. Let T1 > T0
1 . Then, for all sufficiently small ε, Equation (98) has a root separate from

the zero positive real part as ε → 0.

Thus, in the context of the above lemmas, the issue of the boundary value problem
(79), (80) local dynamics is solved trivially.

Let us study the behavior of the solutions of the problem (79), (80) in the N0 neighbor-
hood close to the critical case condition

T1 = T0
1 + ε1/2T01.

Then, the characteristic Equation (98) has the coupling of the roots λ1,2(ε) of the form

λ1,2(ε) = ±i(ε−1/2h1 + ω2) + O(ε1/2).

The real parts of the remaining roots of Equation (98) are negative and zero-separated
as ε → 0. In this case, for small ε, the boundary value problem (79), (80) has a two-
dimensional stable local invariant integral manifold in the (small) N0 neighborhood,
on which this boundary value problem can be represented in the form of the scalar complex
equation up to the summands of the O(ε1/2) order:

∂ξ

∂τ
= αξ + d|ξ|2ξ, (100)

where τ = ε1/2t is a ‘slow’ time. The solution N(t, x, ε) on this manifold is coupled to
solutions of Equation (100) by the relation

N(t, x, ε) = ε1/4[ξ(τ) exp(im0x + i(ε−1/2h1m0 + ω2)t) + ξ̄(τ) exp(−im0x −
i(ε−1/2h1m0 + ω2)t)

]
+ ε1/2u2(t, τ, x) + ε3/4u3(t, τ, x) + . . . .

(101)

Here, the functions uj(t, τ, x) are periodic with respect to first and third arguments,
with periods 2π(ε−1/2h1m0 + ω2)

−1 and 2π, respectively.
Regarding the dynamics of Equation (100) (and hence the boundary value prob-

lem (79), (80) in the N0 neighborhood), one needs to find the coefficients α and d. To accom-
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plish this, we insert the formal series (101) into (79) and equate the coefficients at the same
powers of ε. At the second step, we obtain

u2(t, τ, x) = u20|ξ|2 + u21ξ2 exp(2im0x + 2i(ε−1/2h1m0 + ω2)t) +

ū21ξ̄2 exp(−2im0x − 2i(ε−1/2h1m0 + ω2)t)

and
u20 = 2 cos(T0

1 h1m0),
u21 = −r

(
exp(−2iT0

1 h1m0)(2iω2 + 4m2
0k + r exp(−2iT0

1 h1m0))
)−1.

From the solvability condition obtained at the third-step equation with respect to
u3(t, τ), we obtain

d = − r
[
1 + exp(−2iT0

1 h1m0)− r exp(−iT0
1 h1m0)(2iω2 + 4m2

0k +

r exp(−2iT0
1 h1m0))

−1],

α = irh1T0
1 m0 exp(−iT0

1 h1m0)−
(

k +
1
2

h2
1

)
m2

0.

We note that each of the quantities �α and �d can be either positive or negative,
depending on the values of the parameters T0

1 , m0, r, k, and h1. As an example, we make
one statement about the dynamics of problem (79), (80).

Theorem 13. Let �α > 0 and �d < 0. Then, for all sufficiently small ε, the boundary value
problem (79), (80) has a stable periodic solution N0(t, x, ε) in the N0 neighborhood, for which

N0(t, x, ε) = 1 + 2ε1/4ρ0 cos(m0x + ε−1/2h1m0 + ω2 + ε1/2φ0 + O(ε3/4))t + O(ε1/2),

where
ρ0 =

(�α(−�d)−1)1/2, ϕ0 = �α + ρ2
0�d.

Remark 2. The results presented here could be obtained by studying the bifurcations from the
equilibrium state ξ0 ≡ 1 in the boundary value problem (89), (90).

5.2.2. High-Mode Bifurcations upon Condition μ = ε2k1, h = εh2

It is assumed here that the conditions h = εh2, μ = k1ε2 are satisfied. Under these
conditions, we study the behavior of the solutions of the problem (79), (80) from a small N0
neighborhood. First, we consider the characteristic Equation (98). For T = 0, its roots have
negative real parts (separated from zero as ε → 0). Let us demonstrate that there are roots
with a close to zero real part as T ∼ ε1/2, and the numbers (modes) m ∼ ε−1/2 correspond
to them. In (98), we assume

T = ε1/2T1, m = cε−1/2 + θc, λ = iε−1/2h2c + iω(c),

where θc = θc(ε) ∈ [0, 1) is the value that complements the previous summand cε−1/2 to
an integer. Then, we obtain the equality

iω(c) = −r exp(−ih2T1c)−
(

k1 +
1
2

h2
2

)
c2 (102)

(up to O(ε1/2)). Let us determine the least value of T1 = T0
1 for which this equation is

solvable with respect to c, i.e., for some c = c0, the relation

r cos(h2T0
1 c0) = −

(
k1 +

1
2

h2
2

)
c2

0 (103)
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holds. We denote by x0 the least positive root of the equation

2x = −x.

Then, the following simple statements hold.

Lemma 8. For T0
1 and c0, the equalities

T0
1 =

1
2

x0

(
k1 +

1
2

h2
2

)1/2
(2 − r cos x0)

−1/2,

c0 = (−r cos x0)
−1/2

(
k1 +

1
2

h2
2

)−1/2

hold.

Lemma 9. Let T1 < T0
1 . Then, for all sufficiently small ε, the roots of Equation (98) have negative

real parts (separated from zero as ε → 0).

Lemma 10. Let T1 > T0
1 . Then, for all sufficiently small ε, Equation (98) has a root with a positive

real part (separated from zero as ε → 0).

In the context of Lemmas 9 and 10, the behavior of the solutions of the problem (79),
(80) in small (ε-independent) neighborhood of N0 is determined in the standard way.

Below, we assume that a case close to critical in the stability problem of N0 is realized.
Let, for some arbitrary constant T11, the equality

T1 = T0
1 + ε1/2T11

hold. In this case, infinitely many roots of Equation (98) tend to the imaginary axis as
ε → 0, and there are no roots with a positive zero-separated as ε → 0 real part. Thus,
the critical case of an infinite dimension is realized in the N0 stability problem. Let us apply
the technique of [26,28] to study the local dynamics of problem (79), (80) for small ε.

First, we note that all modes that correspond to roots of Equation (98) close to the
imaginary axis are asymptotically large and have the leading asymptotic term c0ε−1/2.
In this regard, we consider all modes with numbers m = m(ε) for which

m(ε) = c0ε−1/2 + θ0 + bε−1/4 + θ1, (104)

where θ0 = θc0 , b is arbitrarily fixed, and θ1 = θ(b, ε) ∈ [0, 1) complements the value of
bε−1/4 to an integer. The roots λ = λm(ε) of Equation (98) with numbers m(ε) satisfy the
asymptotic equalities

λ = ih2c0ε−1/2 + ih2bε−1/4 + iω(c0) + iε1/4Δb + ε1/2λ2 + O(ε3/4).

Here, the following designations are accepted:

Δ = rh2T0
1 exp(−ih2T0

1 c0) + i2c0

(
k1 +

1
2

h2
2

)
, �Δ = 0,

λ2 = −σb2 − 2c0θ0

(
k1 +

1
2

h2
2

)
+ r exp(−ih2T0

1 c0)
(
iω(c0)T0

1 + ih2c0T11
)
,

where

σ =
(

k1 +
1
2

h2
2

)(
1 +

1
2

c2
0h2

2(T
0
1 )

2

)
+ iω(c0)

1
2

h2
2(T

0
1 )

2.

Another notation is used below. Let Ω = Ω(ε) be the set of all such values of b for
which the values of bε−1/4 are integers from −∞ to ∞.
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Let us introduce the formal series

N = 1 + ε1/4
[

exp((ih2ε−1/2c0 + iω(c0))t +

(iε−1/2c0 + θ0)x) ∑
b∈Ω

ξb(τ) exp iby + exp(−(ih2ε−1/2c0 + iω(c0))t −

i(ε−1/2c0 + θ0)xby) ∑
b∈Ω

ξ̄b(τ) exp(−iby) + θ0x
]
+ ε1/2u2(t, τ, x, y)+

ε3/4u3(t, τ, x, y) + . . . ,

(105)

where
τ = ε1/2t, y = ε−1/4x + (ε−1/4h2 + ε1/4Δ)t.

The dependence on the first, third, and fourth arguments of function uj(t, τ, x, y) is
periodic, with periods 2π(h2ε−1/2c0 + ω(c0))

−1, 2π(ε−1/2c0 + θ0, and 2π, respectively. We
insert (105) into (79) and perform standard operations. At the second step, we obtain

u2(t, τ, x, y) = u20(τ, y)|ξ|2 + u21(t, τ, x, y)ξ2 + ū21(t, τ, x, y)ξ̄2

and

u20(τ, x) = 2(cos x0)|ξ|2,

u21 = −r exp(−2ix0)
[
2iω(c0) + r exp(2ix0) +

(
k1 +

1
2

h2
2

)
4c2

0

]−1×
exp

(
2i[(h2ε−1/2c0 + ω(c0))t + (ε−1/2c0 + θ0)x]

)
.

At the third step, from the solvability condition of the resulting equation with respect
to u3, we obtain the equation for determining the unknown amplitude

ξ(τ, y) =

(
∑

b∈Ω
ξb exp iby

)
exp

(
i
[
rω(c0)T0

1 + h2c0T11 cos x0−

2c0θ0

(
k1 +

1
2

h2
2

)])
,

∂ξ

∂τ
= σ ∂2ξ

∂y2 + βξ + d|ξ|2ξ,

(106)

where

β = rh2c0T11 sin x0

d = −r
{

2(cos x0)(1 + exp(−ix0))−

(exp(ix0) + exp(−2ix0))r exp(−2ix0)
[
2iω(c0) +

r exp(−2ix0) +
(

k1 +
1
2

h2
2

)
4c2

0

]−1}
.

We note that there are no boundary conditions for Equation (106). The point is that
the function with respect to argument y contains an arbitrary set of harmonics. We present
one of the variants of strict statements about relations between the solutions of (106) and
the solutions of the boundary value problem (79), (80).
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Theorem 14. Let Equation (106) have an R-periodic with respect to argument y solution ξ(τ, y).
Then, for ε → 0, the function

N(t, x, ε) = 1 + ε1/4
[
ξ(ε1/2t, (ε−1/4 + θR)x + (ε−1/4h2 + ε1/4Δ)t)×

exp(i[h2ε−1/4c0 + ω(c0)]t + i[ε−1/2c0 + θ0]x) + ξ̄(ε1/2t, (ε−1/4 + θR)x +

(ε−1/4h2 + ε1/4Δ)t) exp(−i[h2ε−1/4c0 + ω(c0)]t − i[ε−1/2c0+θ0]x)
]
+

ε1/2u2(t, τ, y, x)

satisfies the boundary value problem (79), (80) up to O(ε3/4), where the expression θR = θR(ε) ∈
[0, 2π/R) complements the summand ε−1/4 to an integer multiple of 2π/R.

5.2.3. Reduction to Spatially Two-Dimensional Parabolic Equations

As noted above, the local dynamics of the problem (79), (80) essentially depend on the
relations between the parameters ε, h, and μ. Two of the most important cases are analyzed
in Sections 5.2.1 and 5.2.2 with some model ‘relations’ between small parameters. Here,
we dwell on another important scenario that is fundamentally different from the previous
ones. We construct nonlinear parabolic equations with two spatial variables called the
quasinormal forms to study local dynamics of the problem (79), (80) in N0 neighborhood.

We consider a model situation where

h = εh2, μ = k0ε7/2, T = ε1/2T1. (107)

Let m = m(ε) be such asymptotically large modes for which

m(ε) =
2πh
h2

ε−1 + cε−1/2 + θ1 + bε−1/4 + θ2, (108)

where n = 0,±1,±2, . . . , the parameter c is determined below, the values of b are arbitrary,
the value θ1 = θ1(ε) ∈ [0, 1) complements the sum of two previous terms to an integer,
and θ2 = θ2(ε) ∈ [0, 1) complements the expression bε−1/4 to an integer. For the roots of
the characteristic Equation (98) with numbers (108), the asymptotic formulas

λ = −r exp(−λε−1/2T1) + ih2cε−1/2 + ih2bε−1/4 + i(θ1 + θ2)h2 − 1
2

h2
2c2 + . . .

hold. In order to determine the stability boundary of N0 for the problem (79), (80) in the
range of parameter T1, we assume

λ = ih2cε−1/2 + ih2bε−1/4 + iω + ε1/4λ1 + ε1/2λ2 + . . . . (109)

At the first step of the asymptotic analysis, from (109), we arrive at the equality

iω = −r exp(−ih2cT1)− 1
2

h2
2c2. (110)

The least value of T1 = T0
1 for which Equation (110) is solvable for some c = c0 is

determined from the relations (103) as k1 = 0, i.e.,

c0 = (−r cos x0)
1/22−1/2h2,

T0
1 = 2−3/2x0h2(−r cos x0)

1/2.

Here, the statements of Lemmas 9 and 10 also hold. Thus, we assume below that a
case close to critical in the stability problem of N0 is realized. Let, for some constant T11,
the equality

T1 = T0
1 + ε1/2T11
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hold. Similar to the previous part, infinitely many roots of Equation (98) tend to the
imaginary axis as ε → 0, and there are no roots with a positive zero-separated as ε → 0 real
part. However, there are ‘essentially’ more such roots in this case. Let us explain the above.
For this purpose, we obtain expressions for λ1 and λ2:

λ1 = iΔ0b, Δ0 = rh2T0
1 exp(−x0) + ic0h2

2, �Δ = 0,
λ2 = −σb2 − k0h−2

2 4π2n2 + β0,
β0 = −c0θ1(c0)h2

2 + r exp(−x0)
(
iω0T0

1 + ih2c0T11
)
,

iω0 = −r exp(−x0)− 1
2

h2
2c2

0,

σ0 =
1
2

h2
2

(
1 +

1
2

c2
0h2

2(T
0
1 )

2

)
+ iω0

1
2

h2
2(T

0
1 )

2.

(111)

The expression (111) differs from the similar formula for λ2 in the previous part by the
presence of parameter n, which takes all integer values n = 0,±1,±2, . . . . Hence, we obtain
that the quantity ξb is also an h2-periodic function with respect to x in the basic formula
of the form (105) in the considered case: ξb = ξb(τ, x). Thus, we repeat the Equation (106)
construction technique and obtain the more complicated equation

∂ξ

∂τ
= σ0

∂2ξ

∂y2 + k0
∂2ξ

∂x2 + β0ξ + d0|ξ|2ξ (112)

with h2-periodic boundary conditions with respect to x, and d0 differs from the value d
appearing in (106) only by the presence of k1 = 0 in the appropriate formula.

For the dynamics of (79), (80), Equation (112) plays the same role as Equation (106)
with the conditions from Section 5.1. We do not dwell on this in more detail.

5.2.4. Case of ‘Intelligently’ Small Parameters h and μ

To complete the picture, we briefly consider the simplest situation when both parame-
ters h and μ are ‘intelligently’ small:

h = ε2h0, μ = ε2k0. (113)

The bifurcation value of the delay coefficient T = T0 satisfies the equality T = π(2r)−1.
Let T = T0 + εT01 in (79), (80). Then, infinitely many roots λm = λm(ε) of Equation (98)
tend to the imaginary axis as ε → 0, and there are no roots with a positive zero-separated
as ε → 0 real part. Therefore, the critical case of an infinite dimension is realized here, too.

Let us introduce the formal series

N = 1+ε1/2
[

exp
(

i
π

2T0
t
)

ξ(τ, x) + exp
(
− i

π

2T0
t
)

ξ̄(τ, x)
]
+

+εu2(t, τ, x) + ε3/3u2(t, τ, x) + . . . ,
(114)

where τ = εt, and uj(t, τ, x) are periodic with respect to first and third arguments with 4T0
and 2π periods, respectively. We insert (114) into (79) and perform standard operations.
At the third step, we arrive at the boundary value problem for determining the unknown,
slowly varying amplitude ξ(τ, x):

∂ξ

∂τ
=

(
1 + i

π

2

)−1[
k0

∂2ξ

∂x2 + h0
∂ξ

∂x
+ r2

0T11

]
+ g|ξ|2ξ, (115)

ξ(τ, x + 2π) ≡ ξ(τ, x), (116)

where

g = −r[3π − 2 + i(π + 6)]
(

10
(

1 +
π2

4

))−1
.
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The coupling between solutions of the problem (115), (116) and asymptotic with
respect to residual solutions of the problem (79), (80) is determined by Formula (114). We
note that for a periodic solution of (115), (116) of the form ξ0(τ, x) = Const · exp(iωτ + ikx),
one can formulate a stronger result about the existence (and inheritance of the stability
properties) of a periodic solution of the problem (79), (80), which is close to

ε1/2
[
ξ0(τ, x) exp

(
i
( π

2T0
+ O(ε)

)
t
)
+ ξ̄0(τ, x) exp

(
− i

( π

2T0
+ O(ε)

)
t
)]

as ε → 0.

6. Conclusions

It has been shown that the considered critical cases in the stability problem of the
distributed chain of logistic equations with delay have an infinite dimension. This leads
to the fact that description of their local dynamics is reduced to the study of the nonlocal
behavior of boundary value problems of Ginzburg–Landau type solutions. It is known
(see, for example, [30]) that the dynamics of such objects can be complicated, and they are
characterized by irregular oscillations, multistability phenomena, etc. The dynamic effects
essentially depend on the choice of couplings. It has been shown that in a number of cases
the solutions are rapidly and slowly oscillating with respect to spatial variable components.
The basic results define the structure of problems that are asymptotic with respect to
residual solutions to the initial boundary value. The problem of existence, stability, and
more complicated asymptotic expansions of exact solutions close to those constructed can
be solved, for example, for the case of periodic solutions of normalized equations.

We considered separately the role of the above parameter θ = θ(ε) ∈ [0, 1). We recalled
that the dynamic properties of the initial system are determined by the QNF (49), (50),
which includes the parameter θ. The dynamics of (49), (50) and hence of the boundary
value problem (9), (10) may change for different values of this parameter. This is shown in
detail in [31]. This implies that an infinite process of forward and reverse bifurcations can
occur as ε → 0.

Below, we formulate one more conclusion of the general plan. It was shown above
that the quasinormal forms that determine the dynamics of the initial boundary value
problem are equations of Ginzburg–Landau type. We note that parabolic boundary value
problems with one and two spatial variables can act as quasinormal forms depending on
the coefficient σ of the function F(s, ε) ((12), (13)). The stability of the simplest solutions of
these equations is studied in [33]. In particular, it has been established that their stability
properties are determined to a large extent by the imaginary components of the diffusion
coefficients and of the Lyapunov quantity (coefficients g and q in (49) and (50)). Numerical
analysis of the corresponding criterion makes it possible to formulate the conclusion about
the instability of all the simplest solutions of the form · exp(iωt + ikx). Thus, solution
synchronization is a rather rare phenomenon in the considered chains.

It has been demonstrated that the study of the dynamics of logistic equations with
delay is reduced to nonlinear dynamics analysis of special families of the parabolic and de-
generately parabolic boundary value problems for large values of the coefficient of spatially
distributed control. In particular, the phenomenon of hypermultistability is described.

In the study of local dynamics, bifurcation phenomena can be realized in the equilib-
rium state neighborhood even for asymptotically small delays. Here, the critical case has
an infinite dimension in the stability problem. Analogues of the normal form, so-called
quasinormal forms, are constructed in this situation, which are universal nonlinear bound-
ary value problems of the parabolic type. Their nonlocal dynamics determine the local
behavior of the solutions of the initial boundary value problem.
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Abstract: Global warming has brought about enormous damage, therefore, some scholars have
begun to conduct in-depth research on peak carbon dioxide emissions and carbon neutrality. In this
paper, based on the background of China’s upgrading industrial structure and energy structure, we
establish a delayed two-dimensional differential equation model associated with China’s adjustment
of industrial structure. Firstly, we analyze the existence of the equilibrium for the model. We also
analyze the characteristic roots of the characteristic equation at each equilibrium point for the model,
then, we analyze the stability of the equilibrium point for the model according to the characteristic
root, and discuss the existence of Hopf bifurcation of the system by using bifurcation theory. Secondly,
we derive the normal form of Hopf bifurcation by using the multiple time scales method. Then,
through the official real data, we present the range of some parameters in the model, and determine a
set of parameters by reasonable analysis. The validity of the theoretical results is verified by numerical
simulations. Finally, we use the real data to forecast the time of peak carbon dioxide emissions and
carbon neutralization. Eventually, we put forward some suggestions based on the current situation of
carbon emission and absorption in China, such as planting trees to increase the growth rate of carbon
absorption, deepening industrial reform and optimizing energy structure to reduce carbon emissions.

Keywords: carbon absorption-emission model; time delay; multiple time scales method; normal
form; Hopf bifurcation

MSC: 34K18; 37L10

1. Introduction

Unreasonable development has caused environmental destruction, therefore, it is the
general trend to protect the environment and save energy. Global collaboration promotes
the rapid development of the world; immoderate use of natural resources, however, has
given rise to land degradation, deforestation and biodiversity loss, and so on. Three wastes
in industrial production cause soil pollution, water pollution and air pollution, the rapid
development of the global secondary industry promotes the burning of fossil fuels in large
quantities, and the greenhouse gas released intensifies the greenhouse effect, causing global
warming. The melting of the polar ice cap causes the sea level to rise, and some river deltas
with low altitude and fertile land are submerged. At the same time, it also causes seawater
to pour into the harbor, which pollutes underground water sources and aggravates the
salinization of land. We can know from the notice issued by “The State of Global Climate
2020” that the global average temperature in 2020 was about 1.2 degrees Celsius higher than
the pre-industrial level. In the face of natural disasters, human beings are extremely helpless.
In order to slow down the trend of climate warming, the United Nations adopted the United
Nations Framework Convention on Climate Change in New York on 9 May 1992. In 1997,
the Kyoto Protocol of the United Nations Framework Convention on Climate Change was
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successfully formulated, and it provided legally binding quantitative emission reduction
and emission limitation targets for developed countries. In December 2017, twenty-nine
countries around the world had signed the Joint Statement on Carbon Neutrality. By
September 2019, 66 countries had agreed at the United Nations Climate Action Summit
that lucid waters and lush mountains are invaluable assets, and had formed the Climate
Ambition Alliance. All these measures have accelerated global carbon neutrality. Britain,
Sweden, France, Denmark, New Zealand, Hungary and other countries have written the
goal of carbon neutrality into their laws. The EU announced that it will become the first
“carbon neutral” land in the world in 2050.

China is a big carbon emitter, so it is imperative to promote peak carbon dioxide
emissions and achieve carbon neutrality. According to the data of the seventh national
census, China’s population has exceeded 1.4 billion, accounting for 21.5% of the world’s
total population. Abundant human resources have promoted the rapid development
of the secondary industry, which is dominated by manufacturing. China’s economy is
developing steadily, among which the traditional manufacturing industry with high energy
consumption and high carbon emission is still the main industry in China. In 2019, China’s
total carbon emissions reached 10.17 billion tons, accounting for 28% of the global carbon
emissions, and China’s industrial carbon emissions accounted for more than 50% of China’s
total carbon emissions. Therefore, Zhang et al. [1] suggested that adjusting the industrial
structure and the energy structure have become two obstacles on the road of carbon
neutrality in China. Cai et al. [2] used standard methods to calculate urban carbon dioxide
emissions, and established a data set of urban carbon dioxide emissions in China. As
the largest developing country in the world and a responsible big country, China passed
the Energy Conservation Law of the People’s Republic of China on 1 November 1997 in
order to slow down the global warming trend and play a leading role among developing
countries. China released the white paper “China’s Policies and Actions to Address Climate
Change” in October 2008. In the meantime, China also actively participates in global climate
change negotiations, strengthens communication, coordination and cooperation with other
countries in the world, and makes contributions to jointly addressing the challenges of
climate change and promoting global sustainable development. In September 2020, China
proposed at the United Nations General Assembly that carbon dioxide emissions would
peak before 2030, and that it strives to achieve carbon neutrality before 2060; In 2021, at
the National People’s Congress, peak carbon dioxide emissions and carbon neutrality
were written into the government work report for the first time. In the same year, the
basic ideas and important measures to realize peak carbon dioxide emissions and carbon
neutrality were put forward at the ninth meeting of the Central Committee of Finance and
Economics. At the National People’s Congress in 2021, peak carbon dioxide emissions
and carbon neutrality were written into the government work report for the first time, and
China put forward the basic ideas and important measures to realize peak carbon dioxide
emissions and carbon neutrality at the ninth meeting of the Central Committee of Finance
and Economics in the same year.

China is a big carbon emitting country and a big energy consumption country. In 2010,
the proportion of carbon emissions from coal in primary energy accounted for about 70%.
For this reason, Zou et al. [3] found that the research and development of new energy will
greatly promote the realization of carbon neutralization in China. New energy has become
the protagonist of the third energy transformation, and will lead the future of carbon
neutrality. In [4–7], the authors suggest that developing low-carbon cities, optimizing
industrial structure, reducing carbon emissions from steel industry, improving carbon
emission reduction technology and reducing carbon sequestration cost are important
measures for China to realize peak carbon dioxide emissions and carbon neutrality ahead
of schedule.

In the field of applied mathematics, there are a few researches on China’s carbon
neutrality. Wang et al. [8] innovatively constructed traditional Markov probability transfer
matrix and spatial Markov probability transfer matrix to explore the temporal and spatial
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evolution of China’s urban carbon emission performance and predict the long-term trend of
carbon emission performance. Chen [9] put forward the energy supply and demand model
under two related carbon emission scenarios, namely, China’s planned peak and advanced
peak scenarios, and suggested that low carbon would be a basic feature of the change of
energy supply and demand structure, and non-fossil energy would replace oil as the second
largest energy source. Industrial structure and energy consumption structure all have
significant influence on carbon dioxide emissions, especially industrial energy intensity.
In [10], Guo used economic accounting methods to estimate the potential of China’s
industrial carbon emission reduction from the perspective of structural emission reduction
and intensity emission reduction, and further discussed the influence of industrial internal
structure adjustment and energy structure optimization on industrial carbon emission peak
and emission reduction potential. According to the data, during the 20 years from 2000
to 2019, the proportion of coal decreased from the original peak of 72.5% to 57.7%, and
the natural gas resources increased from 2.2% to 8.4%. Li et al. [11] used the generalized
Weng model to predict the regional natural gas production in China, and the prediction
results show that the peak natural gas production will reach 323 billion cubic meters per
year in 2036. In [12], the scholars investigate the relationship between energy consumption,
economic growth and carbon dioxide emissions in Pakistan by using the annual time series
data from 1965 to 2015. The estimation results of ARDL show that energy consumption and
economic growth have both increased CO2 emissions in Pakistan in the short and long term.
In [13], based on China’s provincial panel data from 2004 to 2016, Liu et al. empirically
analyzed the impact of ecological civilization construction on carbon emission intensity
by using spatial Durbin model based on STIRPAT model. The above-mentioned scholars
only consider one of carbon emission and carbon absorption, but not both. We know that
only by considering both of them can we accurately and reasonably forecast the time when
China will achieve peak carbon dioxide emissions and carbon neutrality. In this paper, we
selected industrial structure and energy consumption structure as the influencing factors of
carbon emissions.

As the processes of carbon emission and carbon absorption are time-varying processes,
we can describe them by continuous differential equations. Furthermore, considering
that carbon emission and carbon absorption are not only related to the current time, but
also to the past time, we can use the delayed differential equation model to describe the
phenomenon of the dynamic system of carbon emission and carbon absorption more truly
and accurately. There is a lot of research work on delayed differential equations in many
fields, such as biology, medicine, physics, and so on [14–18]. At present, there are few
research achievements in describing carbon emission and carbon absorption model by using
delayed differential equations, so the purpose of this paper is to use delayed differential
equations to describe carbon emission and carbon absorption model.

The motivation of this paper is as follows. Firstly, according to the Chinese govern-
ment’s goal of achieving peak carbon dioxide emissions by 2030 and carbon neutrality
by 2060, we want to make some predictions and analyze whether China can achieve it
under the current policy based on the carbon absorption and emission model. If there
is some gap between the simulated results of the model and the ideal goal, we can put
forward some policy suggestions to achieve China’s peak carbon dioxide emissions carbon
neutrality goal by combining the model with the actual situation. Secondly, considering
that many scholars have studied the peak carbon dioxide emissions and carbon neutrality
in China from different fields, but there are few related studies on the use of delayed
differential equations to describe this problem, and we try to establish a carbon absorption
and emission model from the perspective of delayed differential equations to analyze the
problem, and analyze this problem from different angles to see if we can get new results.
Thirdly, this paper establishes a two-dimensional delayed differential equation model of
carbon emission and carbon absorption, which is different from models models cited in the
literature [3–13]. We focus on analyzing the existence and stability of equilibrium point,
and the existence of system bifurcation, and studying the long-term change process of
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carbon emission and carbon absorption. The models cited in the literature [3–13] include
traditional Markov probability transfer matrix and spatial Markov probability transfer
matrix, energy supply and demand model, generalized Weng’s model, spatial Durbin
model based on STIRPAT model, etc. The above models do not analyze the amount of
carbon absorption, but the two-dimensional delayed differential equation proposed by
us is not only related to carbon emission, but also to carbon absorption. We also use the
knowledge of differential equations to analyze the stability of the model, focusing on the
long-term stability of carbon emission and absorption, and so on.

The rest of the content is arranged as follows. In Section 2, we establish a delayed
carbon absorption-emission model based on the carbon emission and carbon absorption.
In Section 3, we analyze the existence and stability of equilibria and the existence of Hopf
bifurcation for the model with time delay. In Section 4, we derive the normal form of the
Hopf bifurcation of the above model and analyze the stability of the bifurcating periodic
solutions. In Section 5, we present numerical simulations to verify the correctness of our
analysis. Finally, the conclusion is drawn in Section 6.

2. Mathematical Modeling

In this paper, we consider carbon emission and carbon absorption together, and
analyze the problem of carbon neutrality under China’s industrial adjustment. With the
rapid development of economy and technology, we assume that carbon emissions and
absorption are in a competitive relationship as a whole; this is because in the early stage of
China’s economic development, the proportion of traditional industries has increased year
by year. In 2007, the added value of China’s secondary industry accounted for 47.6% of the
total proportion. At the same time, China’s clean energy development technology is not
mature enough, the coal consumption is large and the utilization rate is low. In order to
achieve economic growth, traditional high-carbon emission industries are developed, and
natural resources are over-exploited, resulting in a significant increase in carbon emissions,
immature carbon storage technology, and a corresponding reduction in carbon absorption.
As the global climate is gradually warming, the greenhouse effect is obvious year on year,
and mankind is facing serious natural disasters. China has gradually realized this great
development idea of lucid waters and lush mountains are invaluable assets. In order
to implement this correct development idea, our government is actively committed to
reducing the coal proportion, improving the energy utilization rate, developing clean
energy, shifting from the traditional high-carbon secondary industry to the green and
sustainable tertiary industry, reducing carbon emissions, increasing the vegetation coverage,
and striving to build a green city. When we only consider the competitive relationship
between carbon emission and absorption, we can obtain the following model,⎧⎪⎪⎨⎪⎪⎩

dx(t)
dt

= x(t)(a1 − a1S1

N2
y(t)),

dy(t)
dt

= y(t)(a2 − a2S2

N1
x(t)),

(1)

where a1 represents the annual growth rate of carbon emission, a2 represents the annual
growth rate of carbon absorption, x(t) represents China’s carbon emission amount at time
t, y(t) represents China’s carbon absorption amount at time t, N1 means the maximum
capacity of carbon emissions and N2 means the maximum capacity of carbon absorption.
S1 means the competition coefficient coefficient of carbon emissions relative to carbon
absorption and S2 represents the competition coefficient of carbon absorption relative to
carbon emission.

We think that adding carbon adsorption saturation term to the model will make the
model more realistic. This is because China has a vast territory, diverse climates, wide
latitudes, and a large distance from the sea. In addition, the terrain is different, and the
terrain types and mountain ranges are diverse, which leads to various combinations of
temperature and precipitation and different combinations of water temperatures form
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different types of forest vegetation. This is because the net carbon absorbed by each
vegetation is the same under certain conditions every year. Furthermore, from the technical
point of view, we know that the progress of carbon storage technology promotes the
increase of carbon absorption, but with the relative backwardness of technology, the carbon
storage technology will improve relatively slowly, resulting in the decrease of the change
rate of carbon storage.

Considering that the dual wheels of optimizing industrial structure and energy struc-
ture proposed by Guo [10] could make great contributions to national emission reduction,
we can use the quadratic function simulated by previous articles to express the relationship
between time and carbon emissions. We can assume that the distance between annual
carbon emissions and peak carbon emissions represents the speed of carbon emissions,
which is reasonable, because the smaller the distance between them, the larger the carbon
emissions, and the smaller the slope of the curve. In practice, it shows that as the industrial
structure is gradually transferred from the secondary industry to the tertiary industry, the
energy structure is also changed from coal-based primary energy to natural gas-based clean
energy, and the carbon emission changes slowly.

We know that there will be a series of processes from the transformation of industrial
structure and technology research and development to the application of technology in
time production, which will take a certain amount of time. If the relationship between
carbon emission and carbon absorption in 2022 is simulated, the carbon emission reduction
technology in 2022 will increase compared with the carbon emission when the technology is
mature, because the carbon emission reduction technology is just successful but immature.
Therefore, we should choose the distance from the peak to the carbon emissions before
2022 as the factor that will affect the carbon emissions in 2022. Increased investment from
the government in carbon emission reduction technologies and the rapid development of
carbon emission reduction technologies will accelerate the transformation of industrial
structure and energy structure, as well as increasing the efficiency during the period of
putting into use. For this reason, we establish the following model, the descriptions of
these parameters are given in Table 1, and we note that these parameters are all positive,⎧⎪⎪⎨⎪⎪⎩

dx
dt

= x(a1 − a1S1

N2
y) + k(m − x(t − τ)),

dy
dt

= y(a2 − a2S2

N1
x − a2

N2
y).

