
www.mdpi.com/journal/mathematics

Special Issue Reprint

Recent Advances in Swarm
Intelligence Algorithms
and Their Applications

Edited by

Jian Dong

Recent Advances in Swarm
Intelligence Algorithms and
Their Applications

Recent Advances in Swarm
Intelligence Algorithms and
Their Applications

Editor

Jian Dong

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade •Manchester • Tokyo • Cluj • Tianjin

Editor

Jian Dong

Central South University

Changsha

China

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/si/mathematics/Recent

Advances Swarm Intelligence Algorithms Their Applications).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-8254-2 (Hbk)

ISBN 978-3-0365-8255-9 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Jian Dong

Preface to the Special Issue on “Recent Advances in Swarm Intelligence Algorithms and Their
Applications”—Special Issue Book
Reprinted from: Mathematics 2023, 11, 2624, doi:10.3390/math11122624 1

Alejandro Castellanos, Laura Cruz-Reyes, Eduardo Fernández, Gilberto Rivera,

Claudia Gomez-Santillan and Nelson Rangel-Valdez

Hybridisation of Swarm Intelligence Algorithms with Multi-Criteria Ordinal Classification:
A Strategy to Address Many-Objective Optimisation
Reprinted from: Mathematics 2022, 10, 322, doi:10.3390/math10030322 5

Nicole Škorupová, Petr Raunigr and Petr Bujok

Usage of Selected Swarm Intelligence Algorithms for Piecewise Linearization
Reprinted from: Mathematics 2022, 10, 808, doi:10.3390/math10050808 27

Jun Long, Lei Liu, Hongxiao Fei, Yiping Xiang, Haoran Li, Wenti Huang and Liu Yang

Contextual Semantic-Guided Entity-Centric GCN for Relation Extraction
Reprinted from: Mathematics 2022, 10, 1344, doi:10.3390/math10081344 51

Khalid Abdulaziz Alnowibet, Shalini Shekhawat,Akash Saxena, Karam M. Sallam

and Ali Wagdy Mohamed

Development and Applications of Augmented Whale Optimization Algorithm
Reprinted from: Mathematics 2022, 10, 2076, doi:10.3390/math10122076 67

Mohamed A. Elseify, Salah Kamel, Hussein Abdel-Mawgoud and Ehab E. Elattar

A Novel Approach Based on Honey Badger Algorithm for Optimal Allocation of Multiple DG
and Capacitor in Radial Distribution Networks Considering Power Loss Sensitivity
Reprinted from: Mathematics 2022, 10, 2081, doi:10.3390/math10122081 101

Kavita Jain, Muhammed Basheer Jasser, Muzaffar Hamzah, Akash Saxena

and Ali Wagdy Mohamed

Harris Hawk Optimization-Based Deep Neural Networks Architecture for Optimal Bidding in
the Electricity Market
Reprinted from: Mathematics 2022, 10, 2094, doi:10.3390/math10122094 127

Feifei Hou, Xu Liu, Xinyu Fan and Ying Guo

DL-Aided Underground Cavity Morphology Recognition Based on 3D GPR Data
Reprinted from: Mathematics 2022, 10, 2806, doi:10.3390/math10152806 147

Yinan Zhang, Guangxue Wang, Yi Leng, Guowen Yu and Shirui Peng

IN-ME Position Error Compensation Algorithm for the Near-Field Beamforming of UAVs
Reprinted from: Mathematics 2022, 10, 3256, doi:10.3390/math10183256 165

Rajakumar Ramalingam, Dinesh Karunanidy, Sultan S. Alshamrani, Mamoon Rashid,

Swamidoss Mathumohan and Ankur Dumka

Oppositional Pigeon-Inspired Optimizer for Solving the Non-Convex Economic Load Dispatch
Problem in Power Systems
Reprinted from: Mathematics 2022, 10, 3315, doi:10.3390/math10183315 183

v

Yi Cui, Ronghua Shi and Jian Dong

CLTSA: A Novel Tunicate Swarm Algorithm Based on Chaotic-Lévy Flight Strategy for Solving
Optimization Problems
Reprinted from: Mathematics 2022, 10, 3405, doi:10.3390/math10183405 207

Guofang Wang, Ziming Li, Wang Yao and Sikai Xia

A Multi-Population Mean-Field Game Approach for Large-Scale Agents Cooperative
Attack-Defense Evolution in High-Dimensional Environments
Reprinted from: Mathematics 2022, 10, 4075, doi:10.3390/math10214075 247

Yi Luo, Chenyang Wu, Yi Leng, Nüshan Huang, Lingxi Mao and Junhao Tang

Throughput Optimization for NOMA Cognitive Relay Network with RF Energy Harvesting
Based on Improved Bat Algorithm
Reprinted from: Mathematics 2022, 10, 4357, doi:10.3390/math10224357 265

Ziwei Lin, Andrea Matta, Sichang Du and Evren Sahin

A Partition-Based Random Search Method for Multimodal Optimization
Reprinted from: Mathematics 2023, 11, 17, doi:10.3390/math11010017 287

Mohammad H. Nadimi-Shahraki, Hoda Zamani, Ali Fatahi and Seyedali Mirjalili

MFO-SFR: An Enhanced Moth-Flame Optimization Algorithm Using an Effective Stagnation
Finding and Replacing Strategy
Reprinted from: Mathematics 2023, 11, 862, doi:10.3390/ math11040862 317

Eduardo Pichardo, Esteban Anides, Angel Vazquez, Luis Garcia, Juan G. Avalos,

Giovanny Sánchez, et al.

A Compact and High-Performance Acoustic Echo Canceller Neural Processor Using Grey Wolf
Optimizer along with Least Mean Square Algorithms
Reprinted from: Mathematics 2023, 11, 1421, doi:10.3390/math11061421 345

Fulin Tian, Jiayang Wang and Fei Chu

Improved Multi-Strategy Harris Hawks Optimization and Its Application in
Engineering Problems
Reprinted from: Mathematics 2023, 11, 1525, doi:10.3390/math11061525 369

Yuying Chen, Jing Li, Shaotao Zhu, Hongzhen Zhao

Further Optimization of Maxwell-Type Dynamic Vibration Absorber with Inerter and Negative
Stiffness Spring Using Particle Swarm Algorithm
Reprinted from: Mathematics 2023, 11, 1904, doi:10.3390/math11081904 395

Tsu-Yang Wu, Haonan Li and Shu-Chuan Chu

CPPE: An Improved Phasmatodea Population Evolution Algorithm with Chaotic Maps
Reprinted from: Mathematics 2023, 11, 1977, doi:10.3390/math11091977 423

Xueqing Yan and Yongming Li

A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of
Mahjong Hand
Reprinted from: Mathematics 2023, 11, 2135, doi:10.3390/math11092135 445

Weifan Long, Taixian Hou, Xiaoyi Wei, Shichao Yan, Peng Zhai and Lihua Zhang

A Survey on Population-Based Deep Reinforcement Learning
Reprinted from: Mathematics 2023, 11, 2234, doi:10.3390/math11102234 467

vi

About the Editor

Jian Dong

Jian Dong received a B.S. degree in communication engineering at Hunan University in 2004,

and a Ph.D. degree in information and communication engineering at the Huazhong University of

Science and Technology (HUST) in 2010. He was a Research Assistant at the National Key Laboratory

of Science and Technology on Multispectral Information Processing of HUST from 2006 to 2010. He

was a Visiting Scholar at the Eledia Research Center of University of Trento in Italy from 2016 to 2017.

He works as a Full Professor at the School of Computer Science and Engineering of Central South

University. He has published 7 books and over 150 peer-reviewed academic papers in international

journals and conferences. He owns 24 innovation patents. His research interests include antennas,

metamaterials, radars, machine learning and its applications to electromagnetics. He is the director

of Hunan Engineering Research Center for new-generation mobile communication RF inductive

components. He is a member of the Young Talents Board of Zhejiang Lab, a member of the expert

database of the Ministry of Science and Technology, the National Natural Science Foundation, and

the Ministry of Education. He has served as a Guest Editor and Editorial Board member of some

international journals, including Frontiers in Physics and Mathematics. He has served as a general

co-chair of IoTCIT and 6GIoTT, as a technical program chair of CCPQT and EITCE, and as a Session

chair for IEEE ICMMT/IWS/NEMO/ISAPE/ISAP/IWAT, ACES, and PIERS.

vii

Citation: Dong, J. Preface to the

Special Issue on “Recent Advances in

Swarm Intelligence Algorithms and

Their Applications”—Special

Issue Book. Mathematics 2023, 11,

2624. https://doi.org/10.3390/

math11122624

Received: 5 June 2023

Revised: 7 June 2023

Accepted: 7 June 2023

Published: 8 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Preface to the Special Issue on “Recent Advances in Swarm
Intelligence Algorithms and Their Applications”—Special
Issue Book

Jian Dong

School of Computer Science and Engineering, Central South University, Changsha 410075, China;
dongjian@csu.edu.cn

Swarm intelligence algorithms represent a rapidly growing research domain and
have recently attracted a great deal of attention. They have been successfully applied
in engineering, transportation, planning and scheduling, logistics and supply chains,
and a broad range of other domains. They often find high-quality solutions with less
computational effort than other optimization methods.

With the advancement of swarm intelligence algorithms, new variants and improve-
ments are continuously proposed to accommodate different types of problems and applica-
tion domains. The research and application of these algorithms provide an efficient and
flexible approach to tackling real-world problems, while also driving the development of
optimization algorithms and advancing theoretical investigations.

This Special Issue aims to highlight the latest results on swarm intelligence and its
combination with real-world problems and other fields, such as engineering problems,
vehicle swarm motion, viscoelastic Maxwell-type DVA, deep learning, loss of the network,
echo cancellation scenarios, etc.

Contribution [1] proposes a novel discrete differential evolution (DE) algorithm to
calculate the deficiency number of the tiles. In detail, to decrease the difficulty of com-
puting the deficiency number, some pretreatment mechanisms are first put forward to
convert it into a simple combinatorial optimization problem with varying variables by
changing its search space. Subsequently, employing the superior framework of DE, a novel
discrete DE algorithm is specially developed for the simplified problem through devising
proper initialization, a mapping solution method, a repairing solution technique, a fitness
evaluation approach, and mutation and crossover operations. Contribution [2] introduces
chaotic mapping into the PPE algorithm to propose a new algorithm, the Chaotic-based
Phasmatodea Population Evolution (CPPE) algorithm, and apply CPPE to stock predic-
tion. The results show that the predicted curve is relatively consistent with the real curve.
In [3], the viscoelastic Maxwell-type DVA model with an inverter and multiple stiffness
springs is investigated with the combination of the traditional theory and an intelligent
algorithm, providing a theoretical and computational basis for the optimization design
of DVA. An improved multi-strategy Harris Hawks optimization (MSHHO) algorithm is
proposed in paper [4]. Through experiments on 33 benchmark functions and 2 engineering
application problems, it has been shown that the improved algorithm performs well in
terms of optimization accuracy, convergence speed, and stability. Contribution [5] proposes
a new convex combination based on grey wolf optimization and LMS algorithms, to save
area and achieve high convergence speed by maximally exploiting the best features of each
algorithm, presenting a customized time-multiplexing control scheme to dynamically vary
the number of search agents.

An enhanced moth-flame optimization algorithm named MFO-SFR is developed to
solve global optimization problems in paper [6]. The MFO-SFR algorithm introduces an
effective stagnation finding and replacing (SFR) strategy to effectively maintain population
diversity throughout the optimization process. The high performance of the algorithm

Mathematics 2023, 11, 2624. https://doi.org/10.3390/math11122624 https://www.mdpi.com/journal/mathematics
1

Mathematics 2023, 11, 2624

is verified through experiments on the CEC2018 benchmark and mechanical engineering
problems in the CEC2020 test-suite. In paper [7], a partition-based random search method
is proposed, in which the entire feasible domain is partitioned into smaller and smaller
subregions iteratively. Promising regions are partitioned faster than unpromising regions,
thus exploiting promising areas earlier than unpromising areas. By cooperating with
local search to refine the obtained solutions, the proposed method demonstrates good
performance in many benchmark functions with multiple global optima. Aiming at the
characteristics of complex networks structure and multiple design variables of energy-
harvesting non-orthogonal multiple-access cognitive relay networks (EH-NOMA-CRNs),
the authors of [8] utilized the proposed hybrid strategy to improve the Bat algorithm
(HSIBA) to optimize the performance of EH-NOMA-CRNs. Contribution [9] formulates
the cooperative attack defence evolution of large-scale agents in high-dimensional environ-
ments as a multi-population high-dimensional stochastic mean-field game (MPHD-MFG),
significantly reducing the communication frequency and computational complexity, and
tractably solving the MPHD-MFG with a generative-adversarial-network (GAN)-based
method using the MFGs underlying variational primal-dual structure. Contribution [10]
proposes a tunicate swarm algorithm based on Tent–Lévy flight (TLTSA) to avoid con-
verging prematurely or failing to escape from a locally optimal solution. The 16 unimodal
benchmark functions, 14 multimodal benchmark functions, 6 fixed-dimension functions,
and 3 constrained practical problems in engineering are selected to verify the performance
of the TLTSA.

The authors in [11] propose an Oppositional Pigeon-Inspired Optimizer (OPIO) al-
gorithm to overcome the drawback of premature convergence and local stagnation. The
proposed algorithm would be used to determine the load demand of a power system, by
sustaining the various equality and inequality constraints, to diminish the overall gener-
ation cost. To overcome unmanned aerial vehicle swarm motion error, a near-field array
beam-forming model with array element position error is constructed in [12], and the Taylor
expansion of the phase difference function is used to approximately simplify the model.
The improved Newton maximum entropy algorithm is proposed to estimate and compen-
sate for the phase errors. The maximum entropy objective function is established, and the
Newton iterative algorithm is used to estimate the phase error iteratively. Contribution [13]
studies the cavity morphology characteristics and proposes a deep learning (DL)-based
morphology classification method using 3D ground-penetrating radar (GPR) data, and
experimental results are validated using the 3D GPR road modelling data obtained from
the gprMax3D system. Contribution [14] provides HHO-NN (Harris Hawk Optimization-
Neural network), a novel algorithm based on Harris Hawk optimization (HHO) that is
capable of fast convergence when compared to previous evolutionary algorithms that
automatically search for meaningful multilayered perceptron neural network (MPNN)
topologies for optimal bidding. Contribution [15] presents an efficient optimization tech-
nique named the honey badger algorithm (HBA) for specifying the optimum size and
location of capacitors and different types of DGs to minimize the total active power loss
of the network. The combined power loss sensitivity (CPLS) factor is deployed with the
HBA to accelerate the estimation process by specifying the candidate buses for optimal
placement of DGs and capacitors in an RDS.

To make the Whale Optimization algorithm compatible with several challenging
problems, two major modifications are proposed in [16]: the first one is opposition-based
learning in the initialization phase, while the second is the inculcation of the Cauchy
mutation operator in the position-updating phase. The proposed variant is named the
Augmented Whale Optimization Algorithm (AWOA) and tests over two benchmark suits.
Contribution [17] proposes a contextual semantic-guided entity-centric graph convolu-
tional network (CEGCN) model that enables entity mentions to obtain semantic-guided
contextual information for more accurate relational representations. This model develops a
self-attention-enhanced neural network to concentrate on the importance and relevance of
different words to obtain semantic-guided contextual information, employs a dependency

2

Mathematics 2023, 11, 2624

tree with entities as global nodes, and adds virtual edges to construct an entity-centric
logical adjacency matrix (ELAM). The authors in [18] introduce a new approach to en-
hance optimization algorithms when solving the piecewise linearization problem of a
given function. Eight swarm intelligence algorithms are selected to be experimentally
compared. Contribution [19] introduces a strategy to enrich swarm intelligence algorithms
with the preferences of the Decision Maker (DM) represented in an ordinal classifier based
on interval outranking. The hybridizing strategy is applied to two swarm intelligence algo-
rithms, i.e., Multi-objective Grey Wolf Optimization and Indicator-based Multi-objective
Ant Colony Optimization for continuous domains. The resulting hybrid algorithms are
called GWO-InClass and ACO-InClass. In the survey, Contribution [20] sheds light on
population-based deep reinforcement learning (PB-DRL) algorithms, their applications,
and general frameworks. They introduce several independent subject areas, including
naive self-play, fictitious self-play, population-play, evolution-based training methods, and
the policy-space response oracle family. These methods provide a variety of approaches to
solving multi-agent problems and are useful in designing robust multi-agent reinforcement
learning algorithms that can handle complex real-life situations.

This Special Issue has published a total of 20 articles, comprising 19 research articles
and 1 review article. The collective body of work presented herein expands the application
boundaries of swarm intelligence algorithms and fosters future research in swarm intel-
ligence and its integration with real-world problems. We find the selection of papers in
this Special Issue to be highly inspiring, and we extend our gratitude to the editors and
reviewers for their dedicated efforts and valuable assistance throughout this process.

Funding: This research was funded in part by the National Natural Science Foundation of China
under grant number 61801521 and 61971450, in part by the Natural Science Foundation of Hunan
Province under grant number 2018JJ2533, 2022JJ30052 and 2023JJ40775, and in part by the Fundamen-
tal Research Funds for the Central Universities under grant number 2018gczd014 and 20190038020050.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Yan, X.; Li, Y. A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand.
Mathematics 2023, 11, 2135. [CrossRef]

2. Wu, T.-Y.; Li, H.; Chu, S.-C. CPPE: An Improved Phasmatodea Population Evolution Algorithm with Chaotic Maps. Mathematics
2023, 11, 1997. [CrossRef]

3. Chen, Y.; Li, J.; Zhu, S.; Zhao, H. Further Optimization of Maxwell-Type Dynamic Vibration Absorber with Inerter and Negative
Stiffness Spring Using Particle Swarm Algorithm. Mathematics 2023, 11, 1904. [CrossRef]

4. Tian, F.; Wang, J.; Chu, F. Improved Multi-Strategy Harris Hawks Optimization and Its Application in Engineering Problems.
Mathematics 2023, 11, 1525. [CrossRef]

5. Pichardo, E.; Anides, E.; Vazquez, A.; Garcia, L.; Avalos, J.G.; Sánchez, G.; Pérez, H.M.; Sánchez, J.C. A Compact and High-
Performance Acoustic Echo Canceller Neural Processor Using Grey Wolf Optimizer along with Least Mean Square Algorithms.
Mathematics 2023, 11, 1421. [CrossRef]

6. Nadimi-Shahraki, M.H.; Zamani, H.; Fatahi, A.; Mirjalili, S. Nadimi-Shahraki, M.H.; Zamani, H.; Fatahi, A.; Mirjalili, S. MFO-SFR:
An Enhanced Moth-Flame Optimization Algorithm Using an Effective Stagnation Finding and Replacing Strategy. Mathematics
2023, 11, 862. [CrossRef]

7. Lin, Z.; Matta, A.; Du, S.; Sahin, E. A Partition-Based Random Search Method for Multimodal Optimization. Mathematics 2023, 11, 17.
[CrossRef]

8. Luo, Y.; Wu, C.; Leng, Y.; Huang, N.; Mao, L.; Tang, J. Throughput Optimization for NOMA Cognitive Relay Network with RF
Energy Harvesting Based on Improved Bat Algorithm. Mathematics 2022, 10, 4357. [CrossRef]

9. Wang, G.; Li, Z.; Yao, W.; Xia, S. A Multi-Population Mean-Field Game Approach for Large-Scale Agents Cooperative Attack-
Defense Evolution in High-Dimensional Environments. Mathematics 2022, 10, 4075. [CrossRef]

10. Cui, Y.; Shi, R.; Dong, J. CLTSA: A Novel Tunicate Swarm Algorithm Based on Chaotic-Lévy Flight Strategy for Solving
Optimization Problems. Mathematics 2022, 10, 3045. [CrossRef]

11. Ramalingam, R.; Karunanidy, D.; Alshamrani, S.S.; Rashid, M.; Mathumohan, S.; Dumka, A. CLTSA: Oppositional Pigeon-
Inspired Optimizer for Solving the Non-Convex Economic Load Dispatch Problem in Power Systems. Mathematics 2022, 10, 3315.
[CrossRef]

3

Mathematics 2023, 11, 2624

12. Zhang, Y.; Wang, G.; Leng, Y.; Yu, G.; Peng, S. IN-ME Position Error Compensation Algorithm for the Near-Field Beamforming of
UAVs. Mathematics 2022, 10, 3256. [CrossRef]

13. Hou, F.; Liu, X.; Fan, X.; Guo, Y. DL-Aided Underground Cavity Morphology Recognition Based on 3D GPR Data. Mathematics
2022, 10, 2806. [CrossRef]

14. Jain, K.; Jasser, M.B.; Hamzah, M.; Saxena, A.; Mohamed, A.W. Harris Hawk Optimization-Based Deep Neural Networks
Architecture for Optimal Bidding in the Electricity Market. Mathematics 2022, 10, 2094. [CrossRef]

15. Elseify, M.A.; Kamel, S.; Abdel-Mawgoud, H.; Elattar, E.E. A Novel Approach Based on Honey Badger Algorithm for Optimal
Allocation of Multiple DG and Capacitor in Radial Distribution Networks Considering Power Loss Sensitivity. Mathematics 2022,
10, 2081. [CrossRef]

16. Alnowibet, K.A.; Shekhawat, S.; Saxena, A.; Sallam, K.M.; Mohamed, A.W. Development and Applications of Augmented Whale
Optimization Algorithm. Mathematics 2022, 10, 2076. [CrossRef]

17. Long, J.; Liu, L.; Fei, H.; Xiang, Y.; Li, H.; Huang, W.; Yang, L. Contextual Semantic-Guided Entity-Centric GCN for Relation
Extraction. Mathematics 2022, 10, 1344. [CrossRef]

18. Škorupová, N.; Raunigr, P.; Bujok, P. Usage of Selected Swarm Intelligence Algorithms for Piecewise Linearization. Mathematics
2022, 10, 808. [CrossRef]

19. Castellanos, A.; Cruz-Reyes, L.; Fernández, E.; Rivera, G.; Gomez-Santillan, C.; Rangel-Valdez, N. Hybridisation of Swarm Intelli-
gence Algorithms with Multi-Criteria Ordinal Classification: A Strategy to Address Many-Objective Optimisation. Mathematics
2022, 10, 322. [CrossRef]

20. Long, W.; Hou, T.; Wei, X.; Yan, S.; Zhai, P.; Zhang, L. A Survey on Population-Based Deep Reinforcement Learning. Mathematics
2022, 10, 2234. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

4

Citation: Castellanos, A.; Cruz-Reyes,

L.; Fernández, E.; Rivera, G.;

Gomez-Santillan, C.; Rangel-Valdez,

N. Hybridisation of Swarm

Intelligence Algorithms with

Multi-Criteria Ordinal Classification:

A Strategy to Address Many-

Objective Optimisation. Mathematics

2022, 10, 322. https://doi.org/

10.3390/math10030322

Academic Editor: Jian Dong

Received: 13 December 2021

Accepted: 18 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Hybridisation of Swarm Intelligence Algorithms with
Multi-Criteria Ordinal Classification: A Strategy to Address
Many-Objective Optimisation

Alejandro Castellanos 1, Laura Cruz-Reyes 1, Eduardo Fernández 2, Gilberto Rivera 3,*, Claudia Gomez-Santillan 1

and Nelson Rangel-Valdez 1

1 Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero, División de Estudios de Posgrado
e Investigación, Madero 89440, Tamaulipas, Mexico; g14070628@itcm.tecnm.mx (A.C.);
lauracruzreyes@itcm.edu.mx (L.C.-R.); claudia.gomez@itcm.edu.mx (C.G.-S.);
nelson.rangel@itcm.edu.mx (N.R.-V.)

2 Facultad de Contaduría y Administración, Universidad Autónoma de Coahuila,
Torreón 27000, Coahuila, Mexico; eduardo.fernandez@uadec.edu.mx

3 División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez,
Ciudad Juárez 32579, Chihuahua, Mexico

* Correspondence: gilberto.rivera@uacj.mx

Abstract: This paper introduces a strategy to enrich swarm intelligence algorithms with the prefer-
ences of the Decision Maker (DM) represented in an ordinal classifier based on interval outranking.
Ordinal classification is used to bias the search toward the Region of Interest (RoI), the privileged zone
of the Pareto frontier containing the most satisfactory solutions according to the DM’s preferences.
We applied this hybridising strategy to two swarm intelligence algorithms, i.e., Multi-objective Grey
Wolf Optimisation and Indicator-based Multi-objective Ant Colony Optimisation for continuous do-
mains. The resulting hybrid algorithms were called GWO-InClass and ACO-InClass. To validate our
strategy, we conducted experiments on the DTLZ problems, the most widely studied test suit in the
framework of multi-objective optimisation. According to the results, our approach is suitable when
many objective functions are treated. GWO-InClass and ACO-InClass demonstrated the capacity of
reaching the RoI better than the original metaheuristics that approximate the complete Pareto frontier.

Keywords: preference incorporation; ant colony optimisation; grey wolf optimisation; interval
outranking; multi-criteria decision analysis

1. Introduction

Organisations from different sectors and domains often face problems with multi-
ple conflicting objectives to optimise. The scientific literature classifies these problems
according to the number of objectives as Multi-objective Optimisation Problems (MOPs)
for problems with 2–4 objectives and Many-objective Optimisation Problems (MaOPs)
for problems with more than four objectives. Typically, MOPs and MaOPs are addressed
through the so-called a posteriori approach, which consists of the following two phases:

1. A set of efficient solutions is approximated (the Pareto optimal set).
2. The Decision Maker (DM) has to choose the best compromise: the solution that best

matches their preferences.

Metaheuristic algorithms are promising alternatives to address Phase 1. Multi-objective
Evolutionary Algorithms (MOEAs) and Multi-objective Swarm Intelligence Algorithms
(MOSIAs) are quite popular because their application does not demand particular math-
ematical properties on the objective functions, the geometry of the Pareto frontier or the
constraints of the problem [1–3].

Even though MOEAs and MOSIAs have been widely used in addressing MOPs, most
of them cannot adequately approximate the Pareto frontier for MaOPS. They have to cope

Mathematics 2022, 10, 322. https://doi.org/10.3390/math10030322 https://www.mdpi.com/journal/mathematics
5

Mathematics 2022, 10, 322

with severe difficulties as the number of objectives increases; remarkably, the number of
dominance resistant solutions, the high cost to ensure diversity, and the low effectiveness
of the genetic operators. Studies on the difficulties and challenges found by MOEAs in
addressing MaOPs are discussed by Bechikh et al. [4], López Jaimes and Coello Coello [5],
Sudeng and Wattanapongsakorn [6], and Ikeda et al. [7]. One of the main criticisms
of the a posteriori approaches is that they require reaching a sufficiently representative
approximation of the complete Pareto front before the multi-criteria decision making.

Even supposing a good approximation of the Pareto frontier, the DM has to solve
a multi-criteria selection problem in this set to address Phase 2. An alternative is to
make a heuristic selection; the DM is supposed to consistently compare solutions on the
approximated Pareto frontier until the best compromise is identified. This task is likely to
become pretty hard and impractical in problems with many objective functions because of
the human mind cognitive limitations (as stated by Miller [8]). Another alternative is to
apply a Multi-Criteria Decision Analysis (MCDA) method that articulates the preferences
of the DM. Again, this approach assumes that the solution set effectively contains the most
preferred solutions, which is questionable under the presence of many objective functions.

As a consequence of the above discussion, there has been an increasing interest in
combining MOEAs and MCDA methods in recent years. One way is to consider the
preferences to bias the search toward the Region of Interest (RoI). The RoI is the region of
the Pareto frontier with the solutions that best match the DM’s preferences; accordingly,
the best compromise is a solution belonging to the RoI.

The preference incorporation requires considering non-trivial aspects such as defining
the model of the DM’s preferences, characterising the RoI, and determining the relevance of
the solutions [9]. Most methods for preference incorporation admit at least one of the follow-
ing kinds of information on the preferences [10,11]: weights, e.g., [12]; ranking of solutions,
e.g., [13]; ranking of objective functions, e.g., [14]; reference points, e.g., [15]; trade-offs be-
tween objective functions, e.g., [16]; desirability thresholds, e.g., [17]; solution classification,
e.g., [18]; and pairwise comparisons based on preference relations, e.g., [19,20].

The two alternatives to incorporate the above strategies are the interactive approach
and the a priori approach, and both have advantages over the a posteriori one. On the one
hand, better solutions are found because there is an increment in the selective pressure
toward the RoI [21]. On the other hand, preference incorporation can alleviate the DM’s
cognitive effort to select the best compromise because the number of candidate solutions
is relatively short. Still, the interactive approaches are strongly criticised because they
require preference relations with full comparability and transitivity (as the dimensionality
increases, these properties become unlikely) [22]. Contrastingly, the a priori preference
incorporation does not mandatorily require such properties. However, it demands a model
that reflects the DM’s preferences about the solutions.

In many real-world MaOPs, the models should support imprecision and vagueness
in the DM’s preferences. For instance, if the DM is a heterogeneous group (e.g., a board
of directors) or an ill-defined entity (e.g., a community in social networks). In those
circumstances, the task of eliciting the parameters of a preference model is highly difficult
and is only reachable with some level of imprecision. If such imperfect knowledge is not
considered, the best compromise could hardly be identified among the existing alternatives.
Interval mathematics is a straightforward but effective way to express imprecision [23].

Fernandez et al. [24] introduced an extension of the outranking method by incorpo-
rating interval numbers in the preference parameters. This MCDA method can handle
incomparability, veto situations, and non-transitive preferences. These properties become
critical to address real-world MaOPs because many DMs have non-transitive and non-
compensatory preferences. Additionally, the DM feels more comfortable eliciting the values
of the parameters as interval numbers than as precise values. If the DM cannot (or not want
to) directly give a value for some required parameters, they may use an indirect elicitation
method to infer them, e.g., [25].

6

Mathematics 2022, 10, 322

In light of the above discussions, this paper presents a further analysis to observe
how incorporating interval outranking in MOSIAs impacts the performance. We pro-
pose embedding multi-criteria ordinal classification based on interval outranking (strictly
speaking, the INTERCLASS-nC method [26]) into many-objective optimisation algorithms.
Similar to previous approaches based on ordinal classification, e.g., [11], our proposal
also requires representative samples of solutions classified by the DM as ‘Satisfactory’ or
‘Dissatisfactory’. However, we extended this notion with two artificial classes (for internal
use of the algorithms) that increase the selective pressure toward the RoI. By applying this
strategy, we introduce the a priori versions of two relevant a posteriori algorithms based on
swarm intelligence; specifically, Multi-objective Grey Wolf Optimisation (MOGWO) [27]
and Indicator-based Multi-objective Ant Colony Optimisation for continuous domains
(iMOACOR) [28]. The a priori preference incorporation significantly increased the perfor-
mance of the MOSIAs according to a non-parametric test (Mann–Whitney–Wilcoxon).

The remainder of this paper is organised as follows. Section 2 includes some pre-
liminaries on multi-objective optimisation, interval outranking, ordinal classification, and
the MOSIAs taken as baseline. Section 3 details the proposed algorithms with preference
incorporation. Section 4 shows the experimental results. Lastly, Section 5 discusses the
conclusions and provides some directions for future research.

2. Background

This section presents an overview of the theoretical foundations. Section 2.1 presents
some preliminaries on optimisation with multiple objectives. Section 2.2 briefly describes
the baseline versions of the MOSIAs used in this paper. Lastly, Section 2.3 presents the
model for multi-criteria ordinal classification based on interval outranking.

2.1. Preliminaries on Multi-Objective Optimisation

Optimisation refers to finding the values in the decision variables (independent vari-
ables) that provoke extreme values of one or more objective functions (dependent variables).
It is called ‘mono-objective’ optimisation if a single function is treated. In contrast, it is
called ‘multi-objective’ optimisation if a few objective functions are treated (typically, up to
four). Farina and Amato [29] recognised that most MOEAs are severely affected when they
address problems with more than four objective functions, named them ‘many-objective’
optimisation problems.

Real-world applications often involve optimising several functions that are essentially
conflicting [30]. As a consequence, no point is simultaneously optimal in all objective
functions.

Here, x = 〈x1, x2, x3, . . . , xn〉 represents a solution of a MOP/MaOP: a vector of
decision variables that optimises a vector function f (x) whose components represent the
values of the objectives. Equation (1) defines f (x), where m is the number of objectives
(dimensionality of the problem), and n is the number of decision variables. Applied
optimisation models usually add constraints to Equation (1) to reflect real situations.

f (x) = 〈 f1(x), f2(x), f3(x), . . . , fm(x)〉 fk : Rn → R (1)

Pareto dominance is widely accepted to compare two solutions, determining which of
them is better. Thus, Pareto dominance discriminates between solutions by comparing their
f (x). Without loss of generality, let us consider minimising the m objectives; the Pareto
dominance relation, represented by the symbol �, may be expressed as [31]

x � y =

{
(x, y) : fk(x) � fk(y) ∀k ∈ {1, 2, 3, . . . , m} ∧

fk(x) < fk(y) ∃k ∈ {1, 2, 3, . . . , m}
}

.
(2)

7

Mathematics 2022, 10, 322

The non-dominated solutions make up the Pareto set, expressed as

PS = {x ∈ RF : y � x �y ∈ RF}, (3)

where RF is the feasible region.
The Pareto frontier, PF = { f (x) : x ∈ PS}, is the image of the Pareto set. In the absence

of information on the preferences of the DM, a sufficiently representative sample of the
Pareto frontier should be calculated.

Identifying a set of Pareto efficient solutions is indeed necessary to solve MOPs
and MaOPS. Still, it is not sufficient since the DM must select the best compromise (the
solution to implement). The DM chooses the best compromise according to their personal
preferences about the objective functions. In practice, the best compromise is the ultimate
solution to the problem.

2.2. An Overview of Two Swarm Intelligence Algorithms to Address MaOPs

In this section, we provide a brief description of MOGWO [27] and iMOACOR [28].

2.2.1. Multi-Objective Grey Wolf Optimisation

Mirjalili et al. [27] proposed MOGWO—Multi-Objective Grey Wolf Optimiser—which
extends the mono-objective algorithm Grey Wolf Optimiser (GWO) [32] to treat multiple
objectives. This swarm intelligence algorithm is inspired by nature, specifically by the
behaviour of grey wolves in tracking and hunting their prey. By analogy, the solution
with the best value in the objective function is named the α wolf. The second-best and the
third-best solutions are named β and δ wolves, respectively. The remaining solutions are
known as Ω wolves. The leaders (α, β, and δ) guide the optimisation process, and the Ω
wolves follow the leaders in the search for the global optimum.

Let n be the number of decision variables, ι be the number of the current iteration,
xι

i =
〈

xι
i,1, xι

i,2, xι
i,3, . . . , xι

i,n

〉
be the n-dimensional location point of the ith wolf during the

ιth iteration, and xι =
〈

xι
1, xι

2, xι
3, . . . , xι

h̄
〉

be the positions of a pack with h̄ wolves. The
following equation simulates how the Ω wolves are relocated to siege their prey during
hunt following the social leadership:

xι+1
i =

xι
1 + xι

2 + xι
3

3
∀i ∈ {1, 2, 3, . . . , h̄}, (4)

where xι
1, xι

2, and xι
3 are n-dimensional vectors reflecting the influence of the three leader

wolves during the ιth iteration. Each component of them is calculated as

xι
1,j = xα,j − Aj · Dα,j ∀j ∈ {1, 2, 3, . . . , n}, where Dα,j =

∣∣∣Cj · xα,j − xι
i,j

∣∣∣, (5)

xι
2,j = xβ,j − Aj · Dβ,j ∀j ∈ {1, 2, 3, . . . , n}, where Dβ,j =

∣∣∣Cj · xβ,j − xι
i,j

∣∣∣, (6)

xι
3,j = xδ,j − Aj · Dδ,j ∀j ∈ {1, 2, 3, . . . , n}, where Dδ,j =

∣∣∣Cj · xδ,j − xι
i,j

∣∣∣. (7)

In Equations (4)–(7), xα,j, xβ,j and xδ,j are the positions of the leader wolves at the jth
coordinate, ι + 1 is the number of the next iteration, and A and Dα are coefficient vectors
modelling the encircling behaviour of wolves as

Aj = 2aj · r1,j − aj ∀j ∈ {1, 2, 3, . . . , n}, (8)

and
Dα,j =

∣∣∣Cj · xα,j − xι
i,j

∣∣∣ ∀j ∈ {1, 2, 3, . . . , n}, where Cj = 2 · r2,j. (9)

In Equations (8) and (9), a is an n-dimensional vector whose elements linearly de-
crease from two to zero throughout the run of the algorithm, and r1 and r2 are random

8

Mathematics 2022, 10, 322

n-dimensional vectors with values in [0, 1]. The components of Dβ and Dδ are similarly
calculated as those of Dα in Equation (9).

Exploration is promoted by A with values greater than one (or less than –1); with
that setting, the Ω wolves diverge from the leaders. C is another component of GWO that
favours exploration, whose components represent weights and are generated at random
to emphasise (Cj > 1) or de-emphasise (Cj < 1) the influence of the α, β and δ wolves
in defining the distance in Equations (5)–(7). According to Mirjalili et al. [27], p. 109: “C
is not linearly decreased in contrast to A. The C parameter was deliberately required to
provide random values at all times in order to emphasise exploration not only during initial
iterations but also final iterations”.

GWO exploits the search space if |Aj| < 1 because, when the components of A are in
[−1, 1], the position of the ith wolf in the next iteration will be located between its current
position and the position of the leader. This setting assists Ω wolves to converge toward an
estimated position of their prey, provided by xα, xβ and xδ.

GWO starts the optimisation process by generating solutions at random during the
first population. Then, the three best solutions so far are considered as the α, β and δ

wolves. In the next iteration, each Ω wolf updates its position by applying Equations (4)–(7).
Simultaneously, the components of a are linearly decreased in each iteration. Therefore,
the pack of wolves tends to widely explore the search space during the first iterations and
intensively exploit it during the last iterations. The algorithm stops when a maximum
number of iterations is reached, and xα is returned as the best solution obtained throughout
the optimisation process.

To treat MOPs via GWO, MOGWO integrates the following two extensions into GWO:
(i) an archive with the Pareto optimal solutions obtained so far, and (ii) a criterion for
picking the leaders (xα, xβ and xδ) from the archive.

If the archive is full of non-dominated solutions (note that there is a predefined size)
and there is a new solution to be entered; then, a grid technique determines the region in
the Pareto frontier that is the most crowded by the archive. A solution is removed from
this region at random; then, the new solution may be added to the archive. Thus, the
probability of a solution being deleted is proportional to the number of points in each
hypercube (region).

Complementarily, the criterion to select xα, xβ and xδ favours the least crowded
regions in the Pareto front. The selection is based on a roulette-wheel method with the
following probability for each hypercube:

pl =
C
Nl

, (10)

where C is a constant (C � 1), and Nl is the number of solutions in the lth hypercube. The
two extensions of MOGWO jointly promote the representativeness in the sample of the
Pareto frontier.

2.2.2. Indicator-Based Multi-Objective Ant Colony Optimisation for Continuous Domains

Socha and Dorigo [33] proposed ACOR, an extension of Ant Colony Optimisation
(ACO) [34] to optimise mono-objective problems with continuous decision variables. In
ACOR, the pheromone matrix (τ) is an archive that stores the best-so-far solutions. Here,
a vector xl =

〈
xl,1, xl,2, xl,3, . . . , xl,n

〉
represents a solution of a problem with n decision

variables, and f (xl) is the objective function to minimise. The κ best-evaluated solutions
are stored in τ, following the implicit order given by f (xl). The position in τ of each xl
determines a weight (ωl) that measures the quality of xl , defined in Equation (11).

ωl =
e−ϕ(l)

ς · κ
√

2π
, where ϕ(l) =

(l − 1)2

2ς2κ2 (11)

9

Mathematics 2022, 10, 322

Equation (11) defines ωl as a value of the Gaussian function with standard deviation
ς · κ, mean 1.0, and argument l. Here, κ is the number of solutions in τ, and ς is a parameter
(0 � ς � 1). The effect of ς is to establish the proper balance between the pressures exerted
by the best-so-far solution (with values close to one) and the iteration-best solutions (with
values close to zero).

Furthermore, a Gaussian kernel (Gj) is calculated for each decision variable (1 � j � n)
as

Gj(x) =
κ

∑
l=1

ωl g
j
l(x), (12)

where

gj
l(x) =

e−φj(l)

sj
l

√
2π

, where φj(l) =

(
x− xl,j

)2

2
(

sj
l

)2 . (13)

According to Equation (13), gj
l(x) is a normal distribution, where sj

l is the standard
deviation, and xl,j is the mean. The former is calculated in each iteration as ants construct

solutions. Then, Gj in Equation (12) is a weighted sum of gj
l(x) ∀l ∈ {1, 2, 3, . . . κ}, which

defines the one-dimensional Gaussian function for the jth decision variable of the lth
solution in τ.

Ants construct solutions by performing n steps. The ith ant sets the value for the
variable xi,j at the jth step. Here, only Gj—the resulting Gaussian kernel—is needed. Then,
the weights ωl are computed through Equation (11) and used to sample, by following two
phases:

1. One Gaussian function is picked from the Gaussian kernel. The probability pl of
choosing the lth Gaussian function is given by

pl =
ωl

∑κ
r=1 ωr

. (14)

To exploit the synergy among decision variables, gj
l(x) is the single Gaussian function

ants use to construct a solution incrementally during a complete iteration.
2. The chosen Gaussian function (l) is used to sample new solutions. At the jth step, the

standard deviation (sj
l) is required to calculate the Gaussian function, gj

l(x), picked
in Phase 1 (de facto, the sampled Gaussian function will be different in each jth
construction step). Here, sj

l is dynamically calculated by Equation (15).

sj
l = ξ

κ

∑
r=1

∣∣∣xr,j − xl,j

∣∣∣
κ − 1

(15)

Equation (15) defines the standard deviation as the average distance from xl (the
picked solution) to other solutions (xr) in τ. The parameter ξ weights this distance
(0 � ξ � 1). The effect of the parameter ξ is similar to the pheromone evaporation in
ACO, influencing the behaviour of the colony: with low values, exploitation is more
promoted than exploration. The value of the jth decision variable is inferred by the
ith ant by following

xi,j ∼ gj
l(x). (16)

2.3. Multi-Criteria Ordinal Classification Based on Interval Outranking

The notion behind outranking is that the credibility of the proposition ‘x is at least
as good as y’—represented as σ(x, y)—may be calculated by analysing each pair of their
criteria scores [35]. ELECTRE is the most representative MCDA method of the outranking
approaches. Typically, ELECTRE defines σ(x, y) = c(x, y) · d(x, y), where

10

Mathematics 2022, 10, 322

• c(x, y), the concordance index, cumulates the weights of the criteria in favour of the
statement ‘x is at least as good as y’; and

• d(x, y), the discordance index, assesses the combined strength of the criteria against ‘x
is at least as good as y’.

Both indexes are calculated in function of a series of parameters that must be appropri-
ately inferred so that σ models the preferences of the DM. Interval outranking generalises
the classic outranking to the framework of interval numbers, providing support when the
values of the preference parameters are imprecisely known.

If the reader is be unfamiliar with interval mathematics, Appendix A compiles the
basic notions to understand interval outranking. Note that interval numbers in this paper
are written in boldface italic letters.

Let O be a set of alternatives (solutions). Each x ∈ O is evaluated with an m-
dimensional objective function f (x) = 〈 f1(x), f2(x), f3(x), . . . , fm(x)〉. Without loss of
generality, we suppose that each fk(x) is a minimising objective and, consequently, the
preference of the DM increases as the value of fk(x) decreases. The parameters of the
outranking model are:

• The vector of weights, wk =
[
wk, wk

]
∀k ∈ {1, 2, 3, . . . , m}, where

m

∑
k=1

wk � 1 and

m

∑
k=1

wk � 1;

• The vector of veto thresholds, vk =
[
vk, vk

]
∀k ∈ {1, 2, 3, . . . , m};

• The majority threshold, λ =
[
λ, λ

]
, where 0.5 � λ � λ � 1; and

• The credibility threshold, β, where 0.5 � β � 1.

The concordance coalition of two solutions (x, y), denoted as Cx,y =
{

k ∈ {1, 2, 3, . . . , m} :
P(fk(y) � fk(x)) � 0.5

}
, is the subset of objectives favouring the statement ‘x is at least

as good as y’. The concordance index for the statement ‘x is at least as good as y’ is the
interval number c(x, y) =

[
c(x, y), c(x, y)

]
, defined as

c(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

k∈Cx,y

wk if ∑
k∈Cx,y

wk + ∑
k∈Dx,y

wk � 1,

1− ∑
k∈Dx,y

wk otherwise,
(17)

and

c(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

k∈Cx,y

wk if ∑
k∈Cx,y

wk + ∑
k∈Dx,y

wk � 1,

1− ∑
k∈Dx,y

wk otherwise.
(18)

Moreover, the discordance coalition consists of the objectives that are not in the
concordance coalition, defined as Dx,y = {1, 2, 3, . . . , m} \ Cx,y. These objectives justify
arguments invalidating the outranking relation ‘x is at least as good as y’. The value
P
(

fk(x)− fk(y) � vk
)

models the degree of credibility of the proposition ‘the kth criterion
alone vetoes the statement x outranks y’. The discordance index, d(x, y), is calculated
appraising the credibility of veto of each objective in Dx,y, and is expressed as

d(x, y) = 1− max
k∈Dx,y

{
P
(

fk(x)− fk(y) � vk
)}

. (19)

Accordingly, σ(x, y) is redefined as

σ(x, y) = min
{

P
(
c(x, y) � λ

)
, d(x, y)

}
. (20)

11

Mathematics 2022, 10, 322

By following Equation (20), Fernandez et al. [24] introduced a pair of binary preference
relations. First, the crisp outranking relation (S) is presented in Equation (21), where β is a
threshold on the credibility of ‘x is at least as good as y’. Lastly, Equation (22) presents the
crisp relation ‘x is preferred to y’.

xSy = {(x, y) : σ(x, y) � β} (21)

xPry = {(x, y) : x � y ∨ (xSy ∧ ¬ySx)} (22)

Fernandez et al. [26] proposed INTERCLASS-nC, an extension of ELECTRE TRI-
nC [36] in the framework of interval outranking to multi-criteria ordinal classification.
INTERCLASS-nC is applicable in circumstances in which other MCDA methods fail, specif-
ically when the DM does not want to (or cannot) set precise values for the model parameters
(majority threshold, veto thresholds, and weights). INTERCLASS-nC is especially advan-
tageous if the DM has only a vague idea about the boundaries between adjacent classes;
nonetheless, they can quickly identify one representative solution at least in each category,
which may be characterised by intervals.

INTERCLASS-nC considers the array of classes C = 〈C1, C2, C3, . . . , C�〉, increas-
ingly sorted by preference (� � 2), and the subset of reference solutions introduced to
characterise each C�, R� =

{
r�,j

}
(where 1 � j � |R�|, and 1 � � � �). Additionally,

〈r0, R1, R2, R3, . . . , R�, r�+1〉 is the array of all reference solutions sorted by preference,
where r0 is the anti-ideal point and r�+1 is the ideal point. Following the interval outrank-
ing, the following condition is true for 1 � � < �:

¬xSy ∀x ∈ R�, y ∈ R�+1. (23)

Then, Equations (24) and (25) are used to define the categorical credibility indices
between an alternative x and the category C�.

ϑ(x, R�) = max
1�j�|R� |

{
σ
(

x, r�,j

)}
(24)

ϑ(R�, x) = max
1�j�|R� |

{
σ
(

r�,j, x
)}

(25)

The crisp relation of interval outranking is extended to compare actions with the sets
of characteristic actions as

1. xSR� = {(x, R�) : ϑ(x, R�) � β};
2. R�Sx = {(R�, x) : ϑ(R�, x) � β}.

To suggest a class for a new alternative x, INTERCLASS-nC uses the selection func-
tion S f (x, R�) = min{ϑ(x, R�), ϑ(R�, x)} and two heuristics—the ascending rule and the
descending rule—that are conjointly used. Each one of these heuristics proposes a class
for an alternative x. If the classes do not coincide, they define a range of assignments for x
(any category within such a range is admissible as the class of x).

The steps of the ascending rule are the following

1. Compare x to R� for � = 1, 2, 3, . . . , � + 1 until the first � such that R�Sx;
2. If � = 1, select C1 as a possible class for x;
3. If 1 < � < � + 1, select C� as a possible class for x if S f (x, R�) � S f (x, R�−1);

otherwise, select C�−1.
4. If � = � + 1, select C� as a possible class for x.

The descending rule has the following steps

1. Compare x to R� for � = �, �− 1, �− 2, . . . , 0 until the first � such that xSR�;
2. If � = �, select C� as a possible class for x;
3. If 0 < � < �, select C� as a possible class for x if S f (x, R�) � S f (x, R�+1); otherwise,

select C�+1.

12

Mathematics 2022, 10, 322

4. If � = 0, select C1 as a possible class for x.

3. Proposed Algorithms

In this section, we describe how ordinal classification based on interval outranking
was embedded in MOGWO and iMOACOR to incorporate the preferences of the DM. The
primary strategy is to measure the quality of the solutions in terms of the class suggested
by INTERCLASS-nC. Consequently, the selective pressure increases toward the solutions
the DM is highly satisfied with. Note that both proposed algorithms are not intended
for searching representative approximations of the complete Pareto frontier; instead, they
search for the RoI: a relatively short subset of Pareto optimal solutions that best match the
DM’s preferences. Here, we propose that the RoI is made of solutions classified as ‘Highly
Satisfactory’, and the best compromise—the final prescription chosen by the DM—should
be a solution belonging to the RoI. Section 3.1 introduces the Grey Wolf Optimiser with
Interval outranking-based ordinal Classification, abbreviated as GWO-InClass. Section 3.2
introduces Ant Colony Optimisation with Interval outranking-based ordinal Classification,
abbreviated as ACO-InClass.

3.1. The GWO-InClass Algorithm

GWO-InClass extends MOGWO by classifying the solutions in each iteration utilising
INTERCLASS-nC before picking the leaders from the archive, keeping the solutions ranked
in the following order: ‘Highly Satisfactory’, ‘Satisfactory’, ‘Dissatisfactory’, and ‘Strongly
Dissatisfactory’.

We suggest using an ordinal classifier that has already been validated in an evolu-
tionary algorithm for many-objective optimisation [37]. In this approach, the DM should
classify the reference solutions (input) in two classes, ‘Dissatisfactory’ and ‘Satisfactory’
(respectively, C1 and C2), the minimum number of classes to apply INTERCLASS-nC. Then,
the model is extended by artificially adding the classes ‘Highly Satisfactory’ and ‘Strongly
Dissatisfactory’. Each new solution x generated during the evolutionary search is classified
according to the following assumptions:

• If xPry ∀y ∈ R2, then the DM is highly satisfied with x; otherwise, the DM is satisfied
with x.

• If yPrx ∀y ∈ R1, then the DM is strongly dissatisfied with the solution x; otherwise, the
DM is dissatisfied with x.

Algorithm 1 presents an outline of the ordinal classifier proposed by Balderas et al. [37].
A crucial process of GWO-InClass is to update the archive and select the α, β and

δ wolves; this process is presented in Algorithm 2. Here, Lines 1–2 initialise the vari-
ables; Lines 3–12 rank the solutions according to the class suggested by Algorithm 1;
Lines 13–15 make sure that the archive (A) is not larger than the maximum size allowed by
the parameter h̄; and, lastly, Lines 16–20 pick three different solutions from the non-empty
best-evaluated class to be the leader wolves.

Algorithm 3 provides an algorithmic outline of GWO-InClass. Unlike MOGWO,
GWO-InClass needs information about the preferences of the DM, which is exploited to
become closer to the RoI. The preferences of the DM are articulated through an interval
outranking model. We suggest using the proposal by Fernandez et al. [25] to infer the model
parameters that reflect the preferences of the DM. Furthermore, GWO-InClass also needs
the reference sets with solutions labelled by the DM as ‘Satisfactory’ or ‘Dissatisfactory’.
Initially, synthetic solutions are helpful to perform this task; however, if the DM is not
confident about those initial sets, they may additionally have some interactions with
GWO-InClass throughout the optimisation process and directly classify the solutions in
the archive, updating the reference sets. Binary classification of solutions is one of the least
cognitively demanding ways to interact with the DM.

13

Mathematics 2022, 10, 322

Algorithm 1 Ordinal classifier based on interval outranking
Input: Number of objectives (m), parameters of the outranking model (λ, β, v, w), a
solution x, representative sets R1 and R2
Output: The class for x (class)

1: cnc ← INTERCLASS-nC(x, R1, R2) � Descending and ascending rules
2: if cnc = ‘Satisfactory’ then
3: if xPry ∀y ∈ R2 then
4: class ← ‘Highly Satisfactory’
5: else
6: if yPrx ∀y ∈ R1 then
7: class ← ‘Strongly Dissatisfactory’
8: return class

Algorithm 2 Selection of the leader wolves
Input: Archive (A), solutions of the current iteration (xι), maximum size of the archive (h̄)
Output: The leader wolves (xα, xβ, xδ)

1: R ← 〈∅, ∅, ∅, ∅〉
2: T ← PS(A∪ xι) � Filtering only Pareto efficient solutions, see Equation (3)
3: for xi ∈ T do � Main loop for ranking solutions
4: class ← extended_INTERCLASS-nC(xi) � Classifying by Algorithm 1
5: if class = ‘Highly Satisfactory’ then
6: R1 ← R1 ∪ {xi}
7: if class = ‘Satisfactory’ then
8: R2 ← R2 ∪ {xi}
9: if class = ‘Dissatisfactory’ then

10: R3 ← R3 ∪ {xi}
11: if class = ‘Strongly Dissatisfactory’ then
12: R4 ← R4 ∪ {xi}
13: if |T | > h̄ then
14: Remove the |T | − h̄ worst solutions according to the ranking
15: A ← T
16: leaders ← 〈xα, xβ, xδ〉
17: for xi ∈ leaders do � Main loop for picking the leaders

18: topRanked ←

⎧⎪⎪⎨⎪⎪⎩
R1 ifR1 �= ∅
R2 ifR1 = ∅ ∧ R2 �= ∅
R3 ifR1 = R2 = ∅ ∧ R3 �= ∅
R4 otherwise

� Choosing the best evaluated

set that is not empty
19: xi ← roulette_wheel(topRanked) � Probabilities calculated by Equation (10)
20: Remove xi fromR � To avoid selecting the same solution as xα, xβ or xδ
21: return xα, xβ, xδ

In Algorithm 3, Lines 1–5 initialise the parameters and generate the initial positions
of the wolves. Line 6 picks the first leader wolves. Lines 7–12 present the iterated process
of GWO-InClass; here, Line 8 applies Equations (4)–(9) to update the positions of the Ω
wolves, following the social leadership of the α, β and δ wolves; Line 10 updates the archive
and obtains the latest positions of the leader wolves; and lastly, Lines 11–12 update the
parameters and variables to perform the next iteration.

14

Mathematics 2022, 10, 322

Algorithm 3 The Grey Wolf Optimiser with Interval outranking-based ordinal Classification
Input Number of objectives (m), number of decision variables (n), parameters of the
outranking model (wk, vk ∀k ∈ {1, 2, 3, . . . , m}, λ, β), reference solution sets (R1, R2), maxi-
mum size of the archive (h̄)
Output: An approximation of the RoI (A)

1: Initialise the parameters of MOGWO (a, A, and C)
2: x0

i ← random_solution() ∀i ∈ {1, 2, 3, . . . , h̄} � Generating the initial pack of wolves
at random

3: Calculate fk(x0
i) ∀k ∈ {1, 2, 3, . . . , m}, i ∈ {1, 2, 3, . . . , h̄} � Getting the values of the

objective functions for each wolf
4: A ← ∅
5: ι ← 1
6: (xα, xβ, xδ)← get_leaders(A, x0, h̄) � Algorithm 2
7: while ι � itermax do � Main loop of the optimisation process

8: xι
i ←

xι−1
1 +xι−1

2 +xι−1
3

3 ∀i ∈ {1, 2, 3, . . . , h̄} � Updating the pack of wolves by applying
Equations (4)–(9)

9: Calculate fk(xι
i) ∀k ∈ {1, 2, 3, . . . , m}, i ∈ {1, 2, 3, . . . , h̄}

10: (xα, xβ, xδ)← get_leaders(A, xι, h̄) � Algorithm 2
11: Update a, A, and C
12: ι ← ι + 1
13: return A

3.2. The ACO-InClass Algorithm

Like GWO-InClass, ACO-InClass stores the best solutions in the pheromone matrix
τ—its archive—considering the class suggested by Algorithm 1. Figure 1 depicts the
pheromone representation used in ACO-InClass; here, κ is the size of the archive, n is the
number of decision variable, xl ∀l ∈ {1, 2, 3, . . . , κ} is the vector of the lth solution in the
archive, xl,j is the value of the jth decision variable of xl , Gj ∀j ∈ {1, 2, 3, . . . , n} is the
Gaussian kernel for the jth decision variable, and ωl ∀l ∈ {1, 2, 3, . . . , κ} is the weight of
the lth solution.

Figure 1. Pheromone matrix in ACO-InClass.

The chief difference between iMOACOR and ACO-InClass is the criteria to sort τ.
Falcón-Cardona and Coello Coello [28] suggested R2 scores [38] as the primary criterion
to rank the solutions in τ. Contrarily, in this paper, we propose the class indicated by
Algorithm 1 as the primary criterion, and R2 scores as the secondary criterion (intra-class
solutions are sorted using the R2 metric). The archive is set to store the κ top-ranked
solutions.

Algorithm 4 provides an algorithmic outline of ACO-InClass. Lines 1 and 7 initialise
the parameters and variables of the algorithm; Lines 2–6 generate and evaluate the initial
random solutions of the colony. Lines 8–16 present the iterated process of ACO-InClass;
here, Lines 9–10 generate the solutions of the colony by following the equations provided in
Section 2.2.2, particularly Equations (14)–(16); Lines 11–14 evaluate and rank the solutions;
and, lastly, Lines 15–16 update the data structures to perform the next iteration.

15

Mathematics 2022, 10, 322

Algorithm 4 Ant Colony Optimisation with Interval outranking-based ordinal
Classification
Input Number of objectives (m), number of decision variables (n), parameters of the
outranking model (wk, vk ∀k ∈ {1, 2, 3, . . . , m}, λ, β), reference solution sets (R1, R2), maxi-
mum size of the archive (κ)
Output: An approximation of the RoI (τ)

1: Initialise the parameters of iMOACOR (ξ and ς)
2: xi ← random_solution() ∀xi ∈ τ � Generating the initial solutions of the pheromone

trail at random
3: Calculate fk(xi) ∀k ∈ {1, 2, 3, . . . , m}, xi ∈ τ � Getting the values of the objective

functions for each ant
4: τ ← PS(τ) � Filtering only Pareto efficient solutions, see Equation (3)
5: Normalise(τ)
6: Rank solutions in τ � See Algorithm 1
7: ι ← 1
8: while ι � itermax do � Main loop of the optimisation process
9: for xi ∈ Λ do � Λ is the colony (with κ ants)

10: Generate a new solution based on τ � Applying Equation (16)
11: Calculate fk(xi) ∀k ∈ {1, 2, 3, . . . , m}, xi ∈ Λ � Getting the values of the objective

functions for each ant
12: O ← PS(Λ ∪ τ) � Filtering only Pareto efficient solutions, see Equation (3)
13: Normalise(O)
14: Rank solutions in O � See Algorithm 1
15: Copy into τ the κ first solutions of O
16: ι ← ι + 1
17: return τ

4. Experimental Validation

We implemented GWO-InClass and ACO-InClass in Java using OpenJDK 11.0.10, on a
computer with an Intel Core i7-10510U CPU 1.80 GHz, 16 GB of RAM, and Manjaro 5.10 as
operating system. This computer setting applies to all experiments reported in this section.

GWO-InClass has three main parameters to be adjusted: a, C, and h̄. The components
of the vector a are initially set in two, and are linearly decreased to reach zero in the last
iteration. The vector C is dynamically generated during each iteration, providing random
numbers (cf. [27]). The parameter setting of ACO-InClass is ς = 0.1 and ξ = 0.5 (cf. [28]).
The parameter settings of the reference algorithms—NSGA-III, MOGWO and iMOACOR—
are also those originally published by the authors in the articles [27,28,39]. A particular
case is the size of the population (h̄ in GWO-InClass and κ in ACO-InClass), which depends
on the number of objective functions (m): h̄ = κ = 92 for m = 3, h̄ = κ = 212 for
m = 5, and h̄ = κ = 276 for m = 10. These values were inspired by the discussion of
Deb and Jain [39] on suitable population sizes for evolutionary algorithms. The maximum
number of iterations for all the algorithms reported in this section is itermax = 1000 for
m ∈ {3, 5} and itermax = 1500 for m = 10.

The adjective ‘significant’ is used in this section if a non-parametric U test (also know
as Mann–Whitney test or Wilcoxon rank-sum test) with a 0.95-confidence level validates
the difference as statistically significant. Furthermore, we performed all tests for statistical
significance through STAC [40].

The rest of this section is organised as follows. Section 4.1 presents the test suite used
to validate the results, as well as the indicators to measure the quality of the solutions.
Section 4.2 describes the results obtained by GWO-InClass. Lastly, Section 4.3 presents the
results by ACO-InClass.

16

Mathematics 2022, 10, 322

4.1. Benchmark Problems and Performance Indicators

DTLZ [41] has become the standard test suite most broadly accepted to assess the
performance of MOEAs and MOSIAs. Accordingly, we ran our algorithms on the nine
problems in the DTLZ suite, named DTLZ1–DTLZ9. These problems have continuous
decision variables, and are scalable regarding the number of decision variables and objec-
tive functions, offering Pareto frontiers with challenging properties (e.g., bias, concavity,
convexity, degeneration, multi-frontality, and separability). We explored the dimensionality
of each DTLZ problem by considering 3, 5, and 10 objective functions (m); accordingly,
there are 27 different instances to validate our algorithms. The numbers of position-related
variables (k) and decision variables (n) for each problem are the following:

• DTLZ1: k = 5 and n = m + k− 1.
• DTLZ2–DTLZ6: k = 10 and n = m + k− 1.
• DTLZ7: k = 20 and n = m + k− 1.
• DTLZ8 and DTLZ9: k = m− 1 and n = 10m.

As GWO-InClass and ACO-InClass consider the DM’s preferences, each of the 27 test
instances was validated using ten interval outranking models, representing different DMs.
Some state-of-the-art studies [42–44] have proposed and used these synthetic DMs to vali-
date a priori optimisation methods run on the DTLZ suite. The primary motivation behind
this choice is that an acceptable approximation to the true RoI is known for these synthetic
DMs, and these Approximated RoIs (abbreviated as ‘A-RoI’ from hereon) are in compliance
with the interval outranking model described in Section 2.3, which is the keystone of the
interval ordinal classifier GWO-InClass and ACO-InClass use (see Algorithm 1).

The A-RoI should contain the most preferred solutions in terms of interval outranking;
Rivera et al. [44] followed this underlying principle to calculate the A-RoI as follows
(cf. [42,43]):

1. A representative sample with 100,000 Pareto optimal points is generated, represented
by the set O.

2. Considering the preference relation xPry, the set of the ‘least weak’ solutions is
calculated as

NW(O) = arg min
y∈O

⎧⎨⎩ ∑
x∈O\{y}

�Pr(x, y)

⎫⎬⎭, where �Pr(x, y) =
{

1 if xPry,
0 otherwise.

3. Then, the A-RoI is finally calculated as

A-RoI(O) = arg max
x∈NW(O)

⎧⎨⎩ ∑
y∈O\{x}

�S(x, y)

⎫⎬⎭, where �S(x, y) =
{

1 if xSy,
0 otherwise.

The proposed algorithms ran 30 times on each test instance using each synthetic
DM (as a consequence, each algorithm was run 300 times per instance). The benchmark
algorithms—NSGA-III, MOGWO and iMOACOR—were also run 300 times.

There are several indicators for evaluating the performance of a multi-objective opti-
miser that approximates the complete Pareto frontier (e.g., hypervolume, spacing, spread,
and inverted generational distance). However, these indicators are inadequate for assessing
the performance of preference-based multi-objective algorithms because no metric can
be directly applied when only a partial Pareto frontier is considered [45]. Furthermore,
some attempts to assess the quality of a preferred solution adapt these indicators in an
oversimplified way, making the assessments misleading. In line with this notion, we mea-
sured the performance via three indicators that consider the solutions that maximise the
preferences of the DM. Let X∗ be the latest set of solutions of an algorithm, the following
three indicators are utilised:

• Minimum Euclidian distance. The distance from the A-RoI to the closest point in X∗.

17

Mathematics 2022, 10, 322

• Average Euclidian distance. The average distance from the points in the A-RoI to
those in X∗.

• Satisfaction. The proportion of solutions in X∗ belonging to the class ‘Highly Satisfac-
tory’.

On the one hand, the distance-based indicators measure the quality in terms of the
similarity between X∗ and the A-RoI; the minimum distance considers the best solution
alone, and the average distance considers the overall trend. For these indicators, the
lower the values, the closer the approximation. On the other hand, the satisfaction-based
indicator measures the quality of the algorithm considering the number of solutions that
could potentially become the best compromise solution. For this indicator, greater values
are preferred.

4.2. On the Performance of GWO-InClass

Table 1 shows the results of GWO-InClass in comparison with MOGWO. Given a
number of objectives (Column 1), Table 1 presents the average performance in terms of the
indicators (referred to in Column 2) obtained by each algorithm (referred to in Column 3)
on each DTLZ problem (referred to in Columns 4–12); here, the cells were shaded if the
difference is statistically significant: in blue if it is in favour of GWO-InClass, in yellow if it
is in favour of MOGWO.

Table 1. Average results obtained by GWO-InClass and MOGWO.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. MOGWO 1164.89 4.99 606.87 11.94 0.91 3.73 0.25 0.04 5.39

GWO-InClass 37.01 2.12 374.02 21.14 0.90 5.16 0.35 0.05 5.21
Avg. Euclid. MOGWO 1283.63 5.61 776.68 26.70 0.95 4.53 1.56 0.36 7.23

GWO-InClass 74.11 2.85 487.44 21.69 0.93 6.06 1.66 0.40 6.98
Satisfaction MOGWO 1.28 25.17 1.89 23.22 0.00 2.71 48.59 48.37 1.60

GWO-InClass 8.84 48.40 3.49 50.96 1.61 7.44 48.51 50.00 1.62
5 Min. Euclid. MOGWO 131.74 693.38 8201.95 0.00 0.17 74.29 0.61 0.76 9.09

GWO-InClass 24.04 1.61 193.63 6.37 0.00 2.64 0.56 0.76 9.05
Avg. Euclid. MOGWO 168.45 693.91 8226.69 0.64 5.73 76.75 2.81 2.68 9.45

GWO-InClass 78.02 3.03 414.04 17.69 0.26 3.08 2.68 1.28 9.48
Satisfaction MOGWO 0.84 12.91 0.28 33.00 1.61 0.18 48.49 49.36 1.61

GWO-InClass 14.05 48.92 19.84 50.26 49.83 31.84 51.39 50.63 1.61
10 Min. Euclid. MOGWO 20.16 148.91 189.48 7.03 3.94 2.64 1.96 1.48 7.97

GWO-InClass 14.12 1.64 186.59 6.26 0.02 0.02 1.89 1.48 8.25
Avg. Euclid. MOGWO 84.21 920.18 435.90 16.45 4.82 4.79 5.98 2.22 8.45

GWO-InClass 87.16 4.67 425.63 16.86 0.08 0.11 5.79 2.22 8.73
Satisfaction MOGWO 4.32 0.15 30.69 49.14 1.61 0.00 47.93 48.61 1.59

GWO-InClass 49.63 53.45 53.70 50.81 50.90 50.18 50.45 51.38 1.63

The information in Table 1 may be summarised in the following points:

• Considering the satisfaction-based indicator: The results of GWO-InClass were sig-
nificantly better than those of MOGWO in DTLZ1, DTLZ2, and DTLZ6 regardless
of the number of objectives. In other problems (DTLZ3, DTLZ5, and DTLZ7), the
advantage of including ordinal classification only became significant when m in-
creased. On the whole, our strategy had a greater impact on the ‘satisfaction’ indicator
in many-objective optimisation (m ∈ {5, 10}) than in multi-objective optimisation
(m = 3).

• Considering the Euclidean indicators: The results on DTLZ1–3 were particularly
encouraging because the averages of GWO-InClass were consistently lower than those
of MOGWO, having statistical significance in the great majority of the instances. In
DTLZ5 and DTLZ6, GWO-InClass became closer to the RoI only in many-objective
instances. Contrastingly, when m = 3, our strategy was inconvenient to treat DTLZ4
and DTLZ6.

18

Mathematics 2022, 10, 322

• Considering DTLZ8 and DTLZ9: The embedding of ordinal classification in MOGWO
does not yield any significant benefit. It is worth noting that they are the only problems
with side constraints in this benchmark [46].

As a partial conclusion, we would recommend using GWO-InClass instead of MOGWO
to address MaOPS. GWO-InClass was at least as good as MOGWO; what is more, it was sig-
nificantly better on a regular basis. A test for statistical significance supports this hypothesis
on the DTLZ test suit.

Additionally, we compared the results of GWO-InClass with NSGA-III, which has
been widely accepted by the scientific community as a benchmark algorithm for evolu-
tionary many-objective optimisation. Table 2 presents the results of both algorithms on
the DTLZ test suit. Again, the three indicators—the average Euclidean distance, the mini-
mum Euclidean distance, and satisfaction—are considered, and the cells with significant
differences are shaded (blue in favour of GWO-InClass, yellow in favour of NSGA-III).

Table 2. Average results obtained by GWO-InClass and NSGA-III.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. GWO-InClass 45.82 2.13 8589.97 21.14 0.01 56.40 0.1 0.05 8.83

NSGA-III 0.55 0.01 0.17 0.0 0.0 0.00 0.0 0.00 0.17
Avg. Euclid GWO-InClass 80.58 2.85 8617.98 21.7 7.30 56.40 1.43 0.40 15.14

NSGA-III 1.01 0.97 0.99 0.81 0.03 0.00 1.32 0.41 0.78
Satisfaction GWO-InClass 5.57 48.35 1.91 48 1.6 0.03 48.44 50.11 1.61

NSGA-III 5.12 35.29 20.78 34.66 0.94 2.26 44.70 32.99 5.31
5 Min. Euclid. GWO-InClass 35.86 1.61 400.36 16.43 0.0 2.91 0.56 0.76 38.57

NSGA-III 0.31 0.04 0.33 0.01 0.0 0.44 0.20 0.84 1.69
Avg. Euclid GWO-InClass 102.66 3.03 627.42 27.26 0.26 3.18 2.68 1.28 39.05

NSGA-III 0.80 0.98 1.10 0.8 0.13 0.58 2.53 1.33 2.15
Satisfaction GWO-InClass 7.07 48.74 5.26 48.55 49.93 22.54 50.01 48.97 1.61

NSGA-III 14.49 3.06 10.97 1.12 10.46 0.83 48.35 51.02 27.30
10 Min. Euclid. GWO-InClass 0.18 1.64 0.04 1.50 0.02 0.02 1.90 1.85 8.25

NSGA-III 0.22 0.34 0.79 0.16 1.35 8.73 1.13 1.46 15.25
Avg. Euclid GWO-InClass 1.04 2.50 4.40 6.26 0.08 0.11 5.79 2.02 8.73

NSGA-III 0.54 2.11 1.49 1.17 1.99 9.73 5.66 2.10 15.85
Satisfaction GWO-InClass 45.22 49.90 55.39 51.48 67.50 45.73 51.61 89.02 2.82

NSGA-III 48.72 47.90 28.59 39.93 0.43 42.69 48.38 10.97 0.39

According to Table 2, the worst performance was observed when m = 3. Contrarily,
GWO-InClass approximated the RoI significantly better than NSGA-III in most of the
10-objective instances. Considering the satisfaction-based indicator, DTLZ1, DTLZ7, and
DTLZ9 are especially challenging for GWO-InClass. To conclude, the performance of
GWO-InClass becomes competitive as the number of objectives increases according to this
standard of the literature.

Lastly, we plotted the results of some single runs of GWO-InClass in Figure 2. We took
those runs on the three-objective problems with the results closest to the A-RoI. Although
such runs are not representative, they clearly depict how GWO-InClass biases the search
toward a privileged region in the Pareto frontier. The best compromise would be a solution
belonging to such region (coloured in red in Figure 2).

19

Mathematics 2022, 10, 322

(a) Results of GWO-InClass on DTLZ2

(b) Results of GWO-InClass on DTLZ4

(c) Results of GWO-InClass on DTLZ5

(d) Results of GWO-InClass on DTLZ7

Figure 2. Results of GWO-InClass on some 3-objective problems.

4.3. On the Performance of ACO-InClass

Table 3 presents the results of ACO-InClass in comparison with iMOACOR; its
columns should be interpreted with the same meaning provided for Table 1. As a summary
of the information provided, let us discuss the following remarks:

• Considering ten objective functions: The advantage of embedding ordinal classifica-
tion became statistically significant only when m = 10. Taking DTLZ1–4 and DTLZ6–8,
ACO-InClass outperformed iMOACOR in at least one indicator, performing especially
well in DTLZ1, DTLZ3, DTLZ6, and DTLZ8.

20

Mathematics 2022, 10, 322

• Considering three and five objective functions: With the only exception of a specific
setting (DTLZ6, average Euclidean distance, and m = 5), ACO-InClass was at least as
good as iMOACOR regardless of the number of objectives.

• Considering DTLZ5 and DTLZ9: Like in the case of GWO-InClass, no advantage was
observed in DTLZ9. Additionally, this situation also occurred in DTLZ5.

We would strongly recommend using ACO-InClass instead of iMOACOR to address
MaOPS with about ten objective functions. This insight is relevant because the efficiency
of MOSIAs and MOEAs is degraded as the number of objectives increases. The strategy
proposed in this paper could become a viable means of mitigating this severe drawback.
Still, the DM should be prepared to devote the necessary time to express their preferences.

Table 3. Average results obtained by ACO-InClass and iMOACOR.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. iMOACOR 35.33 2.84 506.46 12.77 0.00 5.46 1.30 0.43 14.04

ACO-InClass 47.72 0.19 497.91 7.28 0.00 5.70 1.21 0.44 13.61
Avg. Euclid. iMOACOR 73.25 3.70 633.16 6.21 3.26 5.74 8.16 0.91 14.71

ACO-InClass 79.33 1.33 634.59 14.12 2.99 5.98 7.72 0.91 14.23
Satisfaction iMOACOR 11.62 28.51 24.42 32.82 1.37 2.47 23.37 46.21 0.00

ACO-InClass 11.18 32.21 15.38 31.79 2.08 2.64 24.27 52.14 3.22
5 Min. Euclid. iMOACOR 44.73 0.94 256.49 0.00 0.00 6.50 2.01 7.62 18.28

ACO-InClass 30.93 1.19 200.61 4.29 0.00 6.78 1.88 11.95 17.74
Avg. Euclid. iMOACOR 93.16 3.73 305.69 0.81 0.15 7.59 13.75 51.32 19.28

ACO-InClass 77.75 4.22 275.32 6.79 0.17 7.97 14.47 83.02 18.73
Satisfaction iMOACOR 21.26 18.22 24.56 23.50 16.63 3.99 33.71 60.70 0.00

ACO-InClass 22.91 18.92 22.77 24.55 15.54 3.97 34.43 38.26 3.22
10 Min. Euclid. iMOACOR 20.57 0.39 224.90 6.28 0.09 8.13 7.85 56.96 25.79

ACO-InClass 6.44 0.19 148.08 7.59 0.16 7.09 2.34 1.16 26.22
Avg. Euclid. iMOACOR 53.85 1.23 308.24 6.95 0.21 9.45 26.70 217.89 26.82

ACO-InClass 33.53 1.22 220.34 9.09 0.49 9.12 17.06 2.48 27.34
Satisfaction iMOACOR 28.47 28.61 22.27 40.27 16.13 15.19 48.16 12.24 3.22

ACO-InClass 49.84 47.47 61.03 59.72 11.94 25.63 49.13 87.75 2.21

Furthermore, Table 4 shows the results of ACO-InClass in comparison with those of
NSGA-III. The columns of Table 4 should be analogously interpreted as in Table 2. These
results together with the statistical tests allow concluding that ACO-InClass is competitive
to address 10-objective problems according to the standard established by NSGA-III; in
fact, ACO-InClass outperformed NSGA-III in the vast majority of these instances. As a
welcome side effect, ACO-InClass can also support the a posteriori decision analysis; this
feature would reduce the DM’s cognitive effort invested in identifying the best compromise.
Adversely, these results clearly imply that ACO-InClass was unsuitable for treating three-
objective instances.

Again, we plotted the results of some runs of ACO-InClass, which are shown in
Figure 3. These runs presented the best results on the three-objective instances and clearly
depicted how ACO-InClass biases the search toward the A-RoI. Here, the best compromise
would be a solution obtained by ACO-InClass (coloured in red in Figure 3).

21

Mathematics 2022, 10, 322

Table 4. Average results obtained by ACO-InClass and NSGA-III.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. ACO-InClass 1782.09 0.00 478.51 12.80 0.00 0.00 70.01 40.91 9.12

NSGA-III 0.56 0.01 0.17 0.00 0.00 0.00 0.01 0.01 0.18
Avg. Euclid ACO-InClass 1786.36 0.93 612.73 16.15 3.18 0.12 78.33 53.03 15.64

NSGA-III 1.02 0.98 0.99 0.82 0.04 0.01 1.32 0.42 0.79
Satisfaction ACO-InClass 0.27 28.04 2.80 31.89 1.86 0.00 1.11 0.03 0.00

NSGA-III 5.48 37.86 20.59 33.40 0.44 2.18 88.27 66.34 6.49
5 Min. Euclid. ACO-InClass 58.84 0.01 3.38 4.29 0.00 1.44 6.83 41.87 2.83

NSGA-III 0.31 3.05 0.33 0.02 0.00 0.44 0.20 0.85 1.33
Avg. Euclid ACO-InClass 122.12 0.08 327.58 4.81 0.13 9.10 17.02 40.31 5.61

NSGA-III 0.81 10.99 1.10 2.80 3.18 0.59 2.54 2.15 2.69
Satisfaction ACO-InClass 15.39 15.76 11.42 1.21 10.18 1.95 7.98 0.14 28.91

NSGA-III 2.91 3.35 2.97 19.94 12.44 1.08 8.63 9.77 0.00
10 Min. Euclid. ACO-InClass 0.45 0.20 0.79 0.17 0.00 7.04 2.70 1.46 25.25

NSGA-III 0.23 0.35 5.06 7.59 22.54 8.94 1.13 25.30 26.22
Avg. Euclid ACO-InClass 0.72 1.23 1.49 1.17 0.25 9.04 5.66 2.10 25.85

NSGA-III 0.55 1.11 33.26 9.10 26.48 9.68 16.85 71.46 27.35
Satisfaction ACO-InClass 85.44 54.43 77.10 55.70 24.74 44.58 68.46 96.62 0.00

NSGA-III 10.38 35.42 4.31 32.38 0.00 28.60 29.24 3.38 3.23

(a) Results of ACO-InClass on DTLZ1

(b) Results of ACO-InClass on DTLZ5

(c) Results of ACO-InClass on DTLZ6

Figure 3. Cont.

22

Mathematics 2022, 10, 322

(d) Results of ACO-InClass on DTLZ9

Figure 3. Results of ACO-InClass on some 3-objective problems.

5. Conclusions and Directions for Future Research

This paper introduces a novel strategy to incorporate preferences into swarm intel-
ligence algorithms. Following the taxonomy of Bechikh et al. [4], the proposed strategy
falls into the category of ‘solution classification’. Initially, the DM should express their
preferences about the solutions by classifying them as ‘Satisfactory’ or ‘Dissatisfactory’. The
proposed strategy is one of the least cognitively demanding in the framework of solution
classification because the DM must merely classify solutions into just two categories.

Then, we suggest that the optimisation algorithms additionally identify two artificial
classes—‘Highly Satisfactory’ and ‘Strongly Dissatisfactory’—through an ordinal classifier
based on interval outranking to model different levels of intensity in the DM’s preferences.
Consequently, the classifier increases its ability to discriminate. Here, we hypothesised
that swarm intelligence algorithms can obtain the edge by increasing the selective pressure
toward the region of the Pareto frontier containing ‘Highly Satisfactory’ solutions. A
straightforward way to achieve it is to consider ordinal classification as the major criterion
to rank the solutions in the archive.

Typically, swarm intelligence algorithms use an archive with the best so-far approx-
imation of the Pareto frontier. These solutions are sorted to pick the solution(s) whose
patterns will be exploited in the next iteration, hence its relevance.

By applying this strategy, ordinal classification was embedded in two swarm intelli-
gence algorithms, expressly Multi-objective Grey Wolf Optimisation and Indicator-based
Multi-objective Ant Colony Optimisation for continuous domains. The extended versions
were called Grey Wolf Optimiser with Interval outranking-based ordinal Classification
(GWO-InClass) and Ant Colony Optimisation with Interval outranking-based ordinal
Classification (ACO-InClass). We used ten synthetic DMs to validate the results; we also
considered each problem in the DTLZ test suite and explored different numbers of objective
functions (three, five, and ten). The algorithms ran 30 times for each setting.

The impact of our strategy depended on several factors: the number of objectives,
the baseline algorithm, and the properties of the test problem. Despite this, our strategy
conferred marked benefits when many objective functions were treated. In the case of
GWO-InClass, such benefits became significant in six of the nine DTLZ problems when the
number of objectives was at least five. In the case of ACO-InClass, the ordinal classifier
impacted the performance in seven DTLZ problems only when ten objective functions were
considered.

Although our strategy requires that the DM is well-disposed to spend the necessary
time to elicit their preferences, such an effort can be favourably compensated when prob-
lems with many objective functions are treated; especially, keeping in mind that these
problems are still highly challenging for a posteriori algorithms (that approximate the com-
plete Pareto frontier). The embedding of ordinal classification based on interval outranking
contributed to coping with these difficulties. Numerical results and tests for statistical
significance supported these conclusions.

23

Mathematics 2022, 10, 322

Perhaps, the major criticism of our approach is that it is only applicable when the
preferences of the DM are compatible with the underlying principles of outranking. That is,
the DM admits veto effects and has a non-compensatory preference about the objectives.

Further research is needed to draft conclusions with a greater generalisation. First, it
is necessary to know the impact of this strategy on other swarm intelligence algorithms
(e.g., particle swarm optimisation, artificial bee colony, and elephant herding optimisation).
Second, it is also necessary to conduct more experimentation with a deeper analysis to con-
nect the performance with the properties of the problem, providing plausible explanations
for those problems in which no advantage was observed (e.g., DTLZ9).

Author Contributions: Conceptualization, L.C.-R. and E.F.; methodology, G.R. and C.G.-S.; software,
A.C.; validation, A.C. and N.R.-V.; formal analysis, E.F. and G.R.; investigation, A.C. and N.R.-V.;
resources, G.R.; data curation, N.R.-V.; writing—original draft preparation, G.R.; writing—review
and editing, G.R.; visualization, C.G.-S.; supervision, L.C.-R. and E.F.; project administration, L.C.-R.
and C.G.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Basic Notions of Interval Mathematics

An interval number represents a quantity whose precise value is uncertain; yet, the
range in which the value lies is known [47]. Moore [48] defines an interval number E as
E =

[
E, E

]
, where E denotes the lower bound and E the upper bound of E. Note that

interval numbers are written in boldface italic letters in this paper.
Considering two interval numbers E =

[
E, E

]
and D =

[
D, D

]
, the basic arithmetic

operations are defined as follows:

• Addition: E + D =
[
E + D, E + D

]
.

• Subtraction: E− D =
[
E− D, E− D

]
.

• Multiplication: E · D =
[
min

{
ED, ED, ED, ED

}
, max

{
ED, ED, ED, ED

}]
.

• Division: E
D =

[
E, E

]
·
[

1
D , 1

D

]
.

A realisation of an interval number E is any real number e ∈
[
E, E

]
[49]. Let e and d

be realisations of E and D, respectively, E > D if the proposition ‘e is greater than d’ has
greater credibility than ‘d is greater than e,’ which can be calculated through the possibility
function:

P(E � D) =

⎧⎨⎩
1 if pED > 1,
0 if pED < 0,
pED otherwise,

(A1)

where pED = E−D
(E−E)+(D−D)

. If E and D are real numbers E and D, then

P(E � D) =

{
1 if E � D,
0 otherwise.

(A2)

The possibility function P(E � D) = α is taken as the degree of credibility that the
realisation d will be smaller than the realisation e [50]. The order relations are defined as:

• E = D if P(E � D) = 0.5.
• E > D if P(E � D) > 0.5.
• E � D if P(E � D) � 0.5.

24

Mathematics 2022, 10, 322

Let us consider P(E � D) = α1 and P(D � C) = α2, the possibility function is
transitive because

α1 � 0.5 ∧ α2 � 0.5 ⇒ P(E � C) � min{α1, α2}, (A3)

as a consequence, the relations � and > also meet the transitivity property on interval
numbers.

References

1. Chakraborty, A.; Kar, A.K., Swarm Intelligence: A Review of Algorithms. In Nature-Inspired Computing and Optimization; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 475–494. [CrossRef]

2. Ertenlice, O.; Kalyci, C.B. A survey of swarm intelligence for portfolio optimization: Algorithms and applications. Swarm Evol.
Comput. 2018, 39, 36–52. [CrossRef]

3. Bansal, J.C.; Singh, P.K.; Pal, N.R. Evolutionary and Swarm Intelligence Algorithms; Springer: Berlin/Heidelberg, Germany, 2019.
[CrossRef]

4. Bechikh, S.; Elarbi, M.; Said, L.B. Many-objective optimization using evolutionary algorithms: A survey. In Recent Advances in
Evolutionary Multi-Objective Optimization; Springer: Berlin/Heidelberg, Germany, 2017; pp. 105–137. [CrossRef]

5. López Jaimes, A.; Coello Coello, C.A., Many-Objective Problems: Challenges and Methods. In Springer Handbook of Computational
Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1033–1046. [CrossRef]

6. Sudeng, S.; Wattanapongsakorn, N., Finding Robust Pareto-optimal Solutions Using Geometric Angle-Based Pruning Algorithm.
In Intelligent Systems for Science and Information; Springer: Berlin/Heidelberg, Germany, 2014; pp. 277–295. [CrossRef]

7. Ikeda, K.; Kita, H.; Kobayashi, S. Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal? In
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–30 May 2021.
[CrossRef]

8. Miller, G.A. The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychol. Rev.
1956, 63, 81–97. [CrossRef]

9. Goulart, F.; Campelo, F. Preference-guided evolutionary algorithms for many-objective optimization. Inf. Sci. 2016, 329, 236–255.
[CrossRef]

10. Chapter Four-Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art. Adv.
Comput. 2015, 98, 141–207.

11. Cruz-Reyes, L.; Fernandez, E.; Sanchez-Solis, J.P.; Coello Coello, C.A.; Gomez, C. Hybrid evolutionary multi-objective optimisation
using outranking-based ordinal classification methods. Swarm Evol. Comput. 2020, 54, 100652. [CrossRef]

12. Wang, R.; Purshouse, R.C.; Fleming, P.J. Preference-inspired co-evolutionary algorithms using weight vectors. Eur. J. Oper. Res.
2015, 243, 423–441. [CrossRef]

13. Yuan, M.H.; Chiueh, P.T.; Lo, S.L. Measuring urban food-energy-water nexus sustainability: Finding solutions for cities. Sci. Total
Environ. 2021, 752, 141954. [CrossRef]

14. Kulturel-Konak, S.; Coit, D.W.; Baheranwala, F. Pruned Pareto-optimal sets for the system redundancy allocation problem based
on multiple prioritized objectives. J. Heuristics 2008, 14, 335–357. [CrossRef]

15. Wang, Y.; Limmer, S.; Olhofer, M.; Emmerich, M.; Back, T. Automatic preference based multi-objective evolutionary algorithm on
vehicle fleet maintenance scheduling optimization. Swarm Evol. Comput. 2021, 65, 100933. [CrossRef]

16. Branke, J.; Kaußler, T.; Schmeck, H. Guidance in evolutionary multi-objective optimization. Adv. Eng. Softw. 2001, 32, 499–507.
[CrossRef]

17. He, Y.; He, Z.; Kim, K.J.; Jeong, I.J.; Lee, D.H. A Robust Interactive Desirability Function Approach for Multiple Response
Optimization Considering Model Uncertainty. IEEE Trans. Reliab. 2020, 70, 175–187. [CrossRef]

18. Cruz Reyes, L.; Fernandez, E.; Sanchez, P.; Coello, C.; Gomez, C. Incorporation of implicit decision-maker preferences in
Multi-Objective Evolutionary Optimization using a multi-criteria classification method. Appl. Soft Comput. 2017, 50, 48–57.
[CrossRef]

19. Gomez, C.G.; Cruz-Reyes, L.; Rivera, G.; Rangel-Valdez, N.; Morales-Rodriguez, M.L.; Perez-Villafuerte, M. Interdepen-
dent Projects selection with preference incorporation. In New Perspectives on Applied Industrial Tools and Techniques; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 253–271. [CrossRef]

20. Rivera, G.; Porras, R.; Sanchez-Solis, J.; Florencia, R.; García, V. Outranking-based multi-objective PSO for scheduling unrelated
parallel machines with a freight industry-oriented application. Eng. Appl. Artif. Intell. 2022, 108, 104556. [CrossRef]

21. Branke, J.; Corrente, S.; Greco, S.; Słowiński, R.; Zielniewicz, P. Using Choquet integral as preference model in interactive
evolutionary multiobjective optimization. Eur. J. Oper. Res. 2016, 250, 884–901. [CrossRef]

22. French, S., Ed. Decision Theory: An Introduction to the Mathematics of Rationality. Halsted Press, 1986. Available online: https://
www.amazon.com/Decision-Theory-Introduction-Mathematics-Applications/dp/0853126828 (accessed on 12 December 2021).

23. Balderas, F.; Fernandez, E.; Gomez-Santillan, C.; Rangel-Valdez, N.; Cruz, L. An Interval-Based Approach for Evolutionary
Multi-Objective Optimization of Project Portfolios. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1317–1358. [CrossRef]

25

Mathematics 2022, 10, 322

24. Fernandez, E.; Figueira, J.; Navarro, J. An interval extension of the outranking approach and its application to multiple-criteria
ordinal classification. Omega 2019, 84, 189–198. [CrossRef]

25. Fernandez, E.; Navarro, J.; Solares, E.; Coello, C.C. Using evolutionary computation to infer the decision maker’s preference
model in presence of imperfect knowledge: A case study in portfolio optimization. Swarm Evol. Comput. 2020, 54, 100648.
[CrossRef]

26. Fernandez, E.; Figueira, J.R.; Navarro, J. Interval-based extensions of two outranking methods for multi-criteria ordinal
classification. Omega 2020, 95, 102065. [CrossRef]

27. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.d.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion
optimization. Expert Syst. Appl. 2016, 47, 106–119. [CrossRef]

28. Falcón-Cardona, J.G.; Coello Coello, C.A. A new indicator-based many-objective ant colony optimizer for continuous search
spaces. Swarm Intell. 2017, 11, 71–100. [CrossRef]

29. Farina, M.; Amato, P. On the optimal solution definition for many-criteria optimization problems. In Proceedings of the 2002
Annual Meeting of the North American Fuzzy Information Processing Society Proceedings, NAFIPS-FLINT 2002 (Cat. No.
02TH8622), New Orleans, LA, USA, 27–29 June 2002; pp. 233–238. [CrossRef]

30. Coello Coello, C.A.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer:
Berlin/Heidelberg, Germany, 2007; Volume 5. [CrossRef]

31. Emmerich, M.T.M.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat.
Comput. 2018, 17, 585–609. [CrossRef]

32. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Soft. 2014, 69, 46–61. [CrossRef]
33. Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [CrossRef]
34. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 2; pp. 1470–1477. [CrossRef]
35. Roy, B. The outranking approach and the foundations of ELECTRE methods. In Readings in Multiple Criteria Decision Aid; Springer:

Berlin/Heidelberg, Germany, 1990; pp. 155–183. [CrossRef]
36. Almeida-Dias, J.; Figueira, J.R.; Roy, B. A multiple criteria sorting method where each category is characterized by several

reference actions: The Electre Tri-nC method. Eur. J. Oper. Res. 2012, 217, 567–579. [CrossRef]
37. Balderas, F.; Fernandez, E.; Cruz-Reyes, L.; Gomez-Santillan, C.; Rangel-Valdez, N. Solving group multi-objective optimization

problems by optimizing consensus through multi-criteria ordinal classification. Eur. J. Oper. Res. 2021, 297, 1014–1029. [CrossRef]
38. Brockhoff, D.; Wagner, T.; Trautmann, H. On the properties of the R2 indicator. In Proceedings of the 14th Annual Conference on

Genetic and Evolutionary Computation, Lille, France, 10–14 July 2012; pp. 465–472. [CrossRef]
39. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting

Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [CrossRef]
40. Rodríguez-Fdez, I.; Canosa, A.; Mucientes, M.; Bugarín, A. STAC: A web platform for the comparison of algorithms using

statistical tests. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5
August 2015; pp. 1–8. [CrossRef]

41. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002
Congress on Evolutionary Computation, CEC’02, Honolulu, HI, USA, 12–17 May 2002; Volume 1; pp. 825–830. [CrossRef]

42. Castellanos-Alvarez, A.; Cruz-Reyes, L.; Fernandez, E.; Rangel-Valdez, N.; Gómez-Santillán, C.; Fraire, H.; Brambila-Hernández,
J.A. A Method for Integration of Preferences to a Multi-Objective Evolutionary Algorithm Using Ordinal Multi-Criteria
Classification. Math. Comput. Appl. 2021, 26, 27. [CrossRef]

43. Fernandez, E.; Rangel-Valdez, N.; Cruz-Reyes, L.; Gomez-Santillan, C.G.; Coello Coello, C.A. Preference Incorporation into
MOEA/D Using an Outranking Approach with Imprecise Model Parameters. Soc. Sci. Res. Netw. 2021, 1–24. [CrossRef]

44. Rivera, G.; Coello Coello, C.A.; Cruz-Reyes, L.; Fernandez, E.R.; Gomez-Santillan, C.; Rangel-Valdez, N. Preference Incorporation
into Many-Objective Optimization: An Outranking-based Ant Colony Algorithm. Swarm Evol. Comput. 2022, 69, 101024.
[CrossRef]

45. Li, K.; Deb, K.; Yao, X. R-metric: Evaluating the performance of preference-based evolutionary multiobjective optimization using
reference points. IEEE Trans. Evol. Comput. 2017, 22, 821–835. [CrossRef]

46. Meneghini, I.R.; Alves, M.A.; Gaspar-Cunha, A.; Guimaraes, F.G. Scalable and customizable benchmark problems for many-
objective optimization. Appl. Soft Comput. 2020, 90, 106139. [CrossRef]

47. Kearfott, R.B.; Kreinovich, V. Applications of interval computations: An introduction. In Applications of Interval Computations;
Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–22. [CrossRef]

48. Moore, R.E. Methods and Applications of Interval Analysis; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA,
1979.

49. Fliedner, T.; Liesiöb, J. Adjustable robustness for multi-attribute project portfolio selection. Eur. J. Oper. Res. 2016, 252, 931–946.
[CrossRef]

50. Balderas, F.; Fernandez, E.; Gómez, C.; Rivera, G.; Cruz-Reyes, L.; Rangel, N. Uncertainty modelling for project portfolio problem
using interval analysis. Int. J. Comb. Optim. Probl. Inf. 2016, 7, 20–27.

26

Citation: Škorupová, N.; Raunigr, P.;

Bujok, P. Usage of Selected Swarm

Intelligence Algorithms for Piecewise

Linearization. Mathematics 2022, 10,

808. https://doi.org/10.3390/

math10050808

Academic Editor: Jian Dong

Received: 30 January 2022

Accepted: 28 February 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Usage of Selected Swarm Intelligence Algorithms for
Piecewise Linearization

Nicole Škorupová 1,*,†, Petr Raunigr 2,† and Petr Bujok 2,†

1 CE IT4Innovations–IRAFM, University of Ostrava, 70103 Ostrava, Czech Republic
2 Department of Informatics and Computers, University of Ostrava, 30. dubna 22,

70103 Ostrava, Czech Republic; petr.raunigr@osu.cz (P.R.); petr.bujok@osu.cz (P.B.)
* Correspondence: nicole.skorupova@osu.cz
† These authors contributed equally to this work.

Abstract: The paper introduces a new approach to enhance optimization algorithms when solving
the piecewise linearization problem of a given function. Eight swarm intelligence algorithms were
selected to be experimentally compared. The problem is represented by the calculation of the
distance between the original function and the estimation from the piecewise linear function. Here,
the piecewise linearization of 2D functions is studied. Each of the employed swarm intelligence
algorithms is enhanced by a newly proposed automatic detection of the number of piecewise linear
parts that determine the discretization points to calculate the distance between the original and
piecewise linear function. The original algorithms and their enhanced variants are compared on
several examples of piecewise linearization problems. The results show that the enhanced approach
performs sufficiently better when it creates a very promising approximation of functions. Moreover,
the degree of precision is slightly decreased by the focus on the speed of the optimization process.

Keywords: swarm intelligence algorithms; piecewise linearization; optimization; parameter tuning;
approximation; experimental comparison

MSC: 68T20

1. Introduction

Linearization is one of the most powerful methods that deal with nonlinear systems.
One of the most important factors in piecewise linearization is the number of linear seg-
ments. Piecewise linear functions are often used to approximate nonlinear functions, and
the approximation itself is an important tool for many applications. This method can
be found in many applications, for example, dynamical systems, nonlinear non-smooth
optimization, nonlinear differential equations, fuzzy ordinary differential equations and
partial differential equations, petroleum engineering, and medicine [1–5].

Various existing approaches attempt to find a piecewise linear approximation of a
given function. Classical mathematical methods based on differentiable nonlinear functions
have been introduced, for example, the Newton–Kantorovich iterative method, analytical
linearization, forward–difference approximation, or center-difference approximation [6,7].
Other types of classical transforms or approximations, e.g., Laplace, Fourier, or integral,
are used for the construction of approximation models [8]. Methods based on fuzzy theory
are called fuzzy approximation methods, and the most known method is called a fuzzy
transform [9].

In [10], the authors introduced linearization methods that used the large deviation
principle, utilizing the Donsker–Varadhan entropy of a Gaussian measure and the relative
entropy of two probability measures. In [1], the author presented an easy and general
method for constructing and solving linearization problems. A spline algorithm to con-
struct the approximant and the interior point method to solve the linearization problem
was created. In [11], the Wiener models were composed of a linear dynamical system

Mathematics 2022, 10, 808. https://doi.org/10.3390/math10050808 https://www.mdpi.com/journal/mathematics
27

Mathematics 2022, 10, 808

together with a nonlinear static part. If the nonlinear part is invertible, the inverse function
is approximated by a piecewise linear function estimated by the usage of the genetic al-
gorithm and evolution strategy. The linear dynamic system part is estimated by the least
square method.

In [12], the authors introduced a method to find the best piecewise linearization of
nonlinear functions based on an optimization problem that is reduced to linear program-
ming. Another algorithm that is used to find the optimal piecewise linearization for a
predefined number of linear segments with particle swarm optimization (PSO), without
the knowledge of the function and without ideal partitions, is introduced in [13]. Further,
the authors of [14] introduced a genetic algorithm-based clustering approach to obtain the
minimal piecewise linear approximation applied on nonlinear functions. The technique
uses a trade-off between higher approximation accuracy and low complexity of the approx-
imation by the least number of linearized sectors. Another piecewise linearization based on
PSO is applied to piecewise area division; the control parameter optimization of the model
was introduced in [15]. In [16], an effective algorithm to solve the stochastic resource allo-
cation problem that designs piecewise linear and concave approximations of the recourse
function of sample gradient information was introduced. In [17], the authors presented a
range of piecewise linear models and algorithms that provided an approximation that fits
well in their applications. The models involve piecewise linear functions using a constant
maximum number of linear segments, border envelopes, strategies for continuity, and a
generalization of the used models for stochastic functions.

We can already find some piecewise linearization problems solved by evolutionary
algorithms, where specific kinds of functions or the number of piecewise linear parts
are required. In this experiment, a kind of function is not restricted, and the number
of linear segments does not need to be predefined. Nevertheless, only the 2D functions
are used to be approximated in this experiment. Besides evolutionary algorithms, the
traditional mathematical approaches were mentioned in this section to solve the piecewise
linearization problems, however, these approaches will not be addressed in this paper, and
a comparison with our methods will be mentioned in future work.

The aim of this paper is to contribute to the problem of piecewise linearization using
popular swarm intelligence algorithms with automatic parameters tuning. The linearization
of a given nonlinear function is an approximation problem leading to the determination
of appropriate points. The goal is to find the best distribution of the points to minimize
the distance between the original function and the approximated piecewise linear func-
tion. As there is no acceptable analytical solution of this optimization problem, using the
stochastic-based (swarm intelligence) algorithms promises sufficient accuracy. Moreover,
the selected swarm intelligence algorithms will be enhanced by the automatic parameter
tuning approach and compared to provide an insight into the algorithm’s performance.

The rest of the paper is arranged as follows. In Section 2, the basic terms used in
this paper are introduced. In Section 3, swarm intelligence algorithms selected for the
comparison are briefly described. In Section 4, the application of the original swarm intel-
ligence algorithms on piecewise linearization with their parameters is proposed. Finally,
in Section 5, the application of the newly proposed automatic parameter tuning of the
swarm intelligence algorithms is introduced. A compendious discussion of the algorithm’s
efficiency and precision is assumed in Section 6.

2. Preliminaries

In this paper, we work with a real-value problem in a continuous search area. We
consider the objective function f (x), where x = (x1, x2, . . . , x�), � ∈ N is defined on the
search domain X = [a, b]. The problems solved in a discrete search space could require
some modifications of the presented methods. Through this paper, for the simplicity of the
demonstrated method, the domain [0, 1] is used, but the problem can be easily reduced to
the more general domain.

28

Mathematics 2022, 10, 808

2.1. Piecewise Linear Function

Through this paper, piecewise linear functions are used, therefore the piecewise linear
function should be defined.

A piecewise linear function f : [0, 1]→ [0, 1] given by finite number of points (xi, yi) ∈
[0, 1]× [0, 1] for i = 1, . . . , �, is a function f : [0, 1] → [0, 1] such that x1 = 0, x� = 1, and
f (xi) = yi for each i = 1, 2, . . . , �, and f |[xi ,xi+1] is linear for every i = 1, 2, . . . , �− 1. Points
x are called turning points. More precisely,

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y1 + (y2 − y1)
(x−x1)
(x2−x1)

, x1 ≤ x ≤ x2,

y2 + (y3 − y2)
(x−x2)
(x3−x2)

, x2 ≤ x ≤ x3,
...

y�−1 + (y� − y�−1)
(x−x�−1)
(xl−x�−1)

, x�−1 ≤ x ≤ x�.

2.2. Metrics

The difference between the original function and the approximated piecewise linear
function is calculated with chosen metrics. In this paper, two different metrics are applied
to achieve more complex results of compared methods.

Let (x, y) are vectors, where x = {x1, x2, . . . , xn}, y = {y1, y2, . . . , yn}. A Manhattan
metric is a function d1 : Rn × Rn → R in n-dimensional space, which gives the distance
between vectors x, y by the sum of the line segments projection lengths between the points
onto the coordinate system. More precisely,

d1(x, y) =
n

∑
i=1
|xi − yi|.

A metric defined on a vector space, induced by the supremum or uniform norm,
where the two vectors distance is the biggest of the differences, is called Maximum metric.
More precisely,

d2(x, y) = max
i=1,2,...,n

|xi − yi|.

3. Selected Swarm Intelligence Algorithms

Now, the use of swarm algorithms for searching a global optima of an interval map
f : [0, 1]→ [0, 1] will be demonstrated. A population is represented as a finite set of n ∈ N
randomly chosen points x ∈ [0, 1]. Further, the population moves in the domain with the
help of the given algorithm strategy. The processes are mostly combined with the help of
stochastic parameters, adapted towards the required solution. These algorithms stop after
a certain number of iterations or under some predefined condition. The algorithms were
selected based on the popularity of the methods measured by the frequency of their real
applications and also based on our previous experiments [18,19].

3.1. Swarm Intelligence Algorithms

Swarm intelligence algorithms are stochastic algorithms from the group of evolution-
ary algorithms. These algorithms are used for solving global optimization problems that
model the social behaviors of a group of individuals. The inspiration comes mostly from
nature, especially from biological systems inspired by biological evolution, such as selec-
tion, crossover, and mutation. Most swarm intelligence in nature-based systems involve
algorithms of ant colonies, bird flocking, hawk hunting, animal herding, fish schooling,
and others. The difference between evolutionary algorithms and swarm intelligence is that
there is an interaction of more candidate solutions, but they differ in the model between
individuals. In swarm intelligence algorithms, there is also a group (population), but its
move in the domain is followed by the group behavior rules of a given population. In this
section, the swarm algorithms used in this manuscript will be introduced.

29

Mathematics 2022, 10, 808

3.1.1. Particle Swarm Optimization

A population in the PSO algorithm is composed of particles that move in a predefined
search area according to evolutionary processes. In each step, several characteristics are
computed and employed to illustrate how the particles are toward the solution [20–22].

The population is represented by a finite set of n ∈ N points x ∈ [0, 1] called particles is
given randomly. Then, the population is evaluated, and each particle controls its movement
in the search area according to its personal best position pbest, the best neighbour position
pg and with the stochastic parameters (acceleration coefficients Φ1, Φ2, constriction factor
χ). There exist several variants of the PSO algorithm. In this paper, the original PSO
algorithm from [21] with the modification by constriction factor χ is used. Parameter χ
does not change during the algorithm’s run and it has a restrictive impact on the result.
When the PSO algorithm runs without restraining velocities, it can rapidly increase to
unacceptable levels within a few iterations. The elements UΦ1 , UΦ2 are represented by
random points from a uniformly distributed intervals [0, Φ1], [0, Φ2], where Φ1, Φ2 ∈ R.
At first, pbesti

and f (xi) are compared, and if pbesti
≤ f (xi), then pi = xi and to the value

of pbesti
is saved a value of the function (pbesti

= f (pi)). In the next step, it finds the best
neighbour pg of i-th position and assign it j-th position, if f (pg) ≥ f (xj), then pg = xj and
f (pg) = f (xj). The main part of the calculation consists of computing the velocity and
updating the new particle positions which are given by the following formulas:

vi = χ(vi + UΦ1(pi − xi) + UΦ2(pg − xi)),

xi = xi + vi.

3.1.2. Self-Organizing Migrating Algorithm

A self-organizing migrating algorithm (SOMA) is a simple model of the hunting pack.
The individuals move across the domain, such that each individual in each migration round
goes straight to the leader of the pack, checks the place of each jump, and remembers the
best-found place for the next migration round. SOMA has several strategies, we use the’
AllToOne’ strategy, where all individuals move towards the best one from the population.
Each individual xi ∈ [0, 1] is evaluated by the fitness, and the one with the highest fitness is
chosen as a leader for the loop. Then the rest of the individuals jump towards the leader and
each of them is evaluated by the cost function after each jump. SOMA has three numerical
parameters defining a way of moving an individual behind the leader. These parameters
are the relative size of the skipping leader, the size of each jump, and the parameter which
determines the direction of movement of the individual behind the leader. The jumping
approach continues until a new individual-position restricted by PathLength is reached.
The new individual position at the end of each jump is determined by

xML+1
i = xML

i,start + (xML
L − xML

i,start)StepSize · PRTVector.

Then each individual moves toward the best position on its jumping trajectory. Before
an individual continues to jump towards the leader, a set of random numbers from the
interval [0, 1] is generated, and each member of this set is compared with PRT, where
PRT ∈ [0, 1]. If the generated random number is greater than PRT, the corresponding
ith coordinate will be taken from the new position (PRTVectorj = 1) otherwise it will be
taken from the original individuals position (PRTVectorj = 0). During the process, each
individual attempts to find its best position and the best position from all individuals [23].

3.1.3. Cuckoo Search

The Cuckoo search (CS) algorithm is inspired by brood parasitism of cuckoos which
give eggs in the nests of the host birds. The host bird throws the egg away from the nest or
abandons the nest whereas build a new nest by the fraction pa. The idea of the algorithm is
to create new and better solutions (cuckoos) that replace worse solutions from the nests.

30

Mathematics 2022, 10, 808

Each egg represents one solution and a cuckoo egg gives a new possible solution. In our
case, we use the easiest form of the algorithm when each nest has one egg.

Cuckoo search uses the Mantegna Lévy flight Lévy(β), which is given by the following
equation: step = u/|v|1/β. The parameter β is taken from the interval [0.3, 2), parameters
u, v are normally distributed stochastic variables and u is calculated as u · σ, where σ is the
standard deviation. The main part of the algorithm is the application of Lévy flights and
random walks in the equation that generates new solutions:

xt+1
i = xt

i + αLévy(β).

The parameter α > 0 is the step size, and mostly, the value α = 1 can be used. The
total number of possible host nests is constant, where the probability that the host bird
discovers a cuckoo’s egg is pa ∈ [0, 1] [24].

3.1.4. Firefly Algorithm

Firefly algorithm (FFL) is inspired by the flashing behavior of fireflies that produce
light at night. Fireflies are unisexual; therefore, they are attracted to each other no matter
their sex. A new generation of fireflies is given by the random walk and their attraction.
Fireflies can communicate with their light intensity that informs the swarm about its
features as species, location, and attractiveness. Between any two fireflies i and j the
Euclidean distance r(i, j) at positions xi and xj is defined. The attractiveness function of
a firefly j should be selected as any monotonically decreasing function with a distance

to the selected firefly defined as β = β0 · e−γ·r2
ij , where rij is the distance, β0 is the initial

attractiveness at a distance rij = 0, and γ represents an absorption coefficient characterizing
the variation of the attractiveness value. The movement of each ith firefly attracted by a
more firefly j with higher attractiveness is given by the equation

xt+1
i = xt

i + β(xt
j − xt

i) + α(σ− 0.5).

The first component represents the ith firefly position, the second part enables the
model of the attractiveness of the firefly, and the last part is randomization, with α ∈ [0, 1]
represented by the problem of interest. The parameter σ represents a scaling factor that
determines the distance of visibility, and mostly σ ∈ [0, 1] that is given by a random uniform
distribution in the space can be used [25].

3.1.5. Grey Wolf Optimizer

Grey wolf optimizer (GWO) is inspired by wolves living in a pack. In the mathe-
matical model of the wolves’ social hierarchy, the best solution is represented by α, the
second-best solution is β, and δ represents the third-best solution. The rest of the candidate
solutions are in a group ω. The optimization in this algorithm is guided by the best three
wolves α, β, δ, and the wolves in ω follow these three wolves. The model is given by the
following equations:

d = |c · x(t)P − x(t)|
and

x(t+1) = x
(t)
p − a · d,

where t is the current iteration, variables a and c are coefficient vectors, xp is the prey’s
position vector, and x represents the position vector of a grey wolf. The vectors a and c are
determined as follows: a = 2ar1 − a, c = 2r2. Components of a are linearly decreased from
2 to 0 over the course of iterations by the formula 2− (2 FES

maxFES), where maxFES is a total
count of fitness value evaluations, and r1, r2 are random values from interval [0, 1] [26].

31

Mathematics 2022, 10, 808

3.1.6. Artificial Bee Colony

The artificial bee colony (ABC) is inspired by the foraging behavior of honey bees,
and it employs three types of bees: employed foraging bees, onlookers, and food sources.
Employed foraging bees and onlookers search for food sources, and for one food source
equals to one employed bee. It means the number of employed bees is the same as the
number of food places around the hive. The algorithm randomly places a population of
initial vectors, which is iteratively improved. The possible solution is represented by the
position of the food, and the food source gives the quality (fitness) of a given problem [27].
The ABC algorithm is quite simple because it uses only three control parameters that should
be determined (size of the population, limit of scout L, dimension of the problem).

The new solution is given by the following formula

vi = xi + φi(xi − xk),

where k and j are randomly selected indexes and φ is random number from the range
[−1, 1]. Then, it computes the probability value p for the solutions x with the help of the
fitness value. The next step is to produce and evaluate new onlookers solutions vi, which
are based on the solutions xi that depends on pi.

3.1.7. Bat-Inspired Algorithm

The inspiration of the bat-inspired algorithm (BIA) comes from the echolocation
behavior of microbats, which use varying pulse rates controlled by emission and loudness.
Each bat flies randomly with a given velocity, and it has its position with a varying
frequency or wavelength and loudness. All bats use echolocation; thus, they know the
distance and the difference between food.

The population of bats is placed randomly, and after that, they fly randomly with
a given velocity vi to the position xi with a given frequency fmin, changing wavelength
λ, and loudness parameter A0. The bats automatically adjust the proper wavelength of
the emitted pulses, and also the pulse emission rate r ∈ [0, 1]. The loudness can vary, for
example, between A0 and a minimum value Amin. The frequency f is in a range [fmin, fmax]
and it corresponds to the range of wavelengths [λmin, λmax]. Here, the wavelengths are not
used, instead, the frequency varies whereas the wavelength λ is fixed. This is caused by
the relation between λ and f , where λ · f is constant. For simplicity, the frequency is set
from f ∈ [0, fmax]. It is clear that higher frequencies give short wavelengths and provide a
shorter distance. The rate of the pulse can be in the interval [0, 1], where 0 denotes no pulses,
and 1 marks the maximum rate of pulse emission. The new solutions xt

i and velocities vt
i at

current time t are given by
fi = fmin + (fmax − fmin)β,

vt
i = vt−1

i + (xt
i − xbest) fi,

xt
i = xt−1

i + vt
i ,

where β ∈ [0, 1] represents a uniformly distributed random vector, and value xbest demon-
strates the current global best position detected after comparing all bat-solutions. The local
search strategy generates a new solutions for each bat using random walk xnew = xold + εAt,
where ε ∈ [−1, 1] is a random number, while At = {At

i} is the mean loudness of whole bats
population in the current time step. The loudness parameter Ai and the pulse emission rate
ri are updated during the iterations proceed. Now we have At+1

i = αAt
i , rt+1

i = r0
i [1− e−γt],

where α and γ are constants. For any 0 < α < 1 and γ > 0, we have At
i → 0, rt

i → r0
i , as

t → ∞ [28].

3.1.8. Tree-Seed Algorithm

The tree-seed algorithm (TSA) is based on the relationship observed between trees and
seeds, where seeds gradually grow, and new trees are created from them. The trees’ surface
is represented by a search area, and the tree and seed locations are mentioned as possible

32

Mathematics 2022, 10, 808

solutions of the optimization problem. It employs two peculiar parameters as the total
number of trees and the seed production. The main and important problem is to obtain the
seed location produced from a tree. The first equation finds the tree location used for the
production of the seed, whereas the second employs the locations of two different trees to
produce a new seed for the tree:

si,j = ti,j + αi,j × (bj − tr,j),

si,j = ti,j + αi,j × (ti,j − tr,j),

where si,j is jth dimension of ith seed position to produce ith tree and ti,j is the jth dimension
of the ith tree, bj represents the jth dimension of the best tree, where b is computed as
b = min{ f (ti)}, the jth dimension of rth tree tr,j is selected from the population randomly.
The scaling factor α is produced randomly from [−1, 1], i and r are different indices.

First, the initial tree locations that give us trial solutions of the optimization problem
are designed by using:

ti,j = lj,min + ri,j(hj,max − lj,min)

where, lj,min represents the lower bound of the search area, hj,max denotes the upper bound
of the search area, and ri,j ∈ [0, 1] is a uniformly distributed random number. The best
solution is selected from the population using b where n represents the size of the trees
population. The number of seeds can be higher than the number of trees [29].

