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Preface to “Computational Methods and Applications
for Numerical Analysis”

The rapid development in computer technology has provided the direction for utilizing computational
methods to solve complex engineering problems through numerical analysis. With their immense computing
power and storage capabilities, computers have made it possible to perform numerical computations and
simulations with high accuracy and reliability. The development of computational methods for numerical
analysis can be traced back to the early 20th century. Over time, as computer hardware and software have
advanced, researchers have devised more high-performance computing techniques to enhance the accuracy and
reliability of computations. The most commonly used numerical algorithms include the finite element method,
the boundary element method, meshless methods, and the neural network algorithm, among others.

The applications of computational methods and numerical analysis encompass a wide range of disciplines
and fields. Numerical analysis has extensive applications in science and engineering. It enables the simulation
and analysis of complex systems, including structural mechanics, fluid dynamics, acoustic wave propagation,
electromagnetic fields, etc. Furthermore, it is significant in computer science and artificial intelligence, such as in
image processing, pattern recognition, machine learning, and neural network construction, and it facilitates the
solving of complex optimization problems, the training of neural networks, and autonomous decision-making.
By utilizing numerical computations, researchers and practitioners can address complex mathematical problems,
simulate and predict various phenomena, optimize system designs, and provide decision support. The broad
scope of numerical analysis highlights its indispensable role in furthering scientific knowledge and technological
advancements.

The present book contains the 20 articles accepted for publication to the Special Issue “Computational
Methods and Applications for Numerical Analysis” of the MDPI “Mathematics” journal. The 20 articles,
which appear in the present book in the order that they were published in, Volumes 10 (2022) and 11 (2023)
of the journal, involve the theory, algorithms, programming, software, numerical simulation, and/or novel
applications of computational methods to solve problems in engineering, science, and other disciplines related
to computations. These topics include finite element methods, finite difference methods, meshless/meshfree
methods, physics-informed neural networks, interpolation, approximation, optimization, numerical methods
for ordinary/partial differential equations, etc. Their applications include crack propagation, acoustic analysis,
elastodynamic analysis, free vibration analysis, structure and topology optimization, fractional equations, the
eigenvalue problem, inverse problems, etc.

Numerical analysis is an increasingly important link between pure mathematics and its application in
science and technology. It is hoped that the book will be interesting and useful for those working in the area of
numerical analysis, as well as for those with a proper mathematical background and willing to become familiar
with novel applications of computational techniques, which have rapidly developed nowadays.

As a Guest Editor of the Special Issue, I have had the privilege of working with and contributing to the
MDPI “Mathematics” journal, and it has been a valuable experience. Furthermore, I am grateful to the authors
of the papers for their outstanding research work, to the reviewers for their valuable comments toward the
improvement of the submitted works, and to the administrative staff of the MDPI publications for the support

to complete this project.

Fajie Wang and Ji Lin
Editors
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Abstract: A localized virtual boundary element-meshless collocation method (LVBE-MCM) is pro-
posed to solve Laplace and Helmholtz equations in complex two-dimensional (2D) geometries.
“Localized” refers to employing the moving least square method to locally approximate the physical
quantities of the computational domain after introducing the traditional virtual boundary element
method. The LVBE-MCM is a semi-analytical and domain-type meshless collocation method that is
based on the fundamental solution of the governing equation, which is different from the traditional
virtual boundary element method. When it comes to 2D problems, the LVBE-MCM only needs to
calculate the numerical integration on the circular virtual boundary. It avoids the evaluation of
singular/strong singular/hypersingular integrals seen in the boundary element method. Compared
to the difficulty of selecting the virtual boundary and evaluating singular integrals, the LVBE-MCM
is simple and straightforward. Numerical experiments, including irregular and doubly connected
domains, demonstrate that the LVBE-MCM is accurate, stable, and convergent for solving both
Laplace and Helmholtz equations.

Keywords: localized meshless collocation method; virtual boundary element; fundamental solution;
Laplace equations; Helmholtz equations

MSC: 35]J05; 35]25; 65N35

1. Introduction

The boundary element method (BEM) [1,2] is a well-known numerical method that
has become an alternative to domain methods such as the finite element method (FEM) [3,4]
for the simulation of certain physical problems. The core of this method is to accurately
solve singular integrals, especially nearly singular, strongly singular, and hypersingular
integrals, among others. Substantial efforts have been devoted to developing and applying
efficient estimation techniques for such integrals. Lutz [5] proposed a special Gaussian-type
numerical integral to calculate the singular and nearly singular integrals. Johnston and
Elliott [6] proposed a sinh transformation to evaluate nearly singular integrals. Niu and
Zhou [7,8] suggested that the asymptotic expansion of the kernel function with respect
to the local co-ordinates should be employed to address singular integrals. Besides these
methods, there are other techniques that can be used to deal with various singular integrals.
Although they were proven to be the effective strategies, these methods are often time
consuming, tedious, and expensive.

In recent years, the virtual boundary element method (VBEM) [9-13] has been pro-
posed to overcome the above shortcomings. The VBEM introduces the virtual boundary
to avoid the calculation of singular integrals and inherits the semi-analytical and high-
accuracy features of the BEM. Sun and Yao [14] used the VBEM to successfully solve

Mathematics 2022, 10, 833. https:/ /doi.org/10.3390/math10050833
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thin plate elastic obstacle problems. Yao et al. [10,15] used the VBEM to simulate mag-
netoelectroelastic and piezoelectric problems. Yang et al. [16] and Liu et al. [17] resolved
three-dimensional inverse heat conduction problems using the VBEM. As a boundary-
type scheme with global discretization, however, the VBEM encounters challenges when
simulating large-scale and/or high-dimensional problems.

More recently, the localization of boundary-type meshless methods have received con-
siderable attention, and various localized meshless methods [18-23] have been proposed
to solve mathematical and mechanical problems, such as the generalized finite difference
method (GFDM) [24,25], the localized method of fundamental solutions (LMFS) [26,27], the
local knot method (LKM) [28,29], and the localized singular boundary method
(LSBM) [30,31]. Unlike traditional boundary-type methods, these methods are not only
simple, accurate, and easy-to-program, but also suitable for large-scale simulations in
complicated domains. On the other hand, boundary-type meshless methods encounter
many difficult issues. Similar to the fundamental solution method, the VBEM uses fun-
damental solutions as the basis functions and requires a virtual boundary outside of the
physical domain to avoid source singularity. The selection of this artificial boundary is still
a well-known tricky issue in spite of the great deal of effort that has been made to address
this problem [32,33], especially in terms of complex geometries.

Motivated by the above works using localized methods, we establish a localized
numerical framework for the VBEM in this paper, which we called the localized virtual
boundary element-meshless collocation method (LVBE-MCM). The accuracy and effec-
tiveness of the LVBE-MCM was verified via its ability to solve Laplace and Helmholtz
equations in complex 2D domains. In the traditional VBEM, it is difficult to determine the
position and shape of virtual boundaries in the complex domain because these boundaries
have a certain impact on the calculation accuracy. On the contrary, the LVBE-MCM only
uses the circular virtual boundary during the local approximation, and it is insensitive to
the location of the boundary. Furthermore, the resulting LVBE-MCM system is sparse and
can thus be easily solved using an ordinary computer. This also means that the method has
certain application prospects for solving large-scale problems.

The rest of the paper is organized as follows: In Section 2, the considered problem
is briefly introduced. Section 3 describes the detailed numerical procedure for the LVBE-
MCM. Section 4 develops an augmented moving least squares approximation using the
fundamental solutions. In Section 5, two numerical examples are provided to confirm the
effectiveness and applicability of the proposed method. The conclusions are summarized
in Section 6.

2. Preliminaries

Let Q) € R? be an open bounded domain surrounded by the boundary I' = 9Q), which
is assumed to be piecewise smooth, and consider the following boundary value problem:

Lu(x) =0, x € Q, 1
u(x) = f(x), x € I'p, )
ou(x)
on :g(x)r x €Ty, (3)
ou(x)
au(x)+ B - h(x), x € Tg, 4)

where L is the Laplace (L = V?) or Helmholtz (L = V? + A?) operator, A is the wave
number, n is the unit outward normal vector, « and  are constants, and f(x), g(x), h(x)
are the provided smooth functions on the boundaries. Here, I'p, I'y, and I'g represent the
Dirichlet, Neumann, and Robin boundaries, respectively.
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The fundamental solutions for the Laplace and Helmholtz operators are determined

by [34] .
u*(r) = 5 In(r), for Laplace operator (5)
u*(r) = iHél)(/\r), for Helmholtz operator 6)

where r denotes the Euclidean distance between the field point and the source point, and
Hé1> is a zero-order Hankel function of the first kind.

3. Localized Virtual Boundary Element-Meshless Collocation Method

First of all, the N = n; + 1y + ny + ny3 discrete nodes x(), i =1,2,..., N are placed
over the computational domain (), where 7; is the number of nodes inside the domain, and
np1, Ny, and ny3 indicate the number of nodes along the Dirichlet, Neumann, and Robin
boundary, respectively. Considering an arbitrary node x(i), which is also known as the
central node, its m supporting nodes x( i) ,j=1,2,...,mcan be determined based on the
nearest nodes. At the same time, the local supportlng domain Q) covering m+1 nodes
can also be determined, and its virtual boundary I') can be specified at a certain distance

from the boundary of the supporting domain. For 2D problems, this boundary is a circle.
Figure 1 shows the schematic diagram of the LVBE-MCM.

—_— 2 Virtual boundary
\./"/ . .
. L e N ® Central nodes

. Supporting nodes

v+ Virtual boundary elements

®
——"

Supporting domain
Figure 1. Schematic diagram of the LVBE-MCM for the 2D problem.

In the present study, the virtual boundary is discretized by M exact geometrical
elements, and the physical quantity is approximated by the constant element. Using x(()l> to
represent 1), the unknowns at nodes x](.’) ,j=0,1,...,m are expressed as

u(xf") = [, w0 @arl” = 2 o [y o, 5 eall j=o1,.m, )

where u* (x]@, ¢) is the fundamental solution of the governing equation, and ¢(¢) is the

distribution density function associated with the virtual boundary '), Equation (7) can be
rewritten in the following matrix form:

uld — G0 g0, ®)

For the above local approximation, the moving least squares (MLS) can be employed

to obtain the unknown coefficient vector ¢() = [gogi), (pgi) s (pﬁ] , resulting in

o) = H0y, ), )
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. (@) . . . (i) . P .
Replacing x jin Equation (7) with x'*, the following formula is yielded:

D) _ 3 0 ) B gr® _ g i
u(x(’)> = kzl P /rm u*(x(’),(j)dl"k = E(’)q)(’). (10)
= Tk
Then, substituting Equation (9) into Equation (10), we obtain
u(x(i)) — EO @, 0 = pd)y,0), (11)

If x) is a node on the boundary, the normal derivative can be calculated by

ou(x()
on

where N(’) = ]’lllfl(i) +...4+ i’ldlftsi), and

- N(i)(p(i) = NOHO L0 = iy, (12)

) . s (0) L (i) . #(x(0) ;
i =\ [, W) g, L W8 grlo L WELE) gr| =1, (13)
ry Bxl(l) ry E)xl(Z> Ty ax]m

In the above equations, 111, . . ., n; denote the components of the vector 1, and x@ P x‘(p
denote the coordinate components of the node x(),
Taking all of the nodes x@D, i = 1,2,...,N and the boundary data provided in

Equations (2)-(4) into account, the following overdetermined equations can be obtained:

w— FOul) =0,ic{1,2,...,m}
ui:fir iG{ni+1,...,ﬂi+nb1}
EODu) =gi i {nj+mpy+1,..., 04 ny +npy}
auy + EDul® =0, i€ {nj+my +mp+1,...,N}

or Au =10, (14)

T
where 1 = [u(x(l)), u(x@), ..., u(x(N))] , by is a vector composed of zero elements
and boundary data, and Ay is a sparse matrix. Equation (14) is a well-conditioned
system, and in this work, it is solved by MATLAB routine “A\b”.

4. Augmented Moving Least Squares Approximation

The moving least squares approximation is a widely used technique in various mesh-
less/meshfree methods. In this study, the fundamental solutions are introduced into the
traditional moving least squares method, and we then developed the augmented moving
least squares approximation, which is similar to the one outlined in [35]. According to its
basic idea, the vector a(’) is deduced by minimizing the following functional equation:

Jul) = (qujm _ u<1)> w® (Gm(p(z) _ um), (15)
where w(l> = dlag (wéi>,w§f), e ,W;(;I,)>, and
0 = 1= 6(dj/dmax)” +8(d;/dmax)’ — 3(d;/dmax)* (16)
i ]/ Fmax j/ “max j/ Gmax) »

; : — 1D i —
in Equation (16), d; = Hx]. —x ||2 and dmax = j:g}laim(dj).

Hence, we have

aJul) _ 2[69) w60 —2[GH]

(1), =
agu(’) w'u 0. 17)
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By calculating and reorganizing Equation (17), we can obtain a system equation in
matrix form:

PW ) = oy (), (18)
where P() = {G(i)] Ta)@G(i), and QU) = [G(i)] Tw(i). Solving Equation (18) yields ¢() =

-1 ) -1
{P(Z)} Q(l)u(’); hence, H() in Equation (9) is equal to [P<'>] Q('). It should be pointed

out that we used MATLAB'’s mldivide (matrix left divide) function (P(i)\Q(i)) to obtain
H) instead of the matrix inversion.

5. Numerical Examples

Two numerical examples are provided to demonstrate the effectiveness and accuracy
of the proposed method. To evaluate the numerical errors, we adopt the maximum absolute
error (MAE) and the root-mean-square error (RMSE), which are defined as follows:

MAE = 1rgni_aé):li|un(x]‘) —ue(x;)], (19)
RMSE = J nli (1 (%)) — 1e(x)))?, (20)
ii=1

where u, and u, represent the numerical and analytical solution at node xj, respectively.
All computations were performed using MATLAB 2018b on a desktop PC (Intel® Core
TMi7-6700 CPU at 3.4 GHz, 16G RAM, and Hard Disk-500G).

Example 1. Consider a Laplace equation on an irregular domain with mixed boundary conditions.
The geometry and boundary conditions are shown in Figure 2. For the Robin boundary condition,
« = land B = 5. The analytical solution is obtained by

1(x1,x2) = cos(xq) cosh(xp) + sin(xy)sinh(x;) + €1 cos(xp) + %2 sin(x1) + x1%2 — x2% + 2% + 3x5 + 1. (21)

2

Figure 2. Computational domain and boundary conditions for Example 1.

First of all, N = 6784 nodes are chosen, and 8 Gaussian points are used. It can be seen
from Figure 3 that the numerical error first decreases and then increases as the number of
virtual elements increases, meaning that high computational accuracy has been achieved.
Then, M = 15 is fixed. From Figure 4, we can observe that the number of Gaussian points
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has little effect on the calculation accuracy, and therefore, fewer Gaussian points can be
used in the calculation.

—8—MAE

—=—RMSE

Errors

8 10 12 14 16 18 20
Number of virtual boundary elements

Figure 3. Error curves with respect to the number of virtual elements.

107 - ‘ : - - -
—e—MAE
—=—RMSE
107 ’/‘—\/\W
@ 5
;
=
108t
10°° . \ . . . .

2 4 6 8 10 12 14 16
Number of Gaussian points

Figure 4. Error curves with respect to the number of Gaussian points.

The LMFS and GFDM are recently developed meshless approaches that are very
similar to the present LVBE-MCM. In Table 1, these two methods are compared to the
proposed approach. It can be observed that all methods are convergent. Although the
LMFS and LVBE-MCM have similar numerical accuracy, the latter is slightly better than
the former.

Table 1. The RMSEs derived from the LVBE-MCM, LMFS, and GFDM under different numbers of

total nodes.

N 448 765 1211 2592 4475 6784
LVBE-MCM 5.3674 x 1077 3.7938 x 107 2.7616 x 107 1.2551 x 1077 3.4856 x 1078 8.9528 x 107
LMFS 1.4072 x 10~ 4.7048 x 10~7 4.3495 x 1077 1.3170 x 10~7 1.4663 x 1077 9.8769 x 10~8
GFDM 2.6038 x 1073 42642 x 107° 3.3704 x 107° 1.6361 x 107° 4.1832 x 1077 1.3909 x 1077

Example 2. A Helmholtz equation on a doubly connected domain (see Figure 5) is considered. The
boundary conditions are specified by the analytical solution u(x1, xp) = cos(x1/2-++/3x2/2) with
A=1
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3%}

—1F

x

&

-2 -1

0

X

—

Figure 5. Computational domain and boundary conditions for Example 2.

The profiles of the exact solution and absolute error in the computational domain
under N = 1840 and M = 15 are shown in Figure 6. The maximum absolute error and the
root-mean-square error are 3.3238 x 107 and 6.4048 x 107, respectively. This indicates the
high-accuracy of the proposed method. Furthermore, it can be observed from Table 2 that
the LVBE-MCM has higher numerical accuracy than the LMFS when the same number of
sources and elements is adopted.

-1.5 -10 0.5 0.0 0.5 1.0 L5

(a) Analytical solution

-5

-1.0

-0.5 0.0 0.5 1.0
(b) Absolute error

1.5

1.0
09 10 24x10®
0.8 271072
0.7 20x10°*
o6 05 1.8x10°*
= gi 16x10°
03 00 14x10°
0.2 12x10°%
0.1 1.0x107
00 05 8.0x10”
0.1 6.0x107
02 g 4.0x107
:gj 2.0x10°

Figure 6. Profiles of the (a) exact solution and (b) absolute error.

Table 2. The RMSEs derived from the LVBE-MCM and LMFS under different elements or sources.

M 10 15 20 25 30 35
LVBE-MCM 3.6573 x 107 6.4048 x 10~° 11714 x 10°8 57849 x 10°8 51474 x 10°8  4.8111 x 10~8
LMFS 14772 x 1075 1.3537 x 1078 3.5835 x 10~ 8 7.4075 x 10~8 6.5249 x 108 6.7892 x 10~8
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6. Conclusions

The localized virtual boundary element-meshless collocation method (LVBE-MCM)
was proposed as a novel domain-type meshless method that could be used to solve Laplace
and Helmholtz equations in complex 2D geometries. In this work, the traditional virtual
boundary element method with a global approximation was modified to a local approxi-
mation approach by introducing the moving least square method and local approximation
theory. Numerical integrations are only required on the circular virtual boundary; thus, the
exact geometry elements are convenient to use. The proposed LVBE-MCM avoids the need
to evaluate the singular/strong singular/hypersingular integral in the boundary element
method and has a higher calculation accuracy than the LMFS.