(2)

For convenience, we denote that

c1 =
a1S1

N2
, b2 =

a2S2

N1
, c2 =

a2

N2
,

then, model (2) becomes ⎧⎪⎨⎪⎩
dx
dt

= x(a1 − c1y) + k(m − x(t − τ)),

dy
dt

= y(a2 − b2x − c2y).
(3)

According to the initial condition of the system (3), we present a theorem about the
nonnegtivity of solution of the system (3).

Theorem 1. If x(0) > 0, y(0) > 0, the solution x(t), y(t) of the system (3) with τ = 0
is positive.
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Table 1. Descriptions of variables and parameters in the model (2).

Symbol Description Unit

x Carbon emissions amount 102 Mt
y Carbon absorption amount 102 Mt
a1 Annual growth rate of carbon emissions -
a2 Annual growth rate of carbon absorption -
k The influence coefficient of energy structure reform on x -
m The peak of carbon emissions 102 Mt
N1 The maximum capacity of carbon emissions 102 Mt
N2 The maximum capacity of carbon absorptions 102 Mt
S1 The copetitive coefficient of carbon emissions relative to carbon absorptions -
S2 The copetitive coefficient of carbon absorption relative to carbon emissions -
τ Time-delay for carbon emission reduction technology to be applied to actual production year

Proof. First, we prove y(t) > 0 when t > 0 under the positive initial condition of the
system (3) with τ = 0.

We assume that y(t) is not always positive for t > 0 and make t1 be the first time
that y(t1) = 0, y′(t1) < 0. According to the second equation of the system (3), we can
obtain y′(t1) = 0. The two conclusions we obtain are contradictory. Therefore, under the
positive initial condition, the solution y(t) of the system (3) is positive for t > 0. Then,
we prove x(t) > 0 when t > 0 under the positive initial condition of the system (3) with
τ = 0. We assume that x(t) is not always positive for t > 0 and make t2 be the first time
that x(t2) = 0, x′(t2) < 0. According to the first equation of the system (3), we can obtain
x′(t2) = km > 0. The two conclusions we reach are contradictory. Therefore, under the
positive initial condition, the solution x(t) of the system (3) with τ = 0 is also positive for
t > 0.

Remark 1. We prove if x(0) > 0, y(0) > 0, the solution x(t), y(t) of the system (3) with τ = 0
is positive. It is also not easy for us to prove the solution of the system (3) is positive when τ > 0.
However, according to the numerical simulation of a group of real parameters, we find that the
solution of the system (3) is always positive, which is not contradictory to the positivity of the
solution of the system (3).

Next, we will consider the dynamics phenomena of the system (3).

3. Stability Analysis of Equilibrium and Existence of Hopf Bifurcation

In this section, we will discuss the stability of equilibria and the existence of Hopf
bifurcation for system (3).

3.1. Existence Of Equilibrium Point

When the parameters of system (3) meet the following assumptions

(H1) k − a1 > 0, (4)

system (3) has a boundary equilibrium E1 = (x(1), 0), where

x(1) =
km

k − a1
.
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When the parameters of system (3) meet the following assumptions

(H2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km > 0,

c1a2 + (k − a1)c2 +
√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km > 0,

c1a2 − (k − a1)c2 −
√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km > 0,

(5)

system (3) has a positive equilibrium E2 = (x(2), y(2)), where

x(2) =
c1a2 + (k − a1)c2 +

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1b2
,

y(2) =
c1a2 − (k − a1)c2 −

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1c2
.

When the parameters of system (3) meet the following assumptions

(H3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km > 0,

c1a2 + (k − a1)c2 −
√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km > 0,

c1a2 − (k − a1)c2 +
√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km > 0,

(6)

system (3) has a positive equilibrium E3 = (x(3), y(3)), where

x(3) =
c1a2 + (k − a1)c2 −

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1b2
,

y(3) =
c1a2 − (k − a1)c2 +

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1c2
.

3.2. Stability and Existence of Hopf Bifurcation for E1 = (x(1), 0)

When (H1) holds, system (3) has equilibrium E1, similar to the calculation method
in [19–22], we calculate the stability of the equilibrium E1 and the existence of Hopf
bifurcation. The characteristic equation of system (3), evaluated at E1, is given as follows:

λ(λ − a1 + e−λτk) = 0. (7)

Note that λ = 0 is always the root of the Equation (7). Next, we only need to consider
the following equation,

λ − a1 + e−λτk = 0. (8)

When τ = 0, Equation (8) becomes

λ + k − a1 = 0, (9)

it leads to λ1 = −(k − a1) < 0, due to (H1) holds.
When τ > 0, we try to discuss the existence of Hopf bifurcation. We assume that

λ = iω(ω > 0) is a pure imaginary root of Equation (8). Substituting it into Equation (8)
and separating the real and imaginary parts, we obtain:{

k sin(ωτ) = ω,

k cos(ωτ) = a1.
(10)
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Equation (10) derives the following results,

Q1 � sin(ω1τ1) =
ω1

k
, R1 � cos(ω1τ1) =

a1

k
. (11)

Adding the square of the two equations, we obtain

ω2
1 − a2

1 + k2 = 0, (12)

then it gives ω1 =
√

k2 − a2
1, which makes sense due to the assumptions (H1). We obtain

the expression of τ
(j)
1 as follows:

τ
(j)
1 =

⎧⎪⎪⎨⎪⎪⎩
arccos(R1) + 2jπ

ω1
, Q1 > 0,

− arccos(R1) + 2(j + 1)π
ω1

, Q1 < 0, j = 0, 1, 2, 3, 4, · · · .
(13)

Let λ = λ(τ) be the root of Equation (8), satisfying λ(τ
(j)
1 ) = iω1. Differentiating both

sides of (8) with respective to τ gives that

Re(
dλ

dτ
)−1|

τ=τ
(j)
1

=
k2 − a2

1
kω2

1
> 0. (14)

Theorem 2. When the parameters of system (3) meet the assumptions (H1), for any of τ � 0,
characteristic Equation (7) has a zero root. When τ = τ

(j)
1 , characteristic Equation (7) has a zero

root and a pair of pure imaginary roots, and when τ ∈ [0, τ
(0)
1 ), Equation (7) has a zero root, and

other roots have negative real parts, when τ > τ
(0)
1 , the equilibrium E1 of system (3) is unstable.

3.3. Stability and Existence of Hopf Bifurcation for E2,3

Next, we analyze the stability of system (3) for Ei = (x(i), y(i)) (i = 2, 3), and the
characteristic equation of system (3), evaluated at Ei, is given by

λ2 + (−a1 + c1y(i) + c2y(i))λ + c2y(i)(−a1 + c1y(i))− c1b2x(i)y(i) + (kλ + kc2y(i))e−λτ = 0. (15)

When τ = 0, Equation (15) becomes

λ2 + T(i)
2 λ + D(i)

2 = 0, (16)

where

T(i)
2 = (k − a1 + c1y(i) + c2y(i)), D(i)

2 = c2y(i)(k − a1 + c1y(i))− c1b2x(i)y(i).

where (x(i), y(i)) = (x(2), y(2)), the parameters of system (3) meet the assumptions (H2),
we can prove that

T(2)
2 > 0, D(2)

2 = −y(2)
√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km < 0, (17)

thus, E2 is unstable when τ = 0.
When (x(i), y(i)) = (x(3), y(3)) and the parameters of system (3) satisfy the assumptions

(H3), we can prove that

T(3)
2 > 0, D(3)

2 = y(3)
√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km > 0, (18)

thus, E3 is locally asymptotically stable when τ = 0. When τ > 0, we try to discuss the
existence of Hopf bifurcation. We assume that λ = iω(ω > 0) is a pure imaginary root
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of Equation (15). Substituting it into Equation (15) and separating the real and imaginary
parts, we obtain:{

ω2 + c2y(i)(a1 − c1y(i)) + c1b2x(i)y(i) = kω sin(ωτ) + kc2y(i) cos(ωτ),

ω(a1 − c1y(i) − c2y(i)) = kω cos(ωτ)− kc2y(i) sin(ωτ),
(19)

Equation (19) derives the following results,

Q(i)
2 � sin(ωτ) =

kω(ω2 + c2y(i)(a1 − c1y(i)) + c1b2x(i)y(i))− kc2y(i)ω(a1 − c1y(i) − c2y(i))
k2ω2 + k2c2

2y(i)2
,

R(i)
2 � cos(ωτ) =

kω2(a1 − c1y(i)) + c1b2x(i)y(i)) + kc2y(i)(ω2 + c2y(i)(a1 − c1y(i)) + c1b2x(i)y(i))
k2ω2 + k2c2

2y(i)2
.

(20)

Adding the square of the two equations, we obtain

ω4 + T(i)
3 ω2 + D(i)

3 = 0, (21)

where

T(i)
3 = 2c2y(i)(a1 − c1y(i)) + 2c1b2x(i)y(i) + (a1 − c1y(i) − c2y(i))2 − k2,

D(i)
3 = 2c1c2b2x(i)y(i)2(a1 − c1y(i)) + (c2y(i)(a1 − c1y(i)))2 + (c1b2x(i)y(i))2 − (kc2y(i))2.

For convenience, we let ω2 = z, Equation (21) becomes

h(z) = z2 + T(i)
3 z + D(i)

3 = 0. (22)

When the parameters of system (3) meet the following assumptions—D(i)
3 < 0,

Equation (22) has one positive root z2; If T(i)
3 > 0, D(i)

3 > 0 hold, Equation (22) has no

positive root; If T(i)
3 < 0, D(i)

3 > 0 hold, Equation (22) has two positive roots z3, z4. We hy-
pothesize that Equation (22) has positive roots zn (n = 2, 3, 4), then ωn =

√
zn (n = 2, 3, 4).

From (20), we can solve the critical value of time delay,

τ
(j)
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arcsin(Q(i)

2 ) + 2jπ
ωn

, R2 > 0,

− arcsin(Q(i)
2 ) + 2(j + 1)π
ωn

, R2 < 0, n = 2, 3, 4, j = 0, 1, 2, · · · .

(23)

Let λ = λ(τ) be the root of (15), satisfying λ(τ
(j)
n ) = iωn (n = 2, 3, 4). Differentiating

both sides of Equation (15) with respective to τ gives that:

Re(
dλ

dτ
)−1|

τ=τ
(j)
n

=
2ω2

n + 2c2y(i)(a1 − c1y(i)) + 2c1b2x(i)y(i) + (a1 − c1y(i) − c2y(i))2 − k2

k2ω2
n + k2c2

2y(i)2

= h′(zn) �= 0.

(24)

Theorem 3. Considering the stability of E2 and E3 for system (3), we come to the following
conclusions:
(1) When (H2) holds, the equilibrium E2 is unstable for any τ � 0;
(2) When (H3) holds, we discuss the stability of equilibrium E3 of system (3) below.

(a) When T(3)
3 > 0, D(3)

3 > 0 hold, Equation (22) has no positive root, the equilibrium E3 is
locally asymptotically stable for any τ � 0;
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(b) If D(3)
3 < 0 holds, Equation (22) has one positive roots z2, then when τ ∈ [0, τ

(0)
2 ), the

equilibrium E3 is locally asymptotically stable, and unstable when τ > τ
(0)
2 ;

(c) If T(3)
3 < 0, D(3)

3 > 0 hold, system (3) undergoes a Hopf bifurcation at the trivial

equilibrium E3 when τ = τ
(j)
n (n = 3, 4; j = 0, 1, 2, · · · ). Then, ∃m ∈ N makes 0 < τ

(0)
4 <

τ
(0)
3 < τ

(1)
4 < τ

(1)
4 < · · · < τ

(m−1)
3 < τ

(m)
4 < τ

(m+1)
4 . When τ ∈ [0, τ

(0)
4 ) ∪ m⋃

l=1
(τ

(l−1)
3 , τ

(l)
4 ),

the equilibrium E3 of the system (3) is locally asymptotically stable, and when τ ∈ m−1⋃
l=0

(τ
(l)
4 , τ

(l)
3 )∪

(τ
(m)
4 ,+∞), the equilibrium E3 is unstable.

Proof.

(1) When (H2) and τ = 0 hold, we can prove T(2)
2 > 0, D(2)

2 < 0, that is Equation (16)
has a positive root, so equilibrium E2 of system (3) with τ = 0 is unstable;

(2) When T(3)
3 > 0, D(3)

3 > 0 hold, we can prove T(3)
2 > 0, D(3)

2 > 0, that is,
Equation (16) has two negative roots, so equilibrium E3 of system (3) with τ = 0 is
locally asymptotically stable:

(a) When T(3)
3 > 0, D(3)

3 > 0 hold, Equation (22) has no positive root, the equilib-
rium E3 is locally asymptotically stable for any τ � 0;

(b) When D(3)
3 < 0 holds, Equation (22) has one positive root z2, and

Sign(Re( dλ
dτ )

−1
τ=τ

(j)
2

) = Sign(h′(z2)) > 0, and thus, all the roots of

Equation (22) have negative real parts for τ ∈ [0, τ
(0)
2 ), and Equation (22)

has at least one pair of roots with positive real part when τ > τ
(0)
2 ;

(c) If T(3)
3 < 0, D(3)

3 > 0 hold, h(z) = 0 has two positive roots z3 and z4, and
Sign(Re( dλ

dτ )
−1
τ=τ

(j)
3

) = Sign(h′(z3)) < 0 and Sign(Re( dλ
dτ )

−1
τ=τ

(j)
4

)

= Sign(h′(z4)) > 0, thus, there exists m ∈ N, such that all the roots of

Equation (15) have negative real parts whenτ ∈ [0, τ
(0)
4 ) ∪ m⋃

l=1
(τ

(l−1)
3 , τ

(l)
4 ),

and Equation (15) has at least one root with a positive real part when τ ∈
m−1⋃
l=0

(τ
(l)
4 , τ

(l)
3 ) ∪ (τ

(m)
4 ,+∞), and the conclusion is immediate.

4. Normal Form of Hopf Bifurcation

In Section 3, we have shown that the equilibrium E2 = (x(2), y(2)) is unstable when
τ = 0, and the equilibrium E3 = (x(3), y(3)) is locally asymptotically stable when τ = 0. To
reflect the actual situation, we focus on the delay from technological innovation to practical
production. Therefore, we consider the time-delay τ as a bifurcation parameter and denote
the critical value τ = τc = τ

(j)
n , where τ

(j)
n is given in (23). When τ = τ

(j)
n , characteristic

Equation (21) has a pair of pure imaginary roots λ = ±iω. Therefore, system (3) undergoes
a Hopf bifurcation at equilibrium E3. In this section, we derive the normal form of Hopf
bifurcation for the system (3) by using the multiple time scales method given in [23,24].

In order to normalize the delay, we first re-scale the time t by using t �→ t/τ, then
translate the equilibrium E3 = (x(3), y(3)) to the origin, that is,{

x̃ = x − x(3),

ỹ = y − y(3),
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For convenience, we still use x and y to represent x̃ and ỹ respectively, so Equation (3)
is transformed into:⎧⎪⎨⎪⎩

dx
dt

= τ(a1x − c1x(3)y − c1xy − c1y(3)x − kx(t − 1)),

dy
dt

= −τ(y + y(3))(b2x + c2y).
(25)

Equation (25) can also be written as:

Ż(t) = τN1Z(t) + τN2Z(t − 1) + τF(Z(t), Z(t − 1)), (26)

where

Z(t) = (x(t), y(t))T , Z(t − 1) = (x(t − 1), y(t − 1))T , F(Z(t), Z(t − 1)) = (x(t − 1), y(t − 1))T ,

and

N1 =

(
a1 − c1y(3) −c1x(3)

−b2y(3) −c2y(3)

)
, N2 =

( −k 0
0 0

)
.

We let h be eigenvector corresponding to eigenvalue λ = iωτ of Equation (26), and h∗
be the eigenvector corresponding to eigenvalue λ = −iωτ of adjoint matrix of Equation (26),
satisfying

< h∗, h >= h∗T
h = 1. (27)

By calculating, we have

h = (1,− b2y(3)

iω + c2y(3)
)T , h∗ = d(

iω − c2y(3)

c1x(3)
, 1)T , d =

c1x(3)

c1x(3) + b2y(3)
. (28)

We treat the delay τ as the bifurcation parameter, let τ = τc + εμ, where τc = τ
(j)
n

(j = 0, 1, 2, · · · ) is the Hopf bifurcation critical value, μ is perturbation parameter, ε is
dimensionless scale parameter. Suppose system (26) undergoes a Hopf bifurcation from the
trivial equilibrium at the critical point τ = τc, and then, by the MTS method, the solution
of (26) is assumed as follows:

Z(t) = Z(T0, T1, T2, · · · ) =
+∞

∑
k=1

εkZk(T0, T1, T2, · · · ), (29)

where

Z(T0, T1, T2, · · · ) = (x(T0, T1, T2, · · · ), y(T0, T1, T2, · · · ))T ,

Zk(T0, T1, T2, · · · ) = (xk(T0, T1, T2, · · · ), yk(T0, T1, T2, · · · ))T ,

and the derivative with regard to t is transformed into

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · , (30)

where Di is differential operator, and

Di =
∂

∂Ti
(i = 0, 1, 2, 3, · · · ).

From (26), we have

Ż(t) = εD0Z1 + ε2D1Z1 + ε3D2Z1 + ε2D0Z2 + ε3D1Z2 + ε3D0Z3 + · · · . (31)
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We expand x(T0 − 1, ε(T0 − 1), ε2(T0 − 1), · · · ) at x(T0 − 1, T1, T2, · · · ) by the Taylor
expansion, that is,

x(t − 1) = εx1,τc + ε2x2,τc + ε3x3,τc − ε2D1x1,τc − ε3D2x1,τc − ε3D1x2,τc + · · · , (32)

where xj,τc = xj(T0 − 1, T1, T2, · · · ), j = 1, 2, 3 · · · .
We substitute Formulas (29)–(32) into Equation (26), then comparing the coefficients

of ε, ε2 and ε3 on both sides of the equation, respectively. Then, we obtain the following
expressions, respectively,

D0x1 − τc(a1x1 − c1x(3)y1 − c1x1y(3) − kx1,τc) = 0,

D0y1 + τcy(3)(b2x1 + c2y1) = 0.
(33)

D0x2 − τc(a1x2 − c1x(3)y2 − c1x2y(3) − kx2,τc)

=μ(a1x1 − c1x(3)y1 − c1x1y(3) − kx1,τc)− τc(c1x1y1 − kD1x1,τc)− D1x1,

D0y2 + τcy(3)(b2x2 + c2y2)

=− (μy(3) + τcy1)(b2x1 + c2y1)− D1y1.

(34)

D0x3 − τc(a1x3 − c1x(3)y3 − c1x3y(3) − kx3,τc)

=μ(a1x2 − c1x2y1 − c1x(3)y2 − c1x2y(3) + kx2,τc + kD1x1,τc)− τc(c1x2y1 + c1x1y2−
kD2x1,τc − kD1x2,τc)− D1x2 − D2x1,

D0y3 + τcy(3)(b2x3 + c2y3)

=− τc(y2(b2x − 1 + c2y1) + y1(b2x2 + c2y2))− μ(y1(b2x1 + c2y1) + y(3)(b2x2 + c2y2))

− D1y2 − D2y1.

(35)

Equation (33) has the solution with following form,

Z1 = GheiωτcT0 + Ghe−iωτcT0 , (36)

where h is given by (28). Equation (34) is a linear non-homogeneous equation, and the
non-homogeneous equation has a solution if and only if a solvability condition is satisfied.
That is, the right-hand side of (34) should be orthogonal to every solution of the adjoint
homogeneous problem. Thus, we solve (36) into the right part of equation (34), and the
coefficient vector of eiωτcT0 is noted as m1, by < h∗, m1 >= 0, so we can solve ∂G

∂T1
, namely,

∂G
∂T1

= MμG, (37)

where

M =
c1x(3)(y(3)b2 + y(3)c2h2)− (c2y(3) + iω)(−a1 + c1x(3)h2 + c1y(3) + ke−iωτc)

(c2y(3) + iω)(−τcke−iωτc + 1)− c1x(3)h2
,

h2 = − b2y(3)

iω + c2y(3)
,

with

x(3) =
c1a2 + (k − a1)c2 −

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1b2
,

y(3) =
c1a2 − (k − a1)c2 +

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1c2
.
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We solve Equation (34), as μ is a small disturbance coefficient, and we only consider
the influence of μ on low-order terms, thus, we obtain its solutions with following form:

x2 = g1e2iωτcT0 + c.c. + l1,

y2 = g2e2iωτcT0 + c.c. + l2,
(38)

where c.c. stands for the complex conjugate of the preceding terms, then, we substitute
solutions (38) into (34), and we obtain

g1 = K1SG2, l1 = P1RGG,

g2 = K2SG2, l2 = P2RGG,
(39)

with

K1 = (2iω + c2y(3))(−c1h2) + c1x(3)(c2h2
2 + b2h2),

K2 = (2iω + c1y(3) − a1 + ke−2iωτc)(−c2h2
2 − b2h2) + c1b2y(3)h2,

S = ((2iω + c2y(3))(2iω + c1y(3) − a1 + ke−2iωτc)− c1b2y(3)x(3))−1,

P1 = −c1x(3)(b2(h2 + h2) + 2c2h2h2) + c2c1y(3)(h2 + h2),

P2 = −c1b2y(3)(h2 + h2) + (c1y(3) + k − a1)(b2(h2 + h2) + 2c2h2h2),

R = (−c2y(3)(k − a1 + c1y(3)) + c1b2x(3)y(3))−1, h2 = − b2y(3)

iω + c2y(3)
.

(40)

Next, substituting solution (36) and (38) into (35), and with the coefficient vector of
eiωτcT0 noted as m2, by solvability condition, we have < h∗, m2 >= 0. Note that μ is a
disturbance parameter, and μ2 has little influence for small unfolding parameter, thus, we
can ignore the μ2G term, then ∂G

∂T2
, can be solved to yield

∂G
∂T2

= HG2G, (41)

where

H =
(iω + c2y(3))(−τcc1)(K1Sh2 + K2S + P1Rh2 + P2R)

(iω + c2y(3))(kτce−iωτc − 1) + c1x(3)h2

+
τcb2c1x(3)(K1Sh2 + K2S + P1Rh2 + P2R) + 2τcc2c1x(3)(K2Sh2 + P2Rh2)

(iω + c2y(3))(kτce−iωτc − 1) + c1x(3)h2
,

h2 =− b2y(3)

iω + c2y(3)
,

with

x(3) =
c1a2 + (k − a1)c2 −

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1b2
,

y(3) =
c1a2 − (k − a1)c2 +

√
(c1a2 + (k − a1)c2)2 − 4c1c2b2km

2c1c2
.

Let G → G/ε, we obtain the normal form of Hopf bifurcation of system (26) truncated
at the cubic order terms:

Ġ = MμG + HG2G, (42)

where M is given in (37), and H given in (41).
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With the polar coordinate G = reiθ , substituting that expression into Equation (42), we
obtain the amplitude equation of Equation (42) on the center manifold as{

ṙ = Re(M)μr + Re(H)r3,

θ̇ = Im(M)μ + Im(H)r2.
(43)

Theorem 4. When Re(M)μ
Re(H)

< 0, system (26) has periodic solutions.

(1) If Re(M)μ < 0, then the periodic solution reduced on the center manifold is unstable;
(2) If Re(M)μ > 0, then the periodic solution reduced on the center manifold is stable.

5. Numerical Simulations

First of all, in this section, we will analyze and reasonably select some parameters in
system (3) based on the official actual data. Then, based on the selected parameters, we use
Matlab software to simulate the stable equilibrium and periodic solution of the system (3).
Finally, we put forward some reasonable carbon emission reduction measures for China
according to the simulation results.

5.1. Determination of Parameter Values

Firstly, we present the carbon emissions from 2000 to 2018 (see Table 2).

Table 2. Annual carbon emission data (the unit of carbon emission is 102 million ton).

Year Carbon Emissions Year Carbon Emissions Year Carbon Emissions

2000 31.52 2007 65.62 2014 113.34

2001 32.84 2008 74.85 2015 111.07

2002 36.38 2009 81.53 2016 112.24

2003 43.08 2010 91.35 2017 115.53

2004 49.47 2011 102.76 2018 118.83

2005 58.08 2012 105.65

2006 62.49 2013 112.44

Based on the data in Table 2, we analyze the peak value and peak time of China’s
carbon emissions and also predict the amount of carbon emissions in 2022. We use carbon
emissions data from 2000 to 2018 (Table 2) to simulate a quadratic function of carbon
emissions over time, as shown in Figure 1. Figure 1 shows that the maximum value
will appear around 2029, with a value of 13.8135 billion tons. Each hollow red circle in
Figure 1 represents the real data of annual carbon emissions, the black curve represents the
quadratic function simulation of these data, and the red hollow five pointed star represents
the simulated maximum value. Then, we assume that the predicted maximum value is the
peak value of carbon emissions, namely, maximum = m. We have also reasonably predicted
the carbon emissions in 2022, which will be 13.2087 billion tons. In this way, the peak
of carbon emissions can be achieved before 2030, which is consistent with the national
policy requirements.
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Figure 1. Carbon emission data from 2000 to 2018 and fitting curve.

Therefore, because the meaning of parameter m in model (3) is the maximum peak
value of carbon emissions, combined with Figure 1, we take m = 138.135.

Next, we assume that this year’s natural growth rate is the difference between this
year’s carbon emissions and last year’s carbon emissions divided by last year’s carbon
emissions, that is, a1,j =

xj−xj−1
xj

(j = 2001, 2002, · · · ), and we calculated the annual natural
growth rate of carbon emissions and simulated it with a first-order function curve. Each
blue asterisk in Figure 2 represents the natural growth rate of carbon emissions each year,
and the blue line represents the simulation image of a function of these data, as shown in
Figure 2.
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Figure 2. Analysis of the natural growth rate of carbon emissions and fitting curve.

Figure 2 shows that 2029 is the last year when the natural growth rate of carbon
emissions is positive with 0.09%, and it turns negative by 2030 with −0.35%.

It is common sense that the maximum capacity of carbon emissions should be greater
than the peak of carbon emissions, carbon absorption is the same, so we choose
N1 = 2m = 276.27, N2 = 1.1m = 151.9485, whose units are both 102 million ton. Since we
chose a competitive model, we chose competition factors of S1 = 2 and S2 = 0.5 to make
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carbon emissions and carbon sequestration competitive. We assume natural growth rate of
carbon emissions of between 0.14 and 0.05, thus, we choose a1 = 0.14, a2 = 0.2, k = 0.5.

Based on the above analysis, we take one group of parameters as follows,

a1 = 0.14, a2 = 0.2, k = 0.5 S1 = 2 S2 = 0.5 N1 = 276.27, N2 = 151.9485, m = 138.135.

5.2. Simulation Results

We select the above group of parameters given in Section 5.1, that is,

a1 = 0.14, a2 = 0.2, k = 0.5 S1 = 2 S2 = 0.5 N1 = 276.27, N2 = 151.9485, m = 138.135.

After calculation, we find that the group of parameters satisfies hypothesis conditions
(H1) and (H3), the hypothesis condition (H2) is not satisfied, that is, E1 and E3 exist, but
E2 does not exist. Since E1 is a boundary equilibrium, we should actually discuss the
stability of the non-trivial equilibrium, so we will discuss the stability of the equilibrium
E3 in the following part, and E3 = (119.81, 119.82); from Equation (17), we calculate that
T2 = 0.7365 > 0, D2 = 0.0815 > 0. Thus, equilibrium E3 is locally asymptotically stable
when τ = 0. We select initial value (132, 50), and the simulation result of the stable
equilibrium E3 is shown in Figure 3.
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Figure 3. Equilibrium E3 of system (3) is locally asymptotically stable when τ = 0.

Remark 2. From Figure 3, we take τ = 0, which indicates that the impact of technological
innovation on carbon emissions is instantaneous. We conclude that China will reach the carbon
peak in 2026, and the peak value is about 14.5 billion tons. With time going by, the carbon emissions
will become smaller and smaller, and gradually reach stability in 2067. The stable value is at about
11.981 billion tons, carbon absorption will increase with time and stabilize at 11.982 billion tons
around 2067. For this reason, if China implements the current policy, it will achieve peak carbon
dioxide emissions by 2030, but not carbon neutrality by 2060. Therefore, China should adopt
stronger policies to lay the foundation for carbon neutrality. In Figure 1, we can see that China’s
peak carbon dioxide emissions time is 2029, with a peak value of 13.81 billion tons, while in Figure 3,
the simulation results show that China has completed peak carbon dioxide emissions in an earlier
time and the peak value will increase. As the coefficients in our model are constant, but in real
life, the coefficients of the model may change with time. Another reason is that our model does not
consider too many factors, such as the influence of construction industry and carbon sink, which
leads to a slight deviation in our simulation results. However, our simulation results are at least
consistent with the realization of peak carbon dioxide emissions before 2030.
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After that, we consider the time of carbon peak at the difference of the influence factors
of industrial structure and energy structure on carbon emissions (see Figure 4).
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Figure 4. Change of carbon emission under different values for the influence coefficient of energy
structure reform on carbon emissions amount k.

Remark 3. From Figure 4, when the influence coefficient of energy structure reform on carbon
emissions amount k increases, that is, with the optimization of industrial structure and the im-
provement of energy structure, the time for China to reach the carbon peak will become shorter
and shorter. When k = 0.4, we predict that the peak value of carbon will reach 14.573 billion tons
in April 2026. When k = 0.6, China will reach the peak of carbon in April 2025, with a peak of
14.43 billion tons. When k = 0.8, we predict that China will reach peak carbon dioxide emissions in
2025, with a peak of 14.34 billion tons. This is reasonable because when China’s emission reduction
policy is effectively implemented, corresponding policies are introduced, new development of new
energy exploration and application technologies is achieved, and industrial reform is conducted in
depth. China’s secondary industry with high carbon emissions will be transformed into a green and
sustainable tertiary industry in an all-round way. The proportion of clean energy, mainly natural
gas, will be greatly increased, and the peak value of carbon emissions will be reduced while reaching
the maximum value ahead of time.

Later, we select the previous data, and when the natural growth rate of carbon absorp-
tion increases, we arrive at the following conclusions: (see Figure 5).

Remark 4. With the increase of natural growth rate of carbon absorption, the peak value of carbon
emissions becomes smaller and smaller, and the time for carbon to reach the peak value becomes
shorter and shorter, and the time for carbon neutrality becomes shorter. The red line in Figure 5
shows the apparent trend of carbon emissions and carbon absorption at a2 = 0.1. China will reach
peak carbon dioxide emissions around 2028, but it will take nearly one hundred years to achieve
carbon neutrality. The blue curve shows the change trend of carbon emissions and carbon absorption
at a2 = 0.2, and it is predicted that China will reach peak carbon dioxide emissions around 2026
and be carbon neutral in 2072. The black curve shows the change trend of carbon emissions and
carbon absorption at a2 = 0.3. It can be seen that China will reach peak carbon dioxide emissions
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around 2026 and become carbon neutral in 2057. Although China can achieve peak carbon dioxide
emissions by 2030 at different natural growth rates of carbon absorption, China cannot achieve
carbon neutrality by 2060 at a lower natural growth rate of carbon absorption. It also shows that
with the country’s emphasis on ecological protection and green development, people have a clearer
understanding of green development, saving energy, planting trees, increasing forest vegetation
coverage and increasing urban green space, which leads to an increase in the natural growth rate of
carbon absorption. The smaller the carbon peak, the shorter the time to achieve carbon neutrality. In
Figure 5, we can see that when the natural growth rate of carbon absorption reaches 0.3, it is possible
for China to achieve carbon neutrality by 2060. As the natural growth rate of carbon absorption is
relatively high, in order to achieve China’s goal of carbon neutrality by 2060, we should not only
consider increasing the natural growth rate of carbon absorption to achieve carbon neutrality, but
also consider optimizing the industrial structure and energy structure to reduce the natural growth
rate of carbon emissions. Therefore, we also need to deepen the industrial reform and optimize the
energy structure to reduce the natural growth rate of China’s carbon emissions.
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Figure 5. Analysis of the influence of natural growth rate of carbon absorption on carbon absorption
and emission.

Further on, we find that Formula (22) has only one positive root, so we calculate that
τ
(0)
1 = 3.606. From Theorem 3, we know that when τ ∈ [0, τ

(0)
1 ), the equilibrium E3 is

locally asymptotically stable and unstable when τ > τ
(0)
1 . From Equations (37) and (41),

we have

Re(M) = 0.1955 > 0; Re(H) = −3.51 ∗ 10−7 < 0; r =

√
−Re(M)μ

Re(H)
> 0. (44)

When τ = 0.5 < τ
(0)
1 = 3.606, the simulation result of the stable equilibrium E3 is as

shown in Figure 6.

Remark 5. From Figure 6, carbon emissions x reached their peak around 2060, with a peak of about
14.6 billion tons, and then decreased year by year and gradually stabilized, and they became stable
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around 2063. Carbon absorption y tends to be stable around 2067. Once carbon emissions and
carbon absorption are stable, the value of carbon emissions is about 11.9 billion tons, and the value
of carbon absorption is about 12 billion tons. If this continues, it will be difficult for China to achieve
carbon neutrality before 2060. Therefore, China needs to take some measures, such as improving the
level of carbon emission reduction technology to reduce the carbon emissions of the steel industry.
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Figure 6. When τ = 0.5, the system (3) is locally asymptotically stable at the equilibrium point E3.

When τ = 3.61 > τ
(0)
1 = 3.606, from Theorem 4, we learn that the system (3) has a

stable periodic solution at the at the equilibrium E3, as shown in Figure 7.