3.1.9. Random Search

Random search (RS) is the simplest stochastic algorithm for global optimization, which
was proposed by Rastrigin in 1963. In every iteration, it generates a new point from the
uniform distribution in the search area. Then, the function value of this point is compared
with the best point found so far. If the new trial point is better, it replaces the old best
point. There is not used any learning mechanism or exploitation of knowledge from the
previous search [30]. This algorithm does not belong to the group of swarm algorithms,
but because it can have fast and good convergence to the given solution, it can be used as a
comparing algorithm.

4. Piecewise Linearization Using Swarm Intelligence Algorithms

Our implementation of the swarm algorithms consists of searching for a linearization l f
(the piecewise linear function definition is above) of a fixed interval map f : [0, 1]→ [0, 1].
To allocate a suitable solution, the optimization function (objective function) is represented
by a distance function given by the metric between f and its linearization l f . Every possible
linearization is represented by a finite number of points (� ∈ N), every population contains
n particles (�-dimensional vectors), where the stochastic parameters are adapted.

In this section, we introduce the testing functions, provide the setting of the algo-
rithm’s parameters that can be used for the problem of linearization, and we look at which
algorithm can give us the best results.

4.1. Test Functions

For testing, we chose continuous functions f : [0, 1] → [0, 1], where for simplicity,
we work only in the space [0, 1]. These functions were chosen from the most basic to the
complicated ones (see Figure 1), to demonstrate the algorithm behavior on different levels
of functions. The functions are given by the following formulas:

f1(x) = 4x− 4x2 (1)

f2(x) =
1
2
(sin

(3
2

x + 1
10

)
+ 1) (2)

f3(x) =
1

25
(sin 20x + 20x · sin 20x · cos 20x) +

1
2

(3)

33

Mathematics 2022, 10, 808

f4(x) = 0.9 + (−1 + x)(0.9 + (−0.16 + (5.4 + (−27+

(36 + (510 + (−120− 2560(−0.9 + x))(−0.1 + x))

(−0.6 + x))(−0.2 + x))(−0.8 + x))(−0.4 + x))x)

(4)

f5(x) = sin
(3

2

x + 13
200

)
+ 1 (5)

f6(x) =
(

x− 1
2
)

sin
(

1
x− 1

2

)
+

1
2

(6)

Figure 1. Graphs of the functions f1, f2, f3, f4, f5, and f6.

4.2. Parameter Settings of the Chosen Algorithms

The proper choice of parameters can have a large influence on the optimization
performance and, therefore, for each algorithm, in comparison, we tested which parameters
were suitable for our problem, in regard to searching for the best possible linearization. In
this subsection, we will discuss the setting of parameters for the algorithms introduced in
Section 3.1. Each algorithm proceeded 50 times with a fixed dimension � = 16 and also
a fixed population size set to n = 25. Each algorithm runs as long as it takes to find a
solution with a good enough f itness_value, but it has to find it before maxFES = 10,000.
This fitness_value threshold was set to value 0.2.

In PSO, the setting of acceleration coefficients Φ1, Φ2 and constriction factor χ should
be set. Parameter Φ1 controls the importance of the particle’s personal best value, whereas
the importance of the neighbor best value is controlled by parameter Φ2. The algorithm
can be unstable when these parameters are too high because the velocity can grow up
faster. The equation Φ = Φ1 + Φ2, where Φ > 4, should be satisfied and the authors of
the algorithm recommended Φ1, Φ2 set to 2.05. Parameter χ has a restrictive effect on the
result, and it does not change in time. In the original version, PSO has χ = 2

(Φ−2+
√

Φ2−4Φ)
.

34

Mathematics 2022, 10, 808

In SOMA, there are a few parameters in which the settings should be considered and
tested. Parameter PathLength ∈ (1, 5] is a parameter that defines how far an individual
stops behind the leader. The StepSize is from the interval (0, PathLength] and step is from
the interval (0, 1]. One of the most sensitive parameters is PRT ∈ [0, 1], which represents the
perturbation and decides if an individual will travel towards the leader directly or not [23].

In the original version of the cuckoo search algorithm, parameter β is taken from the
interval [0.3, 2). The step size α > 0 is dependent on the scales of the problem, and mostly,
the value α = 1 is used. The total number of possible host nests is restricted, where the
probability that the host bird discovers a cuckoo’s egg is pa ∈ [0, 1].

In the firefly algorithm, the parameter β0 = 1 is the initial attractiveness for a distance
rij = 0. Parameter of γ represents an absorption coefficient that characterizes the variation
of the attractiveness value of a firefly. If β0 = 0, it becomes a simple random walk.

All parameters used in the grey wolf optimizer are given by random values, so there
is no need for more detailed parameter testing.

The control parameters in the ABC algorithm, which should be set, are the size of the
population CS and the limit for scout (L = (CS·D)

2 , where D is the dimension of the problem).
In the original version of the bat-inspired algorithm, the values fmin = 0 and fmax = 100

depends on the size of the search area dimension. Each bat has a randomly assigned fre-
quency with the uniform distribution of [fmin, fmax]. For simplicity, it can be used α = γ,
and in the original version author used α = γ = 0.9, but for our case, we had to do experi-
mental testing. For each bat individual, different values of loudness and pulse emission
rate are recommended, based on randomization. In the tree-seed algorithm, importance
is given to the selection of an equation that will produce a new seed location. Control
parameter ST ∈ [0, 1], called search tendency, is used for the selection. The seed number
of each tree is determined randomly, and it should not be less than 1. The recommended
number of randomly generated seeds is between 10 and 25% of the number of trees.

For a better overview of the algorithm configuration, the settings of the numerical
parameters are assumed in Table 1. The Optimal Interval column presents the intervals
containing the achieved acceptable values of the parameters. In the Chosen Value column,
the final values of the parameters are presented.

Table 1. Parameters setting.

Algorithm Parameter Optimal Interval Chosen Value

PSO
χ - 0.69
φ1 - 2.45
φ2 - 1.65

SOMA
step [0.11, 0.31] 0.11

PathLength [3.5, 5.0] 4.7
PRT [0.6, 0.9] 0.6

CS pa [0.0, 1.0] 0.25
β0 [0.0, 1.66] 1.5

FFL
α [0.0, 1.0] 1.0
γ [7, 10] 10
β0 [0.6, 1.0] 0.8

ABC L - 50

BIA

α - 0.9
γ - 0.9
r0 [0, 0.2], [0.8, 1.0] 0.8
A0 [1.0, 1.6] 1.6

TSA
lj,min [0.05, 0.25] 0.25
hj,max [0.5, 1.0] 0.9

ST - 0.1

35

Mathematics 2022, 10, 808

4.3. Examples of Piecewise Linearization

In this subsection, we will demonstrate an example of linearization for Function f5
given by all chosen evolutionary algorithms. To demonstrate how the algorithm works,
the graph of results for Function f5 of each evolutionary algorithm is presented (Figure 2).
Each evolutionary algorithm has set its input parameters in accordance with Section 4.2.

ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 2. Each graph represents the best result of a specific algorithm. The total number of points
was set to 16 and maxFES = 10,000.

4.4. Summary of Results

In this subsection, we will introduce a set of tables showing the results of each evolu-
tionary algorithm, and to make the results clearer, we chose to use only the four testing
functions introduced in Section 4.1.

The following tables (Tables 2–5) show results of min, max, mean, median, and
standard deviation values computed from 50 independent runs for each function. The fol-
lowing functions run with the same settings of parameters as was introduced in Section 4.2.
Figures 3 and 4 show graphs of distance convergence means for a selected maxFES where
checkpoints are taken each 100th iteration.

36

Mathematics 2022, 10, 808

Table 2. Comparison of algorithms for Function f1.

Mean Median SD Min Max

PSO 0.206 0.204 0.007 0.202 0.235
SOMA 0.211 0.209 0.005 0.204 0.234
CS 0.202 0.202 0.001 0.202 0.203
FFL 0.284 0.283 0.013 0.252 0.313
GWO 0.223 0.220 0.018 0.199 0.264
ABC 0.203 0.203 0.004 0.191 0.212
BIA 0.430 0.431 0.059 0.329 0.567
TSA 0.214 0.212 0.004 0.204 0.227
RS 0.231 0.231 0.011 0.204 0.258

Table 3. Comparison of algorithms for Function f3.

Mean Median SD Min Max

PSO 2.388 2.283 0.353 1.931 3.656
SOMA 2.377 2.352 0.256 1.973 3.309
CS 2.524 2.533 0.180 2.152 3.116
FFL 5.245 5.269 0.267 4.594 5.742
GWO 3.575 3.304 0.718 2.908 5.649
ABC 2.088 2.079 0.079 1.908 2.256
BIA 6.014 6.093 0.621 4.509 6.935
TSA 2.453 2.440 0.203 2.137 2.951
RS 3.372 3.389 0.227 2.831 3.830

Table 4. Comparison of algorithms for Function f4.

Mean Median SD Min Max

PSO 0.847 0.828 0.062 0.783 1.112
SOMA 0.892 0.881 0.052 0.820 1.024
CS 0.863 0.854 0.039 0.803 0.983
FFL 2.180 2.206 0.184 1.707 2.523
GWO 1.824 1.808 0.143 1.524 2.347
ABC 0.822 0.820 0.017 0.789 0.895
BIA 2.320 2.230 0.354 1.831 3.447
TSA 0.912 0.914 0.044 0.832 1.032
RS 1.187 1.184 0.077 0.981 1.335

Table 5. Comparison of algorithms for Function f5.

Mean Median SD Min Max

PSO 1.719 1.705 0.321 0.890 3.066
SOMA 1.927 1.966 0.132 1.426 2.140
CS 1.662 1.704 0.187 1.143 2.067
FFL 3.347 3.400 0.251 2.625 3.772
GWO 2.174 2.023 0.291 1.886 2.705
ABC 1.632 1.688 0.220 1.112 1.977
BIA 3.726 3.771 0.419 2.501 4.351
TSA 1.718 1.729 0.146 1.149 1.959
RS 2.144 2.159 0.139 1.499 2.383

37

Mathematics 2022, 10, 808

Function f1 Function f3

Function f4 Function f5

Figure 3. Graphs of distance convergence means for maxFES = 2500.

function F1 function F3

function F4 function F5

Figure 4. Graphs of distance convergence means for maxFES = 10,000.

38

Mathematics 2022, 10, 808

From the results (see Tables 2–5) it is obvious that there is simply no evolutionary
algorithm suitable to use for linearization of all functions. Results show that for the
function f1 the best algorithm is CS. On the other hand, f3 and f4 are best handled by the
ABC algorithm. In the case of f5, there is no clear which method performs the best.

If we disregard the best values for each tested function, other evolutionary algorithms
can get the job done with sufficient results. We are talking mainly about PSO, SOMA, and
TSA algorithms, which have results across all tested functions similar to the best results.
It means that we have some degree of freedom to choose which evolutionary algorithm
to use.

5. Piecewise Linearization Using Swarm Intelligence Algorithms with Automatic
Parameters Tuning

In this section, we introduce an algorithm that is used for automatic detection of
points � used for linearization, and automatic detection of discretization points discr_step
representing the length between equidistant points. This algorithm tries to find the number
of input points � and a set of equidistant points given by a discretization step disc_step
to achieve the best possible solution evaluated based on an algorithm output fitness
function value.

The main goal of this algorithm is to run a total number of six evaluations of an
evolutionary algorithm in every loop iteration using parallel computing as long as it is
needed to find an optimal solution. We chose to use this approach because we need to try
several combinations of � and discr_step in each iteration.

In the beginning, our algorithm sets the input parameters for an evolutionary algo-
rithm and default values for � = 10 and discr_step = 1/100. Then, the loop starts where
every iteration consists of setting up six different discr_step values and six different �
values, and each of the six parallel runs takes one discr_step and one �. The six � and
discr_step, where �i−1 and discr_stepi−1 is a � and discr_step of the best result from the
previous iteration, can be seen in the Table 6.

Table 6. Six variants of � and discr_step.

� discr_step

�i−1 + 3 discr_stepi−1/1.5
�i−1 + 6 discr_stepi−1/1.5
�i−1 + 3 discr_stepi−1/2
�i−1 + 6 discr_stepi−1/2
�i−1 + 3 discr_stepi−1
�i−1 discr_stepi−1/1.5

Each of these six parallel runs is processed, and then their results are evaluated. This
evaluation is done by computing the linearization provided f inal_points of all six results
given as an output of an evolutionary algorithm run and a fixed discr_step = 1/200. We
need to ensure that all six results are evaluated using the same evaluation criterion, which
is done by setting up discr_step the same for all results. Based on this evaluation, it gives
the results f inal_distance computed with Manhattan metric, and it keeps the result with the
smallest f inal_distance value. The distance value serves as a f itness_value for all selected
evolutionary algorithms. The best results discr_step, f inal_distance, f inal_points, and � are
saved to be used in the next iteration.

Next, we examine all linear segments created from f inal_points. This examination
consists of creating three equidistant points on a linear segment and calculating the distance
of these points from the initial function. We always take the output of the maximum metric
from all points of all linear segments. Linear segments whose slope value is too high and
a maximum metric value of their equidistant points are under the set threshold are ignored.
It is because they tend to get a high maximum metric output value even when these linear

39

Mathematics 2022, 10, 808

segments sufficiently overlap with the initial function part. The maximum of all linear
segments illustrates whether the linearization is close enough to the real function or not.

At the end of every iteration, it checks whether the f itness_value value, and a maxi-
mum metric value are good enough. Thus, we check whether we should continue with the
next iteration.

There is a special case when we set �1,...,6 = �i and discr_step1,...,6 = discr_stepi−1
before we process parallel runs. This special case occurs when the best result from the
previous iteration has a good enough f itness_value (but not a good enough maximum
metric value). The idea is that the previous iteration’s best result was almost the optimal
result, but the algorithm placed the final points a little off. Thus, for the next three iterations,
we take all six parallel runs and use them to determine if the current discr_step and � are
sufficient to get an optimal solution.

It also keeps f inal_points of the best result and provides them to all six evolutionary
algorithms run in parallel in the next iteration. This approach enables speeding-up the
process of finding the optimal result by enabling an evolutionary algorithm in the next
iteration to start from a position where the best result of the previous iteration ended
up. The only scenario where we do not provide f inal_points is when the special case is
triggered because we do not want to influence the parallel runs with the previous result
because it was close but not close enough. Pseudocode of parameter tuning approach is in
Algorithm 1.

Algorithm 1 Pseudocode of the parameter tuning algorithm.

def evaluate_evolutionary_algorithm
Set evolutionary algorithm input parameters
while the previous best results f inal_distance is not small enough OR the previous results
maximum metric value is not small enough do

set �1,...,6 and discr_step1,...,6
if special case AND special case count <3 then

modify �1,...,6 and discr_step1,...,6
end if
run all six parallel runs
collect all six results
compute a f inal_distance for all six results
select the best result of this iteration
save the best results discr_step, f inal_points, f inal_distance, and �
get a maximum metric value of the best results linear segments

end while

5.1. Examples of Tuning Algorithm

In this subsection, the evolutionary algorithms selected in Section 3 will be applied
to the algorithm introduced in Section 5 on Function f5. Therefore, two sets of results
were achieved, where the first one was achieved for maxFES = 2500 and the second for
maxFES = 10,000. In both sets of results, each evolutionary algorithm optimal result should
have a f inal_distance calculated with Manhattan distance to be equal or better than 2.0. All
evolutionary algorithms use input parameter values from Section 4.2. Each experiment is
executed 50 times in Python 3.8 on a computer with the CPU: AMD 2920X, RAM: 32 GB
DDR4, GPU: AMD RX VEGA64. The time complexity of the compared algorithms of each
run is estimated in seconds.

Example 1. This example consists of the results of selected evolutionary algorithms with a value of
maxFES = 2500. The graph of results for Function f5 approximation of each algorithm is presented
(Figure 5). The best result of each parallel run is saved as a checkpoint result. Then, we take the best
run out of all 50 runs and illustrate its checkpoint results in graphs in Figure 6 and Table 7.

40

Mathematics 2022, 10, 808

ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 5. Graphs of algorithms with a value of maxFES = 2500.

ABC BIA CS

FFL GWO PSO

Figure 6. Cont.

41

Mathematics 2022, 10, 808

RS SOMA TSA

Figure 6. Checkpoints of each algorithm automatic parameter tuning with maxFES = 2500. Red lines
are values of f inal_distance and blue ones show the maximum value of Manhattan distance. Grey
dashed lines show values thresholds.

Table 7. The best results of evolutionary algorithms with a value of maxFES = 2500.

� Discr_Step Final_Distance Time (s)

PSO 22 0.003 1.945 13.16
SOMA 43 0.001 1.886 31.03
CS 52 0.001 0.845 77.26
FFL 43 0.001 1.786 22.29
GWO 22 0.004 1.961 9.74
ABC 34 0.001 1.505 30.06
BIA 61 0.001 1.670 49.82
TSA 43 0.001 1.193 31.73
RS 37 0.002 1.965 15.44

Example 2. The second example consists of results with maxFES = 10,000. The graph of results
for Function f5 approximation of each algorithm is presented (Figure 7). The best result of each
parallel run is saved as a checkpoint result. Then, we take the best run out of all 50 runs and
illustrate its checkpoint results in graphs in Figure 8 and Table 8.

ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 7. Graphs of algorithms with a value of maxFES = 10,000.

42

Mathematics 2022, 10, 808

ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 8. Checkpoints of each algorithm automatic parameter tuning with maxFES = 10,000. Red
lines are values of f inal_distance and blue ones show the maximum value of Manhattan distance.
Grey dashed lines show values thresholds.

Table 8. The best results of evolutionary algorithms with a value of maxFES = 10,000.

� Discr_Step Final_Distance Time (s)

PSO 22 0.003 1.957 14.20
SOMA 49 0.001 1.149 151.99
CS 46 0.001 0.753 88.07
FFL 34 0.001 1.927 41.47
GWO 22 0.003 1.669 85.72
ABC 22 0.003 1.904 12.26
BIA 58 0.001 1.571 123.00
TSA 43 0.001 0.882 146.58
RS 37 0.001 1.827 69.51

5.2. Comparison Results Summary

The comparison of the algorithms mentioned in this section was done on all testing
functions from Section 4.1. For demonstration, we chose only four functions, to not
overwhelm readers with tables (see Functions f1, f3, f4, and f5).

We calculated the values of arithmetic mean of �, discr_step, f inal_distance, and time
what has estimated time complexity measured in seconds from 50 runs for each testing
function and each evolutionary algorithm. All 50 runs were calculated for maxFES = 2500
and maxFES = 10,000. Results show that the maxFES = 10,000 variant offers almost the
same results as maxFES = 2500 variant or there is a slight decrease in a total number of
points but at the expense of increasing time.

The most important value is always f inal_distance, but we cannot decide which al-
gorithm is the best one based only on this value. In general, we need to find the balance
between f inal_distance and the time it takes to achieve this value where time is affected
by � (the higher, the worse) and discr_step (the lower, the worse). We even have to con-

43

Mathematics 2022, 10, 808

sider a situation when f inal_distance is good enough, but that is due to bad linearization,
which results in taking longer to accomplish an optimal result. It also means that an
evolutionary algorithm will need more iterations to get to this optimal result and, thus, it
will have more points �, which improves f inal_distance, which takes more time. Finally,
f inal_distance is so good thanks to the evolutionary algorithm’s inability to create a good
linearization. In some cases, it is recommended to favor an evolutionary algorithm with a
worse f inal_distance but with significantly better �, discr_step, and time.

In Table 9, the best three algorithms for the testing functions f1, f3, f4, and f5 are
presented.

Table 9. The three best evolutionary algorithms for each testing function.

Function FES 1st 2nd 3rd

f1 2500 PSO RS ABC
f3 2500 PSO ABC CS
f4 2500 PSO ABC FFL
f5 2500 GWO PSO CS
f5 10,000 PSO ABC GWO

Based on the finding, we decided to show only one set of results of maxFES = 10,000
variant (see Tables 10–14). It is obvious that the best overall evolutionary algorithm to use
for linearization is PSO. Except for f5 (variant maxFES = 2500) where PSO ended up the
second best, it was always the best evolutionary algorithm to use. Based on the results,
we can also see that the ABC algorithm can also be considered as a suitable evolutionary
algorithm to overall use for linearization.

Table 10. The mean results for Function f1 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

� Discr_Step Final_Distance Time (s)

PSO 15 0.006 1.139 2.66
SOMA 15 0.005 1.413 3.21
CS 16 0.005 1.426 3.79
FFL 15 0.006 1.455 2.00
GWO 15 0.005 1.477 5.31
ABC 16 0.005 1.330 2.96
BIA 17 0.004 1.423 3.88
TSA 16 0.005 1.378 4.28
RS 15 0.006 1.283 3.01

Table 11. The mean results for Function f3 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

� Discr_Step Final_Distance Time (s)

PSO 68 0.001 1.536 74.17
SOMA 81 0.001 1.658 119.26
CS 74 0.001 1.540 74.49
FFL 88 0.001 1.727 81.51
GWO 95 0.001 1.615 345.76
ABC 61 0.001 1.711 54.77
BIA 85 0.001 1.704 79.29
TSA 73 0.001 1.562 114.93
RS 86 0.001 1.539 114.40

44

Mathematics 2022, 10, 808

Table 12. The mean results for Function f4 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

� Discr_Step Final_Distance Time (s)

PSO 29 0.002 1.519 12.25
SOMA 34 0.001 1.682 18.02
CS 35 0.001 1.638 17.11
FFL 35 0.001 1.588 16.10
GWO 33 0.001 1.631 37.28
ABC 29 0.002 1.645 11.40
BIA 36 0.001 1.688 16.46
TSA 35 0.001 1.626 22.15
RS 35 0.001 1.666 20.64

Table 13. The mean results for Function f5 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

� Discr_Step Final_Distance Time (s)

PSO 28 0.002 1.489 15.52
SOMA 86 0.001 1.016 142.64
CS 74 0.001 0.615 76.08
FFL 69 0.001 1.346 149.29
GWO 28 0.002 1.374 32.87
ABC 53 0.001 1.156 98.07
BIA 91 0.001 1.055 168.31
TSA 75 0.001 0.619 91.78
RS 61 0.001 1.234 108.15

Table 14. The mean results for Function f5 for 50 runs of evolutionary algorithms with a value of
maxFES = 10,000.

� Discr_Step Final_Distance Time (s)

PSO 27 0.002 1.463 41.41
SOMA 78 0.001 0.783 273.57
CS 73 0.001 0.422 207.79
FFL 63 0.001 1.305 331.04
GWO 25 0.002 1.495 101.53
ABC 29 0.002 1.499 53.39
BIA 94 0.001 1.021 538.83
TSA 72 0.001 0.500 280.39
RS 54 0.001 1.302 252.29

5.3. Statistical Results Summary

In this section, the results of the compared algorithms will be statistically assessed.
We assess whether or not our proposed method of automatic parameters tuning algorithm
proves itself successful or not.

The mean ranks from the Friedman tests [31] can be seen in Table 15. The results
of the algorithms without tuning to the value maxFES = 10,000 are labeled without any
upper/lower index. The tuning algorithm results using maxFES = 10,000 are labeled with
an upper asterisk index. The tuning algorithm results where maxFES = 2500 was set are
labeled with an upper asterisk index and lower s letter index. The best three performing
algorithms are variants with maxFES = 2500 using a tuning algorithm. They also achieved
similar results in the Friedman test, so it is a good indicator that they are all good to use for
the piecewise linearization of functions.

45

Mathematics 2022, 10, 808

Table 15. The mean ranks of all algorithms from the Friedman test.

Algorithm PSO∗
s RS∗

s TSA∗
s ABC RS∗ SOMA∗

m.rank 9.5 9.75 9.75 10 10.5 11

PSO∗ PSO ABC∗s CS∗s CS ABC∗ TSA∗

11.5 11.5 11.75 11.75 11.75 12.375 12.75

SOMA TSA SOMA∗s CS∗ FFL∗s BAT∗s RS
13 13.5 14.25 15 15.375 15.5 15.75

GWO∗s BAT∗ GWO∗ FFL∗ GWO FFL BAT
16 16.5 16.5 19 19.75 21.5 22.5

In Table 16 are the median values for each algorithm and each setting. There are four
different settings: O10 and O25 are the original algorithms with maxFES = 2500 (O25) and
10,000 (O10). The T10 and T25 settings represent the automatic-parameter-tuning versions
with maxFES = 2500 (T25) and 10000 (T10). For O10, the best algorithm is ABC. On the
other hand, O25 is the best to use with PSO. Results of setting variants T10 and T25 are
not that straightforward, but it is obvious that the PSO algorithm is the overall best choice
to use.

Table 16. The median values for each algorithm and each set.

SET f ABC BAT CS FFL GWO PSO RS SOMA TSA

O10 1 0.204 0.432 0.203 0.281 0.224 0.205 0.232 0.209 0.213
O10 3 2.080 6.093 2.534 5.269 3.305 2.284 3.390 2.352 2.441
O10 4 0.820 2.230 0.855 2.207 1.808 0.828 1.184 0.882 0.914
O10 5 1.688 3.828 1.704 3.401 2.024 1.705 2.160 1.966 1.729

T10 1 1.167 1.494 1.574 1.498 1.627 1.056 1.311 1.281 1.616
T10 3 1.654 1.742 1.666 1.862 1.703 1.613 1.517 1.643 1.561
T10 4 1.630 1.721 1.736 1.764 1.518 1.647 1.636 1.685 1.702
T10 5 1.529 1.014 0.410 1.238 1.699 1.412 1.266 0.774 0.457

T25 1 1.277 1.441 1.493 1.477 1.525 1.098 1.257 1.386 1.351
T25 3 1.741 1.725 1.603 1.840 1.654 1.553 1.516 1.702 1.604
T25 4 1.601 1.718 1.686 1.627 1.689 1.545 1.664 1.710 1.644
T25 5 1.110 1.029 0.596 1.355 1.352 1.521 1.201 1.027 0.555

O25 1 0.233 0.427 0.214 0.309 0.231 0.205 0.253 0.268 0.234
O25 3 2.996 5.969 3.233 5.447 3.818 2.339 3.725 4.138 3.322
O25 4 1.024 2.387 1.056 2.246 1.962 0.819 1.297 1.381 1.083
O25 5 2.129 3.726 2.025 3.457 2.652 1.785 2.399 2.480 1.987

The next level of statistical comparison provides the Kruskal–Wallis test [32] (see
Table 17). This method provides us with the same results as Table 16. The variant O10 is
the best to use together with the ABC algorithm. The variant O25, on the other hand, is
the best to use together with the PSO algorithm. We cannot say which algorithm to use
together with T10 and T25 variants because there is no straightforward choice suitable for
all tested functions. Overall, the best choice would be the PSO algorithm which can be
found in the first place most times compared to the rest of the algorithms.

46

Mathematics 2022, 10, 808

Table 17. The first, second, third, and the last position of all algorithms and each setting from the
Kruskal–Wallis tests.

SET f Sig. 1st 2nd 3rd Last

O10 1 <0.001 CS ABC PSO BAT
O10 3 <0.001 ABC PSO SOMA BAT
O10 4 <0.001 ABC PSO CS BAT
O10 5 <0.001 ABC CS TSA BAT

T10 1 <0.001 PSO ABC SOMA TSA
T10 3 <0.001 RS TSA PSO FFL
T10 4 <0.01 GWO ABC PSO CS
T10 5 <0.001 CS TSA SOMA ABC

T25 1 <0.001 PSO RS ABC GWO
T25 3 <0.001 RS PSO CS FFL
T25 4 <0.05 PSO FFL GWO BAT
T25 5 <0.001 CS TSA SOMA PSO

O25 1 <0.001 PSO CS ABC BAT
O25 3 <0.001 PSO ABC CS BAT
O25 4 <0.001 PSO ABC CS BAT
O25 5 <0.001 PSO TSA CS BAT

Finally, the results of the Wilcoxon rank-sum statistical test [33] are presented (see
Table 18). The variant T25 was selected as a reference method, and it is compared against
variants T10 and O10. The symbol of ‘+’ is used for significantly better results of counter-
part, a symbol of ‘−’ is used for significantly better results of reference method, and finally,
the symbol of ‘≈’ illustrates no significant difference between algorithms. The comparison
of T25 and T10 shows only several significant differences between settings, so it is obvious
that these two variants score very similarly. Both variants seem to find good results very
quickly, and thanks to this, the importance of maxFES is not that high. Comparing T25 and
O10, there are 15 cases where the O10 variant performs significantly better than the T25
variant (especially for problem f1), but there are 21 cases in total when the O10 variant
is significantly worse than the variant T25. We can interpret the results slightly different,
though. The variant T25 delivers more consistent results across all cases, whereas the O10
variant delivers either very good or very bad results.

Results also show that the non-tuning algorithm suffers from lowering maxFES from
10,000 to 2500, and that is the reason we did not include the O10 variant at all. On the
other hand, the automatic parameters tuning algorithm is resistant to the length of the
optimization process, therefore, it does not matter if we choose the value of maxFES = 2500
or 10,000.

Table 18. The median values and significance of all algorithms from the Wilcoxon rank-sum tests.

f alg T25 T10 O10

1 ABC 1.2768 1.1673(++) 0.20377(+++)
1 BAT 1.4415 1.4942(≈) 0.43178(+++)
1 CS 1.4928 1.574(−) 0.20281(+++)
1 FFL 1.4774 1.4976(≈) 0.28131(+++)
1 GWO 1.5246 1.627(≈) 0.22386(+++)
1 PSO 1.098 1.0557(≈) 0.20484(+++)
1 RS 1.2572 1.3113(≈) 0.23168(+++)
1 SOMA 1.3856 1.2814(≈) 0.20902(+++)
1 TSA 1.3507 1.6165(−−−) 0.21299(+++)

47

Mathematics 2022, 10, 808

Table 18. Cont.

f alg T25 T10 O10

3 ABC 1.7409 1.654(≈) 2.0797(−−−)
3 BAT 1.7248 1.7422(≈) 6.0932(−−−)
3 CS 1.603 1.6659(≈) 2.5338(−−−)
3 FFL 1.8396 1.8621(≈) 5.2694(−−−)
3 GWO 1.6536 1.7029(≈) 3.3049(−−−)
3 PSO 1.5535 1.6128(≈) 2.2837(−−−)
3 RS 1.5156 1.5173(≈) 3.3899(−−−)
3 SOMA 1.7017 1.6433(≈) 2.3522(−−−)
3 TSA 1.6039 1.5613(≈) 2.4407(−−−)

4 ABC 1.6015 1.6296(≈) 0.82008(+++)
4 BAT 1.7178 1.7211(≈) 2.2302(−−−)
4 CS 1.6855 1.7358(≈) 0.85474(+++)
4 FFL 1.6296 1.7641(−) 2.2069(−−−)
4 GWO 1.6887 1.5177(+) 1.808(−−−)
4 PSO 1.5454 1.6473(−) 0.82815(+++)
4 RS 1.6641 1.6358(≈) 1.1841(+++)
4 SOMA 1.7101 1.6848(≈) 0.88182(+++)
4 TSA 1.6438 1.7023(≈) 0.91401(+++)

5 ABC 1.1098 1.5286(−−−) 1.6882(−−−)
5 BAT 1.0294 1.0142(≈) 3.8278(−−−)
5 CS 0.5961 0.4104(+++) 1.7042(−−−)
5 FFL 1.3547 1.2379(≈) 3.4007(−−−)
5 GWO 1.3519 1.6986(≈) 2.0238(−−−)
5 PSO 1.5213 1.4122(≈) 1.7051(−−−)
5 RS 1.2013 1.2659(≈) 2.1597(−−−)
5 SOMA 1.0273 0.77375(+++) 1.9665(−−−)
5 TSA 0.5553 0.45704(++) 1.7291(−−−)

6. Conclusions

In this paper, we introduced two ways to solve the optimization of the piecewise
linearization of a given function. In the first approach, the usage of optimization algorithms
for searching piecewise linearization with a predefined number of piecewise linear parts
and discretization points with the calculation of the distance between the original and
piecewise linear function is proposed. The second method extends the previous approach
by the automatic selection of the number of piecewise linear parts and discretization points.

Based on the experimental part of the paper, the following conclusions were achieved.
Enhancing the swarm-based optimization algorithms by the proposed tuning approach
enables a significant increase in the performance of the optimization process. When the
algorithms were applied to the piecewise linearization problem with 2500 function evalu-
ations, the variants of PSO and GWO provided sufficient results, where GWO performs
substantially better (Table 7). For maxFES = 10,000, GWO, PSO, and ABC provide results
with a similar quality, where ABC was the fastest method (Table 8).

From the results of the optimization problems, it is obvious that the variant of PSO was
always located on the best positions (Tables 10–14). Moreover, a variant of ABC provided an
acceptable quality solution (Table 9). Studying the complexity of the compared algorithms,
the variants of PSO and ABC achieved mostly low time demands.

Results of the application of the proposed tuning approach illustrate the substantially
increasing performance of the compared swarm algorithms (Table 15). In eight algorithms
out of nine, the better overall performance was achieved by the tuning approach, where
the biggest difference was achieved in variant of RS, which provided second-best results. It
is also obvious that several swarm methods provide worse results compared to the simple
RS method, which generates random solutions (BAT, FFL, GWO).

Comparing the achieved median values in three out of four optimization problems, the
best performance is provided with the proposed tuning approach (Table 16). Surprisingly,
the best results of the piecewise linearization problem f4 provided the RS algorithm with
the tuning mechanism.

48

Mathematics 2022, 10, 808

The main benefit of our tuning approach is the lower time complexity of the opti-
mization process (measured by a number of function evaluations) with sufficient solutions.
Using the PSO algorithm as the main swarm intelligence algorithm for solving piecewise
linearization problems is, without a doubt, the best choice. This conclusion was clearly
demonstrated in Section 5.3.

The proposed tuning approach performs worse than the original swarm intelligence
algorithms, especially in problem f1. This provides motivation to further study the ap-
proach settings. The first step in the research is to generalize the proposed algorithms for
functions with higher dimensions and use them for solving other real problems.

The next natural step is to extend this algorithm into higher dimensions and to compare
the swarm-based optimization algorithms with the classical mathematical approaches.

Author Contributions: Conceptualization, N.Š. and P.R.; methodology, N.Š.; software, P.R.; valida-
tion, N.Š., P.R. and P.B.; formal analysis, P.B.; investigation, N.Š.; resources, P.R.; data curation, P.B.;
writing—original draft preparation, N.Š., P.R. and P.B.; writing—review and editing, N.Š., P.R. and
P.B.; visualization, P.R.; supervision, P.B.; project administration, P.B.; funding acquisition, P.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Department of Informatics and Computers, University
of Ostrava and also by an Internal Grant Agency of the University of Ostrava grants, numbers
SGS17/PřF-MF/2021 and SGS17/PřF-MF/2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data were measured in MATLAB during the experiments.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Kontogiorgis, S. Practical piecewise-linear approximation for monotropic optimization. INFORMS J. Comput. 2000, 12, 324–340.
[CrossRef]

2. Kupka, J.; Škorupová, N. On PSO-Based Simulations of Fuzzy Dynamical Systems Induced by One-Dimensional Ones.
Mathematics 2021, 9, 2737. [CrossRef]

3. Kupka, J.; Škorupová, N. On PSO-Based Approximation of Zadeh’s Extension Principle. In Proceedings of the International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15–19
June 2020; pp. 267–280.

4. Bagwell, S.; Ledger, P.D.; Gil, A.J.; Mallett, M.; Kruip, M. A linearised hp–finite element framework for acousto-magneto-
mechanical coupling in axisymmetric MRI scanners. Int. J. Numer. Methods Eng. 2017, 112, 1323–1352. [CrossRef]

5. Lifton, J.; Liu, T. Ring artefact reduction via multi-point piecewise linear flat field correction for X-ray computed tomography.
Opt. Express 2019, 27, 3217–3228. [CrossRef] [PubMed]

6. Griewank, A. On stable piecewise linearization and generalized algorithmic differentiation. Optim. Methods Softw. 2013,
28, 1139–1178. [CrossRef]

7. Persson, J.; Söder, L. Comparison of threes linearization methods. In Proceedings of the PSCC2008, 16th Power System
Computation Conference, Glasgow, Scotland, 14–18 July 2008.

8. Dyke, P. An Introduction to Laplace Transforms and Fourier Series; Springer: London, UK, 2014.
9. Perfilieva, I. Fuzzy transforms: Theory and applications. Fuzzy Sets Syst. 2006, 157, 993–1023. [CrossRef]
10. Bernard, P.; Wu, L. Stochastic linearization: The theory. J. Appl. Probab. 1998, 35, 718–730. [CrossRef]
11. Hatanaka, T.; Uosaki, K.; Koga, M. Evolutionary computation approach to Wiener model identification. In Proceedings of the

2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 1,
pp. 914–919.

12. Mazarei, M.M.; Behroozpoor, A.A.; Kamyad, A.V. The Best Piecewise Linearization of Nonlinear Functions. Appl. Math. 2014,
5, 3270. [CrossRef]

13. Cleghorn, C.W.; Engelbrecht, A.P. Piecewise linear approximation of n-dimensional parametric curves using particle swarms.
In Proceedings of the International Conference on Swarm Intelligence, Brussels, Belgium, 12–14 September 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 292–299.

49

Mathematics 2022, 10, 808

14. Ghosh, S.; Ray, A.; Yadav, D.; Karan, B. A genetic algorithm based clustering approach for piecewise linearization of nonlinear
functions. In Proceedings of the 2011 International Conference on Devices and Communications (ICDeCom), Mesra, India, 24–25
February 2011; pp. 1–4.

15. Liu, L.; Fan, Z.; Wang, X. A Piecewise Linearization Method of Significant Wave Height Based on Particle Swarm Opti-
mization. In Proceedings of the International Conference in Swarm Intelligence, Harbin, China, 12–15 June 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 144–151.

16. Topaloglu, H.; Powell, W.B. An algorithm for approximating piecewise linear concave functions from sample gradients. Oper.
Res. Lett. 2003, 31, 66–76. [CrossRef]

17. Camponogara, E.; Nazari, L.F. Models and algorithms for optimal piecewise-linear function approximation. Math. Probl. Eng.
2015, 2015, 876862. [CrossRef]

18. Bujok, P.; Tvrdik, J.; Polakova, R. Nature-Inspired Algorithms in Real-World Optimization Problems. MENDEL 2017, 23, 7–14.
[CrossRef]

19. Bujok, P.; Tvrdik, J.; Polakova, R. Comparison of nature-inspired population-based algorithms on continuous optimisation
problems. Swarm Evol. Comput. 2019, 50, 100490. [CrossRef]

20. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
21. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; Citeseer: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948.
22. Kennedy, J. Particle swarm optimization. Encycl. Mach. Learn. 2010, 760–766. [CrossRef]
23. Zelinka, I. SOMA-Self-Organizing Migrating Algorithm. In New Optimization Techniques in Engineering; Springer:

Berlin/Heidelberg, Germany, 2004; pp. 167–217.
24. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
25. Yang, X.S. Firefly algorithm, Levy flights and global optimization. In Research and Development in Intelligent Systems XXVI;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–218.
26. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
27. Karaboga, D.; Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems.

In Proceedings of the International Fuzzy Systems Association World Congress, Cancun, Mexico, 18–21 June 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 789–798.

28. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);
Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.

29. Kiran, M.S. TSA: Tree-seed algorithm for continuous optimization. Expert Syst. Appl. 2015, 42, 6686–6698. [CrossRef]
30. Rastrigin, L. The convergence of the random search method in the extremal control of a many parameter system. Autom. Remote

Control 1963, 24, 1337–1342.
31. Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. Ann. Math. Stat. 1940, 11, 86–92.

[CrossRef]
32. Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [CrossRef]
33. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]

50

Citation: Long, J.; Liu, L.; Fei, H.;

Xiang, Y.; Li, H.; Huang, W.; Yang, L.

Contextual Semantic-Guided

Entity-Centric GCN for Relation

Extraction. Mathematics 2022, 10, 1344.

https://doi.org/10.3390/

math10081344

Academic Editor: Victor Mitrana

Received: 10 March 2022

Accepted: 13 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Contextual Semantic-Guided Entity-Centric GCN for
Relation Extraction

Jun Long 1,2, Lei Liu 2, Hongxiao Fei 2, Yiping Xiang 2, Haoran Li 2, Wenti Huang 3,* and Liu Yang 2,*

1 School of Software, Xinjiang University, Urumqi 830046, China; junlong@csu.edu.cn
2 School of Computer Science and Engineering, Central South University, Changsha 410083, China;

lei153@csu.edu.cn (L.L.); hxfei@csu.edu.cn (H.F.); 194712189@csu.edu.cn (Y.X.);
194712136@csu.edu.cn (H.L.)

3 School of Computer Science and Engineering, Hunan University of Science and Technology,
Xiangtan 411201, China

* Correspondence: wthuang@hnust.edu.cn (W.H.); yangliu@csu.edu.cn (L.Y.)

Abstract: Relation extraction tasks aim to predict potential relations between entities in a target
sentence. As entity mentions have ambiguity in sentences, some important contextual information can
guide the semantic representation of entity mentions to improve the accuracy of relation extraction.
However, most existing relation extraction models ignore the semantic guidance of contextual
information to entity mentions and treat entity mentions in and the textual context of a sentence
equally. This results in low-accuracy relation extractions. To address this problem, we propose
a contextual semantic-guided entity-centric graph convolutional network (CEGCN) model that
enables entity mentions to obtain semantic-guided contextual information for more accurate relational
representations. This model develops a self-attention enhanced neural network to concentrate
on the importance and relevance of different words to obtain semantic-guided contextual information.
Then, we employ a dependency tree with entities as global nodes and add virtual edges to construct
an entity-centric logical adjacency matrix (ELAM). This matrix can enable entities to aggregate
the semantic-guided contextual information with a one-layer GCN calculation. The experimental
results on the TACRED and SemEval-2010 Task 8 datasets show that our model can efficiently use
semantic-guided contextual information to enrich semantic entity representations and outperform
previous models.

Keywords: graph convolutional network; relation extraction; machine learning; natural language
processing

MSC: 68T50

1. Introduction

Relation extraction is an important task in natural language processing (NLP) which
aims to predict the semantic relations between entities. It extracts special events or infor-
mation in unstructured text. For example, it can extract events, institutions, and people
relations from reports. Therefore, relation extraction is widely used in downstream natural
language processing (NLP) tasks, such as information relation extraction [1,2], knowledge
network construction [3,4], and intelligent question-answering systems [5,6].

In recent years, deep learning models have made remarkable progress in many re-
search areas, such as convolutional neural networks (CNNs) [7], recurrent neural networks
(RNNs) [8], and other neural network architectures [9], which are are widely used in rela-
tion extraction tasks. These models convert words or phrases in text into low-dimensional
vectors through NLP processing tools and obtain the word-level or sentence-level se-
mantic representation through a feature extractor. Finally, the relation between the entity

Mathematics 2022, 10, 1344. https://doi.org/10.3390/math10081344 https://www.mdpi.com/journal/mathematics
51

Mathematics 2022, 10, 1344

pair is acquired through a specifically designed classifier. However, in entity relation ex-
traction processing, predicates have significant meaning, which means long distances
between entities and predicates will cause semantic information loss. To solve this problem,
the dependency tree [10] is proposed to capture remote semantic information. To better
obtain the semantic information from the dependency tree, the SDP-LSTM model [11]
applies long short-term memory (LSTM) to obtain the shortest dependency path between
entities. Zhang et al. [12] propose an extended graph convolutional network (GCN) to
train a dependency tree with a pruning strategy to obtain important words in the shortest
path. Compared with CNN and LSTM, GCN [12] can parallelly process non-Euclidean data
and align trees for efficient batch training, which is used widely in image recognition [13],
visual reasoning [14], and biological graph generation [15].

Although the previous results are obtained using GCN-based models, they treat
textual contexts and entities equally with the graph convolutional operation. Entity repre-
sentations cannot obtain semantic-guided contextual information from sentences, and the
ambiguity of the entity mentions affect the relation extraction results. Therefore, the impact
of semantic-guided contextual information on entity mentions in a sentence is still worth in-
vestigating. For example, in the following sentence (S1), “Donald Trump is the 45th president
of the United States”, the relation between entities is “president_of ”. However, in the foll-
woing sentence (S2), “Donald Trump was born in the United States”, the relation between
entities is “born_in”. We can observe that the entity mentions (Donald Trump and United
States) have ambiguity in different sentences. The textual context can guide the semantic
information of entity mentions in a sentence, such as “the president of” in S1 and “was born
in” in S2; these phrases are strongly semantic-guided. Focusing the semantic information
of textual contexts on entity mentions can improve the precision of the relation extraction.

To address these problems, our paper proposes a novel GCN model for relation
extraction. Firstly, we propose a self-attention enhanced neural network that consists
of extended LSTM with a gate mechanism and a multi-head self-attention mechanism.
Both mechanisms are arranged in a parallel manner. This model can capture the long-
distance dependency and concentrate on the relevance and importance of different words
in a sentence to highlight the semantic information of crucial words. By combing the output
of both parallel modules, we can obtain semantic-guided contextual information. The latest
GCN model based on a sentence dependency tree enables global nodes to aggregate the
semantic information of all nodes. Therefore, we build a dependency tree with entities
as global nodes and add virtual edges to construct an entity-centric logical adjacency
matrix (ELAM). This matrix enables entities to aggregate semantic-guided contextual
information. Finally, we model the association between the subject and object entities, and
use a difference vector as a part of the relation extraction constraint.

We evaluated the performance of the model on two popular datasets: the Semeval-
2010 Task 8 dataset [16] and the TACRED dataset [17]. Our model achieves satisfactory
performance on both datasets.

The main contributions of this paper are summarized as follows:

• We propose a self-attention enhanced neural network that captures long-distance
dependency and concentrates on the importance and relevance of different words
in a sentence to obtain semantic-guided contextual information;

• We propose a novel entity-centric logical adjacency matrix that enables entities to
aggregate contextual semantic information with a one-layer GCN calculation.

• Finally, we analyze the complementary semantic-feature-capturing effect of the ex-
tended LSTM, GCN, and multi-head self-attention mechanisms.

2. Materials and Methods

In this section, we will introduce our novel relation extraction model (CEGCN).
This model proposes a self-attention enhanced neural network and an entity-centric logical
adjacency matrix to focus semantic-guided contextual information on entity representations
in relation extraction to produce more accurate results. Figure 1 illustrates the overview of

52

Mathematics 2022, 10, 1344

the model. The model consists of four modules, including (1) a sequence encoding module,
(2) a self-attention enhanced neural network module, (3) a semantic aggregation module,
and (4) a relation extraction module.

...

.........
.........

.........

...

...
22

3

3
4

1

1

1

1

1

Figure 1. Model architecture diagram. The right side of the figure is the overall architecture of
the model’s algorithm. The left half describes the extended LSTM with a gate mechanism and
an entity-centric logical adjacency matrix (ELAM). In the gate mechanism, Si and hi represent
the output of the i-th gating interaction, S−1 represents the input sentence S, and h0 represents an
initialized hidden state. In the ELAM, the nodes of xO and xS represent the subject entity and object
entity, respectively, and xr represents the root node.

2.1. Sequence Encoding Module

We define a sentence as S = [x1, x2, x3, . . . , xn] with subject entity esubj and object entity
eobj, where xi is the i-th word and n is the length of the sentence.

First, we use GloVe [18] to map each word of the sentence to low-dimensional word
vectors. The word embedding of the i-th word in S is denoted by ew

i ∈ Rdw
, where

dw is the size of the word embeddings. Considering that the part of speech and the
named entity recognition are the important features of each word or phrase in a sentence,
we concatenate the word embedding, NER label embedding, and POS tag embedding of
each word in a sentence. This approach can enrich the semantic features of each word or
phrase in relation extraction models. Then, the representation of the i-th word is as follows:

ei =
[
ew

i , epos
i , ener

i

]
, (1)

where ei ∈ Rdw+dp+dn
, dw, dp, and dn denote the dimensions of the word, POS, and

NER embeddings.

2.2. Self-Attention Enhanced Neural Network Module

This section introduces a self-attention enhanced neural network consisting of ex-
tended LSTM with a gate mechanism and a multi-head self-attention mechanism. Both

53

Mathematics 2022, 10, 1344

mechanisms are arranged in a parallel manner. We employ an extended LSTM to capture
the long-distance dependency and the multi-head self-attention mechanism to concentrate
on the importance and relevance of different words in a sentence. Finally, we combine
the output of both modules to obtain semantic-guided contextual information as the input
of the following layer.

Extended LSTM: we concatenate forward and reverse LSTM to encode the sentence
features. This can efficiently capture long-distance semantic information. However, the in-
put sentence S and previous state hprev are independent and only interact in the LSTM.
This model results in contextual information loss. Inspired by Gábor Melis et al. [19], we add
a gate mechanism before the LSTM to afford a richer space of interaction between input S
and hidden state hprev. In the gate mechanism, hprev and S interactions are regulated several
times through a sigmoid gate. This mechanism reduces information loss during encoding,

as shown in Figure 2. That is, we define the extended LSTM as L̃STM(S, cprev, hprev) =
LSTM(S ↑, cprev, h↑prev), where S ↑ and h↑prev are defined as the highest-indexed Si and hi

prev,
respectively. The formula is as follows:

Si = 2σ(Qihsi− 1prev)� Si−2 for odd i ∈ [1 . . . r], (2)

hi
prev = 2σ(RiSi−1)� hi−2

prev for even i ∈ [1 . . . r], (3)

where Qi and Ri are learnable weight matrices, hprev is the initialization vector, and the num-

ber of rounds, r ∈ N, is a hyperparameter. Then, we feed the sentence S into the L̃STM to
obtain contextual semantic representations:

ht = L̃STM(S, cprev, hprev) ∈ Rdl , (4)

where dl denotes the LSTM hidden dimension. After concatenating the forward and reverse

L̃STM, we obtain the final hidden representation, as in Equation (4), and
←→
h1 ,

←→
ht , . . . , and←→

hn as the output of the sequence encoding module, which obtains the semantic features:

←→
ht =

[−→
ht ,
←−
ht

]
. (5)

Figure 2. Gate mechanism of the extended LSTM. The previous state h0 = hprev is transformed
linearly, passing through the sigmoid and S−1 gates to produce S1, where S−1 is the representation
of the input sentence S. After repeating this gating interaction five times, the final representation of
sentence S5 and the previous state h4 are fed to the LSTM.

Multi-Head Self-Attention Mechanism: in a text sentence, each word has different
importance, especially entity mentions. In semantic feature extraction processing, the rele-
vance between different words affects the semantic information of entity mentions.

In order to reflect the relevance and importance of different words in a sentence, this
paper uses a multi-head self-attention mechanism to calculate the correlations of each word.
Transformer model [20] shows that the multi-head self-attention mechanism could obtain
better results in sentence encoding by learning internal semantic features.

54

Mathematics 2022, 10, 1344

Figure 3. Multi-head self-attention module. The inputs I = [a1, a2, a3, . . . , an] are multiplied by
the learnable matrices WQ, WK , and WV to obtain the novel matrices Q, K, and V. Then, Q, K,
and V are fed into a scaled dot-product attention to obtain the attention matrix bi. The multi-head
self-attention module performs this scaled dot-product attention h times parallelly, and concatenates
each output bi with linear transforming.

In this paper, we use scaled dot-product attention to calculate the attention weight.
The input of the scaled dot-product attention consists of a query (Q), key (K), and value (V).
Formally, after the encoding layer, the input representation S = [ew

1 , ew
2 , . . . , ew

n]. We define
Q = K = V = S ∈ Rn×dw . The hidden representation of a sentence obtained by self-
attention is as follows:

H = Attention(Q, K, V) = so f tmax(
QKT
√

dw
V). (6)

In the multi-head self-attention module, we linearly transform Q, K, and V before
inputting them into the scaled dot-product attention, as shown in Figure 3. Instead of
conducting a single self-attention, we perform it h times parallelly to jointly extract semantic
features from different positions in a sentence. The i-th head is obtained from:

Hi = Attention(QWQ
i , KWK

i , VWV
i)(i = 1, ..., h), (7)

where WQ
i , WK

i , and WV
i ∈ R(d×dm) are learnable weight matrices; dm = m/h. The multi-

head attention module concatenates h outputs of each head’s self-attention operation.
The output is denoted by:

A = MultiHead(Q, K, V) = WRConcat(H1, H2, . . . , Hh), (8)

where WR ∈ Rd × d is a learnable weight matrix. The attention matrix A is the hidden
represention of the input through the multi-head self-attention module.

We add a fully connected feed-forward network (FFN) to integrate the information
extracted by the multi-head self-attention layer. The FFN consists of two linear trans-
formations with a ReLU activation function between them. The feed-forward network is
calculated as follows:

FFN(ai) = ρ(ai M1 + β1)M2 + β2, (9)

where ai is the output of the multi-head self-attention layer, M1 and M2 represent the
linear transformation matrices, β1 and β2 are bias terms, dq represents the dimension of the
hidden layers, and ρ is the activation function (e.g., RELU). Inspired by Vaswani et al. [20],
we employ layer normalization [21] and integrate the outputs of the multi-head self-
attention layer and the FFN layer through a residual connection:

C = layerNorm(A′ + FFN(A′)), (10)

55

Mathematics 2022, 10, 1344

where A′ = LayerNorm(A + S) represents the residual connection around the input sen-
tence (S) embedding and the multi-head self-attention outputs (A). Finally, we employ
a max pooling layer to obtain the final representation of S. The output is denoted by:

r = Max(C) = Max{c1, c2, . . . , cn}. (11)

2.3. Semantic Aggregation Module

Firstly, we introduce the convolutional graph network (GCN) [12] in this module.
The GCN is an adaption of a convolution neural network for efficiently processing graph-
structured data. Let graph G = (V, E), where V represents a set of nodes and E represents
a set of edges. The input of the GCN is an adjacency matrix A; if there is an edge from node
i to node j, define Aij = 1. The convolution formula is as follows:

h(l)i = ρ(
n

∑
j=1

AijW(l)hl−1
j + b(l)), (12)

where h(l)i denotes the output vector of the i-th node after the l-th convolution operation
layer. W(l) is a weight matrix and b(l) is a bias vector.

In the graph convolutional network, each convolutional layer operation fuses each
node with the features of neighbor nodes. However, entities and textual contexts are
considered equally important in this process. Inspired by Guo et al. [22], this paper
proposes an entity-centric logical adjacency matrix (ELAM) to emphasize the impact
of textual context on the entities in the dependency tree. We construct a dependency
tree with entities as global nodes and add virtual edges between the entity nodes and other
nodes. Then, we parse a sentence as graph-structured data on the relation extraction task
through the dependency tree. The proposed model can fuse the semantic features of all
nodes to the entity nodes with only a one-layer GCN convolutional operation. In addition,
the information of the node itself in h(l−1) cannot be transmitted to h(l); thus, we add a
self-loop for each node. The algorithm for constructing the ELAM is shown as Algorithm 1.

Algorithm 1 Contruction of the entity-centric logical adjacency matrix (ELAM).

Input:
P: entity position in sentence; N: sentence length; S: target sequence.

Output:
Entity-centric logical adjacency matrix (ELAM);

1: Construct the sentence S as a dependency tree with entities as global nodes;
2: Initialize the entity-centric logical adjacency matrix (ELAM) with all elements set to 0;

ELAM ∈ RN×N

3: Traverse all nodes of the subtree and calculate distance d between node i and root;
4: To each node itself, add a self-citation and set d = 1;
5: Set the value of the corresponding position in the matrix to w(d) where

w(d) = Weight(d);
6: return ELAM.

The w(d) in Algorithm 1 represents the weight coefficient of the feature fusion between
the nodes, which is calculated by the Weight function. The greater the weight, the shorter
the distance between nodes and the richer the semantic information. We define the Weight
function as:

Weight(e) =
1

ed−1 , (13)

where e is the Euler’s number and d is the distance from the node to the entity. The further
the distance, the less semantic information, and the lower the weight. Figure 4 illustrates
the construction process of the entity-centric logical adjacency matrix.

56

Mathematics 2022, 10, 1344

22

3

3

4

1

1
1

1

1

1

Figure 4. Construction process of the entity-centric logical adjacency matrix. The dashed lines
represent the new connections between the entity nodes and the other established nodes, and the
dashed line represents the self-loops of the nodes themselves. The number on the line represents
the distance between the nodes. w() is short for weight() function. The nodes of xO and xS represent
the subject entity and object entity, respectively.

This model has two advantages. First, it emphasizes the impact of the textual context
on the semantic representation of the entities and uses enhanced semantic entity informa-
tion to improve the accuracy of the relation extraction. Second, the entity-centric logical
adjacency matrix can integrate k-order neighborhood information directly on a one-layer
GCN and alleviate the tendency of over-smoothing in the multi-layer GCN calculation.
Therefore, the paper modifies the convolution calculation as follows (Equation (14)):

h(l)i = ρ(
n

∑
j=1

ELAMijW(l)hl−1
j /di + b(l)) ∈ Rdw , (14)

where h0
1, h0

2, . . . , h0
n = S = [ew

1 , ew
2 , . . . , ew

n], di represents the out-degree of the node i, and dw

denotes the GCN hidden representation size; W(l) ∈ R2dl×dw .

2.4. Relation Extraction Module

After the L-layer CEGCN calculation, the hidden representation of the sentence is
H(L) = [h(l)1 , h(l)2 , . . . , h(l)n]. This paper employs a maxpool function to reduce the hidden
representation matrix from two dimensions to one dimension as dw. The formula is
as follows:

h = maxpool[H(L)]. (15)

Embedding the semantic-guided contextual information into the subject and object
entities can improve their association. To focus more semantic information of the textual

57

Mathematics 2022, 10, 1344

context on the subject entity and the object entity, we combine hidden representations of en-
tities and the textual context in the relation extraction module. In this module, the semantic-
guided contextual information from a sentence can be concentrated on the semantic entity
representations. We feed the hidden representation into a softmax function to calculate
the attention weight α. Then, the final entity representation is given by:

hentity = maxpool(H(L)
entity), (16)

y = WH(L)hentity + b, (17)

α =
exp(yL)

∑L
j=1 exp(yj)

, (18)

h′entity = maxpool(αH(L)
entity). (19)

We believe modeling the association between the subject and object entities to be
a significant factor in determining their relation. Lin et al. [23] propose that the entity
relation r in a sentence is a subject entity to the object entity transformation (esub + r = eobj).
Their models have thoroughly employed and evaluated the difference vector of the entity
pair to represent the relation between the entity pair and achieve good results. Therefore,
we calculate the difference vector of the entity pair (r = hsub − hobj) as a part of the re-
lation extraction constraint, where hsub and hobj are the entity vectors obtained through
Equations (16)–(19). Then, we join the difference vector of the entity pair (r) and hidden
layer output of the context (htext) to obtain the final vector representation. The formula is
as follows:

hout = [htext; r]. (20)

Finally, this paper feeds the final vector representation into the feed-forward network
(FFN) and obtains the probability distribution of the relation between entity pairs through
the so f tmax function:

h f inal = FFN(hout), (21)

p(y | h f inal) = so f tmax(MLP(h f inal)) ∈ R|C|, (22)

where |C| is the number of relation categories defined in the datasets. We train the model by
back-propagation and employ the cross-entropy function as the loss function of the model.
The cross-entropy function is defined as follows:

Loss = ∑i∈[1,L]−logPθ(ci = Ci), (23)

where ci represents the predicted relation category and Ci represents the true relation category.

3. Experiment

3.1. Datesets

We evaluate the performance of our model on two popular relation extraction datasets:
TACRED and SemEval-2010 Task 8.

TACRED: The TACRED dataset is a relation extraction dataset with 106,264 instances
and 42 relation types (including 41 declared semantic relations and a “None” relation,
which indicates that an entity pair has no defined relation) [17]. In the TACRED dataset,
79.5% of instances have been labeled as “no_relation”; the main predefined relations in-
clude “per:titled”, “org:employ_of”, “per:age”, “org:founded_by”, etc. Each TACRED
instance is a sentence that contains an entity pair, 23 fine-grained types of entity men-
tions, and 1 of the 42 relation types. The type of entity mentions includes “organization”,
“time”, “person”, etc.

SemEval-2010 Task 8: The SemEval-2010 Task 8 [16] dataset consists of 10,717 examples,
9 relation types, and a specific “other” type, which has been widely used in relation extrac-

58

Mathematics 2022, 10, 1344

tion tasks. In the SemEval-2010 Task 8 dataset, 17.6% of instances are labeled as “Other”;
the main predefined relations include “Cause–Effect”, “Instrument–Agency”, “Entity–
Destination”, etc. Each instance of this dataset contains two marked entities and the relation
between the entity pair. The training set has 8000 instances, whereas the test set contains
2717 instances.

Based on these two datasets, we use a pre-trained 300-dimensional GloVe [18] vector
to map each word of the sentence to word embeddings and initialize POS and NER
label embeddings with a 30-dimension vector. The number of interactive computations
in the gate mechanism is set to 5. The hidden GCN size is set to 200, the dropout rate is
0.5, and the prune k = 1 [12]. For the TACRED dataset, we set a learning rate of CEGCN
0.1 with a decay rate 0.95. For the SemEval-2010 Task 8 dataset, we set a learning rate of
CEGCN 0.5 with a decay rate 0.9. We trained our model for 120 epochs on both datasets.
We list the details of the hyperparameters of our model for both datasets in Table 1.

Table 1. Hyperparameters of the model for both datasets.

Parameters Description Value

dw word embedding 300
dp POS embedding 30
dn NER embedding 30
hl LSTM hidden size 100
hg GCN hidden size 200
dl CEGCN layers 3
h attention heads 6
r interaction rounds 5

batch batch size 50

3.2. Performance Comparison

We use precision (P), recall (R), and F1 score (F1) to evaluate our model on the TA-
CRED dataset and F1 score on the SemEval-2010 Task 8 dataset. For both datasets, we com-
pare our model (CEGCN) against several competitive baselines, which contain logical
regression models [24], sequence-based feature extraction models [8,25], the LSTM-based
models [10,26], and graph-based models [27,28]. These baselines include the relation ex-
traction model with a dependency tree as the input and the latest improved GCN models.
To avoid effects from external enhancements, we do not employ BERT-based [29] models
as the baseline.

The performance metrics of our model and all comparison models on the TACRED
dataset are shown in Table 1. Four types of models are compared. (1) The logical regression
(LR) models [24]: a traditional relation extraction model based on dependency trees combined
with lexical information. (2) The CNN-based models [30]: these models use multi-window
filters to capture the semantic features of sentences for relational extraction automatically.
(3) The LSTM-based relation extraction models: these include the position-aware LSTM (PA-
LSTM) [17] model, the tree-LSTM model [26], and the SDP-LSTM model [11]. The PA-LSTM
model employs the position-aware attention mechanism combined with LSTM sequence
encoder models. The SDP-LSTM model uses the shortest dependency path between the entity
pair and the LSTM encoder. The tree-LSTM model encodes the entire tree structure to acquire
the semantic information of words. (4) GCN-based relation extraction models: Zhang et al. [12]
proposed the C-GCN model to apply a pruned dependency tree. The AGGCN model was
proposed by Guo et al. [22] as a soft-pruning strategy based on the attention mechanism with
the whole dependency tree as the GCN input. Chen et al. [27] proposed the DAGCN model,
which automatically learned the neighbor importance of different points using multiple
attentional components.

As shown in Table 2, we can observe that the F1 score of our model is significantly
improved. Compared with other models, the precision of the CNN model achieves 75.6,
but the lowest recall results in the lowest F1 score. We argue that the low recall score of

59

Mathematics 2022, 10, 1344

the CNN-based model is because the CNN tends to classify pre-defined relations precisely,
producing the wrong prediction of undefined relation types. Moreover, compared with
GCN-based models, the F1 score of our model improved by at least 0.4. In particular,
compared with AGGCN, our model has a specific improvement in all three evaluation
standards. The AGGCN takes the whole dependency tree as the input and employs
an attention mechanism to guide the GCN. In contrast, our model concentrates on the
important context rather than the whole text, improving the semantic-guided relation
between entity pairs. We believe this is because our model focuses the contextual semantic
information on the entity mentions in a sentence, enriching the semantic features of the
entities and reducing the ambiguity of the entity mentions. The experimental results show
the effectiveness of the model.

Table 2. Results on the TACRED dataset.

Model P R F1

LR [24] 73.5 49.9 59.4
CNN [30] 75.6 47.5 58.3

SDP-LSTM [11] 66.3 52.7 58.7
PA-LSTM [17] 66.0 59.2 62.4
C-GCN [12] 65.7 63.3 66.4
AGGCN [22] 69.9 60.9 65.1
DAGCN [27] 70.1 63.5 66.8

CEGCN (our model) 73.4 61.8 67.2

In addition, we conducted validation experiments on the SemEval-2010 Task 8 dataset
to assess the versatility of our model. As indicated in Table 3, we conducted validation
experiments on some relevant dependency models. The SDP-LSTM model calculates
the shortest path to the common ancestor in the dependency tree, but this only focuses
on the part of the information between entities, ignoring the important words in context.
The F1 score of our model is 1.7 points higher than that of SDP-LSTM. By observing
the experimental results, we find our model improved the F1 score by at least 0.4, compared
to other GCN-based models. Compared with the latest C-MDR-GCN model, our model
could focus on essential words in context to obtain a higher F1 score. The proposed model
can achieve an 86.1 F1 score and thereby outperform other models.

Table 3. Results on the Semeval-2010 Task 8 dataset.

Model F1

LR [24] 82.2
CNN [30] 83.7

SDP-LSTM [11] 84.4
PA-LSTM (2017) [17] 84.8
C-GCN (2018) [12] 84.8

C-AGGCN (2020) [22] 85.7
C-MDR-GCN (2021) [31] 84.9

CEGCN (our model) 86.1

3.3. Ablation Study

To demonstrate the contribution of each module in the proposed framework, we per-
form ablation experiments on the TACRED dataset and adopt the F1 score as the standard.
The results of the ablation experiments are shown in Table 4. Based on the proposed model,
we introduce three different ablation models, which are described below:

• “CEGCN w/o Entity” means that we mask the entities with random tokens in the pro-
posed model;

• “CEGCN w/o Self-Attention Enhanced NN” means that the self-attention enhanced
neural network is removed;

60

Mathematics 2022, 10, 1344

• “CEGCN w/o ELAM” means that the entity-centric logical adjacency matrix is re-
placed by the ordinary adjacency matrix.

Table 4. Results on the Semeval-2010 Task 8 dataset.

Model Dev F1

CEGCN (our model) 67.2
CEGCN w/o Entity 65.4

CEGCN w/o Self-Attention Enhanced NN 66.3
CEGCN w/o ELAM 66.5

Figure 5 indicates that the performance of the proposed model significantly drops
when removing different modules. We can observe that, compared with CEGCN, the perfor-
mance of the CEGCN w/o Entity decreases by 1.8. This indicates that the entities are crucial
in the model. Experiments demonstrate that entity mentions obtain essential semantic
information, which is necessary for relation extraction. When we remove the self-attention
enhanced neural network, the performance of the CEGCN w/o Self-Attention Enhanced
NN decreases by 1.0. This demonstrates the effectiveness of the self-attention enhanced
neural network module. This module can obtain the semantic information of relevance
and importance between different words to enrich the contextual dependencies. When
we replace the entity-centric logical adjacency matrix with an ordinary adjacency matrix,
the F1 score of CEGCN w/o ELAM decreases from 67.2 to 66.5. This proves that the ef-
fectiveness of ELAM can focus the semantic-guided contextual information on entities to
improve the accuracy of the relation extraction. The convergence results of different models
are shown in Figure 6. The smaller the train_loss, the more accurate the prediction result.
The CEGCN model converges faster and obtains a lower train_loss than variant ablation
study models.

Effect of Mask-Entity. Figure 5 indicates that the performance of the proposed model
with masking entities is lower than without masking entities under each epoch. We can
also observe that, in Figure 6, CEGCN w/o Entity converges slowly and obtains a higher
train_loss. This demonstrates that entity mentions obtain essential semantic information.
Enhancing the semantic representations of entities is crucial for relation extraction.

Figure 5. Experimental results in terms of F1 under different epochs for variant models of the abla-
tion study.

61

Mathematics 2022, 10, 1344

Figure 6. The train_loss for variant models of the ablation study.

Analysis of LSTM, Self-Attention, and GCN. Most natural language processing models
based on deep learning use LSTM to obtain semantic information. The LSTM can capture
the long-distance semantic information and enables each word to obtain the semantic
features of the context. However, the input and previous state are independent and only
interact in the LSTM, resulting in contextual information loss. In this model, we use a gate
mechanism to solve this problem. The self-attention mechanism can help concentrate more
on the relevance and importance of different words in a sentence to highlight the semantic
information of key words. By combining them, we can obtain semantic-guided contextual
information. Figure 7 indicates that the self-attention enhanced model can concentrate
more on phrases containing predicates in different sentences; these context fragments are
strong semantic-guided relations, such as “quit and later founded the hedge” in S1.

Figure 7. Self-attention weight distribution visualization. “Person/org:founded_by/Organization”
means all sentences contain the same entity types (Person, Organization) and the same relation
type (org:founded_by). The color depth expresses the degree of the attention weight distribution of
the different text sequences to demonstrate the effectiveness of the self-attention enhanced model.
The darker context fragments contain more important semantic information for relation.

62

Mathematics 2022, 10, 1344

The novel GCN models allow each word to capture the information of its dependent
words directly. Focusing semantic-guided contextual information on entities can improve
the representation of the relation between entities; these are complementary effects of
LSTM, the self-attention mechanism, and GCN. Table 4 indicates that all three modules
contribute the F1 score to the proposed model. Combining LSTM, the self-attention mecha-
nism, and GCN enriches the representations of entities with semantic-guided information
to obtain a more accurate relation between entities. Moreover, the entity-centric logical
adjacency matrix enables entities to aggregate the semantic features of all nodes with
a one-layer GCN. Furthermore, considering the distance of different words to entities,
it calculates a fusion weight coefficient for each word to the entity; it can fuse the relevant
information of the words and improve the accuracy of relation extractions.

Effect of ELAM. In our research, we insist that the entity-centric logical adjacency
matrix can enrich the semantic representations of entities to improve the performance of our
model. To demonstrate the effiectiveness of ELAM in relation extraction tasks, we replace
it with an ordinary adjacency matrix in the proposed model. We compare the F1 score and
train_loss of them under different epochs. Figure 5 indicates that the CEGCN outperforms
the CEGCN w/o ELAM by at least 0.7 F1 scores and reaches a peak around the 120th epoch
in terms of the final F1 score. Figure 7 indicates that the self-attention enhanced model can
improve the weight of important phrases in feature extraction; it can improve the semantic
impact on the relation representation between entity pairs in the convolution operation.
Moreover, our model converged quicker than the CEGCN w/o ELAM, as shown in Figure 6.
The above has proved that ELAM can effectively aggregate the semantic-guided contextual
information on entities and obtain better results in relation extraction tasks.

3.4. Effect of Hyper-Parameters

This paper introduces some hypermeters to improve model performance. Compared
with the other hypermeters, the number of attention heads h and rounds r has a more
significant impact on model performance. This section discusses the influence of two
hyperparameters that affect model performance through experiments, namely, the number
of attention heads h and the number of interaction rounds r in the gate mechanism of
the extended LSTM.

The multi-head attention mechanism can reflect the relevance and importance of
different words in a sentence. It is of great significance to select the correct number of heads
for model improvement. Figure 8 shows that the model achieves its optimal performance
at six heads, and the performance degrades with each additional head when using over
six heads. Then, we study the number of interaction rounds r in the gate mechanism of
the extended LSTM. Extended LSTM with a gate mechanism can afford more space for
modeling the long-distance dependency feature, and can reduce information loss during
encoding. Choosing the different numbers of r affects the model performance. In Figure 8,
the comparison shows that the performance of the CEGCN model is relatively close when
the r is set to 4 or 5, that the model obtains the highest score when the r is set to 5, and that
the F1 score decreases when it exceeds 5.

63

Mathematics 2022, 10, 1344

Figure 8. Experimental results on different numbers of attention heads h and different rounds r
in extended LSTM.

4. Related Work

Traditional relation extraction tasks are based on feature extractors and rely on se-
mantic features obtained from lexical resources. With the popularity of deep learning,
deep learning models have been widely used in many research areas, such as intelligent
Q&A systems [32], pattern recognition [33], and intelligent transportation systems [34].
In recent years, researchers mainly employed deep neural network models for relation
extraction tasks [35]. Compared with classical machine learning models, the deep-learning-
based models can automatically extract and learn from sentence features without complex
feature extractors.

Initially, scholars tended to exploit CNN, RNN, and their improved deep learning
models for relation extraction tasks. Zeng et al. [8] employed CNN to extract word-
level and sentence-level features and took all of the per-trained word tokens as the input.
Xu et al. [25] proposed a CNN model based on the dependency tree, parsing the sentence
with a dependency tree as the input. Traditional RNNs have difficulty addressing long-term
dependence; LSTM can solve this problem by adding a cell state, and gated operations
can afford a richer space of interaction for the RNN. Xu et al. [11] proposed SDP-LSTM to
obtain structure information through the shortest path between entities.

Dependency trees can convert text inputs into graph-structured data, and CNN and
RNN models cannot efficiently process these data parallelly. Kipf and Welling et al. [12]
proposed a graph convolutional network for supervised learning on graph-structured data.
Hong et al. [28] proposed a relation-aware attention GCN for end-to-end relation extraction.
Huang et al. [35] employed a GCN and knowledge graph enhanced transformer encoder
for measuring semantic similarity between sentences and relation types. Guo et al. [22]
proposed using soft attention to prune unimportant edges in the graph data dynamically.
Huang et al. [36] proposed a knowledge-aware framework to highlight the keyword and re-
lation clues and employed GCN for relation extraction. Our model exploits the advantages
of GCN and enables entities to aggregate contextual semantic information with a one-layer
GCN calculation.

5. Conclusions

This paper proposes a novel contextual semantic-guided entity-centric GCN model for
relation extraction (CEGCN). This model combines the semantic information of relevance

64

Mathematics 2022, 10, 1344

and importance between different words to obtain semantic-guided contextual information.
To enable entity aggregate semantic-guided contextual information, we construct a depen-
dency tree with entities as global nodes and connect global nodes directly with other nodes.
It can aggregate information from the whole tree with only a one-layer GCN calculation.
In addition, our model can combine the semantic representations of the text sequence and
the difference vectors of entities to constrain the relation between the entity pair, improv-
ing its performance. The experimental results on the TACRED and SemEval-2010 Task 8
datasets illustrate that this model enables the entities to obtain the semantic-guided contex-
tual information to reduce the ambiguity of entity mentions in a sentence and outperform
previous models. Finally, we find that the extended LSTM with a gate mechanism can
effectively reduce information loss and complement GCN and multi-head self-attention
in capturing semantic features.

Author Contributions: Conceptualization: J.L. and L.L.; experimentation and data analysis: L.L.;
writing—original draft preparation: L.L.; writing—review and editing: L.L., H.F., Y.X., and H.L.;
funding acquisition: W.H. and L.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the Joint Funds of the National Natural Science
Foundation of China, under Grant No. U2003208, the National Natural Science Foundation of China,
Grant No. 62177014, the Open Research Projects of Zhejiang Lab (Grant No. 2022KG0AB01), and
the National Natural Science Foundation of China, under Grant No. 62172451.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
CNN Convolutional neural network
LSTM Long short-term memory
GCN Graph convolutional network
RNN Recurrent neural network

References

1. Fader, A.; Soderland, S.; Etzioni, O. Identifying relations for open information extraction. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011; pp. 1535–1545.

2. Hobbs, J.R.; Riloff, E. Information Extraction. In Handbook of Natural Language Processing; Chapman & Hall/CRC Press: London,
UK, 2010.

3. Aviv, R.; Erlich, Z.; Ravid, G.; Geva, A. Network analysis of knowledge construction in asynchronous learning networks.
J. Asynchronous Learn. Netw. 2003, 7, 1–23. [CrossRef]

4. Chen, Z.; Li, H.; Kong, S.C.; Xu, Q. An analytic knowledge network process for construction entrepreneurship education.
J. Manag. Dev. 2006, 25, 11–27. [CrossRef]

5. Yih, S.W.t.; Chang, M.W.; He, X.; Gao, J. Semantic parsing via staged query graph generation: Question answering with
knowledge base. In Proceedings of the Joint Conference of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015.

6. Dong, J.; Wu, R.; Pan, Y. A Low-Profile Broadband Metasurface Antenna with Polarization Conversion Based on Characteristic
Mode Analysis. Front. Phys. 2022, 10, 860606. [CrossRef]

7. Hashimoto, K.; Miwa, M.; Tsuruoka, Y.; Chikayama, T. Simple customization of recursive neural networks for semantic relation
classification. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA,
18–21 October 2013; pp. 1372–1376.

8. Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation classification via convolutional deep neural network. In Proceedings of the 25th
International Conference on Computational Linguistics (COLING 2014), Dublin, Ireland, 23–29 August 2014; pp. 2335–2344.

9. Dong, J.; Qin, W.; Wang, M. Fast multi-objective optimization of multi-parameter antenna structures based on improved BPNN
surrogate model. IEEE Access 2019, 7, 77692–77701. [CrossRef]

65

Mathematics 2022, 10, 1344

10. Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin,
Germany, 7–12 August 2016; pp. 207–212.

11. Xu, Y.; Mou, L.; Li, G.; Chen, Y.; Peng, H.; Jin, Z. Classifying relations via long short term memory networks along shortest
dependency paths. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Lisbon, Portugal, 17–21 September 2015; pp. 1785–1794.

12. Zhang, Y.; Qi, P.; Manning, C.D. Graph convolution over pruned dependency trees improves relation extraction. arXiv 2018,
arXiv:1809.10185.

13. Chen, Z.M.; Wei, X.S.; Wang, P.; Guo, Y. Multi-label image recognition with graph cosnvolutional networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5177–5186.

14. Li, L.; Gan, Z.; Cheng, Y.; Liu, J. Relation-aware graph attention network for visual question answering. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019;
pp. 10313–10322.

15. Babič, M.; Mihelič, J.; Calì, M. Complex network characterization using graph theory and fractal geometry: The case study of
lung cancer DNA sequences. Appl. Sci. 2020, 10, 3037. [CrossRef]

16. Hendrickx, I.; Kim, S.N.; Kozareva, Z.; Nakov, P.; Séaghdha, D.O.; Padó, S.; Pennacchiotti, M.; Romano, L.; Szpakowicz, S.
Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. arXiv 2019, arXiv:1911.10422.

17. Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; Manning, C.D. Position-aware attention and supervised data improve slot filling. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017.

18. Santoro, A.; Raposo, D.; Barrett, D.G.; Malinowski, M.; Pascanu, R.; Battaglia, P.; Lillicrap, T. A simple neural network module
for relational reasoning. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017),
Long Beach, CA, USA, 4–9 December 2017.

19. Melis, G.; Kočiskỳ, T.; Blunsom, P. Mogrifier LSTM. arXiv 2019, arXiv:1909.01792.
20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017.

21. Kim, M.; Park, S.; Lee, W. A robust energy saving data dissemination protocol for IoT-WSNs. KSII Trans. Internet Inf. Syst. 2018,
12, 5744–5764.

22. Guo, Z.; Zhang, Y.; Lu, W. Attention guided graph convolutional networks for relation extraction. arXiv 2019, arXiv:1906.07510.
23. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.
24. Tsukimoto, H. Logical regression analysis: From mathematical formulas to linguistic rules. In Foundations and Advances in Data

Mining; Springer: Berlin/Heidelberg, Germany, 2005; pp. 21–61.
25. Xu, K.; Feng, Y.; Huang, S.; Zhao, D. Semantic relation classification via convolutional neural networks with simple negative

sampling. arXiv 2015, arXiv:1506.07650.
26. Tai, K.S.; Socher, R.; Manning, C.D. Improved semantic representations from tree-structured long short-term memory networks.

arXiv 2015, arXiv:1503.00075.
27. Chen, F.; Pan, S.; Jiang, J.; Huo, H.; Long, G. DAGCN: Dual Attention Graph Convolutional Networks. In Proceedings of the

International Joint Conference on Neural Networks (IJCNN 2019), Budapest, Hungary, 14–19 July 2019.
28. Hong, Y.; Liu, Y.; Yang, S.; Zhang, K.; Wen, A.; Hu, J. Improving graph convolutional networks based on relation-aware attention

for end-to-end relation extraction. IEEE Access 2020, 8, 51315–51323. [CrossRef]
29. Shi, P.; Lin, J. Simple bert models for relation extraction and semantic role labeling. arXiv 2019, arXiv:1904.05255.
30. Nguyen, T.H.; Grishman, R. Relation extraction: Perspective from convolutional neural networks. In Proceedings of the 1st

Workshop on Vector Space Modeling for Natural Language Processing, Denver, CO, USA, 5 June 2015; pp. 39–48.
31. Hu, Y.; Shen, H.; Liu, W.; Min, F.; Qiao, X.; Jin, K. A Graph Convolutional Network With Multiple Dependency Representations

for Relation Extraction. IEEE Access 2021, 9, 81575–81587. [CrossRef]
32. Yu, M.; Yin, W.; Hasan, K.S.; Santos, C.D.; Xiang, B.; Zhou, B. Improved neural relation detection for knowledge base question

answering. arXiv 2017, arXiv:1704.06194.
33. Kong, Q.; Cao, Y.; Iqbal, T.; Wang, Y.; Wang, W.; Plumbley, M.D. PANNs: Large-scale pretrained audio neural networks for audio

pattern recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2880–2894. [CrossRef]
34. Shi, H.; Zhao, X.; Wan, H.; Wang, H.; Dong, J.; Tang, K.; Liu, A. Multi-model induced network for participatory-sensing-based

classification tasks in intelligent and connected transportation systems. Comput. Networks 2018, 141, 157–165. [CrossRef]
35. Huang, W.; Mao, Y.; Yang, Z.; Zhu, L.; Long, J. Relation classification via knowledge graph enhanced transformer encoder.

Knowl.-Based Syst. 2020, 206, 106321. [CrossRef]
36. Huang, W.; Mao, Y.; Yang, L.; Yang, Z.; Long, J. Local-to-global GCN with knowledge-aware representation for distantly

supervised relation extraction. Knowl.-Based Syst. 2021, 234, 107565. [CrossRef]

66

Citation: Alnowibet, K.A.;

Shekhawat, S.; Saxena, A.; Sallam,

K.M.; Mohamed, A.W. Development

and Applications of Augmented

Whale Optimization Algorithm.

Mathematics 2022, 10, 2076. https://

doi.org/10.3390/math10122076

Academic Editor: Jian Dong

Received: 13 May 2022

Accepted: 6 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Development and Applications of Augmented Whale
Optimization Algorithm

Khalid Abdulaziz Alnowibet 1, Shalini Shekhawat 2,*, Akash Saxena 2,*, Karam M. Sallam 3

and Ali Wagdy Mohamed 4,5,*

1 Statistics and Operations Research Department, College of Science, King Saud University,
P.O. Box 2455, Riyadh 11451, Saudi Arabia; knowibet@ksu.edu.sa

2 Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur 302017, Rajasthan, India
3 School of IT and Systems, University of Canberra, Canberra, ACT 2601, Australia;

karam.sallam@canberra.edu.au
4 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University,

Giza 12613, Egypt
5 Department of Mathematics and Actuarial Science School of Sciences Engineering, The American University

in Cairo, Cairo 11835, Egypt
* Correspondence: drshalini@skit.ac.in (S.S.); aakash.saxena@hotmail.com (A.S.);

aliwagdy@gmail.com (A.W.M.)

Abstract: Metaheuristics are proven solutions for complex optimization problems. Recently, bio-
inspired metaheuristics have shown their capabilities for solving complex engineering problems. The
Whale Optimization Algorithm is a popular metaheuristic, which is based on the hunting behavior
of whale. For some problems, this algorithm suffers from local minima entrapment. To make WOA
compatible with a number of challenging problems, two major modifications are proposed in this
paper: the first one is opposition-based learning in the initialization phase, while the second is
inculcation of Cauchy mutation operator in the position updating phase. The proposed variant is
named the Augmented Whale Optimization Algorithm (AWOA) and tested over two benchmark suits,
i.e., classical benchmark functions and the latest CEC-2017 benchmark functions for 10 dimension and
30 dimension problems. Various analyses, including convergence property analysis, boxplot analysis
and Wilcoxon rank sum test analysis, show that the proposed variant possesses better exploration
and exploitation capabilities. Along with this, the application of AWOA has been reported for three
real-world problems of various disciplines. The results revealed that the proposed variant exhibits
better optimization performance.

Keywords: metaheuristic algorithms; Whale Optimization Algorithm

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction and Literature Review

Optimization is a process to fetch the best alternative solution from the given set of
alternatives. Optimization processes are evident everywhere around of us. For example,
to run a generating company, the operator has to take care of operating cost and to check
and deal with various type of markets to execute financial transactions.The operator has to
optimize the fuel purchase cost, sell the power at maximum rate and purchase the carbon
credits at minimum cost to earn profit. Sometimes, optimization processes involve various
stochastic variables to model the uncertainty in the process. Such processes are quite
difficult to handle and often pose a severe challenge to the optimizer or solution provider
algorithms. Evolution of modern optimizers is the outcome of these complex combinatorial
multimodal nonlinear optimization problems. Unlike classical optimizers, where the search
starts with the initial guess, these modern optimizers are based on the stochastic variables,
and hence, they are less vulnerable towards local minima entrapment. These problems

Mathematics 2022, 10, 2076. https://doi.org/10.3390/math10122076 https://www.mdpi.com/journal/mathematics
67

Mathematics 2022, 10, 2076

become the main source of emerging of metaheuristic algorithms, which are capable of
finding a near-optimal solution in less computation time. The popularity of metaheuristic
algorithms [1] has increased exponentially in the last two decades due to their simplicity,
derivation-free mechanism, flexibility and better results providing capacity in comparison
with conventional methods. The main inspiration of these algorithms is nature, and hence,
aliased as nature-inspired algorithms [2].

Social mimicry of nature and living processes, behavior analysis of animals and
cognitive viability are some of the attributes of nature-inspired algorithms. Darwin’s
theory of evolution has inspired some nature-inspired algorithms, based on the property of
“inheritance of good traits” and “competition, i.e., survival of the fittest”. These algorithms
are Genetic Algorithm [3], Differential Evolution and Evolutionary Strategies [4].

The other popular philosophy is to mimic the behavior of animals which search
for food. In these approaches, food or prey is used as a metaphor for global minima in
mathematical terms. Exploration, exploitation and convergence towards the global minima
is mapped with animal behavior. Most of the nature-inspired algorithms also known as
population-based algorithms can further be classified as:

• Bio-inspired Swarm Intelligence (SI)-based algorithms: This category includes all
algorithms inspired by any behavior of swarms or herds of animals or birds. Since
most birds and animals live in a flock or group, there many algorithms that fall under
this category, such as Ant Colony Optimization (ACO) [5], Artificial Bee Colony [6],
Bat Algorithm [7], Cuckoo Search Algorithm [8], Krill herd Algorithm [9], Firefly
Algorithm [10], Grey Wolf Optimizer [11], Bacterial Foraging Algorithm [12], Social
Spider Algorithm [13], Cat Swarm Optimization [14], Moth Flame Optimization [15],
Ant Lion Optimizer [16], Crow Search Algorithm [17] and Grasshopper Optimization
Algorithm [18]. A social interaction-based algorithm named gaining and sharing
knowledge was proposed in reference [19]. References pertaining to the applications
of bioinspired algorithms affirm the suitability of these algorithms on real-world
problems [20–23]. A timeline of some famous bio-inspired algorithms is presented in
Figure 1.

• Physics- or chemistry-based algorithms: Algorithms developed by mimicking any
physical or chemical law fall under this category. Some of them are Big bang-big
crunch Optimization [24], Black Hole [25], Gravitational search Algorithm [26], Central
Force [27] and Charged system search [28].

Other than these population-based algorithms, a few different algorithms have also
been proposed to solve specific mathematical problems. In [29,30], the authors proposed
the concept of construction, solution and merging. Another Greedy randomised adaptive
search-based algorithm using the improved version of integer linear programming was
proposed in [31].

The No Free Lunch Theorem proposed by Wolpert et al. [32] states that there is no one
metaheuristic algorithm which can solve all optimization problems. From this theorem, it
can be concluded that there is no single metaheuristic that can provide the best solution
for all problems. It is possible that one algorithm may be very effective for solving certain
problems but ineffective in solving other problems. Due to the popularity of nature-
inspired algorithms in providing reasonable solutions to complex real-life problems, many
new nature-inspired optimization techniques are being proposed in the literature. It is
interesting to note that all bio-inspired algorithms are subsets of nature-inspired algorithms.
Among all of these algorithms, the popularity of bio-inspired algorithms has increased
exponentially in recent years. Despite of this popularity, these algorithms have also been
critically reviewed [33].

68

Mathematics 2022, 10, 2076

 Bacterial Foraging Algorithm

 Cat Swarm Optimization
 Artificial Bee Colony
 Ant Colony Optimization

 Firefly Algorithm (The Flashing light Behavior of Fireflies)
 Cuckoo Search Algorithm

 Bat Algorithm (Echolocation Behavior of Bats)

 Krill Herd Algorithm (Herding Behavior of Krills)

 Grey Wolf Optimizer (Hunting Behavior of Grey Wolfs)

 Social Spider Algorithm (Foraging Strategy of Social Spiders)
 Ant Lion Optimizer (Hunting Behavior of Ant Lions)
 Moth Flame Optimization (Transverse Orientation Mechanism of

Moth)

 Crow Search Algorithm (Intelligent Behavior of Crows)
 Whale Optimization Algorithm (Bubble net Hunting Behavior of

Humpback Whales)

 Grasshopper Optimization Algorithm (Food Search Behavior of
Grasshoppers)

2012

2016

2015

2014

2010

2009

2006

2002

2017

Figure 1. Development timeline of some of the leading bio-inspired algorithms.

69

Mathematics 2022, 10, 2076

In 2016, Mirjalili et al. [34] proposed a new nature-inspired algorithm called the
Whale optimization algorithm (WOA), inspired by the bubble-net hunting behavior of
humpback whales. The humpback whale belongs to the rorqual family of whales, known
for their huge size. An adult can be 12–16 m long and weigh 25–30 metric tons. They
have a distinctive body shape and are known for their breaching behavior in water with
astonishing gymnastic skills and for haunting songs sung by males during their migration
period. Humpback whales eat small fish herds and krills. For hunting their prey, they
follow a unique strategy of encircling the prey spirally, while gradually shrinking the size
of the circles of this spiral. With incorporation of this theory, the performance of WOA is
superior to many other nature-inspired algorithms. Recently, in [35], WOA was used to
solve the optimization problem of the truss structure. WOA has also been used to solve the
well-known economic dispatch problem in [36]. The problem of unit commitment from
electric power generation was solved through WOA in [37]. In [38], the author applied
WOA to the long-term optimal operation of a single reservoir and cascade reservoirs. The
following are the main reasons to select WOA:

• There are few parameters to control, so it is easy to implement and very flexible.
• This algorithm has a specific characteristic to transit between exploration and exploita-

tion phasesm as both of these include one parameter only.

Sometimes, it also suffers from a slow convergence speed and local minima entrapment
due to the random size of the population. To overcome these shortcomings, in this paper,
we propose two major modifications to the existing WOA:

• The first modification is the inculcation of the opposition-based learning (OBL) con-
cept in the initialization phase of the search process, or in other words, the exploratory
stage. The OBL is a proven tool for enhancing the exploration capabilities of meta-
heuristic algorithms.

• The second modification is of the position updating phase, by updating the position
vector with the help of Cauchy numbers.

The remaining part of this paper is organized as follows: Section 2 describes the crisp
mathematical details of WOA. Section 3 is a proposal of the proposed variant; an analogy
based on modified position update is also established with the proposed mathematical
framework. Section 4 includes the details of benchmark functions. In Sections 5 and 6 show
the results of the benchmark functions and some real-life problems that occur with different
statistical analyses. Last but not the least, the paper concludes in Section 7 with a decisive
evaluation of the results, and some future directions are indicated.

2. Mathematical Framework of WOA

The mathematical model of WOA can be presented in three steps: prey encircling,
exploitation phase through bubble-net and exploration phase, i.e., prey search.

1. Prey encircling: Humpback whales choose their target prey through the capacity to
finding the location of prey. The best search agent is followed by other search agents
to update their positions, which can be given mathematically as:

�P =
∣∣∣�Q �Y∗(s)− �Y(s)

∣∣∣ (1)

�Y(s + 1) = �Y∗(s)− �R · �P (2)

where Y∗ denotes the position vector of the best obtained solution, �Y is the position
vector, s is the current iteration, | | denotes the absolute value and · denotes the
element to element multiplication.
The coefficients �R and �Q can be calculated as follows:

�R = 2�p ·�r− �p (3)

�Q = 2�r (4)

70

Mathematics 2022, 10, 2076

where �p linearly decreases with every iteration from 2 to 0 and�r ∈ [0, 1]. By adjusting
the values of vectors �P and �R, the current position of search agents shifted towards
the best position. This position updating process in the neighborhood direction also
helps in encircling the prey n dimensionally.

2. Exploitation phase through bubble-net: The value of �p decreases in the interval [−p, p].
Due to changes in �p, �P also fluctuates and represents the shrinking behavior of search
agents. By choosing random values of �P in the interval [−1, 1], the humpback whale
updates its position. In this process, the whale swims towards the prey spirally and the
circles of spirals slowly shrink in size. This shrinking of the spirals in a helix-shaped
movement can be mathematically modeled as:

�Y(s + 1) = �Q
′ · eal · cos(2πl) + �Y∗(s) (5)

�Q
′
=
∣∣∣�Y∗(s)− �Y(s)

∣∣∣ (6)

where �a is the constant factor responsible for the shape of spirals and l randomly
belongs to interval [−1, 1].
In the position updating phase, whales can choose any model, i.e., the shrinking
mechanism or the spiral mechanism. The probability of this simultaneous behavior is
assumed to be 50 during the optimization process. The combined equation of both of
these behavior can be represented as:

�Y(s + 1) =

{
�Y∗(s)− �P · �Q p < 0.5

�Q
′
eal cos(2πl) + Ys p > 0.5

(7)

3. Exploration Phase
In this phase, �P is chosen opposite to the exploitation phase, i.e., the value of �P
must be > 1 or < −1, so that the humpback whales can move away from each
other, which increases the exploration rate. This phenomenon can be represented
mathematically as:

�Q =
∣∣∣�R · �Yrand − �Y

∣∣∣ (8)

�Y(s + 1) = �Yrand − �P · �Q (9)

where �Yrand represents the position of a random whale.
After achieving the termination criteria, the optimization process finishes. The main
features of WOA are the presence of the dual theory of circular shrinking and spiral
path, which increase the exploitation process of finding the best position around the
prey. Afterwards, the exploration phase provides a larger area through the random
selection of values of

∣∣∣�A∣∣∣.
3. Motivation and Development of the Augmented Whale Optimization Algorithm

It is observed in the previous reported applications that inserting mutation in the
population-based schemes can enhance the performance of the optimization. Some note-
worthy applications are reported in [39].

3.1. Augmented Whale Optimization Algorithm (AWOA)

By taking the motivation of the modified position update, we present the development
of AWOA and the mathematical steps we have incorporated. To simulate the behavior
of whale through modified position update and their connection to the position update
mechanism for mating, we require two mechanisms:

1. The mechanism that puts the whales in diverse directions.
2. The mechanism that updates the positions of the whales by using a mathematical

signal.

71

Mathematics 2022, 10, 2076

3.1.1. The Opposition-Based Position Update Method

For simulating the first mechanism, we choose the opposition number generation
theory that was proposed by H. R Tizoosh. Opposition-based learning is the concept
that puts the search agents in diverse (rather opposite directions) so that the search for
optima can also be initiated from opposite directions. This theory has been applied in many
metaheuristic algorithms, and now, it is a proven fact that the search capabilities of the
optimizer can substantially be enhanced by the application of this opposition number gen-
eration technique. Some recent papers have provided evidence of this [40,41]. With these
approaches, an impact of opposition-based learning can be easily seen. Furthermore, a rich
review on the techniques related to opposition, application area and performance-wise
comparison can be read in [42,43].

The following points can be taken as some positive arguments in favor of the applica-
tion of the oppositional number generation theory (ONGT) concept:

1. While solving multimodal optimization problems, it is required that an optimizer
should start a process from the point which is nearer to the global optima; in some
cases, the loose position update mechanism becomes a potential cause for local minima
entrapment. The ONGT becomes a helping hand in such situations, as it places search
agents in diverse directions, and hence, the probability of local minima entrapment is
substantially decreased.

2. In real applications, where the shape and nature of objective functions are unknown,
the ONGT can be a beneficial tool because if the function is unimodal in nature, as
per the research, the exploration capabilities of any optimizers can be substantially
enhanced by the application of ONGT. On the other hand, if the function is multimodal
in nature, then ONGT will help search agents to acquire opposite positions and help
the optimizer’s mechanism to converge to global optima.

For the reader’s benefit, we are incorporating some definitions of opposite points in
search space for a 2D and multidimensional space.

Definition 1. Let x ∈ [a, b] be a real number, where the opposite number of x is defined by:

−
x = a + b− x (10)

The same holds for Q dimensional space.

Definition 2. Let A = (x1, x2, . . . , xQ) be a point in Q dimensional space, where x1, x2, . . . , xQ ∈ R

and xi ∈ [a, b], i=1, 2, . . . , Q ; the opposite points matrix can be given by
−
A = [

−
x1 ,

−
x2 ,

−
x3 . . . ,

−
xQ].

Hence: −
xi = [ai + bi − xi] (11)

where ai and bi are the lower limit and upper limit, respectively. Furthermore, Figure 2 illustrates
the search process of ONGT, where A1 and B1 are the search boundaries, and it shrinks as the
iterative process progresses.

72

Mathematics 2022, 10, 2076

A1 B1

Iteration-1

A1 B1

 X1 X2

Iteration-2

 A1 B2

X1 X2’

Figure 2. Solving the one-dimensional problem by recursive halving the search interval.

3.1.2. Position Updating Mechanism Based on the Cauchy Mutation Operator

For simulating the second mechanism, we require a signal that is a close replica of a
whale song. In the literature, a significant amount of work has been done on the application
of the Cauchy mutation operator due to the following reasons:

1. Since the expectation of the Cauchy distribution is not defined, the variance of this
distribution is infinite; due to this fact, the Cauchy operators sometimes generate a
very long jump as compared to normally distributed random numbers [44,45]. This
phenomenon can be observed in Figure 3.

2. It is also shown in [44] that Cauchy distribution generates an offspring far from its
parents; hence, the avoidance of local minima can be achieved.

In the proposed AWOA, the position update mechanism is derived from the Cauchy
distribution operator. The Cauchy density function of the distribution is given by:

ft(x) =
1
π

t
t2 + x2 −∞ < x < ∞ (12)

where t is the scaling parameter and the corresponding distribution function can be given as:

Ft(x) =
1
2
+

1
π

arctan(
x
t
) (13)

First, a random number y ∈ (0, 1) is generated, after which a random number α is
generated by using following equation:

α = x0 + t tan(π(y− 0.5)) (14)

73

Mathematics 2022, 10, 2076

Figure 3. Whale position update inspired from Cauchy Distribution.

We assume that α is a whale position update generated by the search agents and on
the basis of this signal, the position of the whale is updated. Furthermore, we define a
position-based weight matrix of jth position vector of ith whale, which is given as:

W(j) =

(
NP
∑

i=1
xi,j

)
NP

(15)

where W(j) is a weight vector and NP is the population size of whale. Furthermore, the
position update equation can be modified as:

x′(j) = x(j) + W(j) ∗ α (16)

Summarizing all the points discussed in this section, we propose two mechanisms for
the improvement of the performance of WOA. The first one is the opposition-based learning
concept that places whales in diverse directions to explore the search space effectively, and
based on the whale behaviour(modified position update) is created by them, the position
update mechanism is proposed. To simulate whale song, we employ Cauchy numbers.
Hence, both of these mechanisms can be beneficial for enhancing the exploration and
exploitation capabilities of WOA. In the next section, we will evaluate the performance of
the proposed variant on some conventional and CEC-17 benchmark functions.

4. Benchmark Test Functions

Benchmark functions are a set of functions with different known characteristics (sep-
arability, modality and dimensionality) and often used to evaluate the performance of
optimization algorithms. In the present paper, we measure the performance of our pro-
posed variant AWOA through two benchmark suites.

• Benchmark Suite 1: In this suite, 23 conventional benchmark functions are considered,
out of which 7 are unimodal and rest are multimodal and fixed dimension functions.
The details of benchmark functions, such as mathematical definition, minima, dimen-
sions and range are incorporated in Table 1. For further details, one can refer to [46–48].
The shapes of the used benchmark functions are given in Figure 4.

• Benchmark Suite 2: For further benchmarking our proposed variant, we also choose a
set of 29 functions of diverse nature from CEC 2017. Table 2 showcases the minor de-

74

Mathematics 2022, 10, 2076

tails of these functions. For other details, such as optima and mathematical definitions,
we can follow [49].

Table 1. Details of Benchmark Functions Suite 1.

Function Dim Range Minima

Unimodal Benchmark Function

G1(x) =
n
∑

i=1
x2

i (BF1) 30 [−100, 100] 0

G2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| (BF2) 30 [−10, 10] 0

G3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2

(BF3) 30 [−100, 100] 0

G4(x) = maxi{|xi| 1 ≤ i ≤ n (BF4) 30 [−100, 100] 0

G5(x) =
n−1
∑

i=1
[100(xi+1 − x2

i)
2
+ (xi − 1)2] (BF5) 30 [−30, 30] 0

G6(x) =
n−1
∑

i=1
([xi + 0.5])2 (BF6) 30 [−100, 100] 0

G7(x) =
n−1
∑

i=1
ix4

i + random[0, 1] (BF7) 30 [−1.28, 1.28] 0

Multimodal Benchmark Function

G8(x) =
n
∑

i=1
−xi sin

(√
|zi|
)

(BF8) 30 [−500, 500] −418.9829 × 5

G9(x) =
n
∑

i=1

[
xi

2 − 10 cos(2πxi) + 10
]

(BF9) 30 [−5.12, 5.12] 0

G10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
xi

2

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e (BF10) 30 [−32, 32] 0

G11(x) = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos
(

xi√
i

)
+ 1 (BF11) 30 [−600, 600] 0

G12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

}
+

n
∑

i=1
u(xi, 10, 100, 4) (BF12)

30 [−50, 50] 0
yi = 1 + xi+1

4

u(xi, a, k, m) =

⎧⎨⎩
k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

G13(x) = 0.1{sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]}+

n
∑

i=1
u(xi, 5, 100, 4) (BF13) 30 [−50, 50] 0

Fixed-Dimension Multimodal Benchmark Function

G14(x) =

⎛⎜⎝ 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6

⎞⎟⎠
−1

(BF14) 2 [−65, 65] 1

G15(x) =
11
∑

j=1

[
ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]2

(BF15) 4 [−5, 5] 0.00030

G16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 (BF16) 2 [−5, 5] −1.0316

G17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 (BF17) 2 [−5, 5] 0.398

G18(x) = A(z)× B(x)
A(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)

B(x) = 30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2) (BF18) 2 [−2, 2] 3

G19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij(xj − pij)

2

)
(BF19) 3 [1, 3] −3.86

G20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij(xj − pij)

2

)
(BF20) 6 [0, 1] −3.32

G21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
(BF21) 4 [0, 10] −10.1532

G22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1

(BF22) 4 [0, 10] −10.4028

G23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1

(BF23) 4 [0, 10] −10.5363

75

Mathematics 2022, 10, 2076

Table 2. Details of CEC-2017 (Benchmark Suite 2).

Function Name Optima

Unimodal Functions

Shifted and Rotated Bent Cigar Function (CEC-G1) (F1) 100

Shifted and Rotated Zakharov Function (CEC-G3) (F3) 300

Simple Multimodal Functions

Shifted and Rotated Rosenbrock’s Function (CEC-G4) (F4) 400

Shifted and Rotated Rastrigin’s Function (CEC-G5) (F5) 500

Shifted and Rotated Expanded Scaffer’s Function (CEC-G6) (F6) 600

Shifted and Rotated Lunacek Bi Rastrigin Function (CEC-G7) (F7) 700

Shifted and Rotated Non-continuous Rastrigin Function (CEC-G8) (F8) 800

Shifted and Rotated Levy Function (CEC-G9) (F9) 900

Shifted and Rotated Schwefel’s Function (CEC-G10) (F10) 1000

Hybrid Functions

Hybrid Function 1 (N = 3) (CEC-G11) (F11) 1100

Hybrid Function 2 (N = 3) (CEC-G12) (F12) 1200

Hybrid Function 3 (N = 3) (CEC-G13) (F13) 1300

Hybrid Function 4 (N = 4) (CEC-G14) (F14) 1400

Hybrid Function 5 (N = 4) (CEC-G15) (F15) 1500

Hybrid Function 6 (N = 4) (CEC-G16) (F16) 1600

Hybrid Function 7 (N = 5) (CEC-G17) (F17) 1700

Hybrid Function 8 (N = 5) (CEC-G18) (F18) 1800

Hybrid Function 9 (N = 5) (CEC-G19) (F19) 1900

Hybrid Function 10 (N = 6) (CEC-G20) (F20) 2000

Composite Functions

Composition Function 1 (N = 3) (CEC-G21) (F21) 2100

Composition Function 2 (N = 3) (CEC-G22) (F22) 2200

Composition Function 3 (N = 4) (CEC-G23) (F23) 2300

Composition Function 4 (N = 4) (CEC-G24) (F24) 2400

Composition Function 5 (N = 5) (CEC-G25) (F25) 2500

Composition Function 6 (N = 5) (CEC-G26) (F26) 2600

Composition Function 7 (N = 6) (CEC-G27) (F27) 2700

Composition Function 8 (N = 6) (CEC-G28) (F28) 2800

Composition Function 9 (N = 3) (CEC-G29) (F29) 2900

Composition Function 10 (N = 3) (CEC-G30) (F30) 3000

76

Mathematics 2022, 10, 2076

F
ig

u
re

4
.

Be
nc

hm
ar

k
Su

it
e

1.

77

Mathematics 2022, 10, 2076

5. Result Analysis

In this section, various analyses that can check the efficacy of the proposed modifica-
tions are exhibited. For judging the optimization performance of the proposed AWOA, we
have chosen some recently developed variants of WOA for comparison purpose. These
variants are:

• Lévy flight trajectory-based whale optimization algorithm (LWOA) [50].
• Improved version of the whale optimization algorithm that uses the opposition-based

learning, termed OWOA [41].
• Chaotic Whale Optimization Algorithm (CWOA) [51].

5.1. Benchmark Suite 1

Table 3 shows the optimization results of AWOA on Benchmark Suite 1 along with
the leading. The table shows entries of mean and standard deviation (SD) of function
values of 30 independent runs. Maximum function evaluations are set to 15,000. The first
four functions in the table are unimodal functions. Benchmarking of any algorithm on
unimodal functions gives us the information of the exploration capabilities of the algorithm.
Inspecting the results of proposed AWOA on unimodal functions, it can be easily observed
that the mean values are very competitive for the proposed AWOA as compared with other
variants of WOA.

For rest of the functions, indicated mean values are competitive and the best results
are indicated in bold face. From this statistical analysis, we can easily derive a conclusion
that proposed modifications in AWOA are meaningful and yield positive implications
on optimization performance of the AWOA specially on unimodal functions. Similarly,
for multimodal functions BF-7 and BF-9 to 11, BF-15 to 19 and BF-22 have optimal values
of mean parameter. We observed that the values of mean are competitive for rest of the
functions and performance of proposed AWOA has not deteriorated.

5.1.1. Convergence Property Analysis

Similarly, the convergence plots for functions BF1 to BF4 have also been plotted in
Figure 5 for the sake of clarity. From these convergence curves, it is observed that the
proposed variant shows better convergence characteristics and the proposed modifications
are fruitful to enhance the convergence and exploration properties of WOA. As it can
be seen that convergence properties of AWOA is very swift as compared to other com-
petitors. It is to be noted here that BF1–BF4 are unimodal functions and performance of
AWOA on unimodal functions indicates enhanced exploitation properties. Furthermore,
for showcasing the optimization capabilities of AWOA on multimodal functions the plots
of convergence are exhibited in Figure 6. These are plotted for BF9 to BF12. From these
results of proposed AWOA, it can easily be concluded that the results are also competitive.

5.1.2. Wilcoxon Rank Sum Test

A rank sum test analysis has been conducted and the p-values of the test are indicated
in Table 4. We have shown the values of Wilcoxon rank sum test by considering a 5% level
of significance [52]. Values that are indicated in boldface are less than 0.05, which indicates
that there is a significance difference between the AWOA results and other opponents.

5.1.3. Boxplot Analysis

To present a fair comparison between these two opponents, we have plotted boxplots
and convergence of some selected functions. Figure 7 shows the boxplots of function
(BF1–BF12). From the boxplots, it is observed that the width of the boxplots of AWOA are
optimal in these cases; hence, it can be concluded that the optimization performance of
AWOA is competitive with other variants of WOA. The mean values shown in the boxplots
are also optimal for these functions. The performance of AWOA on the remaining functions
of this suite has been depicted through boxplots shown in Figure 8. From these, it can

78

Mathematics 2022, 10, 2076

be concluded that the performance of proposed AWOA is competitive, as mean values
depicted in the plots are optimal for most of the functions.

Table 3. Results of Benchmark Suite-1.

Function Parameter AWOA CWOA LWOA OWOA WOA

BF1
Mean 0.00 1.33 × 10−97 2.04 × 10−8 2.37 × 10−172 1.24 × 10−172

SD 0.00 4.06 × 10−97 2.30 × 10−8 0.00 0.00

BF2
Mean 2.71 × 10−297 1.96 × 10−59 2.77 × 10−4 4.15 × 10−117 3.96 × 10−120

SD 0.00 4.93 × 10−59 1.35 × 10−4 1.01 × 10−116 1.51 × 10−119

BF3
Mean 0.00 9.27 × 103 8.11 × 102 6.04 × 103 7.02 × 103

SD 0.00 9.34 × 103 5.41 × 102 4.82 × 103 6.55 × 103

BF4
Mean 3.6 × 10−313 1.39 × 10−2 5.88 × 10−1 8.02 × 10 4.74

SD 0.00 5.71 × 10−2 3.38 × 10−1 1.98 × 10 1.33 × 10

BF5
Mean 2.84 × 10 2.78 × 10 2.77 × 10 2.71 × 10 2.74 × 10

SD 6.08 × 10−1 6.12 × 10−1 2.32 × 10−1 8.95 × 10−1 9.66 × 10−1

BF6
Mean 4.49 × 10−1 1.36 × 10−97 2.73 × 10−3 5.46 × 10−1 5.02 × 10−1

SD 2.01 × 10−1 4.81 × 10−1 1.09 × 10−3 2.46 × 10−1 3.71 × 10−1

BF7
Mean 1.55 × 10−4 4.94 × 10−4 7.58 × 10−3 1.53 × 10−3 1.75 × 10−3

SD 1.87 × 10−4 4.88 × 10−4 6.70 × 10−3 1.96 × 10−3 1.93 × 103

BF8
Mean −7.80 × 103 −6.93 × 103 −9.50 × 103 −1.03 × 104 −9.02 × 103

SD 1.70 × 103 1.51 × 103 1.59 × 103 2.13 × 103 2.02 × 103

BF9
Mean 0.00 0.00 1.88 0.00 2.84 × 10−15

SD 0.00 0.00 4.94 0.00 1.27 × 10−14

BF10
Mean 8.88 × 10−16 4.80 × 10−15 8.75 × 10−5 4.09 × 10−15 4.09 × 10−15

SD 0.00 2.28 × 10−15 3.34 × 10−5 1.59 × 10−15 2.55 × 10−15

BF11
Mean 0.00 5.58 × 10−3 2.09 × 10−3 0.00 0.00

SD 0.00 2.50 × 10−2 6.61 × 10−3 0.00 0.00

BF12
Mean 2.03 × 10−2 7.91 × 10−2 2.28 × 10−4 3.44 × 10−2 3.64 × 10−2

SD 9.28 × 10−3 3.22 × 10−2 7.37 × 10−5 2.11 × 10−2 2.35 × 10−2

BF13
Mean 5.69 × 10−1 1.23 8.76 × 10−3 9.87 × 10−1 1.01

SD 1.97 × 10−1 3.56 × 10−1 6.05 × 10−3 2.51 × 10−1 3.37 × 10−1

BF14
Mean 2.14 1.89 1.05 3.16 2.77

SD 9.80 × 10−1 1.01 2.22 × 103 3.41 2.88

BF15
Mean 4.00 × 10−4 4.00 × 10−4 5.30 × 10−4 5.21 × 10−4 1.51 × 10−3

SD 3.77 × 10−4 2.82 × 10−4 2.70 × 10−4 2.39 × 10−4 4.05 × 10−3

BF16
Mean −1.03 −1.03 −1.03 −1.03 −1.03

SD 1.57 × 10−8 1.12 × 10−8 2.32 × 10−8 6.20 × 10−11 7.34 × 10−11

BF17
Mean 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

SD 1.73 × 10−8 8.73 × 10−9 4.40 × 10−6 1.39 × 10−7 1.23 × 10−6

BF18
Mean 3.00 3.00 3.00 3.00 3.00

SD 1.12 × 10−4 1.30 × 10−4 9.86 × 10−7 3.88 × 10−5 4.88 × 10−5

BF19
Mean −3.86 −3.86 −3.86 −3.86 −3.86

SD 3.81 × 10−3 3.61 × 10−3 4.01 × 10−5 3.09 × 10−3 1.75 × 10−3

BF20
Mean −3.22 −3.24 −3.27 −3.27 −3.23

SD 1.30 × 10−1 8.36 × 10−1 6.38 × 10−2 7.17 × 10−2 1.23 × 10−1

BF21
Mean −6.56 −7.74 −7.51 −8.27 −8.50

SD 2.35 2.70 3.41 3.34 2.64

BF22
Mean −8.71 −6.58 −8.62 −6.38 −8.03

SD 3.04 2.97 2.83 3.48 3.42

BF23
Mean −5.85 −7.20 −7.83 −7.79 −7.47

SD 2.87 3.15 2.77 3.20 3.22

79

Mathematics 2022, 10, 2076

Figure 5. Convergence property analysis of unimodal functions.

Figure 6. Convergence property analysis of multimodal functions.

80

Mathematics 2022, 10, 2076

Table 4. Results of Wilcoxon rank sum test of AWOA.

Function CWOA LWOA OWOA WOA

BF1 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9

BF2 5.73 × 10−8 5.73 × 10−8 5.73 × 10−8 5.73 × 10−8

BF3 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9

BF4 1.96 × 10−8 1.96 × 10−8 1.96 × 10−8 1.96 × 10−8

BF5 2.14 × 10−3 2.22 × 10−4 4.68 × 10−5 3.38 × 10−4

BF6 2.22 × 10−7 6.80 × 10−8 1.99 × 10 9.46 × 10−1

BF7 8.36 × 10−4 7.90 × 10−8 2.92 × 10−5 6.01 × 10−7

BF8 1.20 × 10−1 6.04 × 10−3 7.58 × 10−4 1.02 × 10−1

BF9 8.01 × 10−9 3.42 × 10−1

BF10 2.14 × 10−7 8.01 × 10−9 1.11 × 10−7 7.43 × 10−6

BF11 3.42 × 10−1 8.01 × 10−9

BF12 1.23 × 10−7 6.80 × 10−8 1.33 × 10−2 3.15 × 10−2

BF13 1.58 × 10−6 6.80 × 10−8 1.81 × 10−5 4.68 × 10−5

BF14 1.33 × 10−1 1.56 × 10−1 5.25 × 10−1 4.73 × 10−1

BF15 1.72 × 10−1 8.35 × 10−3 1.67 × 10−2 6.22 × 10−4

BF16 9.89 × 10−1 3.06 × 10−3 3.99 × 10−6 8.60 × 10−6

BF17 9.03 × 10−1 1.66 × 10−7 2.23 × 10−2 7.71 × 10−3

BF18 1.20 × 10−1 4.70 × 10−3 9.25 × 10−1 6.55 × 10−1

BF19 4.41 × 10−1 2.00 × 10−4 3.79 × 10−1 1.99 × 10−1

BF20 6.55 × 10−1 6.56 × 10−3 2.75 × 10−2 1.40 × 10−1

BF21 2.18 × 10−1 2.75 × 10−2 7.71 × 10−3 2.22 × 10−4

BF22 6.17 × 10−1 1.35 × 10−3 9.25 × 10−1 1.93 × 10−2

BF23 1.40 × 10−1 9.28 × 10−5 1.12 × 10−3 3.97 × 10−3

Figure 7. Boxplot analysis of Benchmark Suite 1.

