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Preface to “Computational Methods and Applications

for Numerical Analysis”

The rapid development in computer technology has provided the direction for utilizing computational

methods to solve complex engineering problems through numerical analysis. With their immense computing

power and storage capabilities, computers have made it possible to perform numerical computations and

simulations with high accuracy and reliability. The development of computational methods for numerical

analysis can be traced back to the early 20th century. Over time, as computer hardware and software have

advanced, researchers have devised more high-performance computing techniques to enhance the accuracy and

reliability of computations. The most commonly used numerical algorithms include the finite element method,

the boundary element method, meshless methods, and the neural network algorithm, among others.

The applications of computational methods and numerical analysis encompass a wide range of disciplines

and fields. Numerical analysis has extensive applications in science and engineering. It enables the simulation

and analysis of complex systems, including structural mechanics, fluid dynamics, acoustic wave propagation,

electromagnetic fields, etc. Furthermore, it is significant in computer science and artificial intelligence, such as in

image processing, pattern recognition, machine learning, and neural network construction, and it facilitates the

solving of complex optimization problems, the training of neural networks, and autonomous decision-making.

By utilizing numerical computations, researchers and practitioners can address complex mathematical problems,

simulate and predict various phenomena, optimize system designs, and provide decision support. The broad

scope of numerical analysis highlights its indispensable role in furthering scientific knowledge and technological

advancements.

The present book contains the 20 articles accepted for publication to the Special Issue “Computational

Methods and Applications for Numerical Analysis” of the MDPI “Mathematics” journal. The 20 articles,

which appear in the present book in the order that they were published in, Volumes 10 (2022) and 11 (2023)

of the journal, involve the theory, algorithms, programming, software, numerical simulation, and/or novel

applications of computational methods to solve problems in engineering, science, and other disciplines related

to computations. These topics include finite element methods, finite difference methods, meshless/meshfree

methods, physics-informed neural networks, interpolation, approximation, optimization, numerical methods

for ordinary/partial differential equations, etc. Their applications include crack propagation, acoustic analysis,

elastodynamic analysis, free vibration analysis, structure and topology optimization, fractional equations, the

eigenvalue problem, inverse problems, etc.

Numerical analysis is an increasingly important link between pure mathematics and its application in

science and technology. It is hoped that the book will be interesting and useful for those working in the area of

numerical analysis, as well as for those with a proper mathematical background and willing to become familiar

with novel applications of computational techniques, which have rapidly developed nowadays.

As a Guest Editor of the Special Issue, I have had the privilege of working with and contributing to the

MDPI “Mathematics” journal, and it has been a valuable experience. Furthermore, I am grateful to the authors

of the papers for their outstanding research work, to the reviewers for their valuable comments toward the

improvement of the submitted works, and to the administrative staff of the MDPI publications for the support

to complete this project.

Fajie Wang and Ji Lin

Editors
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A Simple, Accurate and Semi-Analytical Meshless Method for
Solving Laplace and Helmholtz Equations in Complex
Two-Dimensional Geometries

Xingxing Yue, Buwen Jiang, Xiaoxuan Xue and Chao Yang *

College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
qdxxy90@qdu.edu.cn (X.Y.); Buwen_Jiang_qdu@163.com (B.J.); Xiaoxuan_Xue_qdu@163.com (X.X.)
* Correspondence: yangchao@qdu.edu.cn

Abstract: A localized virtual boundary element–meshless collocation method (LVBE-MCM) is pro-
posed to solve Laplace and Helmholtz equations in complex two-dimensional (2D) geometries.
“Localized” refers to employing the moving least square method to locally approximate the physical
quantities of the computational domain after introducing the traditional virtual boundary element
method. The LVBE-MCM is a semi-analytical and domain-type meshless collocation method that is
based on the fundamental solution of the governing equation, which is different from the traditional
virtual boundary element method. When it comes to 2D problems, the LVBE-MCM only needs to
calculate the numerical integration on the circular virtual boundary. It avoids the evaluation of
singular/strong singular/hypersingular integrals seen in the boundary element method. Compared
to the difficulty of selecting the virtual boundary and evaluating singular integrals, the LVBE-MCM
is simple and straightforward. Numerical experiments, including irregular and doubly connected
domains, demonstrate that the LVBE-MCM is accurate, stable, and convergent for solving both
Laplace and Helmholtz equations.

Keywords: localized meshless collocation method; virtual boundary element; fundamental solution;
Laplace equations; Helmholtz equations

MSC: 35J05; 35J25; 65N35

1. Introduction

The boundary element method (BEM) [1,2] is a well-known numerical method that
has become an alternative to domain methods such as the finite element method (FEM) [3,4]
for the simulation of certain physical problems. The core of this method is to accurately
solve singular integrals, especially nearly singular, strongly singular, and hypersingular
integrals, among others. Substantial efforts have been devoted to developing and applying
efficient estimation techniques for such integrals. Lutz [5] proposed a special Gaussian-type
numerical integral to calculate the singular and nearly singular integrals. Johnston and
Elliott [6] proposed a sinh transformation to evaluate nearly singular integrals. Niu and
Zhou [7,8] suggested that the asymptotic expansion of the kernel function with respect
to the local co-ordinates should be employed to address singular integrals. Besides these
methods, there are other techniques that can be used to deal with various singular integrals.
Although they were proven to be the effective strategies, these methods are often time
consuming, tedious, and expensive.

In recent years, the virtual boundary element method (VBEM) [9–13] has been pro-
posed to overcome the above shortcomings. The VBEM introduces the virtual boundary
to avoid the calculation of singular integrals and inherits the semi-analytical and high-
accuracy features of the BEM. Sun and Yao [14] used the VBEM to successfully solve

Mathematics 2022, 10, 833. https://doi.org/10.3390/math10050833 https://www.mdpi.com/journal/mathematics
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thin plate elastic obstacle problems. Yao et al. [10,15] used the VBEM to simulate mag-
netoelectroelastic and piezoelectric problems. Yang et al. [16] and Liu et al. [17] resolved
three-dimensional inverse heat conduction problems using the VBEM. As a boundary-
type scheme with global discretization, however, the VBEM encounters challenges when
simulating large-scale and/or high-dimensional problems.

More recently, the localization of boundary-type meshless methods have received con-
siderable attention, and various localized meshless methods [18–23] have been proposed
to solve mathematical and mechanical problems, such as the generalized finite difference
method (GFDM) [24,25], the localized method of fundamental solutions (LMFS) [26,27], the
local knot method (LKM) [28,29], and the localized singular boundary method
(LSBM) [30,31]. Unlike traditional boundary-type methods, these methods are not only
simple, accurate, and easy-to-program, but also suitable for large-scale simulations in
complicated domains. On the other hand, boundary-type meshless methods encounter
many difficult issues. Similar to the fundamental solution method, the VBEM uses fun-
damental solutions as the basis functions and requires a virtual boundary outside of the
physical domain to avoid source singularity. The selection of this artificial boundary is still
a well-known tricky issue in spite of the great deal of effort that has been made to address
this problem [32,33], especially in terms of complex geometries.

Motivated by the above works using localized methods, we establish a localized
numerical framework for the VBEM in this paper, which we called the localized virtual
boundary element–meshless collocation method (LVBE-MCM). The accuracy and effec-
tiveness of the LVBE-MCM was verified via its ability to solve Laplace and Helmholtz
equations in complex 2D domains. In the traditional VBEM, it is difficult to determine the
position and shape of virtual boundaries in the complex domain because these boundaries
have a certain impact on the calculation accuracy. On the contrary, the LVBE-MCM only
uses the circular virtual boundary during the local approximation, and it is insensitive to
the location of the boundary. Furthermore, the resulting LVBE-MCM system is sparse and
can thus be easily solved using an ordinary computer. This also means that the method has
certain application prospects for solving large-scale problems.

The rest of the paper is organized as follows: In Section 2, the considered problem
is briefly introduced. Section 3 describes the detailed numerical procedure for the LVBE-
MCM. Section 4 develops an augmented moving least squares approximation using the
fundamental solutions. In Section 5, two numerical examples are provided to confirm the
effectiveness and applicability of the proposed method. The conclusions are summarized
in Section 6.

2. Preliminaries

Let Ω ∈ R2 be an open bounded domain surrounded by the boundary Γ = ∂Ω, which
is assumed to be piecewise smooth, and consider the following boundary value problem:

Lu(x) = 0, x ∈ Ω, (1)

u(x) = f (x), x ∈ ΓD, (2)

∂u(x)
∂n

= g(x), x ∈ ΓN , (3)

αu(x) + β
∂u(x)

∂n
= h(x), x ∈ ΓR, (4)

where L is the Laplace (L = ∇2) or Helmholtz (L = ∇2 + λ2) operator, λ is the wave
number, n is the unit outward normal vector, α and β are constants, and f (x), g(x), h(x)
are the provided smooth functions on the boundaries. Here, ΓD, ΓN , and ΓR represent the
Dirichlet, Neumann, and Robin boundaries, respectively.

2
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The fundamental solutions for the Laplace and Helmholtz operators are determined
by [34]

u∗(r) = − 1
2π

ln(r), for Laplace operator (5)

u∗(r) = i
4

H(1)
0 (λr), for Helmholtz operator (6)

where r denotes the Euclidean distance between the field point and the source point, and
H(1)

0 is a zero-order Hankel function of the first kind.

3. Localized Virtual Boundary Element–Meshless Collocation Method

First of all, the N = ni + nb1 + nb2 + nb3 discrete nodes x(i), i = 1, 2, . . . , N are placed
over the computational domain Ω, where ni is the number of nodes inside the domain, and
nb1, nb2, and nb3 indicate the number of nodes along the Dirichlet, Neumann, and Robin
boundary, respectively. Considering an arbitrary node x(i), which is also known as the
central node, its m supporting nodes x(i)j , j = 1, 2, . . . , m can be determined based on the
nearest nodes. At the same time, the local supporting domain Ωs covering m+1 nodes
can also be determined, and its virtual boundary Γ(i) can be specified at a certain distance
from the boundary of the supporting domain. For 2D problems, this boundary is a circle.
Figure 1 shows the schematic diagram of the LVBE-MCM.

Figure 1. Schematic diagram of the LVBE-MCM for the 2D problem.

In the present study, the virtual boundary is discretized by M exact geometrical
elements, and the physical quantity is approximated by the constant element. Using x(i)0 to

represent x(i), the unknowns at nodes x(i)j , j = 0, 1, . . . , m are expressed as

u
(

x(i)j

)
=

∫
Γ(i)

u∗(x(i)j , ξ)ϕ(i)(ξ)dΓ(i)
s =

M

∑
k=1

ϕ
(i)
k

∫
Γ(i)

k

u∗(x(i)j , ξ)dΓ(i)
k , x(i)j ∈ Ω(i)

s , j = 0, 1, . . . , m, (7)

where u∗(x(i)j , ξ) is the fundamental solution of the governing equation, and ϕ(ξ) is the

distribution density function associated with the virtual boundary Γ(i). Equation (7) can be
rewritten in the following matrix form:

u(i) = G(i)ϕ(i). (8)

For the above local approximation, the moving least squares (MLS) can be employed
to obtain the unknown coefficient vector ϕ(i) =

[
ϕ
(i)
1 , ϕ

(i)
2 , . . . , ϕ

(i)
M

]
, resulting in

ϕ(i) = H(i)u(i). (9)

3
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Replacing x(i)j in Equation (7) with x(i), the following formula is yielded:

u
(

x(i)
)
=

M

∑
k=1

ϕ
(i)
k

∫
Γ(i)

k

u∗(x(i), ξ)dΓ(i)
k = E(i)ϕ(i). (10)

Then, substituting Equation (9) into Equation (10), we obtain

u
(

x(i)
)
= E(i)H(i)u(i) = F(i)u(i). (11)

If x(i) is a node on the boundary, the normal derivative can be calculated by

∂u(x(i))
∂n

= N(i)ϕ(i) = N(i)H(i)u(i) = C(i)u(i), (12)

where N(i) = n1σ
(i)
1 + . . . + ndσ

(i)
d , and

σ
(i)
l =

[∫
Γ(i)

1

∂u∗(x(i), ξ)

∂x(i)l

dΓ(i)
1 ,

∫
Γ(i)

2

∂u∗(x(i), ξ)

∂x(i)l

dΓ(i)
2 , . . . ,

∫
Γ(i)

M

∂u∗(x(i), ξ)

∂x(i)l

dΓ(i)
M

]
, l = 1, . . . , d. (13)

In the above equations, n1, . . . , nd denote the components of the vector n, and x(i)1 , . . . , x(i)d
denote the coordinate components of the node x(i).

Taking all of the nodes x(i), i = 1, 2, . . . , N and the boundary data provided in
Equations (2)–(4) into account, the following overdetermined equations can be obtained:⎧⎪⎪⎨⎪⎪⎩

ui − F(i)u(i) = 0, i ∈ {1, 2, . . . , ni}
ui = fi, i ∈ {ni + 1, . . . , ni + nb1}
E(i)u(i) = gi, i ∈ {ni + nb1 + 1, . . . , ni + nb1 + nb2}
αui + E(i)u(i) = 0, i ∈ {ni + nb1 + nb2 + 1, . . . , N}

or Au = b, (14)

where u =
[
u(x(1)), u(x(2)), . . . , u(x(N))

]T
, bN×1 is a vector composed of zero elements

and boundary data, and AN×N is a sparse matrix. Equation (14) is a well-conditioned
system, and in this work, it is solved by MATLAB routine “A\b”.

4. Augmented Moving Least Squares Approximation

The moving least squares approximation is a widely used technique in various mesh-
less/meshfree methods. In this study, the fundamental solutions are introduced into the
traditional moving least squares method, and we then developed the augmented moving
least squares approximation, which is similar to the one outlined in [35]. According to its
basic idea, the vector α(i) is deduced by minimizing the following functional equation:

Ju(i) =
(

G(i)ϕ(i) − u(i)
)T

ω(i)
(

G(i)ϕ(i) − u(i)
)

, (15)

where ω(i) = diag
(

w(i)
0 , w(i)

1 , . . . , w(i)
m

)
, and

ω
(i)
j = 1− 6

(
dj/dmax

)2
+ 8

(
dj/dmax

)3 − 3
(
dj/dmax

)4, (16)

in Equation (16), dj = ‖x(i)j − x(i)‖
2

and dmax = max
j=0,1,...,m

(dj).

Hence, we have

∂Ju(i)

∂ϕ(i)
= 2

[
G(i)

]T
ω(i)G(i)ϕ(i) − 2

[
G(i)

]T
ω(i)u(i) = 0. (17)

4
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By calculating and reorganizing Equation (17), we can obtain a system equation in
matrix form:

P(i)ϕ(i) = Q(i)u(i), (18)

where P(i) =
[

G(i)
]T

ω(i)G(i), and Q(i) =
[

G(i)
]T

ω(i). Solving Equation (18) yields ϕ(i) =[
P(i)

]−1
Q(i)u(i); hence, H(i) in Equation (9) is equal to

[
P(i)

]−1
Q(i). It should be pointed

out that we used MATLAB’s mldivide (matrix left divide) function (P(i)\Q(i)) to obtain
H(i) instead of the matrix inversion.

5. Numerical Examples

Two numerical examples are provided to demonstrate the effectiveness and accuracy
of the proposed method. To evaluate the numerical errors, we adopt the maximum absolute
error (MAE) and the root-mean-square error (RMSE), which are defined as follows:

MAE = max
1≤j≤ni

∣∣un(xj)− ue(xj)
∣∣, (19)

RMSE =

√√√√ 1
ni

ni

∑
j=1

(un(xj)− ue(xj))
2, (20)

where un and ue represent the numerical and analytical solution at node xj, respectively.
All computations were performed using MATLAB 2018b on a desktop PC (Intel® Core
TMi7-6700 CPU at 3.4 GHz, 16G RAM, and Hard Disk-500G).

Example 1. Consider a Laplace equation on an irregular domain with mixed boundary conditions.
The geometry and boundary conditions are shown in Figure 2. For the Robin boundary condition,
α = 1 and β = 5. The analytical solution is obtained by

u(x1, x2) = cos(x1) cosh(x2) + sin(x1)sinh(x2) + ex1 cos(x2) + ex2 sin(x1) + x1
2 − x2

2 + 2x1 + 3x2 + 1. (21)

Figure 2. Computational domain and boundary conditions for Example 1.

First of all, N = 6784 nodes are chosen, and 8 Gaussian points are used. It can be seen
from Figure 3 that the numerical error first decreases and then increases as the number of
virtual elements increases, meaning that high computational accuracy has been achieved.
Then, M = 15 is fixed. From Figure 4, we can observe that the number of Gaussian points

5
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has little effect on the calculation accuracy, and therefore, fewer Gaussian points can be
used in the calculation.

Figure 3. Error curves with respect to the number of virtual elements.

Figure 4. Error curves with respect to the number of Gaussian points.

The LMFS and GFDM are recently developed meshless approaches that are very
similar to the present LVBE-MCM. In Table 1, these two methods are compared to the
proposed approach. It can be observed that all methods are convergent. Although the
LMFS and LVBE-MCM have similar numerical accuracy, the latter is slightly better than
the former.

Table 1. The RMSEs derived from the LVBE-MCM, LMFS, and GFDM under different numbers of
total nodes.

N 448 765 1211 2592 4475 6784

LVBE-MCM 5.3674 × 10−7 3.7938 × 10−7 2.7616 × 10−7 1.2551 × 10−7 3.4856 × 10−8 8.9528 × 10−9

LMFS 1.4072 × 10−6 4.7048 × 10−7 4.3495 × 10−7 1.3170 × 10−7 1.4663 × 10−7 9.8769 × 10−8

GFDM 2.6038 × 10−3 4.2642 × 10−5 3.3704 × 10−5 1.6361 × 10−5 4.1832 × 10−7 1.3909 × 10−7

Example 2. A Helmholtz equation on a doubly connected domain (see Figure 5) is considered. The
boundary conditions are specified by the analytical solution u(x1, x2) = cos(x1/2+

√
3x2/2) with

λ = 1.
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Figure 5. Computational domain and boundary conditions for Example 2.

The profiles of the exact solution and absolute error in the computational domain
under N = 1840 and M = 15 are shown in Figure 6. The maximum absolute error and the
root-mean-square error are 3.3238 × 10–8 and 6.4048 × 10–9, respectively. This indicates the
high-accuracy of the proposed method. Furthermore, it can be observed from Table 2 that
the LVBE-MCM has higher numerical accuracy than the LMFS when the same number of
sources and elements is adopted.

Figure 6. Profiles of the (a) exact solution and (b) absolute error.

Table 2. The RMSEs derived from the LVBE-MCM and LMFS under different elements or sources.

M 10 15 20 25 30 35

LVBE-MCM 3.6573 × 10−6 6.4048 × 10−9 1.1714 × 10−8 5.7849 × 10−8 5.1474 × 10−8 4.8111 × 10−8

LMFS 1.4772 × 10−5 1.3537 × 10−8 3.5835 × 10−8 7.4075 × 10−8 6.5249 × 10−8 6.7892 × 10−8

7
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6. Conclusions

The localized virtual boundary element–meshless collocation method (LVBE-MCM)
was proposed as a novel domain-type meshless method that could be used to solve Laplace
and Helmholtz equations in complex 2D geometries. In this work, the traditional virtual
boundary element method with a global approximation was modified to a local approxi-
mation approach by introducing the moving least square method and local approximation
theory. Numerical integrations are only required on the circular virtual boundary; thus, the
exact geometry elements are convenient to use. The proposed LVBE-MCM avoids the need
to evaluate the singular/strong singular/hypersingular integral in the boundary element
method and has a higher calculation accuracy than the LMFS.

Two examples involving irregular geometries and doubly connected domains were
investigated in detail. The numerical results indicate that the LVBE-MCM is accurate
and effective for solving Laplace and Helmholtz equations in complex two-dimensional
geometries. The number of Gaussian points has a little effect on the calculation accuracy,
and therefore, fewer Gaussian points can be used in the calculation. Moreover, the scheme
is convergent with respect to increasing the number of total nodes. It is worth noting
that the proposed method can be directly extended to other partial differential equations
with known fundamental solutions, such as diffusion equations, Stokes equations, and
biharmonic equations.

It should also be pointed out that this paper investigates the accuracy and convergence
of the LVBE-MCM numerically. Unlike the difference method and Taylor expansion, it is
not an easy work to formally prove the convergence and stability of the LVBE-MCM since
there are few related assumptions and theorems on approximation techniques that use the
fundamental solution and the augmented moving least squares scheme. Consequently, a
theoretical analysis of the LVBE-MCM will be the key issue in our subsequent work.
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Abstract: Traditional topology optimization of thermo-elastic structures is based on deterministic
conditions, without considering the influence of uncertainty factors. To address the impact uncer-
tainty on structural strength, a reliability-based topology optimization of thermo-elastic structure
with stress constraint is proposed. The probabilistic uncertainty quantities are associated with the
structural material property, mechanical loads and the thermal stress coefficient with the topology
optimization formulation considering volume minimization and stress constraint. The relaxation
stress method combined with normalized p-norm function is adopted to condense whole element
stresses into the global stress measurement that approximates the maximum stress. The adjoint
variable method is utilized to derive the sensitivity of the stress constraint and the optimization
problem is solved by the method of moving asymptote (MMA). Finally, several numerical examples
are presented to demonstrate the effectiveness and validity of the proposed approach. Compared
with the deterministic design, the reliability design has distinct topological configurations and the
optimized structures maintain a higher reliability level.

Keywords: thermo-elastic structure; topology optimization; reliability analysis; stress constraint

MSC: 65K10

1. Introduction

Various mechanical parts, such as turbines, rockets and battery systems, are subjected
to both thermal and mechanical loads because of the working environment with coupled
temperature and structural fields. In this scenario, it is necessary for the thermo-elastic de-
sign to consider the temperature factor’s impact on structural strength to prevent structural
failure [1].

In recent years, topology optimization methods are widely used in thermo-elastic
structure design, including the variable density method, the homogenization method,
the evolutionary optimization method, the level set method, etc. Rodrigue et al. [2] first
proposed the topology optimization of thermo-elastic structures by the homogenization
method. Du et al. [3] performed the topology optimization of thermal-driven compliant
mechanisms by the variable density method. Li et al. [4] conducted a study on the optimal
design of thermo-elastic structures under the non-uniform temperature field based on the
evolutionary optimization method. Deng et al. [5] used the level set method to derive the
topological sensitivity information for the thermo-elastic structures. Most of the studies
in the above-mentioned literature are based on the compliance minimization, while the
strength is an essential design criterion in engineering practice. Recently, it has been stated
in Ref. [6] that the topology optimization model of compliance minimization is not suitable
for thermo-elastic topology optimization, because when the temperature load is comparable
to the mechanical load, compliance minimization cannot obtain an optimal structure with
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reasonable strength. More researches have illustrated that simple reinforcement techniques
cannot sufficiently solve the problem of thermo-elastic structural strength failure caused by
destructive stress [7]. Therefore, stress-based topology optimization design is necessary
and has been gradually emerged.

Topology optimization related with stress constraint is the most challenging research
field. This is mainly due to the following three problems: (i) the singularity problem, (ii) the
local nature of stresses, and (iii) the highly nonlinear behavior of stress constraints [8].
According to the relevant literature, there are some efficient approaches to deal with the
above-mentioned problems. Regarding the singular phenomenon, the commonly used
methods include ε-relaxation techniques [9,10], qp-relaxation techniques [11,12], etc. For
the local nature of stress, local stress constraints are transformed into global stress constraint
by using aggregation function, including the p-norm [13,14] and KS-function [15]. In ad-
dition to the above numerical problems, the third challenge is the highly nonlinear stress
behavior wherein stress distribution is highly sensitive to even subtle topological variations,
particularly at critical regions with high stress concentration [16]. This feature is reflected
in the tendency of the optimization iterations to have repeated oscillations. To stabilize the
convergence, a density filtering method and suitable optimization solution algorithm were
adopted by Le et al. [17]. Recently, Deaton et al. [18] investigated the topology optimization
problem of thermo-elastic structures under stress constraint. However, the above studies
on topology optimization considering stress constraint are based on deterministic topology
optimization (DTO). In practical engineering, the material properties and the mechanical
loads are often uncertain due to the differences of the internal conditions and the time-
varying nature of the external environment. These uncertainties maybe affect the reliability
of the structural performance and even lead to failure [19–21]. Thus, reliability-based
topology optimization (RBTO) is becoming more and more prominent.

According to the different mathematical tools used to describe the properties of un-
certainty, uncertainty can be divided into stochastic uncertainty and epistemic uncertainty.
The former describes the inherent variability in the physical system or working envi-
ronment, also known as objective uncertainty, and usually uses probabilistic methods to
model random variables or stochastic processes, while the latter is mainly due to sub-
jective knowledge limitations or incomplete information. The resulting, also known as
subjective uncertainty, can be modeled by non-probabilistic methods such as fuzzy anal-
ysis [22]. Therefore, reliability topology optimization considering uncertainty conditions
is mainly divided into probabilistic and non-probabilistic types. At present, the research
on reliability topology optimization design with random variables as a probability dis-
tribution is relatively mature. Kharmanda et al. [23] first combined structural reliability
analysis with deterministic topology optimization and established an effective reliability
flowchart for structural strain energy minimization. Jung et al. [24] investigated the re-
liability topology optimization for the three-dimensional geometric nonlinear structure
design. Zhao et al. [25] studied the multi-material topology optimization problem with
reliability constraints considering the effects of incomplete measurement of structures,
inaccurate information, and insufficient cognition on structures. For practical engineering
applications, Silva et al. [26] adopted a single-loop topology optimization mathematical
model of components and systems and applied it to the design of automotive control arms,
and the results showed that the method has good practicality and efficiency.

To the author’s knowledge, this is the first attempt to reliability-based topology opti-
mization of thermo-elastic structure with stress constraint. The material property, thermal
stress coefficient and mechanical loads are chosen as uncertainty variables with the prob-
ability distributions. Based on probability theory, the structural topology optimization
design method considering stress constraint is combined with the existing reliability struc-
tural topology optimization model [27]. A reliability-based topology optimization design
method for thermo-elastic structures under global stress constraint is proposed. The RBTO
and the DTO design are compared to verify the effectiveness and feasibility of the pro-
posed method.
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2. Finite Element Formulation of Thermo-Elastic Structure

Figure 1 illustrates the generalized design domain Ω for the thermo-elastic structure
problem, which consists of the predefined design domain containing the fixed displacement
boundary Γd, surface mechanical load Fm applied on the boundary Γf, and the uniform
temperature variation ΔT(x, y). In addition, the isotropic material is considered and
the design domain is discretized into quadrilateral elements and eight-node hexahedral
elements in 2D and 3D problems, respectively.

Figure 1. Generalized design domain of thermo-elastic structure.

For the thermo-elastic structure coupled with temperature and mechanical loads, the
static equilibrium equations can usually be expressed as

K(ρ)U(ρ) = Fm + Fth(ρ) (1)

where ρ is the density variable vector, K(ρ) is the structural global stiffness matrix, U(ρ) is
the structural nodal displacement vector, Fm is the mechanical load vector, and Fth(ρ) is the
temperature load vector due to thermal strain. The stiffness matrix K(ρ) is assembled by

K(ρ) =
Ne

∑
e=1

∫
Ωe

BT
e De(ρe)BehdΩe (2)

where Ne is the total element number, Ωe represents the element domain, h is the thickness
of the planar element, Be is the element strain-displacement matrix, De(ρe) is the material
elasticity matrix of element e [28]. Adopting the SIMP material interpolation method, De(ρe)
can be expressed as a function of the material elastic modulus, defined by

De(ρe) = E(ρe)D0 = ρe
αE0D0 (3)

where E(ρe) is the elastic modulus of element e, α is the elastic modulus penalty factor, E0 is
the elastic modulus of the solid material, D0 is the coefficient matrix for an element with
unit elastic modulus.

The temperature load Fth(ρ) can be assembled by accumulating the element tempera-
ture load, defined as

Fth(ρ) =
Ne

∑
e=1

E(ρe)
∫

Ωe
Be

TD0εe
th(ρe)dΩe (4)

where
εe

th(ρe) = γ(ρe)ΔTφ (5)

where εe
th(ρe) is the thermal strain vector for the element, γ(ρe) is the material thermal

expansion coefficient, ΔT is the amount of uniform variation of the temperature, φ is
defined as [1, 1, 0] T in 2D problems and [1, 1, 1, 0, 0, 0]T in 3D problems. Substituting
Equation (6) into Equation (5) yields

It is noted that E(ρe) and γ(ρe) are both concerned with the element density variables.
Hence, by using the thermal stress coefficient (TSC) [29], the parameters are combined into
the single thermal stress coefficient, defined as
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δ(ρe) = E(ρe)γρe) = ρe
kE0γ0 = ρe

kδ0 (6)

where γ0 is the expansion coefficient of the solid material, k is the thermal stress penalty
factor, δ0 is the thermal stress coefficient of the solid material.

Substituting Equations (5) and (6) into Equation (4), Fth(ρ) can be expressed as

Fth(ρ) =
Ne

∑
e=1

δ(ρe)ΔT
∫

Ωe
Be

TD0φdΩe (7)

3. Deterministic Topology Optimization of Thermo-Elastic Structure

3.1. Mathematical Model of Deterministic Topology Optimization

With regard to the deterministic topology optimization of the thermo-elastic structure
problem, the volume minimization and stress constraint are considered to satisfy the static
strength failure and lightweight design. The deterministic topology optimization of the
thermo-elastic structure can be established as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ind ρ

min V(ρ) =
Ne
∑

e=1
ρeve

s.t.K(ρ)U(ρ) = Fm + Fth(ρ)

σVM
e (ρ) ≤ σs (e = 1, 2, . . . , Ne)

0 < ρmin ≤ ρe ≤ 1(e = 1, 2, . . . , Ne)

(8)

where ρ is the density variable vector, V(ρ) is the overall structural volume, ve is the element
volume, σe

VM(ρ) is the von Mises stress of each element, σs is the material yield strength,
and ρmin is the lower limit of the design variable.

3.2. Global Stress Constraint

The topological optimization of the stress-constrained structure appears as a singular
solution phenomenon, i.e., the density of the element tends to zero, yet the stress of the
element is a non-zero value. To solve the singular solution phenomenon, based on the
SIMP material interpolation model, the stress relaxation method is used to penalize the
element stresses in the form of

σe(ρ) = ρ
q
e σe0 (9)

where σe(ρ) is the interpolated element stress, q is the intensity penalty factor, and σe0 is
the stress vector at the center of the eth element, defined as

σe0 = E0(D0BeUe −D0γ0φΔT) (10)

where Ue is the nodal displacement vector of the element. The element stress vector σe0 in
2D and 3D problems is respectively expressed as

For 2D problems,
σe0 =

[
σex, σey, τexy

]
(11)

For 3D problems,
σe0 =

[
σex, σey, σez, τexy, τeyz, τezx

]
(12)

where σex, σey and σez are the stress components in the x, y and z directions of element e,
respectively. τexy, τeyz, and τezx are the shear stress components on the xy, yz, and zx planes
of the element e, respectively.

The fourth strength theorem is used as the failure criterion of the material, the von
Mises stress σe

VM of the element can be obtained from the three components of the element
stress vector, expressed as

σVM
e =

√
σT

e Mσe (13)

The Stress coefficient matrix M, in 2D and 3D problems are respectively expressed as
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For 2D problems,

For 2D problems, M =

⎡⎣ 1 −1/2 0
−1/2 1 0

0 0 3

⎤⎦ (14)

For 3D problems,

M =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −1/2 −1/2 0 0 0
−1/2 1 −1/2 0 0 0
−1/2 −1/2 1 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦ (15)

In order to reduce the problem of computational burden caused by numerous local
stress constraints, the p-norm function is adopted to construct the global stress constraint,
denoted as

σPN =

(
Ne

∑
e=1

(
σVM

e
σs

)p) 1
p

(16)

where p is the aggregation parameter. Note that p tends to infinity, and σPN is equivalent to
max(σe

VM/σs). The stress constraint is equivalent to the global stress constraint, defined as

σPN ≤ 1 (17)

However, when p enlarges, the degree of nonlinearity of the aggregation function
increases that leads to oscillation convergence in the optimization process. Otherwise,
with smaller p, the aggregation function cannot capture the maximum of the stress [30].
To overcome this defect, a revised coefficient is introduced into the constraint equation,
expressed as

σPN = cσPN ≤ 1 (18)

where c is the revised coefficient, and before each optimization process, is defined as

c =
max

(
σVM

e
)

σs · σPN (19)

4. Reliability-Based Topology Optimization of Thermo-Elastic Structure

4.1. Reliability-Based Topology Optimization Problem Description

Reliability is an important property reflecting the degree of structural safety [31].
The reliability-based optimization design measures the uncertainty of the structure by the
failure probability or reliability index. While pursuing the optimal structural performance,
it reduces the probability of the structure failure under the influence of uncertain factors,
thereby improving the safety of the structure. Reliability-based topology optimization is a
combination of reliability analysis and deterministic topology optimization design, aiming
to integrate the problem of structural optimization and reliability constraint. The RBTO is
slightly different from the traditional reliability structure optimization, and the variables
are mainly divided into deterministic variables and random variables. The deterministic
variables are used to characterize the physical density ρ (in the case of the variable density
method), which are the design variable for topology optimization. And the random
variables Y, which are used to characterize the structural uncertainty factor, are continuous
variables. This paper mainly studies random uncertain variables, such as the material
properties of structures, loads, etc., which are suitable for using probability theory to
describe their distribution characteristics [32]. In order to facilitate the calculation, it is
generally necessary to standardize the non-normally distributed random variables into
mutually independent standard normal random variables u.
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4.2. Mathematical Model of Reliability-Based Topology Optimization

Based on the above description of the random variables, a mathematical model for
reliability-based topology optimization of thermo-elastic structure is established. Consider-
ing a general RBTO formulation, the stress constraint of Equation (8) is simply transformed
into a probabilistic constraint, as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ind ρ

min V(ρ) =
Ne
∑

e=1
ρeve

s.t. Pr[G(ρ, Y) ≤ 0] = Pf ≤ P∗f
Pf =

∫
G≤0 fY(y)dy1 · · · dyn

0 < ρmin ≤ ρe ≤ 1(e = 1, 2, . . . , Ne)

(20)

This optimization model is expressed as finding the optimized structural configuration,
i.e., minimizing the overall structural volume under the reliability stress constraint. Y is
a vector of random variables, G is a limit state function, fY (y) is the joint probability
density function of Y, Pr is the probability sign, Pf is the failure probability, obtained by
multidimensional integration, and Pf

* is the value of the permissible failure probability. In
reliability analysis, the limit state is defined as G (ρ, Y) = 0, the failure state and the safety
state are G (ρ, Y) < 0 and G (ρ, Y) > 0, respectively.

In practical engineering, it is difficult to solve the multidimensional integral to obtain
the exact probability density distribution. Therefore, approximate analytical methods are
generally used to calculate the failure probability, such as the first order second moment
method [33] and the first order reliability method [34]. The first order reliability method is
selected in this paper to approximate the failure probability.

According to the stress intensity interference theory [35,36], this paper characterizes
the limit state function, G, in terms of the load-bearing capacity of the structure, denoted as

G(ρ, Y) = R− S = σs − σVM
e (ρ, Y) (21)

where R denotes the structural resistance and S denotes the load variable. In this paper,
we consider the possibility that the random variables may cause the von Mises stress
somewhere in the structure to exceed the yield strength limit of the material, thus causing
the structure to fail. So here R is denoted as the yield strength σs of the material and S is
denoted as the von Mises stress σe

VM(ρ, Y) of element. G > 0, the structure is reliable, G < 0,
the structure fails, and G = 0, the structure is in the limit state.

If both R and S obey normal distribution, their mean and variance are ϕR, ϕS and σR,
σS, respectively. Then G also obeys normal distribution, and let its mean and variance be
ϕG and σG, respectively. Therefore, the failure probability can be expressed as

Pf = Pr[σs − σVM
e (ρ, Y) ≤ 0] = Φ

(
ϕS − ϕR

(σ2
R + σ2

S)
1/2

)
= Φ

(
− ϕG

σG

)
(22)

where Φ is the standard cumulative distribution function.
Introducing the reliability index β, let be

β =
ϕG
σG

(23)

Using the first order reliability method, the calculation of the probability of failure is
converted into a measurable reliability index β, which is specifically expressed as the mini-
mum distance from the origin to the limit state function in the normalized space (u space)
with the most probable point (MPP) being searched, as shown in Figure 2. According to
the corresponding relationship of the failure probability and the reliability index in the
first order reliability method, the failure probability constraint can be transformed into the
following reliability index constraint
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⎧⎪⎪⎨⎪⎪⎩
Pf = Φ(−β)

P∗f = Φ(−β∗)

Pf ≤ P∗f ⇒ β ≥ β∗
(24)

where β* is the target reliability index, and the intersection point u* is the design point,
also known as the most probable failure point (MPP). The random variable Y needs to be
normalized into an independent standard normal random variable u, expressed as u = T(Y),
or Y = T−1(u). In the standard normal space, u is given by the following expression,
defined as

u =
Y−ϕy

σy
(25)

where ϕy and σy are the vector of mean values and the standard deviations associated with
Y, respectively.

Figure 2. Geometric description of reliability index in standard normal space.

After the above transformation, in the standard normal space, the limit state function
is then transformed into

G(ρ, Y) = G
((

ρ, T−1(u)
)
= Q(ρ, u) (26)

4.3. Reliability-Based Topology Optimization for Thermo-Elastic Structures

The design variables and random variables in the reliability-based topology opti-
mization are respectively assigned into deterministic topology optimization and reliability
analysis and are independent of each other, which leads to the reliability-based topology
optimization computation intensively and makes it difficult to converge [37]. Therefore,
the proposed predecessor-decoupling hybrid method is adopted that decomposed the
RBTO problem into two successively independent design processes that the deterministic
topology optimization and reliability analysis.

In the reliability analysis, the MPP point u* is obtained by solving the following
mathematical model according to the geometric meaning of the reliability index β in
Figure 2. ⎧⎨⎩ min

u
‖u‖ = β =

√
∑u2

i

s.t.β(u) ≥ β∗
(27)

The sensitivity of the reliability index concerning the normal random variable can be
expressed as

∂β

∂ui
=

1
2

(
∑u2

i

)−1/2
2ui =

ui
β

(28)
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The sensitivity of the objective function with respect to the chosen means of random
variables can simply be calculated using the classical finite difference approach, written as

∂V
∂ϕyi

=
ΔV

Δϕyi

=
V
(

ϕyi + Δϕyi

)−V
(

ϕyi

)
Δϕyi

(29)

where ϕyi and σyi are the mean value and standard deviation of the random variable
yi, respectively.

According to the above sensitivity calculation result, the revised random variable y*

through Rosenblatt inverse transform, is defined as{
y∗i = ϕyi + u∗i σyi , ∂V

∂ϕyi
≥ 0

y∗i = ϕyi − u∗i σyi , ∂V
∂ϕyi

≤ 0
(30)

5. Sensitivity Analysis

The sensitivity of the structural volume respect to the element density can be obtained
by the direct differentiation method, defined by

∂V(ρ)

∂ρe
= v0 (31)

The sensitivity information of the stress relative to the element density is obtained
by the adjoint variable method. The Lagrangian function C of the stress is constructed by
introducing the Lagrangian product factor as

C = σPN − λT
(

K(ρ)U− Fm − Fth(ρ)
)

(32)

The sensitivity of the Lagrangian function with respect to the element density is
derived as

∂C
∂ρe

=
∂σPN

∂ρe
− λT

(
∂K(ρ)

∂ρe
U + K(ρ)

∂U
∂ρe
− ∂Fm

∂ρe
− ∂Fth(ρ)

∂ρe

)
(33)

According to the chain rule, it is easy to obtain the sensitivity corresponding the
element density ρe as

∂σPN

∂ρe
=

Ne

∑
i=1

c
∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
∂σe

∂ρe
(34)

From the above equation, the sensitivity information for solving the global stress can
be obtained by combining the derivative of the p-norm function with respect to the von
Mises stress, the derivative of the von Mises stress with respect to the stress component, and
the derivative of the stress component with respect to the design variable. This sensitivity
information is performed separately.

5.1. Derivative of the p-Norm Function with Respect to the Von Mises Stress

Taking the expression of Equation (16), the derivative information of the p-norm
function to the von Mises stress of each element can be obtained as

∂σPN

∂σVM
e

=

(
Ne

∑
e=1

(
σVM

e
σs

)p) 1
p−1(

σVM
e
σs

)p−1 1
σs

(35)

5.2. Derivative of the Von Mises Stress with Respect to the Stress Component

For planar and spatial structural problems, the derivatives of element stress with
respect to the stress components are respectively described as
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For 2D problems, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂σVM
e

∂σex
= 1

2σVM
e

(
2σex − σey

)
∂σVM

e
∂σey

= 1
2σVM

e

(
2σey − σex

)
∂σVM

e
∂τexy

=
3τexy

σVM
e

(36)

For 3D problems, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂σVM
e

∂σex
= 1

2σVM
e

(
2σex − σey − σez

)
∂σVM

e
∂σey

= 1
2σVM

e

(
2σey − σex − σez

)
∂σVM

e
∂σez

= 1
2σVM

e

(
2σez − σex − σey

)
∂σVM

e
∂τexy

=
3τexy

σVM
e

∂σVM
e

∂τexz
= 3τexz

σVM
e

∂σVM
e

∂τezx
= 3τezx

σVM
e

(37)

5.3. Derivative of Stress Components with Respect to Design Variable

The derivative of the element stress component with respect to the density variable is
obtained as

∂σe

∂ρe
= qρ

q−1
e E0(D0BeUe −D0γ0φΔT) + ρ

q
e E0D0Be

∂Ue

∂U
∂Ue

∂ρe
(38)

Considering the loading independence, the derivative of the mechanical load Fm on
the element density can be ignored, and combining Equation (35) with Equation (34) and
substituting it into Equation (33), we can obtain

∂C
∂ρe

=
Ne
∑

e=1
c ∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
qρ

q−1
e E0(D0BeUe −D0γ0φΔT)

−λT
(

∂K(ρ)
∂ρe

U− ∂Fth(ρ)
∂ρe

)
+

[
Ne
∑

e=1
c ∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
ρ

q
e E0D0Be

∂Ue
∂U − λTK(ρ)

]
∂Ue
∂ρe

(39)

In order to eliminate the unknown displacement sensitivity term, let the term contain-
ing ∂U/∂ρe be zero, then the adjoint vector equation is established as

K(ρ)λ =
Ne

∑
e=1

c
∂σPN

∂σVM
e

ρ
q
e E0

(
∂Ue

∂U

)T
BT

e DT
0

(
∂σVM

e
∂σe

)
(40)

Then the corresponding sensitivity is

∂C
∂ρe

=
Ne
∑

e=1
c ∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
qρ

q−1
e E0qρ

q−1
e E0(D0BeUe −D0γ0φΔT)

−λT
(

∂K(ρ)
∂ρe

U− ∂Fth(ρ)
∂ρe

) (41)

Combining Equation (4) information, the derivation of Equations (2) and (7) can
respectively obtain the sensitivity of stiffness matrix K(ρ) and temperature load vector
Fth(ρ), defined as

∂K(ρ)

∂ρe
=

Ne

∑
e=1

αρα−1
e E0

∫
Ωe

BT
e D0BehdΩe (42)
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∂Fth(ρ)

∂ρe
=

Ne

∑
e=1

kρk−1
e δ0ΔT

∫
Ωe

BT
e D0φdΩe (43)

6. Density Filtering

In order to avoid the phenomenon of checkerboard and intermediate elements in the
topology optimization results, the density filtering technology [38] is used to suppress the
problems that are defined as

ρe =
1

∑i∈Ne Hei
∑

i∈Ne

Heixi (44)

where ρe is the element density, which is used to calculate the volume and stiffness matrix
of the element, xi is the design variable of the element, Ne is the number of all elements
whose distance from the center of element e is less than the filter radius rmin, and Hei is the
linear distance function, namely

Hei = max(0, rmin − Δ(e, i)) (45)

where Δ(e, i) is the distance between the centers of element e and element i.
The difference between the design variable x and the physical density ρ can be noted

here. The finite element model is parameterized using the density variable ρe contained in
ρ. The density variable is now calculated by applying a density filter to the design variable
x. For sensitivity consistency, the following chain rule is used, where g is the objective or
constraint function

∂g
∂xj

= ∑
e∈Nj

∂g
∂ρe

∂ρe

∂xj
= ∑

e∈Nj

1
∑i∈Ne Hei

Hje
∂g
∂ρe

(46)

The method of moving asymptote (MMA) [39] is used to solve the reliability-based
stress-constrained topology optimization problem for thermo-elastic structures. Due to
the highly nonlinear behavior of the stress constraint, the optimization process is prone
to iterative oscillations and even non-convergence. To avoid non-convergence, then an
external move limit m is imposed on the MMA algorithm to limit the maximum absolute
value of the difference between the design variables updated during the current iteration
and the previous iteration step.

In summary, the design of the reliability topology optimization of thermo-elastic struc-
tures considering the stress constraint based on the hybrid precursor-decoupling format is
decoupled into two parts executed in separate sequences: the precursor reliability analysis
and the deterministic topology optimization. The specific process is: first, according to
the geometric meaning of the reliability index in the primary reliability method, seek the
design point that satisfies the target reliability index; then, according to the sensitivity
information of the random variable, modify the random variable and convert it into a
deterministic parameter; finally, the deterministic topology optimization design is carried
out. The specific optimization flowchart is shown in Figure 3.
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Figure 3. Flowchart of reliability topology optimization in hybrid format.

7. Numerical Examples

In this section, three numerical examples of reliability-based stress-constrained topology
optimization of thermo-elastic structures are selected to verify the effectiveness of the proposed
method. The selected materials are chosen with the Young’s modulus E = 2.1 × 105 MPa,
Poisson’s ratio μ = 0.3, thermal expansion coefficient γ0 = 12.1 × 10−6/◦C. The p-norm penal-
ization factor is p = 8. The penalty factors are defined as α = 3, k = 3, and q = 0.8. The initial
element density values are taken as 1. The corresponding initial design domain volume is
V0, and the ratio V/V0 of the optimized structure volume to the initial structure volume is
used as the objective function, and the temperature field is uniformly varying.

7.1. 2D L-Shaped Beam Structure

The design domain of the L-shaped beam structure is illustrated in Figure 4. The design
domain has dimensions of 120 mm × 120 mm with a thickness of 1 mm and is discretized
into 14,400 quadrilateral elements. The top end of the L-shaped beam structure is clamped
and the mechanical load Fm is applied to the upper right end of the structure, which is
uniformly distributed over six adjacent nodes to avoid stress concentration. The stress
constraint value for the structure is 235 MPa, and the amount of temperature change
ΔT = 10 ◦C.

Figure 4. Design domain of L-shaped beam.
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For the reliability analysis, the random variables are chosen as Y = (Fm, E, δ0)T, and
assume that they obey normal probabilistic distribution. The mean value of mechanical
load, Young’s modulus and thermal stress coefficient are ϕF

m = 280 N, ϕE = 2.1 × 105 MPa
and ϕδ0 = 2.541 MPa/◦C, respectively. The variance is set to 5% of the mean value and the
permitted reliability index is set to 3.0.

The detailed evolution of the deterministic and reliable structures and the von Mises
stress distribution are shown in Figures 5 and 6, respectively, and the initial structural
maximum on the von Mises stress value is 246.82 MPa. The optimized deterministic
and reliable topological configurations and von Mises stress distributions are shown in
Figures 7 and 8, respectively. The corresponding topology optimization results are shown
in Table 1, and the reliability indexes are calculated using the Monte Carlo simulation
method, where u1, u2, and u3 correspond to the standard normalized variable values of the
random variables Fm, E, and δ0, respectively.

Figure 5. Structural evolution for deterministic topology optimization with stress distribution (a–h).

Figure 6. Structural evolution for reliability topology optimization with stress distribution (a–h).
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Figure 7. Deterministic topology optimization result of L-beam structure (14,400 elements): (a) Topo-
logical structure; (b) Von Mises stress distribution.

Figure 8. Reliability topology optimization result of L-beam structure (14,400 elements): (a) Topologi-
cal structure; (b) Von Mises stress distribution.

Table 1. Comparison of topology optimization design results.

Approach
Volume

Fraction (%)
Reliability
Index (β)

Computing
Time (s)

Max Von Mises
Stress (MPa)

MPP (u1, u2, u3)

DTO 19.8 1.7759 × 10−5 371.63 234.95 -
RBTO 24.3 2.9745 395.49 234.60 (1.7321, 1.7321, 1.7321)

In addition, in order to illustrate that the number of elements in the divided design
domain has no obvious effect on the optimized topology, the design domain shown in
Figure 4 is discretized into 6400 quadrilateral elements, where the mechanical load Fm does
not change, and is applied to the upper right end of the structure and uniformly distributed
over four adjacent nodes. The optimized deterministic and reliable topologies and von
Mises stress distributions are shown in Figures 9 and 10, respectively.

By observing Figures 5 and 6 and Table 1, it can be seen that the right-angle corner
of the initial structure is the stress concentration area, and the maximum von Mises stress
exceeds the material strength. The structure after deterministic and reliable topology
optimization not only reduces the maximum von Mises stress, but also meets the strength
requirements of the material, and the original stress concentration corner evolves into a
rounded structure, which alleviates the stress concentration phenomenon.
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Figure 9. Deterministic topology optimization result of L-beam structure (6400 elements): (a) Topo-
logical structure; (b) Von Mises stress distribution.

Figure 10. Reliability topology optimization result of L-beam structure (6400 elements): (a) Topologi-
cal structure; (b) Von Mises stress distribution.

The results for DTO and RBTO show very different optimal topologies, where DTO
is less reliable and therefore allows less margin for performance fluctuations and an in-
creased probability of structural failure when parameter variations that are considered as
random variables are considered. The topology obtained from RBTO uses about 4% more
material than DTO to make the structure meet the target reliability index. We also find
that RBTO obtains a slightly lower computational efficiency due to the need to solve the
MPP in the reliability analysis. In terms of the respective stress distribution, the RBTO
presents a more uniform stress distribution in the structure compared to the DTO, and the
structure is subjected to a smaller maximum von Mises stress value. Finally, comparing the
topological configurations in Figures 7 and 8 with Figures 9 and 10, respectively, it can be
seen that the deterministic and reliable topological configurations under different numbers
of elements are relatively similar, which indicates that the number of elements does not
have a significant effect on the topological configuration, that is, the proposed method is
mesh independence.

The volume fraction and maximum von Mises stress iteration curves for the DTO and
RBTO processes shown in Figures 7 and 8 are shown in Figure 11. The results show that
the iterative oscillation of the maximum von Mises stress during optimization is caused by
the highly nonlinear behavior of the stress constraint. Compared with DTO, the fluctuation
degree of the maximum von Mises stress in the iterative process of RBTO is reduced, and
the iterative process is more stable. The above analysis can show that the proposed method
is feasible and effective.
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Figure 11. Volume fraction and maximum von Mises stress iteration curves of (a) DTO and (b) RBTO.

7.2. 2D T-Shaped Beam Structure

The design domain of the T-beam structure is shown in Figure 12. The design domain is
160 mm× 100 mm in structural dimensions and 1 mm in thickness, which is discretized into
16,000 four-node elements. The left and right sides of the structure are solidly supported,
and the mechanical loads Fx

m and Fy
m are applied to the upper right end of the structure,

which are uniformly distributed to the five adjacent nodes horizontally. The stress constraint
value for the structure is 235 MPa.

Figure 12. Design domain of T-shaped beam.

For the reliability analysis, the random variables are chosen as Y = (Fx
m, Fy

m, E, δ0)T,
and assume that they obey normal probabilistic distribution. The mean value of mechanical
loads, Young’s modulus and thermal stress coefficient are ϕFx

m = 350 N, ϕFy
m = 300 N,

ϕE = 2.1 × 105 MPa and ϕδ0 = 2.541 MPa/◦C, respectively. The variance is set to 10% of the
mean value.

The initial stress distribution of the structure is shown in Figure 13, and the maximum
von Mises stress value is 315.04 MPa. In order to consider the effect of different temperature
variations ΔT on the topology optimization results, when the temperature variations ΔT
are set to 20 ◦C and 30 ◦C, the DTO and RBTO topologies and von Mises stress distribu-
tions obtained are shown in Figures 14 and 15, respectively. The corresponding topology
optimization results are shown in Table 2, and the reliability indexes are calculated using
the Monte Carlo simulation method, where u1, u2, u3 and u4 correspond to the standard
normalized variable values of the random variables Fx

m, Fy
m, E and δ0, respectively.
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Figure 13. Initial structural stress distribution.

Figure 14. Topology optimization results of T-beam (ΔT = 20 ◦C): (a) DTO topological structure (b) DTO
Von Mises stress distribution; (c) RBTO topological structure; (d) RBTO Von Mises stress distribution.

Figure 15. Topology optimization results of T-beam (ΔT = 30 ◦C): (a) DTO topological structure; (b) DTO
Von Mises stress distribution; (c) RBTO topological structure; (d) RBTO Von Mises stress distribution.
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Table 2. Comparison of topology optimization design results.

ΔT (◦C) Approach
Volume

Fraction (%)
Reliability
Index (β)

Computing
Time (s)

Max Von Mises
Stress (MPa)

MPP
(u1, u2, u3, u4)

20
DTO 10.2 2.0201 × 10−5 354.02 234.96 -

RBTO 13.5 3.9722 428.21 234.72 (2.000, 2.000, 2.000, 2.000)

30
DTO 11.2 2.5426 × 10−5 359.37 234.85 -

RBTO 14.4 3.9764 435.19 234.53 (2.000, 2.000, 2.000, 2.000)

By comparing the above optimization results with the initial structure, it can be seen
that the right-angle part of the original structure evolves into a slightly rounded shape,
which relieves the stress concentration, the stress distribution of the structure is uniform,
and the design results of both DTO and RBTO meet the stress constraint requirements.

Comparing the reliability indicators of DTO and RBTO results in Table 2, we can see
that the reliability level of the DTO results is close to 0, so the probability of structural
failure is higher. The reliability index of RBTO results has been improved compared with
that of the DTO results, but the target reliability has not been achieved precisely, and it also
reflects that the proposed method can effectively improve the reliability of the structure, but
the computational accuracy is still slightly inadequate. Compared with DTO, the structures
obtained by RBTO are both significantly different, and the reliability of the structure is
improved, and the overall stress distribution of the structures is more uniform.

A comparative analysis of the optimization results of the structures in Table 2 shows
that the topologies of both DTO and RBTO are slightly different for different temperature
variations ΔT. This is mainly due to the fact that as the temperature variation ΔT increases,
the temperature load enlarges and more material needs to be filled to bring the structures
to the allowed reliability index, which leads to a slight increase in volume.

The volume fraction and maximum von Mises stress iteration curves for the DTO
and RBTO at different temperature variations ΔT are shown in Figure 16, respectively.
Compared with DTO, RBTO has less fluctuation of the maximum von Mises stress during
the iterative process. It can be demonstrated that it is necessary and effective to incorporate
the reliability analysis into the stress-constrained topology optimization of a thermo-elastic
problem considering the uncertainties of mechanical loads, the thermal stress coefficient,
and the material’s property.

Figure 16. Volume fraction and maximum von Mises stress iteration curves of (a) DTO (ΔT = 20 ◦C)
and (b) RBTO (ΔT = 20 ◦C); (c) DTO (ΔT = 30 ◦C) and (d) RBTO (ΔT = 30 ◦C).
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7.3. 3D L-Shaped Beam Structure

In this section, we extend the previous 2D L-bracket example to a 3D design prob-
lem. The design domain of the 3D L-beam structure is shown in Figure 17. The design
domain size is 50 mm × 50 mm and the thickness is 4 mm. The domain is discrete into
10,000 eight-node hexahedral elements. The upper left of the structure is fixed. The mechan-
ical load Fm is applied vertically downward on the right side of the structure. The stress
constraint value for the structure is 235 MPa and the amount of temperature change
ΔT = 30 ◦C.

Figure 17. 3D L-beam design domain.

For the reliability analysis, the random variables are chosen as Y = (Fm, E, δ0)T and
assume that they obey normal probabilistic distributions. The mean values of mechanical
load, Young’s modulus and thermal stress coefficient are ϕF

m = 67 N, ϕE = 2.1 × 105 MPa
and ϕδ0 = 2.541 MPa/◦C, respectively. The variance is set to 7% of the mean value, and the
permissible reliability index is set to 5.0.

The initial structural stress distribution is shown in Figure 18 and the maximum
von Mises stress value is 273.81 MPa. The deterministic and reliable topologies and von
Mises stress distributions are shown in Figures 19 and 20, respectively. The corresponding
topology optimization results are shown in Table 3, and the reliability indexes are calculated
using the Monte Carlo simulation method, where u1, u2, and u3 correspond to the standard
normalized variable values of the random variables Fm, E, and δ0, respectively.

Figure 18. Initial structural stress distribution.
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Figure 19. Deterministic topology optimization results for 3D L-shaped beam: (a) Topological
structure; (b) Von Mises stress distribution.

Figure 20. Reliability topology optimization results for 3D L-shaped beam: (a) Topological structure;
(b) Von Mises stress distribution.

Table 3. Comparison of topology optimization design results.

Approach
Volume

Fraction (%)
Reliability
Index (β)

Computing
Time (s)

Max Von Mises
Stress (MPa)

MPP (u1, u2, u3)

DTO 12.8 4.2818 × 10−5 326.02 234.93 -
RBTO 15.7 4.9864 383.62 234.65 (2.8868, 2.8868, 2.8868)

From the above optimization results, it can be seen that the DTO and RBTO optimal
configurations also achieve the maximum von Mises stress constraint.

The analysis of the DTO and RBTO results show that the DTO result has a lower
reliability level and a higher probability of structural failure. Similar to the 2D L-shaped
problem, the structure obtained by RBTO has a significant difference compared to the DTO
result, mainly in the filling of the lower part of the structure with bar material that increases
the structural volume. In terms of stress distribution, the structure obtained by RBTO has
more uniform stress distribution than that obtained by DTO, and the structure is more
reliable and stable.

The volume fraction and maximum von Mises stress iteration curves of DTO and RBTO
are shown in Figure 21, respectively. This 3D example proves that the reliability-based
stress-constrained topology optimization method for thermo-elastic structures proposed in
this paper is also applicable to the 3D structures problem, which has practical significance
and application prospects for solving the uncertainty problem of thermo-elastic structures.
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Figure 21. Volume fraction and maximum von Mises stress iteration curves of (a) DTO and (b) RBTO.

8. Conclusions

In this paper, the reliability analysis is integrated into SIMP-based topology optimiza-
tion to solve the uncertainty problem in the stress-constraint topology optimization of
thermo-elastic structures. The thermo-elastic topology optimization model based on global
stress constraint considering the combined effect of temperature and mechanical load is
established. The material property, the mechanical load and thermal stress coefficient are
considered as uncertainty variables. Combining the deterministic topology optimization
with the reliability hybrid method, the following conclusions can be drawn.

The structures after DTO and RBTO can satisfy the stress constraints, and the stress
concentration phenomenon is alleviated. They differ in that the optimal topology obtained
by the proposed RBTO method is more reliable than that obtained by the DTO method,
and the RBTO exhibits significantly different topologies.

The corresponding DTO and RBTO results are also distinct for different temperature
variations. It is also noted that as the temperature change increases, more material needs to
be filled to meet the stress constraint and to reach the allowable reliability requirement.

The feasibility and effectiveness of the proposed method is verified by the 3D numeri-
cal example. It is shown that it is necessary to consider the uncertainty of the mechanical
loads and material properties, thermal stress coefficients, and to incorporate the reliability
concept into topology optimization.

In addition, the results of the above numerical examples show that the RBTO method
in the predecessor-decoupling hybrid format used in this paper does not consider the
influence of the functional function in the reliability analysis, so the calculation accuracy is
slightly deficient. Therefore, further development of this work can try to introduce different
reliability topology optimization methods for thermo-elastic structures with non-uniform
temperature distribution for discussion to reduce the limitations.
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Abstract: In this article, we propose a simplified radial basis function (RBF) method with exterior
fictitious sources for solving elliptic boundary value problems (BVPs). Three simplified RBFs,
including Gaussian, multiquadric (MQ), and inverse multiquadric (IMQ) without the shape parameter,
are adopted in this study. With the consideration of many exterior fictitious sources outside the
domain, the radial distance of the RBF is always greater than zero, such that we can remove the shape
parameter from RBFs. Additionally, simplified Gaussian, MQ, and IMQ RBFs and their derivatives in
the governing equation are always smooth and nonsingular. Comparative analysis is conducted for
three different collocation types, including conventional uniform centers, randomly fictitious centers,
and exterior fictitious sources. Numerical examples of elliptic BVPs in two and three dimensions
are carried out. The results demonstrate that the proposed simplified RBFs with exterior fictitious
sources can significantly improve the accuracy, especially for the Laplace equation. Furthermore, the
proposed simplified RBFs exhibit the simplicity of solving elliptic BVPs without finding the optimum
shape parameter.

Keywords: radial basis function; the shape parameter; multiquadric; inverse multiquadric; Gaussian

MSC: 65D12

1. Introduction

Meshfree methods have been applied to solve problems with complicated and irregular
geometry because of the advantages of their meshfree characteristics [1–4]. With the
capability to deal with different kinds of partial differential equations (PDEs), the radial
basis function collocation method (RBFCM) is one of the prominent methods for solving
PDEs, where the variables are expressed by the function approximation [5–8]. Proposed by
Hardy in 1971 [9], the multiquadric (MQ) radial basis function (RBF) was used for scattered
data interpolation. The first attempt to extend the MQ RBF to the solution of PDEs was
presented by Kansa in the early 1990s [10]. In addition to the MQ RBF, several RBFs have
been presented, such as the inverse multiquadric (IMQ), Gaussian, and polyharmonic
spline (PS) functions [11–14]. Among them, PS and MQ RBFs have received more attention
for interpolation due to their high accuracy [15–17]. These RBFs are usually categorized
into piecewise and infinite smooth functions. For example, the PS is piecewise smooth. On
the other hand, the MQ is infinite smooth. In order to remain smooth, the shape parameter
is introduced in the MQ [18]. Many RBF methods often contain the shape parameter, which
has been proven to have a significant influence on the accuracy of RBF interpolation [19–21].

In the Kansa method, the centers are uniformly scattered within the domain, where the
positions of the interior and center points are exactly the same [22]. The centers are often
regarded as fictitious sources, which are randomly scattered within the domain [23]. On the
other hand, the fictitious sources can also be simultaneously scattered within and outside
the closure of the domain [24]. Recently, Ku et al. proposed the MQ RBF without the shape
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parameter using fictitious sources collocated outside the domain [25]. Because the fictitious
sources are situated on the exterior domain, the radial distance always has a non-zero
value, such that the RBFs and their derivatives are always smooth and globally infinitely
differentiable [26]. The fictitious sources used for the collocation method have received
significant attention due to their superior properties and wide utilization for solving PDEs.
Accordingly, the accuracy of different RBFs when using fictitious sources in the collocation
method to solve PDEs is of significant interest and needs to be investigated.

Identification of the shape parameter is often very challenging and tedious in the
original RBFs when solving partial differential equations. In this study, we attempt to
remove the shape parameter in conventional RBFs to solve partial differential equations.
We propose three simplified Gaussian, MQ, and IMQ RBFs without using the shape pa-
rameter. The simplified RBFs have the advantages of a simple mathematical expression,
high precision, and easy implementation. Furthermore, we demonstrate that the simplified
RBFs, with the consideration of many exterior fictitious sources outside the domain, can
achieve highly accurate results to solve elliptic boundary value problems.

In this article, the accuracy of three RBFs in the collocation method for solving station-
ary convention diffusion equations is investigated. Three RBFs, including the Gaussian,
MQ, and IMQ, are adopted. Additionally, three different collocation types are considered in
the collocation method. Accuracy analysis of the collocation types of each RBF is carried out.
Numerical solutions are approximated by utilizing the RBFs to solve the elliptic boundary
value equations. Comparisons of the accuracy of three RBFs are made. The remainder of
this article is organized as follows: in Section 2, the mathematical formulations, including
the governing equation, the RBFs, the discretization of the governing equation, and the
location of fictitious sources, are introduced. Section 3 describes the convergence analysis
conducted to evaluate the robustness and effectiveness of the three RBFs in the collocation
method. Three different collocation types are considered in the collocation method. Ac-
curacy analysis of the three collocation types of each RBF is also carried out. In Section 4,
several investigations of the elliptic boundary value problems are conducted to examine
the robustness of the RBFs. Finally, the conclusions of this study are presented in Section 5.

2. Methodology

2.1. Elliptic Boundary Value Problems

The equation of the elliptic boundary value problem is expressed as follows:

∇2u(x) + A · ∇u(x) + B(x)u(x) = f (x), (1)

u(x) = g(x) on ∂Ω, (2)

where ∇ defines the gradient operator; u(x) denotes the variable of interest, which is
usually the concentration; x is the Cartesian coordinate, defined as x = (x, y, z); A is
the velocity, defined as A = (Ax, Ay, Az); B(x) is the given function; f (x) is the given
function value; g(x) defines the given boundary conditions; and Ω is the domain with the
boundary ∂Ω.

2.2. Simplified Radial Basis Functions

Three simplified Gaussian, MQ, and IMQ RBFs without the shape parameter are
proposed for solving elliptic boundary value problems, as listed in Table 1. The simplified
RBF simply removes the shape parameter from its original one. For example, the simplified
Gaussian RBF can be expressed as:

φGaussian_S(r) = e−(
r
R )2

, (3)

where φGaussian_S(r) denotes the simplified Gaussian RBF; r denotes the radial distance,
r = |x− xs|; x denotes the interior point; xs denotes the source point, defined as xs = (xs, ys, zs);
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and R denotes the characteristic length, which is the maximum radial distance. We can
easily obtain the simplified MQ RBF as follows:

φMQ_S(r) = r, (4)

where φMQ_S(r) denotes the simplified MQ RBF. Similarly, the simplified IMQ RBF is
expressed as:

φIMQ_S(r) =
1
r

, (5)

where φIMQ_S(r) denotes the simplified IMQ RBF. In this study, three simplified MQ, IMQ,
and Gaussian RBFs are developed without assigning any shape parameter. Table 1 lists a
comparison of the original RBFs and the simplified RBFs. From Table 1, the original Gaus-
sian, MQ, and IMQ RBFs in the RBFCM are defined by the shape parameter. The accuracy
of these RBFs is strongly affected by the shape parameter. Accordingly, optimization tech-
niques are required to determine the optimal shape parameter for these RBFs [19–21]. As
for the proposed simplified RBFs, it is clear that the shape parameter has been completely
eliminated in the RBFs.

Table 1. RBFs adopted in this study.

Type of RBFs Original RBFs Simplified RBFs

Gaussian φGaussian(r) = e−( r
c )

2
φGaussian_S(r) = e−( r

R )
2

Multiquadric (MQ) φMQ(r) =
√

r2 + c2 φMQ_S(r) = r

Inverse multiquadric (IMQ) φIMQ(r) = 1√
r2+c2 φIMQ_S(r) = 1

r

Notation: c denotes the shape parameter.

2.3. Discretization

Utilizing the RBFCM, the unknown can be approximated as:

u(x) =
M

∑
j=1

λjφ(rj), (6)

where M denotes the total number of source points; λj denotes the coefficient to be solved;
φ
(
rj
)

denotes the RBF; rj denotes the radial distance at the jth source point, defined as

rj =
∣∣∣x− xs

j

∣∣∣; and xs
j denotes the jth source point, defined as xs

j = (xs
j , ys

j , zs
j ).

2.3.1. Discretization in Two Dimensions

The two-dimensional elliptic boundary value equation is expressed as:

∂2u(x, y)
∂x2 +

∂2u(x, y)
∂y2 + Ax

∂u(x, y)
∂x

+ Ay
∂u(x, y)

∂y
+ B(x, y)u(x, y) = f (x, y). (7)

Utilizing the simplified Gaussian RBF, the derivative of Equation (7) with respect to x
is as follows:

∂φ(rj)

∂x
= −

2Ax(x− xs
j )

R2 e−(
rj
R )

2

. (8)

Taking the derivative of Equation (7) with respect to y also gives:

∂φ(rj)

∂y
= −

2Ay(y− ys
j )

R2 e−(
rj
R )

2

. (9)
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Again, the derivative of Equation (8) with respect to x is as follows:

∂φ2(rj)

∂x2 =
4(x− xs

j )
2

R4 e−(
rj
R )

2

− 2
R2 e−(

rj
R )

2

. (10)

Similarly, we take the derivative of Equation (9) with respect to y:

∂φ2(rj)

∂y2 =
4(y− ys

j )
2

R4 e−(
rj
R )

2

− 2
R2 e−(

rj
R )

2

. (11)

Substituting the aforementioned Equations (8)–(11) into Equation (7), the approxima-
tion of the two-dimensional governing equation is as follows:

M

∑
j=1

λj
4

R2 e−(
rj
R )

2

[(
rj

R
)

2
− 1]−

M

∑
j=1

λj
2

R2 e−(
rj
R )

2

[Ax(x− xs
j ) + Ay(y− ys

j )] + B(x)
M

∑
j=1

λje−(
rj
R )

2

= f (x, y). (12)

Equation (12) describes the discretization of the governing equation in two dimensions
using the simplified Gaussian RBF. In the same way, we substitute the simplified MQ RBF
into Equation (7):

M

∑
j=1

λj
1
rj
+

M

∑
j=1

λj
Ax(x− xs

j ) + Ay(y− ys
j )

rj
+ B(x)

M

∑
j=1

λjrj = f (x, y). (13)

Substituting the simplified IMQ RBF into Equation (7) also obtains:

M

∑
j=1

λj
1
r3

j
−

M

∑
j=1

λj
Ax(x− xs

j ) + Ay(y− ys
j )

r3
j

+ B(x)
M

∑
j=1

λj
1
rj

= f (x, y). (14)

Equations (13) and (14) describe the discretization of the governing equation in two
dimensions using the simplified MQ and IMQ RBFs, respectively.

2.3.2. Discretization in Three Dimensions

The three-dimensional elliptic boundary value equation is:

∂2u(x,y,z)
∂x2 + ∂2u(x,y,z)

∂y2 + ∂2u(x,y,z)
∂z2

+Ax
∂u(x,y,z)

∂x + Ay
∂u(x,y,z)

∂y + Az
∂u(x,y,z)

∂z
+B(x, y, z)u(x, y, z) = f (x, y, z)

. (15)

Considering the three-dimensional problem depicted in Equation (15), the derivative
of the simplified Gaussian RBF interpolation is as follows:

M
∑

j=1
λj

(4 rj
2−6R2)

R4 e−(
rj
R )

2

− M
∑

j=1
λj

2
R2 e−(

rj
R )

2

[Ax(x− xs
j ) + Ay(y− ys

j ) + Az(z− zs
j )]

+B(x)
M
∑

j=1
λje−(

rj
R )

2

= f (x, y, z).
(16)

Using the same perspective, we obtain the derivative of Equation (15) by the simplified
MQ RBF as:

M

∑
j=1

λj
2
rj
+

M

∑
j=1

λj
Ax(x− xs

j ) + Ay(y− ys
j ) + Az(z− zs

j )

rj
+ B(x)

M

∑
j=1

λjrj = f (x, y, z). (17)
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Identifying the derivative of Equation (15) with the simplified IMQ interpolation
results in the following equation:

−
M

∑
j=1

λj
Ax(x− xs

j ) + Ay(y− ys
j ) + Az(z− zs

j )

rj
3 + B(x)

M

∑
j=1

λj
1
rj

= f (x, y, z). (18)

From the above equations, the shape parameter has been eliminated from the original
Gaussian, MQ, and IMQ RBFs. Considering the boundary conditions, the following system
of linear equations is finally acquired:[

[AL]Ni×M
[AB]Nb×M

]
[α] =

[
[f]Ni×1
[g]Nb×1

]
, (19)

where AL is an Ni ×M matrix for the interior points; AB is an Nb ×M matrix for the bound-
ary points; α is an M × 1 vector of undetermined coefficients containing the unknown
coefficients; f is an Ni × 1 vector of the function values for the interior points, written as
f =

[
f1, f2, . . . , fNi

]
; g is an Nb×1 vector of boundary data, written as g =

[
g1, g2, . . . , gNb

]
;

Ni is the number of interior points; and Nb is the number of boundary points. Once the
unknown coefficients are determined, we can collocate the validation points uniformly
placed inside the domain to obtain the computed results.

To investigate the effectiveness and accuracy of the simplified RBFs in the collocation
method, this study adopts the root mean square error (RMSE) as follows:

RMSE =

√√√√NT

∑
i=1
|uA(xi)− uN(xi)|2/NT , (20)

where NT denotes the number of validation points, xi denotes the ith validation point, and
uA(xi) and uN(xi) are the analytical and numerical solutions evaluated at the ith validation
point, respectively.

2.4. Location of Fictitious Sources

In the conventional RBF method, the interior, center, and boundary points must
be placed where the positions of the interior and center points usually coincide at the
same place. In this study, the center points in the conventional RBFs are regarded as the
fictitious sources, where three different collocation types for locating the fictitious sources
are considered in the collocation method as depicted in Figure 1. The implementation of
the three different collocation types for solving the elliptic boundary value problems are
described as follows.

2.4.1. Type A: Uniform Centers

In type A, the source points are uniformly scattered within the domain. Figure 1a,d il-
lustrate the location of the fictitious sources for the two-dimensional and three-dimensional
domains, respectively. In Figure 1a, the two-dimensional amoeba-like object is adopted.
The boundary shape is defined as follows:

∂Ω = {(x, y)|x = ρ(θ) cos θ, y = ρ(θ) sin θ },
ρ(θ) = 0.5

[
esin(θ) sin2(2θ) + ecos(θ) cos2(2θ)

]
, 0 ≤ θ ≤ 2π

. (21)

The fictitious sources are uniformly scattered within the two-dimensional amoeba-like
domain, as depicted in Figure 1a. The interior, sources, and boundary points are placed
such that the positions of the interior and fictitious sources are identical.
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 1. Location of the fictitious sources for the two-dimensional and three-dimensional do-
main. (a) A two-dimensional domain: Type A. (b) A two-dimensional domain: Type B. (c) A
two-dimensional domain: Type C. (d) A three-dimensional domain: Type A. (e) A three-dimensional
domain: Type B. (f) A three-dimensional domain: Type C.
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Considering the three-dimensional object, the boundary shape is given by the spherical
parametric equation as follows:

∂Ω = {(x, y, z)|x = ρ(θ) cos θ cos ϕ, y = ρ(θ) cos θ sin ϕ, z = ρ(θ) sin θ },
ρ(θ) = 0.25× [2 + cos(θ)][cos(3ϕ) +

√
8− sin2(3ϕ)]

1/3
.

(22)

Figure 1d illustrates the location of the fictitious sources for three-dimensional domains.
Similarly, the positions of the interior and source points are collocated exactly at the same
place [23] in Figure 1d.

2.4.2. Type B: Randomly Fictitious Centers

In type B, the boundary shapes in two and three dimensions are exactly the same as
those in type A. However, the source points are regarded as the fictitious centers, which are
randomly scattered within the domain [24], as depicted in Figure 1b,e.

2.4.3. Type C: Exterior Fictitious Sources

In type C, the fictitious sources are randomly collocated in the exterior domain, as
shown in Figure 1c,f. In Figure 1c, the two-dimensional amoeba-like object is adopted. The
fictitious sources are randomly scattered within the range between the domain boundary
and the fictitious boundary, as depicted in Figure 1c. The boundary shape of the problem
domain is defined as Equation (21). The fictitious boundary is defined by the following
parametric equation:

∂Ωs =
{
(xs

j , ys
j )
∣∣∣xs

j = ηρs
j (θ

s
j ) cos θs

j , ys
j = ηρs

j (θ
s
j ) sin θs

j

}
, (23)

where ∂Ωs denotes the fictitious boundary; xs
j denotes the x-coordinate of the jth source

point; ys
j denotes the y-coordinate of the jth source point; η denotes the dilation fac-

tor, which is used to adjust the size of the fictitious boundary; θs
j denotes the angle

of the fictitious sources; and ρs
j denotes the radius of the fictitious sources, defined as

ρs
j (θ

s
j ) = 2× [ 1/3

√
cos (10θs

j ) +
√

2− sin2 (10θs
j )], 0 ≤ θs

j ≤ 2π.

Considering a three-dimensional object, the boundary shape is given by the spherical
parametric equation as shown in Equation (22). The fictitious sources are randomly scat-
tered within the three-dimensional space between the domain boundary and the fictitious
boundary, as depicted in Figure 1f. The boundary shape of the problem domain is defined
as Equation (22). The three-dimensional fictitious boundary is defined by the following
parametric equations:

∂Ωs =
{
(xs

j , ys
j , zs

j )
∣∣∣xs

j = ρs
j (θ

s
j ) cos θs

j cos ϕs
j , ys

j = ρs
j (θ

s
j ) cos θs

j sin ϕs
j , zs

j = ρs
j (θ

s
j ) sin θs

j

}
, (24)

where zs
j denotes the z-coordinate of the jth source point; ρs

j represents the radius of the

fictitious sources, defined as ρs
j (θ

s
j ) = η ×

{
0.51 + [ 1

28 sin(10 ϕs
j ) sin (9θs

j )]
}

, 0 ≤ θs
j ≤ 2π;

θs
j is the polar angle used to describe the location of the fictitious sources in cylindrical

coordinates; and ϕs
j is the azimuth angle of the fictitious sources.

The fictitious sources are randomly collocated in the exterior domain, as shown
in Figure 1c,f. Since the radial distance for RBFs remains greater than zero, the shape
parameter for the original Gaussian, MQ, and IMQ RBFs can be completely eliminated.
The three simplified Gaussian, MQ, and IMQ RBFs with exterior fictitious sources (type C)
are utilized to solve elliptic boundary value problems.
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3. Validation of the Methodology

3.1. Example 1

To investigate the accuracy, a comparison of the three collocation types is performed.
The Laplace equation in two dimensions is described as Equation (1), where A = 0,
B = 0, and f (x) = 0. The domain boundary is defined as Equation (21). Boundary data
for the boundary conditions are assigned to the boundaries by adopting the following
exact solution:

u(x, y) = sin(x)ey + cos(y)ex. (25)

Three simplified RBFs, including Gaussian, MQ, and IMQ, are adopted to solve this
problem. Three collocation types for locating the sources are considered. In type A, the
fictitious sources are uniformly scattered within the domain, as depicted in Figure 1a. The
interior, sources, and boundary points are placed such that the positions of the interior and
fictitious sources are identical. In type B, the fictitious sources are randomly scattered within
the domain, as depicted in Figure 1b. In type C, the fictitious sources are simultaneously
scattered outside the closure of the domain, as depicted in Figure 1c. The location of
the exterior fictitious sources is defined as Equation (23). A total of 164 interior points,
315 source points, and 200 boundary points are used. The dilation factor is 3.

For comparison purposes, the original Gaussian, MQ, and IMQ RBFs with various
shape parameters for type A and type B are also considered in the analysis. Particularly,
for type C, the above RBFs without a shape parameter are utilized. The RMSE is used to
examine the accuracy of the computed results. Comparisons of the accuracy for the three
RBFs are then conducted.

3.1.1. The Gaussian RBF

The Gaussian RBF with three different collocation types with various shape parameters
is first investigated, as shown in Figure 2a. From Figure 2a, it appears that the simplified
Gaussian RBF without the shape parameter utilizing the exterior fictitious sources of type
C provides the most accurate solution. The results obtained demonstrate that the RMSE of
the simplified Gaussian RBF without a shape parameter for type C is in the order of 10−12.
It seems that the simplified Gaussian RBFs utilizing the exterior fictitious sources of type
C have the best accuracy among those Gaussian RBFs for type A and type B even when
different values of the shape parameter are considered.

3.1.2. The MQ RBF

The MQ RBF with various shape parameters for type A and type B is considered. For
type C, the simplified MQ RBF is utilized. Figure 2b illustrates the accuracy of the MQ
RBFs for the three collocation types. According to Figure 2b, the RMSE of the MQ RBF in
type A and type B are in the order of 10−2 to 10−7 as the shape parameter ranges from 0.2 to
5. However, the RMSE of the simplified MQ RBF in type C is 10–13. It was found that the
RMSE of the simplified MQ RBF without a shape parameter in type C has the best accuracy
among the MQ RBFs for type A and type B for different values of the shape parameter.

3.1.3. The IMQ RBF

The IMQ RBF is analyzed by adopting the same perspective. Figure 2c illustrates the
accuracy of the IMQ RBF for the three collocation types. Similar to the results obtained in
Figure 2b, we also found that the simplified IMQ RBF for type C acquires more accurate
results than the other IMQ RBFs for type A and type B with the best shape parameter, as il-
lustrated in Figure 2c. It is obvious that the simplified IMQ RBFs without a shape parameter
that utilize the exterior fictitious sources of type C provide the most accurate solution.
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(a) 

(b) 

Figure 2. Cont.
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(c) 

Figure 2. The RMSE of the three RBFs with three different collocation types: (a) Gaussian RBF, (b) MQ
RBF, and (c) IMQ RBF.

Table 2 lists the results of the RMSE using the three RBFs with the three different
collocation types. The processor used was an AMD Ryzen 7 5800X 8-Core @ 3.80 GHz.
As depicted in Table 2, all the simplified Gaussian, MQ, and IMQ RBFs utilizing the
exterior fictitious sources of type C provided more accurate results than the other two
fictitious source collocation types, even when the best shape parameter was adopted. The
simplified Gaussian, MQ, and IMQ RBFs utilizing the exterior fictitious sources of type C
provided the most accurate results, with an RMSE of the order of 10−12, 10−13, and 10−12,
respectively. From the results, we also demonstrated that the above simplified RBFs with
exterior fictitious sources can be used to solve this two-dimensional Laplace problem with
very high accuracy. From Table 2, the comparison of the computing time also illustrates the
efficiency of the proposed method.

Table 2. Comparison of the results for example 1.

RBF
RMSE

Type A Type B Type C (η=3)

Gaussian
1.24 × 10–7 9.73 × 10–8 7.87 × 10–12

(c = 1.75) (c = 2.0) (c = 1)
(t = 5.84 s) (t = 4.62 s) (t = 8.11 s)

MQ
1.42 × 10–7 1.46 × 10–7 4.35 × 10–13

(c = 1.5) (c = 1.75) (c = 0)
(t = 5.78 s) (t = 5.75 s) (t = 7.96 s)

IMQ
1.47 × 10–7 8.46 × 10–8 6.37 × 10–12

(c = 1.5) (c = 1.5) (c = 0)
(t = 6.12 s) (t = 6.28 s) (t = 8.51 s)

Notation: c denotes the shape parameter; t denotes the computing time.
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To further clarify the possible influences of the positions of the exterior fictitious
sources for type C on the accuracy, a sensitivity analysis was further conducted. Three
RBFs considering the MQ, IMQ, and Gaussian RBFs were adopted to solve the two-
dimensional Laplace problem. The MQ, IMQ, and Gaussian RBFs without the shape
parameter were used.

In this example, the values of the dilation factor ranged from 0.5 to 5. A plot of the
RMSE versus the dilation factor is depicted in Figure 3. From Figure 3, the RMSE of the
MQ, IMQ, and Gaussian RBFs utilizing the exterior fictitious sources for type C fluctuates
between 10–11 and 10–13 while the dilation factor ranges from 2.5 to 5. The results obtained
show that the dilation factor has low sensitivity regarding the numerical accuracy while the
dilation factor is greater than 2.5. Accordingly, the following numerical implementations of
type C were solved using η = 3.

 

Figure 3. RMSE versus the dilation factor.

3.2. Example 2

A three-dimensional problem is enclosed by a sophisticated irregular domain bound-
ary, as shown in Figure 4a. The governing equation in three dimensions is expressed as
Equation (1), where A, B, and f (x) are 0. The object boundary is given by the spherical
parametric equation as follows:

∂Ω = {(x, y, z)|x = ρ(θ) cos θ cos ϕ, y = ρ(θ) cos θ sin ϕ, z = ρ(θ) sin θ },
ρ(θ) = [cos(2θ) +

√
1.5− sin2 (2θ)]

1/2
.

(26)
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(a) (b) 

  
(c) (d) 

Figure 4. Problem domain and location of the fictitious sources for example 2. (a) Problem do-
main. (b) Type A. (c) Type B. (d) Type C (blue and red circles denote the source and interior
points, respectively).

The Dirichlet data are imposed using the following exact solution for this three-
dimensional problem as:

u(x, y, z) =
1√

x2y2z2
. (27)

The Gaussian, MQ, and IMQ RBFs were utilized in the analysis. Additionally, three
collocation types were considered. As depicted in Figure 4b–d, there were 2461 source
points, 1600 interior points, and 861 boundary points.

Figure 5 illustrates the RMSE of the Gaussian, MQ, and IMQ RBFs with three different
collocation types. The RMSE of the simplified Gaussian, MQ, and IMQ RBFs (type C) was
10−14, 10−15, and 10−13, respectively. It is significant that excellent agreement was achieved,
and highly accurate results were acquired using the simplified RBFs. From these results,

44



Mathematics 2022, 10, 1622

it is demonstrated that the simplified RBFs with exterior fictitious sources can be used to
solve the three-dimensional stationary Laplace equation with very high accuracy.

 
(a) 

 
(b) 

Figure 5. Cont.
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(c) 

Figure 5. RMSEs of three RBFs using three different collocation types: (a) Gaussian RBF, (b) MQ RBF,
and (c) IMQ RBF.

4. Application Examples

4.1. Application Example 1

The governing equation for the first application example is depicted in Equation (1),
where A = 0, B = 0, and f (x) = −�x cos(y) + y sin(x)�. The boundary is defined
as follows:

∂Ω = {(x, y)|x = ρ(θ) cos θ, y = ρ(θ) sin θ }, ρ(θ) = 0.5× [0.5 + [1 + 0.5 sin(12θ)]], 0 ≤ θ ≤ 2π. (28)

The Dirichlet data are assigned from the analytical solution:

u(x, y) = y sin(x) + x cos(y). (29)

Three RBFs, including the Gaussian, MQ, and IMQ, were used in the collocation
method. Three collocation types for locating the sources as illustrated in Figure 6 were con-
sidered in the above RBFs to solve this problem. There were 342 source points, 151 interior
points, and 200 boundary points. In type A, the fictitious sources are uniformly scattered
within the domain, as depicted in Figure 6a. The interior, sources, and boundary points are
placed such that the positions of the interior and fictitious sources are identical. In type B,
the fictitious sources are randomly scattered within the domain, as depicted in Figure 6b.
In type C, the fictitious sources are randomly scattered outside the closure of the domain,
as depicted in Figure 6c. The collocation of the exterior fictitious sources is defined by the
following parametric equations:

∂Ωs =
{
(xs

j , ys
j )
∣∣∣xs

j = ηρs
j (θ

s
j ) cos θs

j , ys
j = ηρs

j (θ
s
j ) sin θs

j

}
, (30)
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where ρs
j (θ

s
j ) = 2× [ 1/3

√
cos (10θs

j ) +
√

2− sin2 (10θs
j )], 0 ≤ θs

j ≤ 2π. In this example, the

dilation factor for type C is 3.

   
(a) (b) (c) 

Figure 6. Collocation points for application example 1. (a) Type A. (b) Type B. (c) Type C.

The Gaussian, MQ, and IMQ RBFs with various shape parameters for type A and
type B were considered. For type C, the above RBFs without a shape parameter were
utilized. The accuracy of the Gaussian, MQ, and IMQ RBFs for the three collocation
types are illustrated in Figure 7. According to Figure 7a, the Gaussian RBF utilizing the
exterior fictitious sources for type C obtained more accurate results, where the RMSE of the
Gaussian RBF without a shape parameter in type C reached the order of 10–13. Figure 7b
demonstrates the RMSE of the MQ RBF for the three collocation types. According to
Figure 7b, the RMSE of the MQ RBF in type A and type B was in the order of 10−2 to 10−7

as the shape parameter ranged from 0 to 5. The RMSE of the MQ RBF without a shape
parameter in type C was in the order of 10–10. The IMQ RBFs was analyzed by adopting
the same perspective. The RMSE values of the IMQ for the three collocation types are
illustrated in Figure 7c. Similar to the results obtained in Figure 7b, we also found the
IMQ without the shape parameter for type C reached the order of 10–8. From the results,
it is significant that the Gaussian RBF without the shape parameter for type C showed a
high-accuracy performance.

Table 3 presents a comparison of the results for the application example 1. For type
A and type B, the Gaussian, MQ, and IMQ RBFs with the optimal shape parameter were
utilized. For type C, the above RBFs without a shape parameter were adopted. As depicted
in Table 3, all the RBFs, including the Gaussian, MQ, and IMQ RBFs, utilizing the fictitious
sources of type C provided more accurate results than the other two source collocation
types even with the optimum shape parameter. From the results, it is clear that numerical
solutions with a very high accuracy can be obtained by utilizing the proposed simplified
Gaussian, MQ, and IMQ RBFs with exterior fictitious sources.

4.2. Application Example 2

The governing equation for the second application example is expressed as Equation (1) [25],
where A = 0, B = −λ2, f (x) = 0, and λ2 = 3. The object boundary is defined as:

∂Ω = {(x, y)|x = ρ(θ) cos θ, y = ρ(θ) sin θ }, ρ(θ) = 0.5[

√
cos(3θ) +

√
3 + sin4(3θ)], 0 ≤ θ ≤ 2π. (31)

The Dirichlet data are assigned to the boundaries utilizing the exact solution as follows:

u(x, y) = e
√

2λ(x−y)
2 . (32)
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(a) 

 
(b) 

Figure 7. Cont.
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(c) 

Figure 7. RMSEs of three RBFs with three different collocation types: (a) Gaussian RBF, (b) MQ RBF,
and (c) IMQ RBF.

Table 3. Comparison of the results for the application example 1.

RBF
RMSE

Type A Type B Type C (η=3)

Gaussian
2.45 × 10–8 1.33 × 10–8 9.50 × 10–13

(c = 1.75) (c = 1.25) (c = 1)
(t = 3.82 s) (t = 7.02 s) (t = 8.81 s)

MQ
4.61 × 10–8 4.41 × 10–8 1.39 × 10–10

(c = 2.25) (c = 1.75) (c = 0)
(t = 3.80 s) (t = 6.90 s) (t = 8.77 s)

IMQ
3.38 × 10–8 2.85 × 10–8 1.37 × 10–9

(c = 2.5) (c = 2.0) (c = 0)
(t = 3.80 s) (t = 6.99 s) (t = 8.83 s)

Three RBFs, including the Gaussian, MQ, and IMQ, are were in the collocation method.
Three collocation types for locating the sources, as illustrated in Figure 8, were considered
in the above RBFs to solve this problem. There were 355 source points, 210 interior points,
and 200 boundary points. In type A, the fictitious sources are uniformly scattered within
the domain, as depicted in Figure 8a. The interior, sources, and boundary points are placed
such that the positions of the interior and fictitious sources are identical. In type B, the
fictitious sources are randomly scattered within the domain, as depicted in Figure 8b. In
type C, the fictitious sources are randomly scattered outside the closure of the domain, as
depicted in Figure 8c. The collocation of the exterior fictitious sources is defined by the
following parametric equations:

∂Ωs =
{
(xs

j , ys
j )
∣∣∣xs

j = ηρs
j (θ

s
j ) cos θs

j , ys
j = ηρs

j (θ
s
j ) sin θs

j

}
. (33)
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where ρs
j (θ

s
j ) = 2× [ 1/3

√
cos (10θs

j ) +
√

2− sin2 (10θs
j )], 0 ≤ θs

j ≤ 2π. In this example, the

dilation factor for type C is 3.

   
(a) (b) (c) 

Figure 8. Collocation points of the three types in the application example 2. (a) Type A. (b) Type B.
(c) Type C.

Figure 9a demonstrates the RMSE of the Gaussian RBF for the three collocation types.
From Figure 9a, the RMSE of the Gaussian RBF in type A and type B was in the order
of 10−1 to 10−6 as the shape parameter ranged from 0.5 to 5. However, the RMSE of the
Gaussian RBF without a shape parameter in type C reached the order of 10–11. The MQ
and IMQ RBFs were analyzed by adopting the same perspective. The RMSE of the MQ and
IMQ RBFs for the three collocation types are illustrated in Figure 9b,c, respectively. Similar
to the results shown in Figure 9a, we also found that the MQ and IMQ RBFs without the
shape parameter for type C reached the order of 10–9 and 10–8, respectively.

 
(a) 

Figure 9. Cont.
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(b) 

 
(c) 

Figure 9. RMSEs of RBFs with three different collocation types: (a) Gaussian RBF, (b) MQ RBF, and
(c) IMQ RBF.

Table 4 presents a comparison of the results for the application example 2. For type
A and type B, the Gaussian, MQ, and IMQ RBFs with the optimal shape parameter were
utilized. For type C, the above RBFs without a shape parameter were adopted. As depicted
in Table 4, all the RBFs, including the Gaussian, MQ, and IMQ RBFs utilizing the fictitious
sources of type C, provided more accurate results than the other two source collocation
types, even when the best shape parameter was adopted. The obtained results demonstrate

51



Mathematics 2022, 10, 1622

that numerical solutions with a very high accuracy can be obtained by utilizing the proposed
simplified Gaussian, MQ, and IMQ RBFs with exterior fictitious sources.

Table 4. Comparison of the results for the application example 2.

RBF
RMSE

Type A Type B Type C (η=3)

Gaussian
1.18 × 10–6 1.61 × 10–6 2.76 × 10–11

(c = 2.50) (c = 2.25) (c = 1)
(t = 7.24 s) (t = 9.47 s) (t = 12.57 s)

MQ
6.28 × 10–6 3.70 × 10–6 5.04 × 10–9

(c = 1) (c = 1) (c = 0)
(t = 7.28 s) (t = 10.34 s) (t = 13.01 s)

IMQ
4.54 × 10–6 4.32 × 10–6 4.59 × 10–8

(c = 1.25) (c = 1.25) (c = 0)
(t = 7.24 s) (t = 11.67 s) (t = 12.67 s)

4.3. Application Example 3

The three-dimensional problem is enclosed by a sophisticated irregular domain bound-
ary, as shown in Figure 10a. The three-dimensional elliptic boundary value problems is ex-
pressed as Equation (1), where Ax = Ay = 1, Az = B = 0, and f (x, y, z) = 2z cos(x)sinh(y).
The object boundary is given by the spherical parametric equation as Equation (22). The
Dirichlet data are imposed using the following exact solution for this three-dimensional
problem as:

u(x, y, z) = z cos(x) cosh(y) + z sin(x)sinh(y). (34)

Three RBFs, including the Gaussian, MQ, and IMQ, were used in the collocation
method. Three collocation types for locating the sources were considered in the above
RBFs to solve this three-dimensional problem. There were 2500 source points, 1600 interior
points, and 861 boundary points. The three collocation types of this three-dimensional
problem are illustrated in Figure 1. In type A, the fictitious sources are uniformly scattered
within the domain, as depicted in Figure 1d. The interior, sources, and boundary points are
placed such that the positions of the interior and fictitious sources are identical. In type B,
the fictitious sources are randomly scattered within the domain, as depicted in Figure 1e.
In type C, the fictitious sources are randomly scattered outside the closure of the domain,
as depicted in Figure 1f.