0 20 40 60 80 100 120 140 160 180 200

t /year: time from 2022

100

120

140

160

x/
 1

02
 M

t

0 20 40 60 80 100 120 140 160 180 200

t /year: time from 2022

60

80

100

120

y/
 1

02
 M

t

Figure 7. When τ = 3.61, the system (3) has a stable periodic solution near the equilibrium E3.

Remark 6. From Figure 7, when τ = 3.61, the system (3) is locally asymptotically stable at the
equilibrium E3, which is consistent with (4). τ = 3.61, that is, when the technical level is applied to
the actual production of carbon emission reduction, the time required becomes longer, we can see
that carbon emissions and carbon absorption fluctuate periodically, and the period is about 13 years.
As a result of the long delay time, it is inconsistent with the actual production level at present, so we
do not consider the practical application of this situation.
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6. Conclusions

In this paper, considering the competitive relationship between carbon emission and
carbon absorption, we set up a new two-dimensional differential equation model with
time delay to make some predictions and analyze whether China can achieve it under the
current policy, which depends on China’s technology research and development level and
government policy investment. In practice, the parameters of the model are variable. In
order to simplify the problem, the parameters of the model (3) are constant coefficients. At
the same time, the model in this paper does not consider too many factors. The simulation
process of the model may be different from the real process. For example, the peak value
of the simulation will be higher than the future peak value because we have not fully
considered the carbon emission reduction measures, but on the whole, the stability of our
model is consistent with the actual one. In addition, we theoretically analyzed the existence
and stability of the equilibrium and the existence of Hopf bifurcation, and we also derive the
normal form of Hopf bifurcation for the system (3) by using the multiple time scales method.
After that, we selected a set of data for numerical analysis to verify our theoretical analysis
results, we find that equilibrium E3 of system (3) is locally asymptotically stable when
τ = 0. When τ = 3.61, the system (3) has a stable periodic solution near the equilibrium E3
and we find from Figure 4 that the optimization and adjustment of industrial structure and
energy structure has an important impetus to China’s realization of peak carbon dioxide
emissions and carbon neutrality. When the industrial structure is optimized and the energy
structure is improved, the time for China to reach peak carbon dioxide emissions will be
shortened (see Figure 4).

Next, our numerical analysis also shows that when the natural growth rate of carbon
absorption increases, the time for China to achieve carbon peak carbon dioxide emissions
will be shortened and the peak value will also decrease (see from Figure 5). From Figure 5,
we predict that when the natural growth rate of carbon absorption is 0.3, China will achieve
carbon neutrality before 2060. As the natural growth rate of carbon absorption is actually
too high, we also need to deepen the industrial reform and optimize the energy structure
to reduce the natural growth rate of China’s carbon emissions. Therefore, based on the
above research, this paper emphasizes planting trees and improving the level of carbon
storage technology to improve the natural growth rate of carbon absorption and carbon
emission reduction technology, and improving the development and application technology
of new energy to achieve in-depth industrial structure adjustment and energy structure
optimization. The above measures are of great significance to China’s realization of peak
carbon dioxide emissions by 2030 and carbon neutrality by 2060.
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Abstract: In this paper, we study nonlocal dynamics of a nonlinear delay differential equation.
This equation with different types of nonlinearities appears in medical, physical, biological, and
ecological applications. The type of nonlinearity in this paper is a generalization of two important for
applications types of nonlinearities: piecewise constant and compactly supported functions. We study
asymptotics of solutions under the condition that nonlinearity is multiplied by a large parameter. We
construct all solutions of the equation with initial conditions from a wide subset of the phase space
and find conditions on the parameters of equations for having periodic solutions.
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1. Introduction

Differential equations with delay

ẋ = G(x, x(t − τ)), (1)

where x is from Rn, G is some continuous function, and τ > 0 is a delay time, arise
as mathematical models in different areas of science (see [1,2] and references therein).
Many studies are devoted to the construction of solutions or the analysis of the stability of
solutions to differential equations with delay [3–11].

Consider differential equation with delay

u̇ + νu = λF(u(t − T)). (2)

Here, u is a scalar real function, and parameters ν and λ and delay time T are positive.
This equation plays an important role in mathematical modelling and is of great interest
for fundamental research.

This equation simulates a process of production and destruction where the single state
variable u decays with a rate ν proportional to u at the present and is produced with a rate
dependent on the value of u some time in the past. Such processes arise in many biological
applications, for example, in normal and pathological behaviour of control systems in the
physiology of blood cell production and respiration and periodic or irregular activity in
neural networks (see Table 1 in [12], paper [13] and references therein).

Equation (2) with compactly supported nonlinearity simulates an oscillator with
nonlinear delayed feedback with an RC low-pass filter of the first order [14,15]. Addition-
ally, Equation (2) with another nonlinear functions F occurs in laser optics [1,16] and in
mathematical ecology [2,17].

There are many studies on the dynamics of this equation: its dynamics were studied
in the case of piecewise constant [13], monotone [18,19], or compactly supported nonlinear-
ity [20] in the case of positive and negative feedback [21]. Asymptotics of solutions [22]
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and the existence of periodic solutions [23] were studied in the case of a singularly per-
turbed equation:

εu̇ + u = F(u(t − T)), (0 < ε � 1).

In [24], the authors determined how dynamics of this differential equation when ε is
small related with dynamics of this equation in the case of ε = 0. In [25,26], the authors
proposed methods to reconstruct Equation (2) from time series.

For systems of two [27], three [28] and N > 3 [29]-coupled oscillators (2) with compactly
supported nonlinearity F and λ � 1, asymptotics of relaxation solutions were constructed.

Using simple renormalizations, we can obtain that the coefficient ν in (2) is equal to
one. Therefore, without limiting generality, below, we consider case ν = 1.

In the present work, we analytically study behaviour at t → +∞ of solutions to
Equation (2) with initial conditions from a wide subset of the phase space C[−T, 0] un-
der conditions

λ � 1

and

F(x) =

⎧⎪⎨⎪⎩
b, x ≤ pL,
f (x), pL < x < pR,
d, x ≥ pR,

(3)

where pL < 0 < pR.
We assume that nonlinear function f (x) is bounded and piecewise-smooth. We

consider positive, negative, and zero values of parameters b and d (but we assume that at
least one of the parameters b or d is nonzero, because if b = d = 0, then F is a compactly
supported function, and this case has been studied in [20]).

This type of function, F(u), is a generalization of two important applications [12,15]
regarding types of nonlinearity: compactly supported and piecewise constant nonlinearities.
The class of nonlinearity F(u) is broad because constants pL < 0, pR > 0, b, and d are
arbitrary, and conditions on function f are quite general. Therefore, this type of nonlinearity
may occur in many applied problems, and the results obtained in this paper can be directly
applied to study dynamics of the mathematical models with certain nonlinear functions F
(if function F satisfies conditions (3)).

We analytically draw a conclusion about qualitative and quantitative properties of
solutions to Equation (2) with arbitrary function F (satisfying conditions (3)) with initial
conditions from a wide subset of the phase space and give numerical illustrations of the
obtained results. It is important to mention that it is impossible to obtain such a result
using only numerical methods because it is impossible to iterate through all functions F
from the considered class and through all the considered initial conditions.

The method of investigation in this paper is the following.
1. We select two sets of initial conditions: S− and S+. The set S− consists of continuous

functions u(s), (s ∈ [−T, 0]), such that u(s) ≤ pL on s ∈ [−T, 0), and u(0) = pL. The set
S+ consists of continuous functions u(s), (s ∈ [−T, 0]), such that u(s) ≥ pR on s ∈ [−T, 0),
and u(0) = pR.

2. We take initial conditions from sets S− and S+ and construct asymptotics at λ → +∞
of all solutions to Equation (2) using the method of steps [30].

3. By the asymptotics of solutions, we draw conclusions about the behaviour of
solutions at t → +∞.

In this paper we conclude that two types of behaviour at t → +∞ of solutions to
Equation (2) with initial conditions from the set S+ or S− are possible: (1) the solution
tends to a constant at t → +∞, or (2) after the pre-period, the solution becomes a cycle.

The idea of the proof that after the pre-period, the solution becomes a cycle is the
following: 1. it follows from the form of sets S− and S+ and properties of function F(u),
that on the first step (t ∈ [0, T]) all solutions from the set S− (S+) coincide with each other.
Thus, all solutions with initial conditions from S− (S+) coincide with each other for all
t ≥ 0; 2. if we take initial conditions from one of these sets (S− or S+) and if there exists
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a time moment t∗ such that u(t∗ + s) (where s ∈ [−T, 0]) belongs to the chosen set, then
there exists a periodic solution to Equation (2).

4. We generalize obtained results to the wide sets of initial conditions u(s) ≥ pR (or
u(s) ≤ pL) at s ∈ [−T, 0].

The paper has the following structure: in Sections 2–5, we construct asymptotics of
solutions to Equation (2) considering cases of different signs of b and d under condition
bd �= 0; in Sections 6 and 7 we consider cases b �= 0 and d = 0; and in Sections 8 and 9, we
consider cases b = 0 and d �= 0. In Section 10, we generalize results of Sections 2–9 to wide
sets of initial conditions u(s) ≥ pR (or u(s) ≤ pL) at s ∈ [−T, 0].

2. Asymptotics of Solutions in the Case b > 0 and d > 0

Firstly, we consider asymptotics of the solution to Equation (2) with initial conditions
from S+. We solve our equation using the method of steps.

On the first step (on the segment t ∈ [0, T]), the function u(t − T) is greater than or
equal to pR, which is why on this segment, Equation (2) has the form

u̇ + u = λd. (4)

Hence, on this time segment, the solution to Equation (2) has the form

u(t) = pRe−t + λd(1 − e−t). (5)

Because d > 0 and λ is sufficiently large, we obtain u(t) > pR on t ∈ [0, T]. Therefore,
Equation (2) has the form of (4) on the next step t ∈ [T, 2T] and so on (Equation (2)
has the form of (4); until then u(t) < pR). However, at λ � 1, the condition u(t) =
pRe−t + λd(1 − e−t) < pR is not true for all t ≥ 0, so Equation (2) has the form of (4) for all
t ≥ 0, and the solution has the form of (5) for all t ≥ 0 (see Figure 1).

�5 5 10 15 20 25 30 t
5000

10 000

15 000

20 000

25 000

30 000
u

Figure 1. Solution to Equation (2) with initial conditions from S+ in the case b > 0 and d > 0. Values
of parameters: λ = 104, T = 5, pL = −1, pR = 2, b = 2, d = 3.

Secondly, we take initial conditions from S− and construct asymptotics for these initial
conditions.

Then, on the first step (on the segment t ∈ [0, T]), the function u(t − T) is less than or
equal to pL, which is why on this segment, Equation (2) has the form

u̇ + u = λb. (6)

It follows from (6) that the solution has the form

u(t) = pLe−t + λb(1 − e−t). (7)

Therefore,
u(T) = pLe−T + λb(1 − e−T). (8)
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Lemma 1. The leading part of the asymptotics of the solution to Equation (2) on the segment
t ∈ [T, 2T] coincides with the leading part of the asymptotics of the solution to the Cauchy
problem (4) and (8). The solution to Equation (2) in this interval has the form

u(t) = λb(1 − e−T)e−(t−T) + λd(1 − e−(t−T)) + o(λ). (9)

Proof. On the segment t ∈ [0, T], the solution to Equation (2) has the form of (7). This
expression is an increasing function of t because λb > 0 and pL < 0. Therefore, (7) is greater
than pL for all t ∈ [0, T]. It is easy to see that expression (7) is less than pR for all t ∈ [0, δ),
where

δ = ln
(

1 +
pR − pL
λb − pR

)
, (10)

and is greater than pR for all t ∈ (δ, T]. Note that δ is asymptotically small by λ at λ → +∞
(it has order O(λ−1)).

It follows from the estimation of the expression (7) that on the segment t ∈ [T, T + δ],
Equation (2) has the form

u̇ + u = λ f (u(t − T)), (11)

and on the interval t ∈ (T + δ, 2T], it has the form of (4).
At the segment t ∈ [T, T + δ], the exact solution to Equation (2) (which is Equation (11)

in this interval) has the form

u(t) = (pLe−T + λb(1 − e−T))e−(t−T) + λ

t∫
T

es−t f (u(s − T))ds. (12)

Function f is bounded; therefore there exists a constant M such that | f (u(s− T))| < M
for all s ∈ [T, T + δ]. Thus,∣∣∣∣∣∣λ

t∫
T

es−t f (u(s − T))ds

∣∣∣∣∣∣ ≤ λ

t∫
T

|es−t f (u(s − T))|ds ≤ λ

t∫
T

Mds ≤ λ

T+δ∫
T

Mds = λδM ≤ M1, (13)

where M1 is some constant. The last inequality is true because δ has order O(λ−1) at
λ → +∞.

Note that on the interval t ∈ [T, T + δ]

0 ≤ λd(1 − e−(t−T)) ≤ λd(1 − e−(T+δ−T)) ≤ M2, (14)

(where M2 is some constant), δ has order O(λ−1) at λ → +∞. It follows from inequalities
(13) and (14) that on the segment t ∈ [T, T + δ], the leading terms of asymptotics at λ → +∞
of expressions (12) and (9) coincide.

On the segment t ∈ [T + δ, 2T], the exact solution to Equation (2) (which is Equation (4)
in this interval) has the form

u(t) = λb(1 − e−T)e−(t−T) + λd(1 − e−(t−T)eδ)+

(pLe−(T+δ) + λ

T+δ∫
T

es−(T+δ) f (u(s − T))ds)e−(t−(T+δ)). (15)

Since δ = O(λ−1) at λ → +∞, then on the segment t ∈ [T + δ, 2T], the leading terms
of asymptotics at λ → +∞ of expressions (15) and (9) coincide. Thus, the solution to
Equation (2) has the form of (9) on the whole segment t ∈ [T, 2T].

The exact solution to the Cauchy problem (4), (8) has the form

u(t) = λb(1 − e−T)e−(t−T) + λd(1 − e−(t−T)) + pLe−t. (16)
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It is easy to see that the leading terms of asymptotics at λ → +∞ of expressions (16)
and (9) coincide on the whole segment t ∈ [T, 2T].

Thus, on this segment, the leading part of asymptotics of solution to Equation (2)
coincides with the leading part of asymptotics of the solution to the Cauchy problem (4)
and (8).

Expression (9) is greater than pR for all t ∈ [T,+∞). Therefore, Equation (2) has the
form of (4) for all t ≥ T + δ, and the solution of Equation (2) has the form of (9) for all t ≥ T
(see Figure 2).
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Figure 2. Typical graphs of solutions to Equation (2) with initial conditions from S− in the case b > 0
and d > 0 if (a) d > b > 0 and (b) b > d > 0. Values of parameters: λ = 104, T = 5, pL = −1, pR = 2,
b = 2, (a) d = 3, and (b) d = 1.

Therefore, in the case b > 0 and d > 0, all solutions with initial conditions from sets
S+ and S− tend to the constant λd at t → +∞.

3. Asymptotics of Solutions in the Case b < 0 and d < 0

Initially, we consider asymptotics of solution to Equation (2) with initial conditions
from S+. In the first step (on the segment t ∈ [0, T]), function u(t − T) is greater or equal
than pR, which is why in this segment Equation (2) has the form of (4). Therefore, for
t ∈ [0, T], the solution of Equation (2) has the form of (5).

In this case, d < 0, so we obtain u(t) < pL for t ∈ [δ, T + δ], where δ = O(λ−1) at
λ → +∞; therefore, Equation (2) has the form of (6) in the segment t ∈ [T + δ, 2T + δ]. As in
the previous case, in the time segment t ∈ [T, T + δ], the solution u(t) depends on the values
of the function f , but this dependence is smaller than the leading term of the asymptotics
of the solution, and this leading term of the asymptotics of the solution coincides with the
leading term of the asymptotics of the solution to the Cauchy problem (6),

u(T) = pRe−T + λd(1 − e−T).

Hence, it follows that the solution of Equation (2) with initial conditions from set S+

has the form
u(t) = λd(1 − e−T)e−(t−T) + λb(1 − e−(t−T)) + o(λ). (17)

Since b < 0 and d < 0, expression (17) is less then pL for all t ∈ [T,+∞). This is why
Equation (2) has the form of (6) for all t ∈ [T + δ,+∞), and Formula (17) holds for all t ≥ T.

Now, we study asymptotics of the solution to Equation (2) with the initial conditions
from S−.

On the segment t ∈ [0, T], the function u(t − T) is less than or equal to pL, which is
why on this segment Equation (2) has the form of (6), and its solution has the form of (7).

As b < 0, we obtain u(t) < pL, and Equation (2) has the form of (6); until then,
u(t) > pL. However, expression (7) is less than pL for all t > 0. This is why solution has
the form of (7) for all t ∈ [0,+∞).
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Therefore, in the case that b < 0 and d < 0, all solutions with initial conditions from
sets S+ and S− tend to the constant λb at t → +∞.

4. Asymptotics of Solutions in the Case b < 0 and d > 0

Firstly, we consider the asymptotics of the solution to Equation (2) with initial condi-
tions from S+.

In the first step (in the segment t ∈ [0, T]), the function u(t− T) is greater than or equal
to pR, which is why on this segment, Equation (2) has the form of (4), and the solution to
Equation (2) has the form of (5). As in Section 2, we identify that Expression (5) is greater
than pR for all t > 0; therefore, Equation (2) has the form of (4) for all t > 0. This is why the
solution of (2) with initial conditions from S+ does not depend on the values of f and b
and has the form of (5) for all t > 0.

Similarly, the solution of Equation (2) with initial conditions from S− does not depend
on the values of f and d and for all t > 0 has the form of (7).

Therefore, in the case that b < 0 and d > 0, the solutions with initial conditions
from S+ tend to the constant λd, and solutions with initial conditions from S− tend to the
constant λb at t → +∞.

5. Asymptotics of Solutions in the Case b > 0 and d < 0

In this section, we study behaviour of solutions with initial conditions from sets S+

and S− under the assumption that b > 0 and d < 0.
Firstly, we take initial conditions from S+ and begin to construct asymptotics of

solutions. Then, on the first step t ∈ [0, T], Equation (2) has the form of (4) and solution has
the form of (5) and

u(T) = λd(1 − e−T + o(1)). (18)

Since d < 0, there exists an asymptotically small λ value δ1 > 0 such that pL < u(t) <
pR for t ∈ (0, δ1) and u(t) < pL for all t ∈ (δ1, T]. Therefore, on the segment t ∈ [T + δ1, 2T],
Equation (2) has the form of (6). In the segment t ∈ [T, T + δ1], the solution to Equation (2)
depends on the values of the function f , but the leading term of the asymptotics of the
solution to Equation (2) coincides with the leading term of the asymptotics of the solution to
Equation (6) with initial conditions from (18). This is why in the whole segment t ∈ [T, 2T],
the solution has the form of (17). Note that in the case that b > 0 and d < 0, Expression (17) is
an increasing function.

Since u(T) < 0 and (17) increases to the positive value, there exists an asymptotically
small by λ value δ2 < 0 and value t1 > T + δ1, such that u(t1) = 0 and u(t1 + δ2) = pL. It
follows from the definition of t1 and δ2 that Equation (2) has the form of (6) on the segment
t ∈ [T + δ1, t1 + δ2 + T]. It easily follows from (17) that

e−(t1−T) = b/(b − d(1 − e−T)), (19)

and, consequently,
u(t1 + T) = λb(1 − e−T + o(1)). (20)

Note that expression (20) is greater than pR when λ � 1. Thus, for t > t1 + T + δ3
(where δ3 > 0 denotes an asymptotically small by λ value such that u(t1 + δ3) = pR), until
then, the u(t) < pR solution Equation (2) has the form of (4). Therefore, for t > t1 + T + δ3,
until then, the u(t) < pR solution to Equation (2) has the form of

u(t) = (λb(1 − e−T)− λd)e−(t−(t1+T)) + λd + o(λ). (21)

Expression (21) is a decreasing function, and there exists t = t2 such that (21) is equal
to zero. Additionally, for t∗ = t2 + o(1), it is true that u(t∗) = pR and u(t∗ + s) > pR for
all s ∈ [−T, 0). Thus, at the point t = t∗, we return to the initial situation (the function
u(t∗ + s) belongs to the set S+). This is why if we take this function as the initial conditions
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for Equation (2), we obtain a periodic solution to this equation with an amplitude of the
order O(λ) (see Formulas (18) and (20)) and period

t∗ = 2T + ln
(
(b(1 − e−T)− d)(b − d(1 − e−T))

−bd

)
+ o(1). (22)

We mention that the logarithm in Formula (22) is positive because its argument is
greater than 1 for all b > 0, d < 0, and T > 0.

Note that there exists a point tL = t1 + δ2 such that u(tL) = pL and u(s + tL) < pL on
the segment s ∈ [−T, 0). Additionally, we stress that if we take an initial function such
that it is less than or equal to pL in some segment of the length T: s ∈ [t̃ − T, t̃) and is
equal to pL at the point t̃, then the solution to Equation (2) on the next interval t ∈ [t̃, t̃ + T]
does not depend on the “history” values of u(s + t̃) on s ∈ [−T, 0). This is why if we
consider the initial conditions from the set S− and construct the asymptotics of the solution
to Equation (2), we obtain the periodic solution obtained earlier in this section, but this
solution will be shifted.

From the results of Sections 2–5, we derive the following theorem.

Theorem 1. Let bd �= 0. Then, Equation (2) with sufficiently large λ > 0 has a cycle with initial
conditions from S+ or S− if and only if b > 0 and d < 0. This sign-changing cycle u∗(t) has
asymptotics

u∗(t) = pRe−(t−nt∗) + λd(1 − e−(t−nt∗)), t ∈ [nt∗, nt∗ + T],
u∗(t) = λd(1 − e−T)e−(t−(T+nt∗)) + λb(1 − e−(t−(T+nt∗))) + o(λ),

t ∈ [nt∗ + T, nt∗ + t1 + T],
u∗(t) = (λb(1 − e−T)− λd)e−(t−(t1+T+nt∗)) + λd + o(λ),

t ∈ [nt∗ + t1 + T, (n + 1)t∗].

(23)

at λ → +∞ (where n = 0, 1, 2, . . . represents the number of periods of the cycle), and the period of
this cycle t∗ is given in (22).

Note that Formula (23) was obtained from Formulas (5), (17), and (21) using a shift in
the time variable t by n periods t∗ of solution u∗(t).

It should also be noted that all shifts of cycle u∗(t + C) where C ∈ R are solutions to
Equation (2), but we consider them as a single object.

A cycle of Equation (2) in the case that b > 0 and d < 0 is shown in Figure 3.
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Figure 3. Cycle of Equation (2) in the case that b > 0 and d < 0. Values of parameters: λ = 104,
T = 5.5, pL = −2, pR = 3, b = 1.5, and d = −1.
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6. Asymptotics of Solutions in the Case b > 0 and d = 0

Firstly, we consider initial conditions from S+. Then, on the first step t ∈ [0, T],
Equation (2) has the form

u̇ + u = 0. (24)

Therefore, the solution has the form

u(t) = pRe−t. (25)

Since the solution to (25) belongs to the interval u ∈ (0, pR) in the interval t ∈ (0, T],
then in the segment t ∈ [T, 2T], it depends on the values of function f . It has the form

u(t) = pRe−t + λ

t∫
T

es−t f (pReT−s)ds. (26)

In this segment, the asymptotics of the solution to (2) crucially depend on the values
of the integral in Formula (26). Below, we assume that this integral preserves its sign
on the segment t ∈ (T, 2T] (if the integral changes its sign, then we cannot construct the
asymptotics of the solution at the segment t ∈ [2T, 3T] for an arbitrary unknown function
f ). Consider the first case:

t∫
T

es−t f (pReT−s)ds > 0 for all t ∈ (T, 2T]. (27)

Then, expression (26) is greater than pR on the segment t ∈ [T + δ1, 2T] (here, δ1 ≥ 0
is some asymptotically small by λ value; it has order O(λ−1) at λ → +∞). In the segment
t ∈ [2T, 2T + δ1], the leading term of the asymptotics of the solution to Equation (2)
coincides with the leading term of the asymptotics of the solution to Equation (24) with the
initial conditions

u(2T) = pRe−2T + λ

2T∫
T

es−2T f (pReT−s)ds,

and in the segment t ∈ [2T + δ1, 3T], Equation (2) has the form of (24). This is why in the
whole segment t ∈ [2T, 3T], the solution to (2) has the form of

u(t) = λ
( 2T∫

T

es−2T f (pReT−s)ds + o(1)
)

e−(t−2T). (28)

Note that Expression (28) is greater than pR in the segment with length O(ln λ) at
λ → +∞ (and this is why Equation (2) has the form of (24) in this segment), and this
expression decreases and tends to zero at t → +∞. Therefore, there exists a time moment
t∗ = 2T + (1 + o(1)) ln λ > 3T such that u(t∗) = pR and u(t∗ + s) > pR on the interval
s ∈ [−T, 0). Thus, we come to the initial situation (the function u(t∗ + s) belongs to the
set S+), and if we take this function as the initial conditions to our equation, then we
obtain a positive relaxation cycle of Equation (2) with the amplitude O(λ) and period
t∗ = 2T + (1 + o(1)) ln λ.

We obtain the following result.

Theorem 2. Let b > 0 and d = 0, and (27) holds. Then, for all sufficiently large λ > 0,
Equation (2) has a positive relaxation cycle with the asymptotics
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u(t) = pRe−(t−nt∗), t ∈ [nt∗, nt∗ + T],

u(t) = pRe−(t−nt∗) + λ
t∫

T+nt∗
es−t f (pRent∗+T−s)ds, t ∈ [nt∗ + T, nt∗ + 2T],

u(t) = λ
( nt∗+2T∫

nt∗+T
es−nt∗−2T f (pRent∗+T−s)ds + o(1)

)
e−(t−nt∗−2T),

t ∈ [nt∗ + 2T, (n + 1)t∗],

(29)

(where n = 0, 1, 2, . . . represents number of periods of cycle) and the period t∗ = 2T + (1 +
o(1)) ln λ at λ → +∞.

Consider the second case:

t∫
T

es−t f (pReT−s)ds < 0 for all t ∈ (T, 2T]. (30)

Then, expression (26) is less than pL in the segment t ∈ [T + δ2, 2T] (here, δ2 > 0
denotes an asymptotically small by λ value such that u(T + δ2) = pL), and this is why
Equation (2) in the segment t ∈ [2T + δ2, 3T] has the form of (6). Thus, in the segment
t ∈ [2T, 3T], the solution has the form

u(t) = λ
( 2T∫

T

es−2T f (pReT−s)ds − b + o(1)
)

e−(t−2T) + λb. (31)

Note that expression (31) is an increasing function and that there exists a time moment
t1 > 2T + δ2 such that u(t1) = 0. It is easy to see that

e−(t1−2T) =
b

b −
2T∫
T

es−2T f (pReT−s)ds
. (32)

On the segment t ∈ [2T + δ2, t1 + T + δ3] equation has the form of (6), and therefore,
Formula (31) holds for the solution in this segment (here, δ3 < 0 is an asymptotically small
by λ value that denotes a time moment such that u(t1 + δ3) = pL).

It follows from (32) that

u(t1 + T + δ3) = λb(1 − e−T + o(1)). (33)

Since the value (33) is positive and has order O(λ) at λ → +∞, then Equation (2)
has the form of (24) in the time interval t ∈ [t1 + δ4 + T, t∗) (here, δ4 > 0 denotes an
asymptotically small by λ value such that u(t1 + δ4) = pR, and t∗ denotes a first time
moment such that t∗ > t1 + T + δ4 and u(t∗) = pR). Therefore, the solution has the form

u(t) = λb(1 − e−T + o(1))e−(t−(t1+T)). (34)

Note that t∗ = t1 + T + (1 + o(1)) ln λ. This is why u(t∗ + s) > pR for all s ∈ [−T, 0).
Thus, u(t∗ + s) belongs to the set S+, and therefore, if we take this function as the initial
condition, we get a sign-changing relaxation cycle with the amplitude of the order O(λ)
and period O(ln λ) at λ → +∞.

If we consider initial conditions from the set S−, then on the first step t ∈ [0, T], the
equation has the form of (6) and the solution has the form of (7). Since b > 0, there exists an
asymptotically small by λ value δ > 0 such that u(δ) = pR and u(t) > pR for all t ∈ [δ, T].
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Then, for all t > T + δ, until then, the u(t) = pR equation has the form of (24) and the
solution has the form

u(t) = λb(1 − e−T + o(1))e−(t−T)). (35)

We denote as tR a time moment such that tR > T and u(tR) = pR. This value exists
because Expression (35) decreases and tends to zero at t → +∞. Note that tR = O(ln λ) at
λ → +∞. Therefore, function u(tR + s) (s ∈ [−T, 0]) belongs to the set S+, and we return
to a problem considered earlier in this section.

From the results of this section we obtain the following statement.

Theorem 3. Let b > 0, d = 0, and condition (30) holds. Then, for all sufficiently large λ > 0,
Equation (2) has a sign-changing relaxation cycle with the asymptotics

u(t) = pRe−(t−nt∗), t ∈ [nt∗, nt∗ + T],

u(t) = pRe−(t−nt∗) + λ
t∫

T+nt∗
es−t f (pRent∗+T−s)ds, t ∈ [nt∗ + T, nt∗ + 2T],

u(t) = λ
( nt∗+2T∫

nt∗+T
es−nt∗−2T f (pRent∗+T−s)ds − b + o(1)

)
e−(t−nt∗−2T) + λb,

t ∈ [nt∗ + 2T, nt∗ + t1 + T],
u(t) = λb(1 − e−T + o(1))e−(t−(nt∗+t1+T)), t ∈ [nt∗ + t1 + T, (n + 1)t∗],

(where n = 0, 1, 2, . . . represents the number of periods of a cycle) and period t∗ = t1 + T + (1 +
o(1)) ln λ at λ → +∞.

The cycles of Equation (2) in the case that b > 0 and d = 0 are shown in Figure 4.
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Figure 4. Relaxation cycles of Equation (2) in the case that b > 0 and d = 0; function f (u) satisfies the
condition (a) (27) (b) (30). Values of parameters: λ = 104, T = 3, pL = −1, pR = 2, b = 2, and d = 0.

7. Asymptotics of Solutions in the Case b < 0 and d = 0

Firstly, consider initial conditions from S+. As in the previous section, in the interval
t ∈ [0, T], the solution has the form of (25), and in the interval t ∈ [T, 2T], it has the form
of (26).

If condition (27) holds, then this case is absolutely similar to the case in Section 6, and
we obtain the following result.

Theorem 4. Let b < 0, d = 0, and (27) holds. Then for all sufficiently large λ > 0, Equation (2)
has a positive relaxation cycle with the asymptotics (29) and period t∗ = 2T + (1 + o(1)) ln λ at
λ → +∞.

If condition (30) is true, then there exists an asymptotically small by λ value δ > 0
such that u(T + δ) = pL and u(t) < pL in the interval t ∈ (T + δ, 2T]. That is why in the
segment t ∈ [2T + δ, 3T], the equation has the form of (6), and the solution has the form
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of (31) in the segment t ∈ [2T, 3T]. One can easily see that under conditions b < 0 and (30),
Expression (31) is less than pL for all t > 2T. This is why Equation (2) has the form of (6),
and the solution has the asymptotics of (31) for all t > 3T.

Therefore, in the case that b < 0 and d = 0, if Condition (30) is true, then all solutions
with initial conditions from S+ tend to a constant λb at t → +∞.

Now, consider initial conditions from S−. Then, absolutely similarly as in Section 3, the
solution has the asymptotics of (7) for all t > 0.

Thus, in the case that b < 0 and d = 0, all solutions with initial conditions from S−
tend to a constant λb at t → +∞.

8. Asymptotics of Solutions in the Case b = 0 and d < 0

Firstly, consider initial conditions from S−. Then, on the first step, t ∈ [0, T], Equation (2)
has the form of (24) and solution has the form

u(t) = pLe−t. (36)

It follows from (36) that in the segment t ∈ [0, T], function u(t) satisfies the inequality
pL < u(t) < 0, which is why in the second step, t ∈ [T, 2T], the solution has the form

u(t) = pLe−t + λ

t∫
T

es−t f (pLeT−s)ds. (37)

If function f (u) satisfies the condition

t∫
T

es−t f (pLeT−s)ds < 0 for all t ∈ (T, 2T], (38)

then there exists an asymptotically small by λ value δ > 0 such that Expression (37) is less
than pL on the interval t ∈ (T + δ, 2T]. It is easy to see that on the segment t ∈ [2T, 3T], the
leading term of the asymptotics of the solution to Equation (2) coincides with the leading
term of the asymptotics of the solution to Equation (24) with the initial condition

u(2T) = pLe−2T + λ

2T∫
T

es−2T f (pLeT−s)ds. (39)

This is why, in the segment t ∈ [2T, 3T], the solution to Equation (2) has the form

u(t) = λ
( 2T∫

T

es−2T f (pLeT−s)ds + o(1)
)

e−(t−2T). (40)

Note that Expression (40) is less than pL in the segment t ∈ [2T, 3T], which is why
Equation (2) has the form of (24) until the Function (40) becomes greater than pL. There
exists a value t∗ > 3T such that u(t∗) = pL and u(t) < pL for all t ∈ (2T, t∗). This is why
at the point t = t∗, we return to the initial situation: the function u(t∗ + s) (s ∈ [−T, 0))
belongs to the set S−. Therefore, if we consider the function u(t∗+ s) as the initial conditions
of Equation (2), then we get a negative relaxation cycle. Note that it follows from (40) that
t∗ − 2T = (1 + o(1)) ln λ at λ → +∞.

We obtain the following statement.