Two examples involving irregular geometries and doubly connected domains were
investigated in detail. The numerical results indicate that the LVBE-MCM is accurate
and effective for solving Laplace and Helmholtz equations in complex two-dimensional
geometries. The number of Gaussian points has a little effect on the calculation accuracy,
and therefore, fewer Gaussian points can be used in the calculation. Moreover, the scheme
is convergent with respect to increasing the number of total nodes. It is worth noting
that the proposed method can be directly extended to other partial differential equations
with known fundamental solutions, such as diffusion equations, Stokes equations, and
biharmonic equations.

It should also be pointed out that this paper investigates the accuracy and convergence
of the LVBE-MCM numerically. Unlike the difference method and Taylor expansion, it is
not an easy work to formally prove the convergence and stability of the LVBE-MCM since
there are few related assumptions and theorems on approximation techniques that use the
fundamental solution and the augmented moving least squares scheme. Consequently, a
theoretical analysis of the LVBE-MCM will be the key issue in our subsequent work.
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Abstract: Traditional topology optimization of thermo-elastic structures is based on deterministic
conditions, without considering the influence of uncertainty factors. To address the impact uncer-
tainty on structural strength, a reliability-based topology optimization of thermo-elastic structure
with stress constraint is proposed. The probabilistic uncertainty quantities are associated with the
structural material property, mechanical loads and the thermal stress coefficient with the topology
optimization formulation considering volume minimization and stress constraint. The relaxation
stress method combined with normalized p-norm function is adopted to condense whole element
stresses into the global stress measurement that approximates the maximum stress. The adjoint
variable method is utilized to derive the sensitivity of the stress constraint and the optimization
problem is solved by the method of moving asymptote (MMA). Finally, several numerical examples
are presented to demonstrate the effectiveness and validity of the proposed approach. Compared
with the deterministic design, the reliability design has distinct topological configurations and the
optimized structures maintain a higher reliability level.

Keywords: thermo-elastic structure; topology optimization; reliability analysis; stress constraint
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1. Introduction

Various mechanical parts, such as turbines, rockets and battery systems, are subjected
to both thermal and mechanical loads because of the working environment with coupled
temperature and structural fields. In this scenario, it is necessary for the thermo-elastic de-
sign to consider the temperature factor’s impact on structural strength to prevent structural
failure [1].

In recent years, topology optimization methods are widely used in thermo-elastic
structure design, including the variable density method, the homogenization method,
the evolutionary optimization method, the level set method, etc. Rodrigue et al. [2] first
proposed the topology optimization of thermo-elastic structures by the homogenization
method. Du et al. [3] performed the topology optimization of thermal-driven compliant
mechanisms by the variable density method. Li et al. [4] conducted a study on the optimal
design of thermo-elastic structures under the non-uniform temperature field based on the
evolutionary optimization method. Deng et al. [5] used the level set method to derive the
topological sensitivity information for the thermo-elastic structures. Most of the studies
in the above-mentioned literature are based on the compliance minimization, while the
strength is an essential design criterion in engineering practice. Recently, it has been stated
in Ref. [6] that the topology optimization model of compliance minimization is not suitable
for thermo-elastic topology optimization, because when the temperature load is comparable
to the mechanical load, compliance minimization cannot obtain an optimal structure with
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reasonable strength. More researches have illustrated that simple reinforcement techniques
cannot sufficiently solve the problem of thermo-elastic structural strength failure caused by
destructive stress [7]. Therefore, stress-based topology optimization design is necessary
and has been gradually emerged.

Topology optimization related with stress constraint is the most challenging research
field. This is mainly due to the following three problems: (i) the singularity problem, (ii) the
local nature of stresses, and (iii) the highly nonlinear behavior of stress constraints [8].
According to the relevant literature, there are some efficient approaches to deal with the
above-mentioned problems. Regarding the singular phenomenon, the commonly used
methods include e-relaxation techniques [9,10], qp-relaxation techniques [11,12], etc. For
the local nature of stress, local stress constraints are transformed into global stress constraint
by using aggregation function, including the p-norm [13,14] and KS-function [15]. In ad-
dition to the above numerical problems, the third challenge is the highly nonlinear stress
behavior wherein stress distribution is highly sensitive to even subtle topological variations,
particularly at critical regions with high stress concentration [16]. This feature is reflected
in the tendency of the optimization iterations to have repeated oscillations. To stabilize the
convergence, a density filtering method and suitable optimization solution algorithm were
adopted by Le et al. [17]. Recently, Deaton et al. [18] investigated the topology optimization
problem of thermo-elastic structures under stress constraint. However, the above studies
on topology optimization considering stress constraint are based on deterministic topology
optimization (DTO). In practical engineering, the material properties and the mechanical
loads are often uncertain due to the differences of the internal conditions and the time-
varying nature of the external environment. These uncertainties maybe affect the reliability
of the structural performance and even lead to failure [19-21]. Thus, reliability-based
topology optimization (RBTO) is becoming more and more prominent.

According to the different mathematical tools used to describe the properties of un-
certainty, uncertainty can be divided into stochastic uncertainty and epistemic uncertainty.
The former describes the inherent variability in the physical system or working envi-
ronment, also known as objective uncertainty, and usually uses probabilistic methods to
model random variables or stochastic processes, while the latter is mainly due to sub-
jective knowledge limitations or incomplete information. The resulting, also known as
subjective uncertainty, can be modeled by non-probabilistic methods such as fuzzy anal-
ysis [22]. Therefore, reliability topology optimization considering uncertainty conditions
is mainly divided into probabilistic and non-probabilistic types. At present, the research
on reliability topology optimization design with random variables as a probability dis-
tribution is relatively mature. Kharmanda et al. [23] first combined structural reliability
analysis with deterministic topology optimization and established an effective reliability
flowchart for structural strain energy minimization. Jung et al. [24] investigated the re-
liability topology optimization for the three-dimensional geometric nonlinear structure
design. Zhao et al. [25] studied the multi-material topology optimization problem with
reliability constraints considering the effects of incomplete measurement of structures,
inaccurate information, and insufficient cognition on structures. For practical engineering
applications, Silva et al. [26] adopted a single-loop topology optimization mathematical
model of components and systems and applied it to the design of automotive control arms,
and the results showed that the method has good practicality and efficiency.

To the author’s knowledge, this is the first attempt to reliability-based topology opti-
mization of thermo-elastic structure with stress constraint. The material property, thermal
stress coefficient and mechanical loads are chosen as uncertainty variables with the prob-
ability distributions. Based on probability theory, the structural topology optimization
design method considering stress constraint is combined with the existing reliability struc-
tural topology optimization model [27]. A reliability-based topology optimization design
method for thermo-elastic structures under global stress constraint is proposed. The RBTO
and the DTO design are compared to verify the effectiveness and feasibility of the pro-
posed method.
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2. Finite Element Formulation of Thermo-Elastic Structure

Figure 1 illustrates the generalized design domain () for the thermo-elastic structure
problem, which consists of the predefined design domain containing the fixed displacement
boundary Iy, surface mechanical load F" applied on the boundary I';, and the uniform
temperature variation AT(x, y). In addition, the isotropic material is considered and
the design domain is discretized into quadrilateral elements and eight-node hexahedral
elements in 2D and 3D problems, respectively.

N\ p—
o= &
T)esignah]e)l"( S \

material x AT(x, y) !
r 4

N Y e
s /- /7\.,,
Figure 1. Generalized design domain of thermo-elastic structure.

For the thermo-elastic structure coupled with temperature and mechanical loads, the
static equilibrium equations can usually be expressed as

K(p)U(p) = F" + F"(p) &)

where p is the density variable vector, K(p) is the structural global stiffness matrix, U(p) is
the structural nodal displacement vector, F"* is the mechanical load vector, and F(p) is the
temperature load vector due to thermal strain. The stiffness matrix K(p) is assembled by

Ne .
K(p) = ;1 | / o BIDe () Behd, ®

where N, is the total element number, (), represents the element domain, /1 is the thickness
of the planar element, B, is the element strain-displacement matrix, D, (p.) is the material
elasticity matrix of element e [28]. Adopting the SIMP material interpolation method, D, (p.)
can be expressed as a function of the material elastic modulus, defined by

D, (o) = E(pe)Do = pe”"EoDo 3

where E(p,) is the elastic modulus of element ¢, « is the elastic modulus penalty factor, Ey is
the elastic modulus of the solid material, Dy is the coefficient matrix for an element with
unit elastic modulus.

The temperature load F(p) can be assembled by accumulating the element tempera-
ture load, defined as

Ne
Fl'(p) = ZE(PE)/Q B."Doe.™ (0 )dQ *)
e=1 e
where
£fth(Pe) = 7(pe)AT %)

where sgfh(pg) is the thermal strain vector for the element, y(p,) is the material thermal
expansion coefficient, AT is the amount of uniform variation of the temperature, ¢ is
defined as [1, 1, 0] T in 2D problems and [1, 1, 1, 0, O, 0]T in 3D problems. Substituting
Equation (6) into Equation (5) yields

It is noted that E(p.) and y(p.) are both concerned with the element density variables.
Hence, by using the thermal stress coefficient (TSC) [29], the parameters are combined into
the single thermal stress coefficient, defined as
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8(pe) = E(pe)vpe) = p Eavo = pe*do ©)
where v is the expansion coefficient of the solid material, k is the thermal stress penalty

factor, 0y is the thermal stress coefficient of the solid material.
Substituting Equations (5) and (6) into Equation (4), Fth (p) can be expressed as

Ne
Fl'(p) = Y 6(0.)AT / B. Do, @)
e=1 J Qe

3. Deterministic Topology Optimization of Thermo-Elastic Structure
3.1. Mathematical Model of Deterministic Topology Optimization

With regard to the deterministic topology optimization of the thermo-elastic structure
problem, the volume minimization and stress constraint are considered to satisfy the static
strength failure and lightweight design. The deterministic topology optimization of the
thermo-elastic structure can be established as

find p
Ne
min V(p) = El 0eVe
st.K(p)U(p) = F" + F’h(p) ()]

M) <o (e=12,...,N.)
0 < Pmin < pe <1e=1,2,...,N)

where p is the density variable vector, V(p) is the overall structural volume, v, is the element
volume, o,"M(p) is the von Mises stress of each element, 0 is the material yield strength,
and 0, is the lower limit of the design variable.

3.2. Global Stress Constraint

The topological optimization of the stress-constrained structure appears as a singular
solution phenomenon, i.e., the density of the element tends to zero, yet the stress of the
element is a non-zero value. To solve the singular solution phenomenon, based on the
SIMP material interpolation model, the stress relaxation method is used to penalize the
element stresses in the form of

_ 9
UE(P) = Pe0e0 ( )

where o,(p) is the interpolated element stress, g is the intensity penalty factor, and o is
the stress vector at the center of the eth element, defined as

0.0 = Eo(DoB.U, — DgyopAT) (10)

where U, is the nodal displacement vector of the element. The element stress vector o in
2D and 3D problems is respectively expressed as
For 2D problems,
Oe0 = [Uex/ Oey, Texy} (11)

For 3D problems,
Te0 = [Uexr Oeyr Oez, Texy, Teyz, Tezx} (12)
where 0y, Tey and ¢, are the stress components in the x, y and z directions of element e,
respectively. Texy, Teyz, and Tezy are the shear stress components on the xy, yz, and zx planes
of the element ¢, respectively.
The fourth strength theorem is used as the failure criterion of the material, the von
Mises stress o.M of the element can be obtained from the three components of the element

stress vector, expressed as
oM =\ /oTMo, (13)

The Stress coefficient matrix M, in 2D and 3D problems are respectively expressed as

14
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For 2D problems,
1 -1/2 0
For 2D problems, M = | —1/2 1 0 (14)
0 0 3
For 3D problems,
1 -1/2 -1/2 0 0 O
-1/2 1 -1/2 0 0 0
| -1/2 —1/2 1 0 0O
M= 0 0 0 300 (15)
0 0 0 0 30
0 0 0 0 0 3

In order to reduce the problem of computational burden caused by numerous local
stress constraints, the p-norm function is adopted to construct the global stress constraint,

denoted as .
Ne /o VMN\ P\ ¥
N = Z( - ) (16)
e=1 s

where p is the aggregation parameter. Note that p tends to infinity, and ¢V is equivalent to
max(c.YM /o). The stress constraint is equivalent to the global stress constraint, defined as

ofN <1 17)

However, when p enlarges, the degree of nonlinearity of the aggregation function
increases that leads to oscillation convergence in the optimization process. Otherwise,
with smaller p, the aggregation function cannot capture the maximum of the stress [30].
To overcome this defect, a revised coefficient is introduced into the constraint equation,
expressed as

o'N =N <1 (18)
where c is the revised coefficient, and before each optimization process, is defined as
max (o M) 19)
c= —————~
o5 - 0PN
4. Reliability-Based Topology Optimization of Thermo-Elastic Structure
4.1. Reliability-Based Topology Optimization Problem Description

Reliability is an important property reflecting the degree of structural safety [31].
The reliability-based optimization design measures the uncertainty of the structure by the
failure probability or reliability index. While pursuing the optimal structural performance,
it reduces the probability of the structure failure under the influence of uncertain factors,
thereby improving the safety of the structure. Reliability-based topology optimization is a
combination of reliability analysis and deterministic topology optimization design, aiming
to integrate the problem of structural optimization and reliability constraint. The RBTO is
slightly different from the traditional reliability structure optimization, and the variables
are mainly divided into deterministic variables and random variables. The deterministic
variables are used to characterize the physical density p (in the case of the variable density
method), which are the design variable for topology optimization. And the random
variables Y, which are used to characterize the structural uncertainty factor, are continuous
variables. This paper mainly studies random uncertain variables, such as the material
properties of structures, loads, etc., which are suitable for using probability theory to
describe their distribution characteristics [32]. In order to facilitate the calculation, it is
generally necessary to standardize the non-normally distributed random variables into
mutually independent standard normal random variables #.
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4.2. Mathematical Model of Reliability-Based Topology Optimization

Based on the above description of the random variables, a mathematical model for
reliability-based topology optimization of thermo-elastic structure is established. Consider-
ing a general RBTO formulation, the stress constraint of Equation (8) is simply transformed
into a probabilistic constraint, as follows

find p
N,
min 'V (p) = leeve
=
s.t. P[G(p,Y) < 0] = Py < P} (20)

Pf = .fcgon(]/)dyl edyn
0<pmin <pe<lle=12,...,Ne)

This optimization model is expressed as finding the optimized structural configuration,
i.e., minimizing the overall structural volume under the reliability stress constraint. Y is
a vector of random variables, G is a limit state function, fy (y) is the joint probability
density function of Y, P; is the probability sign, Pfis the failure probability, obtained by
multidimensional integration, and Pf" is the value of the permissible failure probability. In
reliability analysis, the limit state is defined as G (p, Y) = 0, the failure state and the safety
state are G (p, ¥) <0and G (p, Y) > 0, respectively.

In practical engineering, it is difficult to solve the multidimensional integral to obtain
the exact probability density distribution. Therefore, approximate analytical methods are
generally used to calculate the failure probability, such as the first order second moment
method [33] and the first order reliability method [34]. The first order reliability method is
selected in this paper to approximate the failure probability.

According to the stress intensity interference theory [35,36], this paper characterizes
the limit state function, G, in terms of the load-bearing capacity of the structure, denoted as

G(p,Y)=R—S=05—0"M(p,Y) (1)

where R denotes the structural resistance and S denotes the load variable. In this paper,
we consider the possibility that the random variables may cause the von Mises stress
somewhere in the structure to exceed the yield strength limit of the material, thus causing
the structure to fail. So here R is denoted as the yield strength o5 of the material and S is
denoted as the von Mises stress o,"M (p, Y) of element. G > 0, the structure is reliable, G <0,
the structure fails, and G = 0, the structure is in the limit state.

If both R and S obey normal distribution, their mean and variance are ¢g, ¢s and oy,
s, respectively. Then G also obeys normal distribution, and let its mean and variance be
@G and o, respectively. Therefore, the failure probability can be expressed as

P;=Plo, —0/M(p,Y) < 0] = & LS PR _ :<1><—@> (22)
r = Prl p ] (@ +02)" o

where @ is the standard cumulative distribution function.

Introducing the reliability index , let be

_ %c
B= = (23)

Using the first order reliability method, the calculation of the probability of failure is
converted into a measurable reliability index §, which is specifically expressed as the mini-
mum distance from the origin to the limit state function in the normalized space (1 space)
with the most probable point (MPP) being searched, as shown in Figure 2. According to
the corresponding relationship of the failure probability and the reliability index in the
first order reliability method, the failure probability constraint can be transformed into the
following reliability index constraint
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Py =®(-p)
Pf = ®(—p") (24)
P <Pr=p>p

where % is the target reliability index, and the intersection point u* is the design point,
also known as the most probable failure point (MPP). The random variable ¥ needs to be
normalized into an independent standard normal random variable u, expressed as u = T(Y),
or Y = T '(u). In the standard normal space, u is given by the following expression,
defined as

_ Y-y
s

u (25)

where @y, and o, are the vector of mean values and the standard deviations associated with
Y, respectively.

u, .
Op.u)<0
Failure area
Op.u) >0
Safety area
u"(MPP)
* fmmmmmmm———— Olp.u)=0
u, : Limit state
|
i
I
S i
I
i -
*
u] ul

Figure 2. Geometric description of reliability index in standard normal space.

After the above transformation, in the standard normal space, the limit state function
is then transformed into

Glp.Y) = G((p, 7' (w) ) = Qo) (26)

4.3. Reliability-Based Topology Optimization for Thermo-Elastic Structures

The design variables and random variables in the reliability-based topology opti-
mization are respectively assigned into deterministic topology optimization and reliability
analysis and are independent of each other, which leads to the reliability-based topology
optimization computation intensively and makes it difficult to converge [37]. Therefore,
the proposed predecessor-decoupling hybrid method is adopted that decomposed the
RBTO problem into two successively independent design processes that the deterministic
topology optimization and reliability analysis.