Figure 10 illustrates the RMSE of the Gaussian, MQ, and IMQ RBFs with the three
different collocation types. From Figure 10, it appears that the RMSE of the above RBFs
for type A and type B fluctuated between 10−2 to 10−6 as the shape parameter ranged
from 0.5 to 5. However, the RMSE of the simplified Gaussian, MQ, and IMQ RBFs (type C)
without a shape parameter reached the order of 10−8, 10−8, and 10−10, respectively.
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(a) (b) 

  
(c) (d) 

Figure 10. Problem domain and RMSEs of RBFs using three different collocation types: (a) problem
domain, (b) Gaussian RBF, (c) MQ RBF, and (d) IMQ RBF.

5. Conclusions

In this study, a novel concept of using exterior fictitious sources to solve elliptic
boundary value problems with the simplified radial basis function method was proposed.
The concept of the proposed approach was addressed in detail. The significant findings are
concluded as follows.

(1) In this study, we demonstrated that the simplified RBFs, which consider many exterior
fictitious sources outside the domain, can achieve accurate results to solve elliptic
boundary value problems. The obtained results demonstrate that the simplified RBFs
obtain a better accuracy than the original RBFs with the optimum shape parameter
when solving elliptic boundary value problems.
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(2) Identification of the shape parameter is often very challenging and tedious in the
original RBFs when solving partial differential equations. In this study, we proposed
three simplified Gaussian, MQ, and IMQ RBFs without the shape parameter. The
simplified RBFs have the advantages of a simple mathematical expression, high
precision, and easy implementation.

(3) With the consideration of many exterior fictitious sources outside the domain, we
found that the radial distance is always greater than zero. The simplified Gaussian,
MQ, and IMQ RBFs and their derivatives in the governing equation are always smooth
and nonsingular.

(4) Comparative analysis was conducted on the three different collocation types consider-
ing conventional uniform centers, randomly fictitious centers, and exterior fictitious
sources. It was found that the exterior fictitious sources proposed in this study
significantly improved the accuracy when solving problems.

(5) Numerical examples, including elliptic BVPs in two and three dimensions, were
carried out. The simplified radial basis function method with exterior fictitious
sources can be applied to three-dimensional problems with ease and high accuracy.

(6) In this study, we attempted to remove the shape parameter in conventional RBFs to
solve partial differential equations. We achieved a promising result for three simplified
Gaussian, MQ, and IMQ RBFs, especially for solving Laplace-type equations in two
and three dimensions. Further studies to investigate the characteristics of the proposed
method to solve different kinds of PDEs are suggested.
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Abstract: In this paper, a parallel Smoothed Finite Element Method (S-FEM) package epSFEM using
incremental theory to solve elastoplastic problems is developed by employing the Julia language
on a multicore CPU. The S-FEM, a new numerical method combining the Finite Element Method
(FEM) and strain smoothing technique, was proposed by Liu G.R. in recent years. The S-FEM
model is softer than the FEM model for identical grid structures, has lower sensitivity to mesh
distortion, and usually produces more accurate solutions and a higher convergence speed. Julia, as an
efficient, user-friendly and open-source programming language, balances computational performance,
programming difficulty and code readability. We validate the performance of the epSFEM with two
sets of benchmark tests. The benchmark results indicate that (1) the calculation accuracy of epSFEM
is higher than that of the FEM when employing the same mesh model; (2) the commercial FEM
software requires 10,619 s to calculate an elastoplastic model consisting of approximately 2.45 million
triangular elements, while in comparison, epSFEM requires only 5876.3 s for the same computational
model; and (3) epSFEM executed in parallel on a 24-core CPU is approximately 10.6 times faster than
the corresponding serial version.

Keywords: elastic-plastic problems; incremental theory; Smoothed Finite Element Method (S-FEM);
Julia language; parallel programming

MSC: 35-04

1. Introduction

Currently, numerical methods are the most important tools for solving various sci-
entific and engineering problems [1]. For example, the Finite Element Method (FEM),
one of the most successful numerical methods, has been widely employed in different
scientific and engineering fields because of its mathematically rigorous proof and satisfac-
tory efficiency [2–4]. However, the shortcomings and deficiencies of FEM are becoming
increasingly significant [2,5–8]. (1) The FEM applies the problem domain of finite degrees
of freedom to the problem domain of infinite degrees of freedom, which makes the system
stiffness matrix “too rigid”. (2) The conventional FEM has high requirements for mesh
quality and cannot deal with distorted meshes. (3) When the conventional FEM uses simple
and low-order elements to calculate large and complex structures, the calculation accuracy
is often unsatisfactory, while when higher-order elements with higher accuracy are used,
the computational cost is quite expensive.

To cope with the above deficiencies of FEM or decrease the computational cost of
generating meshes, meshfree methods have emerged, such as Radial Point Interpola-
tion Method (RPIM), Element Free Galerkin (EFG) and Meshless Local Petrov–Galerkin
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(MLPG) [2,5,9,10]. The mesh-free methods can be used to analyze crack problems and
large deformation problems because mesh-free methods employ a group of scattered nodes
in the discrete problem domain, avoiding the requirement for continuity of the problem
domain. However, the more complex computational process of mesh-free methods leads to
the desire to achieve higher computational accuracy, which is not only computationally
time-consuming but also inefficient [7].

In recent years, the Smoothed Finite Element Method (S-FEM), a new numerical method
combining the FEM and strain smoothing technique was proposed by Liu G.R. et al. [7,11].
The system stiffness matrix of S-FEM model is softer than the FEM model for identical grid
structures, has lower sensitivity to mesh distortion, and usually produces more accurate
solutions and a higher convergence speed [7]. Due to the above characteristics, S-FEM
is frequently used in the fields of material mechanics [12,13], dynamics [14,15], fracture
mechanics [16], plate and shell mechanics [17], fluid structure interaction [18], acoustics [19],
heat transfer [20] and biomechanics [21].

Typical S-FEM models include cell-based S-FEM (CS-FEM) [15,22], node-based S-FEM
(NS-FEM) [23,24], edge-based S-FEM (ES-FEM) [14,16] for 2D and 3D problems and face-
based S-FEM (FS-FEM) [25] for 3D problems. In addition, there are hybrid and modified
types of S-FEM. For example, Chen et al. [26] proposed an edge-based smoothed extended
finite element method, ESm-XFEM, for the analysis of linear elastic fracture mechanics. An
improved ES-FEM method, bES-FEM, was proposed by Nguyen-Xuan et al. [27]. bES-FEM
can be applied to almost incompressible and incompressible problems. Xu et al. [28]
proposed a hybrid smoothed finite element method (H-SFEM) for solving solid mechanics
problems by combining FEM and NS-FEM based on triangular meshes. Zeng et al. [29]
proposed a beta finite element method (βFEM) based on the smooth strain technique
applied to the modeling of crystalline materials.

Compared with FEM, the calculation of the S-FEM has the following two differences.
First, we need to construct the smoothing domains and modify or reconstruct the strain field
in the S-FEM. Moreover, because the smoothing domain may involve a portion of adjacent
elements, the memory requirements for S-FEM will be larger [7]. The two differences
mentioned above may lead to a higher computational cost for the S-FEM than the FEM for
the same grid structure. However, given the calculation cost, the results calculated by the
S-FEM model are more accurate than the FEM, and thus, achieve higher efficiency. To make
S-FEM more applicable to large-scale engineering problems, parallel strategies of multicore
CPUs and/or multicore GPUs are usually used to improve and optimize the computational
power of S-FEM.

Currently, there are many software packages developed for utilizing FEM to solve
various scientific and engineering problems, while the development of software and library
packages for the S-FEM is still in progress [30]. Current S-FEM software packages are
mostly implemented in C++ and Fortran. However, static languages such as Fortran and
C/C++ have more complex language structures, are more difficult to learn, and require
high programming skills. Although high-level dynamic languages, such as MATLAB
and Python, are easy to learn, highly visual and interactive, the computing speed of
dynamic language is slow and there are expensive licensing fees associated with the use
of commercial software such as MATLAB. Julia is an efficient, user-friendly, open-source
programming language, developed by MIT in 2009 [31]. Furthermore, it balances the
problems of computing performance, programming difficulty and code legibility [32].

Many researchers have used the Julia language to develop software packages re-
lated to numerical computation. For example, Frondelius et al. [33] designed an FEM
structure by using the Julia language, which enables large-scale FEM models to be pro-
cessed by using distributed simple programming models across a cluster of computers.
Sinaie et al. [34] implemented the Material Point Method (MPM) in the Julia language. In
the large strain solid mechanics simulation, only Julia’s built-in characteristics are used,
which has better performance than the MPM code based on MATLAB. Zenan Huo et al. [35]
implemented a package of S-FEM for linear elastic static problems by using Julia lan-
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guage. Pawar et al. [36] developed a one-dimensional solver for the Euler equation, and an
arakawa spectral solver and pseudo-spectral solver for the two-dimensional incompressible
Navier–Stokes equation for the analysis of computational fluid dynamics using the Julia
language. Heitzinger et al. [37] used the Julia language to implement numerical stochastic
homogeneity of elliptic problems and discussed the advantages of using Julia to solve
multiscale problems involving partial differential equations. Kemmer et al. [38] designed
a finite element and boundary element solver using Julia to calculate the electrostatic
potential of proteins in structural solvents. Fairbrother et al. [39] developed a package for
Gaussian processes, GaussianProcesses.jl, using the Julia language. GaussianProcesses.jl
takes advantage of the inherent computational benefits of the Julia language, including mul-
tiple assignments and just-in-time compilation, to generate fast, flexible and user-friendly
packages for Gaussian processes.

In this paper, a parallel incremental S-FEM software package epSFEM for elastic-plastic
problems is designed and implemented by utilizing the Julia language on a multi-core
CPU. Distributed parallelism and partitioned parallelism are used for the assembly of
the stiffness matrix, allowing multiple cells to be assembled simultaneously, avoiding
excessive for loops and saving computation time. The system of equations is solved using
the PARDISO [40] parallel sparse matrix solver. epSFEM applies to more common and
complex elastic-plastic mechanical problems in practical engineering. Moreover, epSFEM
adopts an incremental theory suitable for most load cases to solve elastic-plastic problems,
and the calculation results are more reliable and accurate.

The contributions of this paper can be summarized as follows:
(1) A parallel S-FEM package epSFEM using incremental theory to solve elastic-plastic

problems is developed by Julia language.
(2) The computational efficiency of epSFEM is improved by using distributed and

partitioned parallel strategy on a multi-core CPU.
(3) epSFEM features a clear structure and legible code and can be easily extended.
The rest of this paper is organized as follows. The theory related to S-FEM and Julia

language are presented in Section 2. The detailed implementation steps of the software
package epSFEM are described in Section 3. Two sets of numerical examples are used
to assess the correctness of the epSFEM and to evaluate its efficiency in Section 4. The
performance, strengths and weaknesses of the epSFEM and the future direction of work
are discussed in Section 5. Section 6 presents the main conclusions.

2. Background

In this section, the theoretical basis of the S-FEM and parallelization strategy of the
Julia language on a multicore CPU are introduced.

2.1. Smoothed Finite Element Method (S-FEM)
2.1.1. Overview of the S-FEM

The S-FEM is the implementation of the FEM by employing the strain smoothing
technique to modify or reconstruct the strain field such that more accurate or special
performance solutions can be obtained. NS-FEM, for example, has an upper bound solution
to the model because of its weak super-convergence, insensitivity to mesh deformation
and an overly soft system stiffness matrix. In the ES-FEM and FS-FEM models, there are
no unphysical modes, so both methods give good results for dynamic and static problems.
In the S-FEM, the most important goal is the modification of the compatible strain field or
reconstruction of the strain field only from the displacement field [11]. To guarantee the
stable and convergent properties of the established S-FEM model, this strain modification or
reconstruction needs to be conducted in an appropriate way to obtain special characteristics.
Strain modification or reconstruction can be implemented within the element, but it is
generally conducted across the element to obtain more information from adjacent elements.
Different modification or reconstruction methods correspond to separate S-FEMs, that is,
CS-FEM, NS-FEM, ES-FEM and FS-FEM.
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For two-dimensional static problems, ultra accurate numerical solutions can be ob-
tained using ES-FEM, and the calculation results of ES-FEM based on T3 elements are even
more accurate than traditional FEM with Q4 elements (same number of nodes) [11,14].
Therefore, the ES-FEM is employed to solve the two-dimensional elastic-plastic problem in
this paper, and the implementation steps are introduced as follows.

2.1.2. Workflow of the ES-FEM

The ES-FEM calculation process is similar to that of the FEM, except that the ES-FEM
needs to construct a smoothing domain on the basis of the FEM model and modify or
reconstruct the strain field. As shown in Figure 1, many techniques designed for FEM can
be adapted for ES-FEM. In short, the difference between the ES-FEM and FEM is that all
calculations of the FEM are based on elements, while all calculations of the ES-FEM are
conducted on smoothing domains.

Figure 1. Flow chart of the FEM and ES-FEM.

The two-dimensional solid mechanics problem with problem domain Ω and bound-
ary Γ = Γu ∪ Γt are considered, where Γu is the essential boundary where displacement
conditions are prescribed and Γt is the natural or force boundary.

The calculation procedure of ES-FEM is as follows [7,11,14]:
(1) Discretization of the problem domains and construction of the smoothing domains
In the ES-FEM, general polygonal elements are used to divide the problem domain,

mainly T3 elements suitable for solving two-dimensional problems. When the T3 element is
used, the meshing can be the same as the standard FEM, such as the widely used Delaunay
triangulation method.
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As shown in Figure 2, on the basis of the polygonal element mesh, the smoothing do-
main is constructed. The problem domain is divided into Ne polygonal elements, including
Neg edges. The edge-based smoothing domain is composed of two nodes connecting one
edge and the centroid of its adjacent elements. The two nodes A and B connecting edge AB
and centroid D of the triangle element form the smoothing domain (ABD), see Figure 2. The
construction of the smoothing domain, such as the discrete problem domain, must follow
the principle of no gap and no overlap, that is, Ω = Ωs

1 ∪Ωs
2 ∪ . . . ∪Ωs

Ne
, Ωs

i ∩Ωs
j = ∅,

and i �= j.

Figure 2. Polygon element mesh and the edge-based smoothing domain in ES-FEM.

(2) Creation of the displacement field
The generalized displacement field ũ at any point in the triangular element is approxi-

mated as:
ũ = ∑Nn

i=1 Ni(x)d̃i (1)

where Nn is the number of smoothing domain nodes, d̃i is the nodal displacement at node
i, and Ni(x) is the shape function:

Ni(x) =

⎡⎢⎣ Ni(x)
. . .

Ni(x)

⎤⎥⎦
n×n

(2)

where n is the degree of freedom of the smoothing domain nodes.
The Gauss integration point interpolation distribution of the ES-FEM shape function is

illustrated in Figure 3. As shown in Figure 3, the commonly used linear triangular elements
are employed to divide the mesh. Here, the shape function values at the Gauss integral
point are calculated in two cases: boundary edge and internal edge. The results are shown
in Tables 1 and 2.

(3) Construction of the smoothed strain field
For triangular, quadrilateral and polygonal elements, strain smoothing techniques

can be used to construct the strain field directly from the boundary integrals of the shape
function without the need for coordinate mapping.
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Figure 3. Illustration of the interpolation distribution of the Gaussian integration points of the
ES-FEM shape function.

Table 1. The shape function entries at different points on the boundary of the smoothing domain
connected to the outer edge 1–2 in Figure 3.

Node Number 1 2 3 Node Attributes

1 1.0 0.0 0.0 Field node
2 0.0 1.0 0.0 Field node
3 0.0 0.0 1.0 Field node
A 1/3 1/3 1/3 Centroid of element
g1 1/2 1/2 0.0 Gauss point
g2 1/6 4/6 1/6 Gauss point
g3 4/6 1/6 1/6 Gauss point

Table 2. The shape function entries at different points on the internal smoothing domain connected
with the inner edges 3–5 in Figure 3.

Node Number 3 4 5 6 Node Attributes

3 1.0 0.0 0.0 0.0 Field node
4 0.0 1.0 0.0 0.0 Field node
5 0.0 0.0 1.0 0.0 Field node
6 0.0 0.0 0.0 1.0 Field node
B 1/3 1/3 1/3 0.0 Centroid of element
C 1/3 0.0 1/3 1/3 Centroid of element
g4 4/6 1/6 1/6 0.0 Gauss point
g5 1/6 1/6 4/6 0.0 Gauss point
g6 1/6 0.0 4/6 1/6 Gauss point
g7 4/6 0.0 1/6 1/6 Gauss point

In the ES-FEM, the smoothed strain ε̄ is computed as follows:

ε̄ =
∫

Ωs
k

ε̃(x)Φ(x)dΩ (3)
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where ε̃(x) = Ldu is the strain that satisfies the compatibility condition in the traditional
FEM, Φ(x) is the smoothing function, and Ωs

k is the smoothing domain, which can be
defined as follows:

Φ(x) =

{
1

As
k
, x ∈ Ωs

k

0, x /∈ Ωs
k

(4)

where As
k is the area of the smoothing domain.

Combining the Gaussian divergence theorem, the domain integral is transformed into
the edge integral to obtain the following smoothed strain calculation equation:

ε̄ =
∫

Ωs
k

ε̃(x)dΩ =
∫

Ωs
k

Ldũ(x)dΩ = (1/As
k)

∫
Γs

k

Ln(x)ũ(x)dΓ, x ∈ Ωs
k (5)

where Ld is the partial differential matrix operator, Ln is the outward unit normal vector
and Γs

k is the boundary of the edge-based smoothing domain.

Ln(x) =

⎡⎣ nx 0
0 ny

ny nx

⎤⎦ (6)

where nx and ny are the x-axis and y-axis components of the normal vector outside the
unit, respectively.

Similar to the FEM, the smoothed strain field is divided into:

ε̄(x) = ∑Nn
I B̄I(xk)dI (7)

where BI is the smoothed strain matrix:

B̄I(xk) =

⎡⎣ b̄Ix(xk) 0
0 b̄Iy(xk)

b̄Iy(xk) b̄Ix(xk)

⎤⎦ (8)

where b̄Ix(xk) and b̄Iy(xk) is defined as shown in Equation (9). The boundary integral
method is used to solve the smoothed strain matrix. This method is applicable to any
polygonal geometry in the smoothing domain.⎧⎨⎩ b̄Ix = (1/As

k)
∫

Γs
k

nx NI(x)dΓ = (1/As
k)∑NI

i=1 ni,x NI(xG
i )li

b̄Iy = (1/As
k)

∫
Γs

k
nyNI(x)dΓ = (1/As

k)∑NI
i=1 ni,yNI(xG

i )li
(9)

where NI is the number of segments of Γs
k, ni,x and ni,y are the outer normal vectors of the Ith

integration segment, xG
i is the midpoint of each segment of the boundary, that is, the Gauss

integration point, and NI(xG
i ) is the shape function value at the Gauss integration point.

(4) Establishment system of equations
The smoothed Galerkin weak form is utilized to establish the system equation in

the ES-FEM. During this process, only a simple summation calculation of the relevant
parameters of the smoothing domain is required.

The linear system of equations of ES-FEM is:

K̄ES−FEMd̄ = f̃ (10)

where d̄ is the displacement vector of all nodes in the S-FEM and f̃ is the vector of all loads.
K̄ES−FEM is the system stiffness matrix of the ES-FEM and defined as Equation (11):

K̄ES−FEM
IJ =

Neg

∑
k=1

∫
Ωs

k

B̄T
I cB̄JdΩ =

Neg

∑
k=1

B̄T
I cB̄J As

k (11)
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where c is the matrix of elasticity coefficients.
(5) Imposition of the boundary conditions
In the ES-FEM, the application process of displacement boundary conditions is similar

to that of the FEM because the shape function used in the S-FEM has the same delta
property as the FEM. The main methods include the direct method, set “1”, multiple large
numbers, Lagrange multiplier and penalty function. The force boundary conditions are
added directly to the corresponding nodes.

(6) Postprocessing
The weighted average rule is used to obtain the equivalent nodal stress in the smooth-

ing domain, and the shape function interpolation technique is used to obtain the continuous
stress field in the problem domain. The process is similar to the FEM. Finally, the accuracy
of the results is assessed in relation to the actual problem.

2.2. The Julia Language

Julia, officially released in 2012, is a flexible dynamic language for scientific and
numerical computation [41]. To solve large-scale numerical computation problems, parallel
computing is considered essential. There are useful built-in features in Julia that make
it easier for developers to design efficient parallel code. Three of the parallel strategies,
that is, coroutine, multithreaded and distributed computing, are dependent on a multicore
CPU. Developers can select the appropriate parallelism method for their needs. Parallel
computing on many-core GPUs can be conducted by using specific packages or utilizing
the built-in function of Julia and parallel arrays [1].

In this paper, parallelism on a multicore CPU is applied to effectively improve the
calculation and assembly efficiency of the global stiffness matrix. In the Julia language,
distributed computing based on a multicore CPU first redistributes tasks according to the
number of CPU cores of the computer and then dynamically allocates computing tasks to
each process so that multiple processes can be calculated at the same time, thus improving
the computing efficiency. In the parallel computing of Julia language, “SharedArray” is
used to reduce memory usage and improve computational efficiency. Moreover, when a
“SharedArray” is employed, multiple processes are allowed to operate on the same array in
the meantime [42,43].

3. The Implementation of Package epSFEM

3.1. Overview

A parallel S-FEM package using incremental theory to solve elastic-plastic problems is
developed on a multicore CPU. This package contains the following three components:

Preprocessing: The preprocessing includes mesh generation and the construction of
smoothing domains based on the mesh. After the preprocessing is completed, the model
details of constructing the smoothing domain can be obtained, and stored in sparate five
files: nodes, elements, internal edges, external edges and the centroids of mesh elements.

Solver: The solver uses incremental S-FEM to solve the elastoplastic problems, which
is the main part of the whole software package. It is mainly categorized into: (1) assembly
of the elastic stiffness matrix and (2) incremental loading and semismooth Newton method
iterations to solve the system of equations. The calculation procedure of the incremental
loading and semismooth Newton method iterations of the solver is illustrated in Figure 4.

Postprocessing: ParaView [44] is utilized to visualize the numerical calculation re-
sults. The WriteVTK.jl package in Julia is used to write the “vtu” format file needed for
ParaView visualization.
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Figure 4. Illustration of the calculation procedure of incremental loading and semismooth Newton
method iterations.

3.2. Preprocessing
3.2.1. Mesh Generation

Mesh generation is the first step of the numerical analysis, which also affects the
accuracy and efficiency of the numerical analysis. Currently, there are many mature mesh
generation algorithms and software. The focus of this paper is on the solver section, so a
simple direct generation method is used to generate the mesh and then divide the smooth-
ing domain on this basis. Because T3 elements have good adaptability and are most used
in science and engineering practice, we choose T3 elements to divide the problem domain.

3.2.2. Construction of the Smoothing Domain

Constructing the smoothing domain based on the meshing of the problem domain is
one of the key tasks of the S-FEM. According to the methods of constructing the smoothing
domain and storing model information in Refs. [35,45], the smoothing domain of the mesh
is constructed, and the model information after dividing the smoothing domain is output.
To get the best performance out of the Julia language, the following calculations can be
looped in the unit of column, and the model information is stored based on the column.
In this paper, we address the mesh details by integrating the features of ES-FEM and
Julia parallel computation and then utilize five matrices to save the mesh details in an
appropriate way; see Figure 5.

The “Node” matrix stores the x and y coordinates of the mesh nodes. The “Centroid”
matrix stores the x and y coordinates of the center of the cell. The node numbers corre-
sponding to the mesh cells are stored in the “Element”. The three node numbers of the
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triangular cells are stored in the three rows of “Element” in a counterclockwise order, and
the number of columns is the number of mesh cells.

In the ES-FEM, the smoothing domain is constructed by using edges as the basis. We
divide all the edges of the model into two categories: the outer edges are saved in the
“Edge_out” matrix, and the inner edges are saved in the “Edge_in” matrix. For the matrix
“Edge_out”, the two node numbers of the outer edge are stored in the first two rows, the
serial number of the triangle is appended to the third row, and the rest point of the triangle
is appended to the fourth row. Because one inner edge belongs to two triangles, the first
two rows store the node numbers of the inner edges, the third and fourth rows of “Edge_in”
are the serial numbers of neighboring triangles and the last two rows are the numbers of
the other points in the triangle.

Figure 5. Illustration of the matrices “Node”, “Centroid”, “Element”, “Edge_out” and “Edge_in”,
using two adjacent triangles as examples.

3.3. Solver

The incremental S-FEM is utilized to address the elastoplastic problem, choosing the
implicit constitutive integration algorithm of the linear kinematic hardening Von Mises
constitutive model and the corresponding consistent tangent modulus. First, the elastic
predicted stress is calculated according to the strain of the equilibrium iteration, and then
the modified stress is calculated according to a certain direction to make the stress return to
the updated yield surface [46,47]. The nonlinear equations are solved by employing the
semismooth Newton method.

The solution process is composed of two major procedures: (1) assembly of the elastic
stiffness matrix and (2) incremental loading and semismooth Newton method iterations.
The second procedure is composed of multiple incremental step cyclic calculations. Each
incremental step can be divided into three steps: (1) assembly of tangent stiffness matrix,
(2) solving of equations and (3) updating of hardening variables and plastic strain. Accord-
ing to the characteristics of parallel computing, the calculation of the latter step cannot be
dependent on the previous step, so when assembling the elastic stiffness matrix, the tangent
stiffness matrix can be calculated in parallel to improve efficiency. Distributed computing
is used in Julia to calculate the elastic stiffness matrix and the tangent stiffness matrix for
multiple elements in parallel. When solving the overall nonlinear system equations, we
utilize the semismooth Newton method for each iteration. For the set of equations in each
iteration, a parallel sparse equation solver, PARDISO, is used [40]. The detailed procedure
of the solver in epSFEM will be presented in the subsequent sections.

3.3.1. Assembly of Elastic Stiffness Matrix

After the model is preprocessed, it needs to be assembled with an elastic stiffness
matrix first. In epSFEM, we calculate the stiffness matrix of the associated smoothing
domain by dividing the outer edge and the inner edge, and the calculation process is
basically the same. Taking the internal edge as an example:
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(1) The areas of the two triangle elements that share the inner edge is attached are computed.
This process is conducted by procedure “area.jl” according to Equations (12)–(16):

a =

√
(x1 − x2)

2 + (y1 − y2)
2 (12)

b =

√
(x2 − x3)

2 + (y2 − y3)
2 (13)

c =
√
(x3 − x1)

2 + (y3 − y1)
2 (14)

p = (a + b + c)/2 (15)

A =
√
(p(p− a)(p− b)(p− c) (16)

where xi and yi is the coordinate of the node i.
(2) The length of each edge of the smoothing domain is calculated in Equation (17).

For the smoothing domain of the inner side, there are four edges. This process is realized
in the file “lp.jl”:

lp =

√
(x1 − x2)

2 + (y1 − y2)
2 (17)

(3) The normal outward vector v1 is calculated for each side of the smoothing domain.
This is performed in “vectorin.jl”, according to Equations (18)–(20):

y = y2 − y1 (18)

x = x1 − x2 (19)

v1 =

[
y√

(y2 + x2)

x√
(y2 + x2)

]
(20)

(4) Assembly of the global elastic stiffness matrix and the global smoothed strain
matrix. First, the stiffness matrix of the smoothing domain element is computed and
then assembled according to the smooth domain nodes. Due to the large number of zero
elements in the matrix, to reduce the memory occupation, the matrix is stored in a sparse
form. There are three common ways to construct sparse arrays: Compressed Sparse Row
(CSR), Compressed Sparse Column (CSC) and COOrdinate (COO).

First, the COO format is used to construct the global elastic stiffness matrix, since the
multi-dimensional arrays in Julia are stored according to column-based sequence. Then,
for the convenience of solving the subsequent system equations, we replace it with the CSC
format. To construct a sparse array according to COO format, we first need to construct
three one-dimensional arrays, that is, IK_elast, JK_elast and VK_elast.

IK_elast, JK_elast and VK_elast denote the row number, column number and value of
each entry in the global stiffness matrix according to the order of each row. Since the sparse
functions can accumulate the entries at the same position automatically, the magnitudes of
IK_elast, JK_elast and VK_elast can be predetermined.

The assembly method of the global smoothed strain matrix is basically the same as the
stiffness matrix, except that when it is assembled, the rows are carried out according to the
elements, and the columns are carried out according to the nodes. Three one-dimensional
arrays, IB, JB and VB, are constructed in advance.

For parallel computing, the six arrays of IK_elast, JK_elast, VK_elast, IB, JB and VB
need to be converted to “SharedArrays” in advance, and the elastic stiffness matrix is
assembled in parallel using the “@distributed” macro in Julia. Because the stiffness matrix
calculation of each element has no data dependence, there will be no data interference
when performing parallel computing.

The number of processes needs to be added using the function “addprocs” before
all parallel computing starts. In the parallel elastic stiffness matrix assembly, we use
the “@distributed” macro to automatically allocate tasks to each process according to the
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number of processes and the total number of tasks for parallel computing of the loop. The
total number of tasks currently is equal to the total number of smoothing domains. The
“@distributed” macro is executed asynchronously on the loop; it will generate independent
tasks on all available processes and return immediately without waiting for the computing
to complete. To wait for the computing task to complete, the “@sync” macro must be used
before the call. The procedure of assembling the elastic stiffness matrix for the internal
edges by distributed parallel computation is illustrated in Algorithm 1. After the global
stiffness matrix and the global smoothed strain matrix are assembled, the “Sparse” function
is used to convert them into the CSC format.

Algorithm 1 Parallel calculation and assembly of the elastic stiffness matrix

Input: Node, Centroid, Element, Edge_in, shear, bulk
Output: K_elast, B

1: Set the number of CPU cores for the Julia program.
2: Set IK_elast, JK_elast, VK_elast, IB, JB and VB to SharedArrays.
3: @sync @distributed begin
4: for every internal edge do
5: Compute the area of the interior quadrilateral.
6: Compute the side lengths of the interior quadrilateral.
7: Compute the normal unit vectors of the four sides of the interior quadrilateral.
8: Compute the smoothed strain matrix of an interior quadrilateral.
9: Compute the stiffness matrix of an interior quadrilateral.

10: Compute the elastic coefficient matrix.
11: Assemble global stiffness matrix and smoothed strain matrix.
12: end for
13: end
14: K_elast = sparse (IK_elast, JK_elast, VK_elast)
15: B = sparse (IB, JB, VB)

3.3.2. Assembly of the Tangent Stiffness Matrix

The tangent stiffness matrix of the model needs to be calculated when solving the elastic-
plastic problem using incremental theory. Equation (21) is used instead of Equation (22) to
calculate the global tangent stiffness matrix. Among them, elastic stiffness matrix Kelast,
smoothed strain matrix B and elastic matrix Delast can be obtained in advance at the stage
of assembling the elastic stiffness matrix; only elastoplastic matrix Dtangent depends on
the plastic model, and must be partially reorganized or modified in each Newton iteration.
When most portions of the model are in the elastic stage, Dtangent −Delast is more sparse
than Dtangent [48,49].

Ktangent = Kelast + BT(Dtangent −Delast)B (21)

Ktangent = BTDtangentB (22)

Dtangent is calculated by the constitutive integral. The implicit discrete method is used
to solve the constitutive integral, that is, elastic prediction and plastic correction. For the
constitutive relation, the linear kinematic hardening Von Mises model is employed.

The steps to calculate the tangent stiffness matrix are as follows:
(1) Calculation of the smoothed strain field. Since the global smoothed strain matrix B

has been calculated and assembled in the stage of assembling the elastic stiffness matrix,
the smoothed strain field ε can be acquired according to the strain coordination Equation
ε = Bu.
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(2) The implicit Von Mises constitutive integral algorithm is used to obtain the stress
S and tangent operator DS of the model, by procedure “constitutive_problem1.jl”. The
formula, according to [48–51], is:

Tk(εk) =

{
σtr

k ,
∣∣str

k

∣∣ ≤ Y,
σtr

k − 2G
2G+a (

∣∣str
k

∣∣−Y)ntr
k ,

∣∣str
k

∣∣ > Y
(23)

where Tk(εk) represents the stress–strain operator, σtr
k = C(εk − ε

p
k−1), str

k = IDσtr
k − βk−1,

ntr
k =

str
k
|str

k | , a is the hardening parameters and Y is the yield stress.

T0
k (εk) =

{
C,

∣∣str
k

∣∣ ≤ Y,
C− 4G2

2G+a ID + 4G2

2G+a
Y
|str

k | (ID − ntr
k ⊗ ntr

k ),
∣∣str

k

∣∣ > Y (24)

where T0
k (εk) is the derivative of the stress–strain operator, C = KI⊗ I + 2GID, I⊗ I is

the unit second-order tensor, ID = I− I⊗I
3 , K = E/3(1− 2μ) is the bulk modulus and

G = E/2(1 + μ) is the shear modulus.
The modification of hardening variable βk and plastic strain ε

p
k is:

βk =

{
βk−1,

∣∣str
k

∣∣ ≤ Y,
βk−1 +

a
2G+a (

∣∣str
k

∣∣−Y)ntr
k ,

∣∣str
k

∣∣ > Y (25)

ε
p
k =

{
ε

p
k−1,

∣∣str
k

∣∣ ≤ Y,
ε

p
k−1 +

1
2G+a (

∣∣str
k

∣∣−Y)ntr
k ,

∣∣str
k

∣∣ > Y
(26)

where βk−1 hardening tensor from the previous incremental step and ε
p
k−1 plastic strain

tensor from the previous incremental step.
To check whether plastic correction is needed, the array CRIT of 1× s_n_e is defined

representing the yield criterion, that is,
∣∣str

k

∣∣ − Y , and the corresponding logical array
IND_p of 1× s_n_e with the smoothing domain of plastic behavior, where s_n_e represents
the total number of smoothing domains. The parallel implementation of the implicit Von
Mises constitutive integral is shown in Algorithm 2.

In the parallel computing of constitutive integrals, all processes can access the underly-
ing data. To avoid conflicts, we first construct a “myrange” function to assign tasks to each
process according to the number of CPU cores added. Then, the main computing process is
defined as a kernel function “assembly_tangent”, and a wrapper “shared_constructive” is
defined to encapsulate the kernel function. Finally, the function “constitutive_problem” is
constructed to call the packaged kernel function for partition parallel computing. The “con-
stitutive_problem” function minimizes the communication between the processes so that
each process can continue to compute the allocated part for a period of time, and improve
the efficiency of parallelism. The “@async” macro is used to wrap arbitrary expressions into
tasks. For any content within its scope, Julia will start to run this task and then continue to
execute the next code in the script without waiting for the current task to complete before
executing it. The “@sync” macro means that the next task will not be executed until the
dynamic closure defined by the macro “@async” is completed.

(3) Calculation of the global tangent stiffness matrix. First, the sparse elastoplastic
matrix Dtangent is constructed according to the tangent operator DS obtained by the
constitutive integral and then the global tangent stiffness matrix is calculated according to
Equation (21).
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Algorithm 2 Parallel implementation of implicit Von Mises constitutive integral algorithm

Input: E, Ep_prev, Hard_prev, shear, bulk, a, Y, S, DS, IND_p
Output: S, DS, IND_p

1: Set the number of CPU cores for the Julia program.
2: Set E, Ep_prev, Hard_prev, S, DS, IND_p to ShareArray.
3: Assign the number of tasks for each process according to the number of processes.
4: for number of tasks in each process do
5: Check whether the smoothing domain yields according to the yield criterion.
6: Elastic prediction of stress tensor.
7: Calculate the consistent tangent operator.
8: Plastic correction of the stress tensor.
9: Plastic correction of the consistent tangent operator.

10: end for
11: Parallel computing using “remotecall” in Julia language.

3.3.3. Solution of System of Equations

In this process, the internal force of the model is calculated by using the stress obtained
from the constitutive relationship and the smoothed strain matrix. Then, the displacement
boundary conditions are applied by the direct method; that is, the corresponding rows and
columns with displacement boundary conditions of “0” are deleted. A logical array Q is
designed, which sets the displacement boundary condition of “0” to “0” and the rest to
“1”. Then, the stiffness matrix, displacement and force are calculated with a logical array
index. After that, the Pardiso.jl package is added and the “MKLPardisoSolver” solver in the
package is used to solve the system of equations. Finally, the node displacement increment
“dU” of one Newton iteration in an incremental step can be obtained.

In this paper, the semismooth Newton method is employed to solve nonlinear system
of equations and check whether iteration is convergent according to Algorithm 3. “MKLPar-
disoSolver” is the solver in the Pardiso.jl package, Q is the logical array corresponding to
the displacement boundary conditions, f is the external force vector, F is the internal force
vector, the subscript k represents the kth incremental step and the superscript it represents
the it-th iteration step, and ‖U‖2

e = UTKelastU. In each Newton iteration, the tangent
stiffness matrix Ktangent is used to solve the linear problem, which corresponds to the
system of linear equations:

Kit
k dUit = fk − Fk (27)

Algorithm 3 Newton iteration terminates judgment

1: initialization U0
k=Uk

2: for it = 1, 2, 3 . . . do
3: ps = MKLPardisoSolver()
4: dUit[Q] = solve(ps, Kk

it[Q1, Q1], (fk − Fk
it))

5: Uit
k = Uit−1

k + dUit

6:
∥∥dUit

∥∥
e/(

∥∥∥Uit−1
k

∥∥∥
e
+

∥∥Uit
k

∥∥
e) ≤ criterion

7: end for
8: set Uk = Uit

k

3.3.4. Update of Hardening Variable and Plastic Strain

After each incremental step is calculated, the hardening variable and plastic strain
need to be updated by using Equations (25) and (26). Based on the implicit constitutive
integration algorithm of Algorithm 2, the modification of the hardening variable and plastic
strain is added. The parallel strategy in this part is consistent with Algorithm 2.
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3.4. Postprocessing

After the execution of the solver, the widely used visualization software ParaView is
used to visualize the numerical computational results. The relevant package WriteVTK.jl in
Julia can write VTK XML files and use ParaView to visualize multidimensional datasets [44].
The VTK format files support include straight line (.vtr), structured mesh (.vts), image data
(.vti), unstructured mesh (.vtu) and polygon data (.vtp) [52].

An unstructured mesh “vtu” format file is designed. Its implementation steps are
as follows: (1) we need to define a cell type, which is defined in this paper as “VTKCell-
Types.VTK_TRIANGLE”, representing the linear triangular element; (2) the “MeshCell”
function is used to define the mesh model and obtain an array containing all mesh cells;
(3) to generate a “vtu” format file, we need to initialize the file with mesh nodes and element
information and then add node displacement data and other information to the file; (4) we
can save the file as a “vtu” format file.

4. Validation and Evaluation of epSFEM

In this section, two sets of benchmark tests are performed on a powerful computational
platform to evaluate the correctness and efficiency of epSFEM. The details of the workstation
computer used are shown in Table 3.

Table 3. Specifications of the workstation computer for performing the benchmark tests.

Specifications Details

CPU Intel Xeon Gold 5118 CPU
CPU Cores 24
CPU Frequency 2.30 GHz
CPU RAM 128 GB
OS Windows 10 professional
IDE Visual studio Code
Julia Version 1.5.2

4.1. Validation of the Accuracy of epSFEM

To validate the correctness of epSFEM, we use the model shown in Figure 6a to perform
elastoplastic analysis and compare its calculation accuracy with traditional finite element
software. In this example, a symmetric displacement boundary condition is set up on the
left and bottom of the computational model. The traction force of Ft = 200 N/m acts on the
top of the model along the normal direction, and the traction force is added in increments
through the cyclic load shown in Figure 6b. The elastic parameters are: E = 206,900 (Young’s
modulus) and μ = 0.29 (Poisson’s ratio). The parameters related to plastic materials are
specified as follows: a = 1000 , Y = 450

√
(2/3) . The mesh computational model with

150 triangular elements is illustrated in Figure 7a, and the computational model after
constructing the smoothing domain is shown in Figure 7b.

To demonstrate the accuracy of the calculation, the displacement calculation of the
model in Figure 6a is conducted, and comparisons are made in the three following cases.

(1) epSFEM is employed to calculate the displacement of a mesh model, which includes
341 nodes and 600 triangular elements (T3 elements); see Figure 8a.

(2) According to Ref. [49], the conventional FEM is used to calculate the displacement
of a mesh model, which includes 341 nodes and 600 triangular elements (T3 elements); see
Figure 8b.

(3) According to Ref. [49], the conventional FEM is employed to calculate the displace-
ment of a highly accurate mesh model that includes 231,681 nodes and 76,800 eight-node
quadrilateral elements (Q8 elements).

The displacements of the top node of the model calculated by the above three methods
are compared in Figure 9. As shown in Figure 9, the displacement calculated by epSFEM
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has higher accuracy than FEM-T3 and slightly lower accuracy than FEM-Q8. Hence, the
correctness of epSFEM is proven.

(a) (b)

Figure 6. (a) Simplified 2D geometry of the elastic-plastic problem and (b) history of the traction force.

(a) (b)

Figure 7. (a) A mesh computational model with 150 triangular elements and (b) a computational
model after constructing the smoothing domain.

(a) (b)

Figure 8. (a) The contour of displacement calculated using epSFEM and (b) the contour of displace-
ment calculated using FEM-T3.
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Figure 9. Comparison curves of node displacements at the top of the model calculated by differ-
ent methods.

4.2. Evaluation of the Efficiency of epSFEM

To better analyze the computing efficiency of epSFEM, the computational efficiency of
the serial and parallel versions of the epSFEM are recorded and compared. Five mesh mod-
els were created based on the same size model, shown in Figure 6a. Detailed information
on the mesh is shown in Table 4.

Table 4. Details of the used five mesh models.

Mesh Models (T3) Number of Nodes Number of Elements

1 173,761 345,600
2 308,481 614,400
3 609,301 1,215,000
4 909,701 1,815,000
5 1,231,361 2,457,600

In epSFEM, the calculation procedure can be composed of two steps: (1) assembly of
the elastic stiffness matrix and (2) incremental loading and semismooth Newton method
iterations. In this paper, we focus on the solution of elastic-plastic problems, so the time
consumption is predominantly in the second step, which is composed of multiple incre-
mental cyclic loading steps. Each of the incremental steps can be composed of three stages:
(1) assembly of tangent stiffness matrix, (2) solving of system of equations and (3) updating
of hardening variables and plastic strain. Since the Pardiso.jl package is employed to
solve equations in serial and parallel code, the efficiency of solving equations in serial and
parallel ways are not discussed. For the assembly of the elastic stiffness matrix, its time
consumption accounts for a small proportion in the whole elastic-plastic analysis, which is
not discussed in this paper. The parallel method of the hardening variable and plastic strain
update part is consistent with the parallel method of tangent stiffness matrix assembly.
Therefore, we mainly evaluate the computing efficiency of assembling the tangent stiffness
matrix in this paper.

As shown in Figure 10, the time to compute the parallelizable section of the tangent
stiffness matrix in the serial and parallel versions for five different scale mesh models is
compared. As shown in Figure 10, it takes only approximately 335 s to compute a mesh
model, including 2.45 million elements on the parallel version, while it takes approximately
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3537.6 s to compute the same model on the serial version. On the 24-core CPU, the parallel
speedup can reach 10.6.

To reflect the computational efficiency of epSFEM, we also made a comparison between
commercial software and epSFEM in terms of the time required to calculate the five scale
models, as shown in Table 4. The total time required for the solver computing is recorded
for comparison. As shown in Figure 11, for a model containing 2.45 million elements,
ABAQUS requires 10,619 s to compute, while the parallel version of epSFEM needs only
5876.3 s to complete the computation. The parallel version of epSFEM is approximately
1.8 times faster than ABAQUS.

Figure 10. Comparison of serial and parallel epSFEM computing time of the parallelizable section of
the tangent stiffness matrix.

Figure 11. Comparison of the computation time of serial and parallel epSFEM and ABAQUS solvers
for elastic-plastic problems.

ABAQUS was also used to calculate the displacements for a mesh model with 341 nodes
and 600 triangular cells and to compare the displacements obtained by ABAQUS with
those obtained by epSFEM_T3 and FEM_Q8 in Section 4.1. Using the displacement solution
of FEM_Q8 as the reference solution, it can be seen that the displacement calculation
accuracy of epSFEM is higher than that of ABAQUS; see Figure 12. It can be seen from the
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above results that the calculation time of epSFEM is shorter than that of ABAQUS when
calculating the same mesh model, and the calculation accuracy of epSFEM is higher than
that of ABAQUS, so the calculation efficiency of epSFEM is higher than that of ABAQUS.

Figure 12. Comparison curves of node displacements at the top of the model calculated with ABAQUS
and epsFEM.

5. Discussion

In this section, the capability, strengths and weaknesses of the epSFEM software
package, as well as the future direction of work, are discussed.

5.1. Comprehensive Evaluation of epSFEM
5.1.1. Computational Accuracy

The accuracy of the calculation is the first guarantee for whether a software package
can be used. To verify the correctness of the epSFEM calculation, a numerical example is
used in Section 4.1. As listed in Table 5, the total displacement results of the six nodes at
the top y = 10 m of the model are selected for comparison. Taking the displacements of
FEM-Q8 as the baseline and comparing the displacements of epSFEM-T3 and FEM-T3 with
them, it can be shown that the displacements of epSFEM-T3 are significantly closer to the
baseline. The result difference is expressed by relative error. As seen in Table 5, for the
node displacement at x = 0 and y = 10 m, the error of FEM-T3 compared with FEM-Q8
is 25.24%, while the error of epSFEM-T3 compared with FEM-Q8 is only 2.96%. This is
because the S-FEM is based on the smoothing domain calculation that optimizes the system
stiffness matrix and enables the displacements to be closer to the reference values.

Table 5. Validation of the accuracy of the epSFEM by comparison of calculated displacements.

Position
Method Relative Error

FEM-T3 epSFEM-T3 FEM-Q8 FEM-T3 epSFEM-T3

0.0 m 0.02223 m 0.02704 m 0.02784 m 25.24% 2.96%
2.0 m 0.02095 m 0.02583 m 0.02680 m 27.92% 3.76%
4.0 m 0.01787 m 0.02217 m 0.02423 m 35.59% 9.29%
6.0 m 0.01267 m 0.01572 m 0.01640 m 29.44% 4.33%
8.0 m 0.00744 m 0.00896 m 0.00924 m 24.19% 3.13%
10.0 m 0.00626 m 0.00788 m 0.00819 m 30.83% 3.93%

75



Mathematics 2022, 10, 2024

5.1.2. Computational Efficiency

In this paper, the efficiency of computation is contrasted in two aspects: parallel
speedup of parallelizable code and solver computation time; see Figures 10 and 11.

In this paper, we recorded the time required to compute the parallelizable portion of
the tangent stiffness matrix, that is, constitutive integral algorithm, for seven different size
mesh models using serial and parallel epSFEM. As shown in Table 6, the parallel speedup
is 10.2 for the computing model with 38,400 elements, increases to 14.8 for the computing
model with 0.6 million elements and decreases to 10.0 for the computational model with
1.2 million elements, after which the parallel speedup increases slightly with the increase of
the computational model size and basically stabilizes.

Table 6. The parallel speedup of the parallelizable section of the tangential stiffness matrix.

Number of Nodes Number of Elements
Computing Time (s)

Single-Core Multi-Core (24-Core) Parallel Speedup

19,521 38,400 69.7 6.83 10.2
77,441 153,600 283.3 23.5 12.05
173,761 345,600 772.2 56.5 13.7
308,481 614,400 1297.6 87.7 14.8
609,301 1,215,000 1728.6 172.9 10.0
909,701 1,815,000 2546 251.9 10.1
1,231,361 2,457,600 3537.6 335 10.6

The reasons why the parallel speedup shows a pattern of increasing then decreasing
and finally converging as the mesh scale increases are analyzed are as follows: (1) Parallel
computing includes the time to allocate tasks; the amount of computation allocated to
each process cannot be exactly the same, and there is the problem of load imbalance for
each process, so the parallel speedup cannot reach the ideal parallel speedup. (2) When
the mesh scale is small, such as 38,400 to 614,400, the total computation time increases
as the mesh scale increases, the percentage of assigned tasks in the total time decreased,
and the parallel speedup increases. (3) When the mesh scale increases to 1.2 million, the
performance of the code decreases due to the larger memory allocation required and the
increased garbage collection time during the code run. In the benchmark tests of this paper,
the above effects do not have a significant impact on the overall performance of epSFEM as
the scale continues to increase. On the contrary, it tends to a steady state.

TimerOutputs.jl package is used to test the time consumption and memory allocation
in each part of the calculation process and generate the formatted table to output [53]. As
listed in Table 7, the allocation of time and memory for each part of the parallel epSFEM
solver when the number of elements is 600,000. Table 7 shows that the time proportion of
the elastic stiffness matrix is very small, which is only 0.07% when the number of elements
is 600,000. Therefore, we focus on the time and memory consumption of each part of the
incremental loading and the semismooth Newton iteration, which is the plastic section in
Table 7. Figure 13 presents the time occupancy of the tangent stiffness matrix assembly,
solving equations, hardening variables and plastic strain updating when calculating the
model with 2.45 million elements using the serial and parallel versions of epSFEM. Because
the hardening variable and plastic strain only need to be updated once for each incremental
step, the time proportion is the smallest. The tangent stiffness matrix assembly and solving
equations need to be calculated not only for each incremental step, but also for each
iteration, so the time proportion is longer. As shown in Figure 13, the proportion of time
spent solving the equations in parallel computing is considerably larger than in serial
computing, accounting for approximately 80%.
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Table 7. Time and memory allocation of each part of the parallel epSFEM solver when the number of
elements is 600,000.

Tot /% Measured
Time Allocation

1256.9 s/100% 337.83 GiB/100%
Section ncalls Time %tot avg alloc %tot avg

solver 1 1256.9 s 100% 1256.9 s 337.83 GiB 100% 337.83 GiB
elastic 1 0.9 s 0.07% 0.9 s 1.83 GiB 0.54% 1.83 GiB
plastic 1 1256 s 99.93% 1256 s 336 GiB 99.46% 336 GiB

solving 132 946 s 75.3% 7.16 s 62.6 GiB 18.53% 486 MiB
assembly 132 246 s 19.6% 1.86 s 256 GiB 75.78% 1.94 GiB

constitutive 132 87.7 s 6.98% 664 ms 62.0 MiB 0.02% 481 KiB
K_tangent 132 150.1 s 11.95% 1.14 s 252 GiB 74.6% 1.91 GiB

hardening and strain 40 33.0 s 2.62% 824 ms 1.03 GiB 0.3% 26.3 MiB

In summary, epSFEM combines the features of incremental theory and the parallel
strategy of the Julia language to achieve a parallel and efficient incremental S-FEM for
solving the elastoplastic problem. Although epSFEM can take full advantage of multicore
processors, it still requires a considerable amount of time to solve linear system equations
for large sparse matrices. Moreover, due to the use of incremental theory, the calculation
of the latter incremental step depends on the previous incremental step, and multiple
incremental steps cannot be calculated in parallel, which also limits the computational
efficiency of the code.

Figure 13. The proportion of time in each part of the epSFEM solver when calculating the model with
2.45 million elements using (a) the serial version of epSFEM and (b) the parallel version of epSFEM.

5.2. Comparison with Other S-FEM Programs

Compared with the S-FEM packages implemented with C++, epSFEM code is more
readable and convenient for further development, and has lower requirements for program-
ming ability. In contrast with the S-FEM packages implemented by MATLAB, epSFEM
does not require the payment of licensing fees for the Julia language; additionally, the
computational efficiency of the Julia language is higher than that of MATLAB. Moreover,
epSFEM has a clear structure and modular implementation, and each calculation step is
highly customized and has the characteristics of high efficiency and simplicity.

The epSFEM is suitable to more common and complex elastoplastic mechanical prob-
lems in practical engineering and has a wider range of applications than the elastic S-FEM
package implemented using the Julia language. In contrast with the elastic-plastic S-FEM
package with total strain theory realized by the Julia language, epSFEM uses incremen-
tal theory suitable for most loading situations to solve elastic-plastic problems, and the
calculation results are more reliable and accurate.
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5.3. Outlook and Future Work

epSFEM is an incremental ES-FEM to solve two-dimensional elastoplastic problems.
The next step is to expand it to an incremental FS-FEM to solve three-dimensional elasto-
plastic problems. Currently, the S-FEM has been commonly utilized in material mechanics
and biomechanics, but it is still less applied in the field of geotechnical mechanics [54,55].
We plan to extend epSFEM to use the Mohr-Coulomb criterion combined with the strength
reduction method to analyze the deformation and failure of slopes. With the maturity of
artificial intelligence technology such as machine learning and deep learning, mechanical
analysis and numerical simulation methods can be well integrated with machine learning,
which provides a new direction for computational mechanics [56–59]. In the future, the
authors wish is to use machine learning combined with epSFEM to solve partial differential
Equations (PDEs), or study parameter inversion.

6. Conclusions

In this paper, a parallel incremental S-FEM package epSFEM for elastic-plastic prob-
lems has been designed and implemented by the Julia language on a multicore CPU.
epSFEM has a clear structure and legible code and can be easily developed further. epSFEM
utilizes incremental S-FEM to solve elastic-plastic mechanics problems for complex load
cases more common in practical engineering, and the calculation results are more accurate
and reliable. A partitioned parallel strategy was designed to improve the computational ef-
ficiency of epSFEM. This strategy can avoid conflicts when accessing the underlying data in
parallel computing. To demonstrate the correctness of epSFEM and assess its efficiency, two
sets of benchmark tests were performed in this paper. The results indicated that (1) when
calculating the same mesh model, the calculation accuracy of epSFEM is higher than that
of the traditional FEM; (2) it requires only 5876.3 s to calculate an elastoplastic model,
consisting of approximately 2.45 million T3 elements using the parallel epSFEM software
package, while it needs 10,619 s to calculate the same model using the commercial FEM
software ABAQUS; (3) on a 24-core CPU, the parallel execution of epSFEM is approximately
10 times faster than the corresponding serial version.
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Abbreviations
COO COOrdinate
CPU Central Processing Unit
CSC Compressed Sparse Column
CS-FEM Cell-based Smoothed Finite Element Method
CSR Compressed Sparse Row
EFG Element Free Galerkin
ES-FEM Edge-based Smoothed Finite Element Method
FEM Finite Element Method
FS-FEM Face-based Smoothed Finite Element Method
GPU Graphics Processing Unit
MLPG Meshless Local Petrov-Galerkin
MPM Material Point Method
NS-FEM Node-based Smoothed Finite Element Method
PDEs Partial Differential Equations
RPIM Radial Point Interpolation Method
S-FEM Smoothed Finite Element Method
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49. Čermák, M.; Sysala, S.; Valdman, J. Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems. Appl.

Math. Comput. 2019, 355, 595–614. [CrossRef]
50. Carstensen, C.; Klose, R. Elastoviscoplastic finite element analysis in 100 lines of Matlab. J. Numer. Math. 2002, 10, 157–192.

[CrossRef]
51. Sysala; S. Properties and simplifications of constitutive time-discretized elastoplastic operators. ZAMM-J. Appl. Math. Mech./Z.

fÃ¼r Angew. Math. Und Mech. 2014, 94, 233–255. [CrossRef]
52. WriteVTK.jl. 2021. Available online: https://github.com/jipolanco/WriteVTK.jl (accessed on 10 June 2021).
53. TimerOutputs.jl. 2021. Available online: https://github.com/KristofferC/TimerOutputs.jl (accessed on 10 August 2021).

80



Mathematics 2022, 10, 2024

54. Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Sci. Rev. 2021,
223, 103858. [CrossRef]

55. Mei, G.; Xu, N.; Qin, J.; Wang, B.; Qi, P. A Survey of Internet of Things (IoT) for Geohazard Prevention: Applications, Technologies,
and Challenges. IEEE Internet Things J. 2020, 7, 4371–4386. [CrossRef]

56. Rudy, S.; Alla, A.; Brunton, S.; Kutz, J. Data-driven identification of parametric partial differential equations. SIAM J. Appl. Dyn.
Syst. 2019, 18, 643–660. [CrossRef]

57. Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

58. Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. A physics-informed deep learning framework for inversion and
surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. 2021, 379, 113741. [CrossRef]

59. Jacobs, B.; Celik, T. Unsupervised document image binarization using a system of nonlinear partial differential equations. Appl.
Math. Comput. 2022, 418, 126806. [CrossRef]

81





Citation: Lu, J.; Shi, L.; Liu, C.-S.;

Chen, C.S. Solving Inverse

Conductivity Problems in Doubly

Connected Domains by the

Homogenization Functions of Two

Parameters. Mathematics 2022, 10,

2256. https://doi.org/10.3390/

math10132256

Academic Editor: Yury Shestopalov

Received: 7 April 2022

Accepted: 24 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Solving Inverse Conductivity Problems in Doubly Connected
Domains by the Homogenization Functions of Two Parameters

Jun Lu 1,*, Lianpeng Shi 2, Chein-Shan Liu 3,* and C. S. Chen 4

1 Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 College of Mechanics and Materials, Hohai University, Nanjing 210098, China; shilianpeng123@126.com
3 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
4 Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS 39406, USA;

cschen.math@gmail.com
* Correspondence: lujun@nhri.cn (J.L.); csliu@ntou.edu.tw (C.-S.L.)

Abstract: In the paper, we make the first attempt to derive a family of two-parameter homogenization
functions in the doubly connected domain, which is then applied as the bases of trial solutions for
the inverse conductivity problems. The expansion coefficients are obtained by imposing an extra
boundary condition on the inner boundary, which results in a linear system for the interpolation of
the solution in a weighted Sobolev space. Then, we retrieve the spatial- or temperature-dependent
conductivity function by solving a linear system, which is obtained from the collocation method
applied to the nonlinear elliptic equation after inserting the solution. Although the required data
are quite economical, very accurate solutions of the space-dependent and temperature-dependent
conductivity functions, the Robin coefficient function and also the source function are available. It is
significant that the nonlinear inverse problems can be solved directly without iterations and solving
nonlinear equations. The proposed method can achieve accurate results with high efficiency even for
large noise being imposed on the input data.

Keywords: nonlinear elliptic equation; doubly connected domain; inverse problems; two-parameter
homogenization functions

MSC: 65N21; 65N35

1. Introduction

In recent decades, a large number of inverse problems of the nonlinear elliptic-type
partial differential equation (PDE) have been well investigated, involving the inverse source
problem, inverse conductivity problem as well as inverse Robin problem, which arise in
several branches of applications in science and engineering. Analytical solutions to inverse
problems are difficult to obtain since some information is missing, such as the boundary
conditions or sources compared with the forward problems. Therefore, many numerical
approaches have been developed to resolve inverse problems [1]. In the linear elliptic type
PDEs, for identifying unknown sources, the regularization methods were advocated in [2,3].
Klose [4] solved an inverse source problem based on the radiative transfer equation arising
in optical molecular imaging. In Ref. [5], Hon et al. applied Green’s function for the inverse
source identification. Then Li et al. [6] proposed the modified regularization method on
the Poisson equation for determining an unknown source. Ahmadabadi and co-workers
proposed the method of fundamental solutions for the inverse space-dependent heat source
problems by using a new transformation [7]. The source function for a seawater intrusion
problem in an unconfined aquifer has been studied by Slimani [8]. The inverse source
problems were examined by Alahyane et al. [9] using the regularized optimal control
method. Some new regularization methods were proposed for inverse source problems
governed by fractional PDEs [10,11]. Nguyen [12] investigated the inverse source problems
of the fractional diffusion equations based on the Tikhonov regularization method. Recently,
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Liu [13] have proposed a new procedure of boundary functions, which preserves the energy
identity to identify the sources of 2D elliptic-type nonlinear PDEs. However, the methods
proposed in [13] required extra boundary conditions of source function on a rectangle. We
will extend the work to any 2D nonlinear elliptic equation without using extra boundary
data of the source function in the doubly connected domain.

On the other hand, linear and nonlinear inverse conductivity problems have been stud-
ied by many authors. Kwon considered the anisotropic inverse conductivity and scattering
problems [14]. The inverse problem of time-dependent thermal conductivity was studied
by Huntul and Lesnic by recasting the original problems into the nonlinear least-squares
minimization [15]. Isakov and Sever provided an integral equation method for inverse
conductivity problems using the linearization method [16]. Based on Calderón’s lineariza-
tion method, a new direct algorithm was suggested for the anisotropic conductivities [17].
Liu et al. [18] constructed two-parameter homogenization functions for solving the bend-
ing problem of a thin plate in a rectangular domain where the boundary conditions can
be exactly satisfied. Using the Lie-group iterative method, Liu and Atluri [19] solved the
linear Calderón inverse problem in a rectangular domain, where the unknown conductivity
function is effectively recovered. The linear and nonlinear inverse conductivity problems
have also been studied by meshless methods, such as the meshless local Petrov-Galerkin
method [20], the singular boundary method [21], and the local radial point interpolation
method [22], the method of fundamental solutions [23], etc.

In this paper, based on the previous work in [18,19], we focus on the construction
of two-parameter 2D homogenization functions in a doubly connected domain, and take
linear equations to identify the space-dependent and temperature-dependent conductivity
functions, the Robin coefficient function and also the source function in the 2D nonlinear
elliptic equations. The derived homogenization functions are used as the bases. The
undetermined expansion coefficients are solved by imposing the extra boundary conditions.
In this way, the nonlinear inverse problems can be solved directly with high accuracy and
efficiency even when twenty percent of noise is added to the known data.

We arrange the rest of this paper as follows. Section 2 describes some nonlinear inverse
problems in a doubly connected domain of a 2D nonlinear elliptic equation, which includes
the recovery of conductivity functions α(x, y) and α(u), the inverse Robin problem and the
inverse source problem. In Section 3, we develop the homogenization functions with two
parameters. In Section 4, the two-parameter homogenization functions act as the bases
for the solution. In Section 5, the space-dependent conductivities of inverse problems
are considered. In Section 6, we solve the temperature-dependent conductivity inverse
problems. The inverse Robin problem and one example are given in Section 7, and the
inverse source problem is solved in Section 8, where two examples are given. Section 9
makes the conclusions.

2. Nonlinear Inverse Problems

For this part, we briefly sketch the problems to be considered that desire the retrieval
of unknown functions in the doubly connected domains.

2.1. Space-Dependent Inverse Conductivity Problem

First a space-dependent conductivity function α(x, y) is to be recovered from

∇ · [α(x, y)∇u(x, y)] = Q(u, ux, uy) + S(x, y), (x, y) ∈ Ω ⊂ R2, (1)

u(x, y) = h1(x, y), (x, y) ∈ Γo, (2)

un(x, y) = g(x, y), (x, y) ∈ Γo, (3)

where n is an outward unit normal on Γo. Besides an unknown conductivity function
α(x, y) and the unknown solution u(x, y), other functions are given.

Ω is a doubly connected domain with boundary Γ = Γo ∪ Γi, where Γo ∩ Γi = ∅. While
Γo := {(r, θ)|r = ρo(θ), 0 ≤ θ ≤ 2π} denotes an outer boundary, Γi := {(r, θ)|r = ρi(θ),
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0 ≤ θ ≤ 2π} is an inner boundary. 0 < ρi(θ) < ρo(θ) are, respectively, the radius functions
of inner boundary and outer boundary. In order to recover α(x, y), we over-specify

u(x, y) = h2(x, y), (x, y) ∈ Γi, (4)

where h2(x, y) is a given function. In Figure 1, we sketch the inverse conductivity problem.

Figure 1. A schematic plot to show a doubly connected domain and for identification.

In the polar coordinates (r, θ), Equation (1) is recast to

α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ = Q(u, ur, uθ) + S(r, θ). (5)

Equation (5) is a first-order PDE for the function α(r, θ) = α(x, y) with respect to r and
θ, where ur, uθ , urr and uθθ are the coefficient functions. It is a nontrivial task to determine
α even with the known u prescribed inside the Ω unless the boundary information of α
on Γ is given in advance. Indeed, the inverse conductivity problem, which is considered
in this paper, becomes more difficult and troublesome since the information of u is not
given inside the solution domain, and only the boundary information is given according to
Equations (2)–(4).

2.2. Temperature-Dependent Inverse Conductivity Problem

Secondly, we attempt to retrieve α(u) in[
urr +

1
r

ur +
1
r2 uθθ

]
α(u) + α′(u)u2

r +
1
r2 α′(u)u2

θ = Q(u, ur, uθ) + S(r, θ), (6)

when S and Q are given.
The temperature-dependent inverse conductivity problem is to determine the un-

known conductivity function α(u) considering the above governing equation along with
the information from Equations (2)–(4). The problem becomes harder for the reason that
Equation (6) is nonlinear for u and linear ODE for α(u) with respect to u.

2.3. Inverse Robin Problem to Determine γ(θ)

In the inner boundary, which is an inaccessible part of the boundary Γ, we cannot
directly detect the transfer coefficient γ(θ) in

un(x, y) + γ(θ)u(x, y) = h3(x, y), (x, y) ∈ Γi. (7)

When the information of u(x, y) and un(x, y) on Γi is unknown, h3(x, y) is given.
Taken into the consideration of Equations (1)–(3), the unknown Robin coefficient γ(θ) will
be recovered, which is known as the inverse Robin problem.
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2.4. Inverse Problem for S(x, y)

When the function u(x, y) is known in advance, we can recover S(x, y) by

S(x, y) = ∇ · [α(x, y)∇u(x, y)]−Q(u, ux, uy), (8)

where α(x, y) and Q(u, ux, uy) are given functions. We will show that S(x, y) is recoverable
from Equations (2)–(4) and (8), without solving nonlinear equations.

3. Two-Parameter Basis Functions

First, we demonstrate the basic idea of homogenization function by starting from a 2D
boundary value problem (BVP):

L[u(x, y)] = S(x, y), (x, y) ∈ (0, a)× (0, b), (9)

u(0, y) = h1(y), u(a, y) = h2(y), u(x, 0) = h3(x), u(x, b) = h4(x), (10)

where L is a second-order linear differential operator. Let

B0(x, y) = h1(y)
(

1− x
a

)
+

x
a

h2(y), (11)

and then,
B0(0, y) = h1(y), B0(a, y) = h2(y) (12)

are apparent.
Upon letting

B(x, y) = B0(x, y) +
(

1− y
b

)
[h3(x)− B0(x, 0)] +

y
b
[h4(x)− B0(x, b)], (13)

and according to the following compatibility conditions:

h3(0) = B0(0, 0) = h1(0), h4(0) = B0(0, b) = h1(b),

h3(a) = B0(a, 0) = h2(0), h4(a) = B0(a, b) = h2(b), (14)

it is easy to verify

B(0, y) = h1(y), B(a, y) = h2(y), B(x, 0) = h3(x), B(x, b) = h4(x). (15)

Therefore, we can produce the 2D homogenization function for the 2D BVP:

B(x, y) =
(

1− x
a

)[
h1(y)−

(
1− y

b

)
h3(0)− y

b
h4(0)

]
+

x
a

[
h2(y)−

(
1− y

b

)
h3(a)− y

b
h4(a)

]
+

(
1− y

b

)
h3(x) +

y
b

h4(x). (16)

Due to B(x, y), we can transform the original 2D BVP with non-homogeneous bound-
ary conditions to one with homogeneous boundary conditions:

L[v(x, y)] = S(x, y)−L[B(x, y)], (x, y) ∈ (0, a)× (0, b), (17)

v(0, y) = v(a, y) = v(x, 0) = v(x, b) = 0, (18)

with the help of the variable transformation from u(x, y) to v(x, y) = u(x, y) − B(x, y).
Obviously, Equations (17) and (18) are more easy to tackle than Equations (9) and (10). As
an extension of B(x, y) to a two-parameter family, we have
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B(x, y, j, k) =
[

1−
( x

a

)j
][

h1(y)−
[

1−
(y

b

)k
]

h3(0)− y
b

h4(0)
]

+
( x

a

)j
[

h2(y)−
(

1−
(y

b

)k
)

h3(a)−
(y

b

)k
h4(a)

]
+

(
1−

(y
b

)k
)

h3(x) +
(y

b

)k
h4(x). (19)

B(x, y, j, k) is indeed a family of 2D polynomials, which are complete bases and satisfy the
boundary conditions automatically,

B(0, y, j, k) = h1(y), B(a, y, j, k) = h2(y), B(x, 0, j, k) = h3(x), B(x, b, j, k) = h4(x). (20)

A function is a so-called homogenization function if it satisfies the boundary conditions
on the boundary of a domain. Since the solution u(x, y) must satisfy the prescribed
boundary conditions, it is a member of homogenization functions.

Continuously, the two-parameter homogenization functions are constructed for devel-
oping the present method to solve the inverse problems of Equations (1)–(4).

Definition 1. B0(r, θ) ∈ C2(Ω), with Γo = {(r, θ)|r = ρo(θ), 0 ≤ θ ≤ 2π}, is a homogeniza-
tion function, if the following conditions:

B0(ρo, θ) = h1(θ), B0
n(ρo, θ) = g(θ) (21)

are fulfilled. h1(θ) and g(θ) read as h1(ρo(θ) cos θ, ρo(θ) sin θ) and g(ρo(θ) cos θ, ρo(θ) sin θ),
respectively, and B0

n signifying the normal derivative of B0(r, θ) on Γo is given by

B0
n(ρo, θ) = η(θ)

[
∂B0(ρo, θ)

∂ρo
− ρ′o

ρ2
o

∂B0(ρo, θ)

∂θ

]
, (22)

where

η(θ) =
ρo(θ)√

ρ2
o(θ) + ρ′o(θ)2

. (23)

The following homogenization function has been derived [18]:

B0(r, θ) = h1(θ) + [r− ρo(θ)]
∂u(ρo, θ)

∂ρo
, (24)

B0(ρo, θ) = h1(θ), B0
n(ρo, θ) = g(θ). (25)

Theorem 1. For the given Cauchy data h1(θ) and g(θ) on Γo, there exist homogenization functions
B(j, k, r, θ) in Ω, satisfying Equation (21):

B(j, k, r, θ) =

[
2r
ρo
− r2

ρ2
o

]j

h1(θ) +

[
rk

kρk−1
o
− ρo

k

]
∂u(ρo, θ)

∂ρo
, (26)

where j + 1, k ∈ N are parameters.

Proof. By Equation (26), B(j, k, ρo, θ) = h1(θ) satisfies the first equation in Equation (21).
Next, we consider the second equation in Equation (21), for which we need to prove

∂B(j, k, ρo, θ)

∂ρo
=

∂u(ρo, θ)

∂ρo
,

∂B(j, k, ρo, θ)

∂θ
=

∂u(ρo, θ)

∂θ
. (27)

It is obvious that
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[
2r
ρo
− r2

ρ2
o

]j
∣∣∣∣∣
r=ρo

= 1,
∂

∂r

[
2r
ρo
− r2

ρ2
o

]j
∣∣∣∣∣
r=ρo

= 0, (28)

∂

∂θ

[
2r
ρo
− r2

ρ2
o

]j
∣∣∣∣∣
r=ρo

= j
[

2r
ρo
− r2

ρ2
o

]j−1[−2rρ′o
ρ2

o
+

2r2ρ′o
ρ3

o

]∣∣∣∣∣
r=ρo

= 0, (29)

[
rk

kρk−1
o
− ρo

k

]∣∣∣∣∣
r=ρo

= 0,
∂

∂r

[
rk

kρk−1
o
− ρo

k

]∣∣∣∣∣
r=ρo

= 1, (30)

∂

∂θ

[
rk

kρk−1
o
− ρo

k

]∣∣∣∣∣
r=ρo

=

[
rk

k
(1− k)ρ−k

o ρ′o −
ρ′o
k

]∣∣∣∣∣
r=ρo

= −ρ′o. (31)

It follows from Equations (26), (28) and (30) that the first part in Equation (27) holds
when B(j, k, r, θ) is differentiated to r, and we take r = ρo(θ) on Γo.

The second part in Equation (27) is proven below. It follows from Equation (2) that

h′1(θ) =
∂u(ρo, θ)

∂ρo
ρ′o(θ) +

∂u(ρo, θ)

∂θ
. (32)

From Equations (26) and (28)–(32), it follows that

∂B(j, k, ρo, θ)

∂θ
= h′1(θ)− ρ′o(θ)

∂u(ρo, θ)

∂ρo

=
∂u(ρo, θ)

∂ρo
ρ′o(θ) +

∂u(ρo, θ)

∂θ
− ρ′o(θ)

∂u(ρo, θ)

∂ρo
=

∂u(ρo, θ)

∂θ
. (33)

Due to Equation (27),

Bn(j, k, ρo, θ) = η(θ)

[
∂B(j, k, ρo, θ)

∂ρo
− ρ′o

ρ2
o

∂B(j, k, ρo, θ)

∂θ

]
= η(θ)

[
∂u(ρo, θ)(ρo, θ)

∂ρo
− ρ′o

ρ2
o

∂u(ρo, θ)

∂θ

]
= g(θ) = un(x, y), (x, y) ∈ Γo, (34)

thus we prove
B(j, k, ρo, θ) = h1(θ), Bn(j, k, ρo, θ) = g(θ), (35)

which ends the proof of this theorem.

In Theorem 1, the numbers (j, k) are parameters, and then B(j, k, r, θ) is a two-parameter
function. In addition to Theorem 1, we also have the following result for another two-
parameter function E(j, k, r, θ).

Theorem 2. On Γo given the Cauchy data h1(θ) and g(θ), the two-parameter function E(j, k, r, θ) ∈
C2(Ω) satisfies Equation (21):

E(j, k, r, θ) = B0(r, θ) + [r− ρo(θ)]
2xj−kyk = B0(r, θ) + [r− ρo(θ)]

2rj(cos θ)j−k(sin θ)k, (36)

where j + 1, k ∈ N are parameters and B0 was defined by Equation (24).

Proof. Let
E0(r, θ) := [r− ρo(θ)]

2.

When r = ρo(θ), it is obvious that

E0(r, θ) = [r− ρo(θ)]
2 = 0, E0

n(r, θ) = 2[r− ρo(θ)][r− ρo(θ)]n = 0. (37)
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Inserting r = ρo(θ) into Equation (36) and using Equations (24), (25) and (37), it follows that

E(j, k, ρo, θ) = h1(θ).

Taking the normal derivative of Equation (36) on Γo and using Equations (24), (25) and (37),
we have

En(j, k, ρ, θ) = B0
n(ρo, θ) + E0

n(r, θ)rj(cos θ)j−k(sin θ)k + E0(r, θ)[rj(cos θ)j−k(sin θ)k]n

= B0
n(ρo, θ) = g(θ), when r = ρo(θ).

This completes the proof.

4. A Novel Two-Parameter Homogenization Function Method

Since the set E(j, k, r, θ) is generated from the Pascal polynomials xj−kyk, it is a com-
plete basis for the problem. By the same token, B(j, k, r, θ) is a complete basis. All the
homogenization functions consist of a weighted Sobolev space denoted as B := {v(x, y) ∈
C2(Ω)|v(x, y) = h1(x, y), vn(x, y) = g(x, y), (x, y) ∈ Γo}, which is a weighted space,
because for any two functions v1(x, y), v2(x, y) ∈ B with a weighted linear combination
w1v1(x, y) + w2v2(x, y) ∈ B where w1 + w2 = 1. The Sobolev norm

‖v(x, y)‖2 :=
∫ 2π

0
[v2(ρo cos θ, ρo sin θ) + v2

n(ρo cos θ, ρo sin θ)]dθ (38)

is defined in the space B. More importantly, the approximate solution u(x, y) ∈ B.
In terms of the bases B(j, k, x, y), u(x, y) can be expanded by

u(x, y) ≈
m−1

∑
j=0

m

∑
k=1

ajkB(j, k, x, y), (39)

where ajk satisfies
m−1

∑
j=0

m

∑
k=1

ajk = 1, (40)

and guarantees conditions (2) and (3) being satisfied by u(x, y). The number of the coeffi-
cients ajk is n1 = m2.

As shown in Equation (4), we suppose that there are N data of u(x, y) on the inner
boundary Γi available, and then we can solve a linear system, including Equation (40), to
determine ajk:

m−1

∑
j=0

m

∑
k=1

ajkB(j, k, xq, yq) = h2(xq, yq), (41)

where θq = 2qπ/N, xq = ρi(θq) cos θq and yq = ρi(θq) sin θq.

5. Numerical Procedure to Determine α(x, y)
5.1. Numerical Algorithm

Next, when u(x, y) is obtained from Equation (39), we recover α(x, y) by supposing

α(x, y) =
m0

∑
i=0

i

∑
j=0

bijxi−jyj =
m0

∑
i=0

i

∑
j=0

bijri(cos θ)i−j(sin θ)j, (42)

where bij are n := (m0 + 1)(m0 + 2)/2 unknown weighted parameters to be determined by
the proposed numerical algorithm. In order to solve this problem, m1 ×m2 points of (x, y)
inside the solution domain Ω are collocated by
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xpq = rp cos θq, ypq = rp sin θq,

θq = 2qπ/m1, rp = ρi(θq) + p[ρo(θq)− ρi(θq)]/(m2 + 1), q = 1, . . . , m1, p = 1, . . . , m2. (43)

Since u(x, y) can be approximated by Equation (39), we have

u(xpq, ypq) =
m−1

∑
j=0

m

∑
k=1

ajkB(j, k, xpq, ypq). (44)

Then, inserting Equation (42) into Equation (5) and collocating at point (xpq, ypq), the
following linear system can be obtained:

Δu(xpq, ypq)
m0

∑
i=0

i

∑
j=0

bijx
i−j
pq yj

pq + ur(xpq, ypq)
m0

∑
i=0

i

∑
j=0

ibijri−1
p (cos θq)

i−j(sin θq)
j

+
1
r2

p
uθ(xpq, ypq)

m0

∑
i=0

i

∑
j=0

bijri
p[j(cos θq)

i−j+1(sin θq)
j−1 − (i− j)(cos θq)

i−j−1(sin θq)
j+1]

= Q(u(xpq, ypq), ur(xpq, ypq), uθ(xpq, ypq)) + S(rp, θq), q = 1, . . . , m1, p = 1, . . . , m2, (45)

from which we can determine bij easily, and, correspondingly, the α(x, y) can be determined
from Equation (42).

Therefore, the proposed algorithm for recovering α(x, y) consists of two linear systems
of equations, Equations (41) and (45). We impose the data by a noise:

ĥ1(θj) = h1(θj) + sR(j), ĝ(θj) = g(θj) + sR(j), (46)

where R(j) are random numbers between [−1, 1], which are used to check the stability of
the numerical solution.

To evaluate the accuracy, we consider the maximum error (ME) and a relative error
defined by

ME(α) := max |αn(xpq, ypq)− α(xpq, ypq)|, (47)

e(α) =

√√√√√∑N1
q=1 ∑N2

p=1[αn(xpq, ypq)− α(xpq, ypq)]2

∑N1
q=1 ∑N2

p=1 α2(xpq, ypq)
, (48)

upon comparing the numerical solution of αn to the exact one α at N1 × N2 grid points
(xi, yj) inside the domain with

xpq = rp cos θq, ypq = rp sin θq,

θq = 2qπ/N1, rp = ρi(θq) + p[ρo(θq)− ρi(θq)]/(N2 + 1), q = 1, . . . , N1, p = 1, . . . , N2. (49)

We take N1 = 50 and N2 = 10 in all computations.
We must emphasize that all the linear systems we consider are over-determined, which

means that the number of linear equations is much larger than the number of unknown coeffi-
cients. Therefore, we apply the conjugate gradient method (CGM) to solve the corresponding
normal linear system, whose solution is unique in the sense of least squares.

5.2. Example 1

For Equation (5) with Q = 0, we consider

u = r2 + r cos θ = x2 + y2 + x, α = 10 + r2 + r4 cos2 θ = 10 + (x2 + y2)(x2 + 1). (50)

The outer boundary of the domain Ω is an ellipse:
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ρo(θ) =
ab√

b2 + (a2 − b2) sin2 θ
, (51)

where we take a = 1.5 and b = 0.5, and the inner boundary is ρi = 0.2.
With m = 2, N = 40, m0 = 4, m1 = 30, m2 = 10 and a noise s = 5% added into the

given data, Figure 2a reveals that the maximum absolute error of u is 2.11× 10−2, which
is much smaller than max(u) = 3.29. The maximum absolute error of coefficient α(x, y)
denoted as ME(α) is 0.18, which is quite a lot smaller than max(α) = 15.56. The value
e(α) = 3.8× 10−3 is smaller than 7.65× 10−2 from previous studies. For this problem the
dimension of the normal matrix of the first linear system of (41) and (40) is n1 × n1 = 4× 4,
and the condition number is small with COND = 570.046. The dimension of the normal
matrix of the second linear system (45) is n× n = 15× 15, and the condition number is
COND = 41,996.23. They show that these two linear systems are stable.

(a)

(b)

Figure 2. For example 1, showing the errors in the numerical recovery of u and α under a noise
s = 0.05, (a) Q = 0 and (b) Q = u2.

The convergence rate is a central issue in numerical methods and algorithms. In
Table 1, we consider a different mesh parameter m1 ×m2 used in the collocation method
to influence the convergence rate as reflected in ME(α) and e(α). It can be seen that more
collocated points lead to a more accurate solution of α.

Table 1. For example 1, the influence of mesh parameter m1 ×m2 on ME(α) and e(α).

m1 × m2 5 × 5 7 × 5 10 × 10 10 × 5 30 × 10

ME(α) 7.7369 1.8430 0.4017 0.2147 0.18364
e(α) 1.46× 10−1 2.34× 10−2 1.83× 10−2 5.15× 10−2 3.79× 10−3

Although for a nonlinear elliptic equation:

α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ = u2(r, θ) + S(r, θ), (52)
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where the exact value of S(r, θ) can be obtained by inserting Equation (50) into the above
equation, as shown in Figure 2b, the ME of u is 2.11× 10−2, the ME of α(x, y) is 0.18 and
e(α) = 3.74× 10−3. For the nonlinear problem, we have the same condition numbers
because the parameters used are the same.

5.3. Example 2

Consider

α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ = sin u(r, θ) + u2(r, θ) + S(r, θ), (53)

u = r2 + r cos θ = x2 + y2 + x, α = 20 + r2 sin(2θ) = 20 + 2xy. (54)

For this problem, the outer boundary is given by Equation (51) with a = 4 and b = 3.5, and

ρi(θ) = 1.5 + cos θ (55)

is the inner boundary. Feeding Equation (54) into Equation (53), S(r, θ) can be obtained.
With m = 2, N = 50, m0 = 2, m1 = 10, m2 = 10 and a noise s = 20%, as shown

in Figure 3, the ME of u is 1.44 × 10−2, which is much smaller than max(u) = 18.79.
The ME of α(x, y) is 2.47, which is much smaller than max(α) = 32.96. The value
e(α) = 3.85 × 10−2 is small. For this problem the dimension of the normal matrix of
the first linear system (41) and (40) is n1 × n1 = 4× 4, and the condition number is small
with COND = 1844.258. The dimension of the normal matrix of the second linear system (45)
is n× n = 6× 6, and the condition number is COND = 1013.03. They show that these two
linear systems are stable.

Figure 3. For example 2, showing the errors in the numerical recovery of u and α under a noise
s = 0.2 with Q = u2 + sin u.

6. Numerical Algorithm to Determine α(u)
6.1. Numerical Algorithm

From the last section, we have already recovered the coefficients preceding α(u) and
u2

r + u2
θ/r2 preceding α′(u) in Equation (6), if Q and S are prescribed in advance. Indeed

u(x, y) can be derived from Equation (39). In this case, Δu before α(u), and u2
r + u2

θ/r2

before α′(u) can be obtained numerically from Equation (39).
Suppose that

α(u) =
m0

∑
i=0

ciui, (56)

where ci are under-determined weighted parameters to be determined.
Similar to Equation (43) in the last section, we arrange m1 ×m2 points of (x, y) inside

the solution domain. Then, inserting Equation (56) into Equation (6) and collocating
(xpq, ypq), we come to
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m0

∑
i=0

ciui(xpq, ypq)Δu(xpq, ypq) +
m0

∑
i=0

ciiui−1(xpq, ypq)[u2
r (xpq, ypq) + u2

θ(xpq, ypq)/r2
p]

= Q(u(xpq, ypq), ur(xpq, ypq), uθ(xpq, ypq)) + S(xpq, ypq), p = 1, . . . , m2, q = 1, . . . , m1. (57)

from which we can obtain ci, and then, α(u) is recovered from Equation (56).
It should be noted here that that even for the highly nonlinear inverse problems for

coefficient α(u), solving nonlinear equations is not needed.

6.2. Example 3

For a quadratic nonlinear Poisson equation:

Δuα(u) + α′(u)u2
r +

1
r2 α′(u)u2

θ + u2 = S(r, θ), (58)

u = r2 = x2 + y2, (59)

α(u) = 10 + u2 + u is to be recovered. The outer boundary is Equation (51) with a = 3.5
and b = 2.5, and ρi = 1 is a unit circle.

With m = 2, N = 40, m0 = 2, m1 = 20, m2 = 5 and s = 5%, as shown in Figure 4a, the
ME of u is 5.68× 10−3, which is much smaller than max(u) = 10.7. The ME of α(u) is 0.082,
which is much smaller than max(α) = 135.43. The value e(α) = 6.03× 10−4 is quite small.
Figure 4b compares the numerical and exact α(u) in the range of u ≤ 11. These two curves
almost coincide.

(a)

(b)

Figure 4. For example 3, showing (a) the errors in the numerical recovery of u and α and (b) the
numerical recovery of α under a noise s = 0.05.
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For this problem, the dimension of the normal matrix of the first linear
system (41) and (40) is n1 × n1 = 4 × 4, and the condition number is very small with
COND = 33.959. The dimension of the normal matrix of the second linear system (57) is
n× n = 3× 3, and the condition number is COND = 177,571.79. They show that these two
linear systems are stable.

6.3. Example 4

For a quadratic and cubic nonlinear Poisson equation:

Δuα(u) + α′(u)u2
r +

1
r2 α′(u)u2

θ + u2 + u3 = S(r, θ), (60)

u = r2 = x2 + y2, (61)

α(u) = 10 + u2 + sin u is to be recovered. The boundaries of Ω are given by

ρo(θ) = 3

√
cos(2θ) +

√
1.5− sin2(2θ), (62)

ρi(θ) = exp(sin θ) sin2(2θ) + exp(cos θ) cos2(2θ). (63)

With m = 2, N = 40, m0 = 3, m1 = 15, m2 = 10 and s = 5%, as shown in Figure 5a,
the ME of u is 2.78× 10−2, which is much smaller than max(u) = 18.6. The ME of α(u) is
2.23, which is much smaller than max(α) = 356.45. The value e(α) = 9.35× 10−3 is quite
small. Figure 5b compares the numerical and exact α(u) in the range of u ≤ 19. These two
curves almost coincide.

(a)

(b)

Figure 5. For example 4, showing (a) the errors in the numerical recovery of u and α and (b) the
numerical recovery of α under a noise s = 0.05.

For this problem, the dimension of the normal matrix of the first linear
system (41) and (40) is n1 × n1 = 4× 4, and the condition number is very small with
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COND = 6.3185. The dimension of the normal matrix of the second linear system (57) is
n× n = 4× 4, and the condition number is COND = 2.15× 108.

To reduce the condition number for the second linear system (57), we choose m0 = 2,
m1 = 10 and m2 = 10, such that the dimension of the normal matrix reduces to n× n = 3× 3,
and the condition number reduces to COND = 297,651.317. Meanwhile, ME(α) and e(α) are
slightly increased to 2.38 and 1.08× 10−2, respectively.

7. Numerical Method to Detect γ(θ)

7.1. Numerical Method

Now, we detect γ(θ) by using the data in Equations (2) and (3). Basically, we need to
solve Equations (1)–(3) in Ω. For this purpose, we take

u(x, y) =
m

∑
j=0

j

∑
k=0

ajkE(j, k, x, y), (64)

where the number of ajk, j, k = 1, . . . , m is n1 = (m + 1)(m + 2)/2, which are to be
determined. Instead of B(j, k, x, y) used in Equation (39), we employ E(j, k, x, y) from
Equation (36) as the bases of u(x, y). The reason is that the order of rj+2 in E(j, k, x, y) is
much lower than the order of r2j in B(j, k, x, y).

Like Equation (43), we arrange m1 ×m2 points of (x, y) and collocating which comes to:

α(xpq, ypq)
m

∑
j=0

j

∑
k=0

ajkΔE(j, k, xpq, ypq) + αx(xpq, ypq)
m

∑
j=0

j

∑
k=0

ajkEx(j, k, xpq, ypq)

+αy(xpq, ypq)
m

∑
j=0

j

∑
k=0

ajkEy(j, k, xpq, ypq) (65)

= Q

(
m

∑
j=0

j

∑
k=0

ajkE(j, k, xpq, ypq),
m

∑
j=0

j

∑
k=0

ajkEx(j, k, xpq, ypq),
m

∑
j=0

j

∑
k=0

ajkEy(j, k, xpq, ypq)

)
+S(xpq, ypq), p = 1, . . . , m2, q = 1, . . . , m1.

from which we can compute ajk, and then u(x, y) is obtained from Equation (64), which is
inserted in Equation (7) to find γ(θ) along the inner boundary Γi.

7.2. Example 5

We give a solution of a linear diffusion-convection equation:

αΔu(x, y) + αxux(x, y) + αyuy(x, y) = S(x, y), (66)

u = x2 + y2 + x, (67)

where α = 1 + x2 + y2, which is defined in a domain Ω by Equation (51) with a = 2.5 and
b = 1.5 and by

ρi(θ) = 1.3 + 0.1 cos θ. (68)

With m = 2, m1 = 20, m2 = 20 and s = 20%, as shown in Figure 6a, the ME of u is
4.58× 10−3, which is much smaller than max(u) = 8.16. Figure 6b compares the numerical
and exact γ(θ), of which these two curves almost coincide with the ME being 1.28× 10−2.
For this problem, we merely solve the linear system (65) and (40), whose dimension of the
normal matrix is n1 × n1 = 6× 6, and the condition number is small with COND = 446.16.
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(a)

(b)

Figure 6. For example 5, showing (a) the error in the numerical recovery of u and (b) comparing the
numerical recovery of γ under a noise s = 0.2.

8. Numerical Method to Recover S(x, y)

The numerical method to recover S(x, y) is very simple, which is obtained by merely
inserting the numerical solution of u(r, θ) in Equation (39) into the following equation:

S(r, θ) = α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ −Q(u(r, θ), ur(r, θ), uθ(r, θ)), (69)

where α(r, θ) and Q(u(r, θ), ur(r, θ), uθ(r, θ)) are given functions.

8.1. Example 6

For Equation (69) with Q = u2, we consider

u = r2 + r cos θ = x2 + y2 + x, α = 10 + r2 + r4 cos2 θ = 10 + (x2 + y2)(x2 + 1), (70)

with a = 1.5 and b = 0.5 in Equation (51), and we take ρi = 0.2.
In this case, we have m = 2, N = 30 and a noise s = 5% added into the given data, as

shown in Figure 7a, the maximum absolute error of u is 1.35× 10−2, which is much smaller
than max(u) = 3.29. The maximum absolute error of S(x, y), denoted as ME(S), is 1.22,
which is much more accurate than max S = 101.5. The value e(S) = 5.2× 10−3 is small.
For this problem, we merely solve the linear system (41) and (40), whose dimension of the
normal matrix is n1 × n1 = 4× 4, and the condition number is small with COND = 476.623.
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(a)

(b)

Figure 7. Showing the errors in the numerical recovery of u and S under a noise s = 0.05, (a) example
6 and (b) example 7.

In Table 2, we consider different mesh parameters N used in the collocation method
for u(x, y) to influence the convergence rate as reflected in ME(S) and e(S). It can be seen
that more collocated points lead to a more accurate solution of S.

Table 2. For example 6, the influence of mesh parameter N on ME(S) and e(S).

N 5 10 20 25 30

ME(S) 57.34 43.59 45.93 37.06 1.22
e(S) 1.18× 10−1 9.55× 10−2 8.70× 10−2 6.52× 10−2 5.24× 10−3

8.2. Example 7

For Equation (69) with Q = u2 + cos u, we consider

u = r2 = x2 + y2, α = 10 + r2 + r4 cos2 θ = 10 + (x2 + y2)(x2 + 1). (71)

The outer and inner boundaries are given by Equations (62) and (63), respectively.
For this example, we have m = 2, N = 20 and a noise s = 5%, as shown in

Figure 7b, the maximum absolute error of u is 2.03× 10−2, which is more accurate than
max(u) = 18.62. The ME of S(x, y) is 1.04, which is much smaller than max S = 4001.42.
The value e(S) = 2.99× 10−4 is quite small. The dimension of the normal matrix of the
linear system (41) and (40) is n1 × n1 = 4× 4, and the condition number is small with
COND = 19.858.

In Table 3, we consider different mesh parameters of N used in the collocation method
for u(x, y) to influence the convergence rate as reflected in ME(S) and e(S). It can be seen
that more collocated points lead to a more accurate solution of S and even for a small N = 3
the accuracy is good.
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Table 3. For example 7, the influence of mesh parameter N on ME(S) and e(S).