81

Mathematics 2022, 10, 2076

Figure 8. Boxplot analysis of the remaining functions of Benchmark Suite 1.

5.2. Benchmark Suite 2

In this section, we report the results of the proposed variant on CEC17 functions.
The details of CEC 17 functions have been exhibited in Table 2. To check the applicability of
the proposed variant on higher as well as lower dimension functions, 10- and 30-dimension
problems are chosen deliberately. While performing the simulations we have obeyed the
criterion of CEC17; for example, the number of function evaluations have been kept 104×D
for AWOA and other competitors. The results are averaged over 51 independent runs, as
indicated by CEC guidelines. The results of the optimization are expressed as mean and
standard deviation of the objective function values obtained from the independent runs.
Tables 5 and 6 show these analyses and the bold face entries in the tables show the best
performer. Tables 7 and 8 also report the statistical comparison results of objective function
values obtained from independent runs through Wilcoxon rank sum test with 5% level of
significance. These results are p-values indicated in the each column of the observation
table when the opponent is compared with the proposed AWOA. These values are indicator
of the statistical significance.

5.3. Results of the Analysis of 10D Problems

For 10D problems, the depiction of results are in terms of the mean values and standard
deviation values obtained from 51 different independent runs that are indicated for each
opponent of AWOA. Furthermore, the following are the noteworthy observations from
this study:

• From the table, it is observed that the values obtained from optimization process
and their statistical calculation indicate that the substantial enhancement is evident
in terms of mean and standard deviation values. These values are shown in bold
face. We observe that out of 29 functions, the proposed variant provides optimal
mean values for 23 functions. In addition to that, we have observed that the value
of the mean parameter is optimal for 23 functions for AWOA. Except CECF16, 17,
18, 23, 24, 26 and CECF29, the mean values of the optimization runs are optimal
for AWOA. This supports the fact that the proposed modifications are helpful for
enhancing the optimization performance of the original WOA. Inspecting other statis-
tical parameters, namely standard deviation values, also gives a clear insight into the
enhanced performance.

82

Mathematics 2022, 10, 2076

• We observe that for unimodal functions, these values are optimal as compared to
different versions of WOA as compared to AWOA; hence, it can be said that for
unimodal functions, AWOA outperforms. Unimodal functions are useful to test the
exploration capability of any optimizer.

• Inspecting the performance of the proposed version of WOA on multimodal func-
tions that are from CECF4-F10 gives a clear insight on the fact that the proposed
modifications are meaningful in terms of enhanced exploitation capabilities. Natu-
rally, in multimodal functions, more than one minimum exist, and to converge the
optimization process to global minima can be a troublesome task.

• The results of optimization runs indicated in bold face depict the performance of AWOA.

Table 5. Results of Benchmark Suite-2 (10D).

Function Parameter WOA OWOA AWOA LWOA CWOA

F1
Mean 6.85 × 104 7.03 × 106 9.50 × 103 1.48 × 107 1.08 × 107

SD 1.43 × 105 4.97 × 107 5.84 × 103 5.32 × 107 3.97 × 107

F3
Mean 6.81 × 102 8.53 × 102 3.00 × 102 9.30 × 102 6.17 × 102

SD 7.92 × 102 1.15 × 103 2.43 × 102 1.15 × 103 5.82 × 102

F4
Mean 4.20 × 102 4.23 × 102 4.05 × 102 4.31 × 102 4.29 × 102

SD 2.83 × 10 3.16 × 10 1.33 × 10 4.11 × 10 3.56 × 10

F5
Mean 5.40 × 102 5.36 × 102 5.28 × 102 5.34 × 102 5.33 × 102

SD 1.68 × 10 1.57 × 10 9.68 1.04 × 10 1.55 × 102

F6
Mean 6.14 × 102 6.16 × 102 6.03 × 102 6.12 × 102 6.11 × 102

SD 7.96 7.89 5.00 6.04 5.65

F7
Mean 7.59 × 102 7.61 × 102 7.45 × 102 7.63 × 102 7.51 × 102

SD 1.64 × 10 1.88 × 10 1.22 × 10 1.50 × 10 1.54 × 10

F8
Mean 8.32 × 102 8.31 × 102 8.27 × 102 8.29 × 102 8.29 × 102

SD 1.08 × 10 1.13 × 10 1.11 × 10 1.03 × 10 1.10 × 10

F9
Mean 1.03 × 103 1.04 × 103 9.15 × 102 9.99 × 102 9.88 × 102

SD 1.11 × 102 1.71 × 102 3.97 × 10 9.15 × 10 1.05 × 102

F10
Mean 1.99 × 103 1.94 × 103 1.81 × 103 1.94 × 103 1.84 × 103

SD 2.87 × 102 3.38 × 102 3.12 × 102 3.41 × 102 2.72 × 102

F11
Mean 1.16 × 103 1.16 × 103 1.13 × 103 1.17 × 103 1.17 × 103

SD 6.27 × 10 5.89 × 10 1.14 × 10 4.84 × 10 6.47 × 10

F12
Mean 1.96 × 106 1.03 × 106 5.29 × 104 2.59 × 106 2.19 × 106

SD 2.41 × 106 1.82 × 106 5.19 × 104 2.90 × 106 2.25 × 106

F13
Mean 1.66 × 104 1.21 × 104 1.02 × 104 1.91 × 104 1.54 × 104

SD 1.31 × 104 9.71 × 103 8.32 × 103 1.38 × 104 1.21 × 104

F14
Mean 1.71 × 103 1.71 × 103 1.47 × 103 1.64 × 103 1.70 × 103

SD 8.69 × 102 8.71 × 102 3.13 × 10 6.95 × 102 7.96 × 102

F15
Mean 2.41 × 103 2.81 × 103 1.58 × 103 2.64 × 103 2.58 × 103

SD 1.17 × 103 1.41 × 103 4.47 × 10 1.30 × 103 1.22 × 103

F16
Mean 1.76 × 103 1.78 × 103 1.76 × 103 1.78 × 103 1.73 × 103

SD 1.22 × 102 1.25 × 102 1.37 × 102 1.01 × 102 9.82 × 10

F17
Mean 1.77 × 103 1.77 × 103 1.77 × 103 1.76 × 103 1.77 × 103

SD 3.23 × 10 3.60 × 10 3.16 × 10 2.46 × 10 3.08 × 10

F18
Mean 1.70 × 104 1.71 × 104 1.72 × 104 1.62 × 104 1.62 × 104

SD 1.24 × 104 1.14 × 104 1.02 × 104 1.20 × 104 1.07 × 104

F19
Mean 8.18 × 103 1.69 × 104 2.32 × 103 4.93 × 103 5.40 × 103

SD 6.91 × 103 5.21 × 104 6.54 × 102 5.01 × 103 5.25 × 103

83

Mathematics 2022, 10, 2076

Table 5. Cont.

Function Parameter WOA OWOA AWOA LWOA CWOA

F20
Mean 2.09 × 103 2.10 × 103 2.05 × 103 2.11 × 103 2.11 × 103

SD 5.62 × 10 5.21 × 10 4.18 × 10 5.48 × 10 5.48 × 10

F21
Mean 2.31 × 103 2.31 × 103 2.30 × 103 2.27 × 103 2.29 × 103

SD 5.97 × 10 5.40 × 10 6.20 × 10 6.29 × 10 5.86 × 10

F22
Mean 2.33 × 103 2.31 × 103 2.30 × 103 2.31 × 103 2.31 × 103

SD 1.63 × 102 9.37 1.63 × 10 2.19 × 10 7.34

F23
Mean 2.64 × 103 2.64 × 103 2.64 × 103 2.63 × 103 2.64 × 103

SD 1.80 × 10 1.46 × 10 1.44 × 10 1.11 × 10 1.41 × 10

F24
Mean 2.75 × 103 2.76 × 103 2.75 × 103 2.75 × 103 2.74 × 103

SD 8.30 × 10 5.41 × 10 7.43 × 10 5.89 × 10 7.11 × 10

F25
Mean 2.94 × 103 2.93 × 103 2.92 × 103 2.94 × 103 2.93 × 103

SD 4.61 × 10 4.91 × 10 5.31 × 10 2.03 × 10 4.42 × 10

F26
Mean 3.22 × 103 3.13 × 103 3.04 × 103 3.03 × 103 3.03 × 103

SD 3.78 × 102 2.83 × 102 2.54 × 102 1.75 × 102 1.87 × 102

F27
Mean 3.12 × 103 3.11 × 103 3.11 × 103 3.11 × 103 3.11 × 103

SD 2.86 × 10 2.62 × 10 2.61 × 10 2.79 × 10 2.21 × 10

F28
Mean 3.33 × 103 3.31 × 103 3.30 × 103 3.33 × 103 3.33 × 103

SD 1.51 × 102 1.47 × 102 1.48 × 102 1.11 × 102 1.36 × 102

F29
Mean 3.27 × 103 3.27 × 103 3.24 × 103 3.23 × 102 3.25 × 103

SD 6.70 × 10 6.43 × 10 5.72 × 10 5.74 × 10 6.53 × 10

F30
Mean 2.19 × 105 3.56 × 105 9.26 × 104 1.37 × 105 2.36 × 105

SD 3.74 × 105 5.50 × 105 2.82 × 105 3.16 × 105 4.30 × 105

5.3.1. Statistical Significance Test by the Wilcoxon Rank Sum Test

The results of the rank sum test are depicted in Table 7. It is always important to
judge the statistical significance of the optimization run in terms of calculated p-values.
For this reason, the proposed AWOA has been compared with all opponents and results in
terms of the p-values that are depicted. Bold face entries show that there is a significance
difference between optimization runs obtained in AWOA and other opponents. This fact
demonstrates the superior performance of AWOA.

Table 6. Results of Benchmark Suite-2 (30D).

Function Parameter WOA OWOA AWOA LWOA CWOA

F1
Mean 1.35 × 109 1.61 × 109 4.53 × 105 2.36 × 109 2.65 × 109

SD 1.23 × 109 2.06 × 109 1.71 × 105 1.64 × 109 1.50 × 109

F3
Mean 4.85 × 104 4.78 × 104 3.24 × 102 4.83 × 104 4.57 × 104

SD 1.53 × 104 1.34 × 104 6.57 7.64 × 103 1.14 × 104

F4
Mean 5.93 × 102 6.05 × 102 4.95 × 102 7.73 × 102 7.48 × 102

SD 6.03 × 10 7.17 × 10 2.29 × 10 1.81 × 102 1.40 × 102

F5
Mean 7.60 × 102 7.67 × 102 7.13 × 102 7.68 × 102 7.52 × 102

SD 5.98 × 10 5.95 × 10 5.24 × 10 4.44 × 10 4.98 × 10

F6
Mean 6.66 × 102 6.65 × 102 6.51 × 102 6.58 × 102 6.58 × 102

SD 1.21 × 10 1.06 × 10 9.99 1.00 × 10 9.64

F7
Mean 1.18 × 103 1.16 × 103 1.09 × 103 1.15 × 103 1.14 × 103

SD 1.09 × 102 8.42 × 10 9.02 × 10 8.04 × 10 6.47 × 10

F8
Mean 1.01 × 103 1.01 × 103 9.80 × 102 1.01 × 103 1.00 × 103

SD 4.78 × 10 4.62 × 10 4.87 × 10 2.94 × 10 4.26 × 10

84

Mathematics 2022, 10, 2076

Table 6. Cont.

Function Parameter WOA OWOA AWOA LWOA CWOA

F9
Mean 7.31 × 103 7.61 × 103 6.48 × 103 6.58 × 103 6.74 × 103

SD 2.91 × 103 2.61 × 103 2.08 × 103 1.64 × 103 2.04 × 103

F10
Mean 5.93 × 103 6.06 × 103 4.98 × 103 6.81 × 103 6.42 × 103

SD 7.21 × 102 6.72 × 102 6.81 × 102 7.10 × 102 8.61 × 102

F11
Mean 2.09 × 103 1.80 × 103 1.27 × 103 1.94 × 103 2.08 × 103

SD 9.83 × 102 7.53 × 102 5.97 × 10 5.86 × 102 6.85 × 102

F12
Mean 5.19 × 107 5.45 × 107 4.36 × 106 2.38 × 108 1.76 × 108

SD 5.05 × 107 4.00 × 107 2.82 × 106 2.39 × 108 1.25 × 108

F13
Mean 2.60 × 105 1.58 × 105 1.46 × 105 7.88 × 106 2.13 × 106

SD 7.92 × 105 1.75 × 105 1.05 × 105 2.55 × 105 1.10 × 107

F14
Mean 4.41 × 105 3.52 × 105 2.46 × 104 4.22 × 105 4.79 × 105

SD 7.29 × 102 4.31 × 105 1.56 × 104 4.92 × 105 5.11 × 105

F15
Mean 2.78 × 105 2.51 × 106 7.96 × 104 1.67 × 106 4.31 × 106

SD 5.75 × 105 9.42 × 106 4.71 × 104 2.63 × 106 9.62 × 106

F16
Mean 3.22 × 103 3.25 × 103 2.87 × 103 3.42 × 103 3.43 × 103

SD 3.71 × 102 4.08 × 102 3.13 × 102 3.97 × 102 3.65 × 102

F17
Mean 2.42 × 103 2.42 × 103 2.37 × 103 2.41 × 103 2.42 × 103

SD 2.33 × 102 2.43 × 102 2.62 × 102 1.97 × 102 1.81 × 102

F18
Mean 1.74 × 106 2.30 × 106 2.29 × 105 4.18 × 106 2.74 × 106

SD 1.77 × 106 2.52 × 106 1.89 × 105 3.89 × 106 2.57 × 106

F19
Mean 1.78 × 106 2.25 × 106 1.22 × 105 7.62 × 106 6.83 × 106

SD 1.64 × 106 2.01 × 106 7.15 × 104 5.58 × 106 1.12 × 107

F20
Mean 2.69 × 103 2.67 × 103 2.60 × 103 2.67 × 103 2.67 × 103

SD 1.99 × 102 1.81 × 102 2.11 × 102 1.70 × 102 2.02 × 102

F21
Mean 2.54 × 103 2.53 × 103 2.51 × 103 2.53 × 103 2.53 × 103

SD 5.43 × 10 5.18 × 10 4.98×103 4.82 × 10 4.72 × 10

F22
Mean 6.51 × 103 6.39 × 103 5.69 × 103 6.19 × 103 7.42 × 103

SD 2.08 × 103 1.93 × 103 1.90 × 103 2.46 × 103 1.59 × 103

F23
Mean 2.97 × 103 2.97 × 103 2.93 × 103 2.94 × 103 2.94 × 103

SD 8.35 × 10 7.33 × 10 8.35 × 10 6.26 × 10 5.59 × 10

F24
Mean 3.12 × 103 3.10 × 103 3.15 × 103 3.09 × 103 3.08 × 103

SD 7.23 × 10 7.51 × 10 8.51 × 10 5.79 × 10 4.63 × 10

F25
Mean 3.01 × 103 3.00 × 103 2.89 × 103 3.07 × 103 3.05 × 103

SD 5.54 × 10 5.79 × 10 1.62 × 10 4.41 × 10 4.56 × 10

F26
Mean 6.63 × 103 6.94 × 103 6.12 × 103 6.60 × 103 6.56 × 103

SD 9.57 × 102 8.47 × 102 1.12 × 103 8.13 × 102 8.41 × 102

F27
Mean 3.32 × 103 3.32 × 103 3.27 × 103 3.37 × 103 3.35 × 103

SD 4.56 × 10 5.12 × 10 4.04 × 10 6.38 × 10 6.36 × 10

F28
Mean 3.40 × 103 3.42 × 103 3.22 × 103 3.50 × 103 3.50 × 103

SD 7.82 × 10 8.98 × 10 2.20 × 10 1.13 × 102 9.80 × 10

F29
Mean 4.63 × 103 4.58 × 103 4.06 × 103 4.67 × 103 4.57 × 103

SD 3.07 × 102 3.11 × 102 2.77 × 102 3.56 × 102 3.82 × 102

F30
Mean 8.90 × 106 9.96 × 106 4.28 × 105 2.54 × 107 2.38 × 107

SD 5.90 × 106 6.80 × 106 1.92 × 105 2.30 × 107 1.83 × 107

5.3.2. Boxplot Analysis

Boxplot analysis for 10D functions are performed for 20 independent runs of objective
function values. This analysis is depicted in Figures 9 and 10. From these boxplots, it is

85

Mathematics 2022, 10, 2076

easily to state that the results obtained from the optimization process acquire an optimal
Inter Quartile Range and low mean values. For showcasing the efficacy of the proposed
AWOA, all the optimal entries of mean values are depicted with an oval shape in boxplots.

Figure 9. Boxplot analysis of the 10D functions of Benchmark Suite 2.

Figure 10. Boxplot analysis of the remaining 10D functions of Benchmark Suite 2.

5.4. Results of the Analysis of 30D Problems

The results of the proposed AWOA, along with other variants of WOA, are depicted
in terms of statistical attributes of independent 51 runs in Table 6. From the results, it
is clearly evident that except for F24, the proposed AWOA provides optimal results as

86

Mathematics 2022, 10, 2076

compared to other opponents. Mean values of objective functions and standard deviation
of the objective functions obtained from independent runs are shown in bold face.

Table 7. Results of the rank sum test on Benchmark Suite-2 (10D).

Function WOA OWOA LWOA CWOA

F1 2.58 × 10−1 3.99 × 10−1 3.30 × 10−18 3.30 × 10−18

F3 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F4 4.20 × 10−9 2.99 × 10−13 3.00 × 10−15 4.73 × 10−16

F5 1.40 × 10−4 1.08 × 10−2 3.92 × 10−3 9.97 × 10−2

F6 1.56 × 10−13 5.13 × 10−15 6.26 × 10−13 9.11 × 10−12

F7 8.04 × 10−6 1.73 × 10−5 1.23 × 10−8 3.99 × 10−2

F8 3.22 × 10−2 1.29 × 10−1 3.15 × 10−1 4.45 × 10−1

F9 2.57 × 10−13 4.90 × 10−13 8.00 × 10−13 4.51 × 10−12

F10 5.59 × 10−3 5.15 × 10−2 5.73 × 10−2 4.70 × 10−1

F11 1.35 × 10−3 1.56 × 10−4 4.44 × 10−10 1.32 × 10−10

F12 1.47 × 10−14 2.33 × 10−10 2.33 × 10−13 1.74 × 10−12

F13 4.94 × 10−3 2.90 × 10−1 9.03 × 10−5 1.06 × 10−2

F14 4.09 × 10−3 1.02 × 10−3 4.20 × 10−4 2.34 × 10−1

F15 9.26 × 10−13 5.40 × 10−13 3.17 × 10−15 1.66 × 10−15

F16 6.02 × 10−1 1.72 × 10−1 8.30 × 10−2 6.06 × 10−1

F17 5.38 × 10−1 2.18 × 10−1 7.89 × 10−1 4.66 × 10−1

F18 5.83 × 10−1 8.30 × 10−1 3.73 × 10−1 5.47 × 10−1

F19 2.47 × 10−8 5.71 × 10−8 2.61 × 10−1 6.57 × 10−2

F20 1.20 × 10−5 1.14 × 10−6 2.47 × 10−7 4.22 × 10−8

F21 7.39 × 10−2 2.55 × 10−1 2.21 × 10−1 2.50 × 10−1

F22 1.60 × 10−6 6.88 × 10−6 6.60 × 10−7 9.26 × 10−11

F23 5.37 × 10−3 5.73 × 10−2 8.36 × 10−1 1.29 × 10−1

F24 6.83 × 10−1 2.87 × 10−1 1.08 × 10−1 1.54 × 10−2

F25 2.01 × 10−5 3.43 × 10−4 1.32 × 10−3 1.02 × 10−2

F26 1.17 × 10−3 2.60 × 10−3 1.43 × 10−1 3.00 × 10−1

F27 2.58 × 10−2 3.17 × 10−2 1.30 × 10−1 9.83 × 10−2

F28 6.06 × 10−1 3.32 × 10−1 1.29 × 10−3 2.54 × 10−3

F29 4.68 × 10−2 3.22 × 10−2 2.47 × 10−1 9.25 × 10−1

F30 4.70 × 10−6 1.49 × 10−5 2.23 × 10−6 1.65 × 10−6

The results of the rank sum test are depicted in Table 8. It is always important to judge
the statistical significance of the optimization run in terms of calculated p-values. For this
reason, the proposed AWOA was compared with all opponents and the results in terms of
p-values are depicted. Bold face entries show that there is a significance difference between
optimization runs obtained in AWOA and other opponent, as the obtained p-values are less
than 0.05. We observe that for the majority of the functions, calculated p-values are less than
0.05. Along with the optimal mean and standard deviation values, p-values indicated that
the proposed AWOA outperforms. In addition to these analyses, a boxplot analysis was
performed of the proposed AWOA with other opponents, as depicted in Figures 11 and 12.
From these figures, it is easy to learn that the IQR and mean values are very competitive
and optimal in almost all cases for 30-dimension problems. Inspecting the convergence
curves for some of the functions, such as unimodal functions F1 and F3 and for some other
multimodal and hybrid functions, as depicted in Figure 13.

87

Mathematics 2022, 10, 2076

Table 8. Results of the rank sum test on Benchmark Suite-2 (30D).

Function WOA OWOA LWOA CWOA

F1 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F3 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F4 1.05 × 10−16 1.39 × 10−16 3.30 × 10−18 3.30 × 10−18

F5 1.13 × 10−4 1.06 × 10−5 7.07 × 10−7 3.17 × 10−4

F6 6.03 × 10−9 5.14 × 10−9 7.08 × 10−4 1.17 × 10−3

F7 3.74 × 10−5 3.01 × 10−4 8.80 × 10−4 3.23 × 10−3

F8 2.96 × 10−3 3.68 × 10−3 3.99 × 10−4 1.28 × 10−2

F9 2.34 × 10−1 3.17 × 10−2 4.66 × 10−1 4.34 × 10−1

F10 1.09 × 10−8 1.79 × 10−10 2.43 × 10−16 3.08 × 10−12

F11 3.78 × 10−17 9.65 × 10−16 3.72 × 10−18 3.72 × 10−18

F12 1.42 × 10−17 1.27 × 10−17 3.30 × 10−18 4.70 × 10−18

F13 5.83 × 10−1 7.53 × 10−1 1.63 × 10−14 2.84 × 10−13

F14 2.56 × 10−15 1.41 × 10−15 8.44 × 10−18 5.41 × 10−15

F15 7.39 × 10−2 8.19 × 10−4 7.30 × 10−14 1.34 × 10−13

F16 2.30 × 10−6 6.88 × 10−6 1.64 × 10−9 1.26 × 10−10

F17 3.29 × 10−1 4.58 × 10−1 4.22 × 10−1 3.00 × 10−1

F18 4.30 × 10−12 1.07 × 10−12 3.72 × 10−15 4.15 × 10−14

F19 1.95 × 10−16 1.34 × 10−15 3.72 × 10−18 1.72 × 10−14

F20 3.80 × 10−2 9.17 × 10−2 1.10 × 10−1 1.30 × 10−1

F21 3.44 × 10−2 1.13 × 10−1 1.99 × 10−1 1.45 × 10−1

F22 5.82 × 10−4 1.07 × 10−3 5.71 × 10−3 5.50 × 10−10

F23 8.53 × 10−3 9.23 × 10−3 4.14 × 10−1 2.44 × 10−1

F24 3.86 × 10−2 3.30 × 10−3 2.26 × 10−4 1.58 × 10−5

F25 1.27 × 10−17 8.44 × 10−18 3.30 × 10−18 3.30 × 10−18

F26 2.67 × 10−2 1.56 × 10−4 7.72 × 10−2 4.26 × 10−2

F27 1.14 × 10−8 6.53 × 10−9 4.60 × 10−14 3.56 × 10−12

F28 5.61 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F29 3.64 × 10−13 5.98 × 10−12 9.26 × 10−13 5.74 × 10−10

F30 3.30 × 10−18 1.27 × 10−17 3.30 × 10−18 3.30 × 10−18

Figure 11. Boxplot analysis of the 30D functions of Benchmark Suite 2.

88

Mathematics 2022, 10, 2076

Figure 12. Boxplot analysis of the remaining 30D functions of Benchmark Suite 2.

Figure 13. Convergence property analysis of some 30D functions of Benchmark Suite 2.

5.5. Comparison with Other Algorithms

To validate the efficacy of the proposed variant, a fair comparison on CEC 2017
criteria is executed. The optimization results of the proposed variant along with some
contemporary and classical optimizers are reported in Table 9. The competitive algorithms
are Moth flame optimization (MFO) [15], Sine cosine algorithm [53], PSO [54] and Flower
pollination Algorithm [55]. It can be easily observed that the results of our proposed variant
are competitive for almost all the functions.

89

Mathematics 2022, 10, 2076

Table 9. Comparison of AWOA with other algorithms for 30D.

Algorithm

Function SCA PSO MFO FPA AWOA

F1 1.27 × 1010 5.56 × 109 1.31 × 1010 1.07 × 108 4.53 × 105

F3 3.67 × 104 1.33 × 105 9.48 × 104 1.10 × 105 3.24 × 102

F4 9.90 × 102 5.09 × 102 9.70 × 102 5.79 × 102 4.95 × 102

F5 2.75 × 102 3.04 × 102 2.20 × 102 8.06 × 102 7.13 × 102

F6 5.00 × 101 5.60 × 101 4.00 × 101 6.69 × 102 6.51 × 102

F7 4.30 × 102 4.30 × 102 4.60 × 102 1.33 × 103 1.09 × 103

F8 2.50 × 102 2.90 × 102 2.20 × 102 1.07 × 103 9.80 × 102

F9 4.74 × 103 5.70 × 103 6.57 × 103 1.31 × 104 6.48 × 103

F10 7.13 × 103 8.29 × 103 4.34 × 103 6.20 × 103 4.98 × 103

F11 9.70 × 102 2.54 × 103 5.30 × 103 1.54 × 103 1.27 × 103

F12 1.18 × 109 6.47 × 108 3.81 × 108 4.84 × 107 4.36 × 106

F13 3.96 × 108 1.93 × 108 9.52 × 107 2.61 × 106 1.46 × 105

F14 1.53 × 105 1.11 × 106 2.32 × 105 1.66 × 105 2.46 × 104

F15 1.62 × 107 3.91 × 107 5.21 × 104 4.22 × 105 7.96 × 104

F16 2.04 × 103 2.35 × 103 1.55 × 103 3.46 × 103 2.87 × 103

F17 7.00 × 102 9.60 × 102 8.80 × 102 2.71 × 103 2.37 × 103

F18 3.16 × 106 7.90 × 106 3.19 × 106 3.17 × 106 2.29 × 105

F19 2.37 × 107 5.17 × 107 2.42 × 107 2.30 × 106 1.22 × 105

F20 6.10 × 102 1.02 × 103 6.80 × 102 2.64 × 103 2.60 × 103

F21 4.60 × 102 5.00 × 102 4.10 × 102 2.57 × 103 2.51 × 103

F22 5.78 × 103 4.64 × 103 4.27 × 103 6.11 × 103 5.69 × 103

F23 6.90 × 103 7.80 × 102 5.30 × 102 3.00 × 103 2.93 × 103

F24 7.60 × 102 8.10 × 102 5.90 × 102 3.13 × 103 3.15 × 103

F25 7.10 × 102 7.10 × 102 8.30 × 102 2.97 × 103 2.89 × 103

F26 4.34 × 103 4.05 × 103 3.26 × 103 7.63 × 103 6.12 × 103

F27 7.00 × 102 6.60 × 102 5.60 × 102 3.34 × 103 3.27 × 103

F28 1.00 × 103 8.40 × 102 1.76 × 103 3.35 × 103 3.22 × 103

F29 1.73 × 103 2.02 × 103 1.25 × 103 4.64 × 103 4.06 × 103

F30 6.69 × 107 4.85 × 107 1.02 × 106 6.79 × 106 4.28 × 105

6. Applications of AWOA in Engineering Test Problems

6.1. Model Order Reduction

In control system engineering, most of the linear time invariant systems are of a higher
order, and thus, difficult to analyze. This problem has been solved using the reduced
model order technique, which is easy to use and less complex in comparison to earlier
control paradigm techniques. Nature-inspired optimization algorithms have proved to be
an efficient tool in this field, as they help to minimize the integral square of lower-order
systems. This approach was first introduced in [56] followed by [39,57,58] and many more.
These works advocate the efficacy of optimization algorithm in solving the reduced model
order technique, as these reduce the complexity, computation time and cost of the reducing
process. For testing the applicability of AWOA on some real-world problems, we have
considered the Model Order Reduction problem in this section. In MOR, large complex
systems with known transfer functions are converted with the help of an optimization
application to the reduced order system. The following are the steps of the conversion:

90

Mathematics 2022, 10, 2076

1. Consider a large complex system with a higher order and obtain the step response of
the system. Stack the response in the form of a numerical array.

2. Construct a second-order system with the help of some unknown variables that are
depicted in the following equation. Furthermore, obtain the step response of the
system and stack those numbers in a numerical array.

3. Construct a transfer function that minimizes the error function, preferably the Integral
Square Error (ISE) criterion.

6.1.1. Problem Formulation

In this technique, a transfer function given by X(t) : u → v of a higher order is reduced,
in function X(t) : u → ṽ of a lower order, without affecting the input u(x); the output
is ṽ(x) ≈ v(x). The integral error defined by the following equation is minimized in the
process using the optimization algorithm:

IE =

∞∫
0

[v(x)− ṽ(x)]2dx (17)

where X(t) is a transfer function of any Single Input and Single Output system defined by:

X(s) =
a0 + a1t + a2t2 + . . . + amtm

b0 + b1t + b2t2 + . . . + bntn (18)

For a reduced order system, X(s)′ can be given by:

X(t)′ =
a′0 + a′1t + a′2t2 + . . . + a′mr tmr

b′0 + b′1t + b′2t2 + . . . + b′nr tnr
(19)

where (nr ≥ mr, mr, nr ∈ I). In this study, we calculate the value of coefficients of the
numerator and denominator of a reduced order system defined in Equation (21) while
minimizing the error. To establish the efficiency of our proposed variant, we have reported
two numerical examples.

6.1.2. Numerical Examples and Discussions

• Function 1

X(s) =
(s3 + 7s2 + 24s + 24)

(s4 + 10s3 + 35s2 + 50s + 24)
(20)

• Function 2

X(s) =
(s + 4)

(s4 + 19s3 + 113s2 + 245s + 150)
(21)

The results of the optimization process by depicting the values of time domain speci-
fications, namely rise time and settling time for both functions, are exhibited in Table 10.
Furthermore, the convergence proofs of the algorithm on both functions are depicted in
Figures 14 and 15. Errors in the time domain specifications as compared to the original
system are depicted in Table 11.

91

Mathematics 2022, 10, 2076

Table 10. Simulated models for different WOA variants and time domain specifications.

Function Function 1 Function 2

Parameters Rise Time Settling Time Rise Time Settling Time

Original 2.1398 4.8603 2.2985 4.9724

AWOA 2.1471 4.8388 2.2649 4.3923

WOA 2.0838 4.6762 3.1631 6.6672

OWOA 2.4744 5.4009 3.1783 6.689

LWOA 2.1002 4.7188 2.4078 5.1828

CWOA 2.45 4.965 3.1755 6.68

Table 11. Error analysis of MOR results on both functions.

Parameter % Error Function 1 % Error Function 2

Time Rise Time Settling Time Rise Time Settling Time

AWOA 0.341 0.442 1.462 11.666

WOA 2.617 3.788 37.616 34.084

OWOA 15.637 11.123 38.277 34.523

LWOA 1.851 2.911 4.755 4.231

CWOA 14.497 2.154 38.155 34.342

Figure 14. Results of MOR for function 1.

Figure 15. Results of MOR for function 2.

92

Mathematics 2022, 10, 2076

From these analyses, it is quite evident that MOR performed by AWOA leads to a
configuration of the system that follows the time domain specifications of the original
system quite closely. In addition to that, the error in objective function values are also
optimal in the case of AWOA.

6.2. Frequency-Modulated Sound Wave Parameter Estimation Problem

This problem has been taken in many approaches to benchmark the applicability of
different optimizers. This problem was included in the 2011 Congress on Evolutionary
computation competition for testing different evolutionary optimization algorithms on
real problems [59]. This problem is a six-dimensional problem, where the parameters of a
sound wave are estimated in such a manner that it should be matched with the target wave.

The mathematical representation of this problem can be given as:

K = (α1, δ1, α2, δ2, α3, δ3) (22)

The equations of the predicted sound wave and target sound wave are as follows:

J(t) = α1. sin(δ1.t.θ + α2. sin(δ2.t.θ + α3. sin(δ3.t.θ))) (23)

J0(t) = (1.0). sin((5.0).t.θ − (1.5). sin((4.8).t.θ + (2.0). sin((4.9)t.θ))) (24)

Min f (
−→
K) =

100

∑
t=0

(J(t)− J0(t))2 (25)

The results of this design problem are shown in terms of different analyses that include
the boxplot and convergence property, which are obtained from 20 independent runs. The
Figure 16 shows this analysis. A comparison of the performance on the basis of error in the
objective function values is depicted in Figure 17. Here, boxplot axis entry 1, 2, 3, 4 and 5
show LWOA, CWOA, proposed AWOA, OWOA and WOA, respectively.

Figure 16. Boxplot and Convergence Property analysis for the FM problem.

6.3. PID Control of DC Motors

In today’s machinery era, DC motors are used in various fields such as the textile
industry, rolling mills, electric vehicles and robotics. Among the various controllers avail-
able for DC motors, the Proportional Integral Derivative (PID) is the most widely used
and proved its efficiency as an accurate result provider without disturbing the steady state
error and overshoot phenomena [60]. With this controller, we also needed an efficient
tuning method to control the speed and other parameters of DC motors. In recent years,

93

Mathematics 2022, 10, 2076

some researchers have explored the meta-heuristic algorithm in tuning of different types
of PID controllers. In [61], the authors presented a comparative study between simulated
annealing, particle swarm optimization and genetic algorithm. Stochastic fractal search
has been applied to the DC motor problem in [62]. The sine cosine algorithm is also used
in the determination of optimal parameters of the PID controller of DC motors in [20].
In [63], the authors proposed the chaotic atom search optimization for optimal tuning of
the PID controller of DC motors with a fractional order. A hybridized version of foraging
optimization and simulated annealing to solve the same problem was reported in [64].

LWOA CWOA AWOA OWOA WOA
Mean 22.44294433 19.67957724 18.94163348 21.27588287 22.19529618
SD 3.166458724 4.289888794 5.855781317 3.896087392 3.624564023
Min 11.76954173 11.49001778 0.424191058 11.68272924 11.6882669
Max 26.16739527 24.69547923 25.28085635 25.49910482 26.57275953

0

5

10

15

20

25

30

Mean SD Min Max

Figure 17. Comparative results of different statistical measures of independent runs.

6.3.1. Mathematical Model of DC Motors

The DC motor problem used here is a specific type of DC motor which controlled its
speed through input voltage or change in current. In DC motors, the applied voltage fb(t)
is directly proportional to the angular speed β(t) = dα(t)

dt , while the flux is constant, i.e.:

fb(t) = Hb
dα(t)

dt
= Hbβ(t) (26)

The initial voltage of armature fa(t) satisfies the following differential equation:

fb(t) = Pa
dra(t)

dt
+ Kara(t) + fa(t) (27)

The motor torque (due to various friction) developed in the process (neglecting the
disturbance torque) is given by:

τ(t) = L
dβ(t)

dt
+ Tβ(t) = Hmra(t) (28)

Taking the Laplace transform of these equations and assuming all the initial condition
to zero, we get:

Fb(s) = HbX(s) (29)

Fa(s) = (Pas + Ka)Ra(s) + Fb(s) (30)

Ω(s) = (Ls + T)X(s) = HmRa(s) (31)

94

Mathematics 2022, 10, 2076

On simplifying these equations, open loop transfer function of DC motor can be
given as:

X(s)
Fa(s)

=
Hm

(Pas + Ka)(Ls + T) + Hb Hm
(32)

6.3.2. Results and Discussion

All the parameters and constant values considered in this experiment are given in
Table 12. The simulation results for tuning the PID controller for plant DC motors are de-
picted in Table 13. First column entries show the plant and controller combined realization
as a closed system and the other two entries show specification of time domain simulation
conducted when the system is subjected to step input.

After a careful observation, it is concluded that the closed loop system realized with the
proposed AWOA possesses optimal settling and rise time that itself depicts a fast transient
response of the system. Although the comparative analysis of other algorithms also depicts
very competitive values of these times, the response and convergence process of AWOA
are swift as compared to other opponents. The boxplot analysis and convergence property
analysis are shown in Figure 18. The boxplot shows the comparison of the optimization
results when the optimization is run 20 independent times. The X axis shows the AWOA,
CWOA, LWOA, OWOA and WOA algorithms. The optimal entries of settling time and
rise time are in bold face to showcase the efficacy of the AWOA. The step response of these
controllers has been shown in Figure 19.

Table 12. Various parameters of DC motors.

Motor Parameter Symbol Value

Resistance Ka 0.4 ω

Inductance Pa 2.7 H

Initial torque of motor L 0.0004 kg m2

constant of friction in motor T 0.0022 Nm s/rad2

Motor torque Hm 0.015 Nm/A

Emf constant Hb 0.05 V s/rad

Table 13. Comparison of AWOA with other algorithms for the DC motor controller design problem.

Algorithm DC Motor Closed Loop Transfer Function Settling Time Rise Time

OWOA 0.03684s2+0.2999s+0.1358
0.00108s3+0.04438s2+0.3095s+0.1358 0.0994 0.0603

WOA 0.03623s2+0.3s+0.106
0.00108s3+0.04377s2+0.3095s+0.106 0.0997 0.0609

CWOA 0.03703s2+0.3s+0.1447
0.00108s3+0.04457s2+0.3095s+0.1447 0.0993 0.0602

LWOA 0.03664s2+0.3s+0.1255
0.00108s3+0.04418s2+0.3095s+0.1255 0.0995 0.0605

AWOA 0.03703s2+0.3s+0.1447
0.00108s3+0.04457s2+0.3095s+0.1447 0.0991 0.0598

95

Mathematics 2022, 10, 2076

Figure 18. Comparative results of different controllers for DC motors.

Figure 19. Step Response Analysis of Different Controllers.

7. Conclusions

This paper is a proposal of a new variant of WOA. The singing behavior of whales is
mimicked with the help of opposition-based learning in the initialization phase and Cauchy
mutation in the position update phase. The following are the major conclusions drawn
from this study:

• The proposed AWOA was validated on two benchmark suits (conventional and CEC
2017 functions). These benchmark suits comprise mathematical functions of distinct
nature (unimodal, multimodal, hybrid and composite). We have observed that for the
majority of the functions, AWOA shows promising results. It is also observed that the
performance of AWOA is competitive with other algorithms.

• The statistical significance of the obtained results is verified with the help of a boxplot
analysis and Wilcoxon rank sum test. It is observed that boxplots are narrow for the
proposed AWOA and the p-values are less than 0.05. These results show that the
proposed variant exhibits better exploration and exploitation capabilities, and with
these results, one can easily see the positive implications of the proposed modifications.

96

Mathematics 2022, 10, 2076

• The proposed variant is also tested for challenging engineering design problems.
The first problem is the model order reduction of a complex control system into
subsequent reduced order realizations. For this problem, AWOA shows promising
results as compared to WOA. As a second problem, the frequency-modulated sound
wave parameter estimation problem was addressed. The performance of the proposed
AWOA is competitive with contemporary variants of WOA. In addition to that, the
application of AWOA was reported for tuning the PID controller of the DC motor
control system. All these applications indicate that the modifications suggested
for AWOA are quite meaningful and help the algorithm find global optima in an
effective way.

The proposed AWOA can be applied to various other engineering design problem,
such as network reconfiguration, solar cell parameter extraction and regulator design.
These problems will be the focus of future research.

Author Contributions: Formal analysis, K.A.A.; Funding acquisition, K.A.A.; Investigation, K.A.A.;
Methodology, S.S. and A.S.; Project administration, A.W.M.; Software, K.M.S.; Supervision, A.S. and
A.W.M.; Validation, K.M.S.; Visualization, K.M.S.; Writing—original draft, S.S. and A.S.; Writing—
review & editing, S.S. and A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The research is funded by Researchers Supporting Program at King Saud University,
(RSP-2021/305).

Acknowledgments: The authors present their appreciation to King Saud University for funding the
publication of this research through Researchers Supporting Program (RSP-2021/305), King Saud
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Beckington, UK, 2010.
2. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549.

[CrossRef]
3. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
4. Rechenberg, I. Evolution strategy: Nature’s way of optimization. In Optimization: Methods and Applications, Possibilities and

Limitations; Springer: Berlin/Heidelberg, Germany, 1989; pp. 106–126.
5. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), IEEE, Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1470–1477.
6. Basturk, B. An artificial bee colony (ABC) algorithm for numeric function optimization. In Proceedings of the IEEE Swarm

Intelligence Symposium, Indianapolis, IN, USA, 12–14 May 2006.
7. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);

Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.
8. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
9. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,

17, 4831–4845. [CrossRef]
10. Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspir. Comput. 2010, 2, 78–84. [CrossRef]
11. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
12. Das, S.; Biswas, A.; Dasgupta, S.; Abraham, A. Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and

applications. In Foundations of Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; Volume 3, pp. 23–55.
13. James, J.; Li, V.O. A social spider algorithm for global optimization. Appl. Soft Comput. 2015, 30, 614–627.
14. Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat swarm optimization. In Pacific Rim International Conference on Artificial Intelligence; Springer:

Berlin/Heidelberg, Germany, 2006; pp. 854–858.
15. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
16. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
17. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]

97

Mathematics 2022, 10, 2076

18. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.
[CrossRef]

19. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems:
A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [CrossRef]

20. Agarwal, J.; Parmar, G.; Gupta, R. Application of sine cosine algorithm in optimal control of DC motor and robustness analysis.
Wulfenia J. 2017, 24, 77–95.

21. Agrawal, P.; Ganesh, T.; Mohamed, A.W. Chaotic gaining sharing knowledge-based optimization algorithm: An improved
metaheuristic algorithm for feature selection. Soft Comput. 2021, 25, 9505–9528. [CrossRef]

22. Agrawal, P.; Ganesh, T.; Mohamed, A.W. A novel binary gaining–sharing knowledge-based optimization algorithm for feature
selection. Neural Comput. Appl. 2021, 33, 5989–6008. [CrossRef]

23. Agrawal, P.; Ganesh, T.; Oliva, D.; Mohamed, A.W. S-shaped and v-shaped gaining-sharing knowledge-based algorithm for
feature selection. Appl. Intell. 2022, 52, 81–112. [CrossRef]

24. Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111. [CrossRef]
25. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
26. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
27. Formato, R.A. Central force optimization. Prog. Electromagn. Res. 2007, 77, 425–491. [CrossRef]
28. Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289.

[CrossRef]
29. Azadeh, A.; Asadzadeh, S.M.; Jalali, R.; Hemmati, S. A greedy randomised adaptive search procedure–genetic algorithm for

electricity consumption estimation and optimisation in agriculture sector with random variation. Int. J. Ind. Syst. Eng. 2014,
17, 285–301. [CrossRef]

30. Blum, C.; Pinacho, P.; López-Ibáñez, M.; Lozano, J.A. Construct, merge, solve & adapt a new general algorithm for combinatorial
optimization. Comput. Oper. Res. 2016, 68, 75–88.

31. Thiruvady, D.; Blum, C.; Ernst, A.T. Solution merging in matheuristics for resource constrained job scheduling. Algorithms 2020,
13, 256. [CrossRef]

32. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Search; Technical Report; Technical Report SFI-TR-95-02-010; Santa Fe
Institute: Santa Fe, NM, USA, 1995.

33. Lones, M.A. Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms. SN Comput. Sci. 2020, 1, 1–12.
[CrossRef]

34. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
35. Kaveh, A.; Ghazaan, M.I. Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mech. Based Des.

Struct. Mach. 2017, 45, 345–362. [CrossRef]
36. Touma, H.J. Study of the economic dispatch problem on IEEE 30-bus system using whale optimization algorithm. Int. J. Eng.

Technol. Sci. (IJETS) 2016, 5, 11–18. [CrossRef]
37. Ladumor, D.P.; Trivedi, I.N.; Jangir, P.; Kumar, A. A whale optimization algorithm approach for unit commitment problem

solution. National Conference on Advancements in Electrical and Power Electronics Engineering (AEPEE-2016), Morbi, Indea,
28–29 June 2016; pp. 4–17.

38. Cui, D. Application of whale optimization algorithm in reservoir optimal operation. Adv. Sci. Technol. Water Resour. 2017,
37, 72–79.

39. Saxena, A. A comprehensive study of chaos embedded bridging mechanisms and crossover operators for grasshopper optimisa-
tion algorithm. Expert Syst. Appl. 2019, 132, 166–188. [CrossRef]

40. Ibrahim, R.A.; Elaziz, M.A.; Lu, S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution
and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [CrossRef]

41. Elaziz, M.A.; Oliva, D. Parameter estimation of solar cells diode models by an improved opposition-based whale optimization
algorithm. Energy Convers. Manag. 2018, 171, 1843–1859. [CrossRef]

42. Xu, Q.; Wang, L.; Wang, N.; Hei, X.; Zhao, L. A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell.
2014, 29, 1–12. [CrossRef]

43. Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2018, 39, 1–23.
[CrossRef]

44. Gupta, S.; Deep, K. Cauchy Grey Wolf Optimiser for continuous optimisation problems. J. Exp. Theor. Artif. Intell. 2018,
30, 1051–1075. [CrossRef]

45. Wang, G.G.; Zhao, X.; Deb, S. A novel monarch butterfly optimization with greedy strategy and self-adaptive. In Proceedings of
the Soft Computing and Machine Intelligence (ISCMI), 2015 Second International Conference on IEEE, Hong Kong, China, 23–24
November 2015; pp. 45–50.

46. Digalakis, J.G.; Margaritis, K.G. On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 2001, 77, 481–506.
[CrossRef]

47. Molga, M.; Smutnicki, C. Test functions for optimization needs. Test Funct. Optim. Needs 2005, 101, 48.
48. Yang, X.S. Test problems in optimization. arXiv 2010, arXiv:1008.0549.

98

Mathematics 2022, 10, 2076

49. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and
Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University Singapore: Singapore, 2016.

50. Ling, Y.; Zhou, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 2017,
5, 6168–6186. [CrossRef]

51. Oliva, D.; Abd El Aziz, M.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved chaotic whale
optimization algorithm. Appl. Energy 2017, 200, 141–154. [CrossRef]

52. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]
53. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
54. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks

IV, Perth, WA, Australia, 27 November–1 December 1995; Volume 1000.
55. Yang, X.S. Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and

Natural Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249.
56. Biradar, S.; Hote, Y.V.; Saxena, S. Reduced-order modeling of linear time invariant systems using big bang big crunch optimization

and time moment matching method. Appl. Math. Model. 2016, 40, 7225–7244. [CrossRef]
57. Dinkar, S.K.; Deep, K. Accelerated opposition-based antlion optimizer with application to order reduction of linear time-invariant

systems. Arab. J. Sci. Eng. 2019, 44, 2213–2241. [CrossRef]
58. Shekhawat, S.; Saxena, A. Development and applications of an intelligent crow search algorithm based on opposition based

learning. ISA Trans. 2020, 99, 210–230. [CrossRef]
59. Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on

Real World Optimization Problems; Jadavpur University: Kolkata, India; Nanyang Technological University: Singapore, 2010.
60. Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [CrossRef]
61. Hsu, D.Z.; Chen, Y.W.; Chu, P.Y.; Periasamy, S.; Liu, M.Y. Protective effect of 3, 4-methylenedioxyphenol (sesamol) on stress-related

mucosal disease in rats. BioMed Res. Int. 2013, 2013, 481827. [CrossRef]
62. Bhatt, R.; Parmar, G.; Gupta, R.; Sikander, A. Application of stochastic fractal search in approximation and control of LTI systems.

Microsyst. Technol. 2019, 25, 105–114. [CrossRef]
63. Hekimoğlu, B. Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization

algorithm. IEEE Access 2019, 7, 38100–38114. [CrossRef]
64. Ekinci, S.; Izci, D.; Hekimoğlu, B. Optimal FOPID Speed Control of DC Motor via Opposition-Based Hybrid Manta Ray Foraging

Optimization and Simulated Annealing Algorithm. Arab. J. Sci. Eng. 2021, 46, 1395–1409. [CrossRef]

99

Citation: Elseify, M.A.; Kamel, S.;

Abdel-Mawgoud, H.; Elattar, E.E.

A Novel Approach Based on Honey

Badger Algorithm for Optimal

Allocation of Multiple DG and

Capacitor in Radial Distribution

Networks Considering Power Loss

Sensitivity. Mathematics 2022, 10, 2081.

https://doi.org/10.3390/

math10122081

Academic Editor: Jian Dong

Received: 13 April 2022

Accepted: 13 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Approach Based on Honey Badger Algorithm for
Optimal Allocation of Multiple DG and Capacitor in Radial
Distribution Networks Considering Power Loss Sensitivity

Mohamed A. Elseify 1, Salah Kamel 2,*, Hussein Abdel-Mawgoud 2 and Ehab E. Elattar 3

1 Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Qena 83513, Egypt;
mohamed_1988@azhar.edu.eg

2 Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt;
hussein.abdelmawgoud@yahoo.com

3 Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia; e.elattar@tu.edu.sa

* Correspondence: skamel@aswu.edu.eg

Abstract: Recently, the integration of distributed generators (DGs) in radial distribution systems
(RDS) has been widely evolving due to its sustainability and lack of pollution. This study presents
an efficient optimization technique named the honey badger algorithm (HBA) for specifying the
optimum size and location of capacitors and different types of DGs to minimize the total active power
loss of the network. The Combined Power Loss Sensitivity (CPLS) factor is deployed with the HBA
to accelerate the estimation process by specifying the candidate buses for optimal placement of DGs
and capacitors in RDS. The performance of the optimization algorithm is demonstrated through the
application to the IEEE 69-bus standard RDS with different scenarios: DG Type-I, DG Type-III, and
capacitor banks (CBs). Furthermore, the effects of simultaneously integrating single and multiple DG
Type-I with DG Type-III are illustrated. The results obtained revealed the effectiveness of the HBA
for optimizing the size and location of single and multiple DGs and CBs with a considerable decline
in the system’s real power losses. Additionally, the results have been compared with those obtained
by other known algorithms.

Keywords: HBA; radial distribution systems; power loss; sensitivity analysis; optimization;
DG optimal allocation; voltage deviation; capacitor banks

MSC: 35B05; 35F99; 37N40

1. Introduction

1.1. Background

In recent decades, energy demand has undergone rapid growth due to the intricate
life cycle of humans and limitations on fossil fuel sources. Therefore, voltage dips and
power losses have increased in distribution systems, leading to the significance of the
incorporation of distributed generators (DGs), particularly renewable energy resources in
radial distribution systems (RDS) [1,2]. Electric power utilities have been initially designed
based on unidirectional power flow. As a result, the DGs integrated into the distribution
system may change the direction and magnitude of the power flow. The integration of
DGs has some positive effects on the operation of the distribution networks, which is
represented in system voltage support, reliability improvement, and reduction in power
losses and operation costs. Several aspects must be addressed when placing DG units in a
distribution system, including the technology with which they are designed, the quantity
and capacity of the DG units, the optimal allocation, and the kind of grid connection.
The integration of DGs has an influence on several factors, including total system losses,

Mathematics 2022, 10, 2081. https://doi.org/10.3390/math10122081 https://www.mdpi.com/journal/mathematics
101

Mathematics 2022, 10, 2081

bus voltage level, reliability, and stability, decreased kVA demand from the distribution
system, energy-saving possibility, and postponed capacity of distribution transformers.
The optimal installation of DGs in the distribution system is critical for maximizing the
benefits of DGs in terms of economy and operation. The random installation of distributed
generators units in the network may make the losses of the system larger and impair the
voltage profile and other characteristics, all of which might contribute to higher costs. Thus,
DGs should be installed optimally to maximize network efficiency. The decentralized
generators are an electric power source that is directly linked to the radial distribution
network and can be divided into four categories as follows [3]:

• Type-I: inserts real power only to the network at power factor unity, such as photo-
voltaic cells (PVs).

• Type-II: inserts only reactive power at zero leading power factor, such as synchronous
compensators.

• Type-III: inserts both reactive and real power into the network, such as doubly fed
induction generators of the wind turbine.

• Type-IV: consumes reactive power and inserts real power into the network, such as
squirrel cage induction generators of the wind turbine.

Additionally, the best size and sites of capacitor banks (CBs) in the RDS require static
or switchable capacitors for power factor improvement at strategically recognized places in
RDS to handle the power quality performance problems. This also delivers several technical
and economic benefits, such as decreased power loss, increased load bus voltage, enhanced
power factor, and lower reactive power consumption from the sending end side [4–6].
To deal with the ever-increasing energy demand as well as technical and economic problems
in distribution systems, efficient and effective reactive power compensation planning is
required [4,6].

1.2. Literature Survey

Optimization techniques are continuously developed to gain the highest benefits
of distributed generators. There are several classifications for optimization algorithms.
Metaheuristic optimization techniques are among the best algorithms and are utilized
for many optimization problems in a wide range of different disciplines while using less
execution time than other optimization techniques. Numerous studies have been conducted
to decrease system losses by optimizing the capacity and location of DGs using various
methodologies and techniques. The loss sensitivity factor (LSF) was utilized to identify
the nominee bus and reduce the search space before applying an algorithm to choose the
optimum size and location of the DG [7–13]. Therefore, most researchers have calculated
the active power loss as a single objective function [11–16], whether in single or multiple
DG placement problems. The new hybrid algorithm based on moth flame optimization
(MFO) and sine cosine algorithm (SCA) [11] was employed to provide the best placement
and sizing of the DG and capacitor bank in different test cases. Abdel-Mawgoud et al. [12]
determined the optimal sites and sizing of DG Type-I and DG Type-III in RDS using the
chaotic moth flame optimization technique (CMFO). The proposed technique was applied
in IEEE 33-bus RDS, and the results have been compared with other techniques. The BAT
optimization algorithm has been utilized to minimize total line losses and obtain the optimal
placement and sizing of DG in IEEE 33-bus RDS [13,14]. A comparison study between
FPA, GSA, ICA, and BAT novel heuristic techniques used for minimizing active losses in
RDS incorporated with renewable DG sources was discussed in [15]. Hybrid GMSA was
suggested to minimize the active power loss by optimally determining the best site and
size of the synchronous condenser and DG in IEEE 33-bus RDS [16].

In addition, the whale optimization algorithm (WOA) was utilized to provide the
optimal integration of one unit from different types of DG in distribution systems [17].
The objective function considered in this work is the minimization of active power losses.
The manta ray foraging optimization algorithm (MRFO) was proposed [18] to reduce active
power loss by the optimal installation of DG Type-I into RDS. An optimal installation of the

102

Mathematics 2022, 10, 2081

DG in RDS using the hybrid gray wolf optimization (HGWO) algorithm [19] was developed
to minimize the system power loss. This technique was simulated with different types of
DGs through the application to IEEE 33-, IEEE 69-, and Indian 85-bus distribution networks,
and the results obtained are the global optimum. The simultaneous integration of shunt
capacitors and renewable DGs was addressed in [20] using the Gbest-guided artificial bee
colony (GABC) optimization technique for minimizing active power losses. This algorithm
was applied to IEEE 33-bus and IEEE 85-bus RDS, and the numerical solutions obtained
validated the effectiveness for optimal allocation of DGs and CBs. A recent multileader
particle swarm optimization (MLPSO) algorithm was proposed [21] for specifying the best
size and location of DGs with the objective of minimizing real power losses. However,
it has slow convergence characteristics with the increasing number of state variables of
the problem.

On the other hand, several techniques were utilized to provide the optimal incorpora-
tion of DGs and CBs in radial distribution networks using multi-objective functions [22–28]
regardless of the algorithms utilized for solving these objective functions. An efficient
cuckoo search algorithm was proposed [22] to provide the optimal size and location of
capacitors in RDS. The objective function was expressed to minimize the total active loss
and improve the voltage profile of the distribution network. In [9], the authors developed
an ant lion optimization (ALO) algorithm for optimal placement and sizing of single and
multiple renewable DGs in RDS. The weighted objective function utilized in this method
minimized power loss and enhanced the voltage stability index and the voltage level of
the distribution system. The gray wolf optimizer (GWO) was suggested [23] for multiple
allocations of the DG in the distribution system. The multi-objective function was con-
verted into a single objective function using the weighted sum method for minimizing the
reactive system losses and voltage deviation index. The slap swarm algorithm (SSA) was
introduced [24] for simultaneous allocation of distributed generators and capacitor banks in
RDS to accomplish environmental, technical, and economic benefits. An intersect mutation
differential evolution (IMDE) algorithm for simultaneous installment and sizing of the
capacitor banks and DGs in IEEE 33-bus and IEEE 69-bus RDS was proposed [25]. In this
technique, the loss expense and power loss were utilized as a minimized objective function.
The authors in [26] developed an improved decomposition-based evolutionary algorithm
(I-DBEA) for the selection of optimum number, size, and location of DG Type-I and DG
Type-III with specified power factor to increase the voltage stability index and reduce
active power losses and voltage dips in RDS. The obtained numerical solutions proved the
robustness of the I-DBEA algorithm for the optimal installation of DGs in RDS. Further, a
two-stage robust optimum allocation model of the DG was also suggested [27], taking into
account the capacity curve and real-time price-based demand response. The objective taken
in this technique was the system income, investment cost of equipment, and operation
cost of the system. The problem was solved using the column and constraint generation
algorithm, and the results proved that the suggested model was effective in enhancing the
total annual profit and the usage of renewable sources. The optimal allocation of DGs and
CBs based on the hybrid ALO and PSO with the fuzzy logic controller was proposed [28]
to minimize the active losses, voltage deviation index, and operation cost and improve the
voltage stability index. The proposed hybrid technique was tested on IEEE 33-bus RDS,
and the numerical solutions demonstrated its effectiveness for the optimal allocation of the
DG in RDS. However, it may take more computational time because the hybrid technique
is executed for each objective function obtained using the fuzzy logic controller.

In the above literature review, very few researchers addressed the simultaneous
integration of single and multiple DG Type-I and DG Type-III, which is outlined in the
present study using a new metaheuristic optimization named the honey badger algorithm
(HBA). The HBA was proposed by Hashim et al. [29] in 2022, and it is based on the
honey badger’s intelligent foraging behavior to establish a mathematically efficient search
technique for addressing the different optimization problems. In the HBA, the honey
badger’s dynamic search behavior with digging and honey finding tactics is structured

103

Mathematics 2022, 10, 2081

into exploration and exploitation stages. In addition, most metaheuristic algorithms have
an effective exploration rate to explore the promising area in the search space and have low
exploitation rate to obtain the local solutions in the promising area. The HBA includes high
exploration rate and maintains sufficient population variety even during the exploitation
phase because of controlled randomized mechanisms to obtain the best global solutions
and avoid the local solutions in the promising area. The comparative study proved that the
HBA is better than other efficient algorithms at determining the preferable allocation of
DGs and capacitors in RDS.

1.3. Paper Contribution and Organization

This paper proposes a novel honey badger optimization technique for optimal alloca-
tion of single and multiple different types of DGs and capacitors on RDS. Three different
types of DGs were successfully employed with four scenarios through the application to
the IEEE 69-bus RDS. For single and multiple integrations of DGs and capacitors in the
IEEE 69-bus radial distribution network, the total active power loss was utilized as a single
objective function in the present work. The proposed HBA optimization algorithm was
simulated with four different scenarios as follows:

Scenario 1: the DG is generating real power only (DG Type-I).
Scenario 2: the Capacitor Bank is generating only reactive power (CBs).
Scenario 3: the DG is producing both reactive and active power (DG Type-III).
Scenario 4: simultaneous installation of DG Type-I with DG Type-III.

Additionally, combined power loss sensitivity (CLPS) was utilized to assess the bus
system’s sensitivity and identify the best vulnerable nodes for incorporating the single
and multiple DGs and capacitors in RDS. Further, CPLS lowers both the search agents
of the proposed algorithm and the total computational burden of the simulation process.
The effectiveness of the HBA was validated by comparing the acquired results to those of
other well-known hybrid techniques such as the hybrid algorithm based on the analytical
algorithm with the PSO technique [30].

The remainder of this article is organized as follows: The next section explains the
mathematical model of the system and its constraints. Section 3 depicts the combined power
loss sensitivity. The proposed HBA is presented in Section 4. The obtained simulation
results and discussion are represented in Section 5. The last section concludes the work
and recommends potential directions for further research studies.

2. Problem Formulation

2.1. Principles of Forward–Backward Power Flow Algorithm

RDS include some specific characteristics, for instance, unbalanced loads, radial con-
struction, and a high ratio of R/X. Due to the mentioned properties above, the Newton–
Raphson (NR), fast decoupled (FD), and Gauss–Seidel (GS) techniques are inadequate in
RDS analysis. Consequently, a forward–backward load flow algorithm [31] was utilized in
this study to solve the load flow problem of RDS, which can be partitioned into two phases:
forward sweep and backward sweep. In the backward sweep, the power flow is deter-
mined from the receiving end to the sending end, whereas the voltage is calculated from
the sending end to the receiving end in the forward sweep. Figure 1 displays a portion of
two buses in RDS; the active and reactive power flow from bus m to bus n is evaluated
using backward sweep by the following expressions.

Pm = Pn + PLn + Rm,n

(
(P n + PLn)

2 + (Qn + QLn)
2

|Vn|2

)
, (1)

Qm = Qn + QLn + Xm,n

(
(P n + PLn)

2 + (Qn + QLn)
2

|Vn|2

)
, (2)

104

Mathematics 2022, 10, 2081

and the voltage and phase angle of each bus can be evaluated in the forward sweep as
given in (3) and (4), respectively.

Vn =

(
V2

m − 2(Rm,nPm + Xm,nQm) +
(

Rm,n
2 + Xm,n

2
)(P2

m+Q2
m

|Vm|2

))1/2

, (3)

θn = θm + tan−1

⎛⎝ QmRm,n − PmXm,n

V2
m − (P mRm,n + QmXm,n

)
⎞⎠, (4)

Figure 1. Portion of two nodes in radial distribution system.

The line between busses m and n has a reactance and resistance Xm,n and Rm,n.
The active and reactive power delivered across the line between bus m and bus n is denoted
by Pm and Qm, respectively. The voltages of buses m and n are Vm and Vn, respectively.

Installation of photovoltaic systems (PVs), capacitor banks (CBs), and DFIG-based
wind turbines (WTs) changes the line power flow. Therefore, the active and reactive line
flow between buses m and n after installation of DG at bus n in RDS is modified as follows:

• DG Type-I

Pm = Pn + PLn + Rm,n

(
(P n + PLn)

2 + (Qn + QLn)
2

|Vn|2

)
− PDGn , (5)

• Capacitor Bank

Qm = Qn + QLn + Xm,n

(
(P n + PLn)

2 + (Qn + QLn)
2

|Vn|2

)
−QCBn , (6)

• DG Type-III

Pm = Pn + PLn + Rm,n

(
(P n + PLn)

2 + (Qn + QLn)
2

|Vn|2

)
− PDGn , (7)

Qm = Qn + QLn + Xm,n

(
(P n + PLn)

2 + (Qn + QLn)
2

|Vn|2

)
−QDGn, (8)

Thus, the active Ploss(m,n) and reactive Qloss(m,n) power losses in the line between
buses n and m are evaluated by (9) and (10), respectively.

Ploss(m,n) = Rm,n

⎛⎝ (P 2
m + Q2

m

)
|Vn|2

⎞⎠, (9)

105

Mathematics 2022, 10, 2081

Qloss(m,n) = Xm,n

(
(P2

m + Q2
m)

|Vn|2

)
, (10)

2.2. Objective Function and Operation Constraints

Generally, including DGs in RDS minimizes the system power losses by decreasing
the amount of current flowing through the branches; it can also increase the network
efficiency by enhancing the voltage profile. Therefore, in this study, the total active power
loss was chosen as the optimization structure’s objective function, and it may be calculated
as follows:

Fobj = Ptotal-loss =
nbr

∑
t=1

Ploss(m,n)t
, (11)

where nbr and Ptotal-loss denote the active power loss of the nbr th branch and the number
of lines in the network, respectively. The objective function expressed in (11) is minimized
and subjected to the following equality and inequality constraints.

2.2.1. Equality Constraints

The equality constraints are the balanced reactive and active power flow in RDS, and
they are given as follows:

Pslack +

nDG

∑
i=1

PDG(i) =

nbr

∑
k=1

Ploss(k) +

n

∑
l=1

P L(l), (12)

Qslack +

nDG

∑
i=1

QDG(i) =

nbr

∑
k=1

Qloss(k) +

n

∑
l=1

Q L(l), (13)

where Qslack and Pslack are the generated reactive and active power from the swing bus
in RDS, respectively. QL(l) and PL(l) denote the reactive and active load demand at bus l,
while the active and reactive power losses in branch (k) are represented, respectively, by
Ploss(k) and Qloss(k). QDG(i) and PDG(i) illustrate the injected reactive and real power
from DGs to RDS at bus i. nDG, nbr, and n denote the number of DGs, the number of
branches, and the number of buses in RDS, respectively.

2.2.2. Inequality Constraints

The upper and lower bounds of the estimated state variables of the RDS can be
represented as follows:

• Bus voltage constraints

Each bus of the RDS must have a voltage between the minimum voltage (V min) and
maximum voltage (V max).

Vmin ≤ Vi ≤ Vmax, (14)

• DG capacity limits

The total active power (P DG) generated by DGs should be greater than (P DGmin
) and

less than (P DGmax
). Further, the operating power factor (PF DG) of DGs should be lie in the

interval [PFDGmin , PFDGmax]. These constraints are given by (15)–(17).

nDG

∑
i=1

PDG(i) ≤ 0.75

⎛⎝ nbr

∑
k=1

Ploss(k) +

n

∑
l=1

P L(l)

⎞⎠, (15)

PDGmin ≤ PDG ≤ PDGmax (16)

PFDGmin ≤ PFDG ≤ PFDGmax (17)

106

Mathematics 2022, 10, 2081

• Thermal capacity constraints

In this paper, the line current (I d) of the simulated IEEE 69-bus RDS must satisfy the
following constraint [32]:

Id ≤ Imax,d for d = 1, 2, 3, . . . , nbr, (18)

where Imax,d depicts the highest allowable value of the d-th line current.

2.3. Loss Sensitivity Factor

Combined power loss sensitivity factors (CPLSF) were used in this study to specify
the best placement for renewable DG and capacitors in RDS. They are able to indicate
which bus has the highest loss reduction when a DG is installed. Consequently, these
vulnerable buses might be considered candidates for DG incorporation in RDS. Therefore,
the optimization algorithm’s search space and simulation time are reduced, as only a few
buses can be candidate buses for compensation. CPLSF mainly depend on the variation of
apparent power losses to apparent power injection from the DG [33], as given in (19).

CPLS =
∂Ploss(m,n)

∂Pn
+ j

∂Qloss(m,n)

∂Qn
= Rm,n

(
2Pn

|Vn|2

)
+ Xm,n

(
2Qn

|Vn|2

)
, (19)

It can be observed from Figure 2 that the buses which have high CPLS values can be
defined as candidate buses for DG installation. These candidate buses which comprise up
to 50% of the system buses are 57, 58, 7, 6, 61, 60, 10, 59, 55, 56, 12, 13, 14, 54, 15, 53, 8, 64, 49,
11, 9, 17, 65, 16, 5, 48, 21, 19, 41, 63, 68, 34, 20, and 62.

Figure 2. The value of CPLS factors for IEEE 69-bus RDS.

3. Optimization Algorithm

3.1. Honey Badger Optimization Algorithm

Honey badgers are mammals with white and black fluffy fur that are usually located
in semi-arid and African rainforests, the Asian Southwest, and the Indian subcontinent.
They are approximately 7 to 13 kg in bodyweight and 60 to 77 cm in body length, and it is a
bold forager which preys on 60 different species including deadly snakes. They are clever
mammals that can utilize tools and enjoys honey. They live alone in self-dug tunnels and
only interact with other badgers for mating. Honey badgers are divided into 12 subspecies.
Honey badgers do not have a set mating season because cubs are born all year. They are
strong animals due to their courageous nature, and they never hesitate to attack even much
larger predators when they cannot flee. Further, these mammals can efficiently climb trees
to access food sources such as bird nests and beehives [34,35]. The following sections

107

Mathematics 2022, 10, 2081

discuss the mathematical model of the HBA and its inspiration, which resembles honey
badger (HB) behavior in nature.

3.1.1. Inspiration

The honey badger algorithm mimics the honey badger’s foraging behavior. The HB
either smells and digs for food sources or tracks the honeyguide bird. The first situation is
referred to as the digging mode, while the other is referred to as the honey mode. In the
previous phase, it utilizes its sniffing skills to estimate the position of the prey; once there,
it wanders around it to find the best spot for digging and grabbing it. In the last mode, the
honey badger uses the honeyguide bird as a guide to locate the beehive directly.

3.1.2. Mathematical Model

The mathematical models of the HBA are explained in these subsections. The HBA
is a global optimization method in theory since it includes both exploration and exploita-
tion stages. Mathematically, the population of candidate solutions (X) in the HBA is
expressed as:

X =

⎡⎢⎢⎢⎣
x11 x12 x13 . . . x1d
x21 x22 x23 . . . x2d

.
.

xn1 xn2 xn3 . . . xnd

⎤⎥⎥⎥⎦, (20)

j-th honey badger position xj =
[
x1

j x2
j . . . xd

j

]
, (21)

Step 1: Initialization phase: The respective positions of honey badgers with n popu-
lation can be initialized using the following expression:

xj = LBi + r1(UBi − LBi), r1 ∈ [0, 1], (22)

where UBi, and LBi represent the upper and lower bounds of the search space, respectively,
while xj is the j-th honey badger position and refers to a nominee solution in a population
with size n.

Step 2: Intensity Definition: Intensity (I) depends mainly on the prey concentration
strength and the distance between it and the j-th honey badger. Ij is the scent intensity of
the prey; if the scent is low, the motion becomes slow and vice versa. It is provided by
inverse square law (ISL) [36], as represented in Figure 3 and described by (23) as:

Ij =
r2S

4πd2
j

, r2 ∈ [0, 1], (23)

S =
(
xj − xj+1

)2 (24)

dj = xprey − xj (25)

where S represents the source intensity or concentration intensity (prey position, as depicted
in Figure 3). dj is the distance between the j-th badger and prey.

Step 3: Density factor update: To guarantee a seamless transition from exploration
to exploitation, the density factor (α) governs time-varying randomness. Using (26),
the updated decreasing factor (α) is decreased with iterations to reduce randomization
over time:

α = C × exp
(

-iter
maxiter

)
, (26)

where (C) is a constant number more than 1 (the default value is 2), and maxiter denotes
the maximum number of iterations.

108

Mathematics 2022, 10, 2081

Figure 3. ISL. I is smell intensity, S is prey position, and r ∈ [0, 1] [29].

Step 4: Fleeing from local solution: The current step and the two next ones are ap-
plied in the HBA to flee from the local solution area. In this scenario, the HBA optimization
algorithm makes use of a flag (F) that changes the search direction, giving agents more
chances to scan the search area precisely.

Step 5: Updating the locations of the agents: As previously stated, the HBA position
update process (x new) is split into two phases: “digging phase” and “honey phase”.
The following is a more detailed description:

• Digging phase. A honey badger digs in a cardioid shape [37] during the digging phase,
as seen in Figure 4. Equation (27) simulates the approximate cardioid motion as:

xnew = xprey + FβIxprey + Fr3αdj|cos(2πr 4)[1− cos(2πr 5)]|, (27)

where xprey denotes the best position of the prey obtained so far, in other words the global
optimum. β ≥ 1 represents the ability of the honey badger to find food (default = 6). r3,
r4, and r5 are three different generated random numbers within the interval [0,1]. F is a flag
that changes the search direction, and it is determined by (28):

F =

{
1 if r6 ≤ 1/2

−1 otherwise
r6 ∈ [0, 1], (28)

Figure 4. Digging phase: the red outline indicates the strength of the smell, while the blue circular
line indicates the position of the prey [29].

In the digging phase, a honey badger is highly influenced by three different factors:
the scent intensity (I) of the prey (xprey), the distance between honey badger and prey
(dj), and the decreasing operator (α). Furthermore, a badger may sense any disruption (F)
while digging, allowing it to detect even the best prey position (see Figure 4).

109

Mathematics 2022, 10, 2081

• Honey phase. Equation (29) simulates the case when the HB tracks the honeyguide
bird to a beehive.

xnew = xprey + αdjr7F, r7 ∈ [0, 1], (29)

Equations (26) and (28) determine the value of (α) and (F), respectively, whereas xnew,
and xprey show the HB’s new position and prey location, respectively. It can be observed
from (29) that the HB proceeds to search near the optimized prey position xprey, depending
on the distance information (dj). At this point, search behavior that changes over time (α)

influences the search. A honey badger may also face a perturbation (F).
Because of the exploration and exploitation stages, the HBA is considered a global

optimization method in theory. The number of operators that must be modified is kept to a
minimum to make the HBA simple to implement and comprehend. In general, the HBA
mainly depends on three parameters, i.e., the number of state variables (d), the maximum
number of iterations (max iter), and the number of populations (n) or the number of solu-
tions. The HBA optimization technique guarantees strong local search ability via honey
attraction and guides the individuals in the population to approach the optimal individ-
uals. Furthermore, the density factor achieves the algorithm’s global search capabilities
and preserves the divergent population to guarantee that the local optimal solutions are
avoided. The pseudocode of the HBA optimization algorithm is represented in Algorithm 1.
Figure 5 shows the complete flowchart of the HBA optimization algorithm implemented
for specifying the optimal sizing and placement of DGs and CBs in distribution systems.

Algorithm 1: Pseudocode of HBA

Set parameters:

n: population size.
d: no. of state variables.
maxiter: maximum number of iterations.
β, and C: constant numbers with initial values 6, and 2 respectively.
LB, and UB : state variable lower and upper limits.

Using Equation (22) for random initialization of initial population positions.

Compute the fitness of every honey badger position xj using Fobj and assign to
Fj, j ∈ [1, 2, . . . , n].
Select initial best position xprey and related best fitness fprey.
Set iter = 1
while iter ≤maxiter do

Modernize the decreasing operator ∝ by (26).
Evaluate the intensity (I) using (23) for each position.
Set j = 1
while j ≤ n do

while i ≤ d do
Determine the distance given in (23).
if rand < 0.5 (Digging Phase)

Update each element xnew(j, i) in each position using (27)
else (Honey Phase)

Update each element xnew(j, i) in each position using (29)
end if

end while
Determine the fitness fnew of the current position xnew (j)
if fnew ≤ fj

Update the xj = xnew (j) and fj = fnew

end if
end while
if fnew ≤ fprey

Set fprey = fnew and xprey = xnew
end if

end while (main loop)

Print the best solution: fprey and xprey

110

Mathematics 2022, 10, 2081

Figure 5. Implementation process of HBA optimization algorithm.

4. Simulation Results

As previously stated, the HBA was simulated on IEEE 69-bus standard test systems to
find the best sizing and location of the capacitor and renewable DG in such systems while
minimizing power loss using the forward–backward sweep load flow algorithm. The CPLS
factor was utilized to limit the search space of the optimization algorithm by identifying the
best candidate buses for installing single and multiple DGs and CBs in distribution systems.
The proposed method was implemented using MATLAB 2020a M-file on a system with a
64-bit Core i5 CPU and 8GB RAM. This work studied the optimal allocation of single or
multi-units of DG Type-I, CBs, DG Type-III, and simultaneous integration of DG Type-I and

111

Mathematics 2022, 10, 2081

DG Type-III. Further, the effectiveness of the HBA optimization algorithm was validated by
comparing the acquired solutions to those of other well-known hybrid techniques reported
in the literature. Eventually, the optimal allocation of three PVs considering uncertainty
was used as a difficult optimization problem to measure the performance of the HBA.
The modeling of PV and system load are given in [38]. Table 1 depicts the constraints of the
system state variables in p.u. and the tuning parameters for the optimization algorithm.

Table 1. Operating limits and tuning parameters of the presented technique.

Parameters Used Value

maxiter 100
Population size n 50
[V min, Vmax] [0 .9, 1 .05]

[P DGmin
, PDGmax] [0 .3, 3]

[Q CBmin
, QCBmax

] [0 .15, 1 .5]
[PF DGmin

, PFDGmax] [0 .7, 1]

The bus system voltage, which is a security metric that exhibits power quality, was
utilized to measure the performance of the HBA optimization technique. In other words,
any change in voltage profile affects the performance of the power system. It is computed by
the summation of voltage deviation (SVD) as given in (30) where Vk, and Vslack represent
the k-th bus voltage magnitude and the reference bus voltage equal to 1 p.u.

SVD =

nb

∑
k=1

(|V k −Vslack|), (30)

Further, for measuring the performance of the HBA, the voltage stability index (VSI)
was employed to identify the distribution system’s sensitivity level. Equation (31) is used
to provide the sensitivity of each bus to voltage collapse [39]. The bus becomes more
stable, and the chances of voltage collapse are low if it has a high value of VSI. VSI for
every bus in the distribution system is increased by the appropriate arrangement of DGs in
RDS. The overall value of VSI for all buses in RDS is the voltage stability index summation
(TVSI) as expressed in (32).

VSIn = |Vm|4−4
(
(P n+PLn)Xm,n − (Q n+QLn)Rm,n

)2−4
(
(P n + PLn)Xm,n + (P n + PLn)Rm,n

)
|V m|2 (31)

TVSI =

nb

∑
i

VSIi (32)

where VSIn, and V m denote the VSI at the bus n and voltage at bus n, respectively, while
Xm,n and Rm,n indicate, respectively, the reactance and resistance of branch between buses
m, and n, as illustrated in Section 2. nb represents the total number of nodes.

Figure 6 shows the IEEE 69-bus radial distribution system, which comprises 69 buses
and 68 lines with load demands of 2694.6 KVAR and 3801.49 KW. Moreover, the testing
system also uses a 12.66 KV standard base voltage and a 10 MVA standard base power.
Without installing DGs, the system’s real power loss is 224.999 KW; bus 65 has the low-
est voltage, i.e., 0.90919, and the maximum deviation 0.0908; the summation of VSI is
61.2181; the minimum VSI is 0.6833; and the voltage deviation summation is 1.8374 p.u.
The suggested hybrid technique is studied with the following different scenarios:

112

Mathematics 2022, 10, 2081

Figure 6. IEEE 69-bus RDS single line diagram [32].

4.1. Scenario 1: DG Type-I Installation on RDS

This form of DG has recently become very popular for injecting real power only
into RDS such as solar systems (PVs). Figures 7–9 represent the voltage profile, voltage
stability index, and voltage deviation for the IEEE 69-bus distribution system using the
HBA with one, two, and three PV-based DGs installed. By single unit, the overall active
power loss is reduced from the base case to 83.2224 KW with a 63.01 percent reduction
in power loss, as depicted in Table 2. It is depicted in Figures 7 and 8 that bus 27 has
a minimum voltage of 0.9683 p.u., with a minimal voltage stability index of typically
0.8791 p.u. It has a maximum voltage deviation of approximately 0.0317 p.u., as shown in
Figure 9. On the other hand, combining numerous DGs produces more efficient outcomes
than using one DG. By installing two and three PV-based DGs in the present test system,
the minimum voltage profile found at bus 65 is improved to 0.97893 and 0.9790 p.u.,
respectively, compared to the base case. Furthermore, it enhances the minimum VSI
found at bus 65 (approximately 0.9183 and 0.9185) and decreases the maximum voltage
deviation at the same bus to 0.0211 and 0.0210, respectively. Table 2 represents the
optimal locations and sizing of the PV-based DG by the proposed method for IEEE 69-bus
RDS. It can be observed from Table 2 that the HBA provides the optimal allocation of
single and multiple DG Type-I on RDS compared with other techniques. The HBA was
compared with the modified MRFO algorithm by installing three PVs in RDS considering
uncertainty as shown in Table 3. Figure 10 illustrates the output power for three PVs
for 24 h considering uncertainty, which demonstrates the robustness of the HBA while
considering uncertainty.

113

Mathematics 2022, 10, 2081

Figure 7. Bus voltage magnitude comparison with and without DG Type-I for IEEE 69-bus RDS for
scenario 1.

V
S

I i
n

p.
u.

Figure 8. Bus voltage stability index after compensation on IEEE 69-bus RDS for scenario 1.

0 10 20 30 40 50 60 70
Bus Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
1-PV
2-PVs
3-PVs

Figure 9. Bus voltage deviation after compensation on IEEE 69-bus RDS for scenario 1.

114

Mathematics 2022, 10, 2081

Table 2. Optimal results of single and multiple DG Type-I on an IEEE 69-bus using HBA compared
with other algorithms for scenario 1.

No. of DGs Technique Total Loss Reduction Location DG Size Min. VSI Min. Voltage

(KW) (%) (KW) (p.u.) (p.u.)

Unit Capacity Total Capacity

Without DG 224.975 - - - - 0.6833 0.90919

One PV

Proposed 83.2224 63.01 61 1872.71 1872.71 0.8791 0.9683

Hybrid [30] 83.37 62.95 61 1800 1800 - -

EA [40] 83.23 63.00 61 1878 1878 - -

Hybrid [41] 83.37 62.95 61 1810 1810 - 0.9679

Two PVs

Proposed 71.6745 68.14 17 531.48 2312.98 0.9183 0.9789
61 1781.47

Hybrid [30] 71.80 68.09 17 520 2240 - -
61 1720

EA [40]
71.68 68.14 17 534 2329 - -

61 1795

Hybrid [41] 71.804 68.09 17 518 2242 - 0.9769
61 1724

Three PVs

Proposed
69.4266 69.14 11 526.70 2626.16 0.9185 0.9790

17 380.49
61 1718.97

Hybrid [30]
69.54 69.09 11 510 2560 - -

17 380
61 1670

EA [40] 69.62 69.05 11 467 2642 - -
18 380
61 1795

Hybrid [41]
69.5456 69.09 11 499 2544 - 0.9770

18 377
61 1668

Table 3. Results for installing three-DG Type-I in RDS considering uncertainty.

No. of DGs Technique Bus (Size (KW)) Total Loss (KW)

- Without DG - 2173.8506

Three PVs Modified MRFO [38]

61 (1991.45)

1021.69417 (439.53)

11 (599.51)

Three PVs Proposed

61 (1991.5)

1021.69418 (439.4)

11 (599.7)

4.2. Scenario 2: Capacitor Bank Installation on RDS

Figures 11–13 show the voltage profile, voltage stability index, and voltage deviation
for the IEEE 69-bus distribution system using the HBA with single and multiple CBs
installed. It can be demonstrated from these figures that increasing the number of capacitor
units and their total installed KVAR improves the voltage profile of the RDS, increase the
stability index at all buses, and decreases the estimated voltage deviation. The optimal
sizing and location of one, two, and three capacitors reduce the total real losses to 152.0348,

115

Mathematics 2022, 10, 2081

146.435, and 45.109KVAR, respectively, with percent loss reductions of 32.422, 34.91, and
35.5, as depicted in Table 4 which reveals that the CB does not considerably minimize
the active losses as compared to DG Type-I. However, the proposed algorithm provides
the optimal placement of CBs compared with other approaches for scenario 2 for IEEE
69-bus RDS.

0 5 10 15 20 25

Time in hour

0

500

1000

1500

2000
1st PV
2nd PV
3rd PV

Figure 10. Output of three-DG Type-I on IEEE 69-bus RDS considering uncertainty.

V
ol

ta
ge

 M
ag

ni
tu

de
 in

 p
.u

.

Figure 11. Bus voltage magnitude comparison with and without CBs for IEEE 69-bus RDS for scenario 2.

Figure 12. Bus voltage stability index after compensation on IEEE 69-bus RDS for scenario 2.

116

Mathematics 2022, 10, 2081

V
ol

ta
ge

 D
ev

ia
tio

n
in

 p
.u

.

Figure 13. Bus voltage deviation after compensation on IEEE 69-bus RDS for scenario 2.

Table 4. Optimal results of single and multiple CBs on an IEEE 69-bus using HBA compared with
other algorithms for scenario 2.

No. of DGs Technique Total Loss Reduction Location DG Size Min. VSI Min. Voltage
(KW) (%) (KVAR) (p.u.) (p.u.)

Unit Capacity Total Capacity

Without DG - 224.975 - - - - 0.6833 0.90919

One CB
Proposed 152.0348 32.422 61 1330.01 1330.01 0.750418 0.930729

Hybrid [30] 152.10 32.40 61 1290 1290 - -

Two CBs

Proposed 146.4346 34.9107 17 361.081 1636.14 0.751709 0.931129
61 1275.06

Hybrid [30] 146.52 34.88 18 350 1590 - -
61 1240

SCA [42]
147.762 34.33 18 250 1400 - 0.9290

61 1150

Three CBs

Proposed
145.10916 35.4999 11 413.139 8762.43 0.752669 0.931426

21 230.698
61 232.406

Hybrid [30]
145.24 35.45 11 330 1770 - -

18 250
61 1190

GSA [43] 145.9 35.15 26 150 1350 - -
13 150
15 1050

4.3. Scenario 3: DG Type-III Installation on RDS

Similarly, as demonstrated in Figures 14–16, the DG Type-III has better results than
DG Type-I because it supplies apparent power to the RDS. The best location and sizing
of one-, two-, and three-DG Type-III decreases the total real losses to 23.1688, 7.2013, and
4.2664 KW, respectively, with percent loss reductions of 89.7, 96.8, and 98.1. This mode of
DG integration also enhances the minimum VSI (Figure 14) to 0.8943, 0.9772, and 0.9773,
respectively, compared to the base case (0.6833 at bus 64). Regarding the minimum bus
voltage profile (Figure 15), a single DG Type-III improves it to 0.97247 found at bus 27, while
the two and three units improve the 50th bus voltage profile to 0.99426 and 0.99427 p.u.,
respectively. When employing a single DG Type-III, the maximum voltage deviation

117

Mathematics 2022, 10, 2081

(Figure 16) is improved to 0.0275 (0.0908 at bus 65 for the base case). Nonetheless, the
maximum VD at bus 50 is approximately 0.0057 p.u. for both two and three units of DGs
Type-III. Consequently, the suggested HBA method gives the best allocation of single and
multiple DGs Type-III on RDS compared with other algorithms, as shown in Table 5.

Table 5. Optimal results of single and multiple DG Type-III on an IEEE 69-bus using HBA compared
with other algorithms for scenario 3.

No. of DGs Technique Total Loss Reduction Location DG Size Min. VSI Min. Voltage
(KW) (%) (KW) (p.u.) (p.u.)

Unit Capacity Optimal P.F

Without DG - 224.975 - - - - 0.6833 0.90919

One WT

Proposed 23.1688 89.702 61 1828.47 0.8149 0.8943 0.9725

Hybrid [30] 23.19 89.69 61 2240 0.81 - -

TLBO–GWO [44] 58.80 73.86 61 1000 0.81 - 0.9598

EA-OPF [40] 23.17 89.7 61 1828 0.82 - -

Two WTs

Proposed 7.2013 96.8 17 522.03 0.828 0.9772 0.9943
61 1734.78 0.814

Hybrid [30] 7.21 96.7 17 630 0.82 - -
61 2120 0.81

TLBO–GWO [44]
23.28 89.65 61 1000 0.81 - 0.9724

62 820 0.83

EA-OPF [40]
7.20 96.8 61 1735 0.81 - -

17 522 0.83

Three WTs

Proposed
4.2664 98.10 11 493.15 0.8120 0.9773 0.9943

17 378.92 0.8332
61 1675.08 0.8140

Hybrid [30]
4.30 98.01 18 480 0.77 - -

61 2060 0.83
66 530 0.82

TLBO–GWO [44] 7.27 96.77 18 523 0.83 - 0.9942
61 1000 0.82
62 723 0.8

EA-OPF [40]
4.48 97.12 11 495 0.81 - -

18 379 0.83
61 1674 0.81

4.4. Scenario 4: Simultaneous Installation of DG Type-I with DG Type-III on RDS

The hybridization of renewable energy sources is a prominent concern. PV and WT
are the most common types of renewable distributed generators in RDS. In this scenario,
the simultaneous combining of DG Type-I and Type-III on the present test system yielded
superior results to the two last scenarios. It can be seen from Table 6 that the optimized
simultaneous distribution of one PV with one WT, two PVs with two WTs, and three PVs
with three WTs on the distribution network decrease the summation of the line’s power
losses to 12.1068, 4.4567, and 3.6741 KW, respectively. This type of DG integration increases
the voltage stability index at all buses, as shown in Figure 17, and decreases the bus voltage
deviation as depicted in Figure 18. From Figure 19, it also improves the voltage profile,
where the minimum voltage is found at bus 69 (i.e., 0.9921 p.u.) for one PV with one WT,
and bus 50 and 65 (0.9950 p.u., and 0.9968 p.u., respectively) for two PVs with two WTs and
three PVs with three WTs, respectively. As a result, compared to the EA-OPF algorithm, the
HBA method provides the optimal simultaneous distribution of the DG based on Type-I
with Type-III on RDS, as depicted in Table 6.

118

Mathematics 2022, 10, 2081

Figure 14. Bus voltage stability index after compensation on IEEE 69-bus RDS for scenario 3.

Figure 15. Bus voltage magnitude comparison with and without DG Type-III for IEEE 69-bus RDS
for scenario 3.

V
ol

ta
ge

 D
ev

ia
tio

n
in

 p
.u

.

Figure 16. Bus voltage deviation after compensation on IEEE 69-bus RDS for scenario 3.

119

Mathematics 2022, 10, 2081

Figure 17. Bus voltage stability index after compensation on IEEE 69-bus RDS for scenario 4.

0 10 20 30 40 50 60 70
Bus Number

0

1

2

3

4

5

6

7

8 10-3

1-PV+1-WT
2-PVs+2-WTs
3-PVs+3-WTs

Figure 18. Bus voltage deviation after compensation on IEEE 69-bus RDS for scenario 4.

Figure 19. Bus voltage magnitude comparison with and without DG Type-I and DG Type-III for IEEE
69-bus RDS for scenario 4.

120

Mathematics 2022, 10, 2081

Table 6. Optimal results of single and multiple DG Type-I and Type-III on IEEE 69-bus using HBA
compared with other algorithms for scenario 4.

No. of DGs Technique Total Loss Reduction Location DG Size Min. VSI Min. Voltage
(KW) (%) (KW) (p.u.) (p.u.)

Unit Capacity Optimal P.F

Without DG - 224.975 - - - - 0.6833 0.90919

One PV
with

One WT

Proposed 12.1068 94.62 17 523.66 1.00 0.9688 0.9921
61 1736.19 0.80

EA-OPF
[40]

12.35 94.51 17 531 1.00 - -
61 225 (KVA) -

Two PVs
with

two WTs
Proposed

4.4567 98.02 10 493.342 1.00 0.9801 0.9950
49 301.04 1.00
17 389.148 0.74
61 1670.522 0.804

three PVs
with

three WTs

Proposed 3.6741 98.37 12 300 1.00 0.9872 0.9968
64 300 1.00
58 300 1.00
49 300 0.70
61 1194.4 0.70
19 377.18 0.74

5. Discussion

As discussed in the previous section, the HBA provides the optimal allocation of single
and multiple DGs and capacitors on IEEE 69-bus RDS. Figure 20 illustrates the total active
power loss obtained using the suggested HBA for the four test scenarios. It can be seen from
this figure that the HBA gives the best solution in all test cases. Regarding the summation
of voltage deviation (SVD) (shown in Figure 21), the three units of DG Type-III give the
minimum SVD, while the maximum SVD is obtained using one capacitor. Figure 22 shows
the total voltage stability index for the HBA on IEEE 69-bus RDS in different scenarios.
This figure proves that the proposed algorithm increases the TVSI for the studied cases.

On the other hand, the convergence characteristics of the HBA for scenario one are
represented in Figure 23, which illustrates that the suggested algorithm gives the optimum
solution in fewer iterations. Figures 24 and 25 illustrate the high conversion rate obtained
by the proposed algorithm for scenarios two and three, respectively. Additionally, Figure 26
illustrates the high convergence characteristics of the HBA for specifying the best sizing
and location on the IEEE 69-bus standard test system in scenario 4.

Figure 20. Summary of total active power losses after compensation for IEEE 69-bus RDS.

121

Mathematics 2022, 10, 2081

Figure 21. Summary of voltage deviation summation after compensation for IEEE 69-bus RDS.

Figure 22. Summary of TVSI after compensation for IEEE 69-bus RDS.

Figure 23. Convergence curves for scenario 1 in IEEE 69-bus RDS. (a) One unit, (b) two units, and
(c) three units.

122

Mathematics 2022, 10, 2081

Figure 24. Convergence curves for scenario 2 in IEEE 69-bus RDS. (a) One unit, (b) two units, and
(c) three units.

Figure 25. Convergence curves for scenario 3 in IEEE 69-bus RDS. (a) One unit, (b) two units, and
(c) three units.

Figure 26. Convergence curves for scenario 4 in IEEE 69-bus RDS. (a) One unit, (b) two units, and
(c) three units.

123

Mathematics 2022, 10, 2081

6. Conclusions

In this paper, a new efficient HBA optimization algorithm is applied for the first time
to specify the optimal size and location of different types of DGs and capacitors in RDS.
To prove the effectiveness of the suggested algorithm, the simulation results were compared
with those of other recent optimization techniques. The convergence characteristics of
the HBA were introduced for all studied test cases, which show high performance, even
increasing the number of state variables. Additionally, the voltage profile, voltage stability
index, and voltage deviation of the IEEE 69-bus are discussed and given in figures. From
simulation results, the integration of multiple DGs or capacitors is found to be superior
to the integration of a single DG or capacitor alone. Investigating the four test scenarios,
integration of CBs seems to be the worst scenario in reducing the total active power loss at
roughly 145.10916 KVAR. However, simultaneous integration of DG Type-I and DG Type-III
provides the lowest total active power losses, approximately 3.6741 KW, and improves
both the voltage profile and voltage stability index in the IEEE 69-bus distribution system.
The high accuracy obtained from the proposed algorithm will motivate future researchers
to utilize this algorithm in large-scale optimization problems.

Author Contributions: Conceptualization, M.A.E.; Investigation, S.K.; Methodology, H.A.-M.; Vali-
dation, E.E.E. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Taif University Researchers Supporting Project number
(TURSP-2020/86): Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qian, K.; Zhou, C.; Allan, M.; Yuan, Y. Effect of load models on assessment of energy losses in distributed generation planning.
Int. J. Electr. Power Energy Syst. 2011, 33, 1243–1250. [CrossRef]

2. El-Samahy, I.; El-Saadany, E. The effect of DG on power quality in a deregulated environment. In Proceedings of the IEEE Power
Engineering Society General Meeting, San Francisco, CA, USA, 12–16 June 2005. [CrossRef]

3. Singh, B.; Mukherjee, V.; Tiwari, P. A survey on impact assessment of DG and FACTS controllers in power systems. Renew. Sustain.
Energy Rev. 2015, 42, 846–882. [CrossRef]

4. Saddique, M.W.; Haroon, S.S.; Amin, S.; Bhatti, A.R.; Sajjad, I.A.; Liaqat, R. Optimal placement and sizing of shunt capacitors in
radial distribution system using polar bear optimization algorithm. Arab. J. Sci. Eng. 2021, 46, 873–899. [CrossRef]

5. Bayat, A.; Bagheri, A. Optimal active and reactive power allocation in distribution networks using a novel heuristic approach.
Appl. Energy 2019, 233–234, 71–85. [CrossRef]

6. Taha, I.B.M.; Elattar, E.E. Optimal reactive power resources sizing for power system operations enhancement based on improved
grey wolf optimiser. IET Gener. Transm. Distrib. 2018, 12, 3421–3434. [CrossRef]

7. Ali, E.S.; Abd Elazim, S.M.; Abdelaziz, A.Y. Ant Lion optimization algorithm for optimal location and sizing of renewable
distributed generations. Renew. Energy 2017, 101, 1311–1324. [CrossRef]

8. Mahmoud, I.; Kamel, S.; Abdel-Mawgoud, H.; Nasrat, L.; Jurado, F. Integration of DG and Capacitor in Radial Distribution
Networks Using an Efficient Hybrid Optimization Method. Electr. Power Compon. Syst. 2020, 48, 1102–1110. [CrossRef]

9. Ali, E.S.; Abd Elazim, S.M.; Abdelaziz, A.Y. Optimal allocation and sizing of renewable distributed generation using ant lion
optimization algorithm. Electr. Eng. 2018, 100, 99–109. [CrossRef]

10. Li, Y.; Feng, B.; Li, G.; Qi, J.; Zhao, D.; Mu, Y. Optimal distributed generation planning in active distribution networks considering
integration of energy storage. Appl. Energy 2018, 210, 1073–1081. [CrossRef]

11. Abdel-Mawgoud, H.; Kamel, S.; El-Ela, A.A.A.; Jurado, F. Optimal Allocation of DG and Capacitor in Distribution Networks
Using a Novel Hybrid MFO-SCA Method. Electr. Power Compon. Syst. 2021, 49, 259–275. [CrossRef]

12. Abdel-mawgoud, H.; Kamel, S.; Tostado, M.; Yu, J.; Jurado, F. Optimal installation of multiple DG using chaotic moth-flame
algorithm and real power loss sensitivity factor in distribution system. In Proceedings of the International Conference on Smart
Energy Systems and Technologies (SEST 2018), Seville, Spain, 10–12 September 2018; pp. 1–5. [CrossRef]

13. Devabalaji, K.R.; Imran, A.M.; Yuvaraj, T.; Ravi, K.J.E.P. Power loss minimization in radial distribution system. Energy Procedia
2015, 79, 917–923. [CrossRef]

124

Mathematics 2022, 10, 2081

14. Yuvaraj, T.; Devabalaji, K.R.; Ravi, K. Optimal allocation of DG in the radial distribution network using bat optimization algorithm.
In Proceedings of the Advances in Power Systems and Energy Management, Singapore, 28 November 2017; pp. 563–569.
[CrossRef]

15. Ibrahim, A.M.; Swief, R.A. Comparison of modern heuristic algorithms for loss reduction in power distribution network equipped
with renewable energy resources. Ain Shams Eng. J. 2018, 9, 3347–3358. [CrossRef]

16. Mohamed, E.A.; Mohamed, A.A.A.; Mitani, Y. Hybrid GMSA for optimal placement and sizing of distributed generation and
shunt capacitors. J. Eng. Sci. Technol. Rev. 2018, 11, 55–65. [CrossRef]

17. Reddy, P.; Reddy, V.C.; Manohar, T.G. Whale optimization algorithm for optimal sizing of renewable resources for loss reduction
in distribution systems. Renewables 2017, 4, 3. [CrossRef]

18. Hemeida, M.G.; Ibrahim, A.A.; Mohamed, A.A.A.; Alkhalaf, S.; El-Dine, A.M.B. Optimal allocation of distributed generators DG
based Manta Ray Foraging Optimization algorithm (MRFO). Ain Shams Eng. J. 2021, 12, 609–619. [CrossRef]

19. Sanjay, R.; Jayabarathi, T.; Raghunathan, T.; Ramesh, V.; Mithulananthan, N. Optimal allocation of distributed generation using
hybrid grey wolf optimizer. IEEE Access 2017, 5, 14807–14818. [CrossRef]

20. Dixit, M.; Kundu, P.; Jariwala, H.R. Incorporation of distributed generation and shunt capacitor in radial distribution system for
techno-economic benefits. Eng. Sci. Technol. Int. J. 2017, 20, 482–493. [CrossRef]

21. Karunarathne, E.; Pasupuleti, J.; Ekanayake, J.; Almeida, D. Optimal placement and sizing of DGs in distribution networks using
MLPSO algorithm. Energies 2020, 13, 6185. [CrossRef]

22. Devabalaji, K.R.; Yuvaraj, T.; Ravi, K. An efficient method for solving the optimal sitting and sizing problem of capacitor banks
based on cuckoo search algorithm. Ain Shams Eng. J. 2018, 9, 589–597. [CrossRef]

23. Sultana, U.; Khairuddin, A.B.; Mokhtar, A.S.; Zareen, N.; Sultana, B. Grey wolf optimizer-based placement and sizing of multiple
distributed generation in the distribution system. Energy 2016, 111, 525–536. [CrossRef]

24. Sambaiah, K.S.; Jayabarathi, T. Optimal allocation of renewable distributed generation and capacitor banks in distribution systems
using salp swarm algorithm. Int. J. Renew. Energy Res. 2019, 9, 96–107. [CrossRef]

25. Khodabakhshian, A.; Andishgar, M.H. Simultaneous Placement and Sizing of DGs and Shunt Capacitors in Distribution Systems
by Using IMDE algorithm. Electr. Power Energy Syst. 2016, 82, 599–607. [CrossRef]

26. Ali, A.; Keerio, M.U.; Laghari, J.A. Optimal site and size of distributed generation allocation in radial distribution network using
multi-objective optimization. J. Mod. Power Syst. Clean Energy 2020, 9, 404–415. [CrossRef]

27. Shuaijia, H.; Hongjun, G.; Hao, T.; Lingfeng, W.; Youbo, L.; Junyong, L. A Two-stage Robust Optimal Allocation Model of
Distributed Generation Considering Capacity Curve and Real-time Price Based Demand Response. J. Mod. Power Syst. Clean
Energy 2021, 9, 114–127. [CrossRef]

28. Samala, R.K.; Kotapuri, M.R. Optimal allocation of distributed generations using hybrid technique with fuzzy logic controller
radial distribution system. SN Appl. Sci. 2020, 2, 191. [CrossRef]

29. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic
algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [CrossRef]

30. Kansal, S.; Kumar, V.; Tyagi, B. Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks.
Int. J. Electr. Power Energy Syst. 2016, 75, 226–235. [CrossRef]

31. Eminoglu, U.; Hocaoglu, M.H. Distribution systems forward/backward sweep-based power flow algorithms: A review and
comparison study. Electr. Power Compon. Syst. 2008, 37, 91–110. [CrossRef]

32. Aman, M.M.; Jasmon, G.B.; Bakar, A.H.A.; Mokhlis, H. A new approach for optimum simultaneous multi-DG distributed
generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm
optimization) algorithm. Energy 2014, 66, 202–215. [CrossRef]

33. Kumar, A.; Vijay Babu, P.; Murty, V.V.S.N. Distributed generators allocation in radial distribution systems with load growth using
loss sensitivity approach. J. Inst. Eng. 2017, 98, 275–287. [CrossRef]

34. Begg, C.M.; Begg, K.S.; Du Toit, J.T.; Mills, M.G.L. Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae),
in the southern Kalahari. Anim. Behav. 2003, 66, 917–929. [CrossRef]

35. Begg, C.M.; Begg, K.S.; Du Toit, J.T.; Mills, M.G.L. Life-history variables of an atypical mustelid, the honey badger mellivora
capensis. J. Zool. 2005, 265, 17–22. [CrossRef]

36. Kapner, D.J.; Cook, T.S.; Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoyle, C.D.; Swanson, H.E. Tests of the gravitational
inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 2007, 98, 021101. [CrossRef]

37. Akopyan, A.V. Geometry of the cardioid. Amer. Math. Mon. 2015, 122, 144–150. [CrossRef]
38. Abdel-Mawgoud, H.; Ali, A.; Kamel, S.; Rahmann, C.; Abdel-Moamen, M.A. A Modified Manta Ray Foraging Optimizer

for Planning Inverter-Based Photovoltaic with Battery Energy Storage System and Wind Turbine in Distribution Networks.
IEEE Access 2021, 9, 91062–91079. [CrossRef]

39. Ali, E.S.; Abd Elazim, S.M.; Abdelaziz, A.Y. Ant lion optimization algorithm for renewable distributed generations. Energy 2016,
116, 445–458. [CrossRef]

40. Mahmoud, K.; Yorino, N.; Ahmed, A. Optimal distributed generation allocation in distribution systems for loss minimization.
IEEE Trans. Power Syst. 2016, 31, 960–969. [CrossRef]

125

Mathematics 2022, 10, 2081

41. Mohamed, A.A.; Kamel, S.; Selim, A.; Khurshaid, T.; Rhee, S.B. Developing a Hybrid Approach Based on Analytical and
Metaheuristic Optimization Algorithms for the Optimization of Renewable DG Allocation Considering Various Types of Loads.
Sustainability 2021, 13, 4447. [CrossRef]

42. Biswal, S.R.; Shankar, G. Optimal sizing and allocation of capacitors in radial distribution system using sine cosine algorithm.
In Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES 2018), Chennai,
India, 18–21 December 2018; pp. 1–4. [CrossRef]

43. Shuaib, Y.M.; Kalavathi, M.S.; Rajan, C.C.A. Optimal capacitor placement in radial distribution system using gravitational search
algorithm. Int. J. Electr. Power Energy Syst. 2015, 64, 384–397. [CrossRef]

44. Nowdeh, S.A.; Davoudkhani, I.F.; Moghaddam, M.H.; Najmi, E.S.; Abdelaziz, A.Y.; Ahmadi, A.; Razavi, S.E.; Gandoman, F.H.
Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability
improvement using a novel hybrid method. Appl. Soft Comput. 2019, 77, 761–779. [CrossRef]

126

Citation: Jain, K.; Jasser, M.B.; Hamzah,

M.; Saxena, A.; Mohamed, A.W. Harris

Hawk Optimization-Based Deep

Neural Networks Architecture for

Optimal Bidding in the Electricity

Market. Mathematics 2022, 10, 2094.

https://doi.org/10.3390/math10122094

Academic Editor: Jian Dong

Received: 16 May 2022

Accepted: 10 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Harris Hawk Optimization-Based Deep Neural Networks
Architecture for Optimal Bidding in the Electricity Market

Kavita Jain 1, Muhammed Basheer Jasser 2, Muzaffar Hamzah 3,*, Akash Saxena 1 and Ali Wagdy Mohamed 4,5

1 Department of Electrical Engineering, Swami Keshvanand Institute of Technology, Management and
Gramothan, Jaipur 302017, Rajasthan, India; kjkavitajain.21@gmail.com (K.J.); akash@skit.ac.in (A.S.)

2 Department of Computing and Information Systems, School of Engineering and Technology, Sunway
University, Petaling Jaya 47500, Selangor, Malaysia; basheerj@sunway.edu.my

3 Faculty of Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu 88450, Sabah, Malaysia
4 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University,

Giza 12613, Egypt; aliwagdy@gmail.com
5 Department of Mathematics and Actuarial Science, School of Sciences Engineering, The American University

in Cairo, New Cairo 11835, Egypt
* Correspondence: muzaffar@ums.edu.my

Abstract: In the power sector, competitive strategic bidding optimization has become a major chal-
lenge. Digital plate-form provides a superior technical base as well as backing for the optimization’s
execution. The state-of-the-art frameworks used for simulating strategic bidding decisions in deregu-
lated electricity markets (EM’s) in this article are bi-level optimization and neural networks. In this
research, we provide HHO-NN (Harris Hawk Optimization-Neural network), a novel algorithm
based on Harris Hawk Optimization (HHO) that is capable of fast convergence when compared to
previous evolutionary algorithms for automatically searching for meaningful multilayered percep-
tron neural networks (MPNNs) topologies for optimal bidding. This technique usually demands a
considerable amount of time and computer resources. This method sets up the problem in multi-
dimensional continuous state-action spaces, allowing market players to get precise information on the
effect of their bidding judgments on the market clearing results, as well as implement more valuable
bidding decisions by utilizing a whole action domain and accounting for non-convex operating
principles. Due to the use of the MPNN, case studies show that the suggested methodology delivers
a much larger profit than other state-of-the-art methods and has a better computational performance
than the benchmark HHO technique.

Keywords: electricity market; optimal bidding; Harris Hawk Optimization; multi layered neural
network; bi-level optimization; strategic bidding

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction

Many economic systems used in the power sector’s research are centralized, optimize
the objective of the system (e.g., maximizing social welfare) and assume that market
participants behave in a perfectly competitive (price-taking) manner. However, increasing
attempts to deregulate the power industry have resulted in increased competition among
several self-interested (profit-driven) market competitors, particularly in the production
and supplier domains. Due to the fact that self-interested market player’s nature is not
always allied with global targets, existing centralized frameworks are no longer able to
give accurate perspectives. Consequently, emerging market methods that are useful are
capable of tracking the strategic (price-making) behavior of self-interested market players
as well as recognizing the market outcomes that result from their interactions [1].

Power production and transmission have evolved from vertically integrated opera-
tions to market-driven operations in the world’s main economies. The liberalization of

Mathematics 2022, 10, 2094. https://doi.org/10.3390/math10122094 https://www.mdpi.com/journal/mathematics
127

Mathematics 2022, 10, 2094

the power sector has resulted in increased effectiveness through rivalry among market
players. In the energy sector, generators are the ideal candidates for iteration in rivalry
to enhance the effectiveness and competitiveness in allocation of resources, as well as to
compete for the cheapest cost with the superior products. Real-time balancing and day
ahead are the two kinds of energy markets. In a real market, rivals purchase energy during
the business days, and energy prices are established daily or hourly based on requirement
and production. A study of spikes in electricity price has been conducted in reference [2].
In a day ahead market, participants purchase wholesale energy in the day-ahead power
sector a day before the operating days, and the discrepancy among planned and real needs
on the operating day is compensated in the real time marketplace [3].

An energy pool in the day ahead marketplace is one of the key services in the wholesale
competitive liberated energy sector in the reformation of the electrical energy industry
across the world [4]. The Independent System Operator (ISO) finalized generators bids for
every hour of the next day in the day ahead marketplace. So each generator provides bids
to the ISO for each hour of the following day. The proposed price must be greater than zero
but less than the industry restriction. The ISO examines bids to establish the hourly MCP
and the amount of power to be delivered by each generator’s framework of the proposed
cost and MCP [5]. The EM mechanism that is explained above is shown in Figure 1.

Figure 1. Electricity Market Mechanism.

A two-auction system exists: (a) uniform price, which provides just at agreed level
(with such a price available at a cheaper clearance cost) based on hourly MCP, and
(b) pay-as-bid auction, which pays at the accepted level of each generator based on its
applicable rate [6]. In every marketplace, the price-forecasting process is linked to: (a) size
of the market (the amount of prospective producers and consumers); (b) market structure
and process (including such payment methods or accessibility) [7]; (c) degree of access to

128

Mathematics 2022, 10, 2094

market and player’s information; and (d) risk analysis options [8]. Even so, there really are
discrepancies among energy and other commodity markets, such as:

a Energy cannot be conveniently collected and should be used instantaneously produced
because the physiological delivery method works much quicker than
any industry [9];

b Energy transportation needs to carry massive losses and expenses, as well as special
distribution facilities;

c Power systems are the most destructive especially in comparison to other traded commodi-
ties, and all of these factors conspire to create energy as the most turbulent commodity.

d Although production and consumption should be coordinated at all times, electricity
supply must be demanded precisely at any given time from across the system.

e At the annual, weekly, and daily levels, the MCP demonstrates considerable periodicity [10].
f The electrical consumer has no control over which generator creates the load, and the

generator has no control over which customers receive electricity [10].

Optimization approaches influenced by nature: swarm intelligence is a popular branch
of artificial intelligence in which algorithms are created by emulating the intelligent be-
haviour of various animals such as wolves, whales, ants, lions, crows, and bees. HHO [11]
is a swarm intelligence-based method that was recently discovered to solve real-world
optimization problems. Ali Asghar Heidari et al. found it in 2019 [11] after being inspired
by Harris ‘hawks’ cooperative behaviour and chasing style in a setting known as amaze-
ment jump. A few hawks agreeably jump a victim from varied angles in order to astonish
it. Harris hawks can find a variety of pursuing examples based on the rabbit’s distinct
concept of situations and getting away from instances. To nurture an optimization method,
this research endeavour numerically simulates such powerful examples and behaviours.
Regardless of the fact that there are various nature-inspired optimization methods based
on stochastic behaviour available in the literature, the HHO algorithm was chosen in this
study due to its acceptable search space exploration strength when compared to other
meta-heuristic algorithms. A multi-strategy search was inspired by the prey hunting be-
haviour of Harris’s hawk. The least squares support vector machine (LSSVM) was utilised
to represent the reactive power output of the synchronous condenser, and the developed
Harris Hawks optimization algorithm was employed to optimise it.

Times series system [12], GARCH system [13], a mixture of wavelet transform and
ARIMA [14], fuzzy auto regression framework [15], game theory [16], Bayesian optimiza-
tion [17], neural network [18], and a combination of a machine learning algorithm and
bat [19] have all been presented in the literature as methodologies for predicting electricity
prices. Game theory, time series models, and simulation models make up the MCP predic-
tion method; time series architectures are classified into three categories: stochastic models,
machine intelligence models, and casual models [20].

1.1. Related Work

ANN has been identified to be the most appropriate model for predicting MCP from
the above described models. They can evaluate the complicated relationship among next
day MCP and past information of demand and other factors such as type of day, load,
temperature, settling point, period, and so on. Among the most extensively utilized
techniques for forecasting MCP judging by past data are NN architectures [21]. Authors
used an NN to estimate MCP for the Australian power industry for many hours. Because the
synthetic data and the Euclidean distance norm with normalized considerations were used
to pick comparable days, the study revealed a significant exponential relationship with a
rise in the hourly price prediction from 9.75% for one-hour-ahead forecasts to 20.03% for
six-hour-ahead forecasts [22].

A Combinatorial Neural Network (CNN) was presented by Abedinia et al. to pre-
dict MCP in the Pennsylvania-New Jersey-Maryland (PJM) and mainland Spain markets.
The parameters of the NN in CNN are optimized using the Chemical Reaction Optimization
(CRO) technique in this system, and the mean WME is equivalent to 4.04% [5]. Authors

129

Mathematics 2022, 10, 2094

created a novel hybrid method for predicting MCP in the Spanish and Pennsylvania-New
Jersey-Maryland energy markets by merging the bat optimization with an NN; numerical
results reveal that the average MAPE value is less than 1% [19]. Anbazhagan and Kumarap-
pan suggested a model to predict MCP in the Spanish and New York electrical markets,
with improvements in the average MPCE of 0.7 percent and 0.9 percent above the NN
method, correspondingly [23].

The above-mentioned NN methods can be subdivided as: a heuristic technique whihc
was used to measure the periodicity pattern of MCP in group 1, and another which was
used to improve NN performance in group 2. Each of these qualities has indeed been
addressed in this article. It is difficult to enhance MCP forecast accuracy because of its
inherent stochastic and nonlinear tendencies. As a result, we report a novel hybrid model
architecture that combines NN, PSO, and GA algorithms. Rather than using the classic back
propagation method, PSO is used to enhance the learning power of a conventional neural
network and optimize the weights of the NN, resulting in a local optimal configuration [19].
The GA is used to optimize the number of hidden layers on the NN [19] because networks
are important to a number of neurons in their hidden layers. Since MCP has a periodicity
tendency, the K-means method was used to analyse the NN’s training dataset and identify
MCP’s periodicity trend [24]. This study proposes a machine learning-driven portfolio
optimization methodology for virtual bidding in electricity markets that takes both risk and
price sensitivity into account. To maximise profit, an algorithmic trading strategy is built
from the standpoint of a proprietary trading firm [25]. The goal of this article is to maximise
power market transactions and clearing price using metaheuristic algorithms. To achieve
feasible results in a short amount of time, the exhaustive search algorithm is implemented
using a parallel computer architecture. The global optimal outcome is used as a metric
to compare the effectiveness of various metaheuristic algorithms. The results, discussion,
comparison, and recommendations for the suggested set of algorithms and performance
tests are presented in this work [26]. This article gives a case study of Pakistan’s electricity
system, with information on electricity generated, connected load, frequency deviation,
and load shedding during the course of a 24-h period. The data were evaluated using
two methods: a traditional artificial neural network (ANN) with a feed forward back
propagation model and a Bootstrap aggregating or bagging approach.