In the reliability analysis, the MPP point u* is obtained by solving the following
mathematical model according to the geometric meaning of the reliability index g in
Figure 2.

min lul) = B = \/Ti?
s.t.p(u) > p*

The sensitivity of the reliability index concerning the normal random variable can be
expressed as

27)

-1/ .
g—fi = %(Zuﬂ ! 22u,~ = % (28)
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The sensitivity of the objective function with respect to the chosen means of random
variables can simply be calculated using the classical finite difference approach, written as
a(/)yi Aq’y; A(Pyl
where ¢,; and ¢; are the mean value and standard deviation of the random variable
vy, respectively.
According to the above sensitivity calculation result, the revised random variable y*
through Rosenblatt inverse transform, is defined as

* _ * 1%
Yi = Py T U0y, 5420
* * oV
Yi =Py — Uiy, 3 =0

(30)

5. Sensitivity Analysis

The sensitivity of the structural volume respect to the element density can be obtained
by the direct differentiation method, defined by

aV(p) _
3pe =7 (31)

The sensitivity information of the stress relative to the element density is obtained
by the adjoint variable method. The Lagrangian function C of the stress is constructed by
introducing the Lagrangian product factor as

C=c"N AT (K(p)u —F" - F*h(p)) (32)

The sensitivity of the Lagrangian function with respect to the element density is
derived as

—~PN 1 th
aC _AT<8K(p) K(p ou  9F" oF (p)) 59

e Ope dpe 9. 9pe

According to the chain rule, it is easy to obtain the sensitivity corresponding the
element density p. as

=z

aEPN
=Y

dpe /

PN VM T
oo (BU'E )Btre (34)

9cYM\ 9o, ) 9p.

Il
-

From the above equation, the sensitivity information for solving the global stress can
be obtained by combining the derivative of the p-norm function with respect to the von
Mises stress, the derivative of the von Mises stress with respect to the stress component, and
the derivative of the stress component with respect to the design variable. This sensitivity
information is performed separately.

5.1. Derivative of the p-Norm Function with Respect to the Von Mises Stress

Taking the expression of Equation (16), the derivative information of the p-norm
function to the von Mises stress of each element can be obtained as

PN %(%VM>IJ ;I(U.EVM>P11 5
BO’BVM B e—1\ Us Os Os

5.2. Derivative of the Von Mises Stress with Respect to the Stress Component

For planar and spatial structural problems, the derivatives of element stress with
respect to the stress components are respectively described as

18
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For 2D problems,
aorM 4
W 2V (20ex — oey)
do/M 1
a}w = 20/M (Zo'ey - Uex) (36)
aﬂevM _ 3'[51}/
aTexy - ULyM
For 3D problems,
BUVM o 1
B;M = 2o/M (ZUex — Oey — Vez)
oM

- 1 _ _
ey 20/M (20’€y Oex Uez)

M
ez 20/M (2(782 — Oex — Uey) (37)
a(T(yM _ 3Texy
aTexy - ULVM
alTLYM — 3Texz
0Texz o
a%\/M — 3Tezx
OTezy LVPVM

5.3. Derivative of Stress Components with Respect to Design Variable

The derivative of the element stress component with respect to the density variable is
obtained as
J0, 1
ﬁ =qp!  Eo(DoBeUe — Dyyo@AT) + p! EoDoBe
e
Considering the loading independence, the derivative of the mechanical load F" on
the element density can be ignored, and combining Equation (35) with Equation (34) and
substituting it into Equation (33), we can obtain

au, ou,
ou dp,

(38)

Ne PN [ g0VM T 1
x zlcggm( ok ) 01 Eo(DoB.U, — DyyopAT)
e= e

h
—AT(Bely - Lol (39)

PN
{Z gUVM( Pras ) PeEODOBe ATK(P)} Bgc

In order to eliminate the unknown displacement sensitivity term, let the term contain-
ing oU/dp, be zero, then the adjoint vector equation is established as

N, PN VM
¢ oo q ou, T a0,
PIA = z ca VMPEEO(BU) B D0< 0 > (40)

Then the corresponding sensitivity is

New ooon fagvMN\T 41 -1
5 = Lo (%) ot Eoapl ™" Eo(DoBelle —DoyogAT)

9K oF!!
/\T( ap(g p) u-— apEP))

(41)

Combining Equation (4) information, the derivation of Equations (2) and (7) can
respectively obtain the sensitivity of stiffness matrix K(p) and temperature load vector
F'"(p), defined as

31;(] p) Zap?‘ 'E, / BTDyB.hdQ. (42)
¢ e=1 Qe
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ath N, »
ap(” ) _ Y kok16AT /Q BIDopdQ, 43)
(4 e=1 R e

6. Density Filtering

In order to avoid the phenomenon of checkerboard and intermediate elements in the
topology optimization results, the density filtering technology [38] is used to suppress the
problems that are defined as

1
==——F ) Hex; (44)
pe Yien, Hei iezl\:,c o
where p, is the element density, which is used to calculate the volume and stiffness matrix
of the element, x; is the design variable of the element, N, is the number of all elements
whose distance from the center of element e is less than the filter radius r,,;,,, and H,; is the
linear distance function, namely

Hyi = max(0, 7yin — Ae, 1)) (45)
where A(e, i) is the distance between the centers of element ¢ and element i.

The difference between the design variable x and the physical density p can be noted
here. The finite element model is parameterized using the density variable p, contained in
p. The density variable is now calculated by applying a density filter to the design variable
x. For sensitivity consistency, the following chain rule is used, where g is the objective or
constraint function

0 og 9 1 )
98 _ v 98 90 _ . jei (46)
0xj  ,ex; e 0% &R LieN, Hei " Ope

The method of moving asymptote (MMA) [39] is used to solve the reliability-based
stress-constrained topology optimization problem for thermo-elastic structures. Due to
the highly nonlinear behavior of the stress constraint, the optimization process is prone
to iterative oscillations and even non-convergence. To avoid non-convergence, then an
external move limit m is imposed on the MMA algorithm to limit the maximum absolute
value of the difference between the design variables updated during the current iteration
and the previous iteration step.

In summary, the design of the reliability topology optimization of thermo-elastic struc-
tures considering the stress constraint based on the hybrid precursor-decoupling format is
decoupled into two parts executed in separate sequences: the precursor reliability analysis
and the deterministic topology optimization. The specific process is: first, according to
the geometric meaning of the reliability index in the primary reliability method, seek the
design point that satisfies the target reliability index; then, according to the sensitivity
information of the random variable, modify the random variable and convert it into a
deterministic parameter; finally, the deterministic topology optimization design is carried
out. The specific optimization flowchart is shown in Figure 3.
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Figure 3. Flowchart of reliability topology optimization in hybrid format.

7. Numerical Examples

In this section, three numerical examples of reliability-based stress-constrained topology
optimization of thermo-elastic structures are selected to verify the effectiveness of the proposed
method. The selected materials are chosen with the Young’s modulus E = 2.1 x 10° MPa,
Poisson’s ratio y = 0.3, thermal expansion coefficient g = 12.1 x 107¢/°C. The p-norm penal-
ization factor is p = 8. The penalty factors are defined as « = 3, k = 3, and g = 0.8. The initial
element density values are taken as 1. The corresponding initial design domain volume is
Vo, and the ratio V/V of the optimized structure volume to the initial structure volume is
used as the objective function, and the temperature field is uniformly varying.

7.1. 2D L-Shaped Beam Structure

The design domain of the L-shaped beam structure is illustrated in Figure 4. The design
domain has dimensions of 120 mm x 120 mm with a thickness of 1 mm and is discretized
into 14,400 quadrilateral elements. The top end of the L-shaped beam structure is clamped
and the mechanical load F™ is applied to the upper right end of the structure, which is
uniformly distributed over six adjacent nodes to avoid stress concentration. The stress
constraint value for the structure is 235 MPa, and the amount of temperature change
AT =10°C.

-

72mm

48mm

— 48mm —f——— 72mm ——

Figure 4. Design domain of L-shaped beam.
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For the reliability analysis, the random variables are chosen as Y = (F", E, 50)T, and
assume that they obey normal probabilistic distribution. The mean value of mechanical
load, Young’s modulus and thermal stress coefficient are ™ = 280 N, ¢g = 2.1 x 10° MPa
and @0 = 2.541 MPa/°C, respectively. The variance is set to 5% of the mean value and the
permitted reliability index is set to 3.0.

The detailed evolution of the deterministic and reliable structures and the von Mises
stress distribution are shown in Figures 5 and 6, respectively, and the initial structural
maximum on the von Mises stress value is 246.82 MPa. The optimized deterministic
and reliable topological configurations and von Mises stress distributions are shown in
Figures 7 and 8, respectively. The corresponding topology optimization results are shown
in Table 1, and the reliability indexes are calculated using the Monte Carlo simulation
method, where uy, u, and u3 correspond to the standard normalized variable values of the
random variables F", E, and J, respectively.

(e) Iteration 80 (f) Iteration 100 (g) Iteration 130 (h) Iteration 150

Figure 5. Structural evolution for deterministic topology optimization with stress distribution (a-h).

;'. |
!
- ~ 1 u

|
LN/

(c) Iteration 30 (d) Iteratlon 50

(a) Iteration 1 (b) Iteration 10

1

(e) Iteration 80 (f) Iteration 100 (g) Iteration 130 (h) Iteration 150

1
AN

Figure 6. Structural evolution for reliability topology optimization with stress distribution (a-h).
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(@)

Figure 7. Deterministic topology optimization result of L-beam structure (14,400 elements): (a) Topo-
logical structure; (b) Von Mises stress distribution.

% i
@)

Figure 8. Reliability topology optimization result of L-beam structure (14,400 elements): (a) Topologi-
cal structure; (b) Von Mises stress distribution.

Table 1. Comparison of topology optimization design results.

Volume Reliability Computing Max Von Mises

Approach Fraction (%) Index (B) Time (s) Stress (MPa) MPP (a1, 1z, 113)
DTO 19.8 1.7759 x 1075 371.63 234.95 -
RBTO 24.3 2.9745 395.49 234.60 (1.7321,1.7321, 1.7321)

In addition, in order to illustrate that the number of elements in the divided design
domain has no obvious effect on the optimized topology, the design domain shown in
Figure 4 is discretized into 6400 quadrilateral elements, where the mechanical load F" does
not change, and is applied to the upper right end of the structure and uniformly distributed
over four adjacent nodes. The optimized deterministic and reliable topologies and von
Mises stress distributions are shown in Figures 9 and 10, respectively.

By observing Figures 5 and 6 and Table 1, it can be seen that the right-angle corner
of the initial structure is the stress concentration area, and the maximum von Mises stress
exceeds the material strength. The structure after deterministic and reliable topology
optimization not only reduces the maximum von Mises stress, but also meets the strength
requirements of the material, and the original stress concentration corner evolves into a
rounded structure, which alleviates the stress concentration phenomenon.
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@

Figure 9. Deterministic topology optimization result of L-beam structure (6400 elements): (a) Topo-

logical structure; (b) Von Mises stress distribution.

.

Figure 10. Reliability topology optimization result of L-beam structure (6400 elements): (a) Topologi-

cal structure; (b) Von Mises stress distribution.

The results for DTO and RBTO show very different optimal topologies, where DTO
is less reliable and therefore allows less margin for performance fluctuations and an in-
creased probability of structural failure when parameter variations that are considered as
random variables are considered. The topology obtained from RBTO uses about 4% more
material than DTO to make the structure meet the target reliability index. We also find
that RBTO obtains a slightly lower computational efficiency due to the need to solve the
MPP in the reliability analysis. In terms of the respective stress distribution, the RBTO
presents a more uniform stress distribution in the structure compared to the DTO, and the
structure is subjected to a smaller maximum von Mises stress value. Finally, comparing the
topological configurations in Figures 7 and 8 with Figures 9 and 10, respectively, it can be
seen that the deterministic and reliable topological configurations under different numbers
of elements are relatively similar, which indicates that the number of elements does not
have a significant effect on the topological configuration, that is, the proposed method is
mesh independence.

The volume fraction and maximum von Mises stress iteration curves for the DTO and
RBTO processes shown in Figures 7 and 8 are shown in Figure 11. The results show that
the iterative oscillation of the maximum von Mises stress during optimization is caused by
the highly nonlinear behavior of the stress constraint. Compared with DTO, the fluctuation
degree of the maximum von Mises stress in the iterative process of RBTO is reduced, and
the iterative process is more stable. The above analysis can show that the proposed method
is feasible and effective.
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Figure 11. Volume fraction and maximum von Mises stress iteration curves of (a) DTO and (b) RBTO.

7.2. 2D T-Shaped Beam Structure

The design domain of the T-beam structure is shown in Figure 12. The design domain is
160 mm x 100 mm in structural dimensions and 1 mm in thickness, which is discretized into
16,000 four-node elements. The left and right sides of the structure are solidly supported,
and the mechanical loads F,™ and F," are applied to the upper right end of the structure,
which are uniformly distributed to the five adjacent nodes horizontally. The stress constraint
value for the structure is 235 MPa.

n
H

F" T

60mm

40mm

|‘— 60mm _*_ 40mm _’l‘_ 60mm —’|

Figure 12. Design domain of T-shaped beam.

For the reliability analysis, the random variables are chosen as Y = (F,", Fy'”, E, 60)%,
and assume that they obey normal probabilistic distribution. The mean value of mechanical
loads, Young’s modulus and thermal stress coefficient are ¢r," = 350 N, (ppy’" =300 N,
@e =2.1 x 10° MPa and @40 = 2.541 MPa/°C, respectively. The variance is set to 10% of the
mean value.

The initial stress distribution of the structure is shown in Figure 13, and the maximum
von Mises stress value is 315.04 MPa. In order to consider the effect of different temperature
variations AT on the topology optimization results, when the temperature variations AT
are set to 20 °C and 30 °C, the DTO and RBTO topologies and von Mises stress distribu-
tions obtained are shown in Figures 14 and 15, respectively. The corresponding topology
optimization results are shown in Table 2, and the reliability indexes are calculated using
the Monte Carlo simulation method, where uy, 1, u3 and uy4 correspond to the standard
normalized variable values of the random variables Fy™, F,”, E and Jy, respectively.
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Figure 13. Initial structural stress distribution.
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Figure 14. Topology optimization results of T-beam (AT = 20 °C): (a) DTO topological structure (b) DTO
Von Mises stress distribution; (¢) RBTO topological structure; (d) RBTO Von Mises stress distribution.

200
180
\ o
140
\ 120
100
80
60
= 40
20
(@

(b)
(0 (d)

Figure 15. Topology optimization results of T-beam (AT = 30 °C): (a) DTO topological structure; (b) DTO
Von Mises stress distribution; (c) RBTO topological structure; (d) RBTO Von Mises stress distribution.

26



Mathematics 2022, 10, 1091

Table 2. Comparison of topology optimization design results.

o Volume Reliability Computing Max Von Mises MPP
AT (O Approach Fraction (%) Index (B) Time (s) Stress (MPa) (1, 1y, 13, ug)
20 DTO 10.2 2.0201 x 107> 354.02 234.96 -
RBTO 13.5 3.9722 428.21 234.72 (2.000, 2.000, 2.000, 2.000)
30 DTO 11.2 2.5426 x 1075 359.37 234.85 -
RBTO 14.4 3.9764 435.19 234.53 (2.000, 2.000, 2.000, 2.000)

By comparing the above optimization results with the initial structure, it can be seen
that the right-angle part of the original structure evolves into a slightly rounded shape,
which relieves the stress concentration, the stress distribution of the structure is uniform,
and the design results of both DTO and RBTO meet the stress constraint requirements.

Comparing the reliability indicators of DTO and RBTO results in Table 2, we can see
that the reliability level of the DTO results is close to 0, so the probability of structural
failure is higher. The reliability index of RBTO results has been improved compared with
that of the DTO results, but the target reliability has not been achieved precisely, and it also
reflects that the proposed method can effectively improve the reliability of the structure, but
the computational accuracy is still slightly inadequate. Compared with DTO, the structures
obtained by RBTO are both significantly different, and the reliability of the structure is
improved, and the overall stress distribution of the structures is more uniform.

A comparative analysis of the optimization results of the structures in Table 2 shows
that the topologies of both DTO and RBTO are slightly different for different temperature
variations AT. This is mainly due to the fact that as the temperature variation AT increases,
the temperature load enlarges and more material needs to be filled to bring the structures
to the allowed reliability index, which leads to a slight increase in volume.

The volume fraction and maximum von Mises stress iteration curves for the DTO
and RBTO at different temperature variations AT are shown in Figure 16, respectively.
Compared with DTO, RBTO has less fluctuation of the maximum von Mises stress during
the iterative process. It can be demonstrated that it is necessary and effective to incorporate
the reliability analysis into the stress-constrained topology optimization of a thermo-elastic
problem considering the uncertainties of mechanical loads, the thermal stress coefficient,
and the material’s property.

8
8

B g
8 8 8
o

Max Stress(von Mises,Mpa)

60
Tteration lteration

(b)

1
09
08
= 20 3
z i z
& £os =0 §
= s
§ 508 240 5
H 7
i o4 g
2 2 £
k] 03 5
2 200 2
02
i 180
0 160 o 160
) 2 40 ) 80 100 ] 20 8 100

40
Tteration Tteration

(9 (d)

Figure 16. Volume fraction and maximum von Mises stress iteration curves of (a) DTO (AT =20 °C)
and (b) RBTO (AT =20 °C); (c) DTO (AT =30 °C) and (d) RBTO (AT =30 °C).
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7.3. 3D L-Shaped Beam Structure

In this section, we extend the previous 2D L-bracket example to a 3D design prob-
lem. The design domain of the 3D L-beam structure is shown in Figure 17. The design
domain size is 50 mm x 50 mm and the thickness is 4 mm. The domain is discrete into
10,000 eight-node hexahedral elements. The upper left of the structure is fixed. The mechan-
ical load F" is applied vertically downward on the right side of the structure. The stress
constraint value for the structure is 235 MPa and the amount of temperature change
AT =30 °C.

Fixed surface

Figure 17. 3D L-beam design domain.

For the reliability analysis, the random variables are chosen as Y = (F", E, 30)T and
assume that they obey normal probabilistic distributions. The mean values of mechanical
load, Young’s modulus and thermal stress coefficient are g™ = 67 N, ¢¢ = 2.1 x 10° MPa
and @0 = 2.541 MPa/°C, respectively. The variance is set to 7% of the mean value, and the
permissible reliability index is set to 5.0.

The initial structural stress distribution is shown in Figure 18 and the maximum
von Mises stress value is 273.81 MPa. The deterministic and reliable topologies and von
Mises stress distributions are shown in Figures 19 and 20, respectively. The corresponding
topology optimization results are shown in Table 3, and the reliability indexes are calculated
using the Monte Carlo simulation method, where 11, 115, and u3 correspond to the standard
normalized variable values of the random variables F™, E, and dy, respectively.

250
200
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Figure 18. Initial structural stress distribution.
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(a) (b)

Figure 19. Deterministic topology optimization results for 3D L-shaped beam: (a) Topological
structure; (b) Von Mises stress distribution.

(a) (b)

Figure 20. Reliability topology optimization results for 3D L-shaped beam: (a) Topological structure;
(b) Von Mises stress distribution.

Table 3. Comparison of topology optimization design results.