N 3 8 14 18 20

ME(S) 12.09 10.98 8.98 8.51 1.04
e(S) 3.70× 10−3 2.87× 10−3 2.57× 10−3 2.17× 10−3 2.99× 10−4

9. Conclusions

In the paper, we have constructed a category of two-parameter homogenization func-
tions in the 2D doubly connected domain for automatically satisfying the outer Dirichlet
and Neumann boundary conditions of the nonlinear elliptic equation. A new numerical
method was developed for solving the inverse problems through the technique of two-
parameter homogenization functions, which include the recovery of the space-dependent
and temperature-dependent conductivity functions and also the source function. We first
determine u(x, y) in terms of the bases and then a linear system to satisfy the inner bound-
ary condition by the method of collocation is solved. Back-substituting the solution into the
nonlinear elliptic equation, we recovered the unknown space-dependent and temperature-
dependent conductivity functions by collocating points inside the domain and solving the
derived linear equations. The basis B(j, k, x, y) has good behavior used in the interpolation
for u(x, y) in a weighted Sobolev space, such that we can recover u(x, y) very well; hence,
after the back substitution of u(x, y) into the governing equation, the source function was
directly recovered with high accuracy. It maintains the same advantages of accuracy and
efficiency for solving the inverse conductivity problems and inverse Robin problems, even
for large noise.
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Abstract: The Brazilian disc test is a popular tensile strength test method for engineering materials.
The fracture behavior of specimens in the Brazilian disc test is closely related to the validity of the
test results. In this paper, the fracture process of granite discs under different loading configurations
is simulated by using a coupled finite–discrete element method. The results show that the maximum
tensile stress value is located within 18 mm (0.7 times the disc radius) of the vertical range of the disc
center under different loading configurations. In small diameter rods loading, the invalid tensile
strength is obtained because the crack initiation and plastic strain is at the end of the disc. The crack
initiation points of flat platen loading and curved jaws loading are all within the center of the disc,
and the valid tensile strength can be obtained. The tensile strength test results under different loading
configurations show that the error of small diameter rods loading is 13%, while the errors of flat
platen loading and curved jaws loading are both 1%. The curved jaws loading is the most suitable for
measuring the tensile strength of brittle materials such as rock, followed by flat platen loading. The
small diameter rods loading is not recommended for the Brazilian test.

Keywords: Brazilian disc test; numerical simulation; crack evolution; failure mode; indirect
tensile strength

MSC: 65Z05

1. Introduction

The tensile strength of brittle materials such as rock is far less than the compressive
strength. The initiation and development of a tensile crack is an important factor leading to
brittle materials failure [1–5]. The brittle materials fail in tension under the uniaxial tension
or Brazilian test [6–8]. In addition, the macroscopic shear cracks of brittle materials under
uniaxial compression or dynamic impact are mainly caused by the development of internal
tensile micro-cracks [9–12]. In order to measure the tensile strength of brittle materials, the
Brazilian test was put forward by Carneiro and Akazawa [13,14]. At present, the Brazilian
disc test is still a popular tensile strength test method because its specimen preparation and
test procedures are much more convenient than the uniaxial tensile test [15–19].

The loading configuration for the Brazilian disc test were originally flat loading platens.
In the Brazilian tensile test with flat loading platens, Hudson, Swab et al. observed that the
crack initiation point and the maximum tensile strain of the Brazilian disc are frequently
away from the center of the disc under flat platen loading [20,21]. It may lead to the
invalid estimation of tensile strength because it does not accord with the assumptions
of the Brazilian disc test and the Griffith criterion. As a supplement, the Brazilian tests
with different loading configurations were proposed in the past. In addition to flat platen
loading, the other two popular configurations are a small diameter rod and curved jaw
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loading. The small diameter rod loading can make the disc have a relatively complete
splitting failure along the loading direction [22]. The curved jaw loading can reduce the
shear stress concentration at the end of the disc [23].

Among the tensile strength test values, the tensile strength obtained by small diameter
loading rod is the smallest, the tensile strength obtained by flat platen loading is the second,
and the tensile strength obtained by curved jaw loading is the largest [24,25]. It should be
noted that the tensile strength of the small diameter loading rod is significantly lower than
that of the other two kinds of loading, and the tensile strength of curved jaw loading is only
slightly higher than that of flat platen loading. According to the basic assumption of the
Brazilian disc test recommended by ISRM, the crack initiation point must be at the location
of maximum tensile stress [26]. That is, the valid tensile strength can be calculated only
when the tensile failure occurs first at the position of maximum tensile stress under the
peak load. In the Brazilian disc test under different loading configurations, the analytical
solution and numerical simulation results show that the maximum tensile stress appears
in a certain range of the center of the disc in the loading direction [27–30]. Yanagidani
et al. observed that the crack originated in the center of the disc under flat platen loading
through the strain gages as a crack detector [31]. Through numerical simulation and digital
image correlation technology, Li and Stirling et al. [15,24,32] found that the maximum
tensile strain occurs far away from the center of disc under small diameter rod loading and
flat platen loading, even at the end of the disc, and the maximum tensile strain appears in
the center of disc under curved jaw loading. There are still some debates about the validity
of the Brazilian disc test under different loading configurations.

The tensile strength of materials is an important parameter for engineering stability
analysis and is often obtained through Brazilian tests. Considering that the Brazilian tests
of three loading configurations are widely used, some loading configurations may lead to
an invalid tensile strength value of brittle materials. In general, the existing studies mainly
evaluate the validity of the Brazilian test by the maximum tensile stress distribution and
the crack initiation point. Few studies have considered the development of the damage
zone or plastic strain in the disc. Some studies have shown that cracks originate in the
fracture process zone (damage zone), which is an important basis for judging the initiation
and propagation of cracks [33–35]. In this research, a coupled finite−discrete element
method (FDEM) is used to study the crack propagation, stress field, and damage (plastic)
zone of Brazilian discs under three loading configurations. The validity of three loading
configurations is evaluated and some new insights into the Brazilian disc test are presented.
This is helpful for testers to select the appropriate loading configuration to obtain an
effective tensile strength value of brittle materials.

2. Numerical Method and Model

2.1. FDEM Method

The coupled finite–discrete element method (FDEM) can realize the real simulation
of material failure process by combining finite and discrete elements and introducing
the principle of fracture mechanics. The unique feature of the method is to simulate
the transition from continuous state to discontinuous state by explicitly simulating the
fracturing and crushing process [36]. A hybrid code ELFEN has been increasingly used to
simulate the fracture process of brittle materials under laboratory tests [37–40], which is also
the code used in this research. The code can simulate the fracture initiation, propagation,
and penetration of brittle material under increasing strain. If the failure criterion of intact
model (initially expressed as finite element domain) is satisfied, cracks will occur, and the
model will become discrete element. As shown in Figure 1, the code allows new fractures
to pass through the existing grid element, and the insertion of discrete fractures can be
intra−element fracturing and inter−element fracturing. As shown in Figure 1b, using
the intra−element fracturing method with small grid size, a single small fracture can be
inserted according to the appropriate fracture stress direction, thereby obtaining a more real
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fracture propagation behavior. Some studies show that this method successfully simulates
the fracture process of rock under static and dynamic loading [41–43].

(a) (b) (c) 

Figure 1. The crack insertion procedure: (a) failure plane, (b) intra−element fracture, (c) inter−
element fracture.

The ELFEN formula assumes that the new crack in the quasi−brittle material model
is related to tensile deformation. The model under compressive load will expand in the
orthogonal direction of the loading direction due to the Poisson effect, and the crack
originates on the loading path and expands along the loading direction. Cai believes that
the formation of typical shear bands observed in compression tests is actually a secondary
process of interaction polymerization of extension cracks [12].

The Mohr–Coulomb with Rankine tensile yield criterion is used to judge the failure of
Brazilian discs under different loading configurations. The model includes five material
parameters: cohesion (c), friction angle (ϕ), expansion angle (ψ), tensile strength (σt), and
fracture energy (Gf). Compared with the traditional Mohr–Coulomb criterion, the modified
criterion can better describe the shear and tensile failure of the material, as shown in
Figure 2.

 
Figure 2. Mohr–Coulomb with Rankine tensile yield surface.

The Mohr–Coulomb with Rankine tensile yield criterion combines the Mohr–Coulomb
yield criterion and the Rankine tensile yield criterion. The Mohr–Coulomb yield criterion
is used to judge shear failure and is described by:

τ = c− σn tan ϕ (1)
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where τ is the shear stress, c is the cohesion, σn is the normal pressure, and ϕ is the friction
angle. The Rankine tensile yield criterion is used to judge tensile failure and is described by:

σi − σt = 0 i = 1, 2, 3 (2)

where σi is the principal stress and σt is the tensile strength. The cohesion of model
decreases after plastic strain occurs, and the tensile strength is softened by the decrease in
cohesion, as shown in Equation (3). This ensures that there is always normal stress on the
failure shear surface.

σt ≤ c(1− sin ϕ)/ cos ϕ (3)

The stress−strain relationship of the discrete crack model is shown in Figure 3, which
includes an elastic part and a softening (plastic) part [44], and damage begins after peak
intensity. The cracks can be introduced in a direction perpendicular to the principal strain
and are assumed to rotate upon further loading to maintain this orthogonal relationship.

Figure 3. The stress−strain curve of discrete crack model.

In the post−peak region, the rotational crack formulation shows the anisotropic
damage evolution by decreasing the elastic modulus in the direction of major principal
stress, and is formulated as:

σnn = Edεnn = (1−ω)Eεnn (4)

where n-s is the local coordinate related to the principal stress, Ed is the elastic damage
secant modulus, E is the Young’s modulus, and ω is the damage parameter. The scalar
damage evolution of the linear strain softening curve is defined by:

ω =
ψ(ε)− 1

ψ(ε)
(5)

where ψ(ε) is a function of strain described by [45]:

For ε ≤ σt
E ψ(ε) = 1 ω = 0

For σt
E < ε ≤ σt

E + σt
Et

ψ(ε) = E2ε
Etσt+Eσt−EtEε 0 < ω < 1

For ε > σt
E + σt

Et
ψ(ε)→ ∞ ω = 1

(6)
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where Et is the tangential softening modulus. The fracture energy Gf is an important
parameter for fracture development. It refers to the energy required to generate continuous
cracks per unit area, which is defined as:

Gf =
∫

σdu =
∫

σε(s)ds (7)

where σ is the tensile stress and u is the tensile displacement. The fracture energy is related
to the stress intensity factor (KIC) and elastic modulus (E):

Gf =
K2

IC
E

(8)

The localized bandwidth lc of the linear slope softening model is integrated to obtain:

Et = −σ2
t lc

2Gf
(9)

2.2. Numerical Model

The three loading configurations commonly used in Brazilian testing are small diame-
ter rod, flat plate, and curved jaw. As shown in Figure 4, three Brazilian disc models with
different loading configurations are built: small diameter loading rods (Type I), flat loading
platens (Type II), and curved loading jaws (Type III). The diameter of Brazilian discs is
50 mm and the thickness is 25 mm. The two rods of Type I test are 2 mm in diameter. The
loading speed is set to 0.5 mm/s and the corresponding strain rate is 0.01, which can be
regarded as quasi−static loading.

(a) (b) (c) 

Figure 4. Three Brazilian disc models and meshes under different loading configurations. (a) small
diameter loading rods (Type I), (b) flat loading platens (Type II), and (c) curved loading jaws (Type
III). Note: The loading rod of Type I is composed of a small semicircle and a small rectangle. The
semicircle part contacts the disc to transmit the load, and the upper right corner of the rectangle is
used to record the load–displacement data.

105



Mathematics 2022, 10, 2681

The mechanical parameters of a granite are selected as the parameters of the Brazilian
disc and the mechanical parameters of loading platen and granite disc are shown in Table 1.
The material properties of the granite disc come from Li’s research [24,46]. The failure
energy of hard and brittle materials are the range of 0.01 N/mm to 0.3 N/mm [47], and
0.05 N/mm is used as the failure energy of granite in this study. The normal penalty is
generally 1.0 times the elastic modulus, and the tangential penalty is 0.1 times the normal
penalty. The friction refers to the friction between the disc and loading plate. The element
size of model is 0.5 mm, and the diameter of disc is 100 times the element size, which
ensures that the element size can obtain accurate crack propagation. The influence of the
mesh size is shown in Appendix A.

Table 1. Material properties adopted in Brazilian test.

Name Granite Disc Loading Platen

Young’s modulus (E, GPa) 43.2 211.00
Poisson’s ratio (ν) 0.23 0.29

Shear modulus (G, GPa) 17.5 -
Density (ρ, Ns2/mm4) 2.8 × 109 7.84 × 109

Cohesion (c, MPa) 50 -
Friction angle (ϕ ) 34◦ -

Tensile strength (σt , MPa) 12.0 -
Fracture energy (Gf, N/mm) 0.05 -

Discrete contact parameters
Normal penalty (Pn, N/mm2) 43,200 211,000

Tangential penalty (Pt,
N/mm2) 4320 21,100

Friction (γ) 0.1 0.1
Mesh size (mm) 0.5 0.5

Contact type Node−Edge Node−Edge

3. Results

3.1. Load Versus Displacement Curve

The load and displacement are recorded through the loading plate. The horizontal
direction is the X direction and the vertical direction is the Y direction. Figure 5 is the
load–displacement curve for the Type I Brazilian disc testing. The peak load and peak
displacement are 20.7 kN and 0.189 mm, respectively. The load–displacement curve before
the peak value is approximately a straight line, and the vertical stress at the contact
part between the rod and disc is much greater than that at other positions. Due to the
small contact area between the rod and the disc, there is a large local compression stress
concentration. When the macro crack almost penetrates the disc after the peak load, there
is a certain vertical stress on both sides of the crack, and the vertical stress in other areas is
very small.

Figure 6 is the load−displacement curve for the Type II Brazilian disc testing. The peak
load and peak displacement are 23.8 kN and 0.126 mm, respectively. The load–displacement
curve of the Type II test is similar to that of Type I. The stress concentration of the disc
before the peak load under the Type II test is less than that of Type I. After the peak load,
the vertical stress distribution of the disc is more evenly distributed on both sides of the
crack. There are some arc−shaped stress zones around the vertical main crack, and the
value of the arc−shaped stress zone decreases from the center to the circumference. The
crack inside the disc is consistent with the loading direction and the occurrence of a straight
crack is related to the spreading of stress propagation.
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Figure 5. Load−displacement curves for the Type I Brazilian disc testing.

Figure 6. Load–displacement curves for the Type II Brazilian disc testing.

Figure 7 is the load–displacement curve for the Type III Brazilian disc testing. The peak
load and peak displacement are 24.1 kN and 0.103 mm, respectively. The load–displacement
curve of the Type III test before peak value is similar to that of Type II and Type I. After the
crack penetrates the disc, the disc still has a certain bearing capacity, due to the contact area
being larger than the Type II and Type I test. The stress concentration of the disc before
the peak load of the Type III test is less than that of Type II and Type I, and the vertical
stress distribution of the disc is more uniform in the whole loading stage. A more dense
arc−shaped stress zone appears around the vertical main crack.
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Figure 7. Load–displacement curves for the Type III Brazilian disc testing.

3.2. Fracture Process

In order to express the whole fracture process of the disc, the crack propagation process
is divided into four parts: crack initiation, crack propagation, crack penetration, and final
failure. Figure 8 is the fracture process for the Type I Brazilian disc testing. The crack of the
Type I test starts at the end of the disc, then develops towards the center of the disc, and
finally penetrates the disc. The disc is finally divided into two halves by the main crack.
Although the final failure mode is good under Type I testing, the crack initiation point is
located at the end of the disc due to the high degree of compressive stress concentration. It
was also found by the digital image correlation method in Li’s physical test of five types of
rocks [24].

Figure 8. Failure process for the Type I Brazilian disc testing.

Figure 9 is the fracture process for the Type II Brazilian disc testing. The crack in
the Type II test starts from the center of the disc, then develops to both ends of the disc,
and finally penetrates the disc. The disc was eventually divided into two halves, and the
damage degree of the end of the disc is greater than that of the center. Although the end
failure of the disc is serious under the Type II testing, the crack initiation point is close to
the center of the disc, which is consistent with the hypothesis of the Brazilian disc test.
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Figure 9. Failure process for the Type II Brazilian disc testing.

Figure 10 is the fracture process for the Type III Brazilian disc testing. The crack in
the Type III test starts from the center of the disc and then develops to both ends of the
disc. When the main crack penetrates the disc, the secondary cracks are generated on both
sides of the main crack. The disc is finally divided into two parts, accompanied by obvious
secondary cracks. Although four secondary cracks appeared at the end of the disc under
Type III testing, the starting point of the main crack was close to the center of the disc,
which was also consistent with the hypothesis of the Brazilian disc test.

Figure 10. Failure process for the Type III Brazilian disc testing.

3.3. Stress Distribution in Central Line

As shown in Figure 11, a horizontal stress monitoring line is arranged in the center
of the Brazilian disc. Figure 12 is the horizontal stress X-X distribution in the monitoring
line for Type I testing under an external load of 10 kN. It shows that the horizontal stress
distribution within the range of less than 20 mm from the center is relatively uniform, and
the horizontal tensile stress is approximately 5.08 MPa. When the distance from the center
is more than 20 mm, the horizontal stress changes rapidly from tensile stress to compressive
stress with a large value. When the distance from the center is 24.5 mm, the horizontal
compressive stress reaches 90 MPa.
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Figure 11. Location of stress monitoring line in Brazilian disc.

Figure 12. The stress X−X distribution in the monitoring line for Type I testing under external load
of 10 kN.

Figure 13 is the horizontal stress X-X distribution in the monitoring line for Type II
testing under an external load of 10 kN. It shows that the horizontal stress is approximately
a tensile stress of 5.02 MPa within the range of less than 18 mm from the center. When the
distance from the center is more than 18 mm, the horizontal stress changes rapidly from
tensile stress to compressive stress with a large value. When the distance from the center is
24.5 mm, the horizontal compressive stress reaches 78 MPa.
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Figure 13. The stress X−X distribution in the monitoring line for Type II testing under external load
of 10 kN.

Figure 14 is the horizontal stress X-X distribution in the monitoring line for Type III
testing under an external load of 10 kN. It shows that the horizontal stress is approximately
a tensile stress of 4.96 MPa within the range of less than 18 mm from the center. When the
distance from the center is more than 18 mm, the horizontal stress changes rapidly from
tensile stress to compressive stress with a large value. When the distance from the center is
24.5 mm, the horizontal compressive stress reaches 77 MPa.

 

Figure 14. The stress X−X distribution in the monitoring line for Type III testing under external load
of 10 kN.

Comparing Figures 12–14, it can be seen that under the same load, the stress con-
centration on the stress monitoring line of the Type I test is the most obvious. The stress
concentration of Type II and Type III tests decrease in turn, which can also be seen from
Figures 5–7. Under the same external load, the difference of the maximum tensile stress
within 18 mm (0.7 times the disc radius) of the center for the three Types of tests is small,
and the difference is mainly reflected in the compressive stress at the end of the disc. Type
III testing is beneficial for reducing stress concentrations at the ends of the disc, which is
conducive to the initiation of cracks in the center of the disc.
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3.4. Evolution of Fracture Process Zone

The plastic strain law in the model has been described in Figure 3. The strain generated
after the peak elastic strain is defined as the plastic strain, which is used to characterize
the fracture process zone before fracture. Figure 15 is the plastic strain evolution with load
for the Type I loading. When the external load is 6.8 kN, two plastic zones appear in the
contact part between the disc and the rod. When the external load is 20.6 kN, the plastic
strain at the end of the disc is approximately 0.2%, which indicates that the damage at the
end is obvious. As the loading progresses, the crack initiates from the plastic zone at the
bottom of the disc. At 19.2 kN, after the peak load, the plastic zone develops rapidly to the
center of the disc, and the crack develops rapidly in the plastic zone. Finally, the plastic
zone continues to develop rapidly throughout the disc, resulting in a rapid decrease in the
load−carrying capacity of the disc.

  
(a) (b) 

  
(c) (d) 

Figure 15. The plastic strain evolution with load for the Type I testing: (a) 6.8 kN, (b) 20.6 kN, (c) 19.2 kN
(post−peak), (d) 4.2 kN (post−peak).

Figure 16 is the plastic strain evolution with load for the Type II loading. When the
external load is 17.5 kN, the plastic zone appears in the contact part between the disc and
the flat platen. When the external load is 22.0 kN, the plastic zone develops rapidly in the
center of the disc. As the loading progresses, the crack initiates from the center of the plastic
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zone of the disc. At 20.0 kN, after the peak load, the plastic zone continues to develop
rapidly throughout the disc and a crack develops rapidly in the plastic zone. At 7.7 kN,
after the peak load, two triangular plastic zones are formed at the end of the disc, which is
the cause of shear failure at the end of the disc under Type II loading.

  
(a) (b) 

  
(c) (d) 

Figure 16. The plastic strain evolution with load for the Type II testing: (a) 17.5 kN, (b) 22.0 kN,
(c) 20.0 kN (post−peak), (d) 7.7 kN (post−peak).

Figure 17 is the plastic strain evolution with load for the Type III loading. When the
external load is 23.6 kN, a plastic zone appears in the center of the disc. When the external
load is 23.9 kN, the plastic zone develops rapidly in the center of disc towards both ends of
the disc. As the loading progresses, the crack initiates from the center of the plastic zone. At
11.4 kN, after the peak load, the crack developed rapidly in the plastic zone and penetrated
the disc, and the secondary plastic zones and cracks were produced at the end of the disc.
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(a) (b) 

(c) (d) 

Figure 17. The plastic strain evolution with load for the Type III testing: (a) 23.6 kN, (b) 23.9 kN,
(c) 22.6 kN (post−peak), (d) 11.4 kN (post−peak).

4. Discussion

4.1. Failure Mode Transition

Figures 18 and 19 are the failure mode transitions of the Brazilian disc test with
different loading configurations. It can be seen that the Brazilian disc under the Type I test
mainly suffered tensile failure and a small shear failure at the end. The Brazilian disc under
the Type II test mainly suffered tensile failure and an obvious conical shear failure zone
at the end. The Brazilian disc under the Type III test mainly suffered tensile failure, and
obvious secondary cracks are associated on both sides of the main tensile crack.
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Figure 18. The failure mode transition of Brazilian disc test with different loading configurations.

   

Figure 19. The failure mode of disc with different loading configurations in physical test [24].

It is worth noting that although the disc of Type I testing has a relatively good splitting
failure, the crack is initiated at the end of the disc, which does not meet the assumptions of
the Brazilian disc test. The shear conical failure zone at the end of the disc under the Type
II test occurs after the peak load and does not affect the magnitude of the peak load; that
is, it does not affect the validity of the tensile strength. The secondary cracks at the end
of the disc under the Type III test also occurred after the peak load and did not affect the
magnitude of the peak load and the validity of the tensile strength.

4.2. Validity of Tensile Strength

The tensile strength for Type I and Type II testing can be calculated according to
Equation (10), and the tensile strength for Type III testing can be calculated according to
Equation (11) [27]. The 2α is the angle of the circular arc of the contact area between the
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curved jaw and the disc, which is 12◦ in this model. The calculation results are shown in
Table 2. It can be seen that the error of tensile strength for Type I is 13%, while the errors
of tensile strength for Type II and Type III are both 1%. It shows that the Type I test is not
suitable for testing the tensile strength, while the Type II and Type III tests are suitable for
testing the tensile strength.

σt =
2P

πDt
(10)

σt =
2P

πDt

(
sin 2α

α
− 1

)
(11)

Table 2. The tensile strength and error of three loading types.

Loading
Type

P/kN α/◦ Tested Tensile
Strength/MPa

Actual Tensile
Strength/MPa

Error

Type I 20.7 0 10.5
12.0

13%
Type II 23.8 0 12.1 1%
Type III 24.1 6 12.1 1%

5. Conclusions

The main conclusions were obtained as follows:

(1) The Brazilian disc under the Type I test mainly suffered tensile failure and small shear
failure at the end. The Brazilian disc under the Type II test mainly suffered tensile
failure and an obvious conical shear failure zone at the end. The Brazilian disc under
the Type III test mainly suffered tensile failure, and obvious secondary cracks are
associated on both sides of the main tensile crack.

(2) The maximum tensile stress value is located within 18mm (0.7 times the disc radius) of
the center of the disc under different loading configurations. Therefore, the Brazilian
disc test is valid only where the crack initiation point is within 18 mm of the vertical
range of the disc center, which means that the crack initiation is located in the area of
maximum tensile stress.

(3) In the Type I test, the invalid tensile strength is obtained because the crack initiation
and plastic strain point is at the end of the disc. The crack initiation points of the
Type II and Type III tests are all within the center of the disc, and the valid tensile
strength can be obtained. The tensile strength test results under different loading
configurations show that the error of the Type I test is 13%, while the errors of the
Type II and Type III tests are both 1%.

(4) The plastic strain of the Type III test is also initiated at the center of the disc, and the
plastic strain of the Type II test is initiated at the end of the disc. It can be considered
that the Type III test is better than the Type II. In summary, the curved jaws loading
(Type III) is the most suitable for measuring the tensile strength of brittle materials
such as rock, followed by the flat platens loading (Type II). The small diameter rods
loading (Type I) testing is not suitable for testing the tensile strength of materials.
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Appendix A

The influence of mesh size on the loading curve for the Brazilian testing is shown
in Figures A1–A3. It can be seen that the mesh size has little effect on the loading curve.
Considering that a smaller mesh size is conducive to obtain a more accurate damage zone
and crack propagation, a mesh size of 0.5 mm is set to analyze the fracture process of
Brazilian discs under different loading configurations.

Figure A1. The influence of mesh size on the loading curve for the Type I Brazilian testing.

 
Figure A2. The influence of mesh size on the loading curve for the Type II Brazilian testing.
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Figure A3. The influence of mesh size on the loading curve for the Type III Brazilian testing.
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Abstract: Piezoelectric actuators and sensors are applied in many fields in order to produce forces
or displacements with the aim of sensing, manipulating or measurement, among other functions.
This study presents the numerical methodology to optimize the static response of a thick-shell
structure consisting of piezoelectric sensors, based on the maximisation of the electric charge while
controlling the amount of piezoelectric and material required. Two characteristic functions are
involved, determining the topology of the sensor and the polarisation profile. Constraints over the
reaction force are included in the optimisation problem in order to avoid singularities. The topology
optimisation method is used to obtain the optimal results, where regularisation techniques (density
filtering and projection) are used to avoid hinges. The minimum length scale can be controlled by the
use of three different projections. As the main novelty, a displacement-controlled scheme is proposed
in order to generate a robust algorithm for future studies including non-linearities.

Keywords: topology optimisation; piezoelectric actuator; shell; finite element method

MSC: 74P15

1. Introduction

The topology optimisation method is a conceptual tool which allows us to increase
the capabilities of different types of devices. The classical mechanical problem is the
minimisation of the compliance or the weight of a structure, but in the last years this
method has been used in different fields of science such as electronics, propagation of
waves and optics, among others. This paper is focused on the improvement of the response
of piezoelectric sensors, with the objective of reducing the size of the device to increase the
range of applications.

The application of piezoelectric sensors and actuators has experienced significant
development in recent years. Piezoelectric sensors are devices that produce a small voltage
when they are deformed, while piezoelectric actuators take advantage of the ability to
generate a displacement when voltage is applied. This effect is generally used in situations
that require the application of large forces in an ultra-precise way [1], as well as to generate
systems capable of developing handling functions at a microscopic level [2–4].

One of the common applications is the placement of piezoelectric patches on structures
subjected to vibrations, so that it is possible to monitor the state of vibrational states
and control undesirable vibrations, generating so-called smart structures [5–11]. In these
structures, the location of the piezoelectric elements is critical, due to the need to adjust the
positioning so that their effect is maximised, reducing the cost of the material to be used. In
addition, another critical design factor in structural elements is usually weight, so it is of
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interest to minimize the volume of material used in the host structure, while maintaining
certain levels of rigidity [12,13]. Another application associated with the maximisation of
electrical load obtained by piezoelectric sensors is energy harvesting systems. This has
also significantly grown in recent years [14] considering that they can be used as a way for
recovering waste energy from many surfaces, not only in industry, but also in our daily
lives. A particular example of their applicability is the shock absorbers of vehicles which
are cylindrical elements that are subjected to vibration loads during service [15].

In addition, the use of cylindrical shells is increasingly widespread in engineering ap-
plications, mainly in sectors such as civil, chemical, aerospace and naval transportation [8].
In these sectors, the structural analysis of shell elements such as pressurised tanks, aircraft
fuselage, fuel tanks or fluid pipes are commonly found in literature [16,17]. These structures
have characteristics such as high rigidity and lightweight, which leads to their application
in loading conditions resulting in high level of stresses. It is interesting to use piezoelectric
elements for the purpose of Structural Health Monitoring (SHM), or to modify the shape
of the structure to improve its structural response [18,19] or aerodynamics [20]. There are
numerous works that seek to analyse the response of shell-type structures with piezoelectric
layers from the analytical, numerical and experimental points of view [21–23]. For instance,
Yue et al. [9] experimentally measured the capacity for sensing and vibration control with
piezoelectric patches in a paraboloidal shell structure, which can be implemented in struc-
tonic systems typical of aerospace sector. Similarly, Li et al. [8] theoretically estimated and
experimentally validated the effect of the orientation of diagonal piezoelectric sensors in
a cylindrical shell excited by piezoelectric actuators. It is also worth mentioning in this
field the work of Varelis and Saravanos [24], in which the ability to predict the non-linear
electromechanical response of laminated piezoelectric shell under buckling and elastic
instability is analytically demonstrated. In this work, a commonly used iterative technique
is maintained, i.e., Newton–Raphson, therefore the Cylindrical Arc-Length method was
applied in order to overcome the snap-through points.

Previous works [13,25,26] have shown that the implementation of topological optimi-
sation on numerical models based on the Finite Element Method (FEM) allows, simultane-
ously, an optimizing host structure and a polarisation profile of the electrodes. These works
were carried out on different geometries in the form of flat plates and one-dimensional
beams. A similar work, applied in this case to curved shell-type structures, was carried out
by Donoso et al. [27], but limited to the design of the polarisation profile.

Nevertheless, none of the previously mentioned studies apply topological optimi-
sation to the simultaneous design of the support structure and the polarisation profile
in shell elements. The present work develops the numerical modelling that allows this
optimal design, maximizing the electric energy produced and allowing the application of
restrictions on the volume of material, in order to achieve a light and low-cost structure.
In addition, regularisation techniques [28–30] are used in order to avoid the appearance
of hinges. Unlike previous works by the authors [13,25,26], a control scheme based on the
application of displacement was specifically developed, in contrast to the usual approach
of the compliance optimisation problem which takes the applied force as a reference. This
control scheme may avoid a lack of convergence when snap-through issues arise [31,32].

The work is divided as follows. Section 2 describes the mathematical formulation
of the electric charge and the mechanical elastic response of the shell. The mathematical
formulation of the optimisation problem is presented in Section 3. Numerical results are
found in Section 4. Finally, the conclusions of the work are shown in Section 5.

2. Formulation of the Problem

2.1. Governing Equations

The computation of the electric charge q, which represents the capacity of the piezoelec-
tric sensor, is obtained following Equation (1) [33]. This equation is simplified considering
the negligible effect of the piezoelectric layer on the stiffness of the structure and the
piezoelectric isotropy (e31 = e32) of the sensor [27].
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q = e31

∫
Ω

χp(x1, x2)[ε11 + ε22]dΩ = e31

∫
Ω

χp(x1, x2)

[
∂u
∂x1

+
∂v
∂x2

+ x3

(
∂φ2

∂x1
− ∂φ1

∂x2

)]
dΩ, (1)

where (u, v) are the translational in-plane displacements, (φ1, φ2) the rotation over the x1
and x2-axis, respectively, Ω is the design domain and e31 is the piezoelectric constant, i.e., a
material property. χp ∈ {−1, 0, 1} is a characteristic function that represents the polarity of
the surface electrode, ε11 and ε22 are the in-plane normal strains.

The displacements and rotations are calculated by solving the equilibrium equation:{
−div(Es(χs) : ε) = fv, in Ω
(Es(χs) : ε) · n = fs, in Γ f

,

subject to the boundary conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u, v, w = 0, in Γc

u = uin in Γu

v = vin in Γv

w = win in Γw

,

with w the vertical displacement, Es the stiffness tensor, ε the infinitesimal strain tensor, fv and fs
the volumetric and surface forces, respectively. Γ f and Γc represent the boundary of Ω where
forces are imposed and displacements are constraint, respectively, n the normal vector of the
boundary and uin, vin and win the displacements imposed in Γu, Γv and Γw. χs ∈ {0, 1}
represents the host structural variable that defines void or solid, respectively.

2.2. Finite Element Model

Flat thick-shell formulation is developed based on Reissner-Mindlin plate theory for a
bidimensional finite element consisting of four nodes with six degrees of freedom (DOF),
three displacements u, v and w, and three rotations φ1, φ2 and φ3 [34,35], described with
regard to an element local coordinate system (x1, x2, x3). Displacement and rotations are
defined independently and therefore they are interpolated separately. The interpolation of
in-plane displacements, associated to membrane behaviour, is shown in Equation (2).[

ũ
ṽ

]
= Nm

[
ui
vi

]
, (2)

where ũ, ṽ are the element interpolated displacements, Nm is the shape functions matrix
for a quadrinodal membrane element and subscript i ∈ {1, 2, 3, 4} refers to the specific
node. The bending DOFs, representing the out-of-plane displacements and rotations, are
interpolated applying bending shape functions as shown in Equation (3).⎡⎣ w̃

φ̃1
φ̃2

⎤⎦ = Nb

⎡⎣wi
φ1i
φ2i

⎤⎦, (3)

with Nb being the bending shape functions matrix.
The stiffness matrix in local element coordinates is obtained by concatenating the

membrane matrix (defined in Equation (4)), corresponding to the two in-plane translational
displacements (u and v), while the bending terms (Equation (5)) are obtained from the
thick-plane element, which consists of three DOFs (w, φ1 and φ2). The sixth DOF, φ3,
is assigned an arbitrary stiffness, much lower than the rest of components, taking into
consideration that this rotation does not contribute to strain energy [34]. Nevertheless, this
DOF is required for consistency of matrices when transforming to the global coordinate
system. The integration in the domain of the element (Ωe) is reduced to an integration in the
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area (A), described in the x1 and x2 directions. This integration is performed numerically
using a reduced integration scheme based on Gaussian Quadrature to avoid shear locking.

Km =
∫

Ωe
Bm

TCmBm dΩe =
∫

A

(∫ h

0
dx3

)
Bm

TCmBm dA = h
∫

A
Bm

TCmBm dA (4)

Kb =
∫

A
BT

b
h3

12
CbBb dA +

∫
A

BT
s hkCsBs dA, (5)

where B is the derivative of the shape functions, C the material stiffness tensor, partic-
ularised in this study for a linear isotropic elastic material and h is the thickness of the
element (dimension in x3-direction). The subscripts b, m and s represent bending, mem-
brane and shear, respectively. Finally, k represents the stiffness associated with the drilling
DOF (φ3), the value of which is about one-thousandth of the smallest diagonal element
of the element matrix stiffness, following recommendations in the literature [34]. More
information about the definition of these parameters could be found in finite element
reference books [34,35].

Additionally, with the aim of computing the electric charge generated by the piezo-
electric elements, it is necessary to compute the sum of strains in each element. This is
defined in local coordinates in Equation (6), which can be related to the discretised problem
by means of the derivative of shape functions.

⎡⎣ε̃11
ε̃22
ε̃12

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

∂ũ
∂x1
∂ṽ
∂x2

∂ũ
∂x2

+
∂ṽ
∂x1

⎤⎥⎥⎥⎥⎥⎥⎦− x3

⎡⎢⎢⎢⎢⎢⎢⎣
−∂φ̃2

∂x1
∂φ̃1

∂x2
∂φ̃1

∂x1
− ∂φ̃2

∂x2

⎤⎥⎥⎥⎥⎥⎥⎦ = Bm

[
ui
vi

]
− x3Bb

⎡⎣wi
φ1i
φ2i

⎤⎦. (6)

As the geometry to be modelled is not coplanar, the elements have different local orien-
tations, therefore it is necessary to compute the global stiffness matrix in global coordinates,
which are called xyz. The rotation could be performed by means of a transformation matrix
defined by the direction cosines relating to both coordinate systems.

3. Topology Optimisation Problem and Sensitivity Analysis

In this work we aim to maximize the electric charge produced in a cylindrical-type
structure submitted to a static deformation. The expression for the discretised objective
function is:

q = FT(ρp, ρs)U =
nel

∑
e

ρpeρ3
seB

T
e Ue, (7)

where nel is the number of finite elements, Be is the discretisation of the strain displacement
matrix, Ue is the vector with the displacement of the element e. The variable ρpe defines
the sign of the polarisation profile, while the role of the relaxed variable ρse is to penalize
the electric charge generated by void elements [36]. The piezoelectric property e31 has
been removed from the objective function, since a constant does not affect the optimal
design. The constraint over the maximum volume fraction is included in the problem, as
this usually improves the convergence of the optimisation algorithm. The global stiffness
of the structure is controlled by adding two constraints over the reaction forces in the
structure. This ensures that the point where the displacement is imposed is connected with
the boundary conditions. Finally, taking into account Equation (7), the formulation of the
discretised problem is stated as follows:

max
ρs ,ρp

: q
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subject to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̃s = H(ρs)

ρ̂s = P(ρ̃s)

K(ρ̂s)U = R

LT
u U = uin

vT(ρ̂s) ≤ V0 | Ω |
LT

r R ≤ rmax

LT
r R ≥ rmin

,

where Lr is a vector of zeros with the value 1 in the constrained degrees of freedom, R is the
reaction force vector, ρ̃s is the filtered structural density, ρ̂s is the projected density [37], Lu is a
vector of zeros with the value 1 in the degree of freedom where the displacement is imposed, uin is
the fixed displacement, v is a vector containing the measure of the elements, V0 is the maximum
volume fraction, | Ω | is the measure of the design domain, finally, rmax and rmin are the
maximum and minimum reaction force allowed, respectively, used to avoid singular solutions.

The well-known Solid Isotropic Material with Penalisation (SIMP) method [28] is used
to penalize intermediate densities. The expression for a smoothed threshold projection [29]
based on the hyperbolic tangent function is:

ρ̂se =
tanh(βη) + tanh(β(ρ̃se − η))

tanh(βη) + tanh(β(1− η))
, (8)

where η ∈ [0, 1] and β are tuning parameters that define the threshold and the sharpness
of the function, respectively. The filtered densities of Equation (8) are projected to 0 or 1
depending if these value are smaller or bigger than the threshold η. The filtered densities ρ̃
are expressed as [30]:

ρ̃se =

nel

∑
j

de(xj)ρsj

nel

∑
j

de(xj)

,

where xj is the barycentre of the j-th element, and the weighting function de(xj) is given by
the cone-shape function:

de(xj) = max{R f − ||xj − xe||, 0},

where R f is the filter radius.
The use of the filtering technique together with the projection method ensures a mesh-

independent 0–1 design. As shown in [25], the polarisation variable ρp does not need any
kind of regularisation.

3.1. Robust Formulation

This section presents the robust formulation of the problem, which was introduced
in [29]. This consists of the use of three different projections called erode, intermediate and
dilate and from now on, the projection will be represented with the superscript (m) for each
projection ((e), (i) and (d), respectively). The implementation of this approach ensures
a minimum length scale in both void and solid regions, hence avoiding the appearance
of hinges.

The robust topology optimisation problem is written in terms of a min-max prob-
lem, which is not differentiable. The problem is then reformulated using the so-called
bound formulation:

max
ρs ,ρp

: α (9)
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subject to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(m) ≥ α

ρ̃s = H(ρs)

ρ̂
(m)
s = P(m)(ρ̃s)

K(ρ̂
(m)
s )U(m) = R(m)

LT
u U(m) = uin

vT ρ̂
(d)
s ≤ V∗0 | Ω |

LT
r R(m) ≤ rmax

LT
r R(m) ≥ rmin

m ≡ {e, i, d},

(10)

where α is an additional bound variable, superscript (m) represents the projection and

V∗0 =
V0

V(i)
V(d) is the maximum volume fraction allowed for the dilate projection. This

value is updated every 20 iterations. This formulation solves the non-differentiability issue
with the max–min function. It is important to remark that the equilibrium equation and the
constraints of the reaction forces must be computed for each projection.

3.2. Computation of Sensitivities

The optimisation problem is solved using the Method of the Moving Asymptotes (MMA) [38].
This algorithm needs the partial derivatives with respect to the variables ρs and ρp.

The derivatives of the elastic problem equations (the equilibrium equations and the
constraints) are straightforward, and they are not included in this work for the sake of
brevity. The derivative of the function q with respect to ρs is computed using the chain rule:

∂q
∂ρse

=
∂q

∂ρ̂se

∂ρ̂se

∂ρ̃se

∂ρ̃se

∂ρse
,

with:
∂q

∂ρ̂se
=

(
∂FT

∂ρ̂se
U + FT ∂U

∂ρ̂se

)
.

Note that the adjoint method can be used to circumvent the computational cost of computing
the derivative of the displacement vector U. The derivatives of q with respect to ρp is:

∂q
∂ρpe

=
∂FT

∂ρpe
U.

In practice, it is convenient to work with normalised parameters in order to avoid
computations with numbers with different magnitude order. The electrical charge is
normalised with the electrical charge generated by the homogeneous design.

A summary of the process is shown in Algorithm 1.
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Algorithm 1: Algorithm and computational implementation
Set : material properties, geometry and BC’s
Set : Optimisation parameters
Define : initialisation ρp and ρs
Compute : reference charge qre f
Set : Optimisation method tolerance tol
While e > tol

Filtering and projection ρs → ρ̃s → ρ̂s;
Assembly of global matrix K(ρ̂s) and vector F(ρ̂s, ρp);
Get vector U;
Compute objective function c = q;
Compute constraints;
Calculate derivatives;
Update variables with MMA (ρ∗s , ρ∗p);
Define convergence variable e = ||(ρ∗s , ρ∗p)− (ρs, ρp)||;

end

4. Numerical Examples

Commercial software Matlab R2020b has been used to solve the finite element models
and the optimisation problem proposed in this work. The results obtained, in terms of force,
displacement, stress and strain fields, have been validated by means of the comparison
with a commercial FEM software, i.e., Abaqus 2019 [39].

4.1. First Example

The domain Ω is defined as a semicylindrical shell. The dimensions are Lx = 1 m and
Ly = 1 m with a global thickness of t = 0.01 m. The Young’s modulus of the material is set
to E = 1 Pa and the Poisson’s ratio to ν = 0.3.

The proposed structure is discretised in 60× 60 elements. The scheme of the structure
and its boundary conditions are shown in Figure 1. The displacements and rotations over
the red lines are fixed to zero (clamped), while vertical displacement is imposed at the
coordinates (x, y, z) = (0, 0.5, 0.5) m with a value of uin = 0.15 mm.

Lx

Lyx

z

y

uin

ρs ∈ [0, 1]

ρp ∈ [−1, 1]

Figure 1. Dimensions and boundary conditions.

This case study is focused in obtaining the optimal electrode profile ρp that will be
used as initialisation in the rest of the examples. Since the host structure ρs is fixed, it makes
no sense to add constraints over the reaction force.

The result of the optimisation process is shown in Figure 2. The structure variable ρs
is represented in Figure 2 (left), with the black colour showing solid areas. The electrode
profile appears at the centre, where blue and pink mean electrodes of different polarity. The
whole structure including electrodes is depicted in Figure 2 (right).
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Figure 2. Structure layout ρs (left), electrode profile ρp (centre) and 3D design (right) for the first
example.

The reference value used to compare the results is the cost generated by the homo-
geneous design ρs = 1 and ρp = 1. The cost excluding the piezoelectric constant e31, is
cre f

e31
= 0.721 m2. For the rest of examples, the objective function is the non-dimensional

parameter defined as: λ =
c

cre f
.

The value of the objective function for this first example is λ1 = 31.92, showing the
importance of the optimisation process. This value is larger than the reference, since the
homogeneous electrode ρp = 1 is far from being a good design. The polarisation profile in
Figure 2 shows that approximately half of the surface shell is subjected to strain with the
opposite sign, and then most of the electrical charge produced by the positive polarity is
cancelled with charge generated by the negative electrode.

The result of the optimisation process shows that the electrode profile obtained for
each finite element is related to its curvature. This example clearly demonstrates that the
optimisation of only one variable, the electrode—polarisation ρp—increases the electric
charge generated by the sensor.

4.2. Second Example

The volume fraction is fixed to V0 = 0.5 and the reaction force to r = −3× 10−9 N. The
values of rmin and rmax are computed by subtracting and adding a small value ε = r/100.
Concerning the tuning parameters of the filter and the projections, the filter radius is set
to R f = 0.1 m, the smoothness of the projection to β = 1 at the beginning of the iterative
process, and it doubles the value every 40 iterations up to β = 8. The thresholds for the
three projections are ηe = 0.7, ηi = 0.5 and ηd = 0.3, for the erode, intermediate and dilate
projection, respectively.

The variable ρs is initialised with a homogeneous design according to the volume
constraint, and ρp with the optimised polarity profile of the previous example. The optimal
design is shown in Figure 3 (right).

Figure 3. Structure layout ρs (left), electrode profile ρp (centre) and 3D design (right) for the second
example.

The value of the objective function for the optimum design is λ2 = 20.91. This result
surpasses the reference charge, however, this value is smaller than λ1. This is due to the
maximum volume fraction imposed. The smaller the volume fraction is, the bigger the
displacements are since the structure is less stiff, but the region Ω is also smaller. It is
very convenient to use this constraint as this improves the convergence of the topology
optimisation problem, as well as this can be used to control the amount of material if we
have in mind the fabrication cost, the weight or the size of the structure.
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The structural variable ρs depicted in Figure 3 (left) shows that the whole structure is
continuous, in the way that the point of application of the mechanical force is connected
with the clamped edges. The robust scheme is working properly, which is corroborated by
the absence of hinges.

4.3. Third Example

For this case study, the value of constraint over the reaction force is fixed to r =
−4× 10−9 N, while the rest of parameters do not change. This variation of the reaction
force increases the structure stiffness, since the imposed displacement is the same as in the
previous example. The results are shown in Figure 4.

Figure 4. Structure layout ρs (left), electrode profile ρp (centre) and 3D design (right) for the third
example.

The value of the objective function for the optimum design is λ3 = 60.44. With this
method, the stiffness of the structure can be modelled by imposing a different constraint r.
This parameter can be adapted to the function of the application, since this is part of the
input data.

In this last example the structure layout ρs is stiffer than in the previous case. This is
due to the reaction force, which is 25% higher than in the second example. This parameter
can be fixed depending on the proposed application of the sensor.

4.4. Validation of the Results

The finite element problem has been solved by using an ad hoc script developed
with the software Matlab. In order to validate the results obtained, the displacement field
(the control variable in the optimisation problem) has been checked with Abaqus in the
reference design (first example).

For the reference example, the deformed structure is shown in Figure 5, where the
displacement has been scaled in order to better observe the deformed structure. It can be
visually verified that the deformation obtained with both softwares is similar.

Figure 5. Deformation of the structure obtained with Matlab (left) and Abaqus (right).
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Additionally, to corroborate that the finite element method has been correctly imple-
mented, the vertical displacement of the midline (arc with coordinate y = Ly/2 follow-
ing Figure 1) of the sensor is compared. To avoid a high relative error, the infinity norm has
been used to compare the difference between both softwares:

||w̃M − w̃A||∞ = 2.3740× 10−6 m,

where w̃ represents the vertical displacement computed at the midline, and subscripts M
and A stand for Matlab and Abaqus, respectively.

The vertical reaction forces computed at the node where the displacement is imposed
are r̃M = 7.477× 10−9 N and r̃A = 7.551× 10−9 N. With a difference of ≈1% we can
consider the results obtained with Matlab valid.

5. Conclusions

In this work, a systematic procedure to maximize the electric charge generated by a
semi-cylindrical piezoelectric sensor is presented. The objective function is computed in
terms of two variables related through the deformation of the structure, the topology of
the sensor and the polarisation profile of the electrode. The main novelty presented in this
paper is the simultaneous optimisation of both variables.

The advantage of solving an optimisation problem is shown in several optimal designs,
showing that the electric charge of the device has been improved for different volume
fractions and values of the reaction force. The well-known issue of the appearance of
hinges is overcome by implementing a robust scheme with three different projections. This
regularisation also allows us to control the minimum length scale.

The shell modelled in this work is subjected to small displacements and small strains,
but a control scheme based on the application of displacement (instead of controlling the
applied force) is implemented with the objective of modelling a geometrically non-linear
problem in the future.

In order to validate the mechanical response of the structure, the displacement field of
the shell is computed with two different commercial softwares—Matlab and Abaqus.
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Abstract: The embarrassingly parallel nature of the Bisection Algorithm makes it easy and efficient
to program on a parallel computer, but with an expensive time cost when all symmetric tridiagonal
eigenvalues are wanted. In addition, few methods can calculate a single eigenvalue in parallel
for now, especially in a specific order. This paper solves the issue with a new approach that can
parallelize the Bisection iteration. Some pseudocodes and numerical results are presented. It shows
our algorithm reduces the time cost by more than 35–70% compared to the Bisection algorithm while
maintaining its accuracy and flexibility.
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1. Introduction

The symmetric tridiagonal matrices often arise as primary data in many computational
quantum physical [1,2], mathematical [3–5], dynamical [6,7], computational quantum chem-
ical [8,9], signal processing [10], or even medical [11] problems and hence are important.
The current software reduces the generalized and the standard symmetric eigenproblems
to a symmetric tridiagonal eigenproblem as a common practice [10,12,13]. What is more
interesting is that the opposite path is also productive. Marques [14] computes the SVD of
a bidiagonal matrix through the eigenpairs of an associated symmetric tridiagonal matrix.
In this paper, we focus on symmetric eigenvalue solving.

People desire a parallel algorithm of good performance and flexibility, especially today
as CPU cores and massively parallel technology have skyrocketed. We noticed that in
many application scenes of eigenvalue computation, for example, in dynamics, it is often
necessary to solve only the first few orders of eigenvalues of a large matrix. The desire for
the largest eigenvalue is also common in practice [15–17]. However, the current QR, MRRR
(Multiple Relatively Robust Representations), DC (Divided and Conquer), and Bisection
algorithms do not seem to perform sufficient parallel operations if the number of CPU
cores (say, 40) is significantly larger than the number of eigenvalues (say, 1) to be solved.

The most popular algorithm at present for a symmetric eigenproblem is the QR algo-
rithm because of its stability and computational efficiency [18–20]. When only eigenvalues
are desired, all square roots can be eliminated in the QR transformation. This was first
observed by Ortega and Kaiser in 1963 [21] and a fast, stable algorithm was developed
by Pal, Walker, and Kahan (PWK) in 1969 [22]. However, the parallelization of the QR
algorithm is a problem, in this case, requiring more than a straightforward transcription
of serial code to parallel code. Many researchers have made attempts, such as blocking
the given matrix [23], look-ahead strategies [24], load-balancing schemes [25], pipelining
of iterations [20,26], or dimensional analysis [27]. However, few seem adequate for the
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symmetric tridiagonal matrices because most of those attempts are for dense matrices. One
more essential trouble is that the QR algorithm is unsuitable for computing one or several
selected eigenvalues. The MRRR algorithm [28] has a similar disadvantage as it is based
on the DQDS algorithm [29,30] to compute the eigenvalues. In detail, both QR and DQDS
algorithms use a designed shift, for example, Wilkinson’s shift, to obtain a high-order
asymptotic convergence rate. As a consequence, the order of eigenvalue convergence is
not manageable.

The DC algorithm [31] is easily parallelizable and has developed well in recent
years [32,33]. However, efficient parallel implementations are not straightforward to
program, and the decision to switch from task to data parallelism depends on the charac-
teristics of the underlying machine. Its space complexity is also an obvious shortcoming.
In fact, even the “dstedc” routine corresponding to the DC algorithm in LAPACK calls
“dsterf” when only eigenvalues are computed, i.e., the PWK version of the QR algorithm.
The DC algorithm also does not support the computation of eigenvalues of a specific order
or within a particular interval, let alone parallelization.

The Bisection method [34] calculates eigenvalues in any order or interval with a
variable precision, which is suitable and handy for the mixed precision calculation [35].
Its embarrassingly parallel nature and high accuracy make it implemented in current
software libraries for distributed memory computers. In addition, the Bisection method
has a parallelizing efficiency of 1 (unless the number of computational cores is larger than
the matrix dimension, which is rare) and little communication cost, which makes it highly
advantageous in massively parallel computations. However, parallel Bisection can only be
implemented if the number of unsolved eigenvalues is no less than the number of CPU
cores. In addition, the computational efficiency of the Bisection method disconcerts.

We briefly summarize here: QR, DC, and MRRR algorithms are only available for
obtaining all the eigenvalues. The Bisection method has excellent accuracy and flexibility
but with limited efficiency when computing all the eigenvalues. All existing methods fail
to calculate a single eigenvalue in parallel. Therefore, this paper has two goals: (1) to give a
new Bisection method that can perform parallel operations with any number of threads
when computing one specific eigenvalue; (2) to improve the efficiency of the Bisection
method when calculating a major set of or all eigenvalues.

Section 2 presents some theorems, lemmas, corollaries, and equations. They are
demonstrated for the design of Algorithms 4 and 5 and the accuracy analyses in Section 5.
The big view of our method for one specific eigenvalue is dividing the matrix for parallel
computing and merging them for the final result, with an insignificant time cost in the
merging process. For the Bisection method to retain its ability to compute eigenvalues of
any order, our strategy is to make the underlying iteration loop parallelizable. Instead of
counting Sturm sequences iteratively, Algorithm 4 (provided in Section 3) distributes the
task into the submatrices, which can be fulfilled independently. To merge these submatrices,
in Section 2, we give a special determinant Formula (2) (with our new proof inspired by
Maxwell’s reciprocity theorem), Corollary 1, and Theorem 3.

We give Algorithm 5 in Section 4 as a modified Bisection method for all the eigenvalues.
To reduce the number of iterations, the key is called a faster root-finder, which has less than
20% time cost of the traditional Bisection iteration process. However, it can only work when
an isolating interval, i.e., an interval within only one eigenvalue, is obtained. Theorem 3
provides an excellent approach to such an interval, and the calculation is executed by
dividing and merging. To accelerate convergence, we prove Theorem 4 in Section 4 and
utilize the deflation property in Algorithm 5.

In Section 5, we analyze the accuracy and present the numerical experiments. Section 5.2
shows the accuracy results and Section 5.3 shows the efficiency result. In Section 5.3,
diversified computing tasks are discussed and the feasibility is analyzed. The results show
that the new Divisional Bisection method can substantially improve the efficiency of the
Bisection algorithm while maintaining its accuracy and flexibility.
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2. Dividing the Matrix

The sequential principal minors of an ST (Symmetric Tridiagonal) matrix form a Sturm
Chain, which is the key to the Bisection algorithm. We denote the ith sequential principal
minor of a matrix A by A1:i, which is similar to the conventions in Matlab. The submatrix
of A in rows i through j will be denoted by Ai:j; A is determinant by det(A). We denote the
characteristic polynomial det(A− uI) by C1:n, C1:n(u), or CA

1:n(u) if necessary.
Let A be an n× n unreduced ST matrix (all ST matrices discussed in this paper are

unreduced), λi be its ith eigenvalue, vi be its ith eigenvector and vij be the jth component
of vi. Then, we have the iterative formulae of the ST determinants from [34] as

q0 = 1, q1 = a1 − u, qi = ai − u− b2
i−1/qi−1,

p0 = 1, p1 = an − u, pi = an+1−i − u− b2
n+1−i/pi−1,

(1)

where qi = Ci/Ci−1 and pi = Cn−i+1/Cn−i+2.
The Bisection method counts Sturm sequences by q or p. The number of eigenvalues

that are less than u is equal to the number of negative q values, while the number of λi > u
is equal to the non-negative q’s. The neighboring Ci and qi have the following theorem
from [12].

Theorem 1 (Root Separation Theorem).
Ci has only simple roots, which are separated strictly by the roots of Ci−1, for i = 2, . . . , n.

From Theorem 1, we have the following corollary.

Corollary 1. The signs of Ci−1 and Ci in the intervals separated by their roots can be expressed as

+s1 − s2 + s3 − . . .
+λ1 − λ2 + λ3 − λ4 + . . .

where sk(k = 1, . . . , i− 1) denotes the kth root of Ci − 1 and λk(k = 1, . . . , i) denotes the kth root
of Ci.

Proof. As C(u) = ∏n
i=1(λi − u), we have

Sign(C(u)) =

{
1, u → −∞
(−1)n. u → +∞

Considering that Ci has only simple roots (Theorem 1), the result shows.

We stress Theorem 1 and Corollary 1 here because they are not only the basis for the
following Theorems 2 and 3 but also support our subsequent algorithms and analyses.
When merging the submatrices, we use Corollary 1 and the signs of Ci values to decide
the global ζ in Algorithm 4. The accuracy of original iterations in Algorithm 5 is analyzed
through Theorem 1 and Corollary 1, which guarantee that the original results can be checked
and fixed with an acceptable iteration number (this process is carried by Algorithm 7). See
more details in Sections 3 and 5.

Recall that our task is to count Sturm sequences in submatrices; then, it is convenient
to calculate q values and p values from both ends of A. A specific determinant formula
shows the connection between det(A) and det(A1:k) and det(Ak+1:n) or qi and pi, which is
from [36]. Here, we present a new proof inspired by Maxwell’s reciprocity theorem.

According to Maxwell’s reciprocity theorem, the output at j caused by input at any
point i in a linear system is equal to the output at i caused by equal input at j. If we consider
the ST matrix A to be a dynamical system, the following lemma holds.
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Lemma 1. For an invertible symmetry matrix A, if Ax = ei and Ay = ej then xj = yi, where x
and y are both column vectors.

Proof. It can be easily established by symmetry.

Theorem 2 (Determinant Formula).
Let a be the diagonal of an unreduced ST matrix A and b be the sub-diagonal, we have

C1:n = det(A− uI)

= −b2
k−1C1:k−2Ck+1:n + (ak − u)C1:k−1Ck+1:n − b2

kC1:k−1Ck+2:n

= C1:k−1Ck+1:n(C1:k/C1:k−1 − b2
kCk+2:n/Ck+1:n)

= C1:k−1Ck+1:n(Ck:n/Ck+1:n − b2
k−1C1:k−2/C1:k−1).

(2)

Proof. Let:

x = [1, C1:1/− b1, . . . , C1:n−1/(
n−1

∏
t=1
−bt)]

T ;

y = [C2:n/(
n−1

∏
t=1
−bt), . . . , Cn:n/− bn−1, 1]T ,

(3)

substitute them into (1), then we have

(A− uI)x = [0, . . . , 0, F1]
T ;

(A− uI)y = [F1, 0, . . . , 0]T ;

F1 = C1:n/ ∏n−1
i=1 (−bi)

(4)

when uniting (1) and (3).
Construct a vector z so that

z1:k = x1:k;

zk:n = η × yk:n;

(A− uI)z = [0, . . . , F2, . . . , 0]T ,

(5)

where η is a nonzero scalar.
As zk = xk, we have

η =
C1:k−1/(∏k−1

t=1 −bt)

Ck+1:n/(∏n−1
t=k −bt)

.

According to Lemma 1,
xk
F1

=
zn

F2
. (6)

Unite (4)–(6); then, the result shows.

Remark 1. (2) can also be expressed as

C1:n = C1:k−1Ck+1:n(qk − b2
k /pn−k).

In addition, although u should not be an eigenvalue of A in Lemma 1, (2) also holds for
all λi valuesof A. To prove this, we need to check the existence of x and y first, as A− λi I is a
singular matrix. We have F1 = 0 in (4), which means x and y are both eigenvectors. Consider the
eigenvectors-from-eigenvalues formula (see [37])

v2
ij

n

∏
k=1;k �=i

(λi − λk) =
n−1

∏
k=1

(λi − λk(A�j)), (7)
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where A�j denotes the n− 1× n− 1 minor formed from A by deleting the jth row and column of
A. As A is symmetric and tridiagonal, (7) can be expressed as

v2
ij

n

∏
k=1;k �=i

(λk − λi) = C1:j−1(λi)Cj+1:n(λi). (8)

Let i = n, from (8) we have

v2
nj

n−1

∏
k=1

(λk − λn) = C1:n−1(λn).

Consider Theorem 1; then, it shows that the eigenvector of an ST matrix has no zero components
at both ends. So, existence is guaranteed. Then, the result can be easily verified by the continuous
prolongation theorem.

Remark 2. The determinant formula is introduced in [36] (page 518, Equation (5)), which gives
a form of a general tridiagonal matrix, not having to be symmetric. (2) is the specific form for
symmetry. Nevertheless, we insist on presenting this different proof here because some intermediate
products of the derivation process consist of the basis of Theorem 4, which is one key technology to
accelerate Algorithm 5. See more details in Section 4.

Theorem 3 (Interlacing Property). If C1:k−1 and Ck:n do not have a common root, the roots of
C1:k−1Ck:n (i.e., the eigenvalues of A�k) separate the eigenvalues of A strictly; if not, the common
roots are some eigenvalues of A and the others still separate strictly. In addition, Corollary 1 also
holds for C1:k−1Ck:n and C1:n.

Proof. According to [12,38], we have

λ1 ≤ s1 ≤ λ2 ≤ s2 ≤ · · · ≤ sn−1 ≤ λn (9)

where si(i = 1, . . . , n− 1) denotes the ith eigenvalue of A�k.
If C1:k−1 and Ck:n have a common root, it can be easily seen from (2) that C1:n = 0; if

not, we have C1:n �= 0 similarly.
So, the equal signs hold if and only if C1:k−1 and Ck:n have a common root.

With Theorem 2 and 3, we now divide the unreduced ST matrix A into A1:k−1 and
Ak+1:n, and we count the negative Sturm sequences of a tentative eigenvalue u indepen-
dently. In A1:k−1, ζ1 is the number of negative qi values (i = 1, . . . , k − 1) and ζ2 is the
negative pi values (i = 1, . . . , n− k) in Ak+1:n. Let ζ = ζ1 + ζ2; apparently, it is equal to the
number of eigenvalues of A�k that are less than u. Thus, the sign of C1:k−1Ck:n is (−1)ζ .
According to Theorem 3, this also means u ∈ (λζ , λζ+2). Theorem 2 shows the connection
between the sign of C1:k−1Ck:n and the sign of C1:n. Thus, the final ζ, which is either equal
to the previous ζ1 + ζ2 or ζ1 + ζ2 + 1, can be concluded with a cheap merging calculation.
See more details in the next section.

3. Computing One ST Eigenvalue

We now consider more details of the Divisional Bisection method. First, we introduce
Algorithm 1 for computing qi, ζ and C1:n in an unreduced n× n ST matrix A according
to [34], and the simplified variant Algorithm 2, for the determinant only.
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Algorithm 1: Bisection Iteration

Input : a, b2, n
1 // a is the diagonal of A, b is the sub-diagonal and n is the size

Output : ζ, q, C1:n
2 // q = q1:n

3 q ← a1, C1:n ← 1;
4 if q < 0 then
5 ζ = 1;
6 else
7 ζ = 0;
8 end
9 for each k ∈ [1 : n] do

10 if q == 0 then
11 q ← ε // ε is a positive small value
12 end

13 q ← ak − b2
k−1/q;

14 C1:n ← qC1:n;
15 if q < 0 then
16 ζ ← ζ + 1;
17 end

18 end

Algorithm 2: Computing ST Determinant

Input : a, b2, n
Output : C1:n−1, C1:n

1 q ← a1, C1:n−1 ← 1;
2 for each k ∈ [1 : n− 1] do
3 if q == 0 then
4 q ← ε // ε is a positive small value
5 end

6 q ← ak − b2
k−1/q;

7 C1:n−1 ← qC1:n−1;
8 end

9 q ← an − b2
n−1/q;

10 C1:n ← qC1:n−1.

If u ∈ (λζ , λζ+2) as discussed in Section 2, we have

sign(C1:n) =

⎧⎪⎨⎪⎩
(−1)ζ , qk > b2

k /pn−k;
(−1)ζ+1, qk < b2

k /pn−k;
0, qk = b2

k /pn−k,

(10)

according to (2) and Corollary 1. Then, we have

ζ =

{
ζ, qk � b2

k /pn−k;
ζ + 1, qk < b2

k /pn−k,
(11)

and u = λζ+1 when qk = b2
k /pn−k. When qk pn−k = 0, which means (10) cannot be

calculated, we directly obtain ζ = ζ according to Theorem 3. Similarly, we have u = λζ+1
if qk and pn−k are both zeros.

In the lower level, A1:k−1 is divided into A1:t−1 and At+1:k−1. Independently, we
calculate
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1. ζ1:t−1, qt(A1:k−1), and C1:t−1 in A1:t−1 by Algorithm 1;
2. ζt+1:k−1, pk−t−1(A1:k−1) and Ct+1:k−1 in At+1:k−1 by Algorithm 1;
3. Ct+2:k−2 and Ct+1:k−2 in At+1:k−2 by Algorithm 2.

And the same in Ak+1:n.
By substituting these outputs into (2), (10) and (11),

1. ζ1:k−1, ζk+1:n;
2. C1:k−1, qk;
3. Ck+1:n, pn−k.

These are determined, and then, we have ζ1:n finally, completing one Bisection iteration.
The new Divisional Bisection iteration method is given by Algorithm 3.

Algorithm 3: Divisional Bisection Iteration

Input : a, b2, n, p
1 // u is a tentative eigenvalue, p is the number of dividing parts

Output : ζ

2 distribute a, b2 into m + w parts evenly such that m + w = p;
3 // so that each pair of ai and b2

i forms a submatrix of A
4 then get a1, . . . , am, am+1, . . . , am+w, b2

1, . . . , b2
m, b2

m+1, . . . , b2
m+w;

5 foreach i ∈ [2 : m]&&i = m + w do
6 reverse ai, b2

i ;
7 end
8 foreach i ∈ [1 : m + w] do
9 call Algorithm 1⇐ ai,b2

i ,Ni // Ni is the length of ai
10 then get ζi, qi, Ci;
11 end
12 foreach i ∈ [2 : m] ∩ [m + 1 : m + w− 1] do
13 call Algorithm 2⇐ ai(2 : end),b2

i (2 : end),Ni − 1;
14 // eliminate 1st component
15 then get C2:Ni , C2:Ni−1;
16 end
17 s ← 0, Cl ← C1, ql ← q1, i ← 2;
18 while i ≤ m do
19 substitute Cl , ql , Ci, qi, C2:Ni , C2:Ni−1 into (2);
20 then get Cl , ql ;
21 // Cl, ql is substituted by those of the merged matrix
22 s ← s or s ← s + 1 according to (10) and (11), i ← i + 1;
23 end
24 Cr ← Cm+w, qr ← qm+w, i ← w + m− 1;
25 while i ≥ m + 1 do
26 substitute Cr, qr, Ci, qi, C2:Ni , C2:Ni−1 into (2);
27 then get Cr, qr;
28 // Cr, qr is substituted by those of the merged matrix
29 s ← s or s ← s + 1 according to (10) and (11), i ← i− 1;
30 end
31 substitute Cl , ql , Cr, qr into (2);
32 s ← s or s ← s + 1 according to (10) and (11);
33 ζ ← s + ∑ ζi.

Algorithm 3 calls Algorithm 2 to compute p− 2 extra determinants of the submatrices
compared to the traditional method. So, the parallel efficiency of Algorithm 3 is p/(2p− 2),
given that the cost of the merging part is negligible compared to the cost of Algorithms 1
and 2 called during computation. It should be noted that counting non-negative q values
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instead is more efficient if a high-order eigenvalue is desired. By replacing the iterative
process, we give the new Divisional Bisection Algorithm 4 for computing one ST eigenvalue.

Algorithm 4: Computing One ST Eigenvalue
Input : a, b, n, p, r, tol

1 // compute the rth eigenvalue with the expected precision tol
Output : λr

2 set the original interval [x, y], b ← b2;
3 // x, y = ∓||A||∞, for example
4 while |y− x| ≥ 2tol do
5 u ← (y− x)/2;
6 call Algorithm 3⇐ a− u, b, n, p
7 if any ζi ≥ r when executing Algorithm 3 then
8 stop Algorithm 3;
9 ζ ← r;

10 else
11 complete Algorithm 3;
12 then get ζ

13 end
14 if ζ ≥ r then
15 y ← u;
16 else
17 x ← u;
18 end

19 end
20 λr ← (y− x)/2.

In addition, it can be predicted that a considerable number of Divisional Bisection
iterations will end early, especially for the lower or higher order eigenvalues. To find the
smallest eigenvalue of a matrix, for example, we can break the iteration in advance if any
ζi ≥ 1, which means the final number will inevitably exceed 1 according to Theorem 3. This
strategy can save substantial time in the early computation and more if a larger p is available.

4. Computing All ST Eigenvalues

The Bisection algorithm has many practical advantages but earns the disrepute of
being slow when computing all ST eigenvalues. A significant contributor is the excessive
number of iterations. The Bisection algorithm permits an eigenvalue to be computed with
53 iterations in IEEE double-precision arithmetic. When an eigenvalue is isolated in an
interval, we have some faster root-finders such as Laguerre’s method [12,39], the Zeroin
scheme [40,41] and the fzero scheme [42] (‘fzero’ function in Matlab). These competitors
can finish the work in less than 10 iterations but seem to stumble when eigenvalues cluster.
Another trouble is that so much more has to be completed in the inner loop [39,43] to obtain
isolating intervals, costing embarrassingly more time.

Our strategy is to obtain isolating intervals by the eigenvalues of A�k. These eigen-
values can be obtained by QR or a Bisection algorithm on each submatrix. The clustering
eigenvalues, which can be challenging problems otherwise, accelerate the calculation in our
method according to Theorem 3. The submatrix under continuing division (if necessary)
has no eigenvalues clustered eventually. Then, we can compute all the eigenvalues by
dividing and merging. For convenience, we choose the ‘fzero’ function in Matlab as the
root-finder, which requires an average of 7.5 iterations per root. Our numerical experience
supports this conclusion.

It has been found in [31,38] that the deflation properties and techniques of the DC
algorithm allow it to converge quickly when the eigenvalues of submatrices cluster or the
eigenvectors have zero ends in finite precision arithmetic. These deflation cases are quite
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common in ST matrices and should be utilized in the Divisional Bisection algorithm. Let
tol be the expected precision and si(i = 1, . . . , n− 1) be the eigenvalues of A�k+1, which
can be divided into T1 and T2. From [38] we have

A = QDQT

=

⎡⎣0 Q1 0
1 0 0
0 0 Q2

⎤⎦⎡⎣ ak+1 bklT
k bk+1rT

1
bklk D1 0

bk+1r1 0 D2

⎤⎦⎡⎣ 0 1 0
QT

1 0 0
0 0 QT

2

⎤⎦ (12)

where

• T1 = Q1D1QT
1 and T2 = Q2D2QT

2 are the eigendecomposition of T1 and T2;
• lT

k is the last row of Q1;
• rT

1 is the first row of Q2;
• the diagonals of D1 and D2 are arranged in ascending order.

Now, consider how deflation occurs during the calculation and how our algorithm
can perceive it. In (12), the close eigenvalues of D1 and D2 can be easily detected, since we
do the calculation by dividing and merging. However, the connection between zero ends
of bklk or bk+1r1 and the intermediate results of Bisection iterations are not easily accessible.
Therefore, we give Theorem 4, especially Theorem 4b, to show the deflation properties
and to suggest an approach to detecting. First, we introduce the following Lemma 2 as an
auxiliary for our proof of Theorem 4.

Lemma 2. Let A1 and A2 be n× n real symmetric matrices with eigenvalues λA1
1 , . . . , λA1

n and
λA2

1 , . . . , λA2
n , respectively. Then

max
i
|λA1

i − λA2
i | ≤ ‖A1 − A2‖2.

Proof. See [44].

Theorem 4 (Deflation Properties).

a. If |si+1 − si| ≤ tol where si and s are arithmetic approximations of si and si+1, then si or si+1
is an arithmetic approximation of λi+1;

b. Let u be an arithmetic approximation to si which is one of the sT1
j ’s and si = sT1

h (h ∈ [1, k]). If

(1) (CT1
1→k−1(u)/CT1

1→k(u))(si − u) < 0;

(2) |bk|
√(

1/g−
∣∣∣CT1

1→k−1(u)/CT1
1→k(u)

∣∣∣) <
√

tol,

where g = min
j �=t
|sT1

j − u|, then u is an arithmetic approximate eigenvalue of A, and the similar

holds in T2.

Proof.

a. It can be easily seen from Theorem 3.
b. Without loss of generality, we assume si is an isolated eigenvalue of A�k+1 because if

not, we can turn to Theorem 4a.

From (3) and (4), it shows 1/qT1
k (u) = (CT1

1→k−1(u)/CT1
1→k(u)) is the last component on

the diagonal of (T1 − uI)−1. Then, we have

1/qT1
k (u) = eT

k (T1 − uI)−1ek,

⇒ 1/qT1
k (u) = eT

k Q(D1 − uI)−1QTek,

⇒ 1/qT1
k (u) =

k

∑
j=1

v2
jk

1

sT1
j − u

(13)
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where vj is the jth eigenvector of T1.

As CT1
1→k(u) is the determinant of T1 − uI, qT1

k should be close to zero when u → si.
However, in IEEE double precision arithmetic, this is not true if v2

ik is also small when
compared to si − u. (13) can be expressed as

1/qT1
k (u) =

v2
ik

si − u
+

k

∑
j=1 �=i

v2
jk

1
sj − u

= v2
ik/(si − u) + Ri, (14)

where apparently (recall that g = minj �=t |sT1
j − u|)

|Ri| ∈
[

0,
1
g

)
. (15)

Given that u is the previous computation result, we have |si − u| ≤ tol. When
qT1

k (u)(si − u) > 0, (14) and (15) can be united as∣∣∣v2
ik/(si − u)

∣∣∣ < 1/g +
∣∣∣1/qT1

k

∣∣∣,
⇒ |vik| <

√
(1/qT1

k + 1/g)tol.
(16)

In addition, we have

|vik| <
√
(1/qT1

k − 1/g)tol (17)

similarly when qT1
k (u)(si − u) < 0.

The condition of Theorem 4b shows |bkvik| < tol according to (17). By taking a review
of (12) and Lemma 2, the proof is completed.

Theorem 4 is satisfying because qi values of T1 and pi values of T2 happen to be
accompanying products of Algorithm 2, which can be utilized as the basic iteration of the
‘fzero’ scheme. The condition of Theorem 4b is sufficient but not necessary, as there are many
other possibilities that make |vik| < tol, even when (CT1

1→k−1(u)/CT1
1→k(u))(si − u) ≥ 0. A

trivial plan is to calculate and check vik once one si is solved and the accompanying |1/qT1
i |

is suspiciously small. Although this idea already saves a large number of unnecessary
computations compared to the DC algorithm, we are still concerned that it is too expensive
to call the Inverse Iteration algorithm here.

Our scheme is to mark those suspicious small |1/qT1
i | values by a rough discriminant,

for example |1/qT1
i | < 1, then to substitute the corresponding s̄i ± tol values into Algo-

rithm 1 to check if deflation is available. We have found in our numerical experiments that
it is difficult to cover all the deflation situations by this method, even if we set the discrimi-
nant quite loosely. Even filtrating directly by |vik|, as in the DC algorithm, would still leave
some out. We applied these methods to 20 randomly generated 2001× 2001 matrices for
computation, where T1 and T2 are both 1000× 1000 matrices. The averages were calculated
and are shown in Table 1. We collected the hit rate of the DC algorithm by checking how
many s̄i values, which had negligible corresponding vik values, were really close to λi val-
ues. In Table 1, the plan 1 refers to “rough discriminant + Inverse Iteration algorithm”, the
plan 2 refer to “rough discriminant + Algorithm 1”, and the hit rates of them were collected
similarly. It can be seen that the hit rate and accuracy of our method are acceptable or at
least no worse than the DC algorithm. The errors in Table 1 refer to the difference between
s̄i values selected during deflations and λ̄i values obtained by the Bisection method. The
data were collected on an Intel Core i5-4590 3.3 GHz CPU and 16 GB RAM machine. All
codes were written in Matlab2017b and executed in IEEE double precision. The machine
precision is eps ≈ 2.2× 10−16.
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Table 1. Comparison of deflation detecting methods (average of 20 2001× 2001 matrices).

Methods
Time Cost

(s)
Hit Rate

Average Error
(×10−16)

Maximum Error
(×10−16)

DC algorithm / 58.5 1.39 4.44
plan 1 0.30 62.1 1.32 4.44
plan 2 0.19 62.1 0.91 1.00

We give the Divisional Bisection method for all eigenvalues by Algorithm 5 and the
following subroutine Algorithm 6.

Algorithm 5: Computing all ST Eigenvalues
Input : a, b, n, p, tol
Output : �d

1 // all eigenvalues lie in the vector �d in ascending order

2 distribute a, b into p parts evenly, F ← max(|ai|+ 2|bi|), calculate b2 in each part;
3 call PWK version of QR Algorithm in each part;
4 then get �d1, . . . , �dp // eigenvalues of each submatrix lie on �di
5 call Algorithm 2⇐ each ai, b2

i , Ni;
6 then get qi’s correspondingly;
7 check deflation, form�t1, . . . ,�tp/2 by determined �di(j)’s, eliminate corresponding

components in each �di;
8 if there are clustering �di(j)’s then
9 call Algorithm 7 to recheck;

10 // Algorithm 7 is provided in Section 5
11 end
12 while p ≥ 2 do
13 m ← p/2, i ← 1 s ← 1;
14 while i<p do

15 �vs ← [−F; sort([�di; �di+1]); F];
16 s ← s + 1, i ← i + 2;
17 end
18 call Algorithm 6⇐ �v1, . . . ,�vm;
19 then get �d1, . . . , �dm and corresponding qi’s;
20 combine each �dj and�tj, j ∈ [1 : m];
21 // eigenvalues of each merged matrix lie on �di

22 check deflation, form�t1, . . . ,�tm by determined �di(j)’s, eliminate corresponding
components in each �di;

23 p ← p/2;
24 end

25 combine �d1 and�t1, �d ← �d1.

Algorithm 6: Fzero by Determinant
Input : a, b2, n, V, tol

1 // searh one root in a isolating interval V
Output : x, qn

2 call Algorithm 2⇐ a, b2, n;
3 call ‘fzero’ function in Matlab⇐ Algorithm 2, V, tol;
4 then get x;
5 save qn of the last iteration.
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5. Accuracy Analysis and Numerical Results

5.1. Accuracy Analysis

After the eigenvalues of the original submatrices are calculated by the QR Algorithm,
as shown by line 3 in Algorithm 5, it is not safe to take (s̄i − s̄i−1)/2 as a λi if one s̄i − s̄i−1 ≤
tol, because the QR algorithm is not always as accurate as the Bisection method or fzero
scheme. So, in practice, we do an extra check for the selected s̄i values by Theorem 4a
when checking deflation from results of the QR Algorithm. Suppose m sub-eigenvalues
(denoted by s1, . . . , sm) cluster in the interval [x, y] where y− x ≤ tol; the process is shown
as Algorithm 7.

Algorithm 7: Recheck the Results of QR
Input : clustering sub-eigenvalues s1, . . . , sm, interval [x, y]
Output : λ1, . . . , λm − 1

1 // the subscripts of λ’s denote the order in this subroutine, not
globally

2 Determine how many eigenvalues lie in [x : y] by Algorithm 1 and save the
number as w; if w = m− 1 then

3 foreach i ∈ [1 : m− 1] do
4 λi ← (si + si+1)/2;
5 end

6 else
7 foreach i ∈ [1 : w− 1] do
8 λi ← x + i ∗ (y− x)/(w− 1);
9 end

10 call Bisection algorithm to search the remain m− 1− w λ’s in
[x− 10tol, x) ∩ (y, y + 10tol].

11 end

In Algorithm 7, 10tol is a pessimistic estimation of QR algorithm error, which means
it decuples that of the Bisection error. The data in Table 2, which are present in a later
paragraph, supports our point. Line 2 in Algorithm 7 costs 2 Bisection iterations for w− 1
λ values and line 10 costs 3 to 4 per λ compared to about 7.5 iterations per λ in Algorithm 6
and 53 iterations per λ in the Bisection algorithm.

When arithmetic approximations s̄i are treated as the boundaries of isolating intervals
in the next level, they do not affect the accuracy because if the number of λ’s in an interval
is not one, Algorithm 6 fails. The troublesome number could be 0 or 2, but it is certainly
not bigger than 3. When there are 4 or more λ’s in an interval, it means there are clustering
s̄i’s of the previous results which can be perceived during the deflation check. For example,
if 4 λ’s lie in [s̄j, s̄j+1] as

s̄j < λj−1 < sj−1 < λj < sj < λj+1 < sj+1 < λj+2 < s̄j+1, (18)

we have sj−1 − s̄j < ε where ε is the previous computation error. (18) shows that s̄j−1 and
s̄j both lie in (sj−1 − ε, sj−1], which could not happen because we do the deflation check
previously.

We regard this as a beneficial situation. It can be seen in (18) that the troublesome
number arises only when s̄j < λj (or s̄j > λj+1), contrary to Theorem 3. As the accurate
sj > λj and sj − s̄j ≤ ε, we have λj − s̄j ≤ ε and then can speed up the calculation. Finally,
the accuracy of Theorem 5 is as good as the Bisection algorithm.

We checked the accuracy of Algorithm 5 by computing the eigenvalues of a 2001× 2001
Toeplitz ST matrix, which has all 2’s on its diagonal and all −1’s on its sub-diagonal. The re-
sults of each method were then compared with the exact value, i.e., λi = 2− 2 cos(iπ/2002),
and are shown in Table 2. In addition, all eigenvalues of 20 randomly generated matrices
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were calculated for testing the efficiency on serial machines, and we show the average
results of 20 in Table 3. We set p = 2 in Algorithm 5 for the serial execution.

Table 2. Accuracy Result.

Method Time Cost (s) Average Error ×eps Maximum Error ×eps

QR 0.10 4.2 32.0
PWK QR 0.09 3.9 32.0

MRRR 0.13 15.1 34.0
Bisection 1.55 1.0 6.0

Our method 0.41 1.0 6.0

Table 3. Time Cost Result.

Method
Time Cost (s) of

2500 × 2500 Matrix 5000 × 5000 Matrix 10,000 × 10,000 Matrix

QR 0.16 0.86 2.30
PWK QR 0.13 0.77 1.96

MRRR 0.17 0.92 2.55
Bisection 2.25 12.49 34.10

Our method 0.61 2.30 9.21

Table 2 demonstrates that our method substantially improves the speed of the Bisection
method without losing accuracy. In addition, Table 3 confirms that Algorithm 5 is O(n2)
as its iteration based on Algorithm 2. In the following subsections, we illustrate more test
results of several different types of matrices. All results in Section 5 were collected on an
Intel Core i5-4590 3.3-GHz CPU and 16-GB RAM machine, except for the last figure, which
will be introduced in Section 5.4 specifically. All codes were written in Matlab2017b and
executed in IEEE double precision. The machine precision is eps ≈ 2.2× 1−16.

5.2. Matrices Introduction and Accuracy Test

In the following subsections, we present a numerical comparison among the Divisional
Bisection algorithm and four other algorithms for solving the ST eigenvalue problem:

1. Bisection, by calling subroutine ‘dstebz’ from LAPACK in Matlab;
2. MRRR, by calling subroutine ‘dstegr’ from LAPACK in Matlab;
3. QR, by calling subroutine ‘dsteqr’ from LAPACK in Matlab;
4. PWK version of QR (which would be denoted by QR-pwk in the figures), by calling

subroutine ‘dsterf’ from LAPACK in Matlab.

We use the following sets of test n× n matrices:

1. Matrix A:

Matrix A = tridiagonal

⎡⎣ 1 1 · · · 1
2 2 · · · 2

1 1 · · · 1

⎤⎦,

i.e., the Toeplitz matrix [1,2,1] to test the accuracy and efficiency, which has λi =
2− 2 cos(iπ/(n + 1));

2. Matrix T1:

Matrix T1 = tridiagonal

⎡⎣ 1 1 · · · 1
1 0 · · · 0

1 1 · · · 1

⎤⎦,

to test the accuracy and efficiency, which has λi = −2 cos(2iπ/(2n + 1)). Matrix T1 is
from [45], as well as the following Matrix T2 and T3;

145



Mathematics 2022, 10, 2782

3. Matrix T2 [45]:

Matrix T2 = tridiagonal

⎡⎣ 1 1 · · · 1
1 0 · · · 1

1 1 · · · 1

⎤⎦,

to test the accuracy and efficiency, which has λi = −2 cos(iπ/n);
4. Matrix T3 [45]:

Matrix T3 = tridiagonal

⎡⎣ 1 1 · · · 1
1 0 · · · −1

1 1 · · · 1

⎤⎦,

to test the accuracy and efficiency, which has λi = 2 cos((2i− 1)π/(2n));
5. Matrix W [12,46], which has the ith diagonal component equal to |(n + 1)/2− i|(n is

odd) and all off-diagonal components equal to 1, to test the efficiency only as its exact
eigenvalues are not accessible;

6. Random Matrix with both diagonal and off-diagonal elements being uniformly dis-
tributed random numbers in [−1,1] to test the efficiency only as its exact eigenvalues
are not accessible.

Figures 1–4 present the test results of accuracy, where the Average Errors denote
the means of errors of all the calculated eigenvalues and the Maximal Errors denote the
maximum. Seven different sizes are used, from 800× 800 to 3200× 3200. All errors have
been divided by the machine precision eps for clarity. It can be seen that the new Divisional
Bisection algorithm has the best accuracy as well as the Bisection method, considerably
higher than the others.

(a)

Figure 1. Cont.
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(b)

Figure 1. Results of Matrix A: (a) the Average Errors; (b) the Maximal Errors.

(a)

(b)

Figure 2. Results of Matrix T1: (a) the Average Errors; (b) the Maximal Errors.
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(a)

(b)

Figure 3. Results of Matrix T2: (a) the Average Errors; (b) the Maximal Errors.

(a)

Figure 4. Cont.
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(b)

Figure 4. Results of Matrix T3: (a) the Average Errors; (b) the Maximal Errors.

5.3. Efficiency Test for Computing all the Eigenvalues

Figure 5 presents the test results of time cost. Seven different sizes are used, from
800× 800 to 3200× 3200. Note that the results of the Random Matrix of each size are the
mean data of 20 tests. Therefore, we use the plural form in the figures.

When the eigenvalues clutter, as in Matrix W, the Divisional Bisection method im-
proves the Bisection method by about 70%. Such a good result can also be in Matrix
T1 and Matrix T3. However, the improvement is less than 50% in Matrix A and Matrix
T2. The reason is their submatrices have close eigenvalues to the global one but are not
equal in finite precision arithmetic. For example, the sub-eigenvalues give an interval for
Algorithm 6 and have an upper or lower bound that has a distance between λi less than
5× 10−14. The ‘fzero’ scheme uses the linear interpolation to accelerate convergence; such
a bound produces poor slopes during the linear interpolation process. As a consequence,
more iterations are needed to guarantee convergence, which finally results in the efficiency
loss of the Divisional Bisection method. Recall that Algorithm 7 is for checking similar
situations. However, a distance of 5× 10−14 could not be detected, because it does not meet
the conditions of Theorem 4.

Nevertheless, we are not pessimistic about the Divisional Bisection method. First, it
still improves more than 35% in such cases and performs well for Random Matrices. Sec-
ondly, the ‘fzero’ scheme is not a prerequisite or non-replaceable in our method, which could
be modified or substituted by a more powerful competitor in future
follow-up studies.
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Time cost for: (a) Matrix A; (b) Matrix T1; (c) Matrix T2; (d) Matrix T3; (e) Matrix W;
(f) Random Matrices.

5.4. Efficiency Test for Computing a Part of the Eigenvalues

All along, the Bisection method undertakes the task of computing a part of eigenvalues,
especially when the size of the matrix is large. When Algorithm 5 obtains all the sub-
eigenvalues, as shown in lines 2–11 in Algorithm 5, it is an easy task to calculate any
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parts of λi’s. For example, if eigenvalues in a certain interval are wanted, we can drop
the sub-eigenvalues which are outside and substitute ±F, in Algorithm 5 line 2 and line
15, with the upper and lower bounds of the given interval. If r1th∼r2th eigenvalues are
wanted, we need to drop the sub-eigenvalues that are of the order lower than r1− 1 or
higher than r2. When sr1−1 and sr2 are the substitutions of ±F, the problem can be solved.

Figure 6 shows the time cost in Random Matrices of four relatively large size, i.e.,
5000× 5000, 10,000 × 10,000, 15,000 × 15,000, and 20,000 × 20,000. We calculated 1%, 10%,
30%, and 50% λi’s of each size. Note the results are mean data of 40 tests, 20 for computing
λi’s in a certain interval and 20 for computing λi’s in a certain order. Given that there is
no evident difference between the test results of calculating λi’s in an interval or order, we
mixed them for averaging.

(a) (b)

(c) (d)
Figure 6. Time cost for: (a) 1% λ’s; (b) 10% λ’s; (c) 30% λ’s; (d) 50% λ’s.

The results show that the Divisional Bisection method is not suitable for computing
a small group of eigenvalues, despite the matrix being relatively large. We consider 10%
as an applicable threshold. Although we can replace the QR method with the Bisection
method in Algorithm 5 line 3, which could avoid the calculation of all the sub-eigenvalues,
the result seems even worse. As the matrix size increases, the efficiency disadvantage of
the Bisection method becomes increasingly severe, which could ignore only a quite small
number of wanted λi, for example, 0.1%. In this case, the ‘fzero’ loops (line 12 to line 24 in
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Algorithm 5) become a heavy burden to the Divisional Bisection method. Therefore, we
insist on using the PWK version of the QR method in Algorithm 5.

We now consider the situation of calculating one λ in parallel. The problem also arises
when the number of wanted λ is less than the number of CPU cores or not divisible by it.
Algorithm 4 solves the problem and makes it available for computing with any number of
CPU cores. Of course, the need to compute an eigenvalue in parallel must occur in a very
large matrix. Therefore, we use three Random Matrices with sizes of 106 × 106, 107 × 107,
and 108 × 108 for the test of parallel efficiency. The results, presented in Figure 7, were
collected on an Intel Xeon(R) Core E5-2687 3.1-GHz CPU and 256-GB RAM machine, which
has 20 CPU cores. Note that the results are mean data of 20 tests.

Figure 7. Computing one λ in parallel.

The three purple horizontal lines in Figure 7 denote the time cost of the serial Bisection
algorithm. Specifically, the top one denotes the time cost for 108 × 108 Random Matrices,
the middle 107 × 107, and the bottom 106 × 106. The parallel efficiency is unsatisfactory,
especially for the 107 × 107 and 106 × 106 Random Matrices, which are even worse than
the serial Bisection algorithm. The reason is that Matlab is not available for multi-threaded
computation. Instead, we run the codes in multi-processes. The task of copying inputs and
distributing them to the processes takes up the vast majority of the time. The script time
consumption analysis tool in Matlab confirms our point, which shows at least 75% time
was consumed during copying and distributing. Therefore, we would focus on the version
written in C or Fortran of the Divisional Bisection algorithm in future follow-up studies.
Nevertheless, Figure 7 verifies the feasibility of Algorithm 4, which to our knowledge is the
only algorithm that works in parallel for computing any one ST eigenvalue. This paper
also focuses on the serial version.

6. Conclusions

In this paper, a novel O(n2) Divisional Bisection method is given for the ST eigenvalue
problem by Algorithms 4 and 5. When computing all eigenvalues, the results show that the
time cost is reduced by more than 35–70% on serial machines compared to the Bisection
algorithm. In addition,

1. The algorithms are easy to implement fully in parallel;
2. By Algorithm 4, even one eigenvalue can be calculated in parallel and distributed on

any number of CPU cores;
3. As with the Bisection algorithm, it is flexible to set the expected accuracy and the

computing error archives machine precision;
4. By Algorithm 4, it is practicable to calculate a single eigenvalue of any order;
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5. Combining Algorithms 4 and 5, it is practicable to calculate eigenvalues in any interval
in parallel or any orders.

The Divisional Bisection method offers a novel idea for solving the ST eigenvalue
problem and a new choice, especially for readers who care about an algorithm of good
parallelization, flexibility, and warranted accuracy.
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Abstract: In this paper, we propose an extrinsic approach based on physics-informed neural net-
works (PINNs) for solving the partial differential equations (PDEs) on surfaces embedded in high
dimensional space. PINNs are one of the deep learning-based techniques. Based on the training data
and physical models, PINNs introduce the standard feedforward neural networks (NNs) to approxi-
mate the solutions to the PDE systems. Using automatic differentiation, the PDEs information could
be encoded into NNs and a loss function. To deal with the surface differential operators in the loss
function, we combine the extrinsic approach with PINNs and then express that loss function in ex-
trinsic form. Subsequently, the loss function could be minimized extrinsically with respect to the NN
parameters. Numerical results demonstrate that the extrinsic approach based on PINNs for surface
problems has good accuracy and higher efficiency compared with the embedding approach based
on PINNs. In addition, the strong nonlinear mapping ability of NNs makes this approach robust
in solving time-dependent nonlinear problems on more complex surfaces.

Keywords: machine learning; extrinsic; embedding; intrinsic; surfaces; Laplace–Beltrami operator

MSC: 68T07; 65N99; 65M99

1. Introduction

Various applications in science and engineering, as a matter of fact, refer to solutions
of Partial Differential Equations (PDEs) on curved surfaces or more general manifolds. Such
applications include the generation of textures [1] or the visualization of vector fields [2]
in image processing, flows and solidification [3] on surfaces in fluid dynamics and evolving
surfactants [4] on interfaces in biology, etc.

To solve such surface problems, many numerical methods have been put into opera-
tion, including the typical finite difference method (FDM), finite element method (FEM),
finite volume method (FVM), phase field (PF) method, radial basis function (RBF) colloca-
tion method, meshless generalized finite difference method (GFDM), generalized moving
least squares (GMLS) method, etc. Generally, these methods cannot be directly used to han-
dle surface problems because the surface differential operators are defined in tangent space
rather than Euclidean space. In order to effectively map surface operators, Ruuth et al. [5]
put forward the closest point method based on the closest point representation of the surface
and then solved embedded PDEs by standard FDM in Euclidean space; further, Piret [6]
presented the orthogonal gradients method, which extends the closest point method to a
mesh-free version; Hansbo et al. [7] proposed the cut finite element method to solve
PDEs on implicit surfaces via level set methods; Cheung et al. [8] combined the unsym-
metric Kansa method and embedding conditions (or constant-along-normal conditions)
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to construct an overdetermined system for such surface problems; Chen et al. [9,10] used
the projection matrix and the idea of pseudospectra to approximate the Laplace–Beltrami
operator (also known as surface Laplace operator) only using collocation points on surfaces.
These advanced techniques to map surface operators can be roughly divided into three cate-
gories: intrinsic approaches [11], embedding approaches [12] and extrinsic approaches [13].
Intrinsic treatment aims to impose global or local parameterization [11] on curved surfaces
and then express surface differential operators within new coordinates. The embedding
approach aims to make embedding PDE be the analog of the surface PDE and involve only
the standard Cartesian operators. The extrinsic approach is to express surface operators
in extrinsic form and approximate them extrinsically. In our previous work [14–16], we
have combined the meshless GFDM with an extrinsic approach to solve uring pattern for-
mation problems, anomalous diffusion problems and the heat and mass transfer problems
on surfaces. The extrinsic approach is numerically proved to be a quite effective treatment.