Theorem 5. Let b = 0, d < 0, and let condition (38) be true. Then, for all sufficiently large λ > 0,
Equation (2) has a negative relaxation cycle with the asymptotics
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u(t) = pLe−(t−nt∗), t ∈ [nt∗, nt∗ + T],

u(t) = pLe−(t−nt∗) + λ
t∫

T+nt∗
es−t f (pLent∗+T−s)ds, t ∈ [nt∗ + T, nt∗ + 2T],

u(t) = λ
( nt∗+2T∫

nt∗+T
es−nt∗−2T f (pLent∗+T−s)ds + o(1)

)
e−(t−nt∗−2T),

t ∈ [nt∗ + 2T, (n + 1)t∗],

(41)

(where n = 0, 1, 2, . . . represents the number of periods of a cycle) and period t∗ = 2T + (1 +
o(1)) ln λ at λ → +∞.

If the function f (u) satisfies the condition

t∫
T

es−t f (pLeT−s)ds > 0 for all t ∈ (T, 2T], (42)

then there exists an asymptotically small by λ value δ1 > 0 such that u(T + δ1) = pR,
u(t) > pR in the interval (T + δ1, 2T]. Thus, in the segment t ∈ [2T, 3T], the leading term
of the asymptotics of the solution to Equation (2) coincides with the leading term of the
asymptotics of the solution to Equation (4) with the initial conditions of (39). This is why
this time segment solution has the asymptotics

u(t) = λ
( 2T∫

T

es−2T f (pLeT−s)ds − d + o(1)
)

e−(t−2T) + λd. (43)

Since d < 0, Expression (43) is decreasing, and there exists a time value t1 such that
t1 > 2T and Expression (43) is equal to zero at the point t1 and greater than zero in the
interval t ∈ (2T, t1). Note that until u(t) < pR, Equation (2) has the form of (4), and the
solution has the form of (43). Since λ is sufficiently large, there exists an asymptotically
small by λ values δ2 < 0 and δ3 > 0 such that u(t1 + δ2) = pR and u(t1 + δ3) = pL. The
length of the interval (T + δ1, t1 + δ2) is greater than T, and the solution in this interval
is greater than pR, which is why Equation (2) has the form of (4) in the segment t ∈
[t1 + δ2, t1 + δ2 + T] and the solution has the form of (43) in this interval.

It is easy to see that

u(t1 + δ3 + T) = λd(1 − e−T + o(1)). (44)

Since the solution is less than pL in the interval of the length of delay (t ∈ (t1 + δ3, t1 +
δ3 + T]), and u(t1 + δ3 + T) is negative and has the order O(λ), Equation (2) has the form
of (24) in the segment of the length (1 + o(1)) ln λ (until the solution becomes greater than
pL), and the solution has the form

u(t) = λd(1 − e−T + o(1))e−(t−(t1+T)). (45)

Expression (45) is negative and increases. There exists a time moment t∗ > t1 + T + δ3
such that Expression (45) is less than pL for all t ∈ [t1 + T + δ3, t∗) and is equal to pL
at the point t = t∗. Thus, function u(t∗ + s) belongs to the set S−: u(t∗) = pL and
u(t∗ + s) < pL for all s ∈ [−T, 0). Therefore, if we take this function as the initial conditions
of Equation (2), then we get a sign-changing relaxation cycle of this equation with the
period t∗ = t1 + T + (1 + o(1)) ln λ.

If we take initial functions from S+, then at the first step, t ∈ [0, T], the equation has
the form of (4) and solution has the form of (5). Then, there exists an asymptotically small
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by λ value δ4 > 0 such that u(t) < pL for all t ∈ (δ4, T]. Since, for t ∈ [δ4, T + δ4], the
solution is less than pL, Equation (2) has the form of (24), and the solution has the form

u(t) = λd(1 − e−T + o(1))e−(t−T) (46)

for t > T + δ4; until then u(t) > pL.
It follows from (46) that there exists a value tL such that u(tL) = pL and u(s+ tL) < pL

in the interval s ∈ [−T, 0). Therefore, oin the segment t ∈ [tL − T, tL], the solution belongs
to the set S−, which is why we have reduced the problem to the previously studied one.

From the above reasoning, we obtain the following statement.

Theorem 6. Let b = 0, d < 0, and let condition (42) hold. Then, for all sufficiently large λ > 0,
Equation (2) has a sign-changing relaxation cycle with the asymptotics

u(t) = pLe−(t−nt∗), t ∈ [nt∗, nt∗ + T],

u(t) = pLe−(t−nt∗) + λ
t∫

T+nt∗
es−t f (pLent∗+T−s)ds, t ∈ [nt∗ + T, nt∗ + 2T],

u(t) = λ
( nt∗+2T∫

nt∗+T
es−nt∗−2T f (pLent∗+T−s)ds − d + o(1)

)
e−(t−nt∗−2T) + λd,

t ∈ [nt∗ + 2T, nt∗ + t1 + T],
u(t) = λd(1 − e−T + o(1))e−(t−(nt∗+t1+T)), t ∈ [nt∗ + t1 + T, (n + 1)t∗],

(where n = 0, 1, 2, . . . represents the number of periods of cycle) and period t∗ = t1 + T + (1 +
o(1)) ln λ at λ → +∞.

The cycles of Equation (2) in the case that b = 0 and d < 0 are shown in Figure 5.
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Figure 5. Relaxation cycles of Equation (2) in the case that b = 0 and d < 0 and function f (u) satisfies
the conditions of (a) (38) and (b) (42). Values of parameters: λ = 104, pL = −1.5, pR = 2.5, b = 0,
(a) T = 5, d = −2, (b) T = 3, and d = −4.

9. Asymptotics of Solutions in the Case b = 0 and d > 0

Firstly, consider the initial conditions from S+. Similar to the case in Section 2, we
obtain that for all t ≥ 0, the solution has the form of (5).

Therefore, in the case that b = 0 and d > 0, all solutions with initial conditions from
the set S+ tend to a constant λd at t → +∞.

Now consider the initial conditions from S−. If function f satisfies Inequality (38),
then we obtain that Equation (2) has a negative relaxation cycle (all the reasoning is the
same as in Section 8).

The following statement is true.
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Theorem 7. Let b = 0, d > 0, and let condition (38) be true. Then, for all sufficiently large
λ > 0, Equation (2) has a negative relaxation cycle with the asymptotics of (41) and period
t∗ = 2T + (1 + o(1)) ln λ at λ → +∞.

Let us construct the asymptotics of the solution to Equation (2) in the case that function
f satisfies the inequality (42). Similarly to Section 8, in the segment t ∈ [0, T], the solution
has the form of (36), in the segment t ∈ [T, 2T], it has the form of (37), and in the segment
t ∈ [2T, 3T], it has the form of (43). Since Expression (43) is greater than pR for all t > 2T,
Equation (2) has the form of (4) for all t > 3T, and the solution has the form of (43) for all
t > 2T.

Thus, in the case that b = 0 and d > 0, under the condition that function f satisfies
Inequality (42), all solutions with initial conditions from the set S− tend to a constant λd at
t → +∞.

10. Discussion and Conclusions

If we fix the values of b and d, function f , and the set of initial conditions (S+ or
S−), then for all initial conditions from the chosen set, we obtain an identical behaviour at
t → +∞ (because all solutions with initial conditions from the set S+ (or S−) coincide with
each other in the segment t ∈ [0, T], and, therefore, for all t ≥ 0).

In Sections 2–9 we derived that the behaviour at t → +∞ of the solutions to Equation (2)
with the initial conditions from sets S+ and S− may be only of two types: (1) solutions tend
to a constant at t → +∞ or (2) we obtain a cycle.

The following generalization of this result takes place.

Theorem 8. If we replace the equality u(0) = pR (u(0) = pL) with the inequality u(0) ≥ pR
(u(0) ≤ pL, respectively) in the definition of the set S+ (or S−, respectively), then the behaviour of
the solutions at t → +∞ does not change.

Theorem 8 means that if a solution with initial conditions from S+ tends to a constant
at t → +∞, then a solution with initial conditions satisfying inequality u(s) ≥ pR for all
s ∈ [−T, 0] tends to the same constant at t → +∞; if we take initial conditions from S+ and
obtain a cycle, then taking initial conditions satisfying inequality u(s) ≥ pR, we get the
same cycle (but it may be shifted).

The same result is valid for the set S−.

Proof. Let us prove that if in the definition of S+, we replace equality u(0) = pR with
inequality u(0) > pR, then the behaviour of the solution does not change.

Denote u(0) as u0. Since for all s ∈ [−T, 0], Inequality u(s) ≥ pR holds, then
Equation (2) has the form of (4) on the segment t ∈ [0, T], and the solution has form

u+(t) = u0e−t + λd(1 − e−t). (47)

Two situations are possible:
(1) There exists a time moment t0 > 0 such that expression (47) is greater than pR for

all t ∈ [0, t0) and is equal to pR at t = t0;
(2) For all t > 0, Expression (47) is greater than pR.
If the first situation occurs, then the function u+(t0 + s) (s ∈ [−T, 0]) belongs to the

set S+. All solutions with initial conditions from S+ for fixed values b and d and function f
have the same behaviour, which is why, in this case, for the considered initial conditions,
we have the same behaviour of solutions as for the initial conditions from S+.

The second situation is possible only in the case that d > 0 (for all d ≤ 0 and u0 > pR,
there exists t0 > 0 such that u+(t0) = pR). In this situation, for all t ≥ 0, Equation (2) has
the form of (4), and the solution has the form of (47) for all t ≥ 0. Expression (47) tends to
λd at t → +∞. Since in all cases where d > 0, the solutions with initial conditions from S+
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tend to λd at t → +∞ (see Sections 2, 4 and 9), then in this situation, for the considered
initial conditions, we have the same behaviour of solutions as for initial conditions from S+.

The proof of the Theorem for set S− is absolutely similar as the proof for the set S+.

We have studied the nonlocal dynamics of an equation with delay and nonlinearity
having simple behaviour at infinity. This type of nonlinearity is interesting because, on one
hand, it is a quite general class of functions, and on the other hand, it is a generalization of
two important for application types of nonlinearity: compactly supported and piecewise
constant nonlinearities. The key assumption that the nonlinear function F is multiplied
by a large parameter λ allows us to construct the asymptotics of all the solutions from the
wide sets of initial conditions.

We have studied behaviour at t → +∞ of the solutions to (2) for wide sets of initial
conditions and conclude that two types of behaviour are possible: (1) the solution tends to
a constant or (2) after the pre-period, the solution becomes a cycle.

It is important to mention that it is impossible to obtain such general results using
numerical simulation because it is impossible to iterate through all the considered functions
F and initial conditions. Additionally, even if we take a certain function F and initial
conditions, the simulation of this equation is a difficult problem, because the parameter λ
is large.

We have found conditions on signs b and d under the condition that bd �= 0 for
having a cycle of Equation (2). This cycle has an amplitude of the order O(λ) and period
of the order O(1) at λ → +∞. We have found conditions on sign b (d) under condition
d = 0 (b = 0, respectively) for having relaxation cycles of Equation (2). Depending on the
properties of the function f , this cycle may be sign-changing or sign-preserving.

It is important to mention that most found cycles (see Theorems 1, 3, 6) do not exist in
the case of compactly supported nonlinearity [20].

In the future, it will be interesting to study the dynamics of several coupled Equation (2)
and to analyse the dependence of the dynamics of the system on the type of coupling.
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Abstract: The HIV/AIDS epidemic is still active worldwide with no existing definitive cure. Based
on the WHO recommendations stated in 2014, a treatment, called Pre-Exposure Prophylaxis (PrEP),
has been used in the world, and more particularly in France since 2016, to prevent HIV infections. In
this paper, we propose a new compartmental epidemiological model with a limited protection time
offered by this new treatment. We describe the PrEP compartment with an age-structure hyperbolic
equation and introduce a differential equation on the parameter that governs the PrEP starting
process. This leads us to a nonlinear differential–difference system with discrete delay. After a local
stability analysis, we prove the global behavior of the system. Finally, we illustrate the solutions
with numerical simulations based on the data of the French Men who have Sex with Men (MSM)
population. We show that the choice of a logistic time dynamics combined with our Hill-function-like
model leads to a perfect data fit. These results enable us to forecast the evolution of the HIV epidemics
in France if the populations keep using PrEP.

Keywords: HIV; AIDS; PrEP; differential–difference system; discrete delay; France

MSC: 92D30

1. Introduction

Since its onset in the early 1980s and its clear identification in 1983, Human Immun-
odeficiency Virus (HIV) and then Acquired Immune Deficiency Syndrome (AIDS) have
still comprised one of the most deadly active worldwide epidemics. In the 2019 UN-
AIDS study, about 38 million persons lived with HIV, 1.7 million became infected, and
690,000 died of AIDS-related diseases (UNAIDS, Global HIV & AIDS statistics—2020 fact
sheet: https://www.unaids.org/en/resources/fact-sheet) (accessed on 13 September 2022),
becoming one of the most serious public health challenges.

It is well known now that this infection evolves in three stages: first a short acute
phase where flu-like symptoms appear, followed by a symptom-free chronic phase that
lasts between 10 and 15 years. It eventually ends up with AIDS when the virus has killed
enough TCD4, leading to the failure of the immune system (https://www.hiv.gov/hiv-ba
sics/overview/about-hiv-and-aids/symptoms-of-hiv) (accessed on 13 September 2022).

Note here that the latency stage appears as one of the crucial problems. Indeed,
the dormant period of the virus drastically delays HIV/AIDS diagnosis if not detected and
plays a major role in the epidemic’s spread (see Figure 1 in [1]).

Despite extensive investigations, there is still no existing therapy that helps the organ-
ism to fully get rid of the virus.
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However, since 1996, AntiRetroviral Therapy (ART), consisting of a combination of
three (or more) antiretroviral agents taken daily, has appeared to reduce significantly the
presence of the virus under a detectable threshold. Currently, not only efficient at avoiding the
fatality of the disease, ART allows also HIV-infected individuals stop spreading the disease.
In 2019, 25.4 million of them successfully accessed antiretroviral therapy, (UNAIDS, Global
HIV & AIDS statistics—2020 fact sheet: https://www.unaids.org/en/resources/fact-sheet
(accessed on 13 September 2022); World Health Organization (WHO)—HIV/AIDS: https:
//www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 13 September 2022).

In the late 2010s, Pre-Exposure Prophylaxis (PrEP) was introduced as a new way of prevent-
ing HIV transmission. This successful treatment addresses HIV-free individuals showing a high
risk of becoming infected. PrEP consists of taking a combination of two antiretrovirals in two dif-
ferent protocols: either on a daily basis (continuous treatment) or on demand (discrete treatment),
which is just at least 2 h before and 2 days after sexual intercourse. Every 3 months, continuous
PrEP users need to have a global Sexually Transmitted Infections (STIs) screening in order to
obtain a prescription for another 3 months (World Health Organization (WHO)—HIV/AIDS:
https://www.who.int/news-room/fact-sheets/detail/hiv-aids; https://www.who.int/team
s/global-hiv-hepatitis-and-stis-programmes/hiv/prevention/pre-exposure-prophylaxis) (ac-
cessed on 13 September 2022). Theoretically, they can stop anytime, but they are practically
more likely to choose at the end of each quarter. We remind here that PrEP is preventive and
does not cure HIV. However, it effectively reduces HIV transmission (World Health Organi-
zation (WHO)—HIV/AIDS: https://www.who.int/news-room/fact-sheets/detail/hiv-aids)
(accessed on 13 September 2022).

Our objective here was to design a new model to mathematically forecast the influence
of PrEP users among high-risk profiles on the epidemic. The application of our study
focused only on the French population, where PrEP has been used since 2016, and is
currently followed by an average of 20,000 individuals [2].

In the past few decades, many epidemiological models have been used to describe
HIV’s dynamics. Some of them used the standard Susceptible (S)–Infected (I)–Infected
under ART (C) with low viral charge–Infected with AIDS symptoms (A) (SICA) model
(see [3] for instance), and for a good review, we suggest [4,5].

It has only been in the past few years that new models including a PrEP user compart-
ment appeared and started to receive our attention. A good example is the preliminary
work [6], where the authors suggested a vaccination approach, which could be seen as a
precursor to PrEP. Their numerical simulations showed that the epidemic spread could be
controlled thanks to vaccination, even if the basic reproduction number remains above 1.
In [7,8], an explicit PrEP compartment was included in the SICA model. The parameters
in [8] were adjusted with clinical data and PrEP’s effectiveness mathematically proven.
In [9], the authors divided the PrEP compartment according to the adherence of users to
the treatment. They showed that, with at least 70% of PrEP users in the male homosexual
population, the HIV epidemic could be effectively controlled. Finally, in [10], PrEP was
combined with screening and the result was compared to Portuguese data showing that
these two processes appeared necessary to control the HIV epidemic.

In our paper, we introduce a new approach with a Susceptible–Infected–Protected
(SIP) model. Inspired by [8,11], it includes an age structure on the PrEP (protected)
compartment, corresponding to the time spent after the onset of the new 3-month treatment
period. Once the term is reached, the user chooses either to keep taking PrEP or to stop
it, becoming susceptible again. On the other hand, individuals of the S compartment may
decide to start or resume this preventative process and, hence, reach the P population.

Our goal was to propose a more accurate model than that of [8] that still possible to
handle analytically by considering a more complex susceptible interaction F(t, S) depend-
ing both on time t (through a function ψ) and the total S population (through a function
f ), which can be seen as a political or economic decision made depending on the size of
the HIV-exposed population(see Section 2 for details). After standard modifications, we
prove in Section 2 that our new model can be written as a nonlinear differential–difference
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system with discrete delay. As presented below in Sections 3 and 4, the stability analysis is
then possible when the ψ term is constant. However, since it may take a while to convince
a population set to start PrEP, it appears natural to us that ψ may follow a logistic equation.
The model becomes then too challenging to be investigated in an analytical way, and thus,
numerical simulations take over this work in Section 5. Thanks to this new assumption,
we show eventually that it is possible to fit the data with realistic values. Before this, we
proceed to its well-posedness and stability study and investigate the constant and non-
constant joining PrEP rate subcases in Section 3 and 4. Then, we compare our theoretical
work to official clinical French data in order to understand the role of PrEP’s dynamics on
the HIV/AIDS epidemic in Section 5. With some numerical simulations, we observe that,
by choosing a logistic equation for the nonlinear joining PrEP rate and a Hill function for
the dynamics of f (S), we perfectly fit our data.

2. Introducing Our Model

In order to keep the model as simple as possible, we considered only three compart-
ments: Susceptible (S), individuals that may be infected by HIV; Infected (I) and Protected
(P), individuals on PrEP treatment (see Figure 1). The total population is

N(t) = S(t) + I(t) + P(t).

Figure 1. Schematic representation of the compartmental model (1). Continuous arrows represent
movements between compartments. Dashed ones represents the transmission of the infection.

To take into account the limited protection duration offered by PrEP, we structured the
compartment of protected individuals by age. Here, age a corresponds to the time since the
last test and the renewal of PrEP treatment. The maximum duration of the protection period
is generally three months, τ = 3 months. Therefore, a ∈ [0, τ]. If an individual decides to
renew the treatment, the age a is reset to zero. We denote by p(t, a) the population on PrEP
at time t who started their new treatment period a days ago. Thus, the total population of
PrEP users at time t is

P(t) =
∫ τ

0
p(t, a)da.

The model was designed taking into account the input and output rates of each
compartment with appropriate parameters (see Figure 1). At each time t, there is a constant
number of individuals (source term σ) who become susceptible by reaching the age of
sexual consent, becoming single again, or deciding to start new intercourse experiences.
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At the same time, some susceptible individuals become infected with HIV at a rate β.
A part,

F(t, S(t)) = ψ(t) f (S(t)),

of the susceptible individuals decide to start PrEP. The choice of functions f and ψ allows us
to consider many scenarios. The function f is an increasing function of the total population
of susceptible individuals with f (0) = 0. Examples could be

f (S) = Sn or f (S) =
Sn

1 + Sn , n ≥ 1.

The first choice is well adapted to rich countries or countries with a low number of
susceptible individuals (the proposed treatment, for example the case f (S) = S, n = 1, is
proportional to the total population of susceptible individuals). The second choice is better
adapted to poor countries or countries with a large number of susceptible individuals,
which, for budgetary reasons, cannot increase the treatment indefinitely. The fact that the
function ψ is time-dependent is dictated by the data we wish to use on PrEP, which began
in 2016 in France and continues to increase. For cost reasons, this PrEP prescription rate
will eventually reach a maximum threshold. A well-fitting example of function ψ is

ψ(t) = ψ0 +
κ1tm

tm + κ2
, m ≥ 1, κ1, κ2 > 0.

For the analytical study of the model, we assumed that this threshold has already been
reached and, therefore, considered

ψ ≡ K := ψ0 + κ1

to be a constant. We can also choose t �→ ψ(t) as a solution of the logistic equation with K
as the carrying capacity. Finally, we supposed that the disease and treatment do not affect
mortality (death rate μ is consequently the same for all). The system satisfied by S and I is
then given, for all t > 0, by{

S′(t) = σ − βI(t)S(t)− μS(t)− K f (S(t)) + (1 − θ)p(t, τ),
I′(t) = βI(t)S(t)− μI(t).

(1)

The density p satisfies, for t > 0, the following age-structured partial differential equation:⎧⎨⎩
∂p
∂t

(t, a) +
∂p
∂a

(t, a) = −μp(t, a), 0 < a < τ,

p(t, 0) = K f (S(t)) + θp(t, τ).
(2)

We remind here that a ∈ [0, τ] is the time elapsed from the new period of time under
treatment. If an individual decides to renew the treatment, the age a is reset to zero. We
denote by p(t, a) the population under PrEP at time t who started their new treatment
period a days ago. The initial condition is given by

S(0) = S0, I(0) = I0 and p(0, a) = p0(a), 0 < a < τ.

The boundary condition
p(t, 0) = K f (S(t)) + θp(t, τ),

represents individuals who renewed their PrEP, θp(t, τ), or those who started it, K f (S(t)).
Using the characteristics method and the boundary condition from (2) (see [12]), we

obtain, for t > 0 and a ∈ [0, τ],

p(t, a) =
{

e−μa p(t − a, 0), t > a,
e−μt p(0, a − t) = e−μt p0(a − t), 0 ≤ t ≤ a.

(3)
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To write Equation (3) in a convenient form, we supposed that the initial condition p0 is
continuous on [0, τ] and satisfies the compatibility condition

p0(0) = K f (S0) + θp0(τ).

We put
ϕ(t) := e−μt p0(−t), −τ ≤ t ≤ 0,

and we define the function
u(t) := p(t, 0), t ≥ 0.

We then obtain from (3) the expression

p(t, τ) = e−μτ

{
u(t − τ), t > τ,

ϕ(t − τ), 0 ≤ t ≤ τ.

This means that we can extend the function u to the interval [−τ, 0], by putting u(t) = ϕ(t)
for t ∈ [−τ, 0]. Then, we have directly p(t, τ) = e−μτu(t − τ), for all t ≥ 0. Consequently,
using the boundary condition of the system (2), u satisfies the difference equation:

u(t) =
{

K f (S(t)) + θe−μτu(t − τ), t > 0,
ϕ(t), −τ ≤ t ≤ 0.

Furthermore, the total population P(t) can be explicitly expressed, for t ≥ 0, in terms of the
function u:

P(t) =
∫ τ

0
e−μau(t − a)da = e−μt

∫ t

t−τ
eμau(a)da.

Thus, we obtain the complete model, for t > 0,⎧⎨⎩
S′(t) = σ − βI(t)S(t)− μS(t)− K f (S(t)) + (1 − θ)e−μτu(t − τ),
I′(t) = βI(t)S(t)− μI(t),
u(t) = K f (S(t)) + θe−μτu(t − τ),

(4)

with the initial condition:

S(0) = S0, I(0) = I0 and u(t) = ϕ(t), t ∈ [−τ, 0]. (5)

Knowing that P(t) = e−μt
∫ t

t−τ
eμau(a)da, we obtain

P′(t) = −μP(t) + K f (S(t))− (1 − θ)e−μτu(t − τ).

We then have
N′(t) = S′(t) + I′(t) + P′(t) = σ − μN(t).

We easily obtain

N(t) =
(

N0 − σ

μ

)
e−μt +

σ

μ
→ σ

μ
, as t → +∞. (6)

3. Mathematical Analysis

In this section, we discuss the well-posedness of the model, the steady-states, the basic
reproduction number, and the local asymptotic stability.

3.1. Well-Posedness of the Model

The problem (4) and (5) is a coupled system of nonlinear differential and difference
equations with discrete delay. We directly derive the following proposition about the
well-posedness of the model.
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Proposition 1. For any nonnegative initial condition (S0, I0, ϕ), where ϕ is a nonnegative contin-
uous function on [−τ, 0], there exists a unique nonnegative solution to Problem (4) and (5) defined
on [0,+∞). Moreover, this solution is uniformly bounded on [0,+∞).

Proof. We first solve the system (4) and (5) on the interval [0, τ]. In this case, since u is
completely defined, the Cauchy–Lipschitz theorem gives the existence and uniqueness of
the solution on [0, τ], and this solution is nonnegative. Then, we repeat this method on each
interval of type [kτ, (k + 1)τ] with k ∈ N. Thus, we obtain a unique nonnegative solution
on the interval [0,+∞). Furthermore, using (6) and the fact that S(t) + I(t) + u(t) ≤
S(t) + I(t) + P(t) = N(t), we deduce that (S, I, u) is uniformly bounded on [0,+∞).

3.2. Steady-States and Basic Reproduction Number

In this subsection, we compute the steady-states of the system and study their local
asymptotic stability. Let us consider a steady-state (S∗, I∗, u∗) of (4). We then have⎧⎨⎩

0 = σ − βI∗S∗ − μS∗ − K f (S∗) + (1 − θ)e−μτu∗,
0 = (βS∗ − μ)I∗,
u∗ = K f (S∗) + θe−μτu∗.

(7)

The third equation of the system (7) leads to

u∗ = K f (S∗)
1 − θe−μτ .

We remark that, as θ ∈ (0, 1), we always have 1 − θe−μτ > 0.
Assume that I∗ = 0. Then, the first equation of (7) implies that S∗ satisfies the equation:

Φ(S∗) := S∗ + K(1 − e−μτ)

μ(1 − θe−μτ)
f (S∗) = σ

μ
. (8)

Since Φ is increasing, tends to infinity, and satisfies Φ(0) = 0, we obtain the existence of
a unique S∗ such that Φ(S∗) = σ/μ. We can therefore write S∗ = Φ−1(σ/μ). Thus, we
obtain the disease-free steady-state:

(S∗, I∗, u∗) =
(

Φ−1(σ/μ) , 0 ,
K f (Φ−1(σ/μ))

1 − θe−τμ

)
. (9)

Now, suppose that S∗ = μ/β. We immediately obtain that

u∗ = K f (μ/β)

1 − θe−μτ .

We inject these two last expressions into the first equation of (7) to obtain

I∗ = σ

μ
− Φ

(
μ

β

)
,

where the function Φ is given by the expression (8). Then, I∗ > 0 exists if and only if

Φ−1
(

σ

μ

)
>

μ

β
.

Let us define the basic reproduction number R0 as a threshold for the existence of the
endemic steady-state:

R0 :=
β

μ
Φ−1

(
σ

μ

)
.
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Hence, we obtain the existence of a unique endemic steady-state:

(S∗, I∗, u∗) =
(

μ

β
,

σ

μ
− Φ

(
μ

β

)
,

K f (μ/β)

1 − θe−μτ

)
(10)

if and only if
R0 > 1.

We will need to know the variation of R0 as a function of τ ∈ [0,+∞). We have the
following lemma.

Lemma 1. The basic reproduction number τ ∈ [0,+∞) �→ R0(τ) is a decreasing function
such that

R0(0) =
βσ

μ2 and R0(∞) =
β

μ
Φ−1

∞

(
σ

μ

)
,

with
Φ∞(S) := S +

K
μ

f (S).

Proof. Consider the dependence of the function Φ on τ by putting

Φ(S, τ) := S +
K(1 − e−μτ)

μ(1 − θe−μτ)
f (S).

We want to study the variation of τ �→ R0(τ) =
β

μ
Φ−1

(
σ

μ
, τ

)
. Then, we set S(τ) :=

Φ−1(σ/μ, τ). In fact, we have Φ(S(τ), τ) = σ/μ. By differentiating, we deduce that

∂Φ
∂S

(S(τ), τ)
d

dτ
S(τ) +

∂Φ
∂τ

(S(τ), τ) = 0.

Thus, we obtain
d

dτ
R0(τ) =

β

μ

d
dτ

S(τ) = − β

μ

∂Φ
∂τ (S(τ), τ)
∂Φ
∂S (S(τ), τ)

< 0.

Then, the function τ �→ R0(τ) is decreasing on [0,+∞). Furthermore, by taking τ = 0 and
τ → +∞ in the equality:

Φ(S, τ) := S(τ) +
K(1 − e−μτ)

μ(1 − θe−μτ)
f (S(τ)) =

σ

μ
,

we obtain that

R0(0) =
βσ

μ2 and R0(∞) =
β

μ
Φ−1

∞

(
σ

μ

)
,

with
Φ∞(S) := S +

K
μ

f (S).

We conclude from Lemma 1 that R0(∞) < R0(τ) < R0(0), for all τ ∈ (0,+∞),
and we immediately obtain the following result.

Proposition 2. Suppose that τ ≥ 0. Then, we have three cases:

• If R0(0) < 1, then we have R0(τ) < 1, for all τ ≥ 0.
• If R0(∞) > 1, then we have R0(τ) > 1, for all τ ≥ 0.
• If R0(0) > 1 and R0(∞) < 1, then there exists a unique τ̄ > 0 such that R0(τ) > 1 for

0 ≤ τ < τ̄ and R0(τ) < 1 for τ > τ̄, with R0(τ̄) = 1.
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We linearize System (4) around any equilibrium (S∗, I∗, u∗), and we obtain⎧⎨⎩
S′(t) = −βI∗S(t)− βS∗ I(t)− μS(t)− K f ′(S∗)S(t) + (1 − θ)e−μτu(t − τ),
I′(t) = βI∗S(t) + βS∗ I(t)− μI(t),
u(t) = K f ′(S∗)S(t) + θe−μτu(t − τ).

We look for solutions of the form S(t) = e−λtS0, I(t) = e−λt I0 and u(t) = e−λtu0, t > 0,
and λ ∈ C. Then, we obtain the following characteristic equation

Δ(λ, τ) :=

∣∣∣∣∣∣
λ + βI∗ + μ + K f ′(S∗) βS∗ −(1 − θ)e−μτe−λτ

−βI∗ λ − βS∗ + μ 0
−K f ′(S∗) 0 1 − θe−μτe−λτ

∣∣∣∣∣∣ = 0.

We develop the determinant and obtain

Δ(τ, λ) = (λ − βS∗ + μ)
[
(λ + μ)(1 − θe−μτe−λτ) + K f ′(S∗)(1 − e−μτe−λτ)

]
+(λ + μ)βI∗(1 − θe−μτe−λτ),

= 0.

First, consider the disease-free equilibrium (9). Then, the characteristic equation becomes

[λ − μ(R0 − 1)]
[
(λ + μ)(1 − θe−μτe−λτ) + K f ′

(
Φ−1(σ/μ)

)
(1 − e−μτe−λτ)

]
= 0.

We have an immediate real eigenvalue

λ0 = μ(R0 − 1).

The other eigenvalues are solutions of the transcendental equation:

Δ̄(λ) := P(λ)− Q(λ)e−λτ = 0, (11)

with

P(λ) := λ + μ + K f ′(Φ−1(σ/μ)) and Q(λ) := e−μτ [θλ + θμ + K f ′(Φ−1(σ/μ))].

We have the following properties:

Property 1.

(i) The equation (11) has no purely imaginary root.
(ii) All roots λn, n ∈ N, of (11) such that |λn| → +∞, have a negative real part for n large

enough:

Proof. (i) First, we seek for pure imaginary roots λ = ±iω, ω > 0, of (11). Splitting in (11)
the real and the imaginary part, we obtain{

γ cos(ωτ)e−μτ + θω sin(ωτ)e−μτ = μ + K f ′(Φ−1(σ/μ)),
−θω cos(ωτ)e−μτ + γ sin(ωτ)e−μτ = −ω,

where γ := θμ + K f ′(Φ−1(σ/μ)). Solving this system, we find that⎧⎪⎪⎨⎪⎪⎩
cos(ωτ) =

1
(θ2ω2 + γ2)e−μτ

[
θω2 + γ(μ + K f ′(Φ−1(σ/μ))

]
,

sin(ωτ) =
1

(θ2ω2 + γ2)e−μτ

[−ωγ + θω(μ + K f ′(Φ−1(σ/μ))
]
.

Using the trigonometric identity cos2(ωτ) + sin2(ωτ) = 1, we obtain that ω satisfies

(θ2ω2 + γ2)(e−μτ)2 = ω2 + (μ + K f ′(Φ−1(σ/μ)))2.
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Then, we obtain

ω2 =
(γe−μτ − (μ + K f ′(Φ−1(σ/μ))))((μ + K f ′(Φ−1(σ/μ))) + γe−μτ)

1 − θ2e−2μτ
. (12)

Notice that 1 − θ2e−2μτ > 0 and

γe−μτ − (μ + K f ′(Φ−1(σ/μ))) = [θμ + K f ′(Φ−1(σ/μ))]e−μτ − [μ + K f ′(Φ−1(σ/μ))] < 0.

Thus, the right-hand side of (12) is negative, which is absurd. We conclude that the
Equation (11) has no purely imaginary root.

(ii) As the function Δ̄ is entire, the set of its roots cannot have accumulation points.
Furthermore, Δ̄ has at most countably many zeros. If Δ̄ has infinitely many different zeros,
λn ∈ C, n ∈ N, then

lim
n→+∞

|λn| = +∞.

The sequence λn, n ∈ N, satisfies

eλnτ

(
P(λn)

λn

)
− Q(λn)

λn
= 0.

It is clear that

lim
n→∞

∣∣∣∣P(λn)

λn
− 1

∣∣∣∣ = 0 and lim
n→∞

∣∣∣∣Q(λn)

λn
− θe−μτ

∣∣∣∣ = 0.