Volume Reliability Computing Max Von Mises
Approach Fraction (%) Index (B) Time (s) Stress (MPa) MPP iy, 1, 113)
DTO 12.8 42818 x 107> 326.02 234.93 -
RBTO 15.7 4.9864 383.62 234.65 (2.8868, 2.8868, 2.8868)

From the above optimization results, it can be seen that the DTO and RBTO optimal
configurations also achieve the maximum von Mises stress constraint.

The analysis of the DTO and RBTO results show that the DTO result has a lower
reliability level and a higher probability of structural failure. Similar to the 2D L-shaped
problem, the structure obtained by RBTO has a significant difference compared to the DTO
result, mainly in the filling of the lower part of the structure with bar material that increases
the structural volume. In terms of stress distribution, the structure obtained by RBTO has
more uniform stress distribution than that obtained by DTO, and the structure is more
reliable and stable.

The volume fraction and maximum von Mises stress iteration curves of DTO and RBTO
are shown in Figure 21, respectively. This 3D example proves that the reliability-based
stress-constrained topology optimization method for thermo-elastic structures proposed in
this paper is also applicable to the 3D structures problem, which has practical significance
and application prospects for solving the uncertainty problem of thermo-elastic structures.
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Figure 21. Volume fraction and maximum von Mises stress iteration curves of (a) DTO and (b) RBTO.

8. Conclusions

In this paper, the reliability analysis is integrated into SIMP-based topology optimiza-
tion to solve the uncertainty problem in the stress-constraint topology optimization of
thermo-elastic structures. The thermo-elastic topology optimization model based on global
stress constraint considering the combined effect of temperature and mechanical load is
established. The material property, the mechanical load and thermal stress coefficient are
considered as uncertainty variables. Combining the deterministic topology optimization
with the reliability hybrid method, the following conclusions can be drawn.

The structures after DTO and RBTO can satisfy the stress constraints, and the stress
concentration phenomenon is alleviated. They differ in that the optimal topology obtained
by the proposed RBTO method is more reliable than that obtained by the DTO method,
and the RBTO exhibits significantly different topologies.

The corresponding DTO and RBTO results are also distinct for different temperature
variations. It is also noted that as the temperature change increases, more material needs to
be filled to meet the stress constraint and to reach the allowable reliability requirement.

The feasibility and effectiveness of the proposed method is verified by the 3D numeri-
cal example. It is shown that it is necessary to consider the uncertainty of the mechanical
loads and material properties, thermal stress coefficients, and to incorporate the reliability
concept into topology optimization.

In addition, the results of the above numerical examples show that the RBTO method
in the predecessor-decoupling hybrid format used in this paper does not consider the
influence of the functional function in the reliability analysis, so the calculation accuracy is
slightly deficient. Therefore, further development of this work can try to introduce different
reliability topology optimization methods for thermo-elastic structures with non-uniform
temperature distribution for discussion to reduce the limitations.
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Abstract: In this article, we propose a simplified radial basis function (RBF) method with exterior
fictitious sources for solving elliptic boundary value problems (BVPs). Three simplified RBFs,
including Gaussian, multiquadric (MQ), and inverse multiquadric (IMQ) without the shape parameter,
are adopted in this study. With the consideration of many exterior fictitious sources outside the
domain, the radial distance of the RBF is always greater than zero, such that we can remove the shape
parameter from RBFs. Additionally, simplified Gaussian, MQ, and IMQ RBFs and their derivatives in
the governing equation are always smooth and nonsingular. Comparative analysis is conducted for
three different collocation types, including conventional uniform centers, randomly fictitious centers,
and exterior fictitious sources. Numerical examples of elliptic BVPs in two and three dimensions
are carried out. The results demonstrate that the proposed simplified RBFs with exterior fictitious
sources can significantly improve the accuracy, especially for the Laplace equation. Furthermore, the
proposed simplified RBFs exhibit the simplicity of solving elliptic BVPs without finding the optimum
shape parameter.

Keywords: radial basis function; the shape parameter; multiquadric; inverse multiquadric; Gaussian

MSC: 65D12

1. Introduction

Meshfree methods have been applied to solve problems with complicated and irregular
geometry because of the advantages of their meshfree characteristics [1-4]. With the
capability to deal with different kinds of partial differential equations (PDEs), the radial
basis function collocation method (RBFCM) is one of the prominent methods for solving
PDEs, where the variables are expressed by the function approximation [5-8]. Proposed by
Hardy in 1971 [9], the multiquadric (MQ) radial basis function (RBF) was used for scattered
data interpolation. The first attempt to extend the MQ RBF to the solution of PDEs was
presented by Kansa in the early 1990s [10]. In addition to the MQ RBF, several RBFs have
been presented, such as the inverse multiquadric (IMQ), Gaussian, and polyharmonic
spline (PS) functions [11-14]. Among them, PS and MQ RBFs have received more attention
for interpolation due to their high accuracy [15-17]. These RBFs are usually categorized
into piecewise and infinite smooth functions. For example, the PS is piecewise smooth. On
the other hand, the MQ is infinite smooth. In order to remain smooth, the shape parameter
is introduced in the MQ [18]. Many RBF methods often contain the shape parameter, which
has been proven to have a significant influence on the accuracy of RBF interpolation [19-21].

In the Kansa method, the centers are uniformly scattered within the domain, where the
positions of the interior and center points are exactly the same [22]. The centers are often
regarded as fictitious sources, which are randomly scattered within the domain [23]. On the
other hand, the fictitious sources can also be simultaneously scattered within and outside
the closure of the domain [24]. Recently, Ku et al. proposed the MQ RBF without the shape
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parameter using fictitious sources collocated outside the domain [25]. Because the fictitious
sources are situated on the exterior domain, the radial distance always has a non-zero
value, such that the RBFs and their derivatives are always smooth and globally infinitely
differentiable [26]. The fictitious sources used for the collocation method have received
significant attention due to their superior properties and wide utilization for solving PDEs.
Accordingly, the accuracy of different RBFs when using fictitious sources in the collocation
method to solve PDEs is of significant interest and needs to be investigated.

Identification of the shape parameter is often very challenging and tedious in the
original RBFs when solving partial differential equations. In this study, we attempt to
remove the shape parameter in conventional RBFs to solve partial differential equations.
We propose three simplified Gaussian, MQ, and IMQ RBFs without using the shape pa-
rameter. The simplified RBFs have the advantages of a simple mathematical expression,
high precision, and easy implementation. Furthermore, we demonstrate that the simplified
RBFs, with the consideration of many exterior fictitious sources outside the domain, can
achieve highly accurate results to solve elliptic boundary value problems.

In this article, the accuracy of three RBFs in the collocation method for solving station-
ary convention diffusion equations is investigated. Three RBFs, including the Gaussian,
MQ, and IMQ, are adopted. Additionally, three different collocation types are considered in
the collocation method. Accuracy analysis of the collocation types of each RBF is carried out.
Numerical solutions are approximated by utilizing the RBFs to solve the elliptic boundary
value equations. Comparisons of the accuracy of three RBFs are made. The remainder of
this article is organized as follows: in Section 2, the mathematical formulations, including
the governing equation, the RBFs, the discretization of the governing equation, and the
location of fictitious sources, are introduced. Section 3 describes the convergence analysis
conducted to evaluate the robustness and effectiveness of the three RBFs in the collocation
method. Three different collocation types are considered in the collocation method. Ac-
curacy analysis of the three collocation types of each RBF is also carried out. In Section 4,
several investigations of the elliptic boundary value problems are conducted to examine
the robustness of the RBFs. Finally, the conclusions of this study are presented in Section 5.

2. Methodology
2.1. Elliptic Boundary Value Problems

The equation of the elliptic boundary value problem is expressed as follows:
V2u(x) + A - Vu(x) + B(x)u(x) = f(x), 1)

u(x) = g(x) on 0Q), ()

where V defines the gradient operator; u(x) denotes the variable of interest, which is
usually the concentration; x is the Cartesian coordinate, defined as x = (x,y,z); A is
the velocity, defined as A = (A, Ay, A;); B(x) is the given function; f(x) is the given
function value; g(x) defines the given boundary conditions; and () is the domain with the
boundary 0Q.

2.2. Simplified Radial Basis Functions

Three simplified Gaussian, MQ, and IMQ RBFs without the shape parameter are
proposed for solving elliptic boundary value problems, as listed in Table 1. The simplified
RBF simply removes the shape parameter from its original one. For example, the simplified
Gaussian RBF can be expressed as:

r\2
¢Gaussia;175(7) = e_(i) 7 (3)

where ¢Gaussian_s(r) denotes the simplified Gaussian RBF; r denotes the radial distance,
r = |x — x°|; x denotes the interior point; x° denotes the source point, defined as x°* = (x°,y°,z%);
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and R denotes the characteristic length, which is the maximum radial distance. We can
easily obtain the simplified MQ RBF as follows:

Pmo_s(r) =T, @

where ¢pio_s(r) denotes the simplified MQ RBF. Similarly, the simplified IMQ RBF is
expressed as:

Prmo_s(r) = %, (@)

where ¢1pg s(r) denotes the simplified IMQ RBF. In this study, three simplified MQ, IMQ,
and Gaussian RBFs are developed without assigning any shape parameter. Table 1 lists a
comparison of the original RBFs and the simplified RBFs. From Table 1, the original Gaus-
sian, MQ, and IMQ RBFs in the RBFCM are defined by the shape parameter. The accuracy
of these RBFs is strongly affected by the shape parameter. Accordingly, optimization tech-
niques are required to determine the optimal shape parameter for these RBFs [19-21]. As
for the proposed simplified RBFs, it is clear that the shape parameter has been completely
eliminated in the RBFs.

Table 1. RBFs adopted in this study.

Type of RBFs Original RBFs Simplified RBFs
. 2 ()2
Gaussian ‘PGaussian(") = (&) ¢Gaussian_5(r) =e ()
Multiquadric (MQ) Pmo(r) = Vr2+c2 Pmo.s(r) =r
Inverse multiquadric (IMQ) Pimo(r) = \/yzl? drmo_s(r) = %

Notation: ¢ denotes the shape parameter.

2.3. Discretization
Utilizing the RBFCM, the unknown can be approximated as:

M
u(x) =Y Ap(r)), (6)
j=1

where M denotes the total number of source points; )\]- denotes the coefficient to be solved;
¢(r;) denotes the RBF; r; denotes the radial distance at the jth source point, defined as

rj = |x —x;|; and x; denotes the jth source point, defined as x; = (x;, Vi 2]5)

2.3.1. Discretization in Two Dimensions

The two-dimensional elliptic boundary value equation is expressed as:

2 2
P T, S B B, yun) = fy) )

0x2 92

Utilizing the simplified Gaussian RBEF, the derivative of Equation (7) with respect to x
is as follows: " )
. — X7 ri 2
o) | 24 Gyt ®)
ox R2

Taking the derivative of Equation (7) with respect to y also gives:

2

aq)(i‘]) _2Ay(y 7y7) ) (9)

ay - R2 el

f= N
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Again, the derivative of Equation (8) with respect to x is as follows:

2
ap2(r;)  A(x—x5)° 2 oy
Fra R e (%) — ﬁe (%) (10)

Similarly, we take the derivative of Equation (9) with respect to y:

$\2
ay? R4 R?

m

Substituting the aforementioned Equations (8)—(11) into Equation (7), the approxima-
tion of the two-dimensional governing equation is as follows:

.2 22 ;2
r/ r/

M r
Y Azt [* - Z)\]Rz’f [Ax(x = xj) + Ay (y — )] + B(x Z)\e ®) = f(x,y). (12)

Equation (12) describes the discretization of the governing equation in two dimensions
using the simplified Gaussian RBF. In the same way, we substitute the simplified MQ RBF
into Equation (7):

M Ax(x—x5)+ Ay(y - y]

ZA +Z

Z Ajrj = f(x,y) (13)

Tj
Substituting the simplified IMQ RBF into Equation (7) also obtains:
M Ay —x3) 4 Ay — )

u y M1
ZM.«, ZA 3 +BO)L Ay = flxy). (14)
j=1 j=1

T j

Equations (13) and (14) describe the discretization of the governing equation in two
dimensions using the simplified MQ and IMQ RBFs, respectively.

2.3.2. Discretization in Three Dimensions

The three-dimensional elliptic boundary value equation is:

%u(xy,z) 0%u(x,y,z) 0%u(x,y,z)
T ay? 2
+ Axau(g;{yz) + Aﬁtt(géyz) + Azau(;;yz) . (15)

+B(x,y,2)u(x,y,2) = f(x,,2)

Considering the three-dimensional problem depicted in Equation (15), the derivative
of the simplified Gaussian RBF interpolation is as follows:

M r2_6R2 ri 2 M r 2
L NI — 1 A (A =) + Ayly ) + As(z )
Y we (16)
+B(x) Y Aje’(?) = f(x,y,2).

j=1

Using the same perspective, we obtain the derivative of Equation (15) by the simplified
MQ RBF as:

Axe =)+ Ayly )+ Az =)
Tj

ZA +ZA Z)\r] flx,y,2). (17)
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Identifying the derivative of Equation (15) with the simplified IMQ interpolation
results in the following equation:

M Ay(x—x3)+Ay(y— ) + Az(z —28)
_Z)‘f : 3 : = +B(x)
j=1 i

N =frya). (8

=

Il
—_
J

]

From the above equations, the shape parameter has been eliminated from the original
Gaussian, MQ, and IMQ RBFs. Considering the boundary conditions, the following system
of linear equations is finally acquired:

[AL]Nxm | Hna
[AB]thM }[“] B { [g]N,,xl } )

where A} is an N; x M matrix for the interior points; Ap is an N;, x M matrix for the bound-
ary points; « is an M x 1 vector of undetermined coefficients containing the unknown
coefficients; f is an N; x 1 vector of the function values for the interior points, written as
f=1[fi, for ---, fn,]; gisan Nj x 1 vector of boundary data, writtenas g = [g1, g2, ---, §n, |5
N; is the number of interior points; and N}, is the number of boundary points. Once the
unknown coefficients are determined, we can collocate the validation points uniformly
placed inside the domain to obtain the computed results.

To investigate the effectiveness and accuracy of the simplified RBFs in the collocation
method, this study adopts the root mean square error (RMSE) as follows:

Nr
RMSE = lua(x;) — un(x;)|*/ Nz, (20)
i=1

where Nt denotes the number of validation points, x; denotes the ith validation point, and
14 (x;) and un/(x;) are the analytical and numerical solutions evaluated at the ith validation
point, respectively.

2.4. Location of Fictitious Sources

In the conventional RBF method, the interior, center, and boundary points must
be placed where the positions of the interior and center points usually coincide at the
same place. In this study, the center points in the conventional RBFs are regarded as the
fictitious sources, where three different collocation types for locating the fictitious sources
are considered in the collocation method as depicted in Figure 1. The implementation of
the three different collocation types for solving the elliptic boundary value problems are
described as follows.

2.4.1. Type A: Uniform Centers

In type A, the source points are uniformly scattered within the domain. Figure 1a,d il-
lustrate the location of the fictitious sources for the two-dimensional and three-dimensional
domains, respectively. In Figure 1a, the two-dimensional amoeba-like object is adopted.
The boundary shape is defined as follows:

0Q = {(x,y)|x = p(0) cosb, y = p(0) sinb },

p(6) = 0.5[e5"® sin?(26) + e*(®) cos?(26) |, 0 < 0 < 271 ° @)

The fictitious sources are uniformly scattered within the two-dimensional amoeba-like
domain, as depicted in Figure 1a. The interior, sources, and boundary points are placed
such that the positions of the interior and fictitious sources are identical.
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Figure 1. Location of the fictitious sources for the two-dimensional and three-dimensional do-
main. (a) A two-dimensional domain: Type A. (b) A two-dimensional domain: Type B. (c) A
two-dimensional domain: Type C. (d) A three-dimensional domain: Type A. (e) A three-dimensional
domain: Type B. (f) A three-dimensional domain: Type C.

38



Mathematics 2022, 10, 1622

Considering the three-dimensional object, the boundary shape is given by the spherical
parametric equation as follows:

0Q = {(x,y,z)|x = p(0) cosOcos ¢, y = p(f) cosOsing, z=p(0)sinf },

1/3 22
p(8) = 0.25 x [2+ cos(6)][cos(3¢) + /8 —sin’(3¢9)] . @)

Figure 1d illustrates the location of the fictitious sources for three-dimensional domains.
Similarly, the positions of the interior and source points are collocated exactly at the same
place [23] in Figure 1d.

2.4.2. Type B: Randomly Fictitious Centers

In type B, the boundary shapes in two and three dimensions are exactly the same as
those in type A. However, the source points are regarded as the fictitious centers, which are
randomly scattered within the domain [24], as depicted in Figure 1b,e.

2.4.3. Type C: Exterior Fictitious Sources

In type C, the fictitious sources are randomly collocated in the exterior domain, as
shown in Figure 1c,f. In Figure 1c, the two-dimensional amoeba-like object is adopted. The
fictitious sources are randomly scattered within the range between the domain boundary
and the fictitious boundary, as depicted in Figure 1c. The boundary shape of the problem
domain is defined as Equation (21). The fictitious boundary is defined by the following
parametric equation:

A0 = {(x;,y;t)

5 = 10} (6) cos €, v = (@) sine; }, (23)

where d()° denotes the fictitious boundary; xjs- denotes the x-coordinate of the jth source
point; y}“- denotes the y-coordinate of the jth source point; 17 denotes the dilation fac-
tor, which is used to adjust the size of the fictitious boundary; 65 denotes the angle
of the fictitious sources; and p}“- denotes the radius of the fictitious sources, defined as

05(65) =2 | 1/§/cos (1062) + /2 — sin? (106%)], 0 < 0 < 27.

Considering a three-dimensional object, the boundary shape is given by the spherical
parametric equation as shown in Equation (22). The fictitious sources are randomly scat-
tered within the three-dimensional space between the domain boundary and the fictitious
boundary, as depicted in Figure 1f. The boundary shape of the problem domain is defined
as Equation (22). The three-dimensional fictitious boundary is defined by the following
parametric equations:

00)° = {(x}?,y;,zf)

where z; denotes the z-coordinate of the jth source point; p/? represents the radius of the

xj = pj(67) cos ] cos ¢}, y; = pj(6;) cos 6] sin ¢}, zj = p;(6}) sin 67 }, (24)

fictitious sources, defined as p?(GJS-) =X {0.51 + [ sin(10 qv?) sin (99}5)} }, 0<6; <2m
915. is the polar angle used to describe the location of the fictitious sources in cylindrical
coordinates; and ¢ is the azimuth angle of the fictitious sources.