However, traditional numerical methods inevitably need mesh generation or node
generation over the whole computational domain. Additionally, the quality of mesh or node
distribution more or less has an influence on numerical accuracy [17]. On the contrary, there
is no such concept as mesh quality in machine learning methods [18]. In other words, ma-
chine learning methods do not require high-quality meshes, but only require relatively uni-
form data sampling. To overcome the dilemma that conventional neural network methods
lack robustness under the small data regime, Tarkhov et al. [19–22] first introduced the PDE
information into neural network models with single hidden layers to solve various mathe-
matical problems. Based on this, Raissi et al. [23,24] recently developed a series of deep
neural networks based on physical information named physics-informed neural networks
(PINNs). PINNs aim to replace the PDE solution with a feedforward neural network and
take advantage of information from PDEs and initial/boundary conditions to form an opti-
mized system explicitly. This explicit system originates from the information based on train-
ing data and could also be defined as a terminology loss function. By minimizing this
system with respect to the parameters (including weights and biases) defined in NNs, PINNs
could find one NN which best describes the physical model governed by the PDEs [25–27].
To specify the differential operators acting on the variables, PINNs employ the automatic
differentiation technology and classical chain rule. As a matter of fact, Bihlo et al. [28] have
applied PINNs to solve shallow-water equations on the sphere. In that paper, they used the lati-
tude–longitude coordinates; i.e., they imposed one smooth parameterization on sphere and then
expressed the shallow-water equations in latitude–longitude coordinates. Apparently, the same
operation cannot be conducted on more general surfaces. Additionally, Fang et al. [29] first
combined the PINNs with the embedding approach to solve time independent PDEs on surface.
However, they only considered some of the embedding conditions, and the numerical accuracy
can be further improved by applying complete embedding conditions.

In this paper, our main contribution is to propose an extrinsic approach based on the PINNs
to solve surface PDEs on curved surfaces or more general manifolds. Compared with surface-
type intrinsic approach, although our method is related to the ambient dimension rather
than the surface dimension, its capability of handling more complex surfaces makes it more
competitive. In addition, we also combined the embedding approach with PINNs to make
a direct comparison with the extrinsic approach with regard to computational efficiency. We
introduce the complete embedding conditions, which means that more complex optimization
function will be formed, resulting in the inefficiency of the approach. This also shows that
extrinsic approach performs well in computational efficiency.

The remainder of the paper is organized as follows: Section 2 gives details on PDEs
defined on surfaces, introduces the PINNs and describes their implementation. In Section 3,
we demonstrate the effectiveness of PINNs under several numerical examples. In this
section, we first illustrate the convergence results by using different parameters in PINNs
and test the robustness of PINNs by adopting sundry smooth surfaces. In the same section,
we also present a comparison of numerical results by using randomly distributed training
points and points that are quasi-uniformly distributed in 3D space. Further, we explore
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the potential of PINNs for time-dependent nonlinear problems on more general surfaces.
Finally, the conclusions and discussions are summarized in Section 4.

2. Methodology

In this section, a detailed description of surface differential operators involved in PDEs
defined on surfaces, the implementation of physics-informed neural networks and their
extrinsic treatment for solving surface PDEs are presented. In addition, a brief procedure
of PINNs and its distinguishments from other methods are given.

2.1. Continuous Differential Operators on Surfaces and Its Extrinsic Form

The main difference between surface PDEs defined on surfaces and standard PDEs
posed in some bounded domains with flat geometries is that the curvatures of surfaces
play vital roles in physical models governed by the PDEs. We first pay attention to the dif-
ferential operators posed on some sufficiently smooth, connected and compact surface
S ⊂ R with no boundary and dim(S) = d− 1. The dimension d = 3 is taken into con-
sideration for notational simplicity, and any other cases with higher d could be extended
simply. To specify the relationship between surface differential operators and standard
Euclidean differential operators, we denote the unit outward normal vector at any x ∈ S as
n = (nx, ny, nz) and the corresponding projection matrix to the tangent space as

P(x) = (I3 − nnT) ∈ R3×3, (1)

where I is the 3-by-3 identity matrix. Then, the surface gradient operator ∇S could be
defined in terms of the standard Euclidean gradient ∇ via projections as

∇S := P∇, (2)

and similarly, the Laplace–Beltrami operator (also known as surface Laplace operator) ΔS
could be defined as

ΔS := ∇S · ∇S. (3)

The Laplace–Beltrami operator could be regarded as a divergence-gradient operator.
By introducing the extrinsic idea and substituting Equation (2) into Equation (3), the ex-
trinsic (Euclidean) form [8] of the surface gradient operator and Laplace–Beltrami operator
acting on any sufficiently smooth function could be derived as

∇Su := ∇u− n∂nu, (4)

ΔSu := Δu− HS∂nu− ∂
(2)
n u. (5)

in which ∂nu = nT∇u, ∂
(2)
n u := nT J(∇u)n and HS = trace

(
J(n)(I− nnT)

)
. Here, J means

the Jacobian operator in Euclidean space. Obviously, Euclidean space is the one we are
most familiar with, and most algorithms are also developed in Euclidean space. Once
the extrinsic (Euclidean) form is obtained, the approximations of surface operators are
conducted naturally. It should be noted here that the Euclidean way is just one of the ex-
trinsic treatments, and this way makes the approximation be implemented in the ambient
dimension rather than the surface dimension.

For better understanding, we give one example to derive the explicit expression of sur-
face differential operators on the unit sphere. Simplifying with the surface
S = x2 + y2 + z2− 1, one could naturally obtain the unit normal vector [x y z]T . Putting
this into Equations (4) and (5), the extrinsic surface differential operators are represented by

∇S =

⎡⎣1− x2 −xy −xz
−xy 1− y2 −yz
−xz −yz 1− z2

⎤⎦⎡⎣∂x
∂y
∂z

⎤⎦ =

⎡⎣ (1− x2)∂x − xy∂y − xz∂z
−xy∂x + (1− y2)∂y − yz∂z
−xz∂x − yz∂y + (1− z2)∂z

⎤⎦, (6)
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ΔS = (1− x2)∂xx + (1− y2)∂yy + (1− z2)∂zz − 2xy∂xy − 2xz∂xz − 2yz∂yz − 2x∂x − 2y∂y − 2z∂z. (7)

Once Equations (6) and (7) have been obtained, the approximation for surface opera-
tors defined on smooth surfaces could be expressed using some existing methods. For other
surfaces, the normal information is different, hence the difference in Equations (6) and (7).

2.2. Physics-Informed Neural Networks (PINNs)

The main aim of PINNs is to approximate the solutions to PDEs. Like other numerical
methods, the standard PINNs is derived in standard Euclidean space. In this section,
we focus on introducing the basic idea of PINNs and how it solves PDEs on surfaces
extrinsically. We use the steady state convective diffusion reaction equation(

aΔS −�b · ∇S + c
)

u(x, y, z) = f (x, y, z) (8)

with the certain coefficients a,�b, c as an illustration.
In the PINNs, there are three different ways to construct the approximate solutions

u(x, y, z) to the PDEs [26]. Due to fact that the PDE (8) defined on closed surfaces has
no boundary conditions, the direct construction of the approximate solutions is em-
ployed in this work as an output of neural networks (NN), namely, ũ(x, y, z) = uNN(x; μ),
x ∈ S(μ = {W, B}). The NN, which is parameterized with finitely many weights W

and biases B, acts as a surrogate model of the PDE model to approximate the mapping
from the spatial coordinates to the solutions of equation. One NN usually contains multiple
hidden layers to obtain more accurate solutions. Here, PINNs seek to optimize the NN’s
parameters composed of weights and biases by minimizing the so-called loss function.
Usually, the loss function is defined as the sum of mean squared error from both governing
equations (PDEs) and boundary conditions on the training points. For PDEs defined on sur-
faces without boundary conditions, the loss function is expressed by the NN parameter
μ as

Loss(μ) =
1
N

N

∑
k=1

[(
aΔS −�b · ∇S + c

)
ũ(xk)− f (xk)

]2
, (9)

in which N is the total number of the training points. By substituting Equation (4) and
Equation (5) into Equation (9), the loss function in extrinsic form finally could be derived
under Cartesian coordinate by the NN parameter as

Loss(μ) =
1
N

N

∑
k=1

[(
a(Δ− HS∂n − ∂

(2)
n )−�b · (∇− n∂n) + c

)
uNN(xk; μ)− f (xk)

]2
. (10)

As mentioned in Section 1, the embedding approach based on PINNs is also dis-
cussed in this work for comparison with the extrinsic approach. As can be seen in
Equations (4) and (5), the surface operators could be completely equal to the standard oper-
ator with the constraints ∂nu = 0 and ∂

(2)
n u = 0. The constraints are embedding conditions.

Therefore, the loss function in embedding form could be written as

Loss(μ) =
1
N

N

∑
k=1

[(
aΔ−�b · ∇+ c

)
uNN(xk; μ)− f (xk)

]2

+
1
N

N

∑
k=1

[∂nuNN(xk; μ)]2 +
1
N

N

∑
k=1

[
∂
(2)
n uNN(xk; μ)

]2
.

(11)

For PINNs, it is easy to add only two constraints to the optimization function as
Equation (11). Although the extrinsic treatment needs many computations, as shown
in Equations (4) and (5), they could be pre-computed for a certain surface before the “train-
ing”, just like Equations (6) and (7) for a unit sphere. Then, the surface operators could be
regarded as some specified operators defined in Euclidean space. Once they have been
obtained, the loss function could be expressed explicitly only using governing equation
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without any constraints. Compared with the embedding treatment having extra constraints,
the loss function in extrinsic form is simpler in the “training” process.

Then, the original problem (8) becomes an optimization problem, namely,

μ∗ = arg min
μ

Loss(μ) (12)

in which the μ∗ represents the optimal parameters.
Herein the automatic differentiation technique and the chain rule are used in loss

function to compute the spatial derivatives of uNN(x; μ). For time-dependent problems,
the approximation could be regarded as uNN(x, t; μ), and the temporal derivative could
be realized in two ways: similar treatment as a spatial derivative and individual time
integration using the method of lines. Then, different optimization algorithms can be used
to solve Equation (12). This optimization process is called “training”. Additionally, we
use multiple sets of initial NN parameters μ in the following numerical examples to avoid
its uncertainty.

2.3. The Procedure of the Extrinsic Approach Based on PINNs

To better understand this extrinsic numerical framework for approximating the surface
PDEs and compare it with traditional numerical methods, pseudocode is demonstrated
in this section. We first give the steps of some methods, involving linear algebra such
as FEM; RBF collocation methods; meshless GFDM; etc. In the implementation of these
methods, the process is more or less divided into five steps briefly: firstly, generate the mesh-
es/collocation points on surfaces; secondly, construct the approximate solutions based
on respective approximation theory; thirdly, form the stiffness matrix or basis matrix
for each mesh/point extrinsically; fourthly, assemble the information on each mesh/point
and then obtain a discrete system with respect to the PDE model on surfaces; lastly, solve
the algebraic system by using linear solver.

Differently, the pseudocode of the extrinsic approach based on PINNs could be sum-
marized in Algorithm 1.

Algorithm 1 The extrinsic approach based on PINNs.

Require: The training datasets including a group of spatial coordinates and the corre-
sponding solutions; the prescribed number of width and depth in NN; the initialized
NN parameters; the convergence tolerance ε and number of iterations Ni;

Ensure: The surrogate NN model with optimized parameters;
1: Construct the NN with initialized parameters;
2: Specify the training sets for governing equation;
3: Specify the loss function in extrinsic form considering the governing equation;
4: repeat
5: n ← n + 1, n < Ni;
6: Optimization: compute Equation (12);
7: Update the loss value;
8: until Loss value < ε
9: Determine the optimal parameters;

10: Substitute test datasets and then acquire the posterior error.

The concept of datasets in PINNs is somewhat similar to the that of collocation
points [17]—namely, the PINNs are also meshless. It inherits the advantages of both
meshless and neural network methods. In addition, although the numerical accuracy
of PINNs in the present study on surface PDEs is usually not as high as those of some
collocation methods such as RBF collocation methods, the PINNs is easy implement because
neural networks can directly be used to deal with nonlinear problems without introducing
iterative algorithms. These two advantages over traditional methods make PINNs quite
attractive recently.
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3. Numerical Examples

In this section, several different examples are provided. We first explore the con-
vergence and the accuracy of PINNs for Equation (8) on the unit sphere, and then more
surfaces and nonlinear PDEs are taken into consideration to verify its robustness. To quan-
tify the accuracy and effectiveness of our approximate solutions, we introduce the L2 error
measures as follows.

L2 =

√√√√ N

∑
k=1

(u(xk)− ũ(xk))
2/

√√√√ N

∑
k=1

(u(xk))
2 (13)

where u(xk), ũ(xk) represent the reference solution and approximate solution at the k-th
point. To avoid the uncertainty of different initializations for the network parameters μ and
find an optimal neural network as much as possible, we employed the L-BFGS optimization
method and plot the mean for the solution errors from the 10 runs, which we adopted
as a new metric of convergence. The Xavier initialization and hyperbolic tangent activation
function were taken into consideration, and all the tests were implemented in Python
on laptop with CPU i5-8265U @1.60 GHz and RAM 8.00 GB.

Example 1. Convergence and accuracy test on a unit sphere

In this example, we used Equation (8), and the coefficients were chosen as a = 1,
�b = [1 1 1]T , c = 5, and the reference solution was assembled by trigonometric function,
which is expressed as

u(x, y, z) = sin x sin y sin z. (14)

The force term was simply obtained by substituting the reference solution into the equa-
tion. A total number of 2500 points were chosen to be distributed on the unit sphere,
as shown in Figure 1. Here, we selected N points randomly from these quasi-uniform
points and the corresponding solutions from Equation (14) as training data, and all these
2500 points were regarded as test points to test the convergence of PINNs. As derived above
in Equations (6) and (7), the loss function on this unit sphere could be obtained easily.

Figure 1. Sketch of the quasi-uniform points distributed on the unit sphere: the point sets could be
obtained by using the minimum energy (ME) algorithm [30].
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Since we had no idea of how sensitive PINNs approximations are to surface differ-
entiation operators, we attempted to use various NNs with different numbers of hidden
layers (also known as the depth of the NN; e.g., four hidden layers’ mean depth is five) and
neurons (also known as the width of the NN; e.g., 20 neurons’ mean width is 20). Figure 2
shows the convergence results, and Figure 3 indicates some snapshots of error distribution
by using different parameters. Tables 1 and 2 give some numerical results using smaller
width and depth for solving linear problems on surfaces.
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10-2
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100

101

L 2 e
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Figure 2. Example 1: Convergence results by using (a) different widths and (b) different depths.

(a) (b)

(c) (d)

Figure 3. Example 1: Random few snapshots of absolute error distribution under width = 50 and
depth = 4 by using (a) 2500 training data points; (b) 1500 training data points; (c) 100 training data points;
(d) 10 training data points.
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Table 1. Example 1: L2 error and CPU time using different depths under width = 50 and 2000 training data.

Depth 2 3 4 5

L2 error 1.12× 10−3 1.41× 10−2 1.34× 10−3 1.21× 10−3

CPU time 19.96 (s) 29.42 (s) 76.65 (s) 102.26 (s)

Table 2. Example 1: L2 error and CPU time using different widths under depth = 4, with 2000 training
data points.

Width 3 5 10 20 50 100

L2 error 4.06× 10−2 1.02× 10−2 1.44× 10−3 1.91× 10−3 1.34× 10−3 1.69× 10−3

CPU time 5.47 (s) 8.54 (s) 17.67 (s) 34.63 (s) 76.65 (s) 152.72 (s)

As seen in Figures 2 and 3, we used, respectively, 2, 3, 4 and 5 hidden layers with 10, 20, 50
and 100 neurons to test convergence and accuracy of PINNs in solving Equation (8). The distri-
bution of error could be affected by many factors, such as the width/depth of NNs, the initial-
izations of NNs and the potential noise of training data. Numerical results converged at around
10−4 ∼ 10−3 with convergence rates of 1.9 and 2.0. Apparently, we could obtain similar results
by using different depths and widths when the number of training data reached 500 or more.
In Table 1, we can see that for linear surface PDEs, a network with one hidden layer works fine,
and it has the advantages of simplicity and speed of operation. In Table 2, we can see that when
using 3 or 5, the numerical accuracy would be reduced to around 10−2. To connect numerical
results in Table 2 with those in Table 1, we further considered the case with depth = 2 and width
= 3, and its L2 error is 0.71. We could summarize that the depth, width and number of training
data indeed influence the numerical results. Additionally, for surface linear problems, using
smaller width and depth is more suitable due to its higher efficiency and for surface nonlinear
problems, width and depth should be increased correspondingly. This shows PINN approxima-
tion has good adaptability to surface differential operators. Furthermore, we particularly plot
the error distribution in Figure 3 to visualize the results, which shows good accuracy of PINNs
for explicitly solving surface PDEs.

In addition, we further compare the extrinsic approach with the embedding approach
both based on the PINNs. As mentioned in Equation (11), the embedding approach needs
other constraints, and in Table 3, one can find that the accuracies of the two techniques show
almost no difference, but the computational time varies a lot. This is because the additional
constraints of embedding conditions make loss function (11) a more non-convex function.
Numerical results prove that PINNs combined with the extrinsic technique is more efficient.

Table 3. Example 1: L2 error and CPU time by using extrinsic and embedding approaches with
different numbers of training data under width = 50 and depth = 4.

N 1000 1500 2000 2500

Extrinsic 1.02 × 10−3 9.88 × 10−4 1.49 × 10−3 9.36 × 10−4

32.70 (s) 65.42 (s) 102.26 (s) 108.66 (s)

Embedding 3.51 × 10−3 4.80 × 10−3 2.17 × 10−3 1.90 × 10−3

113.93 (s) 237.02 (s) 312.26 (s) 418.55 (s)

Example 2. Results on more general surfaces

In this example, we attempted to test the robustness of PINNs by solving PDEs on more
general surfaces, and made a direct comparison by using quasi-uniform distributed training
data and randomly distributed training data as shown in Figure 4. The parametric equations
or implicit expressions of some surfaces used in this or the following example, including
Torus, a constant distance product (CDP) surface, Bretzel2, Orthocircle, Red Blood Cell
(RBC) and tooth surface, are provided as
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(1) Tours:

S =

(
1−

√
x2 + y2

)2
+ z2 − 1

9
; (15)

(2) CDP:

S =
√
(x− 1)2 + y2 + z2

√
(x + 1)2 + y2 + z2

√
x2 + (y− 1)2 + z2√

x2 + (y + 1)2 + z2 − 1.1;
(16)

(3) Bretzel2:

S =
(

x2(1− x2)− y2
)2

+
1
2

z2 − 1
40

; (17)

(4) Orthocircle:

S =
(
(x2 + y2 − 1)2 + z2

)(
(y2 + z2 − 1)2 + x2

)
(
(z2 + x2 − 1)2 + y2

)
− 0.0752

(
1 + 3(x2 + y2 + z2)

)
;

(18)

(5) RBC:

S =

⎧⎨⎩
x = 1.15 cos(λ) cos(θ),
y = 1.15 sin(λ) cos(θ), −π ≤ λ ≤ π, −π

2 ≤ θ ≤ π
2 .

z = 0.5 sin(λ)
(
0.24 + 2.3 cos(θ)2 − 1.3 cos(θ)4),

(19)

(6) Tooth:

S = x8 + y8 + z8 − (x2 + y2 + z2); (20)

In this test, the coefficients in Equation (8) were set as a = 1,�b = [1 1 1]T , c = 1, and
the reference solution was changed to u(x, y, z) = sin x cos y sin z. We first employed Torus
by using 500 quasi-uniform training data and by using 500 randomly distributed training data
to make a comparison.

(a) (b)

Figure 4. Example 2: Two different selections of training data on Torus: (a) quasi-uniform training
data; (b) random training data generated by combined multiple recursive generator algorithm: red
“*” points are selected training data; black points are test points.

It can be found from Figure 5 that the distribution of training data slightly affected
the numerical results. Although uniform sampling of the training dataset is always good
for results, PINNs are superior to some typical numerical methods to some extent for solv-
ing PDEs on high dimensional surfaces because for PINNs combined with the extrinsic
approach, only training data are required, rather than generating high quality meshes
or regular points. Additionally, the distribution of training data influences the results little.
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(a) (b)

Figure 5. Example 2: Snapshots of absolute error distribution under width = 50 and depth = 4: (a) by
using quasi-uniform training data and (b) by using randomly distributed training data.

In addition, distribution numerical errors and L2 errors on different surfaces are given,
respectively, in Figure 6 and Table 4. The number of training points was chosen as 500,
and the total numbers of points corresponding to CDP, Breztel2, Orthocircle and RBC were
3996, 3690, 4286 and 4000. When dealing with PDEs defined on high-dimensional complex
surfaces, PINNs combined with the extrinsic approach show good stability and robustness.

(a) (b)

(c) (d)

Figure 6. Example 2: Snapshots of absolute error distribution under width = 50 and depth = 4
on various surfaces: (a) CDP, (b) Bretzel2, (c) Orthocircle, (d) RBC.

Table 4. Example 2: L2 error on different surfaces under width = 50 and depth = 4.

Surfaces CDP Bretzel2 Orthocircle RBC

L2 error 1.18 × 10−3 1.51 × 10−3 4.20 × 10−3 2.37 × 10−3

Example 3. Nonlinear PDEs on surfaces

In order to confront a more complicated model on different surfaces, the nonlinear
model is considered in this example. The governing equation is
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(
aΔS −�b · ∇S + c

)
u(x, y, z) + g(u) = f (x, y, z). (21)

Herein g(u) = u2 is the nonlinear term, the exact solution was set to u = ex+y sin(z)
and the parameters were a = 1,�b = 0, c = 0. Similarly, the loss function in extrinsic form
could be expressed as Equation (10).

We again performed the convergence analysis for this nonlinear model on a unit
sphere, as exhibited in Figure 7. Apparently, compared with the results in Example 1,
the numerical results of the nonlinear model are not accurate enough when the depth
or width is too small. This means when the number of layers or the number of neurons is
too small, the complex nonlinear behavior cannot be perfectly captured in spite of good
nonlinear mapping capabilities of neural networks. As the width and depth increase,
the numerical results show convergence similarly to the linear problems. We also plot
the distribution of absolute error on the unit sphere and tooth surface under depth = 4
and width = 50, as shown in Figure 8, which indicates again that the PINNs combined
with extrinsic approach perform well not only for linear problems but also for nonlinear
problems on surfaces.

101 102 103

The number of training data

10-6

10-4

10-2

100

L
2 e

rr
or

depth = 4, width=10
depth = 4, width=20
depth = 4, width=50

(a)

101 102 103

The number of training data

10-6

10-4

10-2

100

L
2 e

rr
or

depth=2,width=50
depth=3,width=50
depth=4,width=50

(b)

Figure 7. Example 3: Convergence results by using (a) different widths and (b) different depths.

(a) (b)

Figure 8. Example 3: Snapshots of absolute error distribution under width = 50 and depth = 4
for nonlinear problems on (a) a unit sphere and (b) tooth surface.

Example 4. Time-dependent nonlinear PDEs on surfaces

In this example, a time-dependent nonlinear convective diffusion reaction equation
on a unit sphere is considered as
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∂u
∂t

=
(

aΔS −�b · ∇S + c
)

u(x, y, z, t) + g(u) + f (22)

in which g(u) = u2 and a = 1,�b = 0, c = 0. The exact solution is given as u = ex+y+z sin(t).
Differently from the traditional methods combined with some time integration methods,
the variable t in this example is considered as an individual variable, just like the spatial
variable in the loss function, i.e.,

Loss(μ) =
1
N

N

∑
k=1

[
∂tuNN(xk, tk; μ)− (aΔS −�b · ∇S + c)uNN(xk, tk; μ)− g(ũ)− f (xk)

]2
(23)

We plot the distribution of absolute error on the unit sphere at t = 0.1 as illustrated
in Figure 9. The L2 error is 1.65× 10−3 using 2500 points with time increment Δt = 0.01.
When considering the continuous time models, the original Equation (22) becomes a 4D
problem. We found that PINNs has a good ability to approximate high-dimensional
problems, which can be well combined with an extrinsic approach.

Figure 9. Example 4: Distribution of absolute error under width = 50 and depth = 4 for time-
dependent nonlinear problems (22) on the unit sphere.

4. Conclusions and Discussions

In this work, the extrinsic approach based on PINNs is proposed and shows good per-
formance and potential in the solutions of linear or nonlinear partial differential equations
(PDEs) on surfaces embedded in high dimensional space. We could conclude from the first
example that PINNs converge rapidly at the beginning of the increasing number of train-
ing points due to the dominant effect of the discretization error, and the solution will
not be obviously improved with the further increase in the number of training points
due to the dominant effect of optimization error. The second and third examples show
that PINNs, as combinations of machine learning and differential equations, will not lose
accuracy as the dimensionality (shape) increases in complexity; and will remain stable
regardless of the distribution of training data or the complexity of the problem, as long
as the data provided are accurate enough and the depth/width is large enough. This
indicates the PINNs have good stability and robustness. In addition, we also compared
the embedding approach based on PINNs with the extrinsic approach; the extrinsic ap-
proach based on PINNs showed better accuracy and used less computational time.

As a matter of fact, PDEs on curved surfaces or manifolds involve applications in biological
pattern formation. In [31] and the references therein, it is proved that the geometry and
specifically curvature play vital roles in biological pattern formation on curved surfaces. To
deal with those surfaces composed of scatter points in realistic problems, two additional
techniques, surface reconstruction [32,33] and the pseudospectral approach [9,16], could be
further considered. Additionally, although the continuous time models are fine, they still face
a dilemma when dealing with long simulations and large amounts of data, so there is a need
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to introduce other techniques [34]. We revealed the potential of an extrinsic approach based
on PINNs for surface problems in this work and leave the long simulations on complicated
surfaces to our future work.
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Abstract: The classical radial point interpolation method (RPIM) is a powerful meshfree numerical
technique for engineering computation. In the original RPIM, the moving support domain for the
quadrature point is usually employed for the field function approximation, but the local supports
of the nodal shape functions are always not in alignment with the integration cells constructed for
numerical integration. This misalignment can result in additional numerical integration error and
lead to a loss in computation accuracy. In this work, a modified RPIM (M-RPIM) is proposed to
address this issue. In the present M-RPIM, the misalignment between the constructed integration
cells and the nodal shape function supports is successfully overcome by using a fixed support domain
that can be easily constructed by the geometrical center of the integration cell. Several numerical
examples of free vibration analysis are conducted to evaluate the abilities of the present M-RPIM and
it is found that the computation accuracy of the original RPIM can be markedly improved by the
present M-RPIM.

Keywords: meshfree numerical technique; free vibration; integration error; numerical integration

MSC: 35A08; 35A09; 35A24; 65L60; 74S05

1. Introduction

The classical finite element method (FEM), which is based on the weighted residual
technique, is a versatile and well-developed numerical approach in the field of modern
computation mechanics [1]. Many mature commercial software packages (such as ANSYS,
ABAQUS and NASTRAN) based on the FE approach have been developed and used in
various engineering applications. Though the standard FEM has achieved great success in
practical engineering computation, the FEM still suffers from several inherent shortcomings
compared to other advanced numerical techniques [2–12]. Among them, one important
issue is that the FEM is essentially a mesh-based method and the involved problem domain
should be firstly discretized into a series of elements that are connected by nodes for
FE analysis. Therefore, the additional burdensome tasks for meshing operations cannot
always be circumvented. Additionally, the solution accuracy of the FEM is usually sensitive
to mesh qualities and the solutions from low-quality meshes are always not sufficiently
accurate. To obtain sufficiently fine solutions, more attention should be given to obtain
high-quality meshes. These issues will be greater when the standard FEM is employed
to manage problems related to dynamic cracks and large deformation of complicated
geometric shapes.

To alleviate the dependence of the conventional FE approach on predefined meshes,
a series of smoothed FEMs [13–17] and meshfree techniques [18–24] have been proposed,
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such as the element-free Galerkin method (EFGM) [25,26], the meshless local Petrov–
Galerkin method (MLPG) [27], the reproducing kernel particle method (RKPM) [28], the
radial point interpolation method (RPIM) [29,30], the general finite difference method
GFDM [31–35], and the boundary-based numerical methods [36–40], to name a few. Ac-
tually, the meshfree methods can be classified into different types according to different
formulation procedures [18]. Among them, several meshless methods are based on the
weak form of the governing equation [41–44], while some others are based on the strong
weak form [45–51]. In this work, we mainly focus on discussing the meshfree methods
based on the well-known Galerkin weighted residual technique (such as the EFEM and
RPIM), which are the typical weak-form-based numerical techniques. Compared to the
standard FEM, one outstanding advantage of these meshfree methods is that the required
nodal shape functions can be built entirely by using a set of scattered nodes, rather than as
elements in the conventional FEM. In consequence, the field function approximation also
can be constructed by the scattered nodes. This property enables the meshfree methods
to have distinct advantages over the conventional FEM in managing the dynamic crack
problem and larger deformation problem. In addition, adaptive analysis also can be imple-
mented much more easily in the meshfree framework than in the standard FEM framework.
More importantly, the meshfree methods usually possess other excellent features that the
standard FEM does not have. A very good comparison and overview on the meshfree
methods and the FEM can be found in a published monograph [18].

Although the meshfree methods have achieved considerable success both in theory
and practical engineering applications, they still cannot match the classical FEM in terms
of universality; further, there still exists several crucial issues that should be addressed
very carefully. For example, the radial point interpolation method (RPIM), which is a
typical meshfree numerical method, has been employed for solving many engineering
problems owing to several excellent features, such as relatively high computation accuracy,
good numerical stability and the possession of the Kronecker-delta function property.
However, the compatibility of the standard RPIM cannot be automatically ensured, which
may lead to numerical integration error. The main reason is that in the standard RPIM
the local support domains of nodal interpolation functions are not always in accord with
the constructed integration cells for numerical integration. The related issues have been
investigated in [52,53] and in the so-called bounding box technique that has been proposed
by proposed by Dolbow and Belytschko [52]. The related numerical results show that
this scheme is indeed quite effective in addressing the issues mentioned; however, the
implementation of this scheme is quite complicated and, hence, it is not very practical in
engineering computation.

In this work, a simple and elegant scheme is developed to make the local support
domains of the nodal shape functions in RPIM entirely align with the constructed quadra-
ture cells for numerical integration; hence, the possible integration error can be markedly
decreased. The main idea of this scheme is to design a new node selection scheme for
the field function approximation. In this scheme, a fixed support domain (not a moving
support domain in the original RPIM), which is determined by the geometrical center
of the quadrature cell, is used for any quadrature point in the integration cell. For the
convenience of notation, the proposed scheme in this work is called the modified RPIM
(M-RPIM). We have further employed the present M-RPIM to analyze the free vibration
of two-dimensional solids. It can be found that the M-RPIM behaves much better than
the original RPIM for free vibration analysis, and many more numerical solutions can be
provided with the totally identical node distributions.

2. Formulation of the Original RPIM and the Present M-RPIM

Consider a problem domain Ω with boundary Γ, and a field function u(x) is defined on
it. A series of scattered field nodes are employed to totally discretize the problem domain
and its boundary. For a sampling point in the problem domain, the corresponding field

170



Mathematics 2022, 10, 2889

function approximation uh(x) can be expressed in the following form by using the radial
basis function (RBF) and polynomial basis function (PBF) [18]:

uh(x) =
n

∑
i=1

Ri(x)ai +
m

∑
j=1

Pj(x)bj = RT(x)a + PT(x)b, (1)

in which Ri(x) stands for the RBF used and Pj(x) represents the PBF used; n denotes
the number of RBF used for interpolation, namely, there are n field nodes in the support
domain of the sampling point x, m denotes the number of PBF used for interpolation, and
the complete linear polynomial ([1 x y]) is used in this work, namely, m = 3; ai and bj are
the unknown interpolation coefficients.

There are many different types of RBF that can be used to formulate the RPIM, and
different RBFs have different features [18]. In this work, the well-known multiquadrics
(MQ) function is used to construct the required field function approximation owing to its
several excellent characteristics. The expression of the MQ function is as follows [18,21]:

Ri(x) =
[
r2

i + (αcdc)
2
]q

, (2)

in which ri denotes the distance from the field node to the sampling point, dc is the average
nodal interval of the field nodes used, and αc and q denote two undetermined parameters
that are closely related to the computation accuracy of the RPIM; q = 1.03 and αc = 1 are
used in this work because very good numerical results can always be obtained for solid
mechanics with these parameters.

With the aim to determine the coefficients ai and bj, Equation (1) should satisfy a series
of reasonable constraint conditions. Firstly, it is usually assumed that the constructed field
function approximation can exactly pass through the function values of all the nodes located
in the support domain of the sampling point x; these constraints can be expressed by:[

u1 u2 · · · un
]T

= R0a + P0b, (3)

R0 =

⎡⎢⎢⎢⎣
R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
...

...
...

R1(rn) R2(rn) · · · Rn(rn)

⎤⎥⎥⎥⎦, (4)

PT
0 =

⎡⎢⎢⎢⎢⎢⎣
1 1 · · · 1
x1 x2 · · · xn
y1 y2 · · · yn
...

...
. . .

...
qm(x1) qm(x2) · · · qm(xn)

⎤⎥⎥⎥⎥⎥⎦, (5)

in which R0 and P0 are the so-called moment matrices corresponding to the RBF and
PBF, respectively.

To uniquely determine the unknown interpolation coefficients ai and bj, the following
additional constraints should also be satisfied:

n

∑
i=1

Pj(xi)ai = PT
0 a = 0, j = 1, 2, · · · , m, (6)

The combination of all the constraining conditions shown in Equations (2) and (6) can
result in the following matrix equation:[

u

0

]
=

[
R0 P0
PT

0 0

]
︸ ︷︷ ︸

G

[
a

b

]
︸ ︷︷ ︸

a0

= Ga0, (7)
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Then, the undetermined interpolation coefficients can be calculated by[
a

b

]
= a0 = G−1

[
u

0

]
, (8)

Substituting the interpolation coefficients obtained into Equation (1) and following
the standard formulation of the conventional RPIM, the required nodal interpolation shape
function can be obtained by

ΦT(x) =
[
φ1(x) φ2(x) · · · φn(x)

]
=

{
RT(x) QT(x)

}
G−1|1∼n , (9)

In the standard RPIM, the field nodes participating in building the field function
approximation for the sampling point, which are usually quadrature points, are determined
by a support domain. The shape of the support domain can be a square or a circle. The
sampling point is usually the center of the defined support domain, while the background
cells for numerical integration are always constructed independently of the support domain.
As a result, the different sampling points (or quadrature points) in one integration cell may
have different support domains, namely, the required field nodes to construct the field
function approximation are different. In summary, since the moving support domain is
used in the traditional RPIM, the support domain of the nodal shape functions always do
not align with the background integration cells, which then leads to considerable numerical
integration error and degrades the quality of the numerical solutions obtained.

To effectively overcome the abovementioned misalignment between the nodal shape
function supports and the background integration cells, in this work a modified RPIM
(M-RPIM) is employed to analyze the free vibration of two-dimensional solids. In this
M-RPIM, a fixed support domain (as shown in Figure 1) rather than the moving support
domain in the standard RPIM is used to select the required field nodes for the construction
of the field function approximation. In other words, the identical field nodes are used
for interpolation for any quadrature points in one background integration cell. The fixed
support domain used can still be a square or a circle (the square support domain is used in
this work); however, this fixed support domain is always centered by the geometrical center
of the integration cell, not centered by the sampling points (which are usually the quadrature
points) as in the conventional RPIM. The difference between the original RPIM and the present
M-RPIM in constructing the field function approximation can be shown as follows:{

uh(x)RPIM = ∑ φiui, xi ∈ ΩQ

uh(x)M−RPIM = ∑ φiui, xi ∈ Ω∗ , (10)

in which ΩQ stands for the moving support domains, which are centered by the quadrature
points in one background cell, Ω∗ represents the fixed support domains that are directly
centered by the centroids of the background integration cells.
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(a) 

 
(b) 

Figure 1. Comparison of the original RPIM and the present M-RPIM for node selection in the
numerical approximation. (a) The node selection scheme in the original RPIM. (b) The node selection
scheme in the present M-RPIM.

3. Formulation of the Elastodynamics of Two-Dimensional Solids

Based on the small displacement assumption, the partial differential equation (PDE)
of the boundary-value problem for the elastodynamics of solids can be written by

∇σ+ b = ρ
..
u in Ω, (11)

in which Ω denotes the problem domain considered, b stands for the body force, σ repre-
sents the stress tensor, ρ is the mass density, u is the displacement vector and

..
u signifies

second derivatives of u.
As usual, the following two kinds of boundary conditions are always considered for

the two-dimensional elastodynamics of solids:⎧⎨⎩u =
¯
u, on ΓE

σ · n =
¯
t , on ΓN

, (12)

in which ΓE and ΓN denote the essential boundary condition and the natural boundary

condition, respectively;
¯
u and

¯
t are the imposed displacement vector and traction vector

on the corresponding boundary conditions.
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Using the boundary conditions shown in Equation (12) and following the virtual
displacement principle, the weak form of Equation (11) for the elastodynamics of two-
dimensional solids can be obtained by∫

Ω
ρδu

..
udΩ +

∫
Ω

δεσd =
∫

ΓN

δu
¯
t dΓ +

∫
Ω

δubdΩ, (13)

in which δu and δε stand for the virtual displacement and strain, respectively.
Using the Galerkin weighted residual techniques and the field function approximation

shown in Equation (1), the matrix equation for the weak form shown in Equation (13) can
be obtained [1,18] by the following relationship:

M
..
u + C

.
u + Ku = F, (14)

in which M is the usual mass matrix, K is the usual stiffness matrix, F is the applied force
vector and C is the matrix containing the damping effects.

Without considering the damping effects and the external force, Equation (14) reduces to

M
..
u + Ku = 0, (15)

Equation (15) is the governing matrix equation obtained for the free vibration analysis
of two-dimensional solids.

Assuming that the displacement solution to Equation (15) is time harmonic, namely,

u = U exp(jωt), (16)

in which j =
√−1, ω denotes the angular frequency, and U is the amplitude of the

displacement distribution.
Substituting Equation (16) into Equation (15), then Equation (15) can be rewritten as[

K−ω2M
]
U = 0, (17)

From Equation (17), we can observe that the typical eigenvalue problem should be
solved to perform the analysis of free vibration problems.

4. Numerical Example

In this section, several typical numerical examples are considered to assess the capa-
bility of the proposed M-RPIM in free vibration analysis of the two-dimensional solids.
For the convenience of discussion, the natural frequency values from the present M-RPIM
are compared to those from the original RPIM and the standard finite element approach
with bilinear quadrilateral elements (FEM-Q4). In all the numerical examples considered,
identical node arrangements are employed for these three different numerical methods (M-
RPIM, RPIM and FEM-Q4). For simplification, the quadrilateral meshes used are directly
employed as the background cells to perform the numerical integration for the RPIM and
M-RPIM, unless otherwise noted. To effectively examine and compare the accuracy and
convergence of numerical solutions from the different numerical methods, the following
relative error indicator is employed in this work:

Re =

∣∣∣∣∣ fnum − fre f

fre f

∣∣∣∣∣× 100%, (18)

in which fnum denotes the natural frequency results from the numerical methods (M-RPIM,
RPIM and FEM-Q4) and fre f represents the reference natural frequency results, which
are usually obtained from the commercial finite element software packages with a very
refined mesh.
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4.1. Free Vibration Analysis of the Cantilever Beam

Firstly, the free vibration of a cantilever beam is considered here. As shown in Figure 2,
the geometric configuration of the cantilever beam has length L = 100 mm and height
D = 10 mm. A unit thickness (t = 1 mm) is considered for this beam and, hence, this
numerical example can be simplified as a plane stress problem. The material constants
of this beam are taken as Young’s modulus E = 2.1 × 1011 Pa, Poisson’s ratio v = 0.3 and
mass density ρ = 8 × 103 kg/m3. The regular node arrangements are used to discretize
the problem domain of this cantilever beam for the three different numerical methods. For
a detailed analysis and discussion, a series of different node arrangement patterns with
different nodal intervals are used here (see Figure 3).

 

Figure 2. The geometric configuration of the cantilever beam in plane stress condition.

 
(a) 

 
(b) 

Figure 3. The different node arrangement patterns that are employed to discretize the cantilever beam
for different numerical methods: (a) uniform mesh pattern, which is used to discretize the cantilever
beam for the standard FEM-Q4; (b) node arrangement pattern used to discretize the cantilever beam
for the RPIM and M-RPIM.

4.1.1. Computation Accuracy Study

Utilizing a series of different node arrangement patterns, the first twelve natural
frequency solutions from the three numerical methods are listed in Tables 1–4. Among them,
the corresponding RPIM and M-RPIM solutions are obtained when the size of the nodal support
domain is taken as αs = 2.5h (h denotes average nodal interval of the meshes used). The reference
solutions from eight-node quadrilateral element (FEM-Q8) with a very refined mesh pattern
(average nodal interval h = 0.1 mm) are also provided in the tables for comparison.
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Table 1. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 2 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 830.567 1.003 815.423 0.839 825.213 0.351 822.322
2 4989.034 1.132 4909.931 0.471 4952.383 0.389 4933.177
3 12,826.933 0.022 12,826.322 0.017 12,825.428 0.010 12,824.145
4 13,167.852 1.336 13,035.277 0.316 13,025.003 0.237 12,994.215
5 23,992.489 1.604 23,772.722 0.673 23,725.015 0.471 23,613.775
6 36,701.000 1.910 36,492.012 1.329 36,197.042 0.510 36,013.226
7 38,467.305 0.059 38,461.345 0.044 38,450.819 0.016 38,444.488
8 50,697.394 2.248 50,570.105 1.991 49,854.144 0.547 49,582.799
9 64,062.116 0.225 64,045.638 0.199 63,984.254 0.103 63,918.563
10 65,590.504 2.524 65,609.724 2.554 64,290.994 0.493 63,975.503
11 81,118.869 3.012 81,334.286 3.286 79,233.413 0.618 78,746.943
12 89,562.090 0.252 89,514.438 0.199 89,345.277 0.010 89,336.686

Table 2. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 1 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 824.304 0.241 819.913 0.293 822.800 0.058 822.322
2 4946.701 0.274 4924.719 0.171 4936.588 0.069 4933.177
3 12,824.618 0.004 12,824.955 0.006 12,824.496 0.003 12,824.145
4 13,036.557 0.326 13,008.259 0.108 13,004.647 0.080 12,994.215
5 23,706.655 0.393 23,657.845 0.187 23,635.380 0.091 23,613.775
6 36,182.573 0.470 36,152.539 0.387 36,049.829 0.102 36,013.226
7 38,449.523 0.013 38,447.183 0.007 38,445.401 0.002 38,444.488
8 49,857.999 0.555 49,874.211 0.588 49,637.697 0.111 49,582.799
9 63,996.004 0.121 63,990.287 0.112 63,976.475 0.091 63,918.563
10 64,332.241 0.558 64,422.173 0.698 63,994.651 0.030 63,975.503
11 79,334.621 0.746 79,524.455 0.987 78,846.611 0.127 78,746.943
12 89,391.481 0.061 89,377.038 0.045 89,336.977 0.000 89,336.686

Table 3. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 0.67 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 823.104 0.095 821.051 0.155 822.413 0.011 822.322
2 4938.559 0.109 4928.453 0.096 4933.920 0.015 4933.177
3 12,824.010 0.001 12,823.612 0.004 12,823.953 0.001 12,824.145
4 13,011.299 0.131 12,992.024 0.017 12,996.698 0.019 12,994.215
5 23,651.752 0.161 23,631.689 0.076 23,619.234 0.023 23,613.775
6 36,083.214 0.194 36,074.813 0.171 36,022.821 0.027 36,013.226
7 38,445.687 0.003 38,444.328 0.000 38,443.843 0.002 38,444.488
8 49,697.499 0.231 49,714.721 0.266 49,597.527 0.030 49,582.799
9 63,982.840 0.101 63,979.749 0.096 63,939.314 0.032 63,918.563
10 64,092.160 0.182 64,149.033 0.271 63,974.133 0.002 63,975.503
11 78,994.780 0.315 79,104.908 0.455 78,774.275 0.035 78,746.943
12 89,358.561 0.024 89,351.356 0.016 89,334.272 0.003 89,336.686
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Table 4. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 0.5 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 822.674 0.043 821.486 0.102 822.279 0.005 822.322
2 4935.637 0.050 4929.842 0.068 4932.985 0.004 4933.177
3 12,823.747 0.003 12,823.464 0.005 12,823.711 0.003 12,824.145
4 13,002.246 0.062 12,991.382 0.022 12,993.901 0.002 12,994.215
5 23,632.124 0.078 23,621.334 0.032 23,613.557 0.001 23,613.775
6 36,047.788 0.096 36,044.602 0.087 36,013.347 0.000 36,013.226
7 38,444.192 0.001 38,443.250 0.003 38,443.144 0.003 38,444.488
8 49,640.417 0.116 49,653.240 0.142 49,583.475 0.001 49,582.799
9 63,977.974 0.093 63,975.937 0.090 63,920.007 0.002 63,918.563
10 64,006.958 0.049 64,044.242 0.107 63,973.057 0.004 63,975.503
11 78,874.387 0.162 78,944.368 0.251 78,749.088 0.003 78,746.943
12 89,346.670 0.011 89,342.201 0.006 89,332.973 0.004 89,336.686

From the results listed in the tables, we can observe that the original RPIM cannot al-
ways provide more accurate solutions than the standard FEM-Q4 in calculating the natural
frequency values of this cantilever beam, although the higher order interpolation (not the
bilinear interpolation in the FEM-Q4) is employed in the RPIM when the nodal support
domain αs = 2.5h. This is mainly caused by the misalignment between the constructed
integration cells and the local support domains of the nodal interpolation functions. Owing
to this misalignment, the integrands obtained in the original RPIM are not always continu-
ously differentiable, then considerable numerical integration error is generated and leads
to an additional loss in computation accuracy. However, from the tables we can observe
that very good agreement between the M-RPIM solutions and the reference solutions can
be achieved, and the M-RPIM solutions are much more accurate than the RPIM solutions.
The main reason for this is that in the M-RPIM a fixed nodal support domain (not a moving
support domain), which is built by the centroids of the integration cells, is directly used to
perform the required numerical integration; then, the abovementioned misalignment be-
tween the integration cells and the local nodal support domains can be easily removed. As a
result, the integrands obtained are completely continuously differentiable in the integration
cells, so the numerical integration error can be markedly reduced and the computation
accuracy can be significantly improved by the present M-RPIM for free vibration analysis.
In addition, the vibration modes of the cantilever beam corresponding to the first twelve
natural frequency values from the present M-RPIM are plotted in Figure 4; we can observe
that the vibration modes obtained are quite stable and the physical mode shapes can be
accurately achieved.

4.1.2. Convergence Study

In this subsection, the convergence performance of the numerical solutions from
different numerical approaches is investigated in great detail. As shown in Figure 5, the
comparison of the relative error (Re) results of the computed natural frequency values
from different numerical methods versus the nodal interval (1/h) are given; the sign R
in the legend of Figure 5 denotes the convergence rate of different numerical techniques.
For simplicity, only the first two natural frequency values (Mode 1 and Mode 2) are
considered here. From Figure 5, it can be observed that the convergence rate of the
original RPIM is unexpectedly lower than the standard FEM-Q4 when the size of the nodal
interpolation function support domain is taken as αs = 2.5h. This observation indicates that
the misalignment between the integration cells and the local support domain of the nodal
shape function in the original RPIM indeed can result in considerable numerical integration
error; thus, the convergence rate can be markedly reduced.
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Figure 4. The free vibration modes of cantilever beam corresponding to the first twelve natural
frequency values from the present M-RPIM: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode
5; (f) Mode 6; (g) Mode 7; (h) Mode 8; (i) Mode 9; (j) Mode 10; (k) Mode 11; (l) Mode 12.

However, from Figure 5 we also can see that the present M-RPIM is able to achieve a
higher convergence rate than the original RPIM and standard FEM-Q4. These findings again
demonstrate that the proposed program in this paper overcomes the misalignment between
the constructed integration cells, and that the nodal shape function indeed effectively
supports suppression of possible numerical integration error. For free vibration analysis
of solids, therefore, the present M-RPIM has a higher convergence rate than the original
RPIM and standard FEM-Q4.
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(a) 

(b) 

Figure 5. Comparison of the relative error (Re) results of the computed natural frequency values
from different numerical methods versus the nodal interval (1/h): (a) Mode 1; (b) Mode 2.

4.1.3. Computation Efficiency Study

From the analysis and discussion above, it can be observed that the present M-RPIM
behaves better than the original RPIM and standard FEM-Q4 in terms of computation
accuracy and convergence properties. However, the computation efficiency of the proposed
M-RPIM is not yet studied. Note that computation efficiency is also a crucial index to
assess the capabilities of numerical methods in engineering computation; comparison of
the computation efficiency for the three different numerical methods is performed here. To
analyze the computation efficiency, a series of different node arrangement schemes shown
in Figure 3 are again employed.

Figure 6 gives the comparison of the relative error results (Re) of the natural frequency
values versus the computation cost for the three numerical methods. For simplicity, we
still only consider the first two modes. From Figure 6, we can observe that the required
computational cost for the standard FEM-Q4 is much less than for the original RPIM and the
present M-RPIM when the identical node arrangement scheme is employed. This is because
many more quadrature points are used to perform the numerical integration in RPIM and
M-RPIM compared to standard FEM-Q4. Nevertheless, the computation accuracy of the
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standard FEM-Q4 cannot surpass the M-RPIM because a higher local approximation is
used in this meshless numerical technique.

(a) 

(b) 

Figure 6. Comparison of the relative error results (Re) of the natural frequency values versus the
computation cost for the three different numerical methods: (a) Mode 1; (b) Mode 2.

From Figure 6, we also can observe that the original RPIM is actually numerically
more expensive than the M-RPIM for the identical node arrangement scheme. This is
because a moving support domain is used for different quadrature points in the original
RPIM. In other words, for each quadrature point, the related operation in determining the
support domain (namely the node selection for interpolation) should be performed once,
while in the present M-RPIM, a fixed support domain is employed for any quadrature
points within one integration cell; hence, the required operation in determining the support
domain only should be performed once for each integration cell. Thus, in the M-RPIM, less
computational cost is required in the node selection compared to the RPIM. Note that the
present M-RPIM also has higher computation accuracy than the original RPIM; hence, the
present M-RPIM also possesses higher computation efficiency than the original RPIM in
engineering computation. This point can be clearly seen in Figure 6.

180



Mathematics 2022, 10, 2889

4.2. Free Vibration Analysis of the Cantilever Beam with Variable Cross-Section

The second numerical example considered here is a cantilever beam with variable cross-
section. The geometric configuration of the variable cross-section beam is shown in Figure 7
and the related material constants are taken as Young’s modulus E = 3 × 107 Pa, Poisson’s
ratio v = 0.3 and mass density ρ = 1 kg/m3. The regular node arrangement scheme is used
to discretize this variable cross-section beam and the corresponding node distributions for
the standard FEM-Q4 and the two meshless methods (RPIM and M-RPIM) are given in
Figure 8. The first twelve natural frequency values computed using different numerical
methods are listed in Table 5. Similar to the first numerical example, the corresponding
natural frequency results from the eight-node quadrilateral element (FEM-Q8) with a very
refined mesh pattern (5151 nodes and 5000 elements) are also provided as the reference
solutions. It is clearly seen that the accuracy of FEM-Q4 results is worse than the original
RPIM and the present M-RPIM results. However, the RPIM results are not more accurate
than the M-RPIM ones, and the most accurate natural frequency solutions of this variable
cross-section cantilever beam can be provided by the present M-RPIM. In addition, the
first twelve mode shapes of this variable cross-section cantilever beam obtained from the
proposed M-RPIM are depicted in Figure 9. It is easy to find that the eigenmode of this
variable cross-section cantilever beam can be accurately predicted by the present M-RPIM.
This numerical example demonstrates that the abilities of the original RPIM in engineering
computation can be markedly improved by the present M-RPIM.

Figure 7. The geometric configuration of the variable cross-section beam in plane stress condition.

Table 5. The first twelve natural frequency values for the variable cross-section cantilever beam
computed using different numerical methods.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 41.771 0.333 41.536 0.233 41.678 0.109 41.633
2 147.202 0.781 146.826 0.523 146.335 0.187 146.062
3 151.597 0.058 151.511 0.002 151.532 0.015 151.508
4 298.805 1.349 298.048 1.092 295.483 0.222 294.829
5 412.666 0.326 412.032 0.172 411.396 0.017 411.327
6 442.931 1.685 441.428 1.340 436.366 0.178 435.592
7 528.614 1.053 526.132 0.578 523.667 0.107 523.108
8 601.857 2.143 598.737 1.614 590.187 0.163 589.229
9 619.528 1.005 613.227 0.023 613.441 0.012 613.365
10 671.507 1.529 662.514 0.170 662.167 0.117 661.392
11 710.007 2.389 705.817 1.785 695.000 0.225 693.441
12 713.997 0.802 710.025 0.241 708.647 0.046 708.320
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(a) 

(b) 

Figure 8. The different node arrangement patterns that are employed to discretize the variable
cross-section cantilever beam for different numerical methods: (a) mesh pattern used to discretize the
variable cross-section cantilever beam for the standard FEM-Q4; (b) node arrangement patterns used
to discretize the variable cross-section cantilever beam for the RPIM and M-RPIM.

4.3. Free Vibration Analysis of the Cantilever Beam with Holes

The last numerical example is also a cantilever beam in plane stress condition. Unlike
the previous numerical examples, the cantilever beam considered here has three identical
holes (see Figure 10). The geometric parameters of this beam are given in Figure 10 and
the material constants are taken as Young’s modulus E = 2.1 × 1011 Pa, Poisson’s ratio
v = 0.3 and mass density ρ = 8× 103 kg/m3. The node arrangement scheme for the different
numerical methods are plotted in Figure 11, and the average nodal interval h = 0.002 m.
Similar to the previous two numerical examples, the first twelve natural frequency values
from the different numerical methods are listed in Table 6, and the corresponding mode
shapes from the present M-RPIM are given in Figure 12. In Table 6, the reference solutions
are also computed from the eight-node quadrilateral element (FEM-Q8) with a very refined
mesh pattern (average node interval h = 0.0001 m). Similarly, Table 6 and Figure 12 show
that we obtain results similar to those in the previous two numerical examples, namely, the
present M-RPIM can generate much more accurate numerical solutions than the original
RPIM and FEM-Q4 for free vibration analysis; the present method has great potential for
more complicated engineering computation.
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Figure 9. The free vibration modes of the variable cross-section cantilever beam corresponding to the
first twelve natural frequency values from the present M-RPIM: (a) Mode 1; (b) Mode 2; (c) Mode 3;
(d) Mode 4; (e) Mode 5; (f) Mode 6; (g) Mode 7; (h) Mode 8; (i) Mode 9; (j) Mode 10; (k) Mode 11;
(l) Mode 12.

183



Mathematics 2022, 10, 2889

Figure 10. The cantilever beam with three identical holes and in plane stress condition.

(a) 

(b) 

Figure 11. The node arrangement patterns employed to discretize the cantilever beam with three
identical holes for the different numerical methods: (a) mesh pattern used to discretize the cantilever
beam with three identical holes for the standard FEM-Q4; (b) node arrangement pattern used to
discretize the cantilever beam with three identical holes for the RPIM and M-RPIM.

Table 6. The first twelve natural frequency values computed using different numerical methods for
the cantilever beam with three identical holes.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 1626.190 0.617 1612.353 0.239 1618.711 0.154 1616.218
2 8272.300 0.174 8246.759 0.135 8268.312 0.126 8257.923
3 11,373.419 0.791 11,239.656 0.395 11,302.342 0.161 11,284.188
4 19,395.928 1.595 19,004.812 0.454 19,101.194 0.051 19,091.435
5 33,523.877 1.273 33,233.174 0.395 33,231.319 0.390 33,102.326
6 33,972.380 1.786 33,568.275 0.575 33,472.489 0.288 33,376.214
7 37,191.685 2.943 36,443.890 0.873 36,333.778 0.568 36,128.559
8 52,155.832 2.894 51,179.337 0.968 51,042.893 0.699 50,688.744
9 52,582.353 3.420 51,249.812 0.799 51,117.100 0.538 50,843.699
10 55,474.223 2.473 54,470.879 0.620 54,276.585 0.261 54,135.295
11 67,782.825 2.359 66,555.530 0.505 66,471.730 0.379 66,220.863
12 75,775.407 1.343 75,309.818 0.721 74,789.424 0.025 74,771.060
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Figure 12. The free vibration modes of the cantilever beam with three identical holes corresponding
to the first twelve natural frequency values from the present M-RPIM: (a) Mode 1; (b) Mode 2;
(c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6; (g) Mode 7; (h) Mode 8; (i) Mode 9; (j) Mode 10;
(k) Mode 11; (l) Mode 12.

5. Conclusions

In this work, a modified radial point interpolation method (M-RPIM) is proposed to en-
hance the capacities of the original RPIM for the free vibration analysis of two-dimensional
solids. In the present M-RPIM, the numerical approximation established in integration cells
is continuously differentiable while the corresponding numerical approximation in the
original RPIM is always not continuously differentiable. Therefore, the possible numerical
integration error in the original RPIM can be markedly reduced by the present M-RPIM.
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Several supporting numerical examples are employed to investigate fully and in
detail the performance of the proposed M-RPIM in solving free vibration problems. It is
demonstrated that the proposed M-RPIM not only is able to surpass the original RPIM and
the standard FEM-Q4 in terms of computation accuracy and convergence properties when
the identical node arrangement scheme is employed, but the proposed method also has
higher computation efficiency. This is because the fixed support domain is employed for
any quadrature points in the integration cells; hence, the additional operations to determine
the support domain for each quadrature point are not required. Owing to these excellent
features, the present M-RPIM has great potential for solving more complex problems in
practical engineering application.
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Abstract: This paper presents a novel method for computing the symmetric tridiagonal eigenvectors,
which is the modification of the widely used Inverse Iteration method. We construct the correspond-
ing algorithm by a new one-step iteration method, a new reorthogonalization method with the
general Q iteration and a significant modification when calculating severely clustered eigenvectors.
The numerical results show that this method is competitive with other existing methods, especially
when computing part eigenvectors or severely clustered ones.

Keywords: symmetric tridiagonal matrix; eigenvector solver; clustered eigenpairs; orthogonalization;
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1. Introduction

Computing the symmetric tridiagonal (ST) eigenvector is an important task in many
research fields, such as the computational quantum physics [1], mathematics [2,3], dynam-
ics [4], computational quantum chemistry [5], etc. The ST eigenvector problem also arises
while solving any symmetric eigenproblem because it is a common practice to reduce the
generalized symmetric eigenproblems to an ST one.

The Divide and Conquer (DC) algorithm [6] has a considerable advantage when
calculating all the eigenpairs of an ST matrix. It is quite remarkable that the DC method,
which is efficient for parallel computation, can also be faster than other implementations
on a serial computer. However, this method does not support computing part eigenpairs
or computing eigenvectors only. In practice, it is rare to compute the full eigenvectors
of a large ST matrix. The famous QR method [7] has the same shortage while costing
more time and is hard to be parallelized. This paper focuses on modifying the solution of
computing part eigenvectors and gives a new method for eigenvectors of good accuracy
and orthogonality.

Once an accurate eigenvalue approximation is known, the Inverse Iteration method [8]
always computes an accurate eigenvector with an acceptable time cost. However, it does
not guarantee the orthogonality when eigenvalues are close. A commonly used remedy is
to reorthogonalize each approximate eigenvector, by the modified Gram–Schmidt method,
against previously computed eigenvectors in the cluster. This remedy increases up to 2n3

operations if all the eigenvalues cluster, while the time cost for the eigenvectors themselves
is only O(n2).

Dhillion proposed the Multiple Relatively Robust Representations (MRRR) algo-
rithm [9] to avoid reorthogonalization. This is an ambitious attempt as the MRRR algorithm
computes all the accurate and numerically orthogonal eigenvectors with a time cost of
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O(n2). Nevertheless, the MRRR algorithm can fail in calculating severely clustered eigen-
values of a large group, such as the glued Wilkinson matrices [10]. Dhillion fixed the
problem and modified the MRRR method subtly and cleverly [11], without increasing its
time complexity. However, this modified MRRR method, which applies the perturbation to
the root representation of the ST matrix, costs even more time than the Inverse Iteration
method with the modified Gram–Schmidt process. Even when computing random matri-
ces, the MRRR algorithm has no advantage compared with the Inverse Iteration method.
In addition, when computing part eigenvectors, the MRRR algorithm needs considerably
accurate eigenvalues to guarantee natural orthogonality and thus calls the time-consuming
Bisection method to obtain them. As a consequence, except for those cases with many
eigenvalues clusters, the Inverse Iteration method is more efficient. More related details are
presented in Section 6.

Mastronardi and Van Dooreen [12] proposed an ingenious method to determine the
accurate eigenvector of a symmetric tridiagonal matrix once an approximation of the
eigenvalue is known. In addition, they applied this method to calculate the weights of the
Gaussian quadrature rules [3].

Our strategy is to improve the Inverse Iteration method with the three main modifications:

• We replace the iteration process with a new one that only costs one step to guarantee
convergence, similar to the MRRR method;

• The envelope vector theory [13] is utilized to compute accurate and naturally orthogo-
nal eigenvectors when the eigenvalues severely cluster. By combining the new iteration
process, the time cost is even less than the cost of calculating isolated eigenvectors.
In other words, the severely clustered eigenvalues accelerate the convergence;

• We give a new orthogonalization method for the generally clustered groups of severely
clustered eigenvalues. For k clustered eigenvalues in such a case, the new orthogonal-
ization method decreases the time cost from O(nk2) to O(nk).

The numerical results confirm our promise of accuracy and orthogonality. In addition,
our new method supports computing part eigenvectors and embarrassingly parallelization,
significantly improving the computational efficiency.

This paper focuses on the symmetric tridiagonal eigenvector problem. According
to Weyl’s theorem, the real symmetric eigenvalue problem Ax = xλ is well posed, in an
absolute sense because an eigenvalue can change by no more than the spectral norm of the
change in the matrix A [14]. However, for an unsymmetric matrix Â, some of its eigenvalues
may be extremely sensitive to uncertainty in the matrix entries. Consequently, the assess-
ment of error becomes a major concern. Some specific conclusions were introduced in [14].
Readers can also see more unsymmetric examples in [15,16].

The organization of the rest of this paper is as follows: Section 2 gives the modified
iteration of the new method and an algorithm to compute an isolated eigenvector. Section 3
studies the computation of clustered eigenvectors. Section 4 introduces the general Q
iteration and the new orthogonalization method. Section 5 concerns the overflow and un-
derflow. Several corresponding pseudocodes are provided in the above sections. Section 6
shows some examples and numerical results. Finally, we discuss and assess the Modified
Inverse Iteration method in Section 7.

2. Compute Isolated Eigenvectors

2.1. Theoretical Background

Consider a n× n real unreduced ST matrix A (all the ST matrices discussed in this
paper are real and unreduced), which has eigenvalues λ1 ∼ λn in the increasing order
and the corresponding eigenvectors v1 ∼ vn. Once an accurate eigenvalue approximation
u → λj is known, we have

(A− uIn×n)ṽj = Tṽj = 0, (1)

where ṽj is the eigenvector approximation and In×n denotes the n× n identity matrix.
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When u is the exact eigenvalue, T has a rank of n− 1 and (1) can be solved by ignoring
any one of its n rows. However, since u �= λj, T is not singular and thus (1) has no nonzero
solution. If one still solves (1) by ignoring one of its n rows, say, the kth row, the actually
solved equation is

Tzk = ek, (2)

where ek is the kth column of In×n, and zk denotes the solution when ignoring the k row. It
is obvious that zk is the kth column of T−1. From [10], we have

zk = rjvj/
(
λj − u

)
+ ∑

i �=j
rivi/(λi − u), (3)

where ri(i ∈ [1, n]) is the kth component of vi, which can also be denoted by vi(k).
The main idea of the Inverse Iteration is to solve (2), substitute the result into the right

side, and go on. As u → λj, zk will finally approach vj. If λj is an isolated eigenvalue,
(3) shows that the degree of approximation of zk and vj depends on the absolute value of
vj(k). For example, if |vj(k)| approximates to zero, zk has nearly no ingredient of vj. As a
consequence, the iterations hardly converge. Therefore, the traditional Inverse Iteration
method uses a vector with all components equal to 1 to be the original right side of (1).
Within about two or three steps, the traditional Inverse Iteration method calculates an
accurate eigenvector approximation ṽj.

2.2. One-Step Iteration

To accelerate the iteration process, our task is to find the biggest |vj(k)|(k ∈ [1, n]) and
to guarantee convergence in one step. From [9], we have

1
γk

= eT
k (A− uI)−1ek =

∣∣vj(k)
∣∣2

λj − u
+ ∑

i �=j

|vi(k)|2
λi − u

(4)

where 1/γk is the kth component on the diagonal of (A− uI)−1, i.e., the kth component
of zk, and its absolute value reflects |vj(k)| (recall u → λj). The MRRR method finds
the smallest |γk| by the twisted triangular factorization, while we give a new method in
this section.

We denote the ith sequential principal minor of a ST matrix A by A1:i. The submatrix
of A in rows i through j is denoted by Ai:j and its determinant by det(A). We denote the
characteristic polynomial det(A− uI) by C1:n, C1:n(u), or CA

1:n(u) if necessary. ai and bi
denote the ith component on the diagonal and sub-diagonal of A, respectively. According
to [17], we have

zk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ck+1:n(
k−1
∏

t=1
−bt)

C1Ck+1:n(
k−1
∏

t=2
−bt)

. . .
C1:k−2Ck+1:n(−bk−1)

C1:k−1Ck+1:n
C1:k−1Ck+2:n(−bk)

. . .

C1:k−1Cn(
n−2
∏
t=k
−bt)

C1:k−1(
n−1
∏
t=k
−bt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/C1:n (5)
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and
C1:n = det(A− uI)

= −b2
k−1C1:k−2Ck+1:n + (ak − u)C1:k−1Ck+1:n − b2

kC1:k−1Ck+2:n

= C1:k−1Ck+1:n(C1:k/C1:k−1 − b2
kCk+2:n/Ck+1:n).

(6)

Remark 1. (5) is also introduced in [9], but in an incorrect form as missing the negative sign
before each bi. Dhillion worried about the overflow and underflow issues when calculating zk by
(5) and thus did not discuss it further. This paper will give a more practical form of (5), reduce its
computational cost and solve the overflow or underflow problem (in Section 5).

By (5) and (6), we have
γk = qk − b2

k /pn−k (7)

where qi = Ci/Ci−1 and pi = Cn−i+1/Cn−i+2. As the sequential principal minors of an ST
matrix form a Sturm sequence, we have [18]

q0 = 1, q1 = a1 − u, qi = ai − u− b2
i−1/qi−1;

p0 = 1, p1 = an − u, pi = an+1−i − u− b2
n+1−i/pi−1.

(8)

(5) and (8) can be expressed as

zk = x1α + x2β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
q1/(−b1)

q1q2/((−b1)(−b2))
. . .

k−1
∏
i=1

qi/(−bi)

0
. . .
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
α +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

. . .
0

n−k−1
∏
i=1

pi/(−bn−i)

. . .
p1 p2/((−bn−1)(−bn−2))

p1/(−bn−1)
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
β, (9)

where x1 and x2 are both n× 1 vectors, the (k + 1) ∼ nth components of x1 are zeros while
the 1 ∼ kth components of x2 are zeros. α and β are two coefficients to be determined.

It can be seen that (9) satisfies (2), except for the kth and (k+ 1)th rows. As we only care
about the direction of zk, only the (k + 1)th row needs to be considered when determining
α and β. Then, we have

αbk

k−1

∏
i=1

qi/(−bi) + β

(
(ak+1 − u)(

n−k−1

∏
i=1

pi/(−bn−i)) + bk+1(
n−k−2

∏
i=1

pi/(−bn−i))

)
= 0.

Therefore, our scheme is to calculate qi’s and pi’s by (8) first, then find the smallest
|γk| by (7). Note that (7) would not cost extra division operations if we save the b2

i /pn−i’s
when calculating pi’s by (8). Finally, we choose the corresponding k of the smallest |γk|
and obtain zk by (9). Our modified iteration method to calculate one isolated eigenvector is
shown by Algorithm 1.

If b2
i and 1/bi are calculated and stored in advance, Algorithm 1 costs 8n ∼ 8.5n

operations (note the cost of calculating a − u is shared in step 3 of Algorithm 1) per
eigenvector while the version in [9] costs 11n.

Note that (8) computes p and q with no time cost savings per se. The two main
contributors are: first, (7) reduces the cost of searching min |γk|; second, (9) divides the
eigenvector computation into two parts, and even under the most adverse condition of
k = n/2, (9) can still reduce the multiplication operations by half compared to (5).
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Algorithm 1: Compute one isolated eigenvector.
Input : a, b, n, u

1 // a is the diagonal of A, b is the sub-diagonal, n is the size and
u is the approximation to λi

Output : z
2 // z is the approximation to vi

3 calculate q and p by (8);
4 calculate |γi|(i ∈ [1, n]) by (7);
5 find the smallest |γi| and save the corresponding i;
6 k ← i, construct a k× 1 vector x1 and a (n− k)× 1 vector x2;
7 x1(1)← 1, x2(1)← 1;
8 for each i ∈ [2, k] do

9 x1(i)← x1(i− 1)qi−1/− bi−1;
10 end

11 for each i ∈ [2, n− k] do

12 x2(i)← x2(i− 1)pi−1/− bn+1−i;
13 end

14 flip x2;
15 if x1(k) = 0 then

16 P ← 1;
17 else

18 if k == n then

19 P ← −ak+1x2(1)/(bkx1(k))
20 // to satisfy the k + 1th row of (2)
21 else

22 P ← −(ak+1x2(1) + bk+1x2(2))/(bkx1(k))
23 // to satisfy the k + 1th row of (2)
24 end

25 end

26 z ← [Px1; x2];
27 z ← z/‖z‖ // if normalization is needed

2.3. Accuracy Analysis of Algorithm 1

Let R denote the residual norm, i.e., Rk =
∥∥∥Tzk

∥∥∥/
∥∥∥zk

∥∥∥, then we have

Rk =

∥∥∥Tzk
∥∥∥∥∥zk
∥∥ =

|γk|∥∥zk
∥∥

=

√√√√ γ2
k

γ2
k eT

k (A− uI)−1(A− uI)−1ek

=

(
∑

v2
i (k)

(λi − u)2

)−1/2

=

∣∣λj − u
∣∣∣∣vj(k)
∣∣
(

1 + ∑
(
λj − u

)2

(λi − u)2
v2

i (k)
v2

j (k)

)−1/2

≤
∣∣λj − u

∣∣∣∣vj(k)
∣∣ .

(10)

As Algorithm 1 ensures that |vj(k)| is the biggest one among all the |vj(i)|(i ∈ [1, n]),
it is guaranteed that |vj(k)| ≥

√
1/n. Then, according to (10), we have Rk ≤

√
nε where ε

is the machine precision.
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3. Computing Severely Clustered Eigenvectors

Now consider the case when eigenvalues clusters severely, for example, p eigenvalues
that are equal in finite precision arithmetic. We will define “severely clustering” later in
this section.

First, we introduce the two following lemmas from [13] to state our theorems.

Lemma 1 (The Envelope Vector). Define S = span{v1, v2, . . ., vp}, and the envelope vector of
S is E given by

Ei = max{Vi : V ∈ S , ‖V‖ = 1}.
For p clustered eigenvalues, the envelope vector will undulate with p high hills separated by

p− 1 low valleys.

Lemma 2. For an ST matrix A that has p clustered eigenvalues λ1 ∼ λp, divide A into p
submatrices: A1:η1 , Aηl

2:ηr
2
, . . . , Aηl

p−1:ηr
p−1

and Aηp :n. Note that these submatrices can have

overlaps. Then, for each submatrix, there exists at least one Asub, among all the possibilities of
divisions that satisfies:

1. Asub has an isolated sub-eigenvalue κ ∈ [λ1, λp];
2. For the 2nd to (p− 1)th submatrices, the corresponding sub-eigenvector si(i ∈ [2, p− 1])

(with respect to κ) has small components at both its ends. For A1:η1 , s1(η1) → 0 and for
Aηp :n, sp(1)→ 0.

Supplement zero components to obtain ṽs = [s; 0], [0; s; 0], or [0; s], which has the size of
n× 1. Then, the p ṽs’s are approximations to vt(t ∈ [1, p]). These eigenvector approximations are
numerical orthogonal and satisfy ‖Tvs‖ <

√
n/p(λp − λ1)/p.

See the proofs and more details in [13].
Let us take a typical example of clustered eigenvalues to illustrate. Let α0 be a 200× 1

vector and α0(i) = i(i ∈ [1, 200]) and then construct α ← [ f lip(α0); 0; α0]. Then, repeat
α ← [α; α0] by eight times totally. Finally, we obtain a 2001× 1 vector α. Consider an ST
matrix Φ, which has the diagonal equal to α and all the components on its sub-diagonal
equal to 1. Φ is similar to the glued Wilkinson matrices in [11] and its biggest eight
eigenvalues (λ1 ∼ λ8) cluster severely. Let u1 ∼ u8 denote the approximations of the biggest
eight eigenvalues of Φ; it shows u8 − u1 = 0 in Matlab, i.e., λ1 ∼ λ8 severely clusters.

Let u = u1 and calculate |γk|(k ∈ [1, 2001]) of Φ. The results are shown in Figure 1.
According to Lemma 1, the low valley entries of the envelope vector correspond to small
components of vi(i ∈ [1, p]). Note that this means all the p eigenvectors have small
components at this entry, thus the corresponding |γk|must be a big value according to (4).
The case of high hills is similar. In other words, the |γk| curve undulates with p low valleys
separated by p− 1 high hills. Note these extreme points may not be exactly the same as the
envelope vector. We show |γk|(k ∈ [1, 2001]) of Φ in Figure 1. A logarithmic scale on the
y-axis has been used to emphasize the small entries. The results confirm our point.

We give a method to find the applicable submatrices of Lemma 2 by Theorem 1.

Theorem 1. If a submatrix satisfies Lemma 2, then the corresponding entries contain and only
contain one low valley of the |γk| curve.

Proof. Take the first submatrix A1:η1 (which is assumed to satisfy Lemma 2) as an example
because the proofs of the others are similar.

Let X denote the eigenvector approximation from Lemma 2, and we have X =

∑
p
t=1 xtvt = [s; 0]. Thus, the corresponding entries of A1:η1 must contain at least one

low valley, if not all the xt’s will be small values and violate the equation ∑
p
t=1 x2

t = 1.
If the corresponding entries of A1:η1 contain more than one low valley, say, two, it will

also contain one high hill of the |γk| curve. This means X has a small component at the
corresponding entry of the hill. In addition, X contains at least two major ingredients of vi
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that has big components at the two valleys, respectively, or X contains one major ingredient
of vi that has big components at both entries. According to [10], if an eigenvector has one
part that has both small ends, the corresponding eigenvalue must have a close neighbor.
Therefore, if the corresponding entries of A1:η1 contain more than one low valley, A1:η1 has
clustered sub-eigenvalues that ∈ [λ1, λp].

With the above conclusions, the proof is completed.

Figure 1. The |γk| curve of Φ.

To illustrate Theorem 1 more intuitively, and as a complementary argument to the
above proof, we performed the following numerical test. We calculated the distances
between λ2001 of Φ and the last two sub-eigenvalues of Φ1:η(η ∈ [2, 2000]). Because by
the Interlacing Property from [17], the close sub-eigenvalues to λ2001 must be the last
ones. The result is shown in Figure 2. A logarithmic scale on the y-axis has been used to
emphasize the small entries. In Figure 2, Φ1:η starts to have one close eigenvalue when
η > 400, which is the first low valley of the |γk| curve, and two close eigenvalues when
η > 600, which is the second valley. We also present the results of the last eight sub-
eigenvalues of Φ1:η(η ∈ [8, 2000]) in Figure 3. It can be seen that, whenever Φ1:η “crosses”
a low valley of |γk|, the clustered sub-eigenvalues are one more. Figures 2 and 3 confirm
Theorem 1 well. See more and detailed numerical examples and results for accuracy in
Section 6.

Figure 2. The distances of the last two sub-eigenvalues.

195



Mathematics 2022, 10, 3636

Figure 3. The distances of the last eight sub-eigenvalues.

According to [13], we have that (recall E is the envelope vector from Lemma 1)

bj|s1(j)|E(j + 1) ≈ V,

where V is independent of j. This means that a big E(j + 1) corresponds to a small |s1(j)|.
Therefore, our computation strategy of clustered eigenvalues is shown as follows:

1. Every submatrix has one low valley of the |γk| curve.
2. The ends of the submatrix are the closest entries to the adjacent valleys.
3. According to Lemma 2, (λp − λ1) < p

√
p‖A‖ε ensures ‖Tṽs‖ <

√
nε, thus it can be

used as the “clustering” threshold.

We show the method for computing severely clustered eigenvalues by the following
pseudocode Algorithm 2.

Algorithm 2: Compute severely clustered eigenvalues.
Input : a, b, n, d

1 // d is a p× 1 vector where p severely clustered eigenvalues are
its components

Output : z
2 // z is the approximation to v(:,1:p) where the subscripts denote the

1 ∼ p columns of v

3 u ← mean(d);
4 calculate |γi|(i ∈ [1, n]) by (7) and (8);
5 find the p low valleys of |γi| and save the corresponding entries in K;
6 // K is a p× 1 vector
7 K ← [K; n + 1], l ← 1;
8 for each i ∈ [1, p] do

9 r ← K(i + 1)− 1;
10 call Algorithm 1⇐ a(l : r), b(l : r), r− l + 1, u;
11 then get z(:,i);

12 z(:,i) ← z(:,i)/
∥∥∥z(:,i)

∥∥∥ // if normalization is needed

13 l ← K(i) + 1;
14 end
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Assume that the p valleys are arranged uniformly. The cost calculation of p severely
clustered λ’s by Algorithm 2 is twice as large as the cost of one isolated λ by Algorithm 1,
while the Inverse Iteration method needs p times cost and a reorthogonalization. This
means that Algorithm 2 saves time compared to the Inverse Iteration method even when
disregarding its expensive orthogonal cost.

For the matrix Φ, we calculated R’s (recall R = ‖Tz‖/‖z‖, the residual norm) and the
dot products of its last eight eigenvector approximations obtained by Algorithm 2. We show
the mean and maximal results in Table 1 and compare them to the results of the Inverse
Iteration method and the MRRR method. The results were collected on an Intel Core i5-4590
3.3-GHz CPU and a 16-GB RAM machine. All codes were written in Matlab2017a and
executed in IEEE double precision. The machine precision is ε ≈ 2.2× 10−16. It can be seen
that all the eight eigenvector approximations are accurate and numerically orthogonal. See
more examples and numerical results in Section 6.

Table 1. Accuracy and orthogonality.

Method Mean R(×ε‖Φ‖) Max R(×ε‖Φ‖) Mean Dot Product
(×ε−1)

Max Dot Product
(×ε−1)

Time Cost (×10−2 s)

Algorithm 2 1.5 1.5 0 0 0.1
Inverse Iteration 1.2 1.2 0 0.05 2.9

MRRR 1.2 1.2 0 0 4.2

4. Reorthogonalization

4.1. General Q Iteration

For severely clustered eigenvalues, Algorithm 2 saves considerable time and avoids re-
orthogonalization. However, if the group of clustering p eigenvalues has a close eigenvalue
neighbor or another group of clustering eigenvalues with the distance ∈ ( p

√
pε, 10−3)‖A‖

(note p
√

p‖A‖ε is the threshold of severely clustering), Algorithm 2 can not ensure the
orthogonality between them. Therefore, a reorthogonalization is needed. This is quite
frustrating, not only because of the high cost of orthogonalization but also because using
the modified Gram–Schmidt method for orthogonalization destroys the orthogonality of
the eigenvectors obtained by Algorithm 2. In other words, the method we proposed in
the previous section is meaningless. For example, two groups of severely eigenvalues
have approximations u1 and u2, respectively, while u1 − u2 < 10−3‖A‖. Each group’s
eigenvectors are orthogonal, but Algorithm 2 can not ensure the orthogonality of two from
different groups. If one uses the modified Gram–Schmidt method to reorthogonalize them,
it makes no difference whether the original vectors are orthogonal in groups. Therefore, we
give a new reorthogonalization method in this section.

In [9], Dhillon introduced the twisted Q factorization. For an n× n ST matrix T =
A− λ1(λ1 is one eigenvalue of A) and a certain number k(k ∈ [1, n]), implement the Givens
rotation to its columns to eliminated 1 ∼ (k− 1)th components on its super-diagonal and
k ∼ (n− 1)th components on the sub-diagonal. Finally, a singleton in the kth column is left.
The process is shown in Figure 4 (from [9]), where n = 5 and k = 3.

Figure 4. The twisted Q factorization.
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Let W denote the final form of the twisted Q factorization, and we have

TQ = W;

T = WQT ;

Q = G1G2. . .Gn−1,

where G1 ∼ Gn−1 are Givens rotation matrices. Obviously, Wk,k = Rk. Therefore, at least
one k satisfies ζ = Wk,k ≤

√
nε according to Section 2.3.

Now, we introduce our so-called general Q iteration. For such a k that satisfies
ζ ≤ √nε, we implement the corresponding Givens rotations to the rows of W. Using the
example from Figure 4, the process is shown by

GT
1 TQ =

⎡⎢⎢⎢⎢⎣
× ×
× ×
× × ζ × ×
× × ×

×

⎤⎥⎥⎥⎥⎦⇒ GT
2 . . .TQ =

⎡⎢⎢⎢⎢⎣
× ×
× × s2ζ × ×
× c2ζ × ×
× × ×

×

⎤⎥⎥⎥⎥⎦

⇒ GT
3 . . .TQ =

⎡⎢⎢⎢⎢⎣
× ×
× × s2ζ × ×

s2ζ c3c2ζ × ×
× −s3c2ζ × ×
× ×

⎤⎥⎥⎥⎥⎦

⇒ GT
4 . . .TQ =

⎡⎢⎢⎢⎢⎣
× ×
× × s2ζ × ×

s2ζ c3c2ζ −c4s3c2ζ s4s3c2ζ
× −c4s3c2ζ × ×
× s4s3c2ζ × ×

⎤⎥⎥⎥⎥⎦ = QTTQ

(11)

where ci and si constitutes Gi, i.e.,

Gi :=
[

ci −si
si ci

]
.

Note that, in the last rotation of (11), the components on (3, 4) and (3, 5) have not
changed. We obtain their values according to symmetry.

Finally, we have
A1 = QTTQ + λ1

and complete one step of the general Q iteration. Obviously, A1 has the same eigenpairs to
A. As all |ci|’s and |ci|’s are less than 1, all the rest components of the kth rows and columns
of A1 are less than ζ. Therefore, deflation can arise as

A1 =

⎡⎢⎢⎢⎢⎣
× ×
× × × ×

λ1
× × ×
× × ×

⎤⎥⎥⎥⎥⎦⇒
⎡⎢⎢⎣
× ×
× × × ×
× × ×
× × ×

⎤⎥⎥⎦ = B.

Thus, B has the numerical equal eigenvalues to λ2 ∼ λ5 and the corresponding eigen-
vectors can be calculated similarly to the QR method. For example, if s2 = [x1, x2, x3, x4]

T is
the eigenvector of B with respect to λ2, then v2 = Qs2. These vi’s are certainly orthogonal.
Note that B can be transferred to an ST matrix by chasing and eliminating its bulge (for
example, the (2, 4) and (4, 2) components of B) with Givens rotations. Therefore, it costs at
most 1.5 times operations compared to the QR (or QL) iteration, which is the exceptional
case when k = n or 1.
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Therefore, the general Q iteration is to fulfill a deflation of a certain λ by QR-like
transformation. For a normal ST matrix and one accurate approximation to λ, k = 1 or
n is enough. Thus, the cost of chasing the bulge can be saved. However, in some special
cases, |γ1| or |γn| can both be small, which means it costs numerous QR-like iterations to
converge. This is similar to the solution of (2) by inverse iterations, considering the strong
relationship between the Inverse Iteration method and the QR (or QL) method [7]. Recall
that we give the one-step inverse iteration in Section 2, and the general Q iteration can be
regarded as a one-step QR-like iteration. In our numerical experience, the case that several
QR iterations (which use an accurate eigenvalue approximation as the shift) can not obtain
convergence is not rare. For example, for a random 2000× 2000 ST matrix, its most λi’s can
ensure one-step converges by QR iteration, but some λi’s may cost more than 50 steps. In
addition, this case almost arises in every random matrix.

Mastronardi and Van Dooreen discovered this instability when obtaining an ST eigen-
vector and solved the problem by a modified implicit QR decomposition method [12]. Their
method can ensure an accurate calculation. However, this paper uses a modified inverse
iteration method to calculate the eigenvector. The implicit QR decomposition in our paper
is used for deflation and guarantee of orthogonality in the case that the eigenvalues cluster
generally.

The corresponding pseudocode for computing generally clustered eigenvectors is
given in Algorithm 3. The generally clustering denotes that the span of the p clustered
eigenvalues is not big enough to guarantee orthogonality of its corresponding eigenvectors
(calculated by the Inverse Iteration method or Algorithms 1 and 2), i.e., λp− λ1 ≤ 10−3‖A‖.

Algorithm 3: Computing generally clustered eigenvectors.
Input : a, b, n, d

1 // d is a p× 1 vector where p generally clustered eigenvalues are
its components

Output : z

2 for each i ∈ [1, p] do

3 if i = p then

4 v ← e1 // e1 is the first column of the n× n identity matrix
5 else

6 call Algorithm 1⇐ a, b, n, d(i);
7 then get v;
8 implement the deflation by the general Q iteration with the shift of d(i);
9 then get ā, b̄ // the length of ā is n− i and b̄ is n− 1− i

10 save all the Givens rotation matrices in G(i);
11 a ← ā, b ← b̄, n ← n− 1;
12 end

13 if i > 1 then

14 for each j ∈ [1, i− 1] do

15 implement every Givens rotation in G(j) to v
16 end

17 end

18 z:,i = v;
19 end

4.2. Cost of Reorthogonalization

This subsection concerns the cost of reorthogonalization in Algorithm 3. For k clustered
eigenvalues, the last obtained v (line 7 in Algorithm 3) is a (n + 1− k)× 1 vector. v has
to be premultiplied n− k Givens rotation matrices to transfer to (n + 2− k)× 1. Repeat
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this process until the length reaches n. For every Givens rotation, the cost is six operations.
Therefore, the total cost is

6× ((n− k)× 1 + (n + 1− k)× 2 + (n + 2− k)× 3 + . . . + (n− 2)× (k− 1))

= 6× n× (1 + 2 + . . . + k− 1)− 6× (k× 1 + (k− 1)× 2 + . . . + 2× (k− 1))

= 3nk2 −
(

k3 + 3k2 − 4k + 3n
)

.

(12)

At first sight, (12) is hardly satisfactory, as the modified Gram–Schmidt method costs
only 4n× (1 + 2 + 3 + . . . + k) = 2nk2 operations. Only when k is close to n, our method
matches the efficiency of the modified Gram–Schmidt method. Moreover, those cases
where we need to use the general Q iteration (the QR-like iterations cannot converge at one
step) have not been considered. However, the cost will slump for cases with many severely
clustered eigenvalues within groups.

For example, if m eigenvalues are severely clustered among the k eigenvalues, the cost is

3n(k−m)2 −
(
(k−m)3 + 3(k−m)2 − 4(k−m) + 3n

)
+ 6(n−m)m, (13)

which decreases from O(nk2) to O(nk) if m is close to k. In addition, the cost for the modified
Gram–Schmidt method, in this case, is 4n(m + m + 1 + . . . + k) = 2n(m + k)(k−m).

If the k eigenvalues can be divided into two severely clustering groups, the cost is

6(n−m)m, (14)

which decreases from O(nk2) to O(nm). In addition, the cost for the modified Gram–
Schmidt method, in this case, is 2n(m + k)(k−m).

Therefore, Algorithm 3 calls the deflation method with the general Q iteration or
the modified Gram–Schmidt method according to an advanced prediction by (12)–(14).
However, both methods are time-consuming in cases where k is very close to n, and the
eigenvalues have few severely clustering groups. In this case, the best method is the MRRR
method. See more examples and numerical details in Section 6.

4.3. Modification of QR-Like Iteration

The general Q iteration can be seen as starting a QL iteration from the left of the matrix,
stopping it at column k, and then doing a QR iteration from the right of the matrix till there
is a singleton in the kth column. We give a subtle modification to the QR or QL iteration
with the implicit shift to save some operations. Take the QR iteration as an example, and the
traditional process is shown in Algorithm 4.

One step of QR iteration implemented into a 4× 4 ST matrix is shown as follows:[
c1 s1
−s1 c1

] ⎡⎢⎢⎣
a1 b1
b1 a2 b2

b2 a3 b3
b3 a4

⎤⎥⎥⎦
[

c1 −s1
s1 c1

]

⇒

⎡⎢⎢⎣
× × s1b2
−s1δ π2 + c1δ c1b2

b2 a3 b3
b3 a4

⎤⎥⎥⎦
[

c1 −s1
s1 c1

]

⇒

⎡⎢⎢⎣
ā1 s1π2 s1b2

s1π2 c1π2 + δ c1b2
s1b2 c1b2 a3 b3

b3 a4

⎤⎥⎥⎦

(15)
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Algorithm 4: QR iteration with the implicit shift.
Input : a, b, n, δ

1 // δ is the shift
Output : ā, b̄

2 // ā is the diagonal after transformation and b̄ is the diagonal

3 ω ← a1 − δ, N ←
√

ω2 + b2
1, c ← ω/N, s ← b1/N;

4 π ← c(a2 − δ)− sb1, π̄ ← cπ;
5 a1 ← ω + a2 − π̄;
6 ω ← π̄;
7 for each i ∈ [2, n− 1] do

8 N ←
√

π + b2
i , bi−1 ← Ns, s ← bi/N;

9 bi ← cbi, c ← π/N;
10 π ← c(ai+1 − δ)− sbi, π̄ ← cπ;
11 ai ← ω + ai+1 − π̄;
12 ω ← π̄;
13 end

14 bn−1 ← sπ, an ← cπ + δ;
15 ā ← a, b̄ ← b;

In (15), πi+1 is updated by πi+1 = ci(ai+1 − δ)− sibi, which corresponds to line 10 in
Algorithm 4. This equation can be rewritten as

πi+1/ci = (ai+1 − δ)− sibi/ci

= (ai+1 − δ)− bici−1bi/πi

= (ai+1 − δ)− b2
i /(πi/ci−1)

Without loss of generality, assume that c0 = 1, then π1/c0 = a1 − δ = q1 (recall qi is
the Sturm sequence from (8)). Finally, we have

πi+1/ci = qi+1(i ∈ [0, n− 1]). (16)

Note all the qi’s have been calculated in advance when searching the smallest |γk|
in our methods; thus, we can use (16) to update π’s instead. We show the modified QR
iteration algorithm in Algorithm 5.

Algorithm 5 costs 6n multiplications, 2n divisions, and (n − 1) square roots while
Algorithm 4 costs 9n multiplications, 2n divisions, and (n− 1) square roots. Thus, our
modification saves 3n multiplications.
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Algorithm 5: Modified QR iteration with the implicit shift.
Input : a, b, n, δ, q

1 // q is the Sturm sequence from (8)
Output : ā, b̄

2 // ā is the diagonal after transformation and b̄ is the diagonal

3 ω ← q1, N ←
√

ω2 + b2
1, c ← ω/N, s ← b1/N;

4 π ← cq2, π̄ ← cπ;
5 a1 ← ω + a2 − π̄;
6 ω ← π̄;
7 for each i ∈ [2, n− 1] do

8 N ←
√

π + b2
i , bi−1 ← Ns, s ← bi/N;

9 bi ← cbi, c ← π/N;
10 π ← cqi+1, π̄ ← cπ;
11 ai ← ω + ai+1 − π̄;
12 ω ← π̄;
13 end

14 bn−1 ← sπ, an ← cπ + δ;
15 ā ← a, b̄ ← b;

5. Avoiding Overflow and Underflow

Our new method obtains an eigenvector essentially by the cumulative products of q’s,
as shown in lines 9 and 12 of Algorithm 1. As is well known, the products can grow or
decay rapidly; hence, the recurrences to compute them are susceptible to severe overflow
and underflow problems. This section gives a relatively cheap algorithm to avoid overflow
and underflow.

Let f denotes the overflow threshold, for example, f = 21023 in IEEE double precision
arithmetic. Whenever one intermediate product during the recurrences exceeds f , multiply
it by f−1 to normalize and continue the iteration. Similarly, whenever one ≤ f−1, multiply
it by f . At the same time, we save the corresponding entry and mark 1 for overflow and
−1 for underflow.

Assume y positions, which divide the eigenvector approximation ṽ into y+ 1 parts, are
marked when the iteration is completed. Then, we have a y× 1 vector Y, with components
of 1’s and −1’s. For any certain position, the mark 1 means the components of ṽ from it
to the end are shrunk by a factor of f compared to v. In addition, the mark −1 means
amplification by f . The mark before the first component of ṽ is zero. Thus, we have
Y ← [0; Y].

Calculate the cumulative sums of Y from the first component to everyone and save the
results at each entry. In this way, each component of Y corresponds to each part of ṽ, and its
value represents the specific degree to which the corresponding part has been enlarged or
reduced. A positive value of m means that this part has been reduced by f m times, while a
negative value means enlarged. The corresponding part is not enlarged or reduced when
the value is zero.

Revisiting ṽ, all the components have not overflowed but are just to be restored to
their true values. In addition, the biggest part after restoration corresponds to the biggest
component of Y (recall each component of Y corresponds to each part of ṽ) because it is
reduced by the most significant times. Since ṽ is ultimately normalized, we take the biggest
part as the benchmark. Thus, the second biggest component of Y corresponds to the second
biggest part of ṽ after restoration, which should be divided by f . The rest parts, if they
exist, need to be divided by f 2 or more, thus directly taking zeros as its components.