Then, there is a sequence (λ′
n)n∈N of roots of the equation

eλτ − θe−μτ = 0

such that
lim

n→∞
(λn − λ′

n) = 0.

This means that the closed-forms of the roots λn are the complex numbers

λ̄p =
1
τ

ln(θ)− μ +
2pπ

τ
i, p ∈ Z.

Since θ ∈ (0, 1), we have that Re(λ̄p) < 0. Thus, all roots such that |λn| → +∞ have a
negative real part for n large enough.

We state the stability of the disease-free equilibrium (9):

Corollary 1.

(i) Suppose that there exists τ0 ≥ 0 such that R0(τ0) > 1. Then, the disease-free equilibrium (9)
is unstable for τ = τ0.

(ii) Suppose that there exists τ1 ≥ 0 such that R0(τ1) < 1 and the disease-free equilibrium (9) is
locally asymptotically stable for τ = τ1. Then, it is locally asymptotically stable for all τ ≥ τ1.

(iii) Suppose that R0(0) < 1. Then, the disease-free equilibrium (9) is locally asymptotically
stable for all τ ≥ 0.

Proof. (i) The real eigenvalue
λ0 = μ(R0(τ0)− 1)

is positive because R0(τ0) > 1. Then, the disease-free equilibrium (9) is unstable for τ = τ0.
(ii) Suppose that there exits τ1 ≥ 0 such that R0(τ1) < 1 and the disease-free equilibrium (9)
is locally asymptotically stable for τ = τ1. As τ �→ R0(τ) is decreasing, we have R0(τ) < 1
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for all τ ≥ τ1. Then, the real eigenvalue λ0 is negative for all τ ≥ τ1. The other eigenvalues
given by

Δ̄(τ, λ) := P(τ, λ)− Q(τ, λ)e−λτ = 0,

with

P(τ, λ) := λ + μ + K f ′(Φ−1(σ/μ)) and Q(τ, λ) := e−μτ [θλ + θμ + K f ′(Φ−1(σ/μ))],

which cannot cross the imaginary axis when we increase τ starting from τ1. The disease-
free equilibrium (9), thus, keeps the same stability as for τ = τ1, i.e., it remains locally
asymptotically stable for all τ ≤ τ1.

(iii) Let us consider the case τ = 0. Then, Equation (11) becomes

(λ + μ)(1 − θ) = 0.

This means that λ = −μ < 0. Then, the disease-free equilibrium (9) is locally asymptotically
stable for τ = 0. We use the previous property, (ii), to conclude that the disease-free
equilibrium (9) is locally asymptotically stable for all τ ≥ 0.

One can prove this corollary directly by proving that Equation (11) has no root with a
nonnegative real part, and therefore, the stability of the endemic equilibrium is determined
by the sign of R0 − 1. Indeed, let us suppose by contradiction the existence of such a root
λ = α + iω, with α ≥ 0. Then, we obtain

|P(α + iω)|
|Q(α + iω)| = e−ατ ≤ 1.

This gives the following inequality:

[P(α)− Q(α)][P(α) + Q(α)] +
(

1 − e−2μτθ2
)

ω2 ≤ 0,

with
P(α)− Q(α) = (1 − e−μτθ)(α + μ) + (1 − e−μτ)K f ′(Φ−1(σ/μ)) > 0.

This leads to a contradiction.

Now, we focus on the endemic equilibrium (10):

(S∗, I∗, u∗) =
(

μ

β
,

σ

μ
− Φ

(
μ

β

)
,

K f (μ/β)

1 − θe−μτ

)
.

Proposition 3. Suppose that R0(0) > 1. Then, for all τ ≥ 0 such that R0(τ) > 1, the endemic
steady-state is locally asymptotically stable.

Proof. We suppose that R0(τ) > 1, and we consider the endemic equilibrium. The charac-
teristic equation becomes

Δ(τ, λ) := λ2 + Aλ + μβI∗ − e−μτe−λτ
[
θλ2 + (θA + K f ′(S∗))λ + θμβI∗

]
= 0, (13)

with A := μ + βI∗ > 0. We follow the same steps as in the proof of the stability of the
disease-free equilibrium. First, we consider the case τ = 0. Then, the endemic steady-
state becomes

(S∗, I∗, u∗) =
(

μ

β
,

σ

μ
− μ

β
,

K f (μ/β)

1 − θ

)
,

with R0(0) = βσ/μ2, and the characteristic equation is reduced to

Δ(λ, τ) := (1 − θ)

∣∣∣∣λ + βI∗ + μ βS∗
−βI∗ λ − βS∗ + μ

∣∣∣∣ = 0.
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We obtain two eigenvalues λ1 = −μ < 0 and λ2 = −μ − β(I∗ − S∗) = −μ(R0(0)− 1) < 0.
Hence, the endemic steady-state is locally asymptotically stable for τ = 0. We then look for
pure imaginary roots λ = ±iω, ω > 0. Then, splitting the real and imaginary parts in (13),
we have the following system:{

ωΓ cos(ωτ)e−μτ + ρω sin(ωτ)e−μτ = ω(A + ψ f ′(μ/β)),
ρω cos(ωτ)e−μτ − ωΓ sin(ωτ)e−μτ = ω2 − μβI∗,

with ρω := (ω2 −μβI∗)θe−μτ and Γ = (θA+ψ f ′(μ/β))e−μτ . Using the identity cos2(ωτ)+
sin2(ωτ) = 1, we obtain the polynomial equation in ω:

[1 − (θe−μτ)2]ω4 + [2μβI∗(θe−μτ)2 − 2μβI∗ + (A + ψ f ′(μ/β))2 − Γ2]ω2

+(μβI∗)2(1 − (θe−μτ)2) = 0.

Let us set

N :=
1

1 − (θe−μτ)2 [2μβI∗(θe−μτ)2 − 2μβI∗ + (A + ψ f ′(μ/β))2 − Γ2] and X := ω2.

Then, we obtain the following polynomial:

X2 + NX + (μβI∗)2 = 0. (14)

First, if N > 0, then the Routh–Hurwitz criterion implies that all roots of (14) have a
negative real part. This leads to a contradiction.

Suppose now that N ≤ 0. We compute the discriminant of Equation (14) to obtain

Δ = N2 − 4(μβI∗)2 = (N + 2μβI∗)(N − 2μβI∗).

As we supposed that N ≤ 0, we have that N − μβI∗ < 0. On the other hand, we have that

(1 − (θe−μτ)2)(N + 2μβI∗) = (A + K f ′(μ/β))2 − Γ2.

But, as θ < 1 and e−μτ < 1, we obtain

Γ2 = [(θA + K f ′(μ/β))e−μτ ]2 < (A + K f ′(μ/β))2.

We conclude that Δ < 0. Therefore, there is no positive real root of (14) and ω > 0 cannot
exist. Furthermore, as for the disease-free equilibrium, if Δ has infinitely many different
zeros, λn ∈ C, n ∈ N, then

lim
n→+∞

|λn| = +∞.

The sequence λn, n ∈ N, satisfies

eλnτ

(
P(λn)

λ2
n

)
− Q(λn)

λ2
n

= 0,

with

P(λ) := λ2 + Aλ + μβI∗ and Q(λ) := e−μτ
[
θλ2 + (θA + K f ′(S∗))λ + θμβI∗

]
.

We have

lim
n→∞

∣∣∣∣P(λn)

λ2
n

− 1
∣∣∣∣ = 0 and lim

n→∞

∣∣∣∣Q(λn)

λ2
n

− θe−μτ

∣∣∣∣ = 0.
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Then, as for the case of the disease-free steady-state, the closed forms of the roots λn are

λ̄p =
1
τ

ln(θ)− μ +
2pπ

τ
i, p ∈ Z.

Thus, all roots such that |λn| → +∞ have a negative real part for n large enough. We
conclude that all roots of (13) have a negative real part, and then, the endemic equilibrium
is locally asymptotically stable.

Remark 1. As for the proof of Corollary 1, we can also prove directly by contradiction that there is
no root λ = α + iω of (13) with α ≥ 0.

4. Global Stability Analysis

We consider in this section the case:

f (S) = S.

The model becomes⎧⎨⎩
S′(t) = σ − βI(t)S(t)− μS(t)− KS(t) + (1 − θ)e−μτu(t − τ),
I′(t) = βI(t)S(t)− μI(t),
u(t) = KS(t) + θe−μτu(t − τ),

(15)

with the initial condition:

S(0) = S0, I(0) = I0 and u(t) = ϕ(t), t ∈ [−τ, 0].

The function Φ given by (8) becomes

Φ(S∗) =
[

1 +
K(1 − e−μτ)

μ(1 − θe−μτ)

]
S∗.

The corresponding disease-free equilibrium is

(S0, I0, u0) :=
(

σ(1 − θe−μτ)

μ + K − (μθ + K)e−μτ , 0 ,
Kσ

μ + K − (μθ + K)e−μτ

)
, (16)

and the endemic steady-state is

(S∗, I∗, u∗) =
(

μ

β
,

σ

μ
− Φ

(
μ

β

)
,

Kμ

β(1 − θe−μτ)

)
. (17)

The basic reproduction number becomes

R0 :=
β

μ
Φ−1

(
σ

μ

)
=

β

μ
S0 =

βσ(1 − θe−μτ)

μ2(1 − θe−μτ) + μK(1 − e−μτ)
. (18)

A model similar to (15) was studied in [11] as a generalization of a Kermack–McKendrick
SIR model with an age-structured protection phase. We established the global asymptotic
stability of the two steady-states. We showed that if R0 < 1, then the disease-free steady-
state is globally asymptotically stable, and if R0 > 1, then the endemic steady-state is
globally asymptotically stable. We constructed quadratic and logarithmic Lyapunov func-
tions to establish this global stability. In the following subsections, we also present results
on the global asymptotic stability of the two steady-states. We used similar techniques as
those used for the proofs of the global stability results in [11].
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4.1. Global Asymptotic Stability of the Disease-Free Steady-State

In this subsection, we assumed that R0 < 1, and we show that the disease-free
equilibrium (S0, I0, u0) is globally asymptotically stable. The proof is based on the use of
the following auxiliary differential–difference system, for t > 0:⎧⎨⎩ dS+

dt
(t) = σ − (μ + K)S+(t) + (1 − θ)e−μτu+(t − τ),

u+(t) = KS+(t) + θe−μτu+(t − τ),
(19)

with the same initial condition as the main system:

S+(0) = S0 and u+(t) = ϕ(t), t ∈ [−τ, 0].

By using a comparison principle, we obtain that S(t) ≤ S+(t) and u(t) ≤ u+(t) for all t > 0.
Furthermore, the system (19) has a unique equilibrium that corresponds to the disease-free
equilibrium of the system (15). The basic reproduction number associated with (19) is also
given by (18). The global asymptotic stability of the auxiliary system (19) was established
in [11]. Indeed, by setting

Ŝ(t) := S+(t)− S0, û(t) := u+(t)− u0

and considering the Lyapunov function V : R× C([−τ, 0],R) −→ R+,

V(S0, ϕ) =
S2

0
2

+ ξ
∫ 0

−τ
ϕ2(s)ds, with ξ =

1
2K2

[
μ(1 − θ2e−2μτ) + K

]
> 0,

we proved in [11] the following lemma.

Lemma 2. Suppose that R0 < 1. Then, the unique steady-state (S0, u0) of the system (19) is
globally asymptotically stable.

Thanks to a comparison principle and the global attractivity of the set:

Ωε := {(S, I, u) ∈ R+ ×R+ × C([−τ, 0],R+) :
0 ≤ S ≤ S0 + ε, 0 ≤ u(s) ≤ u0 + ε, s ∈ [−τ, 0]

}
,

for ε > 0 small enough, we are able to obtain the global asymptotic stability of the disease-
free equilibrium of (15). More precisely, the proof of the global asymptotic stability of the
disease-free steady-state (16) is based on the following lemma.

Lemma 3. Suppose that R0 < 1. Then, for any sufficiently small ε > 0, the subset Ωε of
R+ ×R+ × C([−τ, 0],R+) is a global attractor for the system (15).

Proof. The solutions of (15) satisfy, for all t > 0, the system:{
S′(t) ≤ σ − (μ + K)S(t) + (1 − θ)e−μτu(t − τ),
u(t) = KS(t) + θe−μτu(t − τ).

By the comparison principle and the positivity of the solutions, we have 0 ≤ S(t) ≤ S+(t)
and 0 ≤ u(t) ≤ u+(t), for all t > 0, where (S+, u+) is the solution of the system (19).
Lemma 2 implies that (S+(t), u+(t)) → (S0, u0) as t → +∞. This convergence means that
the subset Ωε, with ε > 0 small enough, is a global attractor for the system (15).

Lemma 3 allows us to restrict the analysis of the global stability of the disease-free
steady-state (16) of (15) to the subset Ωε with ε > 0 small enough.
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Theorem 1. Suppose that R0 < 1. Then, the disease-free steady-state (S0, 0, u0) given by (16) of
the model (15) is globally asymptotically stable.

Proof. We consider the solutions of System (15) in the subset Ωε, with ε > 0 small enough.
It is clear that the second equation of (15) implies that

I′(t) ≤ β(S0 + ε)I(t)− μI(t) = −μ

(
1 − β(S0 + ε)

μ

)
I(t).

Since R0 =
β

μ
S0 < 1, we can choose ε > 0 such that

β(S0 + ε)

μ
< 1. This implies that

limt→+∞ I(t) = 0. Then, there exists Tε > 0 such that 0 ≤ I(t) ≤ ε, for all t > Tε. We then
have, for t > Tε,{

S′(t) ≥ σ − (μ + K)S(t)− εβS(t) + (1 − θ)e−μτu(t − τ),
u(t) = KS(t) + θe−μτu(t − τ).

We again use the comparison principle to obtain S(t) ≥ Sε(t) and u(t) ≥ uε(t), for all
t > Tε, where (Sε, uε) is the solution of the problem, for t > 0,⎧⎨⎩

S′
ε(t) = σ − (μ + K)Sε(t)− εβSε(t) + (1 − θ)e−μτuε(t − τ),

uε(t) = KSε(t) + θe−μτuε(t − τ),
Sε(0) = S0, uε(s) = ϕ(s), for − τ ≤ s ≤ 0.

(20)

We use the same techniques as for the proof of the lemmas 2 and 3 to show that (Sε(t), uε(t)) →
(S0

ε , u0
ε ) as t → +∞, with (S0

ε , u0
ε ) the steady-state of System (20). In fact, (S0

ε , u0
ε ) is given by

the expression:

(S0
ε , u0

ε ) :=
(

σ(1 − θe−μτ)

με + K − (μεθ + K)e−μτ ,
Kσ

με + K − (μεθ + K)e−μτ

)
,

with με := μ + εβ. Then, there exists T̃ε > Tε > 0 such that, for t > T̃ε,

S0
ε − ε ≤ S(t) ≤ S0 + ε and u0

ε − ε ≤ u(t) ≤ u0 + ε.

As ε → 0, we have S0
ε → S0 and u0

ε → u0. Then, we obtain

lim
t→+∞

S(t) = S0 and lim
t→+∞

u(t) = u0.

Recall that (S0, 0, u0) is locally asymptotically stable. Then, it is globally asymptotically
stable.

4.2. Global Asymptotic Stability of the Endemic Equilibrium

In this subsection, we assumed that

R0 > 1,

where R0 is given by (18), and we studied the global asymptotic stability of the endemic
steady-state (17). Let us define

S̃(t) := S(t)− S∗ and ũ(t) := u(t)− u∗.

Then, the system (15) becomes, with βS∗ = μ,⎧⎨⎩
S̃′(t) = −(μ + K)S̃(t)− βS̃(t)I(t)− βS∗ I(t) + βS∗ I∗ + (1 − θ)e−μτ ũ(t − τ),
I′(t) = βS̃(t)I(t),
ũ(t) = KS̃(t) + θe−μτ ũ(t − τ).

(21)
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The endemic steady-state (17) of the system (15) becomes (0, I∗, 0) (as a steady-state of the
system (21)). We then obtain the following result.

Theorem 2. Let us suppose that R0 > 1. Then, the endemic steady-state (S∗, I∗, u∗) given by
(17) of the model (15) is globally asymptotically stable.

Proof. The proof of this theorem is based on the use of the following Lyapunov function
V : R×R+ × C([−τ, 0],R) → R+ defined by

V(S0, I0, ϕ) =
S2

0
2

+ ξ
∫ 0

−τ
ϕ2(s)ds + S∗

[
I0 − I∗ − I∗ ln

(
I0

I∗

)]
,

with ξ =
1

2K2

[
K + μ(1 − (θ2e−2μτ)

]
.

First, we note that the function G : (0 + ∞) → [0 + ∞) defined by

G(I0) = I0 − I∗ − I∗ ln
(

I0

I∗

)
, I0 > 0,

satisfies G(I0) ≥ 0 for all I0 > 0 and G(I0) = 0 if and only if I0 = I∗. Then, we have
V(S0, I0, u0) = 0 if and only if (S0, I0, u0) = (0, I∗, 0). We set

Ṽ(t) := V(S̃(t), I(t), ũt), t ≥ 0,

where (S̃(t), I(t), ũt) is the solution of (21). Then, we obtain

Ṽ′(t) = −aS̃2(t) + bS̃(t)ũ(t − τ)− cũ2(t − τ)− βI(t)S̃2(t),

≤ b2 − 4ac
4c

S̃2(t),

= −κS̃2(t),

(22)

with ⎧⎪⎪⎨⎪⎪⎩
a = μ + K − ξK2,
b = (1 − θ)e−μτ + 2ξKθe−μτ > 0,
c = ξ(1 − θe−μτ)(1 + θe−μτ) > 0,
κ = (4ac − b2)/4c > 0.

We conclude that the function t �→ V(S̃(t), I(t), ũt) is nonincreasing. Then, we obtain

lim
t→+∞

V(S̃(t), I(t), ũt) = inf
s≥0

V(S̃(s), I(s), ũs) =: V∗ ≥ 0.

By integrating (22) from 0 to t > 0, we obtain

κ
∫ t

0
S̃2(s)ds ≤ V(S̃(0), I(0), ũ0)− V(S̃(t), I(t), ũt).

It is clear that the limits on both sides exist when t → +∞, and we have

lim
t→+∞

∫ t

0
S̃2(s)ds ≤ 1

κ

[
V(S̃(0), I(0), ũ0)− V∗]. (23)

Furthermore, the first equation of System (21) implies that t �→ S̃′(t) is uniformly bounded.
Then, the function t �→ S̃(t) is uniformly continuous. We conclude from (23) that limt→+∞ S̃(t)
= 0, and the fluctuations lemma implies that there exists a sequence (tk)k∈N, tk → +∞
such that limk→+∞ S̃′(tk) = 0. On the other hand, using the difference equation satisfied
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by ũ, we also have limt→+∞ ũ(t) = 0. Then, the first equation of System (21) implies that
limk→+∞ I(tk) = I∗. We also have from the expression of V that

lim
t→+∞

G(I(t)) =
V∗

S∗ .

Furthermore, the continuity of the function G implies that limk→+∞ G(I(tk)) = G(I∗) = 0.
Then, V∗ = 0. This means that limt→+∞ G(I(t)) = 0. The properties of the function G
imply that limt→+∞ I(t) = I∗. We conclude that the endemic steady-state (S∗, I∗, u∗) is
globally asymptotically stable.

We assumed, for the first time, that the rate of the start of PrEP treatment was constant
and that f (S) = S. Thus, the model admits two equilibrium points, the disease-free equilib-
rium and the endemic equilibrium. By considering R0 as a function of the delay, we showed
that, if R0 < 1, the disease-free equilibrium is globally asymptotically stable and that, if
R0 > 1, then it is the endemic equilibrium that becomes globally asymptotically stable.

5. Applications to French Clinical Data

In order to apply our model to real data, we chose the French MSM population, and
later, we focused more specifically on the high-risk individuals within this group. We
define here the high-risk MSM population as multi-partner gay men, as well as sexual
intercourse while using drugs, usually called chemsex, or new generations not inclined
to use any protection anymore (mainly condoms). Of course, this reduces our study to a
small part of the population, but, because of their having the highest rate of infectivity, they
belong to the target of PrEP treatments at the infectious disease center in France.

Furthermore , for a more realistic approach, ψ was considered time-dependent, and ψ
is defined by the logistic equation for a more accurate data fit (details and parameters in
the first subsection below). The PrEP users were collected between January 2016 (starting
year of PrEP in France) and June 2019 (before the SARS-CoV-2 outbreak) (see [2]).

Section 5 is structured into three subsection: First, we introduce the data and the
methods to approximate the parameters. Then, we propose a set of simulations adapted
to the general French MSM population. The last subsection is focused on the so-called
high-risk individuals as described previously.

It is important at this stage to remind that HIV is not curable and that PrEP does not
have a direct influence on the decreasing number of the infected compartment over time,
which is mainly due to natural death (with a life expectancy for treated persons as high as
non-infected ones) or, more rarely now, thus neglected here for the French group, untreated
AIDS individuals. However, PrEP policy in the population may have an important impact
on the infectivity rate. Since PrEP’s efficiency can be measured in a long-term range and
using incidence, we simulated over 15 years (that is, 180 months) for a forecast of this
prevention strategy over time.

5.1. Choice of the Parameters

In Table 1, we give the parameters used in Model (1), as well as their meaning and val-
ues for the general and high-risk MSM community in France estimated from [2], assuming
that 60% of the the population considered in the dataset of the study are MSM.

PrEP treatment in France started in 2016, and since the SARS-CoV-2 epidemic drasti-
cally modified sexual habits (through successive lockdowns), we considered the population
data until 2019 only. Then, after, we simulated our model based on the estimated parameter
values for the following 15 years. Note here that we did not take the SARS-CoV-2 nor the
monkey pox epidemic into account for three reasons: first, because these periods are a bias
for our model and need to be carefully adjusted with updated parameter values; second,
to the best of our knowledge, the official French data related to these past two years have
not been released yet; finally, we preferred keeping our model as simple as possible for this
present work. A more complex approach will be the object of a future work.
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Table 1. Parameters used in Model (1) with values applied to the French population estimated
from [2].

Symbols Signification
Value for

General MSM
Value for

High-Risk MSM
Unity

θ Probability to keep the PrEP treatment 0.83 0.83
σ Recruitment 3000 562 indiv.months−1

μ Removal rate from the compartments 0.000758333 0.0076 indiv.months−1

β HIV transmission rate per infected individual 1.821 × 10−10 2.85 × 10−7 (indiv.months)−1

τ Duration of the period of PrEP taking 3 3 months

In [2], information between 2016 and 2019 was collected every 6 months. We remind
here that, at the end of a 3-month period, the patient decides whether to give up the
treatment or to continue. This is the reason why our simulations below were computed on
a monthly basis.

Initial conditions for functions t �→ S(t), t �→ I(t) and t �→ u(t) were chosen to be
January, the 1st of 2016, according to [2].

Because of the delay equation for u, the function uinit : [−3, 0] → R+, t �→ uinit(t) was
adjusted with a cubic spline interpolation of 60% of each total number of the last column in
Table 2. Note that uinit is the same for both populations’ (general MSM and its high-risk
subset) simulations because we assumed here that most of the French PrEP users belong to
the high-risk MSM group.

Regarding the susceptible: based on an AVAC study (https://www.avac.org/sites
/default/files/u3/MSM_in_Europe_Euro_Rave.pdf, page 5) (accessed on 13 September
2022), 4–10% of French males declare belonging to the MSM group. Assuming that France
has about 65,000,000 inhabitants, it seems then reasonable to assume that S(0) = 2,600,000.

Furthermore, on the official website of UNAIDS (https://www.unaids.org/en/region
scountries/countries/france) (accessed on 13 September 2022), we obtained that 170,000
individuals were infected with HIV in France in 2016. We assumed that a majority be-
long to the MSM group, but not the entire number (indeed, a large portion of new cases
was reported to be foreign heterosexuals, among other subcases). This is why we took
I(0) = 90,000. It is important to remind here that this value may not be the exact one, since
the number of HIV infections detected is always below the real number of HIV infections
(HIV testing is not compulsory, and thus, several individuals may carry the virus for years
without knowing it).

Table 2. Summary of initial conditions for susceptibles and infected among general MSM and MSM
high-risk populations.

Initial Conditions Value for MSM Value for High-Risk MSM

S(0) 2,600,000 40,000
I(0) 90,000 9000

Finally, when simulating the MSM high-risk population, the estimated susceptible
number would be between 3000 and 50,000 depending on the literature. Thus, we took
S(0) = 40,000 according to [2]. According to French data (https://vih.org/20190328/stabili
te-des-chiffres-du-vih-en-france/) (accessed on 13 September 2022), French infections have
been stable since 2010. On average, there are 6500 contaminations per year, and infections
within the MSM population represent 43%. Then, we chose I(0) = 9000.

According to the official French data (https://www.insee.fr/fr/statistiques/2383440)
(accessed on 13 September 2022), μ = 0.000758333 individuals.months−1 at the coun-
try scale. We chose this value for the French MSM removal rate (death, as well as
removed from sexual life). For the high-risk MSM, μ is considered much larger be-
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cause a high-risk sexual life style does not last longer than the average MSM one. Thus,
μ = 0.0076 individuals.months−1 in this subgroup.

The 2016–2019 semester official French datasets are given in Table 3.

Table 3. Total number of PrEP users in France since 2016, given by semester (see Table 3 in [2] ).

Semester Initiation of PrEP
Renewal of the

Treatment
Total PrEP Users

S1—2016 1166 ### 1166
S2—2016 1826 911 2737
S1—2017 2193 2273 4466
S2—2017 2564 3807 6371
S1—2018 3138 5413 8551
S2—2018 4488 7647 12,135
S1—2019 5103 10,398 15,501

Thanks to Tables 2 and 3, we are able to assess the values of functions θ and ψ for
the years 2016–2019. Indeed, for each semester, we obtained a different θ by using the
following formula coming from its definition:

θ(semester) =
Number of renewal treatment of the current semester

Total of PrEP users of the previous semester
.

We assumed that this value is the same for every month of the semester. Then, we chose ψ,
per month, as follows:

ψ(months) =
Number of individuals who begin the treatment

S(0) ∗ 6
,

where S(0) is the initial condition for the susceptible compartment S.
These values are given in Table 4.

Table 4. Values of parameters ψ and θ per month according to each semester, computed according to
Tables 2 and 3.

Semester
Values of ψ for
General MSM

Values of ψfor
High-Risk MSMS

Values of θ

S1—2016 0.0000747 0.0048583 ###
S2—2016 0.000117 0.007608 0.7813
S1—2017 0.00014 0.00913 0.8305
S2—2017 0.000164 0.0106 0.8159
S1—2018 0.000201 0.0130 0.8496
S2—2018 0.00029 0.0187 0.8943
S1—2019 0.00033 0.0216 0.8569

We selected θ = 0.83 as the average value of all the previous θ from Table 4.
As mentioned in Section 2, we assumed that ψ is the solution of a logistic equation

given by:
dψ

dt
= rψ

(
1 − ψ

K

)
,

where K is the carrying capacity and r exponential growth. We remind that the explicit
form of ψ is then written by the following expression:

ψ(t) =
K

1 +
(

K
ψ0

− 1
)

exp(−rt)
,
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where ψ0 is the initial condition depending on the population type. Using the data for ψ
given in Table 4, we summarize our results in Table 5.

Table 5. Values of parameters K and r depending on the population.

Parameters Values for General MSM Values for High-Risk MSM

K 0.0007 0.072
r 0.0000222 0.000026

We assumed a Hill function for the dynamics of the function f :

f (S) = Ssat
Sn

γn + Sn ,

with Ssat the saturation of the Hill function, γ the abscissa of the inflection point, and n the
intensity of the slope. We summarize the values of these parameters in Table 6.

Table 6. Values of parameters Ssat, γ, and n depending on the general French MSM and the high-risk
French MSM.

Parameters Values for MSM Values for High-Risk MSM

Ssat 5 × 106 230,000
γ 120 50
n 2 1.56

One of our goals was to estimate the HIV epidemic R0 for French MSM. We used the
package in the R® language untitled R0 (https://www.rdocumentation.org/packages/R0
/versions/1.2-6) (accessed on 13 September 2022) and, precisely, the function est.R0.SB,
which estimates R0 using a Bayesian approach following the idea developed in [13]. Thanks
to our data of new HIV infections ([14,15]), we obtained R0 = 0.93 for the normal MSM
French population.

The two remaining parameters, β and σ, were estimated to keep R0 equal to 0.93. We
decided to choose σ = 3000; in other words, each month, 3000 individuals might join the
susceptible compartment (by reaching the sexual consent age or deciding to join the MSM
group). Thus, β = 1.821 × 10−10(individuals.months)−1 was estimated for the French
general MSM group.

On the other hand, according to the official French data (https://solidarites-sante.go
uv.fr/IMG/pdf/argumentaire_depistage_vih_HAS_2009-2.pdf) (accessed on 13 September
2022), the basic reproduction number related to the high-risk MSM ranges between 1.27
to 1.44. We took R0 = 1.31 and estimated β = 2.85 × 10−7(individuals.months)−1, with
μ = 0.0076 months−1 and σ = 562 given by Table 1.

5.2. Numerical Simulations for the General French MSM

In Figure 2, protected (P) in green (graph on the right) keeps track of the exact data
(crosses) for the first semesters, then reaches a threshold due to the French policy of
regulating PrEP users. Indeed, the treatment is fully taken care of by the health insurance
in France. Thus, a threshold needs to be set up (estimated at 60,000 MSM individuals here).
With this threshold, it seems already that, within 15 years, the number of infected drops
and keeps on decreasing. The number of susceptibles (blue curve on the left of the graph)
keeps on growing with a lower slope between 50 and 100 months due to the increase of
the protected and then the threshold. However, even with the increase of the susceptibles,
the infected remain low. The protected compartment plays the role of a reservoir to prevent
the HIV epidemic from growing back.
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Figure 2. Plot of the evolution of the French MSM population (4) along the time (over 15 years).
The crosses in the last plot represent the real values of PrEP users taken from Table 3. Function ψ

verifies the logistic equation, and f is a Hill function.

Just as a comparison point, we simulated our model with a function f defined as
identity (and not a Hill function anymore) (see Figure 3). We easily observed that the graph
of the protected population does not fit the data in the first months with the same realistic
parameter sets. Then, it seems that f needs to be more complex than identity for the case of
French MSM, and the Hill function seems to be validated here.

In Figure 4, we plot the incidence with or without PrEP treatment. It seems obvious
that without the PrEP reservoir (in blue), the incidence keeps on growing with no chance
for the HIV epidemic to be controlled. On the other hand, with the PrEP compartment (in
red), it is possible to keep the incidence at a low level (and even to decrease it significantly
for the first years). The slight increase at the end (after Month 125) is due to the threshold
of the number of PrEP users imposed in our model and likely used by the French health
insurance policy.

Figure 3. Plot of the evolution of the different compartments of the model (4) along time (over
15 years). The crosses in the last plot represent the real values of PrEP users taken from Table 3.
ψ verifies the logistic equation, and f is identity.

Figure 4. Plot of the evolution of the incidence with PrEP (in red) and without (in blue) from the
system (4) over 15 years among the general French MSM.
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In Figure 5, we depict the effect of the variation of R0 as a function of ψ. It appears
clearly here that, as ψ increases (that is, the number of PrEP users rises), R0 declines
drastically. This is, however, not linear, and a plateau may be reached after a certain
threshold (above 0.2), which indicates that the flow of new PrEP users does not need to
expand drastically. Indeed, even at ψ larger than 0.125, we obtain R0 already below 0.3,
which is quite satisfactory. Augmenting ψ would decrease R0, but not as fast as the first
values of ψ.

Figure 5. Plot of the R0 as a function of ψ.

5.3. Numerical Simulations for High-Risk Population

In this subsection, we focus our attention to the French MSM high-risk population.
We remind that this MSM subgroup consists of individuals with multi-partner intercourse,
sex relationships while using drugs (chemsex), etc. The HIV risk of infection is thus much
higher than the rest of the MSM population. This is one of the reasons why this subgroup
is the PrEP treatment target for the French health insurance. The protected compartment
in this particular case plays a major role as a reservoir. This was clearly confirmed in our
model simulations, as shown in Figure 6, where the number of susceptibles clearly drops as
the number of protected individuals increases. Note that the infected population rises, but
for the first time, reaches a threshold. This means that barely any new infected cases appear.
We remind here that the model is an SI and not an SIR, that is no recovered individuals
can appear since HIV is a disease with a lifetime treatment.

Figure 6. Plot of the evolution of the different compartments of the high-risk french population along
time (over 15 years). The crosses in the last plot represent the real values of the number of PrEP users
obtained from Table 4. ψ verifies the logistic equation, and f is a Hill function.

In Figure 7, the incidence evolution is plotted with or without PrEP treatment. The reser-
voir effect is even more explicit there in the sense that, with PrEP, the incidence declines to
reach a low plateau, while without, it keeps on growing indefinitely.

Finally, as mentioned before, for the MSM high-risk population, the R0 in France
is higher than 1. Figure 8 reveals that, as the number ψ of new PrEP users increases, R0
not only decreases below one, but also keeps on falling off. Here, the critical value of
ψ, which keeps R0 below one, is ψcritical = 0.113 person.months−1. According to our
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data, ψ = 0.071 person.months−1, as we assume the maximum threshold has been reached.
The decay appears, however with a smaller slope, which means, as in the previous subsec-
tion, that, after a certain threshold (0.2 here), very large values of ψ do not influence the
reduction of R0 much.

Figure 7. Plot of the evolution of the incidence with and without PrEP (4) over 15 years among French
high-risk MSM.

This reservoir effect is so important that, if for any reason, there is the decision to
stop PrEP treatment for this MSM group, the rise in new infected individuals would be
inevitable, as shown in Figure 9.

Figure 8. Plot of the R0 as a function of ψ.

Figure 9. Plot of the susceptibles and infected if PrEP were stopped in 15 years. We considered that
all the protected individuals become susceptibles again.