1.2. Major Contributions and Paper Structure

As previously stated, the following is a summary of our suggested method’s contribution:

a The article presents a novel fusion architecture for optimal bidding in the power industry
that fuses neural networks, and HHO.

b In order to select the best records from past data to acquire NN, hourly data have been
clustered based on the demands and bidding data of market participants;

c To check the efficacy of HHO-NN, the results are compared against some recently
developed, strong algorithms.

The arrangement of this manuscript is systematized as follows in Figure 2.

130

Mathematics 2022, 10, 2094

Figure 2. Systematized format of manuscript.

2. Problem Formulation

The following section presents a brief overview of the Gen-Co bidding strategy ap-
proach as well as the issue’s algebraic formulation. The sub-sections that follow cover
everything that was previously mentioned.

2.1. Bidding Strategy

A generating company has run at a high degree of efficiency to flourish in a fierce
competition. However, in the electricity sector, good execution may not be enough since,
in order to generate the most profit, it must sell its products at a competitive price. Different
factors affect a producing company’s profit, including its own bids, bids submitted by
competitors, overall energy demands, and so on. Despite the fact that a generating company
has no control over its competitors’ bids or the energy demand, it can create its own strategy
for putting in a bid that maximizes profit while minimizing risk, as shown in Figure 3.

Figure 3. Supplier side’s bidding strategy.

2.2. Mathematical Formulation

The market operator plots an upward production possibilities curve and a vertical
line for consumer expectations following accepting offers from the Gen-Co’s. The point

131

Mathematics 2022, 10, 2094

where the two curves intersect is the equilibrium point, and the straight line drawn from
the equilibrium point on the y-axis determines the system’s MCP.

2.2.1. Objective Function

The profit of Gen-Co is calculated using the given (1).

Gen− Cok,pro f it = Revenue− Gen− Cok,cost (1)

here,
Revenue = MCP×Qk (2)

Gen− Cok,cost = akQk + bkQ2
k (3)

where, Qk is the amount of quantity of kth Gen-Co trade in the market. ak and bk are the
cost coefficients.

2.2.2. Operating Constraints

i Generation Limits

QminUk(t) ≤ Qk(t) ≤ QmaxUk(t) , ∀t ∈ T (4)

ii Inter-temporal constraints

(1−Uk(t+1))Mut
k ≤ hon

k(t), i f Uk(t) = 1. (5)

Uk(t+1)Mdt
k ≤ ho f f

k(t), i f Uk(t) = 0. (6)

iii Limits on bid price
Cmin ≤ Gen− Cok,cost ≤ C (7)

3. Proposed Technique

3.1. Harris Hawks Optimization Algorithm: A Framework

Ali Asghar Heidari et al. [11] presented the Harris Hawks Optimization (HHO) meta-
heuristic algorithm in the year 2019. Harris hawks exhibit superb social behavior with
respect to hunting and attacking the bunny. Searching for a bunny, hitting it in various
ways, and executing a rapid jump are all part of the exploitative aspects of the technique.
Harris hawks spread to various locations in search of rabbits, and they use two distinct
investigating tactics. Aspirants are perhaps the intended prey or very close to it, with the
targeted prey or really close to it being the ideal. Harris hawks perch in a spot similar to
those of other families, as well as the bunny in the very first encounter (prey). The hawks
in the second step look for tall trees randomly. The HHO then progresses an optimization
process by mathematically faking such beneficial approaches and behaviors.

3.1.1. Initialization Step

At this step, the search space and objective function are defined. Furthermore, the first
population-based chaotic maps are being developed. In addition, all of the attribute values
have been specified.

3.1.2. The Step of Exploration

During this step, all Harris hawks are viable candidate responses. In each cycle,
the fitness value is computed for each of these viable alternatives based on the desired
prey. Two approaches have been introduced to replicate the exploring capabilities of Harris
hawks in the search area, as specified in Equation (8).

z(i + 1) =
{

zr(i)− g1|zr(i)− 2g2z(i)| q ≥ 0.5
(zrabbit(i)− za(i))− g3(lb + g4(ub− lb)) q < 0.5,

(8)

132

Mathematics 2022, 10, 2094

The hawks’ positions within (ub-lb) borders are based upon two precepts: (1) create the
responses using a hawk from the current population as well as other hawks randomly and
(2) build outcomes based on the prey’s position, the average hawk’s location, and random
weighted elements. Despite the fact that g3 is a scale parameter, if the value of r4 reaches
one, it will help to boost the unpredictability of the algorithm. This law adds an arbitrarily
scaled drive length to lb.

Additional dynamic capabilities to investigate other sections of the feature space are
explored with a random scaled component. The average hawk posture (solutions) is stated
as follows in Equation (9):

za(i) =
1
n

n

∑
l=1

zl(i) (9)

Once the hawk uses the random hawks’ information to catch the rabbit, rule 1 is
usually applied in Equation (8). Rule 2 is executed once all hawks have accepted the finest
hawk and the optimal option have been picked.

3.1.3. From Exploration to Exploitation Transition

This step depicts how HHO progresses from exploration to exploitation based on the
bunny’s level of energy (E). The strength of the bunny is gradually depleted as a result of
the bunny’s escaping behaviors, as according HHO. The energy needed decline is modeled
in Figure 4.

Figure 4. For 250 iteration, E’s behavior changes with time.

E0 is the expected power decline, as shown in Equation (10).

E = 2E0

(
1− i

I

)
, E0 ∈ [−1, 1] (10)

3.1.4. Step of Exploitation

In this step, the exploitation step is accomplished by employing four distinct factors.
The position that was discovered during the exploration stage determines these strategies.
Despite the hawks’ best efforts to track it down and catch it, the prey frequently sought to
flee. To emulate the hawks’ offensive style, HHO exploitation employs four basic strategies.
The four strategies are soft besiege, soft besiege with progressive speedy dives, hard
besiege, and hard besiege with progressive speedy dives. These approaches are contingent
on two variables, r and |E|, which label the technique to be cast-off. Where, |E| is the
prey’s escaping energy and r is the probability of escaping, with r < 0.5 indicating a better
likelihood of the prey escaping effectively and r ≥ 0.5 representing an unsuccessful escape.

133

Mathematics 2022, 10, 2094

The following is an overview of these approaches:

• Soft besiege approach
The rabbit has some energy to escape in the soft besiege method, where r ≥ 0.5 and
|E| ≥ 0.5, while the hawks are softly encircling the prey suddenly lost additional
energy before completing the unexpected pounce. In Equations (11)–(13), soft besiege
is described mathematically.

z(i + 1) = Δz(i)− E|jzrabbit − z(i)| (11)

Δz(i) = zrabbit − z(i) (12)

j− 2(1− r5), g5 ∈ [0, 1] (13)

• Hard besiege approach
The prey is so tired when r ≥ 0.5 and |E| < 0.5 and at this time the escaping energy
is very low. In addition, the Harris hawks scarcely encircle the planned prey to at
long last play out the unexpected pounce. The present positions are updated in this
condition by using Equation (14).

z(i + 1) = zrabbit(i)− E|Δz(i)| (14)

An easy instance of this step with one hawk is represented in Figure 5.

Figure 5. In the scenario of a hard besiege, a sample of overall vectors.

• Soft besiege approach with progressive speedy dives
In this circumstance r < 0.5 and |E| ≥ 0.5, the rabbit has enough energy to flee.
The hawks move astutely around the prey and calmly plunges before the amazed
jump. The harris hawk’s position is refreshed in two stages throughout this action, which
is referred to as adaptive soft besiege. In the initial stage, the harris hawks advance near
the rabbit by assessing the following move of the rabbit as shown by Equation (15).

y = zrabbit(i)− E|jzrabbit(i)− z(i)| (15)

In the subsequent stage, the harris hawks concluded to jump, in view of the examina-
tion between the past jump and the conceivable outcome. In case it is not, the harris
hawk delivers an unpredictable jump, based on the Levy Flight (LF) idea, as detailed
in Equation (16).

x = y + rv× l f (Dim) (16)

134

Mathematics 2022, 10, 2094

In Equation (16), the Dim represents the dimension of the solutions, rv is random vector
of size 1 × Dim. lf is for the levy fight function and it is calculated using Equation (17).

l f (z) = 0.001× u× σ

|v|
1
β

, σ =
(Γ(1 + β)× sin(Πβ

2)

Γ(1+β
2)× β× 2(β−1

2)

) 1
β (17)

where u, v are random values inside (0.1) and β is a default constant and it is 1.5. In the
soft besiege stage, Equation (11) can update the positions of hawks in the final strategy.

x =

⎧⎨⎩yi f f (y) < f (z(i))

xi f f (x) < f (z(i))
(18)

An example of this process for one hawk is shown in Figure 6. Sometimes during
iterations, the position background of LF-based leapfrog trends is also documented
and shown in this illustration. There is an LF-based trend in one trial, and the colored
dots are the location footprints. It will only be possible to pick the best position Y or Z
in every step. It is the same for all of the search agents.

Figure 6. In the scenario of a soft besiege with progressive speedy dives, a sample of overall vectors.

• Hard besiege with progressive speedy dives
The rabbit has not so much energy to escape at r < 0.5 and |E| < 0.5 and before the
surprise pounce to capture and kill the prey, a hard besiege is constructed is shown
in Figure 7.
There are similarities between this step and the soft besiege, and yet this time, the
hawks try to reduce one‘s average distance from the escaping prey. This is why it is
necessary to follow all aspects when under hard besiege:

x =

⎧⎨⎩yi f f (y) < f (z(i))

xi f f (x) < f (z(i))
(19)

where, y and x are calculated using Equations (20) and (21).

y = zrabbit(i)− E|jzrabbit(i)− za(i)| (20)

135

Mathematics 2022, 10, 2094

x = y + rv× l f (Dim) (21)

(a) 2D (b) 3D
Figure 7. In the circumstance of a hard besiege with progressive speedy dives in 2D and 3D dimension,
an example of overall vectors.

The procedure of the HHO algorithm is presented in Figure 8.

Figure 8. The Procedure of HHO.

4. Deep Neural Network

Deep neural network is a machine learning discipline that focuses on understanding
several levels of representations by creating a structure of features in which the top levels
are described by the lower tiers, and the same lower tier features can be used to construct
many top level features [27]. The relation between artificial intelligence, machine learning
and deep learning is presented in Figure 9.

136

Mathematics 2022, 10, 2094

Figure 9. Relation between Artificial Intelligence, Machine Learning and Deep Learning.

To describe more complicated and nonlinear relationships, the DL (Deep Learning)
structure extends classic neural networks (NN) by adding more hidden layers to the
network design between the input and output layers. This approach has piqued the
interest of academics in recent years due to its superior performance in a variety of EM
applications [28–30]. Convolutional-Neural Networks (C-NN) have become a popular DL
design in recent years because they can perform sophisticated functions using convolution
filters. Another DL design that is commonly used for classification or regression with
success in many areas is the Deep Neural Network (DNN). It is a common feed forward
network in which the input passes from the input layer to the output layer via a number
of hidden layers that exceed two [30]. The usual design for DNNs is shown in Figure 10,
where Ni is the input layer, which contains neurons for input features, No is the output
layer, which contains neurons for output classes, and Nh,l are the hidden layers.

Figure 10. Three Layered Neural Network.

5. Harris Hawk Optimization of Deep Neural Networks Architecture

Figure 11 shows the general framework of the suggested model for estimating the
optimal bids in EM. The suggested model’s main goal is to improve the performance of the

137

Mathematics 2022, 10, 2094

NN by applying the HHO algorithm to discover the ideal NN weights, hence the name
HHO-NN. The suggested HHO-NN begins by determining the beginning value for a group
of N individuals X. Each of these individuals represents the NN weights, thus we have a
collection of N networks from which to choose the best. As a result, the data set is randomly
divided into training and testing sets of 70% and 30% respectively.

Figure 11. The proposed HHO-NN method.

The training data set is used to analyse the existing network’s (solution) effectiveness
by determining the corresponding objective function, which is dependent on the original
value yi and the forecast value y.

f it=

√
∑ns

l=1 yl−ŷl

ns
(22)

The next phase is to locate the network, Yb, with the lowest fitness value. Then, using
the optimal solution and the HHO’s operation, the other solutions will be modified. When
the stopping circumstances are achieved, the process of updating solutions and determining
the best option will be completed. The test set is used to determine the quality of the output
to evaluate the performance of the best network developed during the training phase.

6. Simulation Results and Experimentation

The variation is written in MATLAB 2019 and operates on a 4.00 GHz i5 processor
with 8 GB of RAM. The number of iterations and population size for all algorithms are kept
constant in order to draw an evaluation of optimization routines (i.e., maximum number of
iterations = 500 and number of search agents = 50).

138

Mathematics 2022, 10, 2094

To test the forecasting potential of the ANN version, extraordinary criteria are used.
This potential can be checked after the MCP is calculated. The four types of errors are
checked in this, which are the root mean of squared error (RMSE), the mean absolute
error (MAE), the mean absolute percentage error (MAPE) and the coefficient of co-relation
(CC).The performance result of these tests is shown in Table 1 Regression verification of the
proposed algorithm was also undertaken to check the validation of the same.

• Mean Absolute Error (MAE)
The MAE is the average of the absolute values of the forecasting error and s calculated
with Equation (23).

MAE =
1

1000

1000

∑
i=1

∣∣∣ fi − f̂i

∣∣∣ (23)

• Mean Absolute Percentage Error (MAPE)
The mean absolute percentage error is usually taken as a loss function for solving
the problem of regression and in evaluation of model because of its very instinctive
clarification in terms of relative error, as shown in Equation (24).

MAPE =
1

1000

1000

∑
i=1

∣∣∣∣∣ fi − f̂i
fi

∣∣∣∣∣× 100 (24)

• Root Mean Square Error (RMSE)
The RMSE is defined as the square root of the second sample moment of the differences
between predicted and actual data. RMSE is shown in Equation (25).

RMSE =

√√√√ 1
1000

1000

∑
i=1

(fi − f̂i)
2

(25)

• Coefficient of Co-relation (CC)
To determine the strength of a relationship between data, correlation coefficient for-
mulas are utilized as shown in Equation (26). The formulas return a number between
−1 and 1, with the following values:

– A strong positive association is indicated by a value of one.
– A negative association is indicated by a value of −1.
– A zero means that there is no connection at all.

CC =

1000
∑

i=1
(f̂i − f̂ i)(fi − f i)√

1000
∑

i=1
(f̂i − f̂ i)

2 1000
∑

i=1
(fi − f i)

2
(26)

• Regression Verification Regression verification is the practice of ensuring that no
significant errors have been created in the algorithm after the adjustments have been
made by testing the altered sections of the code as well as the parts that may be
affected by the modifications shown in Figure 12.

• A fair comparison has been made between different optimization algorithm tuned
neural networks such as GWO-NN, ALO-NN, SCA-NN, WOA-NN and HHO-NN on
the basis of error indices calculations, here we have reported MSE, RMSE and MAE
values of the prediction it has been observed that proposed architecture yields the
least errors in training and testing mode.

139

Mathematics 2022, 10, 2094

Table 1. Performance Test Results.

Model
Performance Test Result

MAE (m) MAPE (%) RMSE (m) CC

Training Period

ALO-NN 0.286 49.369 0.3054 0.9154
GWO-NN 0.21 45.658 0.2721 0.9514
SCA-NN 0.268 48.246 0.3012 0.9264

WOA-NN 0.254 46.565 0.2748 0.9421
HHO-NN 0.179 42.124 0.2541 0.9668

Testing Period

ALO-NN 0.281 35.61 0.2967 0.8755
GWO-NN 0.204 31.74 0.2682 0.8977
SCA-NN 0.258 35.87 0.2964 0.8869

WOA-NN 0.249 32.54 0.2699 0.8013
HHO-NN 0.177 28.87 0.252 0.821

Figure 12. Regression Verification.

7. Application of HHO-NN on Optimal Bidding Challenge of Electricity Market

IEEE-14 bus test system is taken, where, three competing generating companies
compete with Gen-Co-G. The competition is for selling power in EM, the bidding strategy
is designed for optimum output. Table 2 shows the bid data of competitor prices and
Table 3 shows the power-blocks data of Gen-Co-G [30].

For constructing the neural network, we have generated 1000 samples for preparing
the HHO-NN, out of these data, 70% has been used for training and the remaining 15% has
been kept for validation purposes. We report the results of some unknown samples in this
analysis. A toal fo ten unknown samples were taken and the analysis of these samples is
depicted through Figures 13 and 14 are the input and target data to train the NN. The input
data to train the NN for the strategic bidding problem in EM are competitors’ bidding data
and the target data are profit of Gen-Co-G for the same inputs.

140

Mathematics 2022, 10, 2094

Table 2. Rival’s Bidding Data for IEEE-14 Bus System [30].

Blocks Q/Std. Dev./Mean R1 R2 R3

Block I Q (MW) 200 150 150
Std. Dev. ($/MWh) 2 3 2

Mean ($/MWh) 9 11 10

Block II Q (MW) 120 120 140
Std. Dev. ($/MWh) 3 2 3

Mean ($/MWh) 15 17 18

Block III Q (MW) 100 120 100
Std. Dev. ($/MWh) 2 3 3

Mean ($/MWh) 19 18 17

Block IV Q (MW) 120 130 120
Std. Dev. ($/MWh) 2 3 2

Mean ($/MWh) 21 25 26

Block V Q (MW) 50 45 40
Std. Dev. ($/MWh) 2 3 3

Mean ($/MWh) 27 32 25

Table 3. Power Blocks data of Gen-Co-G for IEEE-14 Bus System [30].

Block c0 ($/MW2H) cI ($/MWH) cII ($/H) Pmax Pmin MUT MDT Chs Ccs tc csd
n

Block I 0.00375 2 0 250 10 1 1 70 176 1 50

Block II 0.0175 1.75 0 140 20 2 1 74 187 1 60

Block III 0.0625 1 0 100 15 1 1 50 113 1 30

Block IV 0.00834 3.25 0 120 10 1 2 110 267 1 85

Block V 0.025 3 0 45 10 1 1 72 180 4 52

Figure 13. Input data for training the Neural Network.

Figure 15 represents the input data for testing the trained NN for the specific problem
of attaining the optimal bids and optimal profit of the Gen-Co-G in the EM.

Figure 16 represents the profit curve obtained by the selected algorithms. From the
figure, it can be observed that the proposed supervised net yields maximum profit as
compared to other Monte Carlo-based optimization approaches. The cumulative profit
calculated by this architecture is ($153,275). However, the profit calculated by HHO is
($138,758.75) , ALO-NN is ($128,543.42), GWO-NN is ($117,641), MFO-NN is ($121,051),
ALO is ($80,176.20458), GWO is ($126,070.0738), SSA is ($86,375.01205) and WOA is
($119,826.25). This is due to the better anticipating capability of market conditions by
the HHO tuned neural network.

141

Mathematics 2022, 10, 2094

Figure 14. Target data for training the Neural Network.

Figure 15. Input data for testing the Trained Neural Network.

Figure 16. Comparative Analysis Cumulative Profit.

8. Conclusions and Future Scope

The proposed Harris Hawk Optimization-based Deep Neural Networks Architecture
is used to investigate the optimum bidding strategy problem in the power market. Using

142

Mathematics 2022, 10, 2094

the expected load and competitors’ bidding data, the planned architecture determines
the best bidding technique for maximising the profit. For various power demand values,
provider end income, customer end profit, and MCP values, the proposed methodology
is examined. IEEE 14 is used to dissect the viability of the suggested technique in the
MATLAB/Simulink platform. The proposed approach displays excellent productivity by
combining the relative examination with alternate techniques such as ALO-NN, GWO-NN,
MFO-NN, ALO, GWO, SSA, WOA and standard HHO.

The proposed calculations have the advantages of reduced computational complexity
and good accuracy in extrapolating subjective data. Furthermore, the proposed work’s
statistical measurements such as mean and standard deviation, as well as performance
metrics such as best, worst, average, and computational time, were validated. It was
demonstrated that the proposed methodology outperformed other strategies in terms of
statistical measures when compared to methodologies for comparing results.

Furthermore, the investigations on the bigger network with multiple players and
more constraints pertaining to generation, transmission limits, transmission congestion
and consumer side bidding, will be addressed in our future publications.

Author Contributions: Conceptualization, K.J., A.S. and M.B.J. writing—original draft preparation:
K.J. and A.S.; Data curation, K.J. and A.S.; Funding acquisition, M.H.; Investigation, K.J., A.S., M.B.J.,
M.H. and A.W.M.; Methodology, A.S.; Project administration, Resources, Supervision, A.S., M.B.J.,
M.H. and A.W.M.; Writing—review & editing, K.J., A.S., M.B.J. and A.W.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research is funded by the UMS publication grant scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
Acronym

HHO Harris Hawk Optimization
ANN Artificial Neural Network
MPNN Multilayered Perceptron Neural Networks
C-NN Convolutional-Neural Networks
PJM Pennsylvania-New Jersey-Maryland
EM Electricity Market
ISO Independent System Operator
MCP Market Clearing Price
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
SSA Salp Swarm Algorithm
ALO Ant Lion Optimizer
MAE Mean Absolute Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
MSE Mean of Squared Error
CC Coefficient of Co-relation
DNN Deep Neural Network
Gen-co Generating Company

143

Mathematics 2022, 10, 2094

GARCH Generalized Auto Regressive Conditional Heteroskedasticity
ARIMA Auto Regressive Integrated Moving Average
CRO Chemical Reaction Optimization
DL Deep Learning
Nomenclature

Qmin Minimum limit of kth block of Gen-Co [MW].
Qmax Maximum limit of kth block of Gen-Co-C [MW].
Uk(t) Binary variable, which is equal to 1, if the kth block is committed at hour t;

otherwise, 0.
Mut

k Minimum up time of kth block of Gen-Co [Hour].
Mdt

k Minimum down time of kth block of Gen-Co [Hour].
ho f f

k(t) At the end of hour t [hr], the number of hours the kth block of Gen-Co has

been continually OFF
hon

k(t) At the end of hour t [hr], the number of hours the kth block of Gen-Co has
been continually ON.

Cmin Gen-Co’s operating expenses for the kth block.
C Cap on bid price
z(i+1) s the position of Hawks in 2nd iteration i
zrabbit (i) the position of prey
zr the random solutions in the current population
z(i) Hawks’ position vector in the current iteration i
g1, g2, g3, g4 and q Within [0, 1], a random scaled factor
lb and ub lower bound and upper bound of variables
za the number of solutions that are on average.
za (i) In the current iteration, the average number of solutions.
n all viable options
zl (i) In iteration i, the location of each solution
t the maximum number of iterations
i current iteration
Δz(i) the difference between the position vector of the prey and the present location

in iteration i
j the prey’s jump power
g5 the random variable
Dim the dimension of the solution
rv random vector of size 1*dim
lf the function of levy flight

References

1. Zaman, F.; Elsayed, S.M.; Ray, T.; Sarker, R.A. Co-evolutionary approach for strategic bidding incompetitive electricity markets.
Appl. Soft Comput. 2017, 51, 1–22. [CrossRef]

2. Sandhu, H.S.; Fang, L.; Guan, L. Forecasting day-ahead price spikes for the Ontario electricity market. Electr. Power Syst. Res.
2016, 141, 450–459. [CrossRef]

3. Girish, G.P. Spot electricity price forecasting in Indian electricity market using autoregressive-Garch models. Energy Strategy Rev.
2016, 11–12, 52–57. [CrossRef]

4. Abedinia, O.; Amjadi, N.; Shafie-Khah, M.; Catalao, J.P.S. Electricity price forecast using combinatorial neural network trained by
a new stochastic search method. Energy Convers. Manag. 2015, 105, 642–654. [CrossRef]

5. Grilli, L. Deregulated Electricity Market and Auctions: The Italian Case; Scientic Research an Academic Publisher: Wuhan, China,
2010; Volume 2, pp. 238–242.

6. Bunn, D.W. Forecasting loads and prices in competitive power markets. IEEE Xplore 2000, 88, 163–169. [CrossRef]
7. Girish, G.P.; Rath, B.N.; Akram, V. Spot electricity price discovery in Indian electricity market. Renew. Sustain. Energy Rev. 2018,

82, 73–79. [CrossRef]
8. Khosravi, A.; Nahav, I.S.; Creighton, D. A neural network-GARCH-based method for construction of prediction intervals. Electr.

Power Syst. Res. 2013, 96, 185–193. [CrossRef]
9. Janczura, J.; Truck, S.; Weron, R.; Wol, R.C. Identifying spikes and seasonal components in electricity spot price data: A guide to

robust modeling. Energy Econ. 2013, 38, 96–110. [CrossRef]
10. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

144

Mathematics 2022, 10, 2094

11. Tharani, S.; Yamini, C. Classification using convolutional neural network for heart and diabetics data-sets. Int. J. Adv. Res. Comput.
Commun. Eng. 2016, 5, 417–422.

12. Jiao, S.; Wang, C.; Gao, R.; Li, Y.; Zhang, Q. Harris Hawks Optimization with Multi-Strategy Search and Application. Symmetry
2021, 13, 2364. [CrossRef]

13. Nogales, F.J.; Contreras, J.; Conejo, A.J.; Espinola, R. Forecasting next-day electricity prices by time series models. IEEE Trans.
Power Syst. 2002, 17, 342–348. [CrossRef]

14. Zhang, J.; Tan, Z.; Yang, S. Day-ahead electricity price forecasting by a new hybrid method. Comput. Ind. Eng. 2012, 63, 695–701.
[CrossRef]

15. Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform. ARMA and kernel-based
extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [CrossRef]

16. Khashei, M.; Rafeiei, M.F.; Bijari, M. Hybrid fuzzy auto-regressive integrated moving average (FARIMAH) model for forecasting
the foreign exchange markets. Int. J. Comput. Intell. Syst. 2013, 6, 954–968. [CrossRef]

17. Qi, Y.; Liu, Y.; Wu, Q. Non-cooperative regulation coordination based on game theory for wind farm clusters during ramping
events. Energy 2017, 132, 136–146. [CrossRef]

18. Lago, J.; De Ridder, F.; Vrancx, P.; de Schutter, B. Forecasting day-ahead electricity prices in Europe: The importance of considering
market integration. Appl. Energy 2018, 211, 890–903. [CrossRef]

19. Gholipour Khajeh, M.; Maleki, A.; Rosen, M.A.; Ahmadi, M.H. Electricity price forecasting using neural networks with an
improved iterative training algorithm. Int. J. Ambient. Energy 2018, 39, 147–158. [CrossRef]

20. Bento, P.M.R.; Pombo, J.A.N.; Calado, M.R.A.; Mariano, S.J.P.S. A bat optimized neural network and wavelet transform approach
for short-term price forecasting. Appl. Energy 2018, 210, 88–97. [CrossRef]

21. Aggarwal, S.K.; Saini, L.M.; Kumar, A. Electricity price forecasting in deregulated markets: A review and evaluation. Int. J. Electr.
Power Energy Syst. 2009, 31, 13–22. [CrossRef]

22. Singhal, D.; Swarup, K.S. Electricity price forecasting using artificial neural networks. Int. J. Electr. Power Energy Syst. 2011, 33,
550–555. [CrossRef]

23. Mandal, P.; Senjyu, T.; Funabashi, T. Neural networks approach to forecast several hour ahead electricity prices and loads in
deregulated market. Energy Convers. Manag. 2006, 47, 2128–2142. [CrossRef]

24. Pao, H.-T. Forecasting electricity market pricing using artificial neural networks. Energy Convers. Manag. 2007, 48, 907–912.
[CrossRef]

25. Ostadi, B.; Sedeh, O.M.; Kashan, A.H. Risk-based optimal bidding patterns in the deregulated power market using extended
Markowitz model. Energy 2020, 191, 116516. [CrossRef]

26. Kavita, J.; Saxena, A. Evolutionary Neural Network based hybrid architecture for strategic bidding in electricity market.
In Proceedings of the 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control (STPEC),
Bilaspur, India, 19–22 December 2021.

27. Anbazhagan, S.; Kumarappan, N. Day-ahead deregulated electricity market price classification using neural network input
featured by DCT. Int. J. Electr. Power Energy Syst. 2012, 37, 103–109. [CrossRef]

28. Li, Y.; Yu, N.; Wang, W. Machine learning-driven virtual bidding with electricity market efficiency analysis. IEEE Trans. Power
Syst. 2021, 37, 354–364. [CrossRef]

29. Angulo, A.; Rodríguez, D.; Garzón, W.; Gómez, D.F.; Al Sumaiti, A.; Rivera, S. Algorithms for Bidding Strategies in Local Energy
Markets: Exhaustive Search through Parallel Computing and Metaheuristic Optimization. Algorithms 2021, 14, 269. [CrossRef]

30. Tahir, M.F.; Saqib, M.A. Optimal scheduling of electrical power in energy-deficient scenarios using artificial neural network and
Bootstrap aggregating. Int. J. Electr. Power Energy Syst. 2016, 83, 49–57. [CrossRef]

145

Citation: Hou, F.; Liu, X.; Fan, X.;

Guo, Y. DL-Aided Underground

Cavity Morphology Recognition

Based on 3D GPR Data. Mathematics

2022, 10, 2806. https://doi.org/

10.3390/math10152806

Academic Editor: Andrej Brodnik

Received: 27 June 2022

Accepted: 1 August 2022

Published: 8 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

DL-Aided Underground Cavity Morphology Recognition Based
on 3D GPR Data

Feifei Hou, Xu Liu, Xinyu Fan and Ying Guo *

School of Automation, Central South University, Changsha 410083, China
* Correspondence: yingguo@csu.edu.cn

Abstract: Cavity under urban roads has increasingly become a huge threat to traffic safety. This
paper aims to study cavity morphology characteristics and proposes a deep learning (DL)-based
morphology classification method using the 3D ground-penetrating radar (GPR) data. Fine-tuning
technology in DL can be used in some cases with relatively few samples, but in the case of only
one or very few samples, there will still be overfitting problems. To address this issue, a simple
and general framework, few-shot learning (FSL), is first employed for the cavity classification tasks,
based on which a classifier learns to identify new classes given only very few examples. We adopt
a relation network (RelationNet) as the FSL framework, which consists of an embedding module
and a relation module. Furthermore, the proposed method is simpler and faster because it does
not require pre-training or fine-tuning. The experimental results are validated using the 3D GPR
road modeling data obtained from the gprMax3D system. The proposed method is compared with
other FSL networks such as ProtoNet, R2D2, and BaseLine relative to different benchmarks. The
experimental results demonstrate that this method outperforms other prior approaches, and its
average accuracy reaches 97.328% in a four-way five-shot problem using few support samples.

Keywords: ground-penetrating radar (GPR); cavity morphology recognition; few-shot learning (FSL);
deep learning (DL); relation network (RelationNet)

MSC: 86-08

1. Introduction

Urban areas around the world continue to experience a series of sudden sinkhole col-
lapses that cause severe traffic disruptions and significant economic losses. Underground
cavities are the main reason for the formation of sinkholes. Complex conditions such as
changes in drainage patterns, excessive pavement loads, and disturbances in infrastructure
construction often lead to various cavities [1]. Therefore, the cavities may vary in morphol-
ogy, for example, cavities with different shapes or combinations of several basic shapes, or
they may be filled with different media or have different positions and sizes. Due to the
unpredictability and morphological complexity of cavities, there is a growing need for their
early recognition.

Ground-penetrating radar (GPR) has gradually been applied to the detection and
perception of underground cavities [2], owing to its nondestructive inspection, strong pen-
etrating ability, and high-precision characteristics. GPR transmitters emit electromagnetic
(EM) waves into the surface at multiple spatial positions, and then the reflected signal
can be measured by the GPR receiver to establish a two-dimensional (2D) GPR image.
Three-dimensional (3D) GPR images can be obtained immediately when multichannel GPR
transmitters and receivers exist parallel to the scanning direction at the same time [3,4].
The morphological scale of a cavity can reflect the evolution speed of the cavity and the
severity of future road collapse, and it can also accurately reflect the 3D space state of the
cavity. Therefore, the accurate detection of morphology has scientific value for studying the

Mathematics 2022, 10, 2806. https://doi.org/10.3390/math10152806 https://www.mdpi.com/journal/mathematics
147

Mathematics 2022, 10, 2806

mechanism of cavity formation and summarizing the corresponding prevention and repair
methods. However, as the quantity of the 3D GPR data increases, the manual analysis
of the GPR data becomes time-consuming and difficult to meet the requirements of the
efficient and fine detection of cavity morphology.

Three challenges in automating this task cannot be ignored. The first challenge is the
selection and extraction of morphological features. Environmental complexities, such as the
interference of surrounding pipelines and groundwater leakage, may impose difficulties in
describing cavity morphological features. It is impossible to comprehensively describe the
reflection properties with one or a few features. Additionally, the acquired morphological
attributes still need to be inferred and identified by experienced professionals, making it
difficult to obtain a general description feature. The second challenge is the fine classifi-
cation of cavity morphology in the GPR data. Due to the variety of types, varying sizes,
distinct directions and extensions, and irregular shapes, cavity morphology analysis faces
difficulties in identification and fine classification. The third challenge is to address the
issue of insufficiently labeled GPR data. Compared with objects such as buried rebars and
pipes, the scale and diameter distribution of a cavity with collapse threat is relatively large.
It is very laborious to make such a large target in the lab, and the targets are generally
in regular forms, not universal and representative. To obtain reliable results, the lack of
sample data must be considered and addressed.

Therefore, in this study, a novel deep learning (DL)-aided framework was proposed to
extract the morphological features of cavities and classify them in facing a small number of
3D GPR data. Figure 1 shows the details of the proposed framework. The contribution of
this work is twofold:

(i) First, a joint characterization algorithm was developed for cavity morphology that
generates 2D morphological images and fully exploits 3D GPR spatial information;

(ii) Second, we implemented a novel few-shot learning (FSL) network for cavity morphol-
ogy classification and embedded a relation network (RelationNet) into the FSL model
to adapt to different few-sample cavity scenarios.

Figure 1. GPR cavity morphology recognition framework.

148

Mathematics 2022, 10, 2806

The rest of this paper is organized as follows: Section 2 introduces the literature review
of the GPR cavity detection. In Section 3, the imaging scheme of the 3D GPR data is
proposed. Section 4 introduces the details of the FSL network and RelationNet structure
for morphological classification. In Section 5, the experimental results are compared and
analyzed, and finally, in Section 6, conclusions are drawn.

2. Literature Review

Previous studies have focused on the automated GPR cavity detection process.
Qin et al. [5] proposed a pattern recognition method based on the support vector machine
(SVM) classifier to identify cavities in GPR images. Park et al. [6] combined instantaneous
phase analysis with the GPR technique to identify hidden cavities. Hong et al. [7] developed
a new time-domain-reflectometry-based penetrometer system to accurately estimate the
relative permittivity at different depths and estimate the state of a cavity. Yang et al. [8]
constructed a horizontal filter to identify cavity disease and eliminate the interference of
rebar echo. Based on the data collected by multisensors such as unmanned aerial vehicles
(UAVs) and GPR, the authors of [9,10] detected and analyzed cavity diseases in disaster-
stricken areas to rescue potential victims trapped in cavities. In 2022, Rasol et al. [11]
reviewed state-of-the-art processing techniques such as machine learning and intelligent
data analysis methods, as well as their applications and challenges in GPR road pavement
diagnosis. To better localize pavement cracks and solve the interference of various factors in
the on-site scene, Liu et al. [12] integrated a ResNet50vd-deformable convolution backbone
into YOLOv3, along with a hyperparameter optimization method. To detect subsurface
road voids, Yamaguchi et al. [13] constructed a 3D CNN to extract hyperbolic reflection
characteristics from GPR images.

Previous results were based on the processing of only B-scans; however, once faced
with specific subsurface objects, it was difficult to classify them using B-scans alone. In
particular, the characteristics of various cavities in GPR B-scan images tended to be similar.
Therefore, to improve the classification performance, both the GPR B-scan and C-scan im-
ages were considered in the classification process using the DL network [14–17]. Compared
with the 2D GPR data, 3D data can provide rich spatial information and greatly improve
the process in terms of data volume, imaging methods, and disease detection accuracy.
Luo et al. [18] established a cavity pattern database including C-scans and B-scans, where
the C-scan provides location information of objects, and B-scan information assists in
verifying object types. Kim et al. [19] proposed a triplanar convolutional neural network
(CNN) for processing the 3D GPR data, enabling automated underground object classifi-
cation. Kang et al. [20] designed the UcNet framework to reduce the misclassification of
cavities, and the next year, Kang et al. [21] developed a transfer-enhanced CNN to improve
the classification accuracy. Khudoyarov et al. [22] proposed a 3D CNN architecture to
process the 3D GPR data. The authors of another study [23] visualized and distinguished
underground hidden cavities from other objects (such as buried pipes, and manholes).
In 2021, Kim et al. [24] used the AlexNet network with the transfer learning technology
to achieve underground object classification, further improving detection accuracy and
speed. Abhinaya et al. [25] detected cavities around sewers using in-pipe GPR equipment
and confirmed that YOLOv3 [26] was suitable for cavity recognition tasks. Liu et al. [27]
combined the YOLO model and the information embedded in 3D GPR images to address
the recognition issue of road defects. The above research demonstrated that, compared
with using only B-scan images, the developed CNNs using both the B-scans and C-scans
improved the classification performance. However, it was found that the cavity morphol-
ogy is still indistinguishable due to the difficulty of cavity data acquisition and the lack of
a GPR database.

Faced with such a problem, FSL [28,29], as a novel DL technique, was developed to
generalize the network with very few or fewer training samples for each class. This changes
the situation where traditional DL models must require large quantities of labeled data. FSL
can be divided into three categories: model-based, optimization-based, and metric-based

149

Mathematics 2022, 10, 2806

learning methods [30]. The model-based learning method first designs the model structure
and then uses the designed model to quickly update parameters on a small number of
samples, and finally directly establishes the mapping function of the input and prediction
values. Santoro et al. [31] proposed the use of memory augmentation to solve this task
and a memory-based neural network approach to adjust bias through weight updates.
Munkhdalai et al. [32] proposed a meta-learning network, and its fast generalization
ability is derived from the “fast weight” mechanism, where the gradients generated during
training are used for fast weight generation. The optimization-based learning method
completes the task of small sample classification by adjusting the optimization method
instead of the conventional gradient descent method. Based on the fact that gradient-based
optimization algorithm does not work well with a small quantity of data, Ravi et al. [33]
studied an updated function or rule for model parameters. The method proposed by
Finn et al. [34] can deal with situations with a small number of samples and can obtain
better model generalization performance with only a small number of training times. The
main advantages of this method are that it does not depend on the model form, nor does
it need to add new parameters to the meta-learning network. The metric-based learning
method is developed to measure the distance/similarity between the training set and the
support set and completes the classification with the help of the nearest neighbor method.
Vinyals et al. [35] proposed a new matching network, which aims to build different encoders
for the support set and the batch set, respectively. Sung et al. [36] proposed a RelationNet
network to model the measurement method, which learns the distance measurement
method by training a CNN network.

3. Imaging Scheme of 3D GPR Data

3.1. The 3D GPR Data Format

The GPR data comes in three forms: A-, B-, and C-scan. The transmitter radiates
EM waves to the underground, and the receiver collects signals reflected by underground
objects or stratum interfaces, so as to obtain underground information. The original data
format of the reflected signal is a one-dimensional (1D) waveform, which can also be called
a GPR A-scan waveform. By scanning a region of interest with the single-channel GPR
system, a 2D radargram can be obtained, called a GPR B-scan image. A single C-scan image
is formed by imaging data points at the same depth in multiple B-scan images.

As shown in Figure 2, the x-axis is the same as the scanning direction, the y-axis denotes
the width direction of the radar antenna device, and the z-axis indicates the depth direction
of the measured object. The 3D GPR data can be represented as two kinds of orthogonal
planes: B-scan and C-scan. B-scan and C-scan are arbitrary sections perpendicular to y-
and z-axes. This is conducive to identifying the cavity morphology from multiple different
perspectives, which can effectively avoid the misjudgment of a single angle in the 2D image.
Therefore, 3D GPR can guarantee the accuracy of the detection type and reduce the number
of core sampling verifications.

Figure 2. Orthogonal slice planes (B-, C-scan) of 3D GPR data.

150

Mathematics 2022, 10, 2806

3.2. GPR Morphological Data Extraction

The hyperbolic signature in B-scan images is a kind of typical characteristic that is
often used in the detection of underground objects. The C-scan image can reflect the
detailed shape information of the subsurface cavity. The B-scan and C-scan images contain
morphological information in length–depth and length–width directions, respectively. The
color on scan images reflects the field strength (V/m) of subsurface media. In this study,
we propose an automatic algorithm for cavity morphology classification using GPR B-scan
and C-scan images simultaneously.

The two forms are extracted from the 3D GPR data S. Take the irregular cavity as an
example: (1) B-scan images are sequentially extracted parallel to the XOZ plane, and their
stacked display is shown in Figure 3a. It can be expressed as S1 = {B1, B2, B3, · · · , Bn},
n = ly/� y, where Bn represents each slice image, S1 is a collection of n B-scan slices, ly,
and�y are the model space length and space step size in the y-axis direction. (2) C-scan
images are sequentially extracted parallel to the XOY plane. The horizontal slices are
extracted at equal intervals, and their stacked display is shown in Figure 3b. The slices can
be expressed as S2 = {C1, C2, C3, · · · , Cm}, m = lz/� z, where Cm represents each C-scan
image, S2 is the set of m C-scan slices, lz and�z are the model space length and space step
size in the z-axis direction.

Figure 3. Sacked morphological images extracted from an irregular cavity: (a) stacked B-scan images;
(b) stacked C-scan images.

The typical GPR B-scan and the corresponding C-scan images of an irregular cavity
are shown in Figures 4 and 5. The C-scan images (right) are intersectional layers of red lines
on the B-scan images (left). In the B-scan image, the horizontal x-axis and the vertical t-axis
indicate the GPR scanning trajectory (m) and the two-way travel time of EM wave (ns),
respectively. In the C-scan image, the x- and y-axes indicate the GPR scanning trajectory
(m) and the width of GPR equipment (m), respectively. As shown in Figure 4, the irregular
cavity shows a hyperbolic pattern on the B-scan image and elliptical signatures on the
C-scan image. As shown in Figure 5, the rectangular cavity shows a double hyperbolic
signature on the B-scan image and quadrilateral signatures (Figure 5b) on the C-scan
images. Therefore, different morphologies of cavities can be well-recognized using B-scan
and C-scan images.

151

Mathematics 2022, 10, 2806

Figure 4. Typical GPR images of an irregular cavity: (a) B-scan image; (b) C-scan images.

Figure 5. Typical GPR images of a rectangular cavity: (a) B-scan image; (b) C-scan images.

3.3. The 2D Morphological Image Generation

Multiple B-scan and C-scan images are integrated into a 2D morphological map, where
the B-scan and C-scan images are assigned to the upper and lower parts of the morpho-
logical map, respectively. Each cavity model corresponds to a 2D morphological image
I = {S1, S2}, which consists of 8 B-scan images S1 = {B1, B2, B3, B4, B5, B6, B7, B8}, and
12 C-scan images S2 = {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12}. The morphological
image I consists of S1 and S2, which is formed into a new 5× 4 matrix and can also be
expressed as Equation (1). Examples of the morphological images for each model are pre-
sented in Figure 6. The 2D morphological image is then used as the input of the following
deep network.

I =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B1 B2 B3 B4
B5 B6 B7 B8
C1 C2 C3 C4
C5 C6 C7 C8
C9 C10 C11 C12

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (1)

152

Mathematics 2022, 10, 2806

Figure 6. The 2D GPR morphological images of (a) a spherical cavity, (b) a rectangular cavity,
(c) a cylindrical cavity, and (d) an irregular cavity.

4. Few-Shot Learning Designed for Morphology Classification

4.1. FSL Definition

FSL is able to quickly identify new classes on very few samples. It is generally divided
into three kinds of datasets: training set, support set, and testing set. The training set can
be further divided into a sample set and a query set. If the support set contains K labeled
examples for each of C unique classes, the target few-shot problem is called C-way K-shot.
Figure 7 shows the FSL architecture for a four-way one-shot problem.

Figure 7. FSL architecture for a four-way one-shot problem with one query example.

153

Mathematics 2022, 10, 2806

The parameters θ are optimized by the training set, hyperparameters are tuned using
the support set, and finally, the performance of function f (x, θ) is evaluated on the test
set. Each sample x̂ is assigned a class label ŷ. The data structure in the training phase is
constructed to be similar to that in the testing phase; that is, the sample set S and query
set Q during the training simulate the support set and testing set at the testing time. The
sample set S = {(x1, y1), (x2, y2), . . . , (xm, ym)} is built by randomly picking C classes from
the training set with K labeled samples, and the rest of these samples are used in the query
set Q = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

4.2. Relation Network Architecture and Relation Score Computation

The relation network (RelationNet) is a typical metric-learning-based FSL method. In
essence, metric-learning-based methods [36–41] compare the similarities between query
images and support classes through a feed-forward pass through an episodic training
mechanism [35]. The core of RelationNet is to learn a nonlinear metric through deep CNN,
rather than selecting a fixed metric function. RelationNet is a two-branch architecture
that includes an embedding module and a relation module. The embedding module is
used to extract image features. The relation module obtains the correlation score between
query images and sample images; that is, it measures their similarity, so as to realize the
recognition task of a small number of samples.

Figure 8 represents the RelationNet architecture settings for FSL. The embedding
module utilizes four convolutional blocks, and each convolutional block consists of a
64-filter 3 × 3 convolution, a batch normalization, and a ReLU nonlinearity layer. In
addition to the above, the first two convolutional blocks also include a 2× 2 max-pooling
layer, and the latter two convolutional blocks do not contain the pooling layer. The output
feature maps are then obtained for the following convolutional layers in the relation module.
The relation module consists of two convolutional blocks and two fully connected layers.
Each convolutional block is a 3× 3 convolution containing 64 filters, followed by batch
normalization, ReLU nonlinearity, and 2× 2 max-pooling. For the network architectures,
in order to generate relation scores within a reasonable range, in all fully connected layers,
ReLU functions are employed, except for the output layer, in which Sigmoid is used.

Figure 8. RelationNet architecture settings.

The prior few-shot works use fixed pre-specified distance metrics, such as the Eu-
clidean or cosine distances, to perform classification [35,42]. Compared with the previously
used fixed metrics, RelationNet can be viewed as a metric capable of learning deep em-
beddings and deep nonlinearities. By learning the similarity using a flexible function
approximator, RelationNet can better identify matching/mismatching pairs. Sample xj in
the query set Q and sample xi in the sample set S are fed through the embedding module
fϕ to produce feature maps fϕ(xi) and fϕ

(
xj
)
, respectively. Then, these two feature maps

fϕ(xi) and fϕ

(
xj
)

are combined using the operator C
(

fϕ(xi), fϕ

(
xj
))

. After that, the com-
bined feature map is fed into the relation module gϕ, which finally produces a scalar in
the range of 0–1 to represent the similarity between xi and xj, also called the relation score.
Thus, the relation score ri,j is generated as shown in Equation (2):

ri,j = gφ

(
C
(

fϕ(xi), fϕ

(
xj
)))

, i = 1, 2, . . . , C (2)

154

Mathematics 2022, 10, 2806

Here, the mean square error loss is computed to train the model, as shown in
Equation (3), regressing the relation score ri,j to the ground truth: the similarity of matched
pairs is 1, and the similarity of unmatched pairs is 0.

ϕ, φ ← argmin
ϕ,φ

m

∑
i=1

n

∑
j=1

(
ri,j − 1

(
yi == yj

))2

(3)

4.3. RelationNet-Based Cavity Morphology Classification Scheme

Based on the data and structural characteristics of the GPR cavity morphological recog-
nition system, we divide the complex processing process into two main parts:
a training phase and a testing phase, as shown in Figure 9. The cavity morphologies
are discussed here, e.g., cylindrical, rectangular, spherical, and irregular hemispherical.
First, a training set is inputted to learn classification rules inside the network in the training
phase. Then, in the testing phase, a small number of support samples (labeled) and test
samples (unlabeled) are inputted into the trained network model, and the unlabeled test
samples are predicted and classified, thereby outputting the final morphological classifica-
tion results.

Figure 9. RelationNet-based GPR cavity morphology classification scheme.

Based on the above principle, the RelationNet-based GPR cavity morphology clas-
sification system first obtains the trained model on the training set and then recognizes
the new category of cavity images. The embedding model is used to extract the feature
information of each inputted GPR image and then concatenates the image features between
the test sample and support sample. Then, the integrated features are inputted into the
relation model for comparison. According to the comparison results, it is judged to which
category the test sample belongs, so as to achieve the classification of cavity morphologies.

5. Experiments and Results

5.1. Experimental Settings

The classification category should be labeled for each morphological image since the
DL-based classification algorithm is essentially a supervised learning algorithm. The choice
of category is related to the morphology of the cavity. There are four types of cavities
involved, namely cylindrical cavity, rectangular cavity, spherical cavity, and irregular cavity.
To train CNN, the 2D morphological images with each image size of 498 × 395 × 3 pixels
were fed to the input layer, and then the convolutional layers were used to extract multilevel
image features by convolution kernels. A total of 68 GPR morphological images were
obtained, each consisting of 8 B-scans and 12 C-scans. Among them, there were 17 spherical
cavity images, 17 cylindrical cavity images, 17 rectangular cavity images, and 17 irregular
cavity images.

We used the PyTorch 1.5 implementations of the LibFewShot package [43], which is
a comprehensive FSL library and integrates the most advanced FSL methods. The code

155

Mathematics 2022, 10, 2806

was implemented using NVIDIA RTX 3080Ti GPU and Intel i9-12900K CPU. In the training
phase, in the FSL in all experiments, we used the Adam optimizer [44] with an initial
learning rate of 10−3 and step decay. The backbone adopted Conv64F. The batch size was
set to 128. In the testing phase, the test epoch was set to 10, and the test episode was 17, the
four-way one-shot contained 16 query images, and the four-way five-shot had 12 query images
for each of the 4 classes in each training episode.

We compared the results against those of various networks for few-shot recogni-
tion, including ProtoNet [42], R2D2 [45], and BaseLine [46]. Embedding backbones,
such as Conv64F, ResNet12, and ResNet18, were also compared to identify and select
the main backbone with a better performance. The main experiments were conducted on
two benchmark datasets: miniImageNet [35] and tieredImageNet [47]. The miniImageNet
dataset [35] consists of 60,000 color images with 100 classes, and the input images are
resized to 84 × 84. The tieredImageNet dataset [47] consists of 779,165 color images with
608 classes, each of size 84 × 84.

5.2. The 3D GPR Cavity Data Acquisition

The GPR data are difficult to collect and label. To address the issue, a 3D GPR forward
modeling tool, GprMax3D [48,49], is often used for the 3D modeling and simulation of
underground structures. Based on the finite-difference time-domain (FDTD) method,
the technique increases the volume of training data by creating synthetic GPR images.
Maxwell’s equations govern the propagation of EM waves used by the GPR. Figure 10
shows the flowchart of the GprMax3D forward simulation technique. GprMax3D was used
to generate synthetic GPR images [50]. To further imitate the real situation, we set up cavity
objects with uneven surfaces and random media to approximate real objects. An example
of the GPR system’s parameter setting is shown in Table 1.

Figure 10. GprMax3D simulation flowchart.

Table 1. GPR system parameters in road structure scene.

System Parameters Value

Spatial resolution/m 0.01
Time window/ns 14

Initial coordinate of transmit antenna/m (0.45, 1.0, 0.0)
Initial coordinate of receive antenna/m (0.35, 1.0, 0.0)

Antenna step distance/m (0.01, 0, 0)
Measuring point number 100

Excitation signal type Ricker
Excitation signal frequency/MHz 800

156

Mathematics 2022, 10, 2806

Road cavity is generally distributed in the underground range of 0.3–1 m, which is
also the junction of the pavement structure and the subgrade. The subgrade is generally
a soil structure, while the pavement structure is generally a flexible, semi-rigid, or rigid
structure, generally made of cement or asphalt concrete; in particular, its bottom layer is
generally made of hard materials such as gravel. Due to the high probability of soil erosion,
cavities are most likely to appear at the junction of soft and hard layers. Figure 11 shows
a simulation model example of a road structure with the first layer of asphalt, the second
layer of concrete, and the third layer of sandstone. Their attribute parameter settings
are shown in Table 2. In addition, the subgrade is generally dominated by soil, and
a more realistic soil model was established by simulating random media. A number of soil
dispersion materials were defined as follows: soil with 50% sand, 50% clay, sand density of
2.66 g/cm3, clay bulk density of 2 g/cm3, and volumetric water content ranging from 0.001
to 0.25. These materials were distributed over a model with a volume of 2× 1.2× 1 m3

(in which the soil layers were randomly distributed).

Figure 11. Road structural simulation model.

Table 2. Dielectric properties of road structure.

System Parameters Relative Permittivity Conductivity (S/m)

Air 1 0
Asphalt 6 0.005

Concrete (dry) 9 0.05
Gravel 12 0.1

Figure 12 presents the simulated models of four representative cavity morpholo-
gies: spherical, rectangular, cylindrical, and irregular hemispherical cavities. The first
three cavities have smooth surfaces, and the last one shows an uneven surface. Figure 13
shows the representative 2D GPR morphological images of cavities. Figure 13a shows the
case of spherical cavities with parabolic and circular features, which can be observed on
the B-scan and C-scan images, respectively. As shown in Figure 13b, rectangular cavities
generally have distinguishable features, namely a double parabola shape in B-scans. Simi-
lar features are also revealed in the cylindrical case of Figure 13c. However, Figure 13b,c
can be distinguished by C-scans because they, respectively, show quadrilateral signatures
and double circular intersection features in C-scans. Compared with Figure 13a, it can be
observed in Figure 13d that the C-scan images of the irregular cavity show unsmoothed
circular features with considerable noise randomly distributed inside the circle. Due to

157

Mathematics 2022, 10, 2806

these distinguishable and representative characteristics, the cavity morphology can be
classified well with the FSL frameworks.

Category Model Internal Structure Display Partial Random Media Presentation

(a) Spherical
cavity

(b) Rectangular
cavity

(c) Cylindrical
cavity

(d) Irregular
hemispherical

cavity

Figure 12. Display of simulation model from different perspectives (cavity in red).

158

Mathematics 2022, 10, 2806

Figure 13. Representative 2D GPR images of cavities: (a) spherical, (b) rectangular, (c) cylindrical,
and (d) irregular hemispherical.

5.3. Classification Results and Analysis

Figure 14 shows the RelationNet-based underground cavity morphology classifica-
tion results. These results were obtained based on the network settings of the backbone
Conv64F, the benchmark dataset tieredImageNet, and in a four-way five-shot problem. As
expected, compared with the ground truth, the irregular hemispherical cavity with signifi-
cant characteristics in the GPR morphological image was correctly classified. Moreover, the
classification accuracy rates of spherical, rectangular, and cylindrical cavities were 97.5%,
98.33%, and 98.33%, respectively. However, 0.83% and 1.67% of spherical were misclassified
as cylindrical and hemispherical due to their similar morphological features. In addition,
1.67% of rectangular were misclassified as hemispherical due to their double parabola
shapes in B-scans, while 0.83% and 0.83% of cylindrical were, respectively, misclassified as
spherical and hemispherical, due to their similar features in B- or C-scans. The classification
performance of RelationNet was evaluated based on the indices (precision, recall, and F-score)
using the following Equations (4)–(6):

precision =
true positive

true positive + f alse positive
(4)

159

Mathematics 2022, 10, 2806

recall =
true positive

true positive + f alse negative
(5)

F− score =
2 · precision · recall
precision + recall

(6)

Figure 14. The results of RelationNet-based cavity morphological classification.

Table 3 shows the statistical results obtained from the RelationNet results, namely
the precision, recall, and F-score values. For the rectangular cases, 99.15% precision and
97.5% recall indicated that false-positive (FP) and false-negative (FN) results occurred, and
the number of FN results was greater than those of FP. Similarly, the 99.16% precision and
98.33% recall values of the cylindrical case meant the FP and FN alarms because RelationNet
sometimes recognized a cylindrical cavity as a spherical or hemispherical. For rectangular
cases, 100% precision and the relatively low recall value indicated that FN occurred due to
the misclassification between rectangular and hemispherical. On the contrary, 96% precision
and 100% recall values meant that the hemispherical samples were properly classified using
RelationNet, but multiple samples in other categories were misclassified as hemispherical
at the same time. According to the F-scores, it can be concluded that the performance of
RelationNet was acceptable.

Table 3. Statistical results obtained from RelationNet (%).

System Parameters Precision Recall F-Score

Spherical 99.15 97.5 98.32
Rectangular 100 98.33 99.16
Cylindrical 99.16 98.33 98.74

Hemispherical 96 100 97.96

5.4. Comparison Experiments
5.4.1. RelationNet Evaluation on Different Embedding Backbones

The performance of RelationNet relies on the quality of the embedding backbone.
To select a suitable main embedding backbone, we compared three different embedding
backbones: Conv64F, ResNet12, and ResNet18. The above experiments were run for
10 epochs on the miniImageNet dataset. Other settings remained the same. Conv64F
consisted of four convolutional blocks, and each block was composed of a convolutional
layer, a batch-normalization layer, a ReLU layer, and a max-pooling layer. ResNet12
consisted of four residual blocks, each of which contained three convolutional blocks
along with a skip connection layer. ResNet18 had the same architecture as used in [50].
Table 4 shows the comparison results among different backbones. It can be observed that
RelationNet equipped with Conv64F backbone achieved the best performance in either a
four-way one-shot or four-way five-shot problem.

160

Mathematics 2022, 10, 2806

Table 4. Comparison results on different embedding backbones (%) (the best results in bold).

Embedding Backbones Four-Way One-Shot Four-Way Five-Shot

Conv64F 78.097 88.934
ResNet12 69.467 72.500
ResNet18 69.926 79.865

5.4.2. RelationNet Evaluation on Different Benchmark Datasets

Table 5 compares the performance of RelationNet on miniImageNet and tieredIm-
ageNet datasets by controlling the most implementation details. For this comparison,
RelationNet adopted Conv64F as the main backbone. As can be seen from Table 5, in the
four-way one-shot problem, the accuracy achieved on the miniImageNet dataset was slightly
higher than that on the tieredImageNet dataset. In the four-way five-shot problem, competi-
tive accuracy could be achieved using the tieredImageNet dataset compared with using the
miniImageNet dataset, improving the accuracy by 8.394%. Therefore, the accuracy results
indicated that RelationNet performed well when trained on the tieredImageNet dataset.

Table 5. Comparison results on different benchmark datasets: miniImageNet vs. tieredImageNet (%)
(the best results in bold).

Embedding Backbones Four-Way One-Shot Four-Way Five-Shot

miniImageNet 78.097 88.934
tieredImageNet 77.086 97.328

5.4.3. Performance Comparison of Different FSL Networks

To validate the effectiveness of RelationNet, the four experimental validation results
of ProtoNet, R2D2, BaseLine, and RelationNet were compared. We used the exact same
embedding backbone Conv64F and benchmark dataset miniImageNet. It can be observed
from Table 6 that RelationNet achieved the best results in the four-way one-shot problem,
even improving the accuracy by 11.994% over the BaseLine. With the increase in the number
of sample images, these four frameworks achieved substantial improvements in facing the
four-way five-shot problem, and RelationNet still achieved the highest accuracy over the
other three frameworks.

Table 6. Statistical results obtained from RelationNet (%) (the best results in bold).

FSL Networks Four-Way One-Shot Four-Way Five-Shot

ProtoNet 70.965 85.221
R2D2 76.562 88.659

BaseLine 66.103 83.505
RelationNet 78.097 88.934

6. Conclusions

In this paper, we first applied the FSL technique to classify and identify cavity mor-
phology characteristics based on the 3D GPR data. RelationNet was adopted as the FSL
framework and trained end-to-end from scratch. Based on the advantages of learning
a deep distance metric, RelationNet addressed the issue of insufficient cavity data and
obtained the classification results using only a few samples. The experiment results demon-
strated the effectiveness of using RelationNet in morphology classification performance.
The RelationNet model achieved an average classification accuracy value of 97.328% in the
four-way five-shot and 78.097% in the four-way one-shot problem.

There is a limitation that could be addressed in future research. In the experiments, all
the models were trained on the source domain (e.g., miniImageNet and tieredImageNet)
and directly tested on the target domain (e.g., cavity radar dataset). However, the perfor-
mance hardly improved or significantly dropped when there was a large domain shift.

161

Mathematics 2022, 10, 2806

In this paper, based on the fact that there was no intersection between the source set and
our cavity radar dataset, there was a large domain offset between the source and target
domains. Future efforts need to be made to integrate prior knowledge into FSL or explore
one-shot or zero-shot classification methods.

For on-site applications, there are two limitations that could be addressed in future
research. First, the real cavity data are difficult to collect for training the proposed method.
Additionally, the publicly available GPR cavity datasets are limited. Efforts need to be
made in the future to collect and prepare GPR datasets to facilitate the implementation
of this method. Second, the proposed method was only tested for cavity morphology
classification using the GprMax3D data. The scalability of the method in other challenging
environments and applications needs further investigation. Future studies could test this
method for collecting cavity data and classifying their morphologies in on-site city roads.

Author Contributions: F.H.: Conceptualization, Methodology, Writing—Original Draft Preparation,
Software. X.L.: Data Curation, Writing, Validation. X.F.: Visualization, Investigation. Y.G.: Supervi-
sion, Writing—Reviewing and Editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (no. 61871407).

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gutiérrez, F.; Parise, M.; Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst.
Earth Sci. Rev. 2014, 138, 61–88.

2. Garcia-Garcia, F.; Valls-Ayuso, A.; Benlloch-Marco, J.; Valcuende-Paya, M. An optimization of the work disruption by 3D cavity
mapping using GPR: A new sewerage project in Torrente (Valencia, Spain). Constr. Build. Mater. 2017, 154, 1226–1233. [CrossRef]

3. Jol, H.M. Ground Penetrating Radar Theory and Applications; Elseviere: Amsterdam, The Netherlands, 2008.
4. Meyers, R.; Smith, D.; Jol, H.; Peterson, C. Evidence for eight great earthquake-subsidence events detected with ground-

penetrating radar, Willapa barrier, Washington. Geology 1996, 24, 99–102. [CrossRef]
5. Qin, Y.; Huang, C. Identifying underground voids using a GPR circular-end bow-tie antenna system based on a support vector

machine. Int..J. Remote Sens. 2016, 37, 876–888. [CrossRef]
6. Park, B.; Kim, J.; Lee, J.; Kang, M.-S.; An, Y.-K. Underground object classification for urban roads using instantaneous phase

analysis of Ground-Penetrating Radar (GPR) Data. Remote Sens. 2018, 10, 1417. [CrossRef]
7. Hong, W.-T.; Lee, J.-S. Estimation of ground cavity configurations using ground penetrating radar and time domain reflectometry.

Nat. Hazards 2018, 92, 1789–1807. [CrossRef]
8. Yang, Y.; Zhao, W. Curvelet transform-based identification of void diseases in ballastless track by ground-penetrating radar.

Struct. Control Health Monit. 2019, 26, e2322–e2339. [CrossRef]
9. Chen, J.; Li, S.; Liu, D.; Li, X. AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and

Training. Sensors 2020, 20, 5223–5242. [CrossRef] [PubMed]
10. Hu, D.; Li, S.; Chen, J.; Kamat, V.R. Detecting, locating, and characterizing voids in disaster rubble for search and rescue.

Adv. Eng. Inform. 2019, 42, 100974–100982. [CrossRef]
11. Rasol, M.; Pais, J.; Pérez-Gracia, V.; Solla, M.; Fernandes, F.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR moni-

toring for road transport infrastructure: A systematic review and machine learning insights. Constr. Build. Mate. 2022, 324, 126686.
[CrossRef]

12. Liu, Z.; Gu, X.; Yang, H.; Wang, L.; Chen, Y.; Wang, D. Novel YOLOv3 Model With Structure and Hyperparameter Optimization
for Detection of Pavement Concealed Cracks in GPR Images. IEEE T Intell. Transp. Syst. 2022, 1, 1–11. [CrossRef]

13. Yamaguchi, T.; Mizutani, T.; Meguro, K.; Hirano, T. Detecting Subsurface Voids From GPR Images by 3-D Convolutional Neural
Network Using 2-D Finite Difference Time Domain Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3061–3073.
[CrossRef]

14. Yamashita, Y.; Kamoshita, T.; Akiyama, Y.; Hattori, H.; Kakishita, Y.; Sadaki, T.; Okazaki, H. Improving efficiency of cavity
detection under paved road from GPR data using deep learning method. In Proceedings of the 13th SEGJ International
Symposium, Tokyo, Japan, 12–14 November 2018; Society of Exploration Geophysicists and Society of Exploration Geophysicists
of Japan: Tykyo, Japan, 2019; pp. 526–529.

15. Ni, Z.-K.; Zhao, D.; Ye, S.B.; Fang, G. City road cavity detection using YOLOv3 for ground-penetrating radar. In Proceedings
of the18th International Conference on Ground Penetrating Radar, Golden, CO, USA, 14–19 June 2020; Society of Exploration
Geophysicists: Houston, TX, USA, 2020; pp. 2159–6832.

162

Mathematics 2022, 10, 2806

16. Liu, H.; Shi, Z.; Li, J.; Liu, C.; Meng, X.; Du, Y.; Chen, J. Detection of road cavities in urban cities by 3D ground-penetrating radar.
Geophysics 2021, 86, WA25–WA33. [CrossRef]

17. Feng, J.; Yang, L.; Hoxha, E.; Xiao, J. Improving 3D Metric GPR Imaging Using Automated Data Collection and Learning-based
Processing. IEEE Sens. J. 2022, 1–13. [CrossRef]

18. Luo, T.; Lai, W. GPR pattern recognition of shallow subsurface air voids. Tunn. Undergr. Sp. Tech. 2020, 99, 103355–103366.
[CrossRef]

19. Kim, N.; Kim, S.; An, Y.-K.; Lee, J.-J. Triplanar imaging of 3-D GPR data for deep-learning-based underground object detection.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4446–4456. [CrossRef]

20. Kang, M.-S.; Kim, N.; Im, S.B.; Lee, J.-J.; An, Y.-K. 3D GPR image-based UcNet for enhancing underground cavity detectability.
Remote Sens. 2019, 11, 2545–2562. [CrossRef]

21. Kang, M.-S.; Kim, N.; Lee, J.-J.; An, Y.-K. Deep learning-based automated underground cavity detection using three-dimensional
ground penetrating radar. Struct. Health Monit. 2020, 19, 173–185. [CrossRef]

22. Khudoyarov, S.; Kim, N.; Lee, J.-J. Three-dimensional convolutional neural network–based underground object classification
using three-dimensional ground penetrating radar data. Struct. Health Monit. 2020, 19, 1884–1893. [CrossRef]

23. Kim, N.; Kim, K.; An, Y.-K.; Lee, H.-J.; Lee, J.-J. Deep learning-based underground object detection for urban road pavement.
Int. J. Pavement Eng. 2020, 21, 1638–1650. [CrossRef]

24. Kim, N.; Kim, S.; An, Y.-K.; Lee, J.-J. A novel 3D GPR image arrangement for deep learning-based underground object classification.
Int. J. Pavement Eng. 2021, 22, 740–751. [CrossRef]

25. Abhinaya, A. Using Machine Learning to Detect Voids in an Underground Pipeline Using in-Pipe Ground Penetrating Radar.
Master’s Thesis, University of Twente, Enschede, Holland, 2021.

26. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
27. Liu, Z.; Wu, W.; Gu, X.; Li, S.; Wang, L.; Zhang, T. Application of combining YOLO models and 3D GPR images in road detection

and maintenance. Remote Sens. 2021, 13, 1081–1099. [CrossRef]
28. Lu, J.; Gong, P.; Ye, J.; Zhang, C. Learning from very few samples: A survey. arXiv 2020, arXiv:2009.02653.
29. Yang, S.; Liu, L.; Xu, M. Free lunch for few-shot learning: Distribution calibration. arXiv 2021, arXiv:2101.06395.
30. Wang, Y.; Yao, Q.; Kwok, J.; Ni, L. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.

2020, 53, 1–34. [CrossRef]
31. Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. One-shot learning with memory-augmented neural networks.

arXiv 2016, arXiv:1605.06065.
32. Munkhdalai, T.; Yu, H. Meta networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia,

6–17 August 2017.
33. Ravi, S.; Larochelle, H. Optimization as a model for few-shot learning. In Proceedings of the International Conference on Learning

Representations (ICLR), Toulon, France, 24–26 April 2017.
34. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the

International Conference on Machine Learning, Sydney, Australia, 6–17 August 2017.
35. Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf.

Process. Syst. 2016, 29, 3630–3638.
36. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.; Hospedales, T. Learning to compare: Relation network for few-shot learning.

In Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 1199–1208.

37. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. ICML Deep. Learn. Workshop
2015, 2, 2015.

38. Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; Luo, J. Revisiting local descriptor based image-to-class measure for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, California, CA, USA, 16–20 June 2019;
pp. 7260–7268.

39. Wertheimer, D.; Tang, L.; Hariharan, B. Few-shot classification with feature map reconstruction networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 8012–8021.

40. Kang, D.; Kwon, H.; Min, J.; Cho, M. Relational Embedding for Few-Shot Classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 8822–8833.

41. Zhang, C.; Cai, Y.; Lin, G.; Shen, C. Deepemd: Few-shot image classification with differentiable earth mover’s distance and
structured classifiers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Seattle, WA, USA,
13–19 June 2020; pp. 12203–12213.

42. Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
43. Li, W.; Dong, C.; Tian, P.; Qin, T.; Yang, X.; Wang, Z.; Huo, J.; Shi, Y.; Wang, L.; Gao, Y.; et al. LibFewShot: A Comprehensive

Library for Few-shot Learning. arXiv 2021, arXiv:2109.04898.
44. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
45. Bertinetto, L.; Henriques, J.; Torr, P.; Vedaldi, A. Meta-learning with differentiable closed-form solvers. arXiv 2018,

arXiv:1805.08136.
46. Chen, W.-Y.; Liu, Y.-C.; Kira, Z.; Wang, Y.-C.; Huang, J.-B. A closer look at few-shot classification. arXiv 2019, arXiv:1904.04232.

163

Mathematics 2022, 10, 2806

47. Ren, M.; Triantafillou, E.; Ravi, S.; Snell, J.; Swersky, K.; Tenenbaum, J.; Larochelle, H.; Zemel, R. Meta-learning for semi-supervised
few-shot classification. arXiv 2018, arXiv:1803.00676, 2018.

48. Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for
ground penetrating radar. Comput. Phys. Commun. 2016, 209, 163–170. [CrossRef]

49. Giannakis, I.; Giannopoulos, A.; Warren, C. A realistic FDTD numerical modeling framework of ground penetrating radar for
landmine detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 37–51. [CrossRef]

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

164

Citation: Zhang, Y.; Wang, G.; Leng,

Y.; Yu, G.; Peng, S. IN-ME Position

Error Compensation Algorithm for

the Near-Field Beamforming of

UAVs. Mathematics 2022, 10, 3256.

https://doi.org/10.3390/

math10183256

Academic Editor: Paolo Crippa

Received: 19 July 2022

Accepted: 30 August 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

IN-ME Position Error Compensation Algorithm for the
Near-Field Beamforming of UAVs

Yinan Zhang, Guangxue Wang, Yi Leng *, Guowen Yu and Shirui Peng *

Department of Information Countermeasure, Air Force Early Warning Academy, Wuhan 430010, China
* Correspondence: lengyi200209@163.com (Y.L.); psr99@21.cn (S.P.)

Abstract: The target of an unmanned aerial vehicle swarm will present near-field characteristics when
it is integrated as an array, and the existence of the unmanned aerial vehicle swarm motion error will
greatly deteriorate the beam pattern formed by the array. To solve these problems, a near-field array
beamforming model with array element position error is constructed, and the Taylor expansion of
the phase difference function is used to approximately simplify the model. The improved Newton
maximum entropy algorithm is proposed to estimate and compensate for the phase errors. The
maximum entropy objective function is established, and the Newton iterative algorithm is used to
estimate the phase error iteratively. To select the proper Newton iteration initial value, based on
a single reference source signal, the initial value of the phase error is estimated through the phase
gradient information of the received array signal. Beamforming is carried out after phase error
compensation regarding the array. In order to assess the mismatch of the phase error compensation
function based on the proposed method, when the beam is scanning, the effectively compensated
spatial area of the array beamforming is divided, which lays a foundation for subsequent spatial
region division and unmanned aerial vehicle swarm path planning. The simulation results show
that the beam formed by the method proposed in this paper has a lower sidelobe level, and as
the signal-to-noise ratio changes, the robustness of the proposed method is better validated. The
proposed algorithm can effectively suppress the adverse influence of array element position error on
array beamforming, and when the beam is scanning, the effectively compensated area of the phase
error compensation function is divided, based on the proposed method.

Keywords: unmanned aerial vehicle swarm; antenna array; near-field beamforming; array element
position error compensation; spatial area division

MSC: 94-08

1. Introduction

With the development of beamforming technology and unmanned aerial vehicle
swarm (UAVs) technology, the antenna array elements equipping the UAVs are combined
into a distributed beamforming system through collaboration among the swarm to achieve
directional high gain signal transmission. Therefore, using beamforming technology to
improve the combat capability of UAVs in a fierce confrontation environment is a growing
trend [1]. It is obvious that taking UAVs as an array has many advantages, such as using
low-cost UAVs to achieve high gain signal transmission, which is also known as the beam
pattern, but the targets of the array are often located in the near-field, and the motion
error [2–5] of a single UAV as an array element will deteriorate the beam pattern formed
by the array. At present, the array position error calibration is mainly founded on the
calibration method of three or more known radiant sources, based on far-field signals, or
the rotating array calibration method, based on a single known as a radiant source [6–8],
but the latter is, in essence, also a multi-radiant source calibration method exchanging time
for space. Reference [2] proposes using three simultaneously existing auxiliary sources

Mathematics 2022, 10, 3256. https://doi.org/10.3390/math10183256 https://www.mdpi.com/journal/mathematics
165

Mathematics 2022, 10, 3256

to calibrate the position error of the array, but this method can only use the Taylor first-
order expansion of the array steering vector with error when the position error has a very
small disturbance, which means the position error cannot be corrected by this method
when it is too large. In array beamforming, the beam cannot be formed when an array
element position error exists, but as long as the phase error caused by the position error is
compensated for, the beam can be formed effectively. It is easier to solve a one-dimensional
phase error than to solve two- or three- dimensional position errors, and the phase error
can be obtained by using a single known radiant source as a reference source [9–12]. As
for the solution to phase error, based on the information of the reference source, the phase
error can be estimated using the phase gradient (PG) value of the received signal between
the array elements [13–17], but this method requires a high signal-to-noise ratio (SNR), and
under the condition of low SNR, the deviation of the phase error estimation value from the
real value is large. Phase error can also be solved by iteration. The authors of [18–21] take
the entropy of the image as the objective function and estimate the phase error by using
the Newton iterative method, but this method presents problems, such as the selection
of the initial value affecting the algorithm time, causing the algorithm to fall into local
optimization. When the expected main-lobe direction of beamforming is the same as the
reference source direction, the phase error in main-lobe direction can be compensated for
by the estimated phase error compensation function, but when it is not the same as the
reference source direction, the mismatch of the phase error compensation function occurs,
which will affect the beamforming pattern. Therefore, it is necessary to study the influence
of phase error compensation function mismatch, which is the same as the division of the
area effectively compensated by the estimated phase error compensation function. The
authors of [22] propose that when the near-field radial compensation filter is used to filter
out interference sources, the beamforming pattern will deteriorate when the sources are far
away from the array, but the study does not specifically analyze the pattern deterioration
level. The work in [23] proposes a method to form a multi-focus antenna array in the
near-field, with specified amplitude and phase conditions for the multi-focus problem of
the near-field array, but this study does not involve the analysis of the mismatch of the
single-focus filter.

Based on the above analysis, firstly, a near-field array beamforming model with UAV
position error is constructed in Section 2, and the model is approximately simplified by the
Taylor expansion of the phase difference function of the near-field signal. Secondly, the
improved Newton maximum entropy (IN-ME) algorithm is used to estimate and correct
the phase error in Section 3. Under the condition of low SNR, taking the single known
radiant source as a reference source, the initial value of the phase error is estimated through
the PG information of the received array signal, and then, taking the maximum entropy
function of the array synthetic power at the reference source as the objective function,
the Newton iterative solution to the phase error is carried out. After the phase error is
compensated, beamforming is carried out. Thirdly, when phase error estimation based
on proposed IN-ME algorithm is used to compensate for beamforming, if the array forms
beam scanning, the phase compensation function will be mismatched. Based on the phase
error compensation function of the IN-ME algorithm, the effectively compensated area
which can be compensated for to effectively form the beam pattern is further divided in
Section 4, laying a foundation for the subsequent spatial region division and UAV path
planning. The simulation results in Section 5 show the effectiveness of the algorithm, and
the conclusions are given in Section 6. The adverse influence of UAV position errors on
near-field array beamforming is effectively suppressed, and the effectively compensated
area, with phase compensation function mismatch, is divided.

2. Near-Field Beamforming Model

2.1. Array Signal Model

Under the condition of targets being in the near-field, the assumption that the electro-
magnetic wave is the plane wave is not tenable, and it should be modeled as a spherical

166

Mathematics 2022, 10, 3256

wave. As shown in Figure 1, it is assumed that the near-field antenna array of N UAVs
which can be seen as N elements is linearly distributed along the axis x at equal inter-
vals, the total length of the array is L, the coordinate of the nth element is (xn, 0), where,
n = 1, 2, · · · , N, and − L

2 ≤ xn ≤ L
2 , rn refers to the distance from the nth antenna array

element to the source P, R refers to the distance from the source P to the array center O, θ is
the included angle between OP and the axis y, and when the direction of OP projection on
the x axis is the same as positive direction of the x axis, θ is positive, and vice versa. The
coordinate of source P is P(xP, yP).

xx x nx Nx

y

L
O

P

θ
r r nr Nr

R

Figure 1. Near-field array model.

For any radiant source P in the near-field, according to the spherical wave theory, the
radiant signal received by the array element can be expressed as

s(xn) =
A
rn

exp
[

j
(

2π f t− 2π
Δrn

λ

)]
=

Ã
rn

exp(−jkΔrn) (1)

where, Ã = Aexp(j2π f t) is the radiant signal of the source P, j is the imaginary unit, f is
the radiant signal frequency, λ is the wavelength, k = 2π

λ is the wavenumber, and Δrn is
the wave path difference from the source P to the nth antenna array element, with the array
center O as the reference point.

Theorem 1. ([24]) Suppose that r(x) is a differentiable function for which r′(a), · · · , r(n)(a) all
exist, and there is neighborhood U(a) of a , in which the function value of r(x) at x = a can be

written as r(x) = r(a) + r′(a)(x− a) + r′′(a)(x−a)2

2! + o
(
(x− a)2

)
.

Theorem 1 is also known as Taylor’s theorem. For the antenna array composed of
UAVs, although the targets of interest in wireless communication, electronic reconnaissance,
and jamming are generally located in the near-field of the array, the distances from the
targets of interest to the antenna center are usually much greater than the aperture of
the antenna. Therefore, it can be assumed that R � L ≥ 2|xn|. Then, the Taylor series
expansion of Δrn can be obtained by

Δrn = rn − R =

√
(xn − xP)

2 + (yP)
2 − R ≈ − sin θ · xn +

cos2 θ

2R
x2

n (2)

Through Equation (2), the phase difference between the received signal of the nth
array element and the received signal at the array center O is

Δϕn = −2π
λ

Δrn ≈ −k
(
− sin θ · xn +

cos2 θ

2R
x2

n

)
(3)

167

Mathematics 2022, 10, 3256

By substituting Equation (3) into Equation (1) and ignoring the influence of distance
on signal amplitude, the received signal model of the nth array element in the near-field
can be approximately written as

s(xn) ≈ Ã exp
(
−jk
(
− sin θ · xn +

cos2 θ

2R
x2

n

))
(4)

For M radiant sources in the near-field, the radiant signal amplitude of the mth radiant
source is Am, the frequency is fm, the polar coordinate is (θm, Rm), and the distance from
the nth array element to the mth radiant source is rnm, where, m = 1, · · · , M. Then, the
received signal of the array is

X =
M

∑
m=1

sm(xn) + V = ÃA(θ, R) + V (5)

where, sm(xn) = Ãmexp
(
−jk

(
− sin θm · xn +

cos2 θm
2Rm

x2
n

))
,Ãm = Amexp(j2π fmt), X =

[x1 x2 · · · xN]
T is a N × 1 dimensional receiving data vector, A(θ, R) is a N × M di-

mensional array steering vector, S is a M× 1 dimensional signal vector, and V is a N × 1
dimensional noise vector. There is

A(θ, R) =
[
a(θ1, R1) a(θ2, R2) · · · a(θM, RM)

]
(6)

a(θm, Rm) =
[

a1(θm, Rm) a2(θm, Rm) · · · aN(θm, Rm)
]T

=

[
e
(
−jk
(
− sin θm ·x1+

cos2 θm
2Rm x2

1

))
e
(
−jk
(
− sin θm ·x2+

cos2 θm
2Rm x2

2

))
· · · e

(
−jk
(
− sin θm ·xN+ cos2 θm

2Rm x2
N

))]T (7)

V =
[
v1 v2 · · · vN

]T (8)

where, [·]T represents matrix transpose, and the N × 1 dimensional vector a(θm, Rm) is the
steering vector of the array under the mth radiant source.

The received signals of each array element are weighted and summed to obtain the
array output as, which is beamforming

Y = WHX = WH
(

ÃA(θ, R) + V
)

(9)

where, [·]H represents the conjugate transpose of the matrix, and W =
[
w1 w2 · · · wN

]T
is the N × 1 dimensional weighted vector of the array. When the polar coordinate of the
expected signal is (θP, RP), and the distance from the nth array element is rnP, there is

wn = exp(−jkΔrnP), where, ΔrnP = − sin θP · xn +
cos2 θP

2RP
x2

n.

2.2. Actual Near-Field Beamforming

When there are errors in the positions of the array elements, the actual coordinate of
the nth array element is (x̂n, ŷn), where, x̂n = xn + Δxn, and ŷn = yn + Δyn. Under the
model of this paper, yn = 0. Similar to 2.1., the modified actual wave path difference Δr̂n in
the Taylor series expansion is

Δr̂n ≈ − sin θx̂n − cos θŷn +
cos2 θ

2R
x̂n

2

+
sin2 θ

2R
ŷ2

n +
(cos θ + sin θ)

2R2 x̂nŷn

(10)

168

Mathematics 2022, 10, 3256

By using Equation (10) to approximately simplify s(x̂n), the actual nth array signal
model can be expressed as

s(x̂n) ≈ Ã exp

⎛⎜⎜⎝−jk

⎛⎜⎜⎝ − sin θx̂n − cos θŷn +
cos2 θ

2R
x̂n

2

+
sin2 θ

2R
ŷ2

n +
(cos θ + sin θ)

2R2 x̂nŷn

⎞⎟⎟⎠
⎞⎟⎟⎠ (11)

Then the actual received signal of the array is

X̂ =
M

∑
m=1

sm(x̂n) + V = ÃÂ(θ, R) + V (12)

where, X̂ =
[
X̂1 X̂2 · · · X̂N

]T is an actual N × 1 dimensional received data vector,
sm(x̂n) is the actual mth, m = 1, · · · , M is the received radiant source signal, Â(θ, R) is
an actual N ×M dimensional array steering vector, and

sm(x̂n) = sm(xn) · wen = sm(xn) · exp

⎛⎜⎜⎝−jk

⎛⎜⎜⎝ − sin θm · Δxn − cos θm · Δyn +
cos2 θm

Rm
xnΔxn +

cos2 θm

2Rm
Δxn

2

+
sin2 θm

2Rm
Δy2

n +
(cos θm + sin θm)

2R2
m

(xn + Δxn)Δyn

⎞⎟⎟⎠
⎞⎟⎟⎠ (13)

Â(θ, R) =
[
â(θ1, R1) â(θ2, R2) . . . â(θM, RM)

]
(14)

â(θm, Rm) = [â1(θm, Rm) â2(θm, Rm) · · · âN(θm, Rm)]
T

=

⎡⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎝−jk

⎛⎜⎜⎜⎜⎝
− sin θmx̂1 − cos θmŷ1 +

cos2 θm

2Rm
x̂2

1

+
sin2 θm

2Rm
ŷ2

1
(cos θm sin θm)

2R2
m

x̂1ŷ1

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ . . . exp

⎛⎜⎜⎜⎝−jk

⎛⎜⎜⎜⎝
− sin θmx̂N − cos θmŷN

cos2 θm

2Rm
x̂2

N

sin2 θm

2Rm
ŷ2

N
(cos θm sin θm)

2R2
m

x̂NŷN

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

T

(15)

where, wen is the error value of the nth array element. When M = 1, the actual beamforming
formula can be written as

Ŷ = WHX̂ =
N

∑
n=1

w∗n · (wens(xn) + vn) (16)

where, w∗n is the conjugate complex of wn.
Obviously, due to the presence of array position errors and noises, it is impossible

to effectively carry out near-field beamforming by using the signal weight that can be
obtained when the array is at the nominal value to compensate for the actual signal.

3. IN-ME Phase Error Compensation Algorithm Based on Reference Source

Only by compensating for phase error can the array effectively form a beam pattern.
We propose the IN-ME algorithm, which, compared to Newton maximum entropy (N-ME)
algorithm, can obtain higher convergent value within a shorter period, as well as form
a lower sidelobe-level beam pattern with a higher SNR.

3.1. Phase Error Estimation Based on Newton Maximum Entropy Algorithm

Entropy is a measurement of information uncertainty. The maximum entropy principle
is a criterion of probabilistic model learning, and when the probability distribution of
random variables obeys uniform distribution, the entropy reaches its highest level. As
for beamforming, we expect that after phase error compensation, the synthetic powers
in the main-lobe direction of the array’s received signals in all snapshots increase, which
becomes a multi-objective optimization problem. If we regard the ratio of synthetic power
in the main-lobe direction of the array’s received signals in one snapshot to the sum

169

Mathematics 2022, 10, 3256

of the synthetic powers in all snapshots as the probability distribution, compared to
the maximum entropy principle, it can be seen as that when this ratio obeys uniform
distribution, the synthetic power in every snapshot can increase, which means that the
phase error compensation is effective for the signals in every snapshot. Therefore, the
objective function should be the maximum entropy of that ratio.

Assuming that there is a reference source in the target scene, if the array beamforming
is expected to form a main-lobe at the source, the weighted value of the array can be
obtained as W =

[
w1 w2 · · · wN

]T. When the snapshots are certain, Qg, representing
the total ideal synthetic power of all snapshots at the reference point, is a constant, and can
be obtained by

Qg =
SS

∑
ss=1

∣∣G(ss)
∣∣2 (17)

where, SS is the total number of snapshots, and G(ss) is the synthesized signal at the
reference source after ideally weighting and summing the received signals in the ssth
snapshot. The synthetic power in the main-lobe direction of the array’s received signals in
one snapshot can be obtained by

g(ss) =
N

∑
n=1

w∗n · (s(x̂n) + vn)ss · ejϕn (18)

where, (s(x̂n) + vn)ss is the received signal in the ssth snapshot of the array element, and
ϕn is the phase error of the nth array element to be estimated. Because Qg is a constant, the
entropy objective function of g(ss) can be written as

Eg = − 1
Qg

SS

∑
ss=1

∣∣g(ss)
∣∣2 ln

∣∣g(ss)
∣∣2

Qg
(19)

The entropy objective function Eg is the function of the phase ϕn to be estimated. Thus,
the phase estimation based on the maximum entropy can be expressed as

ϕ̂n = argmax
ϕn

Eg(ϕn) (20)

Theorem 2. ([25]) Suppose that E′′(x), which is the second derivation of E, is continuous in
an open neighborhood of a , and that E′(a) = 0 and E′′(x) is negative definite. Then a is a strict
local maximizer of E(x).

Proof. Because E′′(x), which is also known as the Hessian, is a continuous and negative
definite at a, we can choose a radius r > 0 so that E′′(x) remains negative definite for
all x in the open ball D = {z|‖z− a‖ < r}. Taking any nonzero vector p with ‖p‖ ≤ r,
we have a + p ∈ D, and so E(a + p) = E(a) + pTE′(a) + 1

2 pTE′′(z)p = E(a) + 1
2 pTE′′(z)p,

where, z = a + tp for some t ∈ (0, 1). Since z ∈ D, we have pTE′′(z)p < 0, and therefore
E(a + p) < E(a), giving the results. �

By combining Theorem 1 and Theorem 2, we can use the Newton method for For-
mula (20). There is an iterative solution of ϕn as

ϕ
(l+1)
n = ϕ

(l)
n −

(
∂2Eg

∂ϕ2
n

)−1
∂Eg

∂ϕn

∣∣∣∣∣∣
ϕn=ϕ

(l)
n

(21)

where, superscript (l) indicates the lth iteration. To solve Equation (21), the first and second
derivation of Eg against ϕn need to be calculated. The first derivative expression can be
expressed as

170

Mathematics 2022, 10, 3256

∂Eg

∂ϕn
= − 1

Qg

SS

∑
ss=1

(
1 + ln

|g(ss)|2
Qg

)
· ∂|g(ss)|2

∂ϕn
(22)

The second derivative expression can be expressed as

∂2Eg

∂ϕ2
n

= − 1
Qg

SS

∑
ss=1

⎛⎝ 1

|g(ss)|2
·
(

∂|g(ss)|2
∂ϕn

)2

+

(
1 + ln

|g(ss)|2
Qg

)
· ∂2|g(ss)|2

∂ϕ2
n

⎞⎠ (23)

where,
∂|g(ss)|2

∂ϕn
= g(ss)

∂g∗(ss)
∂ϕn

+ g∗(ss)
∂g(ss)

∂ϕn

= 2Re
(

g∗(ss)
∂g(ss)

∂ϕn

) (24)

∂g(ss)
∂ϕn

= jw∗n · (wens(xn) + vn)ss · ejϕn (25)

(
∂|g(ss)|2

∂ϕn

)2
=
(

g(ss) ∂g∗(ss)
∂ϕn

+ g∗(ss) ∂g(ss)
∂ϕn

)2

= 2Re
((

g∗(ss) ∂g(ss)
∂ϕn

)2
)
+ 2|g(ss)|2

∣∣∣ ∂g(ss)
∂ϕn

∣∣∣2 (26)

∂2|g(ss)|2
∂ϕ2

n
= 2

∣∣∣∣∂g(ss)
∂ϕn

∣∣∣∣2 + 2Re
(

g∗(ss)
∂2g(ss)

∂ϕ2
n

)
(27)

∂2g(ss)
∂ϕ2

n
= −w∗n · (wens(xn) + vn)ss · ejϕn (28)

where, Re(·) represents the real part operation.
In practical cases, the phase errors in signals received by different array elements

are relatively independent from each other [26]. Therefore, the phase error of each array
element is searched separately, and in Formula (23), only the diagonal elements of the

Hessian, which is also the second derivative ∂2Eg

∂ϕ2
n

, of the entropy with respect to phase error

are derived, while the off-diagonal elements ∂2Eg
∂ϕn∂ϕm

, n �= m are ignored.
By taking Equations (24) and (25) into Equation (22), the analytical formula of the first

derivative is obtained

∂Eg

∂ϕn
= − 2

Qg

SS

∑
ss=1

(
1 + ln

|g(ss)|2
Qg

)
· Re

(
j · g∗(ss) · w∗n · (wens(xn) + vn)ss · ejϕn

)
(29)

By taking Equation (24) to Equation (28) into Equation (23), the analytical formula of
the first derivative is obtained

()
() ()()() () ()()

() ()() () ()()()

ϕ ϕ

ϕ ϕ
ϕ =

⋅ + + +
∂

= −
∂

+ + ⋅ + − +

2 22j j* * *
2

2

22
21 j j* * *

1 Re

2

1 ln Re

n n

n n

n n n n

n n n n

n en n enss ss
SS

g

ssgn
n en n enss ss

g

x x

x x

g ss w w s v e g ss w w s v e
g ssE

Q g ss
w w s v e g ss w w s v e

Q

(30)

After performing phase error calibration for Equation (16), the beamforming with
error calibration is

Ỹ = WH
c �WHX̂ =

N

∑
n=1

w∗cn · w∗n · (wens(xn) + vn) (31)

171

Mathematics 2022, 10, 3256

where,� represents the Hadamard product of the matrix, and Wc =
[
wc1 wc2 . . . wcN

]T
=
[
e−jϕ̂1 e−jϕ̂2 . . . e−jϕ̂N

]T.

3.2. Initial Value Estimation of Phase Error Based on PG

According to the principle of Newton’s maximum entropy algorithm, the selection of
the initial value of the phase error will directly affect the iteration efficiency. If the initial
value of the phase error is randomly selected, such as directly setting the initial value of
phase error to zero, which is the N-ME algorithm, it may not only greatly slow down the
convergence speed of the algorithm, but also make the algorithm fall into the local optimal
solution. Therefore, a method based on a reference source to select the initial value of the
phase error is proposed to improve the N-ME algorithm.

When there are noises and array position errors, after weighting the received signals,
the initial received signals of the array without phase error calibration can be written as

() () ()

S S S

θ
ϕ

θ
ϕ

θ
ϕ

θθ θ−− − −− ⋅ + − ⋅ + ⋅ +

= =

= ⋅ ⋅ ⋅

2 2 2
2 2 2

1 1 020 2 0
1 2

T
cos co

T*
1 2

j j j
jj j* * *

1 2
2

s cossin sin sin
2 2

ˆ ...

N N
N

N

k k k

N

xx x x x x
R R Rw e e w e eA eA eAw

S W X

ρ

= =

ϕ = = ϕ

ρ

= =

ϕ = = ϕ

(32)

where, [·]∗ represents conjugation, Sn, n = 1, · · · , N represents the initial output signal of
the nth array element, and ϕ

(0)
n , n = 1, · · · , N represents the initial phase error of the nth

array element caused by noise and array position error.
Ideally, after weighting the received signals, the phase error caused by different

distances is fully compensated, and the PG between the output signals of the array elements
is constant. For discrete sequences, the phase difference between the output signals of
adjacent array elements is the PG. We define the correlation sequence of the array as

ρ =
[
ρ1 ρ2 · · · ρN−1

]T
=
[
S1 · S2 S2 · S3 · · · SN−1 · SN

]T (33)

The PG between adjacent elements is estimated as

Δϕ(0) =
[
Δϕ

(0)
1 Δϕ

(0)
2 · · · Δϕ

(0)
N−1

]T
= arg(ρ) (34)

By taking the phase of the first array element as a reference, the initial value of phase
error to be compensated for each array element is estimated by calculating the cumulative
sum between adjacent array elements. There is

ϕ(0) =
[

ϕ
(0)
1 ϕ

(0)
2 · · · ϕ

(0)
N

]T
=
[
0 cusum

(
Δϕ(0)

)]T
(35)

where, cusum(·) represents the cumulative sum.
The IN-ME phase error compensation algorithm, based on the reference source, is

shown in Algorithm 1.

172

Mathematics 2022, 10, 3256

Algorithm 1 The IN-ME phase error compensation algorithm based on reference source.

Input: received signals of array X̂, reference source P(xP, yP)
Output: beamform after phase error calibration Ỹ

Step 1: Calculate weighted signal, weights W =
[
w1 w2 . . . wN

]T
, and weighted signal

S = W∗ � X̂;

Step 2: Calculate the correlation sequence of the array, ρ =
[
S1 · S2 S2 · S3 . . . SN−1 · SN

]T
;

Step 3: Estimate initial value of phase error based on PG:
1. Estimate the PG between adjacent elements,

Δϕ(0) =

[
Δϕ

(0)
1 Δϕ

(0)
2 · · · Δϕ

(0)
N−1

]T
= arg(ρ);

2. Estimate initial value of phase error,

ϕ(0) =

[
ϕ
(0)
1 ϕ

(0)
2 . . . ϕ

(0)
N

]T
=

[
0 cusum

(
Δϕ(0)

)]T
;

Step 4: Improved Newton Maximum Entropy Algorithm:
1. Calculate the array’s synthetic signal at the reference source,

g(ss) =
N
∑

n=1
w∗n · (s(x̂n) + vn)ss · ejϕn ;

2. Form the entropy objective function, Eg = − 1
Qg

SS
∑

ss=1
|g(ss)|2 ln |g(ss)|2

Qg
;

3. Calculate the first and second derivatives of Eg to ϕn,
∂Eg
∂ϕn

= − 2
Qg

SS
∑

ss=1

(
1 + ln |g(ss)|2

Qg

)
· Re

(
j · g∗(ss) · w∗n · (wens(xn) + vn)ss · ejϕn

)
,

∂2Eg

∂ϕ2
n
= − 2

Qg

SS
∑

ss=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
|g(ss)|2 ·

⎛⎜⎜⎜⎝
Re
((

jg∗(ss)w∗n(wens(xn) + vn)ssejϕn
)2
)
+

|g(ss)|2
∣∣∣jw∗n(wens(xn) + vn)ssejϕn

∣∣∣2
⎞⎟⎟⎟⎠

+

(
1 + ln |g(ss)|2

Qg

)
·

⎛⎜⎜⎝
∣∣∣jw∗n(wens(xn) + vn)ssejϕn

∣∣∣2−
Re
(

g∗(ss)w∗n(wens(xn) + vn)ssejϕn
)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

4. Use Newton iterative method for optimization, ϕ
(l+1)
n = ϕ

(l)
n −

(
∂2Eg

∂ϕ2
n

)−1 ∂Eg
∂ϕn

∣∣∣∣
ϕn=ϕ

(l)
n

;

Step 5: Beamform after error calibration, Ỹ = WH
c �WHX̂ =

N
∑

n=1
w∗cn · w∗n · (wens(xn) + vn).

4. Effectively Compensated Area

The phase error compensation based on phase error compensation function of the IN-
ME algorithm is aimed at the situation in which the expected main-lobe of beamforming is
just at the reference source P(xP, yP). When the expected main-lobe of beamforming is not
at the reference source, there is a mismatch between the phase error compensation function
and the actual phase error. Thus, it is necessary to discuss the effectively compensated area
based on the phase error compensation function of the IN-ME algorithm.

Assuming that the position errors of the array elements are independent of each other
and meet the normal distribution with the mean value of 0 and the variance of σ2, which is,
for the nth UAV element, Δxn ∼ N

(
0, σ2) and Δyn ∼ N

(
0, σ2), and the two-dimensional

joint distribution of the two also meets the normal distribution, according to the “3σ rule”,
the elements can be regarded approximately as that they are located in a circle with the
radius centered on the ideal array element position, as shown in Figure 2. When the
expected main-lobe of beamforming is at the source B(xB, yB), but the reference source of
the IN-ME algorithm is P(xP, yP), the effectively compensated area based on the phase
error compensation function of the IN-ME algorithm can be approximately solved by
geometric methods.

173

Mathematics 2022, 10, 3256

O

B

x

y

A

P

αΔ
Bα

er σ=
A

C

Figure 2. Geometric relation between the array elements, with position error and radiant source.

Obviously, when the actual position of the array element is on the circle, the phase
error is larger than when it is in the circle. Point A is set as a moving point on the circle to
represent the actual position of the nth array element. When the two sources, P(xP, yP) and
B(xB, yB), have relative phase errors |ΔϕBP| ≤ π

4 , it is considered that the compensation is
effective [27,28]. There is⎧⎨⎩

max f it = |(PA− PO)− (BA− BO)| ≤ λ
8

s.t.
x2

A + y2
A = r2

e

(36)

where, xA and yA are respectively the x axis and y axis coordinates of point A.
As shown in Figure 2, crossing point A, the plumb line AF, which is perpendicular

to PO, is made, and the point of intersection is point F. The plumb line AE, which is
perpendicular to BO, is made, and the point of intersection is point E. We let ∠AOB = αB,
∠AOP = αP, and ∠BOP = Δα. When PO � re and BO � re, the electromagnetic wave
from P(xP, yP) or B(xB, yB) to any point on the circle can be approximately simplified to
the plane wave, and we have |PA− PO| ≈ FO and |BA− BO| ≈ EO. Then Equation (36)
is approximately simplified as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max f it = |re cos(αP)− re cos(αB)| ≤ λ
8

s.t.
PO � re

BO � re
αP = αB + Δα

(37)

By using sum-to-product addition formulas, there is f it = 2re sin
(

Δα
2

)
·
∣∣∣sin

(
αB + Δα

2

)∣∣∣.
Then there is

max(f it) = 2re sin
(

Δα

2

)
, when αB + Δα

2 = π
2 + iπ, i = ±1,±2, . . . (38)

As shown in Figure 2, the perpendicular line of the Δα angular bisector which is made
through the center O of the circle intersects with the circle at A′ and C′ . Equation (38)
shows that the expected point A which can get max(fit) approximately locates at A′ or C′ ,
according to

max(f it) = 2re sin
(

Δα

2

)
≤ λ

8
(39)

174

Mathematics 2022, 10, 3256

The area of B(xB, yB) that can be compensated based on P(xP, yP) for the nth array
element can be obtained by

Δαmax = 2arcsin(λ/(16re)) (40)

After finding out the upper and lower bounds of the area of B(xB, yB) the phase error
for each array element can be effectively compensated, and the area can be divided by find-
ing the intersection of the area of all array elements. As shown in Figure 3, the connecting
line from the nth array element to P(xP, yP) is marked as line an, n = 1, 2, 3, . . . , N, which
is the angular bisector of 2Δα, and the line towards the negative angle direction is line bn,
while the line towards the positive angle direction is line cn. The intersection point of line
c1 and line bN is marked as point D. The intersection point of line c1 and line c2 is marked
as point G. The line g parallel to line cN is started from point G, and the connecting line
between G and D is marked as line e. The intersection point of bN−1 and bN is marked as
point H, and line f parallel to b1 is started from H. The connecting line between H and D
is marked as line d. Then the effectively compensated area of the array for B(xB, yB) based
on P(xP, yP) is within the area encircled by four sides of g, e, d, and f.

O x

y P

L− L

D

H

G

Na

Nb
Nc

a

b
c

d e

f g

αΔ

Figure 3. The effectively compensated area of emitter B(xB, yB).

As shown in Figure 3, the problem of finding the effectively compensated area is
transformed into the problem of finding the intersection point of the lines, and the equations
of the black line cluster an, n = 1, 2, 3, . . . , N can be expressed as

y =
yP

xP − xn
(x− xn) (41)

The equation of the green line cluster bn, n = 1, 2, 3, . . . , N can be expressed as

y = tan
(

arctan
(

yP
xP − xn

)
+ Δα

)
(x− xn) (42)

The equation of the blue line cluster cn, n = 1, 2, 3, . . . , N can be expressed as

y = tan
(

arctan
(

yP
xP − xn

)
− Δα

)
(x− xn) (43)

175

Mathematics 2022, 10, 3256

Let kan = yP
xP−xn

, kbn = tan
(

arctan
(

yP
xP−xn

)
+ Δα

)
, and kcn = tan

(
arctan

(
yP

xP−xn

)
− Δα

)
,

and coordinates of H, D and G can be obtained by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xH =
kb(N−1)x(N−1) − kbN xN

kb(N−1) − kbN
, yH = kb(N−1)kbN

x(N−1) − xN

kb(N−1) − kbN

xD =
kc1x1 − kbN xN

kc1 − kbN
, yD = kc1kbN

x1 − xN
kc1 − kbN

xG =
kc1x1 − kc2x2

kc1 − kc2
, yG = kc1kc2

x1 − x2

kc1 − kc2

(44)

The analytic expressions of the red four sides g, e, d, and f are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f : y = kb1(x− xH) + yH

d : y = kbN(x− xD) + yD

e : y = kc1(x− xD) + yD

g : y = kcN(x− xG) + yG

(45)

The area encircled by the four edges shown in Equation (45) is the effectively compen-
sated area of B(xB, yB) that can be compensated based on IN-ME algorithm.

By estimating and compensating the phase errors, the phase errors of the received
signals caused by the position of the array elements in the array are calibrated so that
the antenna array of UAVs can effectively carry out beamforming. The analysis of the
effectively compensated area based on the reference source can provide a reference for the
target area division and path planning of UAVs.

5. Simulation Analysis

5.1. IN-ME Phase Error Compensation Algorithm Based on Reference Source

We suppose that the signal frequency f0 = 300 MHz, wavelength ˘ = 1 m, number
of array elements N = 26, array aperture L = 500˘, main-lobe of beam is at known
radiant source P(xP, yP), whose polar coordinates are θP = 0

◦
or θP = 6

◦
and RP = 30 km,

the number of signal snapshots SS = 100, array element position error Δxn and Δyn are
independent of each other, and they both meet the normal distribution with a mean value of
0 and a standard deviation of 3˘, and the low SNR is−3 dB. We use the N-ME algorithm, IN-
ME algorithm, adaptive differential evolution algorithm (ADE) [29], and genetic algorithm
(GA), respectively, to estimate the phase error; the changes in the maximum entropy of
the array signal synthetic power, along with the number of iterations of the algorithms,
are shown in Figure 4. The reason why we adopt ADE and GA is because they are both
artificial intelligence algorithms, which are different from our algorithm and are widely
used in solving multi-objective search problems and beamforming [29–33]. The objective
function of both ADE and GA is the entropy objective function, as shown in Formula (19).
The parameters of ADE are that the population number of the genetic algorithm is 100, the
mutation rate is 0.5, and the crossover probability is 0.9. The parameters of GA are that
the hybridization rate is 0.7, the mutation rate is 0.05, and the “roulette wheel” selection is
used. The elitist retention strategy is adopted. It is worth noting that all of our simulation
tests are respectively based on the average of 1000 Monte Carlo tests.

As shown in Figure 4, the convergence rates of ADE and GA are slower than those
of N-ME and IN-ME, and within 50 iterations, the entropy value of ADE and GA cannot
reach the same high rate as those reached by N-ME or IN-ME, which shows that ADE
and GA are inferior to N-ME and IN-ME, and this is because the search direction of ADE
and GA is aimless, while N-ME and IN-ME search along the gradient descent direction.
Compared with IN-ME, the N-ME algorithm will require more iterations and a longer
period to converge, and will easily fall into local optimization, eventually reaching a smaller
entropy value. Compared with the N-ME algorithm, the IN-ME algorithm proposed in

176

Mathematics 2022, 10, 3256

this paper makes the entropy objective function of the algorithm converge faster and
reach a larger entropy value, which verifies the effectiveness of IN-ME. Because of the
adverse performance of ADE and GA, N-ME and IN-ME are used to form beams and make
comparisons. After phase error compensation, when θP = 0

◦
, beamforming is shown in

Figure 5a. When the beam is scanning and θP = 6
◦
, the compensation effect is shown in

Figure 5b.

(a) (b)

Figure 4. Comparison of different algorithms. (a) θP = 0
◦
; (b) θP = 6

◦
.

(a) (b)

Figure 5. Comparison of the beam forming effect after phase compensation. (a) θP = 0
◦
; (b) θP = 6

◦
.

As shown in Figure 5, whether beam scans or not, beams cannot be formed because of
the uncompensated phase error; the sidelobe level of the N-ME algorithm is approximately
−9.5 dB, and the sidelobe level of IN-ME algorithm is approximately −12 dB, which means
that the beamforming algorithm proposed in this paper can better compensate for the phase
error of array elements and obtain a lower sidelobe level.

In order to compare the ideal beamforming (IB) with noise, phase gradient beamform-
ing (PGB), the N-ME beamforming algorithm, and the IN-ME beamforming algorithm
in different SNR backgrounds, by taking beamforming without scanning as an example,
scenarios in which SNR changes from −12 dB to 9 dB are simulated, and the beamforming
results are shown in Figure 6.

As shown in Figure 6, with the SNR changing from −12 dB to 9 dB, both the N-ME
and IN-ME algorithms can effectively form a beam pattern. When the SNR is low, using
the phase error estimated by PG information to compensate the array cannot effectively
form a beam pattern, but with increasing SNR, the beam formed by PG gradually improves,
compared to the beam formed by the N-ME. The IN-ME beamforming algorithm proposed in
this paper can continuously remain nearly the same as ideal beamforming with noise; when
the SNR is low, it performs better than PGB, and when SNR is high, it performs better than
the N-ME beamforming algorithm, which shows the advantages of the IN-ME algorithm.

177

Mathematics 2022, 10, 3256

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Beamforming contrast of two algorithms when SNR changes. (a) SNR = −12 dB;
(b) SNR = −9 dB; (c) SNR = −6 dB; (d) SNR = −3 dB; (e) SNR = 0 dB; (f) SNR = 3 dB; (g) SNR = 6 dB;
(h) SNR = 9 dB.

5.2. Effectively Compensated Area

We assume that the position errors corresponding to the phase errors Δxr and Δyr
are independent of each other and meet the normal distribution of 0 mean value and

σr = λ
2 , which is Δxr ∼ N

(
0,
(

λ
2

)2
)

and Δyr ∼ N
(

0,
(

λ
2

)2
)

. According to the “3σ

rule”, we can get re = 1.5λ, and Δα ≈ 4.77
◦

from Equation (40). The area that can be
effectively compensated by each array element is within the area whose angular bisector is
the line from the known radiant source P(xP, yP) shown as red * to the ideal position of
the array element, and the angular area is between 2Δα = 9.55

◦
, as shown in Figure 3. As

shown in Figure 2, we set θP = 0
◦

or θP = 6
◦
, OP ≡ 30 km, and ∠POB ≡ Δα = 4.77

◦
or

∠POB ≡ −Δα = −4.77
◦
. According to Equation (36) through Equation (45), the effectively

compensated area and the corresponding dividing points D, H, and G are shown as red * in
Figure 7.

(a) (b)

Figure 7. Effectively compensated area. (a) θP = 0
◦
; (b) θP = 6

◦
.

According to Figure 7, we see that when the radiant source is located on the vertical
line in the array, the effectively compensated area is greater than when it is located at

178

Mathematics 2022, 10, 3256

a certain angle relative to the vertical line of the array. In order to verify the effectively
compensated area shown in Figure 7, taking Figure 7a as an example, let the radiant source
M be a moving source, whose coordinates are yM ≡ yH and xM = −5 km : 0.01 km : 5 km,
the main-lobe is expected to point to the direction of the radiant source M, and the phase
calibration function based on the IN-ME algorithm is used to compensate the beamforming.
The movement track of the radiant source M is shown by the thick solid green line in
Figure 8a. The power value change in the direction of the radiant source M is calculated,
which is in the direction of the main-lobe, and the boundary points H, G, and xP of P(xP, yP)
are marked, as shown in Figure 8b.

(a) (b)

Figure 8. Change of main-lobe power within the effectively compensated area; (a) moving radiant
source M trajectory; (b) variation of main-lobe power value with xM.

As shown in Figure 8, due to the influence of noise, when yM ≡ yH , the power value
in the main-lobe direction, where the radiant source M is located, fluctuates, but changes
regularly as a whole with the change of xM. When xM ≤ xH ∪ xM ≥ xG, the radiant
source M is outside the effectively compensated area, and the power value in the main-lobe
direction decreases by more than 3 dB, which shows that the compensation is invalid.
When xH ≤ xM ≤ xG, the radiant source M is within the effectively compensated area,
and the power value in the main-lobe direction drops within 3 dB, which shows that the
compensation is effective. The closer xM is to xP, the greater the power value is in the
main-lobe direction, which means the better the compensation is.

Similarly, the main-lobe power change within the effectively compensated area during
beam scanning is simulated in Figure 9.

(a) (b)

Figure 9. Change of main-lobe power within the effectively compensated area using beam scanning;
(a) moving radiant source M trajectory; (b) variation of main-lobe power value with xM.

179

Mathematics 2022, 10, 3256

A conclusion similar to that in Figure 8 is obtained from Figure 9. When the radiant
source M is outside the effectively compensated area, the power value in the main-lobe
direction decreases by more than 1 dB, which is considered that the compensation is
noneffective. When the radiant source M is within the effectively compensated area and
the power value in the main-lobe direction drops within 1.5 dB, which is considered that
the compensation is effective. The closer xM is to xP, the greater the power value is in the
main-lobe direction, which means the better the compensation is.

All in all, as can be seen from Figures 8b and 9b, the method proposed in this paper
divides the area into a subset of the area with the power value in the main-lobe direction
decreasing by 3 dB as a boundary value, ensuring the effectiveness of the division area for
compensation. This effectively compensated area is related to the selection of the effective
standard for phase compensation in Equation (36).

6. Conclusions

In order to solve the problems of UAV near-field beamforming, UAV position error
compensation, and the effectively compensated area of compensation, this paper firstly
constructs a near-field array beamforming model based on element position error, and
approximately simplifies the model using the Taylor expansion of the near-field signal
phase difference function. Moreover, an IN-ME algorithm is proposed to estimate and
compensate for the phase error. Based on the known reference source signal, the initial
value of the phase error is estimated through the PG information of the array’s received
signal, and then the array signal entropy objective function is established to iteratively
optimize the phase error value using the Newton iteration method, and the beam pattern
is formed after the phase error compensation. Thirdly, when the beam scanning leads
to the phase compensation function mismatch, based on the phase error compensation
function of the IN-ME algorithm, the effectively compensated area is further divided,
which lays a foundation for the subsequent area region division and UAV path planning.
Finally, the validity of the conclusion is verified by simulation. By using the IN-ME
algorithm proposed in this paper, the influence of a single UAV’s position error on array
beamforming is effectively suppressed, and the effectively compensated area is divided
because of phase compensation function mismatch, which provides a theoretical basis for
the UAV beamforming application in wireless communication, electronic reconnaissance,
and jamming. As the signal wavelength becomes shorter, the adverse influence of the
UAV’s position error increases, and the beam pattern will deteriorate sharply, which is
worthy of further research.

Author Contributions: Conceptualization, S.P., G.W., Y.Z., G.Y. and Y.L.; data curation, Y.Z. and G.W.;
formal analysis, Y.Z. and G.W.; funding support, Y.L.; writing—original draft, Y.Z.; writing—review
and editing, S.P., G.W., G.Y. and Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Military Scientific and Technological Commission, and the
Airforce of the People’s Liberation Army, Government of China, under grant number 21KJ3C1-0090R
and PGGC-2021-003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

180

Mathematics 2022, 10, 3256

References

1. Silvus to Develop DARPA Distributed Beamforming Technology. Available online: https://www.unmannedsystemstechnology.
com/2021/03/silvus-to-develop-distributed-beamforming-technology-for-darpa/ (accessed on 19 March 2021).

2. Wang, Y.L.; Chen, H.; Peng, Y.; Wan, Q. Spatial Spectrum Estimation Theory and Algorithm; Tsinghua University Press: Beijing,
China, 2004; pp. 416–417.

3. Shu, R.; Xu, Z. Lidar Imaging Principle and Motion Error Compensation Method; Science Press: Beijing, China, 2014; pp. 28–32.
4. Feng, F.Y.P.; Rihan, M.; Huang, L. Positional Perturbations Analysis for Micro-UAV Array With Relative Position-Based Formation.