The fictitious sources are randomly collocated in the exterior domain, as shown
in Figure 1c,f. Since the radial distance for RBFs remains greater than zero, the shape
parameter for the original Gaussian, MQ, and IMQ RBFs can be completely eliminated.
The three simplified Gaussian, MQ, and IMQ RBFs with exterior fictitious sources (type C)
are utilized to solve elliptic boundary value problems.
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3. Validation of the Methodology
3.1. Example 1

To investigate the accuracy, a comparison of the three collocation types is performed.

The Laplace equation in two dimensions is described as Equation (1), where A = 0,

B =0, and f(x) = 0. The domain boundary is defined as Equation (21). Boundary data

for the boundary conditions are assigned to the boundaries by adopting the following
exact solution:

u(x,y) = sin(x)e’ + cos(y)e*. (25)

Three simplified RBFs, including Gaussian, MQ, and IMQ), are adopted to solve this
problem. Three collocation types for locating the sources are considered. In type A, the
fictitious sources are uniformly scattered within the domain, as depicted in Figure 1a. The
interior, sources, and boundary points are placed such that the positions of the interior and
fictitious sources are identical. In type B, the fictitious sources are randomly scattered within
the domain, as depicted in Figure 1b. In type C, the fictitious sources are simultaneously
scattered outside the closure of the domain, as depicted in Figure 1c. The location of
the exterior fictitious sources is defined as Equation (23). A total of 164 interior points,
315 source points, and 200 boundary points are used. The dilation factor is 3.

For comparison purposes, the original Gaussian, MQ, and IMQ RBFs with various
shape parameters for type A and type B are also considered in the analysis. Particularly,
for type C, the above RBFs without a shape parameter are utilized. The RMSE is used to
examine the accuracy of the computed results. Comparisons of the accuracy for the three
RBFs are then conducted.

3.1.1. The Gaussian RBF

The Gaussian RBF with three different collocation types with various shape parameters
is first investigated, as shown in Figure 2a. From Figure 2a, it appears that the simplified
Gaussian RBF without the shape parameter utilizing the exterior fictitious sources of type
C provides the most accurate solution. The results obtained demonstrate that the RMSE of
the simplified Gaussian RBF without a shape parameter for type C is in the order of 10712,
It seems that the simplified Gaussian RBFs utilizing the exterior fictitious sources of type
C have the best accuracy among those Gaussian RBFs for type A and type B even when
different values of the shape parameter are considered.

3.1.2. The MQ RBF

The MQ RBF with various shape parameters for type A and type B is considered. For
type C, the simplified MQ RBF is utilized. Figure 2b illustrates the accuracy of the MQ
RBFs for the three collocation types. According to Figure 2b, the RMSE of the MQ RBF in
type A and type B are in the order of 1072 to 1077 as the shape parameter ranges from 0.2 to
5. However, the RMSE of the simplified MQ RBF in type C is 10713. It was found that the
RMSE of the simplified MQ RBF without a shape parameter in type C has the best accuracy
among the MQ RBFs for type A and type B for different values of the shape parameter.

3.1.3. The IMQ RBF

The IMQ RBF is analyzed by adopting the same perspective. Figure 2c illustrates the
accuracy of the IMQ RBF for the three collocation types. Similar to the results obtained in
Figure 2b, we also found that the simplified IMQ RBF for type C acquires more accurate
results than the other IMQ RBFs for type A and type B with the best shape parameter, as il-
lustrated in Figure 2c. It is obvious that the simplified IMQ RBFs without a shape parameter
that utilize the exterior fictitious sources of type C provide the most accurate solution.
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Figure 2. The RMSE of the three RBFs with three different collocation types: (a) Gaussian RBF, (b) MQ
RBF, and (c) IMQ RBE.

Table 2 lists the results of the RMSE using the three RBFs with the three different
collocation types. The processor used was an AMD Ryzen 7 5800X 8-Core @ 3.80 GHz.
As depicted in Table 2, all the simplified Gaussian, MQ, and IMQ RBFs utilizing the
exterior fictitious sources of type C provided more accurate results than the other two
fictitious source collocation types, even when the best shape parameter was adopted. The
simplified Gaussian, MQ, and IMQ RBFs utilizing the exterior fictitious sources of type C
provided the most accurate results, with an RMSE of the order of 10712, 10713, and 10712,
respectively. From the results, we also demonstrated that the above simplified RBFs with
exterior fictitious sources can be used to solve this two-dimensional Laplace problem with
very high accuracy. From Table 2, the comparison of the computing time also illustrates the
efficiency of the proposed method.

Table 2. Comparison of the results for example 1.

RMSE
RBF
Type A Type B Type C (y=3)
1.24 x 107 9.73 x 1078 7.87 x 10712
Gaussian (c =1.75) (c=2.0) (c=1)
(t=5.84s) (t=4.625) (t=8.11s)
1.42 x 107 1.46 x 1077 4.35 x 10713
MQ (c=15) (c =1.75) (c=0)
(t=5.78s) (t=5.75s5) (t=7.965)
1.47 x 107 8.46 x 1078 6.37 x 10712
MQ (c=15) (c=15) (c=0)
(t=6.12s) (t=6.28s) (t=8515s)

Notation: ¢ denotes the shape parameter; t denotes the computing time.

42



Mathematics 2022, 10, 1622

To further clarify the possible influences of the positions of the exterior fictitious
sources for type C on the accuracy, a sensitivity analysis was further conducted. Three
RBFs considering the MQ, IMQ, and Gaussian RBFs were adopted to solve the two-
dimensional Laplace problem. The MQ, IMQ, and Gaussian RBFs without the shape
parameter were used.

In this example, the values of the dilation factor ranged from 0.5 to 5. A plot of the
RMSE versus the dilation factor is depicted in Figure 3. From Figure 3, the RMSE of the
MQ, IMQ, and Gaussian RBFs utilizing the exterior fictitious sources for type C fluctuates
between 107! and 107!® while the dilation factor ranges from 2.5 to 5. The results obtained
show that the dilation factor has low sensitivity regarding the numerical accuracy while the
dilation factor is greater than 2.5. Accordingly, the following numerical implementations of
type C were solved using 7 = 3.

10°
107

n=05

[=—Boundary ling|
- Interior point

A ©_Source point
N g 50

RMSE

12 e+ ¢ Gaussian (Type C)
10 —o= MQ (Type C)
=+= IMQ (Type C)

10"
| I I I I I 1 I I
05 1 15 2 25 3 35 4 45 5

Dilation factor

Figure 3. RMSE versus the dilation factor.

3.2. Example 2

A three-dimensional problem is enclosed by a sophisticated irregular domain bound-
ary, as shown in Figure 4a. The governing equation in three dimensions is expressed as
Equation (1), where A, B, and f(x) are 0. The object boundary is given by the spherical
parametric equation as follows:

0Q = {(x,y,z)|x = p(0) cosBcos ¢, y = p(0) cosOsing, z = p(6) sinb },
2

1/
p(0) = [cos(20) + /1.5 —sin? (20)] .

(26)

43



Mathematics 2022, 10, 1622

22

214

w204

224

214

1 20

18
22

21

20

18

22N

214

w204

185l

21
22 2
18 18 18
X
(a) (b)
28+
244

w 204

125
28

22 20 24
20 21 20

50 y 12 12 %
() (d)

Figure 4. Problem domain and location of the fictitious sources for example 2. (a) Problem do-
main. (b) Type A. (c) Type B. (d) Type C (blue and red circles denote the source and interior
points, respectively).

The Dirichlet data are imposed using the following exact solution for this three-

dimensional problem as:
1

u(x,y,z) = \/ﬁ

The Gaussian, MQ, and IMQ RBFs were utilized in the analysis. Additionally, three
collocation types were considered. As depicted in Figure 4b-d, there were 2461 source
points, 1600 interior points, and 861 boundary points.

Figure 5 illustrates the RMSE of the Gaussian, MQ, and IMQ RBFs with three different
collocation types. The RMSE of the simplified Gaussian, MQ, and IMQ RBFs (type C) was
1074,10715, and 1013, respectively. It is significant that excellent agreement was achieved,
and highly accurate results were acquired using the simplified RBFs. From these results,

27)
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it is demonstrated that the simplified RBFs with exterior fictitious sources can be used to
solve the three-dimensional stationary Laplace equation with very high accuracy.
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Figure 5. RMSEs of three RBFs using three different collocation types: (a) Gaussian RBF, (b) MQ RBF,
and (c) IMQ RBF.

4 45 5

4. Application Examples
4.1. Application Example 1

The governing equation for the first application example is depicted in Equation (1),

where A = 0, B = 0, and f(x) = —|xcos(y)+ysin(x)|. The boundary is defined
as follows:
= p(0) cos, y = p(8) sinB}, p(8) = 0.5 x [0.5+ [1+0.5sin(120)]], 0 < 0 < 271 28)

The Dirichlet data are assigned from the analytical solution:
u(x,y) = ysin(x) + x cos(y). (29)

Three RBFs, including the Gaussian, MQ, and IMQ, were used in the collocation
method. Three collocation types for locating the sources as illustrated in Figure 6 were con-
sidered in the above RBFs to solve this problem. There were 342 source points, 151 interior
points, and 200 boundary points. In type A, the fictitious sources are uniformly scattered
within the domain, as depicted in Figure 6a. The interior, sources, and boundary points are
placed such that the positions of the interior and fictitious sources are identical. In type B,
the fictitious sources are randomly scattered within the domain, as depicted in Figure 6b.
In type C, the fictitious sources are randomly scattered outside the closure of the domain,
as depicted in Figure 6¢c. The collocation of the exterior fictitious sources is defined by the
following parametric equations:

00 = {(x]s-,y?) xj = np;(67) cos 67, y; = np;(6;) smGg} (30)
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where p?(ej) =2x| 1/i/cos (109}5) + /2 — sin? (106;)], 0< 9]5. < 271. In this example, the

dilation factor for type C is 3.

[—Boundary ling

[—Boundary Tind
+ Interior point
© Source point
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- Interior point
© Source point

« Interior point
© Source point

0.5

Q) = {(x,y)|x = p(0) cosb, y = p(8) sinb }, p(0) = 0.5[\/cos(39) +1/3+sin(30)], 0 < 6 < 27m.

05 1
(b)
Figure 6. Collocation points for application example 1. (a) Type A. (b) Type B. (c) Type C.

The Gaussian, MQ, and IMQ RBFs with various shape parameters for type A and
type B were considered. For type C, the above RBFs without a shape parameter were
utilized. The accuracy of the Gaussian, MQ, and IMQ RBFs for the three collocation
types are illustrated in Figure 7. According to Figure 7a, the Gaussian RBF utilizing the
exterior fictitious sources for type C obtained more accurate results, where the RMSE of the
Gaussian RBF without a shape parameter in type C reached the order of 10713. Figure 7b
demonstrates the RMSE of the MQ RBF for the three collocation types. According to
Figure 7b, the RMSE of the MQ RBF in type A and type B was in the order of 1072 to 1077
as the shape parameter ranged from 0 to 5. The RMSE of the MQ RBF without a shape
parameter in type C was in the order of 1071°. The IMQ RBFs was analyzed by adopting
the same perspective. The RMSE values of the IMQ for the three collocation types are
illustrated in Figure 7c. Similar to the results obtained in Figure 7b, we also found the
IMQ without the shape parameter for type C reached the order of 103, From the results,
it is significant that the Gaussian RBF without the shape parameter for type C showed a
high-accuracy performance.

Table 3 presents a comparison of the results for the application example 1. For type
A and type B, the Gaussian, MQ, and IMQ RBFs with the optimal shape parameter were
utilized. For type C, the above RBFs without a shape parameter were adopted. As depicted
in Table 3, all the RBFs, including the Gaussian, MQ, and IMQ RBFs, utilizing the fictitious
sources of type C provided more accurate results than the other two source collocation
types even with the optimum shape parameter. From the results, it is clear that numerical
solutions with a very high accuracy can be obtained by utilizing the proposed simplified
Gaussian, MQ, and IMQ RBFs with exterior fictitious sources.

4.2. Application Example 2

The governing equation for the second application example is expressed as Equation (1) [25],
where A =0, B = —A2, f(x) =0,and A2 = 3. The object boundary is defined as:

61
The Dirichlet data are assigned to the boundaries utilizing the exact solution as follows:

V2M(x—y)

u(xy) =e 2 (32)
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Figure 7. RMSEs of three RBFs with three different collocation types: (a) Gaussian RBE, (b) MQ RBF,
and (c) IMQ RBE.

Table 3. Comparison of the results for the application example 1.

RMSE
RBF
Type A Type B Type C (y=3)
245 x 1078 1.33 x 1078 9.50 x 10713
Gaussian (c =1.75) (c =1.25) (c=1)
(t=3.825) (t=7.025) (t=8.81s)
461 x 1078 441 x 1078 1.39 x 10710
MQ (c =2.25) (c =1.75) (c=0)
(t=3.80s) (t=6.905s) (t=8.77s)
3.38 x 1078 2.85 x 1078 1.37 x 107
IMQ (c=25) (c =2.0) (c=0)
(t=3.80s) (t=6.99s) (t=8.835)

Three RBFs, including the Gaussian, MQ, and IMQ, are were in the collocation method.
Three collocation types for locating the sources, as illustrated in Figure 8, were considered
in the above RBFs to solve this problem. There were 355 source points, 210 interior points,
and 200 boundary points. In type A, the fictitious sources are uniformly scattered within
the domain, as depicted in Figure 8a. The interior, sources, and boundary points are placed
such that the positions of the interior and fictitious sources are identical. In type B, the
fictitious sources are randomly scattered within the domain, as depicted in Figure 8b. In
type C, the fictitious sources are randomly scattered outside the closure of the domain, as
depicted in Figure 8c. The collocation of the exterior fictitious sources is defined by the
following parametric equations:

20 = {(x}, )

X} = 16 (6)) cos, y; = np; (6] siné; . )
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where p?(ej) =2x| 1/i/cos (lOGj?) + /2 — sin? (109]5)], 0< 9]5. < 271. In this example, the

dilation factor for type C is 3.
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Figure 8. Collocation points of the three types in the application example 2. (a) Type A. (b) Type B.

(c) Type C.

Figure 9a demonstrates the RMSE of the Gaussian RBF for the three collocation types.
From Figure 9a, the RMSE of the Gaussian RBF in type A and type B was in the order
of 107! to 107 as the shape parameter ranged from 0.5 to 5. However, the RMSE of the
Gaussian RBF without a shape parameter in type C reached the order of 1071!. The MQ
and IMQ RBFs were analyzed by adopting the same perspective. The RMSE of the MQ and
IMQ RBFs for the three collocation types are illustrated in Figure 9b,c, respectively. Similar
to the results shown in Figure 9a, we also found that the MQ and IMQ RBFs without the
shape parameter for type C reached the order of 107 and 1078, respectively.
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(¢) IMQ RBF.

Table 4 presents a comparison of the results for the application example 2. For type
A and type B, the Gaussian, MQ, and IMQ RBFs with the optimal shape parameter were
utilized. For type C, the above RBFs without a shape parameter were adopted. As depicted
in Table 4, all the RBFs, including the Gaussian, MQ, and IMQ RBFs utilizing the fictitious
sources of type C, provided more accurate results than the other two source collocation
types, even when the best shape parameter was adopted. The obtained results demonstrate
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that numerical solutions with a very high accuracy can be obtained by utilizing the proposed
simplified Gaussian, MQ, and IMQ RBFs with exterior fictitious sources.

Table 4. Comparison of the results for the application example 2.

RMSE
RBF
Type A Type B Type C (7=3)
1.18 x 107° 1.61 x 107° 2.76 x 1071
Gaussian (c = 2.50) (c =2.25) (c=1)
(t=7245s) (t=9.47s) (t=1257s)
6.28 x 107 3.70 x 107 5.04 x 107
MQ (c=1) (c=1) (c=0)
(t=728s) (t=10.345) (t=13.015s)
454 x 107° 432 x 107 459 x 1078
IMQ (c =1.25) (c =1.25) (c=0)
(t=724s) (t=11.67s) (t=12.67 s)

4.3. Application Example 3

The three-dimensional problem is enclosed by a sophisticated irregular domain bound-
ary, as shown in Figure 10a. The three-dimensional elliptic boundary value problems is ex-
pressed as Equation (1), where Ay = A, =1, A; = B = 0,and f(x,y,z) = 2z cos(x)sinh(y).
The object boundary is given by the spherical parametric equation as Equation (22). The
Dirichlet data are imposed using the following exact solution for this three-dimensional
problem as:

u(x,y,z) = zcos(x) cosh(y) + zsin(x)sinh(y). (34)

Three RBFs, including the Gaussian, MQ, and IMQ, were used in the collocation
method. Three collocation types for locating the sources were considered in the above
RBFs to solve this three-dimensional problem. There were 2500 source points, 1600 interior
points, and 861 boundary points. The three collocation types of this three-dimensional
problem are illustrated in Figure 1. In type A, the fictitious sources are uniformly scattered
within the domain, as depicted in Figure 1d. The interior, sources, and boundary points are
placed such that the positions of the interior and fictitious sources are identical. In type B,
the fictitious sources are randomly scattered within the domain, as depicted in Figure 1le.
In type C, the fictitious sources are randomly scattered outside the closure of the domain,
as depicted in Figure 1f.

Figure 10 illustrates the RMSE of the Gaussian, MQ, and IMQ RBFs with the three
different collocation types. From Figure 10, it appears that the RMSE of the above RBFs
for type A and type B fluctuated between 1072 to 107 as the shape parameter ranged
from 0.5 to 5. However, the RMSE of the simplified Gaussian, MQ, and IMQ RBFs (type C)
without a shape parameter reached the order of 1078, 1078, and 1017, respectively.
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5. Conclusions

In this study, a novel concept of using exterior fictitious sources to solve elliptic

boundary value problems with the simplified radial basis function method was proposed.

The concept of the proposed approach was addressed in detail. The significant findings are

concluded as follows.

O]

In this study, we demonstrated that the simplified RBFs, which consider many exterior

fictitious sources outside the domain, can achieve accurate results to solve elliptic
boundary value problems. The obtained results demonstrate that the simplified RBFs
obtain a better accuracy than the original RBFs with the optimum shape parameter
when solving elliptic boundary value problems.
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(2) Identification of the shape parameter is often very challenging and tedious in the
original RBFs when solving partial differential equations. In this study, we proposed
three simplified Gaussian, MQ, and IMQ RBFs without the shape parameter. The
simplified RBFs have the advantages of a simple mathematical expression, high
precision, and easy implementation.

(3)  With the consideration of many exterior fictitious sources outside the domain, we
found that the radial distance is always greater than zero. The simplified Gaussian,
MQ, and IMQ RBFs and their derivatives in the governing equation are always smooth
and nonsingular.