6. Conclusions and Discussion

The aim of this work was to propose a brand-new model for prescribing PrEP for
3 months, with the choice to continue treatment or to stop it at any time after this period.
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This choice changes many things in the new modeling approach by introducing difference
equations with delay and, thus, the possibility of describing the effect of inertia and the
reservoir of protected individuals, not only analytically, but also numerically. This approach
could also be generalized to other epidemiological models describing the effect of vaccine
or booster doses for improved efficacy of protection.

Furthermore, the double insights of the MSM general and high-risk populations
seemed very important to us, especially to depict the effect of PrEP treatment on the disease
incidence of the disease and the French health insurance policy to target the high-risk
subgroup. With our model and simulations, it appeared that these strategies are much
more effective than random targeting of any MSM individual.

Our future work, in production, will take into account that the exponential growth of
susceptibles is not realistic for a longer period of time, so it would be better to model it as a
logistic growth and then numerically simulated on a longer period of time.

The data we worked on were from 2016 to 2019. It would be interesting to analyze
the effect of the SARS-CoV-2 lockdown effect on the incidence and PrEP users. It would
also be informative to analyze the booster effect of the non lockdown period (mid-2021
and after). For this purpose, it is necessary to wait a few more years to collect a sufficient
amount of data.

A future model should also consider θ time dependent. Indeed, depending on certain
periods (a lockdown, for example, or a seasonal effect), the number of PrEP users willing
to take the treatment at the end of their 3-month prescription may vary over time. Some
users may also take it for a short period of time (e.g., 2 years on average) and discontinue
treatment after choosing a long-term closed relationship.

The addition of a compartment of the infected population under tritherapy should also
be more realistic. Indeed, with tritherapy, HIV individuals can no longer be infectious and
can be removed from the I compartment. The estimate of β would then be more accurate
and reflect a more realistic situation.

Finally, it would be interesting to add the cost of treatment and the cost-efficient
strategy with the threshold of PrEP users in the compartment for optimal disease control
and, eventually, its disappearance. For this purpose, our next goal is to compare data and
policies across multiple countries (some with full financial support for treatment, some
with partial support, and some with no support).
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Abstract: In this article, we present new criteria for testing the oscillation of solutions of higher-order
neutral delay differential equation. By deriving new monotonic properties of a class of the positive
solutions of the studied equation, we establish better criteria for oscillation. Furthermore, we improve
these properties by giving them an iterative character, allowing us to apply the criteria more than
once. The results obtained in this paper are characterized by the fact that they do not require the
existence of unknown functions and do not need the commutation condition to composition of the
delay functions, which are necessary conditions for the previous related results.

Keywords: neutral differential equations; higher-order; oscillation theory; monotonic properties;
noncanonical case
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1. Introduction

Delay differential equations (DDE) are differential equations (DE) that take into ac-
count the effect of different times. Therefore, they are a better way to model natural
phenomena in engineering and physical problems. It is easy to note the recent increase in
research into the qualitative theory of DDEs. This is not only due to their practical impor-
tance, but also because they are rich in analytical problems and interesting open issues.

One of the most important branches of qualitative theory is oscillation theory, which
studies the asymptotic and oscillatory behavior of solutions of DEs. Finding adequate
conditions to guarantee that all DE solutions oscillate is one of the main objectives of
oscillation theory. Ladas et al. [1] is one of the earliest monographs addressing oscillation
theory, including the findings up until 1984. The main objective of this monograph is to
investigate the deviating arguments on the oscillation of solutions; neutral delay equations
are not discussed in this monograph. The monograph by Gyori and Ladas [2], which made
significant contributions to the creation of linearized oscillation theory and the relationship
between the oscillation of all solutions and the distribution of the roots of characteristic
equations, is one of the key works in the theory of oscillation. Additional topics that are
crucial to the theory of oscillation are covered in [3], including determining the conditions
for the existence of solutions with particular asymptotic properties and calculating the
separation between zeros of oscillatory solutions. The monographs [4–9] covered and
summarized many of the results known in the literature up to the past ten years for further
results, approaches, and references.

In addition to the theoretical importance and many interesting analytical problems,
delay differential equations have many vital applications in engineering and physics, as
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they appear when modeling many phenomena that are fundamentally time dependent.
For example, we find that such equations appear in the modeling of electrical networks
that contain lossless transmission lines (such as high-speed computers). Understanding
the qualitative properties and behavior of equation solutions greatly helps in studying and
developing the studied models.

It is easy to notice the research movement that aims to improve and develop the criteria
for oscillation of solutions of DDEs, especially of the second-order, which is led by the Slo-
vakian school; see, for example, the papers of Baculíková, Džurina and Jadlovská [10–13].

Mostly, we find that the study of the oscillation of solutions of DDEs of different orders
adopts one of two approaches, either substituting Riccati or comparing with equations of
lower orders, often first-order. In 1999, Koplatadze et al. [14], with a different approach
than the traditional one, studied the asymptotic and oscillatory behavior of solutions to
the DE

dnx
dun + q · [x ◦ g] = 0, (1)

where u > 0, n ≥ 2, and [x ◦ g](u) = x(g(u)). They considered the even- and odd-order of
this equation. One of their results was to ensure that solutions of DDE (1) oscillate under
the conditions g(u) ≤ u, g′(u) ≥ 0, and

lim sup
u→∞

[
g(u)

∫ ∞

u
gn−2(υ)q(υ)dυ +

∫ u

g(u)
gn−1(υ)q(υ)dυ

+
1

g(u)

∫ g(u)

0
υgn−1(υ)q(υ)dυ

]
> (n − 1)!.

Before and after that, many researchers also verified the oscillation of the higher order DDEs
solutions in the canonical case by using traditional methods; see, for example, [15–20].

In the non-canonical case, the oscillation conditions for solutions of the DDE

d
du

(
a ·

(
dn−1x
dun−1

)α
)
+ q · [ f ◦ x ◦ g] = 0 (2)

were established by Baculíková et al. [21] and Moaaz et al. [22] by using the comparison
technique. Using the Riccati substitution, Zhang et al. [23] and Moaaz and Muhib [24]
studied oscillation of the DDE

d
du

(
a ·

(
dn−1x
dun−1

)α
)
+ q ·

[
xβ ◦ g

]
= 0.

The results of the second-order equation were most recently expanded to the even-order
equations in the non-canonical case by Moaaz et al. [25]. In order to develop iteratively new
oscillation criteria, they developed an approach that involved obtaining new monotonic
properties for positive decreasing solutions.

For the neutral equations, which the higher derivative appears on the solution with
and without delay, Li and Rogovchenko [26] related oscillation of solutions of the DDE

d
du

(
a ·

(
dn−1

dun−1 (x + p · [x ◦ h])
)α

)
+ q ·

[
xβ ◦ g

]
= 0 (3)

to three equations of the first-order by using comparison techniques. In [27], a criterion
for ruling out the existence of so-called Kneser solutions to DDE (3) was developed. The
results in [27] are more accurate and effective than those in [26] since they do not rely on
unknown functions. Very recently, Elabbasy et al. [28] studied the asymptotic behavior
of the solutions of the DDE (3). Let us review the following theorem, which gives the
conditions ensuring that non-oscillatory solutions of (3) tend to zero.
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On the other hand, for neutral equations of the second order, the study of oscilla-
tion of these equations has been developed with many improved techniques; see, for
example, [29–31].

In this article, we consider the neutral DDE of the form

d
du

(
a · dn−1

dun−1 (x + p · [x ◦ h])
)
+ q · [F ◦ x ◦ g] = 0, (4)

where u ≥ u0, n ≥ 4 is an even natural number. We also suppose the following:

(H1) a, p, q ∈ C([u0, ∞), [0, ∞)), a(u) > 0, p(u) ≤ E0(u)/E0(h(u)) and En−2(u0) < ∞,
where

E0(u) :=
∫ ∞

u
a−1(υ)dυ, and Ek(u) :=

∫ ∞

u
Ek−1(υ)dυ,

for k = 1, 2, . . . , n − 2.
(H2) h, g ∈ C([u0, ∞),R), h(u) ≤ u, g(u) ≤ u, g′(u) > 0, limu→∞ h(u) = ∞ and

limu→∞ g(u) = ∞.
(H3) F ∈ C(R,R), F′(x) ≥ 0, xF(x) > 0 for x �= 0, and F(xy) ≥ F(x)F(y) for xy > 0.

First, we define the corresponding function of solution x as ω := x + p · [x ◦ h]. By a
solution of (4), we mean a function x ∈ Cn−1([ux, ∞),R), for ux ≥ u0, which a · ω(n−1) ∈
C1([ux, ∞),R) and x satisfies (4) for all ux ≥ u0. We consider only those solutions of (4)
that do not eventually vanish. A solution of DDE (4) is called oscillatory if it has arbitrarily
large zeros; otherwise, it is said to be nonoscillatory. DDE (4) is called oscillatory if all its
solutions are oscillatory.

The aim of the study is to provide new conditions for determining the oscillation
parameters of all solutions of Equation (4) in the non-canonical case. We also aim to
develop the oscillation theorems of higher-order neutral delay differential equations by
deriving new oscillation parameters characterized by an iterative nature. The method
employed is an extension of the method Koplatadze et al. [14] and, later, by Baculková [10].

2. Preliminary Lemmas

Notation 1. The class of all eventually positive solutions of DDE (4) is denoted by the symbol Ps.

Notation 2. To facilitate the presentation of the results, we define the function Q as

Q := q ·
[

F ◦
(

1 − [p ◦ g] · [En−2 ◦ h ◦ g]
[En−2 ◦ g]

)]
.

Lemma 1 (Lemma 3, [32]). Suppose that x ∈ Ps. Then,

d
du

(
a · dn−1

dun−1 ω

)
≤ 0,

eventually. Moreover, one of the following conditions is satisfied eventually:
(D1) ω, ω′ and ω(n−1) are positive, and ω(n) is negative;
(D2) ω, ω′ and ω(n−2) are positive, and ω(n−1) is negative;
(D3) (−1)mω(m) are positive, for m = 0, 1, . . . , n − 1.

Lemma 2. Suppose that x ∈ Ps and ω satisfies case (D3) in Lemma 1. Then, eventually,

(−1)s+1 ds

dus ω ≤
[

a · dn−1

dun−1 ω

]
· En−s−2, (5)

for s = 0, 1, . . . , n − 2.
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Proof. Since
(

a · ω(n−1)
)′ ≤ 0, ω(n−1) ≤ 0 and ω(n−2) > 0 for all u ≥ u1, where u1 ≥ u0,

we conclude that

ω(n−2)(u) ≥ −
∫ ∞

u

[
a(υ)ω(n−1)(υ)

]
a−1(υ)dυ ≥ −a(u)ω(n−1)(u)E0(u).

Integrating this inequality n − 2 times from u to ∞, we obtain

ω(n−3)(u) ≤
∫ ∞

u

[
a(υ)ω(n−1)(υ)

]
E0(υ)dυ

≤ a(u)ω(n−1)(u)
∫ ∞

u
E0(υ)dυ

= a(u)ω(n−1)(u)E1(u),

and so on until we get

(−1)s+1ω(s) ≤
[

a · ω(n−1)
]
· En−s−2,

for s = 0, 1, . . . , n − 2. The proof is complete.

Lemma 3. Suppose that x ∈ Ps and ω satisfies case (D3) in Lemma 1. Then,

(−1)s d
du

(
1

En−s−2
· ds

dus ω

)
≥ 0, (6)

for s = 0, 1, . . . , n − 2.

Proof. From Lemma 2, we have that (5) holds. Using (5) with s = n − 2, we find ω(n−2) ≥
−
[

a · ω(n−1)
]
· E0. Thus,

d
du

(
1
E0

· ω(n−2)
)
=

1
E2

0

[
E0 · ω(n−1) + a−1 · ω(n−2)

]
≥ 0.

Furthermore, we find

−ω(n−3)(u) ≥
∫ ∞

u

[
1

E0(υ)
ω(n−2)(υ)

]
E0(υ)dυ ≥ 1

E0(u)
ω(n−2)(u)E1(u),

and so, −E0 · ω(n−3) ≥ E1 · ω(n−2). This implies

d
du

(
1
E1

· ω(n−3)
)
=

1
E2

1

[
E1 · ω(n−2) + E0 · ω(n−3)

]
≤ 0.

Proceeding in this manner, we arrive at

d
du

(
1

En−2
· ω

)
≥ 0.

The proof is complete.

Lemma 4. Suppose that x ∈ Ps and ω satisfies case (D3) in Lemma 1. Then,

x ≥
(

1 − p · [En−2 ◦ h]
En−2

)
· ω,

and
d

du

(
a · dn−1

dun−1 ω

)
+Q · [F ◦ ω ◦ g] ≤ 0. (7)

161



Mathematics 2023, 11, 924

Proof. From Lemma 3, we have that (6) holds. Using (6) with s = 0, we obtain

[x ◦ h] ≤ [ω ◦ h] ≤ [En−2 ◦ h]
En−2

· ω.

This implies

x ≥
(

1 − p · [ω ◦ h]
ω

)
· ω

≥
(

1 − p · [En−2 ◦ h]
En−2

)
· ω.

Thus, from (4) and (H3), we get

d
du

(
a · dn−1

dun−1 ω

)
+ q ·

[
F ◦

(
1 − [p ◦ g] · [En−2 ◦ h ◦ g]

[En−2 ◦ g]

)]
· [F ◦ ω ◦ g] ≤ 0,

or
d

du

(
a · dn−1

dun−1 ω

)
+Q · [F ◦ ω ◦ g] ≤ 0.

The proof is complete.

Lemma 5. Suppose that x ∈ Ps and ω satisfies case (D3) in Lemma 1. If there is a constant α > 0
such that, eventually,

Q · E2
n−2 ≥ αEn−3, (8)

then ω converges to zero as u → ∞.

Proof. Since ω is positive and decreasing (from case (D3)), we have that ω(u) → L as
u → ∞, where L ≥ 0.

Suppose that L > 0. Then, there is u1 ≥ u0 such that [ω ◦ g] ≥ L for u ≥ u1. Hence,
from Lemma 4, we get

d
du

(
a(u)

dn−1

dun−1 ω(u)
)
≤ −Q(u)F(L).

Integrating this inequality from u1 to u and using (8), we find

a(u)ω(n−1)(u) ≤ a(u1)ω
(n−1)(u1)− F(L)

∫ u

u1

Q(υ)dυ

≤ −αF(L)
∫ u

u1

En−3(υ)

E2
n−2(υ)

dυ

= −αF(L)
(

1
En−2(u)

− 1
En−2(u1)

)
. (9)

We note that En−2(u) → 0 as u → ∞. Then, for all ε ∈ (0, 1), we have that E−1
n−2(u) −

E−1
n−2(u1) ≥ εE−1

n−2(u), eventually. Therefore, (9) becomes

a · ω(n−1) ≤ −εαF(L)
1

En−2
. (10)

From Lemma 2, we have that (5) holds. Combining (5) at s = 1 and (10), we conclude that

ω′

En−3
≤ a · ω(n−1) ≤ −εαF(L)

1
En−2

,
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or
ω′ ≤ −εαF(L)

En−3

En−2
.

Integrating this inequality from u1 to u, we find

ω(u) ≤ ω(u1)− εαF(L) ln
En−2(u1)

En−2(u)
.

Thus, ω(u) → −∞ as u → ∞, a contradiction. Then, ω(u) → 0 as u → ∞. The proof is
complete.

3. Oscillation Criteria

In this section, we create a criterion that ensures that solutions to Equation (4) oscillate.
The next theorem is a restatement of Theorem 2.1 in [28], when α = β.

Theorem 1 ([28]). Assume that∫ ∞

u0

(∫ ∞

u
(μ − u)n−3

(
1

a(μ)

∫ μ

u1

q(υ)dυ

)
dv

)
du = ∞

and

lim sup
u→∞

∫ u

u0

(
E0(υ)q(υ)(1 − p(g(υ)))

(
η0gn−2(υ)

(n − 2)!

)
− 1

4a(υ)E0(υ)

)
dυ = ∞, (11)

for some constant η0 ∈ (0, 1). If the DDE

d
du

ψ + q · η1(1 − [p ◦ g]) · gn−1(u)
(n − 1)! [a ◦ g]]

· [ψ ◦ g] = 0 (12)

is oscillatory for some constant η1 ∈ (0, 1), then every solution of (3), with α = β, is either
oscillatory or converges to zero as u → ∞.

Lemma 6. Assume that limx→0
x

F(x) = K < ∞, and (8) holds. If

lim sup
u→∞

[
En−2(g(u))

∫ g(u)

u0

Q(υ)dυ +
∫ u

g(u)
En−2(υ)Q(υ)dυ

+F
(
E−1

n−2(g(u))
) ∫ ∞

u
En−2(υ)Q(υ)F(En−2(g(υ)))dυ

]
> K, (13)

then ω satisfies case (D2) in Lemma 1.

Proof. Assume the contrary that ω satisfies case (D1) or (D3).
Assume first that ω satisfies case (D3) for u ≥ u1 ≥ u0. From Lemma 4, we obtain

that (7) holds. Integrating (7) from u1 to u, we find

−a(u)ω(n−1)(u) ≥ −a(u1)ω
(n−1)(u1) +

∫ u

u1

Q(υ)F(ω(g(υ)))dυ

≥
∫ u

u1

Q(υ)F(ω(g(υ)))dυ. (14)

Next, it follows from Lemma 2 that (5) holds. From (5) with s = 0, we note that the function

ω +

(
a · dn−1

dun−1 ω

)
· En−2
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is positive for u ≥ u1. Then, from (5) with s = 1,

d
du

(
ω + a · ω(n−1) · En−2

)
= ω′ − a · ω(n−1) · En−3 +

(
a · ω(n−1)

)′ · En−2

≤
(

a · ω(n−1)
)′ · En−2,

which, with (7), gives

d
du

(
ω + a · ω(n−1) · En−2

)
≤ −En−2 · Q · [F ◦ ω ◦ g] ≤ 0.

Integrating this inequality from u to ∞, we obtain

ω(u) + a(u)ω(n−1)(u)En−2(u) ≥
∫ ∞

u
En−2(υ)Q(υ)F(ω(g(υ)))dυ. (15)

Combining (14) and (15), we find

ω(u) ≥ −a(u)ω(n−1)(u)En−2(u) +
∫ ∞

u
En−2(υ)Q(υ)F(ω(g(υ)))dυ

≥ En−2(u)
∫ u

u1

Q(υ)F(ω(g(υ)))dυ +
∫ ∞

u
En−2(υ)Q(υ)F(ω(g(υ)))dυ,

and hence,

ω(g(u)) ≥ En−2(g(u))
∫ g(u)

u1

Q(υ)F(ω(g(υ)))dυ +
∫ u

g(u)
En−2(υ)Q(υ)F(ω(g(υ)))dυ

+
∫ ∞

u
En−2(υ)Q(υ)F(ω(g(υ)))dυ. (16)

Using Lemma 3, we obtain that ω/En−2 is increasing, and so

F(ω(g(υ))) ≥ F
(
E−1

n−2(g(u))
)

F(En−2(g(υ)))F(ω(g(u))), for u ≤ υ. (17)

Thus, (16) reduces to

ω(g(u))
F(ω(g(u)))

≥ En−2(g(u))
∫ g(u)

u1

Q(υ)dυ +
∫ u

g(u)
En−2(υ)Q(υ)dυ

+F
(
E−1

n−2(g(u))
) ∫ ∞

u
En−2(υ)Q(υ)F(En−2(g(υ)))dυ, (18)

which contradicts (13).
Suppose that ω satisfies case (D1) for u ≥ u1 ≥ u0. From (13), we can demonstrate

that ∫ ∞

u1

En−2(υ)Q(υ)dυ = ∞,

by following the same procedure as in the proof of Theorem 1 in [10]. Further, it follows
from (H1) that ∫ ∞

u1

Q(υ)dυ = ∞.
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Since ω is positive and increasing, we get that x ≥ (1 − p)ω, and there is u2 ≥ u1 with
ω(g(u)) ≥ M for u ≥ u2. Integrating (4) from u1 to u, we find

a(u1)ω
(n−1)(u1) ≥

∫ ∞

u1

q(υ)F(x(g(υ)))dυ

≥
∫ ∞

u1

q(υ)F(1 − p(g(υ)))F(ω(g(υ)))dυ

≥ F(M)
∫ ∞

u1

q(υ)F(1 − p(g(υ)))dυ. (19)

From the fact that [En−2◦h]
En−2

≥ 1, we find

q(u)F(1 − p(g(u))) ≥ Q(u),

which with (19) gives

a(u1)ω
(n−1)(u1) ≥ F(M)

∫ ∞

u1

Q(υ)dυ,

a contradiction. Therefore, ω satisfies case (D2), eventually. The proof is complete.

Theorem 2. Assume that F(x) = x. If conditions (11) and (13) are satisfied, then Equation (4)
becomes oscillatory.

Proof. Assuming that there is a non-oscillatory solution to (4) necessarily means that there
is a solution x of (4), in which x ∈ Ps. From Lemma 1, the derivatives of the function ω
have three possibilities. It follows from Lemma 6 that ω satisfies case (D2), eventually.
Following the same approach in Theorem 1, we can prove that if ω fulfills case (D2), then
we get a conflict with condition (11). The proof is complete.

In addition to the above, we also present the following theorem, which provides a
criterion for the oscillation of (4) based on the comparison principle. So, we need to review
the following lemma.

Lemma 7 (Lemma 2.2.3, [33]). Let � ∈ Cs([u0, ∞)), �(u) > 0, limu→∞ �(u) �= 0, �(s)(u)
be of constant sign eventually, and �(s) �= 0 on a subray of [u0, ∞). If �(s−1)(u)�(s)(u) < 0 for
u ≥ u1, then there is a uμ ≥ u1 such that

�(u) ≥ μ

(s − 1)!
us−1

∣∣∣�(s−1)(u)
∣∣∣,

for 0 < μ < 1 and u ∈ [
uμ, ∞

)
.

Theorem 3. Assume that limx→0
x

F(x) = K < ∞, and let (8) and (13) hold. The oscillation of
the DDE

ψ′(u) + F(ψ(g(u)))
1

a(u)

∫ u

u1

q(υ)F(1 − p(g(υ)))F
(

μgn−2(υ)

(n − 2)!

)
dυ = 0, (20)

for some μ ∈ (0, 1), ensures the oscillation of Equation (4).

Proof. Assuming that there is a non-oscillatory solution to (4) necessarily means that there
is a solution x of (4), in which x ∈ Ps. From Lemma 1, the derivatives of the function ω
have three possibilities. It follows from Lemma 6 that ω satisfies case (D2), eventually.
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Using Lemma 7 with � = ω and s = n − 1, we obtain

ω(u) ≥ μ

(n − 2)!
un−2ω(n−2)(u), (21)

eventually. Since ω is positive and increasing, we get that x ≥ (1 − p)ω, and so, (4) becomes

d
du

(
a · dn−1

dun−1 ω

)
+ q · [F ◦ (1 − [p ◦ g])] · [F ◦ ω ◦ g] ≤ 0,

which, with (21), yields

d
du

(
a · dn−1

dun−1 ω

)
+ q · [F ◦ (1 − [p ◦ g])] ·

[
F ◦ μgn−2

(n − 2)!

]
·
[

F ◦ ω(n−2) ◦ g
]
≤ 0.

Integrating this inequality from u1 to u, we find

a(u)ω(n−1)(u) ≤ −
∫ u

u1

q(υ)F(1 − p(g(υ)))F
(

μgn−2(υ)

(n − 2)!

)
F
(

ω(n−2)(g(υ))
)

dυ

≤ −F
(

ω(n−2)(g(u))
) ∫ u

u1

q(υ)F(1 − p(g(υ)))F
(

μgn−2(υ)

(n − 2)!

)
dυ.

If we set ψ = ω(n−2) > 0, then we have that ψ is a positive solution of

ψ′(u) + F(ψ(g(u)))
1

a(u)

∫ u

u1

q(υ)F(1 − p(g(υ)))F
(

μgn−2(υ)

(n − 2)!

)
dυ ≤ 0.

From Theorem 1 in [34], Equation (20) also has a positive solution, which is a contradiction.
The proof is complete.

Corollary 1. Assume that limx→0
x

F(x) = K < ∞, F(x)/x ≥ 1 for |x| ∈ (0, 1], and let (8)
and (13) hold. The fulfillment of the following condition ensures the oscillation of Equation (4):

lim inf
u→∞

∫ u

g(u)

1
a(s)

(∫ s

u1

q(υ)F(1 − p(g(υ)))F
(

sgn−2(υ)

(n − 2)!

)
dυ

)
ds >

1
e

. (22)

Proof. From Theorem 2.1.1 in [1], criterion (22) ensures the oscillation of Equation (20).

4. Criterion of an Iterative Nature

In this section, we create a criterion of an iterative nature that ensures that the solutions
to Equation (4) oscillate, when F(x) = x.

Lemma 8. Suppose that x ∈ Ps and ω satisfies case (D3) in Lemma 1. If (8) holds, then the
function ω/Eα

n−2 is decreasing and also converges to zero as u → ∞.

Proof. From Lemma 4, we have that (7) holds for u ≥ u1 ≥ u0. Integrating (7) from u1 to u
and using (8), we get

a(u)ω(n−1)(u) ≤ a(u1)ω
(n−1)(u1)−

∫ u

u1

Q(υ)ω(g(υ))dυ

≤ a(u1)ω
(n−1)(u1)− αω(u)

∫ u

u1

En−3(υ)

E2
n−2(υ)

dυ

= a(u1)ω
(n−1)(u1)− αω(u)

(
1

En−2(u)
− 1

En−2(u1)

)
. (23)
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It follows from Lemma 5 that ω(u) → 0 as u → ∞. Thus, there is a u2 ≥ u1 such that
a(u1)ω

(n−1)(u1) +
αω(u)

En−2(u1)
≤ 0 for u ≥ u2. Hence, (23) becomes

a(u)ω(n−1)(u) ≤ − α

En−2(u)
ω(u). (24)

Using Lemma 2 with s = 1, we get ω′ ≤ a · ω(n−1) · En−3, which with (24) yields

ω′(u)
En−3(u)

≤ a(u)ω(n−1)(u) ≤ − α

En−2(u)
ω(u). (25)

Hence,
d

du

(
ω

Eα
n−2

)
=

1
Eα+1

n−2

[En−2ω′ + αEn−3ω
] ≤ 0.

Now, we have that ω/Eα
n−2 is positive and decreasing. Then, ω/Eα

n−2 → � as u → ∞,
where � ≥ 0.

Suppose that � > 0. Hence,
ω(u)

Eα
n−2(u)

≥ �. (26)

Next, we define

φ :=
a · ω(n−1) · En−2 + ω

Eα
n−2

,

and so

φ′ =

(
a · ω(n−1)

)′

Eα−1
n−2

− 1
Eα

n−2

(
a · ω(n−1) · En−3 − ω′

)
+ α

a · ω(n−1) · En−3

Eα
n−2

+ α
En−3

Eα+1
n−2

· ω

≤ − 1
Eα−1

n−2

· Q · [ω ◦ g] + α
a · ω(n−1) · En−3

Eα
n−2

+ α
En−3

Eα+1
n−2

· ω.

Thus, from (8), we get

φ′ ≤ −α
En−3

Eα+1
n−2

· [ω ◦ g] + α
a · ω(n−1) · En−3

Eα
n−2

+ α
En−3

Eα+1
n−2

· ω

≤ α
a · ω(n−1) · En−3

Eα
n−2

.

It follows from (25) and (26) that

φ′ ≤ −α2 En−3

Eα+1
n−2

· ω(u)

≤ −�α2 En−3

En−2
< 0.

Integrating this inequality from u1 to u, we find

φ(u1) ≥ �α2 ln
En−2(u1)

En−2(u)
,

which leads to a contradiction. Then, � = 0. The proof is complete.
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Lemma 9. Assume that (8) holds. If

lim sup
u→∞

[
En−2(g(u))F

(E−α
n−2(g(u))

) ∫ g(u)

u1

Q(υ)F
(Eα

n−2(g(υ))
)
dυ

+ F
(E−α

n−2(g(u))
) ∫ u

g(u)
En−2(υ)Q(υ)F

(Eα
n−2(g(υ))

)
dυ

+F
(
E−1

n−2(g(u))
) ∫ ∞

u
En−2(υ)Q(υ)F(En−2(g(υ)))dυ

]
> K, (27)

then ω satisfies case (D2) in Lemma 1.

Proof. Proceeding as in the proof of Lemma 6, we get that (16) and (17) hold. Using
Lemma 8, we get

ω(g(υ)) ≥ Eα
n−2(g(υ))

Eα
n−2(g(u))

ω(g(u)) for υ ≤ u. (28)

From (17) and (28), (16) becomes

ω(g(u))
F(ω(g(u)))

≥ En−2(g(u))F
(E−α

n−2(g(u))
) ∫ g(u)

u1

Q(υ)F
(Eα

n−2(g(υ))
)
dυ

+F
(E−α

n−2(g(u))
) ∫ u

g(u)
En−2(υ)Q(υ)F

(Eα
n−2(g(υ))

)
dυ

+F
(
E−1

n−2(g(u))
) ∫ ∞

u
En−2(υ)Q(υ)F(En−2(g(υ)))dυ,

which contradicts (27).

Theorem 4. Assume that (8), (22) and (27) hold. Then, Equation (4) is oscillatory.

It is also possible to continue to improve the monotonic property of the function
ω/En−2 and then use it in the oscillation criteria.

Notation 3. Since En−2(u) is decreasing, there is a ε > 1 such that

[En−2 ◦ g]
En−2

≥ ε.

Let α0 ∈ (0, 1), we define α0 = α

αk+1 := α0
εαk

1 − αk
,

for k = 0, 1, . . . .

Lemma 10. Suppose that x ∈ Ps and ω satisfies case (D3) in Lemma 1. Suppose also that there
is m ∈ N such that αk ∈ (0, 1) and αk−1 < αk for k = 0, 1, . . . , m. If (8) holds, then the function
ω/Em

n−2 is decreasing, and also converges to zero as u → ∞.

Proof. From Lemma 8, we have that ω/Eα
n−2 is decreasing and also converges to zero as

u → ∞. We will prove the required when m = 1.
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From Lemma 4, we have that (7) holds for u ≥ u1 ≥ u0. Integrating (7) from u1 to u
and using the fact that ω/Eα

n−2 is decreasing, we get

a(u)ω(n−1)(u) ≤ a(u1)ω
(n−1)(u1)−

∫ u

u1

Q(υ)ω(g(υ))dυ

≤ a(u1)ω
(n−1)(u1)−

∫ u

u1

Q(υ)
Eα

n−2(g(υ))
Eα

n−2(υ)
ω(υ)dυ

≤ a(u1)ω
(n−1)(u1)− ω(u)

Eα
n−2(u)

∫ u

u1

Q(υ)Eα
n−2(g(υ))dυ

≤ a(u1)ω
(n−1)(u1)− ω(u)

Eα
n−2(u)

∫ u

u1

αEn−3(υ)

E2−α
n−2 (υ)

Eα
n−2(g(υ))
Eα

n−2(υ)
dυ

≤ a(u1)ω
(n−1)(u1)− αεα ω(u)

Eα
n−2(u)

∫ u

u1

En−3(υ)

E2−α
n−2 (υ)

dυ

≤ a(u1)ω
(n−1)(u1)− αεα

1 − α

ω(u)
Eα

n−2(u)

(
1

E1−α
n−2 (u)

− 1
E1−α

n−2 (u1)

)
. (29)

It follows from Lemma 5 that ω(u)
Eα

n−2(u)
→ 0 as u → ∞. Hence, (29) becomes

a(u)ω(n−1)(u) ≤ − αεα

1 − α

ω(u)
En−2(u)

.

The remainder of the proof has not been considered because it is identical to the proof of
Lemma 8.

Theorem 5. Assume that (8) and (22) hold. If there is m ∈ N such that αk ∈ (0, 1) and αk−1 < αk
for k = 0, 1, . . . , m, and

lim sup
u→∞

[
En−2(g(u))F

(
E−αm

n−2 (g(u))
) ∫ g(u)

u1

Q(υ)F
(Eαm

n−2(g(υ))
)
dυ

+ F
(
E−αm

n−2 (g(u))
) ∫ u

g(u)
En−2(υ)Q(υ)F

(Eαm
n−2(g(υ))

)
dυ

+F
(
E−1

n−2(g(u))
) ∫ ∞

u
En−2(υ)Q(υ)F(En−2(g(υ)))dυ

]
> K,

then Equation (4) is oscillatory.

5. Conclusions

Our aim in this article was to extend the approach taken in [14] to neutral equations
and also to the non-canonical case. The study of the non-canonical case contains more
analytical difficulties than the canonical case due to the possibility of the existence of
positive decreasing solutions.

We deduced some asymptotic and monotonic properties of the positive solutions
whose corresponding function is in class Ps. Then, we created new oscillation parame-
ters depending on the inferred characteristics. In addition, we iteratively derived these
properties, so that it allows them to be applied more than once in the case of failure at the
beginning. The results obtained in this article are characterized by the fact that they do
not require the existence of unknown functions, unlike the results in [26] that require this.
In addition, our results do not need the conditions h ◦ g = g ◦ h and h is nondecreasing,
which are necessary conditions for the results in [28].

Extending our results in this study to the nonlinear case of the investigated equation
would be very interesting. This is due to many analytical difficulties that must be addressed
to obtain improved monotonic properties in the nonlinear case.
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Abstract: We consider the dynamics of a logistic equation with delays and modified nonlinearity,
the role of which is to bound the values of solutions from above. First, the local dynamics in the
neighborhood of the equilibrium state are studied using standard bifurcation methods. Most of the
paper is devoted to the study of nonlocal dynamics for sufficiently large values of the ‘Malthusian’
coefficient. In this case, the initial equation is singularly perturbed. The research technique is based
on the selection of special sets in the phase space and further study of the asymptotics of all solutions
from these sets. We demonstrate that, for sufficiently large values of the Malthusian coefficient, a
‘stepping’ of periodic solutions is observed, and their asymptotics are constructed. In the case of
two delays, it is established that there is attractor in the phase space of the initial equation, whose
dynamics are described by special nonlinear finite-dimensional mapping.