IEEE Commun. Lett. 2021, 25, 2918–2922. [CrossRef]
5. Umeyama, A.Y.; Salazar-Cerreno, J.L.; Fulton, C.J. UAV-Based Far-Field Antenna Pattern Measurement Method for Polarimetric

Weather Radars: Simulation and Error Analysis. IEEE Access 2020, 8, 191124–191137. [CrossRef]
6. Wang, D.; Zhang, P.; Yang, Z.; Wei, F.; Wang, C. A Novel Estimator for TDOA and FDOA Positioning of Multiple Disjoint Sources

in the Presence of Calibration Emitters. IEEE Access 2020, 8, 1613–1643. [CrossRef]
7. Ni, M.; Chen, H.; Cheng, Y.; Ni, L.; Wang, X. Sensor Position Errors Calibration Algorithm of Near-field Source Based on

Fourth-order Cumulant. In Proceedings of the IEEE International Conference on Signal, Information and Data Processing,
Chongqing, China, 11–13 December 2019; pp. 1–5. [CrossRef]

8. Sippel, E.; Lipka, M.; Geiß, J.; Hehn, M.; Vossiek, M. In-Situ Calibration of Antenna Arrays Within Wireless Locating Systems.
IEEE Trans. Antennas Propag. 2020, 68, 2832–2841. [CrossRef]

9. Ahmed, M.M.; Ho, D.K.C.; Wang, G. Localization of a Moving Source by Frequency Measurements. IEEE Trans. Signal Process.
2020, 68, 4839–4854. [CrossRef]

10. Shi, S.; Li, C.; Hu, J.; Zhang, X.; Fang, G. Study of Phase Error Reconstruction and Motion Compensation for Terahertz SAR With
Sparsity-Promoting Parameter Estimation. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 122–134. [CrossRef]

11. Yang, C.; Zheng, Z.; Wang, W.-Q. Calibrating Nonuniform Linear Arrays With Model Errors Using a Source at Unknown Location.
IEEE Commun. Lett. 2020, 24, 2917–2921. [CrossRef]

12. Wei, T.; Liao, B.; Huang, H.; Quan, Z. Online Mutual Coupling Calibration Using a Signal Source at Unknown Location. In
Proceedings of the IEEE the 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 8–11 July 2018;
pp. 189–193.

13. Zhou, L.; Yu, H.; Lan, Y. Deep Convolutional Neural Network-Based Robust PG Estimation for Two-Dimensional Phase
Unwrapping Using SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4653–4665. [CrossRef]

14. Li, Y.; O’Young, S. Kalman Filter Disciplined PG Autofocus for Stripmap SAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6298–6308.
[CrossRef]

15. Li, Q.; Liu, W.; Huang, L.; Sun, W.; Zhang, P. An Undersampled Phase Retrieval Algorithm via Gradient Iteration. In Proceedings
of the IEEE the 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 8–11 July 2018; pp. 228–231.

16. Zou, H.; Zhong, L.; Li, J.; Sun, Z.; Liu, Y.; Ning, Q.; Lu, X. Phase Extraction Algorithm Based on the Spatial Carrier-Frequency
Phase-Shifting Gradient. IEEE Photonics J. 2019, 11, 1–7. [CrossRef]

17. Kumar, B.; Kumar, A.; Bahl, R. Performance Analysis of Phase and Amplitude Gradient Method for DoA Estimation using
Underwater Acoustic Vector Sensor. In Proceedings of the 2019 IEEE Underwater Technology, Kaohsiung, Taiwan, 16–19 April
2019; IEEE: Taiwan, China, 2019; pp. 1–4.

18. Shi, S.; Li, C.; Fang, G.; Zhang, X. A THz SAR Autofocus Algorithm Based on Minimum-Entropy Criterion. In Proceedings
of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves, Paris, France, 1–6 September 2019; pp. 1–2.
[CrossRef]

19. Li, G.; Fang, S.; Han, B.; Zhang, Z.; Hong, W.; Wu, Y. Compensation of Phase Errors for Spotlight SAR With Discrete Azimuth
Beam Steering Based on Entropy Minimization. IEEE Geosci. Remote Sens. Lett. 2021, 18, 841–845. [CrossRef]

20. Li, J.; Ye, Q.; Guo, J.; Min, R.; Li, Y. Motion Compensation Algorithm Based on Entropy-Minimization for Terahertz SAR. In
Proceedings of the 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies, Lancaster, UK, 13–15
September 2021; pp. 1–3.

21. Zhang, S.; Liu, Y.; Li, X.; Bi, G. Joint Sparse Aperture ISAR Autofocusing and Scaling via Modified Newton Method-Based
Variational Bayesian Inference. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4857–4869. [CrossRef]

22. Fisher, E.; Rafaely, B. Near-Field Spherical Microphone Array Processing With Radial Filtering. IEEE Trans. Audio Speech Lang.
Process. 2011, 19, 256–265. [CrossRef]

23. Liu, R.; Wu, K. Antenna Array for Amplitude and Phase Specified Near-Field Multifocus. IEEE Trans. Antennas Propag. 2019, 67,
3140–3150. [CrossRef]

24. Spivak, M. Calculus, 3rd ed.; Perish Inc.: Houston, TX, USA, 1967; pp. 405–411.
25. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 1999; pp. 15–18.
26. Zhang, S.; Liu, Y.; Li, X. Fast Entropy Minimization Based Autofocusing Technique for ISAR Imaging. IEEE Trans. Signal Process.

2015, 63, 3425–3434. [CrossRef]
27. Van Tree, H.L. Optimum Array Processing; John Wiley & Sons, Inc.: New York, NY, USA, 2002; pp. 120–126.
28. Johnson, D.H.; Dudgon, D.E. Array Signal Processing: Concepts and Techniques; PTR Prentice Hall: Upper Saddle River, NJ, USA,

1993; pp. 124–182.

181

Mathematics 2022, 10, 3256

29. Zhang, Y.N.; Yu, G.W.; Peng, S.R.; Leng, Y.; Wang, G.X. Antenna Beam Optimization for Near-field Super-sparse Array Based on
UAVs. In Proceedings of the 5th International Conference on Electronic Information Technology and Computer Engineering
(EITCE), Xiamen, China, 22–24 October 2021; pp. 1541–1548.

30. Jiang, Z.J.; Zhao, S.; Chen, Y.; Cui, T.J. Beamforming Optimization for Time-Modulated Circular-Aperture Grid Array With DE
Algorithm. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2434–2438. [CrossRef]

31. Pradhan, D.; Wang, S.; Ali, S.; Yue, T.; Liaaen, M. CBGA-ES+: A Cluster-Based Genetic Algorithm with Non-Dominated Elitist
Selection for Supporting Multi-Objective Test Optimization. IEEE Trans. Softw. Eng. 2021, 47, 86–107. [CrossRef]

32. Dadallage, S.; Yi, C.; Cai, J. Joint Beamforming, Power, and Channel Allocation in Multiuser and Multichannel Underlay MISO
Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2016, 65, 3349–3359. [CrossRef]

33. Souto, V.D.P.; Souza, R.D.; Uchôa-Filho, B.F.; Li, Y. A Novel Efficient Initial Access Method for 5G Millimeter Wave Communica-
tions Using Genetic Algorithm. IEEE Trans. Veh. Technol. 2019, 68, 9908–9919. [CrossRef]

182

Citation: Ramalingam, R.;

Karunanidy, D.; Alshamrani, S.S.;

Rashid, M.; Mathumohan, S.; Dumka,

A. Oppositional Pigeon-Inspired

Optimizer for Solving the

Non-Convex Economic Load

Dispatch Problem in Power Systems.

Mathematics 2022, 10, 3315. https://

doi.org/10.3390/math10183315

Academic Editor: Jian Dong

Received: 29 July 2022

Accepted: 9 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Oppositional Pigeon-Inspired Optimizer for Solving the
Non-Convex Economic Load Dispatch Problem in Power Systems

Rajakumar Ramalingam 1, Dinesh Karunanidy 1, Sultan S. Alshamrani 2, Mamoon Rashid 3,*,

Swamidoss Mathumohan 4 and Ankur Dumka 5,6

1 Department of Computer Science and Technology, Madanapalle Institute of Technology & Science,
Madanapalle 517325, Andhra Pradesh, India

2 Department of Information Technology, College of Computers and Information Technology,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3 Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University,
Pune 411048, Maharashtra, India

4 Department of CSE, Unnamalai Institute of Technology, Kovilpatti 628502, Tamil Nadu, India
5 Department of Computer Science and Engineering, Women Institute of Technology,

Dehradun 248007, Uttarakhand, India
6 Department of Computer Science and Engineering, Graphic Era Deemed to be University,

Dehradun 248007, Uttarakhand, India
* Correspondence: mamoon.rashid@vupune.ac.in; Tel.: +91-7814346505

Abstract: Economic Load Dispatch (ELD) belongs to a non-convex optimization problem that aims
to reduce total power generation cost by satisfying demand constraints. However, solving the ELD
problem is a challenging task, because of its parity and disparity constraints. The Pigeon-Inspired
Optimizer (PIO) is a recently proposed optimization algorithm, which belongs to the family of
swarm intelligence algorithms. The PIO algorithm has the benefit of conceptual simplicity, and
provides better outcomes for various real-world problems. However, this algorithm has the drawback
of premature convergence and local stagnation. Therefore, we propose an Oppositional Pigeon-
Inspired Optimizer (OPIO) algorithm—to overcome these deficiencies. The proposed algorithm
employs Oppositional-Based Learning (OBL) to enhance the quality of the individual, by exploring
the global search space. The proposed algorithm would be used to determine the load demand of a
power system, by sustaining the various equality and inequality constraints, to diminish the overall
generation cost. In this work, the OPIO algorithm was applied to solve the ELD problem of small-
(13-unit, 40-unit), medium- (140-unit, 160-unit) and large-scale (320-unit, 640-unit) test systems. The
experimental results of the proposed OPIO algorithm demonstrate its efficiency over the conventional
PIO algorithm, and other state-of-the-art approaches in the literature. The comparative results
demonstrate that the proposed algorithm provides better results—in terms of improved accuracy,
higher convergence rate, less computation time, and reduced fuel cost—than the other approaches.

Keywords: economic load dispatch; pigeon-inspired optimizer; oppositional-based learning;
swarm intelligence algorithm; oppositional-based pigeon-inspired optimizer

MSC: 68W50; 60G05; 60G51; 90C27

1. Introduction

With the rapid growth in technologies, ELD is considered one of the foremost chal-
lenging optimization problems in power systems. The main motive for addressing the
ELD problem is to reduce the cost of power generation, by sustaining the different con-
straints involved in the generation units [1]. Several researchers have applied mathematical
models, knowledge discovery and optimization techniques to resolve the ELD problem.
The standard techniques, like lambda-generation techniques, and base-point techniques
from [2], provide optimal solutions, by incorporating the incremental cost curves of linear

Mathematics 2022, 10, 3315. https://doi.org/10.3390/math10183315 https://www.mdpi.com/journal/mathematics
183

Mathematics 2022, 10, 3315

functions. However, these methods have failed to solve highly non-linear functions, and
provide unsatisfactory solutions which result in huge losses in power generation costs.
The non-smooth functionalities of generating units contain various features, like prohib-
ited zones, different fuel options, value-point effects, ramp-rate limits and a start-up cost
function which converts linear into non-linear characteristics [3]. Owing to the large-scale
generating units, conventional methods have provided unreliable solutions, and have
taken a lot of computational time to solve ELD problems. In later studies, dynamic pro-
gramming techniques [4] have been used for ELD problems, but these have required high
computational efforts to solve large-scale generating units.

In recent studies, many researchers have utilized various optimization algorithms to
solve non-convex ELD problems with only value-point effects, viz., Particle Swarm Op-
timization with Sequential Quadratic Programming (PSO-SQP) [5], Genetic Algorithm
(GA) [6], Evolutionary Programming (EP) [7], Improved Group Search Optimization
(IGSO) [8], Incremental Artificial Bee Colony with Local Search (IABC-LS) [9], Hybrid Grey
Wolf Optimizer (HGWO) [10], Self-Organizing Hierarchical Particle Swarm Optimization
(SOH-PSO) [11], Genetic Algorithm with Pattern Search and SQP (GA-PS-SQP) [12], Modi-
fied Shuffled Frog-Leaping Algorithm (MSFLA) [13], Firefly Optimization (FA) [14], Chaotic
Self-Adaptive Particle Swarm Optimization Algorithm (CSAPSO) [15], Combined Social
Engineering Particle Swarm Optimization (SEPSO) [16], Starling Murmuration Optimizer
(SMO) [17], Improved Moth-Flame optimization (IMFO) [18] and Diversity-Maintained
Differential Evolution (DMDE) [19]. Among these search techniques, GA is considered
to be the least efficient technique, because its optimal individuals are generally trapped
in intensification rather than diversification, and it also suffers from the determination of
control parameters, which results in excessive simulation time. Several new techniques,
like IGSO, MSFLA, FA, HGWO, SOH-PSO, GA-PS-SQP and CSAPSO, have virtuoso compe-
tence in finding optimal solutions for non-convex generating units; however, the simulation
time of the system is quite long; specifically, for CSAPSO, several iterations are carried
out to specify the control parameter values; this limitation results in the technique having
excessive execution time, and a large number of runs.

In addition, some sets of optimization algorithms are considered to solve non-convex
ELD problems with only multi-fuel possibilities. These algorithms include Integer Coded
Differential Evolution-Dynamic Programming (ICDEDP) [20], Chaotic Ant Swarm Opti-
mization (CASO) [21], Bacteria Foraging Optimization (BFO) [22], Ant Colony Optimization
(ACO) [23], Biogeography-Based Optimization (BBO) [24] and Krill Herd (KH) [25]. Among
these techniques, ACO is the technique initially utilized for solving optimization problems
in the engineering domain, specifically in path-identifying and parameter-tuning in electri-
cal engineering. Although ACO and CASO have the cap potential of leading complicated
constraints and non-convex goal features, in addition to their simplicity of simulation for
optimization problems, they nevertheless suffer from numerous negative aspects, together
with low-quality optimization individual and lengthy simulation time. The modified DE
method, namely the ICDEDP technique, can be considered a more efficient technique than
the other techniques, because it can obtain a good-quality solution within a short span of
simulation; this DE technique has been globally utilized in power system optimization
problems. In addition, other techniques—such as BBO, KH and BFO—have good capability
in determining the optimal solutions for non-convex problems; however, the simulation
times of these techniques are longer, due to the vast number of control parameters.

In contrast to the aforementioned sets, the techniques in the set of neural networks
including the Adaptive Hopfield Neural Network (AHNN) [26], the Enhanced Augmented
Lagrange Hopfield Network (EALHN) [27] and the Augmented Lagrange Hopfield Net-
work (ALHN) [28] can impact on large-scale problems, but fail to deal with the ELD
problem with a non-convex objective function. In EALHN and ALHN, the Lagrange func-
tion is merged with the Hopfield network to enhance efficacy. This process will help the
techniques to converge towards the optimal more smoothly, and to obtain a good-quality

184

Mathematics 2022, 10, 3315

solution. However, in real-time power systems, both value points and fuel points need to
be considered, for accurate and practical ELD solutions.

In some studies, both the constraints of value points and different fuel possibilities
are considered for realistic ELD solutions comprising the Improved Particle Swarm Op-
timization (IPSO) [29], the Crisscross Optimization Algorithm (COA) [30], Differential
Evolution and Particle Swarm Optimization (DEPSO) [31], the Oppositional Grey Wolf Op-
timization algorithm (OGWO) [32], Estimation of Distribution and Differential Evolution
Cooperation (ED-DE) [33], the Real-Coded Chemical Reaction Algorithm (RCCRO) [34],
Synergic Predator–Prey Optimization (SPPO) [35], the One Rank Cuckoo Search Algorithm
(ORCSA) [36], the Real-Coded Genetic Algorithm (RCGA) [37] and the Improved Genetic
Algorithm [38]. By utilizing the pros of each search technique, these improved novel tech-
niques have adequate capability in finding good-quality solutions with better simulation
time. However, the improved technique can lead to more complications with vast control
parameters, and it can suffer from inappropriate selection of these parameters; in addition,
its performance is degraded when applied to large-scale power systems entailing n number
of generating units with various fuel possibilities and value-point effects.

A large portion of the above studies have focused on the adjustments of stochastic
search techniques. Nonetheless, they have, once in a while, given consideration to the
method of handling constraints. In reality, dealing with the constraints of ELD problems is
significant when working with stochastic search techniques, for enhancing the optimization
results. Our study aimed to fill the research gap, by contributing more towards addressing
the constraints of ELD problems. Our contributions were twofold: initially, an enhanced
PIO algorithm was introduced, to enrich the performance of the standard PIO algorithm;
subsequently, a constraint-handling technique was utilized, to appropriately handle the
equality constraints.

The Pigeon-Inspired Optimizer algorithm was inspired by the homing bias of pigeons,
and was proposed by Duan and Qiao in 2014. This optimization algorithm was used
because of its optimum performance at high merging speeds [39]. However, the PIO algo-
rithm suffers in regard to global exploration and premature convergence. In addition, its
performance is degraded when applied to high-dimensional problems. This problem can
be overcome by using the Opposition-Based Learning technique. The OBL technique is
widely used by researchers to boost convergence speed, by exploring the search space. In
this work, a new metaheuristic algorithm—namely, the Oppositional Pigeon-Inspired Opti-
mizer technique (OPIO)—was utilized, to solve non-convex ELD problems with various
fuel possibilities and value-point effects.

The major contribution of this work is illustrated as follows:
(1) The proposed OPIO algorithm solves the non-convex ELD problem with multi-fuel

possibilities and value-point effects, through two operators: namely, map and compass
operator, and landmark operator. These operators enhance the local search ability by
adopting the search boundary limits. Later, the Opposition-Based Learning strategy helps to
explore the search space, as well as to enhance the exploration ability for target search agents.
This process improves the search capability, and eradicates premature convergence, though
the large-scale test system holds both multiple fuel possibilities and value-point effects.

(2) The proposed OPIO algorithm has a unique adjustable parameter: jump rate Jr.
Parameter Jr helps to determine the global optimal solution, by influencing the adjustable
value, within the range of 0 to 0.4. This parameter promotes the OPIO algorithm, to be
robust and adaptable in solving ELD problems with different constraints.

(3) To validate the efficiency of the proposed OPIO algorithm, we used several test
cases, which varied according to three scales: small-scale (i.e., 13, 40); medium-scale
(i.e., 140, 160); and large-scale (i.e., 320, 640) generation units. The results of the various
test cases confirmed that the proposed technique is a better potential solution than the
state-of-the-art metaheuristic algorithms in the literature. The OPIO algorithm provided
better performance in the 320- and 640-unit generation systems. This shows that the

185

Mathematics 2022, 10, 3315

formulated technique is a superior and reliable solution for large-scale ELD problems over
multiple trials.

The rest of this work is categorized as follows: Section 2 delivers the mathematical
formulation of the ELD problem, with objective functions and multiple constraints. The
proposed Oppositional Pigeon-Inspired Optimizer algorithm is presented in detail in
Section 3. In Section 4, the implementation of the OPIO algorithm, in solving the ELD
problem, is presented. Section 5 provides proposed OPIO algorithm experimentation
details, from six different test cases that varied from small-scale to large-scale systems, and
the outcomes are compared with state-of-the-art metaheuristics algorithms. The conclusion
of this work is presented in Section 6.

2. ELD Problem Formulation

The main motive of ELD is to reduce the overall power generation cost, by solving
different disparity and parity constraints, to provide optimal generation among power
producing units [32]. The objective function and the different constraints of the ELD
problem are presented in this section.

2.1. Fitness Function

The fitness function of the ELD problem is to reduce the total power production cost
by solving various constraints, and to gratify the load demand over some reasonable stage.
A quadratic function is formulated, to approximate the fuel cost of the power-producing
unit. The mathematical formulation of the power-generating unit is formulated as below:

min ∑n
j=1 Fc

(
Ψj
)

(1)

Here Fc denotes the fuel cost of the generator (in $/h); Ψj denotes the output power of
generator j (in MW); n stands for the overall power-generating unit in the power system.

In view of the value-point effects, ELD cost functions will have non-smooth points
which provide inefficient results in practical generators. To process the practical generators,
sinusoidal functions are included in the quadratic functions. The cost function, with value
points of unit j, is represented as follows:

Fc = kjΨ2
j + ljΨj + mj +

∣∣∣aj × sin
(

bj ×
(

Ψlow
j −Ψj

))∣∣∣ (2)

Here, kj, lj and mj stand for the fuel cost coefficients of generator j; aj and bj stand
for the value-point loading coefficients of generator j; Ψlow

j is the low-level range power
production of generator j.

The overall fuel cost function of n generator in real-time ELD is mathematically
formulated as follows:

min ∑n
j=1 F̂c

(
Ψj
)
= ∑n

j=1

[
kjΨ2

j + ljΨj + mj +
∣∣∣aj × sin

(
bj ×

(
Ψlow

j −Ψj

))∣∣∣] (3)

where F̂c stands for the real-time fuel cost of the generator.
To attain an accurate and more appropriate solution for the ELD problem, both various

fuel possibilities and value-point effects are added with the cost functions. Most thermal
generating units utilize multiple fuel possibilities, using the load and suitability of the
power generation units. The cost function of generating unit j, with various fuel possibilities
(q) and value-point effects, is mathematically formulated and presented as follows:

Fc
(
Ψj
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kj1
(
Ψj
)2

+ lj1
(
Ψj
)
+ mj1 +

∣∣∣aj1 × sin
(

bj1 ×
(

Ψlow
j −Ψj

))∣∣∣i f Ψlow
j ≤ Ψj ≤ Ψj1

kj2
(
Ψj
)2

+ lj2
(
Ψj
)
+ mj2 +

∣∣aj2 × sin
(
bj2 ×

(
Ψj2 −Ψj

))∣∣i f Ψj1 ≤ Ψj ≤ Ψj2

kjq
(
Ψj
)2

+ ljq
(
Ψj
)
+ mjq +

∣∣∣ajq × sin
(

bjq ×
(

Ψjq −Ψlow
j

))∣∣∣i f Ψjq ≤ Ψj ≤ Ψupper
j

(4)

186

Mathematics 2022, 10, 3315

2.2. Constraints of the ELD Problem

The fitness function in Section 2.1 is formulated with a set of constraints, which are
given below.

2.2.1. Operating Unit Limit

The power-generating unit must relay within the lower and upper boundary limits:

Ψlow
j ≤ Ψj ≤ Ψupper

j j = 1, 2, . . . , n (5)

where Ψupper
j and Ψlow

j denote the upper and lower boundary, respectively, of the output
power of the generator j.

2.2.2. Power-Stabilizing Constraints

The overall generated power should be the same as the overall losses and overall load
request of the units. This constraint is mathematically formulated as follows:

∑n
j=1 Ψj −ΨDemand −ΨLoss = 0 (6)

where ΨLoss and ΨDemand represent the overall power loss and power demand of the units.
Based on Kron’s loss technique, the transmission loss is given as follows:

ΨLoss = ∑n
j=1 ∑n

i=1 Ψjβ jiΨi + ∑n
j=1 β0jΨj + β00 (7)

where β ji represents the loss coefficient element j and i of the symmetric matrix β; β0j
denotes the loss coefficient vector of j symmetric matrix β; and β00 represents a fixed loss
coefficient concerning standard operating situations.

2.2.3. Restricted Operating Regions (RORs)

Due to oscillation or steam value process in the shaft bearing, the restricted operating
region is considered. To avoid these issues, choosing the best operating region will drasti-
cally increase the optimum economy of the generating units. The boundary constraints of
the standard operating section of generator j are formulated as follows:

Ψj ∈

⎧⎪⎨⎪⎩
Ψlow

j ≤ Ψj ≤ Ψl
j,1

Ψl
j,i−1 ≤ Ψj ≤ Ψl

j,i
Ψl

j,ni
≤ Ψj ≤ Ψupper

j

i = 2, 3, . . . , nj, j = 1, 2, . . . , n (8)

where l, u denotes the lower and upper limits of specific power generating units, and nj
determines the number of restricted regions of generating unit j.

2.2.4. Ramp-Rate (RR) Constraint

In view of the lower and upper power production of the generator, the ramp-rate limit
is considered. Each generating unit is controlled by the ramp-rate limit, which instructs
the generator to function continually for the two nearest operating regions. This ramp-rate
constraint is represented as follows:

max
(

Ψlow
j , Ψ0

j − LSLj

)
≤ Ψj ≤ min

(
Ψupper

j , Ψ0
j + USLj

)
(9)

where LSLj and USLj represent the lower and upper slope (or ramp) limit of the generating
unit j, and Ψ0

j denotes the current power generating unit j.

187

Mathematics 2022, 10, 3315

3. Preliminaries

In this section, we present three major mechanisms; firstly, the generic working process
of the Pigeon-Inspired Optimizer is presented, secondly, the core concept of the Opposition-
Based Learning technique is discussed; and, finally, the proposed methodology, with its
working process, is presented.

3.1. Overview of Pigeon-Inspired Optimizer

The Pigeon-Inspired Optimizer (PIO) belongs to the family of swarm intelligence
algorithms that were proposed by Haibin Duan and Peixin Qiao (2014) [39]. The PIO
algorithm mimics the homing behaviors of pigeons. Most researchers apply SI algorithms
to solve their domain-related NP-hard problems, in which search space is vast. SI algorithms
are inspired by the social behavior of the swarm, with intellectual learning to determine
high-quality solutions using mathematical formulations. The mathematical formulation of
the swarm includes the position and velocity of the swarm iteration by iterations.

Pigeons have the ability to explore for food over the course of long intervals. In
addition, pigeons exhibit intellectual homing behavior: for example, they carried messages
during the First and Second World Wars. The PIO algorithm works on the basis of two
unique operators, viz., map and landmark operators. This algorithm provides good
optimum performance and higher merge speed than the other state-of-the-art metaheuristic
algorithms like Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee
Colony Optimization and Differential Evolution algorithms.

3.1.1. Map and Compass Operator

Pigeons have a natural ability to perceive the orbital meadow, with the aid of a
magnetic function that enables them to map. They utilize the altitude of the sun as a
compass to fine-tune their current directions. Generally, pigeons depend less on the sun
and on magnetic particles as they near their destinations. The map and compass operator
can be mathematically formulated as follows:

Vt+1
j = Vt

j × e−ρt + rand×
(

Xg − Xt
j

)
(10)

Xt+1
j = Xt

j + Vt+1
j (11)

where Vt
j and Xt

j represent the velocity and position of the j individuals in the t iterations;
ρ denotes the map and compass factor; rand determines the uniform random variable
within [0, 1]; Xg denotes the global best individual; and Xt+1

j and Vt+1
j represent the new

position and velocity of the j individual in the next t iteration.

3.1.2. Landmark Operator

A pigeon relies on natural landmarks once it has reached its destination. However,
if the pigeon is far away from its destination, then it relies on the adjacent pigeons to
adjust its position. In this algorithm, half of the pigeon population is allowed to adjust
position, with the aid of the centered pigeons, while the pigeons comprising the other half
of the population adjust their position in accordance with the desirable destination position.
Most pigeons will not be familiar with their landmark in this view, so they will follow the
top-ranked pigeons to determine their desired destination. The half-number of pigeons
adjust their position with the following mathematical formulations:

Nt+1
P =

Nt
p

2
(12)

Xt+1
c =

∑ Xt+1
j × Fit

(
Xt+1

j

)
Np ∑ Fit

(
Xt+1

j

) (13)

188

Mathematics 2022, 10, 3315

where Nt
p represents the number of pigeons or population size in the current iteration t;

and Fit
(
Xt+1

c
)

denotes the fitness of the centered pigeons in the t + 1 iteration. The new
pigeon position is represented as:

Xt+1
j = Xt

j + rand×
(

Xt+1
c − Xt

j

)
(14)

The generic flow of the PIO algorithm is represented in Algorithm 1. In this algorithm,
the map and compass operator is given in the initial while loop, and another loop is used
to access their route and its correction in position.

Algorithm 1: Standard Pigeon-Inspired Optimizer (PIO)

Input: Number of Population Np problem space D, Map and compass factor ρ, Number of
generations ng1, ng2 where ng1 > ng2.
Output: Xg–Global best solution
1: Randomly generate the solution Xj
2: Compute the fitness of solutions (X1, X2, . . . , XNp)
3: Determine the minimal fitness solution as Xg.
4: while (ng ≥ 1) do.
5: Determine the velocity and position for each solution by Equations (10) and (11).
6: Compute fitness values of solutions (X1, X2, . . . , XNp)
7: Update global best solution Xg.
8: end while
9: while (Np ≥ 1) do
10: Sort solutions by their fitness.
11: Np = Np/2
12: Compute the desired destination by Equation (13).
13: Update the position of the solution by Equation (14).
14: Update global best solution Xg
15: end while

3.2. Opposition-Based Learning Technique

The Opposition-Based Learning technique (OBL) was introduced by Tizhoosh [40]
to enhance the convergence speed of traditional metaheuristic algorithms. This method
utilizes the valuation of a current population against its opposite population, to deter-
mine the better solution for a specific problem. The OBL method has been utilized in
different metaheuristic algorithms, to boost convergence speed [41,42]. The mathematical
formulation of the OBL is defined as follows:

Let μ(μ ∈ [p, q]) be an actual integer. The contradictory integer μ0 is formulated as:

μ0 = p + q− μ0 (15)

For d–dimensional search space, the contradictory integer μ0 is defined as:

μ0
j = pj + qj − μj (16)

where μ1, μ2, . . . , μd is a point in d-dimensional search space, i.e., μi ∈
[
pj, qj

]
;

j = {1, 2, 3, . . . , d}, and d represents the number of decision variables.
The Oppositional-Based Learning technique is generally used in two stages: firstly, in

the initialization procedure; and secondly, in generating an opposite solution, using the
jumping rate Jr. The proposed OBL algorithm is given in Algorithm 2.

189

Mathematics 2022, 10, 3315

Algorithm 2: Oppositional-Based Learning Algorithm

1: Initially the solutions are randomly initialized within the upper and lower boundary regions.
2: Determine the opposite solutions:

2.1: for i = 1:N_p
2.2: for j = 1:d
2.3: μ_(i,j)ˆ0 = p_j + q_j − μ_(i,j)
2.4: end for
2.5: end for

3: Sort the current solutions and opposite solutions in ascending order.
4: Choose the N_p the number of best candidate solutions.
5: Update the control parameters.
6: Generate the opposite solutions from current solutions using jumping rate J_r:

6.1: for j = 1:N_p
6.2: for I = 1:d
6.3: if J_r > rand
6.4: opp(j,i) = min(i) + max(i) − P(j,i);
6.5: else
6.6: opp(j,i) = P(j,i);
6.7: end
6.8: end for
6.9: end for

7: Repeat steps 3 to 6 until the termination criterion is met.

4. Oppositional Pigeon-Inspired Optimizer Algorithm (Proposed)

The proposed Oppositional Pigeon-Inspired Optimizer algorithm is discussed in this
section. The common search strategy of the proposed OPIO algorithm is like the PIO.
However, the proposed OPIO algorithm utilizes a unique methodology to explore the
search space of the pigeon, to discover the position of its hiding location. Moreover, the
modified method provides better convergence in the pigeon population, which helps
to achieve the optimal solution. As part of enhancement by the proposed method, in
every iteration, the best pigeon is selected as the target. The selected pigeon position
will be updated with the Oppositional-Based Learning, to enhance the convergence rate.
However, selecting an arbitrary pigeon, from among the population, may result in a bad-
quality landmark solution, with a large value for the fitness function (in the minimization
problem), which leads to an unsuitable end point to move. In addition, selecting a random
pigeon for the exploration phase will tend towards a bad destination, which minimizes the
convergence rate. To select the best solution among the population at each iteration is a
challenging task.

In this work, a priority-based election mechanism was introduced. This mechanism
could be utilized for the minimization problem at each iteration for the pigeon i, so that ψ of
the best pigeons in the solution set were elected. The benefit of this election mechanism was
to elect the target pigeon among the list of the best pigeons in the stack. By this process, the
pigeons could perform better in improvising their positions, by following the better target
pigeons, and this resulted in a better convergence rate for the algorithm. Nevertheless,
electing the value of ψ was significant: electing a very trivial value of ψ among the pigeons i
could lead to being stuck in the local optima. In addition, selecting a large value for ψ could
cause the bad target pigeon to be tricked. To eradicate these issues, in the initial iterations ψ
started from a large value, for better diversification, and its number was reduced according
to Equation (17); over the course of the iterations, its tendency towards the local optimum
resulted in the ψ having a small value:

ψt = round
(

ψmax −
ψmax − ψmin

Ng
× t
)

(17)

where, ψt stood for the value for selecting the best pigeon in iteration t, and ψmax and ψmin
stood for the maximum and minimum values of ψ.

190

Mathematics 2022, 10, 3315

4.1. Constraint-Handling Technique

The ELD problem is complicated to solve, when considering the constraints. In past
decades, various techniques have been adopted, to handle the constraints. The penalty
function is considered to one of the most common constraint-handling techniques: it deals
with the constraint problem by including some additional value to the objective function in
(4). This function has been broadly utilized by various researchers, because of its simplicity
and efficiency. The objective function is the minimization of the following representation:

FCN = Fc + ϕ
∣∣∣∑n

j=1 Ψj −ΨDemand −ΨLoss

∣∣∣ (18)

where FCN stands for constraint-based objective function, and ϕ stands for the penalty
coefficient of a real integer. If constraint (6) is other than zero, then the value of the second
part in Equation (17) will be other than zero too, multiplied by the penalty value ϕ, and,
finally, will be added to the fuel cost Fc. In other words, if Equation (6) does not meet the
constraint, then this implies that the solution has a large objective function, and is likely to
be rejected. On the other hand, if the solution meets the constraint (6), this implies that the
solution holds a small objective function value, and is likely to be accepted. If the ϕ value
is fixed with a large value, then the performance of the algorithm will be reduced, and this
will lead to premature convergence. In addition, fixing the small value for ϕ fails to meet
the inequality constraints.

4.2. Implementation of the OPIO Algorithm for the ELD Problem

In this section, the strategies for applying the OPIO algorithm, to solve the ELD prob-
lem, are examined. The main objective of the ELD optimization problem is to reduce the
overall power generation cost. In the ELD problem, the total power generating unit (n) is
proportional to the total decision variable of the optimization problem (d). Each position of
the pigeon is represented as each anticipated power output of the generating units. In gen-
eral, the ELD problem consists of some impartiality and disparity constraints, as discussed
in Section 2.2. Each solution in the population should satisfy the constraints. For the smooth
process of constraint handling, the value of ϕ is fixed as 100 in Equation (17) for the entire
simulation, which attains an adequate performance with the power equality constraint.

The overall computational procedures of the proposed OPIO algorithm are described
in detail as follows. In addition, the flowchart of the proposed OPIO algorithm is rep-
resented in Figure 1, and the proposed OPIO algorithm for solving the ELD problem is
represented in Algorithm 3.

Step 1: Define the initial parameters with the characteristics of the generation units: ϕ;
number of pigeons; maximum generations (ng); other data, such as Jr, ρ.

Step 2: Initially, the arbitrary values for all generating units within the lower and upper
operating boundary are generated using (5), except for the last generating unit.
The computation of the last unit of power generation is calculated using (6), and it
is validated, to ensure whether it satisfies the inequality constraints (5) or not. If
the solution satisfies the constraints, then the solution is sustained; otherwise, it is
abandoned. The pigeon position X, concerning the generating units, is initialized
as follows:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X1
...

Xi
...

XG

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X1,1 · · · X1,b · · · X1,d
...

. . .
...

. . .
...

Xi,1 · · · Xi,b · · · Xi,d
...

. . .
...

. . .
...

XNp ,1 · · · XNp ,b · · · XNp ,d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
i = 2, . . . Np; b = 1, 2, . . . , d (19)

where the component Xi,d is the power outcome of the bth unit in individual
Xi. For the OPIO algorithm, there is only one adjustable parameter: the jump-

191

Mathematics 2022, 10, 3315

ing rate Jr, which is fixed within the range of 0 to 0.4 for all test cases used in
the experimentation.

Step 3: For each pigeon in the population, the power generating unit must satisfy the
ramp-rate boundary, and not relay in the restricted operating zones. If the solution
does not meet the constraints, then power outputs should be altered near to the
boundary of the feasible solution. After processing the initialization, the main
procedure of the OPIO algorithm process is as follows:

Step 4: Determine the velocity of the pigeon, using Equation (10), and update the position
of the pigeon, using Equation (14). If the updated position of the pigeon does not
satisfy the constraints, then alter the pigeon’s position, as shown in Step 3.

Step 5: Compute the ψ factor, as in Equation (17).
Step 6: Choose the ψ of the best solutions from the population, and update the position for

the selected pigeon, using the OBL technique (Algorithm 2).
Step 7: Check this step for the pigeon i:

a. The output power of the generating units must not reside in the RORs (see (8))
or contravene the operating unit limit (see (5)).

b. The lower and upper boundary rates of each of the generating units, from
the preliminary state, should be in the satisfactory ranges, as given in (9). If
the preliminary output power of the generating units is not specified, then
the preliminary power of all power generating units should be within the
satisfactory ranges.

c. If the RORs and ramp-rate limits are contravened, adjust the power outputs
near to the feasible solution.

Step 8: Compute the overall power loss of the transmission lines for the pigeon i, as in (6).
Step 9: Compute the quality of the pigeon i, by interleaving its power outputs in the fitness

function, as in (17).
Step 10: Repeat steps 4–9, until the stop criterion is met.
Step 11: The ELD solution is the best solution in the last iteration.

Algorithm 3: Proposed OPIO algorithm for solving ELD

1: Generate the initial population.
2: Determine the preliminary parameters.
3: Arbitrarily initialize the position of the pigeon in the search boundary space.
4: Check the RR and RORs constraints.
5: While (ng ≥ 1) do

6: Determine the velocity and position of the pigeon.
7: Determine the ϕ factor.
8: Select ϕ of the best pigeons from the population.
9: Apply OBL technique, using Algorithm 2.
10: If (fit (Opp) < fit (X_(i,t))) then
11: Replace the Opp solution
12: Else

13: do nothing
14: End if

15: Check the feasibility of the new position of the pigeons.
16: Calculate the transmission loss.
17: Evaluate the fitness of the new position of the pigeons.
18: Update the global best solution.
19: End while

20: Output: Visualize the global best solution.

192

Mathematics 2022, 10, 3315

Figure 1. Flowchart of Proposed OPIO algorithm.

5. Results and Discussion

The proposed OPIO algorithm was applied to solve ELD issues. Three various test
systems with three different fuel possibilities and non-linearities, such as ramp-rate ranges,
value-point consequences and interdicted working region, were studied, to assess the
execution of the formulated OPIO method. The formulated OPIO technique was written in
MATLAB R2016a, implemented on a 2.6 GHz Intel I5 PC. The execution of the formulated
OPIO algorithm was justified by utilizing three different test systems: small- (13-unit,
40-unit), medium- (140-unit, 160-unit) and large-scale (320-unit and 640-unit). The acquired
outcomes from the formulated OPIO technique were differentiated to various state-of-the-

193

Mathematics 2022, 10, 3315

art metaheuristic techniques reported in the literature. The different test systems, with the
number of generating units and their constraints, are outlined below:

(i) Test Case 1: Small-Scale Test Systems (13-Unit and 40-unit)

a. 13-unit test case: in this test case, a 13-unit generator system, with constraints
such as different fuel costs and value-point effects, was considered. The power
load demand (PD) of the system was fixed at PD = 2520 MW [7,43];

b. 40-unit test case: this test case held a 40-unit generator system, with value-
point effects considered, and the power load demand of the system was fixed
at PD = 10,500 MW [7,43].

(ii) Test Case 2: Medium-Scale Test Systems (140-unit and 160-unit)

a. 140-unit test case: in this test case, a 140-unit generator system, with constraints
such as value-point effects, ramp-rate limits, and prohibited accomplishment
unit, was considered. The power load demand (PD) of the system was fixed at
PD = 49,342 MW [44];

b. 160-unit test case: this test case held a 160-unit generator system, with value-
point effects considered. The power load demand of the system was fixed at
PD = 43,200 MW [45].

(iii) Test Case 3: Large-Scale Test Systems (320-unit and 640-unit)

a. 320-unit test case: a large-scale system with a 320-unit generator system, with
different fuel options and value-point loading effects, was considered here.
The power load demand of the system was fixed at PD = 86,400 MW. The input
data of the 10-unit system were duplicated 32 times in this system [46].

b. 640-unit test case: a test case with a 640-unit generator system, with multiple
fuel options and value-point load effects, was considered here. The load
demand of the system was increased by up to PD = 1,72,800 MW. The input
data of the 10-unit system were replicated 64 times in this system [30].

The convergence of metaheuristic algorithms mainly relies on the possibility of a
proper value. The proposed technique may deliver a different solution when the choice of
insert value is not appropriate. To select the proper input parameters, repeated simulation
is required. For the OPIO algorithm, after a repeated number of runs, the lower and
upper jumping rates were fixed within the range of 0 to 0.4. For effective simulation,
we considered a population size of 50, and 100 was selected as the maximum number of
iterations for the test systems.

5.1. Test Case 1a: 13-Unit

In this instance, the formulated OPIO technique was tested on a small-scale 13-unit
system, which held uneven fuel cost and value-point effects. The dataset of the fuel cost
and the limit utility of numerous vigorous energy providers were taken from [43], and
the load order was fixed as 2520 MW. To examine the execution of the proposed OPIO
technique and the conventional PIO algorithm, the assumed outcomes were differentiated
from the various metaheuristic algorithms, viz., Oppositional Grey Wolf Optimization
(OGWO) [32], Improved Particle Swarm Optimization (IPSO) [29], One Rank Cuckoo
Search Algorithm (ORCSA) [36], Crisscross Optimization Algorithm (COA) [30], Real-
Coded Genetic Algorithm (RCGA) [37], Improved Genetic Algorithm (IGA) [38] and
Pigeon-Inspired Optimization (PIO) [39].

Table 1 provides the comparative results of the OPIO and PIO algorithms for active
power generators along with other techniques. As shown in Table 1, the solution provided
by the OPIO algorithm reached a fuel cost of 24512.45$/hr, which was less than all the
compared algorithms; the outcomes of the formulated techniques conveyed that it was
superior in finding the best or near-best solution. To ensure the efficacy and effectiveness
of the technique, the simulation was carried out over 100 runs, on both the proposed OPIO
algorithm and the conventional PIO algorithm, and its result is given in Table 2. As shown

194

Mathematics 2022, 10, 3315

in Table 2, the OPIO produced a better solution for 97 runs, which was far better than all
compared algorithms. The statistical outcomes conveyed that the formulated OPIO algo-
rithm delivered better results compared with various algorithms. The convergence of the
minimization fuel-cost function over the iteration cycles of the proposed OPIO algorithm
and the standard PIO algorithm were noted, and are displayed in Figure 2. Figure 2 shows
that the proposed algorithm converged faster towards the optimal solution that did not
have further changes, which validated the active constancy of the formulated technique.

Table 1. Test outcomes of various algorithms for a 13-unit system with PD = 2520 MW.

Unit OGWO IPSO COA ORCSA PIO
OPIO
(Proposed)

1 628.2948 628.1678 628.3451 628.4524 628.3124 628.5647
2 299.0451 298.8798 298.5478 298.3575 298.3567 298.9856
3 296.4501 297.6984 297.6874 297.3457 297.4254 297.6245
4 159.6421 159.2387 159.3564 159.2349 159.6548 159.7542
5 159.7154 159.1254 159.8957 159.5796 159.5347 159.6589
6 159.5484 159.3567 159.3567 159.2134 159.8975 159.3521
7 159.6879 159.8954 159.6542 159.6875 159.7543 159.1256
8 159.6877 159.6872 159.6513 159.3579 159.5421 159.2564
9 159.6542 159.9877 159.3542 159.7765 158.8578 159.3658
10 76.4854 77.6513 77.6854 77.5587 77.3567 77.6574
11 114.8742 113.3685 114.2314 114.2254 113.3687 114.8975
12 91.5874 92.6975 92.8674 92.6478 92.6898 92.8785
13 92.5412 92.3515 92.4578 92.3542 92.3277 92.8547
Fuel Cost ($/h) 24,513.4847 24,514.6875 24,512.8754 24,513.5464 24,514.5467 24,512.4578
Power loss
(MW) 40.2975 40.3051 40.3645 40.3897 40.5781 40.1584

Table 2. Comparison outcomes of different algorithms for a 13-unit system.

Algorithms Best ($/H)
Mean
($/H)

Worst
($/H)

Standard
Deviation

Successful
Runs (%)

Test time
(S)

OGWO 24,512.72 24,512.86 24,514.65 0.1031 92 5.89
IPSO 24,517.68 24,517.96 24,518.21 0.3154 84 5.98
IGA 24,516.42 24,517.76 24,519.78 NA 82 6.21
RCGA 24,514.54 24,515.87 24,517.89 0.1578 88 6.89
COA 24,512.87 24,513.65 24,515.68 0.1047 93 5.47
ORCSA 24,513.54 24,513.54 24,516.67 NA 87 8.65
PIO 24520.54 24521.75 24532.95 0.2645 79 11.00
OPIO
(Proposed) 24512.45 24512.67 24513.54 0.0875 97 5.14

5.2. Test Case 1b: 40-Unit

To access the feasibility of the proposed OPIO algorithm, another small-scale test case,
of a 40-unit power generation system along with value-point belongings, was used. The
benchmark value of the 40-unit power system was approached from [43], and its load
demand was fixed as 10,500 MW. The outputs of the power generation and fuel cost of
various algorithms like OGWO, IPSO, IGA, RCGA, COA, ORCSA, PIO and OPIO are
shown in Table 3: the best cost of the PIO and OPIO algorithms reached 136,588.57 $/h and
136,447.87$/h, respectively; it is also notable that the OPIO algorithm provided the best solu-
tion among the compared techniques, by achieving the load demand and other constraints.

195

Mathematics 2022, 10, 3315

Figure 2. Convergence results of the OPIO and PIO algorithms for a 13-unit system.

Table 3. Simulation outcomes of different algorithms for a 40-unit system with PD = 10,500 MW.

Unit OGWO IPSO COA ORCSA PIO
OPIO

(Proposed)

1 114.2743 114.2876 113.8502 110.12 111.52 114.24
2 114.4501 114.4621 114.1203 112.28 112.34 114.12
3 120.3567 120.4212 119.7458 120.23 119.28 120.31
4 183.3685 181.5412 182.4127 188.54 182.45 190.54
5 87.1256 87.3542 88.5864 85.37 87.34 97.56
6 140.3645 140.3747 140.3289 140.24 139.52 140.25
7 300.1254 300.2346 299.6517 250.28 198.24 300.54
8 300.2349 300.3277 292.3428 290.74 186.38 300.26
9 300.4501 300.4578 299.6433 300.52 193.12 300.49
10 279.0451 279.3874 279.5423 282.31 179.41 205.49
11 243.3277 243.6752 168.2597 180.25 162.27 226.47
12 94.5874 94.3259 94.2355 168.52 94.39 204.56
13 484.3051 484.4578 484.2511 469.78 486.22 346.52
14 484.1584 484.3277 484.6425 484.26 487.33 434.58
15 484.2314 484.3542 484.3266 487.39 483.26 431.29
16 484.5412 484.1564 484.6501 482.62 484.25 440.21
17 489.5781 489.6475 489.4523 499.16 494.61 500.34
18 489.4578 489.5423 489.6244 411.19 489.76 500.33
19 511.8785 511.6432 511.1289 510.27 512.34 550.27
20 511.8754 511.5428 511.6451 542.37 513.21 550.96
21 523.3228 523.5746 549.3347 544.29 543.18 550.14
22 546.3738 547.7433 549.6455 550.29 548.38 550.54
23 523.1035 523.4728 523.4589 550.37 521.56 550.32
24 523.0678 523.1532 523.4313 528.18 525.23 550.46
25 523.5181 523.4421 523.1204 524.67 529.67 550.28
26 523.4767 523.4775 523.4217 539.28 540.31 550.39
27 10.3344 10.1067 10.1265 10.34 12.46 11.27
28 10.8011 10.7836 10.1024 10.24 10.96 11.34
29 10.6445 10.4521 10.2301 10.22 10.34 11.16
30 87.302 87.9827 87.6658 96.42 89.45 97.16
31 190.5847 190.2498 190.1322 185.24 189.04 190.34
32 190.8664 190.3277 189.4582 189.26 189.47 190.28
33 190.9983 190.4562 190.4251 189.37 187.43 190.64
34 200.5471 200.2841 199.2217 199.16 198.27 200.34
35 200.5847 200.6128 200.7541 196.54 199.69 200.41
36 164.9983 164.9833 164.3242 185.28 165.34 200.67
37 110.2147 110.2348 110.2323 109.58 109.54 110.24
38 110.3341 110.4355 109.2344 110.76 109.31 110.11
39 110.4616 110.5436 110.3333 95.17 109.44 110.37
40 511.9904 511.2239 550.4219 532.59 548.23 550.16

Fuel Cost ($/h) 136,441.8527 136,446.7842 136,442.689 136,549.8756 136,588.5746 136,441.876
Power loss (MW) 964.75 963.2045 945.2143 958.39 979.85 940.12

196

Mathematics 2022, 10, 3315

The comparative outcomes of the overall fuel cost, success rate, standard deviation
and execution time acquired by the OPIO algorithm, along with the various techniques, are
given in Table 4. Based on Table 4, the OPIO algorithm achieved the best solution 96 times
out of 100 trials. In addition, the mean costs of the OPIO and IPSO algorithms were equal
to 136,441.87$/h and 136,542.87$/h, respectively. This clearly shows that the statistical
outcomes of the OPIO algorithm were more stable than those of the OGWO, IPSO, COA,
RCGA, ORCSA and PIO algorithms. In addition, the time required to achieve the minimal
fuel cost for the proposed algorithm was 10.14/sec, which was minimal in relation to other
algorithms. The convergence graph of the total fuel cost of the proposed OPIO algorithm
and the conventional PIO algorithm is given in Figure 3. Based on Figure 3, it can be
seen that the formulated OPIO procedure provides the best active rate compared to the
PIO algorithm.

Table 4. Comparison results of various algorithms for a 40-unit system.

Algorithms Best ($/H) Mean ($/H) Worst ($/H)
Standard
Deviation

Successful
Runs (%)

Test Time (S)

OGWO 136,441.85 136,445.87 136,447.54 0.1365 94 11.52
IPSO 136,446.78 136,542.87 136,588.55 0.2345 89 12.65
IGA 136,454.56 NA NA NA NA NA
RCGA 136,587.21 136,687.52 136,742.65 0.3874 84 13.41
COA 136,442.68 136,448.54 136,468.54 0.1865 92 12.87
ORCSA 136,549.87 NA NA NA NA NA
PIO 136,588.57 136,698.32 136,721.54 NA NA NA
OPIO (Proposed) 136,441.87 136,441.95 136,443.81 0.1021 96 10.14

Figure 3. Convergence results of the OPIO and PIO algorithms for a 40-unit system.

5.3. Test Case 2a: 140-Unit

In this instance, the formulated PIO algorithm was tested on the medium-scale of
a 140-unit power generation system, and the load order was taken as 49,342 MW [46].
In this test case, non-smooth constraints, such as value-point consequence, interdicted
executing section and ramp-limits were included. The execution was repeated for 100 trials,
to confirm the dominance of the proposed methods with the obtained results of the OGWO,
IPSO, COA, RCGA, ORCSA and PIO algorithms, which are presented in Table 5. As shown
in Table 5, the OPIO reached 1,559,498.78$/h, which was the minimum, compared to the
other algorithms. In other words, the obtained outcomes clearly showed that the OPIO
algorithm achieved a low fuel-cost value, compared to other methods.

197

Mathematics 2022, 10, 3315

Table 5. Test outcomes of various algorithms for a 140-unit system with PD = 49,342 MW.

Unit PIO
OPIO

(Proposed)
Unit PIO

OPIO
(Proposed)

Unit PIO
OPIO

(Proposed)

1 114.3542 119.1244 48 250.2564 250.4159 95 978.1244 978.2456
2 189.2341 189.2344 49 250.3577 250.3648 96 682.3277 682.1247
3 190.2134 190.2333 50 250.4525 250.3014 97 720.2441 720.1689
4 190.2625 190.2455 51 165.2134 165.4258 98 718.2355 718.2245
5 168.7569 168.6479 52 165.3426 165.2486 99 720.2466 720.3144
6 190.2345 190.3247 53 165.5412 165.4857 100 964.2344 964.2188
7 490.2625 490.2655 54 165.5122 165.5574 101 958.3477 958.2177
8 490.3438 490.3677 55 180.3211 180.2675 102 1007.1255 1007.5248
9 496.5255 496.5829 56 180.2144 180.5974 103 1006.3425 1006.7413

10 496.5648 496.5574 57 103.2644 103.4428 104 1013.6487 1013.6944
11 496.6522 496.6548 58 198.4522 198.5674 105 1020.6666 1020.1024
12 496.7566 496.7742 59 312.3248 312.4295 106 954.2377 954.2188
13 506.2256 506.2389 60 280.9517 282.5479 107 952.1244 952.1277
14 509.3364 509.4861 61 163.3211 163.4287 108 106.3244 1006.2384
15 506.2355 506.2479 62 95.2347 95.2261 109 1013.2311 1013.5244
16 505.2144 505.2498 63 160.2358 160.4521 110 1021.6322 1021.5644
17 506.3422 506.3451 64 160.3459 160.2349 111 1015.2344 1015.2988
18 506.9548 506.4692 65 490.2378 490.2587 112 94.2155 94.2577
19 505.2344 505.6498 66 196.4356 196.5477 113 94.3157 94.2188
20 505.3214 505.4582 67 490.5612 490.6287 114 94.4233 94.1024
21 505.4255 505.2398 68 490.6458 489.3017 115 244.5612 244.1657
22 505.5412 505.2179 69 130.2648 130.2688 116 244.6124 244.1287
23 505.5378 505.2489 70 234.8465 234.5144 117 244.8477 244.5218
24 505.6522 505.9548 71 137.2659 137.2955 118 95.3244 95.2476
25 537.4612 537.2144 72 325.5641 325.4872 119 95.6245 95.2348
26 537.2344 537.3499 73 195.2347 195.3488 120 116.2377 116.2478
27 549.6254 549.2674 74 175.4529 175.6247 121 175.4298 175.3489
28 549.3244 549.3014 75 175.2349 175.4277 122 2.2144 2.1758
29 501.2333 501.2648 76 175.8945 175.6648 123 4.3322 4.1689
30 501.4622 501.3478 77 175.5217 175.2486 124 15.4625 15.4873
31 506.2477 506.2018 78 330.2175 330.2487 125 9.2344 9.2481
32 506.2344 506.3014 79 531.2648 531.1248 126 12.9588 12.6475
33 506.2237 506.4251 80 531.2647 531.2476 127 10.2647 10.6598
34 506.8546 506.6517 81 398.4275 436.2186 128 112.6599 112.4581
35 500.2649 500.2689 82 56.1975 56.2874 129 4.2689 43275
36 500.2014 500.2478 83 115.2348 115.3495 130 5.2644 5.1694
37 241.3645 241.2349 84 115.4756 115.6248 131 5.6544 5.4572
38 241.6477 241.2847 85 115.2679 115.7749 132 50.2688 50.6489
39 774.2655 774.5842 86 207.6548 207.4568 133 5.2177 5.1483
40 769.8542 769.4158 87 207.1673 207.1168 134 42.6588 42.5976
41 3.9655 3.2685 88 175.9485 175.4906 135 42.7588 42.6577
42 3.8522 3.1749 89 175.2648 175.2681 136 41.2355 41.6572
43 250.3466 250.3489 90 175.3348 175.6489 137 17.6588 17.2954
44 246.5147 249.5681 91 175.2247 175.2213 138 17.4955 17.3597
45 250.3416 250.3189 92 580.2234 580.6477 139 7.2655 7.2265
46 250.3429 250.6475 93 645.1958 645.2188 140 26.5884 26.4621

47 240.3168 249.6257 94 984.2655 984.2377 Fuel Cost
($/H) 1,560,412.55 1,559,498.78

Moreover, the statistical outcomes of the formulated OPIO algorithm, and various
conventional procedures, are given in Table 6. Based on Table 6, the formulated OPIO algo-
rithm provided the best outcomes, in terms of best, worst and mean cost, and less execution
time compared to the various procedures. However, the best and mean costs of the OPIO
and COA algorithms were equal to 1,559,498.78 $/h, 1,559,499.21 $/h, 1,559,521.36 $/h and
1,559,521.88 $/h, respectively. Even though the COA algorithm competed with the OPIO
algorithm, the OPIO algorithm was quite efficient in achieving the best outcome in minimal

198

Mathematics 2022, 10, 3315

iterations, compared to the various procedures. The convergence of the formulated OPIO
algorithm and the conventional PIO methods with iteration cycles is displayed in fig 4.
From Figure 4, it can be seen that the OPIO technique attained the best solution within
20 iterations; this confirms that the OPIO algorithm had better convergence, because of its
magnificent diversification and intensification abilities.

Table 6. Statistical comparison results of test case 2a (140-unit system with PD = 49,342 MW).

Algorithms Best ($/H) Mean ($/H) Worst ($/H)
Standard
Deviation

Successful
Runs (%)

Test Time (S)

OGWO 1,559,710.65 1,559,715.64 1,559,751.21 0.1512 95 43.98
IPSO 1,560,453.89 NA NA NA NA NA
IGA 1,561,254.85 NA NA NA NA NA
RCGA 1,559,957.62 1,560,521.35 1,561,542.96 0.5641 84 49.54
COA 1,559,499.21 1,559,521.88 1,559,645.21 0.1234 92 44.66
ORCSA 1,559,987.42 1,560,387.36 1,561,662.54 NA NA NA
PIO 1,560,412.55 1,561,542.13 1,562,874.62 NA NA NA
OPIO (Proposed) 1,559,498.78 1,559,521.36 1,559,587.62 0.1123 96 40.21

Figure 4. Convergence results of the OPIO and PIO algorithms for a 140-unit system.

5.4. Test Case 2b: 160-Unit

To access the feasibility of the formulated OPIO technique, another medium-scale test
case of a 160-unit test system, along with non-convex value-point properties, was used.
As to validation, the viability and efficacy of the formulated technique transmission loss
was unnoticeable. For this medium-scale unit, a replicated 10 different fuel-option values
were taken from [41], the power load was increased by 16, and the power load was fixed
as 43,200 MW. Table 7 provides the attained better cost of the proposed OPIO algorithm,
with other algorithms, by satisfying the constraints. Based on Table 7, the OPIO achieved
9625.15 $/h, which was the best result, compared to the other algorithms. This confirms
that the least total fuel cost was for the 160-unit generation system.

199

Mathematics 2022, 10, 3315

Table 7. Test outcomes of various algorithms for 160-unit system with PD = 43,200 MW.

Unit PIO
OPIO

(Proposed)
Unit PIO

OPIO
(Proposed)

Unit PIO
OPIO

(Proposed)

1 211.1057 224.3218 55 207.3485 265.4215 109 402.5278 430.2109
2 208.4572 200.6548 56 254.6289 257.1026 110 272.9458 260.5614
3 335.6534 355.2671 57 294.3275 277.3041 111 199.2658 217.4259
4 243.9547 228.4601 58 245.2964 235.4216 112 204.7594 199.6504
5 266.1958 305.4286 59 420.3581 394.5027 113 251.4298 357.2169
6 237.4295 249.5013 60 270.1485 278.1659 114 249.5048 251.4209
7 282.1473 309.4681 61 198.3475 240.3415 115 266.4175 267.2044
8 239.6475 218.4627 62 212.3458 213.1452 116 240.5219 252.3011
9 408.6427 335.2485 63 348.2571 241.6521 117 290.3584 290.4255

10 265.4581 270.4195 64 259.2543 248.6574 118 242.1507 233.4452
11 225.1049 187.2589 65 292.8594 232.2485 119 412.6259 329.5622
12 217.4685 195.4271 66 221.6579 245.6574 120 242.4957 300.4586
13 336.4216 353.2049 67 286.5419 310.2415 121 211.1048 237.5248
14 232.4582 241.6204 68 242.3859 232.5218 122 210.6247 207.6648
15 259.3248 273.4209 69 348.5796 353.2016 123 245.6284 237.5601
16 237.4581 228.1064 70 288.6473 281.4025 124 227.2094 210.6598
17 265.3482 277.4295 71 227.4961 219.4259 125 273.4587 241.2045
18 236.5219 224.1058 72 215.3333 220.4015 126 250.6418 246.5129
19 414.2188 404.6257 73 339.4857 343.2016 127 258.6458 293.3277
20 272.3158 314.2045 74 244.6589 250.4012 128 243.4109 245.2011
21 222.2507 205.4952 75 280.4276 273.5248 129 382.4692 431.2655
22 204.3258 200.4672 76 231.5942 217.5486 130 296.4108 248.5555
23 333.2429 374.1526 77 286.4957 305.4295 131 200.1472 199.7468
24 237.3854 234.1059 78 225.3489 243.4582 132 214.2845 217.4511
25 304.5521 284.1057 79 282.6472 253.6241 133 334.2074 242.6589
26 245.2965 221.4695 80 265.3485 271.9648 134 234.6248 229.3544
27 265.5421 253.1284 81 223.4685 223.4258 135 286.3049 250.3014
28 237.4951 223.6244 82 200.1479 191.3045 136 247.1658 236.1045
29 381.2659 241.5019 83 334.6517 349.5261 137 290.6547 305.1588
30 267.3204 280.6642 84 246.5923 234.5201 138 229.3104 230.4266
31 223.1584 175.4269 85 274.2986 275.2496 139 391.6248 430.2984
32 214.6549 203.6248 86 249.1634 208.4257 140 270.6248 257.1659
33 334.5671 348.2015 87 297.5842 282.5967 141 212.4286 228.4358
34 247.9547 219.5202 88 240.6713 255.3048 142 226.1958 184.2384
35 250.4682 283.4029 89 340.2986 409.4672 143 335.2648 370.5691
36 229.4572 244.1527 90 291.4726 269.3541 144 245.1382 219.4581
37 265.4953 313.2658 91 212.4589 192.3547 145 261.2017 263.1594
38 243.1572 236.1259 92 210.4976 201.1064 146 244.6218 235.4275
39 413.2685 340.2015 93 337.4682 350.2496 147 294.3581 300.6598
40 277.5878 333.3541 94 236.4196 258.6412 148 235.2481 242.1574
41 202.1574 230.5298 95 261.77165 290.3485 149 390.2571 387.4598
42 228.6257 209.9654 96 235.6279 226.4153 150 253.4192 267.4125
43 352.1469 341.4027 97 278.9648 299.4035 151 193.2488 184.5298
44 227.4583 233.6248 98 237.5944 223.4257 152 222.5027 212.4158
45 272.4159 299.1047 99 420.6519 366.6591 153 355.9418 376.1548
46 241.6051 263.5218 100 268.1695 288.4251 154 242.3158 248.5476
47 266.5384 243.6201 101 224.3186 227.2045 155 277.6428 278.1549
48 230.4572 212.3048 102 209.6581 210.5499 156 246.7128 223.2435
49 423.6514 362.4295 103 337.9547 363.2011 157 318.5472 264.6248
50 254.9571 303.2048 104 230.9528 222.3495 158 241.6014 234.5278
51 280.9654 181.4269 105 269.4681 234.1058 159 341.6547 390.4855
52 211.4582 211.5274 106 235.6428 232.4259 160 261.2485 286.4597
53 337.4692 364.6542 107 274.9648 282.3045 Fuel Cost

($/H) 9738.4526 9625.157354 238.4729 234.9512 108 244.3018 236.4159

200

Mathematics 2022, 10, 3315

The statistical results from over 100 trials of the proposed algorithm, compared to
the OGWO, IPSO, IGA, RCGA, COA, ORCSA and PIO algorithms, are shown in Table 8:
as can be seen, the OPIO algorithm performance—for example, best (9625.44 $/h), mean
(9647.62 $/h) and worst (9649.62 $/h)—was relatively acceptable, whereas the other algo-
rithms deteriorated, due to an increase in the number of generators and traps in the locally
optimal solutions. As per the acquired outcomes, we observed that the formulated OPIO
technique was more vigorous and systematically structured, compared to the conventional
and various algorithms. The active loop of formulated technique and conventional algo-
rithm with iteration cycle is displayed in Figure 5. Figure 5 shows that the formulated
procedure provided feasible convergence within 25 iterations, though there was an increase
in the number of generation units compared to the standard PIO algorithm.

Table 8. Statistical comparison results for test case 2b (160-unit with PD = 43,200 MW).

Algorithms Best ($/H)
Mean
($/H)

Worst
($/H)

Standard
Deviation

Successful
Runs (%)

Test time
(S)

OGWO 9768.62 9772.21 9774.62 0.1421 94 18.52
IPSO 10,008.65 10,009.65 10,010.56 0.3654 85 36.95
IGA 10,009.82 10,010.98 10,011.26 NA NA NA

RCGA 9954.23 10,002.62 10,004.63 0.4521 90 27.62
COA 9664.32 9702.36 9776.85 0.1262 94 16.85

ORCSA 9845.45 9898.12 9902.42 NA NA NA
PIO 9738.45 9812.64 9836.95 0.3641 88 44.34

OPIO
(Proposed) 9625.15 9647.62 9649.62 0.1145 96 16.21

Figure 5. Convergence results of the OPIO and PIO algorithms for a 160-unit system.

5.5. Test Case 3a: 320-Unit

In this instance, a wide scale 320-unit generation system, that included a value-point
effect and three various fuel possibilities, was used to evaluate the execution of the for-
mulated OPIO technique. For this 320-unit system, 32 times replicated, 10 different fuel
options were taken from [41], and the power load was considered as 86,400 MW. Simulation
results were carried out for 1000 iterations, for the 320-unit generation system, and its com-
parative results are illustrated in Table 9. Table 9 shows that the OPIO algorithm provided
19,968.95$/h, which was the minimal production cost compared to different state-of-the-art
algorithms. On the other hand, the test times of the COA and OPIO algorithms were nearly
equal, at 412.95/sec and 410.65/sec, respectively. However, the OPIO algorithm showed a
unique performance, in attaining the best fuel cost for 96 runs out of 100 trials. This proves

201

Mathematics 2022, 10, 3315

that the formulated OPIO algorithm was vigorous, and deliberately well-organized, com-
pared to the PIO algorithm and the different approaches presented in this study. To ensure
the efficacy of the formulated OPIO technique, the convergence over different iterations is
shown in Figure 6. From Figure 6, it can be seen that the execution of the OPIO technique
provided the best convergence over the standard PIO algorithm.

Table 9. Statistical comparison results of test case 3a (320-unit system with PD = 86,400 MW).

Algorithms Best ($/H) Mean ($/H) Worst ($/H)
Standard
Deviation

Successful
Runs (%)

Test Time (S)

OGWO 19,985.62 19,989.41 19,992.34 0.5465 86 489.35
COA 19,971.43 19,986.37 19,990.75 0.7248 92 412.95
ORCSA 20,045.29 NA NA NA NA NA
PIO 20,254.42 20,267.95 20,312.61 NA NA 527.24
OPIO
(Proposed) 19,968.95 19,972.16 19,978.91 0.4087 96 410.65

Figure 6. Convergence results of the OPIO and PIO algorithms for a 320-unit system.

5.6. Test Case 3b: 640-Unit

To ensure the efficacy of the formulated OPIO method, we tested it on another large-
scale generation system, a 640-unit system with value-point properties and three various
fuel possibilities. This 640-unit system included the data of 10 multiple-fuel systems
from [41], which were duplicated 64 times, and the load demand was fixed at 172,800 MW.
The simulation results of the 640-unit system were iterated over 1000 iterations, and its
comparative results are shown in Table 10, where it can be seen that the OPIO algorithm
achieved minimum fuel cost related to the various state-of-the-art techniques. The statistical
results achieved, by performing 100 trials of the different algorithms and their comparative
outcomes, are illustrated in Table 10, which shows that the OPIO algorithm reached
39,963.78 $/h by balancing the local search and global search, as well as converging faster
towards the optimal solution. Moreover, the OPIO algorithm achieved the best solution for
almost 96 runs out of 100 trials, which clearly demonstrates that the proposed algorithm can
sustain the best position for various runs. The convergence results of the proposed OPIO
algorithm and the PIO algorithm are displayed in Figure 7. In Figure 7, the formulated
OPIO technique provided better convergence, which demonstrates its superiority over the
standard PIO algorithm and other state-of-the-art techniques. The overall experimentation
outcomes convey that the proposed OPIO algorithm achieved better efficiency, along with
a trade-off between exploration and exploitation.

202

Mathematics 2022, 10, 3315

Table 10. Comparison results of various algorithms on a 640-unit system.

Algorithms Best ($/H) Mean ($/H) Worst ($/H)
Standard
Deviation

Successful
Runs (%)

Test time (S)

OGWO 40,123.65 40,132.85 40,152.18 0.8542 90 704.85
COA 39,968.81 39,970.52 39,974.32 0.3419 94 682.54
ORCSA 40,189.62 NA NA NA NA NA
PIO 41,072.28 NA NA NA NA NA
OPIO
(Proposed)

39,963.78 39,964.75 39,967.82 0.2451 96 677.27

Figure 7. Convergence results of the OPIO and PIO algorithms for a 640-unit system.

5.7. The Result Analysis of Wilcoxon Signed-Rank Test

In this work, a non-parametric test—namely, the Wilcoxon signed-rank test—was
utilized, to perform the statistical comparison of the proposed algorithm with the compared
algorithms. The best solutions were attained by each technique for the corresponding
test cases during 30 independent runs. In this study, the Wilcoxon signed-rank test was
performed with a significance level α = 0.05. The results, analyzed by the Wilcoxon signed-
rank test, are presented in Table 11 for test cases of 13, 40, 140, 160, 320 and 640-generating
units. In Table 11, the significance differences of the proposed algorithm and compared
algorithms are marked with the value of H (i.e., H with a value of 1 specifies that there was
a significance difference; otherwise, the H value is 0, if there was no significance difference).
In addition, the symbol S with “+”, “=” and “_” denotes that the proposed technique
was superior, equal or inferior, respectively, to the compared algorithms. Furthermore,
we used four compared algorithms generically, to determine the significance difference
with the proposed algorithm. It is clear from Table 11 that the proposed OPIO algorithm
provided results superior to those of the COA, ORCSA and PIO algorithms, and equal
to the OGWO algorithm for the test case 13-unit system. For the test case 40-unit system,
the OPIO algorithm provided results superior to those of the COA, ORCSA and PIO
algorithms, but not to the OGWO algorithm. Finally, w/t/l specified the win/tie/loss
count by Wilcoxon signed-rank test for the six test case generating unit systems. Thus, from
the above discussion, it is clear that the proposed OPIO algorithm attained better solutions,
and had better exploring capability, compared to the existing algorithms.

203

Mathematics 2022, 10, 3315

Table 11. Wilcoxon signed-rank test between OPIO and four compared algorithms for test case 13, 40,
140, 160, 320 and 640-unit systems.

Test Case

OPIO vs

OGWO COA ORCSA PIO

p-Value H S p-Value H S p-Value H S p-Value H S

13-unit 1.00 × 100 0 = 1.88 × 10−6 1 + 1.51 × 10−6 1 + 1.98 × 10−6 1 +
40-unit 3.85 × 10−1 0 − 1.00 × 100 0 = 1.88 × 10−6 1 + 1.75 × 10−6 1 +
140-unit 1.87 × 10−6 1 + 1.70 × 10−6 1 + 1.46 × 10−6 1 + 1.65 × 10−6 1 +
160-unit 1.55 × 10−6 1 + 1.00 × 100 0 = 1.65 × 10−6 1 + 1.75 × 10−6 1 +
320-unit 1.73 × 10−6 1 + 1.75 × 10−6 1 + 1.75 × 10−6 1 + 1.79 × 10−6 1 +
640-unit 1.55 × 10−6 1 + 1.11 × 10−6 1 + 1.73 × 10−6 1 + 1.75 × 10−6 1 +

w/t/l 4/1/1 4/2/0 6/0/0 6/0/0

6. Conclusions and Future Work

In this article, we have provided a novel metaheuristic algorithm named the Oppo-
sitional Pigeon-Inspired Optimizer (OPIO), which is formulated to deal with the ELD
problem, with value-point consequences and numerous fuel possibilities. From the litera-
ture, it can be seen that the standard PIO algorithm is considered a promising optimization
technique, which attracts the researcher by its superiority in addressing various opti-
mization problems. However, it suffers in regard to global search ability and premature
convergence when it is applied to large-scale optimization problems. Because of these
issues, we merged Opposition-Based Learning into a standard PIO algorithm, which helped
to eradicate early convergence, aided knowledge discovery and enhanced comprehensive
searchability. The formulated OPIO algorithm was applied to non-convex ELD problems
with different constraints, such as multiple fuel possibilities, value-point consequence,
interdicted zones and ramp-rate. The experimentation was carried out on three different
ELD test cases, viz., small-scale (13-unit and 40-unit), medium-scale (140-unit and 160-unit)
and large-scale (320-unit and 640-unit) test cases. The exploratory outcomes showed the
superiority of the formulated OPIO technique—in relation to higher potential solutions,
better convergence rate, robustness and better computational efficiency—over the PIO
algorithm and other state-of-the-art metaheuristic algorithms. In future, this work could be
used in other fields of optimization, owing to the technique’s high potential for dealing
with the problematic optimization issues of many practical power systems. In addition,
the outcome of the results can be compared with potential algorithms such as SEPSO [16],
SA-QSFS [42] and QANA [47].

Author Contributions: Conceptualization, R.R.; methodology, R.R. and D.K.; validation, S.S.A. and
M.R.; formal analysis, A.D.; writing—original draft preparation, R.R.; writing—review and editing,
M.R. and S.M.; supervision, R.R. and D.K; funding acquisition, S.S.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was funded by the Deanship of Scientific Research, Taif University Researchers
Supporting Project number (TURSP-2020/215), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data in this research paper will be shared upon request to the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.

204

Mathematics 2022, 10, 3315

References

1. Balamurugan, R. Application of Shuffled Frog Leaping Algorithm for Economic Dispatch with Multiple Fuel Options. In
Proceedings of the 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management
(ICETEEEM), Chennai, India, 13–15 December 2012; pp. 191–197. [CrossRef]

2. Aravindhababu, P.; Nayar, K.R. Economic dispatch based on optimal lambda using radial basis function network. Int. J. Electr.
Power Energy Syst. 2002, 24, 551–556. [CrossRef]

3. Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2013.
4. Liang, Z.X.; Glover, J.D. A zoom feature for a dynamic programming solution to economic dispatch including transmission losses.

IEEE Trans. Power Syst. 1992, 7, 544–550. [CrossRef]
5. Victoire, T.A.A.; Jeyakumar, A.E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 2004, 71,

51–59. [CrossRef]
6. Chiang, C.L. Genetic-based algorithm for power economic load dispatch. IEE Proc. Gener. Trans. Distrib. 2007, 1, 261–269.

[CrossRef]
7. Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary programming techniques for economic load dispatch. IEEE Evol.

Comput. 2003, 7, 83–94. [CrossRef]
8. Tan, Y.; Li, C.; Cao, Y.; Lee, K.Y.; Li, L.; Tang, S.; Zhou, L. Improved group search optimization method for optimal power flow

problem considering valve-point loading effects. Neurocomputing 2015, 148, 229–239. [CrossRef]
9. Aydin, D.; Ozyon, S. Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee

colony with local search. Appl. Soft Comput. 2013, 13, 2456–2466. [CrossRef]
10. Jayabarathi, T.; Raghunathan, T.; Adarsh, B.R. Ponnuthurai Nagaratnam Suganthan. Economic dispatch using hybrid grey wolf

optimizer. Energy 2016, 111, 630–641. [CrossRef]
11. Chaturvedi, K.T.; Pandit, M.; Srivastava, L. Self-organizing hierarchical particle swarm optimization for nonconvex economic

dispatch. IEEE Trans. Power Syst. 2008, 23, 1079–1087. [CrossRef]
12. Alsumait, J.S.; Sykulski, J.K.; Al-Othman, A.K. A hybrid GA-PS-SQP method to solve power system valve-point economic

dispatch problems. Appl. Energy 2010, 87, 1773–1781. [CrossRef]
13. Roy, P.; Roy, P.; Chakrabarti, A. Modified shuffled frog leaping algorithm with genetic algorithm crossover for solving economic

load dispatch problem with valve-point effect. Appl. Soft Comput. 2013, 13, 4244–4252. [CrossRef]
14. Yang, X.; Hosseini, S.S.S.; Gandomi, A.H. Firefly Algorithm for solving non-convex economic dispatch problems with valve

loading effect. Appl. Soft Comput. 2012, 12, 1180–1186. [CrossRef]
15. Wang, Y.; Zhou, J.; Lu, Y.; Qin, H.; Wang, Y. Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic

dispatch problem with valvepoint effects. Expert Syst. Appl. 2011, 38, 14231–14237.
16. Faisal, A.N.; Cao, M.; Shen, L.; Fu, R.; Šumarac, D. The combined social engineering particle swarm optimization for real-world

engineering problems: A case study of model-based structural health monitoring. Appl. Soft Comput. 2022, 123, 108919.
17. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global

and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [CrossRef]
18. Nadimi-Shahraki, M.; Ali Fatahi, H.Z.; Abualigah, L. An improved moth-flame optimization algorithm with adaptation mecha-

nism to solve numerical and mechanical engineering problems. Entropy 2021, 23, 1637. [CrossRef]
19. Nadimi-Shahraki, M.; Zamani, H. DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-

decomposition large-scale global optimization. Expert Syst. Appl. 2022, 198, 116895. [CrossRef]
20. Balamurugan, R.; Subramanian, S. Hybrid integer coded differential evolution dynamic programming approach for economic

load dispatch with multiple fuel options. Energy Convers. Manag. 2008, 49, 608–614. [CrossRef]
21. Cai, J.; Mab, X.; Li, Q.; Li, L.; Peng, H. A multi-objective chaotic ant swarm optimization for environmental/economic dispatch.

Int. J. Electr. Power Energy Syst. 2010, 32, 337–344. [CrossRef]
22. Ghoshal, S.P.; Chatterjee, A.; Mukherjee, V. Bio-inspired fuzzy logic based tuning of power system stabilizer. Expert Syst. Appl.

2009, 36, 9281–9292. [CrossRef]
23. Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Ant colony optimisation for economic dispatch problem with non-smooth cost

functions. Int. J. Electr. Power Energy Syst. 2010, 32, 478–487. [CrossRef]
24. Roy, P.K.; Ghoshal, S.P.; Thakur, S.S. Biogeography-based optimization for economic load dispatch problems. Elect. Power Compon.

Syst. 2010, 38, 166–181. [CrossRef]
25. Mandal, B.; Roy, P.K.; Mandal, S. Economic load dispatch using krill herd algorithm. Int. J. Electr. Power Energy Syst. 2014,

57, 1–10. [CrossRef]
26. Lee, K.Y.; Sode-Yome, A.; Park, J.H. Adaptive Hopfield neural networks for economic load dispatch. IEEE Trans. Power Syst. 1998,

13, 519–525. [CrossRef]
27. Vo, D.N.; Ongsakul, W. Economic dispatch with multiple fuel types by enhanced augmented Lagrange Hopfield network. Appl.

Energy 2012, 91, 281–289. [CrossRef]
28. Vo, N.D.; Ongsakul, W.; Polprasert, J. The augmented Lagrange Hopfield network for economic dispatch with multiple fuel

options. Math. Comput. Model. 2013, 57, 30–39.
29. Barisal, A.K. Dynamic search space squeezing strategy based intelligent algorithm solutions to economic dispatch with multiple

fuels. Int. J. Electr. Power Energy Syst. 2013, 45, 50–59. [CrossRef]

205

Mathematics 2022, 10, 3315

30. Meng, A.; Li, J.; Yin, H. An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with
multiple fuel types and valve-point effects. Energy 2016, 113, 1147–1161. [CrossRef]

31. Sayah, S.; Hamouda, A. A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic
dispatch problems. Appl. Soft Comput. 2013, 13, 1608–1619. [CrossRef]

32. Pradhan, M.; Roy, P.K.; Pal, T. Oppositional based grey wolf optimization algorithm for economic dispatch problem of power
system. Ain Shams Eng. J. 2017, 9, 2015–2025. [CrossRef]

33. Wang, Y.; Li, B.; Weise, T. Estimation of distribution and differential evolution cooperation for large scale economic load dispatch
optimization of power systems. Inf. Sci. 2010, 180, 2405–2420. [CrossRef]

34. Bhattacharjee, K.; Bhattacharya, A.; Dey, S.H.N. Chemical reaction optimization for different economic dispatch problems. IET
Gener. Transm. Dis. 2014, 8, 530–541. [CrossRef]

35. Singh, N.J.; Dhillon, J.S.; Kothari, D.P. Synergic predator-prey optimization for economic thermal power dispatch problem. Appl.
Soft Comput. 2016, 43, 298–311. [CrossRef]

36. Thang, T.N.; Dieu, N.V. The application of one rank cuckoo search algorithm for solving economic load dispatch problems. Appl.
Soft Comput. 2015, 37, 763–773.

37. Amjady, N.; Nasiri-Rad, H. Nonconvex economic dispatch with AC constraints by a new real coded genetic algorithm. IEEE
Trans. Power Syst. 2009, 24, 1489–1502. [CrossRef]

38. Chiang, C.-L. Improved Genetic Algorithm for Power Economic Dispatch of Units with Valve-Point Effects and Multiple Fuels.
IEEE Trans. Power Syst. 2005, 20, 4. [CrossRef]

39. Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell.
Comput. Cybern. 2014, 7, 24–37. [CrossRef]

40. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International
Conference on Computational Intelligence for Modeling, Control and Automation, Vienna, Austria, 28–30 November 2005;
pp. 695–701.

41. Roy, P.K.; Paul, C.; Sultana, S. Oppositional teaching learning-based optimization approach for combined heat and power dispatch.
Int. J. Elect. Power Energy Syst. 2014, 57, 392–403. [CrossRef]

42. Alkayem, N.F.; Shen, L.; Asteris, P.G.; Sokol, M.; Xin, Z.; Cao, M. A new self-adaptive quasi-oppositional stochastic fractal search
for the inverse problem of structural damage assessment. Alex. Eng. J. 2022, 61, 1922–1936. [CrossRef]

43. Coelho, L.D.S.; Mariani, V.C. Combining of chaotic differential evolution and quadratic programming for economic dispatch
optimization with valve point effect. IEEE Trans. Power Syst. 2006, 21, 989–996.

44. Zou, D.; Li, S.; Wang, G.G.; Li, Z.; Ouyang, H. An improved differential evolution algorithm for the economic load dispatch
problems with or without valve-point effects. Appl. Energy 2016, 181, 375–390. [CrossRef]

45. Srinivasa Reddy, A.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96,
237–245. [CrossRef]

46. Sahoo, S.; Mahesh Dash, K.; Prusty, R.C.; Barisal, A.K. Comparative analysis of optimal load dispatch through evolutionary
algorithms. Ain Shams Eng. J. 2015, 6, 107–120. [CrossRef]

47. Mohammad, Z.H.; Nadimi-Shahraki, H.; Amir, H.G. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl.
Artif. Intell. 2021, 104, 104314.

206

Citation: Cui, Y.; Shi, R.; Dong, J.

CLTSA: A Novel Tunicate Swarm

Algorithm Based on Chaotic-Lévy

Flight Strategy for Solving

Optimization Problems. Mathematics

2022, 10, 3405. https://doi.org/

10.3390/math10183405

Academic Editor: José Antonio Sanz

Received: 2 August 2022

Accepted: 15 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

CLTSA: A Novel Tunicate Swarm Algorithm Based on
Chaotic-Lévy Flight Strategy for Solving Optimization Problems

Yi Cui, Ronghua Shi and Jian Dong *

School of Computer Science and Engineering, Central South University, Changsha 410083, China
* Correspondence: dongjian@csu.edu.cn

Abstract: In this paper, we proposed a tunicate swarm algorithm based on Tent-Lévy flight (TLTSA)
to avoid converging prematurely or failing to escape from a local optimal solution. First, we combined
nine chaotic maps with the Lévy flight strategy to obtain nine different TSAs based on a Chaotic-
Lévy flight strategy (CLTSA). Experimental results demonstrated that a TSA based on Tent-Lévy
flight (TLTSA) performed the best among nine CLTSAs. Afterwards, the TLTSA was selected for
comparative research with other well-known meta-heuristic algorithms. The 16 unimodal benchmark
functions, 14 multimodal benchmark functions, 6 fixed-dimension functions, and 3 constrained
practical problems in engineering were selected to verify the performance of TLTSA. The results of the
test functions suggested that the TLTSA was better than the TSA and other algorithms in searching for
global optimal solutions because of its excellent exploration and exploitation capabilities. Finally, the
engineering experiments also demonstrated that a TLTSA solved constrained practical engineering
problems more effectively.

Keywords: tunicate swarm algorithm; chaotic mapping; Lévy flight strategy; benchmark test functions;
engineering design problems; meta-heuristic

MSC: 68W50

1. Introduction

Because of the rapid pace of scientific development and innovation, more and more
engineering design problems need urgent optimization. The problem is to avoid local
solutions yet maintain the optimization trend, and that is the focus of this research [1].
Many of these issues involve complicated nonlinear constraints and high dimensions [2,3].
However, traditional gradient-based optimization methods rely excessively on a large
amount of gradient information. When the target engineering problem has more constraints
or more extreme values, the gradient search becomes inefficient, that is, the optimal solution
obtained may not be the global optimal solution. Therefore, traditional optimization
methods are no longer suitable for solving complex engineering design problems.

In recent years, researchers have applied meta-heuristic algorithms because of their
high efficiency, wide applicability, and expandability. Most have been proposed after
watching and studying natural phenomena or the behavior of creatures. According to
different inspiration sources, these algorithms can be divided into four categories: swarm
intelligence (SI) algorithms, evolutionary algorithms (EAs), physics-based algorithms, and
human-based algorithms. The evolutionary algorithms, inspired by the theory of evolution
by natural selection, simulate the crossover, mutation, selection, and other evolutionary
behaviors in the process of biological evolution, such as genetic algorithms (GAs) proposed
by Holland [4]. Physics-based algorithms are inspired by physical phenomena in nature,
such as simulated annealing (SA) algorithm [5], black hole (BH) algorithm [6], central
force optimization (CFO) [7], water cycle algorithm (WCA) [8], and lightning attachment
procedure optimization (LAPO) [9]. Human-based algorithms are mainly inspired by
human behaviors, such as human teaching behaviors, social behaviors, learning behaviors,

Mathematics 2022, 10, 3405. https://doi.org/10.3390/math10183405 https://www.mdpi.com/journal/mathematics
207

Mathematics 2022, 10, 3405

emotional behaviors, and management behaviors. For example, teaching-learning-based-
optimization (TLBO) simulates teaching and learning behaviors [10]. Political optimizer
(PO) builds a model based on the multistage process of politics [11,12].

The particle swarm algorithm (PSO) proposed by Kennedy and Eberhart is one of the
most widespread and successful [13,14]. By studying the cooperative predation behavior
of birds, PSO uses information sharing among individuals in the population to find the
global optimal solution, which may enable the algorithm to jump from the local optimal
solution. As PSO is paid more attention, more and more swarm intelligence algorithms
like PSO are proposed, such as ant colony optimization (ACO) [15], artificial bee colony
(ABC) algorithm [16], glowworm swam optimization (GSO) [17], cow search algorithm
(CSA) [18], sailfish optimizer (SFO) [19], Harris hawks optimization (HHO) [20,21], manta
ray foraging optimization (MRFO) [22], and mayfly algorithm (MA) [23]. In general,
swarm intelligence algorithms are superior to evolutionary algorithms in some respects, for
example, each individual can improve their fitness by updating position, which enhances
the search efficiency of the population. While in evolutionary algorithms, only the current
best individuals and descendants produced similar to them in terms of features are allowed
to enter the subsequent iterations, individuals with poor fitness are discarded. In addition,
swarm intelligence algorithms are easier to use because of fewer operators [24,25].

Although different algorithms have their advantages, their whole optimization pro-
cesses can be regarded as the combination of the exploration phase and exploitation phase.
In the exploration phase, the algorithm produces a population as random as possible
to explore a potential promising area in the search space. In the exploitation phase, it
attempts to develop the promising region found in the previous phase to search for the
optimal solution.

Chaos, randomness generated by a deterministic system, is an important concept
in nonlinear dynamics [26,27]. Chaotic mapping, because of its traversal behavior and
randomness, has wide application in the search to optimize meta-heuristic algorithms [28].
At present, improved meta-heuristic algorithms based on chaotic maps include chaotic
artificial bee colony (CABC) algorithm [29], chaotic grey wolf optimization (CGWO) algo-
rithm [30], chaotic butterfly optimization algorithm (CBOA) [31], chaotic firefly algorithm
(CFA) [32], and so on.

Although algorithms based on chaotic mapping can escape the local optimal solution,
they have weak exploration. To enhance it while maintaining a balance with exploitation,
the introduction of the Lévy flight strategy is an effective method. Lévy flight is a random
walk strategy with step size that satisfies the Lévy distribution; the research has found that
many animals’ behavior obeys it [33]. For example, animals move around an existing food
source, but they occasionally travel long distances in search of a new food source [34,35].
The small sizes of Lévy flight allow the algorithm to exploit regions near the current
solution. In addition, a long-distance movement sporadically generated by Lévy flight
enables the algorithm to jump out of the local optimal solution. When combined with
chaotic mapping, it produces a step size with greater randomness. From this perspective, it
is feasible to apply the chaotic mapping mechanism to Lévy flight.

In this study, an improved tunicate swarm optimization algorithm based on a Chaotic-
Lévy flight strategy (CLTSA) is proposed to solve the shortcomings of the original TSA.
The strategy is introduced when the search agents move toward the current solution so that
they can update their positions according to the randomly generated step sizes. The next
sections of this paper are displayed as follows: In Section 2, the inspiration, principle, and
mathematical model of the TSA are introduced. Next, several common chaotic maps, Lévy
flight strategy, and application of the two optimization methods to improve the TSA are
described. In the fourth and fifth sections, the TLTSA, as the best performer among CLTSAs,
is selected to evaluate the capability of optimizing benchmark functions by comparing
them with other well-known meta-heuristic algorithms to measure the capability of TLTSA
to solve practical engineering problems. The article concludes in Section 6.

208

Mathematics 2022, 10, 3405

2. Related Work

Various works recently investigated the use of Lévy flight in swarm intelligence
algorithms. Lévy flight refers to a random walk in which the probability distribution of the
step size is heavy tailed. There is a relatively high probability of large strides in the random
walk, which is widely used to improve swarm intelligence optimization algorithms. Yang
et al. proposed a cuckoo search algorithm (CS) [36] based on Lévy flight, in which search
logic simulates the breeding behavior of cuckoos. The algorithm first generates n initial
positions called nests. Then, a new nest is generated using the Lévy flight mechanism and
compared to the solution of the random nest: If the fitness value of the new position is better
than the previous one, the new solution is used to replace the previous one. In each iteration,
some of the worst solutions are replaced to obtain a better set of nest positions, such that
the process is executed until the optimal solution is found. Another optimization algorithm
based on Lévy flight is the Lévy flight whale optimization algorithm (LWOA) [37]. The
whale’s predation strategy mainly includes three behaviors: encircling prey, bubble-net
attacking, and find prey. Most of the development of search agents take place in bubble-net
attacking. Due to the trajectories of humpback whales during prey being spiral, the search
agent moving towards the food will be replaced by a new random position on spiral curve.
In LWOA, the performance of the algorithm is improved by replacing the spiral walk with
the Lévy flight strategy. The Lévy flight strategy is also introduced in flower pollination
algorithm (FPA) [38]. According to the FPA, each pollen particle represents a solution that
walks in the search space under two different search rules: local pollination and global
pollination. For each step, one of the update rules is selected stochastically: If the local
pollination is selected, the pollen particle walks in a limited around area, and the step-size
is multiplied by a random number generated by the uniform distribution U(0,1); if the
selected movement is global pollination, the pollen particle walks toward the global optimal
solution, and the step-size is multiplied by a random number generated by the Lévy flight.
Amirsadri et al. introduced LF-based grey wolf optimization algorithm blended with back
propagation (LF-BP-GWO) [39] to train neural networks. First of all, the Lévy flight is
applied to improve the exploration ability of GWO. Then, the back propagation which
enhances the exploitation ability in combination with improved GWO was used to train
neural network. Each individual in the proposed LF-BP-GWO is considered as the weights
and the biases set in the neural network. As a random walk strategy, Lévy flight generates
a large step size that keeps a small number of search agents away from the current optimal
solution, which enhances the algorithm’s exploration ability; the generated small step size
allows most search agents to continue at the current optimal solution development near
the solution, thus balancing the exploration and development of the algorithm.

Chaotic mapping is used to generate chaotic sequences, which are sequences of ran-
domness produced by simple deterministic systems. In the field of optimization, chaotic
mapping can be used as an alternative to pseudo-random number generators, generating
chaotic numbers between 0 and 1, often with better results than pseudo-random numbers.
Chaotic mapping is also widely used in swarm intelligence algorithms. Bilal Alatas pro-
posed three chaotic artificial bee colony algorithms (CABC) [29]: CABC1, CABC2, and
CABC3. According to CABC1, the use of the chaos mapping is mainly reflected in the
population initialization period. Through chaotic mapping, a set of initial populations with
better diversity are generated. In CABC2, if a solution called food is not enhanced by a
defined number of trials, the hired bee will give up the position and the scout bee of this
hired bee will perform chaotic search for a better food source. CABC3 is a combination of
the above two improved algorithms. It not only uses the selected chaotic map to generate
a diverse initial population, but also performs chaotic search. Mohammad Tubishat et al.
proposed an improved Sine cosine algorithm (ISCA) for Hadith classification [40]. The first
modification includes replacing a random number with a chaotic sequence generated by
a singer map. This modification allows ISCA to control the switching between sine and
cosine equations, which are applied to update the position of search agents. The second
modification is improving development ability by combining with simulated annealing.

209

Mathematics 2022, 10, 3405

At the end of each iteration, the best solution obtained by SCA will be considered as the
initial solution of simulated annealing. If simulated annealing finds a better solution, it
will replace the current optimal solution with new one. Talatahari et al. improved the
traditional algorithm and proposed a chaotic imperialist competitive algorithm (CICA) [41].
Through the comparative research and evaluation of different chaos maps, the experimental
results proved the superiority of logistic and sinusoidal maps. In order to enhance the
global exploration ability, the firefly algorithm (FA) [32] also introduces chaotic mapping to
set light and other absorption parameters. The results show that the Gaussian map has the
best effect as the absorption coefficient. The chaotic mapping is also applied to improve
KH algorithm [42]. According to CKH, many types of movements of krill are proposed
using different chaotic maps, among which the singer map performs best.

The TSA has received a lot of attention because of its simplicity and optimal. E. H.
Houssein et al. introduced the local escape operator into TSA (TSA-LEO) to enhance
its optimization effect [43]. In the TSA-LEO, several solutions such as the best position,
two randomly generated individual, two randomly selected individual, and a new ran-
domly generated individual were used to obtain the alternative solutions with excellent
performance of the algorithm. Specifically, the TSA-LEO enhances the quality of solutions
by updating their positions under some criteria. The TSA–LEO was further tested on a
real-world problem, namely, segmentation based on the objective functions of Otsu and
Kapur, and solved multilevel threshold problems while seeking the optimal thresholds
for image separation. F. S. Gharehchopogh proposed an improved TSA with best-random
mutation strategy (QLGCTSA) [44]. According to the QLGCTSA, the Quantum Rotation
Gate mechanism, Lévy Mutation, Cauchy Mutation, and Gaussian Mutation were used
to enhance the TSAs’ performance. These methods have different functions, increasing
the QLGCTSA’s performance at a given stage in the optimization operation. The quantum
rotation gate was proposed to increase the population diversity; Lévy flight enabled each
individual to find better position and increase the ability to search deeper; Cauchy muta-
tion was used to modify the capability to search in search agents or add neighbors of each
generation; and Gaussian mutation helped the algorithm execute the global exploration.
Table 1 is the comparison of improved algorithms.

Table 1. Comparison of algorithms involved in related work.

Year Algorithm Method Used Application Area(s) Shortcoming

2013 CS [36] Lévy flight Global optimization

poor global exploration ability2018 LWOA [37] Lévy flight Global optimization

2012 FPA [38] Lévy flight Nonlinear design benchmark
and global optimization

2017 LF-BP-GWO [39] Lévy flight
Back propagation Neural network poor global exploration ability and

running slow

2010 CABC [29] Chaotic mapping Global numerical optimization

poor solution accuracy

2022 ISCA [40] Singer chaotic map
simulated annealing

Feature selection problem for
Hadith classification

2012 CICA [41] Chaotic mapping Truss structures
design problem

2014 CKH [42] Chaotic mapping Global optimization

2021 TSA-LEO [43] Local escape operator Global optimization and
Image segmentation

2022 QLGCTSA [44]

Quantum Rotation Gate
Lévy flight

Cauchy Mutation
Gaussian Mutation

Numerical optimization
CEC2017 and engineering

design problem

unbalanced exploration and
development and high

computational complexity

210

Mathematics 2022, 10, 3405

3. The Proposed CLTSA

3.1. TSA

The TSA was proposed by Kaur et al. after observing the social behavior of a tu-
nicate searching for prey [45]. In the process of hunting, this marine invertebrate uses
water jets and swarm intelligence to search for prey. Each tunicate can quickly discharge
previously inhaled seawater through the siphons of the atrium, generating a kind of jet
propulsion, which propels it rapidly. Moreover, tunicates display swarm intelligence when
they share search information about the location of food. To establish the mathematical
model of its jet propulsion mechanism, the tunicate is required to meet the following three
important constraints:

• Avoiding clashes between each search agent.
• Each agent is guaranteed to move in the direction of the optimal individual.
• Make the search agents converge to the region near the optimal individual.

3.1.1. Avoiding Clashes between Each Search Agent

To prevent search agents from generating unnecessary clashes, the following formulas
are used to calculate the new location of the agent:

⇀
A =

⇀
G
⇀
M

(1)

⇀
G = c2 + c3 −

⇀
F (2)

⇀
F = 2·c1 (3)

where
⇀
A is a vector used to find the new position of each agent;

⇀
G is gravity;

⇀
F is the water

flow in the deep sea; and c1, c2, and c3 are three random numbers in the interval 0 to 1

inclusive.
⇀
M is a vector the value of which is expressed as the social strength between the

search agents and is defined as:

→
M = Pmin + c1 · (Pmax − Pmin) (4)

where Pmin and Pmax indicate the incipient and secondary speeds that enable search agents
to build social interaction. In this paper, Pmin and Pmax are set to 1 and 4 respectively.

3.1.2. Move in the Direction of the Optimal Individual

After resolving clashes between adjacent search agents, each one should move toward
the neighboring individual having the highest fitness value. The mathematical model of
moving towards the best search agent is established as:

⇀
PD =

∣∣∣∣ ⇀
Xbest − rrand·

⇀
X(t)

∣∣∣∣ (5)

where
⇀

PD is a vector that represents the spatial distance between the target food and the

tunicate;
⇀

Xbest stands for food that is at the position of the current optimal individual; rrand

is a random number in the interval [0, 1]; and
⇀

X(t) stores the location information of the
current search agent in the t-th iteration.

211

Mathematics 2022, 10, 3405

3.1.3. Make the Search Agents Converge to the Optimal Individual

To make the search agents carry out sufficient local exploration near the optimal
individual to find the optimal solution of the current iteration, their locations are calculated
by Equation (6):

X(t) =

⎧⎨⎩Xbest −
⇀
A·

⇀
PD, i f rrand < 0.5

Xbest +
⇀
A·

⇀
PD, i f rrand ≥ 0.5

(6)

At iteration t, each search agent explores the region near the optimal individual Xbest
and assigns the result to X(t) to update its position.

3.1.4. Swarm Behavior

The swarm behavior of the tunicate transmits location information between the search
agents. This mechanism is driven by the position of the current search agent in the next
iteration and is obtained according to the position updated by the current search agent.
This is done through the optimal individual and the position updated by the previous
individual through swarm behavior. The mathematical model is defined as:

⇀
Xi(t + 1) =

⎧⎨⎩
⇀

Xi(t)+
⇀

Xi−1(t+1)
2+c1

i f i > 1
⇀

Xi(t) i f i = 1
(7)

where i = 1, . . . , N, N is the size of the tunicate population,
⇀

Xi(t + 1) is the position of the

current search agent in the next iteration,
⇀

Xi−1(t + 1) is the position of the previous search

agent in the next iteration, and
⇀

Xi(t) is computed by Equation (6).
To illustrate the detailed process of the TSA, the main steps to update the positions of

search agents are listed below:

Step 1: Initialize the original population of search agents
⇀
X.

Step 2: Assign values to the max-iterations and other initial parameters.
Step 3: Compute the fitness value of each tunicate and select the individual with the

best fitness value as the optimal search agent.
Step 4: Update the location of each search agent by Equation (7).
Step 5: Keep each search agent in the search space.
Step 6: Calculate the fitness value of each updated search agent; if there is a better

individual than the previous optimal search agent in the population, update
⇀

Xbest.
Step 7: If the maximum iteration is reached, then the procedures stop. Otherwise,

continue with steps 4–7.
Step 8: Print the best individual (Xbest) so far.

3.2. Lévy Flight

Lévy flight is a random walk strategy whose step size satisfies the Lévy distribu-
tion [46]. Having stable distribution with infinite mean value and divergent variance, it
enables the search agents to generate a long jump distance during exploration. Another
important advantage of the Lévy flight strategy is its combination of global exploration
and exploitation. When search agents walk randomly, there are usually more small step
sizes and a handful of large step sizes; therefore, the Lévy flight strategy not only helps the
search agents to carry out a local search by jumping in small step sizes near the optimal
solution but also enable the search agents to fully explore the unknown area of the search
space by jumping in large step sizes. Above all, the small step sizes random walk ensures
that the search agents carefully explore the area around the best individual and improve
the possibility of the population’s position in the search space. In addition, exploration

212

Mathematics 2022, 10, 3405

capability and mutation reflect the advantage in the global exploration. The Lévy flight
strategy is mathematically defined as [47]:

L(s, γ, μ) =

⎧⎨⎩
√

γ
2π ·exp

[
− γ

2(s−μ)

]
1

(s−μ)
3
2

, 0 < μ < s < ∞

0 , otherwise
(8)

where s is the samples; γ is a transmission parameter; and μ is the minimum step size.
When s → ∞ , the above formula can be simplified as:

L(s, γ, μ) ≈
√

γ

2π
· 1

s
3
2

(9)

The Equation (9) is transformed into a Fourier transform:

F(k) = exp
[
−α|k|β

]
, 0 < β ≤ 2 (10)

where α is a transmission parameter. In general, the analytical form of Equation (10) is
described as follows:

L(s) =
1
π

∫ ∞

0
exp
[
−α|q|β

]
cos(qs)dq (11)

L(s)→
αβΓ(β) sin

(
πβ
2

)
π|s|1+β

, s → ∞ (12)

where Γ(β) is the Gamma Function. In most cases, the most direct and effective method of
symmetric, stable Lévy distribution is to use the Mantegna algorithm, which generates a
random step size that satisfies the Lévy distribution. The random step size is calculated
as follows [48,49]:

S =
u

|v|
1
β

(13)

where u and v satisfy the following normal distribution [47]:

u ∼
(

0, σu
2
)

, v ∼
(

0, σv
2
)

(14)

σu =

⎡⎣Γ(1 + β)· sin
(

πβ
2

)
Γ
[

1+β
2

]
β·2β− 1

2

⎤⎦
1
β

(15)

σv = 1 (16)

where 0 < β < 2 is a parameter that controls the shape of the distribution. In general, β
directly affects the balance between development capability and exploration capability.

Figure 1 displays the Lévy flight trajectory of continuous moving 500 times with
different β in a two-dimensional space. The study found that the range of step sizes is
registered with maximal values in the range of 102 × [−14, 2] for the x and 102 × [−2, 12]
for the y dimension when β = 1; the smallest in the range of 10−15 × [−2, 10] for the x
and 10−15 × [−6, 2] for y dimension when β = 2; and kept a balance when β = 1.5 with
range [−100, 0] for the x and [−10, 80] for the y dimension. Hence, β was set to 1.5 in this
research. The factor S depended on the dimension of the problem to be solved; otherwise,
the Lévy flight strategy showed high aggressiveness and generated solutions beyond the
scope of the problem. It is obvious that the Lévy Flight strategy generates both small-step
random walks and large-step random jumps in the search space, simultaneously taking
into account development and exploration.

213

Mathematics 2022, 10, 3405

(a) (b)

(c)

Figure 1. Lévy flight track in a two-dimensional search space with different β. (a) β = 1; (b) β = 1.5;
(c) β = 2.

3.3. Chaotic Maps

Chaotic mapping is a mechanism used to generate random chaotic sequences gen-
erated by a simple deterministic system. These sequences have the characteristics of
nonlinearity, ergodicity, non-repeatability, and randomness [50]. Therefore, chaotic se-
quences help search agents explore a search space more fully, make the algorithm escape
from the local optimal solution, and increase the diversity of the population. In the field of
optimization algorithms, chaotic maps are often more advantageous than pseudo-random
number generators for generate chaotic numbers between 0 and 1 [51]. The common
mapping functions are listed below, and their distribution graphs are shown in Figure 2:

• Chebyshev map

The mapping function of the Chebyshev map is defined as follows [52]:

xk+1 = cos
(

α cos−1 xk

)
(17)

where α is a control parameter of the Chebyshev map.

• Circle map

214

Mathematics 2022, 10, 3405

The Circle map could be denoted by Equation (18) [53]:

xk+1 = xk + β−
(α

2π
sin(2πxk)

)
mod(1) (18)

when α is set to 0.5 and β is set to 0.2, the circle map could generate stochastic numbers
between 0 and 1.

• Gauss map

The Gauss chaotic numbers are calculated by the following equation [54]:

xk+1 =

{
0, i f xk = 0

1
xk

mod(1) i f xk �= 0
(19)

• Iterative chaotic map with infinite collapses (ICMIC)

The mapping function of the iterative map is listed below [55]:

xk+1 = abs
(

sin
(

α

xk

))
(20)

where α is a parameter for controlling the chaotic map, and the iterative map could gain
superior performance when α = 0.7.

• Logistic map

The Logistic map is a one-dimensional nonlinear chaotic map and one of the most
commonly used chaotic maps, and it is represented as follows [56]:

xk+1 = αxk(1− xk) (21)

where α is a control parameter whose value is between 3.5 and 4 to make the Logistic map
produce chaotic sequences. Generally, α is set to 4.

• Sine map

The Sine map is a unimodal map, it is given in Equation (22) [32]:

xk+1 =
α

4
sin(πxk) (22)

where α. is a control parameter with a value range in (0, 4].

• Singer map

The mapping function of the Singer map is defined as follows [57]:

xk+1 = α
(

7.86xk − 23.31x2
k + 28.75x3

k − 13.203875x4
k

)
(23)

when the value of control parameter α is in (0.9,1.08), the Singer map could produce
chaotic sequences.

• Sinusoidal map

The chaotic numbers of the Sinusoidal map are computed as [56]:

xk+1 = αx2
k sin(πxk) (24)

where α is set to 2.3 to generate chaotic numbers.

• Tent map

215

Mathematics 2022, 10, 3405

The Tent map is shown by Equation (25) [58]:

xk+1 =

⎧⎪⎨⎪⎩
xk
α

xk ≤ α

(1− xk)

1− α
α < xk ≤ 1

(25)

Figure 2. Distribution graphs of nine common chaotic maps.

3.4. Chaotic-Lévy Flight TSA

The current research shows that it is feasible to optimize the meta-heuristic algorithm
by combining chaotic mapping and Lévy flight [59,60]. To solve the shortcomings of the
TSA, such as falling easily into local optimal solutions and insufficient exploration [43], this
section introduces an improved TSA from using the Chaotic-Lévy flight strategy (CLTSA).
It allows search agents to find a suitable location in the area near the optimal solution, fully
explore the search space, and avoid the emergence of a local optimal solution.

In this paper, the modification to the TSA is mainly reflected in Equation (6). In short,
the aim was to improve its performance in the stage of convergence towards the candidate
agent. Due to the randomness of chaotic mapping, the Chaotic-Lévy flight generates a
more diverse population that jumps out of the local optimal solution. The convergence
stage formula after introducing the Chaotic-Lévy flight strategy is shown as:

X(t) =

⎧⎪⎪⎨⎪⎪⎩
chaos(t) ∗ levy. ∗

(
Xbest −

⇀
A·

⇀
PD
)

, i f rrand < 0.5

chaos(t) ∗ levy. ∗
(

Xbest +
⇀
A·

⇀
PD
)

, i f rrand ≥ 0.5
(26)

where t indicates that the current iteration number belongs to the t-th generation; chaos(t)
represents the chaotic value generated by the chaotic map in the t-th generation; levy is the
step size calculated by Lévy flight strategy; and the meanings of unexplained parameters

216

Mathematics 2022, 10, 3405

are the same as those in Equation (6). Because the TSA search agents have difficulty
searching randomly in the search space and have not explored the optimal solution, the
algorithm easily falls into a local optimal solution. However, the small step sizes of the
Chaotic-Lévy flight strategy make it possible for the search agents to move to a random
position near the candidate solution, thus greatly improving the probability that the best
solution will be chosen. In addition, the large step sizes of Chaotic-Lévy flight produce
mutability, which occasionally enables search agents to appear elsewhere in the search
space to explore other promising areas and avoid premature convergence. Moreover, the
value between (0, 1) generated by a chaotic map can also prevent search agents from
leaving the search space because of long-distance movement. Due to the randomness and
non-repeatability of chaotic mapping, the Chaotic-Lévy flight strategy can generate steps at
random, which enhances population diversity. Because of the diversity of chaotic maps,
choosing a suitable one to combine with Lévy flight will be studied in the next section.
The main process of the improved TSA can be summarized in the pseudo-code displayed
in Algorithm 1, and the CLTSA process is illustrated in the flow chart in Figure 3, which
describes the important steps of the algorithm.

Figure 3. The flowchart of CLTSA.

217

Mathematics 2022, 10, 3405

Algorithm 1: Algorithm CLTSA

1: procedure CLTSA
2: Initialize the original population X and the chaos(0) randomly

3: Initialize the parameters
⇀
A,

⇀
G,

⇀
F ,

⇀
M, and maximum number of iterations T

4: set Pmin ← 1, Pmax ← 4
5: Calculate fitness of each individual, and choose the best candidate solution as Xbest
6: while (t < T) do

7: for i ← 1 to N do

/* Jet propulsion behavior */

8: c1, c2, c3, rrand ← Rand()

9:
⇀
M ← �Pmin + c1·(Pmax − Pmin)� Equation (4)

10:
⇀
F ← 2·c1 Equation (3)

11:
⇀
G ← c2 + c3 −

⇀
F Equation (2)

12:
⇀
A ←

⇀
G
⇀
M

Equation (1)

13:
⇀

PD ← abs
(

⇀
Xbest − rrand·

⇀
X(t)

)
Equation (5)

14: chaos(t)← FTent map(chaos(t− 1)) Equation (17)–(25)
15: levy ← Flevy f light(D) Equation (13)–(16)
/* Swarm behavior */

16: if i = 1
17: if rrand < 0.5

18: Xi(t + 1)← Xbest −
⇀
A·

⇀
PD Equation (6)

19: else

20: Xi(t + 1)← Xbest +
⇀
A·

⇀
PD

21: end if

22: else

23: if rrand < 0.5

24: Xi(t)← chaos(t) ∗ levy. ∗
(

Xbest −
⇀
A·

⇀
PD
)

Equation (26)

25: else

26: Xi(t)← chaos(t) ∗ levy. ∗
(

Xbest +
⇀
A·

⇀
PD
)

27: end if

28: Xi(t + 1)← (Xi(t)+Xi−1(t+1))
(2+c1)

Equation (7)
29: end for

30: Calculate fitness of each individual, and choose the best solution as Xbest
31: t ← t + 1
32: end while

33: return Xbest
34: end procedure

3.5. Complexity Analysis of CLTSA

Complexity is an important indicator for evaluating the performance of an algorithm:
time complexity estimates running time, and space complexity represents the amount
of solution space required. This subsection evaluates the time and space complexity of
the CLTSA.

3.5.1. Time Complexity

In the initialization phase, the algorithm generates the original population containing
N search agents for a problem with dimension D, so the time complexity of the initialization
is O(N × D). Moreover, CLTSA requires O(T × N × D) time to compute the fitness of each
individual, where T indicates the maximum number of iterations. Finally, O(M) time is
used to execute the main steps, where M denotes the number of jet propulsion and swarm
behaviors. Therefore, the overall time complexity of CLTSA is O(T × N ×M× D).

218

Mathematics 2022, 10, 3405

3.5.2. Space Complexity

The number of solution spaces required by CLTSA is N search agents generated for D-
dimensional problems in the initialization phase. Hence, the space complexity is estimated
to be O(N × D).

4. Experimental Results and Analysis

In the field of meta-heuristic algorithms, using benchmark functions with different
characteristics is the most common method for measuring algorithmic performance. These
functions can reflect the convergence speed and value of algorithms to evaluate its explo-
ration and development capabilities. To control the accuracy of the experimental results,
each algorithm runs independently 30 times on the same software and computer. The
software for coding the proposed algorithm is MATLAB 2020a, and the algorithm was run
on a computer with AMD Ryzen 7 4800H processor and 16 GB RAM.

4.1. Benchmark Test Functions

The main characteristics of benchmark function are modality, dimensionality, separa-
bility, differentiability, and continuity. According to the above characteristics, benchmark
functions can be classified to evaluate the performance of algorithms from different per-
spectives. To comprehensively assess the property of CLTSA, a set of benchmark functions
containing all the above features is used [11]. The test set is divided into two groups based
on the number of minimums of benchmark functions in a given interval:

1. Unimodal benchmark functions: The detailed information of the unimodal functions
test set is listed in Table 2, and their mathematical expressions are shown in Table A1
in Appendix A [11].

2. Multimodal benchmark functions: The detailed information of the test set which
is composed of 14 multimodal benchmark functions is listed in Table 3, and their
mathematical expressions are shown in Table A2 in Appendix A [11].

Table 2. Unimodal benchmark functions.

Function Range Dim Fmin

F1-Sphere [−100, 100] 50 0
F2-Quartic Noise [−1.28, 1.28] 20 0
F3-Powell Sum [−1, 1] 50 0
F4-Schwefel’s 2.20 [−100, 100] 50 0
F5-Schwefel’s 2.21 [−100, 100] 50 0
F6-Schwefel’s 1.20 [−100, 100] 50 0
F7-Schwefel’s 2.22 [−100, 100] 50 0
F8-Schwefel’s 2.23 [−10, 10] 50 0
F9-RosenBrock [−30, 30] 50 0
F10-Brown [−1, 4] 50 0
F11-Dixon and Price [−10, 10] 50 0
F12-Powell Singular [−4, 5] 50 0
F13-Zakharow [−5, 10] 50 0
F14-Three-Hump Camel [−5, 5] 2 0
F15-Matyas [−10, 10] 2 0
F16-WayBurn Seader 3 [−500, 500] 2 21.35

4.2. Comparison of Chaotic Maps

The logistic map is used by most optimization algorithms based on the chaos mecha-
nism in current research [58], but its chaotic values are generally distributed in the intervals
[0, 0.1] and [0.9, 1]. This uneven traversal affects the optimization efficiency of the algo-
rithm [43]. To select the most suitable chaotic map, the above nine common chaotic maps
are combined with the Lévy flight strategy to optimize the TSA. Then, the 30 well-known
unimodal test functions and multi-modal test functions (see the Appendix A) are used to
evaluate the algorithm’s performance. The run results are shown in Tables 4 and 5.

219

Mathematics 2022, 10, 3405

Table 3. Multimodal benchmark functions.

Function Range Dim Fmin

F17-Rastrigin [5.12, 5.12] 50 0
F18-Periodic [−10, 10] 50 0
F19-Alpine N. 1 [−10, 10] 50 0
F20-Xin-She Yang [−5, 5] 50 0
F21-Ackley [−32, 32] 50 0
F22-Trignometric 2 [−500, 500] 50 1
F23-Salomon [−100, 100] 50 0
F24-Griewank [−100, 100] 50 0
F25-Gen. Penalized [−50, 50] 50 0
F26-Penalized [−50, 50] 50 0
F27-Egg Crate [−5, 5] 2 0
F28-Bird [−2π, 2π] 2 −106.7645
F29-Goldstein Price [−2, 2] 2 3
F30-Bartels Conn [−500, 500] 2 1

Table 4. Results of 9 chaotic maps combined with Lévy flight on unimodal benchmark functions.