(4) Comparative analysis was conducted on the three different collocation types consider-
ing conventional uniform centers, randomly fictitious centers, and exterior fictitious
sources. It was found that the exterior fictitious sources proposed in this study
significantly improved the accuracy when solving problems.

(5)  Numerical examples, including elliptic BVPs in two and three dimensions, were
carried out. The simplified radial basis function method with exterior fictitious
sources can be applied to three-dimensional problems with ease and high accuracy.

(6) In this study, we attempted to remove the shape parameter in conventional RBFs to
solve partial differential equations. We achieved a promising result for three simplified
Gaussian, MQ, and IMQ RBFs, especially for solving Laplace-type equations in two
and three dimensions. Further studies to investigate the characteristics of the proposed
method to solve different kinds of PDEs are suggested.
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Abstract: In this paper, a parallel Smoothed Finite Element Method (S-FEM) package epSFEM using
incremental theory to solve elastoplastic problems is developed by employing the Julia language
on a multicore CPU. The S-FEM, a new numerical method combining the Finite Element Method
(FEM) and strain smoothing technique, was proposed by Liu G.R. in recent years. The S-FEM
model is softer than the FEM model for identical grid structures, has lower sensitivity to mesh
distortion, and usually produces more accurate solutions and a higher convergence speed. Julia, as an
efficient, user-friendly and open-source programming language, balances computational performance,
programming difficulty and code readability. We validate the performance of the epSFEM with two
sets of benchmark tests. The benchmark results indicate that (1) the calculation accuracy of epSFEM
is higher than that of the FEM when employing the same mesh model; (2) the commercial FEM
software requires 10,619 s to calculate an elastoplastic model consisting of approximately 2.45 million
triangular elements, while in comparison, epSFEM requires only 5876.3 s for the same computational
model; and (3) epSFEM executed in parallel on a 24-core CPU is approximately 10.6 times faster than
the corresponding serial version.

Keywords: elastic-plastic problems; incremental theory; Smoothed Finite Element Method (S-FEM);
Julia language; parallel programming

MSC: 35-04

1. Introduction

Currently, numerical methods are the most important tools for solving various sci-
entific and engineering problems [1]. For example, the Finite Element Method (FEM),
one of the most successful numerical methods, has been widely employed in different
scientific and engineering fields because of its mathematically rigorous proof and satisfac-
tory efficiency [2-4]. However, the shortcomings and deficiencies of FEM are becoming
increasingly significant [2,5-8]. (1) The FEM applies the problem domain of finite degrees
of freedom to the problem domain of infinite degrees of freedom, which makes the system
stiffness matrix “too rigid”. (2) The conventional FEM has high requirements for mesh
quality and cannot deal with distorted meshes. (3) When the conventional FEM uses simple
and low-order elements to calculate large and complex structures, the calculation accuracy
is often unsatisfactory, while when higher-order elements with higher accuracy are used,
the computational cost is quite expensive.

To cope with the above deficiencies of FEM or decrease the computational cost of
generating meshes, meshfree methods have emerged, such as Radial Point Interpola-
tion Method (RPIM), Element Free Galerkin (EFG) and Meshless Local Petrov—Galerkin
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(MLPG) [2,5,9,10]. The mesh-free methods can be used to analyze crack problems and
large deformation problems because mesh-free methods employ a group of scattered nodes
in the discrete problem domain, avoiding the requirement for continuity of the problem
domain. However, the more complex computational process of mesh-free methods leads to
the desire to achieve higher computational accuracy, which is not only computationally
time-consuming but also inefficient [7].

In recent years, the Smoothed Finite Element Method (S-FEM), a new numerical method
combining the FEM and strain smoothing technique was proposed by Liu G.R. et al. [7,11].
The system stiffness matrix of S-FEM model is softer than the FEM model for identical grid
structures, has lower sensitivity to mesh distortion, and usually produces more accurate
solutions and a higher convergence speed [7]. Due to the above characteristics, S-FEM
is frequently used in the fields of material mechanics [12,13], dynamics [14,15], fracture
mechanics [16], plate and shell mechanics [17], fluid structure interaction [18], acoustics [19],
heat transfer [20] and biomechanics [21].

Typical S-FEM models include cell-based S-FEM (CS-FEM) [15,22], node-based S-FEM
(NS-FEM) [23,24], edge-based S-FEM (ES-FEM) [14,16] for 2D and 3D problems and face-
based S-FEM (FS-FEM) [25] for 3D problems. In addition, there are hybrid and modified
types of S-FEM. For example, Chen et al. [26] proposed an edge-based smoothed extended
finite element method, ESm-XFEM, for the analysis of linear elastic fracture mechanics. An
improved ES-FEM method, bES-FEM, was proposed by Nguyen-Xuan et al. [27]. bES-FEM
can be applied to almost incompressible and incompressible problems. Xu et al. [28]
proposed a hybrid smoothed finite element method (H-SFEM) for solving solid mechanics
problems by combining FEM and NS-FEM based on triangular meshes. Zeng et al. [29]
proposed a beta finite element method (BFEM) based on the smooth strain technique
applied to the modeling of crystalline materials.

Compared with FEM, the calculation of the S-FEM has the following two differences.
First, we need to construct the smoothing domains and modify or reconstruct the strain field
in the S-FEM. Moreover, because the smoothing domain may involve a portion of adjacent
elements, the memory requirements for S-FEM will be larger [7]. The two differences
mentioned above may lead to a higher computational cost for the S-FEM than the FEM for
the same grid structure. However, given the calculation cost, the results calculated by the
S-FEM model are more accurate than the FEM, and thus, achieve higher efficiency. To make
S-FEM more applicable to large-scale engineering problems, parallel strategies of multicore
CPUs and/or multicore GPUs are usually used to improve and optimize the computational
power of S-FEM.

Currently, there are many software packages developed for utilizing FEM to solve
various scientific and engineering problems, while the development of software and library
packages for the S-FEM is still in progress [30]. Current S-FEM software packages are
mostly implemented in C++ and Fortran. However, static languages such as Fortran and
C/C++ have more complex language structures, are more difficult to learn, and require
high programming skills. Although high-level dynamic languages, such as MATLAB
and Python, are easy to learn, highly visual and interactive, the computing speed of
dynamic language is slow and there are expensive licensing fees associated with the use
of commercial software such as MATLAB. Julia is an efficient, user-friendly, open-source
programming language, developed by MIT in 2009 [31]. Furthermore, it balances the
problems of computing performance, programming difficulty and code legibility [32].

Many researchers have used the Julia language to develop software packages re-
lated to numerical computation. For example, Frondelius et al. [33] designed an FEM
structure by using the Julia language, which enables large-scale FEM models to be pro-
cessed by using distributed simple programming models across a cluster of computers.
Sinaie et al. [34] implemented the Material Point Method (MPM) in the Julia language. In
the large strain solid mechanics simulation, only Julia’s built-in characteristics are used,
which has better performance than the MPM code based on MATLAB. Zenan Huo et al. [35]
implemented a package of S-FEM for linear elastic static problems by using Julia lan-
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guage. Pawar et al. [36] developed a one-dimensional solver for the Euler equation, and an
arakawa spectral solver and pseudo-spectral solver for the two-dimensional incompressible
Navier-Stokes equation for the analysis of computational fluid dynamics using the Julia
language. Heitzinger et al. [37] used the Julia language to implement numerical stochastic
homogeneity of elliptic problems and discussed the advantages of using Julia to solve
multiscale problems involving partial differential equations. Kemmer et al. [38] designed
a finite element and boundary element solver using Julia to calculate the electrostatic
potential of proteins in structural solvents. Fairbrother et al. [39] developed a package for
Gaussian processes, GaussianProcesses jl, using the Julia language. GaussianProcesses.jl
takes advantage of the inherent computational benefits of the Julia language, including mul-
tiple assignments and just-in-time compilation, to generate fast, flexible and user-friendly
packages for Gaussian processes.

In this paper, a parallel incremental S-FEM software package epSFEM for elastic-plastic
problems is designed and implemented by utilizing the Julia language on a multi-core
CPU. Distributed parallelism and partitioned parallelism are used for the assembly of
the stiffness matrix, allowing multiple cells to be assembled simultaneously, avoiding
excessive for loops and saving computation time. The system of equations is solved using
the PARDISO [40] parallel sparse matrix solver. epSFEM applies to more common and
complex elastic-plastic mechanical problems in practical engineering. Moreover, epSFEM
adopts an incremental theory suitable for most load cases to solve elastic-plastic problems,
and the calculation results are more reliable and accurate.

The contributions of this paper can be summarized as follows:

(1) A parallel S-FEM package epSFEM using incremental theory to solve elastic-plastic
problems is developed by Julia language.

(2) The computational efficiency of epSFEM is improved by using distributed and
partitioned parallel strategy on a multi-core CPU.

(3) epSFEM features a clear structure and legible code and can be easily extended.

The rest of this paper is organized as follows. The theory related to S-FEM and Julia
language are presented in Section 2. The detailed implementation steps of the software
package epSFEM are described in Section 3. Two sets of numerical examples are used
to assess the correctness of the epSFEM and to evaluate its efficiency in Section 4. The
performance, strengths and weaknesses of the epSFEM and the future direction of work
are discussed in Section 5. Section 6 presents the main conclusions.

2. Background

In this section, the theoretical basis of the S-FEM and parallelization strategy of the
Julia language on a multicore CPU are introduced.

2.1. Smoothed Finite Element Method (S-FEM)
2.1.1. Overview of the S-FEM

The S-FEM is the implementation of the FEM by employing the strain smoothing
technique to modify or reconstruct the strain field such that more accurate or special
performance solutions can be obtained. NS-FEM, for example, has an upper bound solution
to the model because of its weak super-convergence, insensitivity to mesh deformation
and an overly soft system stiffness matrix. In the ES-FEM and FS-FEM models, there are
no unphysical modes, so both methods give good results for dynamic and static problems.
In the S-FEM, the most important goal is the modification of the compatible strain field or
reconstruction of the strain field only from the displacement field [11]. To guarantee the
stable and convergent properties of the established S-FEM model, this strain modification or
reconstruction needs to be conducted in an appropriate way to obtain special characteristics.
Strain modification or reconstruction can be implemented within the element, but it is
generally conducted across the element to obtain more information from adjacent elements.
Different modification or reconstruction methods correspond to separate S-FEMs, that is,
CS-FEM, NS-FEM, ES-FEM and FS-FEM.
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For two-dimensional static problems, ultra accurate numerical solutions can be ob-
tained using ES-FEM, and the calculation results of ES-FEM based on T3 elements are even
more accurate than traditional FEM with Q4 elements (same number of nodes) [11,14].
Therefore, the ES-FEM is employed to solve the two-dimensional elastic-plastic problem in
this paper, and the implementation steps are introduced as follows.

2.1.2. Workflow of the ES-FEM

The ES-FEM calculation process is similar to that of the FEM, except that the ES-FEM
needs to construct a smoothing domain on the basis of the FEM model and modify or
reconstruct the strain field. As shown in Figure 1, many techniques designed for FEM can
be adapted for ES-FEM. In short, the difference between the ES-FEM and FEM is that all
calculations of the FEM are based on elements, while all calculations of the ES-FEM are
conducted on smoothing domains.

FEM ES-FEM

Generate FEM mesh Generate F EM mesh apd
form smoothing domains
Calculate the elements Ca]culfile the smoolhmg
shape function matrix domain shape function

l matrix
Calculate the element Calculate the smoothed strain|
strain matrix matrix
Calculate the element Calculate the smoothed
stiffness matrix stiffness matrix

‘ l

Assemble system stiffness matrix
Element loop Edge loop

l

Impose displacement boundary
conditions

l

Solve system equations and calculate
node displacement

l

Post-processing

Figure 1. Flow chart of the FEM and ES-FEM.

The two-dimensional solid mechanics problem with problem domain () and bound-
ary I' =T, UT; are considered, where I';, is the essential boundary where displacement
conditions are prescribed and I’; is the natural or force boundary.

The calculation procedure of ES-FEM is as follows [7,11,14]:

(1) Discretization of the problem domains and construction of the smoothing domains

In the ES-FEM, general polygonal elements are used to divide the problem domain,
mainly T3 elements suitable for solving two-dimensional problems. When the T3 element is
used, the meshing can be the same as the standard FEM, such as the widely used Delaunay
triangulation method.
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As shown in Figure 2, on the basis of the polygonal element mesh, the smoothing do-
main is constructed. The problem domain is divided into N, polygonal elements, including
N,g edges. The edge-based smoothing domain is composed of two nodes connecting one
edge and the centroid of its adjacent elements. The two nodes A and B connecting edge AB
and centroid D of the triangle element form the smoothing domain (ABD), see Figure 2. The
construction of the smoothing domain, such as the discrete problem domain, must follow
the principle of no gap and no overlap, thatis, O = QUQ3 U...U O}, Of N Qf =0,
and i # j.

A boundary edge k(AB) B
o D o~
QI(ABD) Ny i
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® Node of the element O Centroid of the element

Figure 2. Polygon element mesh and the edge-based smoothing domain in ES-FEM.

(2) Creation of the displacement field
The generalized displacement field i at any point in the triangular element is approxi-
mated as: N B
=) " Ni(x)d; 6]

where N, is the number of smoothing domain nodes, d; is the nodal displacement at node
i, and Nj(x) is the shape function:

Ni(x) = @
Ni(x) 1,
where 7 is the degree of freedom of the smoothing domain nodes.

The Gauss integration point interpolation distribution of the ES-FEM shape function is
illustrated in Figure 3. As shown in Figure 3, the commonly used linear triangular elements
are employed to divide the mesh. Here, the shape function values at the Gauss integral
point are calculated in two cases: boundary edge and internal edge. The results are shown
in Tables 1 and 2.

(3) Construction of the smoothed strain field

For triangular, quadrilateral and polygonal elements, strain smoothing techniques
can be used to construct the strain field directly from the boundary integrals of the shape
function without the need for coordinate mapping.
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Figure 3. Illustration of the interpolation distribution of the Gaussian integration points of the
ES-FEM shape function.

Table 1. The shape function entries at different points on the boundary of the smoothing domain
connected to the outer edge 1-2 in Figure 3.

Node Number 1 2 3 Node Attributes

1 1.0 0.0 0.0 Field node

2 0.0 1.0 0.0 Field node

3 0.0 0.0 1.0 Field node

A 1/3 1/3 1/3 Centroid of element
gl 1/2 1/2 0.0 Gauss point

g2 1/6 4/6 1/6 Gauss point

g3 4/6 1/6 1/6 Gauss point

Table 2. The shape function entries at different points on the internal smoothing domain connected
with the inner edges 3-5 in Figure 3.

Node Number 3 4 5 6 Node Attributes

3 1.0 0.0 0.0 0.0 Field node

4 0.0 1.0 0.0 0.0 Field node

5 0.0 0.0 1.0 0.0 Field node

6 0.0 0.0 0.0 1.0 Field node

B 1/3 1/3 1/3 0.0 Centroid of element
C 1/3 0.0 1/3 1/3 Centroid of element
g4 4/6 1/6 1/6 0.0 Gauss point

g5 1/6 1/6 4/6 0.0 Gauss point

g6 1/6 0.0 4/6 1/6 Gauss point

g7 4/6 0.0 1/6 1/6 Gauss point

In the ES-FEM, the smoothed strain & is computed as follows:

B= /O &(x)D(x)dQ)
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where &(x) = Lqu is the strain that satisfies the compatibility condition in the traditional
FEM, ®(x) is the smoothing function, and ()} is the smoothing domain, which can be

defined as follows: )
=5, x € Q)
o(x) = A"k @)
0,x ¢ Q,s(

where Aj is the area of the smoothing domain.
Combining the Gaussian divergence theorem, the domain integral is transformed into
the edge integral to obtain the following smoothed strain calculation equation:

g= [ #x)d0 = / Laii(x)dQ = (1/A3) / La(x)i(x)dl’, x € O ®)
(o o 3

where L4 is the partial differential matrix operator, L, is the outward unit normal vector

and T is the boundary of the edge-based smoothing domain.

ny 0
Ln(x) = |: 0 ny :| (6)
ny My

where 7, and ny are the x-axis and y-axis components of the normal vector outside the
unit, respectively.
Similar to the FEM, the smoothed strain field is divided into:

- Ny
(x) =), " Bi(xi)dr )
where By is the smoothed strain matrix:

B Elx(xk) _ 0
Bila)=| 0 byylx) ®)
bry(xx)  bre(xx)

where by, (x;) and Ely(xk) is defined as shown in Equation (9). The boundary integral
method is used to solve the smoothed strain matrix. This method is applicable to any
polygonal geometry in the smoothing domain.

bix = (1/A}) Jry maeNi ()T = (1/ A7) 2 3Ny (<)l

bry = (1/A}) Jry myNi(x)dl = (1/ A7) T miy Ni (28l

i=

©)

where N is the number of segments of ', ; , and 1;, are the outer normal vectors of the Ith
integration segment, xiG is the midpoint of each segment of the boundary, that is, the Gauss
integration point, and Nj(x¥) is the shape function value at the Gauss integration point.

(4) Establishment system of equations

The smoothed Galerkin weak form is utilized to establish the system equation in
the ES-FEM. During this process, only a simple summation calculation of the relevant
parameters of the smoothing domain is required.

The linear system of equations of ES-FEM is:

KFS-FEMg — ¢ (10)

where d is the displacement vector of all nodes in the S-FEM and f is the vector of all loads.
KES—FEM s the system stiffness matrix of the ES-FEM and defined as Equation (11):

Neg Neg

i ES—FEM RT B BT B

K =) [ BlcByan - 3 BlcByA; (11)
=¥ =

k
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where c is the matrix of elasticity coefficients.

(5) Imposition of the boundary conditions

In the ES-FEM, the application process of displacement boundary conditions is similar
to that of the FEM because the shape function used in the S-FEM has the same delta
property as the FEM. The main methods include the direct method, set “1”, multiple large
numbers, Lagrange multiplier and penalty function. The force boundary conditions are
added directly to the corresponding nodes.

(6) Postprocessing

The weighted average rule is used to obtain the equivalent nodal stress in the smooth-
ing domain, and the shape function interpolation technique is used to obtain the continuous
stress field in the problem domain. The process is similar to the FEM. Finally, the accuracy
of the results is assessed in relation to the actual problem.

2.2. The Julia Language

Julia, officially released in 2012, is a flexible dynamic language for scientific and
numerical computation [41]. To solve large-scale numerical computation problems, parallel
computing is considered essential. There are useful built-in features in Julia that make
it easier for developers to design efficient parallel code. Three of the parallel strategies,
that is, coroutine, multithreaded and distributed computing, are dependent on a multicore
CPU. Developers can select the appropriate parallelism method for their needs. Parallel
computing on many-core GPUs can be conducted by using specific packages or utilizing
the built-in function of Julia and parallel arrays [1].