Keywords: dynamics; delay; asymptotics; stability; Andronov–Hopf bifurcation; normal forms;
relaxation oscillations

MSC: 34K25; 34K18

1. Introduction

The logistic equation with delay is the name given to the equation

u̇ = λ[1 − u(t − T)]u. (1)

Being a natural extension of the classical logistic equation, it arises in many applied
problems, but most of all it is used in problems of mathematical ecology (see, for exam-
ple [1–15]). The value u describes the dynamics of changes in the number of specimens in
the population or density of an isolated biological population living in a homogeneous envi-
ronment. Therefore, it makes sense to consider only non-negative solutions of Equation (1).
We note that the solution of Equation (1) with a non-negative initial function ϕ(s) ∈ C[−T,0]
specified at some value t0 (i.e., u(t0 + s) = ϕ(s)) remains non-negative for all t > t0. The co-
efficient λ is called the Malthusian coefficient of linear growth and the parameter T > 0 is
called the delay time. It is associated with the age of animal units capable of procreation in
the corresponding population.

The dynamic properties of the solutions of Equation (1) are well understood. Under the

condition λT ≤ π

2
, the equilibrium state u0 ≡ 1 is asymptotically stable, while for λT >

π

2
it is unstable and the periodic solution U0(t, λ) is stable. Under the condition 0 < λT −
π

2
� 1, we obtain its asymptotics on the Andronov–Hopf bifurcation theory application

basis (see, for example [16–18]). It is shown in [7] that for sufficiently large λ the periodic
solution U0(t, λ) has a pronounced relaxation structure. There is a single wavelet of this
function on the segment of the period T0(λ) length. The duration of the wavelet is close to
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172



Mathematics 2023, 11, 1699

the value of T and the period T0(λ) is equal to (λT)−1 exp(λT(1 + o(1))). It is important
to note the asymptotic equalities.

max
t

U0(t, λ) = exp(λT(1 + o(1))), (2)

min
t

U0(t, λ) = exp(− exp(λT)(1 + o(1))). (3)

We also note results of [19,20], in which important results on the dynamics of lo-
gistic equations with delay and diffusion are obtained, [21], where a randomized non-
autonomous logistic equation is discussed, and Ref. [22], where interesting results were
obtained for an equation in which the delay itself is a function of u.

Due to the applied significance, it is of interest to study equations with various types
of nonlinearity. By virtue of biological meaning, solutions must remain positive. Similar to
this restriction, it is natural to require solutions to be bounded not only from below, but also
from above. In addition, unlimited asymptotic growth, as in the case of Equation (1), is
not always convenient, for example, for describing the dynamics of changes in the number
of species.

In this paper we study the dynamics of the new model—the logistic equation with
delay and modified nonlinearity

u̇ = λ[1 − u(t − T)]u(A − u), A > 1. (4)

The main difference between the solutions of Equation (4) and the solutions of Equation (1)
is that under the condition 0 ≤ ϕ(s) ≤ A the inequalities

0 ≤ u(t, ϕ) ≤ A

hold for the solution u(t, ϕ) of Equation (4) with the initial condition u(t0 + s) = ϕ(s) as
t > t0. Thus, the use of the factor (A − u) on the right-hand side of Equation (4) leads
to the restriction u(t, ϕ) ≤ A for the solutions of Equation (4). Therefore, the solutions of
Equation (4) (in contrast to the solutions of Equation (1)) do not take asymptotically large
values for large values of λ.

Model (4) is quite complex. At the moment, there are no analytical methods that
would allow for absolutely any values of the parameters λ, T, and A to obtain results
on the qualitative and quantitative behavior of all solutions of Equation (4) on the entire
positive semiaxis t ∈ [0,+∞). In addition, numerical methods are also not very effective
in the study of such models, since, firstly, it is impossible to enumerate all possible initial
conditions in order to draw a qualitative conclusion about the dynamics of the model,
and secondly, for some values of the model parameters, the solutions are very close will
approach zero (see Sections 3 and 4), so a relatively small error in the calculations can lead
to a completely wrong result.

Therefore, in the paper, the research is carried out by analytical (asymptotic) methods.
At present, the most effective among them are the methods of the theory of bifurcations
in the study in the neighbourhood of the equilibrium state and the methods of a large
parameter (for λ � 1) in the study of nonlocal processes. Large parameter methods are
based on the use of singular perturbation theory, but even in cases where the λ parameter
(Malthusian coefficient in model Equation (4)) is not large enough, nevertheless, conclusions
can be drawn about the trends in fluctuations with an increase in this parameter. In addition,
we point out that the relaxation nature of the oscillations obtained for model Equation (4) in
the case of sufficiently large values of parameter λ corresponds to ideas about the dynamic
behavior of population density dynamics in mathematical ecology [4,11].

The paper is organized as follows. In Section 2, the conditions for the parameter λ
are found using the methods of bifurcation analysis. Under them, the Andronov–Hopf
bifurcation occurs in Equation (4) and a cycle arises from the equilibrium state.
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The main content of Section 3 and all subsequent sections is devoted to the study of
the solutions of Equation (4) on the interval t ∈ [0,+∞) provided that the parameter λ is
sufficiently large:

λ � 1. (5)

In this case, the equation under consideration is singularly perturbed. After dividing
by the left-hand and right-hand parts of Equation (4) by λ, we obtain an equation with a
small parameter at the derivative:

λ−1u̇ = [1 − u(t − T)]u(A − u). (6)

However, the reduced equation

0 = [1 − u(t − T)]u(A − u)

does not describe the behavior of the Equation (6) solutions (except the simplest equilibrium
states) under the condition (5).

It is important to mention that from a computational point of view, this problem is
difficult, since the relaxation solution approaches A and 0 very closely, so even a small error
in the calculations will take us out of the class of solutions under consideration.

Therefore, a special analytical research method was developed. First, we briefly
describe it for the simplest case, for studying slowly oscillating solutions. Recall that slowly
oscillating solutions are those solutions for which the time distance between adjacent roots
of the equation u(t) = 1 is greater than the delay time. Consider Equation (6). Denote by
S ⊂ C[−T,0] the set of all such functions ϕ(s) ∈ S (s ∈ [−T, 0]) that satisfy the conditions
(see Figure 1).

ϕ(0) = 1; 0 ≤ ϕ(s) ≤ exp
(

λ

2
s
)

. (7)

Figure 1. The set S.

Denote by u(t, ϕ) a solution of (6) with initial condition ϕ(s):u(s, ϕ) = ϕ(s) (s ∈ [−T, 0]).
The method of steps will be used: for t ∈ [0, T], taking into account the initial function
ϕ(s), to determine u(t, ϕ) we obtain an ordinary differential equation of the first order. It
is easy to find the asymptotics of this solution as λ → ∞ on the indicated interval. Then
we consider u(t, ϕ) on the interval [T, 2T], on which we also obtain a first-order ordinary
differential equation, and find the asymptotics of the solutions. After that, we will carry
out the same actions on the segment [2T, 3T], then on the segment [3T, 4T], and so on.

In Section 3.1 we study the asymptotic behavior at λ → ∞ of all solutions u(t, ϕ) with
initial conditions from S. In particular, the asymptotics of the first two positive roots t1(ϕ)
and t2(ϕ) of the equation u(t, ϕ) = 1 will be found. The main conclusion is that after the
time interval t2(ϕ) the solution u(t, ϕ) will again fall on the set S:u(s + t2(ϕ), ϕ) ∈ S. This
gives reason to introduce the Π operator:

Π(ϕ(s)) = u(t2(ϕ) + s, ϕ)

and justify the inclusion ΠS ⊂ S. From this and the well-known results of functional anal-
ysis [23], we conclude that S has a fixed point ϕ0(s) of the operator Π: Π(ϕ0(s)) = ϕ0(s).
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Then the function u0(t) = u(t, ϕ0) is periodic with period t2(ϕ0). In Section 3.1, asymptotic
formulas for u0(t) will be given.

In Section 3.2 we investigate the asymptotic behavior of rapidly oscillating solutions.
As a set of initial functions, we consider the set S(τ1, τ2) depending on two parameters τ1
and τ2. It is shown schematically in Figure 3. In Section 3.2, a rigorous description of this set
is given and the asymptotic behavior of all solutions (6) with initial conditions from S(τ1, τ2)
is studied. Again, by t1(ϕ) and t2(ϕ) we denote the first and second positive roots of the
equation u(t, ϕ) = 1. We again introduce the operator Π: Π(ϕ(s)) = u(t2(ϕ) + s, ϕ) and
it will be shown that up to o(1) the inclusion Π(ϕ(s)) ∈ S(τ̄1, τ̄2), where τ̄1,2 are explicitly
expressed in terms of τ1,2. This gives grounds to take the function u(s + t2(ϕ), ϕ) as the
initial one and pass to the iteration process. It is possible to find a fixed point (τ0

1 , τ0
2 ) and

a function ϕ0(s) ∈ S(τ0
1 , τ0

2 ) such that the solution u0(t, ϕ0) will be periodic with period
t2(ϕ0). It is important to note that the rapidly oscillating periodic solutions found in this
way are unstable.

The results of Section 4 are more interesting. We consider equations with two delays

u̇ = λ[1 − αu(t − T)− (1 − α)u(t − h)]u(A − u), (8)

where α ∈ (0, 1) and h < T.
It is commonly supposed that the use of two (or more) delays allows one to take into

account the influence of the population age structure on the dynamics of population level
changes [24–27].

One succeeded to clearly describe the nonlocal dynamic properties of Equation (8)
under the condition (5). In contrast to the results of the Section 3, the relaxation step
solutions for (8) can be stable.

We note that for the simpler logistic equation with two delays

u̇ = λ[1 − αu(t − T)− (1 − α)u(t − h)]u (α ∈ (0, 1), h < T) (9)

the results were obtained in Refs. [7] as λ � 1. It follows from them that for sufficiently
large λ in (9) there is an orbitally stable periodic solution which is similar in appearance to
the solution of Equation (1) with the same initial conditions, and the asymptotic representa-
tion (2) holds for it.

2. Andronov–Hopf Bifurcations in Equations with One Delay

We shall fix the parameters λ0, A0 and T0 so that the following equality is fulfilled:

λ0(A0 − 1)T0 =
π

2
. (10)

Lemma 1. Suppose that in Equation (4)

λ(A − 1)T <
π

2
. (11)

Then the equilibrium state u0 ≡ 1 is asymptotically stable.

Proof. To prove this statement we linearize (4) on u0 and consider the characteristic quasi-
polynomial

μ = −λ(A − 1) exp(−μT). (12)

Under the condition (11) all its roots have negative real parts. From this, and from known
results (see Ref. [5]) on the stability in the first approximation, the proof of Lemma 1 follows.

Next we introduce a small positive parameter ε:

0 < ε � 1, (13)
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and assume that in Equation (4), for certain constant λ1, A1 and T1, the following relations
are fulfilled:

λ = λ0 + ελ1, A = A0 + εA1, T = T0 + εT1. (14)

We set

b =

(
1 +

π2

4

)−1[(
π

2
+ i

)
(λ1(A0 − 1) + λ0 A1) + λ2

0(A0 − 1)2T1

(
1 − i

π

2

)]
, (15)

d = −λ0

(
1 +

π2

4

)−1[
π

2
+ i +

3(A0 − 2)2

5(A0 − 1)

(
π

2
− 1 + i

(π

2
+ 1

))]
, (16)

ω = π(2T0)
−1, (17)

ξ0(τ) = ξ0 exp(iψτ), ψ = Im b + ξ2
0Im d,

ξ0 =

[(
π
2 (λ1(A0 − 1) + λ0 A1) + λ2

0(A0 − 1)2T1

)
λ−1

0

(
π
2 + 3(A0−2)2

5(A0−1)

(
π
2 − 1

))−1] 1
2

.
(18)

Theorem 1. Let conditions (13)–(15), (17), and (18) hold.
1. Let Re b < 0. Then all solutions of Equation (4) with initial conditions from a sufficiently

small (and independent of ε) neighbourhood of the equilibrium state u ≡ 1 tend to 1 as t → ∞.
2. Let

Re b > 0. (19)

Then for all sufficiently small ε Equation (4) has in the neighbourhood of the unit equilibrium
state a stable periodic solution u0(t, ε) for which the following asymptotic equality is fulfilled:

u0(t, ε) = 1 + ε1/2[ξ0(τ) exp(iωt) + ξ̄0(τ) exp(−iωt)] + O(ε),

where τ = εt.

Proof. Under the condition (10) the quasi-polynomial (12) has a pair of purely imaginary
roots μ1,2 = ±iω, where the value of ω is given in (17), and all its other roots have negative
real parts. Then, under the condition (14), and for all sufficiently small ε, Equation (4) in the
neighbourhood of u ≡ 1 has (see Refs. [16–18,28]) a two-dimensional stable local invariant
integral manifold, on which this equation can be written, to within higher-order terms,
in the form of a complex scalar equation—a normal form:

dξ

dτ
= Bξ(τ) + Dξ(τ)|ξ(τ)|2, (20)

where values B and D are to be determined.
In the case Re B �= 0 and Re D �= 0 normal form completely determines the behavior

of all solutions in a neighbourhood of u ≡ 1 (see Refs. [16–18,28]). The solutions of (20) are
connected with the solutions of (4) by the relation

u(t, ε) =1 + ε1/2[ξ(τ) exp(iωt) + ξ̄(τ) exp(−iωt)]+

+ εu2(t, τ) + ε3/2u3(t, τ) + . . . (21)

Here, τ = εt, the uj(t, τ) are periodic in t with period 2π/ω. Substituting (21) into
(4) and collecting coefficients of equal powers of ε, we successively find all the elements
appearing there. At ε1/2 we obtain true identity, and collecting coefficients of the first
power of ε and taking into account (10), (12), and (17), we find equation for determining
the function u2(t, τ):
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∂u2

∂t
= −λ0(A0 − 1)u2(t − T0, τ) + iλ0(A0 − 2)ξ2(τ) exp(2iωt)− iλ0(A0 − 2)ξ̄2(τ) exp(−2iωt).

Thus, taking into account that u2(t, τ) is periodic in t with period 2π/ω, we find that

u2(t, τ) =
(A0 − 2)(2 − i)

5(A0 − 1)
ξ2(τ) exp(2iωt) +

(A0 − 2)(2 + i)
5(A0 − 1)

ξ̄2(τ) exp(−2iωt).

Collecting coefficients of ε3/2 we obtain an equation for u3(t, τ):

∂u3

∂t
= −λ0(A0 − 1)u3(t − T0, τ) + B1 exp(iωt) + B̄1 exp(−iωt) + B3 exp(3iωt) + B̄3 exp(−3iωt), (22)

where B1 and B3 are complex values.
From the condition that Equation (22) be solvable in the class of functions periodic in t

with period 2π/ω (this condition is B1 = 0) we arrive at Equation (20) for the unknown
amplitude ξ(τ), in which B = b and D = d (coefficient b is defined in (15) and the coefficient
d is defined in (16)).

Multiplying both sides of Equation (20) by ξ̄(τ) and taking into account equalities
B = b and D = d we obtain a scalar real ordinary differential equation

1
2

ρ̇(τ) = Re bρ(τ) + Re dρ2(τ), (23)

where ρ(τ) = |ξ(τ)|2.
We note that Re d < 0.
That is why, if Re b < 0, all solutions of (23) tend to zero as t → +∞. Thus, all solutions

of (4) from the neighbourhood of u ≡ 1 tend to 1 as t → +∞. This completes the proof of
the first part of the Theorem.

Under the condition (19) Equation (20) with B = b and D = d has a stable periodic
solution ξ0(τ)=ξ0 exp(iψτ), where the values ξ0 and ψ are given in (18). Taking into
account here the asymptotic equality (21) we have completed the proof of the Theorem.

It is interesting to note that the bifurcation effect considered here can be realized for
fixed λ = λ0 and T = T0, i.e., for λ1 = T1 = 0, and only upon variation of the parameter A.

3. Step-like Solutions of the Logistic Equation with Delay and with a Restriction on
the Nonlinear Function

All statements below refer to the case of λ → +∞. For example, everywhere below o(1)
means that the function tends to zero as λ → +∞. Note that the phrase “for all sufficiently
large λ” means the existence of a value λ0 such that for all λ > λ0 the corresponding
assertion is true.

We separately consider questions about slowly and rapidly oscillating solutions of
Equation (4).

3.1. Asymptotic Behavior of Slowly Oscillating Solutions

We shall consider the asymptotic behavior of a slowly oscillating relaxation periodic
solution of Equation (4).

In (4) it is convenient to replace the time t → tT and to again denote the product λT
by λ. Then Equation (4) takes the form

u̇ = λ[1 − u(t − 1)]u(A − u). (24)

Let us introduce some notation.
By S we denote the set of all functions ϕ(s) ∈ C[−1,0] that satisfy the conditions (7).
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Let u(t, ϕ) be the solution of (24) with an initial condition ϕ(s) specified at t = 0, i.e.,
u(s, ϕ) = ϕ(s) for s ∈ [−1, 0]. We shall construct the asymptotics for λ → ∞ of all solutions
u(t, ϕ) with ϕ(s) ∈ S.

Theorem 2. For all sufficiently large λ Equation (24) has an asymptotically orbitally stable periodic
(with period T(λ)) solution u0(t, λ), for which u0(0, λ) = u0(t1(λ), λ) = u0(t2(λ), λ) = 1,
where tj(λ) are successive positive roots of the equation u0(t, λ) = 1, and

t1(λ) = 1 + (A − 1)−1 + o(1),

T(λ) = t2(λ) = A + 1 + (A − 1)−1 + o(1).

For every t from the intervals (0, t1(λ)) and (t1(λ), t2(λ)), respectively, the following equali-
ties are fulfilled:

u0(t, λ) =

{
A + o(1), t ∈ (0, t1(λ)),
o(1), t ∈ (t1(λ), t2(λ)).

Proof. We use the following formula for the solutions u(t, ϕ) of Equation (24):

u(t, ϕ) =Au(τ, ϕ) exp
(

λA
∫ t

τ

(
1 − u(s − 1, ϕ)

)
ds

)
·[

A − u(τ, ϕ) + u(τ, ϕ) exp
(

λA
∫ t

τ

(
1 − u(s − 1, ϕ)

)
ds

)]−1

, (25)

where t and τ are arbitrary values such that 0 < τ < t.
We shall formulate some simple statements:

Lemma 2. Let t ∈ (0, 1]. Then

u(t, ϕ) = A
[
1 + (A − 1) exp

(
− λA

(
1 + o(1)

)
t
)]−1

. (26)

The proof of (26) follows from (25) with τ = 0.
Setting τ = 1 in (25), we immediately arrive at the following statement:

Lemma 3. Let t ∈ (1, 1 + (A − 1)−1 + δ], where δ > 0 is some small but fixed value. Then

u(t, ϕ) = A
[

1 + (A − 1) exp
(

λA
[
(A − 1)

(
1 + o(1)

)
(t − 1)− 1

])]−1

. (27)

Below, we denote by t1(ϕ), t2(ϕ), . . . the first, second, . . . positive roots of the equation
u(t, ϕ) = 1.

From (27) we arrive at the conclusion that the value t1(ϕ) exists and

t1(ϕ) = 1 + (A − 1)−1 + o(1),

u(t, ϕ) = A + o(1) for every t ∈ (0, t1(ϕ)),

u(t, ϕ) = o(1) for every t ∈ (t1(ϕ), t1(ϕ) + 1).

The last equality is true, because formula (27) holds on the interval (t1(ϕ), t1(ϕ) + 1).
Then we construct asymptotics of solution on the interval t > t1(ϕ) + 1. We set

τ = t1(ϕ) and take into account that u(s − 1) = A + o(1) on the interval s ∈ (t1(ϕ),
t1(ϕ) + 1). We use equality u(s − 1) = o(1) for t1(ϕ) + 1 < s < t. It follows from
formula (25) that this equality holds for all t > t1(ϕ) + 1 while∫ t

t1(ϕ)

(
1 − u(s − 1, ϕ)

)
ds < 0.
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We obtain the following result:

Lemma 4. For t ∈ [2 + (A − 1)−1, A + 1 + (A − 1)−1 + δ], where δ > 0 is some small but
fixed value

u(t, ϕ) =A exp
(

λA
(

1 − A + t − (
2 + (A − 1)−1)+ o(1)

))
·[

A − 1 + exp
(

λA
(

1 − A + t − (
2 + (A − 1)−1 + o(1)

)))]−1

. (28)

From (28) the existence of t2(ϕ) and the asymptotic equalities

t2(ϕ) = A + 1 + (A − 1)−1 + o(1)

and
u(t, ϕ) = o(1) for t ∈ (t1(ϕ), t2(ϕ))

follow.
We introduce the translation along the trajectories operator Π, which links the function

u(s + t2(ϕ), ϕ), (s ∈ [−1, 0]) to a function ϕ(s). From the formulas given above we arrive
at the conclusion that

Π
(

ϕ(s)
)
= u

(
s + t2(ϕ), ϕ

) ∈ S,

meaning that ΠS ⊂ S.
From this and from Ref. [23] it follows that this operator has in S a fixed point ϕ0(s), i.e.,

Π
(

ϕ0(s)
)
= ϕ0(s).

This means that the solution u0(t, λ) = u(t, ϕ0(s)) is periodic, with period T(λ) = t2(ϕ0(s)).
The proof of the stability of u0(t, λ) is rather cumbersome. In the more complicated

situation discussed in Refs. [7,29] a detailed proof was given of the stability of the solution
constructed there, and so we shall not give the proof here.

It is possible to obtain the asymptotic expansion of u0(t, λ) to any degree of precision.
Here we note only that

max
t

u0(t, λ) = u0(1, λ) = A[1 +
(

A − 1 + o(1)
)

exp(−λA))]−1,

min
t

u0(t, λ) = u0
(
t1(ϕ0) + 1, λ

)
= A(A − 1)−1 exp

(
λA(1 − A)

)(
1 + o(1)

)
.

It is interesting to compare the principal characteristics of u0(t, λ) with the correspond-
ing characteristics of the stable periodic solution U0(t, λ) of Equation (1) for λ → ∞.
To obtain formulas for maxt U0(t, λ) and mint U0(t, λ) one should replace T by 1 in
formulas (2) and (3) (see introduction of this paper and Ref. [7]). In Figure 2 we give graphs
of periodic functions u0(t, λ) and U0(t, λ).

exp(λ)

A

1

-1 0 1 T(λ) T0(λ)

U0(t,λ)

u0(t,λ)

t

Figure 2. Form of the functions u0(t, λ), U0(t, λ).

179



Mathematics 2023, 11, 1699

3.2. Rapidly Oscillating Solutions of Equation (24)

We shall consider rapidly oscillating solutions of Equation (24).
These are the set of those solutions u(t, ϕ) that become equal to 1 at t = 0, and have

one “step” on the segment [−1, 0], as shown in Figure 3.

Figure 3. Graph of ϕ(s) ∈ S(τ1, τ2) for s ∈ [−1, 0] and u(t, ϕ) for t ≥ 0.

We shall describe the corresponding set of initial functions ϕ(s). We arbitrarily fix
values τ1 and τ2 for which

−1 < τ1 < τ2 < 0.

Below, we shall denote by δ > 0 an arbitrary sufficiently small quantity that does not
depend on λ and whose precise value is unimportant. We introduce into the analysis three
functions κ1,2,3(s, λ):

κ1(s, λ) = exp
(
λδ(s − τ1)

)
, s ∈ [−1, τ1];

κ2(s, λ) = min
(

A
[
1 + (A − 1) exp

(− λδ(s − τ1)
)]−1

, A
[
1 + (A − 1) exp(λδ(s − τ2)

)]−1
)

,

s ∈ (τ1, τ2);

κ3(s, λ) = max
(

exp
(− λδ(s − τ2)

)
, exp(λδs)

)
, s ∈ [τ2, 0].

Finally, by S(τ1, τ2) we denote the set of functions ϕ(s) from C[−1,0] that satisfy
the conditions

ϕ(τ1) = ϕ(τ2) = ϕ(0) = 1;

0 ≤ ϕ(s) ≤ κ1(s, λ), for s ∈ [−1, τ1];

κ2(s, λ) ≤ ϕ(s, λ) ≤ A, for s ∈ (τ1, τ2);

0 ≤ ϕ(s) ≤ κ3(s, λ) for s ∈ [τ2, 0].

The first and the second positive roots of the equation u(t, ϕ) = 1 will be denoted
by t1(ϕ) and t2(ϕ). We set t0 = A(A − 1)−1(τ1 + 1). Asymptotic analysis of u(t, ϕ) for
t ∈ [0, τ2 + 1] leads to the following statement:

Lemma 5. Suppose that the condition

t0 < τ2 + 1 (29)

is fulfilled. Then for t1(ϕ) the following asymptotic (for λ → ∞) equality holds:

t1(ϕ) = t0 + o(1).

Proof. As in Theorem 2, when constructing the asymptotics of the solution to Equation (24),
we use the formula (25). It follows from (25), that on the segment t ∈ [0, τ1 + 1] solution has
form (26). It follows from (26), that on the interval t ∈ (0, τ1 + 1] equality u(t, ϕ) = A+ o(1)
holds.
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On the segment t ∈ [τ1 + 1, τ2 + 1] the function u(t − 1, ϕ) = A + o(1). That is why
on this time segment the solution to Equation (24) satisfies the formula

u(t, ϕ) = A
[

1 + (A − 1) exp
(

λA
[− (τ1 + 1) + (A − 1)(t − (τ1 + 1)) + o(1)

])]−1

. (30)

While τ1 + 1 < t < t0, the right-hand side in formula (30) is asymptotically close to
A at λ → +∞, and for t > t0 this expression is o(1) at λ → +∞. Therefore, if t0 < τ2 + 1,
then the value t0 is asymptotically close to t1(ϕ) at λ → +∞.

We note that for every t ∈ (0, t1(ϕ)) the relation

u(t, ϕ) = A + o(1)

is fulfilled. Next, for t ∈ (t1(ϕ), τ2 + 1), we have u(t, ϕ) = o(1), with

u(τ2 + 1, ϕ) = A(A − 1)−1 exp(−λA(A − 1)(τ2 + 1 − t0 + o(1))).

We set t0 = A(τ2 + 1) + (1 − A)t0. If

t0 < 1, (31)

then for t ∈ (τ2 + 1, t0 + δ1) (where δ1 is some sufficiently small quantity that does not
depend on λ) we find that

u(t, ϕ) = A/
[
(A − 1) exp

(
− λA

(
t − A(τ2 + 1)− (1 − A)t0 + o(1)

))
+ 1

]
.

From this follow both the existence of t2(ϕ) and the asymptotic formula t2(ϕ) = t0 + o(1).
It is easy to show, that if inequality t0 > 1 holds, then t2(ϕ) exists, but t2(ϕ)− t1(ϕ) > 1.

So, in the case t0 > 1 we return to the case of the slowly oscillating solutions.
If inequality (31) holds, then as in the preceding section, we introduce into the analysis

the operator Π, using the rule Π(ϕ(s)) = u(s + t2(ϕ), ϕ).
Note, that t2(ϕ) corresponds to 0, t1(ϕ) corresponds to τ2, 0 corresponds to τ1 (see

Figure 3). That is why τ̄1 = 0 − t0 + o(1) τ̄2 = t0 − t0 + o(1).
A consequence of the formulas given here is the following statement:

Theorem 3. Let the conditions (29) and (31) are fulfilled. Then for all sufficiently large λ for the
Equation (24) the following inclusion holds:

Π(ϕ(s)) ∈ S(τ̄1 + o(1), τ̄2 + o(1)),

with
τ̄1 = Aτ1 − Aτ2,

τ̄2 = A2(A − 1)−1τ1 − Aτ2 + A(A − 1)−1.
(32)

The system of Equation (32) is a linear inhomogeneous difference system of equations.
After τ̄1 and τ̄2 have been determined, the situation is repeated, i.e., while for current values
of τ̄1 and τ̄2 inequalities (29) and (31) are fulfilled, using (32) we calculate ¯̄τ1 and ¯̄τ2, and so
on. This iteration process has a fixed point. By virtue of the fact that the determinant of
the linear part in (32) is greater in modulus than 1 the iteration process is divergent, i.e.,
the equilibrium state in (32) is unstable.

We also remark that the number of periodic solutions of Equation (24) grows without
limit as λ → ∞. We shall show this. It was established above that for sufficiently large
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λ Equation (24) has a slowly oscillating periodic solution u0(t, λ) with period T(λ). This
solution for each integer n satisfies the equation

u̇ = λ[1 − u(t − 1 − nT(λ))]u(A − u). (33)

In (33) we replace the time t → (1 + nT(λ))t. We then find that the function
un(t, λ) = u0((1 + nT(λ))t, λ) is a solution of the equation

u̇ = λ(1 + nT(λ))[1 − u(t − 1)]u(A − u). (34)

The period of the function un(t, λ) is equal to T(λ)[1 + nT(λ)]−1. In particular, the un-
stable periodic solution determinable from the fixed points τ10, τ20 of the mapping (32)
corresponds to the value n = 1 in (34), i.e., to the function u1(t, λ).

We shall consider the more general case when on the segment [−1, 0] the initial
functions ϕ(s) take the value 1 exactly (2n + 1) times:

−1 < τ1 < τ2 < . . . < τ2n < 0, ϕ(τj) = ϕ(0) = 1 (j = 1, . . . , 2n). (35)

Following the method proposed above, we arrive at the 2n-dimensional map

τ̄1 = τ3 − t0, t0 = Aτ2 − Aτ1,

τ̄2 = τ4 − t0, t0 = A(A − 1)−1(τ1 + 1),

. . . . . .

τ̄2n−1 = −t0, τ̄2n = t0 − t0.

(36)

While we are in the class of initial conditions (conditions (35) are satisfied), we iterate
this map. It can be shown that if the equilibrium state in (36) exists, then it is unstable.
Since solution un(t, λ(1 + nT(λ))) corresponds to equilibrium state in map (36), then this
periodic solution of (24) is unstable.

4. Step-like Solutions of the Equation with Two Delays

We normalize the time t → Tt and rename λT as λ and hT−1 as h (h < 1) again in
Equation (8) with two delays. As a result, we arrive at the equation

u̇ = λ[1 − αu(t − 1)− (1 − α)u(t − h)]u(A − u). (37)

4.1. Construction of Slowly Oscillating Solutions

We shall consider the construction of slowly oscillating periodic solutions. We intro-
duce into the analysis a set of initial conditions consisting of all those functions ϕ(s) ∈ C[−1,0]
for which

ϕ(0) = 1, 0 ≤ ϕ(s) ≤ 1;

ϕ(s) ≤ exp(λδs),

where δ > 0 is some sufficiently small but fixed value. We investigate the asymptotic form
of all solutions u(t, ϕ) with initial conditions from S. We denote by t1(ϕ) and t2(ϕ) the first
and second positive roots of equation u(t, ϕ) = 1. In the case when

t2(ϕ)− 1 > t1(ϕ), (38)

we can determine the translation along the trajectories operator Π: Π(ϕ(s)) = u(s + t2(ϕ), ϕ).
From the inequality (38) we find that Π(ϕ(s)) ∈ S. If for all ϕ(s) ∈ S we have Π(ϕ(s)) ∈ S,
i.e., ΠS ⊂ S, we can conclude that there exists an attractor with initial conditions from S
and that there exists a fixed point ϕ0(s) ∈ S. The solution u0(t, λ) = u(t, ϕ0(s)) is thereby
periodic, with period T(λ) = t2(ϕ0). For the expressions t1,2(ϕ) it is possible to obtain

182



Mathematics 2023, 11, 1699

asymptotic formulas, and this means that we can formulate conditions on the parameters
of the problem that ensure fulfilment of the inequality (38). We confine ourselves here to
giving only sufficient conditions for fulfilment of this inequality.

Lemma 6. Let
1 − (1 − α)A > 0 (39)

and
1 − αA < 0. (40)

Then for all sufficiently large λ for Equation (37) we have the following inclusion:

ΠS ⊂ S.

Proof. For each t ∈ (0, h] the asymptotic equality

u(t, ϕ) = A
[
1 + (A − 1) exp

(− λA
(
t + o(1)

))]−1

holds. But if t ∈ [h, 1], then

u(t, ϕ) = A
[

1 + (A − 1) exp
(
− λA

(
(1 − (1 − α)A)t + h(1 − α)A + o(1)

))]−1

.

In particular,

u(1, ϕ) = A
[

1 + (A − 1) exp
(
− λA

(
1 − (1 − α)A(1 − h) + o(1)

))]−1

.

It follows from inequality (39) that u(t, ϕ) = A + o(1) on the segment t ∈ [h, 1 + δ1],
where δ1 is some positive and small (but independent on λ) constant.

Therefore, for t > 1 while u(t, ϕ) = A + o(1) formula

u(t, ϕ) = A
[

1 + (A − 1) exp
(
− λA

(
1 − (1 − α)A(1 − h) + (1 − A)(t − 1) + o(1)

))]−1

holds. From this formula we find that t1(ϕ) exists and that

t1(ϕ) = 1 +
(
1 − (1 − α)A(1 − h)

)
(A − 1)−1 + o(1), (t1(ϕ) > 1).