Fn Criteria Chebyshev Circle Gauss Iterative Logistic Sine Singer Sinusoidal Tent

F1
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2
Mean 4.45E−05 1.59E−04 2.16E−05 2.09E−05 8.52E−05 4.65E−05 1.04E−04 6.45E−05 2.04E−05
Best 2.51E−07 5.10E−06 1.57E−06 8.60E−07 8.85E−06 1.34E−05 1.17E−06 1.07E−06 5.05E−07
Std 5.32E−05 9.45E−05 2.18E−05 1.42E−04 4.02E−05 3.50E−05 3.57E−05 3.14E−05 1.48E−05

F3
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4
Mean 4.17E−228 1.97E−205 0.00E+00 1.26E−179 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 1.48E−231 3.23E−217 0.00E+00 1.91E−180 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F5
Mean 1.28E−210 8.66E−187 0.00E+00 3.67E−157 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 3.79E−216 2.01E−192 0.00E+00 3.38E−161 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 3.66E−152 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6
Mean 0.00E+00 0.00E+00 0.00E+00 6.08E−306 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 6.08E−306 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F7
Mean 7.33E−233 3.48E−210 0.00E+00 3.06E−178 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 2.58E−233 6.75E−214 0.00E+00 4.83E−180 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F9
Mean 4.87E+01 4.88E+01 4.89E+01 4.89E+01 4.89E+01 4.89E+01 4.90E+01 4.89E+01 4.72E+01
Best 4.81E+01 4.81E+01 4.87E+01 4.81E+01 4.81E+01 4.87E+01 4.81E+01 4.88E+01 4.72E+01
Std 2.44E−01 2.50E−01 7.79E−02 2.54E−01 2.66E−01 9.36E−02 2.51E−01 6.45E−02 5.32E−03

F10
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11
Mean 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01
Best 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01
Std 2.78E−08 9.92E−06 2.93E−08 4.24E−08 2.68E−05 2.08E−05 1.91E−08 1.92E−08 1.69E−08

F12
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F13
Mean 0.00E+00 3.10E−165 0.00E+00 3.77E−260 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 3.69E−215 0.00E+00 8.92E−273 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

220

Mathematics 2022, 10, 3405

Table 4. Cont.

Fn Criteria Chebyshev Circle Gauss Iterative Logistic Sine Singer Sinusoidal Tent

F14
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F15
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16
Mean 1.91E+01 1.91E+01 1.91E+01 1.92E+01 1.49E+02 1.91E+01 1.91E+01 1.49E+02 1.91E+01
Best 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01
Std 1.54E−02 1.63E−02 1.82E−02 1.56E−02 9.88E+01 1.76E+02 2.17E−02 2.37E+01 1.30E−02

Table 5. Results of 9 chaotic maps combined with Lévy flight on multimodal benchmark functions.

Fn Criteria Chebyshev Circle Gauss Iterative Logistic Sine Singer Sinusoidal Tent

F17
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F18
Mean 9.00E−01 1.26E+01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01
Best 9.00E−01 1.13E+01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01
Std 8.46E−16 5.64E−01 3.64E−16 8.49E−16 4.92E−16 3.77E−16 7.31E−16 6.97E−16 4.52E−16

F19
Mean 1.91E−231 2.58E−211 0.00E+00 5.57E−182 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 7.41E−234 1.89E−218 0.00E+00 3.14E−182 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F20
Mean 0.00E+00 1.93E−218 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 3.76E−260 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 1.11E−57 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F21
Mean −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16
Best −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F22
Mean 1.49E+02 1.48E+02 1.61E+02 1.54E+02 1.63E+02 1.48E+02 1.61E+02 1.46E+02 1.53E+02
Best 1.42E+02 1.38E+02 1.38E+02 1.28E+02 1.23E+02 1.29E+02 1.37E+02 1.36E+02 1.30E+02
Std 4.81E+01 6.50E+00 7.57E+00 6.99E+00 4.81E+01 4.95E+01 7.94E+00 7.82E+00 9.19E+00

F23
Mean 0.00E+00 1.79E−145 0.00E+00 3.98E−153 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 1.82E−02 5.07E−02 0.00E+00 3.79E−02 0.00E+00 0.00E+00 1.82E−02 0.00E+00 0.00E+00

F24
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F25
Mean 4.90E+00 4.73E+00 4.90E+00 4.80E+00 4.99E+00 4.99E+00 4.90E+00 4.90E+00 4.88E+00
Best 4.51E+00 4.35E+00 4.80E+00 4.53E+00 4.84E+00 4.98E+00 4.80E+00 4.80E+00 4.70E+00
Std 9.90E−02 9.85E−02 4.02E−02 8.54E−02 3.79E−02 4.82E−03 4.13E−02 3.29E−02 4.34E−02

F26
Mean 9.11E−01 7.47E−01 9.93E−01 5.76E−01 1.29E+00 1.05E+00 7.85E−01 1.06E+00 9.19E−01
Best 6.94E−01 6.08E−01 5.60E−01 5.48E−01 4.82E−01 4.23E−01 6.39E−01 6.59E−01 5.23E−01
Std 1.11E−01 1.68E−01 1.54E−01 1.56E−01 2.80E−01 2.09E−01 1.30E−01 2.04E−01 1.89E−01

F27
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F28
Mean −106.722 −106.727 −106.73 −106.74 −87.3035 −106.619 −106.688 −106.716 −106.748
Best −106.764 −106.763 −106.764 −106.764 −106.764 −106.761 −106.763 −106.764 −106.763
Std 4.04E−02 5.28E−02 2.12E−02 4.33E−02 8.37E+00 6.71E+00 7.75E−02 3.42E−02 2.57E−02

F29
Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.01E+00 3.00E+00 3.00E+00 3.00E+00
Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std 2.23E−05 3.53E−04 5.85E−05 1.13E−05 6.85E+00 1.60E+01 3.69E−04 1.78E−04 9.53E−16

F30
Mean 8.23E−02 1.19E−01 7.87E−02 9.06E−02 5.93E+01 8.97E−01 6.00E+01 6.45E−03 8.59E+00
Best 3.17E−02 2.30E−02 3.83E−02 2.30E−02 1.56E−02 1.85E−02 5.16E−03 2.76E−03 8.49E−03
Std 1.50E+01 1.46E+00 4.24E+01 9.77E−01 4.80E+01 5.73E+01 1.81E+01 1.50E+01 2.03E+01

To ensure the fairness and validity of the experimental results, each Chaotic-Lévy TSA
was run 30 times independently, and the maximum number of iterations, population size,

221

Mathematics 2022, 10, 3405

and problem dimension were set to 500, 50, and 50 respectively. The mean was the mean
value of the 30 optimal solutions. Best was the optimal value among the experimental
results obtained by running an algorithm 30 times; std was standard deviation. In this
paper, the ranking rule of algorithm performance was mean, best, and std in that order.
The algorithm with the best results for each benchmark function is emphasized in bold.

From the experimental results, the Tent-Lévy flight TSA (TLTSA) had far better op-
timization compared to the Chaotic-Lévy TSAs (CLTSAs). Among the 30 benchmark
functions, the TLTSA had 25 optimal solutions more than the CLTSAs and ranked first. In
the following research, it was used for comparative experiments and to optimize solutions
to engineering problems.

4.3. Parameter Settings of TLTSA and Other Algorithms

The TSA relies on two main parameters to build social interactions, Pmin and Pmax. Pmin
was taken as 1, 2, 3, 4 for the experiment and other parameter settings were kept unchanged.
The study found that the TSA achieved the best performances when the value of Pmin was
set to 1. In the same way, Pmax was taken as 1, 2, 3, 4 for the experiment and the other
parameter settings were kept unchanged. The TSA achieved the best performances when
the value of Pmax was set to 4 [45]. The proposed TLTSA was compared with TSA and other
metaheuristic algorithms, including grey wolf optimizer (GWO) [61], sine cosine algorithm
(SCA) [62], sparrow search algorithm (SSA) [63], water circle algorithm (WCA) [8], whale
optimization algorithm (WOA) [24], marine predators algorithm (MPA) [64], lighting
search algorithm (LSA) [28], and hybrid glowworm swarm optimization (HGSO) [65]. The
parameter settings of all algorithms are listed in Table 6, and all parameter values were
derived from the literature.

Table 6. The main parameter settings of the algorithms that need to be compared and analyzed.

Algorithm Parameter Setting

Common Settings

Population size: N = 50
maximum number of iterations: T = 500
Dimensions of problem: Dim = 50
Number of independent runs: Repetition = 30

GWO
⇀
a decays from 2 to 0
⇀
A,

⇀
C are calculated by corresponding formulas

SCA a = 2, r1,2,3,4 are calculated by corresponding formulas

SSA Q is a random number and Q ∼ N
(
μ, σ2)

is a random number and β ∼ N(0, 1)

WCA C = 2 and μ = 0.1

WOA
⇀
α decays from 2 to 0
b = 1

MPA p = 0.5, FADs = 0.2
CF is calculated by corresponding formulas

LSA Channel time: chtime = 10

HGSO ρ = 0.4, γ = 0.6, β = 0.08, s = 0.03, CR = 0.9, λ = 0.9415

TSA Pmin= 1 and Pmax = 4

TLTSA Pmin= 1 and Pmax = 4
lévy and chaos(t) are calculated by corresponding formulas

222

Mathematics 2022, 10, 3405

4.4. Results and Analysis
4.4.1. Experimental Data Analysis

Since a fixed-dimensional function is closer to a real-world optimization problem, six
were selected to verify TLTSA convergence speed and accuracy. These functions are listed
in Table 7, and the mathematical expressions are detailed in Table A3 in the Appendix A.

Table 7. Fixed-dimension benchmark functions.

Function Range Dim Fmin

F1-Shekel’s Foxholes [−65, 65] 2 1
F2-Kowalik [−5, 5] 4 0.0003075
F3-Hartman 3 [0, 1] 4 −3.86
F4-Shekel 1 [0, 10] 4 −10.1532
F5-Shekel 2 [0, 10] 4 −10.4029
F6-Shekel 3 [0, 10] 4 −10.5364

Because unimodal benchmark functions have only one global minimum, it is not
only suitable for assessing development capability, but also for examining the algorithm
convergence speed. According to the experimental data in Table 8, the TLTSA was more
competitive in the unimodal benchmark functions compared to other algorithms. For F1,
F3, F4, F5, F6, and F7, only the TLTSA quickly and accurately found the standard optimal
value 0. In addition, the std was also zero, which showed that running TLTSA 30 times
produced the best global solution and fully reflected its stability. For the other algorithms,
it was difficult for them to find the global optimal solution with an order of magnitude
less than −100, especially the SCA, SSA, and LSA. These three converged prematurely
because they could not escape the local optimal solution. For F10, F12, F13, F14, and F15,
although some of the other comparison algorithms also had good performance, there was
still a large gap with the TLTSA, which quickly found the exact global optimal solution.
For these unimodal benchmark functions, the order of magnitude of the mean value of the
HGSO reached −100 even −200, and the std reached 0. However, the mean, best, and std
of the TLTSA were all zero, which meant that the TLTSA had strong optimization capability
and stability. From the comparison of these three criteria, it more carefully developed the
vicinity of the optimal solution than did the HGSO, thereby enhancing the selectivity of
the optimal solution. For F2, F9, and F11, although the best result of TLTSA is not optimal
solution 0, it has the best mean value, optimal solution, and std among the algorithms
selected for comparison. It was proven that the proposed TLTSA was indeed focused on
exploration and exploitation to improve performance. For F8, although both the TLTSA
and HGSO had the best calculation accuracy, the convergence curve indicates that the
convergence speed of TLTSA was significantly better, showing that it has more exploration
and exploitation advantages. For F16, TLTSA obtains the same global optimal solution as
the other algorithms, but was slightly unstable. In addition, compared with the original
TSA algorithm, the TLTSA had a greatly improved mean value and standard deviation as
well as a high-er search accuracy. Overall, in the test of 16 unimodal benchmark functions,
the TLTSA took first place 15 times and eighth once among 10 algorithms.

It was clearly better suited to solving precise engineering problems, and its higher
sensitivity to unimodal benchmark functions proved a strong exploitation capability. The
Tent-Lévy flight strategy generated a number of small step sizes with greater randomness,
which made search agents explore the search space fully when converging towards the
candidate solution, and improve the possibility of the optimal solution being selected.
Tent-Lévy flight as a random-walk strategy efficiently enhanced the algorithm’s exploration
and exploitation abilities.

223

Mathematics 2022, 10, 3405

Table 8. Comparison of TLTSA with other optimization algorithms for unimodal benchmark functions.

Fn Criteria GWO SCA SSA WCA WOA MPA LSA HGSO
LFPSO

[47]
chTLBO

[66]
TSA TLTSA

F1
Mean 8.11E−24 5.78E+02 2.35E−03 9.98E−10 4.43E−83 5.10E−21 1.13E−04 4.52E−114 1.06E−04 7.32E−05 9.65E−18 0.00E+00
Best 5.29E−25 2.13E+00 6.05E−05 6.97E−14 9.90E−93 6.88E−23 7.36E−08 6.97E−150 1.45E−06 7.93E−20 0.00E+00
Std 1.10E−23 7.67E+02 2.17E−03 2.33E−09 2.19E−82 7.53E−21 3.07E−04 2.48E−113 1.58E−04 1.40E−17 0.00E+00

F2
Mean 2.12E−03 2.16E+00 3.41E−01 3.78E−02 2.55E−03 1.32E−03 7.88E−02 2.47E−04 4.34E−02 1.63E−01 1.14E−02 4.03E−05
Best 8.10E−04 1.54E−01 1.67E−01 2.12E−02 1.34E−05 2.63E−04 5.21E−02 1.69E−05 7.61E−02 2.55E−03 7.99E−07
Std 9.10E−04 2.55E+00 8.43E−02 1.26E−02 3.17E−03 6.51E−04 1.44E−02 2.46E−04 1.11E−02 4.85E−03 4.00E−05

F3
Mean 3.54E−107 6.52E−03 7.77E−07 2.23E−22 7.09E−124 8.98E−62 8.36E−32 5.16E−207

—— ——
1.14E−75 0.00E+00

Best 1.13E−118 1.56E−04 4.63E−08 6.84E−29 3.47E−153 5.70E−72 1.21E−39 1.45E−234 6.46E−92 0.00E+00
Std 1.53E−106 1.15E−02 8.57E−07 7.45E−22 3.88E−123 3.66E−61 4.52E−31 0.00E+00 3.67E−75 0.00E+00

F4
Mean 1.10E−13 2.52E+00 4.22E+01 1.29E−04 8.52E−53 2.70E−11 7.13E−01 5.68E−71

—— ——
1.25E−10 0.00E+00

Best 7.13E−14 7.05E−02 1.27E+01 1.42E−05 3.87E−58 3.05E−12 3.24E−03 2.94E−75 4.08E−11 0.00E+00
Std 3.95E−14 2.33E+00 2.47E+01 2.51E−04 2.54E−52 1.78E−11 8.78E−01 8.55E−71 8.80E−11 0.00E+00

F5
Mean 5.80E−05 6.33E+01 1.58E+01 2.98E+00 8.14E+01 2.93E−08 1.64E+01 3.03E−66 1.21E+01 2.10E−03 4.62E+00 0.00E+00
Best 5.88E−06 4.21E+01 1.39E+01 8.40E−01 6.45E+01 1.52E−08 9.02E+00 2.73E−73 2.10E−03 6.55E−01 0.00E+00
Std 6.34E−05 1.01E+01 1.61E+00 9.16E−01 9.43E+00 1.01E−08 4.59E+00 7.42E−66 6.22E+00 2.84E+00 0.00E+00

F6
Mean 5.43E−03 3.91E+04 4.64E+03 7.44E+00 1.52E+05 1.86E−02 2.84E+03 4.34E−126 1.18E+03 1.84E−02 2.11E+00 0.00E+00
Best 3.01E−06 1.42E+04 1.46E+03 2.36E+00 7.99E+04 2.79E−04 1.25E+03 4.94E−144 1.30E−03 8.37E−03 0.00E+00
Std 1.14E−02 1.50E+04 3.18E+03 4.92E+00 3.20E+04 2.74E−02 6.87E+02 2.31E−125 5.66E+02 3.51E+00 0.00E+00

F7
Mean 2.02E−13 3.64E+00 6.49E+28 1.74E+25 6.01E−53 2.79E−11 1.21E+02 1.19E−66 1.73E−03 1.00E−02 1.99E−10 0.00E+00
Best 7.59E−14 1.44E−01 6.69E+08 7.88E−07 6.42E−59 5.29E−13 2.30E−01 1.58E−75 1.61E−01 2.70E−12 0.00E+00
Std 9.92E−14 4.69E+00 3.35E+29 9.54E+25 2.97E−52 4.13E−11 1.47E+02 6.34E−66 4.53E−03 1.89E−10 0.00E+00

F8
Mean 6.74E−77 1.13E+08 1.13E−03 2.14E−25 9.77E−226 4.43E−94 1.68E−18 0.00E+00

—— ——
3.87E−42 0.00E+00

Best 2.32E−85 4.09E+06 8.06E−08 1.51E−34 3.93E−293 2.50E−101 6.12E−24 0.00E+00 3.46E−59 0.00E+00
Std 2.48E−76 1.50E+08 3.16E−03 1.13E−24 0.00E+00 1.52E−93 4.90E−18 0.00E+00 1.84E−41 0.00E+00

F9
Mean 4.66E+01 5.12E+06 4.55E+02 9.41E+01 4.76E+01 4.88E+01 1.45E+02 4.88E+01 9.78E+01 1.99E+01 4.87E+01 4.54E+01
Best 4.58E+01 2.00E+05 8.01E+01 4.32E+01 4.68E+01 4.81E+01 2.98E+01 4.87E+01 1.86E+01 4.85E+01 4.48E+01
Std 5.25E−01 6.33E+06 7.95E+02 3.62E+01 5.00E−01 2.57E−01 5.99E+01 1.02E−01 6.53E+01 1.17E−01 4.92E−01

F10
Mean 2.30E−26 2.11E−01 6.37E−05 1.33E−13 1.46E−87 8.85E−24 2.62E−05 7.86E−136

—— ——
5.73E−20 0.00E+00

Best 1.26E−27 2.93E−03 4.30E−07 7.28E−17 5.40E−96 8.02E−25 2.01E−09 6.09E−160 3.01E−22 0.00E+00
Std 3.23E−26 3.43E−01 2.04E−04 2.72E−13 4.77E−87 7.70E−24 6.42E−05 3.82E−135 1.16E−19 0.00E+00

F11
Mean 6.67E−01 2.26E+04 1.30E+01 6.67E−01 6.67E−01 6.67E−01 6.05E+00 6.67E−01

—— ——
7.56E−01 6.67E−01

Best 6.67E−01 1.77E+02 1.80E+00 6.67E−01 6.67E−01 6.67E−01 1.03E+00 6.67E−01 6.67E−01 6.67E−01
Std 1.41E−05 3.49E+04 1.38E+01 3.83E−04 1.87E−04 8.56E−08 3.35E+00 2.87E−06 1.50E−01 4.32E−08

F12
Mean 1.63E−05 2.24E+02 9.05E+00 1.10E−03 9.15E−13 2.08E−15 4.20E−01 8.34E−116

—— ——
5.15E−04 0.00E+00

Best 2.27E−06 2.64E+00 1.08E+00 3.03E−04 5.82E−95 5.71E−23 5.57E−02 1.93E−150 8.95E−05 0.00E+00
Std 1.09E−05 2.32E+02 6.07E+00 4.65E−04 4.84E−12 1.13E−14 5.10E−01 4.57E−115 4.46E−04 0.00E+00

F13
Mean 8.68E−05 1.28E+02 2.60E+02 1.75E+02 8.52E+02 1.70E−01 1.09E+02 1.85E−119

—— ——
1.27E−06 0.00E+00

Best 4.11E−07 5.14E+01 1.55E+02 2.86E+01 5.96E+02 4.60E−02 6.30E+01 1.81E−138 1.67E−08 0.00E+00
Std 1.03E−04 4.94E+01 6.69E+01 7.29E+01 1.09E+02 9.01E−02 2.18E+01 9.73E−119 2.30E−06 0.00E+00

F14
Mean 1.89E−240 8.74E−78 3.49E−15 1.45E−39 1.21E−95 7.53E−80 5.67E−253 9.51E−183

—— ——
2.99E−02 0.00E+00

Best 1.39E−307 5.19E−87 2.81E−18 9.77E−45 9.31E−119 1.42E−119 1.88E−263 4.51E−220 4.96E−150 0.00E+00
Std 0.00E+00 3.35E−77 4.60E−15 4.31E−39 6.62E−95 4.12E−79 0.00E+00 0.00E+00 9.11E−02 0.00E+00

F15
Mean 2.45E−140 5.74E−61 8.63E−16 1.91E−40 2.15E−213 1.04E−70 1.60E−149 1.39E−181

—— ——
1.25E−86 0.00E+00

Best 1.23E−165 2.56E−79 4.10E−18 3.89E−46 1.09E−270 1.25E−90 5.17E−171 5.05E−213 3.25E−101 0.00E+00
Std 1.29E−139 3.14E−60 1.05E−15 4.12E−40 0.00E+00 5.68E−70 8.64E−149 0.00E+00 5.64E−86 0.00E+00

F16
Mean 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.93E+01

—— ——
6.80E+01 1.91E+01

Best 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01
Std 1.03E−05 2.15E−02 2.86E−10 9.49E−15 3.61E−03 5.15E−15 1.35E−14 1.85E−01 1.24E+02 3.71E−02

Table 9 is the experimental data of multimodal benchmark functions. A significant
characteristic of the multimodal benchmark functions is that they may have multiple local
minimum values in a given interval, so the multimodal benchmark functions are important
tools to evaluate the global search capability of optimization algorithms. For F18, F19,
F20, F23, F27, and F29, the three statistics of TLTSA are all better than other comparison
algorithms, which means that TLTSA can always easily jump out of the local optimal value
and concentrate on finding the global optimal solution. It can be seen that TLTSA ranks
first in each group. For F17, F21, and F24, the optimization effect of mean, best, and std of
TLTSA is obvious. The proposed TLTSA enhances the global exploration capability on the
basis of TSA and solves the premature convergence problem, tied for first place with some
algorithms in each group. For F22 and F25, the mean of TLTSA is better than SCA, SSA,
HGSO, and TSA, which demonstrates that TLTSA makes progress on exploring in search
space. For F26, F28, and F30, the performance of TLTSA is greatly ameliorated compared

224

Mathematics 2022, 10, 3405

with TSA, which makes TLTSA more competitive. Through the above experimental results
analysis, it is shown that TLTSA has enough global exploration capability to escape from
the local optimal solution. The ergodicity and randomness of the Tent map promote the
search agents to distribute in search space randomly, which improves the diversity of the
population. In addition, when the Tent-Lévy flight strategy executes random walk, the
large step sizes are generated with a certain probability, which enables TLTSA to effectively
search for possible areas in the space.

Table 9. Comparison of TLTSA with other optimization algorithms for multimodal benchmark functions.

Fn Criteria GWO SCA SSA WCA WOA MPA LSA HGSO
LFPSO

[47]
chTLBO

[66]
TSA TLTSA

F17
Mean 3.27E+00 1.05E+02 7.11E+01 8.48E+01 0.00E+00 0.00E+00 1.22E+02 0.00E+00 2.96E+01 3.58E+02 3.72E+02 0.00E+00
Best 5.68E−14 1.35E+01 3.28E+01 5.57E+01 0.00E+00 0.00E+00 7.36E+01 0.00E+00 3.48E+02 2.32E+02 0.00E+00
Std 3.98E+00 6.25E+01 1.89E+01 2.74E+01 0.00E+00 0.00E+00 2.33E+01 0.00E+00 4.29E+00 7.09E+01 0.00E+00

F18
Mean 1.67E+00 1.25E+01 1.00E+00 1.00E+00 1.24E+00 1.08E+00 1.00E+00 9.03E−01

—— ——
8.73E+00 9.00E−01

Best 1.17E+00 9.76E+00 1.00E+00 1.00E+00 9.00E−01 1.00E+00 1.00E+00 9.00E−01 6.64E+00 9.00E−01
Std 3.77E−01 1.13E+00 7.12E−05 1.60E−11 8.27E−01 6.78E−02 1.67E−03 1.75E−02 1.13E+00 4.52E−16

F19
Mean 7.42E−04 6.62E+00 5.63E+00 2.06E−04 5.67E−55 5.95E−13 3.78E−01 7.13E−71

—— ——
5.87E+01 0.00E+00

Best 9.42E−14 6.05E−02 1.38E+00 5.13E−09 2.22E−60 2.22E−14 3.98E−03 1.58E−79 3.07E+01 0.00E+00
Std 8.85E−04 5.37E+00 2.14E+00 7.50E−04 2.18E−54 5.64E−13 4.70E−01 1.80E−70 1.10E+01 0.00E+00

F20
Mean 1.38E−20 1.04E+09 2.58E+01 9.62E−05 5.06E−03 5.91E−16 2.44E−08 4.94E−73

—— ——
4.74E−01 0.00E+00

Best 1.14E−45 8.95E−01 7.61E−02 1.38E−09 2.96E−36 1.06E−27 2.13E−13 1.14E−113 3.30E−03 0.00E+00
Std 7.57E−20 3.40E+09 6.00E+01 5.15E−04 2.72E−02 3.18E−15 6.38E−08 2.70E−72 1.13E+00 0.00E+00

F21
Mean 5.35E−13 1.87E+01 3.33E+00 4.23E−01 2.43E−15 1.03E−11 3.56E+00 −8.88E−162.99E−02 5.62E−02 1.66E+00 −8.88E−16
Best 2.51E−13 3.34E+00 2.01E+00 7.13E−07 −8.88E−16 5.71E−13 2.20E+00 −8.88E−16 5.12E−02 1.75E−10 −8.88E−16
Std 1.80E−13 4.88E+00 6.61E−01 8.73E−01 2.79E−15 5.17E−12 1.66E+00 0.00E+00 1.18E−01 1.59E+00 0.00E+00

F22
Mean 5.66E+01 1.31E+04 5.14E+02 7.11E+01 1.23E+02 4.76E+01 1.50E+02 1.58E+02

—— ——
2.23E+02 1.56E+02

Best 3.83E+01 8.29E+02 3.22E+02 9.02E+00 6.58E+01 3.49E+01 5.80E+01 1.51E+02 1.49E+02 1.35E+02
Std 9.32E+00 1.88E+04 1.36E+02 5.04E+01 3.22E+01 7.42E+00 5.00E+01 3.13E+00 3.77E+01 1.11E+01

F23
Mean 2.07E−01 3.29E+00 3.27E+00 9.57E−01 1.23E−01 1.80E−01 1.00E+00 1.91E−18

—— ——
4.80E−01 0.00E+00

Best 9.99E−02 1.30E+00 2.20E+00 7.00E−01 5.97E−44 9.99E−02 6.00E−01 4.03E−69 3.00E−01 0.00E+00
Std 3.65E−02 1.25E+00 5.31E−01 1.30E−01 6.26E−02 4.07E−02 2.57E−01 1.04E−17 7.61E−02 0.00E+00

F24
Mean 1.04E−03 1.17E+00 3.54E−02 6.97E−03 0.00E+00 0.00E+00 1.20E−02 0.00E+00 1.13E−02 8.21E−07 4.91E−03 0.00E+00
Best 0.00E+00 4.15E−01 1.24E−02 7.18E−13 0.00E+00 0.00E+00 2.37E−10 0.00E+00 1.39E−08 0.00E+00 0.00E+00
Std 4.02E−03 3.85E−01 1.79E−02 1.45E−02 0.00E+00 0.00E+00 1.74E−02 0.00E+00 1.61E−02 8.38E−03 0.00E+00

F25
Mean 1.59E+00 2.01E+07 5.71E+01 3.66E−04 4.65E−01 6.81E−02 1.14E−01 4.88E+00 1.33E−02 5.42E−06 5.37E+00 4.85E+00
Best 9.77E−01 4.33E+04 2.72E+01 4.96E−14 1.43E−01 6.01E−03 5.57E−07 4.79E+00 3.73E−07 4.24E+00 4.73E+00
Std 3.51E−01 2.24E+07 1.65E+01 2.01E−03 1.81E−01 6.24E−02 2.40E−01 3.94E−02 2.59E−02 7.47E−01 3.87E−02

F26
Mean 6.58E−02 1.05E+07 9.15E+00 4.31E−08 2.32E−02 9.92E−04 3.08E−01 9.28E−01 2.91E−01 7.91E−08 9.94E+00 9.14E−01
Best 2.33E−02 7.18E+00 3.70E+00 1.07E−13 3.22E−03 4.44E−05 1.28E−06 8.34E−01 1.61E−09 2.96E+00 6.08E−01
Std 2.21E−02 1.42E+07 4.52E+00 1.38E−07 7.11E−02 1.30E−03 4.67E−01 4.81E−02 6.59E−01 4.39E+00 1.88E−01

F27
Mean 3.14E−261 3.05E−76 7.12E−14 1.40E−38 8.54E−141 9.38E−93 2.03E−258 8.73E−183

—— ——
6.42E−121 0.00E+00

Best 1.03E−305 1.25E−86 2.24E−15 2.09E−45 2.89E−168 3.46E−128 3.47E−266 3.57E−203 9.57E−162 0.00E+00
Std 0.00E+00 1.49E−75 6.91E−14 4.05E−38 4.54E−140 5.14E−92 0.00E+00 0.00E+00 3.44E−120 0.00E+00

F28
Mean −105.468 −106.721 −106.765 −106.765 −106.765 −106.765 −106.765 −106.371

—— ——
−104.17 −106.723

Best −106.765 −106.763 −106.765 −106.765 −106.765 −106.765 −106.765 −106.757 −106.765 −106.764
Std 4.94E+00 4.72E−02 1.05E−12 3.75E−14 6.76E−06 6.92E−14 3.73E−14 3.95E−01 6.73E+00 5.47E−02

F29
Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

—— ——
9.30E+00 3.00E+00

Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std 2.21E−05 7.52E−05 2.69E−13 1.16E−15 1.11E−05 1.81E−15 1.59E−04 2.29E−03 1.69E+01 8.45E−16

F30
Mean 3.16E+01 3.10E−01 1.97E+00 1.27E−05 7.90E+00 1.27E−05 5.92E+00 2.99E+00

—— ——
4.64E+01 6.52E+00

Best 3.00E−05 1.54E−02 1.27E−05 1.27E−05 1.28E−05 1.27E−05 1.27E−05 3.69E−03 9.80E−04 1.51E−02
Std 3.00E+01 2.96E−01 1.08E+01 0.00E+00 2.05E+01 4.66E−14 1.81E+01 3.09E+00 4.90E+01 1.80E+01

Table 10 depicts the experimental results of the fixed-dimension functions. For F33,
the TLTSA always found the optimal solution and kept the std to a minimum. For other
functions, it greatly improved solution accuracy compared with the original algorithms and
was significantly better than most optimization algorithms, showing that it had sufficient
ability to jump out of the local optimal solution. Because fixed-dimensional functions are
closer to real-life optimization problems and the TLTSA is competitive at solving them, it
showed that it could solve constrained engineering problems.

225

Mathematics 2022, 10, 3405

Table 10. Comparison of TLTSA with other optimization algorithms for fixed-dimension functions.

Fn Criteria GWO SCA SSA WCA WOA MPA LSA HGSO
LFPSO

[47]
chTLBO

[66]
TSA TLTSA

F31
Mean 2.81E+00 1.66E+00 1.16E+00 9.98E−01 2.21E+00 9.98E−01 6.89E+00 1.41E+00 9.98E−01 1.02E+01 8.41E+00 1.06E+00
Best 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.99E+00 1.99E+00 9.98E−01
Std 2.35E+00 9.51E−01 5.87E−01 8.25E−17 2.47E+00 1.62E−16 4.79E+00 5.21E−01 9.21E−17 4.96E+00 2.52E−01

F32
Mean 4.20E−03 1.07E−03 2.12E−03 4.30E−04 7.26E−04 3.07E−04 5.93E−04 4.82E−04 1.18E−03 3.61E−02 5.87E−03 5.08E−04
Best 3.07E−04 3.83E−04 3.08E−04 3.07E−04 3.15E−04 3.07E−04 3.07E−04 3.41E−04 9.10E−03 3.08E−04 3.35E−04
Std 1.16E−02 3.85E−04 4.97E−03 3.17E−04 4.65E−04 2.76E−15 4.59E−04 7.56E−05 3.63E−03 8.99E−03 1.29E−04

F33
Mean −3.86E+00 −3.85E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.85E+00 −3.86E+00 −3.60E+00 −3.86E+00 −3.86E+00
Best −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.69E+00 −3.86E+00 −3.86E+00
Std 2.37E−03 2.39E−03 2.94E−13 2.61E−15 5.39E−03 2.71E−15 3.49E−03 5.98E−03 2.66E−15 2.55E−03 2.32E−15

F34
Mean −9.31E+00 −3.23E+00 −8.30E+00 −3.60E+00 −8.12E+00 −1.02E+01 −7.38E+00 −3.86E+00 −8.28E+00 −6.05E+00 −6.93E+00 −8.80E+00
Best −1.02E+01 −7.89E+00 −1.02E+01 −5.04E+00 −1.02E+01 −1.02E+01 −1.02E+01 −6.98E+00 −6.85E+00 −1.01E+01 −1.02E+01
Std 1.92E+00 1.92E+00 2.73E+00 1.96E+00 2.77E+00 3.00E−11 2.91E+00 9.06E−01 2.74E+00 3.04E+00 2.28E+00

F35
Mean −1.04E+01 −3.33E+00 −8.97E+00 −3.88E+00 −7.49E+00 −1.04E+01 −6.75E+00 −3.84E+00 −9.97E+00 −1.04E+01 −5.50E+00 −1.00E+01
Best −1.04E+01 −5.62E+00 −1.04E+01 −5.08E+00 −1.04E+01 −1.04E+01 −1.04E+01 −5.22E+00 −1.19E+01 −1.04E+01 −1.04E+01
Std 8.68E−04 1.69E+00 2.70E+00 1.87E+00 3.44E+00 3.34E−11 3.34E+00 5.28E−01 1.66E+00 3.01E+00 1.35E+00

F36
Mean −1.01E+01 −4.49E+00 −4.98E+00 −9.24E+00 −7.60E+00 −1.05E+01 −8.68E+00 −3.98E+00 −1.01E+01 −9.23E+00 −5.75E+00 −8.88E+00
Best −1.05E+01 −8.60E+00 −9.31E+00 −1.05E+01 −1.05E+01 −1.05E+01 −1.05E+01 −7.55E+00 −1.05E+01 −1.05E+01 −1.05E+01
Std 1.75E+00 1.76E+00 1.84E+00 2.41E+00 3.46E+00 3.64E−11 3.16E+00 8.86E−01 1.67E+00 3.63E+00 3.10E+00

To evaluate the fairness and accuracy of TLTSA, the LFPSO [47], chTLBO [66], TSA-
LEO [43], and QLGCTSA [44] were selected for comparison. The experimental data of
them came from the original literature. Tables 8–10 show that the TLTSA was superior to
LFPSO and chTLBO just using chaotic mapping or Lévy flight. From Table 11, it can be seen
that the optimization performance of TLTSA and QLGCTSA was significantly better than
that of TSA-LEO because local escape operator was difficult to help search agents explore
potential areas. Compared with QLGCTSA, the proposed TLTSA performed better in uni-
modal functions and was similar in multimodal functions, thus demonstrating that chaotic
mapping combined with Lévy flight had a stronger global exploration and development
ability. In the proposed TLTSA, a number of search agents executing small-step random
walks improved the development ability, and several large-step random walks and chaotic
mapping enhanced the global exploration. This method overcame the QLGCTSA’s disad-
vantage that used too many operators to improve the global exploration ability, resulting in
unbalanced exploration and development. Hence, the proposed Tent-Lévy flight strategy
is more suitable for algorithms like the TSA, which converged prematurely from a lack of
exploration and exploitation ability.

Table 11. Comparison of TLTSA with other improved TSAs for benchmark functions.

Fn F1 F2 F5 F6 F7 F9 F13 F17 F21

QLGCTSA [44]
Mean 0.00E+00 9.06E−05 6.34E−209 0.00E+00 1.15E−213 3.54E−05 0.00E+00 8.88E−16
Best 0.00E+00 7.77E−06 3.67E−251 0.00E+00 7.16E−240 9.23E−06 —— 0.00E+00 8.88E−16
Std 0.00E+00 1.09E−04 0.00E+00 0.00E+00 0.00E+00 1.81E−05 0.00E+00 0.00E+00

TSA-LEO [43]
Mean 5.80E+02 6.44E+04 7.07E+02 3.31E+04
Best —— —— —— —— ——
Std 7.25E+01 8.79E+03 3.71E+01 2.69E+04

TLTSA
Mean 0.00E+00 4.03E−05 0.00E+00 0.00E+00 0.00E+00 4.54E+01 0.00E+00 0.00E+00 −8.88E−16
Best 0.00E+00 7.99E−07 0.00E+00 0.00E+00 0.00E+00 4.48E+01 0.00E+00 0.00E+00 −8.88E−16
Std 0.00E+00 4.00E−05 0.00E+00 0.00E+00 0.00E+00 4.92E−01 0.00E+00 0.00E+00 0.00E+00

Fn F24 F26 F31 F32 F33 F34 F35 F36

QLGCTSA [44]
Mean 0.00E+00 3.11E−09 1.33E+00 3.72E−04 −3.86E+00 −1.02E+01 −1.04E+01 −1.05E+01
Best 0.00E+00 7.05E−10 9.98E−01 3.07E−04 −3.86E+00 −1.02E+01 −1.04E+01 −1.05E+01
Std 0.00E+00 1.53E−09 7.78E−01 2.36E−04 6.83E−14 1.36E−12 1.23E−12 6.51E−13

TSA-LEO [43]
Mean 5.05E+03
Best —— —— —— —— —— —— ——
Std 6.32E+03

TLTSA
Mean 0.00E+00 9.14E−01 1.06E+00 5.08E−04 −3.86E+00 −8.80E+00 −1.00E+01 −8.88E+00
Best 0.00E+00 6.08E−01 9.98E−01 3.35E−04 −3.86E+00 −1.02E+01 −1.04E+01 −1.05E+01
Std 0.00E+00 1.88E−01 2.52E−01 1.29E−04 2.32E−15 2.28E+00 1.35E+00 3.10E+00

226

Mathematics 2022, 10, 3405

4.4.2. Convergence Curve and Boxplot Analysis

The convergence curve intuitively reflects the convergence speed and calculation
precision. The boxplot is frequently used in the analysis of variance (ANOVA) test, which
is useful for observing outliers and comparing algorithm stability. Figure 4 shows the
convergence curves and boxplot of some benchmark functions. For F1, F3, F4, F7, F8,
F10, F12-F15, F17, F19, F20, F23, F27, and F29, the TLTSA generally converged to 0 after
150–300 iterations. Its convergence curves show that it found global optimal solutions
with fewer iterations. For F11, the TLTSA greatly improved convergence speed without
changing the TSA calculation precision, which put its convergence speed at the forefront
of all algorithms. For F2, F18, F21, and F28, where the Tent-Lévy flight strategy was
introduced, the exploration and exploitation capabilities of the TLTSA were boosted greatly.
For F30, some of the other algorithms had an ad-vantage in global optimization ability, but
the TLTSA overcame the problem of local optimal solutions, avoided search stagnation,
and improved both calculation precision and convergence speed allowing it to escape the
local optimal solution. In addition, the boxplots also reflected its superior stability. It was
obvious that the TLTSA box-plots had fewer or no outliers compared to the original TSA.

In conclusion, the proposed TLTSA combined the merits of the Lévy flight strategy and
Tent map and solved the original algorithm’s lack of global exploration and exploitation
ability. The Tent map made step sizes of the Lévy flight strategy mutate randomly, which
led to each search agent having a chance to be selected. The large step sizes of the Tent-Lévy
flight strategy boosted the global exploration ability, and the small step-sized random
walk improved exploitation ability such that the TLTSA maintained a dynamic equilibrium
between exploration and exploitation, which not only widened the search scope to avoid
the search stagnation but also enhanced the search diversity near the candidate solution.
Synthesizing the above analytical results and experimental data, the calculation precision
and convergence speed of the TLTSA were evidently the best. Moreover, the boxplots
also attested to its strong stability and robustness. Hence, it is feasible to introduce the
Tent-Lévy flight strategy into the TSA to solve the function optimization problem.

4.4.3. Statistical Test

The statistical test is an important criterion for evaluating the fairness and accuracy of
the proposed algorithm. A Wilcoxon nonparametric test was performed at a significance
level of 0.05 to verify that the experimental results of the TLTSA were significantly different
from those of other algorithms. A p-value lower than 0.05, would be sufficient proof of the
null hypothesis. The test in 50 dimensions is shown in Table 10, and p > 0.05 is displayed in
bold. NaN suggested that the result generated by the sum-of-values test was not a number.
The last row shows all counts in (+/≈/−) format, where “+” means that the proposed
TLTSA was superior at the 95% significance level (α = 0.05); “−” means that the TLTSA
optimization was less effective; and “≈” means that there was no significant statistical
difference between the TLTSA and other algorithms. Table 12 shows the Wilcoxon test
results and it is easy to see that the vast majority of p-values were less than 0.05 compared to
the other algorithms. It also shows that the TLTSA had a statistically significant advantage
on optimizing problems compared to other algorithms.

227

Mathematics 2022, 10, 3405

F1

F2

F3

Figure 4. Cont.

228

Mathematics 2022, 10, 3405

F4

F7

F8

F10

Figure 4. Cont.

229

Mathematics 2022, 10, 3405

F11

F12

F13

F14

Figure 4. Cont.

230

Mathematics 2022, 10, 3405

F15

F17

F18

F19

Figure 4. Cont.

231

Mathematics 2022, 10, 3405

F20

F21

F23

F27

Figure 4. Cont.

232

Mathematics 2022, 10, 3405

F28

F30

F31

F33

Figure 4. Cont.

233

Mathematics 2022, 10, 3405

F34

F35

F36

Figure 4. The convergence curve and boxplot of 36 benchmark function.

234

Mathematics 2022, 10, 3405

Table 12. Statistical results of the Wilcoxon rank-sum test.

Fn GWO SCA SSA WCA WOA MPA LSA HGSO TSA

F1 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12
F2 7.39E−11 3.02E−11 3.02E−11 3.02E−11 1.96E−10 2.37E−10 3.02E−11 9.83E−08 3.02E−11
F3 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F4 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F5 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F6 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F7 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F8 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN 1.21E−12
F9 4.50E−11 3.02E−11 3.02E−11 0.589451 3.02E−11 3.02E−11 5.57E−10 3.02E−11 4.50E−11

F10 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F11 3.02E−11 3.02E−11 3.02E−11 0.0962628 3.02E−11 3.08E−08 3.02E−11 7.09E−08 7.37E−10
F12 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11
F13 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F14 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F15 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F16 3.02E−11 3.02E−11 1.85E−03 1.48E−11 2.00E−06 1.83E−11 1.99E−11 2.20E−07 6.52E−09
F17 4.50E−12 1.21E−12 1.21E−12 1.21E−12 0.333711 NaN 1.21E−12 NaN 1.21E−12
F18 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.26E−05 1.21E−12 1.21E−12 0.333711 1.21E−12
F19 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F20 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11
F21 8.85E−12 8.85E−12 8.85E−12 8.85E−12 3.53E−06 8.85E−12 8.85E−12 2.70E−03 8.85E−12
F22 3.02E−11 3.02E−11 3.02E−11 8.15E−11 4.64E−05 3.02E−11 0.118817 2.57E−07 3.34E−11
F23 3.02E−11 3.02E−11 3.02E−11 2.46E−11 2.35E−10 4.11E−11 3.02E−11 1.68E−04 3.02E−11
F24 2.79E−03 1.21E−12 1.21E−12 1.21E−12 0.160802 NaN 1.21E−12 NaN 6.61E−05
F25 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 8.99E−11 3.56E−04
F26 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.29E−06 5.26E−04 3.02E−11
F27 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F28 5.57E−10 3.01E−11 4.43E−03 1.29E−11 3.02E−11 2.83E−11 1.46E−11 3.20E−09 2.50E−03
F29 3.03E−03 3.02E−11 0.0594279 1.69E−11 0.311188 2.33E−11 1.88E−11 3.02E−11 2.05E−03
F30 6.77E−05 8.46E−09 0.56922 1.21E−12 6.77E−05 2.10E−11 2.47E−08 1.25E−05 1.95E−03
F31 2.68E−10 1.78E−07 4.84E−10 0.198282 3.27E−10 2.18E−07 8.02E−12 8.67E−10 1.69E−11
F32 1.77E−03 7.04E−07 2.39E−08 5.43E−10 2.71E−02 3.02E−11 2.15E−02 0.0701266 0.0750587
F33 8.10E−10 3.02E−11 0.0656713 4.08E−12 0.0678689 7.57E−12 1.72E−12 0.17145 3.02E−11
F34 9.70E−04 7.21E−05 1.30E−10 1.30E−10 3.04E−04 7.51E−03 0.228715 5.36E−11 3.49E−06
F35 5.35E−07 1.07E−07 2.36E−10 3.21E−11 9.76E−09 7.30E−07 0.202628 1.41E−11 4.77E−09
F36 3.50E−03 9.79E−05 4.22E−04 1.67E−06 4.46E−04 4.71E−04 1.22E−02 6.77E−05 4.35E−05

+/≈/− 36/0/0 36/0/0 33/0/3 33/0/3 32/0/4 34/2/0 33/0/3 30/3/3 35/0/1

5. TLTSA for Complex Problems in the Engineering Field

An improved optimization algorithm was proposed to settle practical problems in
engineering more efficiently. The benchmark functions were different because engineering
problems are often constrained. In addition, the optimal solutions to most engineering
problems are not clear. Therefore, a practical, constrained engineering problem is an
important criterion for measuring the performance of optimization algorithms. In this
section, three constrained engineering problems were selected to verify the ability of the
TLTSA to solve them: Three-bar truss design problem, welded beam design problem, and
optimal design of an industrial refrigeration system. The best results of each experiment
are highlighted in bold.

5.1. Three-Bar Truss Design Problem

The three-bar truss design problem is a classic in the engineering structure field. The
optimization goal is to design a truss with the smallest weight while satisfying three
constraints on stress, deflection, and buckling. The structural model and parameters are
displayed in Figure 5. The mathematical expression is defined as follows [67]:

235

Mathematics 2022, 10, 3405

Deem:
⇀
x = [x1, x2] = [A1, A2] (27)

Objective function:
f
(
⇀
x
)
=
(

2
√

2x1 + x2

)
× L (28)

Constraint functions:

g1

(
⇀
x
)
=

√
2x1 + x2√

2x2
1 + 2x1x2

P− σ ≤ 0

g2

(
⇀
x
)
=

x2√
2x2

1 + 2x1x2
P− σ ≤ 0 (29)

g3

(
⇀
x
)
=

1√
2x2 + x1

P− σ ≤ 0

Variable range:
0 ≤ x1, x2 ≤ 1

where L = 100 cm, P = 2
KN
cm2 , σ = 2

KN
cm2 .

Table 13 shows the experimental results of the TLTSA and other algorithms. According
to the experimental results and convergence curve in Figure 6, the results for the TLTSA
were the same as those for the MPA, WCA, and SSA; its optimal cost was the smallest.
This demonstrated that the proposed TLTSA is feasible for settling the three-bar truss
design problem.

Figure 5. Three-bar truss design problem.

Table 13. Comparison of TLTSA with other optimization algorithms for three-bar truss design problem.

Algorithm Optimal Variable A1 Optimal Variable A2 Optimal Cost

GWO 0.78693 0.28779 186.3860
SCA 0.77940 0.30414 186.4062
SSA 0.78685 0.28801 186.3859
WCA 0.78685 0.28801 186.3859
WOA 0.83937 0.19509 186.7164
MPA 0.78685 0.28801 186.3859
LSA 0.79784 0.26626 186.4503
HGSO 0.78921 0.28358 186.4424
TSA 0.78698 0.28764 186.3864
TLTSA 0.78685 0.28801 186.3859

236

Mathematics 2022, 10, 3405

Figure 6. Convergence curve for three-bar truss design problem.

5.2. Welded Beam Design Problem

The welded beam design problem is also well-known. The optimization objective was
found to be the most suitable value for each variable in calculating the minimum cost of a
welded beam subject to shear stress (τ), beam-bending stress (σ), bar buckling load (Pc)
and beam end deflection (δ). This design problem is influenced by four variables: weld
thickness (h), clamped-bar length (l), bar height (t), and bar thickness (b). The structural
model and the meaning of the parameters are shown in Figure 7. The mathematical
expression is listed below [68]:

Deem:
⇀
z = [z1, z2, z3, z4] = [h, l, t, b] (30)

Objective function:

f
(
⇀
z
)
= 1.10471z2

1z2 + 0.04811z3z4(14 + z2) (31)

Constraint functions:

g1

(
⇀
z
)
= τ

(
⇀
z
)
− 13600 ≤ 0

g2

(
⇀
z
)
= σ

(
⇀
z
)
− 30000 ≤ 0

g3

(
⇀
z
)
= δ

(
⇀
z
)
− 0.25 ≤ 0

g4

(
⇀
z
)
= z1 − z4 ≤ 0

g5

(
⇀
z
)
= 6000− Pc

(
⇀
z
)
≤ 0

g6

(
⇀
z
)
= 0.125− z1 ≤ 0

g7

(
⇀
z
)
= 1.10471z2

1z2 + 0.04811z3z4(14 + z2)− 5 ≤ 0

(32)

Variable range:
0.1 ≤ z1, z2 ≤ 2, 0.1 ≤ z2, z3 ≤ 10

237

Mathematics 2022, 10, 3405

Other parameters:

τ
(
⇀
z
)
=

√√√√
(τ′)2 + (z2τ′τ′′)/

√(
z2

2 + (z1 + z3)
2
)

4
+ (τ′′)2

τ′ =
6000√
2z1z2

, σ
(
⇀
z
)
= 504,000

z2
3z4

, δ
(
⇀
z
)
= 65,856,000

(30×106)z1z3
3

τ′′ =
6000(14 + 0.5z2)

√
0.25

(
z2

2 + (z1 + z3)
2
)

2

[
0.707z1z2

(
1

12z2
2
+ 0.25(z1 + z3)

2

)]
(33)

Table 14 shows the comparison between the proposed TLTSA and the other al-
gorithms in optimal variables and optimal costs. The Figure 8 displays the conver-
gence curves. It can be seen that the proposed TLTSA is the most competitive. TLTSA
gains the optimal cost f(z1−4) = 1.6952 at the most suitable position (z1, z2, z3, z4) =
(0.20573, 3.2530, 9.0336, 0.20573), and ranked first. The experimental results showed that
it had strong global exploration and exploitation ability to optimize the welded beam
design problem to reduce engineering costs.

Figure 7. Welded beam design problem.

Figure 8. Convergence curve for welded design problem.

238

Mathematics 2022, 10, 3405

Table 14. Comparison of TLTSA with other optimization algorithms for welded beam design problem.

Algorithm
Optimal Variable

Optimal Cost
h l t b

GWO 0.20095 3.3454 9.0465 0.20569 1.7000
SCA 0.20044 3.8852 9.4553 0.20645 1.8402
SSA 0.20648 3.2282 9.0796 0.20645 1.7686
WOA 0.21850 4.1900 5.6288 0.53853 2.3655
MPA 0.16971 3.9050 10 0.20207 1.8539
LSA 0.20573 3.2530 9.0366 0.20573 2.0274
HGSO 0.14780 4.8333 8.9045 0.21856 2.1737
TSA 0.20054 3.4016 9.0598 0.20624 1.7142
TLTSA 0.20573 3.2530 9.0366 0.20573 1.6952

5.3. Optimal Design Problem of Industrial Refrigeration System

As a nonlinear inequality-constrained optimization design problem, because it con-
tains a lot of constraints, the optimal design problem of the industrial refrigeration system
is suitable for evaluating the ability of the algorithm to solve an actual engineering problem.
The optimal objective is to reduce the design costs as much as possible. The mathematical
model is [69]:

Objective function:

f
(
⇀
x
)
= 63098.88x2x4x12 + 5441.5x2

2x12 + 115055.5x1.664
2 x6 + 6172.27x2

2x6

+63098.88x1x3x11 + 5441.5x2
1x11 + 115055.5x1.664

1 x5 + 6172.27x2
1x5

+140.53x1x11 + 281.29x3x11 + 70.26x2
1 + 281.29x1x3

+281.29x2
3 + 14437x1.8812

8 x0.3424
12 x10x−1

14 x2
1x7x−1

9

+20470.2x2.893
7 x0.316

11 x2
1

(34)

Constraint functions:

g1

(
⇀
x
)
= 1.524x−1

7 ≤ 1

g2

(
⇀
x
)
= 1.524x−1

8 ≤ 1

g3

(
⇀
x
)
= 0.07789x1 − 2x−1

7 x9 − 1 ≤ 0

g4

(
⇀
x
)
= 7.05305x−1

9 x2
1x10x−1

8 x−1
2 x−1

14 − 1 ≤ 0

g5

(
⇀
x
)
= 0.0833x−1

13 x14 − 1 ≤ 0

g6

(
⇀
x
)
= 47.136x0.333

2 x−1
10 x12 − 1.333x8x2.1195

13 + 62.08x2.1195
13 x−1

12 x0.2
8 x−1

10 − 1 ≤ 0

g7

(
⇀
x
)
= 0.04771x10x1.8812

8 x0.3424
12 − 1 ≤ 0

g8

(
⇀
x
)
= 0.0488x9x1.893

7 x0.316
11 − 1 ≤ 0

g9

(
⇀
x
)
= 0.099x1x−1

3 − 1 ≤ 0

g10

(
⇀
x
)
= 0.0193x2x−1

4 − 1 ≤ 0

g11

(
⇀
x
)
= 0.0298x1x−1

5 − 1 ≤ 0

g12

(
⇀
x
)
= 0.056x2x−1

6 − 1 ≤ 0

g13

(
⇀
x
)
= 2x−1

9 − 1 ≤ 0

g14

(
⇀
x
)
= 2x−1

10 − 1 ≤ 0

g15

(
⇀
x
)
= x12x−1

11 − 1 ≤ 0

(35)

Variable range:
0.001 ≤ xi ≤ 5, i = 1, . . . , 14

239

Mathematics 2022, 10, 3405

Six well-known meta-heuristic optimization algorithms—-GWO, SSA, WCA, WOA,
and HGSO, and the original TSA—-were selected for comparison with TLTSA. The experi-
mental results of optimal costs and variables are given in Table 15. The TLTSA obtained
optimal costs f (x1−14) = 0.19637, which were significantly lower. In addition, the conver-
gence curves in Figure 9 also indicate the proposed TLTSA is superior.

Table 15. Comparison of TLTSA with other algorithms for optimal design problem of industrial
refrigeration system.

Optimal Value GWO SSA WCA WOA HGSO TSA TLTSA

Optimal variable x1 0.001 0.001 0.001 0.001 0.0010561 0.001 0.001
Optimal variable x2 0.0010912 0.001 0.001 0.001 0.0029744 0.0010534 0.0010461
Optimal variable x3 0.0010052 0.0010118 0.001 0.015982 0.0028955 0.0010950 0.0010241
Optimal variable x4 0.0013333 4.8584 0.001 0.001 0.0032518 0.0076186 0.10488
Optimal variable x5 0.0010012 2.7978 0.001 0.001 0.1921 0.0048673 0.074202
Optimal variable x6 0.0011156 1.2464 0.001 0.011293 0.0045721 0.0040403 0.01525
Optimal variable x7 1.5252 3.5466 1.5240 1.5787 2.1326 1.5383 1.7251
Optimal variable x8 1.5249 3.9266 1.5240 1.5235 4.4739 1.5280 1.5473
Optimal variable x9 5 3.7794 5 2.8120 2.1012 4.8173 4.5901
Optimal variable x10 2.5139 2.0191 2 3.7725 2.0096 2.1429 2.3255
Optimal variable x11 0.019292 0.001 0.001 0.023963 0.0016401 0.0089912 0.001
Optimal variable x12 0.019167 0.001 0.001 0.001 0.0015673 0.0083106 0.001
Optimal variable x13 0.032051 0.0057349 0.0072934 0.0074685 0.0020327 0.020283 0.0057234
Optimal variable x14 0.38109 0.065408 0.087557 0.061517 0.001172 0.24036 0.049644
Optimal cost 286.4233 357.3893 93.9437 1.6727 59.7011 211.5825 0.19637

Figure 9. Convergence curve for optimal design problem of industrial refrigeration system.

6. Conclusions and Future Work

In this paper, an improved TSA based on Chaotic-Lévy flight strategy (CLTSA) was
proposed to overcome defects of the original algorithm, such as premature convergence
and poor solution accuracy. As a random walk strategy, Chaotic-Lévy flight made the
search agents produce a mass of small step-sized moves and a small number of large ones

240

Mathematics 2022, 10, 3405

when converging towards the candidate solution. The small-step random walks enabled
search agents to exploit the vicinity of the candidate solution fully, which improves its
exploitation ability. The mutability generated by the large-step random walks gave the
search agent a chance to appear at any position in the solution space, thereby boosting the
global exploration capability of the CLTSA and increasing tunicate population diversity.
However, it was crucial to combine a suitable chaotic map with Lévy flight, and from a
comparison of chaotic maps, the tent map was the most appropriate. Because the chaotic
values generated by the tent map were more evenly distributed in (0, 1), the combination
with the step sizes generated by the Lévy flight strategy had a high degree of randomness,
so it was easier for TLTSA to strengthen the richness of the population and avoid becoming
trapped in local minimization. In addition, the values in (0,1) generated by the tent map
ensured that the search agents moved within the search range as much as possible. The
Tent-Lévy flight strategy not only helped the search agents find potential areas, but also
strengthened exploration around the current solution, which made the algorithm maintain
an exploration–exploitation equilibrium that enhanced the TLTSA optimization efficiency.

To verify the feasibility of the TLTSA in finding the optimal solution and solving
the practical problem, 36 benchmark functions and 3 practical constrained engineering
problems were selected for contrast experiments. The data indicates that the proposed
TLTSA was a great improvement over the original algorithm in performing test functions.
TLTSA not only overcame the shortcomings of the original algorithm, such as search
stagnation and premature convergence, but also had greater calculation accuracy. Another
advantage was that it had a smaller standard deviation, which meant greater stability. In
addition, the convergence curves also attested to a more competitive convergence speed. In
addition, the design costs optimized by the TLTSA for three engineering design problems
were clearly lower than those of other algorithms. Therefore, TLTSA, the best algorithm
among the CLTSAs, provides new possibilities for solving real-world engineering problems.

Even though our proposed TLTSA is a great improvement over the original TSA, it
still had research value. Our research is limited to combining one-dimensional chaotic
mapping with Lévy flight. In the following research, we will consider applying two-
dimensional chaotic mapping to algorithm optimization. Furthermore, because of the
characteristic antenna design problems, the proposed TLTSA can only optimize the antenna
with continuous parameters (the antenna structure needs to be specified), and we will
propose the binary and multi-objective versions of the TSA algorithm to improve the
TLTSA’s optimization efficiency to solve complex antenna and frequency-selective surface
design problems.

Author Contributions: Conceptualization, Y.C. and J.D.; methodology, Y.C. and J.D.; software, Y.C.;
validation, Y.C., R.S. and J.D.; formal analysis, R.S.; investigation, Y.C. and J.D.; resources, J.D.; data
curation, R.S.; writing—original draft preparation, Y.C.; writing—review and editing, R.S and J.D.;
visualization, R.S.; supervision, J.D.; project administration, Y.C., R.S. and J.D.; funding acquisition,
J.D. and R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under grant numbers 61801521 and 61971450, in part by the Natural Science Foundation of Hunan
Province under grant number 2018JJ2533 and 2022JJ30052, and in part by the Fundamental Research
Funds for the Central Universities under grant number 2018gczd014 and 20190038020050.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

241

Mathematics 2022, 10, 3405

Appendix A

Table A1. Mathematical expressions of unimodal benchmark functions.

Function Expressions

F1 = ∑n
i=1 x2

i

F2 = ∑n
i=1 ix4

i + random[0, 1]

F3 = ∑D
i=1|xi|i+1

F4 = ∑n
i=1|xi|

F5 = max(|xi|, 1 ≤ i ≤ n)

F6 = ∑n
i=1

(
∑i

j=1 xj

)2

F7 = ∑n
i=1|xi|+

n
∏
i=1
|xi|

F8 = ∑n
i=1 x10

i

F9 = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

F10 = ∑n−1
i=1
(

x2
i
)(xi+1

2+1)
+
(

x2
i+1

)(x2+1)

F11 = (x1 − 1)2 + ∑D
i=2 i

(
2x2

i − xi−1
)2

F12 = ∑
D
4

i=1(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − 10x4i)

2 + (x4i−2 − x4i−1)
2 + 10(x4i−3 − x4i)

2

F13 = ∑n
i=1 x2

i +

(
n
∑

i=1
0.5ixi

)2
+

(
n
∑

i=1
0.5ixi

)4

F14 = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2

F15 = 0.26
(

x2
1 + x2

2
)
− 0.48x1x2

F16 = 100
(

x2 − x2
1
)2

+ (1− x1)
2f

Table A2. Mathematical expressions of multimodal benchmark functions.

Function Expressions

F17 = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

F18 = 1 + ∑n
i=1 sin2(xi)− 0.1e(∑

n
i=1 x2

i)

F19 = ∑n
i=1|xi sin(xi) + 0.1xi|

F20 = ∑n
i=1 εi|xi|i

F21 = −20 exp
(
−0.2

√
1
n ×∑n

i=1 x2
i

)
− exp

(
1
n ×∑n

i=1 cos(2πxi)
)
+ 20 + e

F22 = ∑n
i=1 8 sin2

[
7(xi − 0.9)2

]
+ 6 sin2

[
14(x1 − 0.9)2

]
+ (xi − 0.9)2

F23 = 1− cos
(

2π
√

∑n
i=1 x2

i

)
+ 0.1

√
∑n

i=1 x2
i

F24 = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1

F25 = 0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+ ∑n

i=1 u(xi, 5, 100, 4)

F26 = π
n

{
10 sin(πyi) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi, 10, 100, 4)

F27 = x2 + y2 + 25
[
sin2(x) + sin2(y)

]
F28 = sin(x)e(1−cos (y))2

+ cos(y)e(1−sin (x))2
+ (x− y)2

F29 =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2
)]

F30 =
∣∣x2 + y2 + xy

∣∣+ |sin(x)|+ |cos(y)|

242

Mathematics 2022, 10, 3405

Table A3. Mathematical expressions of fixed-dimension functions.

Function Expressions

F31 =

(
1

500
+

25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1

F32 = ∑11
i=1

[
ai −

x1
(
b2

i + bix2
)

b2
i + bix3 + x4

]2

F33 = −∑4
i=1 ciexp

[
−∑4

j=1 aij

(
xj − pij

)]
F34 = −∑5

i=1

[
(x− ai)(x− ai)

T + ci

]−1

F35 = −∑7
i=1

[
(x− ai)(x− ai)

T + ci

]−1

F36 = −∑10
i=1

[
(x− ai)(x− ai)

T + ci

]−1

References

1. Qu, B.Y.; Liang, J.J.; Suganthan, P.N. Niching particle swarm optimization with local search for multi-modal optimization. Inf. Sci.
2012, 197, 131–143. [CrossRef]

2. Mohapatra, P.; Das, K.N.; Roy, S. A modified competitive swarm optimizer for large scale optimization problems. Appl. Soft
Comput. 2017, 59, 340–362. [CrossRef]

3. Wang, L.Y.; Zhao, W.G.; Tian, Y.L.; Pan, G.Z. A bare bones bacterial foraging optimization algorithm. Cogn. Syst. Res. 2018, 52,
301–311. [CrossRef]

4. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–72. [CrossRef]
5. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
6. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
7. Formato, R.A. Central force optimization: A new metaheuristic with applications in applied electromagnetics. Prog. Electromagn.

Res. 2007, 77, 425–491. [CrossRef]
8. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for

solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [CrossRef]
9. Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. A novel physical based meta-heuristic optimization method known as Lightning

Attachment Procedure Optimization. Appl. Soft Comput. 2017, 59, 596–621. [CrossRef]
10. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Design 2011, 43, 303–315. [CrossRef]
11. Askari, Q.; Younas, I.; Saeed, M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based

Syst. 2020, 195, 105709. [CrossRef]
12. Dong, J.; Zou, H.; Li, W.; Wang, M. A hybrid greedy political optimizer with fireworks algorithm for numerical and engineering

optimization problems. Sci. Rep. 2022, 12, 13243. [CrossRef]
13. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 1944, pp. 1942–1948.
14. Dong, J.; Li, Q.; Deng, L. Design of fragment-type antenna structure using an improved BPSO. IEEE Trans. Antennas Propag. 2017,

66, 564–571. [CrossRef]
15. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
16. Basturk, B.; Karaboga, D. An artificial bee colony (ABC) algorithm for numeric function optimization. In Proceedings of the IEEE

Swarm Intelligence Symposium, Indianapolis, IN, USA, 12–14 May 2006.
17. Krishnanand, K.N.; Ghose, D. Glowworm Swarm Optimisation: A New Method for Optimising Multi-Modal Functions. Int. J.

Comput. Intell. Stud. 2009, 1, 93. [CrossRef]
18. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]
19. Shadravan, S.; Naji, H.R.; Bardsiri, V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving

constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [CrossRef]
20. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.L. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
21. Li, W.; Shi, R.; Dong, J. Harris hawks optimizer based on the novice protection tournament for numerical and engineering

optimization problems. Appl. Intell. 2022, 1–26. [CrossRef]
22. Zhao, W.G.; Zhang, Z.X.; Wang, L.Y. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering

applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [CrossRef]

243

Mathematics 2022, 10, 3405

23. Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [CrossRef]
24. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
25. Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020,

53, 2237–2264. [CrossRef]
26. Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821–824. [CrossRef]
27. Feng, J.H.; Zhang, J.; Zhu, X.S.; Lian, W.W. A novel chaos optimization algorithm. Multimed. Tools Appl. 2017, 76, 17405–17436.

[CrossRef]
28. Ouertani, M.W.; Manita, G.; Korbaa, O. Chaotic lightning search algorithm. Soft Comput. 2021, 25, 2039–2055. [CrossRef]
29. Alatas, B. Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 2010, 37, 5682–5687. [CrossRef]
30. Kohli, M.; Arora, S. Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 2018,

5, 458–472. [CrossRef]
31. Arora, S.; Singh, S. An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 2017, 32, 1079–1088. [CrossRef]
32. Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Firefly algorithm with chaos. Commun. Nonlinear Sci. 2013, 18, 89–98.

[CrossRef]
33. Reynolds, A.M.; Frye, M.A. Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search.

PLoS ONE 2007, 2, e354. [CrossRef] [PubMed]
34. Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Lévy flight search patterns of wandering

albatrosses. Nature 1996, 381, 413–415. [CrossRef]
35. Viswanathan, G.M. Fish in Lévy-flight foraging. Nature 2010, 465, 1018–1019. [CrossRef] [PubMed]
36. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
37. Emary, E.; Zawbaa, H.M.; Sharawi, M. Impact of Lèvy flight on modern meta-heuristic optimizers. Appl. Soft Comput. 2019, 75,

775–789. [CrossRef]
38. Yang, X.-S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconven-

tional Computing and Natural Computation, Orléans, France, 3–7 September 2012; pp. 240–249.
39. Amirsadri, S.; Mousavirad, S.J.; Ebrahimpour-Komleh, H. A Levy flight-based grey wolf optimizer combined with back-

propagation algorithm for neural network training. Neural Comput. Appl. 2018, 30, 3707–3720. [CrossRef]
40. Tubishat, M.; Ja’afar, S.; Idris, N.; Al-Betar, M.A.; Alswaitti, M.; Jarrah, H.; Ismail, M.A.; Omar, M.S. Improved sine cosine

algorithm with simulated annealing and singer chaotic map for Hadith classification. Neural Comput. Appl. 2022, 34, 1385–1406.
[CrossRef]

41. Talatahari, S.; Kaveh, A.; Sheikholeslami, R. Chaotic imperialist competitive algorithm for optimum design of truss structures.
Struct. Multidiscip. Optim. 2012, 46, 355–367. [CrossRef]

42. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic Krill Herd algorithm. Inf. Sci. 2014, 274, 17–34. [CrossRef]
43. Houssein, E.H.; Helmy, B.E.D.; Elngar, A.A.; Abdelminaam, D.S.; Shaban, H. An Improved Tunicate Swarm Algorithm for Global

Optimization and Image Segmentation. IEEE Access 2021, 9, 56066–56092. [CrossRef]
44. Gharehchopogh, F.S. An Improved Tunicate Swarm Algorithm with Best-random Mutation Strategy for Global Optimization

Problems. J. Bionic Eng. 2022, 19, 1177–1202. [CrossRef]
45. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm

for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]
46. Chawla, M.; Duhan, M. Levy Flights in Metaheuristics Optimization Algorithms—A Review. Appl. Artif. Intell. 2018, 32, 802–821.

[CrossRef]
47. Chegini, S.N.; Bagheri, A.; Najafi, F. PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving

optimization problems. Appl. Soft Comput. 2018, 73, 697–726. [CrossRef]
48. Hakli, H.; Uguz, H. A novel particle swarm optimization algorithm with Levy flight. Appl. Soft Comput. 2014, 23, 333–345.

[CrossRef]
49. Yan, B.L.; Zhao, Z.; Zhou, Y.C.; Yuan, W.Y.; Li, J.; Wu, J.; Cheng, D.J. A particle swarm optimization algorithm with random

learning mechanism and Levy flight for optimization of atomic clusters. Comput. Phys. Commun. 2017, 219, 79–86. [CrossRef]
50. Emary, E.; Zawbaa, H.M. Impact of Chaos Functions on Modern Swarm Optimizers. PLoS ONE 2016, 11, e158738. [CrossRef]
51. Caponetto, R.; Fortuna, L.; Fazzino, S.; Xibilia, M.G. Chaotic sequences to improve the performance of evolutionary algorithms.

IEEE Trans. Evolut. Comput. 2003, 7, 289–304. [CrossRef]
52. Jordehi, A.R. Chaotic bat swarm optimisation (CBSO). Appl. Soft Comput. 2015, 26, 523–530. [CrossRef]
53. Zheng, W.-M. Kneading plane of the circle map. Chaos Solitons Fractals 1994, 4, 1221–1233. [CrossRef]
54. Bucolo, M.; Caponetto, R.; Fortuna, L.; Frasca, M.; Rizzo, A. Does chaos work better than noise? IEEE Circuits Syst. Mag. 2002, 2,

4–19. [CrossRef]
55. He, D.; He, C.; Jiang, L.G.; Zhu, H.W.; Hu, G.R. Chaotic characteristics of a one-dimensional iterative map with infinite collapses.

IEEE Trans. Circuits Syst. I 2001, 48, 900–906. [CrossRef]
56. May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [CrossRef]
57. Peitgen, H.O.; Jürgens, H.; Saupe, D. Chaos and Fractals: New Frontiers of Science; Springer: Berlin/Heidelberg, Germany, 2004.

244

Mathematics 2022, 10, 3405

58. Tavazoei, M.S.; Haeri, M. Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization
algorithms. Appl. Math. Comput. 2007, 187, 1076–1085. [CrossRef]

59. Igiri, C.P.; Singh, Y.; Bhargava, D. An improved African Buffalo Optimization Algorithm Using Chaotic Map and Chaotic-Levy
Flight. Int. J. Eng. Technol. 2018, 7, 4570–4576.

60. Lin, J.H.; Chou, C.W.; Yang, C.H.; Tsai, H.L. A Chaotic Levy Flight Bat Algorithm for Parameter Estimation in Nonlinear Dynamic
Biological Systems. Comput. Inf. Technol. 2012, 2, 56–63.

61. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
62. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
63. Xue, J.K.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8,

22–34. [CrossRef]
64. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
65. Zhou, Y.Q.; Zhou, G.; Zhang, J.L. A hybrid glowworm swarm optimization algorithm to solve constrained multimodal functions

optimization. Optimization 2015, 64, 1057–1080. [CrossRef]
66. Shukla, A. Chaos teaching learning based algorithm for large-scale global optimization problem and its application. Concurr.

Comput. Pract. Exp. 2021, 34, e6514. [CrossRef]
67. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513. [CrossRef]
68. Coello, C.A.C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127.

[CrossRef]
69. Kumar, A.; Wu, G.H.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A test-suite of non-convex constrained optimization

problems from the real-world and some baseline results. Swarm. Evol. Comput. 2020, 56, 100693. [CrossRef]

245

Citation: Wang, G.; Li, Z.; Yao, W.;

Xia, S. A Multi-Population

Mean-Field Game Approach for

Large-Scale Agents Cooperative

Attack-Defense Evolution in

High-Dimensional Environments.

Mathematics 2022, 10, 4075. https://

doi.org/10.3390/math10214075

Academic Editor: Ioannis G.

Tsoulos

Received: 28 September 2022

Accepted: 31 October 2022

Published: 2 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Multi-Population Mean-Field Game Approach for Large-Scale
Agents Cooperative Attack-Defense Evolution in
High-Dimensional Environments †

Guofang Wang 1,2,3, Ziming Li 1,2, Wang Yao 2,3,4,∗ and Sikai Xia 1,2

1 School of Mathematical Sciences, Beihang University, Beijing 100191, China;
wangguofang@buaa.edu.cn (G.W.); zimingli@buaa.edu.cn (Z.L.); xiasikai_buaa@buaa.edu.cn (S.X.)

2 Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education,
Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing Advanced Innovation
Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China

3 Peng Cheng Laboratory , Shenzhen 518055, China
4 Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
* Correspondence: yaowang@buaa.edu.cn
† This paper is an extended version of our paper published in Proceedings of the Genetic and Evolutionary

Computation Conference Companion (GECCO’22), Association for Computing Machinery, New York, NY,
USA, 9–13 July 2022.

Abstract: As one of the important issues of multi-agent collaboration, the large-scale agents’ coopera-
tive attack–defense evolution requires a large number of agents to make stress-effective strategies to
achieve their goals in complex environments. Multi-agent attack and defense in high-dimensional
environments (3D obstacle scenarios) present the challenge of being able to accurately control high-
dimensional state quantities. Moreover, the large scale makes the dynamic interactions in the attack
and defense problems increase dramatically, which, using traditional optimal control techniques, can
cause a dimensional explosion. How to model and solve the cooperative attack–defense evolution
problem of large-scale agents in high-dimensional environments have become a challenge. We jointly
considered energy consumption, inter-group attack and defense, intra-group collision avoidance,
and obstacle avoidance in their cost functions. Meanwhile, the high-dimensional state dynamics
were used to describe the motion of agents under environmental interference. Then, we formulated
the cooperative attack–defense evolution of large-scale agents in high-dimensional environments
as a multi-population high-dimensional stochastic mean-field game (MPHD-MFG), which signifi-
cantly reduced the communication frequency and computational complexity. We tractably solved
the MPHD-MFG with a generative-adversarial-network (GAN)-based method using the MFGs’ un-
derlying variational primal–dual structure. Based on our approach, we carried out an integrative
experiment in which we analytically showed the fast convergence of our cooperative attack–defense
evolution algorithm by the convergence of the Hamilton–Jacobi–Bellman equation’s residual errors.
The experiment also showed that a large number of drones can avoid obstacles and smoothly evolve
their attack and defense behaviors while minimizing their energy consumption. In addition, the
comparison with the baseline methods showed that our approach is advanced.

Keywords: large-scale agents; attack and defense; multi-population mean-field game; high-dimensional
solution space; neural networks

MSC: 91A16; 93-10; 49N80

1. Introduction

Cooperative control among multiple agent has always been an important research topic
in swarm intelligence [1]. Game theory, as a branch of modern mathematics, studies optimal
decision-making problems under conflicting adversarial conditions and can provide a

Mathematics 2022, 10, 4075. https://doi.org/10.3390/math10214075 https://www.mdpi.com/journal/mathematics
247

Mathematics 2022, 10, 4075

theoretical basis for multi-agent cooperative decision-making problems. This paper is
oriented toward the large-scale agents’ cooperative attack–defense evolution, one of the
important issues of multi-agent collaboration, which requires a large number of agents to
make stress-effective strategies to achieve their goals in complex environments [2]. The
multi-player continuous attack–defense game, as the mainstream research method for
multi-agent attack–defense evolution, is a differential game between two adversarial teams
of cooperative players playing in an area with targets. The attacker attempts to reach the set
destination. The goal of the defender is to delay or stop the attacker by catching it [3]. The
attack–defense game problem can be described as an optimal decision-making problem
under complex multi-constraint conditions [4].

The classic attack–defense games have long been studied in multi-agent cooperative
control. The multiple-pursuer-one-evader problem has been well documented. In [5],
the Voronoi diagram construct was used for the capture of an evader within a bounded
domain. Based on differential game theory and optimal control theory, differential game
models have been established to solve optimal strategies by setting some rules and as-
sumptions. In [6], based on the geometric relationship between two pursuers and an
evader, a differential game model was established through coordinate transformation to
solve the optimal cooperative strategy. Paper [7] studied the optimal guidance law of two
missiles intercepting a single target based on the hypothesis of the missile hit sequence.
Reference [8] proposed an online decision-making technique based on deep reinforcement
learning (DRL) for solving the environmental sensing and decision-making problems in
the chase and escape games. For the case of N-pursuers and M-evaders, more complex
interactions need to be analyzed. Paper [9] studied a multiplayer border-defense prob-
lem and extended classical differential game theory to simultaneously address weapon
assignments and multiplayer pursuit–evasion scenarios. Papers [10,11] proposed some
methods based on linear programming, and applied deep reinforcement learning methods
to deal with a simplified version of the RoboFlag competition [4]. An approach to the
task allocation of many agents was proposed in [12], where Bakolas and Tsiotras used the
Voronoi diagram construct to control the system. To solve general attack–defense games,
the Hamilton–Jacobi–Isaacs (HJI) approach is ideal when the game is low-dimensional.
However, because its complexity increases exponentially with the number of agents, the
HJI approach is only tractable for the two-player game [13]. However, the above methods
cannot be directly applied to the large-scale attack–defense game we are concerned with,
because these traditional optimization and control technologies deal with the dynamic
interactions between individuals separately. Moreover, to conduct more accurate real-time
control for agents, the state variables used to characterize their kinematics are usually
high-dimensional. Thus, with the increase in the agents’ number, the modeling process of
cooperative attack–defense problems tends to be complex, and the difficulty of solving the
optimal strategy will increase significantly.

To solve the communication and calculation difficulties caused by agents’ interactions on
a large scale, mean-field games (MFGs) were proposed by Lasry and Lions [14–16] and Huang,
Malhame, and Caines [17–19] independently. MFGs have been widely used in industrial
engineering [20–22], crowd motion [23–26], swarm robotics [27,28], epidemic modeling [29,30],
and data science [31–33]. In the MFG, each agent can obtain the evolution of the global or
macroscopic information (mean-field) by solving the Fokker–Planck–Kolmogorov (FPK)
equation. The optimal strategy of each agent is found by solving the Hamilton–Jacobi–
Bellman (HJB) equation [34]. Recently, a machine-learning-based method, named APAC-net,
has been proposed to solve high-dimensional stochastic MFGs [35]. Intuitively, the large-
scale attack–defense problems are more consistent with the multi-population model. The
multi-population mean-field game is a critical subclass of mean-field games (MFGs). It is
a theoretically feasible multi-agent model for simulating and analyzing the game between
multiple heterogeneous populations of interacting massive agents. We proposed a numerical
solution method (CA-Net) for multi-population high-dimensional stochastic MFGs in [36],
and studied the large-scale attack–defense problem in a 3D blank scenario based on CA-Net

248

Mathematics 2022, 10, 4075

in [37]. In this paper, we focus on a 3D obstacle scene. The presence of multiple obstacles in the
3D space brings qualitative changes to the attack and defense decisions of large-scale agents,
i.e., a “diversion” phenomenon. How to model and solve the cooperative attack–defense
evolution problem of large-scale agents in 3D obstacle scenarios has become a challenge.

Inspired by the above-mentioned cutting-edge works, in this paper, we jointly consid-
ered energy consumption, inter-group attack and defense, intra-group collision avoidance,
and obstacle avoidance in their cost functions. Meanwhile, the high-dimensional state
dynamics were used to describe the motion of agents under environmental interference.
Then, we made the following main contributions:

• We formulated the cooperative attack–defense evolution of large-scale agents in high-
dimensional environments as a multi-population high-dimensional stochastic mean-
field game (MPHD-MFG), which significantly reduced the communication frequency
and computational complexity.

• We propose ECA-Net, an extended nonlinear coupled alternating neural network
composed of multiple generators and multiple discriminators. We tractably solved
the MPHD-MFG with the ECA-Net algorithm using MFGs’ underlying variational
primal–dual structure.

• We carried out an integrative experiment in which we analytically showed the fast
convergence of our cooperative attack–defense evolution algorithm by the conver-
gence of the Hamilton–Jacobi–Bellman equation’s residual errors. The experiment
also showed that a large number of drones can avoid obstacles and smoothly evolve
their attack and defense behaviors while minimizing their energy consumption. The
comparison with the baseline methods showed that our approach is advanced.

Our approach accomplishes a breakthrough from few-to-few to mass-to-mass in terms
of attack–defense game theory in 3D obstacle scenarios.

In Section 2, we model the cooperative attack–defense evolution of large-scale agents
in a 3D obstacle scene and formulate it as an MPHD-MFG. In Section 3, we propose ECA-
Net to tractably solve the MPHD-MFG. Section 4 shows the performance of our algorithm
with numerical results, and in Section 5, we draw our conclusions.

2. Modeling and Formulating

The system model consists of the objective function and the kinematics equation,
which describe how large-scale agents evolve paths through attack–defense relationships.
We considered a 3D obstacle attack–defense scenario with N agents, as shown in Figure 1.
The blue side N1 as the attacker with N1 agents hopes to break through the red side’s
interception and successfully reach the destination; the red side N2 as the defender with
N2 agents hopes to complete the interception against the blue side in the given area to
prevent the blue side from penetrating. The state of agent i is denoted by x

p
i (t) ∈ Rn; p = 1

represents the blue side; p = 2 represents the red side, i ∈ N1 or N2, and N1 + N2 = N.

249

Mathematics 2022, 10, 4075

With aggressive
No aggressive

Escape

Capture

Destination

Obstacle

Obstacle

Capture

Figure 1. Vertical view of large-scale agents attacking and defending in 3D obstacle scene.

2.1. Kinematics Equation

Each agent i ∈ N = N1 ∪ N2 belongs to a population p(i) ∈ Q = {1, 2} and is
characterized by a state x

p
i (t) ∈ Rn at time t ∈ [0, T]. We considered that the continuous-

time state x
p
i (t) of player i of population p has the dynamic–kinematic equation of the

following form

dx
p
i = h

p
i (x

p
i , x

p−

i , x
−p−

i , u
p
i)dt, (1)

where u
p
i : [0, T] → Up ⊆ Rm is the control input (strategy) implemented by agent i

in view of the state x
p
i at time t, x

p−

i : Rn × [0, T] → P2(Rn) is the states of all other

intra-group agents, x
−p−

i describes the states of all other inter-group agents, and h
p
i :

Rn ×P2(Rn)2 × Up → Rn is the nonlinear evolution function, p = 1, 2.

2.2. Objective Function

For player i of population p, p = 1, 2, we considered the cost function of the follow-
ing form:

Jp
i (x

p
i , x

p−

i , x
−p−

i , u
p
i) =

∫ T

0
Lp

i (x
p
i (t), u

p
i (t)) + Fp

i (x
p
i (t), x

p−

i (x
p
i (t), t), x

−p−

i (x
−p
i (t), t))dt

+ Gp
i (x

p
i (T), x

p−

i (x
p
i (T), T), x

−p−

i (x
−p
i (T), T)),

(2)

where Lp
i : Rn × Up → R is the running cost incurred by agent i based solely on its actions,

Fp
i : Rn ×P2(Rn)2 → R is the running cost incurred by agent i based on its interactions

with the rest of the same population and the other population, and Gp
i : Rn ×P2(Rn)2 → R

is a terminal cost incurred by agent i based on its final state and the final states of the whole
of the related populations.

2.2.1. Blue-Side Control Problem

In the 3D obstacle space, the blue side’s agents traveling from a common source hope
to break through the red side’s interception while avoiding obstacles and successfully
reach the destination, where a straight line segment in the area above the red side’s initial
distribution is set as the destination. At time t ≥ 0, the i-th agent controls its strategy u1

i
to minimize its: (1) motion energy, (2) red side capture, (3) blue side inter-agent collision,

250

Mathematics 2022, 10, 4075

(4) collision of the blue side with the obstacles, and (5) travel time during the remaining
travel to the destination. The running cost L1

i is given by

L1
i = c1‖u1

i (t)‖2︸ ︷︷ ︸
(1) motion energy minimization

, (3)

where c1 is a constant. The running cost L1
i denotes the control effort implemented by agent

i. The interaction cost F1
i is given by

F1
i = c2

(
− 1

N2

N2

∑
k=1

∥∥∥p1
i (t)− (p2

k(t) + ere)
∥∥∥)︸ ︷︷ ︸

(2) red side capture minimization

+ c3

(
1

N1

N1

∑
j �=i

1‖p1
i (t)−p1

j (t)‖≤e0

)
︸ ︷︷ ︸

(3) blue side inter-agent collision avoidance

+ c4

(
1

N1

N1

∑
i=1

{
∑A

a=1 γobs,a
1

Qa(pi ,t)
if pi ∈ Ωobs,trn

0 otherwise

)
︸ ︷︷ ︸

(4) blue side obstacle collision avoidance

,

(4)

Ωobs,trn =
A⋃

a=1

Ωobs,trn,a (5)

Ωobs,trn,a : Qa(x, y, z) =
1

3v2
1,a

(x− x0,a)
2 +

1
3v2

2,a
(y− y0,a)

2 +
1

3v2
3,a

(z− z0,a)
2 ≤ 1.1, a = 1, . . . , A, (6)

Ωobs,a = {(x, y, z)||x− x0,a| ≤ v1,a, |y− y0,a| ≤ v2,a, |z− z0,a| ≤ v3,a}, a = 1, . . . , A. (7)

where p = (x, y, z) is the agent’s usual Euclidean spatial coordinate position, e is the unit
vector of the spherical coordinate system, er is the capture radius of the red side agent, e0 is
the safe distance between agents, c2, c3, c4 are constants, γobs,a, a = 1, . . . , A, is the repulsive
force gain coefficient between the agent i and other obstacles, (x0,a, y0,a, z0,a) is the center
of the corresponding obstacle, and (±v1,a,±v2,a,±v3,a) are its vertices, which are parallel
with the x, y, z axes, respectively. The interaction cost F1

i denotes the sum of the trajectory
collision loss of the intra-group, inter-group, and with obstacles about agent i.

Remark 1. In our 3D obstacle scene, obstacles were rectangular solids Ωobs. For training, the
cuboid obstacle repulsion is formulated as a differentiable unit ellipsoid repulsion function 1

Q [38].
To better reduce the collision between agents and obstacles, the radius of Ωobs,trn is 10% larger than
that of the unit circumscribed ellipsoid of Ωobs. Our algorithm was trained by using ellipsoidal
repulsion, which can produce gradient information smoothly in obstacles, stimulating the model to
learn trajectories to avoid obstacles [39].

The terminal cost G1
i is given by

G1
i = c5‖x1

i (T)− x0‖2︸ ︷︷ ︸
(5) travel time minimization

, (8)

where c5 is a constant, x1
i (T) is the final state of agent i, and x0 is the target state in which we

want the agents to reach the objective. The terminal cost G1
i denotes the distance between

agent i’s terminal state and the desired state.
In summary, by defining the cost function as (2), the optimal control problem faced by

agent i of the blue side is given by

inf
u1

i ∈U1

J1
i (x

1
i , x1−

i , x2−
i , u1

i)

s.t. dx1
i = h1

i (x
1
i , x1−

i , x2−
i , u1

i)dt.
(9)

251

Mathematics 2022, 10, 4075

2.2.2. Red Side Control Problem

The red side’s agents traveling from a common source avoid obstacles and hope to
complete the interception against the blue side to prevent the blue side from penetrating.
At time t ≥ 0, the i-th agent controls its strategy u2

i , to minimize its: (1) motion energy, (2)
distance to the blue side, (3) red side inter-agent collision, and (4) the collision of the red
side with the obstacles during the remaining travel time. The running cost L2

i is given by

L2
i = l1‖u2

i (t)‖2︸ ︷︷ ︸
(1) motion energy minimization

, (10)

where l1 is a constant. The running cost L2
i denotes the control effort implemented by agent

i. The interaction cost F2
i is given by

F2
i = l2

(
1

N1

N1

∑
k=1

∥∥∥p2
i (t)− p1

k(t)
∥∥∥)︸ ︷︷ ︸

(2) distance to blue side minimization

+ l3

(
1

N2

N2

∑
j �=i

1‖p2
i (t)−p2

j (t)‖≤e0

)
︸ ︷︷ ︸

(3) red side inter-agent collision avoidance

+ l4

(
1

N2

N2

∑
i=1

{
∑A

a=1 γobs,a
1

Qa(pi ,t)
if pi ∈ Ωobs,trn

0 otherwise

)
︸ ︷︷ ︸

(4) red side obstacle collision avoidance

,

(11)

where l2, l3, l4 are constants. The interaction cost F2
i denotes the sum of the trajectory

collision loss of the intra-group, inter-group, and with obstacles about agent i.
In summary, by defining the cost function as (2), the optimal control problem faced by

agent i of the red side is given by

inf
u2

i ∈U2

J2
i (x

2
i , x2−

i , x1−
i , u2

i)

s.t. dx2
i = h2

i (x
2
i , x2−

i , x1−
i , u2

i)dt.
(12)

To this end, the cooperative attack–defense evolution for large-scale agents in the 3D
obstacle scene is formulated as a non-cooperative differential game. Thus, an N-player
non-cooperative game is formed. Its obvious solution is the Nash equilibrium, that is no
agent can unilaterally reduce its cost under this control decision [16].

2.3. Multi-Population High-Dimensional Mean-Field Game

With the increase of the number N of game participants, the complexity of solving
differential games will increase significantly. For the current agent in the cooperative attack–
defense problem (16), the neighborhood interactions of intra-group collision avoidance, the
inter-group interactions of attack and defense, and the ecological interactions of obstacle
avoidance will lead to the need for a large amount of communication and computing
resources. Traditional optimization and control methods usually deal with the increasing
interactions separately, leading to the dimension explosion problem. The mean-field game is
able to overcome the communication and computational difficulties associated with a large
scale, and its core technology is to inscribe a large number of interacting swarm intelligence
problems as coupled sets of partial differential equations (PDEs). Therefore, we propose
the multi-population high-dimensional stochastic MFG (MPHD-MFG) reformulation of
the cooperative attack–defense problem (16). Under the framework of the MPHD-MFG,
a generic player only reacts to the collective behaviors (mean field) of all players instead
of the behavior of each player, which greatly reduces the amount of communication and
computation. Here, “mean-field” means the states’ probability distribution. Now, we
can drop the index i since players are indistinguishable within each population of the
MPHD-MFG. Let ρp(xp, t) : Rn × [0, T]→ P2(Rn) denote the probability density function
of state xp at time t, then the cost function (2) is transformed into

252

Mathematics 2022, 10, 4075

Jp(xp, ρp, ρ−p, up) =

E

[∫ T

0
Lp(xp(t), up(t)) + Fp(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt + Gp(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T))

]
=
∫ T

0

{∫
Ω

Lp(xp(t), up(t))ρp(xp, t)dx

}
dt +

∫ T

0

{∫
Ω

Fp(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))ρp(xp, t)dx

}
dt

+
∫

Ω
Gp(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T))ρp(xp, t)dx

=
∫ T

0

{∫
Ω

Lp(xp(t), up(t))ρp(xp, t)dx

}
dt +

∫ T

0
F p(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt

+ G p(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T)),

(13)

where Ω ∈ Rn is the state space containing all possible states of the generic agent and
variational derivatives of functionals F ,G for ρ are the interaction and terminal costs F and
G, respectively. Meanwhile, the state dynamic–kinematic equation in (1) is transformed into

dxp = hp(xp, ρp, ρ−p, up)dt + σpdW
p
t , (14)

where σp ∈ Rn×m denotes a fixed coefficient matrix of a population-dependent volatility
term and Wp means an m-dimensional Wiener process springs from the environment, in
which each component W

p
k is independent of W

p
l for all k �= l, p = 1, 2. According to Ito’s

lemma [40], (14) can be expressed in terms of the mean field ρp(xp, t) and then will be
equivalent to the Fokker–Planck (FPK) equation given by

∂tρ
p − σp2

2
Δρp +∇ · (ρphp) = 0. (15)

With cost function (13) and FPK Equation (15), the multi-population high-dimensional
MFG, which describes the cooperative attack–defense evolution of a large number of agents,
is now summarized as

inf
ρp ,up

Jp(xp, ρp, ρ−p, up)

s.t. ∂tρ
p − σp2

2
Δρp +∇ · (ρphp) = 0, ρp(xp, 0) = ρ

p
0 (x

p)

∂tρ
−p − σ−p2

2
Δρ−p +∇ · (ρ−ph−p) = 0, ρ−p(x−p, 0) = ρ

−p
0 (x−p)

p = 1, 2,

(16)

where ρ
p
0 is the initial probability distribution of population p’s agents. To this end, the

cooperative attack–defense evolution for large-scale agents in the 3D obstacle scene is
formulated as a multi-population high-dimensional MFG. For every population p = 1, 2,
each agent i of population p(i) forecasts a distribution {ρp(·, t)}T

t=0 and aims at minimizing
its cost, which eventually reaches the Nash equilibrium, where no agent can decrease its
individual cost by changing its control strategy unilaterally. The formulaic representation,
for every xp ∈ Rn:

Jp(xp, ρp, ρ−p, ûp) ≤ Jp(xp, ρp, ρ−p, up), ∀up : [0, T]→ Up, (17)

where ûp is the agent’s equilibrium strategy at state xp. Here, we assumed that the agent is
small, and its unilateral actions will not change the density ρp. Reference [41] provides a
sufficient condition for the solution to the multi-population MFG PDEs, and Reference [42]
provides the necessary one.

253

Mathematics 2022, 10, 4075

Remark 2. Under appropriate assumptions, the MFG’s solution will offer an approximate Nash
equilibrium (ε-NE) for the corresponding game with a large, but finite number of agents [41].

3. GAN-Based Approach for MPHD-MFG

In this section, we put forward a generative-adversarial-network (GAN)-based method
for solving the multi-population high-dimensional MFG in (16). Inspired by Wasserstein
GANs [43], APAC-Net [35], and CA-Net [36,37], we formulated (16) as a convex-concave
saddle-point problem using MFG’s variational primal–dual structure. Then, we propose an
extended coupled alternating neural network (ECA-Net) algorithm to solve the MPHD-
MFG in (16).

3.1. Variational Primal–Dual Structure of MPHD-MFG

We reveal the underlying primal–dual structure of the MPHD-MFG, then deduce the
convex–concave saddle-point problem equivalent to (16). Denote Φp : Φp(xp, t) = infup Jp

(xp, ρp, ρ−p, up) as the Lagrange multiplier; we can add the differential constraint (15) (FPK
equation) into the cost function (13) to obtain the extended cost function:

sup
Φp

inf
ρp ,up

{∫ T

0

∫
Ω

Lp(xp(t), up(t))ρp(xp, t)dxdt +
∫ T

0
F p(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt

+ G p(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T))

−
∫ T

0

∫
Ω

Φp(x
p, t)(∂tρ

p − σp2

2
Δρp +∇ · (ρp(xp, t)hp(xp, ρp, ρ−p, up)))dxpdt

−
∫ T

0

∫
Ω

Φ−p(x
−p, t)(∂tρ

−p − σ−p2

2
Δρ−p +∇ · (ρ−p(x−p, t)h−p(x−p, ρ−p, ρp, u−p)))dx−pdt

}
.

(18)

The Hamiltonian Hp : Rn ×P2(Rn)2 ×Rn → R, p = 1, 2 is defined as

Hp(x
p, ρp, ρ−p, zp) = sup

up
{−Lp(x

p, up)− zp hp(xp, ρp, ρ−p, up)}. (19)

Utilizing (19) and integrating by parts, we can rewrite (18) as

inf
ρp

sup
Φp

{∫ T

0

∫
Ω
(∂tΦp +

σp2

2
ΔΦp − Hp(x

p,∇Φp))ρ
p(xp, t)dxpdt +

∫ T

0
F p(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt

+ G p(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T)) +
∫

Ω
Φp(x

p, 0)ρp
0 (x

p)dxp −
∫

Ω
Φp(x

p, T)ρp(xp, T)dxp

+
∫ T

0

∫
Ω
(∂tΦ−p +

σ−p2

2
ΔΦ−p +∇Φ−p · h−p)ρ−p(x−p, t)dx−pdt +

∫
Ω

Φ−p(x
−p, 0)ρ−p

0 (x−p)dx−p

−
∫

Ω
Φ−p(x

−p, T)ρ−p(x−p, T)dx−p
}

.

(20)

Here, our derivation path follows that of [44–46]. The formulation (20) is the cornerstone of
our approach.

3.2. ECA-Net for Cooperative Attack–Defense Evolution

We solved (20) by training a GAN-based neural network. The solving network of
the multi-population MFG in the 3D obstacle scene is an extended nonlinear coupled
alternating neural network formed by multiple generators and multiple discriminators,
named ECA-Net. We coupled the obstacle avoidance loss term in the design of the loss
function of the ECA-Net algorithm. The structure and training process of ECA-Net are
shown in Figure 2.

254

Mathematics 2022, 10, 4075

Figure 2. Visualization of the structure and training process of ECA-Net. Its training process is
divided into two pairs of coupled alternating training parts—generators and discriminators.

First, we initialized two pairs of neural networks Np
ωp(xp, t) and Np

θp(yp, t), p = 1, 2. Let

Φp
ωp(xp, t) = (1− t)Np

ωp(xp, t) + tGp(xp), G,
p
θp(y

p, t) = (1− t)yp + tNp
θp(y

p, t), (21)

where yp ∼ ρ
p
0 is a sample drawn from the initial distribution. The formulation of Φp

ωp

(the value function for the generic agent of population p) and G,
p
θp (the density distribution

of population p) in (21) automatically encodes the terminal condition Gp(·, T) and initial
distribution ρ

p
0 (·), respectively. Moreover, ECA-Net encodes the underlying structure of

the MPHD-MFG by (20) and (21), exempting the neural network from learning the entire
game solution from scratch.

Our approach for training this neural network includes parallel–alternate training of
two pairs of G,

p
θp and Φp

ωp , p = 1, 2. Intuitively, to gain the equilibrium of the MPHD-MFG
of the cooperative attack–defense problem, we trained an extended coupled alternating
neural network (ECA-Net) about multi-group distributions and agent controls. Specifically,
we trained Φp

ωp by first sampling a batch {y
p
b}B

b=1 from given initial distribution ρ
p
0 , another

batch {y
−p
b }B

b=1 from given initial density ρ
−p
0 , and {tb}B

b=1 uniformly from [0, T]. Then, we
computed the push-forward states x

p
b = G,

p
θp(y

p
b , tb), x

−p
b = G,

−p
θ−p(y

−p
b , tb) for b = 1, . . . , B.

The main loss term for training the discriminator Φp
ωp is given by

lossΦp =
1
B

B

∑
b=1

Φp
ωp(x

p
b , 0) +

1
B

B

∑
b=1

{
∂tΦ

p
ωp(x

p
b , tb) +

σp2

2
ΔΦp

ωp(x
p
b , tb)− Hp(∇xp Φp

ωp(x
p
b , tb))

}
. (22)

We need to consider adding a dual term for the distribution of the neighboring population:

penaltyneighbors = η

{
1
B

B

∑
b=1

[
∂tΦ

−p
ω−p(x

−p
b , tb) +

σ−p2

2
ΔΦ−p

ω−p(x
−p
b , tb) +∇x−p Φ−p

ω−p(x
−p
b , tb) · h−p(x

−p
b , x

p
b , tb)

]}
(23)

255

Mathematics 2022, 10, 4075

to correct for the density update of the other population (which tends to obey the FPK
equation) [36]. We can optionally add a regularization term:

penaltyHJB = λ

{
1
B

B

∑
b=1
‖∂tΦ

p
ωp(x

p
b , tb) +

σp2

2
ΔΦp

ωp(x
p
b , tb)− Hp(∇xp Φp

ωp(x
p
b , tb)) + Fp(x

p
b , x

−p
b , tb)‖

}
(24)

to penalize deviations from the HJB equations. Finally, we backpropagated the total loss
�total to update the weights of the discriminator Φp

ωp .
To train the generator, we again sampled {y

p
b}B

b=1, {y
−p
b }B

b=1 and {tb}B
b=1, p = 1, 2 as

before and computed

lossG,
p =

1
B

B

∑
b=1

{
∂tΦ

p
ωp (G,

p
θp (y

p
b), tb) +

σp2

2
ΔΦp

ωp (G,
p
θp (y

p
b), tb)− Hp(∇xp Φp

ωp (G,
p
θp (y

p
b), tb)) + Fp(G,

p
θp (y

p
b), G,

−p
θ−p (y

−p
b), tb)

}
. (25)

Finally, we backpropagated the total loss ζtotal to update the weights of the genera-
tor G,

p
θp .
In conclusion, in each time slot t ∈ [0, T], the ECA-Net will be trained. The generator

G,
p
θp will generate the state distribution of population p at time t, and the discriminator Φp

ωp

will obtain the result of the value function of population p at time t, p = 1, 2. Please refer to
Algorithm 1 for the detailed operation flow.

Algorithm 1 ECA-Net for cooperative attack–defense evolution.
Require: σp diffusion parameter, Gp terminal cost, Hp Hamiltonian, Fp interaction term,
p = 1, 2.
Require: Initialize neural networks Np

ωp and Np
θp , batch size B.

Require: Set Φp
ωp and G,

p
θp as in (21).

While not converged, do

train Φp
ωp :

Sample batch {(yp
b , tb)}B

b=1, {(y−p
b , tb)}B

b=1, where y
p
b ∼ ρ

p
0 , y

−p
b ∼ ρ

−p
0 and tb ∼ Unif(0, T).

x
p
b ← G,

p
θp (y

p
b , tb), x

−p
b ← G,

−p
θ−p (y

−p
b , tb) for b = 1, . . . , B.

�
p
0 ← 1

B ∑B
b=1 Φp

ωp (x
p
b , 0)

�
p
t ← 1

B ∑B
b=1

{
∂tΦ

p
ωp (x

p
b , tb) +

σp2

2 ΔΦp
ωp (x

p
b , tb)− Hp(∇xp Φp

ωp (x
p
b , tb))

}
�

p
n ← η

{
1
B ∑B

b=1

[
∂tΦ

−p
ω−p (x

−p
b , tb) +

σ−p2

2 ΔΦ−p
ω−p (x

−p
b , tb) +∇x−p Φ−p

ω−p (x
−p
b , tb) · h−p(x

−p
b , x

p
b , tb)

]}
�

p
HJB ← λ

{
1
B ∑B

b=1 ‖∂tΦ
p
ωp (x

p
b , tb) +

σp2

2 ΔΦp
ωp (x

p
b , tb)− Hp(∇xp Φp

ωp (x
p
b , tb)) + Fp(x

p
b , x

−p
b , tb)‖

}
�

p
total ← �

p
0 + �

p
t + �

p
n + �

p
HJB

Backpropagate total loss �total = ∑p �
p
total to ω = (ωp)p=1,2 weights.

train G,
p
θp :

Sample batch {(yp
b , tb)}B

b=1, {(y−p
b , tb)}B

b=1, where y
p
b ∼ ρ

p
0 , y

−p
b ∼ ρ

−p
0 and tb ∼ Unif(0, T).

ζ
p
t ← 1

B ∑B
b=1

{
∂tΦ

p
ωp (G,

p
θp (y

p
b), tb) +

σp2

2 ΔΦp
ωp (G,

p
θp (y

p
b), tb)− Hp(∇xp Φp

ωp (G,
p
θp (y

p
b), tb))

+Fp(G,
p
θp (y

p
b), G,

−p
θ−p (y

−p
b), tb)

}
Backpropagate total loss ζtotal = ∑p ζ

p
t to θ = (θp)p=1,2 weights.

end while

4. Simulation Results

In this section, we carry out an integrative experiment based on Algorithm 1 and
demonstrate the feasibility and effectiveness of our approach via the following numerical
simulation results. To prove the advanced nature of our approach, we finally compare its
performance with that of baseline methods.

256

Mathematics 2022, 10, 4075

4.1. Experimental Setup

For the attack–defense obstacle scenario in Figure 3, the initial density of the two pop-
ulations is discrete uniform distributions ρ

p
0 , p = 1, 2. The initial spatial coordinates (x, y, z)

of the blue and red sides are located in the cuboid areas ((−5, 5), (−9,−7), (−9,−7)) and
((−5, 5), (7, 9), (−9,−7)), respectively. Note that we set all other initial coordinates to zero—
initial angular position, initial velocity, and initial angular velocity were all set to zero. The
coordinates of the terminal line were set to (·, 8, 8). Two obstacles were placed between the
attacking and defending groups. The obstacles were represented by cuboids, specified by the
coordinates of their vertices. The first obstacle was placed at ((−3,−1), (−2, 2), (−10, 10)),
and the second obstacle was placed at ((1, 3), (−2, 2), (−10, 10)).

Figure 3. The 3D attack and defense experimental scenario.

We examined with this high-dimensional scene where the dynamics was that of
quadrotor crafts. The dynamic–kinematic equation of the generic quadrotor craft i of
population p, p = 1, 2, is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋp = vxp

ẏp = vyp

żp = vzp

ψ̇p = vψp

θ̇p = vθp

φ̇p = vφp

v̇xp =
up
mp

(sin(φp) sin(ψp) + cos(φp) cos(ψp) sin(θp))

v̇yp =
up
mp

(− cos(ψp) sin(φp) + cos(φp) sin(θp) sin(ψp))

v̇zp =
up
mp

(cos(θp) cos(φp))− g
v̇ψp = τ̃ψp

v̇θp = τ̃θp

v̇φp = τ̃φp

, (26)

which we compactly denote as ẋp = hp(xp, up), where hp is a 12-dimensional vector func-
tion in the right-hand side of (26), xp = [xp, yp, zp, ψp, θp, φp, vxp , vyp , vzp , vψp , vθp , vφp]

∈ R12 is the state with velocities vp = [vxp , vyp , vzp , vψp , vθp , vφp]
 ∈ R6, and up =

[up, τ̃ψp , τ̃θp , τ̃φp]
 ∈ R4 is the control. In the stochastic case, we added a noise term to

the dynamics: dxp = hp(xp, up)dt + σpdW
p
t , where W means a standard Brownian motion,

meaning the quadcopter suffers from noisy measurements. The cost functions of the blue
side and red side are given in Section 2.2.

For the model hyperparameters, we set c1 = 0.5 (in (3)), c2 = 1, c3 = 20, c4 = 5 (in (4)),
c5 = 5 (in (8)), l1 = 0.5 (in (10)), and l2 = 1, l3 = 20, l4 = 5 (in (11)). For ECA-Net, both
networks have three linear hidden layers with 100 hidden units in each layer. Residual

257

Mathematics 2022, 10, 4075

neural networks (ResNets) were used for both networks, with a skip connection weight
of 0.5. The tanh activation function was used in Φp

ωp , while the ReLU activation function
was used in G,

p
θp . For training, we used ADAM with β = (0.5, 0.9), learning rate 2e− 4 for

Φp
ωp , learning rate 5e− 5 for G,

p
θp , weight decay of 1e− 4 for both networks, batch size 50,

λ = 2 (the HJB penalty coefficient), and η = 2.5e− 3 (the neighbors’ penalty coefficient)
in Algorithm 1. As in standard machine learning methods, all the plots in Section 4.3 and
Appendices A.1 and A.2 were generated using validation data (data not used in training),
to ensure the general adaptability of ECA-Net.

4.2. Convergence Analysis

The convergence of the MPHD-MFG method and the ECA-Net algorithm can be ob-
served by checking the convergence of the HJB residual errors, along with the convergence
of the total loss. In Figure 4a, we plot the HJB residual errors of the red and blue sides,
i.e., �p

HJB in Algorithm 1, which measures the deviation from the objective function (13)
and shows the convergence of the theoretical model, the MPHD-MFG. Without an efficient
strategy control, the HJB residuals under different stochasticity parameters (ν = σ2

2 = 0,
0.04, 0.08) were relatively high. The HJB residuals dropped fast after we applied a series of
controls. After around 2× 105 iterations, the error curves tended to be bounded and stable
when we obtained the optimal control for the drones. In Figure 4b, we plot the total loss of
the red and blue sides, i.e., �p

total in Algorithm 1. After around 2× 105 iterations, the total

loss value curves under different stochasticity parameters (ν = σ2

2 = 0, 0.04, 0.08) tended to
be bounded and stable, which means that the weight update of the neural network was
completed, proving the good convergence of the solution algorithm, ECA-Net.

(a) (b)

Figure 4. Convergence analysis. (a) Convergence of HJB residual; (b) Convergence of total loss.

4.3. Performance Analysis

We set the same number for the blue side and red side, N1 = N2 = 100. Now, we
obtained the model from the above training and predicted the trajectories of the red and
blue sides. Assuming that the blue side is not aggressive and the red side is aggressive, if
the blue UAV is surrounded by two or more red UAVs within er, the blue individual will
be captured. We give the evolutionary trajectories of the red and blue sides under different
stochasticity parameters (ν = σ2

2 = 0, 0.04, 0.08) and different capture radii (er = 0.7, 0.9,
1.1), as shown in Figure 5. When stochasticity parameter ν was fixed, observing Figure 5a–c
over time t, respectively, the UAVs successfully avoided obstacles while minimizing their
energy consumption; the smaller the capture radius of the red side, the higher the survival
rate of the blue side is. At the same capture radius er and at the same moment t, the
larger the stochasticity parameter, the more scattered the distribution of the UAVs is, which
increases the difficulty for the red side to completely capture the blue side. For example, in

258

Mathematics 2022, 10, 4075

the case of er = 1.1, comparing the first line of Figure 5a–c, the larger ν is, the higher the
survival rate of the blue side. In particular, Figure 5c shows the diversion phenomenon. At
ν = 0.08, the third moment, the UAVs are flying through the obstacles. In order to avoid
collision with the obstacles, the UAVs choose three different paths, i.e., a diversion occurs,
which demonstrates the adaptive nature of the UAV. In addition, the corresponding 3D
run diagram of Figure 5 is placed in Appendix A.1. Appendix A.2 shows and analyzes the
offensive and defensive effects of the UAV swarms in the asymmetric case.

0

(a)

0

(b)

Figure 5. Cont.

259

Mathematics 2022, 10, 4075

0

(c)

Figure 5. Vertical view of the large-scale UAV attack and defense behaviors under different stochas-
ticity parameters and different capture radii. (a) Snapshots of the distributions of the UAVs’ locations
under different capture radii when ν = 0; (b) Snapshots of the distributions of the UAVs’ locations
under different capture radii when ν = 0.04; (c) Snapshots of the distributions of the UAVs’ locations
under different capture radii when ν = 0.08.

4.4. Comparison with Baselines

We verified the progressiveness of our approach by comparing its performance with
that of some typical baseline methods for attack–defense games in Table 1. From Table 1, it
can be seen that our approach handled the most complex application scene and simplified
the large-scale communication. For more details about the following baseline methods,
please refer to the related References [7–9,37], etc.

Table 1. Comparison with baseline methods for attack–defense games.

Method Scene Scale of UAVs Scene Complexity Communication

[7] 3D blank scene Small 0.67 1 O(N) 2

[8] 2D obstacle scene Small 0.67 O(N)
[9] 2D blank scene Large 0.67 O(N)
[37] 3D blank scene Large 0.83 O(1)

Ours 3D obstacle scene Large 1 O(1)

1 The measurement method of scene complexity is as follows: here, it is a scoring system, [2D, 3D] = [1
′
, 2
′
]; [blank

scene, obstacle scene] = [1
′
, 2
′
]; [small, large] = [1

′
, 2
′
]. We accumulated the scores for each literature experiment

scene according to each item and finally normalized them. 2 O() is infinitesimal of the same order.

5. Conclusions

In this paper, we formulated the cooperative attack–defense evolution of large-scale
agents in high-dimensional environments as a multi-population high-dimensional stochas-
tic mean-field game (MPHD-MFG), which significantly reduced the communication fre-
quency and computational complexity of the swarm intelligence system. Then, we tractably
solved the MPHD-MFG with a generative-adversarial-network (GAN)-based method using
the MFGs’ underlying variational primal–dual structure. Based on our approach, we con-
ducted a comprehensive experiment. The good convergence of the MPHD-MFG method
and the ECA-Net algorithm was corroborated by checking the bounded stable convergence
of the HJB residual error and the total loss. Through simulations, we saw that a large
number of UAVs can avoid obstacles (even showing diversions) and smoothly evolve their

260

Mathematics 2022, 10, 4075

attack and defense behaviors while minimizing their energy consumption.The comparison
with the baseline methods showed that our approach is advanced. In the future, we will
consider in-depth research in the asymmetric case of 3D obstacle scenarios, for example
the evolution of a cooperative attack and defense between multiple (greater than or equal
to three) large-scale swarms and the evolution of a cooperative attack and defense under
the existence of individual performance (speed, acceleration, turning range) differences
between attackers and defenders.

Author Contributions: Conceptualization, G.W. and Z.L.; Formal analysis, G.W.; Investigation, Z.L.;
Methodology, G.W. and W.Y.; Software, G.W.; Supervision, W.Y. and S.X.; Validation, W.Y. and S.X.;
Visualization, G.W.; Writing—original draft, G.W. and Z.L.; Writing—review and editing, W.Y. and
S.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science and Technology Innovation 2030-Key Project
under Grant 2020AAA0108200.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Zhiming Zheng for his fruitful discussions, valuable opinions,
and guidance.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MFG Mean-field game
3D Three-dimensional
UAV Unmanned aerial vehicle
GANs Generative adversarial neural networks
ECA-Net Extended coupled alternating neural network
HJB Hamilton–Jacobi–Bellman (partial differential equation)
FPK Fokker–Planck (equation)

Appendix A. The 3D Renderings of Numerical Results and More Experiments

Appendix A.1. The 3D Run Diagram Figure A1 about Figure 5

Here, we give the 3D experimental run diagram Figure A1 about its vertical view
Figure 5 for reference. In the following diagrams, time is represented by color. Specifically,
purple represents the starting time, red represents the final time, and the intermediate
colors represent intermediate times.

(a) ν = 0, er = 1.1 (b) ν = 0, er = 0.9 (c) ν = 0, er = 0.7

Figure A1. Cont.

261

Mathematics 2022, 10, 4075

(d) ν = 0.04, er = 1.1 (e) ν = 0.04, er = 0.9 (f) ν = 0.04, er = 0.7

(g) ν = 0.08, er = 1.1 (h) ν = 0.08, er = 0.9 (i) ν = 0.08, er = 0.7

Figure A1. The 3D run diagram of large-scale UAV attack and defense behaviors under different
stochasticity parameters and different capture radii.

Appendix A.2. Asymmetric Case Study

Here, we set different numbers of the blue side and red side, N1 = 100, N2 = 60 or
N1 = 60, N2 = 100. Let ν = 0.08, er = 1.1 and the capture conditions be consistent with
Section 4.3. Now, we can predict its trajectory, as shown in Figures A2 and A3. Taking the
given parameters as an example, with the fixed stochasticity parameter and capture radius,
this section shows the deduction of the diversion obstacle avoidance and attack–defense
behaviors of the red and blue sides with asymmetric numbers.

Figure A2. Vertical view of the asymmetric case about large-scale UAV attack and defense behaviors
under ν = 0.08, er = 1.1.

262

Mathematics 2022, 10, 4075

(a) (b)

Figure A3. The 3D run diagram of the asymmetric case about large-scale UAV attack and defense
behaviors under ν = 0.08, er = 1.1. (a) Blue side vs. red side: 100 vs. 60; (b) Blue side vs. red side: 60
vs. 100.