We give the corresponding pseudocode in Algorithm 6, which corresponds to the
details of lines 9 and 12 of Algorithm 1.
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Algorithm 6: Compute ∏ q without overflow and underflow.
Input : n, q

1 // q is a n× 1 vector
Output : x

2 // xi = ∏i
t=1 qt

3 x ← zeros(n, 1), y ← zeros(n, 1);
4 // zeros(n, 1) is a vector constituted by n zeros
5 f1 ← 22013, f2 ← 2−2013;
6 // We set two f’s to avoid divisions when scaling
7 x1 ← 1, y ← 0;
8 for each i ∈ [2, n] do

9 T ← qi−1xi− 1, T2 ← |T|;
10 if T2 > f1 then

11 s ← s + 1, xi ← T f2;
12 ys = i;
13 else if T2 < f1 then

14 s ← s + 1, xi ← T f1;
15 ys = −i;
16 else

17 xi ← T;
18 end

19 end

20 if s = 1 then

21 i ← ys;
22 if ys > 0 then

23 x1:(i−1) ← f2 × x1:(i−1);
24 else

25 xi:n ← f2 × xi:n;
26 end

27 else if s > 1 then

28 χ ← [1; |y1:s|; (n + 1)];
29 y ← the cumulative sum of sign(y1:s);
30 y ← ([0; y]−maxs

i=1 yi);
31 for each part of x corresponded by yi < −1(i ∈ [1, (s + 1)]) do

32 x(y<−1) ← zeros(length(x(y<−1)), 1) ;
33 end

34 for each part corresponded by yi = −1(i ∈ [1, (s + 1)]) do

35 x(y=−1) ← f2 × x(y=−1) ;
36 end

37 end

38 x ← x/‖x‖// if normalization is needed

Finally, we give the complete modified Inverse Iteration method by Algorithm 7.
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Algorithm 7: Modified Inverse Iteration method.
Input : a, b, n, d

1 // d is a vector contains the eigenvalues
Output : v

2 // v is the eigenvectors with respect to d

3 F ← maxn
i=1(|ai|+ 2|bi|) // F = ‖A‖∞, the substitution of ‖A‖

4 r ← length(d);
5 compare every di+1 − di(i ∈ [1, n− 1]) to 10−3F, then

6 distribute d into isolated and clustered parts;
7 for every clustered parts of d, mark the severely clustered groups by

(λp+j − λj+1) < p
√

pFε;
8 if r ≥ 0.9n && the number of generally clustered eigenvalues is close to r then

9 call the MRRR method to compute all the eigenpairs;
10 save the corresponding eigenvectors (with respect to d) in v;
11 return;
12 end

13 for every isolated part of d do

14 call Algorithm 1 to calculate the corresponding eigenvectors;
15 call Algorithm 6 to avoid overflow and underflow;
16 save the results in v;
17 end

18 for every clustered part of d do

19 call Algorithm 2 and 3 to calculate the corresponding eigenvectors;
20 call Algorithm 6 to avoid overflow and underflow;
21 save the results in v;
22 end

6. Numerical Results

In this section, we present a numerical comparison among the modified Inverse
Iteration method and four other widely used algorithms for computing eigenvectors:

1. the Inverse Iteration method, by calling subroutine “dstein” from LAPACK in Matlab;
2. the MRRR method, by calling subroutine “dstegr” from LAPACK in Matlab;
3. the QR method, by calling subroutine “dsteqr” from LAPACK in Matlab;
4. the DC method, by calling subroutine “dstedc” from LAPACK in Matlab.

Since the MRRR, QR, and DC methods compute the eigenpairs instead of only eigen-
vectors, we compared the total cost for eigenpairs in this section. To obtain eigenvalues
for Algorithm 7 and the Inverse Iteration method, we use the PWK version of the QR
method (by calling subroutine ‘dsterf’ from LAPACK in Matlab) when calculating more
than 5% eigenpairs, otherwise use the Bisection method (by calling subroutine ‘dstebz’ from
LAPACK in Matlab). Note the QR and DC methods are only available when computing
all the eigenpairs and thus will not be compared in the cases when computing parts of
the eigenpairs.

We use the following five types of n× n matrices for tests:

1. Matrix Φ1, which is constructed similarly to Φ in Section 3 with α0 = (1:200). We
change the repeat times of α ← [α; α0] to adjust the size of Matrix Φ1. Note this matrix
has many groups of clustered eigenvalues (severely and generally clusterings both
exist) and has overflow issues if calculated directly.

2. Matrix Φ2, which is constructed similarly to Φ1 with α0 = (1:80). This matrix also has
many groups of clustered eigenvalues (severely and generally clusterings both exist)
but has no overflow issue if calculated directly.
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3. Matrix W1, the famous Wilkinson matrix, which has the ith diagonal component
equal to |(n + 1)/2− i|(n is odd) and all off-diagonal components equal to 1. All its
eigenvalues severely cluster in pairs.

4. Matrix W2, another form of the Wilkinson matrix, which has the ith (i ∈ [1, (n + 1)/2])
diagonal component equal to |(n + 1)/2− i|(n is odd), the ith (i ∈ [(n + 1)/2 + 1, n])
diagonal component equal to −|(n + 1)/2− i| and all off-diagonal components equal
to 1. Its eigenvalues do not cluster if the size is less than 2000.

5. Random Matrix with both diagonal and off-diagonal elements being uniformly dis-
tributed random numbers in [−1, 1]. Note that all the Random Matrix results in this
section are mean data of 20 times tests.

The results were collected on an Intel Core i5-4590 3.3-GHz CPU and 16-GB RAM
machine. All codes were written in Matlab2017a and executed in IEEE double precision.
The machine precision is ε ≈ 2.2× 10−16.

6.1. Accuracy Test

Figures 5–9 present the results of the residual norms, i.e., R = Tṽ/‖v‖, where the
Average Errors denote the means of R’s of all the calculated eigenvectors and the Maximal
Errors denote the maximum. The results of dot products of the calculated eigenvectors are
also presented to show orthogonality. Different sizes are used in our test, from 400× 400
to 2000× 2000. We denote the corresponding 2-norm of the tested matrix, for example,
F = ‖Φ1‖ in Figure 5. The results confirm that Algorithm 7 computes accurate and
numerical orthogonal eigenvectors.

(a) (b)

(c) (d)
Figure 5. The accuracy results of Matrix Φ1: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.

6.2. Efficiency Test of Part Eigenpairs

Figures 10–14 show the time cost for computing 10%, 30%, 50%, and 70% eigenpairs
of the above five types of matrices in each size. Note the cost of the Inverse Iteration
method surges in Figure 12 because the eigenvalues start to cluster and need an expensive
reorthogonalization by the modified Gram–Schmidt method as the size of Matrix W1
rises. The MRRR method costs the most in every matrix because it needs more accurate
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eigenvalues and calls the Bisection method, while the Inverse Iteration and Algorithm 7
call the PWK version of the QR method to obtain all eigenvalues. Finally, the results show
that the modified Inverse Iteration method always costs the least time and has a surpassing
efficiency when eigenvalues severely cluster, which confirms our points in Section 3.

(a) (b)

(c) (d)
Figure 6. The accuracy results of Matrix Φ2: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.

(a) (b)

(c) (d)
Figure 7. The accuracy results of Matrix W1: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.
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(a) (b)

(c) (d)
Figure 8. The accuracy results of Matrix W2: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.

(a) (b)

(c) (d)
Figure 9. The accuracy results of Random Matrices: (a) the average residual norm; (b) the maximal
residual norm; (c) the average dot product; (d) the maximal dot product.
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(a) (b)

(c) (d)
Figure 10. The time cost for Matrix Φ1 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.

(a) (b)

Figure 11. Cont.
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(c) (d)
Figure 11. The time cost for Matrix Φ2 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.

(a) (b)

(c) (d)
Figure 12. The time cost for Matrix W1 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.
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(a) (b)

(c) (d)
Figure 13. The time cost for Matrix W2 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.

(a) (b)

Figure 14. Cont.
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(c) (d)
Figure 14. The time cost for Random Matrix when calculating part eigenpairs: (a) 10%; (b) 30%;
(c) 50%; (d) 70%.

6.3. Efficiency Test of Minor Eigenpairs

When it comes to a minor set of eigenpairs, it is inadvisable to calculate all the eigen-
values by the PWK version of the QR method for the Inverse Iteration and Algorithm 7. We
use the Bisection method instead, similar to the MRRR algorithm. Thus, the result is more
convictive in this case because all the methods obtain the eigenvalues at an identical cost.

We calculated 0.2%, 0.4%, 0.6%, 0.8%, and 1% eigenpairs of the above five types of
matrices and used two sizes: 2001× 2001 and 10001× 10001. The results are presented in
Figure 15 and 16. It can be seen that the cost of the MRRR method is close to the Inverse
Iteration method when computing clustered eigenpairs but higher in other cases. Once
again, the modified Inverse Iteration prevails in all cases.

6.4. Efficiency Test of All Eigenpairs

As discussed in previous sections, Algorithm 7 is not suitable for computing all the
eigenvectors because the DC method has a significant advantage in this case. Nevertheless,
we also performed the corresponding test and show the results in Figure 17. It can be
seen in Figure 17b,c that the modified Inverse Iteration method has a close time cost to
the DC method. The efficiency increase comes from the computation process for severely
clustered eigenvectors, which is recurrent in Matrix Φ2 and W1. The acceleration is not that
distinct in Figure 17a (where many eigenvectors also cluster severely) because it takes extra
operations to avoid overflows and underflows in Matrix ε1, which will not arise in Matrix
ε2. However, the DC method is still recommended when computing all the eigenpairs.

6.5. Comparing with Mastronardi’s Method

Mastronardi [3,12] developed a procedure for computing an eigenvector of a symmet-
ric tridiagonal matrix once its associate eigenvalue is known and gave the corresponding
Matlab codes in [12].

We tested the Matlab routine, collected the residual norm errors (denoted by R), dot
product errors, and time cost on the test matrices, and compared them with our new
method. The results are shown in Table 2. Note that Mastronardi’s method is for one
ST eigenvector; thus, we calculated the maximal eigenpairs of the test matrices. All the
matrices in Table 2 have a size of 2001. The residual norm data have been scaled by the
product of the machine precision and the 2-norm of the tested matrix.
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(a) (b)

(c) (d)

(e)
Figure 15. The time cost for minor eigenpairs in 2001× 2001: (a) Matrix Φ1; (b) Matrix Φ2; (c) Matrix
W1; (d) Matrix W2; (e) Random Matrix.
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(a) (b)

(c) (d)

(e)
Figure 16. The time cost for minor eigenpairs in 10001× 10001: (a) Matrix Φ1; (b) Matrix Φ2; (c) Matrix
W1; (d) Matrix W2; (e) Random Matrix.
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(a) (b)

(c) (d)

(e)
Figure 17. The time cost for all eigenpairs in: (a) Matrix Φ1; (b) Matrix Φ2; (c) Matrix W1; (d) Matrix
W2; (e) Random Matrix.
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Table 2. Comparing with Mastronardi’s method when calculating one eigenvector.

Matrix Method R(×ε‖A‖) Max Dot Product (×ε−1) Time Cost (s)

Φ1
Mastronardi’s - - -
Algorithm M 3.42 1.2 5.5× 10−4

Φ2
Mastronardi’s 2.86 1.5 0.24
Algorithm M 3.01 0.7 4.0× 10−4

W1
Mastronardi’s - - -
Algorithm M 0.27 1.4 4.6× 10−3

W2
Mastronardi’s 18.7 0 0.29
Algorithm M 0.27 1.2 4.8× 10−4

Random Mastronardi’s 24.6 2.1 0.30
Algorithm M 12.2 0 5.5× 10−4

Table 2 shows that Mastronardi’s method can provide a better result in Matrix W2 when
considering orthogonality. However, Algorithm 7 has a significant advantage in time cost.
In addition, Mastronardi seems unstable when computing the eigenvector (corresponding
to the maximal eigenvalue) of Matrix Φ1 and W1: the Matlab routine provided in [12] failed
to converge. The instability also arises in computing some eigenvectors of the random
matrices. As a consequence, we did not present the corresponding results of Matrix Φ1 and
W1 in Table 2.

The test for calculating all eigenvectors stuck because of the instability too. However,
the time cost of Mastronardi’s method is easy to conclude to be much more expensive than
Algorithm 7, as the costs for one eigenvector have such a significant difference as shown in
Table 2. In addition, Mastronardi’s method is unsuitable for computing all the eigenvectors,
as the deflation process costs O(2n3) operations [12] while it could not benefit from the
sub-diagonal “zero”s like the traditional QR method.

7. Discussion

Algorithm 7 is a modified version of the MRRR, certainly of the Inverse Iteration
method essentially, as the MRRR method implements inverse iterations in bidiagonal forms.
The key improvements are:

1. the one-step iteration method with Algorithm 6 to avoid overflow and underflow.
Although the MRRR method uses another version of one-step iteration, the accompa-
nying operations of square and square root slow down the routine.

2. computing severely eigenvectors by the envelope vector theory. The severely cluster-
ing eigenvalues, which make the cost of the MRRR and Inverse Iteration method surge,
bring a significant acceleration, on the contrary, for our new method. The scheme of
the MRRR method for clustered eigenvalues is ingenious with time complexity of
O(n2), but costs too many operations when searching the so-called “Relatively Robust
Representation”. In terms of results, it is even the slowest when severely clustering
eigenvalues arise.

3. the novel reorthogonalization method. Dhillion also tried the envelope vectors when
the MRRR method was stuck by the glued Wilkinson Matrices [11] but gave up
because of the general clustering of severely clustered groups. This paper solves the
problem by the general Q iteration. Note we also accelerate the QR-like iteration itself
by Algorithm 5.

The results in Section 6 show that the modified Inverse Iteration method is suitable
for computing part eigenpairs, especially the severely clustered ones. When computing a
minor set, our new method is significantly faster. As the computations for every eigenpair
are independent, our new method is flexible in calculating in any given order. However,
when eigenvalues generally cluster without severely clustering groups, one should use
the MRRR method. In addition, the DC method is absolutely the champion for computing

215



Mathematics 2022, 10, 3636

all the eigenpairs in almost every type of matrix. Nevertheless, considering it is rare
to calculate all the eigenpairs of a large matrix in practice, this paper provides a novel,
practical, flexible, and fast method.

Algorithm 7 can be divided into roughly three steps: finding the smallest |γk|; com-
puting the isolated or clustered eigenvectors; reorthogonalizing by premultiplying Givens’
rotation matrices. The consumption of the other calculation parts is not comparable to
these three steps. Note that all these main steps can be implemented in parallel. Therefore,
Algorithm 7 is suitable for parallel computation. We will focus on the parallel version of
the modified Inverse Iteration method in our future research work.
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Abstract: We introduce a new triangle transformation, the shortest-edge (SE) duplication, as a natural
way of mesh derefinement suitable to those meshes obtained by iterative application of longest-edge
bisection refinement. Metric properties of the SE duplication of a triangle in the region of normalised
triangles endowed with the Poincare hyperbolic metric are studied. The self-improvement of this
transformation is easily proven, as well as the minimum angle condition. We give a lower bound for
the maximum of the smallest angles of the triangles produced by the iterative SE duplication α = π

6 .
This bound does not depend on the shape of the initial triangle.

Keywords: triangulations; shortest edge; finite element method; triangle shape

MSC: 65L50; 68R99

1. Introduction

Adaptive meshing is a fundamental component of adaptive finite element methods.
This includes refining and coarsening meshes locally [1,2]. As the mesh is enriched through
the refinement process, the solution on a given mesh provides an accurate starting iterate
for the next mesh. Frequently, it is needed not only to enrich the mesh but also to coarsen
it by some derefinement or coarsening strategy [3,4] in such a way that the nodes are
located in the places where it is necessary for a more accurate solution while the number of
unknowns remains bound. Mesh coarsening and mesh refinement are usually combined to
provide a flexible approach for the adaptation of time-dependent problems [5].

In the context of adaptive finite element methods, both in two and three dimensions,
longest-edge bisection-based algorithms have been largely studied in the last years [6–8].
These algorithms guarantee the construction of high-quality triangulations [9,10], assuring
the maximum angle condition [11] and the non-degeneracy of the obtained meshes [10].
Non-degeneracy of the meshes means that the minimum angle generated is bounded away
from zero, and it is closely related to the finite number of similarly different triangles
or tetrahedra generated. Further, some longest-edge bisection-based partitions show a
mesh quality improvement property, meaning that the generated meshes not only do
not degenerate but also present better quality than the previously obtained mesh as the
refinement is applied.

For coarsening a refined mesh, we may consider different approaches, such as remov-
ing nodes, swapping edges, or amplifying elements [2]. Here we study the shortest-edge
duplication of a triangle as a simple procedure to be applied to those triangles for coarsen-
ing a triangular mesh that has been obtained by the iterative application of local refinements
based on longest-edge bisection. This method shows to be effective at coarsening meshes
while improving the smallest angle. On the other hand, if it is desired to maintain the
resolution of the mesh while improving the smallest angles, the method can be combined
with a local refinement strategy to improve high-order mesh quality while maintaining
sufficient resolution, for example, by the self-similar refinement scheme [2,12], albeit this
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issue will not be tackled in this paper. It should be underlined, however, that there have
been recent approaches, such as the hr-adaptivity, which are able to address this problem
[13].

Our goal in the paper is to study the metric properties of the shortest-edge duplication,
in the sequel SE duplication, of a triangle. To this end, we will employ the results of hyper-
bolic geometry and particularly the Poincare half-plane model, which has demonstrated its
utility in similar triangle partitions [14,15].

Given an initial triangle, a new triangle is obtained by doubling the shortest edge,
maintaining the longest edge as unaltered. The SE duplication will be explicitly set up in
the next definition.

Definition 1. Let t0(A, B, C) denote triangle t0 with vertices A, B and C. Let us assume that the
shortest edge of t0 is edge AB, while the longest one is edge BC. Then, the SE SE duplication of t0 is
t1(A1, B, C), where A1 = B + 2

−→
BA.

Notice that the SE duplication is a transformation of triangles that may be applied
recursively. For example, and continuing with the triangle in Definition 1, if the shortest-
edge of triangle t1 is A1B, and the longest one is BC, the SE duplication of t1 is triangle
t2(A2, B, C), where A2 = B + 2

−−→
BA1. See Figure 1.

t
0

t
1

t
2

B

A

A
1

A
2

C

Figure 1. First SE duplications of triangle t0.

It is clear that by the SE duplication of a triangle, the two shortest edges of the triangle
increase, while the longest edge remains unaltered.

Let τ be a locally refined triangular mesh obtained by a longest-edge bisection-based
refinement. One could apply the SE duplication of some triangles in order to coarsen the
mesh. This procedure consists of locally changing a triangle by SE duplication. As a matter
of example, Figure 2 shows the application of SE duplication to a refined mesh obtained by
the longest-edge bisection so that a derefined mesh appears.

Figure 2. SE duplication procedure as a derefinement process.

2. Normalised Region for Triangles and Piecewise Function for the SE Duplication

For any arbitrary triangle, a similar triangle can be found by performing suitable sym-
metries, scaling, translations and rotations such that the normalised triangle has the longest
edge with vertices (0, 0) and (1, 0), and the opposite vertex, z, in the upper plane at the left
of the vertical line x = 1

2 ; that is, with the shortest edge to the left with vertices (0, 0) and
z [12]. Using this procedure, all similar triangles are represented by a unique complex number

z ∈ Σ, where Σ is the set of the complex plane Σ = {z/ Im z > 0, Re z ≤ 1
2

, |z− 1| ≤ 1}. Σ is
called the space of triangular shapes. See Figure 3, where Σ is in grey.
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SE

LE

SE

LE(0,0) (0,1)

Figure 3. Normalised triangle and normalised region Σ = {z/ Im z > 0, Re z ≤ 1
2 , |z− 1| ≤ 1}.

For any point z ∈ Σ, let w(z) be its image in Σ by the shortest-edge duplication trans-
formation. w(z) is a piecewise function that depends on the location of z in Σ. Explicitly,
function w(z) is defined as follows, depending on which subregion point z is in according
to the subregions in Figure 4.

w(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wV(z) = 2z if z ∈ V,

wVI(z) = 1− 2z if z ∈ VI,

wIII(z) =
2z

2z− 1
if z ∈ I I I,

wIV(z) =
2z− 1

2z
if z ∈ IV,

wII(z) =
1

1− 2z
if z ∈ I I,

wI(z) =
1
2z

if z ∈ I.

Figure 4 shows the subdomains in Σ needed to define function w(z).

I

II

III

V VI

IV

Figure 4. Circles and straight lines defining the subregions for the piecewise function w.

The values of function w, depending on the position of point z in each sub-region, may
be easily deduced. As a matter of example, Figure 5 shows the definition of function w(z)
for z in the first two lower subregions of the space of triangular shapes. Similar figures
may be found for the other subregions. In Figure 5 right, w(z) = 2z, while in Figure 5 left,
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w(z) = 1− 2z̄ in order to normalise the triangle to have its shortest edge on the left side, so
that w(z) belongs to Σ.

z

w(z)=2z

z

2zw(z)=1�2z−

LE LE

SE

0 1 0 1

Figure 5. Definition of w for z ∈ V on the left, and for z ∈ VI on the right.

Using hyperbolic geometry, such as the Poincare half-plane model, see [14–17], the
circumferences and straight lines in the definition of the piecewise function w are orthogonal
to Im z = 0 and, therefore, are geodesics in the Poincare half-plane. The expressions
for function w are isometries in the half-plane hyperbolic model because they have the

form
az + b
cz + d

or
a(z̄) + b
c(z̄) + d

with real coefficients ad− bc > 0. Function w is invariant with

respect to the inversion of the circumferences |z| = 1/2 and |z− 1/2| = 1/2, and under
symmetry with respect to the straight line Re z = 1/2. We recall here the expression of
these transformations in [18]. Let K be an arbitrary circle with centre q and radius R. Then
the inversion in K, written z �→ z̃ = IK(z), is equal to

IK(z) =
R2

z̄− q̄
+ q =

qz̄ + (R2 − |q|2)
z̄− q̄

.

In particular, for K1, circle |z| = 1/2, we have IK1(z) =
1
4z̄

, while for K2, circle

|z− 1/2| = 1/2, we have IK2(z) =
z̄

2z̄− 1
.

On the other hand, ff ᾱz + αz̄ = r is a line in the complex plane such that z1 is the
reflection of z2 in the given line, then r = z̄1α+ z2ᾱ. In particular, for the straight line L with
equation Re z = 1/2, the expression of the reflection in line L, sayRL(z), isRL(z) = 1

2 − z̄.

Theorem 1. Function w is invariant with respect to the inversion of the two circumferences,
|z− 1/2| = 1/2 and |z| = 1/2, and under symmetry with respect to the straight line Re z = 1/2
that appears in its definition.

Proof. The proof follows easily by checking that⎧⎪⎪⎪⎨⎪⎪⎪⎩
wI(RL(z)) = wII(z) ∀z ∈ I I, wII(RL(z)) = wI(z) ∀z ∈ I,

wIII(RL(z)) = wIV(z) ∀z ∈ IV, wIV(RL(z)) = wIII(z) ∀z ∈ I I I,

wV(RL(z)) = wVI(z) ∀z ∈ VI, wVI(RL(z)) = wV(z) ∀z ∈ V.

Similarly, for inversions IKi (z), with i = 1, 2, it holds, in closed form, that

wJ
(IKi (z)

)
= wIKi

(J)(z) ∀z ∈ IKi (z)

where J represents any subregion in the definition of function w.
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If z1 and z2 are such that Im zi > 0, then the hyperbolic distance d between z1 and z2,
d(z1, z2), is

d(z1, z2) = cosh−1
(

1 +
|z1 − z2|

2Im z1 Im z2

)
.

On the other hand, if Re z1 = Re z2, then

d(z1, z2) =

∣∣∣∣ln( Im z1

Im z2

)∣∣∣∣.
Let z1 and z2 be points in a geodesic circumference, and z2 be the upper point located

over the centre of the circumference, the hyperbolic length of the segment in the geodesic
from z1 to z2, say l, verifies

θ = 2 arctan(e−l)

where θ is the difference between π/2 and the central angle is determined by the segment
from z1 to z2 over the geodesic. See Figure 6.

Figure 6. Hyperbolic length l from z1 to z2 verifies θ = 2 arctan(e−l).

Definition 2. A region Ω ⊂ Σ is called a closed region for SE duplication if w(z) ∈ Ω ∀z ∈ Ω.

Lemma 1 (non-increasing property). If z1, z2 ∈ Σ, then d(w(z1), w(z2)) ≤ d(z1, z2).

Proof. Let us first assume that z1 and z2 are in a region with the same definition of w, then
d(z1, z2) = d(w(z1), w(z2)). This may be checked easily and also follows because w is an
isometry in Σ.

Suppose now that z1 and z2 are not in a region with the same definition of w. z1 and
z2 may be in two regions sharing a common boundary. In this case, there is z′1 in the region
of z2 with w(z1) = w(z′1) because of the symmetry of w with respect to the boundary. Let γ
be the geodesic line that joins z1 and z2. γ intersects the boundary at a point, say z∗. Then,
since points z1, z∗ and z2 are in the same geodesic, d(z1, z2) = d(z1, z∗) + d(z∗, z2). Further,
d(z1, z∗) = d(z′1, z∗) because z1 and z′1 are symmetrical points with respect to the boundary
containing z∗. See Figure 7.

*

γ

Figure 7. The geodesic line joining z1 and z∗ is an image by reflection of the segment joining z′1 with
z∗, and so d(z1, z∗) = d(z′1, z∗).

Therefore, by the triangular inequality,

d(z1, z2) = d(z1, z∗) + d(z∗, z2) = d(z′1, z∗) + d(z∗, z2) > d(z′1, z2).

Thus, d(w(z1), w(z2)) = d(w(z′1), w(z2)) = d(z′1, z2) < d(z1, z2).
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If, z1 and z2 are in different regions not sharing a common boundary, we may apply the
previous process to bring both z1 and z2 into the same region and the proof is finished.

Definition 3. Let z be in Σ. The orbit of z by the SE duplication, Γ(z), is the set as Γ(z) =

∪n≥0w(n)(z), where w(0)(z) = z, and w(n)(z) = w
(

w(n−1)(z)
)

.

For ζ = 1
2 + 1

2 i, Γ(ζ) = {ζ}, since w(ζ) = ζ. Other fixed points for w are x1 = 1
4 +

√
7

4 i

and q1 = 3
8 +

√
23
8 i. In sub-region I, as denoted in Figure 8, w(z) = 1

2z̄ , which is an inversion

with respect to the circumference of equation |z| =
√

2
2 , or x2 + y2 = 1

2 . Therefore, for z
in the arc of that circumference which is in region I, |Γ(z)| = 1. It may be easily verified
that these are the only fixed points for w ∈ Σ. Notice that although (0, 0) is another fixed
point, that triangle is invalid and does not belong to the space of triangular shapes Σ where
it is required Im z > 0. Further, it follows that for z ∈ I, |Γ(z)| ≤ 2. For example, for
v0 = 1

2 +
√

3i
2 , which corresponds to the equilateral triangle, then Γ(v0) = {v0, v1}, where

v1 = 1
4 +

√
3

4 i.

II

I

ζ

v2
*

v2

v0

v3 v4
ζ
1

x1

q1

q2q2
*

x2
*

v1
x2

Figure 8. Regions for Lemma 2.

In order to prove that the orbit for any point z is finite, we will use the division of the
normalised region is shown in Figure 8. We consider the sets w−1

J (I), with J = I I I, V, VI, IV,

where w−1
J (I) =

{
w−1

J (z) for z ∈ I
}

. It is clear that w−1
J (I) ⊂ J. These sets are the coloured

subsets in Figure 8. The points labelled in the figure are x1 = 1
4 +

√
7

4 i, x2 = 3
8 +

√
7

8 i and

x∗2 = 1
8 +

√
7

8 i are pre-images of x1. Similarly, v1 = w−1(v0), v2 = w−1
IV (v1), v∗2 = w−1

I I I(v1),
v3 = w−1

V (v1), and v4 = w−1
VI (v1). Further, q2 is the pre-image of q1 in region IV; that is,

q2 = 5
12 +

√
23

12 i, while q∗2 = 1
12 +

√
23

12 i = w−1
I I I(q1).

Lemma 2. S = I ∪ I I ∪ w−1
I I I(I) ∪ w−1

V (I) ∪ w−1
VI (I) ∪ w−1

IV (I) is a closed region. Further, if
z ∈ S, then |Γ(z)| ≤ 3.

Proof. Let z ∈ S. If z ∈ I, w(z) = wI(z) = 1
2z̄ is an inversion with respect to the circum-

ference of equation |z| =
√

2
2 , then w(z ∈ I) = z′ ∈ I. Therefore, for z ∈ I, |Γ(z)| ≤ 2.

Further, by construction, w
(

w−1
J (I)

)
⊂ I, with J = I I I, V, VI, IV, so |Γ(z)| ≤ 3 for

z ∈ w−1
I I I(I) ∪ w−1

V (I) ∪ w−1
VI (I) ∪ w−1

IV (I). Finally, by the symmetry of function w about line
Re z = 1

4 , then for z ∈ I I, w(z) = −1
2z−1 ∈ I, and, therefore, |Γ(z)| ≤ 3 for z ∈ I I.
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The argument of the last lemma may be applied recursively, considering each of the pre-
images of the last sets by wJ , with J = I I I, V, VI, IV. In that way, since the pre-images of the
lowest vertices considered tend to the horizontal line Im(z) = 0, it follows that |Γ(z)| < ∞,
∀z ∈ Σ. This fact will also be shown experimentally by a Monte Carlo experiment later.

Lemma 3. There is ε′ > 0 such that for every z ∈ Σ such that the hyperbolic distance to any of the
points v0, v1, v2 or v∗2 is less than or equal to ε′ then |Γ(z)| < ∞.

Proof. Notice that ε′ may be chosen such that every hyperbolic circle with centre v0, v1,
v2 or v∗2 and radius ε′ intersects only the geodesic lines defining w that pass through their
centres, as Figure 9 shows.

Let us first suppose that z ∈ Σ with d(z, v0) ≤ ε′. In that case, z ∈ I so |Γ(z)| ≤ 2.

II

III
IV

V VI

I

VII

ζ

v2
*

v2

v1

v0

Figure 9. ε′ is such that every hyperbolic circle with a centre at v0, v1 and v2 intersects only with the
geodesic lines in the definition of w(z) passing through its centres.

On the other hand, if d(z, v1) ≤ ε′, w(z) ∈ I, so |Γ(z)| ≤ 3. Finally, if d(z, v2) ≤ ε′ or
d(z, v∗2) ≤ ε′, then d(w(z), v1) ≤ ε′, so it is reduced to the previous case.

Lemma 4. Let q1 = 3
8 +

√
23
8 i and r = d(q1, v1). Then there exists ε > 0 such that for every

z ∈ Σ with d(q1, z) ≤ r + ε, then |Γ(z)| < ∞.

Proof. Let us consider that ε > 0 is small enough so that the hyperbolic circle with a
centre at q1 and radius r + ε does not intersect with region VII. This is possible because
d(q1, v1) < d(q1, x2), as it is shown in Figure 10. With such a ε, we may assure that the region
of z such that d(q1, z) ≤ r + ε is contained in I ∪ IV along with a small hyperbolic circle
with its centre at v1, so it is inside region S from Lemma 2. It follows that |Γ(z)| < ∞.

Lemma 5. Let ε > 0 as in the previous lemma, and r = d(q1, v1). Let K be a compact set contained
in the normalised region Σ such that for every z ∈ K it holds that d(z, q1) > r + ε. Then, there
exists a value A, where 0 < A < 1 such that for every z ∈ K, d(w(z), q1) < A · d(z, q1).

Proof. Function

φ(z) =
d(w(z), q1)

d(z, q1)

is continuous in K. Since K is compact, there exists A, the maximum value of φ(z) in K. By
not increasing the distance and since w(q1) = q1, then d(w(z), q1) ≤ d(z, q1). In addition, if
z ∈ K, z is not in region I, and the inequality between the distances is strict. In particular,
this happens for the value of z ∈ K in where the maximum is attained, where A < 1.
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r

ε

Figure 10. For a suitable ε, a circle with its centre at q1 and radius d(q1, v1) + ε is in region S from
Lemma 2.

Theorem 2. If z ∈ Σ, then |Γ(z)| < ∞.

Proof. Let r and ε be as in the previous lemmas. If d(z, q1) ≤ r + ε, then |Γ(z)| < ∞, by
Lemma 5. Let us suppose, therefore, that d(z, q1) > r+ ε. Let K be the compact set given by the
points u ∈ Σ such that d(u, q1) ≤ d(z, q1) with d(u, q1) ≥ r + ε, and also d(u, q2) ≤ d(z, q2)
with d(u, q2) ≥ r + ε. In Figure 11, K is grey. By Lemma 5, there exists A such that for every
u ∈ K, d(w(u), q1) ≤ A · d(u, q1). Therefore, d(w(z), q1) ≤ A · d(z, q1) with A < 1. By the
non-increasing property, d(w(z), q2) ≤ A · d(z, q2). Therefore, either w(z) ∈ K or the orbit
|Γ(w(z))| < ∞. By iterating this process, the orbit |Γ(z)| is described as a finite set and a finite
number of finite orbits of points with a distance to q1 of less than or equal to r + ε. Therefore,
by Lemma 4 these orbits are also finite.

Figure 11. In grey are the points u ∈ Σ with d(u, qi) ≤ d(z, qi) and d(u, qi) ≥ r + ε, for i = 1, 2.

3. Classes of Triangles

Here, we focus on the number of dissimilar triangles that are produced in the SE
duplication scheme. Our goal in this section is to study the number of dissimilar triangles
so that we can get a classification of the triangles. Let class Cn be the set of triangles for
which the SE duplication produces exactly n dissimilar triangles.

We develop a Monte Carlo experiment that can be used to visually represent the
classes of triangles according to the number of dissimilar triangles generated.
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The process can be described in three phases: (1) Pick a point within the mapping
domain defined by the horizontal base and by the two bounding exterior circular arcs. This
point z = (x, y) is the apex of a target triangle. (2) Apply SE duplication to the triangle
defined by z and its successors and stop when no new shapes appear. (3) The number of
steps until termination defines the number of dissimilar triangles for z. This process is
recursively applied to a large sample of triangles uniformly over the domain. The output
of the experiment is a graph where all of the dissimilar triangles are represented using a
colour map to obtain the result in Figure 12.
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Figure 12. (a) Dissimilar triangle classes generated by a Monte Carlo computational experiment for
the SE duplication. (b) Lines inside each nth triangle class with Γ(z) = n− 1.

Note that the number of dissimilar triangles has been drawn within several coloured
regions. For instance, label 2 stands for the two dissimilar triangles and is associated
with the targeted triangles within the region above the pair of arcs that intersect on the
vertical line of symmetry near the point y = 0.3. Label 3 is in the region below for the
3 dissimilar triangles. A graph is then constructed in this manner that fills a completely
coloured diagram. It should be noted that triangles with needle-like shapes located close to
the baseline will require a higher number of SE duplications until new dissimilar triangles
no longer appear.

Note that the region where all the trajectories end in the diagram is located at the
dark blue region. Therefore, we can determine a lower bound of the maximum of the
smallest angles for the last generated triangles of α = 30◦, which are related to the apex
with Re z = 1/4. It can be seen that the smallest angle in each of the regions generated
by duplicating its shortest edge is bounded from below with total independence of the
initial point of the respective trajectories. This is a salient property in comparison with the
evolution of the angles in other longest-edge schemes, for example, in the 4T-LE partition.
In the case of 4T-LE partition, these lower bounds depend on the geometry of the initial
triangle. See [9,10] for details on the evolution properties of the angles when the 4T-LE
partition is recursively applied. In Table 1, the minimum angles generated in the process
are listed.
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Table 1. Sequences of dissimilar triangles obtained by SE duplication.

Triangle 1 Triangle 2
# of Dissimilar Triangles 7 # of Dissimilar Triangles 8

It. n γn βn αn γn βn αn

0 145.455 32.595 1.950 173.972 5.423 0.605
1 143.291 32.595 4.114 173.216 5.423 1.361
2 138.199 32.595 9.206 170.950 5.423 3.627
3 123.933 32.595 23.472 153.690 20.887 5.423
4 77.683 69.722 32.595 144.929 20.887 14.184
5 69.722 59.153 51.126 102.859 56.254 20.887
6 84.036 59.153 36.811 78.056 56.254 45.690
7 69.722 59.153 51.126 81.241 56.254 42.504
8 78.056 56.254 45.690

Triangle 3 Triangle 4
# of Dissimilar Triangles 7 # of Dissimilar Triangles 4

It. n γn βn αn γn βn αn

0 169.900 8.572 1.528 114.624 54.900 10.475
1 167.719 8.572 3.708 102.074 54.900 23.025
2 158.613 12.814 8.572 74.625 54.900 50.475
3 125.395 41.790 12.814 86.502 54.900 38.598
4 106.818 41.790 31.390 74.625 54.900 50.475
5 75.424 62.784 41.790
6 73.181 62.784 44.033
7 75.424 62.784 41.790

In addition, we may find curves inside each coloured region that appear from the
trajectories of the triangles in the diagram. Figure 12b shows some of these curves of
interest as follows.

It has already been proven that for z ∈ I, Γ(z) ≤ 2. In this sub-region, w(z) = 1
2z̄ is an

inversion with respect to the circumference of |z| =
√

2
2 , or x2 + y2 = 1

2 . Therefore, for z in
the arc of circumference w(z) = z so |Γ(z)| = 1.

Similarly to the points in region I, where |Γ(z)| = 1, there exist points in lower regions
such that |Γ(z)| = 2. These points will be those where w(z) is precisely in the arc of
circumference, say γ, of equation |z| =

√
2

2 . That is, by studying the pre-images of w for
z ∈ γ, the corresponding arcs in lower regions of σ may be found as follows

• If z ∈ I I, w(z) = −1
2z−1 . If w(z) ∈ γ, then

∣∣∣z− 1
2

∣∣∣ =
√

2
2 , which is the arc of a

circumference with centre ( 1
2 , 0) and radius

√
2

2 . Notice that this circumference is out
of Σ, and, therefore, there is no point in region I I where |Γ(z)| = 2.

• If z ∈ I I I, w(z) = 2z̄
2z̄−1 . If w(z) ∈ γ, then

∣∣ 2z̄
2z̄−1

∣∣ = 1√
2
. If z = (x, y), we have

(x + 1
2 )

2 + y2 = 1
2 , which is the arc of a circumference with centre (− 1

2 , 0) and radius√
2

2 , arc γ3 in the figure.

• If z ∈ IV, w(z) = 2z−1
2z . If w(z) ∈ γ, then

∣∣∣ 2z−1
2z

∣∣∣ = 1√
2

. If z = (x, y), (x− 1)2 + y2 = 1
2 ,

which is the arc of a circumference with centre (1, 0) and radius
√

2
2 , arc γ4 in the figure.

• If z ∈ V, w(z) = 2z. If w(z) ∈ γ, then |z| =
√

2
4 , which is a circumference with centre

(0, 0) and radius
√

2
4 , arc γ5 in the figure.

• If z ∈ VI, w(z) = 1− 2z̄. If w(z) ∈ γ, then |1− 2z̄| = 1√
2
, so

∣∣∣z− 1
2

∣∣∣ = √
2

4 , arc of a

circumference with centre ( 1
2 , 0) and radius

√
2

4 , arc γ6 in the figure.
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The analysis of subsequent lines where |Γ(z)| = n, for n ≥ 3 is analogous to those
already carried out by considering the pre-images of the circular arcs already studied. The
first of these arcs is depicted in Figure 12b.

It is worth noting here that the fractal appearance of these arcs, in the diagram of
triangular shapes is similar to that of the fractal appearance of the boundary of the regions
depending on the number of dissimilar triangles generated by SE duplication.

4. Improvement Properties

The non-degeneracy property has been very relevant in the approximation prop-
erties of finite element spaces and the convergence issues of multigrid and multilevel
algorithms [19]. The non-degeneracy is held when the interior angles of all elements are
bounded uniformly away from zero. This property should be assured in refinement and
remeshing strategies. It is well-known that the longest-edge bisection algorithms guarantee
the construction of high-quality triangulations [10,15].

However, the most interesting property of SE duplication is the self-improvement
property, as the following theorem establishes.

Theorem 3 (self-improvement property). Let t0 be an initial obtuse triangle in which SE
duplication is iteratively applied. Then a (finite) sequence of dissimilar triangles, one per iteration,
is obtained: {t0, t1, . . . tN−1, tN , . . . tN+M}, where triangles t0, t1, t2, . . . , tN−1 are obtuse, triangle
tN is nonobtuse, and the SE duplication of tN produces a finite number of new, not obtuse triangles
tN+1 and tN+M.

The iterative SE duplication transformation applied to an initial obtuse triangle pro-
duces a finite sequence of ‘better’ triangles in the sense that the new triangle is ‘less obtuse’
than the previous one, and its minimum angle is greater than the minimum angle of the
previous triangle, until triangle tN becomes nonobtuse.

This process results in one of the situations illustrated in the next diagram:

(1) tN−1 → tN �
obtuse nonobtuse

(2) tN−1 → tN � tN+1
obtuse nonobtuse nonobtuse

(3) tN−1 → tN → · · · tN+M−1 � tN+M
obtuse nonobtuse nonobtuse nonobtuse

THE THREE ENDINGS TO AN ORBIT BY THE SE DUPLICATION.

The first situation corresponds to the orbit ending in a fixed point for the SE duplication.
In the other two possibilities, the orbit also ends in region I but not at a fixed point of w.
Since function w(z) is an inversion in I w2(z) = z. The only difference between the two
last scenarios is that in (2), the first nonobutse triangle is in I, while in (3), it is not in I. See
Figures 8 and 12. We will show some examples in the next section.

5. Numerical Examples

In this section, we present the evolution of the iterative application of the SE duplication
to some initial test triangles. The first four initial triangles were also chosen and studied by
Rivara and Iribarren in [9] and Plaza et al. in [10] in the context of the 4-triangle longest-edge
partition. Table 1 shows the different-shaped triangles obtained by SE duplication of these
triangles. The evolution of the generated triangles is visible at a glance in Figure 13.

Table 2 shows the evolution by the SE duplication applied to four more triangles shar-
ing the same minimum angle, 5◦. It should be noted that, as before, the generated triangles
are better shaped than the previous ones until the respective orbit ends in subregion I%.
We observe that triangle 8 is an acute isosceles, and all triangles of its orbit are acute.

The evolution of the generated triangles is visible at a glance in Figure 14. Notice that
once a nonobtuse triangle appears in the sequence all its sucessors in orbit are also nonobtuse.

229



Mathematics 2022, 10, 3643

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0

 1

 2

 3

 4

 5

 6

 7

 0
 1  2

 3

 4

 5

 6

 7
 8

t
1

t
2

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0
 1

 2

 3

 4

 5
 6

 7

 0

 1

 2

 3

 4

t
3

t
4

Figure 13. Evolution of SE duplication for the four different triangles in Table 1.

Table 2. Sequences of triangles obtained by SE duplication from initial triangles with the same
minimum angle α0.

Triangle 5 Triangle 6
# of Dissimilar Triangles 6 # of Dissimilar Triangles 5

It. n γn βn αn γn βn αn

0 146.875 28.125 5.000 123.75 51.250 5.000
1 140.057 28.125 11.817 118.092 51.250 10.658
2 117.363 34.512 28.125 104.840 51.250 23.910
3 78.236 67.252 34.512 74.750 54.002 51.25
4 67.252 62.637 50.111 87.821 54.002 38.177
5 80.958 62.637 36.405 74.750 54.002 51.25
6 67.252 62.784 50.111

Triangle 7 Triangle 8
# of Dissimilar Triangles 4 # of Dissimilar Triangles 4

It. n γn βn αn γn βn αn

0 100.625 74.375 5.000 87.500 87.500 5.000
1 95.456 74.375 10.169 87.500 82.538 9.962
2 84.935 74.375 20.690 82.538 77.685 19.777
3 74.375 65.442 40.183 77.685 64.346 37.968
4 70.022 65.442 44.537 68.170 64.346 47.483
5 74.375 65.442 40.183 77.685 64.346 37.968
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Figure 14. Evolution of SE duplication for the four different triangles in Table 2.
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6. Conclusions

In this paper, a new triangle transformation, the shortest-edge duplication of triangles,
has been defined. This transformation may be seen as the natural counterpart of the longest-
edge partition of a triangle. Metric properties of the SE duplication of a triangle in the
region of normalised triangles endowed with the Poincare hyperbolic metric have been
studied. The self-improvement of this transformation has been easily proven, as well as
the minimum angle condition. A lower bound for the maximum of the smallest angles of
the triangles obtained by iterative SE duplication has been obtained with the value α = π

6 .
This value does not depend on the shape of the initial triangle. Finally, some numerical
examples have been shown to be in total agreement with the mathematical analysis.
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Abstract: Elastodynamic problems are investigated in this work by employing the enriched finite
element method (EFEM) with various enrichment functions. By performing the dispersion analysis,
it is confirmed that for elastodynamic analysis, the amount of numerical dispersion, which is closely
related to the numerical error from the space domain discretization, can be suppressed to a very
low level when quadric polynomial bases are employed to construct the local enrichment functions,
while the amount of numerical dispersion from the EFEM with other types of enrichment functions
(linear polynomial bases or first order of trigonometric functions) is relatively large. Consequently,
the present EFEM with a quadric polynomial enrichment function shows more powerful capacities
in elastodynamic analysis than the other considered numerical techniques. More importantly, the
attractive monotonic convergence property can be broadly realized by the present approach with the
typical two-step Bathe temporal discretization technique. Three representative numerical experiments
are conducted in this work to verify the abilities of the present approach in elastodynamic analysis.

Keywords: high-order enrichment functions; numerical methods; numerical dispersion; transient
analysis; wave propagation

MSC: 35A08; 35A09; 35A24; 65L60; 74S05

1. Introduction

The transient responses of engineering structures under time-varying excitation force
are very common problems in engineering practice [1,2]. Meanwhile, the solutions of
these elastodynamics are also of great importance in practical applications. Due to the
limitations of analytical methods, sufficiently reliable and accurate solutions to complex
elastodynamic problems are always very difficult to obtain. In these cases, we usually
resort to numerical techniques.

Over the past few decades, many numerical techniques have been developed for
determining solutions to elastodynamic problems, such as the finite element method
(FEM) [1,2] and smoothed FEM [3–11], the finite difference method (FDM) [12–17], the
spectral method [18,19], the boundary element or boundary-based methods [20–33] and
various meshless numerical techniques [34–51]. Nevertheless, these numerical approaches
usually exhibit some shortcomings in one way or another when practical and complex elas-
todynamic problems are considered. For example, the FDM is always numerically effective
in elastodynamic analysis, but there always exist difficulties when complex and irregular
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problem domains are involved [52]. In addition, the imposition of a Neumann boundary
condition is usually quite complicated. Compared to the FDM, better generality can be
achieved using the classical FEM, and very complex elastodynamic problems can be directly
and effectively handled by the FEM. Unfortunately, the corresponding numerical solutions
from the FEM usually suffers from considerable numerical errors [53–55]. Meanwhile, the
numerical anisotropy issue is also a main block we have to confront when the FEM is
utilized for elastodynamic analysis [53]. The spectral method, indeed, behaves very well in
improving the solution accuracy in elastodynamic analysis; however, it also shows obvious
restrictions in tackling very complex problems. Meshless numerical techniques are usually
able to yield relatively high-quality numerical solutions, but the related formulations in a
mesh-free framework are always very complicated, and the required computational efforts
are also very numerically expensive.

The enriched FEM (EFEM), which was proposed and developed by Babuška and
co-workers, can be regarded as an advanced and generalized version of the conventional
FEM [56], and it has been employed in a wide range of practical engineering computa-
tion fields. Since extra enrichment functions are introduced to the constructed numerical
approximation, high-order approximation can be achieved by the EFEM without adding
additional nodes, even if simple linear elements are employed. This numerical feature
clearly distinguishes the EFEM from the conventional FEM [57]. Moreover, it is also very
flexible to construct the employed enrichment functions. We can construct specific enrich-
ment functions according to the practical problems solved. In consequence, enrichment
functions can be designed to contain the solution knowledge of the considered problems,
then the solution accuracy can be markedly increased.

In general, polynomial bases are always utilized as enrichment functions in formulat-
ing the EFEM. However, the intractable linear dependence (LD) issue is always encountered
when this type of enrichment function is employed [58–60]. As a result, the resultant system
matrices are always singular; hence, it is always quite difficult to obtain sufficiently stable
and reliable numerical solutions. To address this issue, Duarte et al. developed a specific
solver to tackle singular system matrices [61]. Though very accurate and stable numerical
solutions can be yielded by a specifically designed solver, extra numerical treatments are
also required; this, of course, will increase the required computational cost. Recently, Chai
and Gui investigated the LD issue of the EFEM in depth, and the root of the LD was
analyzed using mathematical analysis [57,62]. More importantly, they also developed
a simple and direct method to completely eliminate the LD issue in the EFEM, and the
corresponding proofs were also provided in their work.

In addition to discretization in the space domain, discretization in the time domain
also plays a very important role in elastodynamic analysis. Direct time integration schemes
are commonly employed approaches for temporal discretization in practice. The frequently
employed direct time integration techniques include the central difference method, the
Houbolt method [63], the Wilson-θ method [64], the Newmark method [65] and the Bathe
method [66–68]. Among them, the Bathe method usually shows more excellent numerical
features and is increasingly employed in practical engineering computation, because the
proper numerical damping effects can be introduced to the numerical model, and the
inaccurate high-order modes from the spatial discretization can be effectively suppressed.
As a result, quite accurate and reliable numerical solutions can then be yielded. At present,
the Bathe temporal discretization scheme has been widely employed in tackling linear
and nonlinear structural dynamic problems; in addition, the Bathe method is a typical
two-stage composite time integration scheme and is always unconditionally stable; the
satisfaction of the critical time step criterion is not required in the Bathe method. Owing to
the abovementioned good numerical features, the Bathe method was employed to perform
discretization in the time domain for the elastodynamic analysis in this work.

This work was organized with the aim of investigating the numerical performance
of the EFEM with a Bathe time integration scheme when different orders of polynomial
bases were utilized to construct the enrichment functions. The possible LD issue and the
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treatment of the boundary conditions are handled by using the procedure proposed by
Chai and Gui [57,62]. The obtained numerical results demonstrate that the present EFEM
is able to yield sufficiently small spatial discretization errors when the second order of
polynomial bases are exploited as the enrichment function. According to the conclusions
obtained in Ref. [57], it can be concluded that in these cases the EFEM with the Bathe time
integration scheme will basically possesses the valuable monotonic convergence property
in elastodynamic analysis. Then the solution accuracy can be increased continuously by
directly utilizing the decreasing temporal discretization steps, this numerical feature can
effectively overcome the shortcomings of the FEM in elastodynamic analysis. A number of
representative numerical experiments are considered to demonstrate the performance of
the present approach in elastodynamic analysis. It should be noted that the nonreflecting
boundary conditions are not employed in all numerical examples due to the fact that all
the involved waves do not reach the boundary of the problem domain for the considered
simulation time. Additionally, in all numerical examples the fixed temporal discretiza-
tion step sizes are employed to perform the required time integration. Note that several
researcher have shown that the variable step sizes (VSS) can produce better numerical
solutions [69–71], the performance of the present numerical approaches with the variable
time integration step sizes will be investigated in future work.

2. Formulation of the EFEM

Note that the formulation of the present EFEM is closely related to the classical FEM;
hence, the numerical approximation in the EFEM is provided here in great detail by
comparing the corresponding numerical approximation in the standard FEM. For a general
problem domain Ω in two-dimensional space, assuming that the standard three-node
triangular elements are utilized to perform the required spatial discretization, then the
involved problem domain Ω is represented by nE elements with nI nodes. Let u(x) be a
scalar field function defined in the two-dimensional problem domain; in the standard FEM,
the employed field function approximation is usually constructed by [56]:

uh(x) = ∑
i∈nI

Ni(x)ui = N(x)u, (1)

in which Ni(x) stands for the usual interpolation function for node i, and ui denotes the
corresponding nodal unknown coefficient. In this work, we only considered the linear
interpolation function for the triangular mesh, namely:⎧⎨⎩

N1(x) =
1

2A [(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y]
N2(x) =

1
2A [(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y]

N3(x) =
1

2A [(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y]
, (2)

in which xi and yi (i = 1, 2, 3) represent the coordinate values of three vertexes for one
triangular element; A denotes the area of this element.

In the EFEM framework, the structure of the employed field function approximation
can be expressed by [56]:

uh(x) = ∑
i∈nI

Ni(x)ui + ∑
i∈nI

N∗i (x)ψi(x)ai, (3)

in which N∗i (x) denotes the enrichment term for node i; ψi(x) and ai are the corresponding
enrichment function and the extra nodal unknown coefficient.

It should be noted that the nodal enrichment term should satisfy the partition of the
unity property, namely:

∑
i∈nI

N∗i (x) = 1, (4)
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The nodal enrichment term N∗i (x) can be designed differently from the standard
nodal interpolation function Ni(x) in the FEM; however, in this work, we directly choose
the standard nodal interpolation function Ni(x) as the nodal enrichment term for brevity,
namely, N∗i (x) = Ni(x).

In Equation (3), the first term corresponds to the standard numerical approximation in
the FEM, and the second term is the additional enriched numerical approximation. The
computational accuracy of the EFEM is closely related to the enrichment function ψi(x). To
enhance the numerical performance of the EFEM, different enrichment functions can be
designed for solving different problems [56].

From Equation (3), one important observation we can obtain is that the employed
numerical approximation in the EFEM actually contains two parts; the first part is the
standard FE numerical approximation, which is linear, and the second part is the additional
high-order numerical approximation. Owing to the additional high-order numerical ap-
proximation, the original linear approximation space in the FEM can be effectively enriched,
then the computation accuracy can be markedly increased. In addition, it should be noted
that the above-mentioned enriched numerical approximation space is constructed without
requiring the additional nodes, this numerical feature clearly distinguishes the EFEM from
the standard high-order finite elements in which the additional mid-edge-points are always
required to construct the numerical approximation.

In general, the constructed numerical approximation in Equation (3) does not satisfy
the Kronecker-delta function property, namely, uh(xi) �= u(xi). In consequence, the treat-
ment of the essential boundary condition in the present EFEM is usually quite difficult.
In addition, the condition number of the system matrices from Equation (3) is always
very large; then, the obtained numerical solutions are not sufficiently stable. To make the
numerical approximation in Equation (3) have the Kronecker-delta function property and
improve its numerical stability, the original numerical approximation in Equation (3) is
usually modified by the following form [56]:

uh(x) = ∑
i∈nI

Ni(x)ui + ∑
i∈nI

N∗i (x)[ψi(x)− ψi(xi)]ai, (5)

From Equation (5), we can see that the additional enriched numerical approximation
(namely, the second term) will vanish at all nodes, and the important Kronecker-delta
function property can be successfully recovered. Additionally, it is demonstrated that the
condition number of the resultant system matrices can be significantly reduced by the
modified numerical approximation shown in Equation (5) [56].

In practice, the enrichment function in Equations (3) and (5) can be designed according
to the specific problems solved. In this work, the frequently used polynomial bases are
exploited to construct the enrichment functions; hence, the used numerical approximation
in EFEM for a two-dimensional problem can be given by:

uh(x) = ∑
i∈nI

Ni(x)ui + ∑
i∈nI

N∗i (x)Hi(
¯
x)ai, (6)

in which Hi(
¯
x) is the enrichment function matrix constructed by the polynomial bases and

has the following form in two-dimensional space:

Hi(
¯
x) =

[
x y x2 xy y2 · · · xn xn−1y · · · xyn−1 yn], (7)

in which x = (x− xi)/h and y = (y− yi)/h (h is the characteristic length of the used trian-
gular mesh) represent the nondimensional coordinate values, which are designed to make
the constructed numerical approximations have the Kronecker-delta function property.

For the wave propagation elastodynamic problems considered in this work, the en-
richment functions can also be designed by [72]:
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Hi

(
¯
x

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
(

2πxi
λx

)
, sin

(
2πxi
λx

)
, cos

(
2πyi
λy

)
, sin

(
2πyi
λy

)
,

cos
(

2πxi
λx

+
2πyi
λy

)
, sin

(
2πxi
λx

+
2πyi
λy

)
, cos

(
2πxi
λx
− 2πyi

λy

)
, sin

(
2πxi
λx
− 2πyi

λy

)
,

· · ·
cos

(
2πqxi

λx

)
, sin

(
2πqxi

λx

)
, cos

(
2πqyi

λy

)
, sin

(
2πqyi

λy

)
,

cos
(

2πqxi
λx

+
2πqyi

λy

)
, sin

(
2πqxi

λx
+

2πqyi
λy

)
, cos

(
2πqxi

λx
− 2πqyi

λy

)
, sin

(
2πqxi

λx
− 2πqyi

λy

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

in which λx and λy are the fundamental wave lengths; q is the order of the used trigono-
metric functions.

From Equations (5)–(8), it is obvious that more additional nodal unknowns will be
introduced into the numerical approximation when the high-order polynomial or trigono-
metric functions are employed to create the local enrichment functions, leading to more
computational efforts. Note that there exist three or six nodal unknowns when the linear
or quadric polynomial bases are employed as the enrichment functions; hence, we used
EFEM-N3 and EFEM-N6 to represent these two different numerical approaches. Similarly,
EFEM-N9 was employed to denote the EFEM with the first order of the trigonometric en-
richment functions. Additionally, it should be noted that the implementation of the present
enriched FEM is quite similar as for the standard finite element analysis (FEA). The only
difference is that there are more unknowns for each node. The process of performing the re-
quired numerical integration, the assembling of the system stiffness and the mass matrices
are identical to the related operations in the standard finite element implementation.

3. Governing Equation of the Transient Wave Propagations

Assuming that the considered wave propagation medium is isotropic with wave speed
c, the governing partial differential equation (PDE) can be directly obtained by:

∇2u− 1
c2

∂2u
∂t2 = 0, (9)

in which u denotes the used field function variable (such as the pressure, displacement or
velocity potential) to describe the considered transient wave propagation dynamic problems.

According to the principle of virtual work, from Equation (9), the following equation
in integration form can be arrived at:

∫
Ω

u
(
∇2u− 1

c2
∂2u
∂t2

)
dΩ = 0, (10)

in which Ω stands for the involved problem domain; u represents the virtual field func-
tion variable.

Using the divergence theorem and performing the integration in Equation (10) in part,
we have: ∫

Ωi

∇u · ∇udΩ +
1
c2

∫
Ω

u
∂2u
∂t2 dΩ−

∫
Γ

u(∇u · n)dΓ = 0, (11)

in which Γ denotes the problem domain boundary; n is the outward unit normal vector.
Following the formulations in the standard Galerkin-weighted residual method and

using the constructed numerical approximation in Equation (5), the governing equation
in the following matrix form can be arrived at for the transient wave propagation dy-
namic problems:

M
..
u + c2Ku = F, (12)

in which the overdots stand for the time derivatives; M =
∫

Ω NTNdΩ is the system
mass matrix; K =

∫
Ω (∇N)T∇NdΩ is the system stiffness matrix; F =

∫
ΓN

NTvndΓ is the
external excitation force vector; ΓN is the involved Neumann boundary condition; and vn
is the corresponding prescribed data on the boundary.
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4. Dispersion Analysis

The process of solving elastodynamic problems usually contains two parts, namely, the
discretization in the space and time domains. Both of these two parts are able to give rise
to considerable numerical errors and affect the solution accuracy of the obtained numerical
solutions. In this work, the EFEM was employed for the discretization in the space domain,
and the standard implicit Bathe time integration technique was used for the discretization
in the time domain. The numerical performance of the different methods in addressing
the numerical dispersion error is investigated in this section, and the dispersion errors
corresponding to the spatial discretization are firstly studied here.

Assuming that the considered transient wave propagation dynamic problem in this
work is time-harmonic, namely, the time-dependent field function variable u can be ex-
pressed by:

u = U(x)ejωt, (13)

in which j =
√−1, U(x) is the amplitude distribution of the field function variable u; ω

stands for the angular frequency.
Using the above expression, the governing equation in Equation (9) for transient wave

propagations can be rewritten as:

∇2u + k2u = 0, (14)

in which k = ω/c is the wave number.
Equation (14) is the well-known Helmholtz equation, which is the steady-state form

of the governing equation for wave analysis.
Using the constructed field function approximation shown in Equation (5) to discretize

Equation (14), we can arrive at the following matrix equation when the additional boundary
conditions are not applied: (

K− k2M
)

U = 0, (15)

In two-dimensional space, the general plane wave solution to Equation (15) is
u = Aejkh(x cos θ+y sin θ), and the corresponding numerical solution can be expressed by:

u = Aejkhh(x cos θ+y sin θ), (16)

in which θ stands for the angle of wave travel; kh and k denote the numerical and exact
wave number, respectively.

In Equation (16), A is a vector listing the unknown solution coefficients, which are
related to the field function amplitudes for each node. For the present EFEM, the structure
of vector A is of the following form [72]:

A =
[

A1 A2 · · · Anp , A1 A2 · · · Anp , · · ·
]
, (17)

in which np is the number of DOFs at one node.
Here, we employed the regular triangular mesh (see Figure 1) to perform the dispersion

analysis. By substituting the above expression of the numerical solution into Equation (15),
we can obtain: [

Dstiff − k2Dmass

]
Ai = 0, (18)

in which Ai =
[
A1 A2 · · · Anp

]T lists the unknown solution coefficients for node i;
Dstiff and Dmass are the resultant matrices which can be calculated by:

Dstiff = Kn,n + Kn,n−1e−jkhh cos θ + Kn,n+1ejkhh cos θ+

Kn,n−2ejkhh(cos θ−sin θ) + Kn,n+2ejkhh(− cos θ+sin θ)+
Kn,n−3e−jkhh sin θ + Kn,n+3ejkhh sin θ+

Kn,n−4ejkhh(− cos θ−sin θ) + Kn,n+4ejkhh(cos θ+sin θ)

, (19)
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Dmass = Mn,n + Mn,n−1e−jkhh cos θ + Mn,n+1ejkhh cos θ+

Mn,n−2ejkhh(cos θ−sin θ) + Mn,n+2ejkhh(− cos θ+sin θ)+

Mn,n−3e−jkhh sin θ + Mn,n+3ejkhh sin θ+

Mn,n−4ejkhh(− cos θ−sin θ) + Mn,n+4ejkhh(cos θ+sin θ)

, (20)

Figure 1. The uniform triangular mesh in the analysis of the numerical dispersion.

If nontrivial solutions to Equation (18) exist, the following relationship is required:

det
[
Dstiff − k2Dmass

]
= 0, (21)

From Equations (19) and (20), it is obvious that the numerical wave number kh is
the unique unknown variable in Dstiff and Dmass; hence, Equation (21) actually offers the
relationship between kh and k. Using Equation (21) for any kh, the corresponding k can be
computed by:

k = eig

√
Dmass

Dstiff
, (22)

In general, the computed k does not match kh very well owing to the discretization
error in the space domain; in this work, we employed the following indicator to assess the
calculated numerical dispersion error from the spatial discretization:

ε =
k
kh

, (23)

For several varying wave travel angles, the numerical dispersion error solutions
versus the nondimensional wave number kh from the various numerical techniques are
displayed in Figure 2. It should be noted that all of these numerical dispersion errors were
computed using a totally identical mesh pattern. It is easy to observe that the computed
numerical dispersion errors from the standard FEM were quite large. More importantly,
the numerical dispersion errors will become even larger with the increase in the considered
nondimensional wave numbers. A similar trend can also be observed in the EFEM-N3
results; however, the numerical dispersion errors from the EFEM-N3 were clearly smaller
than those from the FEM. Although the EFEM-N9 is able to offer much smaller numerical
dispersion errors than the FEM, its numerical performance in suppressing the numerical
dispersion error is still not sufficiently fine, because considerable dispersion errors can still
be found with the nondimensional wave number kh < π. Among all of the considered
numerical techniques, the performance of the EFEM-N6 in suppressing the numerical dis-
persion from the spatial discretization is the best, because almost no dispersion errors from
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the discretization in the space domain can be seen for the considered nondimensional wave
number. More importantly, the numerical dispersion errors from the EFEM-N6 were very
close to zero in all considered wave travel angles, namely, the numerical anisotropy issue
also can be largely alleviated by the present EFEM-N6, while this intractable phenomenon
can clearly be seen in the results from the other mentioned numerical techniques (i.e., FEM,
EFEM-N3 and EFEM-N9). These findings indicate that the present EFEM with the quadric
polynomial enrichment functions is basically sufficient to generate adequately small nu-
merical dispersion errors for the wave analysis. Though more accurate solutions, indeed,
can be yielded when the higher order of the polynomial bases are employed to create
the enrichment functions, more computational expenses are also required. To reduce the
computational efforts as much as possible, in this work we only considered the enrichment
functions that are created by linear and quadric polynomial bases.

(a) FEM 

(b) EFEM-N3 

(c) EFEM-N9 

kh/

k/
k h

=
=
=
= –
= –

kh/

k/
k h

=
=
=
= –
= –

kh/

k/
k h

=
=
=
= –
= –

Figure 2. Cont.

240



Mathematics 2022, 10, 4595

(d) EFEM-N6 
kh/

k/
k h

=
=
=
= –
= –

Figure 2. The numerical dispersion error solutions versus the nondimensional wave number kh from
the various numerical techniques.

Apart from the discretization in the space domain, the discretization in the time
domain is also a major source that produces numerical errors in solving elastodynamic
problems. Here, the numerical error affected by the time integration scheme was also taken
into consideration in the dispersion analysis.

Owing to the fact that the recently developed Bathe implicit temporal discretization
technique always shows very excellent numerical features in handling linear and nonlinear
structural dynamic problems, in this work the standard Bathe was employed for the
discretization in the time domain. In the standard Bathe method, the following assumptions
are employed: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t+Δt/2 .
u = t .

u + Δt
4

(
t ..
u + t+Δt/2 ..

u
)

t+Δt/2u = tu + Δt
4

(
t .
u + t+Δt/2 .

u
)

t+Δt .
u = 1

Δt
tu − 4

Δt
t+Δt/2u + 3

Δt
t+Δtu

t+Δt ..
u = 1

Δt
t .
u − 4

Δt
t+Δt/2 .

u + 3
Δt

t+Δt .
u

, (24)

Using the assumptions in the above equation to the discretize matrix equation shown
in Equation (12) and following the similar steps in References [72–75], the total dispersion
error in the elastodynamic analysis can be expressed by:

ch
c

=
ωh/kh

c
=

ωhΔt
khcΔt

=
ωhΔt

khhCFL
=

f (ωΔt)
khhCFL

=
f (khCFL)
khhCFL

, (25)

in which c stands for the wave speed; the subscript h means that the corresponding variables
are from the numerical solutions; Δt denotes the interval of temporal discretization; CFL
represents the Courant–Friedrichs–Lewy number, which is defined by CFL = cΔt/h; f () is
a defined function with respect to the parameter khhCFL.

Using the Taylor series expansion, Equation (25) can be rewritten by:

ch
c = ωh/kh

c = ωhΔt
khcΔt =

ωhΔt
khhCFL = f (khCFL)

khhCFL

= 1
khhCFL

[
f (0) + f ′(0)(khCFL) + f ′′ (0)

2! (khCFL)2 + · · ·
]
,

= k
kh

(
1− 1

24 (khCFL)2 + 61
17280 (khCFL)4 + · · ·

) (26)

From Equation (25), we also can obtain

ch
c

=
ωh/kh

c
=

ωh/kh
ω/k

=
k
kh

ωh
ω

=
k
kh

T
Th

, (27)
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in which T stands for the period of one considered wave mode.
By comparing Equations (26) and (27), the total numerical error in the elastodynamic

analysis can be expressed in the following form:

ch
c

=
k
kh

T
Th

=
k
kh

(
1− 1

24
(khCFL)2 +

61
17280

(khCFL)4 + · · ·
)

︸ ︷︷ ︸
Temporal dispersion error T/Th

, (28)

From Equations (25)–(28), it is very interesting to observe that both the discretizations
in the space and time domains are able to result in numerical errors in the final numerical
solutions for the elastodynamic analysis. The first term in Equation (27) is the defined
indicator to assess the spatial discretization error. From the above formulation and analysis,
it is seen that the error k/kh, indeed, mainly comes from the discretization in the space
domain, and it is determined by the used field function approximation in the space domain.
The second term T/Th in Equation (27) represents the additional effects from the temporal
discretization, and it is closely associated with the employed the time integration scheme.
In this work, the standard Bathe method was exploited for the temporal discretization,
and it has been proved that T/Th is actually a monotonic function with respect to the
nondimensional temporal discretization interval CFL. Therefore, the total numerical error
can be continuously decreased by reducing the used CFL numbers as long as the spatial
discretization error k/kh is adequately small; then, the so-called monotonic convergence
property can be reached. From the previous analysis, it is seen that the EFEM-N6 can
basically meet this requirement, while the other mentioned numerical techniques (i.e., FEM,
EFEM-N3 and EFEM-N9) cannot generate adequately small spatial discretization errors. In
the next section, several supporting numerical experiments are conducted to verify that
the present EFEM-N6 with the Bathe method, indeed, possesses the important monotonic
convergence property with respect to the nondimensional temporal discretization step CFL,
while the other numerical approaches do not have this very valuable numerical feature.

5. The Implementation of the EFEM for the Transient Wave Analysis

From the above formulation, we can find that the implementation of the present EFEM
is quite similar to the standard FEM in solving transient wave propagations, and the general
procedure mainly consists of the following steps:

(1) Perform the required spatial discretization using the standard mesh as in the
FEM. In general, the triangular elements and tetrahedron elements are employed for
two-dimensional and three-dimensional problems, respectively.

(2) Create the required field function approximation for the considered problem. In
creating the numerical approximation, compared to the standard FEM, more unknown
coefficients for each node are involved in the local interpolation, and various basis functions
can be employed for the local numerical approximation.

(3) Assemble the system mass and stiffness matrices. In this step, the required numeri-
cal integration is still performed using the Gauss integration rule. However, the scale of the
obtained system matrices will be clearly larger than those from the standard FEM, because
more unknowns are involved for each node.

(4) Remove the possible linear dependence of the obtained matrix equation. Note that
linear dependent nodal shape functions are possibly employed to construct the required
field function approximation; then, the linear dependent matrix equation will be generated.
For stable and reliable numerical solutions, extra numerical treatments are required to
remove the possible linear dependence of the obtained matrix equation.

(5) Impose the involved boundary conditions and perform the required temporal
discretization. Usually, direct time integration techniques are employed to perform the
required time integration. This step is almost the same as in the standard FEM.

(6) Solve the finally obtained matrix equation and assess the obtained numerical
results; this process is also quite similar as in the standard FEM.
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6. Numerical Example

6.1. The Scalar Wave Propagation in a Clamped-Free Elastic Bar

We firstly consider the transient scalar wave propagation in an elastic bar with a length
L = 1 m and width b = 0.1 m. The left end of this elastic bar is free, and the other end is
clamped (see Figure 3a). The considered wave travel speed in this bar is c = 1 m/s. To solve
this problem, the required discretization in the space domain is accomplished by using the
uniform triangular mesh with the node interval h = 0.0125 m (see Figure 3b). This transient
wave propagation problem is excited by using the following initial conditions:

u(x, t = 0) = 0 m,
.
u(x, t = 0) = 0 m/s,

.
u(x, t > 0) = 1 m/s, , (29)

in which u denotes the considered displacement variable, and the overdot stands for the
time derivative.

 
(a) 

 
(b) 

Figure 3. The description of the scalar wave propagation in a clamped-free elastic bar: (a) geometric
shape of the elastic bar; (b) employed uniform triangular mesh.

The computed velocity distributions of this elastic bar were employed to investigate
this simple transient wave propagation problem. For the nondimensional temporal dis-
cretization step CFL = 0.1 and the considered time point t = 0.6 s, the calculated velocity
distributions of this elastic bar from various numerical approaches together with the exact
solutions are displayed in Figure 4. It is seen from the figure that the numerical solution
from the standard FEM was not sufficiently accurate, and many unwanted peaks can be
found in the solutions. In contrast to the standard FEM, the EFEM-N3 and EFEM-N9 are
able to generate more accurate solutions despite several relatively small spurious peaks that
can still be seen in the solutions. Among all of the considered numerical approaches, the
numerical performance of the proposed EFEM-N6 is the best, since the resultant numerical
solutions of the velocity distributions agreed very well with the exact solutions, and almost
no spurious peaks can be seen in the solutions.

Furthermore, this numerical experiment was studied by exploiting the varying nondi-
mensional time integration steps (CFL = 1, CFL = 0.5, CFL = 0.25 and CFL = 0.1), and the
relevant computed velocity distributions are plotted in Figure 5. Here, the abovementioned
four different numerical approaches were again employed, and the considered time point
was still t = 0.6 s. By carefully comparing the computed velocity distributions shown in
Figure 5, we can observe that the present EFEM-N6 has the ability to continuously increase
the solution accuracy by employing the decreasing nondimensional time integration steps,
because the EFEM-N6 solutions will converge to the exact solutions when the employed
CFL numbers become smaller. On the contrary, the EFEM-N3, EFEM-N6 and the standard
FEM do not have this ability, because the corresponding velocity distributions can become
unexpectedly worse when decreasing CFL numbers are utilized for time integration. These
observations can be broadly explained by two factors; one factor is that the EFEM-N6
can produce close-to-zero spatial discretization errors, while the corresponding spatial
discretization errors from the other three numerical approaches are relatively large (See
Figure 2); the other factor is that the additional numerical error from the time integration
is actually a monotonic decreasing function of the nondimensional time integration steps.
These two factors can ensure that the EFEM-N6 has the monotonic convergence property in
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the transient wave analysis. From the above analysis, it is demonstrated that the numerical
performance of the EFEM-N6 clearly outperforms the other three numerical approaches in
solving transient wave propagations.

Figure 4. The calculated velocity distributions of this elastic bar from various numerical approaches
when the time point t = 0.6 s.

(a) 

(b) 

(c) 

Figure 5. Cont.
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(d) 

Figure 5. The velocity distributions of this elastic bar from various numerical approaches using the
varying nondimensional time integration steps: (a)FEM; (b) EFEM-N3; (c) EFEM-N9; (d) EFEM-N6.

6.2. The Scalar Wave Propagation in a Square Pre-Stressed Membrane

The numerical experiment on scalar wave propagation in a two-dimensional square
pre-stressed membrane is investigated in this section. The geometric configuration of the
problem domain is sketched in Figure 6, and the wave speed for this numerical experiment
was c = 1 m/s. We employed a regular mesh pattern with a nodal interval h = 0.025 m to
discretize the membrane. The point load was at the middle of the square domain, and the
excitation load was of the following Ricker wavelet form [72,73]:

Fc = 0.5
[
1− 2π2 f 2

s (t− ts)
2
]

exp
[
−π2 f 2

s (t− ts)
2
]
, (30)

in which ts = 0.25 s and fs = 5 Hz stand for the time and frequency parameters.

Figure 6. The geometric configuration and spatial discretization pattern of the square pre-
stressed membrane.

Considering the symmetry feature of this numerical experiment, in practical computa-
tion processes, only the partial problem domain is needed to model (see Figure 6). Here, the
transient displacement responses from the different numerical techniques were examined.
When the nondimensional time step CFL = 0.1 and the time point t = 0.9 s were chosen, the
displacement responses along two disparate angles (θ = 0◦ and θ = 45◦) are depicted in
Figure 7. Note that the exact solution to this problem is available; hence, it is also plotted in
the figures. It can be observed that the amount of numerical error in the FEM solutions is
quite large. Though the EFEM-N3 and EFEM-N9, indeed, can suppress the numerical error
to some degree, the EFEM-N6 solutions are the most accurate. These findings indicate that
the use of quadric polynomials as an enrichment function is more effective than the linear
polynomial and first order of the trigonometric function to control the amount of numerical
error for the wave analysis.
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(a) Wave travel angle θ = °0 . 

(b) Wave travel angle θ = °45 . 

r

=
=
=
=

r

=
=
=
=

Figure 7. The displacement responses of the square membrane along two disparate angles of
wave travel.

Furthermore, the numerical analysis of the problem was performed by considering
the varying angles, and the related displacement responses at the time point t = 0.9 s
from various methods are displayed in Figure 8. It is clear that the varying angles can
visibly affect the accuracy of the solutions from FEM, EFEM-N3 and EFEM-N9, namely, the
so-called numerical anisotropy issue can be obviously seen, while the EFEM-N6 solutions
are almost insensitive to the angles, and very reliable solutions can still be yielded for all
considered angles.

246



Mathematics 2022, 10, 4595

(a) FEM. 

(b) EFEM-N3. 
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(c) EFEM-N9. 

(d) EFEM-N6. 
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=
=

Figure 8. The displacement responses of the square membrane from various numerical techniques by
varying the considered angles of wave travel.

247



Mathematics 2022, 10, 4595

In more detail, several varying nondimensional time step CFL numbers were con-
sidered here to perform an overall analysis of this numerical experiment. Similar to the
previous discussion, for two disparate angles (θ = 0◦ and θ = 45◦), the displacement re-
sponses at the time point t = 0.9 s from the various methods are given in Figures 9–12. These
figures show that the FEM, EFEM-N3 and EFEM-N9 always failed to continuously increase
the solution quality by decreasing the employed CFL numbers, namely, the monotonic
convergence property for the transient wave analysis cannot be achieved. On the contrary,
it is very interesting to find that the EFEM-N6 basically has the monotonic convergence
property, and the corresponding numerical solutions will become more accurate when the
employed CFL number becomes smaller. A possible cause for these observations is that the
EFEM-N6 can produce adequately small spatial dispersion errors, while the errors from
other methods are relatively large, which have been seen in the dispersion analysis. With
this good numerical feature, the present EFEM-N6 obviously has stronger abilities than the
other numerical techniques in handling very complicated wave propagations in practice.

(a) Wave travel angle θ = °0 . 

(b) Wave travel angle θ = °45 . 

r

=

r

=

Figure 9. The displacement responses of the square membrane from the FEM by varying the employed
nondimensional temporal discretization interval.
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(a) Wave travel angle θ = °0 . 
r

=

(b) Wave travel angle θ = °45 . 
r

=

Figure 10. The displacement responses of the square membrane from the EFEM-N3 by varying the
employed nondimensional temporal discretization interval.
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(a) Wave travel angle θ = °0 . 

(b) Wave travel angle θ = °45 . 

r

=

r

=

Figure 11. The displacement responses of the square membrane from the EFEM-N9 by varying the
employed nondimensional temporal discretization interval.
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(a) Wave travel angle θ = °0 . 

(b) Wave travel angle θ = °45 . 

r

=

r

=

Figure 12. The displacement responses of the square membrane from the EFEM-N6 by varying the
employed nondimensional temporal discretization interval.

6.3. The Scalar Wave Propagation in a Membrane with Holes

In the last numerical experiment, we still consider the scalar wave propagation with
a wave speed c = 1 m/s in a square pre-stressed membrane, while in this case the mem-
brane had several evenly placed holes (see Figure 13). Similar to the previous numerical
experiment, only the partial problem domain was needed to model this problem, owing to
the symmetry feature. The triangular mesh pattern with an average nodal interval h = 0.02
m was employed here. The point load at the middle of this membrane was still a Ricker
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wavelet with an amplitude A = 0.4 N, time parameter ts = 0.1 s and frequency parameter
fs = 10 Hz.

Figure 13. The square membrane with a number of evenly placed holes.

With a wave travel angle θ = 30◦, nondimensional temporal discretization interval
CFL = 0.1 and time point t = 1 s, Figure 14 displays the displacement distribution responses
using various numerical techniques. With the aim to examine the accuracy of the obtained
solutions, the reference solution from the commercial software package ABAQUS with very
refined mesh is also presented here to investigate this numerical experiment. Figure 14
shows very good agreements of the EFEM-N6 solutions with the reference ones, while the
other three methods clearly failed to yield very accurate solutions.

r

=
=
=
=

Figure 14. The displacement distribution responses of the membrane with holes from various
numerical techniques when the considered time point t = 1 s.

Additionally, we also perform the numerical analysis of this wave problem by em-
ploying the varying nondimensional temporal discretization intervals and the related
displacement distribution responses are shown in Figure 15. Here the wave travel angle
θ = 30◦. It is again confirmed from these figures that the proposed EFEM-N6 can yield
monotonic convergence solutions when the CFL number trends to zero, while the other
three methods obviously did not exhibit this good numerical feature. As discussed and
analyzed in the previous sections, this good numerical feature can be obtained because
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the EFEM-N6 can yield sufficiently small numerical dispersion errors in the space domain
discretization, while the related errors from the other methods were relatively large.

(a) FEM. 

(b) EFEM-N3. 

(c) EFEM-N9. 

r

=

r

=

r

=

Figure 15. Cont.
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(d) EFEM-N6. 
r

=

Figure 15. The displacement responses of the square membrane with holes from various methods by
varying the employed nondimensional temporal discretization interval.

6.4. Study on the Computational Cost

From the previous three numerical experiments, we can clearly obtain that the pro-
posed EFEM-N6 showed much more excellent numerical performance than the other three
mentioned numerical approaches (i.e., FEM, EFEM-N3 and EFEM-N9) for the analysis of
transient wave propagationsm and the close-to-exact numerical solutions can be generated
by utilizing the decreasing time integration steps. However, the detailed computational
cost of the different numerical approaches in solving the transient wave propagations has
still not been taken into consideration so far. In this section, the computational cost and
the computational efficiency of all of the considered numerical approaches is investigated
in great detail. To comprehensively and fairly compare the obtained results, the identical
meshes and the following relative error norm was used to measure the accuracy of the
obtained numerical solutions.

er =

√√√√∫
V (ue − uh)

2dV∫
V ue2dV

, (31)

in which V denotes the involved total problem domain; ue and uh represent the exact and
numerical solutions, respectively.

For a series of varying nondimensional time integration steps (CFL = 1, CFL = 0.5,
CFL = 0.25 and CFL = 0.1), the detailed computational cost, which is represented by the CPU
time (s) and the relative error results from the different numerical approaches in solving
the previous two numerical experiments with exact solutions are given in Tables 1 and 2.
In this work, all the numerical computations were performed using a laptop with a single
core Intel 2.2 GHz CPU and 2 GB RAM. From the tables, the following valuable points can
be observed:

(1) When the identical mesh patterns were employed, the number of required degree
of freedoms (DOFs) and nonzero entities in the system matrices from the standard FEM
were much larger than that of the proposed EFEM. This was because more nodal unknowns
for each node were employed to construct the required field function approximation in
the EFEM.

(2) Compared to the standard FEM, in the transient wave analysis the required com-
putational cost for the EFEM was much more expensive. As a result, the computational
efficiency of the EFEM was clearly lower than the standard FEM.

(3) For the three considered EFEMs (i.e., EFEM-N3, EFEM-N6 and EFEM-N9), more
additional nodal unknowns were involved for each node, and the obtained EFEM will be

254



Mathematics 2022, 10, 4595

more numerically expensive, leading to the lower computation efficiency in the transient
wave analysis.

(4) In solving transient wave propagations using numerical approaches, the total
required computational cost mainly consisted of two different parts, namely, the CPU time
for the spatial and temporal discretizations, respectively. Additionally, it was also clear that
the required computational cost for the temporal discretization was much more expensive
than that for the spatial discretization.

(5) When the standard FEM was employed for the transient wave analysis, the relative
numerical error did not become lower for the smaller used nondimensional time integration
steps. As discussed in the previous text, this was because the standard FEM cannot provide
sufficiently low spatial discretization errors. Likewise, very similar observations can also
be found when the EFEM-N3 and EFEM-N9 were employed.

(6) Among all of the considered four different numerical approaches, the numerical
performance of the EFEM-N6 was quite ideal, because the obtained numerical solution
accuracy can be broadly improved by using decreasing nondimensional time integration
steps. This also makes the EFEM-N6 specifically suitable for the analysis of complex
transient wave propagation problems.

Table 1. Comparisons of the computational cost and computational efficiency of the different numeri-
cal approaches in solving the scalar wave propagation in a clamped-free elastic bar.

Methods
Number of

DOFs

Nonzero
Entities in the

System Matrices

CPU Time
for Spatial

Discretization (s)

Nondimensional
Time Steps

CPU Time
for Temporal

Discretization (s)

Total CPU
Time (s)

Total
Numerical
Error (%)

FEM-T3 729 3465 0.66

CFL = 1 2.63 3.29 7.16
CFL = 0.5 5.36 6.02 11.51
CFL = 0.25 9.52 10.18 12.69
CFL = 0.1 13.32 13.98 13.14

EFEM-N3 2187 41411 2.64

CFL = 1 9.75 12.39 11.14
CFL = 0.5 16.57 19.21 8.28
CFL = 0.25 29.03 31.67 5.09
CFL = 0.1 54.35 56.99 7.12

EFEM-N9 6561 382975 7.65

CFL = 1 19.21 26.86 11.01
CFL = 0.5 34.21 41.86 6.53
CFL = 0.25 54.38 62.03 6.68
CFL = 0.1 95.48 103.13 7.32

EFEM-N6 4374 169496 4.16

CFL = 1 13.26 17.42 11.16
CFL = 0.5 22.01 26.17 8.45
CFL = 0.25 36.13 40.29 5.43
CFL = 0.1 65.93 70.09 2.01

Table 2. Comparisons of the computational cost and computational efficiency of different numerical
approaches in solving the scalar wave propagation in a square pre-stressed membrane.

Methods
Number of

DOFs

Nonzero
Entities in the

System Matrices

CPU Time
for Spatial

Discretization (s)

Nondimensional
Time Steps

CPU Time
for Temporal

Discretization (s)

Total CPU
Time (s)

Total
Numerical
Error (%)

FEM-T3 1681 8241 1.49

CFL = 1 7.03 8.52 52.33
CFL = 0.5 10.55 12.04 87.73
CFL = 0.25 20.19 21.68 95.38
CFL = 0.1 37.84 39.33 97.31

EFEM-N3 5043 99751 11.68

CFL = 1 13.77 25.45 59.39
CFL = 0.5 24.23 35.91 39.89
CFL = 0.25 43.62 55.3 11.95
CFL = 0.1 82.19 93.87 19.69

EFEM-N9 15129 923,343 37.89

CFL = 1 41.28 79.17 51.29
CFL = 0.5 81.62 119.51 13.82
CFL = 0.25 147.82 185.71 19.54
CFL = 0.1 347.38 385.27 22.76
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Table 2. Cont.

Methods
Number of

DOFs

Nonzero
Entities in the

System Matrices

CPU Time
for Spatial

Discretization (s)

Nondimensional
Time Steps

CPU Time
for Temporal

Discretization (s)

Total CPU
Time (s)

Total
Numerical
Error (%)

EFEM-N6 10086 408614 29.62

CFL = 1 27.16 56.78 60.85
CFL = 0.5 47.71 77.33 22.57
CFL = 0.25 89.93 119.55 9.41
CFL = 0.1 208.58 238.2 3.26

7. Conclusions

The enriched FEM (EFEM) with disparate types of enrichment functions was presented
to investigate elastodynamic problems. Since the original linear approximation space in the
traditional FEM can be effectively enriched by local enrichment functions, more accurate
and reliable numerical solutions can be yielded. From the analysis of the numerical
dispersion and several representative numerical experiments, we can see that the EFEM
enriched by quadric polynomial enrichment functions (EFEM-N6) can ensure that the
amount of numerical dispersion errors from the discretization in the space domain can
be suppressed to a sufficiently small level, while the corresponding errors are relatively
large when other types of enrichment functions are employed. Moreover, the proposed
EFEM-N6 can effectively overcome the numerical anisotropy issue in the wave analysis,
because the solutions generated by the EFEM-N6 were almost totally identical, even though
varying angles of wave travel were considered.

From the viewpoint of a practical engineering application, the numerical experiments
in this work also show that the monotonic convergence property with respect to the
nondimensional time integration step CFL can be basically realized by the proposed EFEM-
N6; hence, the obtained numerical solution accuracy can be continuously increased by
decreasing the employed nondimensional time integration steps, while the other mentioned
numerical techniques do not have this good numerical feature. It is exactly this important
numerical property that makes the proposed EFEM-N6 specifically suitable to handle a
wide range of complicated elastodynamic problems.
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Abstract: C1 continuous quasi-interpolating splines are constructed over Clough–Tocher refinement
of a type-1 triangulation. Their Bernstein–Bézier coefficients are directly defined from the known
values of the function to be approximated, so that a set of appropriate basis functions is not required.
The resulting quasi-interpolation operators reproduce cubic polynomials. Some numerical tests are
given in order to show the performance of the approximation scheme.
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1. Introduction

A novel, non-standard technique for constructing bivariate quasi-interpolating splines
over uniform partitions was proposed by T. Sorokina and F. Zeilfelder in [1,2] (see also [3,4]).
The essential idea of this methodology is to define the quasi-interpolant by directly provid-
ing the coefficients of the Bernstein–Bézier (BB-) form of its restriction to each of the subsets
forming the partition.

In [2], the construction of C1 quartic quasi-interpolants over a type-1 triangulation is ad-
dressed, so that the largest polynomial space is reproduced, namely the space P3 of polynomials
of total degree less than or equal to three (see Figure 1). The coefficients of the quasi-interpolant
on each triangle are linear combinations of function values at vertices and midpoints in a
neighborhood of the triangle. The quasi-interpolant is constructed from them.

In [1], the same strategy is applied to construct C1 quadratic quasi-interpolants on a
triangulation which the authors called of type-2. Starting from a decomposition of the plane
into squares, each of them is divided into eight micro-triangles by means of its diagonals
and the straight lines parallel to the coordinate axes passing through the center of the
square (see Figure 1).

Figure 1. From left to right, type-1 and type-2 triangulations on which C1-continuous quasi-interpolants
are constructed in [1,2]: quartic and exact on P3, and quadratic and exact on P2, respectively.

The problem addressed in [2] is studied in detail in [5], proving that the approximation
scheme proposed in [2] is a particular choice in a 19-parametric family of schemes. More-
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over, different strategies for assigning values to the parameters are provided. In both [2]
and [5], the quasi-interpolating splines interpolate the values at the vertices and the masks
associated with the domain points that are key to the construction are applied taking into
account the symmetries of the triangulation involved. Since the triangulation is uniform,
these masks are independent of the specific triangle on which the quasi-interpolant is
calculated (see also [6]).

Later, the cubic case was dealt with in [7], on the same triangulation used to construct
quartic quasi-interpolants. The aim was to construct a C1 cubic one, exact on P2, from the
values at vertices and midpoints. Since it is not possible to define a quasi-interpolant that
interpolates values at vertices, the authors opted to find specific masks for key domain
points, including vertices, without imposing any symmetry. It was proved that there are
unique masks that satisfy the required properties. Not being possible to achieve exactness
on P3, this paper presents a construction on a refinement of the initial type-1 triangulation
in order to achieve the optimal approximation order. Specifically, we work on a Clough–
Tocher (CT-) refinement [8], which produces a subdivision into six micro-triangles of each
square formed by two macro-triangles sharing an edge.

The rest of the paper is structured as follows. In Section 2, a type-1 triangulation
endowed with a Clough–Tocher refinement is introduced, as well as the space of C1 cubic
splines defined over it. Further, a partition of the domain points associated with the micro-
triangles is provided. In Section 3, the construction of quasi-interpolating splines is given
and the general solution of the resulting problem. In Section 4, a method for selecting
parameters based on the minimization of an upper bound of the quasi-interpolation error
associated with the quartic monomials is proposed. In Section 5, the results of some
numerical tests are given to illustrate the performance of the quasi-interpolation operator
relative to the selected parameters. Finally, some details are included in Appendix A.

2. Bernstein–Bézier Form of Cubic Splines on a Type-1 Triangulation

Let us suppose that the triangulation is spanned by the vectors e1 := (h, h) and
e2 := (h,−h), with h > 0. Its vertices are vi,j := ie1 + je2, which define the lattice
V :=

{
vi,j, i, j ∈ Z

}
. These vertices define squares which can be decomposed into the

triangles Ti,j
〈
vi,j, vi+1,j+1, vi+1,j

〉
and Bi,j

〈
vi,j, vi+1,j+1, vi,j+1

〉
(see Figure 2). Therefore, a

type-1 triangulation results:
Δ :=

⋃
i,j∈Z

(
Ti,j ∪Bi,j

)
.

When there is no need to distinguish between the types of triangles in Δ, we denote by T

any one of them.
To define the refinement of Δ to be used, let

ti,j :=
1
3
(
vi,j + vi+1,j+1 + vi+1,j

)
and bi,j :=

1
3
(
vi,j + vi+1,j+1 + vi,j+1

)
be the barycenters of Ti,j and Bi,j, respectively. Then, the CT-refinement of each triangle is
obtained by joining its vertices with its barycenter [8]. Each macro-triangle Ti,j and Bi,j is,
respectively, divided into the following micro-triangles:

t+1 =
〈
vi,j, vi+1,j+1, ti,j

〉
, t+2 =

〈
vi+1,j+1, vi+1,j , ti,j

〉
, t+3 =

〈
vi+1,j, vi,j, ti,j

〉
,

t−1 =
〈
vi,j, vi,j+1, bi,j

〉
, t−2 =

〈
vi,j+1, vi+1,j+1, bi,j

〉
, t−3 =

〈
vi+1,j+1, vi,j , bi,j

〉
.

(1)

They are shown in Figure 2, bottom, where any reference to the subscripts of the micro-
triangles has been avoided. As in the case of macro-triangles, the lower case letter t will be
used to represent any of the micro-triangles of ΔCT.
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Figure 2. Top, from left to right, decomposition into squares induced by the vertices of Δ, type-1
triangulation. Bottom, CT-refinements of macro-triangles Ti,j and Bi,j.

In this paper, we consider the space of C1 cubic splines on ΔCT defined by

S1
3(ΔCT) :=

{
s ∈ C1

(
R2

)
: s|t ∈ P3 for all t ∈ ΔCT

}
.

where the restriction is s|t of s ∈ S1
3(ΔCT) to a micro-triangle t = 〈V1, V2, V3〉 ∈ ΔCT a cubic

polynomial, it can be represented using the cubic Bernstein polynomials

Bβ,t(p) :=
3!
β!