In this paper, parallelism on a multicore CPU is applied to effectively improve the
calculation and assembly efficiency of the global stiffness matrix. In the Julia language,
distributed computing based on a multicore CPU first redistributes tasks according to the
number of CPU cores of the computer and then dynamically allocates computing tasks to
each process so that multiple processes can be calculated at the same time, thus improving
the computing efficiency. In the parallel computing of Julia language, “Shared Array” is
used to reduce memory usage and improve computational efficiency. Moreover, when a
“SharedArray” is employed, multiple processes are allowed to operate on the same array in
the meantime [42,43].

3. The Implementation of Package epSFEM
3.1. Overview

A parallel S-FEM package using incremental theory to solve elastic-plastic problems is
developed on a multicore CPU. This package contains the following three components:

Preprocessing: The preprocessing includes mesh generation and the construction of
smoothing domains based on the mesh. After the preprocessing is completed, the model
details of constructing the smoothing domain can be obtained, and stored in sparate five
files: nodes, elements, internal edges, external edges and the centroids of mesh elements.

Solver: The solver uses incremental S-FEM to solve the elastoplastic problems, which
is the main part of the whole software package. It is mainly categorized into: (1) assembly
of the elastic stiffness matrix and (2) incremental loading and semismooth Newton method
iterations to solve the system of equations. The calculation procedure of the incremental
loading and semismooth Newton method iterations of the solver is illustrated in Figure 4.

Postprocessing: ParaView [44] is utilized to visualize the numerical calculation re-
sults. The WriteVTK jl package in Julia is used to write the “vtu” format file needed for
ParaView visualization.
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Figure 4. Illustration of the calculation procedure of incremental loading and semismooth Newton
method iterations.

3.2. Preprocessing
3.2.1. Mesh Generation

Mesh generation is the first step of the numerical analysis, which also affects the
accuracy and efficiency of the numerical analysis. Currently, there are many mature mesh
generation algorithms and software. The focus of this paper is on the solver section, so a
simple direct generation method is used to generate the mesh and then divide the smooth-
ing domain on this basis. Because T3 elements have good adaptability and are most used
in science and engineering practice, we choose T3 elements to divide the problem domain.

3.2.2. Construction of the Smoothing Domain

Constructing the smoothing domain based on the meshing of the problem domain is
one of the key tasks of the S-FEM. According to the methods of constructing the smoothing
domain and storing model information in Refs. [35,45], the smoothing domain of the mesh
is constructed, and the model information after dividing the smoothing domain is output.
To get the best performance out of the Julia language, the following calculations can be
looped in the unit of column, and the model information is stored based on the column.
In this paper, we address the mesh details by integrating the features of ES-FEM and
Julia parallel computation and then utilize five matrices to save the mesh details in an
appropriate way; see Figure 5.

The “Node” matrix stores the x and y coordinates of the mesh nodes. The “Centroid”
matrix stores the x and y coordinates of the center of the cell. The node numbers corre-
sponding to the mesh cells are stored in the “Element”. The three node numbers of the
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triangular cells are stored in the three rows of “Element” in a counterclockwise order, and
the number of columns is the number of mesh cells.

In the ES-FEM, the smoothing domain is constructed by using edges as the basis. We
divide all the edges of the model into two categories: the outer edges are saved in the
“Edge_out” matrix, and the inner edges are saved in the “Edge_in” matrix. For the matrix
“Edge_out”, the two node numbers of the outer edge are stored in the first two rows, the
serial number of the triangle is appended to the third row, and the rest point of the triangle
is appended to the fourth row. Because one inner edge belongs to two triangles, the first
two rows store the node numbers of the inner edges, the third and fourth rows of “Edge_in”
are the serial numbers of neighboring triangles and the last two rows are the numbers of
the other points in the triangle.

4 3 . Node Centroid
N, 7 X X X% X X5 X
\\\ \\\\\ @ e LA ¥ M N Ys Ve
% o )
\ \6 Element Edge out Edge in
12 123 4 2
@ . \\ 2 3 2 3 41 4
75 T \ 14 4 1221 1
4422 |2
1 N, . )
(D: ID of the triangle 1-2-4 3

(2 ID of the triangle 2-3-4

Figure 5. Illustration of the matrices “Node”, “Centroid”, “Element”, “Edge_out” and “Edge_in",
using two adjacent triangles as examples.

3.3. Solver

The incremental S-FEM is utilized to address the elastoplastic problem, choosing the
implicit constitutive integration algorithm of the linear kinematic hardening Von Mises
constitutive model and the corresponding consistent tangent modulus. First, the elastic
predicted stress is calculated according to the strain of the equilibrium iteration, and then
the modified stress is calculated according to a certain direction to make the stress return to
the updated yield surface [46,47]. The nonlinear equations are solved by employing the
semismooth Newton method.

The solution process is composed of two major procedures: (1) assembly of the elastic
stiffness matrix and (2) incremental loading and semismooth Newton method iterations.
The second procedure is composed of multiple incremental step cyclic calculations. Each
incremental step can be divided into three steps: (1) assembly of tangent stiffness matrix,
(2) solving of equations and (3) updating of hardening variables and plastic strain. Accord-
ing to the characteristics of parallel computing, the calculation of the latter step cannot be
dependent on the previous step, so when assembling the elastic stiffness matrix, the tangent
stiffness matrix can be calculated in parallel to improve efficiency. Distributed computing
is used in Julia to calculate the elastic stiffness matrix and the tangent stiffness matrix for
multiple elements in parallel. When solving the overall nonlinear system equations, we
utilize the semismooth Newton method for each iteration. For the set of equations in each
iteration, a parallel sparse equation solver, PARDISO, is used [40]. The detailed procedure
of the solver in epSFEM will be presented in the subsequent sections.

3.3.1. Assembly of Elastic Stiffness Matrix

After the model is preprocessed, it needs to be assembled with an elastic stiffness
matrix first. In epSFEM, we calculate the stiffness matrix of the associated smoothing
domain by dividing the outer edge and the inner edge, and the calculation process is
basically the same. Taking the internal edge as an example:
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(1) The areas of the two triangle elements that share the inner edge is attached are computed.
This process is conducted by procedure “area.jl” according to Equations (12)—(16):

a= \/(xl —0)*+ (11— 1) (12)
b= \/(xz —x3)% + (2 — v3)° (13)
c= \/(xs—x1)2+(y3—y1)2 (14)

p=(a+b+c)/2 (15)
A=/(plp—a)(p~D)(p—c) (16)

where xi and yi is the coordinate of the node i.

(2) The length of each edge of the smoothing domain is calculated in Equation (17).
For the smoothing domain of the inner side, there are four edges. This process is realized
in the file “Ipjl”:

Ip =/ (x1 — )2+ (1 — o) 17)

(3) The normal outward vector v1 is calculated for each side of the smoothing domain.
This is performed in “vectorin.jl”, according to Equations (18)—(20):

y=Y2—hn (18)

X =x1— X (19)

— y X
! {mz UM IR “

(4) Assembly of the global elastic stiffness matrix and the global smoothed strain
matrix. First, the stiffness matrix of the smoothing domain element is computed and
then assembled according to the smooth domain nodes. Due to the large number of zero
elements in the matrix, to reduce the memory occupation, the matrix is stored in a sparse
form. There are three common ways to construct sparse arrays: Compressed Sparse Row
(CSR), Compressed Sparse Column (CSC) and COOrdinate (COO).

First, the COO format is used to construct the global elastic stiffness matrix, since the
multi-dimensional arrays in Julia are stored according to column-based sequence. Then,
for the convenience of solving the subsequent system equations, we replace it with the CSC
format. To construct a sparse array according to COO format, we first need to construct
three one-dimensional arrays, that is, IK_elast, JK_elast and VK _elast.

IK _elast, JK_elast and VK _elast denote the row number, column number and value of
each entry in the global stiffness matrix according to the order of each row. Since the sparse
functions can accumulate the entries at the same position automatically, the magnitudes of
IK _elast, JK_elast and VK_elast can be predetermined.

The assembly method of the global smoothed strain matrix is basically the same as the
stiffness matrix, except that when it is assembled, the rows are carried out according to the
elements, and the columns are carried out according to the nodes. Three one-dimensional
arrays, IB, JB and VB, are constructed in advance.

For parallel computing, the six arrays of IK_elast, JK_elast, VK _elast, IB, JB and VB
need to be converted to “SharedArrays” in advance, and the elastic stiffness matrix is
assembled in parallel using the “@distributed” macro in Julia. Because the stiffness matrix
calculation of each element has no data dependence, there will be no data interference
when performing parallel computing.

The number of processes needs to be added using the function “addprocs” before
all parallel computing starts. In the parallel elastic stiffness matrix assembly, we use
the “@distributed” macro to automatically allocate tasks to each process according to the
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number of processes and the total number of tasks for parallel computing of the loop. The
total number of tasks currently is equal to the total number of smoothing domains. The
“@distributed” macro is executed asynchronously on the loop; it will generate independent
tasks on all available processes and return immediately without waiting for the computing
to complete. To wait for the computing task to complete, the “@sync” macro must be used
before the call. The procedure of assembling the elastic stiffness matrix for the internal
edges by distributed parallel computation is illustrated in Algorithm 1. After the global
stiffness matrix and the global smoothed strain matrix are assembled, the “Sparse” function
is used to convert them into the CSC format.

Algorithm 1 Parallel calculation and assembly of the elastic stiffness matrix

Input: Node, Centroid, Element, Edge_in, shear, bulk
Output: K_elast, B
1: Set the number of CPU cores for the Julia program.
2: Set IK _elast, JK _elast, VK _elast, IB, JB and VB to SharedArrays.
3: @sync @distributed begin
4: for every internal edge do
5:  Compute the area of the interior quadrilateral.
6. Compute the side lengths of the interior quadrilateral.
7. Compute the normal unit vectors of the four sides of the interior quadrilateral.
8:  Compute the smoothed strain matrix of an interior quadrilateral.
9:  Compute the stiffness matrix of an interior quadrilateral.
10: ~ Compute the elastic coefficient matrix.
11:  Assemble global stiffness matrix and smoothed strain matrix.
12: end for
13: end
14: K_elast = sparse (IK_elast, JK_elast, VK_elast)
15: B = sparse (IB, ]B, VB)

3.3.2. Assembly of the Tangent Stiffness Matrix

The tangent stiffness matrix of the model needs to be calculated when solving the elastic-
plastic problem using incremental theory. Equation (21) is used instead of Equation (22) to
calculate the global tangent stiffness matrix. Among them, elastic stiffness matrix Kejast,
smoothed strain matrix B and elastic matrix Dgj,s¢ can be obtained in advance at the stage
of assembling the elastic stiffness matrix; only elastoplastic matrix Dtangent depends on
the plastic model, and must be partially reorganized or modified in each Newton iteration.
When most portions of the model are in the elastic stage, Dtangent — Delast is more sparse
than Dtangenl [48,49]

Ktangent = Kelast + BT(Dlangent - Delast)B 1)

Ktangent = BTDtangentB (22)

Dtangent is calculated by the constitutive integral. The implicit discrete method is used
to solve the constitutive integral, that is, elastic prediction and plastic correction. For the
constitutive relation, the linear kinematic hardening Von Mises model is employed.

The steps to calculate the tangent stiffness matrix are as follows:

(1) Calculation of the smoothed strain field. Since the global smoothed strain matrix B
has been calculated and assembled in the stage of assembling the elastic stiffness matrix,
the smoothed strain field & can be acquired according to the strain coordination Equation
£=Bu.
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(2) The implicit Von Mises constitutive integral algorithm is used to obtain the stress
S and tangent operator DS of the model, by procedure “constitutive_problem1.j1”. The
formula, according to [48-51], is:

(23)

tr

ot <Y,

Ti(ex) = { Ug/ 2(|; ‘Str -Y) nk
+a 4

sk|>Y

where Tk(ek) represents the stress—strain operator, o = C(g — sf_l), sl =Ipot — By,

nl = T ”| a is the hardening parameters and Y is the yield stress.
0 C, |s ‘ <Y,
T! = 24
(&) C— ZG+aID + 2G+u \sf'| (Ip = nf @n}f), |sf| > Y @

where T{ (&) is the derivative of the stress-strain operator, C = KI® I+ 2GIp, I® L is
the unit second-order tensor, Ip = I — @ K = E/3(1 —2p) is the bulk modulus and
G = E/2(1+ p) is the shear modulus.

The modification of hardening variable , and plastic strain s]’: is:

Bi—1 s} | <Y,
(25)
B = { B+ s (s | = Y)ni, [s{'| > Y
P tr
p_ ) glsl[ <Y
& = 4 1 (26)
¢ { &1 T o (¢ = Y)ng, sy > Y

where B, _; hardening tensor from the previous incremental step and S;(ll plastic strain
tensor from the previous incremental step.

To check whether plastic correction is needed, the array CRIT of 1 x s_n_e is defined
representing the yield criterion, that is, [s{’| — Y, and the corresponding logical array
IND_p of 1 x s_n_e with the smoothing domain of plastic behavior, where s_n_e represents
the total number of smoothing domains. The parallel implementation of the implicit Von
Mises constitutive integral is shown in Algorithm 2.

In the parallel computing of constitutive integrals, all processes can access the underly-
ing data. To avoid conflicts, we first construct a “myrange” function to assign tasks to each
process according to the number of CPU cores added. Then, the main computing process is
defined as a kernel function “assembly_tangent”, and a wrapper “shared_constructive” is
defined to encapsulate the kernel function. Finally, the function “constitutive_problem” is
constructed to call the packaged kernel function for partition parallel computing. The “con-
stitutive_problem” function minimizes the communication between the processes so that
each process can continue to compute the allocated part for a period of time, and improve
the efficiency of parallelism. The “@async” macro is used to wrap arbitrary expressions into
tasks. For any content within its scope, Julia will start to run this task and then continue to
execute the next code in the script without waiting for the current task to complete before
executing it. The “@sync” macro means that the next task will not be executed until the
dynamic closure defined by the macro “@async” is completed.

(3) Calculation of the global tangent stiffness matrix. First, the sparse elastoplastic
matrix Diangent is constructed according to the tangent operator DS obtained by the
constitutive integral and then the global tangent stiffness matrix is calculated according to
Equation (21).
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Algorithm 2 Parallel implementation of implicit Von Mises constitutive integral algorithm

Input: E, Ep_prev, Hard_prev, shear, bulk, a, Y, S, DS, IND_p
Output: S, DS, IND_p
: Set the number of CPU cores for the Julia program.
: Set E, Ep_prev, Hard_prev, S, DS, IND_p to ShareArray.
: Assign the number of tasks for each process according to the number of processes.
: for number of tasks in each process do
Check whether the smoothing domain yields according to the yield criterion.
Elastic prediction of stress tensor.
Calculate the consistent tangent operator.
Plastic correction of the stress tensor.
Plastic correction of the consistent tangent operator.
end for
1: Parallel computing using “remotecall” in Julia language.

R AN I L

e
=

3.3.3. Solution of System of Equations

In this process, the internal force of the model is calculated by using the stress obtained
from the constitutive relationship and the smoothed strain matrix. Then, the displacement
boundary conditions are applied by the direct method; that is, the corresponding rows and
columns with displacement boundary conditions of “0” are deleted. A logical array Q is
designed, which sets the displacement boundary condition of “0” to “0” and the rest to
“1”. Then, the stiffness matrix, displacement and force are calculated with a logical array
index. After that, the Pardiso.jl package is added and the “MKLPardisoSolver” solver in the
package is used to solve the system of equations. Finally, the node displacement increment
“dU” of one Newton iteration in an incremental step can be obtained.

In this paper, the semismooth Newton method is employed to solve nonlinear system
of equations and check whether iteration is convergent according to Algorithm 3. “MKLPar-
disoSolver” is the solver in the Pardiso jl package, Q is the logical array corresponding to
the displacement boundary conditions, f is the external force vector, F is the internal force
vector, the subscript k represents the kth incremental step and the superscript it represents
the it-th iteration step, and HU||§ = UTK,j,tU. In each Newton iteration, the tangent
stiffness matrix Ktangent is used to solve the linear problem, which corresponds to the
system of linear equations:

Ki'au" = f, — F; (27)

Algorithm 3 Newton iteration terminates judgment

1: initialization UJ=Uy

2: forit=1,2,3...do

3 ps = MKLPardisoSolver() '

4 dU"[Q] = solve(ps, K¢''[Q1, Q1], (fx — Fy"))
5 Ut =Ul"!+dut
6
7
8

HdU”He/(HU;f*1 LT |U¥|,) < criterion
: end for
. set Uy = UYf

3.3.4. Update of Hardening Variable and Plastic Strain

After each incremental step is calculated, the hardening variable and plastic strain
need to be updated by using Equations (25) and (26). Based on the implicit constitutive
integration algorithm of Algorithm 2, the modification of the hardening variable and plastic
strain is added. The parallel strategy in this part is consistent with Algorithm 2.
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3.4. Postprocessing

After the execution of the solver, the widely used visualization software ParaView is
used to visualize the numerical computational results. The relevant package WriteVTK jl in
Julia can write VTK XML files and use ParaView to visualize multidimensional datasets [44].
The VTK format files support include straight line (.vtr), structured mesh (.vts), image data
(.vti), unstructured mesh (.vtu) and polygon data (.vtp) [52].

An unstructured mesh “vtu” format file is designed. Its implementation steps are
as follows: (1) we need to define a cell type, which is defined in this paper as “VTKCell-
Types.VTK_TRIANGLE”, representing the linear triangular element; (2) the “MeshCell”
function is used to define the mesh model and obtain an array containing all mesh cells;
(3) to generate a “vtu” format file, we need to initialize the file with mesh nodes and element
information and then add node displacement data and other information to the file; (4) we
can save the file as a “vtu” format file.

4. Validation and Evaluation of epSFEM

In this section, two sets of benchmark tests are performed on a powerful computational
platform to evaluate the correctness and efficiency of epSFEM. The details of the workstation
computer used are shown in Table 3.

Table 3. Specifications of the workstation computer for performing the benchmark tests.

Specifications Details

CPU Intel Xeon Gold 5118 CPU
CPU Cores 24

CPU Frequency 2.30 GHz

CPURAM 128 GB

oS Windows 10 professional
IDE Visual studio Code

Julia Version 1.5.2

4.1. Validation of the Accuracy of epSFEM

To validate the correctness of epSFEM, we use the model shown in Figure 6a to perform
elastoplastic analysis and compare its calculation accuracy with traditional finite element
software. In this example, a symmetric displacement boundary condition is set up on the
left and bottom of the computational model. The traction force of F; = 200 N/m acts on the
top of the model along the normal direction, and the traction force is added in increments
through the cyclic load shown in Figure 6b. The elastic parameters are: E = 206,900 (Young's
modulus) and p = 0.29 (Poisson’s ratio). The parameters related to plastic materials are
specified as follows: 2 = 1000, Y = 450+/(2/3) . The mesh computational model with
150 triangular elements is illustrated in Figure 7a, and the computational model after
constructing the smoothing domain is shown in Figure 7b.