References

1. Yu, C.; Zhang, M.; Ren, F.; Tan, G. Multiagent Learning of Coordination in Loosely Coupled Multiagent Systems. IEEE Trans.
Cybern. 2015, 45, 2853–2867. [CrossRef]

2. Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; Wang, J. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the
35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 5571–5580.

3. Chen, C.; Mo, L.; Zheng, D. Cooperative attack–defense game of multiple UAVs with asymmetric maneuverability. Acta Aeronaut.
Astronaut. Sin. 2020, 41, 324152. [CrossRef]

4. Huang, L.; Fu, M.; Qu, H.; Wang, S.; Hu, S. A deep reinforcement learning-based method applied for solving multi-agent defense
and attack problems. Expert Syst. Appl. 2021, 176, 114896. [CrossRef]

5. Huang, H.; Zhang, W.; Ding, J.; Stipanovic, D.M.; Tomlin, C.J. Guaranteed decentralized pursuit-evasion in the plane with
multiple pursuers. In Proceedings of the IEEE Conference on Decision and Control and European Control Conference, Orlando,
FL, USA, 12–15 December 2011. [CrossRef]

6. Zha, W.; Chen, J.; Peng, Z.; Gu, D. Construction of Barrier in a Fishing Game With Point Capture. IEEE Trans. Cybern. 2017,
47, 1409–1422. [CrossRef] [PubMed]

7. Liu, Y.; Qi, N.; Tang, Z. Linear Quadratic Differential Game Strategies with Two-pursuit Versus Single-evader. Chin. J. Aeronaut.
2012, 25, 896–905. [CrossRef]

8. Wan, K.; Wu, D.; Zhai, Y.; Li, B.; Gao, X.; Hu, Z. An Improved Approach towards Multi-Agent Pursuit–Evasion Game
Decision-Making Using Deep Reinforcement Learning. Entropy 2021, 23, 1433. [CrossRef]

9. Garcia, E.; Casbeer, D.W.; Moll, A.V.; Pachter, M. Multiple Pursuer Multiple Evader Differential Games. IEEE Trans. Autom.
Control 2021, 66, 2345–2350. [CrossRef]

10. Earl, M.; D'Andrea, R. Modeling and control of a multi-agent system using mixed integer linear programming. In Proceedings of
the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002. [CrossRef]

11. Earl, M.; D'Andrea, R. A study in cooperative control: The RoboFlag drill. In Proceedings of the Proceedings of the 2002 American
Control Conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, 8–10 May 2002. [CrossRef]

12. Bakolas, E.; Tsiotras, P. Optimal pursuit of moving targets using dynamic Voronoi diagrams. In Proceedings of the 49th IEEE
Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010. [CrossRef]

13. Isaacs, R. Differential Games; Wiley: Hoboken, NJ, USA, 1967.
14. Lasry, J.M.; Lions, P.L. Jeux à champ moyen. I–Le cas stationnaire. Comptes Rendus Math. 2006, 343, 619–625. [CrossRef]
15. Lasry, J.M.; Lions, P.L. Jeux à champ moyen. II–Horizon fini et contrôle optimal. Comptes Rendus Math. 2006, 343, 679–684.

[CrossRef]
16. Lasry, J.M.; Lions, P.L. Mean field games. Jpn. J. Math. 2007, 2, 229–260. [CrossRef]
17. Huang, M.; Caines, P.; Malhame, R. Individual and mass behaviour in large population stochastic wireless power control

problems: Centralized and nash equilibrium solutions. In Proceedings of the 42nd IEEE International Conference on Decision
and Control (IEEE Cat. No.03CH37475), Maui, HI, USA, 9–12 December 2003. [CrossRef]

18. Caines, P.E.; Huang, M.; Malhamé, R.P. Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and
the Nash certainty equivalence principle. Commun. Inf. Syst. 2006, 6, 221–252. [CrossRef]

19. Huang, M.; Caines, P.E.; Malhame, R.P. Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-
Mass Behavior and Decentralized ε-Nash Equilibria. IEEE Trans. Autom. Control 2007, 52, 1560–1571. [CrossRef]

20. Gomes, D.; Saúde, J. A mean-field game approach to price formation in electricity markets. arXiv 2018, arXiv:1807.07088.
21. Kizilkale, A.C.; Salhab, R.; Malhamé, R.P. An integral control formulation of mean field game based large scale coordination of

loads in smart grids. Automatica 2019, 100, 312–322. [CrossRef]

263

Mathematics 2022, 10, 4075

22. Paola, A.D.; Trovato, V.; Angeli, D.; Strbac, G. A Mean Field Game Approach for Distributed Control of Thermostatic Loads
Acting in Simultaneous Energy-Frequency Response Markets. IEEE Trans. Smart Grid 2019, 10, 5987–5999. [CrossRef]

23. Lachapelle, A.; Wolfram, M.T. On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp.
Res. Part B Methodol. 2011, 45, 1572–1589. [CrossRef]

24. Burger, M.; Francesco, M.D.; Markowich, P.A.; Wolfram, M.T. Mean field games with nonlinear mobilities in pedestrian dynamics.
Discret. Contin. Dyn. Syst.-B 2014, 19, 1311–1333. [CrossRef]

25. Aurell, A.; Djehiche, B. Mean-Field Type Modeling of Nonlocal Crowd Aversion in Pedestrian Crowd Dynamics. SIAM J. Control
Optim. 2018, 56, 434–455. [CrossRef]

26. Achdou, Y.; Lasry, J.M. Mean Field Games for Modeling Crowd Motion. In Computational Methods in Applied Sciences; Springer
International Publishing: Cham, Switzerland, 2018; pp. 17–42. [CrossRef]

27. Liu, Z.; Wu, B.; Lin, H. A Mean Field Game Approach to Swarming Robots Control. In Proceedings of the IEEE 2018 Annual
American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018. [CrossRef]

28. Elamvazhuthi, K.; Berman, S. Mean-field models in swarm robotics: A survey. Bioinspir. Biomimet. 2019, 15, 015001. [CrossRef]
29. Lee, W.; Liu, S.; Tembine, H.; Li, W.; Osher, S. Controlling Propagation of Epidemics via Mean-Field Control. SIAM J. Appl. Math.

2021, 81, 190–207. [CrossRef]
30. Chang, S.L.; Piraveenan, M.; Pattison, P.; Prokopenko, M. Game theoretic modelling of infectious disease dynamics and

intervention methods: A review. J. Biol. Dyn. 2020, 14, 57–89. [CrossRef] [PubMed]
31. E, W.; Han, J.; Li, Q. A mean-field optimal control formulation of deep learning. Res. Math. Sci. 2018, 6, 10. [CrossRef]
32. Guo, X.; Hu, A.; Xu, R.; Zhang, J. Learning Mean-Field Games. In Advances in Neural Information Processing Systems; Wallach, H.,

Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019;
Volume 32.

33. Carmona, R.; Laurière, M.; Tan, Z. Linear-Quadratic Mean-Field Reinforcement Learning: Convergence of Policy Gradient
Methods. arXiv 2019, arXiv:1910.04295.

34. Guéant, O.; Lasry, J.M.; Lions, P.L. Mean Field Games and Applications. In Paris-Princeton Lectures on Mathematical Finance 2010;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 205–266. [CrossRef]

35. Lin, A.T.; Fung, S.W.; Li, W.; Nurbekyan, L.; Osher, S.J. Alternating the population and control neural networks to solve
high-dimensional stochastic mean-field games. Proc. Natl. Acad. Sci. USA 2021, 118, e2024713118. [CrossRef] [PubMed]

36. Wang, G.; Yao, W.; Zhang, X.; Niu, Z. Coupled Alternating Neural Networks for Solving Multi-Population High-Dimensional
Mean-Field Games with Stochasticity. TechRxiv Preprint 2022. [CrossRef]

37. Wang, G.; Zhang, X.; Yao, W.; Ren, L. Cooperative attack–defense evolution of large-scale agents. In Proceedings of the ACM
Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July 2022. [CrossRef]

38. Chang, K.; Xia, Y.; Huang, K. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.
SpringerPlus 2016, 5, 1124. [CrossRef] [PubMed]

39. Onken, D.; Nurbekyan, L.; Li, X.; Fung, S.W.; Osher, S.; Ruthotto, L. A Neural Network Approach for High-Dimensional Optimal
Control Applied to Multiagent Path Finding. IEEE Trans. Control. Syst. Technol. 2022, 1–17. [CrossRef]

40. Schulte, J.M. Adjoint Methods for Hamilton–Jacobi–Bellman Equations. Ph.D. Thesis, University of Munster, Münster,
Germany, 2010.

41. Fujii, M. Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations. SSRN
Electron. J. 2019. [CrossRef]

42. Bensoussan, A.; Huang, T.; Laurière, M. Mean Field Control and Mean Field Game Models with Several Populations. arXiv 2018,
arXiv:1810.00783.

43. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International
Conference on Machine Learning—Volume 70 (ICML’17), Sydney, Australia, 6–11 August 2017; pp. 214–223.

44. Benamou, J.D.; Carlier, G.; Santambrogio, F. Variational Mean Field Games. In Active Particles; Modeling and Simulation in
Science, Engineering & Technology; Springer International Publishing: Cham, Switzerland, 2017; Volume 1, pp. 141–171.

45. Cardaliaguet, P.; Graber, P.J. Mean field games systems of first order. ESAIM Control. Optim. Calc. Var. 2015, 21, 690–722.
[CrossRef]

46. Cardaliaguet, P.; Graber, P.J.; Porretta, A.; Tonon, D. Second order mean field games with degenerate diffusion and local coupling.
Nonlinear Differ. Equ. Appl. NoDEA 2015, 22, 1287–1317. [CrossRef]

264

Citation: Luo, Y.; Wu, C.; Leng, Y.;

Huang, N.; Mao, L.; Tang, J.

Throughput Optimization for NOMA

Cognitive Relay Network with RF

Energy Harvesting Based on

Improved Bat Algorithm.

Mathematics 2022, 10, 4357.

https://doi.org/10.3390/

math10224357

Academic Editor: Oliviu Matei

Received: 22 August 2022

Accepted: 11 November 2022

Published: 19 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Throughput Optimization for NOMA Cognitive Relay Network
with RF Energy Harvesting Based on Improved Bat Algorithm

Yi Luo 1, Chenyang Wu 1, Yi Leng 2,*, Nüshan Huang 1, Lingxi Mao 1 and Junhao Tang 1

1 Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing,
Hunan Normal University, Changsha 410081, China

2 Department of Information Countermeasure, Air Force Early Warning Academy, Wuhan 430019, China
* Correspondence: lengyi200209@163.com

Abstract: Due to the shortcomings of the standard bat algorithm (BA) for multi-parameter optimiza-
tion, an improved bat algorithm is proposed. The benchmark function test shows that the proposed
algorithm has better realization of high-dimensional function optimization by introducing multiple
flight modes, adopting adaptive strategy based on group trend, and employing loudness mutation
flight selection strategy based on Brownian motion. Aiming at the characteristics of complex net-
works structure and multiple design variables of energy harvesting non-orthogonal multiple access
cognitive relay networks (EH-NOMA-CRNs), we utilize the proposed hybrid strategy improved
bat algorithm (HSIBA) to optimize the performance of EH-NOMA-CRNs. At first, we construct
a novel two-hop underlay power beacon assisted EH-NOMA-CRN, and derive the closed-form
expressions of secondary network’s outage probability and throughput. Then, the secondary net-
work performance optimization is formulated as the throughput maximation problem with regard
to EH ratio and power allocation factors. Subsequently, the HSIBA is employed to optimize the
above parameters. Numerical results show that the proposed HSIBA can achieve optimization to the
constructed EH-NOMA-CRN with faster convergence speed and higher stability.

Keywords: bat algorithm; hybrid strategy; energy harvesting; NOMA; cognitive relay network

MSC: 94A05

1. Introduction

Non-orthogonal multiple access (NOMA) is an effective method to increase frequency
efficiency. It has drawn great attention for its promising applications in the fields of
5G, 6G and Internet of things (IoT) networks [1–3]. Especially in the military scenarios
of unmanned aerial vehicles (UAVs) battlefield situation awareness [4], covert military
operations and tactical area communications [5], UAV-NOMA relaying communications [6],
and hybrid satellite-UAV networks [7], the NOMA technology has been widely used. The
core concept of NOMA is that when the non-orthogonal transmission is adopted at the
transmitter, the interference signals are actively introduced, and the correct demodulation
is achieved at the receiver by applying serial interference cancellation (SIC) technique. It
can be seen that reliable interference cancellation techniques and strategies [8,9] are the
basis for realizing NOMA. Although the use of SIC technique will increase the complexity
of the receiver, it can improve the spectrum efficiency.

In order to further improve the utilization efficiency of the authorized spectrum and
the expand the coverage of networks, many scholars have combined NOMA technique with
cognitive relay network (CRN) to build and optimize some novel NOMA-CRN models.
In [10], the authors achieved in-band full-duplex and two-way cognitive relaying trans-
mission in a cooperative NOMA system, and applied the successive inner approximation
technique to maximize the energy efficiency. In [11], the error rate performance of an under-
lay NOMA-CRN with partial relay selection (PRS) scheme was studied, and the optimum

Mathematics 2022, 10, 4357. https://doi.org/10.3390/math10224357 https://www.mdpi.com/journal/mathematics
265

Mathematics 2022, 10, 4357

power coefficients were optimized to minimize the average bit error rate union bound by
using numerical methods. In [12], the physical-layer security of NOMA-CRN with relay
cooperation was investigated, and the particle swarm optimization (PSO) algorithm was
adopted to optimize the power allocation to maximize the secrecy sum-rate. In [13], the
authors utilized the NOMA-CRN for device to device (D2D) transmission, and proposed a
deep neural networks framework for optimizing resource allocation to maximize the sum
rate. In [14], the NOMA-CRN with a single primary transmitter/receiver (PT/PR) and PRS
scheme was constructed, and the PSO algorithm was employed for determining the jointly
optimal power allocation factors to realize the maximization of throughput.

In addition to extend the lifetime and improve the energy efficiency of energy-constrained
relay networks using NOMA technique, the radio frequency energy harvesting (RF-EH)
technique has been introduced into NOMA relay network to construct the new energy
harvesting NOMA relay networks (EH-NOMA-RNs). Ref. [15] considered a cooperative
EH-NOMA-RN, and adopted a one-dimensional search algorithm for optimizing power
allocation coefficient to attain the maximization of weighted sum rate. Ref. [16] used the
EH-NOMA-RN with interfering signal for IoT systems, and adopted the Golden section
search method to maximize the sum-throughput. Ref. [17] applied EH-NOMA-RN system to
layered video multicast transmission, and used the initial feasible point search algorithm to
minimize the base station’s average transmission power. Ref. [18] constructed a full-duplex
EH-NOMA-RN with cooperative relaying, and made use of the alternating optimization
technique to achieve the outage probability (OP) minimization and throughput maximiza-
tion of the system. Similar to [16], ref. [19] also applied Golden section search algorithm for
optimization of a power beacon (PB)-assisted EH-NOMA-RN IoT-based system to minimize
OP and maximize sum-throughput of the system.

Recently, based on the research of NOMA-CRNs and EH-NOMA-RNs, integrating
RF-EH technique into NOMA-CRN to form the brand-new energy harvesting NOMA
cognitive relay networks (EH-NOMA-CRNs) and solving the corresponding networks’
performance optimization problems have gradually become a novel research direction.
In [20], the authors employed a two-loop procedure using one-dimensional search to solve
the minimum transmission power problem of a multiple-input single-output EH-NOMA-
CRN with non-linear EH model and robust beamforming. In [21], two-level bisection search
algorithms were developed to realize the maximal secondary throughput of EH-NOMA-
CRN by optimizing resource allocation coefficients. In [22], a joint optimization algorithm
based on one-dimensional search was proposed to maximize the energy efficiency of
EH-NOMA-CRN with a discrete EH scheme. In [23], the physical layer security of EH-
NOMA-CRN with multi-input multi-output two-way relaying was investigated, and a
joint path-following-based optimization algorithm was put to use for maximizing the sum
achievable secrecy rate. Later, ref. [24] designed two iterative optimization algorithms
based on a deep neural network frame for the ergodic capacity prediction of IoT PB assisted
EH-NOMA-CRN to minimize OP users and maximizing system throughput.

According to the existing researches, it is known as follows:

(1). optimizing the power allocation factors or resource allocation coefficient has obvious
effect on improving the performance of NOMA-CRNs, EH-NOMA-RNs, and EH-
NOMA-CRNs, such as decreasing OP [18], increasing energy efficiency [10], secrecy
sum-rate [12], and throughput [21]. So how to design a low-complexity and high-
efficiency optimization algorithm is worth investigating.

(2). At present, the following methods are mainly used to optimize the network system:
(i) when the objective function is convex, iterative numerical method or one-dimensional
search is directly adopted for system optimization [11,16,22]. Although the complex-
ity of numerical methods is lower, it needs more time to carry out multi-parameter
and multi-objective optimization. (ii) when the objective function is non-convex, the
non-convex function is equivalently transformed into convex by using methods such
as successive inner approximation technique [10], the difference of convex program-
ming [17], semi-definite relaxation [20], and path-following-based algorithm [23], et. al,

266

Mathematics 2022, 10, 4357

and then convex optimization is performed. However, the transformation process is
more complicated. (iii) Algorithms based on deep learning [13,24] are introduced into
system performance optimization. Nevertheless, the deep neural networks framework
requires stronger computing power, which is not very suitable for energy-constrained
EH-NOMA-CRNs’ nodes with lower storage and computing capacity. (iv) The meta-
heuristic algorithm based on PSO is initially used to solve the system optimization
problem [12,14]. Although the PSO algorithm is simple, its performance is poor. It is
worth studying to design a new high-performance meta-heuristic algorithm suitable
for performance optimization of EH-NOMA-CRN.

(3). According to different sources of energy, RF-EH mainly exists in the following two
ways: simultaneous wireless information and power transfer (SWIPT) [16,23], and
wireless power transmission (WPT) such as PB-assisted EH [19,24]. The latter has
higher wireless power transmission efficiency than the former, so our paper adopts
the latter.

(4). There are two models of RF-EH: linear EH [18,22] and non-linear EH [20]. When the
network model is complex, in order to simplify the analysis and derive the closed-
form results, the linear EH model is usually made use of. Therefore, our paper also
employs the linear EH model.

To the best of our knowledge, there is no existing paper studying meta-heuristic
algorithms other than PSO algorithm for system performance optimization of EH-NOMA-
CRNs, which motivates us to write this treatise. Compared with other existing swarm
intelligence algorithms, Bat algorithm (BA) has many advantages, such as implementation
simplicity, less control parameters and excellent global ability. Since the BA was proposed,
its improvement has been carried out continuously. Especially in the last two years, some
novel improved BA algorithms have been proposed successively, such as the enhanced
Levy flight bat algorithm (ELBA) [25], and the improved BA with extremal optimization
algorithm (IBA-EO) [26]. Therefore, how to further enhance the global search ability and
convergence rate of improved BA for coping with different engineering application sce-
narios is still a problem worth studying. Like other meta-heuristic algorithms, BA has
some inherent deficiencies. Due to a single flight mode that has limited ability to search the
solution space, the accuracy of the algorithm is insufficient, and it is easy to fall into the
local optimal solution in high-dimensional search space. In this paper, a novel improved
BA has been proposed.

Explicitly, the major contributions of our paper are summarized as follows:

• First, based on the standard BA, we propose a novel hybrid strategy improved bat
algorithm (HSIBA) with adaptive strategy and several different flight modes, which
can obviously improve the accuracy and astringency of the proposed improved BA.

• Second, we proposed a novel underlay two-hop PB-assisted EH-NOMA-CRN with
multiple PRs. The closed-form expressions of secondary network (SN) OP and delay-
limited throughput are derived.

• Third, because of the derived throughput expression’s complexity, we employ the
HSIBA to jointly optimize the EH ratio and power allocation factors of SN nodes for
achieving throughput maximization. The simulation results show that the HSIBA is
perfect for optimizing performance of the proposed EH-NOMA-CRN.

The remainder of our paper is organized as follows. Section 2 introduces the standard
BA and HSIBA, and verifies the performance of HSIBA. Section 3 describes the EH-NOMA-
CRN model, and derives the closed-form solutions of SN’s OP and throughput. In Section 4,
the HSIBA is adopted to optimize the throughput of SN, and simulation results are shown.
Then, the conclusions are presented in Section 5.

267

Mathematics 2022, 10, 4357

2. Hybrid Strategy Improved Bat Algorithm

2.1. Standard Bat Algorithm

The bat algorithm (BA) proposed by Xin-She Yang is a novel metaheuristic algo-
rithm [27], which adopts the echolocation of microbats. The standard BA is based on the
following three idealized rules:

(1). All bats use echolocation to sense distance and judge the difference between food/prey
and obstacles;

(2). The i-th bat at position xi fly randomly with a fixed frequency fmin and velocity vi,
i ∈ {1, 2, · · ·, I}, varying frequency fi and loudness A0 to search the food/prey. It can
spontaneously adjust the frequency fi of its emitted pulse and accommodate the rate
of pulse emission ri ∈ [0, 1], depending on the proximity of its target;

(3). Although the loudness can alter in various ways, it is assumed that the loudness
changes from a large constant (positive) A0 to a minimum value Amin.

Originally, the i-th bat is randomly given a frequency obeying uniform distribution
from fmin to fmax. In the t-th iteration, the new position xt

i and velocity vt
i of the i-th bat can

be respectively calculated as

fi = fmin + (fmax − fmin)β (1)

vt
i = vt−1

i +
(

xt−1
i − x∗

)
fi (2)

xt
i = xt−1

i + vt
i (3)

where β ∈ [0, 1] is a random vector obeying uniform distribution, and x∗ is the current
global best location (solution) determined after comparing the locations of all n bats.

During the local search process, once a solution is chosen from the current best
solutions, a new solution for each bat can be generated by

xnew = xold + εAt (4)

where ε ∈ [−1, 1] is a random scaling factor, and At is the mean loudness of all n bats
during the t-th iteration.

Furthermore, in the (t+1)-th iteration, the i-th bat’s loudness At+1
i and rate of pulse

emission rt+1
i can be respectively updated as

At+1
i = θAt

i (5)

rt+1
i = r0

i
(
1− e−ϕt) (6)

where θ and ϕ are constants. For simplicity, θ and ϕ are respectively set as 0.8 and 0.9 in our
paper. In order to clearly describe the optimization process of standard BA, the pseudocode
of standard BA is given in Algorithm 1.

2.2. Algorithm Improvement Based on Hybrid Strategy

The standard BA has a fast convergence speed, which can adjust and balance the local
search and global search in the optimization process by gradually increasing the pulse
transmission frequency ri and reducing the pulse loudness Ai. However, the accuracy of
the algorithm is insufficient due to a single flight mode that has limited ability to search
the solution space. In our paper, we adopt adaptive strategy based on group trend, add
several different flight modes, and introduce loudness mutation factor to select between
the proposed modes as the bat flight mode during different search stages. This method can
greatly improve the accuracy and astringency of the hybrid strategy improved bat algorithm.

268

Mathematics 2022, 10, 4357

Algorithm 1 Pseudocode of standard BA

Input: The objective function f it(x) and design variables
Output: Optimal solution of objective function

1: Initialize the bat population xi and velocity vi(i = 1, 2, . . . , I)
2: Initialize the bat pulse rates ri and the loudness Ai
3: while (stopping condition is not met) do
4: Calculate the fitness values of bat
5: Set x∗ as the position of best bat
6: for (each bat (xi)) do
7: Update speed of bat using Equation (2)
8: Update the position of bat using Equation (3)
9: if (rand > ri) then

10: Select a new solution among the best solutions using Equation (4)
11: end if
12: if (rand < Ai& f it(xi) < f it(x∗)) then
13: Accept the new solutions, and update ri using Equation (6), and update Ai

using Equation (5)
14: end if
15: end for
16: end while
17: Return x∗

2.2.1. Adaptive Strategy Based on Group Trend

For the standard BA, bat individuals fly freely in a wide area independently of each
other in the process of solving. Due to the lack of group awareness to adapt to the current
situation, it is difficult to balance the distance of each flight in the iterative process, and
it is easy to miss the optimal solution, which is not conducive to local optimization. For
example, it is assumed that the i-th bat is selected for local optimization at the global
optimization in the t-th iteration. For the (t+1)-th iteration, if its position update is still
carried out according to a large step size, it is easy to make it out of the optimal position,
which is not conducive to local optimization. Therefore, HSIBA introduces an adaptive
strategy based on group trend to change flight weight ω which can update the bat’s flight
weight ω according to the current search situation. To describe the group trend, Bt

i and Ot

are respectively defined as

Bt
i =

{
1 i f

(
f it(xt−1

i) < f it(xt
i)
)

0 others
(7)

where f it(·) denotes fitness operation.

Ot =

I
∑

i=1
Bt−1

i

I
(8)

When there are more bat individuals flying in the better direction in the population,
the value of Ot is larger. The adaptive flight weight ω can be calculated as

ω = ωmin + (ωmax −ωmin)Ot (9)

When there are more individuals flying in the favorable direction in the population,
the value of ω is larger, so that bats can adopt a larger velocity weight to expand the search
range and prevent the algorithm from falling into the local optimal solution; when most
individuals in the population are difficult to find a better solution, the value of ω is smaller
to avoid missing the optimal solution, which will effectively speed up the convergence
speed of the algorithm.

269

Mathematics 2022, 10, 4357

2.2.2. Introducing Multiple Flight Modes

To change the single flight mode such as Equation (3) adopted in the standard BA,
four flight modes are introduced in HSIBA. The four flight modes are adjusted by adaptive
velocity weights ω, and selected by loudness mutation factor βi (see Section 2.2.3) and
random number rand with uniform distribution of 0∼1.

(1). Adaptive weight bit flight mode
The position update Equation (3) in the standard BA is changed to Equation (10), and
the bat’s flying speed is adjusted by adaptive flight weight.

xt+1
i = xt

i + ω · vt+1
i (10)

When |βi| < 0.1 and rand < 0.4, the bats adopt the adaptive weight bit flight mode and
update their positions by using Equation (10).

(2). Position exchange variant flight mode
In the standard BA, all bats only take the optimal individual of the current population
as the flight direction, and there is no information exchange between bat individuals.
Therefore, in the HSIBA, position exchange variant flight is innovatively introduced
to enhance information exchange among bat individuals and obtain more information
about the feasible solution space. In position-exchange variant flight mode, the bats’
positions are updated as follows

xt+1
i = ω×

∣∣2× rand× x∗ − xt
I
∣∣× (βt

i + rand
)
, i = 1, (11)

xt+1
i = ω× | 2× rand × x∗ − xt+1

i−1 | ×
(

βt
i + rand

)
, i ≥ 2 (12)

The first bat performs a variant flight based on the I-th bat’s position of the t-th
iteration, and obtains the position of the (t+1)-th iteration through Equation (11), and
the i-th bat performs a variant flight based on the (i-1)-th bat’s position of the (t+1)-th
iteration, and obtains the position of the (t+1)-th iteration through Equation (12).
When |βi| ≥ 0.1 and rand < 0.6, the bats apply the position exchange variant flight
mode and update their positions by using Equations (11) and (2).

(3). Rotary flight mode
In [28], the African vulture’s rotating flight foraging model was proposed and sim-
ulated. Inspired by this model, the rotary flight mode is introduced to our HSIBA,
which makes the bats rotate around the optimal individual of the population to
expand the search range and improve the ability of jumping out the local optimal
solution. The rotation flight vectors are respectively expressed as

φ1 = x∗ ×
(

rand× xt
i

2π

)
× cos

(
xt

i
)

(13)

φ2 = x∗ ×
(

rand× xt
i

2π

)
× sin

(
xt

i
)

(14)

and the i-th bats’ position is updated as

xt+1
i = x∗ −ω · (φ1 + φ2) (15)

When |βi| ≥ 0.1 and rand ≥ 0.6, the bats employ the rotary flight mode and update
their positions by using Equation (15).

(4). Levy flight mode
In order to ensure that every bat can catch food in the process of predation, it is sure
that each bat does not fly alone. If there is no companion around the i-th bat, it adopts

270

Mathematics 2022, 10, 4357

the random walk scheme to update the step. The i-th bat can apply Levy flight [29]
mode, its position can be updated as

xt+1
i = x∗ −

∣∣x∗ − xt
i
∣∣×ω× Levy(d) (16)

where d is the dimension of the i-th bat’s position vector, and Levy function can be
calculated as

Levy(x) = 0.01× μ1 × ε

|μ2|
1
ψ

(17)

where μ1 and μ2 are random numbers on the interval of 0∼1, ψ is a constant, and ε
can be computed as

ε =

⎛⎝Γ(1 + ψ)× sin
(

πβ
2

)
Γ
(

1+ψ
2

)
× ψ× 2

ψ−1
2

⎞⎠
1
ψ

(18)

where Γ(x) = (x− 1)!
When |βi| < 0.1 and rand ≥ 0.4, the bats use Levy flight mode and update their
positions by applying Equation (16).

2.2.3. Loudness Mutation Flight Selection Strategy Based on Brownian Motion

This strategy is inspired by the physical phenomenon that the random motion of
particles decreases with the temperature reduction in Brownian motion. In the HSIBA,
the decreasing loudness A is understood as the decreasing temperature, and the loudness
mutation factor β is the intensity of random motion that decreases with the decrease of
temperature. During the t-th iteration, the loudness mutation factor of the i-th bat can be
expressed as

βt
i = At

i × (randn− 1) (19)

where randn is a random number that obeys a normal distribution with a mean of 0 and
a variance of 1. In the search process, the pulse loudness Ai gradually decreases, and the
loudness mutation factor βi dynamically converges to zero.

In the HSIBA, the flight mode employed by the i-th bat is decided by βi. When
|βi| ≥ 0.1, the algorithm is in the early stage of the search. The bat tends to fly with more
intense motion, and update its position by Equations (11), (12) and (15), which can achieve
faster convergence speed; When |βi| < 0.1, the algorithm is at the end of the search. The
bat tends to fly in a flight mode with small intensity and higher degree of randomness,
and update its position through Equations (10) and (16), which can improve the ability of
jumping out of the local optimal solution.

The improved bat algorithm fully takes into account the adjustment of the flight
mode of bats in different search stages, which effectively improves the shortage of single
flight mode used by standard BA in the optimization process. In order to conveniently
understand the advantages of the HSIBA, its pseudocode and optimization flow chart are
respectively shown in Algorithm 2 and Figure 1.

2.3. Algorithm Performance Verification

In order to verify the performance of HSIBA, sixteen frequently-used benchmark
functions are selected as test functions. The test functions are shown in Table 1, includ-
ing single-peak and multi-peak functions. At the same time, advanced African vulture
optimization algorithm (AVOA) [28], the wild horse optimizer (WHO) algorithm [30],
the arithmetic optimization algorithm (AOA) [31], hunter-prey optimization (HPO) algo-
rithm [32], enhanced Lévy flight bat algorithm (ELBA) [26] and standard BA are selected for
comparative analysis. The parameter settings of above algorithms and HSIBA are shown
in Table 2. The number of all algorithm populations tested is 30, the maximum number
of iterations is 100, and each test function runs 30 times independently, the test results are
shown in Tables 3 and 4, and the iteration diagram and total time for each algorithm are

271

Mathematics 2022, 10, 4357

shown in Figures 2 and 3 . (The algorithms have been tested and executed using the Matlab
9.0 (R2016a) on a laptop computer, which runs Windows 10 Enterprise 64-bit with an AMD
Ryzen 7 4800H, Radeon Graphics 2.90 GHz processor, and 16.00 GB RAM).

Algorithm 2 Pseudocode of HSIBA

Input: The objective function f it(x) and design variables
Output: Optimal solution of objective function

1: Initialize the bat population xi and velocity vi(i = 1, 2, ..., I)
2: while (stopping condition is not met) do
3: Calculate the fitness values of bat
4: Set x∗ as the position of best bat
5: for (each bat (xi)) do
6: Update the βi and ω using Equations (19) and (9)
7: Update speed of bat using Equation (2)
8: if ((|βi| ≥ 0.1)) then
9: if (rand < 0.6) then

10: Update the bat’s position using Equations (11) and (12)
11: else
12: Update the bat’s position using Equation (15)
13: end if
14: else
15: if (rand < 0.4) then
16: Update the bat’s position using Equation (10)
17: else
18: Update the bat’s position using Equation (16)
19: end if
20: end if
21: if (rand > ri) then
22: Select a new solution among the best solutions using Equation (4)
23: end if
24: if (rand < Ai& f it(xi) < f it(x∗)) then
25: Accept the new solutions and update riandAi by using Equations (6) and (5)
26: end if
27: end for
28: end while
29: Return x∗

As shown in Tables 3 and 4, the test results and the performance rank of seven algo-
rithms under 16 test functions are given. By comparing the test results in Tables 3 and 4,
it can be seen that the optimization performance of HSIBA is far better than standard BA
on single-peak and multi-peak test functions, and the HSIBA also has higher accuracy and
stability than other advanced optimization algorithms. Moreover, by comparing the test
results of all algorithms in 30 and 100 dimensions, the HSIBA has superior performance in
solving high-dimensional optimization problems. Therefore, HSIBA is highly capable of
maintaining balance in exploration and exploitation against large-scale issues.

In order to further compare the performance of different optimization algorithms, as
shown in Figure 2 the iterative curves of the five optimization algorithms under 8 test
functions are given. By the comparison of the five algorithm iterations curves, it can be
seen that the HSIBA achieves better results with a minimum number of iterations in all test
functions. Consequently, when solving the same problem, HSIBA can find a better solution
quickly, so as to save computing time and power. Meanwhile, it can be seen that the fitness
calculated by HSIBA decreases steadily with the increase of the number of iterations, which
can effectively avoid the abrupt change of the convergence speed and falling into the local
optimal value.

272

Mathematics 2022, 10, 4357

Figure 3 illustrates the computing time of seven algorithms. The results show that
HSIBA does not significantly increase the complexity of the operation, but can improve
the convergence speed and accuracy. The main reason is that the HSIBA adopts advanced
search strategies and a variety of flight modes for selection.

Figure 1. Optimization flow chart of HSIBA.

273

Mathematics 2022, 10, 4357

Table 1. Test functions.

Test Function Range Fmin

F1(x) = x2
1 + 106

d
∑

i=2
x2

i [−10, 10] 0

F2(x) =
d
∑

i=1
|xi|i+1 [−100, 100] 0

F3(x) =
d
∑

i=1
x2

i +

(
d
∑

i=1
0.5xi

)2

+

(
d
∑

i=1
0.5xi

)4

[−5, 100] 0

F4(x) =
d
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12, 5.12] 0

F5(x) =
d
∑

i=1

x2
i

4000 −
d

∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 0

F6(x) = sin2(πω1) +
d−1
∑

i=1
(ωi − 1)2[1 + 10sin2(πωi + 1)

]
+(ωd − 1)2[1 + sin2(2πωd)

]
ω1 = 1 + xi−1

4 , ∀i = 1, . . . , d [−10, 10] 0

F7(x) =
d
∑

i=1
x2

i [−100, 100] 0

F8(x) =
d
∑

i=1
|xi|+

d
∏
i=1
|xi| [−10, 10] 0

F9(x) =
d
∑

i=1

(
i

∑
j=1

xj

)2

[−100, 100] 0

F10(x) = maxi{|xi|, 1 ≤ i ≤ d} [−100, 100] 0

F11(x) =
d−1
∑

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

[−30, 30] 0

F12(x) =
d
∑

i=1
(|xi + 0.5|)2 [−100, 100] 0

F13(x) =
d
∑

i=1
ix4

i + random[0, 1) [−128, 128] 0

F14(x) = −20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

i

)
− exp

(
1
d

d
∑

i=1
cos 2πxi

)
+ 20 + e

[−32, 32] 0

F15(x) = π
d

{
10 sin(πy1) + (yd − 1)2

}
+π

d

d−1
∑

i=1
(y1 − 1)2[1 + 10sin2(πyi+1)

]
+

d
∑

i=1
U(xi, 10, 100, 4)yi

= 1 + xi+1
4 U(xi, a, k, m) =

⎧⎨⎩
k(xi − a)mxi > a
0− a < xi < a

k(−xi − a)mxi < −a

[−50, 50] 0

F16(x) = 0.1sin2(3πx1) + 0.1
d
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+0.1(xd − 1)2[1 + sin2(2πxd)

]
+

d
∑

i=1
U(xi, 5, 100, 4)

[−50, 50] 0

274

Mathematics 2022, 10, 4357

Table 2. Parameter settings of optimization algorithms for comparison and evaluation of the HSIBA.

Algorithm Parameter Value

ELBA [26]

Initial value of loudness
Final value of loudness

Initial value of pulse rate
Final value of pulse rate
Initial value of frequency
Final value of frequency

flight exponent (beta)

1
0
0
1
0
5

1.7

AVOA [28]

L1
L2
W
P1
P2
P3

0.8
0.8
2.5
0.6
0.4
0.6

AOA [31] α
μ

5
0.5

HPO [32] C
β

∈ [1, 0.02]
0.1

WHO [30]
Crossover percentage

Stallions percentage (number of groups)
Crossover

PC = 0.13
PS = 0.2

Mean

BA [27]

A0
α
r0
γ

fmin
fmax

0.7
0.8
0

0.9
−2
2

HSIBA

Fixed frequency
Fixed flight weight

Initial pulse frequency
Initial pulse loudness

fmin = −2, fmax = 2
ωmin = 0.2, ωmax = 0.8
r0

i = 0, i ∈ {1, 2, · · ·, I}
A0

i = 2, i ∈ {1, 2, · · ·, I}

275

Mathematics 2022, 10, 4357

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

be
st

 fi
tn

es
s

×109 F1

HSIBA
AVOA
HPO
BA
ELBA

(a)

0 10 20 30 40 50

iteration

0

100

200

300

400

500

be
st

 fi
tn

es
s

F4

HSIBA
AVOA
HPO
BA
ELBA

(b)

0 10 20 30 40 50

iteration

0

0.5

1

1.5

2

2.5

be
st

 fi
tn

es
s

F5

HSIBA
AVOA
HPO
BA
ELBA

(c)

0 10 20 30 40 50

iteration

0

50

100

150

200

250

300

be
st

 fi
tn

es
s

F6

HSIBA
AVOA
HPO
BA
ELBA

(d)

0 10 20 30 40 50

iteration

0

0.5

1

1.5

2

be
st

 fi
tn

es
s

×105 F9

HSIBA
AVOA
HPO
BA
ELBA

(e)

0 10 20 30 40 50

iteration

0

20

40

60

80

100

be
st

 fi
tn

es
s

F10

HSIBA
AVOA
HPO
BA
ELBA

(f)

0 10 20 30 40 50

iteration

0

0.5

1

1.5

2

2.5

3

3.5

be
st

 fi
tn

es
s

×108 F11

HSIBA
AVOA
HPO
BA
ELBA

(g)

0 10 20 30 40 50

iteration

0

1

2

3

4

5

6

7

8

be
st

 fi
tn

es
s

×104 F12

HSIBA
AVOA
HPO
BA
ELBA

(h)

Figure 2. Iteration diagram of different optimization algorithms. (a) F1. (b) F4. (c) F5. (d) F6. (e) F9.
(f) F10. (g) F11. (h) F12.

276

Mathematics 2022, 10, 4357

Table 3. Test results (d = 30).

Function AVOA AOA WHO BA HPO ELBA HSIBA Rank

F1 Mean 3.094× 10−44 5.546× 10−104 2.829× 10−1 1.469× 107 2.621× 10−26 2.023× 107 0 1
Variance 1.274× 10−86 9.229× 10−206 9.759× 10−1 1.539× 1014 8.292× 10−51 5.532× 1013 0

F2 Mean 4.896× 10−124 0 6.570× 10−56 2.312× 10−6 4.389× 10−60 3.665× 10−25 0 1
Variance 7.191× 10−246 0 1.279× 10−109 1.380× 10−11 5.447× 10−118 2.039× 10−48 0

F3 Mean 1.157× 10−16 4.465× 102 4.727× 100 4.884× 102 4.864× 10−18 2.713× 102 0 1
Variance 3.996× 10−31 5.162× 103 6.121× 102 4.800× 104 4.537× 10−34 1.289× 104 0

F4 Mean 0 0 1.253× 100 1.840× 102 0 1.584× 102 0 1
Variance 0 0 1.276× 101 2.235× 100 0 6.889× 102 0

F5 Mean 0 0 0 1.068× 10−4 0 2.009× 10−15 0 1
Variance 0 0 0 2.204× 10−8 0 7.976× 10−29 0

F6 Mean 3.200 × 10−3 2.556× 100 4.255× 100 4.276× 101 1.065× 100 1.070× 101 7.836× 10−1
2

Variance 2.669× 10−4 1.994 × 10−4 1.872× 101 2.316× 102 7.030× 10−2 2.577× 101 1.292× 10−1

F7 Mean 2.986× 10−47 4.810× 10−5 2.070× 10−5 3.483× 104 2.486× 10−31 2.307× 103 0 1
Variance 2.670× 10−92 6.248× 10−8 2.810× 10−9 7.286× 107 9.799× 10−61 4.206× 1035 0

F8 Mean 1.883× 10−22 6.529× 10−73 2.000× 10−3 4.204× 1010 1.108× 10−17 2.268× 101 2.005 × 10−171

1
Variance 1.049× 10−42 1.278× 10−143 5.591× 10−5 2.069× 1022 3.326× 10−34 2.993× 101 0

F9 Mean 3.720× 10−29 2.900× 10−2 1.571× 10−1 8.840× 104 3.332× 10−24 3.214× 103 1.397 × 10−307

1
Variance 1.534× 10−56 1.600× 10−3 1.688× 10−1 1.193× 109 2.478× 10−46 1.438× 106 0

F10 Mean 1.526× 10−24 3.420× 10−2 2.180× 10−2 7.245× 101 9.123× 10−15 1.660× 101 2.279 × 10−163

1
Variance 4.126× 10−47 3.059× 10−4 5.750× 10−4 5.554× 101 2.892× 10−28 6.801× 100 0

F11 Mean 9.498 × 10−1 2.870× 101 1.513× 102 7.802× 107 2.687× 101 3.491× 105 2.867× 101
3

Variance 2.631× 101 5.270× 10−2 2.747× 105 6.637× 1014 5.869× 10−1 5.022× 1010 7.900 × 10−3

F12 Mean 4.150 × 10−2 4.280× 100 4.792× 100 3.580× 104 6.929× 10−1 2.257× 103 2.147× 10−1
2

Variance 7.500 × 10−3 5.710× 10−2 1.925× 101 1.243× 108 9.330× 10−2 26.778× 105 1.470× 10−2

F13 Mean 8.072× 10−4 2.637 × 10−4 1.200× 10−2 4.074× 101 2.200× 10−3 3.343× 10−1 4.149× 10−4
2

Variance 4.622× 10−7 3.746 × 10−8 7.709× 10−5 4.146× 102 1.197× 10−5 3.324× 10−2 8.395× 10−8

F14 Mean 8.881 × 10−16 1.006× 10−15 7.587× 10−4 1.936× 101 1.125× 10−15 1.045× 101 8.881 × 10−16 1
Variance 0 4.207× 10−31 1.346× 10−6 4.988× 10−1 8.124× 10−31 1.131× 100 0

F15 Mean 1.700 × 10−3 7.790× 10−1 6.705× 10−1 1.333× 108 1.730× 10−2 2.145× 101 1.020× 10−2
2

Variance 1.3894 × 10−5 3.100× 10−3 4.802× 10−1 7.988× 1015 1.114× 10−4 2.754× 102 4.685× 10−5

F16 Mean 3.000 × 10−3 2.899× 100 1.744× 100 3.050× 108 1.039× 100 5.332× 104 2.730× 10−1
2

Variance 4.917 × 10−5 7.200× 10−3 3.261× 10−1 2.202× 1016 1.484× 10−1 6.837× 109 3.080× 10−2

0

5

10

15

20

25

30

35

tim
e/

(s
)

AVOA

AOA

W
HO

HPO BA

ELB
A

HSIB
A

Figure 3. Computing time of different algorithms.

277

Mathematics 2022, 10, 4357

Table 4. Test results (d = 100).

Function AVOA AOA WHO BA HPO ELBA HSIBA Rank

F1 Mean 6.165× 10−41 5.200× 10−3 5.610× 101 1.494× 109 5.112× 10−24 1.270× 108 0 1
Variance 1.130× 10−79 7.958× 10−4 2.828× 104 1.165× 1017 7.688× 10−46 2.551× 1014 0

F2 Mean 4.361× 10−117 0 3.140× 10−58 3.857× 10−1 1.086× 10−57 3.660× 10−26 0 1
Variance 5.707× 10−232 0 3.396× 10−114 3.771× 10−1 3.457× 10−113 8.986× 10−51 0

F3 Mean 6.732× 102 2.536× 103 8.348× 102 3.803× 103 2.400× 10−3 5.001× 103 0 1
Variance 5.815× 105 9.138× 104 1.945× 105 3.877× 105 1.001× 10−4 5.391× 106 0

F4 Mean 0 6.276× 10−15 4.129× 100 1.025× 103 0 7.706× 102 0 1
Variance 0 8.229× 10−28 4.756× 102 3.352× 104 0 2.110× 103 0

F5 Mean 0 0 0 4.256× 10−5 0 1.032× 10−15 0 1
Variance 0 0 0 4.949× 10−9 0 2.520× 10−29 0

F6 Mean 1.820 × 10−2 8.923× 100 5.580× 101 2.068× 102 6.795× 100 7.165× 101 3.759× 100
2

Variance 4.000× 10−3 7.433 × 10−5 1.570× 103 5.246× 103 2.441× 10−1 2.543× 102 5.136× 10−1

F7 Mean 2.405× 10−41 4.720× 10−2 3.900× 10−3 1.493× 105 1.572× 10−29 1.259× 104 0 1
Variance 1.735× 10−80 2.061× 10−4 4.630× 10−5 1.108× 109 2.915× 10−57 3.178× 106 0

F8 Mean 4.881× 10−26 5.178× 10−8 4.995× 101 2.953× 1045 1.525× 10−15 9.613× 101 2.084 × 10−174

1
Variance 5.429× 10−50 8.042× 10−14 1.034× 104 2.612× 1092 4.483× 10−29 7.017× 101 0

F9 Mean 1.706× 10−18 1.053× 100 4.046× 101 9.128× 105 3.201× 10−22 4.354× 104 5.542 × 10−294

1
Variance 7.407× 10−35 2.796× 10−1 3.198× 103 1.457× 1011 2.250× 106−42 1.310× 108 0

F10 Mean 1.534× 10−25 1.040× 10−1 1.554× 10−1 8.490× 101 1.326× 10−13 2.615× 101 8.600 × 10−168

1
Variance 6.484× 10−49 1.993× 10−4 3.410× 10−2 4.554× 101 6.859× 10−26 8.110× 100 0

F11 Mean 2.301 × 101 9.893× 101 4.541× 102 4.162× 108 9.830× 101 3.315× 106 9.811× 101
2

Variance 1.773× 103 3.100 × 10−3 3.781× 106 3.482× 1016 2.603× 10−1 8.023× 1011 3.200× 10−3

F12 Mean 7.231 × 10−1 1.995× 101 2.409× 101 1.496× 105 1.246× 101 1.357× 104 9.716× 10−1
2

Variance 2.355× 100 3.027× 10−1 2.334× 101 1.401× 109 9.962× 10−1 4.223× 106 1.600 × 10−1

F13 Mean 8.402× 10−4 3.776 × 10−4 1.500× 10−2 6.539× 102 1.700× 10−3 5.745× 100 7.208× 10−4
2

Variance 1.105× 10−6 1.392 × 10−7 1.116× 10−4 8.228× 104 3.663× 10−6 2.760× 100 6.438× 10−7

F14 Mean 8.881 × 10−16 1.990× 10−3 4.900× 10−3 1.989× 101 2.190× 10−15 1.205× 101 8.881 × 10−16

1
Variance 0 2.567× 10−6 5.982× 10−5 1.994× 10−1 8.254× 10−30 4.395× 10−1 0

F15 Mean 1.600 × 10−3 1.039× 100 1.152× 100 7.267× 108 3.030× 10−1 2.159× 104 8.800× 10−3
2

Variance 2.876 × 10−5 8.413× 10−4 2.842× 10−1 1.913× 1017 4.400× 10−3 1.165× 109 3.646× 10−5

F16 Mean 4.600 × 10−2 9.998× 100 1.295× 101 1.700× 109 9.254× 100 1.731× 106 7.374× 10−1
2

Variance 3.250× 10−2 1.000 × 10−3 1.098× 101 5.370× 1017 1.749× 10−1 1.743× 1012 3.240× 10−1

3. Throughput Optimization for EH-NOMA-CRN

3.1. System Model

As shown in Figure 4, we consider an underlay PB-assisted EH-NOMA-CRN, where
primary network (PN) includes a set of N PR nodes, Qn, n ∈ {1, 2, · · ·, N}, and SN consists
of a secondary source node S that employs the power domain NOMA technique to com-
municate with two secondary destination nodes D1 and D2 with the help of a secondary
decode-and-forward (DF) relay node R. Similar to [11,12,24], It is assumed that the inter-
ference from PN to SN is neglected. It is also assumed that all nodes except the PB node
W in our system model are equipped with a single antenna, and all SN nodes working in
half-duplex mode only use the energy harvested from RF signals of W installed M antennas.
All wireless channels are assumed to undergo quasi-static independent Rayleigh flat fading
where each channel coefficient keeps constant during a frame but varies independently
between different frames.

Let hj,k denote the fading channel coefficient corresponding to the link from node j
to k, where j ∈ {S, R, W}, k ∈ {Qn, R, D1, D2}, and j �= k. Accordingly, The channel power

gain
∣∣∣hj,k

∣∣∣2 is exponentially distributed with expectation value 1
λj,k

; for example, λj,k = dξ
j,k,

where dj,k is the distance between node j and k, and ξ is the path loss factor. Moreover, it is

assumed that all Dn are closely located in one center point. Therefore,
∣∣hS,Qn

∣∣2 and
∣∣hR,Qn

∣∣2
are independent identically distributed random variables, respectively, i.e., λS,Qn = λS,Q,
and λR,Qn = λR,Q.

Similar to [33], the three-phase time division broadcasting protocol with precise syn-
chronization is adopted in our system model. Node l, l ∈ {S, R} simultaneously harvest
energy from RF signals of W for a duration of αT at the beginning of every frame, where

278

Mathematics 2022, 10, 4357

T is the period of one frame, and 0 < α < 1 is EH ratio. During the EH phase, the energy
harvested by node l can be written as

El=
M

∑
m=1

η
(

Pt
∣∣hm,l

∣∣2)αT (20)

where 0 < η < 1 is the energy conversion efficiency, Pt is the transmit power of single W’s
antenna, and

∣∣hm,l
∣∣2 is the channel power gain of link from the W’s m-th antenna to node l,

m ∈ {1, 2, · · ·, M}, λm,l = λW,l , respectively. Subsequently, the phase (1− α)T is equally
divided into two time slots for the two-hop data transmission of SN. During the phase of
data transmission, the RF-EH circuit of node l is turned off, and the transceivers of R, D1
and D2 are turned on. We assume that regardless of energy harvested by node l in each
frame, they can be stored in its configured storage device (e.g., a supercapacitor) and can
be immediately applied for subsequent data transmission. Furthermore, the storage device
of node l lacks energy management function and has obvious leakage of electricity, which
causes the node l’s residual energy at the end of each frame to be completely leaked [24,33].

S R

W

D1

D2

Qn

Q1

QN

Figure 4. Network system model.

In underlay paradigm, the instantaneous transmit power of node l must be strictly
constrained such that the interference induced by node l remains below the threshold PI,
i.e., the peak interference power that Qn can tolerate. It is also assumed that the circuit
energy consumption of node l is ignored, i.e., the energy harvested by node l is only used
for data transmission. Consequently, the transmit power of node i can be set as

Pl = min
(

2El
(1− α)T

,
PI
Yl

)
= min

(
ρPtZl ,

PI
Yl

)
(21)

where ρ = 2ηα
1−α ,Zl =

M
∑

m=1

∣∣hm,l
∣∣2, and Yl = max

n=1,2,···,N

{∣∣hl,n
∣∣2}

Let S1(t) and S2(t) respectively denote the data signals transmitted to D1 and D2 by S
at time t. S produces the NOMA signal Ss(t) by allocating distinct power coefficients a1
and a2 for D1 and D2 respectively, i.e., the power Psa1and Psa2 are respectively allocated to
D1 and D2 at S. Moreover, it is assumed that D1 is near node and D2 is far node. Due to
the principle that lower power is allocated to near node D1 at S, a2 > a1 and a1 + a2 = 1.
During the first time slot of every frame, R receives the signal S(t) transmitted by S. Since
the far node D2’s data S2(t) with large power are firstly decoded and the near node D1 ’s
data S1(t) are secondly decoded using successfully perfect SIC [22] by R, the corresponding
signal-to-noise ratio (SNR) to S2(t) and S1(t) at R can be respectively given by

γR,S2 =
a2PSX1

a1PSX1 + σ2 (22)

279

Mathematics 2022, 10, 4357

and
γR,S1 =

a1PSX1

σ2 (23)

where σ2 is the variance of additive complex white Gaussian noise, and X1 = |hS,R|2.
During the second time slot of every frame, R adopts superposition coding to make

the new NOMA signal SR(t) and send it to D1 and D2. Let b1 and b2 be the power allocation
coefficients at R for D1 and D2, respectively. Since D1 is closer to R than D2, higher power is
allocated to D2’s data in SR(t) at R as well, i.e., b2 > b1 and b1 + b2 = 1. Now the far node
D2 decodes its data S2(t) from the signals forwarded by R, and the corresponding SNR for
S2(t) at D2 can be expressed as

γD2,S2 =
b2PRX2

b1PRX2 + σ2 (24)

where X2 =
∣∣hR,D2

∣∣2
At the near node D1, the far node D2’s data S2(t) with larger power are first decoded

and later D1’s data S1(t) are decoded by achieving successfully perfect SIC [22]. Hence, the
corresponding SINRs for S2(t) and S1(t) at D1 can be respectively given as

γD1,S2 =
b2PRX3

b1PRX3 + σ2 (25)

and
γD1,S1 =

b1PRX3

σ2 (26)

where X3 =
∣∣hR,D1

∣∣2
3.2. Outage Probability Analysis of SN

In this section, the outage probability experienced by D1 and D2 will be studied. Let
R1 and R2 respectively denote the target rates for D1 and D2. Since two consecutive time
slots are needed to realize the communication from S to D1 and D2 in every frame, the
achieved rates are halved. Hence, the target SINRs for successful decoding of S1(t) and

S2(t) are respectively expressed as γ1 = 2
2R1
1−α − 1 and γ2 = 2

2R2
1−α − 1.

3.2.1. OP for D1

To achieve the reliable transmission of S1(t) from S to D1, both S1(t) and S2(t) should
be successfully decoded by R and D1. Accordingly, the OP for D1 is defined as

Pout,1 = 1− Pr
{

γR,S2 ≥ γ2, γR,S1 ≥ γ1, γD1,S2 ≥ γ2, γD1,S1 ≥ γ1
}

(27)

Proposition 1. Assuming 0 < a1 < 1
1+γ2

and 0 < b1 < 1
1+γ2

, OP expression for D1 is calculated
as

Pout,1 = 1−
(

N
∑

n=0

(
N
n

)
(−1)n 2λS,R

Γ(M)
C1

M
2 C2

M
2 −1KM

(
2
√

C1C2
))

×
(

N
∑

n=0

(
N
n

)
(−1)n 2λR,D1

Γ(M)
C3

M
2 C4

M
2 −1KM

(
2
√

C3C4
)) (28)

where Γ(·) and Kϑ(·) are respectively gamma function and the modified Bessel function of second
kind with order ϑ, and C1, C2, C3, and C4 are defined in Appendix A.

Proof. See Appendix A.

280

Mathematics 2022, 10, 4357

3.2.2. OP for D2

For completing successful transmission of S2(t) from S to D2, at first both S1(t) and
S2(t) need to be reliably decoded by R; subsequently, S2(t) in SR(t) transmitted by R should
be successfully decoded at D2. Accordingly, OP for D2 is determined by

Pout,2 = 1− Pr
{

γR,S2 ≥ γ2, γR,S1 ≥ γ1, γD2,S2 ≥ γ2
}

(29)

Proposition 2. Assuming 0 < a1 < 1
1+γ2

and 0 < b1 < 1
1+γ2

, OP expression for D2 is given by

Pout,2 = 1−
(

N
∑

n=0

(
N
n

)
(−1)n 2λS,R

Γ(M)
C1

M
2 C2

M
2 −1KM

(
2
√

C1C2
))

×
(

N
∑

n=0

(
N
n

)
(−1)n 2λR,D2

Γ(M)
C5

M
2 C6

M
2 −1KM

(
2
√

C5C6
)) (30)

where C5 and C6 are defined in Appendix B.

Proof. See Appendix B.

3.3. Analysis and Optimization of SN’s Throughput

In this section, to achieve the maximization of SN’s throughput, the jointly optimal EH
ratio (α∗) and power allocation factors at S

(
a∗1, a∗2

)
and R

(
b∗1 , b∗2

)
have to be determined.

Considering delay-limited transmission mode, where the fixed target rates at D1 and D2
are respectively R1 and R2, the throughput of SN is expressed as [14]

τ = R1(1− Pout,1) + R2(1− Pout,2) (31)

where Pout1 is the outage probability of SN1 and Pout2 is the outage probability of SN2.
For the purpose of maximize the throughput of SN, the resource allocation problem

with respect to EH ratio α and power allocation factors a1,a2,b1 and b2 can be formulated as

max
(α,a1,a2,b1,b2)=(α∗,a∗

1 ,a∗
2 ,b∗1 ,b∗2)

τ

s.t.a1 + a2 = 1, b1 + b2 = 1

0 <α < 1,a1 < a2, b1 < b2

⎫⎪⎪⎬⎪⎪⎭ (32)

To our best knowledge, the convexity of the objective function is hard to be estimated
due to the complex expression of SN’s throughput. Consequently, the throughput opti-
mization problem is difficult to be settled in general methods, such as convex optimization.
For resolving the SN’s throughput optimization problem, a meta-heuristic algorithm based
on HSIBA is applied in our paper.

4. Optimization Results and Performance Analysis

In this section, to maximize the throughput of SN, we apply the HSIBA to optimize
the EH ratio and power allocation factors of the EH-NOMA-CRN. Without any loss of
generality, the network system environment follows by the system model described in
Section 3. The nodes S, R, W, D1, D2 and Qn are located at (−1, 0), (0, 0), (0, −1), (0.5, 0.5),
(1, 0) and (1, 1), respectively. Unless otherwise stated, the key simulation parameters are
listed in Table 5.

In Figures 5 and 6, we plot unoptimized SN’s throughput and the optimized SN’s
throughput by the proposed HSIBA as a function of Pt(PI) with different N(R1 and R2),
respectively. Moreover, we also compare the HSIBA with the exhaustive searching algo-
rithm. The results show that: (1) the throughput increases with the increase of Pt(PI) and
tends to be saturated gradually. That is because SN nodes’ transmission power increases
with the increase of Pt(PI), which leads to the throughput raise. Nevertheless, due to the
limitation of PI(Pt), SN nodes’ transmission power, OP and throughput of the SN all tend to

281

Mathematics 2022, 10, 4357

saturation; and (2) In Figure 5, for given Pt, the probability that interference channel obtains
higher power gain increases with increase of N, which leads to throughput increasing; and
(3) In Figure 6, for given PI, different values of R1 and R2 correspond to different SN’s
throughput; and (4) From Figures 5 and 6, it is distinctly observed that the optimized
throughput values are significantly higher than those unoptimized values either for given
Pt or PI; and (5) It also can be clearly observed that the optimal throughput curves by pro-
posed HSIBA extremely approximate the optimal curves by the greedy search algorithm.
However, the latter has to search the optimal solution in a three-dimensional continuous
space generated by α, a1 and b1, which results in a much higher computational complexity
than the former.

Table 5. Simulation parameters and values.

Description Value

Number of node Qn N = 5
Number of node W’s antennas M = 3

Peak interference power at node Qn PI = 10 dB
Single antenna’s transmission power of node W Pt = 40 dB

Noise power σ2 = 1
Energy conversion efficiency η = 0.8

Path loss factor ξ = 2.5
Energy harvesting ratio α = 0.5

Power allocation factors of node S a1 = 0.17, a2 = 0.83
Power allocation factors of node R b1 = 0.23, b2 = 0.77

The target rate of D1 R1 = 0.3 bit/s/Hz
The target rate of D2 R2 = 0.5 bit/s/Hz

Maximum number of iterations TM = 100
Bat population I = 30

Algorithmic dimension d = 3

0 10 20 30 40 50
P

t
/dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
he

 th
ro

ug
hp

ut
 o

f
SN

Unoptimized (N= 1)
Optimized (N= 1)
Unoptimized (N= 5)
Optimized (N= 5)
Greedy search (N= 1)
Greedy search (N= 5)

Figure 5. Throughput versus Pt for various N.

Figure 7 shows the relationship between optimal SN’s throughput value search of five
different optimization algorithms and the number of iteration t. It can be observed that:
(1) The four kinds of optimization algorithms except AOA can all effectively optimize the
proposed EH-NOMA-CRN and successively search the optimal SN’s throughput value; (2)
For HSIBA, HPO, AOVA, ELBA and standard BA, they need 8, 21, 31, 33 and 42 iterations

282

Mathematics 2022, 10, 4357

to converge, respectively. Thus it can be seen that the HSIBA has better convergence speed
and higher stability.

0 10 20 30 40 50

P
I
/dB

0

0.1

0.2

0.3

0.4

T
he

 th
ro

ug
hp

ut
 o

f
SN

Unoptimized (R
1
= 0.3,R

2
= 0.5)

Optimized (R
1
= 0.3,R

2
= 0.5)

Unoptimized (R
1
= 0.5,R

2
= 0.3)

Optimized (R
1
= 0.5,R

2
= 0.3)

Greedy search (R
1
= 0.3,R

2
= 0.5)

Greedy search (R
1
= 0.5,R

2
= 0.3)

Figure 6. Throughput versus PI for various R1 and R2.

0 20 40 60 80 100

t

0.05

0.1

0.15

0.2

0.25

0.3

T
he

 th
ro

ug
hp

ut
 o

f S
N

HSIBA
AOVA
BA
AOA
HPO
ELBA
Optimal value

Figure 7. Optimal throughput search versus t.

5. Conclusions

In this paper, we propose a novel HSIBA with adaptive strategy and multiple flight
modes selection, and respectively derive the closed-form solutions of SN’s OP and through-
put. On the base of the throughput analysis, we further formulate the throughput maxima-
tion problem with regard to EH ratio and power allocation factors. In addition, due to the
complexity of throughput solution, we employ the HSIBA to jointly optimize EH ratio and
power allocation factors to maximize the SN’s throughput. Through comparing with other
advanced meta-heuristic algorithms, we confirm the correctness and effectiveness of pro-
posed HSIBA by a large number of benchmark functions’ test and numerical results. Based
on the network parameters setting and grasp of channel state information, the proposed

283

Mathematics 2022, 10, 4357

HSIBA can achieve joint optimization to EH-NOMA-CRN based on three parameters with
faster convergence speed and higher stability.

Author Contributions: Conceptualization: Y.L. (Yi Luo) and C.W.; experimentation and data analysis:
N.H. and L.M.; writing—original draft preparation: Y.L. (Yi Luo), N.H. and C.W.; writing—review
and editing: C.W., Y.L. (Yi Leng), N.H. and J.T.; funding acquisition: Y.L. (Yi Leng), C.W. and N.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by Airforce of People’s Liberation Army, Government
of China under grant No. PGGC-2021-003, the Hunan Provincial Science and Technology Project
Foundation under Grant 2018TP1018, and Hunan Normal University Undergraduates Innovative
Experiment Project and Entrepreneurship Program (Grant No. 2022180 and No. 2022183).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this Appendix A, we offer a proof of Proposition 1. To simplify the derivation pro-
cess, we firstly provide the probability density function (PDF) and cumulative distribution
function (CDF) of Yl , Zl , and Ul = Pl

/
σ2 .

Note that Yl is the maximum of N independent exponential random variables (RVs)
with the same expectation value 1

/
λW,l , and Zl is the sum of M independent exponential

RVs with the same expectation value 1
/

λl,Q . Therefore, the CDF and PDF of Yl and Zl can
be respectively computed as

FYl (yl) =
(

1− e−λl,Qyl
)N

=
N

∑
n=0

(
N
n

)
(−1)ne−nλl,Qyl (A1)

fYl (yl) = Nλl,Q

N−1

∑
n=0

(
N − 1
n

)
(−1)ne−(n+1)λl,Qyl (A2)

FZl (zl) = 1− Γ(M, zlλW,l)

Γ(M)
(A3)

and

fZl (zl) =
λM

W,l
zM−1

l e−λW,l zl

Γ(M)
(A4)

where Γ(.) is the upper incomplete gamma function.
Subsequently, we can calculate the CDF of Ul as follows

FUl (ul) = 1− Pr
{

Zl >
ulσ

2

ρPt

}
Pr
{

Yl <
PI

ulσ
2

}
= 1−

N
∑

n=0

(
N
n

)
(−1)n

Γ
(

M,
λW,l ul σ2

ρPt

)
Γ(M)

e
− nλl,QPI

ul σ2
(A5)

Then, Equation (27) can be reformulated as

Pout,1 = 1− Pr
{

a2USX1

a1USX1 + 1
≥ γ2, a1USX1 ≥ γ1

}
︸ ︷︷ ︸

A00

Pr
{

b2URX3

b1URX3 + 1
≥ γ2, b1URX3 ≥ γ1

}
︸ ︷︷ ︸

A01

(A6)

284

Mathematics 2022, 10, 4357

By conditioning A00 in Equation (A6) on X1 and taking the expected value of the
results over the distribution of X1, we can obtain

A00 = Pr{USX1 ≥ H | X1 = x1}

= 1−
∫ ∞

0
FUS

(
H
x1

)
λS,Re−λS,Rx1 dx1

(A7)

where H = max
(

γ2
a2−a1γ2

, γ1
a1

)
Applying Equation (6.453) in [34], A00 can be expressed as

A00 =
N

∑
n=0

(
N
n

)
(−1)n 2λS,R

Γ(M)
C1

M
2 C2

M
2 −1KM

(
2
√

C1C2

)
(A8)

where C1 =
λW,S Hσ2

ρPt
and C2 =

nλS,QPI
Hσ2 + λS,R.

In the same manner, the term A01 in Equation (A10) can be obtained as

A01 =
N

∑
n=0

(
N
n

)
(−1)n 2λR,D1

Γ(M)
C3

M
2 C4

M
2 −1KM

(
2
√

C3C4

)
(A9)

where C3 =
λW,RGσ2

ρPt
, C4 =

nλR,QPI
Gσ2 + λR,D1 , and G = max

(
γ2

b2−b1γ2
, γ1

b1

)
The OP for D1 can be calculated by applying the results obtained from Equations (A8)

and (A9).

Appendix B

In this Appendix B, we provide a proof of Proposition 2. Equation (29) can be rewritten
as follows

Pout,2 = 1− Pr
{

γR,S2 ≥ γ2, γR,S1 ≥ γ1
}︸ ︷︷ ︸

A00

Pr
{

γD2,S2 ≥ γ2
}︸ ︷︷ ︸

B00

(A10)

The term A00 of Equation (A10) has been calculated in Appendix A, and the term B00
of Equation (A10) can be computed as

B00 = 1−
∫ ∞

0
FUR

(
V
X2

)
λR,D2 e−λR,D2 x2 dx2 (A11)

where V = γ2
b2−b1γ2

. Applying Equation (6.453) in [34], B00 can be presented as

B00 =
N

∑
n=0

(
N
n

)
(−1)n 2λR,D2

Γ(M)
C5

M
2 C6

M
2 −1KM

(
2
√

C5C6

)
(A12)

where C5 =
λW,RVσ2

ρPt
and C6 =

nλR,QPI
Vσ2 + λR,D2 .

The OP for D2 can be calculated by applying the results obtained from Equations (A8)
and (A12).

References

1. Ding, Z.; Lei, X.; Karagiannidis, G.; Schober, R.; Yuan, J.; Bhargava, V. A survey on non-orthogonal multiple access for 5G
networks: Research challenges and future trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2197. [CrossRef]

2. Liu, Y.; Zhang, S.; Mu, X.; Ding, Z.; Schober, R.; Al-Dhahir, N.; Hossain, K.; Shen, X. Evolution of NOMA toward next generation
multiple access (NGMA) for 6G. IEEE J. Sel. Areas Commun. 2022, 40, 1037–1071. [CrossRef]

3. Shahab, M.B.; Abbas, R.; Shirvanimoghaddam, M.; Johnson, S.J. Grant-free non-orthogonal multiple access for IoT: A survey.
IEEE Commun. Surv. Tut. 2020, 22, 1805–1838. [CrossRef]

4. Pogaku, A.C.; Do, D.-T.; Lee, B.M.; Nguyen, N.D. UAV-assisted RIS for future wireless communications: A survey on optimization
and performance analysis. IEEE Access 2022, 10, 16320–16336. [CrossRef]

285

Mathematics 2022, 10, 4357

5. Cotton, S.L.; Scanlon, W.G.; Madahar, B.K. Millimeter-wave soldier-to-soldier communications for covert battlefield operations.
IEEE Commun. Mag. 2009, 47, 72–81. [CrossRef]

6. Do, D.-T.; Le, A.-T.; Liu, Y.; Jamalipour, A. User Grouping and Energy Harvesting in UAV-NOMA System With AF/DF Relaying.
IEEE Trans. Veh. Technol. 2021, 70, 11855–11868. [CrossRef]

7. Mirbolouk, S.; Valizadeh, M.; Amirani, M.C.; Ali, S. Relay Selection and Power Allocation for Energy Efficiency Maximization in
Hybrid Satellite-UAV Networks with CoMP-NOMA Transmission. IEEE Trans. Veh. Technol. 2022, 71, 5087–5100. [CrossRef]

8. Song, J.; Lu, Z.; Xiao, Z.; Li, B.; Sun, G. Optimal order of time-domain adaptive filter for anti-jamming navigation receiver. Remote
Sens. 2022, 14, 48. [CrossRef]

9. Kilzi, A.; Farah, J.; Nour C.A.; Douillard, C. Mutual successive interference cancellation strategies in NOMA for enhancing the
spectral efficiency of CoMP systems. IEEE Trans. Commun. 2020, 68, 1213–1226. [CrossRef]

10. Tang, R.; Cheng, J.; Cao, Z. Energy-efficient power allocation for cooperative NOMA systems with IBFD-enabled two-way
cognitive transmission. IEEE Commun. Lett. 2019, 23, 1101–1104. [CrossRef]

11. Bariah, L.; Muhaidat, S.; Al-Dweik A. Error performance of NOMA-based cognitive radio networks with partial relay selection
and interference power constraints. IEEE Trans. Commun. 2020, 68, 765–777. [CrossRef]

12. Garcia, C.E.; Camana, M.R.; Koo, I. Relay selection and power allocation for secrecy sum rate maximization in underlying
cognitive radio with cooperative relaying NOMA. Neurocomputing 2021, 452, 756–767. [CrossRef]

13. Ali, Z.; Sidhu, G.A.S.; Gao, F.; Jiang, J.; Wang, X. Deep learning based power optimizing for NOMA based relay aided D2D
transmissions. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 917–928. [CrossRef]

14. Aswathi, V.; Babu, A.V. Performance analysis of NOMA-based underlay cognitive radio networks with partial relay selection.
IEEE Trans. Veh. Technol. 2021, 70, 4615–4630.

15. Nguyen, B. V.; Vu Q.-D.; Kim, K. Analysis and optimization for weighted sum rate in energy harvesting cooperative NOMA
systems. IEEE Trans. Veh. Technol. 2018, 67, 12379–12383. [CrossRef]

16. Rauniyar, A.; Engelstad, P.E.; sterb, O.N. Performance analysis of RF energy harvesting and information transmission based on
NOMA with interfering signal for IoT relay. IEEE Sens. J. 2019, 19, 7668–7682. [CrossRef]

17. Li, T.; Zhang, H.; Zhou, X; Yuan, D. NOMA-enabled layered video multicast in wireless-powered relay systems. IEEE Commun.
Lett. 2019, 23, 2118–2121. [CrossRef]

18. Aswathi, V.; Babu, A.V. Outage and throughput analysis of full-duplex cooperative NOMA system with energy harvesting. IEEE
Trans. Veh. Technol. 2021, 70, 11648–11664. [CrossRef]

19. Vu, T.-H.; Kim, S. Performance evaluation of power-beacon-assisted wire-powered NOMA IoT-based systems. IEEE Internet
Things J. 2021, 8, 11655–11665. [CrossRef]

20. un, H.; Zhou F.; Hu R.Q.; Hanzo, L. Robust beamforming design in a NOMA cognitive radio network relaying on SWIPT. IEEE J.
Sel. Areas Commun. 2019, 37, 142–155.

21. Li, F.; Jiang, H.; Fan R.; Tan, P. Cognitive non-orthogonal multiple access with energy harvesting: An optimal resource allocation
approach. IEEE Trans. Veh. Technol. 2019, 68, 7080–7095. [CrossRef]

22. Wang, H.; Shi, R.; Tang, K.; Dong, J.; Liao S. Performance analysis and optimization of a cooperative transmission protocol in
NOMA-assisted cognitive radio networks with discrete energy harvesting. Entropy 2021, 23, 785. [CrossRef] [PubMed]

23. Hu, C.; Li, Q.; Zhang, Q.; Qin, J. Security optimization for an AF MIMO two-way relay-assisted cognitive radio nonorthogonal
multiple access networks with SWIPT. IEEE Trans. Foren. Sec. 2022, 17, 1481–1496. [CrossRef]

24. Vu, T.-H.; Nguyen, T.-V.; Kim, S. Wireless powered cognitive NOMA-based IoT relay networks: Performance analysis and deep
learning evaluation. IEEE Internet Things J. 2022, 9, 3913–3929. [CrossRef]

25. Chen, M.; Huang, Y.; Zeng, G.; Lu, K.; Yang, L. An improved bat algorithm hybridized with extremal optimization and Boltzmann
selection. Expert Syst. Appl. 2021, 175, 114812. [CrossRef]

26. Deotti, L.M.P.; Pereira, J.L.R.; da Silva, I.C., Jr. Parameter extraction of photovoltaic models using an enhanced Lévy flight bat
algorithm. Energy Convers. Manag. 2020, 221, 113114. [CrossRef]

27. Gandomi, A.H.; Yang X.-S. Chaotic bat algorithm. J. Comput. Sci-Neth. 2014, 5, 224–232. [CrossRef]
28. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
29. Pavlyukevich, I. Levy flights, non-local search and simulated annealing. Mathematics 2007, 226, 1830–1844. [CrossRef]
30. Naruei, I.; Keynia, F. Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Eng.

Comput. 2021, 2021, 1–32. [CrossRef]
31. Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl.

Mech. Engrg. 2021, 376, 113609. [CrossRef]
32. Naruei, I.; Keynia, F.; Sabbagh M.A. Hunter–prey optimization: Algorithm and applications. Soft Comput. 2022, 26, 1279–1314.

[CrossRef]
33. Liu, Y.; Mousavifa, S.A.; Deng, Y.; Leung, C.; Elkashlan, M. Wireless energy harvesting in a cognitive relay network. IEEE Trans.

Wirel. Commun. 2016, 15, 2498–2508. [CrossRef]
34. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 7th ed.; Academic Press: San Diego, CA, USA, 2007.

286

Citation: Lin, Z.; Matta, A.; Du, S.;

Sahin, E. A Partition-Based Random

Search Method for Multimodal

Optimization. Mathematics 2023, 11,

17. https://doi.org/10.3390/

math11010017

Academic Editor: Ioannis G.

Tsoulos

Received: 3 November 2022

Revised: 7 December 2022

Accepted: 9 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Partition-Based Random Search Method for
Multimodal Optimization

Ziwei Lin 1, Andrea Matta 1, Sichang Du 2 and Evren Sahin 3,*

1 Politecnico di Milano, Department of Mechanical Engineering, 20133 Milan, Italy
2 Department of Industrial Engineering and Management, School of Mechanical Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
3 Laboratoire Genie Industriel, CentraleSupelec, Paris Saclay University, 3 Rue Joliot-Curie,

91192 Gif-sur-Yvette, France
* Correspondence: evren.sahin@centralesupelec.fr

Abstract: Practical optimization problems are often too complex to be formulated exactly. Knowing
multiple good alternatives can help decision-makers easily switch solutions when needed, such as
when faced with unforeseen constraints. A multimodal optimization task aims to find multiple global
optima as well as high-quality local optima of an optimization problem. Evolutionary algorithms
with niching techniques are commonly used for such problems, where a rough estimate of the optima
number is required to determine the population size. In this paper, a partition-based random search
method is proposed, in which the entire feasible domain is partitioned into smaller and smaller
subregions iteratively. Promising regions are partitioned faster than unpromising regions, thus,
promising areas will be exploited earlier than unpromising areas. All promising areas are exploited
in parallel, which allows multiple good solutions to be found in a single run. The proposed method
does not require prior knowledge about the optima number and it is not sensitive to the distance
parameter. By cooperating with local search to refine the obtained solutions, the proposed method
demonstrates good performance in many benchmark functions with multiple global optima. In
addition, in problems with numerous local optima, high-quality local optima are captured earlier
than low-quality local optima.

Keywords: multimodal optimization; multiple optima; partition-based random search; niching

MSC: 90B40; 90-08

1. Introduction

Most optimization algorithms can only provide one of the optimal solutions when it is
applied, even if more than one optimal solution may exist. Nevertheless, in some situations,
finding multiple optimal solutions is desired, for example the following:

• The global optimal solution is not always implementable in real-world problems, due
to some unforeseen physical, financial, or political constraints, such as the availability
of some critical resources in the future and the dynamic environment in path-planning
problems. Knowing multiple good alternatives is helpful for decision-makers to
switch the solutions quickly when needed. For instance, if a machine fails during
production and its repair is time-consuming, the decision-maker can quickly change
the production plans without using the machine during that time.

• It is common in practice that some issues are difficult to formulate into the objective
function or to evaluate exactly, such as the sensitivity of the selected machine parame-
ters, the maintenance policy, and the preferences of decision-makers. In this situation,
having a set of different and good alternatives in advance is often desired for further
analysis.

Mathematics 2023, 11, 17. https://doi.org/10.3390/math11010017 https://www.mdpi.com/journal/mathematics
287

Mathematics 2023, 11, 17

• In some cases, it is critical to determine all highly valued areas (or all possibilities),
such as the contaminant source identification in the water distribution network [1].

• In surrogate-based optimization methods [2,3], the promising solution pointed out by
optimizing the constructed surrogate model is simulated iteratively. Finding multiple
promising solutions in one iteration allows the methods to take advantage of parallel
computing to run several time-consuming simulations simultaneously.

• Finding different locations of the peaks of the objective function in the search space
can indicate some structural knowledge of the optimized function and provide some
helpful insights into the properties of the studied system.

Multimodal optimization problem is concerned with locating multiple optima in one
single run [4]. The aim of this paper is to deal with multimodal optimization problems,
seeking multiple global optimal solutions and high-quality local optimal solutions (local
optimal solutions with good objective function values) of the given problem. The benefits
of applying multimodal optimization have been studied in many fields [5], such as seis-
mological problems [6], metabolic network modeling [7], job-shop scheduling [8], virtual
camera configuration problems [9], and feature selection [10].

In order to handle multimodal optimization tasks, classic optimization methods can
be applied in multiple runs hoping to find different optima. Nevertheless, the same
optimal solution may be obtained in different runs. If all m optimal solutions have the
same probability to be found, the expectation of the number of optimization runs required
to locate all optima is m(m−1)/(m − 1)!. This value is usually much larger in practice
since one of the optima may have higher probability to be discovered than others. To
avoid converging to the same solution, a common approach is that if one optimal solution
is determined, the fitness (i.e., the objective function values) in the observed region is
depressed in subsequent runs so that different optimal solutions can be found sequentially,
e.g., [11,12]. Still, at least the same number of optimization runs as the number of the
optimal solutions are required. In addition, if the fitness derating function and the distance
parameter that defines the neighbor range are not carefully selected, it may result in
elimination of other optima that have not been found, or spurious optima caused by the
modified objective function, although the occurrence of spurious optima can be reduced by
incorporating a local search method based on the original objective function, e.g., sequential
niching memetic algorithm (SNMA) [13]. Approaches without the determination of the
neighbor radius can also be found in the literature, but a lot of effort is spent in an additional
sampling of interior points, e.g., [14,15].

Evolutionary algorithms (EAs), e.g., genetic algorithm (GA) [16], particle swarm op-
timization (PSO) [17], and differential evolution (DE) [18], have the ability to preserve
multiple solutions during the optimization process. With the help of niching techniques,
they are capable of capturing multiple optima in a single run. Niching techniques were
originally developed to preserve the population diversity and reduce the impact of the
genetic shift. They are also used in multiobjective optimization problems to search for
the Pareto-optimal set, e.g., nondominated sorting GA II (NSGA-II) [19]. In multimodal
optimization problems, the use of niching techniques promotes population diversity, al-
lowing multiple optima to be found and maintained. Among the niching techniques in
the literature, the clearing procedure [20] eliminates neighbors before the selection until
only a few dominating individuals remain in the clearing radius. Singh and Deb [21]
reallocate the cleared individuals outside the clearing radius, hoping to find other areas of
interest. Fitness sharing methods [22–24] depress the fitness of densely located individuals
according to the population density within the sharing radius. Clustering algorithms, e.g.,
k-means method [25], can be used in fitness sharing methods for the formation of niches
to reduce the computational cost and avoid the determination of sharing radius, e.g., [26].
In crowding approaches [27,28], the new generated individual replaces the most similar
individual to maintain the initial diversity, if better fitness is observed. In restricted tourna-
ment selection [29], the new generated individuals compete with the nearest individuals in
a subpopulation randomly sampled from the population. In species conservation [30,31],

288

Mathematics 2023, 11, 17

the species seeds dominating other individuals in the same species are conserved into
the next generation and updated iteratively. Li [32] designed a ring topology [33] on the
particle swarm and used the lbest PSO to create small niches without niching parameters. A
detailed survey on some basic niching techniques in multimodal optimization can be found
in [34]. In addition, several niching mutation operator strategies for DE have been proposed
for multimodal optimization problems recently. For example, local-binary-pattern-based
adaptive DE (LBPADE) [35] uses the local binary pattern operator to identify multiple
regions of interests; distributed individuals DE (DIDE) [36] constructs a virtual population
for each individual so that each individual can search for its own optima; automatic niching
DE (ANDE) [37] locates multiple peaks based on the affinity propagation clustering.

In the aforementioned niching techniques, the entire population evolves together and
genetic operators are designed to preserve the population diversity. In contrast, some nich-
ing algorithms divide the entire population into parallel subpopulations, including forking
GA [38], multinational GA [39], multipopulation GA [40], NichePSO [41], speciation-based
PSO (SPSO) [42], swarms [43,44], culture algorithm with fuzzing cluster [45],
LAM-ACO [46], and dual-strategy DE (DSDE) [47]. Each subpopulation evolves inde-
pendently, searching for its own optimum. Different from classic EAs with multiple runs,
subpopulations will be merged, split, interchanged, or reformed during the search process
according to the positions of the individuals in the entire population. As a consequence,
repeated convergence and inefficiency search are avoided.

Most existing niching techniques are sensitive to the selected parameters, which
are usually application-dependent and may be heterogeneous in the search space, such
as the radius parameters in clearing and fitness sharing, the species distance in species
conservation, the window size in restricted tournament selection, and the number of seeds
in clustering algorithms. Adaptive methods are studied to make the algorithms more robust
to the distance parameters or to let the parameters vary in the search space, e.g., [48–50].
Some approaches are developed to detect whether two individuals belong to the same
peak without the use of distance parameters, such as the hill–valley function [39] and the
recursive middling [51]. Nevertheless, a great amount of additional fitness evaluations are
required, significantly reducing the efficiency of the algorithm. The formation of the niches
is still a challenge in the multimodal optimization community.

Recently, some researchers solved the multimodal optimization problem by converting
it into a multiobjective optimization problem, named multiobjectivization [52]. For instance,
biobjective multipopulation genetic algorithm (BMPGA) [53,54] uses the average absolute
value of the gradient as another ranking criterion, in addition to the original objective
function, for elitism and selection in the GA framework, thus providing a chance for
survival for local optima. Deb and Saha [55,56] created a second objective function (e.g.,
the norm of the gradient or the number of better neighboring solutions) so that all optima
are located in the weak Pareto-optimal set. Then, the modified NSGA-II algorithm [19],
developed for multiobjective optimization problems, was applied to find all the optima in a
single run. Diversity indicators, such as the distance from other individuals and the density
of niches, are also considered as the second objective function to maintain the population
diversity (similar to the niching techniques), e.g., [57,58]. Conflicting objective functions
were also designed to increase the efficiency of the applied multiobjective optimization
algorithm, e.g., multiobjective optimization for multimodal optimization (MOMMOP) [59]
and triobjective differential evolution for multimodal optimization (TriDEMO) [60].

All the multimodal optimization methods mentioned above are developed under the
framework of EAs, in which the population size should be determined based on the number
of desired optima. However, the number of optima is usually unknown before executing
the algorithm, although in some cases it can be estimated from prior knowledge about the
system. Saving the obtained optima in an archive and reinitializing the individuals can
extend the optimal solution set, but it may cause the population to converge to the previous
found solutions.

289

Mathematics 2023, 11, 17

Moreover, when dealing with the local optima, the existing multimodal optimization
methods may fall into the following situations:

• Can only find multiple global optimal solutions (e.g., MOMMOP [59] and
TriDEMO [60]), i.e., the local optimal solutions cannot be found.

• Assume that the global optimal solutions and local optimal solutions with different
objective function values have the same importance (e.g., [55,56]).

• Prefer local optimal solutions in sparse areas to local optimal solutions with good
objective function values (e.g., EAs with niching).

• Prior knowledge to determine the threshold (or tolerance) of the objective function
value to decide whether to save a solution or not.

Therefore, when the computational time is limited, these methods cannot meet the
demand of searching only the global optimal solutions and high-quality local optimal
solutions (i.e., local optimal solutions with good objective function values) without prior
knowledge.

A completely different approach, which requires no prior knowledge about number
of optima in the studied problem, is proposed in this paper. In the proposed method, the
feasible domain is partitioned into smaller and smaller subregions iteratively. At each
iteration, solutions from different subregions are sampled and evaluated. Based on the
observed information, different regions are partitioned at different rates. By controlling the
partition rates of different regions, promising areas are exploited and reach the smallest size
(e.g., singleton regions in discrete cases or regions with acceptable precision in continuous
cases) earlier than nonpromising areas. Multiple promising areas can be partitioned in
parallel, allowing multiple optimal solutions to be found in a single run. If the available
budget size (the budget size indicates the number of evaluations of the objective function)
is unlimited, all areas of the feasible domain will eventually be partitioned into subregions
of the smallest size, i.e., all optima (both global and local) will be discovered eventually.

Partition-based random search methods, such as nested partition (NP) [61],
COMPASS [62] and adaptive hyperbox algorithm [63], are efficient in optimization prob-
lems with large search space, i.e., the feasible range of the decision variable is large com-
pared to its desired precision. The entire domain is partitioned into subregions, based on
previous observations, trying to guide the search towards a promising region. However,
in most partition-based methods, only the most promising region can be identified and
stored; thus, only one optimal solution can be found. The probabilistic branch and bound
(PBnB) [64,65] is developed to locate a subset of feasible solutions whose objective function
values reach the given quantile level. Different from our approach, the partition rates are
homogeneous in the search space in the PBnB. All regions are partitioned at the same
rate until they are pruned (statistically, no solutions in this region belong to the subset
of interest) or maintained (statistically, all solutions in this region belong to the desired
subset). The PBnB method may also be extended to find multiple global optimal solutions
by setting an extremely small quantile level. However, this will result in a large budget
spent on estimating quantiles.

The classification of related works and the difference compared to the proposed
algorithm are summarized in Table 1. A previous version of the proposed algorithm was
presented in a conference paper [66], which mainly focused on searching for the global
optimal solution under the interference of a large number of local optimal solutions. The
algorithm is extended in this paper to find and store multiple global optimal solutions
as well as high-quality local optimal solutions, including a scheme to extract the optimal
solutions and a local search to refine the extracted optimal solutions during the optimization
process. The research contributions of this paper are summarized below:

• Estimating the number of optima is not needed before performing the proposed
method (which is required in all EA-based multimodal optimization methods). All
optimal solutions (both global optimal solutions and local optimal solutions) will be
discovered subsequently as the algorithm proceeds.

290

Mathematics 2023, 11, 17

• Given a computational time, global optimal solutions and high-quality local opti-
mal solutions are captured with higher probabilities than low-quality local optimal
solutions, and no prior knowledge about the objective function is needed. Current
multimodal optimization methods either cannot find local optimal solutions or treat
all optimal solutions as equally important.

• The proposed method can also handle the cases in which the optimal solutions are
regions rather than single points, i.e., there exists a region in the feasible domain where
all solutions are optimal. The density of the solutions in the region depends on the
user-defined precision level. This is new compared to all multimodal optimization
methods.

The proposed method is tested in benchmark functions. The numerical results show
that the proposed method works as expected and demonstrates good performance com-
pared to other state-of-the-art multimodal optimization methods in the literature.

Table 1. Classification of selected related works.

Related Works Algorithm Framework Multimodal Optimization Single Run

[12] Sequential runs with tricks �
[14] Sequential runs with tricks �
[15] Sequential runs with tricks �
LBPADE [35] EA with niching � �
DIDE [36] EA with niching � �
ANDE [37] EA with niching � �
SPSO [42] EA with subpopulations � �
LAM-ACO [46] EA with subpopulations � �
DSDE [47] EA with subpopulations � �
[55,56] Multiobjectivization (EA) � �
BMPGA [53,54] Multiobjectivization (EA) � �
MOMMOP [59] Multiobjectivization (EA) � �
NP [61] Partition-based random search �
PBnB [65] Partition-based random search �
The proposed method Partition-based random search � �

This paper is organized as follows. Section 2 describes the proposed method in
detail. Section 3 combines the proposed method with a local search method to improve
the efficiency of the algorithm. Numerical results on benchmark functions are discussed
in Section 4. An engineering case showing the application of the proposed method is
presented in Section 5. Finally, conclusions and future developments are presented in
Section 6.

2. Proposed Method

Without loss of generality, a minimization problem is considered: minx f (x). The
objective function is deterministic and the feasible domain is denoted as D, where D ⊂ Rd.

In the proposed method, the entire feasible domain D is iteratively partitioned into
subregions Dk such that ∪kDk = D and ∩kDk = ∅. Each subregion contains a set of
feasible solutions. In most partition-based optimization methods, the extreme value, the
mean, or the quantile of the sampled values, i.e., the objective function values of sampled
solutions, are commonly used to rank the regions. Compared to the extreme value, the
quantile contains more global information about the region so that the influence of outliers
can be mitigated. Compared to the mean, the quantile focuses more on the good part of
solutions in this region, rather than the overall region. Therefore, the quantile is adopted
as the ranking criterion in this paper. The lower the estimated α-quantile, where α < 0.5,
the more promising the region. A promising region is further partitioned into smaller
subregions so that this region can be further exploited. Multiple promising regions can
be partitioned in parallel in order to obtain a set of optimal solutions. More specifically,
different partition rates are adopted for different regions, and promising regions would be
partitioned faster (exploited earlier) than nonpromising regions.

291

Mathematics 2023, 11, 17

In this paper, we define the partition rate of a region as the reciprocal of the number
of iterations required for this region to be further partitioned. The idea of controlling
the partition rates for different regions is realized with the help of a budget allocation
strategy [67], which is introduced for the sake of completeness in Section 2.1. The computa-
tional complexity of the proposed method is analyzed in Section 2.3. Section 2.2 describes
the proposed method in detail and a simple example is introduced in Section 2.4 to give
the reader a better understanding of the proposed method.

2.1. Budget Allocation for Quantile Minimization (BAQM)

The BAQM method [67] is proposed to allocate a budget of size N to K groups, i.e.,
sample N values from K groups, aiming to minimize the α-quantile of all the sampled values.
The budget is allocated to each group dynamically, based on the previous observations,
trying to let the sample size in group k be approximately proportional to its posterior
probability of being the best group, i.e., the group having the lowest α-quantile. This
budget allocation method is developed on the assumption that the values sampled from a
group are independently, identically, and normally distributed. Nevertheless, the numerical
results show that it also has good performance, even if the normality assumption is not
satisfied.

Assume that for any group k, n1,k values have been observed and the group sample
mean μ̂k and the group sample variance σ̂2

k are calculated based on the n1,k observations.
According to [67], at each sampling stage, a new budget of size Δ should be allocated using
the following equations:

nk
nb̂

=
F(Ck,b̂; n1,k − 1, n1,b̂ − 1)

F(Cb̂,k; n1,b̂ − 1, n1,k − 1)
, ∀k �= b̂, (1)

nb̂ =

(
Δ + ∑

∀k
n1,k

)
/

(
∑
∀k

F(Ck,b̂; n1,k − 1, n1,b̂ − 1)

F(Cb̂,k; n1,b̂ − 1, n1,k − 1)

)
, (2)

where nk denotes the total budget size allocated to group k, b̂ is the current best group
defined as b̂ = arg mink{μ̂k + zασ̂k}, zα is the α-quantile of the standard normal distri-
bution, τ̂ = mink{μ̂k + zασ̂k}, F(·; v1, v2) is the cumulative distribution function of the
F-distribution with degrees of freedom v1 and v2,

Ci,j =

1 + 1
ĉ2

j
− 1

n1,j

1 + 1
ĉ2

i
− 1

n1,i

, ∀i, j (3)

and ĉk = σ̂k
μ̂k−τ̂ , ∀k. Then, additional max(0, [nk] − n1,k) values should be sampled from

group k at this sampling stage, where [·] indicates that the value is rounded to the nearest
integer.

The BAQM method is easy to implement and it links the sample size to the ranking of
groups defined by quantiles. Therefore, it is selected as the budget allocation strategy in
the proposed method.

2.2. Partition-Based Random Search for Multimodal Optimization

Denote by Ds = {Ds
i } the set of stored regions in iteration s. By regarding a region Ds

i
as a group, the BAQM method can be applied to sample solutions from different regions
dynamically. Gradually, the sample sizes in different regions, denoted by ns

i , ∀i, will be
approximately proportional to their posterior probability of being the best region, i.e., the
region having the minimal α-quantile, based on the previous observations. If we set a
threshold nmax, the sample sizes in promising regions will achieve this threshold faster than
that in nonpromising regions because more samples are allocated. Therefore, we further

292

Mathematics 2023, 11, 17

partition a region when its sample size reaches the threshold. This makes the promising
regions have a higher partition rate than the nonpromising regions.

In the proposed method, the data observed in previous iterations are reused. This
allows the deviations caused by the sampling noise to be transmitted to subsequent itera-
tions. To mitigate the influence of the sampling noise, the BAQM formulas are modified.
Denote by ls

i the partition depth of a region Ds
i . In this paper, the partition depth of a region

refers to the minimum number of partition actions required to obtain this region, which is
often related to the size of the region. The smaller the region size, the larger the partition
depth. The adjusted sample size nadj

i is calculated based on the partition depth as follows:

nadj
i = max

(
2,

[
ls
i

maxj{ls
j }

ns
i

])
, ∀i, (4)

where ns
i is the number of observations in region Ds

i and [·] indicates that the value is
rounded to the nearest integer. This modification aims at forcing the method to also sample
from nonpromising but broad regions. As all regions shrink, i.e., all ls

i increase, and the
influence of Equation (4) will decrease. Then, according to the BAQM formulas, the weight
assigned to region Ds

i is calculated as follows:

wi =
F(Ci,b̂; nadj

i − 1, nadj
b̂
− 1)

F(Cb̂,i; nadj
b̂
− 1, nadj

i − 1)
=

1

1− F(Ci,b̂; nadj
i − 1, nadj

b̂
− 1)

− 1, ∀i, (5)

where

Ci,b̂ =
1 + z2

α − 1/nadj
b̂

1 +
(

μ̂i−τ̂
σ̂i

)2
− 1/nadj

i

, ∀i, (6)

b̂ is the current best region defined as b̂ = arg mink{μ̂k + zασ̂k}, zα is the α-quantile of the
standard normal distribution, and μ̂i and σ̂2

i are the sample mean and sample variance of the
objective function values of solutions sampled from region Ds

i , respectively. τ̂ = μ̂b̂ + zασ̂b̂,
F(·; v1, v2) is the cumulative distribution function of the F-distribution with degrees of
freedom v1 and v2. Given the new budget size Δ, the theoretical total budget sizes in each
region ni can be calculated as follows:

ni =

(
Δ + ∑

i
nadj

i

)
· wi

∑i wi
(7)

The proposed method is very straightforward and easy to implement. The flow chart is
as shown in Figure 1 and the main framework is presented in Algorithm 1. Four algorithm
parameters are required:

α The quantile level in the definition of the best region, 0 < α < 0.5;

n0 The base sample size, n0 ≥ 2;

nmax The sample size threshold to further partition a region, nmax > n0;

Δ The new budget size at each iteration.

293

Mathematics 2023, 11, 17

input α, n0, nmax, Δ

s = 1,Sopt = ∅, add D to L

traverse regions in L

remove the region from L

partition into new regions

traverse new regions

if partitionable? selected the best solution

dominated by neighbors?

do local search

add the final solution to Sopt

ns
i < n0?

sample n0 − ns
i solutions

traversal finished?

L is empty?

calculate ni, nadj
i using Equations (4)–(7)

traverse regions need sampling

sample ni − nadj
i solutions

ns
i > nmax? add this region to L

all sampling finished?

s = s + 1

meet stopping condition?

return Sopt

Y

Y

Y

Y

N

Y

Y

N

N

N

YN

N

Y

N

N

Algorithm 2

Algorithm 3

Algorithm 4

Figure 1. The flow chart of the proposed algorithm (Algorithm 1).

294

Mathematics 2023, 11, 17

Algorithm 1 PAR- MMO.
Input: α, n0, nmax, Δ,P(·),S(·, ·), U(·), Cstop

Output: X,Sopt

1: s ← 1
2: Ds ← {Ds

1 = D}, ns
1 ← 0

3: L← {1}
4: while ¬Cstop do
5: Partitioning (Algorithm 2)
6: if Inew = 1 then
7: Updating Sopt (Algorithm 3)
8: Inew ← 0
9: end if

10: Budget Allocation (Algorithm 4)
11: s ← s + 1
12: end while

Algorithm 2 Partitioning.

1: for i ∈ L do
2: Dnew ← P(Ds

i)
3: Ds ← Ds \ {Ds

i } ∪Dnew

4: for j : Ds
j ∈ Dnew do

5: update ns
j , ls

j
6: if ns

j ≥ nmax & ¬ID∗ (Ds
j) then

7: L← L∪ {j}
8: else
9: if ns

j < n0 then

10: X← X∪ S(n0 − ns
j ,Ds

j)

11: end if
12: update μ̂j, σ̂2

j
13: if ¬ID∗ (Ds

j) then

14: nadj
j ← Equation (4)

15: wj ← Equation (5)
16: else
17: nadj

j ← 0
18: wj ← 0
19: Xopt ← Xopt ∪ {xk : xk ∈ Ds

j }
20: Inew

k ← 1
21: end if
22: end if
23: end for
24: end for
25: L← ∅

Algorithm 3 Extracting.

1: i ← min{j : Iopt
j = 1}

2: while i �= ∅ do

3: Iopt
j ← 0, ∀j ∈ {k : xk ∈ U(xi) ∩Xopt; f (xk) > f (xi)}

4: if f (xi) > minj∈{k:xk∈U(xi)∩Xopt} f (xj) then

5: Iopt
i ← 0

6: end if
7: i ← min{j : j > i; Iopt

j = 1}
8: end while
9: Sopt ← {xi : Iopt

i = 1}

295

Mathematics 2023, 11, 17

Algorithm 4 Budget allocation.

1: Nadj ← Δ + ∑i nadj
i

2: w = ∑i wi
3: ni ← Nadj · wi/w, ∀i
4: for i : [ni − nadj

i] > 0 do

5: X← X∪ S([ni − nadj
i],Ds

i)
6: update ns

i
7: if ns

i ≥ nmax then
8: L← L∪ {i}
9: else

10: update μ̂i, σ̂2
i

11: nadj
i ← Equation (4)

12: wi ← Equation (5)
13: end if
14: end for

P(region), S(sample size, region), U(solution), and Cstop are the user-defined par-
tition strategy, sampling strategy, neighborhood of the selected solution, and stopping
criteria, respectively. The output X is the set of all sampled solutions and Sopt is the set of
obtained optimal solutions. At the beginning of the algorithm, the set of the current regions
Ds and the partition list L is set as the entire feasible domainD. In the subsequent iterations,
partitioning all regions in the partition list using Algorithm 2 and allocating budget to each
region using Algorithm 4 are performed alternatively until the stopping criterion is met,
such as the available budget is exhausted, the desired number of optimal solutions are
obtained, or the number of obtained optimal solutions are not changed in several iterations.
After the partitioning phase, if new potential optimal solutions are generated, i.e., Inew = 1,
the set of optimal solutions Sopt are updated using Algorithm 3. This step can also be
executed only at the end of the whole algorithm to save the computational effort, if Sopt is
not related to the stopping criterion.

Algorithm 2 describes in detail the partitioning phase in Algorithm 1. D∗ denotes the
set of nonpartitionable regions and ID∗(·) is the indicator function. Every region in the
partition list L is partitioned into several new subregions. The new subregions are added
to the partition list if they are partitionable and their sample size ns

j is still larger than or
equal to the threshold nmax. Otherwise, new solutions are sampled so that the sample size
in this new subregion is not less than the base sample size n0. Then, the group sample
mean μ̂j and the group sample variance σ̂2

j are updated. The adjusted sample size nadj
j

is calculated using Equation (4) and the weight for the budget allocation wj is calculated
using Equation (5). After traversing the entire partition list L, L is set to an empty set.

Once a new nonpartitionable region is generated, the weight wj and the adjusted

sample size nadj
j are set to zero, since the solutions within this region are considered not

different; thus, it is not necessary to keep sampling from this region. If the current best
region Ds

b̂
is nonpartitionable, nadj

b̂
is saved for the calculation of Equation (5). All the

samples in the new generated nonpartitionable region are considered as potential optimal
solutions; thus, they are added into the set of optima candidates Xopt, and Inew is set to one
to send the signal to run Algorithm 3.

Remark 1. In Algorithm 2, if the maximal partition depth, i.e., maxi{ls
i }, in Equation (4) is

changed, the adjusted sample size nadj
i of all regions should be recalculated. Thus, all weights wi

also need to be recalculated.

Remark 2. In Algorithm 2, if the current optimal region, i.e., b̂, in Equation (5) is changed, all
weights wi should be recalculated.

296

Mathematics 2023, 11, 17

Algorithm 3 presents the detailed procedure to extract the set of the optimal solutions
Sopt from the set of potential optima Xopt. In the algorithm, Iopt

i = 1 indicates that solution
xi is not dominated by the neighboring solutions. The Iopt

i values are set to one for all
solutions newly added into Xopt. Starting from the first solution with Iopt

i = 1, the Iopt
j

values are set to zero for all the solutions xj in the neighborhood whose objective function
value is worse than the objective function value of the selected solution xi. If there exists
a better solution in the neighborhood, the Iopt

i value of the selected solution is also set to
zero. In optimization problems with continuous variables, a commonly used neighborhood
function is U(xi) = {x : ||x− xi||2 ≤ r} ∩ D, where ||x− xi||2 is the Euclidean distance
between x and xi. In this case, Algorithm 3 is not sensitive to the selection of r.

Algorithm 4 describes in detail how to allocate a new budget of size Δ at each iteration.
The adjusted total budget size Nadj is calculated by summing the adjusted region sample
size nadj

i and Δ. The theoretical total budget size at each region ni is calculated using the

weight wi. Then, max(0, [ni − nadj
i]) new solutions are sampled from region Ds

i , where [·]
indicates that the value is rounded into the nearest integer. Once the sample size in a region
reaches the threshold nmax, this region is added to the partition list L.

2.3. Computational Complexity

As the total budget size increases, the number of existing regions grows as well, which
will results in raised computational time in later iterations. The computational complexity
of the proposed method is investigated in this section to understand the extent to which
the total budget size affects the computational effort.

In Algorithm 2, the maximal length of the partition list is Δ in each iteration; thus, the
time complexity of Algorithm 2 is O(Δ) in each iteration. The number of total iterations
is less than N/Δ, where N is the total budget size allocated. Thus, the time complexity of
Algorithm 2 is O(N) in the entire optimization process.

Similar to Algorithm 2, the time complexity of lines 5–13 in Algorithm 4 is O(Δ) in
each iteration and O(N) in the entire optimization process, respectively. As for lines 1–4 in
Algorithm 4, the ni value should be calculated and compared to nadj

i for all existing regions
in each iteration. Thus, the time complexity is O(|Ds|) in iteration s. The number of existing
regions |Ds| is less than (h− 1)Δs, where h indicates the maximal number of subregions
that will be generated after a partition action. Therefore, the time complexity of lines 1–4
becomes O(Δs) in iteration s. In the entire optimization process, the time complexity is
O(Δ ∑N/Δ

s=1 s) = O(N + N2/Δ), i.e., it is increasing quadratically with respect to the total
budget size N.

Algorithm 3 is only executed when new potential optimal solutions appear. Since
the distance between every two solutions in the set of the potential optimal solutions
Xopt should be calculated to determine the neighboring solutions, the time complexity
of Algorithm 3 is O(|Xopt|2) in the entire optimization process. Usually, the number of
potential optima is much less than the total budget size.

Therefore, the overall time complexity of the proposed method with respect to the
total budget size is O(N2/Δ) due to line 3 and line 4 in Algorithm 4.

2.4. An Illustrative Example

Minimizing the Himmelblau’s function is considered in this section as an illustrative
example for the reader to better understand the proposed method. This problem has four
global optimal solutions, and the objective function value varies from 0 to 2186 (the detailed
information can be found in the selected benchmark function F2 in Appendix A Figure A1).
The goal of this problem is to find and store all these four global optimal solutions.

The proposed method is applied with n0 = 4, α = 0.3, nmax = 10, and Δ = 3. The
regions are evenly partitioned into half from the horizontal and vertical directions iteratively
until all edges of all regions are smaller than 0.05, which are considered as nonpartitionable
regions. Figure 2 presents the partition states on the entire feasible domain as the budget

297

Mathematics 2023, 11, 17

size N increases. The sampled solutions are shown by dots, where their colors represent
their objective function values. The darker the color, the lower the objective function value.

Figure 2. The partition states and the sampled solutions as the budget size N increases in the
Himmelblau function minimization problem.

It can be seen that as the budget size increases, regions containing good solutions are
partitioned at higher rates than other regions. The areas around the four global optimal
solutions are exploited in parallel and reach the smallest size earlier than other areas. The
sampling of solutions is guided by the proposed method. At the beginning of the algorithm,
solutions are sampled evenly among the entire domain. As the budget size increases, the
sampling probability of good solutions increases as well.

After about 3000 solutions are evaluated, Algorithm 3 is performed with
U(xi) = {x : ||x− xi||2 ≤ r} ∩ D, where r = 0.0938, i.e., twice the length of the shortest
edge of a nonpartitionable region. Four solutions are contained in Sopt and their objective
function values are all less than 6× 10−3. The distances from the four solutions to their
corresponding real optimal solutions are all less than 0.014. The same results can be ob-
tained with r varying from 0.042 to 3.9, which shows that Algorithm 3 is not sensitive to
the selection of the distance parameter r.

3. Cooperating with Local Search

The proposed partition-based random search method behaves conservatively. It can
maintain a global perspective, thereby reducing the probability of losing some optimal
solutions. It can be found in Section 2.4 that the proposed method detects the four promising
areas fast, but it takes a lot of effort to obtain a precise optimal solution in the detected
promising area. The search is always guided by the thought that there may be multiple local
optima in a region. Thus, it cannot focus on exploitation to improve the accuracy of the
obtained optimum in a detected promising area (also called detected peaks in maximization
problems), especially when the promising area is relatively flat, i.e., the difference between
the regions in the promising area is small.

In contrast, the local search method is efficient in locating the precise local optimal
solution if the starting point is located nearby. The main issue of adopting local search
in a multimodal optimization problem is the number and the locations of the starting
points. If the starting points are not located carefully, it may result in loss of optima
or waste of budget caused by multiple starting points within the same promising area,
whereas the set Sopt extracted from Algorithm 3 contains different good solutions from
different promising areas, which provides multiple good locations for the local search to
start from. Therefore, the proposed partition-based random search can be used to detect
promising areas, from which a local search is utilized to refine the solution in the set of
obtained optimal solutions Sopt to obtain more precise optimal solutions. A similar idea
appears in EMO-MMO [68], in which an algorithm is developed to detect peaks from
solutions sampled by multiobjectivization methods and a swarm-based method is used
within each peak.

Any new solution that appears in Sopt after executing Algorithm 3 is used as the
starting point in a local search method to obtain a more precise optimal solution with
higher accuracy. Algorithm 5 introduces a simple local search method for problems with

298

Mathematics 2023, 11, 17

continuous domain. The current solution iteratively moves to the best neighboring solution
with one step difference in one dimension. In the algorithm, ej is a d-dimensional vector
whose j-th element is one and the rest of the elements are all zero. The initial step δ is
set as the distance parameter r in Algorithm 3 and it is shrinking as the search proceeds.
The local search is repeated until the stopping criteria is met, such as when the step δ is
smaller than a threshold δ∗, the desired objective function value is obtained, or the budget
is exhausted. All the new sampled solutions are added into the set of optima candidates
Xopt with Iopt

i = 0, except the local optima whose Iopt
i is assigned to one. Algorithm 5 is an

example of how the accuracy of the obtained optima can be improved. Other optimization
algorithms with strong local search capacity can also be applied according to the features
of the studied problem.

Algorithm 5 Local search.
Input: xi ∈ Sopt, δ∗

Output: x∗i
1: x∗i ← xi
2: δ ← r
3: Cstop

2 ← 0
4: while Cstop

2 = 0 do
5: x′ ← x∗i
6: for j = 1, · · · , d do
7: x∗i ← arg min{x∗i −δej ,x∗i ,x∗i +δej} f (x)
8: end for
9: if x′ = x∗i then

10: if δ < δ∗ then
11: Cstop

2 ← 1
12: end if
13: δ ← δ/2
14: end if
15: end while
16: Sopt ← Sopt \ {xi} ∪ {x∗i }

4. Numerical Results

The proposed method is applied to minimization problems constructed by several
benchmark functions with different properties extracted from the well-known test problems
of the CEC’2013 competition for multimodal optimization [34,69]. Table 2 shows the
selected objective function, the dimension of the decision variable, the number of global
optima and local optima, the feasible domain, the objective function value range, and the
maximum budget size Max_Fes in different test problems. F1–F3 are simple examples with
multiple global optima. F4 is a volatile function with numerous local optima. The optimal
solutions in F5 are located in different topographies in the feasible domain. F6 contains
multiple global optimal solutions distributed in a grid. F7 is composited by different basic
functions such that the properties of different functions are mixed. F1–F7 contain multiple
global optima, while F8 and F9 have only one global optimum and multiple local optima of
different qualities. In F10, there are several regions in which all points are local optimal
solutions. The detailed information and the surface plots of the benchmark functions can
be found in Appendix A.

299

Mathematics 2023, 11, 17

Table 2. The parameters of the tested problems.

Func Dim No.g No.l Domain Value Range Radius Max_Fes

F1 1 5 0 [0, 1] [0, 1] 0.015 5× 104

F2 2 4 0 [−6, 6]2 [0, 2185.8] 0.1 5 × 104

F3 2 2 4 [−1.9, 1.9], [−1.1, 1.1] [−4.1265, 23.4] 0.1 5 × 104

F4(2D) 2 18 >700 [−10, 10]2 [−186.7309, 210.5] 0.01 2 × 105

F4(3D) 3 81 >2000 [−10, 10]3 [−2709.0935, 3053.7] 0.01 4 × 105

F5(2D) 2 36 0 [0.25, 10]2 [0, 2] 0.03 2 × 105

F5(3D) 3 216 0 [0.25, 10]3 [0, 2] 0.03 4 × 105

F6(3,4) 2 12 0 [0, 1]2 [2, 38] 0.01 2 × 105

F6(3,3,3) 3 27 0 [0, 1]3 [3, 57] 0.01 4 × 105

F6(2,··· ,2) 5 32 0 [0, 1]5 [5, 95] 0.02 4 × 105

F7(1-
2D) 2 6 >500 [−5, 5]2 [0, 2204.2] 0.01 2 × 105

F7(2-
2D) 2 8 >600 [−5, 5]2 [0, 2050.2] 0.01 2 × 105

F7(3-
2D) 2 6 >2000 [−5, 5]2 [0, 3701.5] 0.01 2 × 105

F7(3-
3D) 3 6 >2000 [−5, 5]3 [0, 4126.1] 0.01 4 × 105

F8 1 1 4 [0.02, 1] [0, 1] 0.01 5 × 105

F9(2D) 2 1 120 [−5.12, 5.12]2 [0, 80.7] 0.1 3 × 104

F9(3D) 3 1 1330 [−5.12, 5.12]3 [0, 121.1] 0.1 1 × 105

F10 2 1 4 a [−10, 10]2 [0.0097, 0.9975] - -
a The local optima are not single points.

In the following experiments, if the deviation from the objective function value of an
obtained optimal solution to the objective function value of a real optimal solution is below
ε (level of accuracy) and the distance between these two solutions is less than the radius in
Table 2 (level of precision), this real optimal solution is considered as being found. For the
proposed method, a solution is considered as an obtained optimal solution only when it is
stored in Sopt (]the datasets generated during and/or analyzed during the current study
are available from the corresponding author on reasonable request).

For the sake of simplicity, the proposed method, denoted as “PAR-MMO”, is applied
with α = 0.3, n0 = 4, nmax = 10, and Δ = 3 for all the following experiments, unless
specifically stated. If a budget is allocated to a region, new solutions are sampled from
this region uniformly (the sampling strategy). If the partitioning condition is met, the
region is partitioned evenly into two subregions from the dimension with the largest range
(the partition strategy). The accuracy level of the obtained optima is controlled by the
acceptable precision of the obtained solution, i.e., the size of the nonpartitionable region.
Once a region reaches the smallest size, i.e., it is nonpartitionable, the proposed method
will stop sampling from this region and the accuracy of the obtained optima in this region
will not be further improved. The smaller the region that is considered nonpartitionable,
the more precise the solution obtained, and the larger the budget required. In the following
experiments, the size of a nonpartitionable region is defined specific to the problem in order
to met the required accuracy level ε (as shown in Appendix B). In practice, the size of the
nonpartitionable region can be defined according to the acceptable precision of the solution
obtained. The neighborhood function in Algorithm 3 for extracting optimal solutions from
the sample set is selected as U(xi) = {x : ||x− xi||2 ≤ r} ∩ D, where r is twice the length
of the shortest edge of a nonpartitionable region.

In the case that local search is adopted, denoted as “PARL-MMO”, the size of the
nonpartitionable region can be much larger (as shown in Appendix B), since both the
accuracy level of the obtained optima and the precision of the obtained solution can be
improved through the local search. In the following experiments, the step threshold δ∗ in
Algorithm 5 for local search is selected as the half length of the edge of the nonpartitionable
region defined when the PAR-MMO method is used without local search.

Section 4.1 presents how the selected parameters affect the proposed method. In
Section 4.2, the proposed method is applied to some problems with multiple global optima

300

Mathematics 2023, 11, 17

and compared with other approaches in the literature. Section 4.3 shows how the pro-
posed method performs in the problems with multiple local optima of different qualities.
Section 4.4 deals with problems that exist an region in which all solutions are optimal. The
computational time of the proposed method is analyzed in Section 4.5.