τβ =
6

β1!β2!β3!
τ

β1
1 τ

β2
2 τ

β3
3 ,

where the multi-index notations β := (β1, β2, β3) ∈ N3
0, |β| := β1 + β2 + β3 and β! :=

β1!β2!β3! have been used, and τ := (τ1, τ2, τ3) provides the barycentric coordinates of point
p ∈ R2 with respect to t, i.e., p = ∑3

i=1 τiVi and ∑3
i=1 τi = 1. The coordinates τ1, τ2 and τ3

are non-negative whenever p belongs to t.
Every polynomial q ∈ P3 can be expressed on t in terms of the cubic Bernstein basis

polynomials Bβ,t, |β| = 3, i.e., there exist values bβ such that

q(x, y) = q(τ) = ∑
|β|=3

bβ,t Bβ,t(τ).

Coefficients in Dt :=
{

bβ,t, |β| = 3
}

are said to be the Bernstein–Bézier (BB-) coefficients
of q. They are linked to the domain points ξβ,t determined by the barycentric coordinates(

β1,t
3 , β2,t

3 , β3,t
3

)
with respect to t. They determine the lattice L3(t). The graph of q on t is

included in the convex hull of
{(

ξβ,t, bβ,t
)
, |β| = 3

}
.

On each micro-triangle, an element s ∈ S1
3(ΔCT) is uniquely determined by ten BB-

coefficients, associated with the corresponding domain points. When all macro-triangles
are taken into account, a subset of domain points is obtained, which we note D3(ΔCT),
i.e., D3(ΔCT) =

⋃
t∈ΔCT

L3(t), where the union is formed without taking repetitions into
account. To determine s, it is necessary to give the BB-coefficients associated with all the
points of D3(ΔCT). As the triangulation is uniform, following the approach in [2,4–6], it is
sufficient to establish a partition

{
Di,j, i, j ∈ Z

}
of D3(ΔCT) and define the BB-coefficients

linked to the domain points in Di,j.

263



Mathematics 2023, 11, 59

Figure 3 shows the twenty-seven domain points forming Di,j, which are linked to
vertex vi,j. Each of them has the subscripts of vi,j. The vertices and barycenter have already
been defined. They remaining domain points in Di,j are given next:

u1,1
i,j := 1

3 (2vi,j + vi+1,j+1), u1,0
i,j := 1

3 (2vi,j + vi+1,j),

u2,1
i,j := 1

3 (2vi,j + ti,j), u−1,−1
i,j := 1

3 (2vi,j + vi−1,j−1),

u1,−1
i,j := 1

3 (2vi,j + bi,j−1), u0,−1
i,j := 1

3 (2vi,j + vi,j−1),

u−1,−2
i,j := 1

3 (2vi,j + ti−1,j−1), u−2,−1
i,j := 1

3 (2vi,j + bi−1,j−1),

u−1,0
i,j := 1

3 (2vi,j + vi−1,j), u−1,1
i,j := 1

3 (2vi,j + ti−1,j),

u0,1
i,j := 1

3 (2vi,j + vi,j+1), u1,2
i,j := 1

3 (2vi,j + bi,j),

x1,1
i,j := 1

3 (vi,j + vi+1,j+1 + bi,j), x1,0
i,j := 1

3 (vi,j + vi+1,j + bi,j−1),

x0,1
i,j := 1

3 (vi,j + vi,j+1 + bi,j), y2,1
i,j := 1

3 (vi,j + 2ti,j),

y1,−1
i,j := 1

3 (vi,j + 2bi,j−1), y−1,−2
i,j := 1

3 (vi,j + 2ti−1,j−1),

y−2,−1
i,j := 1

3 (vi,j + 2bi−1,j−1), y−1,1
i,j := 1

3 (vi,j + 2ti−1,j)

y1,2
i,j := 1

3 (vi,j + 2bi,j), z1,1
i,j := 1

3 (vi,j + vi+1,j+1 + ti,j),

z1,0
i,j := 1

3 (vi,j + vi+1,j + ti,j), z0,1
i,j := 1

3 (vi,j + vi,j+1 + ti−1,j).

vi,j ui,j
1,1

ui,j
2,1

ui,j
1,0

ui,j
-1,-1

ui,j
1,-1

ui,j
0,1

ui,j
-1,-2

ui,j
-2,-1

ui,j
-1,0

ui,j
-1,1

ui,j
1,2

ui,j
0,-1

ti,j

bi,j

yi,j
2,1

yi,j
1,-1

yi,j
-1,-2

yi,j
-2,-1

yi,j
-1,1

yi,j
1,2

zi,j
1,1

zi,j
1,0

zi,j
0,1

xi,j
1,1

xi,j
1,0

xi,j
0,1

Figure 3. Domain points forming the subset Di,j corresponding to vi,j.

Figure 4 shows the domain points in D lying in the hexagon formed by the six triangles
sharing the vertex vi,j.

Figure 4. Domain points lying in the hexagon formed by the triangles sharing vertex vi,j. Each shows
the subscripts of the vertex to which it is linked.

264



Mathematics 2023, 11, 59

3. C1 Quasi-Interpolating Splines on a Clough–Tocher Refinement

The main objective of this work is to construct a quasi-interpolation operator for
S1

3(ΔCT) that is exact on P3 in order to improve the result obtained in [7]. Let us denote
it as Q. It is assumed that the values of a function f are known at the domain points in
D3(ΔCT).

The quasi-interpolant Q f ∈ S1
3(ΔCT) of f should be constructed in such a way that

the BB-coefficients of the restriction Q f|t to each micro-triangle t ∈ ΔCT are defined as
combinations of those values of f . In other words, Q f|t is written in the basis of Bernstein
polynomials Bβ,t, |β| = 3, as

Q f|t = ∑
γ∈Δ3

PγBγ,t,

where Pγ denotes the BB-coefficient associated with the domain point pγ ∈ t, Δ3 is the set
of indices with length equal to 3 written in the lexicographical order, i.e.,

Δ3 = {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1),

(1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)}

and the vertices of each micro-triangle follow in the order they appear in (1).
For instance, with regard to the micro-triangle t+1 of Ti,j (see Figure 5) we write

Q f|t+1 = Vi,jB(3,0,0),t+1
+ U1,1

i,j B(2,1,0),t+1
+ U2,1

i,j B(2,0,1),t+1
+ U−1,−1

i+1,j+1B(1,2,0),t+1

+ Z1,1
i,j B(1,1,1),t+1

+ Y2,1
i,j B(1,0,2),t+1

+ Vi+1,j+1B(0,3,0),t+1

+ U−1,−2
i+1,j+1B(0,2,1),t+1

+ Y−1,−2
i+1,j+1B(0,1,2),t+1

+ Ti,jB(0,0,3),t+1
.

Similar expressions are obtained for the restrictions of Q f to the other two micro-triangles
of Ti,j and those three into which Bi,j is divided.

Figure 5. Top, the domain points associated with the three micro-triangles of the macro-triangle Ti,j.
They are denoted as shown in Figure 4 bottom; the indices corresponding to each micro-triangle,
whose orientation is determined by the vertex ordering given by (1).

The BB-coefficients involved in the definition of Q f on each micro-triangle of Ti.j and
Bi,j will be linear combinations of f at the specific domain points for cubic polynomials
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lying in the hexagon defined by the triangles sharing vertex vi,j. Specifically, the union
without repetitions D3(Δ) :=

⋃
T∈Δ L3(T) is formed and decomposed as

D3(Δ) =
⋃

i,j∈Z
Si,j,

where the ordered subset Si,j consists of the thirty-seven domain points given below:

Si,j :=
{

vi,j, u1,1
i,j , u1,0

i,j , u0,−1
i,j , u−1,−1

i,j , u−1,0
i,j , u0,1

i,j , u−1,−1
i+1,j+1, ti,j, u−1,0

i+1,j, bi,j−1,

u0,−1
i,j−1, ti−1,j−1, u−1,−1

i−,j−1, bi−1,j−1, u1,0
i−1,j, ti−1,j, u0,−1

i,j+1, bi,j, vi+1,j+1, u0,−1
i+1,j+1,

u0,1
i+1,j, vi+1,j, u−1,−1

i+1,j , u1,1
i,j−1, vi,j−1, u−1,0

i,j−1, u1,0
i−1,j−1, vi−1,j−1, u0,1

i−1,j−1, u0,−1
i−1,j,

vi−1,j, u1,1
i−1,j, u−1,−1

i,j+1 , vi,j+1, u1,0
i,j+1, u−1,0

i+1,j+1

}
.

The BB-coefficient P of a domain point p is a linear combination of values of f at points
in Si,j, its coefficients give rise to a vector M(p), ordered as Si,j, which is said to be the mask
of p. If f

(
Si,j

)
:=

{
f (p), p ∈ Si,j

}
is also ordered as Si,j, then

P = M(p) · f
(
Si,j

)
:=

37

∑
�=1

M(p)� f
(
Si,j

)
�
,

where M(p)� and f
(
Si,j

)
�

stand for the �-th entries of M(p) and f
(
Si,j

)
, respectively.

In the following, we state the problem that is the object of this work.

Problem 1. Find masks for the domain points in Di,j such that the associated quasi-interpolation
operator Q is exact on P3 and produces C1 quasi-interpolating splines.

The following result holds.

Proposition 2. Problem 1 has a 17-parametric family of solutions.

Proof. Given an arbitrary function f , C1 continuity of Q f across segment
[
vi,j, vi+1,j

]
is

equivalent to the following conditions [9] (Thm. 2.28) (see Figure 6 and the notations used
for the domain points in Figures 3 and 4):

Vi,j + U1,0
i,j −U1,−1

i,j −U2,1
i,j = 0,

U1,0
i,j + U−1,0

i+1,j − X1,0
i,j − Z1,0

i,j = 0,

U−1,0
i+1,j + Vi+1,j −U2,1

i+1,j −U−1,1
i+1,j = 0.

For
[
vi,j, vi+1,j+1

]
,

Vi,j + U1,1
i,j −U2,1

i,j −U1,2
i,j = 0,

U1,1
i,j + U−1,−1

i+1,j+1 − X1,1
i,j − Z1,1

i,j = 0,

U−1,−1
i+1,j+1 + Vi+1,j+1 −U−1,−2

i+1,j+1 −U2,1
i+1,j+1 = 0.

And for
[
vi,j, vi,j+1

]
,

Vi,j + U0,1
i,j −U−1,1

i,j −U1,2
i,j = 0,

U0,1
i,j + U0,−1

i,j+1 − Z0,1
i,j − X0,1

i,j = 0,

U0,−1
i,j+1 + Vi,j+1 −U−1,−2

i,j+1 −U1,−1
i,j+1 = 0.
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Regarding micro-edges, C1 continuity across
[
vi,j, ti,j

]
is equivalent to conditions

U2,1
i,j −

1
3

(
Vi,j + U1,0

i,j + U1,1
i,j

)
= 0, Y2,1

i,j −
1
3

(
U2,1

i,j + Z1,0
i,j + Z1,1

i,j

)
= 0.

Similarly, it is satisfied across
[
vi+1,j, ti,j

]
and

[
vi+1,j+1, ti,j

]
, respectively, if and only if

U−1,1
i+1,j −

1
3

(
Vi+1,j + U−1,0

i+1,j + U0,1
i+1,j

)
= 0,

Y−1,−1
i+1,j+1 −

1
3

(
U−1,1

i+1,j + Z1,0
i,j + Z0,1

i+1,j

)
= 0,

and

U−1,−2
i+1,j+1 −

1
3

(
Vi+1,j+1 + U−1,−1

i+1,j+1 + U0,−1
i+1,j+1

)
= 0,

Y−1,−2
i+1,j+1 −

1
3

(
U−1,−2

i+1,j+1 + Z1,1
i,j + Z0,1

i+1,j

)
= 0.

For the micro-sides of macro-triangle Bi,j, six new conditions are involved. For
[
vi,j, bi,j

]
,[

vi,j+1, bi,j
]

and
[
vi+1,j+1, bi,j

]
, C1 regularity is equivalent to

U1,2
i,j −

1
3

(
Vi,j + U0,1

i,j + U1,1
i,j

)
= 0, Y1,2

i,j −
1
3

(
U1,2

i,j + X1,1
i,j + X0,1

i,j

)
= 0,

U1,−1
i,j+1 −

1
3

(
Vi,j+1 + U0,−1

i,j+1 + U1,0
i,j+1

)
= 0,

Y1,−1
i,j+1 −

1
3

(
U1,−1

i,j+1 + X0,1
i,j + X1,0

i,j+1

)
= 0,

and

U2,−1
i+1,j+1 −

1
3

(
Vi+1,j+1 + U−1,−1

i+1,j+1 + U−1,0
i+1,j+1

)
= 0,

Y−2,−1
i+1,j+1 −

1
3

(
U2,1

i+1,j+1 + X1,1
i,j + X1,0

i,j+1

)
= 0,

respectively. Finally, C1 continuity at the barycenters of Ti,j and Bi,j is obtained if and only
if

Ti,j − 1
3

(
Y2,1

i,j + Y−1,−2
i+1,j+1 + Y−1,1

i+1,j−1

)
= 0,

Bi,j − 1
3

(
Y1,2

i,j + Y−2,−1
i+1,j+1 + Y−1,−1

i,j+1

)
= 0.

These are all equalities involving the values f (p), p ∈ Si,j, so Q f is C1 continuous if
and only if all the coefficients of the f -values in these equalities are zero. Therefore, the
requirements on the C1 continuity are equivalent to a system of equations having a 122-
parametric family of solutions. To these equations must be added those related to the
exactness of the operator on P3. They are obtained by imposing that the BB-coefficients
on each microtriangle of the monomials of degree less than or equal to three and those of
their quasi-interpolants are equal. The resulting system can be solved with a Computer
Algebra System, namely, Mathematica, obtaining the existence of a 17-parametric family of
solutions. The free parameters are entries with indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19,
20, 21, and 22 of the mask M

(
bi,j

)
.
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Figure 6. Schematic representation of the conditions to be imposed to achieve C1 continuity on the
macro-interval edges (top) and on the micro-edges and at barycenters (bottom). In each of the shaded
parallelograms in the figure on the left, it must be fulfilled that the sum of the BB-coefficients of two
opposite domain points must be equal to that of the other two. The C1 continuity across the micro-edges
of the triangle Ti,j is obtained if, in each of the two green and red�-triangles closest to each vertex, it is
satisfied that the BB-coefficient corresponding to the interior domain point is equal to one-third of the sum
of those of the three vertices of the triangle. The same condition must be fulfilled for the -triangles of Bi,j.

Figure 7 shows the mask relative to vertex vi,j. The entries of the masks for u0,−1
i,j ,

u−1,−2
i,j , u−2,−1

i,j and u−1,0
i,j are almost all zero, and the following expressions for their BB-

coefficients are found:

U−1,0
i,j = −5

6
f
(
vi,j

)
+ 3 f

(
u−1,0

i,j

)
− 3

2
f
(

u0,−1
i,j−1

)
+

1
3

f
(
vi,j−1

)
,

U0,−1
i,j = −5

6
f
(
vi,j

)− 3
2

f
(

u−1,0
i,j

)
+ 3 f

(
u0,−1

i,j−1

)
+

1
3

f
(
vi+1,j+1

)
,

U−1,−2
i,j = −5

6
f
(
vi,j

)
+ f

(
u−1,0

i,j

)
+ 2 f

(
u0,−1

i,j

)
− 1

2
f
(

u0,−1
i,j−1

)
− f

(
u−1,0

i+1,j

)
+

2
9

f
(
vi+1,j+1

)
+

1
9

f
(
vi,j−1

)
,

U−2,−1
i,j = −5

6
f
(
vi,j

)
+ 2 f

(
u−1,0

i,j

)
+ f

(
u0,−1

i,j

)
− f

(
u0,−1

i,j−1

)
− 1

2
f
(

u−1,0
i+1,j

)
+

1
9

f
(
vi+1,j+1

)
+

2
9

f
(
vi,j−1

)
.

Fourteen of the masks relative to the remaining twenty-two domain points in Di,j do not
depend on any parameters and appear in Appendix A. Those of ti,j, bi,j, y1,2

i,j , y2,1
i,j , y−1,−2

i,j ,

y−2,−1
i,j , x1,1

i,j , and z1,1
i,j have very long entries and will not be given.

Figure 7. Mask M(vi,j).
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Remark 1. It can be proved that it is not possible to obtain quasi-interpolants with the required
characteristics if the BB-coefficients are linear combinations of function values at the vertices lying
in the hexagon Hi,j determined by the six triangles sharing vertex vi,j, and the midpoints of the
edges of Hi,j. Neither is it possible to construct C1 cubic quasi-interpolants exact on P3 in this way
if function values at vi,j and at the eighteen vertices closest to it are used.

Moreover, quasi-interpolation error estimates are found using a standard proce-
dure [2].

Proposition 3. There exists an absolute constant K such that for every f ∈ Cm+1(R2), 0 ≤ m ≤ 2,

‖Dγ( f −Q f )‖∞,T ≤ Khm+1−|γ|
∥∥∥Dm+1 f

∥∥∥
∞,ΩT

, (2)

for all 0 ≤ |γ| ≤ 1, γ = (γ1, γ2), with ΩT denoting the union of the triangles in Δ having a
non-empty intersection with T.

4. Selecting Parameters

An obvious choice is to make all parameters equal to zero. However, a reasonable
strategy is to minimize an upper bound of the quasi-interpolation error for monomials of
smaller degree non reproduced by the quasi-interpolation operator, namely mk,4−k(x, y) :=
xky4−k, k = 0, 1, 2, 3, 4. Let us suppose that the BB-coefficients of mk,4−k relative to each
micro-triangle t+� , � = 1, 2, 3, of Ti,j are μk,β,t+�

, |β| = 4, and that those of the cubic quasi-
interpolant Qmk,4−k are bk,γ,t+�

, |γ| = 4. By degree elevation, Qmk,4−k|t+� can be represented
as a quartic polynomial having BB-coefficients bk,β,t+�

, |β| = 4, which depend on parameters

zr := M
(
bi,j

)
r, 1 ≤ r ≤ 12, and zr := M

(
bi,j

)
r+5, 13 ≤ r ≤ 17. Therefore, the BB-coefficients

of the restriction of mk,4−k −Qmk,4−k to t+� have the form

σk,t+�
(z) = ck,t+�

+
17

∑
r=1

c(r)
k,t+�

zr

for real values ck,t+�
and c(r)

k,t+�
, where z := (z1, . . . , z17). Since the Bernstein polynomials

relative to t+� form a partition of unity, then the infinity norm of mk,4−k − Qmk,4−k is
bounded by

max
{∣∣∣σk,t+�

(z)
∣∣∣, � = 1, 2, 3

}
.

Consequently, an upper bound for the quasi-interpolation errors for quartic monomials in
the macro-triangle Ti,j is

U+(z) := max
{∣∣∣σk,t+�

(z)
∣∣∣, � = 1, 2, 3; k = 0, 1, 2, 3, 4

}
.

Analogously, an upper bound of such errors in the macro-triangle Bi,j is written as

U−(z) := max
{∣∣∣σk,t−�

(z)
∣∣∣, � = 1, 2, 3; k = 0, 1, 2, 3, 4

}
,

where

σk,t−�
(z) = ck,t−�

+
17

∑
r=1

c(r)k,t.
�
zr,

for real values ck,t−�
and c(r)k,t.

�
. In short, the function

U(z) := max{U+(z), U−(z)}
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is an upper bound for the quasi-interpolation errors for quartic monomials in the square
Ti,j

⋃
Bi,j.

Function U can be rewritten as

U(z) = max
1≤α≤30

1
cα

(
dα +

17

∑
β=1

eα,β
∣∣ fα,β · z

∣∣),

where cα, dα, eα,β ∈ N, fα,β ∈ Z17 and A · B := ∑17
s=1 AsBs. The number of terms involved in

each sum depends on α, because some of them will be zero. Therefore, the minimization of
U is equivalent to the following linear programming problem:

Minimize μ

such that

⎧⎨⎩
dα + ∑17

β=1 eα,β
(
uα,β + vα,β

)− cαμ ≤ 0, 1 ≤ α ≤ 30,
fα,β · (Z+ − Z−)− uα,β + vα,β = 0, 1 ≤ α ≤ 30, 1 ≤ β ≤ 17,
up,n, vp,n, X1, X2, Y1, Y2, Z1, Z2, μ ≥ 0,

where it has been used that each variable zr can be written as zr = z+r − z−r , z+r , z−r ≥ 0,
therefore Z = Z+ − Z−, with Z+ :=

(
z+1 , . . . , z+17

)
and Z− :=

(
z−1 , . . . , z−17

)
. The solution of

this problem has been exactly determined by using Mathematica, and the minimum value
μ = 35971348390906381

87945041427390 is reached at

Z+
3 = 33654106472661220639

24647711830550794440 , Z−6 = 28931119278287059059781
79874153306877553434720 ,

Z−7 = 147713415264798351289
49295423661101588880 , Z−9 = 71687410464642966611

49295423661101588880 ,

Z−10 = 3723562194545339719095199
1118238146296285748086080 , Z−12 = 3459921708110971652593

12288331277981162066880 ,

Z−13 = 1437915323322245022121277
1863730243827142913476800 , Z+

15 = 9334610941403380115035381
10064143316666571732774720 ,

being equal to zero all the remaining values. Therefore, the minimum is attained at point
z∗with components z∗r = 0 for r ∈ {1, 2, 4, 5, 8, 11, 14, 16, 17}, and

z∗3 = 33654106472661220639
24647711830550794440 , z∗6 = − 28931119278287059059781

79874153306877553434720 ,

z∗7 = − 147713415264798351289
49295423661101588880 , z∗9 = − 71687410464642966611

49295423661101588880 ,

z∗10 = − 3723562194545339719095199
1118238146296285748086080 , z∗12 = − 3459921708110971652593

12288331277981162066880 ,

z∗13 = − 1437915323322245022121277
1863730243827142913476800 , z∗15 = 9334610941403380115035381

10064143316666571732774720 .

5. Numerical Tests

In this section, the performance of the quasi-interpolation operator Q∗ defined by the
masks provided by the solution above is tested. To perform this, we consider Franke’s
function

f1(x1, x2) =
3
4

exp

(
− (9x1 − 2)2

4
− (9x2 − 2)2

4

)
+

3
4

exp

(
− (9x1 + 1)2

49
− 9x2 + 1

10

)

+
1
2

exp

(
− (9x1 − 7)2

4
− (9x2 − 3)2

4

)
− 1

5
exp

(
−(9x1 − 4)2 − (9x2 − 7)2

)
and Nielson’s function

f2(x1, x2) =
x2

2
cos4

(
4(x2

1 + x2 − 1)
)

to produce quasi-interpolants on the unit square [10,11]. The plots of f1 and f2 are shown
in Figure 8, together with those of their quasi-interpolants obtained by diving the unit
interval into 256 equal parts.
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Figure 8. Top, from left to right, plots of the test functions. Bottom, the ones of their respective
quasi-interpolants Q∗ f1 and Q∗ f2 with h = 1/256.

The quasi-interpolation error is estimated as

max
k,�=1,...,400

|Q∗ f (xk, y�)− f (xk, y�)|,

xk and y� being equally spaced points in [0, 1]. The numerical convergence order (NCO) is
given by the rate

NCO := log
(
E(h2)

E(h1)

)
/ log

(
h2

h1

)
,

where E(h) stands for the estimated error associated with the step length h.
The quasi-interpolation errors are estimated for different values of the step length h

and the NCO are calculated. The results are shown in Table 1. They confirm the theoretical
ones.

Table 1. Errors and NCOs for functions f1 and f2 with h = 1/n, n = 20, 40, 80, 160.

f1 f2

n Estimated Error NCO Estimated Error NCO

16 7.07377× 10−1 – 1.47146× 10−1 –
32 4.49051× 10−2 3.97753 1.44799× 10−2 3.34512
64 3.14830× 10−3 3.83423 8.62813× 10−4 4.06886

128 1.76965× 10−4 4.15304 5.36388× 10−5 4.00770
256 1.07615× 10−5 4.03951 3.48823× 10−6 3.94271

6. Conclusions

In this work, C1 cubic quasi-interpolants have been defined on a Clough–Tocher
refinement of a type-1 triangulation, providing directly their BB-coefficients on each of the
micro-triangles of the sub-triangulation, which are linear combinations of the values taken
by the approximated function at specific points in a neighborhood of each macro-triangle.
Cubic polynomials are reproduced. The general problem has a 17-parametric family of
solutions and a specific solution has been chosen, which minimizes an upper bound of the
quasi-interpolation errors associated with the quartic monomials.

The results improve on those available for cubic quasi-interpolation over a type-1
triangulation since the quasi-interpolation operator is now exact on P3 instead of P2.
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Appendix A. Masks

This appendix includes the masks provided by Proposition 2 and which do not depend
on the parameters indicated. Further, the remaining ones corresponding to the parameters
values z∗r were performed. They have been obtained by minimizing the considered upper
bound of the quasi-interpolation errors of the quartic monomials. They are very lengthy
expressions, but are included to provide the reader with as much information as possible.

Appendix A.1. Masks That Do Not Depend on Parameters

Mask of u1,1
i,j :

(
− 47473646953

77552946585 ,− 285439445629
361913750730 ,− 533680265081

482551667640 , 209207768203
103403928780 , 382180214323

33510532475 ,

209207768203
103403928780 ,− 533680265081

482551667640 , 6856655665381
2895310005840 , 120096488429

160850555880 ,− 1333910079319
1447655002920 ,

− 27952071335903
965103335280 ,− 1333910079319

1447655002920 , 120096488429
160850555880 ,− 144225313868

542870626095 ,− 2725154777111
1447655002920 ,

2095907565527
723827501460 ,− 6955013524199

4342965008760 , 36832622942
180956875365 ,− 64504080325

289531000584 , 3760571723053
2171482504380 ,

− 2552223421511
361913750730 , 5169718992073

361913750730 ,− 8031525079
77552946585 , 5169718992073

361913750730 ,− 2552223421511
361913750730 ,

3760571723053
2171482504380 ,− 64504080325

289531000584 , 36832622942
180956875365 ,− 6955013524199

4342965008760 , 2095907565527
723827501460 ,

− 2725154777111
1447655002920 ,− 31932271589

40212638970 ,− 31932271589
40212638970 , 73887390529

1737186003504 ,− 25733502500393
43429650087600 ,

343799911081
361913750730 , 343799911081

361913750730

)
Mask of u−1,−1

i,j :

(
− 211036174997

232658839755 , 285439445629
1085741252190 , 533680265081

1447655002920 , 411215804477
310211786340 ,− 382180214323

100531597425 ,

411215804477
310211786340 , 533680265081

1447655002920 ,− 6856655665381
8685930017520 ,− 120096488429

482551667640 ,− 3009054929441
4342965008760 ,

27952071335903
2895310005840 ,− 3009054929441

4342965008760 ,− 120096488429
482551667640 , 144225313868

1628611878285 , 2725154777111
4342965008760 ,

− 2095907565527
2171482504380 , 6955013524199

13028895026280 ,− 36832622942
542870626095 , 64504080325

868593001752 ,− 2312916720133
6514447513140 ,

2552223421511
1085741252190 ,− 5169718992073

1085741252190 , 8031525079
232658839755 ,− 5169718992073

1085741252190 , 2552223421511
1085741252190 ,

− 2312916720133
6514447513140 , 64504080325

868593001752 ,− 36832622942
542870626095 , 6955013524199

13028895026280 ,− 2095907565527
2171482504380 ,

2725154777111
4342965008760 , 31932271589

120637916910 , 31932271589
120637916910 ,− 73887390529

5211558010512 , 25733502500393
130288950262800 ,

− 343799911081
1085741252190 ,− 343799911081

1085741252190

)

272



Mathematics 2023, 11, 59

Mask of u2,1
i,j :

(
− 319149498787

465317679510 ,− 285439445629
542870626095 ,− 533680265081

723827501460 , 364313661373
155105893170 , 764360428646

100531597425 ,

209207768203
155105893170 ,− 533680265081

723827501460 , 6856655665381
4342965008760 , 120096488429

241275833820 ,− 2419651331509
2171482504380 ,

− 27952071335903
1447655002920 ,− 1333910079319

2171482504380 , 120096488429
241275833820 ,− 288450627736

1628611878285 ,− 2725154777111
2171482504380 ,

2095907565527
1085741252190 ,− 6955013524199

6514447513140 , 73665245884
542870626095 ,− 64504080325

434296500876 , 4122485473783
3257223756570 ,

− 2552223421511
542870626095 , 5169718992073

542870626095 ,− 16063050158
232658839755 , 5169718992073

542870626095 ,− 2552223421511
542870626095 ,

3760571723053
3257223756570 ,− 64504080325

434296500876 , 73665245884
542870626095 ,− 6955013524199

6514447513140 , 2095907565527
1085741252190 ,

− 2725154777111
2171482504380 ,− 31932271589

60318958455 ,− 31932271589
60318958455 , 73887390529

2605779005256 ,− 25733502500393
65144475131400 ,

343799911081
542870626095 , 343799911081

542870626095

)
Mask of u1,0

i,j :

(
− 319149498787

465317679510 ,− 285439445629
542870626095 ,− 533680265081

723827501460 , 519419554543
155105893170 , 764360428646

100531597425 ,

54101875033
155105893170 ,− 533680265081

723827501460 , 6856655665381
4342965008760 , 120096488429

241275833820 ,− 3505392583699
2171482504380 ,

− 27952071335903
1447655002920 ,− 248168827129

2171482504380 , 120096488429
241275833820 ,− 288450627736

1628611878285 ,− 2725154777111
2171482504380 ,

2095907565527
1085741252190 ,− 6955013524199

6514447513140 , 73665245884
542870626095 ,− 64504080325

434296500876 , 4484399224513
3257223756570 ,

− 2552223421511
542870626095 , 5169718992073

542870626095 ,− 16063050158
232658839755 , 5169718992073

542870626095 ,− 2552223421511
542870626095 ,

3398657972323
3257223756570 ,− 64504080325

434296500876 , 73665245884
542870626095 ,− 6955013524199

6514447513140 , 2095907565527
1085741252190 ,

− 2725154777111
2171482504380 ,− 31932271589

60318958455 ,− 31932271589
60318958455 , 73887390529

2605779005256 ,− 25733502500393
65144475131400 ,

343799911081
542870626095 , 343799911081

542870626095

)
Mask of u1,−1

i,j :

(
− 176728557928

232658839755 ,− 285439445629
1085741252190 ,− 533680265081

1447655002920 , 829631340883
310211786340 , 382180214323

100531597425 ,

209207768203
310211786340 ,− 533680265081

1447655002920 , 6856655665381
8685930017520 , 120096488429

482551667640 ,− 5676875088079
4342965008760 ,

− 27952071335903
2895310005840 ,− 1333910079319

4342965008760 , 120096488429
482551667640 ,− 144225313868

1628611878285 ,− 2725154777111
4342965008760 ,

2095907565527
2171482504380 ,− 6955013524199

13028895026280 , 36832622942
542870626095 ,− 64504080325

868593001752 , 5208226725973
6514447513140 ,

− 2552223421511
1085741252190 , 5169718992073

1085741252190 ,− 8031525079
232658839755 , 5169718992073

1085741252190 ,− 2552223421511
1085741252190 ,

3760571723053
6514447513140 ,− 64504080325

868593001752 , 36832622942
542870626095 ,− 6955013524199

13028895026280 , 2095907565527
2171482504380 ,

− 2725154777111
4342965008760 ,− 31932271589

120637916910 ,− 31932271589
120637916910 , 73887390529

5211558010512 ,− 25733502500393
130288950262800 ,

343799911081
1085741252190 , 343799911081

1085741252190

)

273



Mathematics 2023, 11, 59

Mask of u−1,1
i,j :

(
− 176728557928

232658839755 ,− 285439445629
1085741252190 ,− 533680265081

1447655002920 , 209207768203
310211786340 , 382180214323

100531597425 ,

829631340883
310211786340 ,− 533680265081

1447655002920 , 6856655665381
8685930017520 , 120096488429

482551667640 ,− 1333910079319
4342965008760 ,

− 27952071335903
2895310005840 ,− 5676875088079

4342965008760 , 120096488429
482551667640 ,− 144225313868

1628611878285 ,− 2725154777111
4342965008760 ,

2095907565527
2171482504380 ,− 6955013524199

13028895026280 , 36832622942
542870626095 ,− 64504080325

868593001752 , 3760571723053
6514447513140 ,

− 2552223421511
1085741252190 , 5169718992073

1085741252190 ,− 8031525079
232658839755 , 5169718992073

1085741252190 ,− 2552223421511
1085741252190 ,

5208226725973
6514447513140 ,− 64504080325

868593001752 , 36832622942
542870626095 ,− 6955013524199

13028895026280 , 2095907565527
2171482504380 ,

− 2725154777111
4342965008760 ,− 31932271589

120637916910 ,− 31932271589
120637916910 , 73887390529

5211558010512 ,− 25733502500393
130288950262800 ,

343799911081
1085741252190 , 343799911081

1085741252190

)
Mask of u0,1

i,j :

(
− 319149498787

465317679510 ,− 285439445629
542870626095 ,− 533680265081

723827501460 , 54101875033
155105893170 , 764360428646

100531597425 ,

519419554543
155105893170 ,− 533680265081

723827501460 , 6856655665381
4342965008760 , 120096488429

241275833820 ,− 248168827129
2171482504380 ,

− 27952071335903
1447655002920 ,− 3505392583699

2171482504380 , 120096488429
241275833820 ,− 288450627736

1628611878285 ,− 2725154777111
2171482504380 ,

2095907565527
1085741252190 ,− 6955013524199

6514447513140 , 73665245884
542870626095 ,− 64504080325

434296500876 , 3398657972323
3257223756570 ,

− 2552223421511
542870626095 , 5169718992073

542870626095 ,− 16063050158
232658839755 , 5169718992073

542870626095 ,− 2552223421511
542870626095 ,

4484399224513
3257223756570 ,− 64504080325

434296500876 , 73665245884
542870626095 ,− 6955013524199

6514447513140 , 2095907565527
1085741252190 ,

− 2725154777111
2171482504380 ,− 31932271589

60318958455 ,− 31932271589
60318958455 , 73887390529

2605779005256 ,− 25733502500393
65144475131400 ,

343799911081
542870626095 , 343799911081

542870626095

)
Mask u1,2

i,j :

(
− 319149498787

465317679510 ,− 285439445629
542870626095 ,− 533680265081

723827501460 , 209207768203
155105893170 , 764360428646

100531597425 ,

364313661373
155105893170 ,− 533680265081

723827501460 , 6856655665381
4342965008760 , 120096488429

241275833820 ,− 1333910079319
2171482504380 ,

− 27952071335903
1447655002920 ,− 2419651331509

2171482504380 , 120096488429
241275833820 ,− 288450627736

1628611878285 ,− 2725154777111
2171482504380 ,

2095907565527
1085741252190 ,− 6955013524199

6514447513140 , 73665245884
542870626095 ,− 64504080325

434296500876 , 3760571723053
3257223756570 ,

− 2552223421511
542870626095 , 5169718992073

542870626095 ,− 16063050158
232658839755 , 5169718992073

542870626095 ,− 2552223421511
542870626095 ,

4122485473783
3257223756570 ,− 64504080325

434296500876 , 73665245884
542870626095 ,− 6955013524199

6514447513140 , 2095907565527
1085741252190 ,

− 2725154777111
2171482504380 ,− 31932271589

60318958455 ,− 31932271589
60318958455 , 73887390529

2605779005256 ,− 25733502500393
65144475131400 ,

343799911081
542870626095 , 343799911081

542870626095

)
.

274



Mathematics 2023, 11, 59

Mask of y1,−1
i,j :

(
− 176522697979

827231430240 ,− 285439445629
6514447513140 , 1755007242871

13028895026280 , 43682365976659
52115580105120 ,− 3914887523587

26057790052560 , 0,

0, 6856655665381
52115580105120 , 23609319453817

52115580105120 ,− 4979513337263
52115580105120 , 8038657526531

26057790052560 , 0, 0,

− 72112656934
4885835634855 ,− 2725154777111

26057790052560 , 2095907565527
13028895026280 ,− 41401785965929

78173370157680 , 48774214262167
52115580105120 ,

− 231734735789
325722375657 , 12969882253997

156346740315360 , 7618392504781
26057790052560 ,− 8209241769433

52115580105120 ,− 2520438176729
19543342539420 ,

0, 0, 0, 0, 0, 0, 0, 0,− 31932271589
723827501460 , 0, 0, 0,− 26064240688

180956875365 , 0
)

Mask of y−1,1
i,j :

(
− 176522697979

827231430240 ,− 285439445629
6514447513140 , 0, 0,− 3914887523587

26057790052560 , 43682365976659
52115580105120 , 1755007242871

13028895026280 ,

6856655665381
52115580105120 , 0, 0, 8038657526531

26057790052560 ,− 4979513337263
52115580105120 , 23609319453817

52115580105120 ,− 72112656934
4885835634855 ,

0, 0, 0, 0, 0, 0, 0, 0,− 2520438176729
19543342539420 ,− 8209241769433

52115580105120 , 7618392504781
26057790052560 , 12969882253997

156346740315360 ,

− 231734735789
325722375657 , 48774214262167

52115580105120 ,− 41401785965929
78173370157680 , 2095907565527

13028895026280 ,

− 2725154777111
26057790052560 , 0,− 31932271589

723827501460 , 0, 0, 0,− 26064240688
180956875365

)
.

Mask of z1,0
i,j :

(
− 16044311288503

10423116021024 ,− 285439445629
434296500876 ,− 19207698623

32170111176 , 7517711285213
1737186003504 , 13541457918013

1206379169100 ,

105803839423
103403928780 ,− 533680265081

482551667640 , 6856655665381
3474372007008 , 948342242035

1158124002336 ,− 1604093855459
496338858144 ,

− 2302892888971
80425277940 ,− 610082577859

1447655002920 , 120096488429
160850555880 ,− 72112656934

325722375657 ,− 2725154777111
1737186003504 ,

2095907565527
868593001752 ,− 5562426555557

5211558010512 ,− 1095500413283
1737186003504 , 1089486754079

868593001752 , 505619067587
1302889502628 ,

− 521386636583
144765500292 , 2085546546332

180956875365 , 364490450669
542870626095 , 5169718992073

361913750730 ,− 2552223421511
361913750730 ,

3519295889233
2171482504380 ,− 64504080325

289531000584 , 36832622942
180956875365 ,− 6955013524199

4342965008760 , 2095907565527
723827501460 ,

− 2725154777111
1447655002920 ,− 31932271589

48255166764 ,− 31932271589
40212638970 , 73887390529

1737186003504 ,− 25733502500393
43429650087600 ,

521386636583
723827501460 , 343799911081

361913750730

)
Mask of z0,1

i,j :

(
61848672613411
52115580105120 , 285439445629

2171482504380 , 533680265081
1447655002920 ,− 209207768203

310211786340 ,− 4369132774261
1206379169100 ,

−− 8501061371657
8685930017520 , 339213799501

206807857560 ,− 6856655665381
17371860035040 ,− 120096488429

482551667640 , 1333910079319
4342965008760 ,

2700000133115
289531000584 , 28100144271473

17371860035040 , 15512464547161
5790620011680 , 72112656934

1628611878285 , 2725154777111
4342965008760 ,

− 2095907565527
2171482504380 , 6955013524199

13028895026280 ,− 36832622942
542870626095 , 64504080325

868593001752 ,− 3760571723053
6514447513140 ,

2552223421511
1085741252190 ,− 5169718992073

1085741252190 ,− 1205912703113
1628611878285 ,− 1086920646923

542870626095 ,− 2388094137299
2171482504380 ,

6440703111091
6514447513140 ,− 1218494914729

868593001752 , 6656146000559
8685930017520 ,− 21722746362811

26057790052560 ,− 2095907565527
4342965008760 ,

2725154777111
8685930017520 , 31932271589

120637916910 , 31932271589
241275833820 ,− 73887390529

5211558010512 , 25733502500393
130288950262800 ,

− 343799911081
1085741252190 ,− 37792053085

434296500876

)

275



Mathematics 2023, 11, 59

Mask of x1,0
i,j :

(
61848672613411
52115580105120 , 285439445629

2171482504380 ,− 339213799501
206807857560 ,− 8501061371657

8685930017520 ,− 4369132774261
1206379169100 ,

− 209207768203
310211786340 , 533680265081

1447655002920 ,− 6856655665381
17371860035040 , 15512464547161

5790620011680 , 28100144271473
17371860035040 ,

2700000133115
289531000584 , 1333910079319

4342965008760 ,− 120096488429
482551667640 , 72112656934

1628611878285 , 2725154777111
8685930017520 ,

− 2095907565527
4342965008760 ,− 21722746362811

26057790052560 , 6656146000559
8685930017520 ,− 1218494914729

868593001752 , 6440703111091
6514447513140 ,

− 2388094137299
2171482504380 ,− 1086920646923

542870626095 ,− 1205912703113
1628611878285 ,− 5169718992073

1085741252190 , 2552223421511
1085741252190 ,

− 3760571723053
6514447513140 , 64504080325

868593001752 ,− 36832622942
542870626095 , 6955013524199

13028895026280 ,− 2095907565527
2171482504380 ,

2725154777111
4342965008760 , 31932271589

241275833820 , 31932271589
120637916910 ,− 73887390529

5211558010512 , 25733502500393
130288950262800 ,

− 37792053085
434296500876 ,− 343799911081

1085741252190

)
Mask of x0,1

i,j :

(
− 16044311288503

10423116021024 ,− 285439445629
434296500876 ,− 533680265081

482551667640 , 105803839423
103403928780 , 13541457918013

1206379169100 ,

7517711285213
1737186003504 ,− 19207698623

32170111176 , 6856655665381
3474372007008 , 120096488429

160850555880 ,− 610082577859
1447655002920 ,

− 2302892888971
80425277940 ,− 1604093855459

496338858144 , 948342242035
1158124002336 ,− 72112656934

325722375657 ,− 2725154777111
1447655002920 ,

2095907565527
723827501460 ,− 6955013524199

4342965008760 , 36832622942
180956875365 ,− 64504080325

289531000584 , 3519295889233
2171482504380 ,

− 2552223421511
361913750730 , 5169718992073

361913750730 , 364490450669
542870626095 , 2085546546332

180956875365 ,− 521386636583
144765500292 ,

505619067587
1302889502628 , 1089486754079

868593001752 ,− 1095500413283
1737186003504 ,− 5562426555557

5211558010512 , 2095907565527
868593001752 ,

− 2725154777111
1737186003504 ,− 31932271589

40212638970 ,− 31932271589
48255166764 , 73887390529

1737186003504 ,− 25733502500393
43429650087600 ,

343799911081
361913750730 , 521386636583

723827501460

)
.

Masks associated with the parameter values z∗r
Mask of ti,j:

(
− 4531890127703

13028895026280 , 36006119259559
39086685078840 ,− 20242568383524532937

7042203380157369840 , 17297520671281
13028895026280 ,

29593026919579
5428706260950 , 26994849992255621402765

15974830661375510686944 , 9165456190681132751
6161927957637698610 , 30904875065308

24429178174275 ,
64028235288551979169
24647711830550794440 , 576334620107504500896935

223647629259257149617216 ,− 361472787357233
26057790052560 ,

− 5791606797469437299171
12288331277981162066880 ,− 96451246858750373479

49295423661101588880 , 9488658832619183459
7783487946489724560 ,

399428393604596767
3791955666238583760 ,− 21206215098462805471

49295423661101588880 ,− 888284192303734585
1556697589297944912 ,

1354491661355237551055957
1863730243827142913476800 , 1387013003869

8685930017520 ,− 2878083358530960513494389
10064143316666571732774720 ,

− 1681864799399
558381215412 , 4586462085623

697976519265 , 179554805254886612513
2218294064749571499600 ,

567425049055209047084219
149098419506171433078144 , 726921707599278586955167

798741533068775534347200 ,− 1087229746071719305197127
629008957291660733298420 ,

70130888658695527738129
31949661322751021373888 ,− 55746022850959428730643

279559536574071437021520 ,− 292198896309538327
972935993311215570 ,

148884558838306413569
49295423661101588880 ,− 7135795471566067417

1895977833119291880 ,− 1112520265706788528800107
3354714438888857244258240 ,

1767938963792804738010533
6709428877777714488516480 ,− 232977362971875229

34127600996147253840 ,− 48551848730147429474011
276487453754576146504800 ,

− 2318866060366412313392359
838678609722214311064560 ,− 7657959982383155961476047

3354714438888857244258240

)

276



Mathematics 2023, 11, 59

Mask of bi,j:

(
0, 0, 33654106472661220639

24647711830550794440 , 0, 0,− 28931119278287059059781
79874153306877553434720 ,− 147713415264798351289

49295423661101588880 ,

0,− 71687410464642966611
49295423661101588880 ,− 3723562194545339719095199

1118238146296285748086080 , 0,− 3459921708110971652593
12288331277981162066880 ,

10915736212229383229
3521101690078684920 ,− 17837846075447753051

7783487946489724560 ,− 2964129356331035
27085397615989884 ,

80572693526252875501
49295423661101588880 ,− 584083821479971933

1945871986622431140 ,− 1437915323322245022121277
1863730243827142913476800 , 0,

9334610941403380115035381
10064143316666571732774720 , 0, 0, 6547984526167163665

88731762589982859984 , 2061565679251584881570009
745492097530857165390720 ,

− 3132760642018231502419567
798741533068775534347200 , 1490762720001245530293439

629008957291660733298420 ,− 325145030004122832756977
159748306613755106869440 ,

8646494711181661614169
55911907314814287404304 ,− 4440165076962254041

7783487946489724560 ,− 89518080410516343539
49295423661101588880 ,

14256041226850386701
3791955666238583760 ,− 281846783691478699397989

3354714438888857244258240 ,− 911334612517867838881345
1341885775555542897703296 ,

352952140065170249
6825520199229450768 ,− 6065655156261675300631

55297490750915229300960 , 2681065109642364400574251
838678609722214311064560 ,

1821351235897392862040723
670942887777771448851648

)
Mask of y2,1

i,j :

(
− 12271780430239

11167624308240 , 23115036621721
13028895026280 ,− 697752284589655474

146712570419945205 , 19233346304581
5211558010512 ,

29593026919579
1809568753650 , 26994849992255621402765

5324943553791836895648 , 31613815182159137939
16431807887033862960 , 123384121964447

65144475131400 ,
7928485881111597527
2053975985879232870 , 2940388026606543576781849

372746048765428582695360 ,− 361472787357233
8685930017520 ,

− 5791606797469437299171
4096110425993720688960 ,− 89635388032606534969

32863615774067725920 , 2391950060126985955
1037798392865296608 ,

− 833558368032964139
631992611039763960 , 2966315162024509075

6572723154813545184 , 4586462085623
232658839755 ,− 869086434956909083

648623995540810380 ,
1447826441014520643970577
621243414609047637825600 , 444445950829

2605779005256 ,− 2445437288558816620140901
3354714438888857244258240 ,

− 1681864799399
186127071804 , 328025690686445610353

1478862709833047666400 , 567425049055209047084219
49699473168723811026048 ,

726921707599278586955167
266247177689591844782400 ,− 1087229746071719305197127

209669652430553577766140 , 70130888658695527738129
10649887107583673791296 ,

− 55746022850959428730643
93186512191357145673840 ,− 2370991526403268243

2594495982163241520 , 178056402439210119869
32863615774067725920 ,

− 4003702544556302561
631992611039763960 ,− 951454110398899835368811

1118238146296285748086080 , 1767938963792804738010533
2236476292592571496172160 ,

8956702739347499
5687933499357875640 ,− 48551848730147429474011

92162484584858715501600 ,− 2318866060366412313392359
279559536574071437021520 ,

− 7657959982383155961476047
1118238146296285748086080

)
,

Mask of y−1,−2
i,j :

(
279021003241424923
148256913266470944 , 0,− 2095907565527

13028895026280 , 2987873000594748871
2527970444159055840 , 251548442921233

260577900525600 ,

− 391511615876220607
78999076379970495 , 0, 0, 2725154777111

26057790052560 ,− 61670773096205223361
32863615774067725920 , 11080236034699

6514447513140 ,
119712715237402707269
32863615774067725920 , 0,− 35841538350081461

1625123856959393040 , 0, 0, 72112656934
4885835634855 ,− 6856655665381

52115580105120 ,
285439445629

6514447513140 ,− 822872808792542327
5188991964326483040 , 20342292042566996155

6572723154813545184 ,− 123959409326402622509
32863615774067725920 ,

− 1437666942653
52115580105120 , 41709834343289924069

16431807887033862960 ,− 103267105684894211989
32863615774067725920 , 33400355926961627

2594495982163241520 ,

0, 0, 0, 0, 0, 0, 0, 0, 31083919823327614673
1478862709833047666400 , 31932271589

723827501460 , 0
)

277



Mathematics 2023, 11, 59

Mask of y−2,−1
i,j :

(
− 3512153958923412841

1037798392865296608 , 0, 0, 132824112520673051
252797044415905584 ,− 5398434624971

5790620011680 , 3368897166768107761
505594088831811168 ,

− 2095907565527
13028895026280 , 0, 0, 51400849925349169201

32863615774067725920 , 2771608293079
8685930017520 ,− 129982638408258761429

32863615774067725920 ,
2725154777111

26057790052560 , 74797826319829301
1137586699871575128 , 0, 0, 0, 0, 0, 34028298205171069

2594495982163241520 ,

− 78503269290786805121
32863615774067725920 , 4837764506653326713

2053975985879232870 , 5150734764713
10423116021024 ,− 129974845906529243239

32863615774067725920 ,
18067899515277483949
4694802253438246560 ,− 821616924236123443

5188991964326483040 , 285439445629
6514447513140 ,− 6856655665381

52115580105120 ,

72112656934
4885835634855 , 0, 0, 0, 0, 0, 3045745544524018757

295772541966609533280 , 0, 31932271589
723827501460

)
Mask of y1,2

i,j :

(
− 22557725931173

39086685078840 , 10223953983883
26057790052560 , 14303048446047913787

8215903943516931480 , 0, 0,− 7343052350198304428891
5324943553791836895648 ,

− 81155974164104723453
16431807887033862960 ,− 47075659357

13028895026280 ,− 64871551638499128101
32863615774067725920 ,

− 3723562194545339719095199
372746048765428582695360 , 0,− 2814702740319531297679

4096110425993720688960 , 7580980524594648365
1643180788703386296 ,

− 3073350921486401347
1037798392865296608 ,− 215819734497942031

252797044415905584 , 109744537127156581801
32863615774067725920 ,

− 2370363584125058801
2594495982163241520 ,− 1437915323322245022121277

621243414609047637825600 , 0, 9334610941403380115035381
3354714438888857244258240 ,

0, 0, 8919157102449659699
42253220280944219040 , 2061565679251584881570009

248497365843619055130240 ,− 3132760642018231502419567
266247177689591844782400 ,

379450774843626130907008
52417413107638394441535 ,− 68314426406062357805065

10649887107583673791296 , 28616345252400386004019
46593256095678572836920 ,

− 347571779754942689
259449598216324152 ,− 53480289501930992693

32863615774067725920 , 5261189680556966689
1263985222079527920 ,

− 281846783691478699397989
1118238146296285748086080 ,− 4234540751973561807544133

2236476292592571496172160 , 203356487425511647
2275173399743150256 ,

− 6065655156261675300631
18432496916971743100320 , 2681065109642364400574251

279559536574071437021520 , 1821351235897392862040723
223647629259257149617216

)
Mask of z1,1

i,j :

(
− 55838625716687

52115580105120 , 28252946643043
4342965008760 ,− 35419776850673763263

2738634647838977160 , 340862589821
77552946585 ,

36472270777393
1206379169100 , 22784567744197314899045

1774981184597278965216 , 41709834343289924069
5477269295677954320 , 184986982915643

86859300175200 ,
16061835113666299907
1564934084479415520 , 696077982004858901394227

24849736584361905513024 ,− 222664500682471
2895310005840 ,

− 4377474382328624429291
1365370141997906896320 ,− 103267105684894211989

10954538591355908640 , 12649034228277897263
1729663988108827680 ,

− 95482998221203757
84265681471968528 ,− 32748200305393967077

10954538591355908640 ,− 1629969089647167523
864831994054413840 ,

1550315458679682817567037
207081138203015879275200 ,− 64504080325

108574125219 ,− 4294689070651846383297973
1118238146296285748086080 ,

− 10208893686044
542870626095 , 20678875968292

542870626095 , 31083919823327614673
492954236611015888800 , 173021210789374032949883

16566491056241270342016 ,
1770022110879746120192767
88749059229863948260800 ,− 320297403910492795197703

17472471035879464813845 , 71449037995331751739129
3549962369194557930432 ,

− 66283535540719222053683
31062170730452381891280 ,− 62692087856862133

864831994054413840 , 125189984533080661589
10954538591355908640 ,

− 417844641336210772
26333025459990165 ,− 507465788526363562852763

372746048765428582695360 , 2754579679065107565823973
745492097530857165390720 ,

− 35841538350081461
541707952319797680 ,− 18213339302664427175101

30720828194952905167200 ,− 2445005075701749729458923
93186512191357145673840 ,

− 8248110067234692639264367
372746048765428582695360

)
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Mask of x1,1
i,j :

(
25735396581967
52115580105120 , 20499774026527

8685930017520 , 4837764506653326713
684658661959744290 ,− 147165410935

62042357268 ,− 4542756612353
241275833820 ,

− 95967048423019818088417
8874905922986394826080 ,− 10549610284487262413

782467042239707760 ,− 61898203625857
17371860035040 ,

− 78503269290786805121
10954538591355908640 ,− 3594876144767525747936119

124248682921809527565120 , 69404143337381
1447655002920 ,

3119383890644764638467
1365370141997906896320 , 137196682189771506217

10954538591355908640 ,− 14677470679789039247
1729663988108827680 ,

48558431048704523
84265681471968528 , 56878119221027123521

10954538591355908640 ,− 62064145578652691
864831994054413840 ,

− 1508165407920643644274877
207081138203015879275200 , 322520401625

868593001752 , 6231253028279350105536421
1118238146296285748086080 , 2552223421511

217148250438 ,

− 5169718992073
217148250438 , 3045745544524018757

98590847322203177760 , 318105460850634877653593
82832455281206351710080 ,

− 2395882352848026640135327
88749059229863948260800 , 280444972598738032686143

13977976828703571851076 ,

− 72239927597313486139729
3549962369194557930432 , 72606043154575098047507

31062170730452381891280 ,− 1629341147368958081
864831994054413840 ,

− 20212013123489501029
2190907718271181728 , 3225445712758438091

210664203679921320 , 211473573944672714508731
372746048765428582695360 ,

− 3346564108228489262512037
745492097530857165390720 , 74797826319829301

379195566623858376 , 2046729234925159151
6144165638990581033440 ,

2533527588429480231127171
93186512191357145673840 , 8602200118145614645937359

372746048765428582695360

)
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Abstract: This article presents a simple but effective two-step analytical–numerical algorithm for
solving multi-dimensional multi-term time-fractional equations. The first step is to derive an analytic
representation that satisfies boundary requirements for 1D, 2D, and 3D problems, respectively. The
second step is the meshless approximation where the Müntz polynomials are used to form the
approximate solution and the unknown parameters are obtained by imposing the approximation
for the governing equations. We illustrate first the detailed derivation of the analytic approximation
and then the numerical implementation of the solution procedure. Several numerical examples are
provided to verify the accuracy, efficiency, and adaptability to problems with general boundary
conditions. The numerical results are compared with exact solutions and numerical methods reported
in the literature, showing that the algorithm has great potential for multi-dimensional multi-term
time-fractional equations with various boundary conditions.

Keywords: multi-dimensional fractional equations; multi-term fractional equations; meshless method;
collocation method; analytic representation

MSC: 65D05; 34K37

1. Introduction

In recent years, many mathematical models with time-fractional multi-term derivatives
have been studied in physics, hydrology, chemistry, etc. Hilfer [1] provided a collection of
fractional calculus applications in physics. Molz [2] reviewed some fundamental properties
of fractional motion and applications in hydrology. Singh [3] analyzed a chemical kinetics
system pertaining to a fractional derivative. Furthermore, the applications of fractional
equations can also be found in [4]. The well-known cable equations with fractional-order
temporal operators belong to this class. They were introduced to model electronic properties
of spiny neuronal dendrites [5,6]. The time-fractional partial differential equations (TFPDEs)
can also include the Sobolev equations, which have been used to model many phenomena,
such as the migration of moisture in soil, thermodynamics, and the motion of fluid in
various media [7,8]. The equations of different models of heat transfer, whether the classical
or dual-phase-lagging ones, undoubtedly also fall into this group [9]. Fractional differential
equations have broad applications for the fact that fractional operators can describe physical
phenomena more precisely than classical integral operators for some practical problems.
The collection of real world applications of fractional differential equations can be seen
in [10] and references therein.

Solutions to fractional partial differential equations are crucial for representing phys-
ical phenomena. Some analytical methods have been proposed that can be useful for
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parametric study. Liu carried out an analytical study for magnetohydrodynamic flow
using fractional derivatives [11]. Ming derived the analytical solution for the problems
containing multi-term time-fractional diffusion [12]. Ding proposed an analytical solu-
tion to the multi-term TFPDEs considering the non-local damping term [13] and also the
fractional delay PDEs with mixed boundary conditions [14]. Jong used the analytic ex-
pression of the multi-term fractional integral operators to obtain the analytical expressions
for the fractional equations [15]. Jiang investigated the multi-term fractional diffusion
equations and obtained the analytical solutions by the method of separation variables [16].
In [17], the Laplace transform method was used to derive the solution to the time-fractional
distributed-order heat conduction law. The Adomian decomposition method was also
being used in [18]. Despite the fact that so many analytical techniques have been developed,
the explicit forms of analytical or semi-analytical solutions are rare only for some problems
under certain idealized conditions. For the further prospects of engineering applications,
the numerical methods are still necessary and useful tools in this field. Numerical methods
have already been used to observe some important mathematical models. Liu investigated
the fluid mechanics for semiconductor circuit breakers based on finite element analysis [19].
Yang, Liu, and Xu applied functional differential equations to analyze the problems in
financial accounting [20–22]. A computational heuristic was designed to solve the nonlinear
Lienard differential model [23]. The nonuniform difference scheme was applied to study
the distributed-order fractional parabolic equations with fractional Laplacian in [24]. A fast
Fourier spectral exponential time-differencing method was used to solve time-fractional
mobile–immobile equations [25]. A fast difference scheme was proposed to solve the
fractional equations considering non-smooth data [26]. Some other works can be found
in [27–29] and references therein. Among them, the most popular methods are mesh-based
methods. Some of the references and studies are listed below. Dehghan [30] proposed a
high-order numerical algorithm based on the finite difference scheme for multi-term time-
fractional diffusion wave problems. The Galerkin finite element method [31] was proposed
for the approximation of the multi-term time-fractional diffusion equations. The finite
difference and the finite element method were used to solve the multi-term time-fractional
equations that are mixed by the sub-diffusion and diffusion-wave equation [32]. The fast
algorithm combined with the finite difference method was used to solve multi-term time-
fractional reaction–diffusion wave equations with stability analysis and error analysis [33].
The second-order numerical method was proposed for the problems with non-smooth
solutions [34]. As implied by the name, mesh-based methods require the mesh of the
whole domain and also information about the nodal topology that may introduce some
unreasonable constraints on the problems. The automatic and efficient approach to con-
structing mesh for 3D complicated domains has long been the challenge for computational
mechanics. Spectral methods [35,36] and spectral-based methods, especially those based on
the collocation method, have been published recently [37,38]. The spectral-based method
has also been used to solve the distributed order time-fractional diffusion equations in [39].
A pseudo-spectral method based on the reproducing kernel has been proposed to study
the time-fractional diffusion-wave equation [40].

In this paper, considering the advantages of analytical and numerical methods, a novel
analytical–numerical method is proposed for solving multi-term TFPDEs with boundary
conditions of general kinds. First, we apply the Fourier method, which can also be re-
garded as an expansion method over the eigenfunctions, in order to remove the partial
derivatives with respect to the space variables and transform the original TFPDE into
fractional ordinary differential equations (FODEs) without truncation error. In the general
case of the time-dependent non-homogeneous boundary conditions, the solutions with the
features of separation of spatial variables are not available naturally. The time-dependent
non-homogeneous term in the equation also poses a problem for the application of the
Fourier method. To deal with the time dependence boundary conditions and the source
term, the Green function method and the operational methods such as the Laplace trans-
form method are used [41]. A similar technique has been proposed for the time-fractional
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PDEs [42,43]. Then, we apply the recently proposed meshless collocation method, the back-
ward substitution method (BSM) [44–46], to solve each FODE individually. In [44], the BSM
was also applied to solve systems of FODEs. The BSM technique can also deal with the
non-homogeneous time-dependent source term. The BSM is a newly developed mesh-
less method. By introducing special analytical functions or numerical approximations
that satisfy the boundary conditions, the original problem is degenerated into a homo-
geneous one. Then, the BSM attempts to form an orthogonal basis system that satisfies
the homogeneous boundary conditions in a general way. The approximated solution is
formed using the proposed basis system where the weighted parameters are determined by
backward substituting the approximation into the governing equations. This improvement
has significantly increased the accuracy and stability of the usual collocation methods.
Recently, some variants of the BSM have been proposed, such as the space-time BSM [47],
the localized BSM [48], and the Fourier-based BSM [49]. In order to apply the BSM for the
fractional differential equations, some special bases should be used. Firstly, the solution of
the fractional equations can contain the fractional-power terms where the common bases
cannot be used for such purpose. Secondly, in terms of the BSM, the collocation method is
applied. In order to apply the collocation method, it is critical that derivatives of the trial
functions should be approximated by the same trial bases where the common polynomial
bases cannot be used. In order to match the two requirements, the Müntz polynomials
can be considered as alternative bases. The reasons behind this is to apply the critical
feature that a fractional derivative of a Müntz polynomial is again a Müntz polynomial.
Therefore, we can hope to obtain a good approximation for the fractional derivatives by the
Müntz polynomial approximation. Due to these outstanding features, Müntz polynomials
have been widely used for the solution of fractional equations in literature. Esmaeili [50]
provided the solution for fractional differential equations with the Müntz polynomial collo-
cation method. Mokhtary [51] solved the fractional problems with the Müntz polynomial
Tau method. Bahmanpour discussed the Müntz polynomial wavelets collocation method
for fractional equations [52]. Recently, Maleknejad discussed the Müntz–Legendre wavelet
approach [53]. The Müntz polynomial has also been absorbed in the BSM to solve fractional
equations [46].

The remainder of this paper is organized as follows. Section 2 contains a brief definition
of the problems to be solved and also a brief description of the solution process. Section 3
contains the derivation of the analytical approximations satisfying the general boundary
conditions. This technique for the orthogonal basis is described in detail in Section 4.
Following the main algorithm in Section 5, numerical examples that illustrate the presented
procedure are placed in Section 6. Finally, a brief conclusion is drawn in Section 7.

2. Preliminaries

In the present work, our goal is to find an effective solution to the following multi-
dimensional multi-term time-fractional partial differential equations (TFPDEs):

Lt[u] =Mt

[
∇2u

]
+ f (x, t), t ∈ [0, T], x ∈ Ωd = [0, 1]d, d = 1, 2, 3, (1)

where

Lt = D(μ)
t +

I

∑
k=1

ak(t)D(μk)
t , Mt =

K

∑
k=I+1

ak(t)D(μk)
t , (2)

in which μ ∈ (l − 1, l], 0 ≤ μk < μ, D(0)
t [ϕ] ≡ ϕ is the identical operator, and ak(t),

k = 1, . . . , K. Some initial conditions (ICs) should be prescribed in advance for the time-
dependent problems

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), . . . ,

∂l−1u(x, 0)
∂tl−1 = ul−1(x), (3)

where l is the highest integer derivative of the considered problem.
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The operator D(ν)
t , which has the following form,

D(ν)
t [ξ(x, t)] =

⎧⎨⎩ 1
Γ(n−ν)

∫ x
0

∂
(n)
t ξ(x,τ)dτ

(t−τ)ν−n+1 , n− 1 < ν < n,

∂
(n)
t ξ(x, t), ν = n,

(4)

is the Caputo fractional derivative of the order ν. In particular, if ξ(x, t) is the power
function tz, we have

D(ν)
t [tz] = 0, (5)

if z ∈ N0 and z < n, and

D(ν)
t [tz] =

Γ(z + 1)
Γ(z + 1− ν)

tz−ν, (6)

if z ∈ N0 and z ≥ n or z /∈ N0 and z > n − 1. Further, N0 denotes the set of all non-
negative integers.

In order to solve Equation (1), suitable boundary conditions have to be prescribed to
ensure the solvability of the problems. In the present work, we address general forms of
boundary conditions:

Bi[u] = αi
∂u(x, t)

∂ni
+ βiu(x, t) = gi(x, t), x ∈ ∂Ωd, Ωd = [0, 1]d, α2

i + β2
i �= 0, (7)

where ∂u(x, t)/∂ni denotes differentiation along the outward unit normal direction of the
surface boundary, and i = 1, 2, for d = 1, i = 1, . . . , 4 for d = 2, and i = 1, . . . , 6 for d = 3.

It is known to all that in mathematics and engineering applications, the Fourier
expansion in eigenfunctions of the differential operator is an efficient numerical method in
the case of homogeneous BCs when the solution can be represented as a linear combination
of eigenfunctions ψ

(1)
n1 (x1), ψ

(2)
n2 (x2), ψ

(3)
n3 (x3),

u(x, t) =
∞

∑
n1,n2,n3=1

Un1,n2,n3(t)ψ
(1)
n1 (x1)ψ

(2)
n2 (x2)ψ

(3)
n3 (x3), (8)

and the unknowns can be determined by substituting the expression into the initial con-
ditions using the orthogonality property of eigenfunctions with different eigenvalues. It
should be emphasized that, for the application of the Fourier method, we have to transform
the original problem into a homogeneous problem. In this case, our main goal is to calculate
the analytic function vg(x, t) that exactly satisfies the boundary conditions of Equation (7)
for any given αi, βi, gi(x, t) at each t in Equation (7). This function can be used to solve
the problem of the non-homogeneous boundary conditions cardinally. Suppose that the
solution can be approximated by the following approximation:

u(x, t) = vg(x, t) + w(x, t). (9)

Substituting the above equation into Equations (1), (3), and (7), we have:

Lt[w] =Mt

[
∇2w

]
+ f1(x, t), t ∈ [0, T], x ∈ Ωd, (10)

∂iw(x, 0)
∂ti = wi(x), i = 0, . . . , l − 1, (11)

Bi[w] = αi
∂w(x, t)

∂ni
+ βiw(x, t) = 0, x ∈ ∂Ωd. (12)
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It is evident that the boundary conditions have been transformed into the homoge-
neous one, which makes it possible to use the Fourier-series expansion as follows:

w(x, t) =
∞

∑
n=1

wn(t)ψn(x), (13)

where the orthonormal basis ψn(x) is corresponding to the BC Equation (12), which satisfies

∇2ψn(x) = −λ2
nψn(x), x ∈ Ωd, Bi[ψn(x)] = 0, x ∈ ∂Ωd. (14)

This orthonormal basis will be described in Section 4. By substituting Equation (13)
into Equation (10) and projecting 〈. . . , ψn〉, we have

Lt[wn(t)] = −λ2
nMt[wn(t)] + θn(t), t ∈ [0, T] (15)

for the approximation of each wn, which will be described in detail in the following several
sections.

3. The Algorithm for Computing vg(x, t)

Construction of the analytic function vg(x, t), which exactly satisfies the BCs of the
original problem, is the main subject of the proposed method. In this section, we will
propose an approach to derive vg(x, t) for the (1 + 1)-dimensional problems, (2 + 1)-
dimensional problems, and (3 + 1)-dimensional problems, respectively.

3.1. (1 + 1)-Dimensional Problems

In this case, the problem of finding the function vg(x, t), which conforms the BC

LW
[
vg(x, t)

]
(x = 0) = αW

∂vg

∂x
(0, t) + βWvg(0, t) = gW(t), (16)

LE
[
vg(x, t)

]
(x = 1) = αE

∂vg

∂x
(1, t) + βEvg(1, t) = gE(t), (17)

at the endpoints of the interval Ω1 = [0, 1] is a trivial one. Indeed, one can prove easily that
the following functions

θE(x) =
αW − βW x

αW βE − βW(αE + βE)
, (18)

θW(x) =
βEx− (αE + βE)

αW βE − βW(αE + βE)
, (19)

satisfy the conditions

LW(x)[θW(x)](0) = 1, LE(x)[θW(x)](1) = 0, (20)

LW(x)[θE(x)](0) = 0, LE(x)[θE(x)](1) = 1. (21)

Then, the function

vg(x, t) = θE(x)gE(t) + θW(x)gW(t) (22)

satisfies the BCs of Equations (16) and (17).
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3.2. (2 + 1)-Dimensional Problems

For the (2 + 1)-dimensional problem, we intend to obtain the vg satisfying the BCs in
a square domain; for example:

LW(x)
[
vg

] ≡ αW
∂vg

∂x
+ βWvg = gW(y, t), x = 0, 0 ≤ y ≤ 1, (23)

LE(x)
[
vg

] ≡ αE
∂vg

∂x
+ βEvg = gE(y, t), x = 1, 0 ≤ y ≤ 1, (24)

LS(y)
[
vg

] ≡ αS
∂vg

∂y
+ βSvg = gS(x, t), 0 ≤ x ≤ 1, y = 0, (25)

LN(y)
[
vg

] ≡ αN
∂vg

∂y
+ βNvg = gN(x, t), 0 ≤ x ≤ 1, y = 1. (26)

We assume that the desired function vg(x, y, t) is smooth enough and so the functions
gW(y, t), gE(y, t), gS(x, t), and gN(x, t) guarantee continuity condition at the apexes (0, 0),
(0, 1), (1, 0), and (1, 1) of the unit square [0, 1]2:

LS(y)[gW(y, t)] = LW(x)[gS(x, t)] at (0, 0), (27)

LN(y)[gW(y, t)] = LW(x)[gN(x, t)] at (0, 1), (28)

LS(y)[gE(y, t)] = LE(x)[gS(x, t)] at (1, 0), (29)

LN(y)[gE(y, t)] = LE(x)[gN(x, t)] at (1, 1). (30)

Let us define the functions

θN(y) =
αS − βSy

αSβN − βS(αN + βN)
, (31)

θS(y) =
βNy− (αN + βN)

αSβN − βS(αN + βN)
, (32)

which are similar to the functions θE(x), θW(x). They satisfy the boundary conditions

LS(y)[θS(y)](0) = 1, LN(y)[θS(y)](1) = 0, (33)

LS(y)[θN(y)](0) = 0, LN(y)[θN(y)](1) = 1. (34)

Let us define the function

v1 = θE(x)gE + θW(x)gW . (35)

One can easily prove that v1 satisfies Equations (23) and (24):

LW(x)[v1(x, y, t)]x=0 = gW(y, t), 0 ≤ y ≤ 1, (36)

LE(x)[v1(x, y, t)]x=1 = gE(y, t), 0 ≤ y ≤ 1. (37)

This follows directly from Definitions (20) and (21). Additionally, we define gN1(x, t)
and gS1(x, t) as follows:

gN1(x, t) = gN(x, t)− LN(y)[v1(x, y, t)]y=1, (38)

gS1(x, t) = gS(x, t)− LS(y)[v1(x, y, t)]y=0. (39)

Finally, we can prove that the following combination,

vg(x, y, t) = v1(x, y, t) + θN(y)gN1(x, t) + θS(y)gS1(x, t), (40)
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satisfies Equations (23)–(26).

3.3. (3 + 1)-Dimensional Problems

For (3 + 1)-dimensional problems, we try to seek a smooth analytical function vg that
satisfies

LW(x)
[
vg

] ≡ αW
∂vg

∂x
+ βWvg = gW(y, z, t), x = 0, (41)

LE(x)
[
vg

] ≡ αE
∂vg

∂x
+ βEvg = gE(y, z, t), x = 1, (42)

LS(y)
[
vg

] ≡ αS
∂vg

∂y
+ βSvg = gS(x, z, t), y = 0, (43)

LN(y)
[
vg

] ≡ αN
∂vg

∂y
+ βNvg = gN(x, z, t), y = 1, (44)

LT(z)
[
vg

] ≡ αT
∂vg

∂z
+ βTvg = gT(x, y, t), z = 1, (45)

LB(z)
[
vg

] ≡ αB
∂vg

∂z
+ βBvg = gB(x, y, t), z = 0, (46)

where 0 ≤ x, y, z ≤ 1 if the variables x, y, z are not defined in the above equations.
Without loss of generality, the operators LE(x) and LN(y) hold the general property
LE(x)[LN(y)[u]] = LN(y)[LE(x)[u]] in the presence of any given smooth function u for
x = 1, y = 1, 0 ≤ z ≤ 1. It follows that

LE(x)[LN(y)[u]]x=1,y=1 = LN(y)[LE(x)[u]]x=1,y=1 ⇒ LE(x)
[

LN(y)[u]y=1

]
x=1

= LN(y)[LE(x)[u]x=1]y=1 ⇒ LE(x)[gN(x, z, t)]x=1 = LN(y)[gE(y, z, t)]y=1. (47)

The above condition is obviously fulfilled for the remaining 11 edges. Let us define
the functions θT(z), θB(z) as

θT(z) =
αB − βBz

βTαB − βB(αT + βT)
, (48)

θB(z) =
βTz− (αT + βT)

βTαB − βB(αT + βT)
, (49)

similar to Equations (18), (19), (31), and (32), which satisfy the boundary conditions

LT(z)[θT(z)](1) = 1, LB(z)[θT(z)](0) = 0, (50)

LT(z)[θB(z)](1) = 0, LB(z)[θB(z)](0) = 1. (51)

Let us now try to construct the set of auxiliary functions along with their linear combinations

v1 = θT(z)gT(x, y, t) + θB(z)gB(x, y, t), (52)

gN1 = gN(x, z, t)− LN(y)[v1(x, y, z, t)]y=1, (53)

gS1 = gS(x, z, t)− LS(y)[v1(x, y, z, t)]y=0, (54)

v2 = v1 + θN(y)gN1 + θS(y)gS1, (55)

where θN(y) and θS(y) can be defined according to Equations (31) and (32). Then, let us define
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gE1(y, z, t) = gE(y, z, t)− LE(x)[v2(x, y, z, t)]x=1, (56)

gW1(y, z, t) = gW(y, z, t)− LW(x)[v2(x, y, z, t)]x=0, (57)

and, finally,

vg(x, y, z, t) = v2(x, y, z, t) + θE(x)gE1(y, z, t) + θW(x)gW1(y, z, t), (58)

which determines the objective function that satisfies the BC Equations (41)–(46). Note also
that there are not any problems in the derivation of vg for various boundary conditions,
including the boundary conditions of the third kind. Furthermore, it is noteworthy that the
vg obtained in this section is not unique. In the present work, we show a simple form of
the formulas for easy application. Other methods such as numerical methods can also be
used for such purposes that are not reported in the present work.

4. Orthogonal Basis for the Fourier Expansion

This section deals with the application of the Fourier method to the solution of cor-
responding homogeneous problems. As mentioned earlier, once we obtain the function
vg(x, t), the original equation can be transformed into the following homogeneous system
by substituting the vg(x, t) into the governing equations and boundary conditions

Lt[w] =Mt

[
∇2w

]
+ f1(x, t), f1(x, t) = f (x, t) +Mt

[
∇2vg(x, t)

]
−Lt

[
vg(x, t)

]
, (59)

which satisfies homogeneous BC

Bi[w] = αi
∂w(x, t)

∂ni
+ βiw(x, t) = 0, x ∈ ∂Ωd, (60)

where the solution can now be approximated with the following functional form,

w(x, t) =
∞

∑
n=1

wn(t)ψn(x), (61)

over the orthonormal basis ψn(x), corresponding to BC Equation (60),

∇2ψn(x) = −λ2
nψn(x), Bi[ψn(x)] = 0, x ∈ ∂Ωd. (62)

In this section, we describe the orthonormal basis ψn(x) and begin with the (1 + 1)-dimensional
problem as an example.

4.1. (1 + 1)-Dimensional Problems

Let us consider the following Sturm–Liouville problem:

d2ψ

dx2 = −μψ, (63)

LW(x)[ψ]x=0 =

(
αW

dψ

dx
+ βWψ

)
x=0

= 0, LE(x)[ψ]x=1 =

(
αE

dψ

dx
+ βEψ

)
x=1

= 0, (64)

where we describe some possible forms of the eigenfunctions corresponding to Equations (63) and (64).

1. First, let us consider the general case αW �= 0, αE �= 0. We write the boundary
conditions in the traditional form for transport problems:

dψ

dx
− b1ψ|x=0 = 0,

dψ

dx
+ b2ψ|x=1 = 0, b1, b2 ≥ 0. (65)
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The change of the sign is connected to the different direction of the outward normal at
the endpoints x = 0 and x = 1 [41].

From Equation (63), it follows:

μ
∫ 1

0
ψ2dx = −

∫ 1

0

d2ψ

dx2 ψdx =
∫ 1

0

[(
dψ

dx

)2
dx− d

(
ψ

dψ

dx

)]

= −
(

ψ
dψ

dx

)
|10 +

∫ 1

0

(
dψ

dx

)2
dx

= ψ(0)
dψ(0)

dx
− ψ(1)

dψ(1)
dx

+
∫ 1

0

(
dψ

dx

)2
dx.

(66)

Using Equation (65), one gets:

μ
∫ 1

0
ψ2dx = b1ψ2(0) + b2ψ2(1) +

∫ 1

0

(
dψ

dx

)2
dx. (67)

Thus, under the condition b1, b2 ≥ 0, the values of μ are positive, and we denote
μ = λ2. The function

ψ1,n(x) =
1
Rn

[
cos(λnx) +

b1

λn
sin(λnx)

]
, (68)

where

Rn =

√√√√1
2

(
1 +

b2
1

λ2
n

)
+

b1

2λ2
n
+

b2

2λ2
n

λ2
n + b2

1
λ2

n + b2
2

(69)

and where λn is the nth solution that can be obtained by solving the following system of
transcendental equation (

λ2 − b1b2

)
tan(λ) = (b1 + b2)λ, (70)

where ψ1,n(x) constructs an orthonormal basis in the Hilbert space L([0, 1]), and the follow-
ing identity holds for different bases

〈ψ1,n, ψ1,m〉 =
∫ 1

0
ψ1,n(x)ψ1,m(x)dx = δn,m. (71)

2. Let us consider the case αW = 0, αE �= 0. We get the Dirichlet condition at the left
endpoint x = 0:

ψ|x=0 = 0,
dψ

dx
+ b2ψ|x=1 = 0, b2 ≥ 0. (72)

The function
ψ2,n(x) =

1
Rn

sin(λnx), (73)

is an eigenfunction of Sturm–Liouville Problems (63) and (72). Here

Rn =

√
1
2

(
1− sin(2λn)

2λn

)
, (74)

and λn is the nth solution of the transcendental equation

λ cos(λ) + b2 sin(λ) = 0. (75)

Function ψ2,n(x) satisfies 〈ψ2,n, ψ2,m〉 = δn,m.
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3. Let us consider the case αW �= 0, αE = 0. We get the Dirichlet condition at the right
endpoint x = 1:

dψ

dx
− b1ψ|x=0 = 0, ψ|x=1 = 0, b1 ≥ 0. (76)

The function

ψ3,n(x) =
1
Rn

[
sin(λnx) +

λn

b1
cos(λnx)

]
(77)

is an eigenfunction of Sturm–Liouville Problems (63) and (76). Here

Rn =

√
1
2

(
1− sin(2λn)

2λn

)
+

1
2b1

(1− cos(2λn)) +
λ2

n

2b2
1

(
1 +

sin(2λn)

2λn

)
, (78)

and λn is the nth solution of the transcendental equation

λ cos(λ) + b1 sin(λ) = 0. (79)

Function ψ3,n(x) satisfies 〈ψ3,n, ψ3,m〉 = δn,m.

4. The case αW = 0, αE = 0 corresponds to the Dirichlet conditions at both endpoints of
the interval [0, 1]. The function

ψ4,n(x) =
√

2 sin nπx, n = 1, 2, . . . , (80)

also satisfies the property 〈ψ4,n, ψ4,m〉 = δn,m.

5. Finally, let us consider the following case αW , αE, βE �= 0, βW = 0. Using Equation (65),
the boundary conditions can be expressed as

dψ

dx
= 0,

dψ

dx
+ b2ψ|x=1 = 0, b1, b2 ≥ 0. (81)

Thus, we get the Neumann condition at the left-hand side endpoint. The function

ψ5,n(x) =
1
Rn

cos(λnx), (82)

satisfies 〈ψ5,n, ψ5,m〉 = δn,m. Here

Rn =

√√√√1
2

(
1 +

b2

λ2
n + b2

2

)
, (83)

and λn is the nth solution of the transcendental equation

λ sin(λ) = b2 cos(λ). (84)

4.2. (2 + 1) and (3 + 1)-Dimensional Problems

We use the products ψi1,n1(x)ψi2,n2(y) and ψi1,n1(x)ψi2,n2(y)ψi3,n3(z) as the basis function
for solving (2+ 1) and (3+ 1)-dimensional problems. Here, the first index i1, i2, i3 = 1, 2, 3, 4, 5
indicates the type of the basis function as described in the last subsection; the second index
n1, n2, n3 indicates the harmonic number. These functions satisfy the equations:

∇2
x,yψi1,n1(x)ψi2,n2(y) = −

(
λ2

i1,n1
+ λ2

i2,n2

)
ψi1,n1(x)ψi2,n2(y), (85)

∇2
x,y,zψi1,n1(x)ψi2,n2(y)ψi3,n3(z) = −

(
λ2

i1,n1
+ λ2

i2,n2
+ λ2

i3,n3

)
ψi1,n1(x)ψi2,n2(y)ψi3,n3(z). (86)
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Below they are used in the Fourier transformation of governing Equation (59).

5. The Solution Procedure

In this section, we demonstrate the solution procedure for the proposed method
for the multi-dimensional fractional equations by utilizing the analytic function vg and
the orthogonal basis derived in the last section. At first, we discuss the solution for the
one-dimensional problem with a single harmonic.

5.1. (1 + 1) Problem with a Single Spatial Harmonic

Now, for the (1 + 1)-dimensional TFPDE with a specific source term,

Lt[w] = Mt

[
∂2w
∂x2

]
+ θn(t)ψn(x), (87)

ψn(x) denotes the eigenfunctions given by Equations (68), (73), (77), (80), or (82). Suppose
that the equation is subjected to the BCs and ICs, which conform the chosen eigenfunction
ψn(x):

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, (88)

w(x, 0) = w0ψn(x),
∂w(x, 0)

∂t
= w1ψn(x), . . . ,

∂l−1w(x, 0)
∂tl−1 = wl−1ψn(x). (89)

We see the solution as
w(x, t) = wn(t)ψn(x). (90)

Then, we get the multi-term FODE

Lt[wn] = −λ2
n Mt[wn] + θn(t). (91)

Using Equation (2), we rewrite the equation in the expanded form

D(μ)
t [wn] = −

K

∑
k=1

bk(t)D(μk)
t [wn] + θn(t), (92)

where bk(t) = ak(t), k = 1, . . . , I, bk(t) = λ2
nak(t), k = I + 1, . . . , K, and μ ∈ (l − 1, l],

0 ≤ μk < μ. The considered initial conditions from Equation (89) are as follows:

wn(0) = w0,
dwn(0)

dt
= w1, . . . ,

dl−1wn(0)
dtl−1 = wl−1. (93)

Supposing that the right-hand side of Equation (92) can be approximated by the linear
combination of ϕ, as shown below,

−
K

∑
k=1

bk(t)D(μk)
t [wn] + θn(t) =

∞

∑
m=1

qm ϕm(t), (94)

where the ϕ is the chosen basis and qm are unknown coefficients to be determined. In this
way, Equation (92) is transformed into

D(μ)
t [wn(t)] =

∞

∑
m=1

qm ϕm(t), (95)

where ϕm(t) and φm(t) holds

D(μ)
t [φm(t)] = ϕm(t). (96)
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It is easy to verify that the Müntz polynomial basis (MPB) proposed in [46,50–53]
meets the requirement given in Equation (96). The explicit expression of such functions is
as follows:

ϕm(t) = tδm , δm = σ(m− 1), (97)

where σ is an auxiliary variable within (0, 1], and m is a positive integer. From the
preceding numerical examples in [44], we set σ = 0.25 for this paper.

It follows that the function

φm(t) =
Γ(δm + 1)

Γ(δm + μ + 1)
tδm+μ (98)

satisfies the following equality:

D(μ)[φm(t)] = ϕm(t). (99)

As far as l − 1 < μ ≤ l, the function φm(t) satisfies zero ICs:

φ
(i)
m (0) = 0, i = 0, 1, . . . , l − 1. (100)

From Equations (97), (99), and (100) it can be seen that the series

wh,n(t, q) =
∞

∑
m=1

qmφm(t) (101)

satisfies Equation (95) with any {qm}∞
m=1 ≡ q.

Let us define the following approximation:

wp,n(t) = w0 + w1t + · · ·+ wl−1
tl−1

(l − 1)!
=

l−1

∑
i=0

wi
i!

ti. (102)

The function wp,n(t) satisfies IC Equation (93). In this way, the following approximation

wn(t, q) = wp,n(t) + wh,n(t, q) = wp,n(t) +
∞

∑
m=1

qmφm(t) (103)

satisfies Equations (95) and (93) with any {qm}∞
m=1. Additionally, the unknown weighted

parameter qm is determined by backward substituting the wn(t, q) into Equation (94):

∞

∑
m=1

qm

[
ϕm(t) +

K

∑
k=1

bk(t)D(μk)
t [φm(t)]

]
= θn(t)−

K

∑
k=1

bk(t)D(μk)
t

[
wp(t)

] ≡ Fn(t), (104)

where we denote

D(μk)
t [φm(t)] =

Γ(δm + 1)D(μk)
t

[
tδm+μ

]
Γ(δm + μ + 1)

=
Γ(δm + 1)Γ(δm + μ + 1)tδm+μ−μk

Γ(δm + μ + 1)Γ(δm + μ + 1− μk)
=

Γ(δm + 1)tδm+μ−μk

Γ(δm + μ + 1− μk)
, (105)

D(μk)
t

[
wp(t)

]
=

l−1

∑
i=1

wi
i!

D(μk)
t

[
ti
]
=

l−1

∑
i=1

wiΓ(i + 1)ti−μk

i!Γ(i + 1− μk)
=

l−1

∑
i≥μk

witi−μk

Γ(i + 1− μk)
. (106)

We consider the truncated series of Equation (103),

wn(t, M, q) = wp,n(t) +
M

∑
m=1

qmφm(t), (107)

292



Mathematics 2023, 11, 929

which also satisfies the modified Equation (95):

D(μ)[wn(t, M, q)] =
M

∑
m=1

qm ϕm(t). (108)

The unknown parameters q1, . . . , qM should satisfy the truncated version of Equation (104),

M

∑
m=1

qm

[
ϕm(t) +

K

∑
k=1

bk(t)D(μk)
t [φm(t)]

]
= Fn(t), (109)

by the collocation method as follows:

M

∑
m=1

qm

[
ϕm

(
tj
)
+

K

∑
k=1

bk
(
tj
)

D(μk)
t

[
φm(tj)

]]
= Fn

(
tj
)
, (110)

where
tj = 0.5T[1 + cos(π(2j− 1)/2Nc)] ∈ [0, T], j = 1, 2, . . . Nc ≥ M, (111)

are the Gauss–Chebyshev (GC) collocation points on the time interval [0, T]. It is important
to note that in the framework of the presented method, the Fn(t) are required at several
time steps tj given in Equation (111) only. As it follows from Equation (104), the same is true
for time function θn(t). As a result, the Fourier expansion of the f1(x, t) of Equation (10)
also should be performed at the same time moments tj only.

5.2. (1 + 1)-Dimensional Problems of the General Case

Consider the following equation:

Lt[u] = Mt

[
∂2u
∂x2

]
+ f (x, t), x ∈ [0, 1], t ∈ [0, T]. (112)

The substitution
u = vg + w, (113)

with vg(x, t), gives us

Lt[w] = Mt

[
∂2w
∂x2

]
+ f1(x, t), (114)

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, (115)

and IC
∂iw(x, 0)

∂ti = ui(x)− ∂ivg(x, 0)
∂it

= wi(x), i = 0, . . . , l − 1. (116)

Here,

f1(x, t) = f (x, t)− Lt
[
vg(x, t)

]
+ Mt

[
∂2vg(x, t)

∂x2

]
. (117)

We seek the solution of the problem in Equations (114)–(116) using the following linear
combination,

wN(x, t) =
N

∑
n=1

wn(t)ψn(x), (118)

where ψn(x) denotes one of the eigenfunctions given by Equations (68), (73), (77), (80), and (82).
Substituting Equation (118) into Equation (114), we have

Lt[wn] = −λ2
n Mt[wn] + θn(t), n = 1, . . . , N, (119)
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where

θn(t) =
∫ 1

0
f1(x, t)ψn(x)dx. (120)

Further, wn holds

diwn(0)
dti =

∫ 1

0
wi(x)ψn(x)dx = wi,n, i = 0, . . . , l − 1, (121)

which follows from Equation (116). The solution of wn can be given by

wn(t, M, qn) = wp,n(t) +
M

∑
m=1

qn,mφm(t), qn = {qn,m}M
m=1. (122)

Therefore, the solution uappro(x, t) to the origin problem is given by

uappro = vg(x, t) +
N

∑
n=1

wp,n(t)ψn(x) +
M

∑
m=1

Qm(x)φm(t), (123)

where the Qm(x) is given by

Qm(x) =
N

∑
n=1

qn,mψn(x). (124)

5.3. (2 + 1)-Dimensional Problems

Consider the following (2 + 1)-dimensional problem:

Lt[u] = Mt

[
∇2u

]
+ f (x, y, t), (x, y) ∈ [0, 1]2, t ∈ [0, T]. (125)

The substitution
u = vg + w, (126)

with vg(x, y, t) given by Equation (40) gives us

Lt[w] = Mt

[
∇2w

]
+ f1(x, y, t), (127)

and the homogeneous BCs

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, LS(y)[u]y=0 = 0, LN(y)[u]y=1 = 0, (128)

and ICs
∂iw(x, y, 0)

∂ti = ui(x, y)− ∂ivg(x, y, 0)
∂ti = wi(x, y), i = 0, . . . , l − 1. (129)

The approximate solution to Problems (127)–(129) is approximated as follows:

wN(x, t) =
N

∑
n1,n2=1

wn1,n2(t)ψn1,n2(x1, x2) =
N

∑
n=1

wn(t)ψn(x). (130)

Here, ψn1,n2(x1, x2) = ψn(x) = ψn1(x1)ψn2(x2) is the product of the eigenfunctions
given by Equations (68), (73), (77), (80), or (82), and we use the following short notations:
n =(n1, n2), x =(x1, x2) = (x, y).

Substituting wN(x, t) in (127), we have

Lt[wn(t)] = −
(

λ2
n1
+ λ2

n2

)
Mt[wn(t)] + θn(t), t ∈ [0, T], (131)

294



Mathematics 2023, 11, 929

where

θn(t) =
∫ 1

0

∫ 1

0
f1(x1, x2, t)ψn1,n2(x1, x2)dx1dx2. (132)

The harmonic wn(t) = wn1,n2(t) satisfies

∂iw0,n(0)
∂ti = wi,n =

∫ 1

0

∫ 1

0
wi(x1, x2)ψn1,n2(x1, x2)dx1dx2, i = 0, 1, . . . , l − 1, (133)

which follows from Equation (129). The approximate solution

wn(t, M, qn) = wp,n(t) +
M

∑
m=1

qn,mφm(t), qn = {qn,m}M
m=1 = {qn1,n2,m}M

m=1, (134)

can be obtained obviously for each harmonic. Then, the uN, M(x, t) can be approximated
as follows:

uN, M(x, t) = vg(x, t) +
N

∑
n1,n2=1

wM,n1,n2(t)ψn1,n2(x1, x2)

= vg(x, t) +
N

∑
n1,n2=1

wp,n1,n2(t)ψn1,n2(x1, x2) +
M

∑
m=1

Qm(x)φm(t), (135)

where

Qm(x) =
N

∑
n1,n2=1

qn1,n2,mψn1,n2(x1, x2). (136)

5.4. (3 + 1)-Dimensional Problems

Now let us move to the (3 + 1)-dimensional problems

Lt[u] = Mt

[
∇2u

]
+ f , (x, y, z) ∈ [0, 1]3, t ∈ [0, T]. (137)

Using the substitution
u = vg + w, (138)

with vg given by Equation (58), we have

Lt[w] = Mt

[
∇2w

]
+ f1(x, y, z, t), (139)

subjected to

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, LS(y)[u]y=0 = 0, LN(y)[u]y=1 = 0,

LB(z)[u]z=0 = 0, LT(z)[u]z=1 = 0, (140)

and IC

∂iw(x, y, z, 0)
∂ti = ui(x, y, z)− ∂ivg(x, y, z, 0)

∂ti = wi(x, y, z), i = 0, . . . , l − 1, (141)

in which
f1 = f − Lt

[
vg

]
+ Mt

[
∇2vg

]
. (142)
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With the same technology, the approximated solution of wN(x, t) can be expressed in
the following functional form,

wN(x, t) =
N

∑
n=1

wn(t)ψn(x), (143)

where n = (n1, n2, n3), x =(x, y, z)=(x1, x2, x3), ψn(x) = ψn1,n2,n3(x1, x2, x3) is the product
of the eigenfunctions ψn1(x)ψn2(y)ψn3(z) given by Equations (68), (73), (77), (80), or (82).

Substituting wN(x, t) in Equation (127), we have

Lt[wn(t)] = −
(

λ2
n1
+ λ2

n2
+ λ2

n3

)
Mt[wn(t)] + θn(t), t ∈ [0, T], (144)

where

θn(t) =
∫ 1

0

∫ 1

0

∫ 1

0
f1(x, t)ψn1,n2,n3(x)dx. (145)

It is important to note that in the context of the present method, the Fourier expansion
of the source term f1(x, t) over the eigenfunction basis should be performed at several
fixed time moments tj only. This follows from the algorithm of the backward substitution
technique (see Equations (104) and (121)).