Starting from τ = t1(ϕ) we obtain that on the interval t ∈ (t1(ϕ), t1(ϕ) + h] equality
u(t, ϕ) = o(1) holds and that on the segment t ∈ [t1(ϕ) + h, t1(ϕ) + 1] formula

u(t, ϕ) = A
[

1 + (A − 1) exp
(
− λA

(
(1 − A)h + (1 − αA)(t − h − t1(ϕ)) + o(1)

))]−1

is true. It follows from (40) that u(t, ϕ) = o(1) on the segment t ∈ [t1(ϕ) + h, t1(ϕ) + 1].
Then for t > t1(ϕ) + 1 while u(t, ϕ) = o(1) we have the equality

u(t, ϕ) = A
[

1 + (A − 1) exp
(
− λA

(
(1 − A)h + (1 − αA)(1 − h) + (t − 1 − t1(ϕ)) + o(1)

))]−1

. (41)

From Formula (41) we obtain both the existence of t2(ϕ) and inequality
t2(ϕ)− t1(ϕ) > 1.

It follows from this that Π(ϕ(s)) ∈ S and ΠS ⊂ S. The Lemma is proven.

Theorem 4. Let inequalities (39) and (40) hold. Then for all sufficiently large λ Equation (37) has
an asymptotically orbitally stable slowly oscillating periodic (with period T(λ)) solution u0(t, λ),
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for which u0(0, λ) = u0(t1(λ), λ) = u0(t2(λ), λ) = 1, where tj(λ) are successive positive roots
of the equation u0(t, λ) = 1, and

t1(λ) = 1 +
(
1 − (1 − α)A(1 − h)

)
(A − 1)−1 + o(1),

T(λ) = t2(λ) = 2 +
(
1 − (1 − α)A(1 − h)

)
(A − 1)−1 + (A − 1)h − (1 − αA)(1 − h) + o(1).

For every t from the intervals (0, t1(λ)) and (t1(λ), t2(λ)), respectively, the following equali-
ties are fulfilled:

u0(t, λ) =

{
A + o(1), t ∈ (0, t1(λ)),
o(1), t ∈ (t1(λ), t2(λ)).

The proof of existence of the periodic solution in Theorem 4 follows from the proof
of the Lemma 6, and proof of stability of this solution is rather cumbersome. In the more
complicated situation discussed in Refs. [7,29] a detailed proof was given of the stability of
the solution constructed there, and so we shall not give the proof here.

4.2. Construction of More Complicated Solutions

We shall consider the construction of rapidly oscillating periodic solutions. We arbi-
trarily fix τ, satisfying condition

τ ∈
(

max
(
h, 1 − h − h(1 − αA)(A − 1)−1), 1

)
(42)

and consider the set

S(τ) = {ϕ(s) ∈ C[−1,0] : 0 ≤ ϕ(s) ≤ A;

ϕ(−τ) = ϕ(0) = 1,

ϕ(s) ≤ max
(

exp
(− λδ(s + τ)

)
, exp(λδs)

)
, s ∈ [−τ, 0];

ϕ(s) ≥ min
(

A
[
1 + (A − 1) exp

(− λδ(s + 1)
)]−1

, A
[
1 + (A − 1) exp(λδ(s + τ)

)]−1
)

,

s ∈ [−1,−τ]}.

We shall give the final asymptotic formulas for u(t, ϕ) (ϕ ∈ S(τ)). In them we denote
by g(x) the function

g(x) =

{
x, if x > 0;
0, if x ≤ 0.

We shall assume that the inequalities

1 − αA > 0, 1 − (1 − α)A < 0, (43)

and
h < 1 − h (44)

are fulfilled. Let t ∈ (0, h]. Then u(t, ϕ) = A + o(1), and

u(h, ϕ) =A
[
1 + (A − 1) exp

(
− λA

[
h − αA min(h, 1 − τ) + o(1)

])]−1
.
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It follows from condition (42), that for t ∈ [h, max(h, 1 − τ)] we also have
u(t, ϕ) = A + o(1), and

u(max(h, 1 − τ), ϕ) = A
[
1 + (A − 1) exp

(
− λA

[
max(h, 1 − τ)− αA min(h, 1 − τ)

−Ag(1 − τ − h) + o(1)
])]−1

.

We set

t0
1 =

αA(1 − τ + h)− Ah
1 − (1 − α)A

.

From (42) and (43) we get that t0
1 > max(h, 1 − τ). Then t1(ϕ) = t0

1 + o(1), and for
every t ∈ (0, t1(ϕ)) we have the relation u(t, ϕ) = A + o(1).

Suppose that the following inequality is fulfilled:

t0
1 < 1 − h. (45)

Then on the interval (t1(ϕ), t1(ϕ) + h] we have the equality u(t, ϕ) = o(1), and

u
(
t1(ϕ) + h, ϕ

)
= A

[
1 + (A − 1) exp

(
− λA

[
(1 − (1 − α)A)h + o(1)

])]−1

.

If condition
(1 − (1 − α)A)h + 1 − t0

1 − h < 0 (46)

is true, then on the interval (t1(ϕ) + h, 1] equality u(t, ϕ) = o(1) holds, and

u
(
1, ϕ

)
= A

[
1 + (A − 1) exp

(
− λA

[
(1 − (1 − α)A)h + (1 − t0

1 − h) + o(1)
])]−1

.

We set
t0
2 = 1 +

(
(1 − α)Ah + t0

1 − 1
)
[1 − αA]−1.

Suppose
t0
2 < t0

1 + 1, (47)

then t2(ϕ) = t0
2 + o(1), and for every t ∈ [1, t2(ϕ)) the equality u(t, ϕ) = o(1) is fulfilled.

Finally, we introduce the quantity τ̄ = t2(ϕ)− t1(ϕ). Then, to order o(1) (for λ → ∞), we
obtain the equality

τ̄ = f (τ), (48)

where f (τ) = t0
2 − t0

1.
After τ̄ has been determined, the situation is repeated, i.e., while for current value of τ̄

inequalities (42), (45)–(47) are fulfilled, using (48) we calculate ¯̄τ and so on.
The one-dimensional mapping (48) plays a central role in the study of the solutions

from S(τ). When the conditions (42)–(47) are fulfilled its attractors determine the structure
of the periodic solutions from S(τ). For example, to the equilibrium state τ0:

τ0 = f (τ0) (49)

there corresponds, under the condition | f ′(τ0)| < 1, a stable one-step periodic solution
u0(t, λ) with the initial conditions in S(τ0).

Lemma 7. Let the inequality
1 − A + A2α < 0 (50)
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hold. Then there exist values of h such that the map (48) has a stable fixed point τ = τ∗, where

τ∗ =
A(A − 1)(α + (α − 1)h)

1 − A + A2α
, (51)

such that inequalities (42)–(47) are fulfilled.

Proof. First, let us show, that if inequality (50) holds, then inequalities (43) are true.
It is easy to see, that inequalities (43) are equivalent to inequality α < min(1/A, 1 − 1/A).

Inequality (50) is equivalent to α < 1/A − 1/A2. This value is less than min(1/A, 1− 1/A)
(parameter A > 1), therefore, if (50) is true, then conditions (43) hold.

Second, let us substitute the values of t0
1 and t0

2 into the map (48):

τ̄ =
A2α2

(−1 + αA)(1 − (1 − α)A)
τ +

A(A − 1)(h(1 − α)− α)

(−1 + αA)(1 − (1 − α)A)
. (52)

This map has a fixed point τ∗ satisfying formula (51). We should check whether this
value τ∗ satisfies conditions (42), (45)–(47), because map (52) corresponds to the initial
equation only when all these inequalities hold, and we should study stability of the fixed
point (51).

Let us begin with the study of stability. The fixed point τ∗ is stable if and only if

−1 <
A2α2

(−1 + αA)(1 − (1 − α)A)
< 1.

From the condition (43) we get that this value is greater than zero, and this value is
less than 1 if and only if inequality (50) holds. Therefore, this fixed point is stable.

Now let us prove that if τ = τ∗ satisfies (51), then conditions (42), (45)–(47) hold.
Below, we always assume that inequalities (43) and (50) hold.
Substituting τ∗ in inequality τ < 1 from (42) we obtain, that this condition is equiva-

lent to

h <
(1 − α)A − 1

A(A − 1)(1 − α)
=: γ1, (53)

inequality h < τ from (42) is equivalent to

h >
αA(A − 1)

(A − 1)2 + αA
=: β1,

and condition τ > 1 − h − h(1 − αA)(A − 1)−1 from (42) is equivalent to

h >
A − 1

A2(1 − α)
=: β2. (54)

Condition (45) at τ = τ∗ can be rewritten in the form

h <
(A − 1)(1 − αA)

(A(1 − αA)− (1 − (1 − α)A))
=: γ2.

Condition (46) holds, if τ = τ∗ and (54) is true, and inequality (47) holds, if τ̄ = τ∗ < 1
(the last inequality is equivalent to (53)).

Thus, at τ = τ∗ and under condition (50) the system of inequalities (42), (43), (45)–(47)
is equivalent to

max(β1, β2) < h < min(γ1, γ2).

Parameter h must satisfy condition h < 1/2 (we obtain this inequality from condition (44)).
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Let us prove that under condition (50) interval (max(β1, β2), min(1/2, γ1, γ2)) is not empty.

β1 − β2 =
(A − 1)(1 − (1 − α)A)(1 − A + A2α)

A2(−1 + α)((A − 1)2 + αA)
< 0,

therefore max(β1, β2) = β2. Let us estimate the values of γ1 − β2, γ2 − β2, 1/2 − β2.

γ1 − β2 =
1 − A + A2α

(A − 1)A2(−1 + α)
> 0,

γ2 − β2 =
(A − 1)(1 − A + Aα)(1 − A + A2α)

A2(1 − α)
(

A(1 − αA)− (1 − (1 − α)A)
) > 0.

Inequality

1/2 − β2 =
2 − 2A + A2 − A2α

2A2(1 − α)
> 0

is equivalent to inequality 2 − 2A + A2 − A2α > 0. Function q(α) = 2 − 2A + A2 − A2α is
decreasing on the interval α ∈ (0, 1/A − 1/A2). Therefore, q(1/A − 1/A2) ≤ q(α) for all
α ∈ (0, 1/A − 1/A2).

q(1/A − 1/A2) = 2 − 2A + A2 − A2(1/A − 1/A2) = A2 − 3A + 3 > 0,

thus inequality 1/2 − β2 > 0 holds for all α ∈ (0, 1/A − 1/A2). The Lemma is proven.

From the constructions and the reasoning given above we obtain the following statement.

Theorem 5. Let the inequality (50) hold. Then for all sufficiently large λ there exist h and
τ = τ∗, satisfying (51), such that equation (37) has an asymptotically orbitally stable rapidly
oscillating periodic (with period T(λ)) solution u∗(t, λ), for which u∗(0, λ) = u∗(t1(λ), λ) =
u∗(t2(λ), λ) = 1, where tj are successive positive roots of the equation u∗(t, λ) = 1, and

t1(λ) =
A(α + (α − 1)h)

1 − A + A2α
+ o(1),

T(λ) =t2(λ) =
A2(α + (α − 1)h)

1 − A + A2α
+ o(1),

t2(λ)− t1(λ) =τ∗ + o(1) < 1.

For every t from intervals (0, t1(λ)) and (t1(λ), t2(λ)), respectively, the following equalities
are fulfilled:

u∗(t, λ) =

{
A + o(1), t ∈ (0, t1(λ)),
o(1), t ∈ (t1(λ), t2(λ)).

In a similar way, one can determine the existence conditions and find the asymptotics
of multi-step periodic solutions on the segment [−1, 0] and obtain an n-dimensional (in
terms of the number of steps on the segment [−1, 0]) mapping for their description.

5. Conclusions

The dynamics of the logistic equation with delays and with bounding modified
nonlinearity are studied.

First, oscillations close to harmonic are studied. Using the methods of bifurcation
analysis, we singled out the critical case in the problem of stability of stationary state and
constructed the normal form. Its nonlocal dynamics determine the local behavior of the
initial equation solutions in the neighborhood of the equilibrium state.
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The solutions of the relaxation (step-like) type are studied for sufficiently large values
of the parameter λ. We stress that, from a computational point of view, Equations (4) and (8)
are difficult, since the relaxation solution approaches A and 0 very closely, so even a small
error in the calculations will take us out of the class of solutions under consideration.
Therefore, asymptotic methods play a special role. They not only allow one to find an
approximation of the solution, but also reduce the problem of the dynamics of the original
infinite-dimensional problem to the problem of the dynamics of the constructed finite-
dimensional mapping (this object is much more simpler than the initial equation). Asymp-
totic formulas that couple the solutions of (4) and (8) with such mappings trajectories are
obtained. The resulting formulas are suitable for engineering calculations. It is important to
note that this method is applicable to equations with different types of nonlinearities [30,31]
and to systems of two, three, and more singular perturbed equations with delay [30,32,33].

The use of the modified nonlinearity leads to the fact that the oscillations turn out to be
‘safer’ in comparison with Equation (1): their largest value A is significantly less than the
value of exp(λT) for Equation (1), and the smallest value of exp(−λconst) is significantly
greater than the value of exp(− exp λT).

As a generalization of the obtained results, we note that they do not change if the
function (A− u) in (8) is replaced by a more general function F0(u) for which the conditions
F0(u) > 0 as 0 < u < A, F0(0) = F0(A) = 0 and F′

0(0) �= 0, F′
0(A) �= 0 are satisfied. We

also note that the proposed method allows extension to the case of more than two delays in
Equation (8).
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Abstract: The Kuramoto model is a classical model used for the describing of synchronization in
populations of oscillatory units. In the present paper we study the Kuramoto model with delay with
a focus on the distribution of the oscillators’ frequencies. We consider a series of rational distributions
which allow us to reduce the population dynamics to a set of several delay differential equations.
We use the bifurcation analysis of these equations to study the transition from the asynchronous to
synchronous state. We demonstrate that the form of the frequency distribution may play a substantial
role in synchronization. In particular, for Lorentzian distribution the delay prevents synchronization,
while for other distributions the delay can facilitate synchronization.

Keywords: Kuramoto model; time delay; synchronization

MSC: 34K24

1. Introduction

In many complex systems of various nature a similar pattern of collective behaviour
can be observed: The adjustment of rhythms of oscillating systems due to their interaction.
This phenomenon is called synchronization and is ubiquitous in the real world with
examples ranging from the synchronous firing of pacemaker cells in the heart and neurons
in the brain to the synchronous rotation of electric generators in power grids [1–3]. For
a long time it was a mystery how the synchronization can emerge despite the inevitable
diversity in the natural frequencies of different units. It was Kuramoto who introduced a
mathematical model of coupled oscillators that allowed this problem to be solved [4–6].
Motivated by the behavior of chemical and biological oscillators, this model later turned
out to be quite general and applicable to such systems as coupled arrays of Josephson
junctions [7] or populations of of biological neurons [8,9].

What is now known as the “Kuramoto model” consists of N phase oscillators with the
harmonic interaction function:

θ̇j(t) = ωj − K
N ∑

k
sin

(
θj − θk

)
, (1)

where j = 1, . . . , N is the unit number, θj ∈ S1 are the phase variables, ωi are the natural
frequencies, and K is the global coupling strength. In his pioneering work Kuramoto
showed this model to be mathematically tractable and to demonstrate the phase transition
from an asynchronous state to synchronization at the critical coupling strength.
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In subsequent decades the Kuramoto model became a classical paradigm for studying
synchronization phenomena and it found numerous applications (see reviews [10,11] for
the examples). From the other side, the simplicity and generality of the Kuramoto model
makes it perfect for various kinds of generalization and modification. One of the most
natural ways to make the model more realistic is to include coupling delays which are
inevitably in real world due to the finite speed of signal propagation [12–14]. To take into
account coupling delays the phases θk(t) in the sum from the r.h.s. of (1) are replaced by
their delayed versions θk(t − τ). In the case of two coupled oscillators the delay causes
multistabilty of synchronous solutions with different frequencies [15] (interestingly, multi-
stability also emerges if the delay is introduced not into the coupling, but into the oscillators
themselves [16]). The similar effect of multistability was found for globally coupled oscilla-
tors with time delays, which results in the possibility of discontinuous transitions between
different regimes in addition to classical smooth transitions [17,18]. In the case of local cou-
pling, the delays were shown to induce complex spatio-temporal patterns and clusters [19].
In the case of distant-dependant delays similar patterns emerge and become propagating
structures [20,21]. The case of heterogeneous delays was also considered and the emergence
of clusters with various phase relations was demonstrated [22]. In rings of oscillators with
local coupling, the delay was shown to act differently depending on the network symmetry:
It induces multistability for unidirectional coupling and stabilizes the most symmetric
solution for bidirectional coupling [23]. In rings with nonlocal coupling, the delays give
birth to travelling waves [24]. For networks of oscillators with complex connectivity, such
as scale-free networks, coupling delays may induce explosive synchronization [25].

Another natural generalization of the Kuramoto model is the addition of external
forces to the oscillator dynamics which results in the emergence of a phase-dependent
and/or time-dependent term in the r.h.s. of (1). This term is often taken in the form a sin θj,
in which case the phase oscillators turn into the so-called “active rotators”. The dynamics of
active rotators is much richer than that of phase oscillators since the former can demonstrate
either oscillatory or excitatory behaviour depending on the relation between the individual
frequency ωj and the parameter a which is often called a “non-isochronicity parameter”.
Ensembles of globally coupled active rotators were first considered in Refs. [26,27], and two
different collective regimes were found: Entrainment with the external force and mutual
entrainment. The introduction of heterogeneous external forces leads to similar results [28].
The transition between locked and unlocked states can be similar to either a super-critical
Andronov-Hopf bifurcation or a saddle-node bifurcation [29]. In the case of heterogeneous
assemblies made up of excitable and oscillatory units, it has been demonstrated that the
transition to synchrony may be classical or re-entrant, depending on the particular form of
the frequency distribution [30]. In addition to the parameter regions with synchronous and
asynchronous regimes, the regions of bistability between different regimes were found as
well [31].

Other types of generalized Kuramoto models were studied as well, including time-
dependent [8,32,33], adaptive [34–38] and memristive [39] coupling, including noise [26,27,40],
non-harmonic coupling functions [41,42] and pulse coupling [43,44], systems on smooth mani-
folds [45–47], etc. Typically, the analytic study of the Kuramto model and its generalizations
is performed in the thermodynamic limit when the number of units tends to infinity. In this
case the microscopic equations (1) are replaced by the continuity equation, and the individual
frequencies ωj are replaced by the probability density g(ω). For the classical Kuramoto model
the particular form of this distribution does not play any important role. First, the system is
invariant under the change of variables ωj → ωj + Ω for arbitrary Ω, which means that the
mean frequency 〈ω〉 can be always set to zero. Second, for unimodal symmetric distributions,
the critical coupling at which the transition takes place equals Kc = 2/(πg(0)), i.e., it depends
only on the height of the distribution peak but not on its particular shape. However, when
coupling delays or non-isochronicity are included, the shape of the distribution comes into
play because it becomes important how the typical frequencies ω relate to the delay τ and
non-isochronicity parameter a.
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In the present paper we study how the synchronization transition in the Kuramoto
model with delay depends on the shape of the frequency distribution g(ω). For this sake
we consider a series of rational distributions which are all unimodal and symmetric but
are different in the flatness of the peak and decay rate of the tails. Using the Ott-Antonsen
approach [48,49] we derive low-dimensional dynamical systems governing the collective
dynamics of the population and perform its bifurcation analysis. We show that the shape of
the frequency distribution can play a significant role for the system properties. For widely
used Lorentzian distribution, the delay always prevents synchronization by raising the
critical coupling strength. However, for distributions with lighter tails, the delay can also
promote synchronization by lowering the critical coupling.

2. Model

We consider a heterogeneous assembly of N oscillators with delayed coupling

θ̇j(t) = ωj − a sin θj(t)− K
N ∑

k
sin

(
θj(t)− θk(t − τ)

)
, (2)

where j = 1, . . . , N is the unit number, θj ∈ S1 are the phase variables, ωj are the natural
frequencies, a is the non-isochronicity parameter, K is the global coupling strength and
τ is the coupling delay. Strictly speaking, ωi can be called “natural frequencies” only for
a = 0. For non-zero a, the rotation becomes non-uniform with the frequency

√
ω2

j − a2

for 0 < a < |ωj|. At |ωj| = a an isolated unit undergoes a SNIPER bifurcation toward the
excitatory regime. This very dependence of the local oscillatory dynamics on the parameter
a allows us to call it a “non-isochronicity parameter”.

In order to characterize the degree of synchrony in the population we introduce the
Kuramoto complex order parameter

R(t) =
1
N ∑

j
eiθj(t). (3)

The absolute value of this parameter serves the main indicator of the system synchro-
nization. When it is close to zero, the phases of the oscillators are not correlated, and the
system is asynchronous. When the order parameter is sufficiently different from zero it
indicates the emergence of a bunch of oscillators rotating with close phases, which means
synchronization. Using the Kuramoto order parameter allows us to rewrite (2) as

θ̇j = ωj − a
2i
(eiθj − e−iθj) +

K
2i
(Rτe−iθj − R∗

τeiθj), (4)

where Rτ ≡ R(t − τ) and the asterisk denotes the complex conjugate. In the thermody-
namic limit N → ∞, the macroscopic state of the system is described by the probability
density function f (θ, ω, t), which obeys the continuity equation

∂ f
∂t

+
∂

∂θ
( f v) = 0, (5)

with the velocity v being the r.h.s. of Equation (4). The Kuramoto parameter in this case is
evaluated as

R(t) =
∫ ∞

−∞
dω

∫ 2π

0
f (θ, ω, t)eiθdθ, (6)
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3. Reduction of the Collective Dynamics

Following the theory of Ott and Antonsen [48,49] we will look for the long-term
dynamics of the continuity Equation (5) in the form

f (θ, ω, t) =
g(ω)

2π

(
1 +

∞

∑
n=1

[
(z∗(ω, t))neinθ + (z(ω, t))ne−inθ

])
, (7)

where

g(ω) =
∫ 2π

0
f (θ, ω, t)dθ (8)

is the probability density function of the natural frequencies and

z(ω, t) =
∫ 2π

0
f (θ, ω, t)eiθdθ, (9)

is the local complex order parameter of the subpopulation with the natural frequency
ω. Obviously, the global and the local order parameter are connected by the self-
consistency condition

R =
∫ ∞

−∞
g(ω)z(ω)dω. (10)

Substituting (7) into (5), one obtains the following equations for z(ω, t):

ż(ω, t) = iωz +
a
2
(1 − z2) +

K
2
(Rτ − R∗

τz2), (11)

which together with (10) defines a delay integro-differential equation describing the collec-
tive dynamics of the population in the thermodynamic limit.

As the next step we consider a family of rational distributions g(ω), namely

gn(ω) =
cn

(ω − Ω)2n + Δ2n , (12)

where n is natural, Ω is the mean frequency, Δ is the distribution half-width, and

cn =
1
π

n sin
π

2n
Δ2n−1 (13)

is the normalization constant. For n = 1 this distribution turns into a classical Cauchy distribu-
tion, and for n → ∞ it converges to a uniform distribution on the interval ω ∈ [Ω − Δ; Ω + Δ].
Assuming the rational function g(ω) allows us to evaluate the integral (10) using the residue
theorem. A similar approach was recently used for populations of quadratic integrate-and-fire
neurons [50,51]. Consider the analytic extension of function z(ω, t) to complex ω, then the
integration contour can be closed by an infinitely large arc in the upper complex half-plane.
In this half-plane the function (12) has n simple poles

ωk = Ω + Δeiαk , (14)

where k = 1, n and αk = π(k − 0.5)/n. Thus, the integral (10) can be evaluated as

R(t) = − i
Δ

sin
π

2n

n

∑
k=1

(ωk − Ω)z(ωk, t). (15)

Writing Equation (11) for ω1, ω2,. . . , ωn allows us to obtain a closed set of n delay differential
equations for complex variables
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żk = i(Ω + Δeiαk )zk +
a
2
(1 − z2

k) +
K
2
(Rτ − R∗

τz2
k), (16a)

R = −i sin
π

2n

n

∑
k=1

eiαk zk, (16b)

where k = 1, n and zk(t) ≡ z(ωk, t). Introducing zk = xk + iyk and R = X + iY allows us to
rewrite these equations in the real form :

ẋk = −Ωyk − Δ(yk cos αk + xk sin αk) + . . .
a
2
(1 + y2

k − x2
k) +

K
2
(Xτ(1 + y2

k − x2
k)− 2Yτxkyk), (17a)

ẏk = Ωxk + Δ(xk cos αk − yk sin αk)− axkyk + . . .
K
2
(Yτ(1 + x2

k − y2
k)− 2Xτxkyk), (17b)

X = sin
π

2n

n

∑
k=1

(xk sin αk + yk cos αk), (17c)

Y = sin
π

2n

n

∑
k=1

(yk sin αk − xk cos αk). (17d)

This set of DDEs governs the collective dynamics of the population in the thermodynamic
limit N → ∞. The following analysis is based on system (17).

4. Studying the Role of the Coupling Delay

For the case of isochronous oscillations with a = 0, the system always has a trivial
steady state zk = R = 0 corresponding to asynchronous dynamics of the oscillators. This
state is stable for weak coupling K and destabilizes via an Andronov-Hopf bifurcation
when the coupling becomes sufficiently strong, which constitutes a classical Kuramoto
scenario [5,10]. The stable limit cycle born in this bifurcation corresponds to a partial
synchronization of the oscillators.

The dynamics of the system is illustrated in Figure 1 where the dynamics of the in-
dividual phases and the Kuramoto order parameter are shown for the synchronous and
asynchronous regimes. In both cases, the system starts from random initial conditions. In
the case of asynchronous dynamics, all the phases rotate incoherently, and the order pa-
rameter remains close to zero. When the synchronization is achieved, a bunch of oscillators
quickly emerge whose phases rotate with the same frequency, and the order parameter
reaches a sufficiently non-zero value.

In order to illustrate the transition from the asynchronous to the synchronous state we
plot the dependence of the Kuramoto order parameter on the coupling strength in Figure 2.
The order parameter is small for weak coupling and rapidly grows as the coupling strength
exceeds the critical value. Note that the results obtained by the simulation of the reduced
model (17) coincide with those obtained for the microscopic system up to the fluctuations
induced by the finite size effects. Note also that adding of the coupling delay might
sufficiently influence the system dynamics and shift the critical value of the coupling
strength. Further, we will analyze the role of the delay in detail with the help of the
reduced system.
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Figure 1. The dynamics of the system in the asynchronous (a,b) and synchronous (c,d) regimes. The
top panels show the time traces of 10 randomly chosen phases θj, while the bottom panels show the
time trace of the Kuramoto order parameter |R|. The coupling strength K = 1 for (a,b) and K = 4 for
(c,d) The other parameters are N = 1000, n = 1, Ω = 1, Δ = 1, τ = 0.

Figure 2. The dependence of the Kuramoto order parameter on the coupling strength. Black circles:
τ = 0, gray squares: τ = 1.5. The other parameters: N = 1000, n = 1, Ω = 3, Δ = 1. Solid lines
indicate the results obtained by the simulation of the reduced system (17).

In the case of zero delay τ = 0 the critical coupling Kc depends on the distribution
width Δ in a linear way. Indeed, according to the results of Kuramoto [52],

Kc =
2

πg(Ω)
=

2Δ
n sin π

2n
. (18)

For nonzero coupling delays the critical coupling becomes delay-dependent. In order
to determine the bifurcation point it is necessary to write the characteristic equation for the
trivial steady state which has the form |D(λ)| = 0, where D is (2n)× (2n) matrix

D =

(
Dxx Dxy

Dyx Dyy

)
, (19)
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and Dxx, Dxy, Dyx, Dyy represent n × n matrices with the following elements:

Dxx
km = (−λ − Δ sin αk)δkm +

K
2

sin
π

2n
e−λτ sin αk, (20)

Dxy
km = (−Ω − Δ cos αk)δkm +

K
2

sin
π

2n
e−λτ cos αk, (21)

Dyx
km = (Ω + Δ cos αk)δkm − K

2
sin

π

2n
e−λτ cos αk, (22)

Dyy
km = (−λ − Δ sin αk)δkm +

K
2

sin
π

2n
e−λτ sin αk, (23)

where δkm equals one for k = m and zero in other case.
At the Andronov-Hopf point a pair of roots λ = ±iω emerge, which allows us

to determine the value of the coupling strength Kb at the bifurcation point by solving
|D(iω)| = 0. For small delays, this equation can be solved numerically by taking (18) as
the initial point, then the solution can be traced along the delay value as a parameter. The
obtained dependence Kb(τ) is plotted in Figure 3a for the Lorentzian distribution of the
oscillator frequencies (n = 1). The bifurcation coupling shows a minimum at τ = 0 and
grows rapidly and monotonically for non-zero delays. Note that we have calculated the
bifurcation curve for both positive and negative delays. Although negative time delays are
not physical, we use them in the bifurcation analysis for a reason that will become clear
later. Namely, they will help us to find other bifurcation curves existing for positive delays.

-0.5 0 0.5 1 1.5
0

1

2

3

4
K

(a)

0 2 4 6 8 10
0

1

2

3

4
K

(b)

Figure 3. (a) The Andronov-Hopf bifurcation curve for system (17) with n = 1, a = 0, Ω = 3 and
Δ = 0.1. (b) The same curve (black solid line) and its reappearing instances (black dashed lines). The
gray thick line shows the synchronization border.

An important point is that the existence of one Andronov-Hopf bifurcation curve in
a system with time delay implies the existence of other bifurcation curves at other delay
values due to the so-called reappearance of periodic solutions [53]. Indeed, if the bifurcation
takes place at the coupling strength Kb for the delay τ0 this means the existence of a limit
cycle with the period T = 2π/ω and vanishing amplitude. This implies the existence of
the same limit cycle at the same coupling strength for the delays τk = τ0 + kT, where k is
an integer, which means that each of these points are also Andronov-Hopf points. Note,
however, that the stability of the emergent limit cycle can change, which means that the
bifurcation can be either supercritical or subcritical.

The bifurcation curve found by starting from the delay-less case reappears in the
manner described above and leads to the emergence of other bifurcation curves as shown
in Figure 3b. These curves demonstrate minimums at τ = kT0, where T0 = 2π/ω0 and
ω0 is the frequency at which the collective oscillations emerge for τ = 0. Obviously, it is
the frequency of the distribution peak, i.e., ω0 = Ω. For non-zero delays the frequency
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becomes different, therefore the different bifurcation curves do not exactly match each
other in shape. However, they all still a single minimum at the multiples of T0. The trivial
steady state, i.e., the asynchronous regime is stable when the coupling strength is below all
the bifurcation curves. Thus, the synchronization border is defined by the lowest point of
the curve and has a saw-like shape. This border coincides completely with that obtained in
Ref. [17] for the same setting which corroborates the validity of our analysis.

The obtained results suggest that introduction of the coupling delay prevents the
system synchronization: For non-zero delays, the critical coupling at which the oscillators
start to synchronize increases with respect to the delay-free case (at best, the critical cou-
pling does not change if the delay is a multiple of T0). This result seems to be obvious
from the physical viewpoint: It is harder to adjust if one receives outdated information.
However, it turns out that the coupling delay can in some cases promote synchronization.
This surprising effect is observed when the distribution g(η) is different from Lorentzian,
i.e., n > 1.

In order to illustrate this effect we calculated the synchronization borders on the τ − K
plane for different values of n. We adjust the distribution half-width as

Δ =
n
2

sin
π

2n
, (24)

so that the critical coupling for the delay-free case equals unity for all n. The results are
plotted in Figure 4 and show a significant difference between the Lorentzian distribution
and distributions with n > 1. For the Lorentzian distribution the delay always prevents
synchronization and the critical coupling is always not less than unity. For the distributions
of higher order n > 1, some delay values can promote synchronization so that the critical
coupling becomes less than unity. Another feature of high-order distributions is the complex
form of the synchronization border with many peaks and valleys of different shapes.
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Figure 4. (a) The synchronization borders of system (17) for n = 1 (dotted line), n = 2 (dash-dotted
line) and n = 5 (solid line). The mean frequency Ω = 3, the half-width Δ = n

2 sin π
2n . (b) Enlarged

part of the panel (a).

5. Conclusions

In this paper we performed an analysis of the Kuramoto model with coupling delay
paying special attention to the distribution of the oscillator frequencies ω. We used the
method of Ott and Antonsen which allows one to reduce the system dynamics in the
case of infinitely many oscillators. For the rational frequency distributions, the dynamics
can be reduced to a set of delay-differential equations whose number equals the degree
of the denominator. By the means of bifurcation analysis, we obtained the Andronov-
Hopf bifurcation curves indicating a synchronization transition in the population and so
constructed the synchronization border in the parameter plane. Our results have revealed
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the different role of the delay for different frequency distributions. Thus, for the Lorentzian
distribution, the delay always prevents synchronization by increasing the critical coupling
strength. In contrast, for the distributions different from Lorentzian, the delay can promote
synchronization: For certain delay values, the critical coupling turns out to be lower than
in the delay-less case.

In the studies of collective dynamics of heterogeneous populations, it is typical to
consider a Lorentzian distribution of local parameters. The reason for this choice is the
simplicity of analytical treatment: For example, in our study the Lorentzian distribution
with n = 1 leads to the reduced system (9) of just a single differential equation for the
complex variable z1. The Lorentzian distribution is often treated as paradigmatic and
qualitatively reflects the properties of an arbitrary unimodal distribution. However, our
results show that the particular shape of the distribution can play a significant role in the
system behaviour and synchronization. In particular, the role of the coupling delay turns
out to be opposite for the Lorentzian and non-Lorentzian distributions.

In the end, we would like to emphasize that the present study is limited to the local
stability analysis and does not consider the global stability of the asynchronous state.
It means that the stable asynchronous state might coexist with a synchronous state in
some parameter regions leading to bistability areas, as was demonstrated in Ref. [17]
for the Lorentz frequency distribution. The emergence of bistability is associated with
the subcritical Andronov-Hopf bifurcation, while the supercritical bifurcation supports
monostability. The type of the bifurcation can be determined by the calculation of the first
Lyapunov coefficient [54,55] which could be one of the directions of the further investigation.
Other possibilities include consideration of a broader class of frequency distributions,
including non-unimodal ones.
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