To demonstrate the accuracy of the calculation, the displacement calculation of the
model in Figure 6a is conducted, and comparisons are made in the three following cases.

(1) epSFEM is employed to calculate the displacement of a mesh model, which includes
341 nodes and 600 triangular elements (T3 elements); see Figure 8a.

(2) According to Ref. [49], the conventional FEM is used to calculate the displacement
of a mesh model, which includes 341 nodes and 600 triangular elements (T3 elements); see
Figure 8b.

(3) According to Ref. [49], the conventional FEM is employed to calculate the displace-
ment of a highly accurate mesh model that includes 231,681 nodes and 76,800 eight-node
quadrilateral elements (Q8 elements).

The displacements of the top node of the model calculated by the above three methods
are compared in Figure 9. As shown in Figure 9, the displacement calculated by epSFEM
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has higher accuracy than FEM-T3 and slightly lower accuracy than FEM-Q8. Hence, the
correctness of epSFEM is proven.

fr
A

200 {-------,

10

-200

(a) (b)

Figure 6. (a) Simplified 2D geometry of the elastic-plastic problem and (b) history of the traction force.

@ (b)

Figure 7. (a) A mesh computational model with 150 triangular elements and (b) a computational
model after constructing the smoothing domain.
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Figure 8. (a) The contour of displacement calculated using epSFEM and (b) the contour of displace-
ment calculated using FEM-T3.
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Figure 9. Comparison curves of node displacements at the top of the model calculated by differ-
ent methods.

4.2. Evaluation of the Efficiency of epSFEM

To better analyze the computing efficiency of epSFEM, the computational efficiency of
the serial and parallel versions of the epSFEM are recorded and compared. Five mesh mod-
els were created based on the same size model, shown in Figure 6a. Detailed information
on the mesh is shown in Table 4.

Table 4. Details of the used five mesh models.

Mesh Models (T3) Number of Nodes Number of Elements
1 173,761 345,600

2 308,481 614,400

3 609,301 1,215,000

4 909,701 1,815,000

5 1,231,361 2,457,600

In epSFEM, the calculation procedure can be composed of two steps: (1) assembly of
the elastic stiffness matrix and (2) incremental loading and semismooth Newton method
iterations. In this paper, we focus on the solution of elastic-plastic problems, so the time
consumption is predominantly in the second step, which is composed of multiple incre-
mental cyclic loading steps. Each of the incremental steps can be composed of three stages:
(1) assembly of tangent stiffness matrix, (2) solving of system of equations and (3) updating
of hardening variables and plastic strain. Since the Pardiso.jl package is employed to
solve equations in serial and parallel code, the efficiency of solving equations in serial and
parallel ways are not discussed. For the assembly of the elastic stiffness matrix, its time
consumption accounts for a small proportion in the whole elastic-plastic analysis, which is
not discussed in this paper. The parallel method of the hardening variable and plastic strain
update part is consistent with the parallel method of tangent stiffness matrix assembly.
Therefore, we mainly evaluate the computing efficiency of assembling the tangent stiffness
matrix in this paper.

As shown in Figure 10, the time to compute the parallelizable section of the tangent
stiffness matrix in the serial and parallel versions for five different scale mesh models is
compared. As shown in Figure 10, it takes only approximately 335 s to compute a mesh
model, including 2.45 million elements on the parallel version, while it takes approximately
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3537.6 s to compute the same model on the serial version. On the 24-core CPU, the parallel
speedup can reach 10.6.

To reflect the computational efficiency of epSFEM, we also made a comparison between
commercial software and epSFEM in terms of the time required to calculate the five scale
models, as shown in Table 4. The total time required for the solver computing is recorded
for comparison. As shown in Figure 11, for a model containing 2.45 million elements,
ABAQUES requires 10,619 s to compute, while the parallel version of epSFEM needs only
5876.3 s to complete the computation. The parallel version of epSFEM is approximately
1.8 times faster than ABAQUS.

4000

Multi-core(24-core)

— 3537.6
3500 |- [L_|Single-core —

3000 |

2546
2500 | |

2000 [
1728.6

1500 - 1297.6

Computational Time (s)
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500 | 335

56.5 87.7 172. |25_19

345,600 614,400 1,215,000 1,815,000 2,457,600

Number of Elements

Figure 10. Comparison of serial and parallel epSFEM computing time of the parallelizable section of
the tangent stiffness matrix.
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Figure 11. Comparison of the computation time of serial and parallel epSFEM and ABAQUS solvers
for elastic-plastic problems.

ABAQUS was also used to calculate the displacements for a mesh model with 341 nodes
and 600 triangular cells and to compare the displacements obtained by ABAQUS with
those obtained by epSFEM_T3 and FEM_Q8 in Section 4.1. Using the displacement solution
of FEM_QS8 as the reference solution, it can be seen that the displacement calculation
accuracy of epSFEM is higher than that of ABAQUS; see Figure 12. It can be seen from the
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above results that the calculation time of epSFEM is shorter than that of ABAQUS when
calculating the same mesh model, and the calculation accuracy of epSFEM is higher than
that of ABAQUES, so the calculation efficiency of epSFEM is higher than that of ABAQUS.
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Figure 12. Comparison curves of node displacements at the top of the model calculated with ABAQUS
and epsFEM.

5. Discussion

In this section, the capability, strengths and weaknesses of the epSFEM software
package, as well as the future direction of work, are discussed.

5.1. Comprehensive Evaluation of epSFEM
5.1.1. Computational Accuracy

The accuracy of the calculation is the first guarantee for whether a software package
can be used. To verify the correctness of the epSFEM calculation, a numerical example is
used in Section 4.1. As listed in Table 5, the total displacement results of the six nodes at
the top ¥ = 10 m of the model are selected for comparison. Taking the displacements of
FEM-Q8 as the baseline and comparing the displacements of epSFEM-T3 and FEM-T3 with
them, it can be shown that the displacements of epSFEM-T3 are significantly closer to the
baseline. The result difference is expressed by relative error. As seen in Table 5, for the
node displacement at x = 0 and y = 10 m, the error of FEM-T3 compared with FEM-Q8
is 25.24%, while the error of epSFEM-T3 compared with FEM-Q8 is only 2.96%. This is
because the S-FEM is based on the smoothing domain calculation that optimizes the system
stiffness matrix and enables the displacements to be closer to the reference values.

Table 5. Validation of the accuracy of the epSFEM by comparison of calculated displacements.

. Method Relative Error
Position
FEM-T3 epSFEM-T3 FEM-Q8 FEM-T3 epSFEM-T3

0.0 m 0.02223 m 0.02704 m 0.02784 m 25.24% 2.96%
2.0m 0.02095 m 0.02583 m 0.02680 m 27.92% 3.76%
40m 0.01787 m 0.02217 m 0.02423 m 35.59% 9.29%
6.0 m 0.01267 m 0.01572 m 0.01640 m 29.44% 4.33%
8.0m 0.00744 m 0.00896 m 0.00924 m 24.19% 3.13%
10.0 m 0.00626 m 0.00788 m 0.00819 m 30.83% 3.93%
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5.1.2. Computational Efficiency

In this paper, the efficiency of computation is contrasted in two aspects: parallel

speedup of parallelizable code and solver computation time; see Figures 10 and 11.

In this paper, we recorded the time required to compute the parallelizable portion of
the tangent stiffness matrix, that is, constitutive integral algorithm, for seven different size
mesh models using serial and parallel epSFEM. As shown in Table 6, the parallel speedup
is 10.2 for the computing model with 38,400 elements, increases to 14.8 for the computing
model with 0.6 million elements and decreases to 10.0 for the computational model with
1.2 million elements, after which the parallel speedup increases slightly with the increase of
the computational model size and basically stabilizes.

Table 6. The parallel speedup of the parallelizable section of the tangential stiffness matrix.

Computing Time (s)

Number of Nodes Number of Elements
Single-Core Multi-Core (24-Core) Parallel Speedup

19,521 38,400 69.7 6.83 10.2

77,441 153,600 283.3 23.5 12.05

173,761 345,600 772.2 56.5 13.7

308,481 614,400 1297.6 87.7 14.8

609,301 1,215,000 1728.6 172.9 10.0

909,701 1,815,000 2546 251.9 10.1

1,231,361 2,457,600 3537.6 335 10.6

The reasons why the parallel speedup shows a pattern of increasing then decreasing
and finally converging as the mesh scale increases are analyzed are as follows: (1) Parallel
computing includes the time to allocate tasks; the amount of computation allocated to
each process cannot be exactly the same, and there is the problem of load imbalance for
each process, so the parallel speedup cannot reach the ideal parallel speedup. (2) When
the mesh scale is small, such as 38,400 to 614,400, the total computation time increases
as the mesh scale increases, the percentage of assigned tasks in the total time decreased,
and the parallel speedup increases. (3) When the mesh scale increases to 1.2 million, the
performance of the code decreases due to the larger memory allocation required and the
increased garbage collection time during the code run. In the benchmark tests of this paper,
the above effects do not have a significant impact on the overall performance of epSFEM as
the scale continues to increase. On the contrary, it tends to a steady state.

TimerOutputs.jl package is used to test the time consumption and memory allocation
in each part of the calculation process and generate the formatted table to output [53]. As
listed in Table 7, the allocation of time and memory for each part of the parallel epSFEM
solver when the number of elements is 600,000. Table 7 shows that the time proportion of
the elastic stiffness matrix is very small, which is only 0.07% when the number of elements
is 600,000. Therefore, we focus on the time and memory consumption of each part of the
incremental loading and the semismooth Newton iteration, which is the plastic section in
Table 7. Figure 13 presents the time occupancy of the tangent stiffness matrix assembly,
solving equations, hardening variables and plastic strain updating when calculating the
model with 2.45 million elements using the serial and parallel versions of epSFEM. Because
the hardening variable and plastic strain only need to be updated once for each incremental
step, the time proportion is the smallest. The tangent stiffness matrix assembly and solving
equations need to be calculated not only for each incremental step, but also for each
iteration, so the time proportion is longer. As shown in Figure 13, the proportion of time
spent solving the equations in parallel computing is considerably larger than in serial
computing, accounting for approximately 80%.
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Table 7. Time and memory allocation of each part of the parallel epSFEM solver when the number of
elements is 600,000.

Tot /% Measured Time Allocation
1256.9 s/100% 337.83 GiB/100%

Section ncalls Time Y%tot avg alloc Y%tot avg
solver 1 12569 s 100% 1256.9 s 337.83 GiB 100% 337.83 GiB
elastic 1 09s 0.07% 09s 1.83 GiB 0.54% 1.83 GiB
plastic 1 1256 s 99.93% 1256 s 336 GiB 99.46% 336 GiB
solving 132 946 s 75.3% 7.16s 62.6 GiB 18.53% 486 MiB
assembly 132 246's 19.6% 1.86s 256 GiB 75.78% 1.94 GiB
constitutive 132 87.7s 6.98% 664 ms 62.0 MiB 0.02% 481 KiB
K_tangent 132 150.1s 11.95% 1.14s 252 GiB 74.6% 1.91 GiB
hardening and strain 40 33.0s 2.62% 824 ms 1.03 GiB 0.3% 26.3 MiB

In summary, epSFEM combines the features of incremental theory and the parallel
strategy of the Julia language to achieve a parallel and efficient incremental S-FEM for
solving the elastoplastic problem. Although epSFEM can take full advantage of multicore
processors, it still requires a considerable amount of time to solve linear system equations
for large sparse matrices. Moreover, due to the use of incremental theory, the calculation
of the latter incremental step depends on the previous incremental step, and multiple
incremental steps cannot be calculated in parallel, which also limits the computational
efficiency of the code.

12% 2.09% ) Assemble Tangent
| 17.50% Stiffness Matrix

41.50%

Solve Equations

Update Hardening

8 / Variables and
46.50% 80.41% Plastic Strain

(a) (b)

Figure 13. The proportion of time in each part of the epSFEM solver when calculating the model with
2.45 million elements using (a) the serial version of epSFEM and (b) the parallel version of epSFEM.

5.2. Comparison with Other S-FEM Programs

Compared with the S-FEM packages implemented with C++, epSFEM code is more
readable and convenient for further development, and has lower requirements for program-
ming ability. In contrast with the S-FEM packages implemented by MATLAB, epSFEM
does not require the payment of licensing fees for the Julia language; additionally, the
computational efficiency of the Julia language is higher than that of MATLAB. Moreover,
epSFEM has a clear structure and modular implementation, and each calculation step is
highly customized and has the characteristics of high efficiency and simplicity.

The epSFEM is suitable to more common and complex elastoplastic mechanical prob-
lems in practical engineering and has a wider range of applications than the elastic S-FEM
package implemented using the Julia language. In contrast with the elastic-plastic S-FEM
package with total strain theory realized by the Julia language, epSFEM uses incremen-
tal theory suitable for most loading situations to solve elastic-plastic problems, and the
calculation results are more reliable and accurate.
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5.3. Outlook and Future Work

epSFEM is an incremental ES-FEM to solve two-dimensional elastoplastic problems.
The next step is to expand it to an incremental FS-FEM to solve three-dimensional elasto-
plastic problems. Currently, the S-FEM has been commonly utilized in material mechanics
and biomechanics, but it is still less applied in the field of geotechnical mechanics [54,55].
We plan to extend epSFEM to use the Mohr-Coulomb criterion combined with the strength
reduction method to analyze the deformation and failure of slopes. With the maturity of
artificial intelligence technology such as machine learning and deep learning, mechanical
analysis and numerical simulation methods can be well integrated with machine learning,
which provides a new direction for computational mechanics [56-59]. In the future, the
authors wish is to use machine learning combined with epSFEM to solve partial differential
Equations (PDEs), or study parameter inversion.

6. Conclusions

In this paper, a parallel incremental S-FEM package epSFEM for elastic-plastic prob-
lems has been designed and implemented by the Julia language on a multicore CPU.
epSFEM has a clear structure and legible code and can be easily developed further. epSFEM
utilizes incremental S-FEM to solve elastic-plastic mechanics problems for complex load
cases more common in practical engineering, and the calculation results are more accurate
and reliable. A partitioned parallel strategy was designed to improve the computational ef-
ficiency of epSFEM. This strategy can avoid conflicts when accessing the underlying data in
parallel computing. To demonstrate the correctness of epSFEM and assess its efficiency, two
sets of benchmark tests were performed in this paper. The results indicated that (1) when
calculating the same mesh model, the calculation accuracy of epSFEM is higher than that
of the traditional FEM; (2) it requires only 5876.3 s to calculate an elastoplastic model,
consisting of approximately 2.45 million T3 elements using the parallel epSFEM software
package, while it needs 10,619 s to calculate the same model using the commercial FEM
software ABAQUS; (3) on a 24-core CPU, the parallel execution of epSFEM is approximately
10 times faster than the corresponding serial version.
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Abbreviations

COO COOrdinate

CPU Central Processing Unit

Csc Compressed Sparse Column

CS-FEM  Cell-based Smoothed Finite Element Method
CSR Compressed Sparse Row

EFG Element Free Galerkin

ES-FEM  Edge-based Smoothed Finite Element Method
FEM Finite Element Method

FS-FEM  Face-based Smoothed Finite Element Method
GPU Graphics Processing Unit

MLPG Meshless Local Petrov-Galerkin

MPM Material Point Method

NS-FEM  Node-based Smoothed Finite Element Method
PDEs Partial Differential Equations

RPIM Radial Point Interpolation Method

S-FEM Smoothed Finite Element Method
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Abstract: In the paper, we make the first attempt to derive a family of two-parameter homogenization
functions in the doubly connected domain, which is then applied as the bases of trial solutions for
the inverse conductivity problems. The expansion coefficients are obtained by imposing an extra
boundary condition on the inner boundary, which results in a linear system for the interpolation of
the solution in a weighted Sobolev space. Then, we retrieve the spatial- or temperature-dependent
conductivity function by solving a linear system, which is obtained from the collocation method
applied to the nonlinear elliptic equation after inserting the solution. Although the required data
are quite economical, very accurate solutions of the space-dependent and temperature-dependent
conductivity functions, the Robin coefficient function and also the source function are available. It is
significant that the nonlinear inverse problems can be solved directly without iterations and solving
nonlinear equations. The proposed method can achieve accurate results with high efficiency even for
large noise being imposed on the input data.

Keywords: nonlinear elliptic equation; doubly connected domain; inverse problems; two-parameter
homogenization functions

MSC: 65N21; 65N35

1. Introduction

In recent decades, a large number of inverse problems of the nonlinear elliptic-type
partial differential equation (PDE) have been well investigated, involving the inverse source
problem, inverse conductivity problem as well as inverse Robin problem, which arise in
several branches of applications in science and engineering. Analytical solutions to inverse
problems are difficult to obtain since some information is missing, such as the boundary
conditions or sources compared with the forward problems. Therefore, many numerical
approaches have been developed to resolve inverse problems [1]. In the linear elliptic type
PDEs, for identifying unknown sources, the regularization methods were advocated in [2,3].
Klose [4] solved an inverse source problem based on the radiative transfer equation arising
in optical molecular imaging. In Ref. [5], Hon et al. applied Green’s function for the inverse
source identification. Then Li et al. [6] proposed the modified regularization method on
the Poisson equation for determining an unknown source. Ahmadabadi and co-workers
proposed the method of fundamental solutions for the inverse space-dependent heat source
problems by using a new transformation [7]. The source function for a seawater intrusion
problem in an unconfined aquifer has been studied by Slimani [8]. The inverse source
problems were examined by Alahyane et al. [9] using the regularized optimal control
method. Some new regularization methods were proposed for inverse source problems
governed by fractional PDEs [10,11]. Nguyen [12] investigated the inverse source problems
of the fractional diffusion equations based on the Tikhonov regularization method. Recently,
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Liu [13] have proposed a new procedure of boundary functions, which preserves the energy
identity to identify the sources of 2D elliptic-type nonlinear PDEs. However, the methods
proposed in [13] required extra boundary conditions of source function on a rectangle. We
will extend the work to any 2D nonlinear elliptic equation without using extra boundary
data of the source function in the doubly connected domain.

On the other hand, linear and nonlinear inverse conductivity problems have been stud-
ied by many authors. Kwon considered the anisotropic inverse conductivity and scattering
problems [14]. The inverse problem of time-dependent thermal