The harmonic wn(t) = wn1,n2,n3(t) satisfies

∂iw0,n(0)
∂ti = wi,n =

∫ 1

0

∫ 1

0

∫ 1

0
wi(x)ψn(x)dx, i = 0, . . . , l − 1. (146)

Then, the solution is approximated as

uN, M(x, t) = vg +
N

∑
n=(1,1,1)

wM,n(t)ψn(x)

= vg +
N

∑
n=(1,1,1)

wp,n(t)ψn(x) +
M

∑
m=1

Qm(x)φm(t), (147)

where

Qm(x) =
N

∑
nn=(1,1,1)

qn,mψn(x). (148)

6. Numerical Examples

In this section, the feasibility of the proposed method is experimentally verified.
The maximum absolute error (MAE) and the EH1(t) error containing the derivatives were
used as numerical criteria, as shown below:

Emax(t) = max
1≤i≤Nt

|uN,M(xi, t)− uex(xi, t)|, (149)

EH1(t) =

√√√√ 1
Nt

N

∑
i=1

[
(uN,M(xi, t)− uex(xi, t))2 +

(
∂uN,M

∂t
(xi, t)− ∂uex

∂t
(xi, t)

)2
]

, (150)

where uN,M(xi, t) indicates the approximate solutions obtained by the presented analytical–
numerical method for the compared solution uex(xi, t), and Nt is the total number of
test nodes.

For the 1D problems, we used the number of test nodes Nt = 4N, where N is the
number of spatial harmonics; i.e., we use 4 testing nodes per harmonic. For the 2D examples,
the errors were carried using the Nt = 4000 test nodes distributed in the solution domain.
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For the 3D problem, we have transformed it into the FODE analytically so that we only
have to check the solution accuracy in the time domain.

As for the total number of collocation nodes, we have to illustrate that, in this paper,
the derivation of vg can be done analytically. Therefore, we do not have to place nodes
on the boundary. Using the approximate solution in the form of the Fourier series over
the eigenfunction, we transform the TFPDE into the set of the FODEs for each of the
Fourier harmonics. Therefore, we do not have to place collocation nodes inside the domain.
The collocation nodes are placed in the time domain only.

The collocation points tj, j = 1, 2, . . . , Nc, in the time interval [0, T] are used to form
the collocation system for solving each FODE. In all the examples, we use the number
of collocation nodes Nc = 2M in the time domain, where M is the number of the Müntz
polynomials that are used in the approximate solution of the FODEs. The parameter M
defines the accuracy of the approximation in time.

6.1. (1 + 1)-Dimensional Problem
6.1.1. Example 1

For the first example, the following time fractional cable equation is studied under the
Dirichlet boundary condition

∂u(x, t)
∂t

= D(1−γ1)
t

[
∂2u
∂x2 (x, t)

]
− D(1−γ2)

t [u(x, t)] + f (x, t), x ∈ (0, 1), t ∈ (0, 1), (151)

u(x, 0) = 0, u(0, t) = 0, u(1, t) = 0, (152)

where the source term f (x, t) can be computed by substituting the analytic solution u(x, t)

u(x, t) = t2 sin πx, (153)

into the governing equation, which yields

f (x, t) = 2
(

t +
π2t1+γ1

Γ(2 + γ1)
+

t1+γ2

Γ(2 + γ2)

)
sin πx = F(t) sin πx. (154)

Thus, the problem considered is a special 1D case with a single spatial harmonic,
which was considered in Section 4.1. As it is shown there, the problem can be reduced to a
single FODE,

dw(t)
dt

= −π2D(1−γ1)
t [w(t)]− D(1−γ2)

t [w(t)] + F(t), (155)

for the sole harmonic.
To illustrate the effects of the error in M, Table 1 shows the behavior of the max-

imum absolute error with respect to M for the approximation of the source terms in
Equations (97), (98), and (107). The approximate solution is sought as a truncated series
Equation (107) over the function φm(t): D(μ)[φm(t)] = ϕm(t) and so belongs to the linear

span S(μ, σ, M) = Span
(

1, tμ+σ(m−1)
)M

m=1
. In the case considered, μ = 1 and S(1, σ, M) =

Span
(

1, t1+σ(m−1)
)M

m=1
. For σ = 0.25, S(1, 0.25, M) = Span

(
1, t, t1.25, . . . , t1+0.25(M−1)

)
.

Therefore, as it comes from Equation (153), the exact solution w(t) = t2 belongs to
S(1, 0.25, M) for M ≥ 5. The data in Table 1 demonstrate that, for this particular case,
the results of the proposed analytical–numerical method converge to the exact solution for
the parameter M ≥ 5 and reach the computer rounding errors. Let us consider the case
σ = 0.5. Here, w(t) = t2 belongs to S(1, 0.5, M) for M ≥ 3. The data in Table 1 illustrate
this situation.
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Table 1. The MAE versus the M at t = 1 for different σ.

M 1 2 3 4 5 6 10

σ = 0.25 1.19 × 10−2 1.93 × 10−3 1.97 × 10−4 3.73 × 10−5 1.22 × 10−16 1.22 × 10−16 -
σ = 0.50 1.19 × 10−2 1.47 × 10−3 1.22 × 10−16 1.22 × 10−16 - - -
σ = 0.33 1.19 × 10−2 1.83 × 10−3 1.21 × 10−4 9.35 × 10−7 5.44 × 10−8 6.38 × 10−9 3.12 × 10−1

It is easy to verify that for σ = 0.33 (the bottom row of the table), there is no such
M that the exact solution w(t) belongs to S(1, 0.33, M). As a result, for σ = 0.33, the
error decreases gradually with the growth of M, while for σ = 0.25 and σ = 0.50, it
decreases sharply when the exact solution belongs to the corresponding range S(α, σ, M).
The calculations have been performed for (γ1 = 0.5, γ2 = 0.5), (γ1 = 0.3, γ2 = 0.9), and
(γ1 = 0.7, γ2 = 0.6) which have produced the same results. Thus, if the parameters σ of the
Müntz polynomial basis are chosen in such a way that exact solution belongs to S(μ, σ, M),
then the present method provides the exact solution up to the rounding errors of the
computer. This problem has been considered by Yang, Jiang, and Zhang in [54] using the
spectral Legendre–Tau method. The most accurate result that has been achieved there has
the error Emax = 9.3019 × 10−6 when 13 Legendre’s polynomials were used for the spatial
and temporal approximations.

6.1.2. Example 2

Let us consider the following problem that has been studied using the time-space
spectral tau method in [54]:

∂u(x, t)
∂t

= D(1−γ1)
t

[
∂2u
∂x2 (x, t)

]
− D(1−γ2)

t [u(x, t)] + f (x, t), (156)

subjected to the following conditions:

u(0, t)− ∂u(0, t)
∂x

= −πt2+γ1 , (157)

u(1, t) +
∂u(1, t)

∂x
= −πt2+γ1 + 2et1+γ2 . (158)

The BCs, the source term, and the IC can be computed from the corresponding
exact solution:

u(x, t) = t2+γ1 sin πx + t1+γ2 ex. (159)

In order to show the effects of N and M on the accuracy, Table 2 displays the MAE,
elapsed computational time, and the order of convergence with respect to parameter N:

CON =
log(Emax(N)/Emax(2N))

log 2
, (160)

for M = 7 and M = 15 with σ = 0.25, γ1 = 0.6, and γ2 = 0.9. From this table, it is clearly
seen that, for the case M = 7, the error decreases shapely with the increase of parameter
N up to the value N = 128. For larger N > 128, the results of the proposed method do
not change, and the solution accuracy remains at 10−7. In the case of M = 15, the error
decreases monotonically over the whole range of N, and the final accuracy comes to 10−11.
The order of convergence is three. Table 2 tabulates the solutions given in [54] by the usage
of the spectral Legendre–Tau method for comparison. The data correspond to the case
where 13 Legendre’s polynomials are used for the spatial and temporal approximations.
From the comparison, it can be seen obviously that the proposed analytical–numerical
method leads to a better solution even for small values of M and N from the point of view
of standard accuracy.
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Table 2. The MAE, CON , and the elapsed time versus the N using M = 7 (left) and M = 15 (right).

M = 7 M = 15

N Emax CON CPU, s Emax CON CPU, s

2 9.37 × 10−2 - 0.02 9.37 × 10−2 - 0.11
4 7.31 × 10−3 3.68 0.07 7.31 × 10−3 3.68 0.17
8 6.81 × 10−4 3.42 0.16 6.81 × 10−4 3.42 0.33
16 7.30 × 10−5 3.22 0.36 7.22× 10−5 3.24 0.66
32 9.09 × 10−6 3.01 0.61 8.30 × 10−6 3.12 1.0
64 1.78 × 10−6 2.35 0.98 9.94 × 10−7 3.06 1.9

128 9.97 × 10−7 0.84 1.84 1.22 × 10−7 3.03 4.1
256 9.94 × 10−7 0.04 3.18 1.51 × 10−8 3.01 9.0
512 9.94 × 10−7 «1 6.5 1.89 × 10−9 2.99 19
1024 9.94 × 10−7 «1 13 2.57 × 10−10 2.88 44
2048 9.94 × 10−7 «1 24 5.36 × 10−11 2.26 74

[54], Table 2 , Emax = 3.2279 × 10−5

Table 3 displays the MAE and convergence order with respect to the parameter M for
the fixed values N = 32, 128, 512. Here the convergence order is defined as:

COM =
log(Emax(M1)/Emax(M2))

log(M2/M1)
. (161)

When M is small enough, it defines the accuracy of the approximate solution for
all values of N. For N = 32, the accuracy remains the same for the growth of M > 8.
On the other hand, when N = 512, the calculated error decreases with the increase of
M in the whole range 2 ≤ M ≤ 12. This means that 512 Fourier’s harmonics provide
an accurate approximation and the main error here is caused by the solving of FODEs.
From the last row of this table, it can be seen evidently that the proposed method has high
rates of convergence for the MAE, which provides reasonably accurate approximations
for the unknown variables. It should be noted here that, with the increasing of M and N,
the CO becomes flat, which means that the errors do not change for very large M or N.
The proposed algorithm converges to the stable results.

Table 3. The MAE and COM versus the M with the fixed number of harmonics N.

N = 32 N = 128 N = 512

M Emax COM Emax COM Emax COM

2 1.87 × 10−1 - 1.87 × 10−1 - 1.87 × 10−1 -
3 4.02 × 10−2 3.79 4.02 × 10−2 3.79 4.02 × 10−2 3.79
4 6.69 × 10−3 6.23 6.69 × 10−3 6.23 6.69 × 10−3 6.23
5 6.66 × 10−4 10.3 6.66 × 10−4 10.3 6.66 × 10−4 10.3
6 1.82 × 10−5 19.7 1.24 × 10−5 21.8 1.24 × 10−5 21.8
7 9.09 × 10−6 4.5 9.97 × 10−7 16.4 9.97 × 10−7 16.4
8 8.33 × 10−6 0.66 1.51 × 10−7 14.1 3.72 × 10−8 24.6
9 8.30 × 10−6 «1 1.27 × 10−7 1.47 7.42 ×10−9 13.7

10 8.30 × 10−6 «1 1.23 × 10−7 0.08 3.22 × 10−9 7.92
11 8.30 × 10−6 «1 1.22 × 10−7 «1 2.33 × 10−9 3.39
12 8.30 × 10−6 «1 1.22 × 10−7 «1 1.96 × 10−9 0.63

In Figure 1, the observed behavior of the error is shown in more detail. Let us consider
the left-hand side of Figure 1. The graphics log(Emax(N)) have the same origin for all
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fixed M. With the growth of N, the curves log(Emax(N)) change shape depending on the
fixed value of M.
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Figure 1. The MAE with respect to the parameters M and N.

6.1.3. Example 3

The third example solved here is the high order TFPDE

D(α)
t [u(x, t)] +

sin(t)
1 + t

D(α1)
t [u(x, t)] +

cos(t)
1 + t

D(α2)
t [u(x, t)] + log(1 + t)u(x, t)

=
sinh(t)

1 + t
D(α3)

t

[
∂2u
∂x2 (x, t)

]
+

cosh(t)
1 + t

D(α4)
t

[
∂2u
∂x2 (x, t)

]
+

(
1 + t2

)∂2u
∂x2 (x, t) + f (x, t), (162)

where α =
√

21, α1 = π, α2 =
√

5, α3 =
√

3, α4=
√

2. As far as 4 < α =
√

21 < 5, the
TFPDE needs the following five ICs:

∂iu
∂ti (x, t = 0) = ui(x), i = 0, 1, 2, 3, 4. (163)

The equation is subjected to the BC

∂u
∂x

(x = 0, t)− π2u(x = 0, t) = gW(t),
∂u
∂x

(x = 1, t) + e2u(x = 1, t) = gE(t), (164)

where the functions f (x, t), ui(x), gW(t), gE(t) can be easily computed from the following
exact solution

u(x, t) = cos(t)[cos(x) + cosh(x)]. (165)

Table 4 presents the maximum absolute errors of the solution and its first derivative in
time with the increase in N for M = 16 and M = 24. In the case when M = 24, the errors
decrease sharply for 100 ≤ N ≤ 2000. For M = 16, the errors are the same for N > 500.
In Figure 2, this behavior of the error is shown in more detail.
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Table 4. The MAE of the u and ∂u/∂t versus N using M = 16 (left) and 24 (right).

M = 16 M = 24

N Emax(u) Emax(∂u/∂t) EH1 Emax(u) Emax(∂u/∂t) EH1

100 3.53 × 10−8 5.51 × 10−8 8.43 × 10−9 3.53 × 10−8 5.51 × 10−8 8.42 × 10−9

200 4.36 × 10−9 6.92 × 10−9 8.16 × 10−10 4.39 × 10−9 6.84 × 10−9 7.33 × 10−10

300 1.27 × 10−9 2.10 × 10−9 3.93 × 10−10 1.30 × 10−9 2.02 × 10−9 1.76 × 10−10

400 5.21 × 10−10 9.31 × 10−10 3.56 × 10−10 5.47 × 10−10 8.51 × 10−10 6.42 × 10−11

500 2.54 × 10−10 5.15 × 10−10 3.51 × 10−10 2.80 × 10−10 4.36 × 10−10 2.94 × 10−11

1000 5.80 × 10−11 1.94 × 10−10 3.50 × 10−10 3.49 × 10−11 5.44 × 10−11 2.59 × 10−12

2000 5.80 × 10−11 1.94 × 10−10 3.50 × 10−10 4.35 × 10−12 6.81 × 10−12 2.65 × 10−13
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Figure 2. The MAE with respect to the parameters M and N.

6.2. (2 + 1)-Dimensional Problems
6.2.1. Example 4

Let us consider the following two-dimensional multi-term time-fractional mixed sub-
diffusion and diffusion-wave equation defined in the unit square

D(α)
t [u(x, y, t)] +

∂u
∂t

(x, y, t) + D(α1)
t [u(x, y, t)] + u(x, y, t)

= ∇2u(x, y, t) + D(α2)
t

[
∇2u(x, y, t)

]
+ f (x, y, t), (x, y) ∈ [0, 1]2, (166)

with the exact solution

u(x, y, t) =
(

1 + t3
)

sin(πx) sin(πy) ≡ w(t)ψ1,1(x, y), (167)

for the case α = 1.6, α1 = 0.7, and α2 = 0.3.
The initial and Dirichlet boundary conditions of function f (x, y, t) conform the exact

solution. Thus, we get the TFPDE with a single spatial harmonic corresponding to the
eigenfunction ψ1,1(x, y) = 2 sin(πx) sin(πy). As it is shown above, the problem can be
reduced to the single FODE

D(α)
t [w(t)] +

dw(t)
dt

+ D(α1)
t [w(t)] + w(t)

= −2π2w(t)− 2π2D(α2)
t [w(t)] + F(t), (168)

with initial conditions w(0) = w0, dw(0)/dt = w1.
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Table 5 shows the behavior of the MAE versus the M in ϕm(t) = tδm , δm = σ(m− 1). As
shown in the previous section (see Equations (97), (98) and (107)), the approximate solution

w(t, M) belongs to the linear span S(α, σ, M) = Span
(

1, t, tα+σ(m−1)
)M

m=1
. It is easy to check

that for α = 1.6, σ = 0.25, there is no such M that the exact w(t) (see Equation (167)) belongs
to S(α, σ, M). On the other hand, w(t) ∈ S(1.6, 0.35, M ≥ 5) and w(t) ∈ S(1.6, 0.7, M ≥ 3).
The data placed in Table 5 illustrate this situation. For σ = 0.25, the error decreases
step-by-step with the growth of M, while it decreases sharply for σ = 0.35 and σ = 0.7
when the exact solution belongs to the corresponding manifold S(α, σ, M). Feng, Liu, and
Turner have considered this problem [32] and constructed two finite element schemes for
its numerical solution. Ezz-Eldien et al. [55] have studied this problem by the use of the
combination of the shifted Legendre polynomials with the time-space spectral collocation
method. The comparison of the two methods presented in Table 4 of [55] shows that most
accurate result that has been achieved there has the error Emax = 1.407× 10−3 for the first
technique and Emax = 1.807× 10−6 for the second one.

Table 5. The MAE and the computational time versus the M at t = 1.

M 1 2 3 4 5 6 10 15

σ = 0.25 4.3 × 10−1 4.8 × 10−2 1.1 × 10−2 1.7 × 10−3 8.5 × 10−5 2.2 × 10−6 8.1 × 10−11 5.4 × 10−13

σ = 0.35 4.3 × 10−1 3.6 × 10−2 5.2 × 10−3 4.9 × 10−4 1.8 × 10−15 1.1 × 10−15 - -
σ = 0.70 4.3 × 10−1 1.8 × 10−2 1.1 × 10−15 2.0 × 10−15 - - - -

6.2.2. Example 5

In this example, the problem solved here is to show the applicability of the pro-
posed algorithm for the multi-term time-fractional diffusion-wave equation in the unit
square [0, 1]2 [56]

D(α)
t [u] +

∂u
∂t

+ D(α1)
t [u] + u = ∇2u + f (x, y, t). (169)

The initial conditions, the Dirichlet BC, and the source term f correspond to the exact solution

u(x, y, t) = t2 sin(1− x)(ex − 1) sin(1− y)(ey − 1). (170)

The data shown in Table 6 are obtained using α = 1.3, α1 = 0.3, σ = 0.25, and the
numbers of the Müntz polynomials are M = 5 and M = 10. The same problem was
considered by Shen, Liu, and Anh in [56] using an implicit difference method. From this
table, it is clearly stated that our new approach is generally more accurate than others, even
with a small number of N and M.

Table 6. The MAE and the elapsed time versus the N at t = 1 using M = 5 (left) and 10 (right).

M = 5 M = 10

N Emax(u) Emax(∂u/∂t) CPU, s Emax(u) Emax(∂u/∂t) CPU, s

100 1.443 × 10−6 3.105 × 10−6 9 1.452 × 10−6 2.903 × 10−6 14
200 2.018 × 10−7 1.553 × 10−6 23 2.100 × 10−7 4.200 × 10−7 35
300 1.203 × 10−7 1.522 × 10−6 56 6.445 × 10−8 1.289 × 10−7 97
400 1.231 × 10−7 1.514 × 10−6 89 2.756 × 10−8 5.510 × 10−8 154
500 1.241 × 10−7 1.511 × 10−6 153 1.420 × 10−8 2.839 × 10−8 260
600 1.245 × 10−7 1.510 × 10−6 204 8.247 × 10−9 1.649 × 10−8 352

[56], Table 1, Emax(u) = 6.145893072032060 × 10−6
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6.3. (3 + 1)-Dimensional Problems
Example 6

Let us consider the following time-fractional telegraph equation in three dimensions

D(α+1)
t [u] + D(α)

t [u] + u = ∇2u + f (x, y, z, t), 0 ≤ t ≤ 1, (171)

in the domain (x, y, z) ∈ [0, π]3 with zero Dirichlet boundary conditions and the source
term corresponding to the exact solution

u(x, y, z, t) =
tα+2

Γ(α + 3)
sin 2x sin 2y sin 2z. (172)

Using the transform (x, y, z)→ (πx, πy, πz), the equation is transformed into

D(α+1)
t [u] + D(α)

t [u] + u =
1

π2∇2u + f (x, y, z, t), (173)

with the solution

u(x, y, z, t) =
tα+2

Γ(α + 3)
sin 2πx sin 2πy sin 2πz. (174)

Thus, we get a single spatial harmonic TFPDE. Substituting

u(x, y, z, t) = w(t) sin 2πx sin 2πy sin 2πz, (175)

we get the FODE
D(α+1)

t [w] + D(α)
t [w] + 13w = F(t), 0 ≤ t ≤ 1, (176)

with the source term and ICs corresponding to the exact solution

w(t) =
tα+2

Γ(α + 3)
. (177)

Table 7 shows the behavior of the absolute errors with the growth of M for two cases:
σ = 0.23 and σ = 0.25. The results tabulated in the table are obtained by using α = 0.9.
As shown above (see Equations (97), (98) and (107)), the approximate solution w(t, M)

belongs to the linear span S(α, σ, M) = Span
(

1, t, tα+σ(m−1)
)M

m=1
. It is easy to check that

for σ = 0.23 there is no such M that the exact solution w(t) belongs to S(α, σ, M). On the
other hand, w(t) ∈ S(α, 0.25, M ≥ 5). Indeed, α + 0.25× (5− 1) = α + 2. The data placed
in the table illustrate this situation. For σ = 0.23, the error decreases step-by-step with the
growth of M, while it decreases sharply for σ = 0.25 when the exact solution belongs to the
corresponding manifold S(α, σ, M). Yang et al. have considered this problem in [57] using
an ADI finite difference scheme. The most accurate result shown in Table 2 of the reference
has the error 1.1243× 10−3.

Table 7. The MAE versus M at t = 1 for different σ.

M 1 2 3 4 5 6 10 15

σ = 0.23 4.6 × 10−2 2.4 × 10−2 3.4 × 10−3 1.2 × 10−4 1.6 × 10−6 1.2 × 10−7 2.4 × 10−10 3.9 × 10−12

σ = 0.25 4.6 × 10−2 2.3 × 10−2 3.0 × 10−3 8.2 × 10−5 1.1 × 10−17 2.8 × 10−17 - -

7. Conclusions

In the present work, an accurate method that can reach the computer rounding errors
has been proposed for solving multi-term time-fractional equations. Let us note that the
proposed analytical–numerical method collides with two key issues. The first one is the
method to handle non-homogeneous time-dependent boundary conditions, which is critical
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to the derivation of vg. The second problem is the method to handle the non-homogeneous
time-dependent source term of the equation. The derived function vg solves the first
problem cardinally. This article presents the analytical function vg exactly satisfying the
boundary conditions. Let us note that this function is not unique because one can locally
change it inside the cube. The algorithm can give the function in the explicit analytical
form with the help of math software packages like Maple or Mathematica if needed.
The method of the Laplace transform and the Green function method are traditionally used
for solving the second one. The BSM technique can also handle the non-homogeneous
time-dependent source term. As mentioned above, in the solution procedure of the present
method, one gets the system of the equation for each Fourier harmonic. The FODEs were
solved independently with the help of Müntz polynomial bases. Additionally, the Fourier
expansion of the source term over the eigenfunction basis should be performed at several
fixed time moments tj only. The number of these points is proportional to M. The value of
M is not too large. As the numerical experiment shows, even M = 10 for Müntz’s basis
functions are enough for a rather precise approximate solution of the (3 + 1) multi-term
FPDE of the high order. And the convergence order with respect to the M and N is larger
than 3. Generally speaking, M > 10 and N > 100 are sufficient to provide accurate results
for the tested problems.

In this paper, the method is demonstrated by solving an important class of fractional
problems described in the Introduction. This technique can also be extended onto iter-
ative quasi-linear PDEs and onto the problems in other orthogonal coordinate systems.
The main drawback of this work is that the derivation of vg is only applicable for regular
domains. Actually, numerical methods can be used for this purpose. This is the subject of
further study.
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Abstract: Since the introduction of Metal-Insulator-Metal (MIM) absorbers, most of the structures
demonstrated a narrowband absorption response which is not suitable for potential applications in
photovoltaic systems, as it requires higher energy to enhance its performance. Very little research
is being conducted in this direction; to address this issue, we exhibit a broadband solar absorber
designed using a concentric GST ring resonator placed upon a silicon dioxide substrate layer with
chromium used as a ground plane. It was analyzed using the finite element method. The design is
also optimized by using a nonlinear parametric optimization algorithm. Comparatively less work has
been focused on solar absorbers designed with the help of GST material, and here we have compared
the effect of two different phases of GST, i.e., amorphous (aGST) and crystalline (cGST); the results
indicate the higher performance of aGST phase. Parametric optimization has been adapted to identify
the optimal design to attain high performance at minimal resources. The absorption response is angle
insensitive for 0 to 60 degrees, and at the same time for both TE and TM modes, the design provides
identical results, indicating the polarization-insensitive properties. The electric field intensity changes
at the six peak wavelengths are also demonstrated for the authentication of the high performance.
Thus, the proposed concentric GST ring resonator solar absorber can present a higher solar energy
absorption rate than other solar structure designs. This design can be applied for improving the
performance of photovoltaic systems.

Keywords: numerical analysis; structure optimization; parametric optimization; GST; chromium;
SiO2; Photovoltaic applications
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1. Introduction

Nowadays, many appliances are used to ease our daily lives, but the power supplies
for these appliances need to be considered, as they contribute significantly towards the
major issues of climate change and global warming. To solve this problem, solar energy
plays an important role [1]. Photonics defines the technology of light, and the main function
of photonic technology is to encompass generating, manipulating, amplifying, guiding,
and detecting light [2]. Moreover, it can be used in our phones, such as lasers, cameras,
optical fibers, and screens. Optical tweezers and lighting are also used in cars, homes, TVs,
and computers [3]. Photonic devices are used in the medical field and for a large generation
of power in the industrial field [4]. Photonic devices play an important role in our daily
lives; therefore, by studying photonic technology, we can improve many other science
fields, such as optical, microwave, wireless communication, solar energy systems, and so
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on [5]. One of the main reasons to develop the solar energy system is to reduce the damage
to our natural environment and stop the toxic gases produced by large industries [6]. The
solar energy system intends to reduce the greenhouse effect we have been facing for the
last decade [7]. Several numerical algorithms have also been employed for photovoltaic
cell analysis [8,9].

Engineers have developed many techniques to improve the absorption rate of photo-
voltaic cells, including a multi-layer structure with several types of layers using various
types of suitable materials [10]. Using a multi-layer structure provides better results than
other structures and can produce better energy absorption output [11]. Before designing a
good solar absorber, engineers need to consider the properties of the metamaterials that
will be used in the developed solar absorbers [12–16]. The greater the number of solar
absorber layers, the greater the absorption rate [17,18]. The number of solar absorber layers
is directly proportional to the absorption rate. Nevertheless, the three-layer solar absorber
type is the most popular because of its efficiency and cost [19]. According to Wang and
co-authors, at a frequency between 20.59 GHz and 43.73 GHz, the metamaterial absorber
can provide an absorption rate of over 83% and an absorption rate of 79.5% in full width.
Moreover, a metamaterial absorber is ultra-thin at the center frequency and has only 10%
of the wavelength [20]. John and co-authors found that under the visible region between
450 THz and 750 THz, a novel circular ring resonator solar energy absorber has a more
suitable operating range in the polarization insensitive property for solar cells [21]. Zhao’s
theory optimized that a three-layer coating solar absorber has an absorptance value of
0.97 at 2.5 μm [22]. Wu and co-author proposed an ultra-broadband solar absorber with
an absorption above 90% ranging between 685 and 4071 nm by a split-ring resonator de-
sign [23]. The average absorption rate is above 94.3 between the wavelength range 600 and
4200 nm [24]. Yu observed that the absorption rate is over 90% by using surface plasmon
resonance at 1759 nm [25]. Wanger and co-authors found that metallic chromium (Cr) and
chromium oxide (Cr2O3) absorptance values are more than 90.0% by XRD, resulting in
diffraction peaks [26]. To date, many materials have been employed for solar absorber
designs for solar thermophotovoltaic (STPV) applications. Naveed et al. reported a MIM
structure with a SiO2 insulator and nickel ground and resonator layer. The resonator
was a combination of multiple hexagonal structures, and the authors achieved an overall
absorption of 80% in the entire solar spectrum [27]. The authors also varied the metallic
layers in the range of Al, Au, Cr, Ag, W, and Ni, and the highest performing material was
Ni. Shafique and co-authors proposed a vanadium-nitride-inspired MIM absorber for STPV
application and achieved >98% absorptance in UV and visible regions [28]. Kondaiah and
investigators reported an Al2O3/TaC/Ti-based structure for a solar thermal absorber which
is stable for 2 h at 500 ◦C [29]. A tungsten-nanowire-assisted MIM structure is presented
for subwavelength domain with near perfect absorption in UV, and 85% in visible range is
observed [30].

The available structures of solar absorbers either depict the single band or multiband
response, which is not feasible for several solar energy harvesting related applications,
and for this specific need, we require a broadband solar absorber that can absorb the solar
energy under the whole solar spectrum. Hence, the objective of this study is to design
a solar absorber which can absorb the solar energy over the whole solar spectrum from
UV to MIR with large angular and polarization-independent characteristics. Furthermore,
the objective is to obtain an optimal structure by applying parametric optimization and
comparing the absorption response for various phases of GST. This work is among the few
works which have utilized GST materials for a solar absorber structure and achieved the
broadband absorption response, and here resides the novelty of this work. We examined
the GST material for this study, which makes this work interesting, as previously, most of
the GST-based works are reported in the IR band.

The proposed structure is designed with three layers, including a ground layer, the
substrate layer, and the resonator to overcome the narrowband absorption response and
achieve the broadband absorption response. We used the structure with a concentric ring

308



Mathematics 2023, 11, 1257

designed to obtain a high absorption rate and good quality [31]. At the ground layer, we
used Cr, and at the substrate layer, we used SiO2 and GST resonators, respectively. The
proposed GST ring structure can provide a high absorption rate compared to other designs
because of its concentric ring resonators [32]. In this paper, we are going to demonstrate the
changes in absorption rates in the ultraviolet (UV) regions, visible (V) regions, and infrared
(IR) regions. The electromagnetic spectrum in the ultraviolet region starts from 10 nm to
400 nm and is shorter than the visible region [33]. The visible region is the region that the
electromagnetic spectrum in the range the human eye can see, and the wavelength range
is between 380 and 700 nm [34]. The IR wavelength is longer than visible light, generally
from around 1 mm [35]. The developed design will show the average absorption rates
for the TE and TM modes. The TE mode is the propagation of the direction of the electric
field traveled concerning the normal direction of a magnetic field [36]. The TM mode
is the propagation of the direction of the magnetic field traveled concerning the normal
direction of a magnetic field [37]. The section below discusses the design and parameters
of construction, the results and discussion of the proposed design absorption rate, and the
comparison of average absorption rates between the developed design and the formerly
published works.

2. Methodology

This section discusses the design and modeling of the proposed structure. The materi-
als used for designing the proposed structure, parameters, and the structure optimization
process are discussed in detail. The optical properties of the utilized materials are discussed
to demonstrate their advantage in the proposed structure. The structure is first designed by
introducing every layer. The importance of those layers is demonstrated for obtaining the
ultrawideband absorption. The structure optimization is then carried out to identify the
best parameters to achieve the highest possible broadband absorption response with the
help of the proposed structure. The ideal characteristics, including angular and polarization
insensitivity, are investigated to demonstrate the absorber’s response similar to an ideal
absorber. At last, the proposed absorber structure is compared with available designs to
depict its high performance compared to those structures.

2.1. Design and Modeling

The design and modeling process of the proposed broadband solar absorber is de-
scribed through a flowchart in Figure 1. Figure 2a shows the top view for the GST ring
resonator. Figure 2b represents the 3D shape of the concentric GST ring resonator-based
solar absorber. Figure 2c represents the front view for the GST ring resonator with the
respective parameters such as the structure length L = 500 nm; the ground layer thickness,
PB is 500 nm; the substrate layer thickness, PS is 600 nm; and the GST ring resonator
thickness, PR is also 500 nm. Figure 2d shows the radius of the rings, respectively. The
radius of the central circle R1 is 25 nm. The first ring radius R2 is 50 nm, the second ring
radius R3 is 125 nm, and the third ring radius R4 is 200 nm. To investigate the concentric
ring resonator design, we used COMSOL Multiphysics software [38]. The refractive index
of Cr is 3.212 and the silicon dioxide SiO2 refractive index is 1.5175 [39]. The proposed
design is developed with a SiO2 substrate layer over the Cr ground layer and a GST ring
resonator is placed over the SiO2 layer. Figure 2e,f represent the refractive index output for
aGST and cGST with real and imaginary parts, respectively. A SiO2 material as a substrate
is chosen due to its dielectric properties [40,41]. Due to its remarkable optical properties
and high melting point, chromium metal is selected as the ground layer [39].
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Figure 1. Flowchart describing the design process of the proposed broadband solar absorber.
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Figure 2. Structure of the concentric GST ring resonator-based solar absorber. (a) the top view for the
ring resonator, (b) the 3D view for the solar absorber, (c) the front view for the solar absorber with
the respective parameters, (d) top view with ring parameters, (e) real (n) and imaginary (k) parts of
refractive index for aGST, (f) real (n) and imaginary (k) parts of refractive index for cGST.

2.2. Structure Optimization

The main importance and novelty of the proposed concentric ring resonator is its
symmetrical shape, which in return gives the polarization insensitive response which is a
necessity for a solar absorber. Furthermore, the material used to fabricate ring resonators
is less compared to circular resonators, and it is also easy to fabricate with the help of
photolithography. Figure 3a presents the process of optimizing a developed structure by
simulating and checking the importance of each layer and how they contribute towards
improving the absorption response step by step. First, we built a Cr ground layer. On the Cr
ground layer, we placed a SiO2 layer, and we constructed the ring resonator over the SiO2
layer. Then, the second ring resonator, third ring resonator, and finally the one cylinder were
constructed concentrically. Figure 3b–h represents the situations of absorptance, reflectance,
and transmittance of the developed designs of Figure 3a. The average absorption rates of
the various structures were calculated by the FEM method [42].
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Figure 3. (a) Construction for the GST ring resonator configuration process step by step, (b) absorp-
tance (A), reflectance (R), and transmittance (T) lines for the Cr ground layer, (c) A, R, and T lines for
the SiO2 layer, (d) A, R, and T lines of the construction of both the Cr ground layer and SiO2 layer,
(e–h) A, R, and T lines by inserting the first GST ring resonator, second GST ring resonator, third GST
ring resonator, and the cylinder constructed on the Cr ground layer, and SiO2 layer respectively.
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In Figure 3b, the average absorption rate of the Cr ground layer in UV, V, NIR, and
MIR regions is presented. The absorption rates are 48.28%, 50.45%, 46.41%, and 45.76% in
the mentioned ranges, respectively, with an overall absorption rate of 46.96%. Figure 3c
examines the average absorption rate of the SiO2 substrate layer in UV, V, NIR, and MIR
regions, and the absorption rates are 70.77%, 77.53%, 54.79%, and 53.83%, respectively,
with the overall absorption rate of 58.16%. The absorption rate of the design comprised
both the Cr ground layer and SiO2 substrate layer and is shown in Figure 3d. In this
figure, the absorption rates are 68.24%, 78.66%, 60.77%, and 62.27% in UV, V, NIR, and
MIR regions, respectively, and the overall average absorption rate is 63.48%. Then, we
continued to develop the GST ring resonator with the first ring, and the absorption rate is
shown in Figure 3e. In this figure, the average absorption rate is significantly higher than
the previous structures with 98.52%, 98.47%, 96.92%, and 97.44% in UV, V, NIR, and NIR,
respectively. The overall average absorption rate is also increased to 97.3%. The second
ring resonator is then included, and the absorption rates are 98.49%, 98.43%, 96.18%, and
97.38% in UV, V, NIR, and MIR, respectively, and the overall absorption rate mentioned
is 97.32%, as shown in Figure 3f. The absorption results of the third ring structure are
presented in Figure 3g including 98.47%, 98.44%, 97.97%, and 97.58% in UV, V, NIR, and
MIR regions, respectively, and the average overall rate is 97.35%. In Figure 3h, the overall
design is developed, and the absorption results are 98.52%, 98.45%, 97.15%, and 97.45% in
UV, V, NIR, and MIR regions, respectively. The overall average absorption rate is 97.36%, so
the average absorption rate gets higher when we develop the new layers in the proposed
design. One interesting trend that we observed is when we removed the ground plane, the
transmittance started to increase, as we can observe in Figure 3c; this is since the ground
layer transmits back the electromagnetic (EM) waves and in absence of this, the EM waves
are reflected. The flowchart presented in Figure 4 describes the process of optimizing the
structural parameters used for the proposed study.
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Figure 4. Flowchart describing the process of structural parameter optimization.

314



Mathematics 2023, 11, 1257

3. Results and Discussion

In this part, the effect of various structural parameters and the phases of GST are
investigated, with the corresponding results discussed in detail. Figure 5a shows the ab-
sorptance (A), reflectance (R), and transmittance (T) of the aGST concentric ring resonator
solar absorber. For the wavelength range between 0.2 and 1.59 μm, the absorption rate is
above 97% with a bandwidth of 1390 nm; the average absorption is 98.18% for this particu-
lar bandwidth. The absorption rate is also above 97% in the wavelength between 1.84 and
3 μm with a bandwidth of 1160 nm and a mean absorption of 97.14%. The overall wave-
length ranges between 0.2 and 3 μm from UV to MIR and shows an absorption rate above
95% with a bandwidth of 2800 nm. We can assign six peak wavelengths (in microme-
ters) to show the unity absorption rate of the aGST ring resonator solar absorbers such as
λ1 = 0.25, λ2 = 0.61, λ3 = 1.24, λ4 = 1.84, λ5 = 2.53, and λ6 = 2.91. Figure 5b presents the
average absorptance, reflectance, and transmittance for the cGST concentric ring resonator
solar absorber with the same parameters as aGST. We can see the decreased absorption rate
and increased reflectance rate in the cGST compared to the aGST results. Therefore, the
absorption rate in the ring resonator solar absorber using aGST is better than cGST.

Figure 5. (a) The absorption rate of aGST concentric ring resonator solar absorber between 0.2 and
3 μm, (b) The absorptance, transmittance, and reflectance of cGST, (c) The comparison data plot of
absorption rate between aGST in green color and cGST in yellow color for UV, V, NIR, MIR, and
overall ranges, (d) aGST absorption under solar radiation missed solar energy concerning AM1.5.

Figure 5c shows the comparison data flow chart of the average absorption rate of
aGST and cGST in UV, V, NIR, MIR, and overall ranges. In the data plot, the absorption
rate of aGST is represented by the color green and cGST is represented by the color yellow.
The average absorption rate in aGST is decreased compared to the cGST in the UV region;
however, the average absorption rate in aGST is increased compared to the cGST consisting
of V, NIR, MIR, and overall regions. In the UV region, the absorption rate of aGST is 96.33%
and cGST is 96.99%, which is a very slight difference. In V, NIR, and MIR regions, the
absorption rate of aGST is 94.48%, 94.51%, and 97.71%, respectively; on the other hand, the
decreased absorption rate of cGST is 93.59%, 91.55%, and 95.95%, respectively. Therefore,
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we can observe that the overall average absorption rate in cGST is slightly decreased
compared to the aGST in the data plot.

The proposed aGST concentric ring resonator solar absorber can be examined by the
AM1.5 radiation systems mentioned in Figure 5d. In this figure, the AM1.5 section is in
red, the absorption section under the solar radiation region is in yellow, and the regions of
missed solar energy are in blue. By using Equation (1), we can obtain the numerical values
of the absorption section and missed solar energy [43]. To develop the good efficiency and
higher absorption rate of the proposed aGST concentric ring resonator solar absorber, we
need to improve the absorbed solar energy under the solar radiation region and reduce the
missed solar energy nearly to zero for all the ranges from ultraviolet to MIR regions [44].
To calculate the amount of solar energy radiated from the sun, we need to use the following
AM1.5 equation [45].

ηA =

∫ λmax
λmin

(1− R(ω)).IAM1.5(ω).dω∫ λmax
λmin

IAM1.5(ω).dω
(1)

From the above equation, the ultra-broadband absorption rate under normal solar ra-
diation conditions is assigned by A, IAM for an air mass 1.5 irradiances, and the reflectance
of solar energy is denoted by R [46].

The difference between the conventional and proposed optimization technique is as
follows:

There are two main methods for optimization used by researchers based on their
behavior [47].

1. Linear Parametric Optimization
2. Nonlinear Parametric Optimization

As our response has behaved nonlinearly with wavelength, we have used the nonlinear
parametric optimization technique for optimizing our structural parameters, such as GST
concentric ring resonator thickness, substrate thickness, and Cr ground layer thickness.

We can analyze the absorption rate of the developed ultra-broadband GST ring res-
onator design by changing the numerous parameters of the GST resonator thickness, SiO2
substrate layer, and Cr ground layer as shown in Figure 6. The output of the absorption
rate changes by increasing the GST resonator thickness from 500 nm to 1000 nm, shown in
Figure 6a,b with the help of line plots as well as the fermi plot. At the first peak wavelength
λ1, the average absorption rate increases from 96.48% to 97.79% by changing the aGST
resonator thickness from 500 nm to 1000 nm. For the next three peak wavelengths λ2,
λ3, and λ4, the absorption rate also increases from 91.01%, 88.88%, and 93.61% to 96.93%,
97.62%, and 97.47% when the aGST resonator thickness changes to between 500 nm and
1000 nm, respectively. The absorption rate of the last two peak wavelengths λ5 and λ6
decreases from 99.58% and 99.92% to 98.54% and 98.85%, respectively. So, the overall
ranges of aGST resonator thickness from 500 nm to 1000 nm decreases from 95.47% to
94.05%, and also slightly decreases in the ultraviolet, violet, NIR, and MIR regions. The
fermi plot of the absorption rate changes by the GST resonator thickness from 500 to
1000 nm is shown in Figure 6b.

The output of the absorption rates by the substrate thickness changes between
500 nm and 1000 nm at the six peak wavelength ranges between 0.2 and 3 μm is shown in
Figure 6c,d, shown by the fermi plot. The increased average absorption rate of the substrate
thickness from 500 nm to 1000 nm at the first four wavelengths λ1, λ2, λ3, and λ4 is 96.67%,
92.78%, 91.28%, and 98.32% from 96.48%, 91.01%, 88.88%, and 93.61%, respectively. The
absorption rate of the substrate thickness decreased from 99.58% and 99.92% to 96.43%
and 99.63% at the λ5 and λ6, respectively. When we increased the substrate thickness from
500 nm to 1000 nm, the overall absorption rate showed just a little change from 95.47% to
95.92%; this was also the same situation in the UV, V, NIR, and MIR regions.
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Figure 6. The proposed concentric GST ring resonator solar absorber’s absorption rate (a) absorption
rate of concentric GST ring resonator solar absorber by increasing the GST ring structural height,
PR, (b) absorption rate of concentric GST ring resonator solar absorber by increasing the GST ring
structural height, PR demonstrated by fermi plot, (c) absorption rate of concentric GST ring resonator
solar absorber by increasing the SiO2 substrate layer thickness, PS, (d) absorption rate of concentric
GST ring resonator solar absorber by increasing the SiO2 substrate layer thickness, PS demonstrated
by fermi plot, (e) absorption rate of concentric GST ring resonator solar absorber by increasing the
Cr ground layer thickness, PB, (f) absorption rate of concentric GST ring resonator solar absorber by
increasing the Cr ground layer thickness, PB, demonstrated by the color plot.

When we increased the ground layer thickness between 500 nm and 900 nm at the six
peak wavelength ranges between 0.2 and 3 μm, the output of the absorption rate changes is
shown in Figure 6e, and the fermi plot is shown in Figure 6f. At the first peak wavelength
λ1, the absorption rate is increased from 95.96% to 96.74% when the ground layer thickness
changes between 100 nm and 500 nm. On the other hand, the absorption rates decreased
from 94.88%, 91.04%, 93.27%, 98.46, and 97.14% to the absorption rates 92.55%, 90.36%,
91.68%, 96.35%, and 96.37%, respectively, when we changed the ground layer thickness
from 100 nm to 500 nm at another five peak wavelengths λ2, λ3, λ4, λ5, and λ6. The overall
absorption rate is equal to the absorption rate of 95.2%, and the absorption rates at the UV,
V, NIR, and MIR regions are also equal at the increased ground layer thickness between
100 nm and 500 nm with the six peak wavelengths ranging between 0.2 and 3 μm. The
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fermi plot of the absorption rate changes when we increased the ground layer thickness
from 100 nm to 500 nm is presented in Figure 6f.

To develop the ultra-broadband GST ring solar absorber with a good average absorp-
tion rate, we need to analyze some sections such as GST resonator, SiO2 substrate layer
thickness, Cr ground layer thickness, and incidence angles in (TE) and (TM) modes by
changing the structural parameters numerically [48]. The absorption rate of the concentric
GST ring solar absorber in the TE mode with the angle of incidence changes from 0 to
60 degrees at the wavelength range from 0.2 to 3 μm is presented in Figure 7a and by the
fermi plot in Figure 7b. The five peak wavelengths λ1, λ2, λ4, λ5, and λ6 (all except λ3) show
decreased absorption rates from 95.96%, 93.24%, 89.97%, 96.99%, and 97.62% to 67.49%,
73.52%, 91.79%, 87.41%, and 84.71%, respectively.

Figure 7. Concentric GST ring solar absorber’s absorption rates (a) the absorption rate changes of
concentric GST ring solar absorber between 0 and 60 degrees in TE mode, (b) the absorption rate
changes of concentric GST ring solar absorber between 0 and 60 degrees in TE mode demonstrated
by the fermi plot, (c) the absorption rate changes of concentric GST ring solar absorber between 0
and 60 degrees in TM mode, (d) the absorption rate changes of concentric GST ring solar absorber
between 0 and 60 degrees in TM mode demonstrated by the fermi plot.

Only one wavelength λ3 shows an increased absorption rate from 89.97% to 91.79%.
The absorption rate of the concentric GST ring solar absorber in TE mode by the fermi
plot is presented in Figure 7b. The average absorption rate of the concentric GST ring
solar absorber in TM mode with the angle of incidence changes from 0 to 60 degrees at
the wavelength range from 0.2 to 3 μm is shown in Figure 7c and by the fermi plot in
Figure 7d. The results of the absorption rates in the TE mode also changed, as in the TM
mode. In the TM mode, the output of five peak wavelengths λ1, λ2, λ4, λ5, and λ6 (all except
λ3) show decreased absorption rates from 95.96%, 93.24%, 96.15%, 98.32%, and 98.53%
to 67.49%, 73.52%, 82.77%, 89.43%, and 83.42%, respectively. Only one wavelength, also
λ3, shows an increased absorption rate from 90.01% to 91.83%. The absorption rate of the
concentric GST ring solar absorber in TM mode by the fermi plot is exhibited in Figure 7d.
From the comparison of the TE and TM modes, we can see the overall absorption rates
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do not have many changes in percentages. For the TE mode, the overall absorption rate
significantly decreased from 94.45% to 83.19%. For the TM mode, the overall absorption
rate significantly also decreased from 94.78% to 83.31%. In the ultraviolet region for both
TE and TM modes, the absorption rate decreased from 96.04% to 73.27%. In the TE mode,
the absorption rate of V, NIR, and MIR decreased from 94.9%, 93.71%, and 96.28% to 85.8%,
83.89%, and 83.9%, respectively. Comparing the TE mode to the TM mode, the absorption
rates in V, NIR, and MIR also decreased from 94.9%, 94.03%, and 96.99% to 86.08%, 83.59%,
and 83.6%, respectively. Therefore, in both the TE mode and TM mode, the absorption
rate is above 95% in the UV and MIR regions and above 90% in the V and NIR regions
by changing the angle of incidences (degrees) from 0 to 60 with the wavelength range of
0.2–3 μm. In Table 1, we can express the absorption rate in percentages with the respective
bandwidth by changing the angle insensitive in the UV, V, NIR, and MIR regions with a
wavelength range of 0.2 to 3 μm. The proposed structure demonstrates an almost identical
response for 0 to 60 degrees, after which the response gets affected and the absorption
decreases after 60 degrees. This limitation can be avoided by creating a platform to place a
solar absorber structure to avoid solar energy coming from more than 60 degrees of the
incidence angle.

Table 1. Proposed Absorber’s Performance comparison with the available literature.

MIM
Absorber Design

Overall
Absorption Rate

Bandwidth
(Absorption > 95%)

Bandwidth
(Absorption > 97%)

Angle Insensitive
Polarization
Insensitive

Ni/SiO2/Ni inspired
structure [27] More than 80% - 1700 nm 0◦ to 60◦ Yes

Refractory metal VN based
structure [28] - - >98% (500 nm) - Yes

W/SiO2/W structure [30] 85% (visible) - Near perfect in UV
region 0◦ to 60◦ Yes

TiN & TiO2 disk arrays on
SiO2 layer [49] More than 90% 1110 (>90%) - 0◦ to 40◦ Yes

Ti/Silica/Ti double lattice
structure [50] 91.4% 1007 (>90%) - 0◦ to 45◦ -

Multilayer structure of
SiO2/Ti/SiO2/Ti (elliptical

nanodisc of Ti) [51]
93.26% 1650 (>90%) - 0◦ to 70◦ Yes

All ceramic structure [52] More than 90% 1310 (>90%) - 0◦ to 60◦ Yes
Phase change material based

structure [53] More than 90% 1000 (>90%) - - Yes

TiO2/TiN resonator with
SiO2 and TiN as a substrate

and ground plane [54]
More than 90% 1264 (>90%) - 0◦ to 45◦ -

Proposed concentric GST
ring inspired structure

95.21% 2800 nm 2550 nm 0◦ to 60◦ Yes

The situations of electric field intensity changes in the concentric ring aGST resonator
for the six peak wavelengths in micrometers (μm) such as λ1 = 0.25, λ2 = 0.61, λ3 = 1.24,
λ4 = 1.84, λ5 = 2.53, and λ6 = 2.91 are exhibited in Figure 8a–f, respectively. The amount of
the electric field intensity is also important for developing the absorption rate of the GST
ring resonators in UV, V, NIR, and MIR. The electric field intensity changes in the x-y and
x-z planes are mentioned in Figure 8a,b. At the first peak wavelength λ1 = 0.25 μm, the
amount of the electric field intensity is better at the inner part of the ring resonator and
at the top of the absorber layer, as shown in Figure 8a in both the x-y and x-z planes, and
the absorption rate is 96.74%. At the second peak wavelength λ2 = 0.61 μm, the amount
of electric field intensity is better at the resonator rings compared to the other parts of
the proposed broadband design, and the top absorber layer is presented in Figure 8b in
both the x-y and x-z planes, and the absorption rate is 92.55%. At the wavelengths of
λ3 = 1.24 μm and λ4 = 1.84 μm, the decreased amount of the electric field intensity to
the other wavelengths of the proposed design is presented in Figure 8c,d in both the x-y
and x-z planes, and the absorption rate is 90.36% and 91.68%, respectively. In Figure 8e,f,

319



Mathematics 2023, 11, 1257

the amount of electric field intensity is significantly increased at the ring resonators and
gives the higher absorption rate of 96.35% and 96.37% at the wavelengths of λ5 = 2.53 μm
and λ6 = 2.91 μm in the UV, V, NIR, and MIR ranges, respectively. In Table 1, we have
compared the proposed design’s absorption rate to the other published papers, and it
can be found that the developed GST ring resonator design can provide better results
than the other published paper’s results. Therefore, the proposed concentric GST ring
resonator design can be used to develop many photonic devices with a higher absorption
rate. The absorption characteristics depend on the electromagnetic field, as discussed in
Figure 5 above. To better understand the best factors affecting absorption, we analyzed the
significance of the angles of incidence (IAS) for both the TE and TM modes.

 

Figure 8. The amount of electric field strength in x-y and x-z planes of GST ring resonators at six
peak wavelengths in micrometers (μm). (a) λ1 = 0.25, (b) λ2 = 0.61, (c) λ3 = 1.24, (d) λ4 = 1.84,
(e) λ5 = 2.53, and (f) λ6 = 2.91.

4. Conclusions

A MIM solar energy absorber has been simulated, designed, and theoretically proven
and is achieving an optimal average absorption response of 96.52% in the visible region
and a maximum absorptivity of 99.98%. Chromium metal is utilized as the ground layer
because of its transmittance blocking properties; the substrate layer of SiO2 dielectric
insulator is used since it provides lossless resonance characteristics, and the concentric ring
resonator is made of GST, as it has good impedance matching characteristics. The proposed
aGST ring resonator solar absorber represents a good absorption rate over the wavelength
range from 0.2 to 3 μm. For the bandwidth range of 2550 nm, the solar absorption rate is
located above 97% between the wavelength range 0.2 and 1.59 μm and 1.84 to 3 μm, and
the average absorption rate is 98.18%, and 97.14%, respectively. The overall wavelength
between 0.2 and 3 μm from UV to MIR regions shows an absorption rate above 95% with
a bandwidth of 2800 nm. A broadband absorption response is achieved, which is the
combination of multiple near-perfect absorption peaks that can be validated by the electric
field distribution plots. We have developed a good quality structural design with a higher
absorption rate with wide angle and polarization insensitiveness, a lower reflectance rate,
and zero transmittance. This design can be applied for improving the performance of
thermoelectric photovoltaic systems.
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Abstract: This article presents an analysis of co-simulation defects for a system of coupled ordinary
differential equations. The research builds on the theorem that the co-simulation error is bounded
if the co-simulation defect is bounded. The co-simulation defect can be divided into integration,
output, and connection defects, all of which can be controlled. This article proves that the output and
connection defect can be controlled by the co-simulation master by varying the communication step
size. A non-iterative co-simulation method with variable communication step size is presented to
demonstrate the applicability of the presented research. The orders of the interpolation polynomials
used in the co-simulation method are varied in the experimental analysis. The experimental analysis
shows how each component of a co-simulation defect affects the co-simulation error. The analysis
presented is used to verify the applicability of the proposed approach and to provide guidelines for
the configuration of the co-simulation.

Keywords: co-simulation; defect analysis; error bounds; variable step-size
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1. Introduction

In practice, a network of co-simulation slaves is often used to model complex systems
by coupling subsystems on the behavioral description level [1]. The usefulness of this
approach comes from the fact that a co-simulation slave can be exported from a simulation
tool. Multi-disciplinary teams can use co-simulation to combine information from already
developed models from multiple domains. A recent overview of existing co-simulation re-
search can be found in [2]. A Functional Mock-up Interface (FMI) [3,4] has been introduced
to standardize the co-simulation interface. This effort allows the coupling of a growing
number of commercial simulators [5].

A co-simulation master is an algorithm responsible for the simulation of a co-simulation
network. The master calculates the approximation of input signals and controls the exe-
cution of slaves. Each slave has a solver of the internal model to calculate its own state
and output updates. The responsibility for the quality of co-simulation results is shared be-
tween the master and the solvers. The main objective of this article is to develop a practical
co-simulation quality assessment and to illustrate its use in a variable-step co-simulation.

An implicit co-simulation master repeats the simulation steps of the slaves until the
coupled inputs and outputs match. An explicit co-simulation master executes a single
step and continues the execution regardless of the connection error. A comparison of
implicit and explicit masters using the example of a two-mass oscillator can be found
in [6]. The comparison shows that implicit approaches have larger regions of stability than
explicit approaches. Furthermore, Ref. [1] states implicit co-simulation is zero-stable if
zero-stable [7] solvers are used. However, an implicit co-simulation requires the option to
roll back a step of a co-simulation slave. That option is defined in the FMI standard but is
rarely supported in practice. For this reason, only the explicit co-simulation is analyzed in
this article.
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Another very important reason to focus on explicit co-simulation is that hardware-in-
the-loop simulation [8,9] is explicit co-simulation. Hardware co-simulation slaves included
in the simulation loop cannot repeat a simulation step. Furthermore, there are very few tech-
niques that can be applied to assess the quality of such a co-simulation. An energy-based
quality assessment of an engine-in-the-loop simulation is presented in [10]. In comparison,
this article tries to provide an analysis of the whole co-simulation including integration and
output equations, and not just the connections. The quality assessment in [10] shows how
the quality of power bonds [11] can be analyzed. This article provides a quality assessment
applicable to a wider range of co-simulation systems. Connections do not have to be pairs
of effort and flow signals. One example of systems that can have connections that are not
power bonds is kinematic models in robotics [12].

Error estimation techniques used in ordinary differential equations provide sugges-
tions for evaluating the simulation quality. Most algorithms for solving ordinary differential
equations attempt to control either the local error or the defect of a numerical solution [13].
Local error estimation techniques based on Richardson extrapolation for the co-simulation
have been presented in [14]. Assuming perfect subsystem integration, that article shows
that the global error is bounded in terms of extrapolation error. That technique, however,
requires the option to roll back a step of a co-simulation slave.

This article presents a co-simulation quality assessment based on the defect calcu-
lation [15–17]. The research presented is the continuation of the work presented in [15].
There, the numerical defect of the co-simulation is analyzed. That analysis showed that for
co-simulation, when numerical defects are limited, numerical errors are limited. The main
parts of this analysis are referenced in the next section.

The analysis in this article and [15] is based on coupled ordinary differential equations.
Coupled ordinary differential equations are a special case of differential and algebraic
equations. An example of such a system is shown in Figure 1. Ordinary differential
equations are used to represent the state equations of systems modeled by co-simulation
slaves. Algebraic equations are divided into output and connection equations. This is
performed to reflect co-simulation practice, where co-simulation slaves are typically black
boxes. State and output equations are not available to the co-simulation master and are
therefore colored gray in Figure 1.

Master

ũı̆ῐ(t) = ỹ“i“l(t) + δũı̆ῐ(t),
(
“ı, “l

)
= L

(
ı̆, ῐ

)

Slave 1

˙̃x1(t) = f1(x̃1(t), ũ1(t)) + δx̃1(t)

ỹ1(t) = g1(x̃1(t), ũ1(t)) + δỹ1(t)

Slave 2

˙̃x2(t) = f2(x̃2(t), ũ2(t)) + δx̃2(t)

ỹ2(t) = g2(x̃2(t), ũ2(t)) + δỹ2(t)

ũ1(t)

ỹ1(t)

ỹ2(t)

ũ2(t)

Figure 1. The underlying model for the analysis in this article is coupled ordinary differential
equations [15]. Co-simulation slave equations are colored gray because they are not available to the
master. Output equations are lighter colored because this article suggests that the master should
estimate the output defect.

This article proposes an explicit variable step co-simulation method based on numeri-
cal defect control. A co-simulation slave is responsible for generating its output signals,
while the co-simulation master is responsible to solve the connection equation (Figure 1).
The state and output equations are grayed out to indicate that they are usually not available
to the co-simulation master. However, the output defect depends on the co-simulation step
size controlled by the co-simulation master. This is why this article assumes that the output
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defect should be estimated by the co-simulation master and why the output equations in
Figure 1 are lighter colored.

Ref. [15] provides the basis for the defect analysis of the co-simulation. This article
continues that work and proposes how to adapt a step size controller [18] to co-simulation
defect control. Non-iterative co-simulation in [15] is a fixed-step, multi-rate co-simulation
that uses zero-order hold. This article presents a non-iterative single-rate variable-step
co-simulation using higher-order interpolation.

The next section shows the basis for the analysis in this work, carried over from [15].
The defect control section introduces an explicit co-simulation variable-step method. That
section shows how to calculate the connection defect and estimate the output defect. The
proposed method controls the error by varying the communication step size using the PI
controller. A simple application of the method is presented in the example section. This
application serves to highlight some of the effects of using different orders of interpolation
polynomials in co-simulation. The final section of the article contains conclusions and ideas
for future work.

2. Error Bounds

This article extends the work performed in [15] with variable step co-simulation
presented in the next section and experimental analysis in the following section. There,
coupled ordinary differential Equation (1) and their numerical solution (2) are used to
analyze numerical errors of the co-simulation. An important result of [15] is Theorem 1. It
states that the global error of the co-simulation is limited when the co-simulation defect
is limited. It is worth noting that a similar statement is proved in [19] for a system of
differential and algebraic equations. The main difference is that algebraic equations in this
article are divided into output and connection equations (Figure 1). This section repeats
the expressions for coupled ordinary differential equations and the error bounds theorem
from [15] (Theorem 1). Coupled ordinary differential equations are the basis for the step
size analysis and Theorem 1 justifies the error control presented in the next section.

A co-simulation models a system partitioned into N subsystems connected by the
connection function L

ẋi(t) = fi(xi(t), ui(t)) (1a)

yi(t) = gi(xi(t), ui(t)) (1b)

xi(0) = x0i (1c)

uı̆ῐ(t) = y“i“l(t),
(
“ı, “l

)
= L

(
ı̆, ῐ

)
(1d)

where i is the subsystem index, xi is the state signal, yi is the output signal, ui is the input
signal, and x0i is the initial state of the subsystem. The numerical solution of the system
satisfies the following equations

˙̃xi(t) = fi(xi(t), ui(t)) + δx̃i(t) (2a)

ỹi(t) = gi(xi(t), ui(t)) + δỹi(t) (2b)

x̃i(0) = x0i (2c)

ũı̆ῐ(t) = ỹ“i“l(t) + δũı̆ῐ(t),
(
“ı, “l

)
= L

(
ı̆, ῐ

)
(2d)

where the numerical solution of the state, output, and input signals is denoted as x̃i, ỹi, and
ũı̆ῐ, respectively. The signals found by the numerical solution are assumed to be piecewise
continuous. The defect introduced to the numerical solution is partitioned into integration
δx̃i, output δỹi, and connection defect δũı̆ῐ. The system (1) represents the equations solved
by the co-simulation and the system (2) represents the behavior of the solution obtained by
the co-simulation.
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The numerical solution (1) can be rewritten to

˙̃x(t) = f(x̃(t), ũ(t)) + δx̃(t) (3a)

ỹ(t) = g(x̃(t), ũ(t)) + δỹ(t) (3b)

ũ(t) = Lỹ(t) + δũ(t) (3c)

where signals of all subsystems in (2) are grouped into large column vector signals

xT
(t) =

[
xT

1 (t) xT
2 (t) · · · xT

N (t)
]

yT
(t) =

[
yT

1 (t) yT
2 (t) · · · yT

N (t)
]

uT
(t) =

[
uT

1 (t) uT
2 (t) · · · uT

N (t)
] (4)

The error of the numerical solution (3) is defined as the difference between the numerical
and the analytic solution of the system (1)

Δx̃(t) = x̃(t)− x(t), Δỹ(t) = ỹ(t)− y(t), Δũ(t) = ũ(t)− u(t) (5)

where Δx̃ is the integration error, Δỹ the output error and Δũ the input error of the numerical
solution.

Definition 1 (Lipschitz Continuity). A function f is said to be Lipschitz continuous if there exist
constant Kf > 0 such that for all x1, x2 ∈ R|x|:∥∥f(x2)− f(x1)

∥∥ � Kf

∥∥x2 − x1
∥∥ (6)

The constant Kf is called the Lipschitz constant of the function f.

Definition 1 introduces Lipschitz continuity, which is used to describe the conditions
for the uniqueness of the solution for (1) [15]. It is used to formulate Assumption 1 and
Theorem 1.

Assumption 1. Assume that there exists a Lipschitz continuous function G that explicitly calcu-
lates the input signals

ũ(t) = G(x̃(t), δỹ(t), δũ(t)) (7)

Assume that the aggregated state transition function f (3a) is Lipschitz continuous. Assume that the
aggregated output function g (3b) is Lipschitz continuous. Assume that the numerical solution (2)
is continuous in every subinterval (tκ−1, tκ ].

Theorem 1 (Error Bounds = Theorem 2.12 in [15]). Suppose Assumption (1) holds. Then, the
integration error is limited

‖Δx̃(t)‖ � eKf(t−t0)‖Δx̃(t0)‖+ 1
Kf

(
eKf(t−t0) − 1

)
δ(t0,t] (8)

the input error satisfies is limited

‖Δũ(t)‖ �KGeKf(t−t0)‖Δx̃(t0)‖+ KG

Kf

(
eKf(t−t0) − 1

)
δ(t0,t]

+ KG‖δỹ(t)‖+ KG‖δũ(t)‖
(9)
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and the output error satisfies is limited

‖Δỹ(t)‖ �Kg(1 + KG)eKf(t−t0)‖Δx̃(t0)‖
+

Kg

Kf
(1 + KG)

(
eKf(t−t0) − 1

)
δ(t0,t]

+
(
1 + KgKG

)‖δỹ(t)‖+ KgKG‖δũ(t)‖
(10)

In [15], it is shown that Theorem 1 requires the same conditions as the uniqueness
of the solution for (1). In addition, the numerical solution obtained by co-simulation (2)
must be piecewise continuous. This theorem provides the justification for the defect control
presented next.

3. Defect Control

Theorem 1 suggests that the step size control of the co-simulation defect can be used
to limit the global error of the co-simulation. According to [3], a communication step size
is the “distance between two subsequent communication points (also known as sampling
rate or macro step size)”, where communication points are “time grid for data exchange
between master and slaves in a co-simulation environment (also known as sampling points
or synchronization points)”. This section describes how to control the communication step
size of a slave using a non-iterative variant of the Jacobi co-simulation method (Algorithm 1).
The proposed co-simulation method is shown in Figure 2. The variable-step variant of
the method generates a sequence of communication step sizes H : N → R�0 with the
explicit version of the PI control procedure introduced in [18]. The defect controlled by the
proposed method is based on the connection defect (2d) and/or the output defect (2b).

Slave 1

Master

Slave 2

2’ 4’

2” 4”

5’
:ỹ

(T
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],T
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]]
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:ũ
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H
[k
]

2

)
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:ỹ

(T
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−2

],T
[k
−1

]]
2

3”
:ŷ

2( T
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]
+

H
[k
]

2

)
1”

:ũ
(T

[k
−1

],T
[k
]]

2

5’
:ỹ

(T
[k
−1

],T
[k
]]

1

1’
:ũ

(T
[k
],T

[k
+

1 ]
]

1

5”
:ỹ

(T
[k
−1

],T
[k
]]

2

1”
:ũ

(T
[k
],T

[k
+

1 ]
]

2

T[k−1] T[k−1] +
H[k]

2 T[k−1] + H[k]

T[k−1] T[k−1] +
H[k]

2
T[k−1] + H[k]

Figure 2. This article uses a non-iterative variant of the Jacobi co-simulation method with variable
steps to demonstrate co-simulation defect control.

The numerical defect must be limited to ensure that the co-simulation error is limited.
Theorems 2 and 3 show that the defect can be limited by reducing the communication step
size. This section shows how to calculate the connection defect and estimate the output
defect. Theorem 4 shows that the output defect estimate used is asymptotically correct.

The sequence of communication points T : N0 → R�0 is determined by the communi-
cation step sizes

T[k] = T[k−1] + H[k] (11)

The sequence of points tκ at which a numeric solution discontinuity can occur is marked
differently than the sequence of communication points T[k]. The reason is that discontinu-
ities in the numeric solution may occur during slave integration. Each slave can perform
the integration with different individual integration steps (sometimes referred to as a micro
step size ). It is assumed that the internal solver of the slave takes over the responsibility
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for the control of the integration step size. Control of the integration step size may be used
to reduce the integration error [16,17]. Theorem 1 suggests that integration defect reduction
is an important factor for the quality of co-simulation. This article focuses on controlling
the size of the communication step with respect to output and connection defects. This
choice respects the black box character of co-simulation slaves (Figure 1) and leaves the
integration defects in the responsibility of internal slave solvers.

Co-simulation is the simulation of a continuous time model with a computer, a discrete
system. The co-simulation generates samples of the signal and its derivatives at communi-
cation points. This description is consistent with [3]. The reconstruction of output signals
from such samples can be obtained using the Taylor polynomial

ỹ
(T[k−1],T[k]]
i (t) =

ni

∑
n=0

dnỹ
(T[k−1],T[k]]
i

dtn (T[k])
(t− T[k])n

n!
(12)

where the samples of the output signal and its derivatives are determined by the co-
simulation slave. The output signal of the ith co-simulation slave is a piecewise polyno-
mial signal

ỹi(t) = ỹ
(T[k−1],T[k]]
i (t), T[k−1] < t � T[k] (13)

The inputs of the ith co-simulation slave are extrapolated with the following polynomial

ũ
(T[k−1],T[k]]
i (t) =

mi

∑
m=0

dmũ
(T[k−1],T[k]]
i

dtm (T[k−1])
(t− T[k−1])m

m!
(14)

where the samples of the input signal and its derivatives are determined by the co-
simulation master. A non-iterative Jacobi co-simulation master (Figure 2) determines
the input signals in the kth step with the connected output signals from the (k− 1)st step

dmũ(T[k],T[k+1]]
ı̆ῐ

dtm (T[k−1]) =
dmỹ(T[k−2],T[k−1]]

“i“l
dtm (T[k−1]),(

“ı, “l
)
= L

(
ı̆, ῐ

)
, m � mı̆, m � n“ı

(15)

The input signal of the ith co-simulation slave is a piecewise polynomial signal

ũi(t) = ũ
(T[k−1],T[k]]
i (t), T[k−1] < t � T[k] (16)

The connection defect (2d) can be calculated by comparing the extrapolation polynomials
for the output (12) and input (14) signals, i.e.,

δũ(T[k−1],T[k]]
ı̆ῐ (t) = ũ(T[k−1],T[k]]

ı̆ῐ (t)− ỹ(T[k−1],T[k]]
“i“l

(t),
(
“ı, “l

)
= L

(
ı̆, ῐ

)
(17)

where individual scalar signals are selected according to the connection function.
This article assumes that the output signal and all its derivatives are perfectly sampled,

i.e., the output defect can only deviate from zero between the communication points

dnỹ
(T[k−1],T[k]]
i

dtn (T[k]) =
dngi(x̃i(t), ũi(t))

dtn

∣∣∣∣
t=T[k]

, n = 0, . . . , ni (18)

Lemma 1. Assume that the numerical solution for the input signals is bounded ‖ũ“ı(t)‖ � Bũ“ı
,

the numerical solution for the state signal is bounded ‖x̃“ı(t)‖ � Bx̃“ı
, the integration defects are

δx̃“ı(t) = O(HNi [k]), and the state transition function f“ı is Lipschitz continuous (Definition 1). Then

lim
H[k]→0

∥∥x̃“ı(T[k])− x̃“ı(T[k−1])
∥∥ = 0 (19)
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Proof. Since δx̃“ı(t) = O(HNi [k]) there exists C, H0 ∈ R>0 such that for all H[k] � H0

‖δx̃“ı(t)‖ � CHNi
0 (20)

By the integration of (2a)

x̃“ı(T[k])− x̃“ı(T[k−1]) =

T[k]∫
T[k−1]

f
(
x̃“ı(τ), ũ“ı(τ)

)
+ δx̃“ı(τ) dτ (21)

the following inequality is obtained

∥∥x̃“ı(T[k])− x̃“ı(T[k−1])
∥∥ �

T[k−1]+H[k]∫
T[k−1]

Kf Bx̃“ı
+ KfBũ“ı

+ CHNi
0 dτ (22)

The statement of the lemma (19) follows from the previous inequality∥∥x̃“ı(T[k])− x̃“ı(T[k−1])
∥∥ �

(
Kf Bx̃“ı

+ KfBũ“ı
+ CHNi

0

)
H[k] (23)

Theorem 2 (Connection defect). Assume that the numerical solution for the input signals is
bounded ‖ũ“ı(t)‖ � Bũ“ı

, the numerical solution for the state signal is bounded ‖x̃“ı(t)‖ � Bx̃“ı
, the

integration defects are δx̃“ı(t) = O(HN“ı [k]), the state transition function f“ı is Lipschitz continuous
(Definition 1), the output function of the “ıth subsystem is

g“ı(x̃“ı(t), ũ“ı(t)) = g“ı(x̃“ı(t)) (24)

and the step sizes of connected simulators “i, ı̆ ∈ IF. The connection defect (2d) of a numerical
solution converges in terms of the communication step size

lim
H[k]→0

(
δũ(T[k−1],T[k]]

ı̆ῐ (t)
)
= 0 (25)

Proof. From (14)–(18) and (24) it follows that

δũ(T[k−1],T[k]]
ı̆ῐ (t) =

min(mı̆ ,n“ı)

∑
m=0

dmg“ı“l(x̃“ı(t))

dtm

∣∣∣∣∣
t=T[k−1]

(t− T[k−1])m

m!

−
n“ı

∑
n=0

dng“ı“l(x̃“ı(t))

dtn

∣∣∣∣∣
t=T[k]

(t− T[k])n

n!

=g“ı“l

(
x̃“ı(T[k−1])

)− g“ı“l

(
x̃“ı(T[k])

)
+O(H[k])

(26)

where
(
“ı, “l

)
= L

(
ı̆, ῐ

)
. Since g“ı is Lipschitz continuous it follows that∥∥∥g“ı“l

(
x̃“ı(T[k−1])

)− g“ı“l

(
x̃“ı(T[k])

)∥∥∥ � Kg“i

∥∥x̃“ı(T[k−1])− x̃“ı(T[k])
∥∥ (27)

The statement of the theorem follows from Lemma 1, (26) and (27).

Theorem 2 specifies the conditions under which the connection defect converges with
respect to the communication step size. A number of simplifications are adopted to prove
Theorem 2. In (26), the higher order terms are ignored to simplify the proof. The goal was
to prove that the connection defect was converging in terms of communication step size,
rather than finding the smallest limit. The next section shows the order of convergence of
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the connection defect in a simple example. Bounded inputs and state signals are reasonable
assumptions for a stable system and a stable co-simulation. The assumptions (24), however,
restrict the models used to those that have no direct output dependency on input signals. If
this simplification is not applied, it is possible to construct a system with an algebraic loop
that makes the co-simulation unstable. The subject of future work will be to analyze how
some or all of these simplifications can be discarded or at least relaxed.

Theorem 3 (Output defect). Suppose the function gi is continuously differentiable and the
calculated state signal x̃i is continuously differentiable. Then, the output defect (2b) is

δỹi(t) = O
(

Hni+1
[k]
)

(28)

Proof. From (14) and the fact that gi and x̃i are continuously differentiable, it follows that

g
(
x̃i(t), ũi(t)

)
=

ni

∑
n=0

dni g
(
x̃i(τ), ũi(τ)

)
dτni

∣∣∣∣∣
τ=T[k]

(
t− T[k]

)n

n!
+O(

Hni+1
[k]
)

(29)

for T(k−1) < t � T[k] The expression (28) follows from (2b), (12) and (18).

Theorem 3 shows that the output defect can be controlled by reducing the commu-
nication step size. Theorem 2 and Theorem 3 justify the communication step size control.
Numerical solvers are expected to minimize the remaining component of the numerical
defect, the integration defect (2a). The rest of the section analyzes how to estimate the
output defect.

For the purpose of estimating the output defect between the communication points, a
Hermite interpolation polynomial [20] is łintroduced

ŷ
(T[k−1],T[k]]
i (t) = ỹi(t) +

(T[k]−t)ni+1

(0.5H[k])ni+1

[
gi

(
x̃i

(
T[k]− H[k]

2

)
, ũi

(
T[k]− H[k]

2

))
− ỹi

(
T[k]− H[k]

2

)]
(30)

A Hermite interpolation polynomial is consistent with multiple samples of the signals and
their derivatives. The polynomial used in this paper is consistent with signal values at two
communication points and signal derivatives at the later point

ŷ
(T[k−1],T[k]]
i

(
T[k]− H[k]

2

)
= gi

(
x̃i

(
T[k]− H[k]

2

)
, ũi

(
T[k]− H[k]

2

))
dnŷ

(T[k−1],T[k]]
i

dtn (T[k]) =
dngi(x̃i(t), ũi(t))

dtn

∣∣∣∣
t=T[k]

, n = 0, . . . , ni

(31)

The Hermite interpolation polynomial is used to obtain an asymptotically correct estimate
of the output defect.

Theorem 4 (Estimate of the Output Defect). The estimation of the output defect is defined as the
difference between interpolation polynomials (30) and (12)

δ̂ỹ
(T[k−1],T[k]]
i (t) = ỹ

(T[k−1],T[k]]
i (t)− ŷ

(T[k−1],T[k]]
i (t) (32)

Suppose the function gi is ni + 1 times continuously differentiable on the interval t ∈ (T[k−1], T[k]] and

x̃
(T[k−1],T[k]]
i (t) =

ni+1

∑
n=0

dnx̃i
dtn (T[k])

(t− T[k])n

n!
+O

(
Hni+2

[k]
)

(33)

Then, the estimate of the output defect (32) is asymptotically correct, i.e., for each α ∈ (0, 1]

lim
H[k]→0

δ̂ỹ
(T[k−1],T[k]]
i (t)

δỹ
(T[k−1],T[k]]
i (t)

= 1, t = T[k−1] + αH[k] (34)
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Proof. Since gi is continuously differentiable, it is also Lipschitz continuous. Lipschitz
continuity and (33) imply

gi

(
x̃
(T[k−1],T[k]]
i (t), ũ

(T[k−1],T[k]]
i (t)

)
=

ni+1
∑

n=0

[
dngi(x̃i(t),ũi(t))

dtn

∣∣∣
t=T[k]

(t−T[k])n

n!

]
+O(

Hni+2[k]
)

(35)

The output defect (3b) is the difference between the numerical output signal (12) and the
output signal without defect (35). The output defect on the interval (T[k−1], T[k]] is equal to

δỹi(t) = ỹi(t)− gi(x̃i(t), ũi(t)) =
dni+1gi(x̃i(t),ũi(t))

dtni+1

∣∣∣
t=T[k]

(t−T[k])ni+1

(ni+1)! +O(
Hni+2[k]

)
(36)

The estimate of the output defect on the interval (T[k−1], T[k]] is equal to

δ̂ỹ
(T[k−1],T[k]]
i (t) =

(T[k]− t)ni+1

(0.5H[k])ni+1

[
gi

(
x̃i

(
T[k]− H[k]

2

)
, ũi

(
T[k]− H[k]

2

))
− ỹi

(
T[k]− H[k]

2

)]
=

(T[k]− t)ni+1

(0.5H[k])ni+1

[
dni+1gi(x̃i(t), ũi(t))

dtni+1

∣∣∣∣
t=T[k]

(−0.5H[k])ni+1

(ni + 1)!
+O

(
H[k]ni+2

)]

=
dni+1gi(x̃i(t), ũi(t))

dtni+1

∣∣∣∣
t=T[k]

(t− T[k])ni+1

(ni + 1)!
+O

(
Hni+2

[k]
)

(37)

The Equation (34) follows directly from (36) and (37).

The output defect estimate (32) is obtained by adding communication points during co-
simulation. The additional points are added in the middle of the interval (T[k−1], T[k]] shown
in Figure 2. These points are used to obtain a higher order interpolation polynomial (30)
for use in the output defect estimate. Theorem 4 gives the conditions (33) under which the
output defect estimate (32) is asymptotically correct. The integration should have a higher
order of local error than the order of the output interpolation polynomial (12).

The connection defect calculation (17) and the output defect estimate (32) are used to
define the controlled co-simulation defect

ε[k] = max
(

max
i,j

(
RMS

T[k−1]< t� T[k]
(δũij)

)
, max

i,j

(
RMS

T[k−1]< t� T[k]
(δ̂ỹij)

))
(38)

The calculation of the co-simulation defect is used in a step size control approach similar
to the one introduced in [18]. The approach uses a PI controller for the logarithm of an
error measurement

e[k] = log(tol)− log(ε[k])

I′ [k] = I[k−1] + KIe[k]
H′ [k] = exp

(
I′ [k] + KPe[k]

)
H[k] =

{
θmax H[k−1], H′ [k] > θmax H[k−1]

H′ [k], otherwise

I[k] = I′ [k] + log(H[k])− log
(

H′ [k]
)

H[1] = H1, I[1] = log(H1)

(39)

where ε : N → R is the controlled error approximation. Such a method has already
been used for co-simulation [21]. The difference to the method presented in this article is
the controlled error estimate. In [21], the authors have used an explicit step size control
procedure to control the local co-simulation error of the output signal. In this article, the
method controls the maximum of the connection defect and the output defect estimate (38).

The co-simulation method used for demonstrating the communication step size control
is defined in Algorithm 1. It is also shown in Figure 2 to simplify the introduction. Like
any other co-simulation master, the method solves the connection Equation (1d) and
controls the execution of the co-simulation slaves. The connection equation is solved
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by the assignment of input signal derivatives (15). The presented co-simulation method
allows a parallel execution with a distribution of the calculation performed in for-loops.
The communication step sizes are controlled using the PI controller (39) to keep the co-
simulation defect (38) constant.

4. Numerical Example

This section presents an example of using the proposed variable-step co-simulation
method (Algorithm 1). The example system is a two mass oscillator that is commonly used
to benchmark co-simulation master algorithms [6,21–25]. The slaves are implemented in the
C programming language using Functional Mock-up Interface (FMI) [3,4]. The proposed
connection defect calculation (17) and the output defect estimation (32) are illustrated in
this example.

Algorithm 1 The pseudocode describes a non-iterative Jacobi co-simulation method. In the
variable-step variant, the step size H[k] is computed with the PI controller (17), (32), (38)
and (39). In the fixed-step variant, the step size is constant H[k] = H[k−1] = H1.

Require: a partitioned system (1) without algebraic loops, an initial step size H1, defect
tolerance tol

1: k := 0, T[k] := 0, H[1] = H1
2: calculate the initial output signals by solving the Equations (1b) and (1d)
3: repeat
4: k := k + 1
5: for i ← 1 to N do
6: assign the input signals (15)
7: for i ← 1 to N do
8: integrate the Equation (1a) on the interval

(
T[k−1], T[k−1] +

H[k]
2

]
9: for i ← 1 to N do

10: obtain the output signal samples at T[k−1] +
H[k]

2

11: for i ← 1 to N do
12: integrate the Equation (1a) on the interval

(
T[k−1] +

H[k]
2 , T[k]

]
13: for i ← 1 to N do
14: obtain the output signal samples at T[k]

15: compute H[k]

16: T[k] := T[k−1] + H[k]

17: until T[k] � tend

The algorithms presented in this article and the code used to generate the results
in this section are published at [26]. The models are implemented in C, the algorithms
are implemented in C++, and the figures are created in Python. In the repository [26] an
interested reader can find

• a C++ implementation of Algorithm 1 in the template function
fmi::jacobi_co_simulation (src/fmi.h),

• an implementation of the step size controller (39) in the method VariableStepSize:
:next (src/fmi.cpp),

• an implementation of the Hermite polynomial calculation (30) in the method
FMU::get_hermite (src/fmi.cpp),

• an implementation of the output defect calculation in the function fmi::calculate
_output_defects (src/fmi.cpp),

• an implementation of connection defect calculation in the function fmi::calculate
_connection_defects (src/fmi.cpp),

• an implementation of co-simulation slaves according to the FMI 2.0 standard [3] in the
directories src/OscillatorOmega2Tau and src/OscillatorTau2Omega,
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• an implementation of the reference solution in the directory
src/TwoMassRotationalOscillator,

• and the code to create the images presented in this section in the Python script
scripts/results_analysis.py.

The implementation of the co-simulation slaves (Figure 3b) follows the FMI standard [3].
Since slaves are compiled together with the master, the shared library and the interface
description are not packaged together for ease of implementation. Models solved by the
slaves are described in the following equations.

J1

φ1, ω1

c1

d1

τ1, φ2, ω2

J2

c2

d2

ck

dk

CVODE

(a)

J1

φ1, ω1

c1

d1

τ1ck

dk

S1 Euler

J2

c2

d2

φ2, ω2

S2Euler

master

(b)
Figure 3. During co-simulation, a co-simulation master orchestrates co-simulation slaves. In the case
of the monolithic simulation, a solver solves the entire system of equations: (a) Monolithic simulation;
(b) Co-simulation.

The example system consists of two slaves i ∈ {1, 2} that solve the following system
of equations

ẋi(t) = fi(xi(t), ui(t)) = Aix1(t) + B1u1(t), (40a)

yi(t) = gi(xi(t), ui(t)) = Cixi(t) + Diui(t), (40b)

xi(0) = xi0 (40c)

connected by
u1(t) = y2(t), u2(t) = y1(t) (41)

where
y1(t) =

[
τ1(t)

]
, u1(t) =

[
ω2(t)

]
,

x1(t) =
[
φ1(t) ω1(t) φ2(t)

]T , x10 =
[
φ10 ω10 φ20

]T ,

A1 =

⎡⎢⎣ 0 1 0
− c1+ck

J1
− d1+dk

J1

ck
J1

0 0 0

⎤⎥⎦, B1 =

⎡⎢⎣ 0
dk
J1
1

⎤⎥⎦,

C1 =
[
ck dk −ck

]
, D1 =

[−dk
]

(42)
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and
y2(t) =

[
ω2(t)

]
, u2(t) =

[
τ1(t)

]
,

x2(t) =
[
φ2(t) ω2(t)

]T , x20 =
[
φ20 ω20

]T ,

A2 =

[
0 1
− c2

J2
− d2

J2

]
, B2 =

[
0
1
J2

]
,

C2 =
[
0 1

]
, D2 =

[
0
]

(43)

Model parameters are set to

J1 = 10 kg m2, c1 = 1 N m
rad , d1 = 1 N m s

rad , ck = 1 N m
rad ,

dk = 2 N m s
rad , φ10 = 0.1 rad, ω10 = 0.1 rad

s , J2 = 10 kg m2,

c2 = 1 N m
rad , d2 = 2 N m s

rad , φ20 = 0.2 rad, ω20 = 0.1 rad
s

(44)

The analytic solution is approximated by a monolithic solution of the system (Figure 3a)
solved using the CVODE solver [27] with a tight tolerance bound. The absolute tolerance
limit for the solver used is set to 10−8. This solution is used to give a reference solution for
the co-simulation and to approximate the numerical error.

The internal equations of co-simulation slaves are solved using the forward Euler
method. The forward Euler method is a first-order numerical solver for the same equations

x̃
(T[k−1],T[k]]
i (t) =x̃

(T[k−2],T[k−1]]
i (T[k−1])

+ (t− T[k−1]) fi

(
x̃
(T[k−2],T[k−1]]
i (T[k−1]), ũ

(T[k−1],T[k]]
i (T[k−1])

) (45)

The state derivative values of the Euler solver are equal to

dnx̃
(T[k−1],T[k]]
i

dtn (T[k]) =

{
Aix̃

(T[k−2],T[k−1]]
i (T[k−1]) + Biũ

(T[k−1],T[k]]
i (T[k−1]), n = 1

0, n > 1
(46)

Output polynomials are Taylor polynomials (12) with output derivative values calcu-
lated using (18) and

dnỹ
(T[k−1],T[k]]
i

dtn (T[k]) = Ci
dnx̃

(T[k−1],T[k]]
i

dtn (T[k]) + Di
dnũ

(T[k−1],T[k]]
i

dtn (T[k]), n = 1, . . . , ni (47)

Input polynomials are Taylor polynomials (14) with input derivative values calculated
using (15).

Figure 4a,b shows the piecewise response for both fixed and variable-step co-simulation
using Algorithm 1. Figure 4a shows the responses obtained by fixed-step co-simulation
with the step size

H = H[k] = H[k−1] = H1 = 1 (48)

Figure 4b shows the responses obtained by variable-step co-simulation with the initial
step size and tolerance

H1 = 1, tol = 0.005 (49)

The step size is controlled by the step controller (39) with the control parameters set to

KP = 0.13, KI =
1
15

, θmax = 2 (50)
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(a)

(b)
Figure 4. The diagrams show numerical solutions that were calculated with the Jacobi co-simulation
method (Algorithm 1). The numerical solutions are compared with the monolithic solution: (a) Fixed
step; (b) Variable step.

The comparison of figures shows how the step size controller reduces the step size
during the co-simulation. In Figure 4a,b

• orders of output (12) and input (14) polynomials are fixed to 0,
• and compared to the monolithic system (Figure 3a) solution found using CVODE (tol-

erance 10−8, [27]).

Theorems 2 and 3 show that the connection and the output defect can be limited by
reducing the communication step size. In order to verify this statement, the root mean
square value of the connection

RMS(δũi1) = ∑
0<kH�tend

∫ T[k]

T[k−1]
δũi1(τ)dτ (51)

and output defect

RMS(δỹi1) = ∑
0<kH�tend

∫ T[k]

T[k−1]
δỹi1(τ)dτ (52)

is calculated for fixed-step co-simulations with different step sizes

H = H[k] = H[k−1] = H1 ∈ {10−3, 10−2.8, . . . , 100} (53)

The results are shown in Figure 5a,b.
The output defect (2b) is estimated using (32). The order of convergence of the output

defect is given with Theorem 3. Figure 5a confirms this theorem. It is interesting to observe
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the output defect of the Euler solver (45) in Figure 5a. From (12), (40b), (45), (46) and (47) it
follows that

ỹ(T[k−1],T[k]]
i1 (t) = 0.5 x̃(T[k−1],T[k]]

i1 (t), ni > 0 (54)

and
δỹi1(t) = 0, ni > 0 (55)

for the Euler solver. This result agrees with the asymptotic upper limit from Theorem 3.
This is interesting because it shows that the output defect for such a solver setup is zero for
any output interpolation order greater than 0. However, the numerical error is larger than
that of an analytic solver (Figure 6).

(a) (b)
Figure 5. The diagrams show the defects of the fixed-step Jacobi co-simulation method (Algorithm 1,
H[k] = H[k−1] = H1) and different orders of interpolation polynomials mi = ni: (a) Output defects;
(b) Connection defects.

Theorem 2 shows that the connection defect converges (by assuming that the output
equations are independent of the input signal) , but does not show the order of convergence.
The input assignment (15) suggests that the input signal depends on the order of the input
polynomial as well as the connected output polynomial. However, Figure 5b shows a
relationship between connection defects and an internal solver. The connection defect when
using the analytic solver seems to correlate with the interpolation order and appears to be
O(

Hmin(mi ,ni)+1). In the case of the Euler solver, the connection defect seems to be limited
to O(

H2). The latter seems to be a consequence of (46).
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Figure 6. The diagrams show the numerical errors of the fixed-step Jacobi co-simulation method
(Algorithm 1, H[k] = H[k−1] = H1), different orders of interpolation polynomials and different
internal subsystem solvers.

The focus of future work will be on the investigation of the order of convergence of
connection defects. Theorem 2 uses a simplification to avoid the analysis of direct influences
of input signals on output signals. This simplification prevents the analysis of algebraic
loops, which could make the system unstable. Direct influences of input signals on output
signals have an effect on the local co-simulation error shown in [24]. This indicates that
a direct output input dependency could affect the order of the connection defect. This
will be a topic for future work, along with the analysis of the influence of the solver on
connection defects.

Theorem 1 suggests that by limiting the overall co-simulation defect, the global co-
simulation error should be limited. Theorems 2 and 3 show that by limiting the step size,
connection and output defects can be limited. Figure 5 confirms this. The three theorems
suggest that by limiting the step size, the global co-simulation error can be limited. This
is confirmed by Figure 6. It is worth noting that the conclusions given apply to a coupled
ordinary differential system 1.

Reducing the step size limit is not the only way to reduce connection and output
defects. The order of the polynomials used to transmit input and output signals also has
an effect. This effect can be observed in Figure 6. Theorem 1 shows that the co-simulation
error is bounded by connection, output, and integration defects. If defects are

δũ(t) = O(
Hpi

)
, δỹ(t) = O(

Hqi
)
, δx̃(t) = O(

Hri
)
) (56)

then the errors are

Δũ(t) = O(
Hmin(pi ,qi ,ri+1)), Δỹ(t) = O(

Hmin(pi ,qi ,ri+1)), Δx̃(t) = O(
Hmin(pi ,qi ,ri+1)) (57)

All co-simulation errors are limited by the worst co-simulation defect. Figure 6 shows how
the integration defect of the Euler solver limits the co-simulation error to O(

H
)
.

Co-simulation errors can be limited by limiting the co-simulation defects. The rate of
convergence of the output defect is given by Theorem 3. It is important to note that the
order of convergence for the output defect estimate is influenced by the Euler solver. The
Euler solver brakes the assumption (33). This is an example where an integration defect
can affect the output error estimate.

It is interesting to observe the effect of the internal solver on the connection defect.
In Figure 5b, it can be seen that for the Euler solver and larger orders of extrapolation
for input and output signals the connection defect is O(

H
)
. The connection defect (17)
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in the explicit co-simulation is influenced by the difference of the state signal at different
co-simulation steps (26). This observation suggests that a connection defect can be used to
detect numerical errors introduced by solving state, output, and connection equations. The
authors plan future work to rigorously analyze whether there are conditions under which
this hypothesis is true.

The previous experiments use fixed-step co-simulation to confirm Theorems 1, 2 and 3.
Theorem 1 shows that defect control can be used to limit the co-simulation error. Theorems 2
and 3 show that output and connection defects can be limited by limiting the step size. The
previous experiments and theorems justify the use of variable step size co-simulation using
defect control. The next experiments show the results of applying the variable-step Jacobi
co-simulation method to the system (40) and (41). The method is presented in Algorithm 1
and the step size is calculated with (39). The numerical experiment was performed with
the reference tol = 0.1, controller parameters (50) and the initial step size H1 = 0.001.
The comparison of the obtained output signals with the monolithic solution (Figure 3a) is
shown in Figure 4b.

Next, the tolerance was varied

tol ∈ {10−3, 10−2.8, . . . , 100} (58)

to demonstrate that such a controller can limit output and connection defects. Figure 7
shows that the output defect is limited by the tolerance. Figure 8 shows that the connection
defect is limited by the tolerance. This may not always be the case for explicit co-simulation.
In the presented experiments, the initial step size was set to small H1 = 0.001 to ensure that
the numerical defect produced in the initial step stays within tolerance. The experiment
shows that by controlling (38) both connection and output defects can be controlled.

Furthermore, Figure 9 shows that by reducing the tolerance, the co-simulation error
can be reduced. It is interesting to observe that plots of the output defect (Figure 7)
and connection defect (Figure 8) are similar shapes to the error plot (Figure 9). This
comparison suggests that there are cases where such variable step co-simulation can be
used successfully.

Figure 7. The diagrams show the output defects of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4) and different orders of interpolation polynomials.
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Figure 8. The diagrams show the connection defects of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4), different orders of interpolation polynomials and different
internal subsystem solvers.

Figure 9. The diagrams show the numerical errors of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4), different orders of interpolation polynomials and different
internal subsystem solvers.

It should be noted that the integration defect (2a) is not directly controlled in this
example. In the case of the analytic solver, the defect is completely eliminated. In the case
of the Euler solver (45), the integration defect is O(H). In practice, co-simulation slaves
are black boxes without the ability to monitor the integration. This is why the integration
defect is not included in this analysis.

In Figure 9, it can be seen that co-simulation errors are similar in order of magnitude for
different extrapolation orders. Figure 10 shows the benefit of increasing the extrapolation
order. It shows how an average step size during co-simulation depends on the requested
tolerance. The step size controller takes smaller steps to achieve the same tolerance if higher
extrapolation order is used. This conclusion may not be generalized to more complex
subsystems. It shows the idea that an extrapolation order could be used to decrease the
CPU and communication network load during co-simulation.
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Figure 10. The diagrams show the average step sizes of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4), different orders of interpolation polynomials and different
internal subsystem solvers.

5. Conclusions and Future Work

This article presents an analysis of the co-simulation defect for a system of coupled
ordinary differential equations. The analysis is motivated to deepen the understanding of
the co-simulation configuration. In practice, co-simulation slaves are black boxes coupled
with connection equations (Figure 1). A quality measure that does not require knowledge
of the slave’s internal equations can facilitate the co-simulation configuration. The defect
analysis was only applied to the co-simulation in [15]. This article continues the application
of defect analysis and applies it to variable-step co-simulation with different orders of
interpolation polynomials.

The main contribution of this article is a non-iterative co-simulation method with
variable communication step size (Figure 2, Algorithm 1). Theorem 1 states that the
co-simulation error is bounded if the co-simulation defect is bounded. Theorem 2 and
Theorem 3 show that the connection and the output defect can be limited by reducing the
communication step size. These theorems justify the use of variable step co-simulation
based on defect control. Section 4 shows an application of the proposed method to an
example of a two-mass oscillator and gives a verification of the above statements.

Such a method is valuable in practice because it requires little configuration. The
parameters for the procedure are the initial communication step size H1 and the required
tolerance tol. The method does not require a co-simulation slave to repeat a communication
step. This relaxes the implementation requirements for co-simulation slaves. In addition,
like any variable step method, it can save computation time by calculating the step size for
the results of the desired quality.

One goal of future work would be to see if there is a way to eliminate the need to
perform additional sampling of the communication points to estimate output defects. It
is worth considering under what conditions the calculations of the connection defect are
sufficient to assess the quality of the co-simulation.

Another goal of future work would be to focus on the properties of a model and
try to estimate the correct initial step size H1 for co-simulation. This would reduce the
configuration effort even further and achieve an almost ideal configuration. In this case,
only the required quality of the co-simulation is requested by a user tol.
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Abstract: This study presents a novel coupled meshless model for simulating acoustic wave propagation
in heterogeneous media, based on the singular boundary method (SBM) and Kansa’s method (KS). In
the proposed approach, the SBM was used to model the homogeneous part of the propagation domain,
while KS was employed to model a heterogeneity. The interface compatibility conditions associated
with velocities and pressures were imposed to couple the two methods. The proposed SBM–KS coupled
approach combines the respective advantages of the SBM and KS. The SBM is especially suitable for
solving external sound field problems, while KS is attractive for nonlinear problems in bounded non-
homogeneous media. Moreover, the new methodology completely avoids grid generation and numerical
integration compared with the finite element method and boundary element method. Numerical
experiments verified the accuracy and effectiveness of the proposed scheme.

Keywords: singular boundary method; Kansa’s method; heterogeneous media; acoustic wave;
meshless method

MSC: 35J05; 65N35; 65D12

1. Introduction

The propagation of sound waves in fluids and solids is an important issue in science
and engineering. In the past few decades, the boundary element method (BEM) has become
established as an effective tool for sound propagation analysis, especially for the infinite
and semi-infinite domains [1–4], due to the used fundamental solution automatically
satisfying the far-field radiation condition. Compared with other well-established mesh-
based methods, such as the finite element method (FEM) [5–8] and the finite difference
method (FDM) [9,10], the BEM can solve acoustic problems merely through boundary
discretization. However, it involves a sophisticated mathematical formulation and a tedious
estimation of singular and hyper-singular integrals [11,12]. Furthermore, these methods
require the use of domain truncation techniques for infinite domain problems for the
numerical solution of problems on unbounded domains.

In recent years, various meshless/meshfree methods [13–19] have been proposed to re-
duce or even eliminate the tasks of mesh generation and singular integration. Among these
approaches, the singular boundary method (SBM) [20–23] is a boundary-only discretization
meshless technique, which does not require mesh generation and numerical integration.
This method is very simple and accurate for the analysis of sound fields in unbounded
domains, since it also employs the fundamental solution satisfying the governing equation
and the far-field radiation condition [24,25]. Another common meshless scheme is Kansa’s
method (KS) [26–29], which is based on the radial basis function (RBF). This method does
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not require the fundamental solution, and is suitable for solving arbitrary partial differential
equations in bounded domains [30–33].

As can be inferred from above, the SBM and KS have their respective advantages in
addressing unbounded homogeneous media and bounded non-homogeneous media. In
order to avoid complex computational processes such as mesh generation and singular
integral computation using traditional methods such as the FEM and the BEM, this research
made a first attempt to couple these two methods (named SBM–KS) for simulating acoustic
wave propagation in heterogeneous media. The SBM is adopted to model the homogeneous
part of the propagation domain, while KS is employed to model a heterogeneity. A direct
coupling strategy between the SBM and KS is presented based on the continuity conditions
of velocities and pressures on the interface. The coupling method shows unique advantages
in solving such problems compared to existing methods, such as simplicity, accuracy, and
being free of mesh and integration.

The organization of this manuscript is as follows: Section 2 briefly describes acoustic
wave propagation problems of heterogeneous media. Section 3 introduces the SBM for an
unbounded acoustic medium, KS for a heterogeneous acoustic medium, and the coupling
strategy of these two methods. In Section 4, two classical numerical examples are provided
to verify the accuracy and effectiveness of the proposed methodology. Finally, Section 5
provides some conclusions and remarks.

2. Problem Statement

Consider an unbounded homogeneous medium Ω1, containing a subdomain Ω2 in
which the sound velocity is variable (see Figure 1a), and the sound field is excited by a
harmonic pressure source at position s = (x0, y0). In this regard, the sound waves travel at
a constant speed v1(x) = v1 in Ω1 and a variable speed v1(x) in Ω2 at x = (x, y). Then, the
acoustic pressure fields p1(x) and p2(x) within homogeneous and heterogeneous media
can be described by the following Helmholtz equations:

∇2 p1(x) +
[

ω

v1

]2
p1(x) = 0, x ∈ Ω1, (1)

∇2 p2(x) +
[

ω

v2(x)

]2
p2(x) = 0, x ∈ Ω2, (2)

where ∇2 is the Laplace operator, and ω is the angular frequency.

Figure 1. Schematic diagrams of (a) acoustic wave propagation in heterogeneous media and (b) nodal
distribution for the coupled method.

Notice that the governing equations are the PDEs with constant and variable coeffi-
cients in domains Ω1 and Ω2, respectively. The conventional boundary-type methods, such
as the BEM, the SBM, and the fundamental solution method, cannot be directly applied to
solve variable-coefficient PDEs. Meanwhile, domain-type methods, such as the FEM, the
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meshless local Petrov–Galerkin (MLPG) method and Kansa’s method, require the trunca-
tion of boundaries and the division of grids, which is extremely troublesome when dealing
with problems in infinite homogeneous media. It should be noticed that the fundamental
solution employed in the SBM automatically satisfies the Sommerfeld radiation condition
at infinity:

lim
r→∞

r
1
2 (d−1)(

∂p(x)
∂r

− ikp(x)) = 0 (3)

where d is the spatial dimension, i =
√−1 is the imaginary unit, k is the wave number, and

r is the distance between point x and the sound field’s center.
In the present study, the above-mentioned problem was solved by coupling the SBM

and KS to overcome the limitations posed separately by each method. The SBM was
employed to model the unbounded acoustic medium, while KS was used to model the
heterogeneous medium. The coupling between the two approaches was accomplished by
utilizing continuity conditions of pressures and velocities on the boundary of the heteroge-
neous medium. Figure 1b illustrates the schematic diagram of the nodal distribution for
the coupled meshless model. The two methods used the same nodes on the interface.

3. Methodology

3.1. SBM for Unbounded Acoustic Medium

Assuming the total number of nodes on the interface is M, the sound pressure at point
x ∈ Ω1 ∪ Γ can be calculated by the following SBM formula:

p̂1(x) =
M

∑
j=1

αjG(x, xj) + pinc(xi, s), xj ∈ Γ (4)

where αj is the unknown coefficient, xj is the boundary node shown in Figure 1b,

pinc(xi, s) = H(2)
0 ( ω

v1
‖xi − s‖2) represents the incident pressure field generated by a har-

monic pressure source at position s = (x0, y0) in the domain Ω1, and G(x, xj) is the
fundamental solution of the Helmholtz equation, which is given by the following:

G(x, xj) = − i
4

H(2)
0

(
ω

v1
‖x− xj‖2

)
(5)

where H(2)
0 is the zeroth-order Hankel function of the second kind.

To solve the unknown coefficients
{

αj
}M

j=1, let x in Equation (4) be the boundary node
xj; we have the following equations for the Dirichlet boundary condition:

p̂1(xi) =
M

∑
j = 1
i �= j

αjG(xi, xj) + αi pii + pinc(xi, s), i = 1, 2, . . . , M, (6)

and for the Neumann boundary condition, we have the following:

∂ p̂1(xi)

∂nxi

=
M

∑
j = 1
i �= j

αj
∂G(xi, xj)

∂nxi

+ αiqii +
∂pinc(xi, s)

∂nxi

, i = 1, 2, . . . , M, (7)
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where xi and xj denote the ith and jth boundary nodes, pii and qii are the origin intensity
factors when the source point and the field point coincide (i.e., i = j), which can be
computed using the following formulas in references [34,35]:

uii =
i
4
− 1

2π

(
ln
(

Li
2π

)
+ ln

(
k
2

)
+ γ

)
, (8)

qii =
1
Li
−

N

∑
j = 1
j �= i

ζ ji
∂G0(xi, sj)

∂ns
, (9)

where Li is the influence range of the boundary point xi (see Figure 2), γ is the Euler
constant, G0(xi, xj) the fundamental solution of the Laplace equation, as follows:

G0(xi, xj) = − 1
2π

ln ‖xi − xj‖2. (10)

 

 

 

 

Figure 2. Diagram of the influence range for a source point.

For the convenience of coupling calculations, Equations (6) and (7) can be written in
the following matrix forms:

p̂1 = Gα+ pin, (11)

q̂1 = Hα+ qin. (12)

3.2. Kansa’s Method for Inhomogeneous Acoustic Medium

For the closed domain Ω2 with the boundary Γ, we chose a set of N collocation points,
including Ni internal points and M boundary points, as shown in Figure 1b. According to
the basic idea of KS, the sound pressure in subdomain Ω2 can be approximated using a
linear combination of RBFs, as follows:

p̂2(x) =
N

∑
k=1

βk ϕk(x), (13)

where βk is the unknown coefficient to be determined, and ϕk(x) is the multiquadric (MQ)
RBF function, which is defined as the following:

ϕk(x) =
√

r2
k + c2, (14)

where rk = ‖x− xk‖2 is the distance between nodes x and xk, and c is the shape parameter,
which is fixed at 0.5 in this study. The MQ-RBF is a highly sought-after function due to its
numerous advantages for various applications. Its main advantages include the following:

348



Mathematics 2023, 11, 1841

(1) Smoothness: it is a smooth function with continuous derivatives of all orders, which is a
crucial requirement for many applications. (2) Accuracy: it offers exceptional approximation
accuracy for a wide range of functions and can converge faster than other RBFs for some
problems, making it an excellent choice for large-scale applications. (3) Scalability: it is compu-
tationally efficient, making it a perfect fit for large-scale problems. It has a low computational
cost for interpolation and can be easily parallelized. (4) Robustness: it is less sensitive to data
outliers than other RBFs, making it a robust choice for applications where data may contain
noise or outliers. (5) Universality: it is a universal approximator, meaning it can approximate
any continuous function to any desired accuracy, given sufficient data points.

Substituting Equation (13) into Equation (1) for internal nodes, one obtains the following:

∇2
N

∑
k=1

βk ϕk(xi) +

[
ω

v2(xi)

]2 N

∑
k=1

βk ϕk(xi) = 0, xi ∈ Ω2 (15)

In addition, the sound pressure and its normal derivative at the boundary nodes
satisfy the following equations:

p̂2(xi) =
N

∑
k=1

βk ϕk(xi), xi ∈ Γ, (16)

∂ p̂2(xi)

∂nxi

=
N

∑
k=1

βk
∂ϕk(xi)

∂nxi

, xi ∈ Γ. (17)

Equations (15)–(17) can be rewritten in the following matrix forms:

Rβ = 0, (18)

p̂2 = Bβ, (19)

q̂2 = Fβ. (20)

3.3. Coupled Model Dymamic System

This study proposed a direct coupling strategy between the two methods, under the
condition that the nodes used in the SBM model matched the boundary nodes used in KS.
Note the following:

∂p(x)
∂nx

= −iρωv(x), (21)

where the coupled system can be established by employing the continuity of pressure and
velocity on the interface between the two media, which can be expressed as follows:

p1(x) = p2(x) or p1 = p2, x ∈ Γ, (22)

∂p1(x)
∂nx

= −∂p2(x)
∂nx

or q1 = q2, x ∈ Γ. (23)

Considering all the nodes within the domain Ω2, and using the above continuity
conditions, Equations (11), (12), and (18)–(20) can be combined to form a total linear system,
namely, the following: ⎡⎣G −B

H F

0 R

⎤⎦[ α

β

]
=

⎡⎣ −pin
−qin

0

⎤⎦ (24)
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After solving Equation (24), unknown coefficient vectors α and β can be determined.
Then, the sound pressures at any position in medium Ω1 and Ω2 can be easily obtained by
employing Equations (4) and (13).

4. Numerical Results and Discussion

In this section, we examine the proposed SBM–KS by three numerical examples,
including single and multiple heterogeneous inclusion materials. To assess the numerical
errors, the following absolute error was employed:

Absolute error = |pnum(x)− pana(x)|, (25)

where pnum(x) and pana(x) represent the numerical and analytical solutions at point x,
respectively. Note that p can be a real part or an imaginary part of the sound pressure.

Example 1. We consider an infinite homogenous fluid medium with a circular inclusion of radius
1.0 m [36]. The sound velocities are 1500 m/s and 2500 m/s in the infinite fluid medium and the
circular inclusion, respectively. Both media have a same density of 1000 kg/m3. The pressure source
is placed at (x0 = −5 m, y0 = 0 m).

To numerically solve this problem, the SBM–KS chose 100 interface nodes and 688 in-
ternal nodes. Figure 3 shows the comparison of the analytical solution [37], and numerical
results obtained by the proposed SBM–KS and COMSOL software under a frequency of
1000 Hz. Absolute errors of these two methods are also provided in Figure 4. In the
simulation, the finite element method with 7780 elements used the perfectly matched layer.
We can see from Figure 3 that the numerical results obtained from the SBM–KS and the
COMSOL FEM are in good agreement with the analytical solutions. It can also be clearly
observed that the curve of our method completely coincides with the curve of the analytical
solution, while the FEM has certain errors. Moreover, it can be noted that the calculation
accuracy of the proposed method is at least two orders higher than that of the FEM. In this
example, the condition number of the proposed approach is 1.426 × 1011. The SBM has a
small condition number, but KS has a large condition number [38], which leads to a large
value of the condition number for the final coefficient matrix. However, the method can
still obtain accurate numerical results.

Figure 3. Comparison of the numerical and analytical solutions for hydrodynamic pressures along
the common interface under a frequency of 1000 Hz.
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Figure 4. Absolute errors of the SBM–KS and the COMSOL Multiphysics finite element methods.

Example 2. This example considers a non-homogeneous circular region of radius 1 m centered at
point (0, 0), which is embedded in an unbounded fluid medium. The pressure source with a frequency
of 1000 Hz is placed at (x0 = −2.5 m, y0 = 0 m). Both media have a same density of 1000 kg/m3.
The outer fluid medium allows sound waves to travel at 1500 m/s, while the non-homogeneous
medium allows sound waves to travel at the following:

v2(x, y) = 1500 + 150
[

1 + sin
(

π
√

x2 + y2 +
π

2

)]
, (26)

which is illustrated in Figure 5.

Figure 5. Velocity distribution in a heterogeneous domain for Example 2.

In practical problems, the node distribution may be scattered and uneven. As a
meshless technique, the proposed SBM–KS can address the non-uniform node distribution
in a leisurely manner. In order to test the effect of node distribution on the calculation
accuracy, distributions of regular and irregular nodes were investigated in the calculation,
as shown in Figure 6. It includes 100 interface nodes and 688 internal nodes.
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(a) (b) 

Figure 6. Nodal distributions: (a) regular nodes and (b) irregular nodes.

Figure 7 displays the profiles of the analytical response in the domain [−2, 2]× [−2, 2],
and Figures 8 and 9 depict the absolute errors of the proposed method under regular
and irregular nodes, respectively. It was noted that the numerical solutions are in good
agreement with the analytical one for the regular and irregular distributions of nodes, and
the numerical errors are small. In this example, the condition number of the proposed
approach is 4.665 × 1011.

(a) (b) 

Figure 7. Analytical responses in the domain [−2, 2]× [−2, 2]: (a) real part, (b) imaginary part.
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(a) Real part (b) Imaginary part 

Figure 8. Distributions of absolute error in the domain [−2, 2]× [−2, 2] with regular nodes: (a) the
real part with (b) the imaginary part.

 

(a) Real part (b) Imaginary part 

Figure 9. Distributions of absolute error in the domain [−2, 2]× [−2, 2] with irregular nodes: (a) the
real part with (b) the imaginary part.

Example 3. The last example considers a complex sound propagation problem in a heteroge-
neous medium, shown in Figure 10. The domain Ω1 is an infinite domain, in which the speed of
sound is v1 = 1500 m/s and the density is ρ1 = 1000 kg/m3. The pressure source is placed at
(x0 = −5 m, y0 = 0 m). The bounded domains Ω2, Ω3, and Ω4 are all heterogeneous media, and
their boundaries can be expressed as the following parameter forms:

Γ2 =

{
(x = r2(θ) cos θ, y = 2 + r2(θ) sin θ)

∣∣∣∣∣r2(θ) =
3

√
cos(3θ) +

√
2− sin2(3θ), 0 ≤ θ ≤ 2π

}
, (27)

Γ3 =
{
(x = r3(θ) cos θ, y = −2 + r3(θ) sin θ)

∣∣∣r3(θ) = esin θ sin2 θ + ecos θ cos2 θ, 0 ≤ θ ≤ 2π
}

, (28)

Γ3 = {(x = 4 + r4(θ) cos θ, y = r4(θ) sin θ)|r4(θ) = 1, 0 ≤ θ ≤ 2π }. (29)

353



Mathematics 2023, 11, 1841

Figure 10. Geometry of the heterogeneous medium in Example 3.

In the present study, we assumed that the density of the three heterogeneous media
is the same as that of the infinite medium, while these three media allow sound waves to
travel at the following velocities:

v2(x, y) = 1500 + 200
[

1 + sin
(

π

√
x2 + (y− 2)2/r2(θ) +

π

2

)]
, (x, y) ∈ Ω2, (30)

v3(x, y) = 1500 + 100
[

1 + sin
(

π

√
x2 + (y + 2)2/r3(θ) +

π

2

)]
, (x, y) ∈ Ω3, (31)

v4(x, y) = 1500 + 150
[

1 + sin
(

π

√
(x− 4)2 + y2/r4(θ) +

π

2

)]
, (x, y) ∈ Ω4, (32)

where θ denotes the azimuth angle of the point (x, y), functions r2, r3, and r4 have are given
in Equations (27)–(29). The velocity variations in the domain [−8, 8]× [−6, 6] are shown in
Figure 11.

Figure 11. Velocity distribution in the heterogeneous domain for Example 3.
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In this example, the proposed method was used to solve the problem of sound propa-
gation in an infinite domain with three heterogeneous media. In the calculation, the SBM
was employed to simulate the external sound field Ω1, while KS was used to approximate
the sound field in heterogeneous media Ω2, Ω3, and Ω4. The two methods were coupled
by employing the continuity conditions of pressure and velocity on the interfaces Γ2, Γ3,
and Γ4.

In order to obtain accurate and reliable numerical results, a total of 6422 nodes were used
in the study. On each interface, 400 nodes were evenly arranged according to the angle. In
domains Ω2, Ω3, and Ω4, 1360, 2616, and 1246 nodes were configured, respectively. The node
distribution is shown in Figure 12. The proposed SBM–KS was used to calculate the sound
field with two different frequencies. The FEM results were also obtained using the COMSOL
Multiphysics software to compare with our method. In the simulation, the FEM used 242,444
domain elements and 2846 boundary elements to achieve the reliable solutions.

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5
x (m)

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5
Interface nodes
Internal nodes

Figure 12. Node distribution of the coupling method.

Figures 13 and 14 give numerical results of sound pressure and sound pressure level
at frequencies 1000 Hz and 1500 Hz. From these figures, it can be observed that the sound
wave propagates regularly when it does not encounter heterogeneous materials. However,
after passing through heterogeneous materials, the waveform changes. The higher the
frequency, the more noticeable the impact effect. In addition, it can be observed from
Figures 13 and 14 that the results of the two methods basically have the same trend from a
global perspective, and can reveal the propagation law of sound waves. In terms of details,
the numerical solutions of the two methods differed slightly. It should be clarified that
this example did not have an analytical solution to verify the computational accuracy of
the two methods, but the previous two examples indicated the reliability of the proposed
SBM–KS approach.

In this example, the condition numbers of the proposed approach are 2.177 × 1019 and
4.408× 1019 for 1000 Hz and 1500 Hz, respectively. Compared with the previous two examples,
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the geometry investigated in this example is more complex, including three heterogeneous
media with irregular boundaries in an infinite domain. Note that the condition number
increased sharply as the frequency increased, and the number of nodes increased.

The proposed method in this study successfully solved the problem of infinite domain
acoustic wave propagation involving multiple heterogeneous media. It provides a new and
simple mesh-free numerical technique for the efficient and accurate numerical simulation
of such problems, and also serves as a reference for validating the numerical effectiveness
of other methods.

 

Figure 13. Profiles of sound pressure and sound pressure level obtained using the SBM–KS approach
and COMSOL FEM at a frequency of 1000 Hz.
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Figure 14. Profiles of sound pressure and sound pressure level obtained using the SBM–KS approach
and COMSOL FEM at a frequency of 1500 Hz.

5. Conclusions

In this study, a novel coupled algorithm was presented for the analysis of acoustic
wave propagation in heterogeneous media, based on the SBM and KS. The proposed model
can accurately solve problems of heterogeneous media containing localized regions with
varying medium parameters, for which the application of the SBM is not suitable. The new
methodology completely avoids grid generation and numerical integration, and greatly
exerts the respective advantages of the two methods.

Numerical examples investigated the sound propagation problems through single
and multiple heterogeneous materials. Numerical results demonstrated that the proposed
scheme is accurate and reliable for simulated acoustic wave propagation in heterogeneous
media. On the one hand, the method eliminates the preprocessing process in the FEM, such
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as mesh division and perfect matching layer setting. On the other hand, it is superior to
the traditional FEM in terms of accuracy and efficiency. In addition, compared with the
BEM and MFS coupling methods, the calculation of singular integrals and the selection of
fictitious boundaries are avoided completely. Therefore, the proposed methodology can be
considered a competitive candidate for solving this type of problem.
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Abstract: One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock
mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the
pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence
mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated
using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the
influence of size feature parameters such as resolution (R), segmentation type, model feature size
(S), feature length ratio (F), and soil/rock particle size feature ratio (P) was examined. The study
demonstrated that as R increases, the permeability of the SRM gradually rises and tends to stabilize
when R reaches 60 ppi. At the same S, the dispersion degree of model permeability obtained by the
four segmentation types is in the order of center < random < equal < top. With an increase in S, the
permeability (k) of the SRM gradually decreases, conforming to the dimensionless mathematical
model, k = a0·S−b0 , and tends to stabilize at S = 80 mm. With an increase in F and an increase in S,
the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When F is
greater than 12, the dispersion of the permeability value distribution is especially small. With an
increase in P, the permeability of the SRM decreases gradually before rising abruptly. P is crucial
for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions
of R = 60 ppi, center segmentation type, S = 80 mm, F ≥ 12, and P set by demand can be used to
select and generate the size of the SRM optimal representative elementary volume (REV) numerical
calculation model. The SRM can serve as a general reference for test and engineering construction as
a common geotechnical engineering material.

Keywords: soil–rock mixture; lattice Boltzmann method; size effect; permeability

MSC: 76M55

1. Introduction

A special type of geological material called a soil–rock mixture (SRM) exists between
massive rock masses and fine-grained soil masses [1–3]. There is the existence of SRM and
hydraulics involved from natural mountain landslides to artificial subgrade fill erosion [4,5].
According to the study’s findings [6], the hydraulic properties of the SRM have clear
structural and size effects, which undoubtedly make it more challenging to determine the
permeability parameters of the SRM. Therefore, it is crucial to understand how the size of
the SRM influences the characteristics of seepage.

Currently, the size effect of seepage characteristics of rock and soil masses is mainly
manifested as follows: the permeability of rock and soil mass changes correspondingly with
the change in sample size or research scope. Researchers have conducted many studies to
address the issue of the size effect of rock and soil permeability. The size effect (including
particle and model size effect) and boundary effect are the most significant influencing
factors in seepage research, according to Lin et al. [7], who also made some evaluations on
the size effect in subsequent research. Research on rock mass permeability characteristics

Mathematics 2023, 11, 1968. https://doi.org/10.3390/math11081968 https://www.mdpi.com/journal/mathematics
361



Mathematics 2023, 11, 1968

and representative elementary volume (REV) analysis were conducted by Rong et al. [8].
According to the simulation results, the jointed rock mass group number and spacing are
more sensitive to the effects of REV, while the crack opening has the biggest impact on its
permeability characteristics. According to the analysis by Chen et al. [9] about the causes of
the pore size effect in low permeability clay seepage, a microscale seepage theory model of
the pore size effect was proposed. Wang [10] examined the statistical characteristics and size
effect of the permeability coefficient of samples with different rock content and tested the
ratio of sample side length to the maximum particle size of block stone (millimeter scale) to
determine the effect of rock content on the permeability coefficient and its REV. A rock mass
seepage test was performed by Liu et al. [11] by using the boundary element method after
nine two-dimensional (2D) rock mass networks of various sizes were built using the Monte
Carlo method. The findings demonstrated that the permeability is in a fluctuating state
when the sample size is less than 12 m and that until the model size is greater than 12 m, the
curve gradually tends to be stable. The REV of the rock and soil mass and the corresponding
characterization size were determined in the aforementioned research from various angles
and fields, but the characterization size was determined using various methods, resulting in
different results. Additionally, most of the aforementioned studies concentrate on the size
effect of the permeability for a single mass of soil or rock, and the study of the size effect of
the permeability of the SRM with unique building materials is infrequently included. It is
still unclear how many size factors affect the seepage characteristics of the SRM because of
the various research scales and objectives.

The study of the numerical method for determining the permeability of rock and soil
mass is currently fairly advanced, but some areas still require improvement. While it is
well known that the SRM belongs to discrete particles of a discontinuous medium [12], the
numerical simulation method typically adopts the continuous medium assumption.

In light of this, the lattice Boltzmann method (LBM) was created. In the field of porous
media seepage, it was first proposed by McNamara et al. [13] and quickly developed due
to its advantage of easy implementation and parallel computing [14–16]. Many researchers
have used LBM with better success to simulate and study the mesoscopic seepage charac-
teristics of porous media [17–20]. The premise of the SRM’s permeability study is also the
construction of the SRM model. At the moment, scanning electron microscopy (SEM) and
random generation are the two techniques most frequently used. Additionally, by adjusting
the pertinent key parameters, the random generation method can create the necessary SRM
model. Its models have unique shapes that resemble the actual SRM [12]. To simulate the
seepage process within the SRM, it can easily be combined with LBM.

Since different types of SRM samples are generated using the improved Monte Carlo
method in this study, LBM is used to simulate the mesoscopic seepage process within
the SRM from the pore scale. It is expected to reveal the internal influence mechanism of
sample size effect on SRM seepage characteristics and provide a certain reference basis
for further research. Finally, through 342 simulation test conditions, the influence of size
characteristic parameters such as resolution (R), segmentation type, model feature size
(S), feature length ratio (F), and soil/rock particle size feature ratio (P) on the seepage
characteristics of SRMs is discussed in detail.

2. Materials and Methods

To verify the viability of the BGK-LBM model from flow velocity through the conven-
tional theoretical value of the Poiseuille and the numerical value, the study first introduces
the construction of the SRM model and the LBM numerical model. The influence of size
effect on SRM seepage characteristics is then thoroughly discussed. The paper concludes by
delving deeply into the selection of the SRM’s optimal representative elementary volume
model size.
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2.1. Discrete Models of Soil–Rock Mixture

The overall porosity of the model, the physical characteristics of the rocks (rock content,
rock particle size, etc.), and the soil/rock ratio are all strongly correlated with the physical
and mechanical characteristics of the SRM [19]. Additionally, in reference to the research
that was conducted by other researchers on SRM seepage characteristics [17,21,22], it has
been observed that employing 2D models to simulate SRM seepage characteristics also
possesses a particular representativeness. As a result, the classical Monte Carlo method [23]
is used to investigate how the aforementioned variables affect the SRM’s permeability.
Considering this, the important parameter of the distance dd between particles is introduced,
and the MATLAB program is put together to produce various kinds of 2D SRM models for
further study. Following is the specific implementation procedure:

Step 1: Determine the SRM model with the size boundary l × b, the initial porosity
(n0 = 1.0), particle size (the particle size here refers to the diameter, Dm = [d1, d2, . . . , dm]),
and other important parameters.

Step 2: Using the primary parameters from Step 1, the MATLAB program’s rand
function is used to generate the particle distribution position (xi, yj) in the delivery area at
random. The position is then given the particle size di (i = 1, 2, . . . , m), meaning that a solid
random particle m can be drawn from these parameters.

Step 3: The crucial parameter of the distance dd between particles is introduced to
make it easier to adjust the position relationship between the particles. By repeating Step 2
based on this, a string of independent particles can be created. The generation of the SRM
model is not complete until the porosity n satisfies Equation (1).

n = n0 −
∑

i=m
π
(

Dm
2

)2

l · b (1)

Using the aforementioned technique, the porosity of the SRM is set within the range
0.36–0.51 and the particle size di is set to 4, 6, 10, 25, and 35 mm based on References [19,24]
and combined with the focus of this study. Various types of SRM–1, SRM–2, and SRM–3 are
generated at random (see Figure 1a–c), where the model’s size is l = 100 mm by b = 100 mm
and the black area represents soil/rock particles and the white area represents pores.
Calculate the direction frequency of particle distribution for various models concurrently
to reflect the change in the particle distribution rule generated randomly by the SRM,
as shown in Figure 1d–f. Figure 1d–f show how the distribution of soil/rock particles
vary among the three models and is disordered, which is consistent with the anisotropic
properties of the SRM [12]. In conclusion, the SRM model created by the random method
described in this paper has a good effect on the distribution of soil/rock particles. Based
on this, it is quick and convenient to study the influence of many factors on its seepage
characteristics, so other models are generated using this method in the future.

Figure 1. Soil–rock mixture model and particle distribution rose. (a) SRM–1, n = 0.3642; (b) SRM–2,
n = 0.4008; (c) SRM–3, n = 0.5060; (d) SRM–1 particle rose diagram; (e) SRM–2 particle rose diagram;
(f) SRM–3 particle rose diagram.
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2.2. Theoretical Part
2.2.1. Lattice Boltzmann Theory and Boundary Conditions

In general, the discrete Boltzmann equation for F(ω,t) can be solved using the lattice
Boltzmann method (LBM) to derive the Navier–Stokes (N–S) equation [16], which can then
be used to simulate the laws of fluid flow from the mesoscale. The most commonly used
BGK-LBM model [17–19], which can be represented by discrete LBE, is used in this paper:

Fα(ω + eαδt, t + δt) = Fα(ω, t)− Fα(ω, t)− Feq
α (ω, t)

τ
(2)

where F(ω,t) is the particle distribution function along α at lattice point ω at moment t;
eα is the discrete velocity; δt is the discrete time; τ is the dimensionless relaxation time;
Feq

α (ω, t) is the local equilibrium state distribution function in the discrete velocity space.
The classical D2Q9 model is used in the LBM discrete velocity model [17,18]. The

model is depicted in Figure 2, and the following parameters describe its equilibrium
distribution function:

Feq
α = ρωα[1 +

eα · u
c2

s
+

(eα · u)2

2c4
s
− u2

2c2
s
] (3)

ωα =

⎧⎨⎩
4
9 , α= 0
1
9 , α= 1, 2, 3, 4
1

36 , α= 5, 6, 7, 8
(4)

where ρ is the density; ωα is the weight coefficient; u is the macroscopic velocity; cs is the
sound velocities in lattice units, cs

2 takes the value of c2/3, and c is the lattice velocity.

Figure 2. D2Q9 model.

The N–S equation in hydrodynamics that correspond to the fundamental LBE model
was derived using the Chapman–Enskog expansion [16]. The relationship between the
macroscopic density ρ, pressure p, velocity u, and kinematic viscosity coefficient of fluid υ
and the dimensionless relaxation time τ of the model is given by:

ρ =
8

∑
α=0

Fα (5)

p = ρc2
s (6)

u =
1
ρ

8

∑
α=0

Fαeα (7)

υ = c2
s (τ −

1
2
)δt (8)
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The Mach number (Ma) of the fluid flow must be low enough [19,25] to guarantee that
the numerical solution of the LBM converges to the N-S equation for an incompressible
fluid, and it should typically satisfy Ma < 0.1, which is defined as:

Ma =
umax

c
(9)

where umax is the highest possible fluid flow rate.
In addition, LBM fluid flows along the Z-direction of the SRM in the study. The inlet

and outlet pressure boundary and the fluid–solid boundary are addressed, respectively,
using the Zou/He boundary [16] and standard rebound format [18]. In Figure 3, the precise
settings are displayed. The model must be binarized (0–1) before boundary processing to
identify and pinpoint the fluid and solid region (the region with pixel value 0 is the fluid
domain, while the region with pixel value 1 is the solid domain).

Figure 3. Model boundary conditions.

2.2.2. Conversion of Lattice Unit and Physical Unit

The LBM unit conversion part is described with reference to the method in Succi [26].
Basic parameters in the model (lattice unit) are length l, density ρ, time t, pressure p, and
kinematic viscosity coefficient υ. Corresponding parameters of the model (physical unit) are
length l′, density ρ′, time t′, pressure p′ and kinematic viscosity coefficient is υ′. In order to
realize the conversion between the above two parameters, it is necessary to introduce some
reference quantities [16]: reference length lr, reference density ρr, and reference velocity ur,
which are defined as:

lr =
l′

l
(10)

ρr =
ρ′

ρ
(11)

ur =
c′s
cs

(12)

where cs
′ and cs are the sound velocities in physical units and lattice units, respectively.

For a specific problem, the l, ρ, cs, and υ are known. The actual physical quantity can
also be obtained through the relevant equation. Therefore, ρr and ur can be determined,
but l′ and lr cannot. In view of this, the following relationship is added:

lrur =
υ′

υ
(13)
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In addition, the conversion between t, p, and t′, p′ can be solved based on the
following equations:

lr
ur

=
t′

t
= tr (14)

p =
p′tr

2

lr2ρr
(15)

So far, the conversion between the grid and the actual physical unit is completed [16].
Generally, the following equations are suitable: δx = δy = 1, δt = 1, and cs

2 = 1/3, and
converted to physical units.

δ′x = δ′y = lr (16)

δ′t =
lr
ur

(17)

c′s =
ur√

3
(18)

2.2.3. Soil/Rock Particle Size Threshold

The soil/rock threshold can be comprehensively determined by using the following
equation, which is in accordance with the research findings of Xu and Medley et al. [12,27]
on the threshold of soil/rock particle size in the SRM, and combined with the particle
generation and distribution characteristics of the SRM model in this paper.

DSRT = 0.05Lp (19)

where DSRT is the soil particle size threshold value, and Lp is the engineering feature size
of the SRM, with the engineering feature size for the plane study area being equal to the
arithmetic square root of the study area’s dimensions. So, Lp =

√
100× 100 = 100 mm.

In this study, SRM–1, SRM–2, and SRM–3 were used, and their respective rock contents
were 67.69%, 61.07%, and 52.96%. Wherein the rock content Cr is determined by dividing
the total area of soil and rock in the SRM model by the area of rock.

2.2.4. Size Feature Parameters

In order to study the influence of the size effect on the seepage characteristics in the
SRM model, this paper sets four size feature parameters: model resolution R, model feature
size S, feature length ratio F, and soil/rock particle size feature ratio P.

(1) Model resolution (R) is the term used to describe the amount of data stored in a model
image, which is typically expressed as the pixel density per inch (ppi) [28]. The output
quality of an image is determined by resolution. The size of the model is determined
by the image resolution and image size combined. The more significant the value, the
more precise the model and image are.

(2) Model feature size (S) is defined as the arithmetic square root of the product of
the numerical model’s length l and width b. S represents the average length of the
numerical model size.

S =
√

l · b (20)

(3) The feature length ratio (F), which is defined as the ratio of the rock feature particle
size (Dr =

√
Dr1Dr2···Drm, Drm refers to the particle size of the m-th type of rock in

the SRM) to S, characterizes the relationship between the rock particle size and the
model size in the SRM model.

F =
Dr

S
(21)
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(4) The soil/rock particle size feature ratio (P), which is defined as the ratio of the soil
feature particle size (Ds =

√
Ds1Ds2···Dsm, Dsm refers to the particle size of the m-th

type of soil in the SRM) to Dr, characterizes the relationship between the soil/rock
particle size feature in the SRM model.

P =
Ds

Dr
(22)

2.2.5. Permeability Calculation Theory

The penetrating quality of the SRM is generally described by the permeability, which
can be calculated using Darcy’s law (Equation (23)) and the LBM seepage field simulation.
It should be noted that a laminar flow state is required for Darcy’s law to hold. By
examining whether the permeability of the SRM remains constant under a range of pressure
differences, it can be determined whether the SRM is in a laminar flow state and can satisfy
the requirements of Ma < 0.1 and laminar flow when the pressure difference Δp is less than
0.01 m.u.·l.u.−1·t.s.−2 (3.67 × 10−2 Pa).

k =
μu
Δp

=
ρυul
Δp

(23)

where k is the permeability; μ is the dynamic viscosity coefficient of the fluid;
−
u is the

average flow velocity; Δp is the seepage pressure difference; l is the length of seepage path.
The LBM calculation stops when the fluid reaches a stable state. The criterion for

determining the stable state is that the standard deviation of the kinetic energy in the entire
calculation domain within a certain number of time steps is less than 0.01% of the average
kinetic energy [19]. Following the convergence of the calculation, Darcy’s law can be used
to determine the model’s permeability.

2.3. Model Size Segmentation

A number of small size model samples are taken directly from the large size samples
to ensure consistency in sampling. In addition, taking into account the possibility of
contingency in the selection of the SRM model, this paper uses four segmentation types,
namely random, center, top, and equal segmentation, to segment the SRM model [9], as
shown in Figure 4. Table 1 contains a list of the specific segmentation scheme for the various
SRM models used in the research that follows. The segmented SRM sample’s seepage field
is then calculated to investigate the influence of sample size on the permeability of the
SRM. The dispersion of permeability under various test conditions is reflected in this paper
using the coefficient of variation (cv). The cv is equal to the ratio of the standard deviation
to the average value, which better illustrates the dispersion of the data compared to the
standard deviation.

Figure 4. Segmentation type of model size. (a) random; (b) center, (c) top; (d) equal.
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Table 1. Size segmentation scheme of different SRM models.

Projects Model Segmentation Type Basic Information S (mm)
Number of Test

Conditions

Resolution SRM–1/SRM–
2/SRM–3 – r–10, r–20, r–30, r–40, r–50

r–60, r–70, r–80, r–90, r–100 100 30

Segmentation type SRM–1/SRM–
2/SRM–3

Random/Center/Top/Equal

sj–25/jz–25/dd–25/df–25 25

225
sj–50/jz–50/dd–50/df–50 50
sj–75/jz–75/dd–75/df–75 75

sj–100/jz–100/dd–100/df–100 100

Model feature size SRM–1/SRM–
2/SRM–3 Center jz–10, jz–20, jz–30, jz–40, jz–50,

jz–60, jz–70, jz–80, jz–90, jz–100
10, 20, 30, 40, 50,
60, 70, 80, 90, 100 30

Feature length ratio
SRM–1/SRM–

2/SRM–3
SRM–add

Center F = 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20 50, 80, 100 48

Soil/rock particle
size feature ratio

SRM–1/SRM–
2/SRM–3
SRM–add

Center P = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9 80 9

3. Results

3.1. Numerical Model Validation

The self-programmed LBM program is validated using the classical Poiseuille flow [17,18],
and the validation computational model area is chosen as a grid of 50 × 25 mm (500 × 250 l.u.)
with the same boundary treatment as described in Section 2.2.1. Table 2 displays the specific
computational parameters, where l and b are the length and width of the computational model,
and Δp is the pressure difference between the inlet and outlet of the fluid.

Table 2. Parameters of validation examples.

l (mm) b (mm) t (s) μ (Pa·s) ρ (kg·m−3) T (◦C) Δp (Pa)

50 25 1.65×10−3 1.01×10−3 1000 20.0 3.67 × 10−2

The surface cloud of the velocity field calculated by the Poiseuille flow model us-
ing the LBM program is shown in Figure 5, and it is clear that the velocity decreases
gradually from the middle to the two ends. The comparison results of the velocity of
each grid point in the middle cross–section with the Poiseuille flow analytical value are
shown in Figure 6. The highest error is merely 4.33%, demonstrating the precision of the
self-programmed technique.

Figure 5. Cloud chart of Poiseuille flow velocity field.

368



Mathematics 2023, 11, 1968

Figure 6. Comparison of Poiseuille flow analytical value and LBM simulation value.

3.2. Influence of Size Effect on Permeability

The seepage direction is set to follow the Z-direction of the SRM, and the flow is set to drive
the model at a constant temperature (T = 20 ◦C) and pressure difference (Δp = 3.67× 10−2 Pa)
to make the seepage simulation results more realistic. The specific boundary conditions
used in the calculation model are shown in Figure 3. The additional pertinent settings and
calculation criteria for the validation example given above apply here as well (Table 2).
Additionally, refer to Section 2.3 and choose the typical dimensions of models between
10 and 100 mm (grid unit: 100–1000 l.u.) to simulate various SRM models. There are 342
different simulation test conditions in total (Table 1).

3.2.1. Resolution R

Model resolution significantly affects the efficacy and accuracy of the results of the
permeability calculation in the LBM seepage field simulation [28,29]. SRM–1, SRM–2, and
SRM–3 models created in Section 2.1 are imported into LBM for calculation to examine
the influence of model resolution on permeability. The permeability of SRM samples
with various resolutions is simulated under the same boundary conditions and pressure
difference, with a total of 30 simulation test conditions (Table 1). The simulation results are
displayed in Figure 7.

Figure 7. Relationship between resolution and permeability. (a) SRM−1; (b) SRM−2; (c) SRM−3.

The permeability of the three models exhibits a trend in gradual improvement with
the resolution and tends to be stable when the resolution reaches 60 ppi, as can be seen in
Figure 7. Permeability dispersion degree cv values at this time are 0.00236, 0.00061, and
0.00028, respectively. Additionally, it is discovered that the porosity and rock content of the
model has little bearing on the relationship between resolution and permeability (SRM–1,
n = 0.3642, Cr = 67.69%; SRM–2, n = 0.4008, Cr = 61.07%; SRM–3, n = 0.5060, Cr = 52.96%)
by comparing the velocity field cloud map (velocity field, VF) of the three models with a
resolution of 60 ppi. The velocity field distribution in the models with various porosity and

369



Mathematics 2023, 11, 1968

rock content exhibits a steady–state effect when the model resolution is 60 ppi. To guarantee
the precision and effectiveness of the LBM permeability calculation, the resolution of the
model sample is set to 60 ppi in the subsequent simulation reported in this paper.

3.2.2. Segmentation Type

The SRM models are created with feature sizes S = 25, 50, 75, and 100 mm using the four
segmentation types described in Section 2.3 (random, center, top, and equal segmentation),
with a total of 225 simulation test conditions (Table 1). The particular simulation test
conditions of the model for each S are as follows. The number of random segmentation
modes is 16, 8, 4, and 1. The number of center segmentation modes is 1, 1, 1, and 1. The
number of top segmentation modes is 4, 4, 4, and 1. The number of equal segmentation
modes is 16, 8, 4, and 1. Among them, “number” refers to obtaining simulated test models
of S based on a certain segmentation type in SRM–1 for simulation, and selecting one of
them as a typical representative model for display, as shown in Figure 8. Figures 9 and 10
show the distribution of the typical seepage velocity field under various segmentation
types using SRM–1 as an example (the segmentation type is the same when the model
feature size S = 100 mm, so it is not shown), and Figure 10 uses the average permeability
value under the same S to show the dispersion degree under various segmentation types.

Figure 8. Typical model display under different simulation testing conditions in SRM–1.
(a–d) S = 25 mm, (e–h) S = 50 mm, (i–l) S = 75 mm, (m–p) S = 100 mm; segmentation types are
random, center, top, and equal.
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Figure 9. Seepage field velocity cloud map of different segmentation types in SRM–1 (unit: cm/s).
(a–d) S = 25 mm, (e–h) S = 50 mm, (i–l) S = 75 mm; segmentation types are random, center, top,
and equal.

Figure 10. Relationship between segmentation types and average permeability. (a) SRM–
1; (b) SRM–2; (c) SRM–3.

Figure 9 shows that the segmentation type has a greater impact on the permeability
of the SRM with the same S. The random segmentation type and the center segmentation
type have a more uniform seepage velocity field distribution than the top segmentation
type and the equal segmentation type. The reason for this is that the models obtained by
the top and equal segmentation type are mostly soil/rock particles in the SRM–1 model’s
corner area. The probability of disconnected channels appearing in the corresponding
segmentation model is higher, which also leads to a large dispersion of the permeability
of the model intercepted by the top segmentation and equal segmentation types. This can
also be indicated by the flow velocity cloud map in Figure 9.

Furthermore, the dispersion degree of model permeability obtained by the four seg-
mentation types under the same S is in order: center < random < equal < top (using SRM–1,
S = 50 mm as an example, cv-R = 0.1684, cv-C = 0, cv-T = 0.4365, and cv-E = 0.3729), which is
consistent with other relevant research conclusions [10]. Although the random segmenta-
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tion type has good stability under certain conditions and is used by many researchers, it
inevitably has great uncertainty and requires a large number of model data as support to
produce the most stable and accurate permeability results. Additionally, when compared
to the central segmentation type, it requires a significant amount of time and computing
memory. According to Figures 9 and 10, the model’s permeability exhibits a high degree
of anisotropism as the model feature size increases under the same segmentation type,
with the permeability results obtained by the top and equal segmentation types being
particularly significant.

3.2.3. Model Feature Size S

To investigate the influence of the model’s feature size S on the seepage characteristics
of the SRM model, this section synthesizes the preceding research and obtains the model
with the resolution R = 60 ppi, S = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mm, respectively,
by using the center segmentation type for the SRM–1, SRM–2, and SRM–3 models. Then,
numerical simulation tests were conducted on the seepage field combined with LBM, with
a total of 30 simulation test conditions (Table 1). Figures 11 and 12 depict the simulated
seepage velocity field and streamline distribution (limited to space, shown with SRM–1 as
an example). Simultaneously, numerical fitting is used to examine the relationship between
the permeability and the model feature size S, and the results are shown in Figure 13.

Figure 11. Seepage field velocity cloud map for different model feature sizes in SRM–1 (unit: cm/s).
(a–j) S = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mm.

Figure 11 shows that the seepage velocity generally decreases as the feature size of the
model increases. With increasing feature size of the model, the distribution characteristics
of the seepage fluid in the channel gradually change from scattered distribution of a
single channel to interactive distribution of multiple channels, and the average seepage
velocity of the models with different feature sizes is u10 = 0.485 cm/s, u20 = 0.129 cm/s,
u30 = 0.092 cm/s, u40 = 0.064 cm/s, u50 = 0.040 cm/s, u60 = 0.030 cm/s, u70 = 0.022 cm/s,
u80 = 0.018 cm/s, u90 = 0.016 cm/s, and u100 = 0.015 cm/s. According to the streamline
distribution diagram (Figure 12), the distribution of streamlines in the model pores first
appears sparse, thick, and wide, and then the streamline gradually becomes dense and
narrow as the model’s feature size increases. The reason for this is that the model’s feature
size is small, the number of soil and rock particles in the model area is small, and the
distribution is single, which cannot represent the overall model’s seepage characteristics.
Simultaneously, when the velocity field and streamline distribution images of different
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feature sizes in SRM–1, SRM–2, and SRM–3 are combined, it can be seen that as the
sample feature size S increases, the difference between the seepage velocity field and
streamline distribution gradually decreases, indicating a relatively similar seepage trend.
This demonstrates that selecting an appropriate model feature size has a significant impact
on seepage characteristics. On the one hand, if the model feature size is too small, it is
unable to represent the model’s basic characteristics. On the other hand, if the model
feature size is too large, it results in resource abuse. As a result, it is critical to investigate
the appropriate model feature size to characterize the model’s seepage characteristics.

Figure 12. Streamline distribution of the velocity field for different model feature sizes in SRM–1.
(a–j): S = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mm.

Figure 13. Relationship between model feature size and permeability. (a) SRM–1; (b) SRM–2;
(c) SRM–3.

Additionally, the permeability of SRM models with various structures gradually
decreases with an increase in the feature size of the model, as shown by the fitting curve
in Figure 13. In addition, it satisfies the dimensionless mathematical model k = a0·S−b0

(where a0 and b0 are numerical fitting parameters), and when S = 80 mm, it has a tendency
to be nearly stable. With the increase of S (S = 80, 90, 100 mm), the degree of dispersion cv
for the permeability of the three models (SRM–1, SRM–2 and SRM–3) is only cv-1 = 0.02281,
cv-2 = 0.06631, and cv-3 = 0.07375. In conclusion, S = 80 mm can be regarded as the model
for the representative numerical calculation unit of the SRM described in this paper.

3.2.4. Feature Length Ratio F

Based on the above study, various SRM models (F = 5–20) are created using the method
in Section 2.1 with the model porosity set to n = 0.50 to ensure that it has no effect on the
results. This is used to study the influence of feature length ratio (F) on the permeability
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of SRMs in more detail (many studies show that porosity has a significant impact on
permeability). For further information on the specific scheme, see Table 1. A total of
48 simulation test conditions are used to model the permeability of SRM samples under
various F under the same boundary conditions and pressure differential. Figure 14 displays
the simulation outcomes.

Figure 14. Relationship between feature length ratio and permeability. (a) S = 50 mm; (b) S = 80 mm;
(c) S = 100 mm.

Figure 14 shows that the permeability of the SRM is roughly distributed along a linear
“zonal” (blue area) with decreasing feature length ratio F and that as feature size S of
the model increases, the dispersion of the permeability numerical distribution decreases.
This finding is in line with the research findings in Section 3.2.3 regarding the relationship
between feature size and permeability. In addition, it can be seen that the seepage channels
of the F = 5 model are relatively wide but few in number, whereas the seepage channels
of the F = 20 model are relatively narrow but numerous by comparing the seepage field
velocity images of F = 5 and F = 20 under various model feature sizes. This is due to the
fact that, given a constant feature size for the model, a larger feature length ratio results in
a smaller maximum particle size for the rock and a smaller corresponding pore channel,
which ultimately reduces the model’s permeability. In addition, it is important to take
into account that the permeability distribution dispersion of the model with a low feature
length ratio is more pronounced than that of the model with a high feature length ratio,
and the dispersion is significantly reduced when F ≥ 12, which also suggests that the
feature length ratio should not be too small when studying the permeability of the SRM
model. Comprehensive comparison with other research or specific conclusions is more
consistent [9,30]. The Standard for Soil Test Methods (GB/T 50123–2019) [30] states that when
the sample size is 100 mm, the ratio of sample size to maximum particle size must be at
least 10. The American Society for Testing and Materials Standard Yearbook [9] states that the
diameter of the sample container must be 8–12 times the maximum particle size of the
sample. Briefly describing the findings of relevant research, most of the time the sample
size to particle size ratio is not less than 5 [31–33].

3.2.5. Soil/Rock Particle Size Feature Ratio P

The internal pore structure of the SRM is determined by its particle size distribution,
which also affects its permeability. The soil/rock particle size feature ratio (P) can represent
the composition of soil/rock particle size in the model sample of the SRM. Based on the pre-
viously mentioned study, this section utilizes samples of the SRM with various particle size
feature ratios (P = 0.10–0.90) of S = 80 mm, R = 60 ppi, and n = 0.50 to explore the influence
of P on the seepage characteristics of the SRM in more depth, with a total of nine simulation
test conditions (Table 1). The simulation outcomes are displayed in Figures 15 and 16.
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Figure 15. Relationship between soil/rock particle size feature ratio and permeability.

Figure 16. Seepage velocity distribution of different soil/rock particle size feature ratio models.

Figure 15 illustrates how significantly the feature ratio of soil/rock particle size affects
the seepage characteristics of the SRM. Overall, the permeability of the SRM shows a
characteristic of first slowly decreasing and then sharply increased with the increase in
P. When compared to the model samples at the critical soil/rock particle size feature
ratio (P = 0.10, P = 0.20, P = 0.70, and P = 0.90), it can be seen that as P increases, the
difference in soil/rock particle size in the model sample decreases, changing the sample’s
pore structure from a multilevel distribution to almost a single–graded sample. At P > 0.70,
the soil/rock particle size is nearly the same, almost becoming “rock”, forming a skeleton
structure together, so its permeability increases suddenly.

It can also be seen that the average seepage velocity of the model sample is typically
higher when P = 0.90, while the average seepage velocity of the model sample is the lowest
when P = 0.70, which corresponds to the permeability value shown in Figure 15. This is
in comparison to the average velocity distribution curve of the seepage field in Figure 16.
The average seepage velocity curve’s shape also changes from multiple wave peaks and
complex bending to a single wave peak and smooth characteristics with an increase in
P value, which is closely related to the particle size distribution of soil and rock and also
corresponds to the evolution characteristics. These findings come from examining the
shapes of each average seepage velocity curve under various particle size feature ratios of
soil and rock.

Compared with other researchers, it can be seen that References [22,34,35] focus on the
influence of rock particle size on the SRM’s simulated permeability, but had not considered
the influence of the mutual relationship between soil and rock particle size on the SRM’s
simulated permeability. This study demonstrated that SRM’s reproduced permeability is
significantly influenced by the soil/rock particle size feature ratio (Figure 15). Additionally,
Reference [34] showed that the presence of a critical value of rock content causes an
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unexpected shift in the pattern of the influence of rock particle size on permeability. The
influence of particle size on permeability was clearly linked to rock content in the conclusion
of Reference [35]. Compared with Reference [34], this study found that the soil/rock particle
size feature ratio extent similarly has a particular threshold, which can cause an unforeseen
increase in simulated permeability, and the two had explicit similarities in this regard.

3.3. Discussion

The detailed influences of resolution, segmentation type, model feature size, feature
length ratio, and soil/rock particle size feature ratio on the seepage characteristics of SRMs
were explored in Section 3.2 using 342 simulation test conditions. Differentiated and other
specialists’ preliminary focuses on the permeability of SRMs, it might be seen in Refer-
ences [12,36–38] that the permeability coefficient of SRMs obtained from the experiment
has a large span (permeability and permeability coefficient can be converted from each
other), ranging from 10−6 to 2.0 cm/s. This also indicates that the SRM’s permeability is not
uniform and varies depending on factors such as the type of soil, particle size, inside pore
structure, experimental model size, etc. The pattern of permeability coefficient changes
with the increase in rock content described in Reference [36] supports the reliability of the
mimicked estimation of penetrability noted in this paper. In any case, it is important to
note that the permeability values derived from this paper’s mathematical calculations are
significantly higher than those derived from experiments in References [22,36–38]. The
reason is that the SRM used in the experiment has soil and rock particles that are mostly
attached, whereas the SRM made by the mathematical model has sandy particles that do
not have a bond, so the permeability is larger. Compared with the reenactment compu-
tation effects of SRM’s penetrability described in Reference [34], it is consistent with the
calculation data reported in this paper.

In addition, this section also provides an extensive discussion on the selection of the
optimal unit volume model size of SRMs based on the findings of the research. Bear [39]
made the initial suggestion for the representative elementary volume (REV). The REV
scale, which represents the critical scale for the change from unstable to stable mechanical
properties of rock and soil mass, is an objective reflection of the size effect of the mechanical
properties of the rock and soil mass [40]. Larger-particle rock components and small soil
particles comprise the SRM. Figure 16 of the research area of the research group illustrates
how the internal structure of the model changes with continuous changes in the model’s
size [12]. Figure 17 shows that the REV–I region consists of single or partial block stones; the
REV–II region has a certain amount of block stones and uses fine-grained soil as the filling
material; the REV-III region contains a variety of block stones with different particle sizes
in addition to the block stones that cannot be ignored in comparison to the REV–II region,
which together forms a multilevel SRM. Additionally, the authors of References [41,42] used
homogenization to create multiscale LBM models that successfully mimicked single–phase
and two–phase flow simultaneously in pores of completely different length scales. This
could be also applied to an SRM where the particle sizes and pores vary greatly. This
demonstrates that the test and calculation results can only accurately reflect the pertinent
properties of the SRM when the size range of the SRM studied is greater than or equal to its
REV. The balance between numerical calculation accuracy and calculation efficiency should
also be thoroughly taken into consideration on this basis for the numerical simulation of
the size effect on SRM seepage characteristics.

Based on the aforementioned research, Section 3.2.1 first simulates 30 test conditions
for SRM–1, SRM–2, and SRM–3 with various resolutions R = 0–100 ppi. It demonstrates
that when the resolution reaches 60 ppi, cv is 0.00236, 0.00061, and 0.00028, respectively,
and R = 60 ppi can be thought of as the optimal resolution. Secondly, in Section 3.2.2,
225 kinds of seepage test simulations were carried out for the SRM model under the four
segmentation types, and it was found that the model permeability obtained by the center
segmentation type under the same model feature size was the least discrete, which was also
consistent with other relevant research conclusions [10]. Thirdly, center segmentation type
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was used in Section 3.2.3 to create a model with resolutions of R = 60 ppi and S = 100 mm.
Dimensionless k = a0·S−b0 mathematical model fitting was used to analyze the results of
30 seepage test conditions. When S = 80 mm, it was discovered that the SRM’s permeability
tended to be almost stable. At this time, cv was only cv-1 = 0.02281, cv-2 = 0.06631, and
cv-3 = 0.07375. Then, using n = 0.50 and F = 5, Section 3.2.4 simulates 48 seepage test
conditions for various SRM models. It demonstrates that as F increases, the distribution of
the SRM’s permeability presents a decreasing “zonal” distribution, and that the dispersion
of the permeability value distribution is significantly reduced when F ≥ 12. The SRM
samples with S = 80 mm, R = 60 ppi, n = 0.50, and P = 0.10–0.90 were studied under
10 different penetration test conditions in Section 3.2.5, showing that P plays a significant
and decisive role in the grading and structural composition of the SRM, but that there is no
clear distinction between good and bad for the selection of size effect.

Figure 17. Relationship between soil–rock mixture structure and REV size. (a) Overall model of the
soil–rock mixture; (b) REV model of the soil–rock mixture with different sizes.

As a result, the following guidelines can be used to determine the optimal size for the
SRM’s REV numerical calculation model reported in this paper: the center segmentation
type is used, the model is R = 60 ppi, S = 80 mm, F≥ 12, and P determined by specific needs.

4. Conclusions

Based on the lattice Boltzmann method (LBM), the seepage process for the soil–rock
mixture (SRM) is simulated from the pore scale. The following conclusions are drawn after
a detailed discussion of the effects of size feature parameters on the seepage characteristics
of SRMs under 342 simulation test conditions, including resolution (R), segmentation type,
model feature size (S), feature length ratio (F), and soil/rock particle size feature ratio (P);
the following conclusions are obtained:

(1) As R increases, the permeability of the SRM gradually rises and tends to stabilize
when R reaches 60 ppi. The model’s porosity and rock content also have only a minor
impact on the correlation between resolution and permeability.

(2) The four segmentation types–center segmentation, random segmentation, equal seg-
mentation, and top segmentation–are in order of decreasing dispersion in the per-
meability of the model obtained under the same S. The permeability of the model
increases with S when using the same segmentation type, exhibiting a high degree
of mutual anisotropy. The results for permeability obtained using the top and equal
segmentation types are particularly noteworthy.

(3) The permeability of the SRM model decreases gradually as S increases, satisfying the
dimensionless mathematical model k = a0·S−b0 and tending to be stable at S = 80 mm.
The permeability of the SRM increases in a linear “zonal” distribution as F increases,
and as S increases, the dispersion in the permeability value distribution decreases,
particularly when F ≥ 12. The permeability of the SRM decreases gradually and then
sharply as P increases, and it is important in the grading and structural composition
of the SRM.
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(4) In the current study, the conditions of R = 60 ppi, center segmentation type, S = 80 mm,
F ≥ 12, and P determined by specific need can be used to select and generate the
optimal REV numerical calculation model size of the SRM.
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Abstract: Computational simulation is a highly reliable tool used to solve structural analysis problems.
In recent times, several techniques have been developed in the field of computational mechanics in
order to analyze non-linearities in less time, helping decision-making when structures suffer damage.
The global–local analysis is a technique to increase the efficiency of computational simulations by
using a global model to obtain boundary conditions in a coupling zone imposed on a local model.
Coupling can be performed through the primal–dual method, which is used for crack propagation
using 2D and 3D models with fine meshes, thus saving computational time. However, it has not been
implemented at a commercial level to analyze large structures such as multi-story buildings with
focused non-linearities. In this work, a global–local analysis with non-intrusive methodology and
simplified models was implemented in a cracked framed structure, using a 1D (global) and 3D (local)
coupling considering crack propagation with primal–dual interface conditions. Different lengths
of the local model were analyzed, studying their influence on the convergence of the problem, and
compared with a 3D monolithic model to check the reliability of the results. The results show that
the proposed methodology solves the problem with an error less than 10%. Furthermore, it was
determined that the dimensions of the local model affect the convergence of the problem. This work
also provides an implementation of the method for large structures containing focused non-linearities
and using commercial software, reducing computational time for the cracked structural analysis.

Keywords: global–local; non-intrusive; computational simulation; crack growth; frame elements; 3D
solids; coupling

MSC: 74S05; 74R10

1. Introduction

The structures are designed to withstand different internal forces such as traction, com-
pression, bending, cutting, torsion and combined forces. In addition, fatigue damage and
seismic provisions must be considered in the design of structural steel buildings [1,2]. The
performance of the structure is diminished under the effect of factors such as corrosion, main-
tenance and the nature of cyclic loads [3], producing increased stress, cracking and subsequent
fracture of the material [4]. For these cases, numerical calculation methodologies based on
finite elements have been developed to predict the behavior of structures with the presence
of cracks, such as the extended finite element method (X-FEM) [5,6], which consists of dis-
cretizing a continuum using a mesh, and solving roughly at the nodes and then interpolate
to the rest of the element. However, if a singularity occurs, it incorporates enriched shape
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functions to simulate this phenomenon, allowing the mesh to generate discontinuities and
adapt as the problem changes, thus avoiding the remeshing of the problem [7].

However, for large structures subject to static and dynamic loads, these are calculated
using beam elements (1D elements with 6 degrees of freedom per node) [8,9]. Even so, these
types of elements do not account for crack propagation in their formulations, which means
that to study this behavior, other types of complex modeling must be used at a higher
computational cost. Therefore, to deal with large structures, multiscale methods have been
developed, some of which are based on domain decomposition [10–15] that allow linking
models to perform structural analysis of complex structures. Although these techniques
have shown good performance in academic applications, they are rarely applied to practical
industrial cases. Thus, in order for them to be useful in the industry, it is necessary to
validate the simulations with these methods and ensure their computational efficiency
and escalability [16]. The implementation of multiscale methods requires a high cost in
time and computational resources, in addition to needing methods to link the different
scales [16].

Based on domain decomposition methods, the global–local analysis [17] was devel-
oped, in order to improve the convergence of complex simulations. This technique uses an
approximate global model with a coarse mesh and typically linear to obtain appropriate
boundary conditions, which are imposed on the local model in the coupling zone, solving
the latter independently.

In [18], is proposed a non-intrusive global–local coupling algorithm based on domain
decomposition method, intended for large-scale non-linear analysis without the need to
modify the solver base code global model [19]. In [20], the strategy is interpreted as an
alternative decomposition method of optimized and non-overlapping Schwarz domains,
improving the results. The non-intrusive global–local coupling is applied for complex
non-linear behavior (plastic hardening, crack propagation, among others) in [21].

The non-intrusive method uses linear and non-linear solvers as a black box, which are
optimized and already incorporated into commercial software to introduce these solutions
in the form of displacements and/or forces in a linear model of the entire structure without
modifying it (non-intrusive) [15].

An example of non-intrusivity is to use the tools provided by the free software
Code_Aster [22] that uses XFEM to solve crack propagation problems and through a
Python interface, linking it with its linear solver (FEM) or with other commercial software,
such as SAP2000 which is used in this work. Other works where SAP 2000 software is used
for different types of analysis can be reviewed in [23–26], among others. However, other
commercial software has been used to analyze crack propagation and complex simulations,
such as ANSYS [27–29] and Abaqus [30–34]. This methodology has been implemented in a
two-dimensional domain with crack growth and mesh refinement in [19,35,36], as well as in
analysis with plastic behavior with mesh refinement in [19,37], where the implementation
for a three-dimensional domain was also studied. In addition, asynchronous global–local
methods have been studied, allowing an improvement in execution times for complex
structures [38,39].

In [21], Robin parameters or mixed coupling [15,35,40] was studied to improve the
execution times. In these studies, a Robin parameter optimization was performed in 2D
and 3D problems with crack growth and plastic hardening to improve the convergence of
mixed global–local non-intrusive analysis.

In order to improve the performances of the mixed strategy, industrial problems have
been analyzed by means of a two-scale approximation of Schur’s complement as a Robin
condition in the local model [41,42] being applied in models of an aircraft turbine blade, or
other applications such as mechanical and hydraulic fracture modeling [35,43].

This work focuses on implementing a global–local non-intrusive analysis methodology
using primal–dual coupling in a global model with 1D elements and a complex local model
using 3D formulation, which presents crack growth. Specifically, the XFEM method is
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used to analyze the crack propagation without remeshing the model [5,6] implemented in
different steel moment resisting frames, with a 250 Mpa yield strength.

The non-intrusive strategy is implemented in a frame structure that presents a localized
crack. First, the software Code_Aster and the Python interface were used. Then, it is solved
by linking Code_Aster and the commercial software SAP2000, obtaining a methodology
that allows us to reduce the degrees of freedom analyzed, impacting the computational
resolution time. The proposed methodology is validated by simulating a 3D monolithic
model solved with the Code_Aster software.

The work is organized as follows. The methodology section presents the study case,
software used and the formulation of the primal–dual coupling methodology for 1D and
3D models. In the results and analysis section, the validation of the methodology is
shown, together with the convergence comparison of the study cases. Subsequently, the
application of the methodology using the commercial software SAP 2000, the validation
of the method using this software and the application in a large structure are analyzed.
Finally, the discussion section summarizes the work conducted and also presents future
studies regarding this topic.

2. Methodology

2.1. Primal–Dual Global–Local Analysis

Performing a global–local analysis on a structure with non-linearities (Figure 1) con-
sists of separating the linear elastic global domain ΩR of the structure (Figure 2) into two
linear non-overlapping domains, the complementary domain ΩC and auxiliary domain
ΩA. The auxiliary domain is duplicated on a 3D non-linear (with crack propagation) local
domain ΩL (Figure 3). The interfaces between subdomains are connected with linear Γ
interfaces. The detailed formulation and mathematical background (functional spaces,
Lagrangian definition, Lagrange multipliers among others) can be found in [21].

Figure 1. Reference mechanical problem (domain of the ΩR structure).

Figure 2. Global mechanical problem (domain of the ΩG).
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Figure 3. Local mechanical problem (local model domain ΩL).

When implementing this methodology, the mechanical problem of each domain in
which it was discretized (global, auxiliary and local models) must be solved for each
iteration. Therefore, the problem to solve is the following:

• First, the global problem is solved by obtaining the displacements un+1
G :

KGun+1
G = f G

d + CT
GPn (1)

where KG is the stiffness matrix of the global model, f G
d is the external load vector

in the domain ΩG, CG is a coupling operator of the global problem that relates the
degrees of freedom of the interface with respect to the degrees of freedom of the
complete domain, and Pn is the compensation force (vector) of the previous iteration.
For the first iteration, Pn is a vector of zeros for a 3D frame global model with an
interface of two nodes.

• Second, the auxiliary problem is solved by imposing the displacements un+1
A

∣∣
Γ and

solve for the reaction forces λn+1
A in the interface zone:

KAun+1
A

∣∣
Γ − CT

Aλn+1
A = f A

d (2)

where KA is the stiffness matrix of the auxiliary model, f A
d is the external load vector,

and λn+1
A is the reaction force at the interface for the domain ΩA.

The λn+1
A can be obtained directly in some software, allowing the obtainment of the

reaction forces from embedded structures within a global problem.
The displacements un+1

A

∣∣
Γ can be extracted from the solution of the global problem

using the following relation:

un+1
A

∣∣
Γ = CAun+1

A = CGun+1
G (3)

where CA is a coupling operator that relates the degrees of freedom of the interface
with respect to the Auxiliary domain ΩA and CG was previously defined.

• Third, the local problem is solved by imposing the displacements un+1
L

∣∣
Γ on the

interface of the local model

un+1
L

∣∣
Γ = CLun+1

L = PrGL{CGun+1
G } (4)

where CL is an operator that relates the degrees of freedom of the interface with respect
to the degrees of freedom of the local domain ΩL, un+1

L

∣∣
Γ are the displacement on

the interface of the local model and PrGL is a projection operator, from the global
1D model to the local 3D domain. The formulation of this projector is presented in
Section 2.3.
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Hence, the reaction forces λn+1
L of the local model in the interface, solved by means of

a nonlinear solver such as Arc Length Method [44] or Newthon–Raphson Method, is
obtained from the following equation:

KLun+1
L

∣∣
Γ − CT

L λn+1
L = f L

d (5)

where KL is the stiffness matrix of the local model, f L
d is the external load vector in the

domain ΩL and λn+1
L is the reaction force at the interface.

• Fourth, the correction forces that will be applied to the global model Pn are calculated:

Pn+1 = λn+1
A + PrLG{λn+1

L } (6)

where the projector operator PrLG, from the local to the global domain, is also pre-
sented in Section 2.3 and is used with a Code_Aster built-in function.

• Fifth, the residual force rn+1 is calculated and the error η of the solution obtained in
the iteration is estimated:

rn+1 = Pn+1 − Pn (7)

η =‖ rn+1 ‖2 / ‖ r0 ‖2 (8)

• Finally, a relaxation scheme is considered, obtaining the following correction force:

Pn+1 = μPn+1 + (1− μ)Pn (9)

This relaxation allows for better convergence, for example, when Aitken δ2 relaxation
method is used [19].

The compensation forces Pn assigned in the interface Γ of the global model (Figure 2)
are applied to represent the local non-linear effects on the global model. These forces have
6 components for each node analyzed, as shown in Equation (10), since the force correction
is performed in the global model.

Pn = [Fx Fy Fz Mx My Mz]T (10)

It is important to mention that the coupling operators CA, CG, and CL are sparse
matrices, which relate the total degrees of freedom of each model to its interface.

2.2. Case Study

The steel frame used for the analysis is made up of a 3-meter-long beam and two
two-meter-long columns, whose joints between them are considered rigid, as is the support
of the columns. The section of the elements is a square section of two hundred millimeters
on each side. The material used is a steel with a yield limit of 250 MPa, a modulus of
elasticity equal to 200,000 MPa and a Poisson’s ratio of 0.3.

The 1D model of the frame is discretized into six nodes and five elements (elements “a”
to “e”), as can be seen in Figure 4, where the length of the element “c” is used to generate
the local model and will be centered in the position x = 750 mm (crack location). Nodes
3 and 4 are the interface between domains to perform the non-intrusive coupling and at
node 2 a horizontal force of 100 kN is applied. The global model of the considered frame
has six degrees of freedom (ux, uy, uz, θx, θy, θz), while the local model, being modeled by
3D elements, only considers three degrees of freedom (ux, uy, uz). Finally, nodes 1 and 6
correspond to fixed supports with restricted rotations.
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Figure 4. Representation and discretization of the 1D model of the analyzed frame.

The Code_Aster software was used for linear and non-linear analysis. Code_Aster has
modules implemented to study crack growth using the XFEM methodology [5,6], without
remeshing the local problem and allowing to analyze several propagation steps predefined
by the user.

The global model is defined according to the Euler-Bernoulli beam theory and with
linear behavior. The effects of the shear deformation energy are neglected in the stiffness
matrix of the 1D frame elements, as presented in Equation (11), for the corresponding
element shown in Figure 5.

K f rame1D =

[
K11 K12
K21 K22

]
(11)

where matrices K11, K12, K21 and K22 are defined in Equations (12), (13), (14) and (15),
respectively:

K11 =

⎡⎢⎢⎢⎢⎢⎢⎣

EA/L 0 0 0 0 0
0 12EIz/L3 0 0 0 6EIz/L2

0 0 12EIy/L3 0 −6EIy/L2 0
0 0 0 GJ/L 0 0
0 0 −6EIy/L2 0 4EIy/L 0
0 6EIz/L2 0 0 0 4EIz/L

⎤⎥⎥⎥⎥⎥⎥⎦ (12)

K12 =

⎡⎢⎢⎢⎢⎢⎢⎣

−EA/L 0 0 0 0 0
0 −12EIz/L3 0 0 0 6EIz/L2

0 0 −12EIy/L3 0 −6EIy/L2 0
0 0 0 −GJ/L 0 0
0 0 6EIy/L2 0 2EIy/L 0
0 −6EIz/L2 0 0 0 2EIz/L

⎤⎥⎥⎥⎥⎥⎥⎦ (13)

K21 = K12 (14)

K22 =

⎡⎢⎢⎢⎢⎢⎢⎣

EA/L 0 0 0 0 0
0 12EIz/L3 0 0 0 −6EIz/L2

0 0 12EIy/L3 0 6EIy/L2 0
0 0 0 GJ/L 0 0
0 0 6EIy/L2 0 4EIy/L 0
0 −6EIz/L2 0 0 0 4EIz/L

⎤⎥⎥⎥⎥⎥⎥⎦ (15)
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where Iy and Iz corresponds to the second moment of area in the y and z axis, respectively,
A is the section area, L is the length of the element and J is Saint Venant’s or torsional
constant of the section. The material constants are E and G corresponding to the Young
modulus and shear modulus of the material, respectively.

Figure 5. Representation of the degrees of freedom for a 1D frame element.

For the 3D tetrahedral element, the stiffness matrix is calculated using the constitutive
matrix D presented in Equation (16) and the degrees of freedom are presented in Figure 6.

Figure 6. Representation of the degrees of freedom for a 3D tetrahedral element.

D =
E(1− ν)

(1 + ν)(1− 2ν)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ν
1−ν

ν
1−ν 0 0 0

1 ν
1−ν 0 0 0
1 0 0 0

1−2ν
2(1−ν)

0 0
Symmetrical 1−2ν

2(1−ν)
0

1−2ν
2(1−ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)
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where ν and E correspond to the Poisson modulus and the Young Modulus of the material.
Therefore, the stiffness matrix of a single element Ke is presented in Equation (17).

Ke =

⎡⎢⎢⎣
Ke

11 Ke
12 Ke

13 Ke
14

Ke
22 Ke

23 Ke
24

Ke
33 Ke

34
Symmetrical Ke

44

⎤⎥⎥⎦ (17)

where each term of the stiffness matrix can be calculated using the expression presented in
Equation (18).

Ke
ij =

1
36V(e)

⎡⎣(d11bibj + d44cicj + d55didj) (d12bicj + d44bicj) (d13bidj + d55bibj)
(d21cibj + d44bicj) (d22cicj + d44bibj + d66didj) (d23cidj + d66dicj)
(d31dibj + d55bidj) (d32dicj + d66cidj) (d33didj + d55bibj + d66cicj)

⎤⎦ (18)

where di,j corresponds to the terms of the constitutive matrix D of Equation (16) and the
terms ci are the terms of the matrix Bi that presents the derivatives of the linear shape
functions Ni for each node i, as presented in Equation (19).

Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni
∂x 0 0
0 ∂Ni

∂y 0
∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

∂Ni
∂z 0 ∂Ni

∂x
0 ∂Ni

∂z
∂Ni
∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1
6V(e)

⎡⎢⎢⎢⎢⎢⎢⎣

bi 0 0
0 ci 0
0 0 di
ci bi 0
di 0 bi
0 di ci

⎤⎥⎥⎥⎥⎥⎥⎦ (19)

The shape functions Ni are linear functions that interpolates the displacement field
from the nodes into the element Ve, as presented in the classical Finite Element Meth-
ods [45].

In the case of the non-linear problem, 3D tetrahedral finite elements with linear shape
functions are considered and XFEM is used for the calculation of crack growth (with
3 propagation steps). To analyze the convergence of the problem, three crack lengths
(25 mm, 50 mm, and 75 mm) are considered, analyzing each one with three different local
mesh lengths, as presented in Figure 7. Each mesh length will be named as follows:

• Local Mesh 1 (L.M. 1): Length 500 mm
• Local Mesh 2 (L.M. 2): Length 750 mm
• Local Mesh 3 (L.M. 3): Length 1000 mm

For the crack propagation of the local model, the crack is initialized and the location is
defined (as described before in Figure 7). Code_Aster also required the following inputs
for the crack propagation procedure:

• The direction of propagation is taken into account, with a tangent vector (0,0,1) and
normal vector (1,0,0) with the function DEFI_FISS_XFEM of Code_Aster.

• The propagation is calculated internally, calculating the energy release rate using the
intensity factors with the function CALC_K_G of Code_Aster for a predefined number
of propagation steps (function PROPA_FISS).
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Figure 7. Representation of local mesh and crack length.

2.3. Projection of Displacements from the Global 1D Model to the Local 3D Model

When using 1D and 3D models for the implementation of a primal–dual analysis,
there is no coincidence in the nodes of the different meshes. Hence, the projection of the
results of one model to another must be carried out. Solving a 1D model subject to bending,
torsion, and displacement in all 3 axes results in displacements and rotations that must be
accounted for when projecting displacements.

The projection of the displacements and rotations was implemented using a Python
function that takes as input parameters the displacements obtained in the global 1D model
analysis (ux, uy, uz, θx, θy, θz) and the data of the local mesh. As output returns the displace-
ments of all nodes (ux, uy and uz) of the local model. This procedure is used to built the
operator PrGL{ }, as presented in Equation (4).

Thus, the procedure for projecting nodal displacements of the 1D global model (de-
grees of freedom ux, uy, uz and rotations θx, θy and θz) are presented below. Specifically, for
the rotation in the y direction θy the steps are:

1. To calculate the displacement generated from the rotation resulting from bending θy,
kinematic compatibility is considered, using a non-deformable finite element (solid
face with no warping) and rotating with respect to the centroid. The face of the 3D
element analyzed has a maximum distance ηz from the centroid and when rotated it
is maintained, producing a displacement Δ, as shown in Figure 8.

Figure 8. Displacements produced by the θy rotation of the bending moment in a finite element.
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2. Then, the displacement components are determined geometrically, i.e., the angles of
the figure and considering them as a function of θy, thus solving the value of Δ based
on known parameters (ηz and θy). The final expressions are shown in Equations (20)
and (21).

sin θy

Δ
=

sin(90− θy
2 )

ηz
(20)

Δ =
ηz sin θy

sin(90− θy
2 )

(21)

3. Finally, the values of Δx and Δz are found, which would be the effects that must be
considered due the bending rotations, leading to the following expressions:

Δx = Δ cos(
θy

2
) (22)

Δz = Δ sin(
θy

2
) (23)

Thus, the total displacement that is imposed on each node for the rotation θy is ux + Δx
and uz + Δz.

For the θz rotation due to bending, as shown in Figure 9, the equations are obtained
using the same methodology presented above, obtaining the Equations (24)–(27).

Figure 9. Displacements produced by the θz rotation of the bending moment in a finite element.

sin θz

Δ
=

sin(90− θz
2 )

ηy
(24)

Δ =
ηy sin θz

sin(90− θz
2 )

(25)

Δx = Δ cos(
θz

2
) (26)

Δy = Δ sin(
θz

2
) (27)

where θz is the bending rotation along the Z axis and ηy is the distance from the centroid in
the Y direction.
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In the event that the structure is subjected to torsional moment, this effect must be
considered in the local model imposed displacements.

Figure 10 will be used to determine the displacements imposed due to torsion (rotation
in the “x” axis). Lets consider that the point a’ represents a node of the element that will be
rotated to a position a given an angle θx, generating a displacement Δ whose components
will represent the mentioned effects.

Figure 10. Displacements produced by the rotation of the torsional moment in a finite element.

The procedure to analyze the effects of the torsional rotation θx is presented below:

1. The first thing will be to determine the value of the angles based on θx and β, where the
latter represents the initial angle of the node with respect to the origin. Then, the value
of η must be calculated, obtaining the expressions shown in Equations (28) and (29)
are obtained.

η =
√

y2
0 + z2

0 (28)

Δ =
(
√

y2
0 + z2

0) sin θx

sin(90− θx
2 )

(29)

2. Then, the values of Δy and Δz are found, which would be the effects on the displace-
ment due to torsional moment, leading to:

Δz =
(
√

y2
0 + z2

0) sin θx

sin(90− θx
2 )

cos(
θx

2
) (30)

Δy =
(
√

y2
0 + z2

0) sin θx

sin(90− θx
2 )

sin(
θx

2
) (31)

In addition to the displacements from 1D to 3D, the nodal forces of the local model
must be transferred to resultant forces and moments to calculate the compensation forces
that are imposed on the global 1D model. To that end, the sum of the nodal forces in each
direction is performed and the resulting moment with respect to the centroid is calculated,
through the function of Code_Aster POST_RELEVE_T, integrating the stresses and return-
ing 3 forces and 3 moments (one for each axis, respectively) and used in Equation (6) of the
iterative analysis procedure in the operator PrLG{ }.
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3. Implementation of the Methodology in Code_Aster

3.1. Validation of the Implementation in Code_Aster

In order to validate the procedure, the results of the non-intrusive global–local im-
plementation are compared to a monolithic 3D solution of the problem, which considers
the same properties of the crack location, number of propagation steps and also solved by
means of the XFEM methodology. This analysis of the monolithic XFEM model allows us
to do two things: to propagate the initialized crack in a model with a large number of de-
grees of freedom and also to compare the global–local methodology with a corresponding
control model, obtaining displacement measurements and calculating errors between the
mentioned methods. Figure 11 shows the graphical solution to the displacements obtained
by the non-intrusive using a 1000 mm width local model, while Figure 12 presents the
solution of the 3D monolithic problem, both with the same 50 mm crack.

Figure 11. Deformed shape analysis of the global–local method with local model of 1000 mm.

Figure 12. Deformed shape analysis of the 3D monolithic model.
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Figure 13 shows the displacements for the 3D monolithic model (upper figure) and for
the non-intrusive global–local methodology (lower figures) for the case of linear behavior
and in Figure 14 the results are presented for the 50 mm crack, where the differences in the
magnitude of the displacements in the 3 directions are relatively small respect to the size of
the structure (3000 mm in wide and 2000 mm in height). In Table 1, the error with respect
to the norm of the displacement of the monolithic model is presented for all models, being
less than 6.7% for all converged cases.

Figure 13. Comparison of displacement results between the linear solution of the 3D monolithic
problem and the non-intrusive global–local problem.

Figure 14. Comparison of displacement results between the cracked solution of the 3D monolithic
problem and the non-intrusive global–local problem.
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Table 1. Non-intrusive norm displacement error analysis Code_Aster for different meshes and crack
initial lengths.

Local Mesh Model
Initial Crack Length in the Local Model

Linear 25 mm 50 mm 75 mm

Local Mesh 1 % disp. error 6.35% 5.96% 5.91% non conv.
Local Mesh 2 % disp. error 6.44% 5.93% 5.91% 6.62%
Local Mesh 3 % disp. error 6.39% 5.95% 5.98% 6.44%

It can be concluded that the error is independent of the crack propagation, i.e., the
nonlinear behavior does not affect in terms of the error but is intrinsic to the global–
local methodology and the transformation of displacements and forces between 1D and
3D models.

3.2. Effect of the Local Model Size

For the first analysis, no crack was considered on the model, in order to make it linear.
Figure 15 shows the evolution of the error with respect to the number of iterations obtained
for the different local models. It can be seen that as the size of the local problem increases,
the convergence rate improves from seven iterations for the L.M.1 to five iterations for
the L.M.3. It can be said that the length of the local model affects the convergence of
the problem.

Figure 15. Comparison of the linear problem convergence with different local models.

To analyze the effect of the size of the local model for non-linear cases, 3 crack lengths
were considered: 25 mm, 50 mm and 75 mm. Figures 16–18 shows the evolution of the
error with respect to the number of iterations for the case of the crack of 25 mm, 50 mm
and 75 mm, respectively.
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Figure 16. Primal–dual convergence comparison with an initial crack length of 25 mm and different
local models.

Figure 17. Primal–dual convergence comparison with an initial crack length of 50 mm and different
local models.
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Figure 18. Primal–dual convergence comparison with an initial crack length of 75 mm and different
local models.

It can be seen that L.M.2 and L.M.3 converge in a similar number of iterations giving a
faster convergence rate than L.M.1, which required two more iterations on average or fails
to converge (Figure 17).

With respect to the non-convergence of the L.M.1 analysis with 75 mm initial crack,
there are two ways that the presented methodology considers this failed state:

• Stagnation of the solution: If the iterative analysis presents a divergent error (in-
creasing with each iteration), jumps between an error greater than the tolerance, or
does not converge within a maximum number of iterations, i.e., 50 iterations in the
present study.

• Failed crack propagation analysis (XFEM internal procedure): Crack propagation
in Code_Aster is calculated using the rate of energy release (G) method, using the
built-in function CALC_K_G. This method calculates the intensity stress factors (K)
evaluating the bilinear form of G with the asymptotic solution of Westergaard. In
addition, an error indicator is obtained by comparing the difference between G and
Irwin’s energy release rate (GIrwin), as shown in Equation (32) [46].

errorXFEM =
|G− GIrwin|

|G| (32)

If the error calculated using the Equation (32) is greater than 50%, the analysis stops
and displays an alert message as presented in [46]. This is the case for the L.M.1 local
mesh with the 75 mm initial crack length, affecting the convergence of XFEM method
and, therefore, the overall convergence of the global–local analysis. More information
with respect to the convergence of the XFEM crack propagation method can be found
in [47,48].

Therefore, it is possible to conclude that for small local domains, the non-linearity
effect does not fully develop before the interface, as postulated in St. Venant’s principle,
generating problems in the coupling between the models.
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4. Implementation with a Commercial Software

The selected software to test the non-intrusive strategy is SAP2000 [49], which is
widely used for the analysis of reinforced concrete and steel structures. However, SAP 2000
does not have the capabilities to perform crack propagation, so it is proposed to couple the
software with Code_Aster, using Python as an interface.

SAP2000 is a finite element program with an object-oriented 3D graphical interface,
allowing to perform the modeling, analysis, and sizing of structural engineering problems.
This software is used by engineers due to its versatility to model structures allowing to
design of bridges, buildings, stadiums, dams, industrial structures, maritime structures, and
generally all types of infrastructure that need to be analyzed and sized [49]. An important
feature is that it solves simple static models that can be enriched with the non-intrusive
methodology.

4.1. Validation of the Implementation in SAP 2000

The same structure analyzed in Section 3.1 is reviewed, with the same applied loads,
sections and profiles to be analyzed. The SAP2000 model is shown in Figure 19.

Figure 19. Frame model analyzed in SAP2000.

To communicate SAP2000 with Code_Aster, the library comtypes is used, which allows
information such as displacements and forces to be sent between different software using
Python as an interpreter. The same cases and crack positions as the model analyzed in
Code_Aster are analyzed to validate the methodology but using the commercial software
for 1D linear calculation.
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The results for the crack length of 25 mm, 50 mm and 75 mm are shown in Figures 20–22,
respectively. Solid lines correspond to the results of Section 3.1, while the dashed lines
correspond to the implementation with SAP2000.

Figure 20. Comparison of SAP2000 and Code_Aster results and an initial crack length of 25 mm.

Figure 21. Comparison of SAP2000 and Code_Aster results and an initial crack length of 50 mm.
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Figure 22. Comparison of SAP2000 and Code_Aster results and an initial crack length of 75 mm.

The error with respect to the norm of the displacement of the monolithic model is
presented in Table 2, presenting an error lower than 9.2% for all converged cases. The
magnitude of the displacements in the X and Z direction for both models are considered
similar and the displacements in the Y direction are lower than 0.003 mm, and therefore are
considered negligible.

Table 2. Non-intrusive norm displacement error analysis coupling with SAP 2000, different meshes
and crack initial lengths.

Local Mesh Model
Initial Crack Length in the Local Model

Linear 25 mm 50 mm 75 mm

Local Mesh 1 % error disp. 8.94% 8.41% 8.32% non conv.
Local Mesh 2 % error disp. 8.87% 8.33% 8.32% 9.11%
Local Mesh 3 % error disp. 8.79% 8.32% 8.37% non conv.

As shown, the analysis with SAP 2000 for the case with L.M.1 and L.M.3 (for the initial
crack of 75 mm) does not converge. As was presented in the previous section, these models
failed to achieve a correct crack propagation analysis, and therefore, the XFEM stopped
the global–local iterative procedure. Finally, the error is also independent of the nonlinear
behavior analyzed and can be considered inherent to the global–local methodology.

4.2. Methodology Extension to 3-Story Building

The building corresponds to a three-story steel structure with a height between floors
of 3 m. The length of the span is 10 m in the X and Y directions. Forces of 10,000 N are
applied to each corner of the building in the X direction considering rigid supports, where
the local model is shown in red in Figure 23. The global 1D model consists of 18 nodes and
108 degrees of freedom.
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Figure 23. 3-story steel frame building model with SAP 2000.

The beams and columns correspond to Wide Flange profiles. The dimensions of the
section are as follows:

• Total height: H = 300 mm.
• Flange width: B = 200 mm.
• Flange thickness: tf = 10 mm.
• Web thickness: tw = 6 mm.
• Material: Grade 50 quality steel.

The local problem, shown in Figure 24, is 1500 mm long, an initial crack length of 50
mm (centered on the local model), and three propagation steps.

Figure 24. Local model in Code_Aster, length 1500 mm.
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The local model consists of 15,900 nodes and 47,703 degrees of freedom, modeled
using tetrahedral elements. As a reference, a complete 3D modeling of the building in
Salome Meca (Code_Aster Visual Interface) is considered, shown in Figure 25. This model
has approximately 1,459,000 nodes, which implies 4,377,000 degrees of freedom.

Figure 25. 3-story building modeled with Salome-Meca.

Figure 26 shows in overlapping the displacements of the monolithic model (Code_Aster)
and the local model (SAP2000).

Figure 26. Comparison of the deformed shapes of the monolithic and local model amplified by a
factor of 100.
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The evolution of the error is presented in Figure 27.

Figure 27. Global–local method convergence for the 3-story building and SAP2000.

Table 3 shows the magnitude in which the crack grows and the calculation time for
each implementation. In addition, it indicates the percentage difference between the model
in SAP2000 and Code_Aster. The results show that the growth of the crack, for both cases,
is similar (difference of 1.6%). On the contrary, the calculation time is reduced by 82% for
the non-intrusive case with SAP2000.

Table 3. Results for 3D monolithic model and SAP 2000 global–local model.

Model Crack Tip Displ. (mm) Execution Time (s)

3D Monolithic 6.01 2231
GL w/SAP 2000 5.89 391

Diff. r/Monolithic 1.6% 82%

It is expected that for the analysis of much larger structures (multiple-story buildings)
the size of the local problem does not vary, but the global problem does. Being the global
problem the one with the least number of nodes and d.o.f., this should not have a significant
influence on the computation times for the non-intrusive problem, but it would mean a
significant increase for the monolithic case.

5. Discussion

Non-intrusive global–local analysis with 1D to 3D coupling is a technique that allows
a localized analysis of a problem which, in the framework of this work, was crack propaga-
tion, but can also be used regarding plasticity, crystalline plasticity, stress concentrations, etc.

The implementation that was developed allows us to consider the displacements in
the six degrees of freedom of the global model and the three degrees of freedom of the
local model, having a kinematic compatibility in the transfer of the displacements and
subsequent compensation of forces.

The dimensions of the local model and the crack location affect the number of iterations
required to obtain convergence. Despite this, it was possible to verify displacements
obtained using the methodology through the displacements, resulting in low errors relative
to the monolithic model.

This methodology was implemented in a test model and was the first step in the
analysis of large civil structures (buildings, bridges, etc.) that present non-linearities. The
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correct implementation in larger cases would save costs without losing accuracy in the
computational solution, since the degrees of freedom to be studied are significantly reduced
considering that in the case study, the discretization of the structure was reduced from
3500 elements to about 250.

The non-intrusive global–local analysis with 1D to 3D coupling presented a displace-
ment error of 10% according to the tolerance used, showing good primal–dual compatibility.
However, there may also be cases of higher stiffness structures, so mixed coupling can be
used to improve compatibility. In addition, the ideal dimensions of the local model can be
determined according to the crack location and thus verify the methodology obtaining the
energy release rate.

The methodology used was verified through the commercial software SAP 2000,
obtaining a similar number of iterations to convergence with respect to those obtained
using Code_Aster applying it to a 3-story building, significantly reducing the execution time
with an acceptable error. This result opens up the possibility to extend this methodology to
the industry and use it in practical applications.

This work is limited to monotonic loads in order to study the effect of the non-intrusive
methodology for crack propagation in 1D global models to 3D local models. As shown in
the results presented of the different problems analyzed, the error is low and maintained
for the different cases investigated. Therefore, for future research, the study of sequential
loading for crack propagation could be studied in order to verify the effect of nonlinear 1D
structures with localized cracks and also to study the effect on the development of the crack
for this type of loads. Another topic to consider is to analyze more section types, lengths
of the local model, and crack location, in order to present in future studies a criterion to
decide the length of the local model that optimizes the global–local non-intrusive analysis,
given the properties of the problem. Finally, as was presented in this study, the crack
propagation was analyzed considering only steel frame elements. Nevertheless, other
materials and specific nonlinear behavior could be studied, such as the total crack strain
model for reinforced concrete local models.
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