4.1. Effect of Algorithm Parameters

This section investigates how the algorithm parameters, i.e., the quantile level α, the
base sample size n0, the partition sample size threshold nmax, and the new budget size Δ,
affect the proposed method. In this section, “PARL-MMO” is applied and the accuracy
level ε is set as]1E-4. The base sample size n0 is set to avoid the situation where too few
samples remain in a subregion after a partition action. Thus, the n0 is set as #nmax/3$,
where #·$means that the value is rounded up to the nearest integer.

4.1.1. Main Effect Plot

Figure 3 shows the main effect plot and the table of analysis of variance (ANOVA) after
running a full factorial design in Problem F6(3,3,3) with three factors: α = {0.1, 0.2, 0.3, 0.4},
nmax = {6, 10, 15, 20}, andΔ = {3, 5, 10, 20}. A total of 500 independent replications are
executed and they are divided into 10 batches. The response is the average total budget
size, which is required to obtain all global optima, in a batch. The ANOVA is implemented
after the Box–Cox transformation so that the standardized residuals do not violate the
normality assumption (the p-value equals 0.376 in the Anderson–Darling test) and the equal
variance assumption (the p-value equals 0.983 in the Levene test). All the parameters and
interactions have significant effect on the proposed method with significant level 5%. The
influences of the nmax value and the Δ value are much larger than that of the α value and the
interactions based on the F-values. Similar conclusions can be drawn in other problems (see
Appendix C), except for Problem F5, where the optima are located in different topographies
in the feasible domain, and Problem F7(2-2D). According to the Tukey pairwise comparison
with confidence level 95%, the optimal combinations of parameters for Problem F6(3,3,3) are
α = {0.2, 0.3, 0.4}, nmax = 10, and Δ = 3.

Figure 3. The main effect plot and the ANOVA table. A total of 500 replications are executed and
divided into 10 batches. The Box–Cox transformation is performed, and R2

adj = 98.67%.

Figure 4 shows the main effect plot and the ANOVA table for Problem F5(2D). Al-
though the normality hypothesis and the equal variance hypothesis are not met with
confidence level 95%, the F-test is robust since the experiments with all combinations are
performed with the same number of replications. Different from Problem F6(3,3,3), the
parameter α has the highest effect on the algorithm performance. According to the Tukey
pairwise comparison with confidence level 95%, the optimal combinations of the algorithm
parameters for Problem F5(2D) are α = 0.3, nmax = 10, and Δ = 3.

301

Mathematics 2023, 11, 17

Figure 4. The main effect plot and the ANOVA table for Problem F5(2D). A total of 500 replications are
executed and divided into 10 batches. The Box–Cox transformation is performed, and R2

adj = 99.08%.

4.1.2. Effect of the Partition Sample Size Threshold Nmax

As the nmax value increases, the average total budget size required to obtain all optima
declines first and then rises. This is because when the nmax value is too small, the partition
action is executed based on biased information due to the small sample size. When the
nmax value is too large, the budget that could be used to exploit subregions with good
performance is wasted on exploring the current region. A similar phenomenon can be
observed in different problems, as shown in Figure 5, in which the budget size in the figure
is scaled according to the maximal average budget size in different problems, i.e., the values
in the legend.

Figure 5. The scaled average budget size required to obtain all global optima in different problems
with varying nmax value. A total of 100 replications are executed.

4.1.3. Effect of the New Budget Size Δ

The results of the ANOVA in Figure 3 show that a small Δ value is preferred in Problem
F6(3,3,3) in terms of the total budget size, because it allows more budgets to be allocated after
obtaining more information and generating more precise regions. Nevertheless, according
to the discussion in Section 2.3, a small Δ value may increase the computational time of
the proposed method. In Figure 6, the average total budget sizes and the corresponding
computational times required to obtain all optima in Problem F6(3,3,3) with different Δ
values are presented. The confidence intervals with confidence level 95% are also plotted.
The experiments are executed in Matlab R2020a on a computer (Intel(R) Core(TM) i7-7700U
CPU @ 3.6 GHz and 16 GB of RAM).

302

Mathematics 2023, 11, 17

Figure 6. The average total budget size and the average computational time required to obtain all
optima in Problem F6(3,3,3). A total of 100 replications are executed.

In this problem, it is very fast to calculate the objective function. Thus, the compu-
tational time is mainly affected by the computational complexity of the algorithm, i.e.,
O(N2/Δ), where N is the total budget size. This is why the total computational time in
Figure 6 decreases as the Δ value increases. In practice, if the calculation of the objective
function is time-consuming, a small Δ value can be used to save the expensive budget,
whereas if the calculation of the objective function is not critical, a relatively large Δ value
can be used to reduce the computational time.

4.1.4. Effect of the Quantile Level α

The definition of promising regions is affected by the selected α value. A low α value
prefers regions with high variability; thus, the proposed method will focus more on explo-
ration to avoid the loss of some promising areas, whereas a high α value prefers regions with
a low sample mean, so that the detected promising area will be firstly exploited. Although
the effect of the α value is less significant than the other two parameters in Problem F6(3,3,3),
it has a great influence in Problem F5(2D), where some optimal solutions are located in flat
areas and others are located in steep areas. A low α value will make promising regions in
flat areas struggle to reach the smallest size due to their small variability; thus, the samples
in these regions are not considered as potential optimal solutions.

Figure 7 presents another influence of the α value in Problem F5(2D). In 100 replications,
the frequencies of the optimal solutions in different locations being captured within a
budget of size 8000 is represented by different colors and shapes. In the studied case, the
size of nonpartitionable regions are the same among the whole domain. A promising region
in flat areas (i.e., large x1 and x2 values) has a small sample mean, while a promising region
of the same size in steep areas (i.e., small x1 and x2 values) has a large sample variance.
When the α value is high (α = 0.3), promising regions in flat areas will be partitioned
earlier, and the global optimal solutions located in these areas can be found with a higher
frequency (larger than 0.8). When the α value is reduced to a lower value (e.g., 0.1 or 0.2),
the influence of the sample variance rises. Therefore, the frequency of finding the optimal
solutions in flat areas decreases, whereas the frequency of finding the optimal solutions in
steep areas increases.

303

Mathematics 2023, 11, 17

Figure 7. The frequencies of capturing different optimal solutions among 100 replications with
varying α in Problem F5(2D). The budget size is 8000. As the α value increases, the frequency
of finding optima in steep areas is reduced while the frequency of finding optima in flat areas is
increased.

4.2. Comparison with Other Methods on Multiple Global Optima

The functions F1–F7, which have multiple global optima, are considered in this section.
The proposed method is compared with other multimodal optimization methods developed
from different mechanisms: multiobjectivization, subpopulations, differential evolution
with niching mutation operator, and two-phase method. In addition, they all have good
performance in the selected benchmark functions.

MOMMOP [59] transfers the multimodal optimization problem to a multiobjective opti-
mization problem with 2d conflicting objective functions so that all optima are located
in the Pareto front. Then, differential evolution combined with modified nondom-
inated sorting [19] is used to solve the multiobjective optimization problem. The
MOMMOP method belongs to the category of multiobjectivization and it is superior
to ten state-of-the-art multimodal optimization algorithms in 20 benchmark functions.

LAMS-ACO [46] divides the entire population into subpopulations that evolve separately
through a modified ant colony optimization algorithm ACOR [70]. Random cluster
size is adopted. A local search scheme is applied to refine the obtained solution at
each iteration. The LAMS-ACO method belongs to the category of population-based
niching using subpopulations and demonstrates good performance with respect to
the required total number of evaluations compared to the other twelve multimodal
optimization algorithms.

DIDE [36] constructs a virtual population for each individual so that each individual can
track its own peak. The DIDE method belongs to the category of population-based
method using niching mutation operator, and it has good performance compared to
the other 13 methods in the benchmark functions.

EMO-MMO [68] develops an algorithm to detect the peaks from solutions sampled by a
multiobjectivization method. Then, the competitive swarm optimizer (CSO) [71] is
applied within each peak to refine the obtained optima. The idea of the EMO-MMO
method is very similar to the proposed method; thus, it is also applied for comparison
purposes.

These methods are applied with parameters suggested by the authors.
Three criteria are adopted for the assessment of the applied algorithms [69]. The first

one is the peak ratio (PR), which measures the average percentage of the found global
optima. The second one is the success rate (SR), which is the percentage of runs that find
all the global optima. The third one is the convergence speed (CS), which is the average
budget size, i.e., the average number of evaluations of the objective function, required to
find all the global optima. If not all global optima are found when the budget is exhausted,
the maximum budget size Max_Fes is used in the calculation.

The results of the applied algorithms are presented in Table 3 with the accuracy level
ε varying from 1 × 10−1 to 1 × 10−4. The winners are highlighted in bold and marked

304

Mathematics 2023, 11, 17

with dark background color (determined through the Wilcoxon rank sum test with p-
value smaller than 0.0125 for the PR and p-value smaller than 0.0167 for the CS). All the
experiments are repeated 100 times independently. It should be noticed that the EMO-MMO
method uses all the available budget; thus, the CS column is not presented.

Table 3. Comparisons (from top to bottom: ε = 1 × 10−1 , 1 × 10−2, 1 × 10−3, and 1 × 10−4).

PAR-MMO PARL-MMO MOMMOP LAMS-ACO DIDE 1 EMO-MMO
Func PR SR CS PR SR CS PR SR CS PR SR CS PR SR PR SR

F1 1.00 1.00 1.6 × 102 1.00 1.00 1.3 × 102 1.00 1.00 1.4 × 102 1.00 1.00 1.4 × 102 - - 1.00 1.00

1.00 1.00 2.8 × 102 1.00 1.00 1.4 × 102 1.00 1.00 4.2 × 102 1.00 1.00 2.9 × 102 - - 1.00 1.00

1.00 1.00 3.7 × 102 1.00 1.00 1.6 × 102 1.00 1.00 1.2 × 103 1.00 1.00 4.8 × 102 1.00 1.00 1.00 1.00

1.00 1.00 5.5 × 102 1.00 1.00 1.9 × 102 1.00 1.00 3.3 × 103 1.00 1.00 7.6 × 102 1.00 1.00 1.00 1.00

F2 1.00 1.00 2.4 × 103 1.00 1.00 7.0 × 102 1.00 1.00 2.1 × 102 1.00 1.00 1.2 × 103 - - 1.00 1.00

1.00 1.00 3.7 × 103 1.00 1.00 7.6 × 102 1.00 1.00 3.2 × 102 1.00 1.00 2.0 × 103 - - 1.00 1.00

1.00 1.00 7.1 × 103 1.00 1.00 8.0 × 102 1.00 0.99 3.5 × 102 1.00 1.00 2.9 × 103 1.00 1.00 1.00 1.00

1.00 1.00 1.2 × 102 1.00 1.00 8.5 × 102 0.99 0.97 3.7 × 102 1.00 1.00 4.0 × 103 1.00 1.00 1.00 1.00

F3 1.00 1.00 3.4 × 102 1.00 1.00 2.0 × 102 1.00 1.00 1.2 × 103 1.00 1.00 3.6 × 102 - - 1.00 1.00

1.00 1.00 7.5 × 102 1.00 1.00 2.4 × 102 1.00 1.00 9.8 × 103 1.00 1.00 7.7 × 102 - - 1.00 1.00

1.00 1.00 1.2 × 103 1.00 1.00 2.5 × 102 1.00 1.00 1.5 × 102 1.00 1.00 1.4 × 103 1.00 1.00 1.00 1.00

1.00 1.00 2.1 × 103 1.00 1.00 2.9 × 102 1.00 1.00 1.8 × 102 1.00 1.00 1.9 × 103 1.00 1.00 1.00 1.00

F4(2D) 1.00 1.00 2.4 × 102 1.00 1.00 6.6 × 103 1.00 0.99 5.1 × 102 0.99 0.74 1.0 × 105 - - 1.00 1.00

1.00 1.00 3.4 × 102 1.00 1.00 7.1 × 103 0.97 0.95 5.9 × 102 0.98 0.67 1.3 × 105 - - 1.00 1.00

1.00 1.00 5.5 × 102 1.00 1.00 7.6 × 103 0.96 0.95 6.2 × 102 0.98 0.71 1.3 × 105 1.00 1.00 1.00 1.00

1.00 0.97 9.2 × 102 1.00 1.00 8.1 × 103 0.97 0.94 6.5 × 102 0.98 0.65 1.4 × 105 1.00 1.00 1.00 1.00
F4(3D) 0.55 0.00 4.0 × 105 1.00 0.98 2.1 × 105 0.98 0.94 2.3 × 105 0.77 0.00 4.0 × 105 - - 1.00 1.00

0.42 0.00 4.0 × 105 1.00 0.94 2.4 × 105 0.99 0.97 2.5 × 105 0.75 0.00 4.0 × 105 - - 1.00 1.00

0.26 0.00 4.0 × 105 1.00 0.97 2.2 × 105 0.98 0.95 2.8 × 105 0.73 0.00 4.0 × 105 0.69 0.00 1.00 1.00

0.17 0.00 4.0 × 105 1.00 0.96 2.4 × 105 0.98 0.95 3.1 × 105 0.71 0.00 4.0 × 105 0.69 0.00 1.00 0.99

F5(2D) 1.00 0.97 3.7 × 102 1.00 1.00 1.3 × 102 1.00 1.00 4.7 × 102 0.79 0.00 2.0 × 105 - - 1.00 0.98

1.00 1.00 4.9 × 102 1.00 1.00 1.3 × 102 1.00 1.00 5.5 × 102 0.76 0.00 2.0 × 105 - - 1.00 0.98

1.00 0.89 1.1 × 105 1.00 1.00 1.4 × 102 1.00 1.00 6.4 × 102 0.69 0.00 2.0 × 105 0.92 0.04 1.00 0.97

1.00 0.87 1.4 × 105 1.00 1.00 1.4 × 102 1.00 1.00 7.7 × 102 0.64 0.00 2.0 × 105 0.92 0.04 1.00 0.96

F5(3D) 0.61 0.00 4.0 × 105 0.98 0.03 4.0 × 105 1.00 1.00 2.3 × 105 0.31 0.00 4.0 × 105 - - 0.88 0.00

0.46 0.00 4.0 × 105 0.98 0.01 4.0 × 105 1.00 1.00 2.4 × 105 0.31 0.00 4.0 × 105 - - 0.87 0.00

0.21 0.00 4.0 × 105 0.97 0.01 4.0 × 105 1.00 1.00 3.0 × 105 0.28 0.00 4.0 × 105 0.58 0.00 0.88 0.00
0.07 0.00 4.0 × 105 0.97 0.00 4.0 × 105 1.00 0.86 3.7 × 105 0.23 0.00 4.0 × 105 0.57 0.00 0.88 0.00

F6(3,4) 1.00 1.00 3.1 × 103 1.00 1.00 1.5 × 103 1.00 1.00 2.5 × 102 1.00 0.99 5.4 × 103 - - 1.00 1.00

1.00 1.00 6.0 × 103 1.00 1.00 1.6 × 103 1.00 1.00 3.9 × 102 1.00 0.98 1.0 × 102 - - 1.00 1.00

1.00 1.00 1.1 × 102 1.00 1.00 1.8 × 103 1.00 1.00 4.3 × 102 1.00 0.96 2.2 × 102 1.00 1.00 1.00 1.00

1.00 1.00 1.4 × 102 1.00 1.00 1.9 × 103 1.00 1.00 4.4 × 102 0.99 0.90 4.4 × 102 1.00 1.00 1.00 1.00

F6(3,3,3) 1.00 1.00 4.5 × 102 1.00 1.00 1.1 × 102 1.00 1.00 9.1 × 102 0.96 0.27 3.3 × 105 - - 1.00 1.00

1.00 0.99 1.5 × 105 1.00 1.00 1.1 × 102 1.00 1.00 1.1 × 105 0.92 0.06 3.9 × 105 - - 1.00 1.00

0.99 0.83 2.9 × 105 1.00 1.00 1.1 × 102 1.00 1.00 1.1 × 105 0.85 0.00 4.0 × 105 - - 1.00 1.00

0.96 0.37 3.8 × 105 1.00 1.00 1.2 × 102 1.00 1.00 1.1 × 105 0.78 0.00 4.0 × 105 - - 1.00 1.00

F6(2,··· ,2) 0.48 0.00 4.0 × 105 1.00 1.00 4.5 × 102 1.00 1.00 1.3 × 105 0.92 0.05 3.9 × 105 - - 1.00 1.00

0.03 0.00 4.0 × 105 1.00 1.00 4.5 × 102 1.00 1.00 1.6 × 105 0.83 0.00 4.0 × 105 - - 1.00 1.00

0.02 0.00 4.0 × 105 1.00 1.00 4.7 × 102 1.00 1.00 1.6 × 105 0.71 0.00 4.0 × 105 - - 1.00 1.00

0.02 0.00 4.0 × 105 1.00 1.00 4.8 × 102 1.00 1.00 1.7 × 105 0.65 0.00 4.0 × 105 - - 1.00 1.00

F7(1-2D) 0.57 0.00 2.0 × 105 1.00 1.00 2.8 × 103 1.00 0.98 1.0 × 105 0.99 0.94 9.1 × 102 - - 1.00 1.00

0.42 0.00 2.0 × 105 1.00 1.00 2.9 × 103 0.99 0.91 1.2 × 105 0.98 0.85 1.3 × 105 - - 1.00 1.00

0.33 0.00 2.0 × 105 1.00 1.00 3.0 × 103 0.94 0.69 1.7 × 105 0.95 0.67 1.6 × 105 1.00 1.00 1.00 1.00

0.32 0.00 2.0 × 105 1.00 1.00 3.0 × 103 0.72 0.03 2.0 × 105 0.92 0.53 1.7 × 105 1.00 1.00 1.00 1.00

F7(2-2D) 0.60 0.00 2.0 × 105 1.00 1.00 1.4 × 102 0.98 0.86 1.3 × 105 0.97 0.77 9.1 × 102 - - 1.00 1.00

0.31 0.00 2.0 × 105 1.00 1.00 1.6 × 102 0.98 0.84 1.5 × 105 0.95 0.56 1.3 × 105 - - 1.00 1.00

0.25 0.00 2.0 × 105 1.00 1.00 1.7 × 102 0.96 0.66 1.7 × 105 0.96 0.70 1.2 × 105 1.00 1.00 1.00 1.00

0.20 0.00 2.0 × 105 1.00 1.00 1.9 × 102 0.93 0.52 1.9 × 105 0.96 0.67 1.3 × 105 1.00 1.00 1.00 1.00
F7(3-2D) 0.44 0.00 2.0 × 105 0.96 0.77 1.4 × 102 0.96 0.73 1.4 × 105 0.71 0.00 2.0 × 105 - - 0.99 0.95

0.25 0.00 2.0 × 105 0.94 0.65 1.6 × 102 0.91 0.47 1.8 × 105 0.69 0.00 2.0 × 105 - - 1.00 0.97

0.21 0.00 2.0 × 105 0.92 0.56 1.7 × 102 0.65 0.00 2.0 × 105 0.67 0.00 2.0 × 105 0.99 0.92 0.99 0.95

0.20 0.00 2.0 × 105 0.92 0.57 1.9 × 102 0.65 0.00 2.0 × 105 0.67 0.00 2.0 × 105 0.99 0.92 0.99 0.94

F7(3-3D) 0.27 0.00 4.0 × 105 0.68 0.01 4.0 × 105 0.80 0.00 4.0 × 105 0.67 0.00 4.0 × 105 - - 0.75 0.03
0.26 0.00 4.0 × 105 0.68 0.00 4.0 × 105 0.73 0.00 4.0 × 105 0.67 0.00 4.0 × 105 - - 0.73 0.03
0.30 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.78 0.04 0.74 0.02
0.28 0.00 4.0 × 105 0.68 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.77 0.02 0.74 0.03

1 The data of DIDE are from [36]. “-” means these data are not presented in the paper.

As discussed in Section 3, if the PAR-MMO method is used alone, as the ε value
decreases, the average number of evaluations required to find all the optima increases a
lot, or the percentage of global optima found reduces rapidly. However, if the PAR-MMO
method is applied to detect the promising areas and local search is applied to improve the
accuracy level of the obtained optima, i.e., the PARL-MMO method, the evaluation budget

305

Mathematics 2023, 11, 17

can be saved significantly, especially when the ε value is small. When the PARL-MMO
method is applied, the number of evaluations used in the PAR-MMO method is not much
different, regardless of the ε value, because the definition of the nonpartitionable region is
the same. The required total budget size differs depending on the budget required in the
local search stage, which is less affected by the ε value compared to the PAR-MMO method.

In most cases, the PARL-MMO method behaves better than the three state-of-the-art
methods, except for problems F4(3D), F5(3D), F7(3-2D), and F7(3-3D). In Problem F5(3D),
the MOMMOP method has the best performance. Although the PARL-MMO method does
not have good performance in this problem according to the criterion SR, the PR is still
high (not less than 0.97 for all ε values). For the LAMS-ACO method, a large ant size is
required to generate sufficient subpopulations, especially when the number of optima is
high. For example, poor performance is observed for Problem F5(3D), because an ant size
of 300 is too small for 216 optima. However, a too-large ant size may result in waste of
budget. Prior knowledge about the number of optima is important for methods that divide
the whole population into subpopulations, whereas this knowledge is not needed in the
proposed method.

In Problem F4(3D), the criterion SR of the PARL-MMO method is not as good as that
of the EMO-MMO method, but almost all the global optima are discovered (the PR values
are all close to one). In addition, a lot of local optima are also contained in the Sopt in the
PARL-MMO method. In problems F7(3-2D) and F7(3-3D), there are numerous local optima
that are very close to one of the global optima. For example, in Problem F7(3-2D), the
distance between a global optimum and one of the local optima with objective function
value 0.5761 is 3 × 10−6. In this case, if the size of the nonpartitionable region is not small
enough to separate these optimal solutions, Algorithm 5 may be stuck in one of the local
optima, i.e., the results of PARL-MMO. However, if the size of the nonpartitionable region
is small enough, the maximum budget size is not sufficient to reach the corresponding
nonpartitionable region, i.e., the results of PAR-MMO. In the EMO-MMO method, the CSO
method, which has the ability to escape the local optima, is applied to locally search the
promising areas. Therefore, good performance is observed for the EMO-MMO method in
problems F7(3-2D) and F7(3-3D).

As for the composition functions with more than five dimensions in the CEC’2013
functions, the proposed method does not have good performance, although all multimodal
optimization methods hardly find all global optima in these functions within the given bud-
get. The proposed method has difficulty handling functions with large jumps everywhere.
In this case, an intelligent partitioning strategy developed from the system knowledge
would be required to make the function smoother.

In summary, the PARL-MMO method has good performance in most of the benchmark
functions for capturing multiple global optimal solutions.

4.3. Effect of Local Optima

The PARL-MMO method is applied to functions F8 (one-dimensional increasing
optima) and F9 (Rastrigin function), which have only one global optimum and multiple
local optima with different qualities, i.e., different objective function values. In this section,
the accuracy level ε is set as 1 × 10−4 and 500 replications are executed. Figure 8 shows the
frequencies of different optima being found as the total budget size grows. In the Rastrigin
function, similar performance is observed for optimal solutions having the same objective
function values due to the symmetry property. Thus, to make the figure clear, they are
combined as a single line. In the legend, the number in bold shows the number of optimal
solutions having this objective function value. Many other local optimal solutions of the
Rastrigin function with worse objective function values are not all found due to the budget
limitation. Thus, they are not plotted in Figure 8.

306

Mathematics 2023, 11, 17

Figure 8. The frequencies of local optima of different qualities being found as the total budget size
increases. The number in bold shows the number of optima having this objective function value. A
total of 500 replications are executed.

It can be found from Figure 8 that, in the studied cases, the global optimum and the
high-quality local optima have higher frequencies to be found than low-quality local optima
when the available budget size is small. As the total budget size increases, the rest of the local
optima will be found subsequently according to their objective function values. This is one of
the features of the proposed method. Other multimodal optimization methods either cannot
store local optima, e.g., MOMMOP [59], LAM-ACO [46], and EMO-MMO [68], or optima
with different qualities are considered equally important, e.g., [55].

4.4. Schaffer’s Function

In this section, the PARL-MMO method is applied to Problem F10, in which the local
optimal solution is not a single point. There is only one global optima f (0) = 0 and there
are several regions in which all solutions are local optimal solutions with slightly worse
objective function values. The optimal solutions located in the same circle have the same
objective function values, which are 0.0097, 0.0372, 0.0782, and 0.1270 from inner circle to
outer circle, respectively.

Figure 9 shows the partition states and the obtained optima, i.e., the solutions in Sopt,
as the total budget size N increases. Unlike EA-based methods, the number of optimal
solutions contained in the optimal solution set provided by the proposed method can grow
without limit. Multiple local optimal solutions can be captured and the density of the
solutions is affected by the size of the nonpartitionable regions and the distance parameter
r in Algorithm 3. As discussed in the previous section, the inner circles are found earlier
than outer circles.

307

Mathematics 2023, 11, 17

Figure 9. The partition states (a square indicates a region) and the obtained optima (the red crosses)
as the total budget size N increases for the Schaffer’s function minimization problem.

It should be noticed that if the optimal area is flat in all the dimensions, the variances
of all regions (broad and partitionable) within this area will be zero. These regions will not
reach the smallest size, since zero weights are assigned according to Equation (5). Thus,
the solutions within these regions are not considered as potential optimal solutions in the
algorithm. In this situation, an archive can be created to store all the partitionable regions
with a good mean and a very low variance.

4.5. Computational Time

In this section, the PAR-MMO method, in which local search is not included, is applied
to Problem F4(2,··· ,2) (five dimensions) with ε = 1 × 10−4. A total of 20 independent
replications are executed in Matlab R2020a on a computer (Intel(R) Core(TM) i7-7700U
CPU @ 3.6 GHz and 16 GB of RAM). Figure 10 shows how the average computational
time changes as the total budget size increases. It can be found that the computational
time increases quadratically as discussed in Section 2.3 (R2 = 100.0% for the quadratic
regression). Although the proposed method will become time-consuming when the total
budget size is very large, it is still efficient in the studied case (on average, 121 s for a
budget of size 1 × 106) and the computational time climbs slowly before the total budget
size reaches one million.

Figure 10. The average computational time required for the proposed method in Problem F4(2,··· ,2)
as the total budget increases. A total of 20 replications are executed.

5. Application

The optimal control problem of a nonlinear stirred tank reactor [72] is considered in
this section. The chemical process can be modeled by the following differential equations:

ẋ1 = −(2 + u)(x1 + 0.25) + (x2 + 0.5) exp
(

25x1

x1 + 2

)
, (8)

308

Mathematics 2023, 11, 17

ẋ2 = 0.5− x2 − (x2 + 0.5) exp
(

25x1

x1 + 2

)
, (9)

ẋ3 = x2
1 + x2

2 + 0.1u2. (10)

where u(t), u(t) ∈ [0.0, 5.0] is the flow rate of the cooling fluid, x1(t) is the dimension-
less steady temperature, x2(t) is the deviation from dimensionless steady concentration,
and the interval of integration is 0 ≤ t ≤ 0.78. The performance index to minimize is
f = x3(0.78), which can be evaluated using ode45 in Matlab, and the initial condition is
x1(0) = 0.09, x2(0) = 0.09, x3(0) = 0. The problem has a global optimum x3(0.78) = 0.13309
and a local optimum x3(0.78) = 0.24442. These two values are directly associated with two
different control trajectories [72].

To solve the problem, the time interval is discretized into 13 time slots in order to
obtain a reasonably good integration accuracy, and constant control is used within a time
slot. Then, u(t) becomes 13 decision variables [u(1), u(2), · · · , u(13)]T . The PARLMMO
method is applied with α = 0.3, n0 = 3, nmax = 8, Δ = 3. The edge threshold that is
considered as nonpartitionable is set to 0.8 and the stop threshold of the local search is set
as 0.01. The maximum budget size is 1 × 105.

Twenty replications are carried out. The optimum is regarded as found only when
the algorithm recognizes that the point is an optimum and saves it in Sopt. Table 4 shows
the number of the replications that find each optimum, the average budget to find each
optimum, and the average absolute percentage gap of the objective function value com-
pared to the real optimum (0.13309 and 0.24442). It should be noticed that the gap could be
caused by the precision of the captured solution, the calculation of the integration, and the
discretization of u(t).

Table 4. The results of the nonlinear stirred tank reactor control problem (20 replications).

PARL-MMO Successful Replications Average Budget
Average Absolute
Percentage Gap

Global optimum 20 34,156 1.8%
Local optimum 3 771 0.5%

MOMMOP Successful Replications Average Budget
Average Absolute
Percentage Gap

Global optimum 20 - 1.4%
Local optimum 0 - -

For comparison purpose, the MOMMOP method [59], which outperforms other meth-
ods in the benchmark functions, is also applied with population size 30, mutation factor 0.5,
crossover index 0.7, crowded radius 0.01, and maximum budget size 1 × 105. The optimal
solution is considered as captured if it is contained in the Pareto set.

The first comment is that the global optimum is captured in all replications. In addition,
no points other than these two optimal solutions appear in the final optimization set. This
means that the algorithm will not mislead the users with fake optima.

However, the local optimum is captured only in three replications. This is because
the local optimum is 84% worse than the global optimum. Thus, the area around the local
optimum is not considered as promising by the algorithm, unless other areas with better
objective function values have not been discovered or have been exploited. In this case,
according to the budget size required to find each optimum, the area around the local
optimum is only searched before the area around the global optimum is discovered. This
result is consistent with the feature of the algorithm that focuses on the global optima and
the high-quality local optima. When only good solutions are of interest, the algorithm
would not waste budget to search for optima with poor objective functions. However, this
may become a disadvantage when all optima (no matter if good or poor) are required.

The MOMMOP method is proposed for seeking multiple global optimal solutions.
Thus, all points in the Pareto set are points around the global optimum, and the local
optimum is not identified in any replication. The best solution in the Pareto set is used to

309

Mathematics 2023, 11, 17

calculate the average absolute percentage gap. This gap is less than the PARL-MMO. A
possible reason for this is that the function around the global optimum is not smooth due
to the discretization of the integration. Therefore, the local search may be trapped when
refining the found solution in the PARL-MMO method. This may be improved by using
different algorithms, such as EA, in the refining phase.

6. Conclusions

A partition-based random search method is proposed, in which by controlling the
partition rates of different regions, promising areas are exploited probabilistically earlier
than nonpromising areas. Multiple optimal solutions (both global and local) can be found
and stored. It does not require prior knowledge about the number of optima in the studied
problem and it is not sensitive to the distance parameter.

Numerical results show that, by cooperating with local search, the proposed method
has good performance in finding multiple global optimal solutions in 14 benchmark func-
tions compared to four state-of-the-art methods. In problems containing local optima of
different qualities, i.e., different objective function values, high-quality local optima will be
found earlier than low-quality optima. Therefore, it will focus on exploiting global optima
and high-quality local optima when the budget is not quite sufficient. In addition, the
proposed method can also deal with optimization problems that exist in regions where all
solutions are optimal solutions.

One of the limitations of the proposed method is that a large amount of calculation
memory is needed because all existing regions and all sampled solutions are stored. The
increased number of regions also makes the computational time increase quadratically as
the total budget size increases, although it is still efficient when the total budget size is
not extremely large. Therefore, the pruning of the stored regions is one of the directions
of further work. The other limitation is introduced by the property of the partition-based
random search framework. Partition-based methods are efficient for problems in which
each decision variable has a large search space. However, it could be inefficient for high-
dimensional problems if the partition strategy is simply partitioning each dimension into
several ranges. In this case, intelligent partition strategies should be developed based
on the features of the studied problem to improve the efficiency of the algorithm. The
efficiency of the proposed method could be highly affected by selection of the partition
strategy.

The future development includes several directions. The first one is the development of
an algorithm for the deletion of less interesting regions to solve the problem of quadratically
increased computational time. The second one is adopting an adaptive α value in the
proposed method. As discussed in the paper, a low α value focuses more on exploration,
whereas a high α value focuses more on exploitation. Therefore, an increasing α value
may improve the efficiency of the proposed method. The third one is to deal with the
optimization problems with constraints. Although the constraints can be handled by
manipulating the sampling strategy to avoid the sampling of infeasible solutions, this action
may be difficult for some applications. Penalty function is another common way to deal
with constraints, but the regions containing the boundary may have biased performance
estimates, which may affect the proposed method. Therefore, an adaptive penalty function
to deal with the constraints in the proposed method will be an interesting research direction.
The last one is extending the method to optimization problems with stochastic objective
function or constraints.

Author Contributions: All the authors contributed to the conceptualization of this research. Z.L. also
contributed to the development of the methodology, software coding, draft writing, and validation of
results. A.M. also contributed to the supervision of the research, development of the methodology
and validation of results. S.D. also ncontributed to the validation of results, funding acquisition and
administration. E.S. also contributed to the validation of results and editing. All authors have read
and agreed to the published version of the manuscript.

310

Mathematics 2023, 11, 17

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
52275499) and the National key R&D plan of China (No. 2022YFF0605700).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Selected Benchmark Functions

The functions considered for numerical experiments are here summarized and show
in Figure A1.
F1: One-dimensional equal optima

f (x) = 1− sin6(5πx), x ∈ [0, 1].

Property: Five global optima evenly distributed: x∗i = 0.2i− 0.1 that f (x∗i) = 0.

F2: Himmelblau’s function

f (x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2, xi ∈ [−6, 6], i = 1, 2.

Property: Four global optima with two closer to each other: x∗1 = (3.0, 2.0), x∗2 =
(−2.805118, 3.131312), x∗3 = (−3.779310,−3.283186) and x∗4 = (3.584428,−1.848126)
that f (x∗i) = 0.

F3: Six-hump camel back

f (x) = 4((4− 2.1x2
1 + x4

1/3)x2
1 + x1x2 + (4x2

2 − 4)x2
2), x1 ∈ [−1.9, 1.9], x2 ∈ [−1.1, 1.1].

Property: Two global optima: x∗1 = (0.0898,−0.7126) and x∗2 = (−0.0898, 0.7126) that
f (x∗i) = −4.1265. Four local optima: x∗3 = (1.7035,−0.7961) and x∗4 = (−1.7035, 0.7961)
that f (x∗i) = −0.8619 and x∗5 = (−1.6071,−0.5687) and x∗6 = (1.6071, 0.5687) that
f (x∗i) = 8.4170.

F4: Shubert function

f (x) = ∏d
i=1 ∑5

j=1 j cos((j + 1)xi + j), xi ∈ [−10, 10], ∀i.

Property: d · 3d global optima in 3d groups with d optima in each group and many
poor local optima. The global optima are f (x∗i) = −186.7309 for two dimensions and
f (x∗i) = −2709.0935 for three dimensions.

F5: Vincent function

f (x) = 1− 1
d ∑d

i=1 sin(10 log(xi)), xi ∈ [0.25, 10], ∀i.

Property: 6d global optima unevenly distributed:
x∗i1,··· ,id =

(
exp

(
(4i1−11)π

20

)
, · · · , exp

(
(4id−11)π

20

))
that f (x∗i) = 0.

F6: Modified Rastrigin function (k1, · · · , kd)

f (x) = ∑d
i=1(10 + 9 cos(2πkixi)), xi ∈ [0, 1], ∀i.

Property: ∏d
i=1 ki global optima evenly distributed: x∗i1,··· ,id =

(
2i1−1

2k1
, · · · , 2id−1

2kd

)
that

f
(

x∗i1,··· ,id

)
= d.

F7: Composition function

Property: A multimodal function composed of several basic functions; thus, different
functions’ properties are mixed together. More details can be found in [69]. The label
”F7(a-dD)” in the paper indicates the composition function a with d dimension.

F8: One-dimensional increasing optima

f (x) = 1− exp
(
−2 log(2)

(x−0.08
0.854

)2
)

sin6(5π(x3/4 − 0.05)), x ∈ [0.02, 1].

Property: One global optimum and four increasing local optima.

F9: Rastrigin function

f (x) = ∑d
i=1(x2

i − 10 cos(2πxi) + 10), xi ∈ [−5.12, 5.12], ∀i.

311

Mathematics 2023, 11, 17

Property: One global optimum: f (0) = 0, and 11d − 1 local optima with different
qualities.

F10: Schaffer’s function

f (x) = 0.5 +
sin2

(√
∑d

i=1 x2
i

)
−0.5

(1+0.001(∑d
i=1 x2

i))
2 , xi ∈ [−10, 10], ∀i.

Property: One global optimum f (0) = 0 and seven regions where all solutions are
local optimal.

Appendix B. Algorithm Parameter

The regions are considered as nonpartitionable regions when all edges are smaller
than values in Table A1 of Appendix B.

Figure A1. The surface plots of the selected benchmark functions. f4, f5, f6, f7, f9 only show 2D cases.

Table A1. The edge threshold of nonpartitionable regions.

Func \ ε 0.1 0.01 0.001 0.0001 Local Search

F1 2.3 × 10−2 7.5 × 10−3 2.3 × 10−3 7.5 × 10−4 4.0 × 10−2

F2 7.4 × 10−2 2.4 × 10−2 7.4 × 10−3 2.4 × 10−3 4.0 × 10−1

F3 8.5 × 10−2 2.8 × 10−2 8.5 × 10−3 2.8 × 10−3 1.5 × 10−1

F4(2D) 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 3.0 × 10−4 1.6 × 10−1

F4(3D) 2.0 × 10−3 6.4 × 10−4 2.0 × 10−4 6.4 × 10−5 1.6 × 10−1

F5(2D) 3.0 × 10−2 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 8.0 × 10−2

F5(3D) 3.0 × 10−2 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 8.0 × 10−2

F6(3,4) 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 3.0 × 10−4 4.0 × 10−2

F6(3,3,3) 9.0 × 10−3 3.0 × 10−3 9.0 × 10−4 3.0 × 10−4 4.0 × 10−2

F6(2,··· ,2) 1.1 × 10−2 3.4 × 10−3 1.1 × 10−3 3.4 × 10−4 7.0 × 10−2

F7(1-2D) 5.0 × 10−7 1.6 × 10−8 1.1 × 10−9 3.2 × 10−1 1.6 × 10−1

F7(2-2D) 1.6 × 10−6 5.6 × 10−8 1.8 × 10−9 5.5 × 10−1 1.6 × 10−1

F7(3-2D) 9.5 × 10−8 2.0 × 10−9 1.5 × 10−1 4.3 × 10−1 2.0 × 10−2

F7(3-3D) 9.0 × 10−8 2.5 × 10−9 1.4 × 10−1 3.8 × 10−1 2.0 × 10−2

F8 1.7 × 10−2 5.2 × 10−3 1.7 × 10−3 5.2 × 10−4 2.0 × 10−2

F9(2D) 3.0 × 10−2 1.0 × 10−2 3.0 × 10−3 1.0 × 10−3 1.0 × 10−1

F9(3D) 2.6 × 10−2 8.0 × 10−3 2.6 × 10−3 8.0 × 10−4 1.0 × 10−1

F10 4.0 × 10−1 4.0 × 10−1 2.0 × 10−1 8.0 × 10−2 4.0 × 10−1

312

Mathematics 2023, 11, 17

Appendix C. ANOVA

In this Appendix C the main effect plots and the ANOVA tables on functions, where
all the global optima could be found within the maximum budget, are presented (as
shown in Figure A2). The experimental settings are the same as in Section 4.1. A total of
500 replications are executed and divided into ten batches, except for Problem F6(2,··· ,2),
where 20 replications are executed. Similar to Problem F6(3,3,3), almost all factors have
significant effects on the algorithm, except some interactions. The effects of parameter nmax
and parameter Δ are larger than the effect of parameter α based on the F-values (except
for Problem F7(2-2D)), although the influence of parameter α is comparable to that of
parameter Δ on Problem F2. For Problem F7(2-2D), the influences of the three parameters
are comparable.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A2. The main effect plots and the ANOVA tables on different multimodal optimization
benchmark functions. (a) F1: One-dimensional equal optima. (b) F2: Himmelblau’s function. (c)
F3: Six-hump camel back. (d) F4(2D): Shubert function. (e) F6(3,4): Modified Rastrigin function.
(f) F6(2,··· ,2): Modified Rastrigin function. (g) F7(1-2D): Composition function 1. (h) F7(2-2D):
Composition function 2.

References

1. Hu, C.; Zhao, J.; Yan, X.; Zeng, D.; Guo, S. A MapReduce based Parallel Niche Genetic Algorithm for contaminant source
identification in water distribution network. Ad Hoc Netw. 2015, 35, 116–126. [CrossRef]

2. Forrester, A.I.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [CrossRef]

313

Mathematics 2023, 11, 17

3. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of bayesian
optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]

4. Qu, B.Y.; Liang, J.J.; Wang, Z.; Chen, Q.; Suganthan, P.N. Novel benchmark functions for continuous multimodal optimization
with comparative results. Swarm Evol. Comput. 2016, 26, 23–34. [CrossRef]

5. Li, X.; Epitropakis, M.G.; Deb, K.; Engelbrecht, A. Seeking multiple solutions: An updated survey on niching methods and their
applications. IEEE Trans. Evol. Comput. 2017, 21, 518–538. [CrossRef]

6. Koper, K.D.; Wysession, M.E.; Wiens, D.A. Multimodal function optimization with a niching genetic algorithm: A seismological
example. Bull. Seismol. Soc. Am. 1999, 89, 978–988. [CrossRef]

7. Kronfeld, M.; Dräger, A.; Aschoff, M.; Zell, A. On the benefits of multimodal optimization for metabolic network modeling. In
Proceedings of the German Conference on Bioinformatics 2009. Gesellschaft für Informatik eV, Halle (Saale), Germany, 28–30
September 2009.

8. Pérez, E.; Posada, M.; Herrera, F. Analysis of new niching genetic algorithms for finding multiple solutions in the job shop
scheduling. J. Intell. Manuf. 2012, 23, 341–356. [CrossRef]

9. Preuss, M.; Burelli, P.; Yannakakis, G.N. Diversified virtual camera composition. In Proceedings of the European Conference on
the Applications of Evolutionary Computation, Malaga, Spain, 11–13 April 2012; Springer: Berlin/Heidelberg, Germany, 2012,
pp. 265–274.

10. Kamyab, S.; Eftekhari, M. Feature selection using multimodal optimization techniques. Neurocomputing 2016, 171, 586–597.
[CrossRef]

11. Beasley, D.; Bull, D.R.; Martin, R.R. A sequential niche technique for multimodal function optimization. Evol. Comput. 1993,
1, 101–125. [CrossRef]

12. Parsopoulos, K.E.; Vrahatis, M.N. On the computation of all global minimizers through particle swarm optimization. IEEE Trans.
Evol. Comput. 2004, 8, 211–224. [CrossRef]

13. Vitela, J.E.; Castaños, O. A sequential niching memetic algorithm for continuous multimodal function optimization. Appl. Math.
Comput. 2012, 218, 8242–8259. [CrossRef]

14. Zhang, J.; Huang, D.S.; Lok, T.M.; Lyu, M.R. A novel adaptive sequential niche technique for multimodal function optimization.
Neurocomputing 2006, 69, 2396–2401. [CrossRef]

15. Li, L.; Hong-Qi, L.; Shao-Long, X. Particle swarm multi_optimizer for locating all local solutions. In Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June
2008, pp. 1040–1046.

16. Srinivas, M.; Patnaik, L.M. Genetic algorithms: A survey. Computer 1994, 27, 17–26. [CrossRef]
17. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
18. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
19. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
20. Pétrowski, A. A clearing procedure as a niching method for genetic algorithms. In Proceedings of the 3rd IEEE International

Conference on Evolutionary Computation (ICEC’96), Nayoya University, Nayoya, Japan, 20–22 May 1996; pp. 798–803.
21. Singh, G.; Deb, K. Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In Proceedings of the

8th Annual Conference on Genetic and eVolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 1305–1312.
22. Goldberg, D.E.; Richardson, J. Genetic algorithms with sharing for multimodal function optimization. In Proceedings of the

Second International Conference on Genetic algorithms and Their Applications, Hillsdale, NJ, USA, 28–31 July 1987; pp. 41–49.
23. Deb, K.; Goldberg, D.E. An investigation of niche and species formation in genetic function optimization. In Proceedings of the

Third International Conference on Genetic Algorithms, San Francisco, CA, USA, 4–7 June 1989; pp. 42–50.
24. Goldberg, D.E.; Wang, L. Adaptive niching via coevolutionary sharing. Genet. Algorithms Evol. Strategy Eng. Comput. Sci. 1997,

97007, 21–38.
25. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, University of California, Berkeley, CA, USA, 21 June–18 July 1965;
Volume 1, pp. 281–297.

26. Yin, X.; Germay, N. A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function
optimization. In Proceedings of the Artificial Neural Nets and Genetic Algorithms, Innsbruck, Austria, 14–16 April 1993;
pp. 450–457.

27. Mahfoud, S.W. Crowding and preselection revisited. In Proceedings of the PPSN, Amsterdam, The Netherlands, April 1992;
Volume 2, pp. 27–36.

28. Mengshoel, O.J.; Goldberg, D.E. Probabilistic crowding: Deterministic crowding with probabilistic replacement. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO1999), Orlando, FL, USA, 13–17 July 1999; Volume 1, pp. 409–416.

29. Harik, G.R. Finding Multimodal Solutions Using Restricted Tournament Selection. In Proceedings of the ICGA, Pittsburgh, PA,
USA, 15–19 July 1995; pp. 24–31.

314

Mathematics 2023, 11, 17

30. Li, J.P.; Balazs, M.E.; Parks, G.T.; Clarkson, P.J. A species conserving genetic algorithm for multimodal function optimization.
Evol. Comput. 2002, 10, 207–234. [CrossRef]

31. Li, J.P.; Wood, A. Random search with species conservation for multimodal functions. In Proceedings of the 2009 IEEE Congress
on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 3164–3171.

32. Li, X. Niching without niching parameters: Particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 2010,
14, 150–169. [CrossRef]

33. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International, Symposium on
Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

34. Das, S.; Maity, S.; Qu, B.Y.; Suganthan, P.N. Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-
art. Swarm Evol. Comput. 2011, 1, 71–88. [CrossRef]

35. Zhao, H.; Zhan, Z.H.; Lin, Y.; Chen, X.; Luo, X.N.; Zhang, J.; Kwong, S.; Zhang, J. Local binary pattern-based adaptive differential
evolution for multimodal optimization problems. IEEE Trans. Cybern. 2019, 50, 3343–3357. [CrossRef]

36. Chen, Z.G.; Zhan, Z.H.; Wang, H.; Zhang, J. Distributed individuals for multiple peaks: A novel differential evolution for
multimodal optimization problems. IEEE Trans. Evol. Comput. 2019, 24, 708–719. [CrossRef]

37. Wang, Z.J.; Zhan, Z.H.; Lin, Y.; Yu, W.J.; Wang, H.; Kwong, S.; Zhang, J. Automatic niching differential evolution with contour
prediction approach for multimodal optimization problems. IEEE Trans. Evol. Comput. 2020, 24, 114–128. [CrossRef]

38. Tsutsui, S.; Fujimoto, Y.; Ghosh, A. Forking genetic algorithms: GAs with search space division schemes. Evol. Comput. 1997,
5, 61–80. [CrossRef] [PubMed]

39. Ursem, R.K. Multinational evolutionary algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1633–1640.

40. Siarry, P.; Pétrowski, A.; Bessaou, M. A multipopulation genetic algorithm aimed at multimodal optimization. Adv. Eng. Softw.
2002, 33, 207–213. [CrossRef]

41. Brits, R.; Engelbrecht, A.P.; Bergh, F.V.D. A niching particle swarm optimizer. In Proceedings of the 4th Asia-Pacific Conference
on Simulated Evolution And Learning, Singapore, 18–22 November 2002; Volume 2.

42. Parrott, D.; Li, X. Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol.
Comput. 2006, 10, 440–458. [CrossRef]

43. Wang, J.; Xie, Y.; Xie, S.; Chen, X. Cooperative particle swarm optimizer with depth first search strategy for global optimization of
multimodal functions. Appl. Intell. 2022, 52, 10161–10180. [CrossRef]

44. Lin, X.; Luo, W.; Xu, P.; Qiao, Y.; Yang, S. PopDMMO: A general framework of population-based stochastic search algorithms for
dynamic multimodal optimization. Swarm Evol. Comput. 2022, 68, 101011. . [CrossRef]

45. Alami, J.; El Imrani, A.; Bouroumi, A. A multipopulation cultural algorithm using fuzzy clustering. Appl. Soft Comput. 2007,
7, 506–519. [CrossRef]

46. Yang, Q.; Chen, W.N.; Yu, Z.; Gu, T.; Li, Y.; Zhang, H.; Zhang, J. Adaptive multimodal continuous ant colony optimization. IEEE
Trans. Evol. Comput. 2017, 21, 191–205. [CrossRef]

47. Wang, Z.J.; Zhan, Z.H.; Lin, Y.; Yu, W.J.; Zhang, J. Dual-strategy differential evolution with affinity propagation clustering for
multimodal optimization problems. IEEE Trans. Evol. Comput. 2018, 22, 894–908. [CrossRef]

48. Bird, S.; Li, X. Adaptively choosing niching parameters in a PSO. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 3–10.

49. Shir, O.M.; Bäck, T. Niche radius adaptation in the cma-es niching algorithm. In Parallel Problem Solving from Nature-PPSN IX;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 142–151.

50. Nayak, S.; Kar, S.K.; Dash, S.S.; Vishnuram, P.; Thanikanti, S.B.; Nastasi, B. Enhanced Salp Swarm Algorithm for Multimodal
Optimization and Fuzzy Based Grid Frequency Controller Design. Energies 2022, 15, 3210. . [CrossRef]

51. Yao, J.; Kharma, N.; Zhu, Y.Q. On clustering in evolutionary computation. In Proceedings of the 2006 IEEE International
Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1752–1759.

52. Wessing, S.; Preuss, M.; Rudolph, G. Niching by multiobjectivization with neighbor information: Trade-offs and benefits. In
Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 103–110.

53. Yao, J.; Kharma, N.; Grogono, P. BMPGA: A bi-objective multi-population genetic algorithm for multi-modal function optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–4 September 2005; Volume 1, pp. 816–823.

54. Yao, J.; Kharma, N.; Grogono, P. Bi-objective multipopulation genetic algorithm for multimodal function optimization. IEEE
Trans. Evol. Comput. 2010, 14, 80–102.

55. Deb, K.; Saha, A. Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach.
In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, Portland, OR, USA, 7–11 July 2010;
pp. 447–454.

56. Deb, K.; Saha, A. Multimodal optimization using a bi-objective evolutionary algorithm. Evol. Comput. 2012, 20, 27–62. [CrossRef]
[PubMed]

57. Basak, A.; Das, S.; Tan, K.C. Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean
distance-based selection. IEEE Trans. Evol. Comput. 2013, 17, 666–685. [CrossRef]

58. Bandaru, S.; Deb, K. A parameterless-niching-assisted bi-objective approach to multimodal optimization. In Proceedings of the
2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 95–102.

315

Mathematics 2023, 11, 17

59. Wang, Y.; Li, H.X.; Yen, G.G.; Song, W. MOMMOP: Multiobjective optimization for locating multiple optimal solutions of
multimodal optimization problems. IEEE Trans. Cybern. 2015, 45, 830–843. [CrossRef] [PubMed]

60. Yu, W.J.; Ji, J.Y.; Gong, Y.J.; Yang, Q.; Zhang, J. A tri-objective differential evolution approach for multimodal optimization. Inf.
Sci. 2018, 423, 1–23. [CrossRef]

61. Shi, L.; Olafsson, S. Nested Partitions Method, Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2009.
62. Hong, L.J.; Nelson, B.L. Discrete optimization via simulation using COMPASS. Oper. Res. 2006, 54, 115–129. [CrossRef]
63. Xu, J.; Nelson, B.L.; Hong, L.J. An adaptive hyperbox algorithm for high-dimensional discrete optimization via simulation

problems. INFORMS J. Comput. 2013, 25, 133–146. [CrossRef]
64. Zabinsky, Z.B.; Wang, W.; Prasetio, Y.; Ghate, A.; Yen, J.W. Adaptive probabilistic branch and bound for level set approximation.

In Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 11–14 December 2011; pp. 4146–4157.
65. Zabinsky, Z.B.; Huang, H. A partition-based optimization approach for level set approximation: Probabilistic branch and bound.

In Women in Industrial and Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 113–155.
66. Lin, Z.; Matta, A.; Du, S. A new partition-based random search method for deterministic optimization problems. In Proceedings

of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; pp. 3504–3515.
67. Lin, Z.; Matta, A.; Du, S. A budget allocation strategy minimizing the sample set quantile for initial experimental design. IISE

Trans. 2020, 53, 39–57. [CrossRef]
68. Cheng, R.; Li, M.; Li, K.; Yao, X. Evolutionary multiobjective optimization-based multimodal optimization: Fitness landscape

approximation and peak detection. IEEE Trans. Evol. Comput. 2018, 22, 692–706. [CrossRef]
69. Li, X.; Engelbrecht, A.; Epitropakis, M.G. Benchmark Functions for CEC’2013 Special Session and Competition on Niching Methods for

Multimodal Function Optimization; Technical Report; RMIT University, Evolutionary Computation and Machine Learning Group:
Melbourne, Australia, 2013.

70. Socha, K.; Dorigo, M. Ant Colony Optimization For Continuous Domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [CrossRef]
71. Cheng, R.; Jin, Y. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 2015, 45, 191–204. [CrossRef]

[PubMed]
72. Ali, M.M.; Storey, C.; Torn, A. Application of stochastic global optimization algorithms to practical problems. J. Optim. Theory

Appl. 1997, 95, 545–563. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

316

Citation: Nadimi-Shahraki, M.H.;

Zamani, H.; Fatahi, A.; Mirjalili, S.

MFO-SFR: An Enhanced Moth-Flame

Optimization Algorithm Using an

Effective Stagnation Finding and

Replacing Strategy. Mathematics 2023,

11, 862. https://doi.org/10.3390/

math11040862

Academic Editor: Jian Dong

Received: 2 December 2022

Revised: 22 January 2023

Accepted: 3 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

MFO-SFR: An Enhanced Moth-Flame Optimization Algorithm
Using an Effective Stagnation Finding and Replacing Strategy

Mohammad H. Nadimi-Shahraki 1,2,*, Hoda Zamani 1,2, Ali Fatahi 1,2 and Seyedali Mirjalili 3,4,*

1 Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
2 Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
3 Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia,

Brisbane 4006, Australia
4 Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
* Correspondence: nadimi@iaun.ac.ir (M.H.N.-S.); ali.mirjalili@torrens.edu.au (S.M.)

Abstract: Moth-flame optimization (MFO) is a prominent problem solver with a simple structure that
is widely used to solve different optimization problems. However, MFO and its variants inherently
suffer from poor population diversity, leading to premature convergence to local optima and losses
in the quality of its solutions. To overcome these limitations, an enhanced moth-flame optimization
algorithm named MFO-SFR was developed to solve global optimization problems. The MFO-SFR
algorithm introduces an effective stagnation finding and replacing (SFR) strategy to effectively
maintain population diversity throughout the optimization process. The SFR strategy can find
stagnant solutions using a distance-based technique and replaces them with a selected solution from
the archive constructed from the previous solutions. The effectiveness of the proposed MFO-SFR
algorithm was extensively assessed in 30 and 50 dimensions using the CEC 2018 benchmark functions,
which simulated unimodal, multimodal, hybrid, and composition problems. Then, the obtained
results were compared with two sets of competitors. In the first comparative set, the MFO algorithm
and its well-known variants, specifically LMFO, WCMFO, CMFO, ODSFMFO, SMFO, and WMFO,
were considered. Five state-of-the-art metaheuristic algorithms, including PSO, KH, GWO, CSA, and
HOA, were considered in the second comparative set. The results were then statistically analyzed
through the Friedman test. Ultimately, the capacity of the proposed algorithm to solve mechanical
engineering problems was evaluated with two problems from the latest CEC 2020 test-suite. The
experimental results and statistical analysis confirmed that the proposed MFO-SFR algorithm was
superior to the MFO variants and state-of-the-art metaheuristic algorithms for solving complex global
optimization problems, with 91.38% effectiveness.

Keywords: global optimization problems; metaheuristic algorithms; moth-flame optimization;
premature convergence; population diversity

MSC: 68T20

1. Introduction

Global optimization problems are complex and characterized by various properties,
for instance, they can be non-linear, non-separable, symmetric, asymmetrical, smooth with
narrow ridges, unimodal, and multimodal, and can involve non-differentiable functions
and high dimensionality [1,2]. These properties create challenges for existing optimization
algorithms, and finding the global optimum is one of the long-standing goals in this
area of study. To overcome such challenges, a series of metaheuristic algorithms have
been introduced using various innovative approaches. Metaheuristic algorithms have
exhibited impressive performance in exploring the problem space and approximating the
promising regions in reasonable timeframes. They have been widely improved upon and
adapted to solve optimization problems in diverse fields such as computer science [3,4],

Mathematics 2023, 11, 862. https://doi.org/10.3390/math11040862 https://www.mdpi.com/journal/mathematics
317

Mathematics 2023, 11, 862

engineering [5,6], and medicine [7–9]. Metaheuristic algorithms can be classified into two
groups: single-solution-based and population-based algorithms [10,11]. Single-solution-
based metaheuristic algorithms are more oriented towards exploitation searches and they
manipulate a single solution during the optimization process, which increases its potential
to easily become stuck in local optima [12]. To solve this challenge, population-based
metaheuristic algorithms were developed to be more exploration-oriented and to share
the information in order to promote significant diversification in the search space [13,14].
Based on the source of inspiration, these algorithms can be classified as evolutionary-based,
physics-based, human-based, and swarm intelligence-based algorithms [15,16].

Evolutionary-based algorithms involve a heuristic approach inspired by the biolog-
ical evolution of species, such as animals, insects, and plants in nature [17,18]. Some
prominent optimizers in this group are genetic algorithms [19], differential evolution [20],
and the evolution strategy [21]. Physics-based algorithms are defined based on the main
concepts of mathematics and physics, such as quantum physics [22–24], gravity [25,26],
and optics [27], with the aim of performing a meaningful search in the problem space.
Human-based algorithms simulate various human activities in order to generate innovative
solutions in solving optimization problems. The imperialist competitive algorithm [28],
the harmony search algorithm [29], teaching learning-based optimization [30], brain storm
optimization (BSO) [31], the soccer league competition algorithm [32], the volleyball pre-
mier league algorithm [33], poor and rich optimization (PRO) [34], and past present future
(PPF) [35] are some of the state-of-the-art optimizers in this group. Swarm intelligence-
based optimization algorithms originated from the collective and self-organized behavior
of unsophisticated agents such as insects, terrestrial, fish, and birds [36,37]. Ant colony
optimization [38] and particle swarm optimization [39] were the most successful swarm
intelligence-based optimization algorithms proposed in the 1990s. From the 21st century
onwards, some new algorithms have been put forward in this group, such as artificial bee
colony (ABC) [40], cuckoo search (CS) [41], the whale optimization algorithm (WOA) [42],
elephant herding optimization (EHO) [43], moth-flame optimization (MFO) [44], the
horse herd optimization algorithm (HOA) [45], the quantum-based avian navigation opti-
mizer algorithm (QANA) [46], the African vultures optimization algorithm [47], farmland
fertility [48], dwarf mongoose optimization (DMO) [49], the starling murmuration opti-
mizer (SMO) [50], and the artificial gorilla troops optimizer [51].

Most population-based metaheuristic algorithms lack mechanisms that can maintain
population diversity and the imbalance between search strategies and premature conver-
gence problems. Hence, many effective mechanisms have been proposed to alleviate the
weaknesses of these algorithms [52,53]. The artificial bee colony algorithm (ABC) is a
prominent population-based metaheuristic algorithm that suffers from poor local search
performance. Hence, Zhu et al. [54] proposed the Gbest-guided ABC (GABC) algorithm to
incorporate information on the global best solution into the search strategy in order to im-
prove the ability to exploit the algorithm. Other algorithms that have achieved significant
performance improvements in terms of their local search ability are the quick artificial bee
colony (qABC), best-so-far ABC [55], and grey artificial bee colony (GABC) algorithms [56].
Nadimi-Shahraki et al. [57] introduced a diversity-maintained multi-trial vector-differential
evolution algorithm to increase population diversity and suspend the risk of premature
convergence during the evolutionary process.

The moth-flame optimization (MFO) algorithm was inspired by the navigation be-
havior of moths toward a light source in nature and is used to solve global optimization
problems. The MFO algorithm benefits from having a straightforward structure and a
small number of control parameters, which increases its versatility. However, the MFO
algorithm suffers from problems related to low population diversity [58], which leads it to
become stuck in unpromising regions and to achieve low-quality solutions. Many MFO
variants have been developed by introducing and hybridizing different search strategies and
operators to overcome such challenges. Kaur et al. [59] proposed an enhanced moth flame
optimization (E-MFO) method to solve global optimization problems. The E-MFO algorithm

318

Mathematics 2023, 11, 862

applied a Cauchy distribution function and the influence of the best flame parameter to
enhance its exploration and exploitation capabilities, respectively. Moreover, an adaptive
step size and division of iterations were proposed to balance search strategies. Li et al. [60]
presented the Lévy-flight moth-flame optimization (LMFO) algorithm to prevent premature
convergence into local optima and enable a trade-off between the algorithm’s exploration
and exploitation abilities during the search process. Khalilpourazari et al. [61] introduced
the WCMFO algorithm, which is a hybridized form of two algorithms, the water cycle
and moth-flame optimization algorithms, to increase the exploitation ability of MFO and
the exploration ability of the water cycle algorithm. To cope with the weaknesses of MFO,
Hongwei et al. [62] proposed chaos-enhanced moth-flame optimization (CMFO) using ten
chaotic maps. The chaotic maps are applied in population initialization, boundary handling,
and the tuning of the distance parameter. Other variants of MFO are sine-cosine moth-flame
optimization (SMFO) [63], combining MFO with Gaussian, Cauchy, and Lévy mutations
(LGCMFO) [64], the enhancement of the local search mechanism based on shuffled frog
leaping and a death mechanism with MFO (ODSFMFO) [65], and the chaotic local search
and Gaussian mutation-enhanced MFO (CLSGMFO) approach [66].

Although the mentioned MFO variants have attained effective modifications in per-
formance, they may still suffer from poor population diversity, which leads to premature
convergence to local optima and a decrease in the quality of the algorithms’ solutions when
tackling complex optimization problems. Moreover, due to the approximate nature of
metaheuristic algorithms, there is always an opportunity for improvement in their search
strategies. Therefore, this study was devoted to proposing an enhanced moth-flame opti-
mization algorithm named MFO-SFR with the aim of solving global optimization problems.
The proposed MFO-SFR algorithm is equipped with an effective stagnation finding and
replacing (SFR) strategy to establish diversity throughout the search process and overcome
the drawbacks of previous MFO approaches. Moreover, the boundary handling of the MFO
algorithm is rectified by generating new random solutions in the range of the problem
space. Overall, the main contributions of this study can be summarized as follows.

• We propose the MFO-SFR algorithm, boosting the performance and enriching the
diversity of the canonical MFO;

• We introduce an effective stagnation finding and replacing (SFR) strategy to boost the
performance of the search process; and

• We introduce an archive to incorporate the representative and the global best flames
throughout the search process in order to enrich the diversity.

The performance of the proposed MFO-SFR algorithm was assessed with the CEC
2018 test functions [67] in 30 and 50 dimensions. Then, the MFO-SFR algorithm was
compared with two sets of MFO variants and well-known optimizers. In the first set of
contender algorithms, the canonical MFO [44] and its variants— Lévy-flight moth-flame
optimization LMFO [60], an efficient hybrid algorithm based on the water cycle and moth-
flame algorithms (WCMFO) [61], chaos-enhanced moth-flame optimization (CMFO) [62],
death mechanism-based moth–flame optimization (ODSFMFO) [65], the synthesis of the
moth-flame optimizer with sine cosine mechanisms (SMFO) [63], and the hybrid of whale
and moth-flame optimization (WMFO) [68]—were selected. In the second set, the particle
swarm optimization (PSO) [39], krill herd (KH) [69], grey wolf optimization (GWO) [70], the
crow search algorithm (CSA) [71], and the horse herd optimization algorithm (HOA) [45]
were considered. Furthermore, the results obtained using the proposed and contender
algorithms were statistically analyzed using the Friedman test. Ultimately, two well-known
mechanical engineering problems from the CEC 2020 test suite [72] were considered to
assess the applicability of MFO-SFR in solving real-world optimization problems. The
experimental results indicated that the proposed MFO-SFR algorithm boosted the per-
formance of the canonical MFO by using an effective stagnation finding and replacing
(SFR) strategy and an archive construction mechanism. Moreover, the statistical analysis
revealed that the performance of the proposed MFO-SFR algorithm was superior to that of
the contender algorithms.

319

Mathematics 2023, 11, 862

The structure of the paper is as follows. Section 2 contains a review of related literature.
Section 3 presents the MFO algorithm. In Section 4, the proposed MFO-SFR algorithm
is explained in detail. Section 5 thoroughly evaluates the MFO-SFR’s performance in
addressing CEC 2018 benchmark test functions. Section 6 evaluates the applicability of the
proposed MFO-SFR using two real-world mechanical engineering problems from the latest
CEC 2020 test suite. Finally, Section 6 summarizes the results and outlines possible future
directions of research.

2. Related Works

MFO variants used to solve different optimization problems are reviewed in this
section.

Li et al. [60] boosted the performance of the canonical MFO by using the Lévy-flight
strategy. Nadimi-Shahraki et al. [73] proved that the canonical MFO suffers from premature
convergence, low population diversity, and an imbalance between search strategies in
solving global optimization problems. Therefore, they proposed an improved moth-flame
optimization (I-MFO) algorithm to cope with the abovementioned deficiencies. The I-MFO
algorithm is equipped with the adapted wandering-around search strategy to maintain
population diversity and escape from local optima. The chaos-enhanced MFO (CMFO) [62]
algorithm was proposed to improve the performance of the MFO algorithm by incorporat-
ing chaos maps into population initialization, boundary handling, and parameter tuning.
Pelusi et al. [74] proposed the improved moth-flame optimization (IMFO) algorithm using
a hybrid phase, a dynamic crossover mechanism, and a fitness-dependent weight factor.
The hybrid phase achieved a good trade-off between the exploration and exploitation
phases, the dynamic crossover mechanism enhanced the population diversity, and the
fitness-dependent weight factor improved the exploitation phase.

Xu et al. [64] proposed a series of MFO variants by combining the standard MFO
algorithm with Gaussian mutation, Cauchy mutation, and Lévy mutation. Gaussian
mutation was employed to improve its neighborhood-informed capability, Cauchy mu-
tation was used to enhance its global exploration ability, and the Lévy mutation was
employed to increase the randomness in the search process. Li et al. [65] proposed the
ODSFMFO algorithm, which consists of an improved flame generation mechanism based
on opposition-based learning and the differential evolution algorithm, an enhanced local
search mechanism based on the shuffled frog leaping algorithm and a death mechanism.
This algorithm maintained the quality of the population through opposition-based learning,
population diversity using the differential evolution algorithm, the global search ability
through the use of the shuffled frog leaping algorithm, and provided an escape from lo-
cal optima via the use of the death mechanism. Nadimi-Shahraki et al. [75] proposed a
migration-based moth–flame optimization (M-MFO) algorithm with a random migration
operator, a guided migration operator, and a guiding archive to alleviate the low population
diversity and poor exploration ability of MFO.

Ma et al. [76] developed an improved moth-flame optimization algorithm to pre-
vent premature convergence to local minima. This algorithm uses the inertia weight of
diversity feedback control to strike a balance between search strategies and maintain
population diversity. Moreover, the mutation probability was added to improve the
optimization performance. To enhance the diversity in the position of flames and the
search strategy used for moths, Zhao et al. [77] developed an improved MFO (IMFO) algo-
rithm. In this algorithm, the flames are generated through orthogonal opposition-based
learning, and their positions are updated using a linear search and a mutation operator.
Sapre et al. [78] introduced an opposition-based moth flame optimization method with
Cauchy mutation and evolutionary boundary constraint handling (OMFO) to bypass the lo-
cal optima and accelerate the convergence speed towards promising areas. Sahoo et al. [79]
proposed a modified dynamic-opposite-learning-based MFO algorithm named m-MFO,
using a modified dynamic-opposite learning strategy to enrich the performance of MFO
in solving optimization problems. Other MFO variants include the double-evolutionary

320

Mathematics 2023, 11, 862

learning MFO algorithm (DELMFO) [80], the improved moth-flame optimization algorithm
(IMFO) [81], the hybrid MFO and hill climbing (MFOHC) method [82], an enhanced MFO
algorithm integrated with orthogonal learning and the Broyden–Fletcher–Goldfarb–Shanno
(BFGSOLMFO) method [83], and quantum-behaved simulated annealing algorithm-based
moth-flame optimization (QSMFO) [84].

Due to the simple structure of MFO and its low number of control parameters, it has
great potential to solve real-world applications. However, the canonical MFO critically
suffers from local optimum trapping and premature convergence during the optimization
process, which results in low-quality solutions [85–87]. Therefore, many improved and hy-
brid variants have been developed to overcome these challenges. Sayed et al. [88] presented
the SA-MFO algorithm, a hybrid of the MFO approach and the simulated annealing (SA)
algorithm, to escape from local optima using SA and accelerate the search process using
MFO. Many researchers have applied the MFO algorithm to solve the optimal power flow
(OPF) problem [89–91]. An effective hybridization of the whale optimization algorithm and
a modified moth-flame optimization algorithm named WMFO [68] was proposed to solve
diverse scales of the OPF problem. Sahoo et al. [92] proposed a hybrid MFO and butterfly
optimization algorithm (h-MFOBOA) to overcome shortcomings such as a slow convergence
speed and poor exploitation ability in both optimizers. Sattar Khan et al. [93] adapted the
MFO algorithm for an integrated power plant system containing stochastic wind. MFO
has been applied to the solution of problems related to fuel cells in a renewable active
distribution network [94], the identification of parameters for photovoltaic modules [95],
and fuel consumption in variable-cycle engines [96], with promising results.

3. Moth-Flame Optimization (MFO) Algorithm

Nocturnal moths use celestial light sources to navigate over long distances accurately.
They fly in a straight line with a constant angle toward the Moon or stars, and this behavior
is called transverse orientation. However, when a moth flies toward a nearby artificial
light, it thinks it is a star or the Moon. Therefore, the moth continually changes its flight
angle to keep going in a straight line toward the light, resulting in a spiral motion around
the artificial light. In 2015, this behavior was mathematically modeled in the moth-flame
optimization algorithm [44] developed by Mirjalili to solve the global optimization problem,
described in detail as follows.

In this approach to solving the optimization problem, the positions of moths evolve
during predefined iterations. In the first iteration, moths are randomly distributed in the
problem space using Equation (1), where Xid denotes the dth dimension of the ith moth
position and the parameters Ubd and Lbd are the upper and lower boundaries for the dth
dimension, respectively.

Xid = randi,d × (Ubd − Lbd) + Lbd, 1 ≤ d ≤ D (1)

For the rest of the iterations, their new positions are updated based on the position
of the flame. Therefore, the flame number (R) is computed using Equation (2), where the
parameters N and MaxIterations denote the number of moths and the maximum number
of iterations, respectively. Then, the positions of the flames are determined based on the
stepwise procedure denoted in Table 1.

R = round
(

N − t× N − 1
MaxIterations

)
(2)

Ultimately, for the flame number (R), each moth can update its position using the
two different trials denoted in Equation (3), where Xi (t + 1) is the new position of the ith

321

Mathematics 2023, 11, 862

moth, Di
′(t) is computed using Equation (4), b is the constant value, k is calculated using

Equations (5) and (6), and Fi (t) denotes the ith flame.

RXi(t + 1) =

⎧⎨⎩
Di
′(t)× ebk × cos(2πk) + Fi(t) i ≤ R

Di
′′ (t)× ebk × cos(2πk) + FR(t) i > R

(3)

Di
′(t)=|Fi(t)− Xi(t)| (4)

k = (a− 1)× rand(0, 1) + 1 (5)

a = −1 + t×
(−1

MaxIterations

)
(6)

In the second trial (when i > R), the parameter Di
′′ (t) is computed using Equation (7),

and FR (t) is the current position of the Rth flame.

Di
′(t) =

∣∣FR(t)−Xi(t)| (7)

Table 1. Flame construction procedure.

Input: X: the positions of moths, Fit: the fitness values of moths, F: the position of the flame, and
OF: the fitness values of flames.

Flame construction in the first iteration when t = 1.
1. Sort the vector Fit in ascending order and extract the sorted index in {j1, j2, . . . , jN}.
2. Construct the flame matrix F (t) = {F1 ← Xj1, F2 ← Xj2, . . . , FN ← XjN}.
Flame construction for the rest iteration when t > 1.
1. Construct matrix dualPop by combining matrices F(t) and X (t − 1).
2. Construct vector dualFit by combining vectors OF(t) and Fit (t − 1).
3. Sort the vector dualFit in ascending order and extract the sorted index in {j1, j2, . . . , j2N}.
4. Construct the flame matrix F (t) = {F1 ← Xj1, F2 ← Xj2, . . . , FN ← XjN}.

4. The Proposed MFO-SFR Algorithm

According to the literature, the canonical MFO lacks an efficient operator to maintain
population diversity. The search process may be biased by the best solutions obtained
in each iteration [97]. This deficiency leads to premature convergence into unpromising
regions, local optimum stagnation, and a decrease in the solution quality when solving
complex problems. Hence, in this study, we were motivated to propose an enhanced moth-
flame optimization algorithm named MFO-SFR to effectively maintain population diversity
and mitigate the deficiencies mentioned above by introducing an effective stagnation
finding and replacing (SFR) strategy.

Stagnation finding and replacing (SFR) strategy: Suppose that the matrix
X (t) = {X1D (t), . . . , XiD (t), . . . , XND (t)} denotes a moth population in the current it-
eration t in a D-dimensional search space. Each vector XiD (t) denotes the position of the
ith moth in the problem space. The matrix X (t) is initialized for the first iteration using a
uniform random distribution. For the rest of the iterations (when t ≥ 2), the new positions
of the moths are determined using Equation (8), where Dα

i (t) and Dβ
i (t) are the main ele-

ments of the SFR strategy, which is computed using Equations (9) and (10), respectively. A
constant b expresses the shape of the logarithmic spiral, and τ is a random number between
the intervals −1 and 1. Fj(t) and FR(t) are the positions of the jth flame and the Rth flame
such that the parameter R is computed using Equation (2). In Equation (9), vector Mi(t) is
determined using Definition 1. To find the stagnant solutions, the mean of the distance or
ϕi is calculated using Equation (11), where Xiq is the qth dimension of the ith moth. Fjq is the
qth dimension of the jth flame in which the index j is determined by Equation (12), which

322

Mathematics 2023, 11, 862

sorts the results obtained from Equation (11) in descending order to obtain the indexes,
then applies them as flame indexes in Equation (10).

Xi(t + 1) =

⎧⎪⎨⎪⎩
Dα

i (t)× ebτ × cos(2πt) + Fj(t) i f i ≤ R(t)

Dβ
i (t)× ebτ × cos(2πt) + FR(t) else

(8)

Dα
i (t) =

∣∣Fj(t)−Mi(t)
∣∣ (9)

Dβ
i (t) =

{ ∣∣Fj(t)− Xi(t)
∣∣ ϕi > 0

Selecting a random position from the Arc ϕi = 0
(10)

{ϕ1, . . . , ϕi, . . . , ϕN} ← ϕi =
1
D
×

D

∑
q=1

∣∣Fjq(t)− Xiq(t)
∣∣ (11)

{
ϕ1, . . . , ϕj, . . . , ϕN

}
← Sort(ϕ1, . . . , ϕi, . . . , ϕN) (12)

Definition 1. (Archive construction): The main idea behind archive construction is to enrich the
population diversity by preserving the generated representative flame and boost the convergence of
solutions toward promising areas by preserving the best solutions in each iteration. To construct
the archive Arc, consider the matrix M = {M1, . . . , Mi, . . . , Mκ} as the memory of the Arc with
predefined κ. Each Mi = [mi1, mi2, . . . , miD] denotes this memory’s vector position, which is
generated using Algorithm 1. First, dualPop and dualFit are created based on the flame construction
process described in Table 1. Then, the representative flame (RF) with the average of flames’ positions
is computed using Equation (13), where C is the total number of considered moths and Fid denotes
the dth dimension of the ith flame. Finally, the global best flame and RF position are archived as two
new entries in the memory M. In regard to inserting these new entries; they are randomly replaced
with two existing entries if the memory is full.

RFd(t) =
1
C

C

∑
i=1

Fid(t) (13)

In addition, MFO-SFR checks the feasibility of the position of the new moths to return
those that have violated the problem space boundaries by generating random positions in
the range of the problem space.

Algorithm 1. The pseudocode of the archive construction process.

Input: C: Number of considered flames, and κ: the maximum size of the archive Arc.
Output: Returns the archive Arc.
1. begin
2. dualPop and dualFit are created based on flame construction defined in Table 1.
3. FitBest = Ascending order of the vector dualFit and selecting the best N values.
4. PopBest = The corresponding positions of vector FitBest.
5. Computing RF using Equation (13) for C number of considered flames.
6. If the current memory size < κ−1.
7. Inserting RF and the global best flame into the Arc.
8. else
9. Replacing RF and the global best flame with two existing memory entries.
10. end if
11. end

Complexity Analysis

Regarding the pseudocode of MFO-SFR shown in Algorithm 2, the MFO-SFR algo-
rithm consists of six distinct phases: initialization, flame construction, archive construction,

323

Mathematics 2023, 11, 862

movement, correcting the violated positions, and updating the positions. In the initializa-
tion phase, N moths are randomly distributed in a D-dimensional search space with an
O(ND) computational complexity. In the flame construction phase, flames are constructed
differently with the computational complexity of O(N2), considering the worst case for
the quicksort algorithm. The computational complexity of the archive construction phase
using Algorithm 1 is O(N2 + ND), because lines 2−4 have the complexity of O(N2) with
respect to the original paper’s definition of MFO, and Equation (13) has O(ND) in the worst
case. The cost of the movement phase is O(ND), using either Equations (8) and (9) when
i ≤ R or using Equations (8) and (10) when i > R. Then, the feasibility of the new posi-
tions is checked to correct the violated positions with the computational complexity of
O(ND). Finally, the updating phase is performed with O(ND) computational complex-
ity. Therefore, considering T iterations, the computational complexity of MFO-SFR is
O(ND + N2 + T(2N2 + 4ND) or O(TN2 + TND). In the same fashion, the space complexity
is O(N + ND + κ), considering that the memory is reusable and the size of the memory is κ.
Thus, the space complexity of MFO-SFR is O(ND + D2log N).

Algorithm 2. The pseudocode of the proposed MFO-SFR algorithm.

Input: N: Number of moths, MaxIterations: Maximum iterations, and D: Dimension size.
Output: Returns the position of the global best flame and its fitness value.
1. Begin
2. Initiating matrix X (t) using a uniform random distribution in the D-dimensional search space.
3. Computing the fitness value of X (t) and storing them in vector OX (t).
4. Constructing the flame fitness value OF by ascending order of the vector OM (t).
5. Constructing the flame positions F based on their obtained vector OF.
6. While t ≤MaxIterations
7. Updating F and OF by the best N moths from F and current X.
8. Computing the flame number R using Equation (2).
9. Archiving using Algorithm 1.
10. For i = 1: N
11. If i ≤ R
12. Computing the distance between flame Fi (t) and Mi (t) using Equation (9).
13. Updating the position of Xi (t) using Equation (8).
14. else
15. Computing the distance using Equation (10).
16. Updating the position of Xi (t) using Equation (8).
17. End if
18. Checking the feasibility and correcting the new position.
19. Computing the fitness value of the new position.
20. End for
21. Updating the global best flame.
22. End while

5. Evaluation of the Proposed MFO-SFR Algorithm

In this section we present our evaluation of the performance of the proposed MFO-
SFR algorithm in solving global optimization problems from the CEC 2018 benchmark
test suite [67]. This test suite is suitable for evaluating the proposed algorithm in terms
of its local optimum avoidance ability and the diversity of solutions as it consists of
29 test functions with different characteristics, such as unimodal, multimodal, and hy-
brid functions, as well as compositions with various dimensions (D), specifically, 30 and
50 dimensions. Moreover, in this section, we also present two separate sets of experiments
conducted to extensively assess and compare the performance of the proposed MFO-SFR
algorithm with several well-known optimization methods. The proposed algorithm was
compared to the original MFO and its variants in the first set, and then, in the second exper-
imental set, it was compared to other prominent and recent optimizers. In both experiment
sets, all comparative algorithms’ control parameter values were adjusted to match those in
their original articles, as depicted in Table 2. All of the algorithms were executed 20 times

324

Mathematics 2023, 11, 862

on a laptop with an Intel Core i7-10750H CPU (2.60 GHz), 24 GB of memory, and MATLAB
R2022a with a maximum of (D × 104)/N iterations, where D represents the dimension size
of the problem and N is the population size, which was set to 100 in this study.

Table 2. Parameter values for the optimization algorithms.

Alg. Parameter Settings

MFO b = 1, a decreased linearly from −1 to −2.
LMFO β = 1.5, μ and v are normal distributions, Г is the gamma function.

WCMFO The number of rivers and seas = 4.
CMFO b = 1, a decreased linearly from −1 to −2, chaotic map = Singer.

ODSFMFO m = 6, pc = 0.5, γ = 5, α = 1, l = 10, b = 1, β = 1.5.
SMFO r4 = random number between the interval (0, 1).
WMFO α decreased linearly from 2 to 0, b = 1.

PSO c1 = c2 = 2, vmax = 6, w = 0.9.
KH Vf = 0.02, Dmax = 0.005, Nmax = 0.01, Sr = 0.

GWO The parameter a decreased linearly from 2 to 0.
CSA AP = 0.1, fl = 2.

HOA w = 1, δD = 0.02, δI = 0.02, gδ = 1.5, hβ = 0.9, hγ = 0.5, sβ = 0.2, sγ = 0.1, iγ = 0.3,
dα = 0.5, dβ = 0.2, dγ = 0.1, rδ = 0.1, rγ = 0.05

MFO-SFR b = 1, a decreased linearly from −1 to −2, κ = round (D2 × (log N)), C = N/5.

To investigate the impact of the archive introduced in Equation (10), a numerical
pretest was performed on the canonical MFO algorithm using the CEC 2018 benchmark
test suite on dimension 30. In this pre-test percentage of situations when the parameter
ϕi was equal to zero is computed and reported in Table A1 of Appendix A. The results
reported in Table A1 in Appendix A showed that for some test functions, especially hybrid
and composition ones, the percentage of stagnant solutions was high enough to affect the
quality of the generated solutions.

5.1. Comparing the Proposed MFO-SFR Algorithm with MFO Variants

In this set of experiments, we compared the proposed MFO-SFR algorithm with
moth-flame optimization (MFO) [44] and its variants, including LMFO [60], WCMFO [61],
CMFO [62], ODSFMFO [65], SMFO [63], and WMFO [68]. Table 3 compares the results of the
proposed MFO-SFR algorithm with those of MFO and its variants in solving the CEC 2018
test functions with 30 dimensions. The results acquired from the unimodal test functions F1
and F3 demonstrated that MFO-SFR had an acceptable exploitation potential compared to
the other algorithms. The results from multimodal test functions F4–F10 indicated that the
proposed algorithm was able to efficiently search the problem space and find the unvisited
areas by maintaining its population diversity throughout the optimization process. The
overall results of the hybrid and composition functions F11–F30 confirmed that MFO-SFR
avoided local optimum solutions by striking a balance between exploration and exploitation
abilities. Moreover, the final rows of Tables 3 and 4 reveal that according to the Friedman
test [98], the proposed MFO-SFR algorithm ranked first among the algorithms, including
MFO and the other investigated variants.

Table 3. Comparison of MFO-SFR with MFO variants for CEC 2018 test functions with D = 30.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F1
Avg 6.278 × 109 2.544 × 107 1.317 × 104 1.078 × 108 6.016 × 106 3.119 × 1010 3.822 × 103 1.791 × 103

Min 1.027 × 109 1.899 × 107 1.924 × 103 3.760 × 106 9.949 × 105 1.734 × 1010 1.013 × 102 1.017 × 102

F3
Avg 9.453 × 104 3.473 × 103 1.541 × 103 5.059 × 104 3.050 × 104 8.300 × 104 3.909 × 102 1.312 × 104

Min 1.203 × 104 1.499 × 103 3.111 × 102 2.945 × 104 1.631 × 104 7.186 × 104 3.007 × 102 7.513 × 103

F4
Avg 8.558 × 102 4.919 × 102 4.846 × 102 6.960 × 102 5.356 × 102 5.612 × 103 4.810 × 102 4.914 × 102

Min 4.991 × 102 4.742 × 102 4.009 × 102 5.139 × 102 4.985 × 102 2.322 × 103 4.249 × 102 4.700 × 102

325

Mathematics 2023, 11, 862

Table 3. Cont.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F5
Avg 6.740 × 102 6.300 × 102 6.721 × 102 6.073 × 102 5.506 × 102 8.725 × 102 6.739 × 102 5.227 × 102

Min 6.114 × 102 5.816 × 102 6.126 × 102 5.736 × 102 5.270 × 102 8.105 × 102 6.234 × 102 5.109 × 102

F6
Avg 6.260 × 102 6.030 × 102 6.236 × 102 6.189 × 102 6.037 × 102 6.814 × 102 6.366 × 102 6.000 × 102

Min 6.113 × 102 6.018 × 102 6.137 × 102 6.086 × 102 6.010 × 102 6.571 × 102 6.143 × 102 6.000 × 102

F7
Avg 1.007 × 103 8.716 × 102 9.050 × 102 9.430 × 102 8.099 × 102 1.359 × 103 1.056 × 103 7.669 × 102

Min 8.538 × 102 8.311 × 102 8.045 × 102 8.684 × 102 7.824 × 102 1.198 × 103 9.248 × 102 7.460 × 102

F8
Avg 9.895 × 102 9.375 × 102 9.839 × 102 9.097 × 102 8.528 × 102 1.093 × 103 9.539 × 102 8.209 × 102

Min 9.126 × 102 8.978 × 102 9.344 × 102 8.645 × 102 8.343 × 102 1.052 × 103 8.547 × 102 8.090 × 102

F9
Avg 6.219 × 103 9.256 × 102 8.623 × 103 2.331 × 103 1.118 × 103 9.431 × 103 4.543 × 103 9.038 × 102

Min 3.323 × 103 9.074 × 102 5.118 × 103 1.476 × 103 9.647 × 102 7.359 × 103 1.675 × 103 9.005 × 102

F10
Avg 5.259 × 103 4.240 × 103 4.848 × 103 5.005 × 103 4.332 × 103 8.272 × 103 5.192 × 103 4.062 × 103

Min 4.231 × 103 3.205 × 103 4.003 × 103 4.204 × 103 3.570 × 103 7.449 × 103 3.759 × 103 2.461 × 103

F11
Avg 3.967 × 103 1.314 × 103 1.363 × 103 1.985 × 103 1.284 × 103 5.799 × 103 1.248 × 103 1.143 × 103

Min 1.370 × 103 1.180 × 103 1.252 × 103 1.206 × 103 1.204 × 103 2.547 × 103 1.170 × 103 1.107 × 103

F12
Avg 9.043 × 107 5.251 × 106 1.416 × 106 2.113 × 107 2.157 × 106 4.342 × 109 1.014 × 105 1.508 × 105

Min 7.305 × 104 1.578 × 106 3.718 × 104 7.171 × 105 2.328 × 105 2.607 × 109 6.932 × 103 2.035 × 104

F13
Avg 4.593 × 106 4.072 × 105 9.457 × 104 9.006 × 103 1.184 × 104 7.405 × 108 6.660 × 103 6.405 × 103

Min 1.003 × 104 1.634 × 105 1.150 × 104 2.446 × 103 1.596 × 103 1.145 × 108 1.400 × 103 1.690 × 103

F14
Avg 6.942 × 104 2.500 × 104 1.872 × 104 3.941 × 104 5.651 × 104 1.715 × 106 1.406 × 104 8.200 × 103

Min 5.450 × 103 2.821 × 103 4.075 × 103 6.379 × 103 4.686 × 103 7.879 × 104 3.027 × 103 2.021 × 103

F15
Avg 3.090 × 104 8.218 × 104 3.207 × 104 5.756 × 103 5.070 × 103 4.161 × 107 1.157 × 104 5.614 × 103

Min 5.117 × 103 4.614 × 104 2.547 × 103 1.707 × 103 1.703 × 103 1.868 × 106 1.609 × 103 1.515 × 103

F16
Avg 2.956 × 103 2.564 × 103 2.867 × 103 2.709 × 103 2.366 × 103 4.223 × 103 2.662 × 103 1.855 × 103

Min 2.398 × 103 2.101 × 103 2.267 × 103 2.241 × 103 1.965 × 103 3.565 × 103 2.068 × 103 1.617 × 103

F17
Avg 2.349 × 103 2.192 × 103 2.315 × 103 2.056 × 103 1.985 × 103 2.788 × 103 2.234 × 103 1.745 × 103

Min 1.975 × 103 1.925 × 103 1.942 × 103 1.818 × 103 1.764 × 103 2.359 × 103 1.958 × 103 1.727 × 103

F18
Avg 2.830 × 106 2.674 × 105 1.804 × 105 7.780 × 105 8.975 × 105 5.330 × 107 8.188 × 104 1.493 × 105

Min 7.725 × 104 3.452 × 104 4.774 × 104 7.998 × 104 9.364 × 104 2.825 × 106 6.883 × 103 4.305 × 104

F19
Avg 4.261 × 106 7.040 × 104 3.083 × 104 2.505 × 104 7.822 × 103 7.588 × 107 1.560 × 104 6.534 × 103

Min 1.293 × 104 3.487 × 104 2.168 × 103 3.280 × 103 1.968 × 103 5.192 × 106 2.310 × 103 1.910 × 103

F20
Avg 2.537 × 103 2.398 × 103 2.528 × 103 2.402 × 103 2.287 × 103 2.837 × 103 2.690 × 103 2.091 × 103

Min 2.215 × 103 2.117 × 103 2.103 × 103 2.185 × 103 2.053 × 103 2.454 × 103 2.294 × 103 2.004 × 103

F21
Avg 2.472 × 103 2.439 × 103 2.485 × 103 2.384 × 103 2.351 × 103 2.630 × 103 2.462 × 103 2.321 × 103

Min 2.420 × 103 2.378 × 103 2.430 × 103 2.338 × 103 2.331 × 103 2.363 × 103 2.389 × 103 2.312 × 103

F22
Avg 6.353 × 103 4.878 × 103 6.611 × 103 2.380 × 103 2.319 × 103 8.681 × 103 5.292 × 103 2.300 × 103

Min 3.223 × 103 2.325 × 103 5.330 × 103 2.319 × 103 2.305 × 103 5.677 × 103 2.300 × 103 2.300 × 103

F23
Avg 2.811 × 103 2.754 × 103 2.796 × 103 2.797 × 103 2.722 × 103 3.273 × 103 2.861 × 103 2.671 × 103

Min 2.740 × 103 2.724 × 103 2.749 × 103 2.734 × 103 2.697 × 103 3.027 × 103 2.763 × 103 2.654 × 103

F24
Avg 2.979 × 103 2.924 × 103 2.972 × 103 2.948 × 103 2.872 × 103 3.482 × 103 3.003 × 103 2.844 × 103

Min 2.926 × 103 2.888 × 103 2.927 × 103 2.887 × 103 2.848 × 103 3.217 × 103 2.912 × 103 2.828 × 103

F25
Avg 3.181 × 103 2.888 × 103 2.894 × 103 3.011 × 103 2.925 × 103 3.972 × 103 2.900 × 103 2.887 × 103

Min 2.895 × 103 2.885 × 103 2.884 × 103 2.935 × 103 2.890 × 103 3.467 × 103 2.884 × 103 2.887 × 103

F26
Avg 5.650 × 103 4.854 × 103 5.538 × 103 4.465 × 103 4.415 × 103 9.093 × 103 5.841 × 103 3.903 × 103

Min 4.921 × 103 4.504 × 103 5.074 × 103 3.113 × 103 2.876 × 103 5.057 × 103 4.741 × 103 3.739 × 103

F27
Avg 3.233 × 103 3.223 × 103 3.229 × 103 3.285 × 103 3.244 × 103 3.754 × 103 3.276 × 103 3.219 × 103

Min 3.206 × 103 3.194 × 103 3.204 × 103 3.238 × 103 3.218 × 103 3.538 × 103 3.220 × 103 3.208 × 103

F28
Avg 3.756 × 103 3.270 × 103 3.192 × 103 3.376 × 103 3.294 × 103 5.462 × 103 3.199 × 103 3.216 × 103

Min 3.263 × 103 3.211 × 103 3.100 × 103 3.265 × 103 3.271 × 103 4.419 × 103 3.122 × 103 3.196 × 103

326

Mathematics 2023, 11, 862

Table 3. Cont.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F29
Avg 4.014 × 103 3.764 × 103 3.949 × 103 4.040 × 103 3.691 × 103 5.639 × 103 4.068 × 103 3.414 × 103

Min 3.499 × 103 3.410 × 103 3.574 × 103 3.629 × 103 3.475 × 103 4.728 × 103 3.545 × 103 3.323 × 103

F30
Avg 2.524 × 105 1.426 × 105 3.318 × 104 7.742 × 105 1.803 × 104 2.326 × 108 1.079 × 104 7.835 × 103

Min 7.219 × 103 6.606 × 104 1.642 × 104 5.609 × 104 7.769 × 103 2.468 × 107 5.674 × 103 6.362 × 103

Average rank 6.06 3.95 4.51 4.57 3.28 7.91 4.18 1.55

Total rank 7 3 5 6 2 8 4 1

Table 4. Comparison of MFO-SFR with MFO variants for CEC 2018 test functions with D = 50.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F1
Avg 3.036 × 1010 1.091 × 108 6.099 × 104 1.323 × 109 2.624 × 108 7.209 × 1010 4.264 × 103 3.463 × 104

Min 7.064 × 103 8.074 × 107 8.054 × 102 1.287 × 108 3.470 × 107 5.140 × 1010 1.054 × 102 9.385 ×3

F3
Avg 1.540 × 105 3.139 × 104 1.413 × 104 1.004 × 105 9.325 × 104 1.770 × 105 9.948 × 102 5.495 × 104

Min 1.176 × 104 1.960 × 104 2.418 × 103 7.381 × 104 6.538 × 104 1.457 × 105 3.217 × 102 4.223 × 104

F4
Avg 4.178 × 103 5.786 × 102 5.431 × 102 1.182 × 103 7.401 × 102 1.835 × 104 5.385 × 102 5.867 × 102

Min 1.187 × 103 5.296 × 102 4.286 × 102 5.419 × 102 6.608 × 102 1.005 × 104 4.961 × 102 5.196 × 102

F5
Avg 9.086 × 102 8.080 × 102 9.240 × 102 8.065 × 102 6.269 × 102 1.125 × 103 8.608 × 102 5.624 × 102

Min 7.996 × 102 7.226 × 102 7.743 × 102 6.742 × 102 5.862 × 102 1.032 × 103 7.209 × 102 5.318 × 102

F6
Avg 6.455 × 102 6.078 × 102 6.395 × 102 6.356 × 102 6.075 × 102 6.888 × 102 6.513 × 102 6.001 × 102

Min 6.270 × 102 6.035 × 102 6.165 × 102 6.239 × 102 6.041 × 102 6.780 × 102 6.291 × 102 6.000 × 102

F7
Avg 1.728 × 103 1.081 × 103 1.139 × 103 1.207 × 103 9.855 × 102 1.937 × 103 1.461 × 103 8.682 × 102

Min 1.119 × 103 1.011 × 103 1.023 × 103 1.031 × 103 8.795 × 102 1.769 × 103 1.204 × 103 8.099 × 102

F8
Avg 1.217 × 103 1.107 × 103 1.213 × 103 1.055 × 103 9.213 × 102 1.406 × 103 1.131 × 103 8.610 × 102

Min 1.050 × 103 1.021 × 103 1.096 × 103 9.983 × 102 8.625 × 102 1.315 × 103 1.021 × 103 8.318 × 102

F9
Avg 1.651 × 104 1.737 × 103 2.097 × 104 6.212 × 103 1.717 × 103 3.051 × 104 1.190 × 104 9.243 × 102

Min 8.748 × 103 9.529 × 102 1.190 × 104 3.607 × 103 1.299 × 103 1.925 × 104 5.498 × 103 9.066 × 102

F10
Avg 8.426 × 103 7.527 × 103 7.974 × 103 7.980 × 103 7.490 × 103 1.387 × 104 7.755 × 103 6.534 × 103

Min 6.288 × 103 6.340 × 103 6.303 × 103 6.040 × 103 5.766 × 103 1.198 × 104 6.397 × 103 5.135 × 103

F11
Avg 5.571 × 103 1.594 × 103 1.469 × 103 2.114 × 103 1.865 × 103 1.495 × 104 1.299 × 103 1.259 × 103

Min 1.574 × 103 1.439 × 103 1.291 × 103 1.417 × 103 1.394 × 103 8.985 × 103 1.200 × 103 1.146 × 103

F12
Avg 2.581 × 109 4.574 × 107 6.833 × 106 1.705 × 108 1.999 × 107 3.109 × 1010 5.722 × 105 1.873 × 106

Min 6.409 × 107 2.731 × 107 1.384 × 106 1.878 × 106 7.129 × 106 1.600 × 1010 1.341 × 105 1.078 × 106

F13
Avg 2.561 × 108 2.672 × 106 9.255 × 104 1.340 × 105 1.729 × 104 1.251 × 1010 8.898 × 103 5.362 × 103

Min 1.454 × 105 1.614 × 106 3.011 × 104 5.781 × 103 9.648 × 103 1.435 × 109 2.611 × 103 1.749 × 103

F14
Avg 9.567 × 105 1.375 × 105 6.855 × 104 1.073 × 105 4.132 × 105 2.622 × 107 3.670 × 104 4.016 × 104

Min 1.246 × 104 3.771 × 104 2.161 × 104 9.772 × 103 7.234 × 104 8.185 × 105 1.148 × 104 1.202 × 104

F15
Avg 1.078 × 107 5.308 × 105 6.616 × 104 8.967 × 103 6.016 × 103 1.341 × 109 7.075 × 103 2.964 × 103

Min 4.298 × 104 3.335 × 105 1.422 × 104 1.884 × 103 2.543 × 103 1.237 × 108 1.943 × 103 1.534 × 103

F16
Avg 4.104 × 103 3.570 × 103 3.769 × 103 3.335 × 103 2.915 × 103 6.808 × 103 3.575 × 103 2.614 × 103

Min 3.133 × 103 2.836 × 103 2.788 × 103 2.616 × 103 2.404 × 103 5.302 × 103 2.509 × 103 2.148 × 103

F17
Avg 3.846 × 103 3.218 × 103 3.787 × 103 3.151 × 103 2.690 × 103 4.919 × 103 3.478 × 103 2.474 × 103

Min 3.034 × 103 2.568 × 103 3.044 × 103 2.615 × 103 2.084 × 103 3.399 × 103 2.827 × 103 2.018 × 103

F18
Avg 4.168 × 106 1.053 × 106 3.688 × 105 2.670 × 106 1.816 × 106 5.905 × 107 1.937 × 105 1.247 × 106

Min 1.543 × 105 2.843 × 105 1.381 × 105 2.302 × 105 1.304 × 105 5.306 × 106 3.375 × 104 1.067 × 105

F19
Avg 2.346 × 106 2.754 × 105 2.368 × 104 6.213 × 104 1.682 × 104 9.590 × 108 1.541 × 104 1.276 × 104

Min 5.030 × 103 1.841 × 105 2.700 × 103 5.247 × 103 2.057 × 103 2.437 × 107 2.172 × 103 2.447 × 103

F20
Avg 3.529 × 103 2.999 × 103 3.311 × 103 3.108 × 103 2.830 × 103 3.923 × 103 3.317 × 103 2.485 × 103

Min 3.116 × 103 2.429 × 103 2.655 × 103 2.572 × 103 2.495 × 103 3.475 × 103 2.534 × 103 2.081 × 103

327

Mathematics 2023, 11, 862

Table 4. Cont.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F21
Avg 2.682 × 103 2.604 × 103 2.720 × 103 2.503 × 103 2.408 × 103 3.071 × 103 2.635 × 103 2.360 × 103

Min 2.575 × 103 2.528 × 103 2.590 × 103 2.445 × 103 2.379 × 103 2.938 × 103 2.518 × 103 2.335 × 103

F22
Avg 1.028 × 104 9.106 × 103 9.780 × 103 7.972 × 103 5.227 × 103 1.605 × 104 9.538 × 103 8.339 × 103

Min 8.688 × 103 7.734 × 103 8.346 × 103 2.497 × 103 2.436 × 103 1.474 × 104 8.203 × 103 6.317 × 103

F23
Avg 3.133 × 103 3.009 × 103 3.095 × 103 3.137 × 103 2.888 × 103 3.969 × 103 3.183 × 103 2.793 × 103

Min 3.013 × 103 2.945 × 103 2.974 × 103 2.979 × 103 2.822 × 103 3.594 × 103 3.056 × 103 2.761 × 103

F24
Avg 3.197 × 103 3.135 × 103 3.224 × 103 3.217 × 103 3.030 × 103 4.292 × 103 3.274 × 103 2.970 × 103

Min 3.098 × 103 3.071 × 103 3.101 × 103 3.098 × 103 2.978 × 103 3.875 × 103 3.095 × 103 2.931 × 103

F25
Avg 5.123 × 103 3.062 × 103 3.048 × 103 3.889 × 103 3.242 × 103 1.069 × 104 3.061 × 103 3.070 × 103

Min 3.031 × 103 2.994 × 103 2.964 × 103 3.242 × 103 3.176 × 103 7.290 × 103 3.021 × 103 2.985 × 103

F26
Avg 8.137 × 103 6.855 × 103 8.205 × 103 8.456 × 103 5.513 × 103 1.577 × 104 8.342 × 103 4.406 × 103

Min 6.910 × 103 6.234 × 103 7.239 × 103 5.759 × 103 4.905 × 103 1.445 × 104 2.900 × 103 4.051 × 103

F27
Avg 3.538 × 103 3.403 × 103 3.489 × 103 4.237 × 103 3.525 × 103 5.612 × 103 3.759 × 103 3.307 × 103

Min 3.407 × 103 3.297 × 103 3.361 × 103 3.897 × 103 3.448 × 103 4.453 × 103 3.460 × 103 3.266 × 103

F28
Avg 7.554 × 103 3.555 × 103 3.296 × 103 4.481 × 103 3.749 × 103 9.637 × 103 3.300 × 103 3.378 × 103

Min 4.720 × 103 3.268 × 103 3.259 × 103 3.882 × 103 3.472 × 103 8.008 × 103 3.259 × 103 3.310 × 103

F29
Avg 5.133 × 103 4.380 × 103 4.681 × 103 5.199 × 103 4.191 × 103 1.608 × 104 4.870 × 103 3.545 × 103

Min 4.271 × 103 3.944 × 103 3.587 × 103 4.366 × 103 3.748 × 103 8.290 × 103 4.292 × 103 3.289 × 103

F30
Avg 2.924 × 107 5.428 × 106 2.810 × 106 2.564 × 107 1.768 × 106 2.271 × 109 1.204 × 106 1.144 × 106

Min 2.389 × 106 3.442 × 106 1.262 × 106 8.984 × 106 9.999 × 105 2.782 × 108 6.441 × 105 9.567 × 105

Average rank 6.29 3.82 4.25 4.78 3.34 7.93 3.79 1.79

Total rank 7 3 5 6 2 8 4 1

Table 4 presents the average and minimum fitness values obtained from the proposed
MFO-SFR algorithms, MFO, and its six variants in solving the CEC 2018 benchmark test
functions with 50 dimensions. Overall, the results showed that the proposed MFO-SFR
algorithm provided competitive results for most test functions, and it ranked first according
to the Friedman test results, which are reported in the final row of the table. Additionally,
an exploratory data analysis is depicted in Figure 1 to show the ranking of algorithms for
each function. Overall, it can be seen that the proposed MFO-SFR algorithm surrounds
the center of the radar chart for most test functions in 30 and 50 dimensions. For instance,
for F1, the proposed MFO-SFR algorithm was ranked first in 30 dimensions and third in
50 dimensions, whereas WMFO and the canonical MFO algorithms were ranked second
and seventh for 30 and 50 dimensions, respectively. For F12, it can be seen that MFO-SFR
was ranked second, MFO was ranked seventh, and WMFO was ranked first for 30 dimen-
sions, and these three algorithms were ranked second, seventh, and first, respectively, for
50 dimensions. For F27, MFO-SFR and WMFO were ranked first and sixth in both 30 and
50 dimensions, whereas the canonical MFO algorithm was ranked fourth in 30 dimensions
and fifth in 50 dimensions.

The convergence comparison of the proposed MFO-SFR algorithm and the other stud-
ied algorithms is shown in Figure 2. For F1 in 30 dimensions, it can be seen that although
MFO-SFR exhibited prolonged convergence, it provided the best solution compared to the
other algorithms. In 50 dimensions, however, it ranked second after WMFO. For multi-
modal functions F5 and F7, the convergence trend of MFO-SFR continued up to the final
iterations, whereas most of the competitors were flattened in local optimum zones. As evi-
dence of the adequate balance between exploration and exploitation, for hybrid functions
F10 and F16, MFO-SFR exhibited sharp movements in the first half of the iterations and
relatively modest fluctuations in the second half. Ultimately, for composition test functions
F21, F26, and F30, MFO-SFR exhibited a gradual trend toward the optimum solutions after
beginning its convergence with a sharply descending slope. This behavior indicates the
capacity of MFO-SFR to bypass the local optimum and avoid premature convergence.

328

Mathematics 2023, 11, 862

Figure 1. Exploratory data analysis of MFO-SFR, MFO, and its variants on CEC 2018 with 30 and
50 dimensions.

Figure 2. Convergence comparison of MFO-SFR, MFO, and its variants on CEC 2018 with D = 30
and 50.

329

Mathematics 2023, 11, 862

5.2. Comparing the Proposed MFO-SFR Algorithm with Other Well-Known
Optimization Algorithms

The second set of experiments, we compared the performance of the proposed MFO-
SFR algorithm with the well-known representative metaheuristic algorithms presented
in the literature, including particle swarm optimization (PSO) [39], krill herd (KH) [69],
grey wolf optimization (GWO) [70], the crow search algorithm (CSA) [71], and the horse
herd optimization algorithm (HOA) [45]. The algorithms’ source codes were gathered from
publicly available resources, and their parameter values were the same ones considered
in the original papers, as reported in Table 2. Tables 5 and 6 compare the average and
minimum fitness values produced by the proposed MFO-SFR algorithm and the other
algorithms for 30 and 50 dimensions. The results of the test functions F1 and F3–F10 for both
numbers of dimensions demonstrated that MFO-SFR exhibited impressive exploitation
and exploration capabilities and generated better solutions while dealing with unimodal
and multimodal tests. The results of test functions F11–F30 demonstrated that the MFO-
SFR avoided local optimum trapping and balanced the trade-off between exploration and
exploitation abilities. Furthermore, the final two rows present the results of the Friedman
test for each algorithm, in which MFO-SFR ranked first among the comparative algorithms
for both 30 and 50 dimensions.

Table 5. Comparison of MFO-SFR with well-known algorithms for CEC 2018 test functions with
D = 30.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F1
Avg 5.907 × 1010 1.963 × 104 1.145 × 109 3.246 × 1010 3.003 × 109 1.791 × 103

Min 3.270 × 1010 7.354 × 103 1.583 × 108 2.130 × 1010 2.203 × 109 1.017 × 102

F3
Avg 1.308 × 105 4.403 × 104 2.987 × 104 9.600 × 104 3.075 × 104 1.312 × 104

Min 1.039 × 105 2.051 × 104 1.476 × 104 5.473 × 104 2.032 × 104 7.513 × 103

F4
Avg 1.183 × 104 4.965 × 102 5.369 × 102 5.726 × 103 1.047 × 103 4.914 × 102

Min 7.302 × 103 4.041 × 102 4.933 × 102 3.185 × 103 8.889 × 102 4.700 × 102

F5
Avg 9.635 × 102 6.454 × 102 5.950 × 102 8.509 × 102 7.938 × 102 5.227 × 102

Min 8.845 × 102 6.115 × 102 5.511 × 102 8.017 × 102 7.612 × 102 5.109 × 102

F6
Avg 6.921 × 102 6.418 × 102 6.047 × 102 6.683 × 102 6.605 × 102 6.000 × 102

Min 6.828 × 102 6.303 × 102 6.009 × 102 6.554 × 102 6.496 × 102 6.000 × 102

F7
Avg 2.511 × 103 8.400 × 102 8.512 × 102 1.730 × 103 1.029 × 103 7.669 × 102

Min 2.201 × 103 7.960 × 102 7.932 × 102 1.552 × 103 9.979 × 102 7.460 × 102

F8
Avg 1.220 × 103 9.054 × 102 8.709 × 102 1.134 × 103 1.061 × 103 8.209 × 102

Min 1.163 × 103 8.647 × 102 8.450 × 102 1.105 × 103 1.041 × 103 8.090 × 102

F9
Avg 1.735 × 104 3.138 × 103 1.360 × 103 1.040 × 104 4.292 × 103 9.038 × 102

Min 1.271 × 104 2.368 × 103 9.830 × 102 7.223 × 103 2.668 × 103 9.005 × 102

F10
Avg 8.218 × 103 4.797 × 103 3.874 × 103 8.279 × 103 8.340 × 103 4.062 × 103

Min 7.661 × 103 3.165 × 103 3.030 × 103 7.738 × 103 7.745 × 103 2.461 × 103

F11
Avg 1.018 × 104 1.711 × 103 1.408 × 103 4.700 × 103 1.797 × 103 1.143 × 103

Min 7.488 × 103 1.304 × 103 1.236 × 103 3.395 × 103 1.699 × 103 1.107 × 103

F12
Avg 6.824 × 109 2.220 × 106 3.441 × 107 2.979 × 109 3.763 × 108 1.508 × 105

Min 3.870 × 109 7.468 × 105 2.122 × 106 1.516 × 109 2.821 × 108 2.035 × 104

F13
Avg 3.156 × 109 3.457 × 104 1.505 × 106 9.478 × 108 1.051 × 108 6.405 × 103

Min 5.760 × 108 1.430 × 104 4.674 × 104 5.211 × 108 3.296 × 107 1.690 × 103

F14
Avg 7.227 × 105 2.910 × 105 1.926 × 105 4.342 × 105 1.340 × 105 8.200 × 103

Min 1.041 × 105 1.873 × 104 2.446 × 104 1.482 × 105 5.216 × 104 2.021 × 103

F15
Avg 2.025 × 108 1.788 × 104 1.956 × 105 7.286 × 107 3.143 × 107 5.614 × 103

Min 1.064 × 107 9.433 × 103 1.435 × 104 2.378 × 107 8.141 × 106 1.515 × 103

330

Mathematics 2023, 11, 862

Table 5. Cont.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F16
Avg 4.452 × 103 2.884 × 103 2.385 × 103 3.989 × 103 3.786 × 103 1.855 × 103

Min 3.827 × 103 2.377 × 103 1.949 × 103 3.147 × 103 3.419 × 103 1.617 × 103

F17
Avg 3.298 × 103 2.277 × 103 1.943 × 103 2.628 × 103 2.361 × 103 1.745 × 103

Min 2.755 × 103 1.804 × 103 1.778 × 103 2.256 × 103 2.102 × 103 1.727 × 103

F18
Avg 6.473 × 106 4.258 × 105 8.049 × 105 7.890 × 106 1.212 × 106 1.493 × 105

Min 6.593 × 105 4.192 × 104 6.880 × 104 2.022 × 106 4.281 × 105 4.305 × 104

F19
Avg 2.509 × 108 9.593 × 104 7.374 × 105 1.358 × 108 4.426 × 107 6.534 × 103

Min 3.341 × 107 1.081 × 104 3.279 × 103 6.263 × 107 1.774 × 107 1.910 × 103

F20
Avg 2.847 × 103 2.624 × 103 2.362 × 103 2.759 × 103 2.681 × 103 2.091 × 103

Min 2.574 × 103 2.303 × 103 2.146 × 103 2.476 × 103 2.487 × 103 2.004 × 103

F21
Avg 2.707 × 103 2.416 × 103 2.379 × 103 2.625 × 103 2.575 × 103 2.321 × 103

Min 2.615 × 103 2.359 × 103 2.351 × 103 2.587 × 103 2.539 × 103 2.312 × 103

F22
Avg 8.759 × 103 3.018 × 103 4.411 × 103 6.831 × 103 4.513 × 103 2.300 × 103

Min 6.900 × 103 2.300 × 103 2.406 × 103 5.558 × 103 2.705 × 103 2.300 × 103

F23
Avg 3.239 × 103 2.880 × 103 2.729 × 103 3.143 × 103 3.133 × 103 2.671 × 103

Min 3.101 × 103 2.807 × 103 2.678 × 103 3.061 × 103 3.059 × 103 2.654 × 103

F24
Avg 3.539 × 103 3.107 × 103 2.890 × 103 3.319 × 103 3.188 × 103 2.844 × 103

Min 3.253 × 103 2.994 × 103 2.849 × 103 3.206 × 103 3.122 × 103 2.828 × 103

F25
Avg 7.655 × 103 2.911 × 103 2.958 × 103 4.890 × 103 3.137 × 103 2.887 × 103

Min 5.843 × 103 2.887 × 103 2.916 × 103 4.344 × 103 3.069 × 103 2.887 × 103

F26
Avg 8.709 × 103 5.651 × 103 4.483 × 103 8.661 × 103 4.738 × 103 3.903 × 103

Min 6.500 × 103 2.800 × 103 3.473 × 103 7.772 × 103 3.736 × 103 3.739 × 103

F27
Avg 3.827 × 103 3.400 × 103 3.230 × 103 3.690 × 103 3.720 × 103 3.219 × 103

Min 3.591 × 103 3.283 × 103 3.212 × 103 3.537 × 103 3.616 × 103 3.208 × 103

F28
Avg 6.851 × 103 3.228 × 103 3.356 × 103 5.474 × 103 3.519 × 103 3.216 × 103

Min 5.611 × 103 3.198 × 103 3.283 × 103 4.541 × 103 3.468 × 103 3.196 × 103

F29
Avg 5.426 × 103 4.194 × 103 3.642 × 103 5.253 × 103 4.726 × 103 3.414 × 103

Min 4.907 × 103 3.858 × 103 3.439 × 103 4.952 × 103 4.454 × 103 3.323 × 103

F30
Avg 2.946 × 108 1.043 × 106 2.842 × 106 1.084 × 108 2.610 × 107 7.835 × 103

Min 8.913 × 107 8.260 × 104 5.249 × 105 4.274 × 107 1.221 × 107 6.362 × 103

Average rank 5.84 2.68 2.45 5.00 3.93 1.09

Total rank 6 3 2 5 4 1

Table 6. Comparison of MFO-SFR with well-known algorithms for CEC 2018 test functions with
D = 50.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F1
Avg 1.526 × 1011 1.703 × 105 4.506 × 109 9.609 × 1010 1.149 × 1010 3.463 × 104

Min 8.451 × 1010 1.932 × 104 7.183 × 108 8.123 × 1010 8.346 × 109 9.385 × 103

F3
Avg 2.549 × 105 1.192 × 105 7.730 × 104 2.070 × 105 8.230 × 104 5.495 × 104

Min 1.957 × 105 7.643 × 104 4.662 × 104 1.774 × 105 6.990 × 104 4.223 × 104

F4
Avg 3.307 × 104 5.428 × 102 8.017 × 102 1.712 × 104 2.589 × 103 5.867 × 102

Min 1.811 × 104 4.765 × 102 6.224 × 102 1.286 × 104 2.058 × 103 5.196 × 102

F5
Avg 1.367 × 103 7.662 × 102 6.775 × 102 1.211 × 103 1.047 × 103 5.624 × 102

Min 1.256 × 103 7.090 × 102 6.316 × 102 1.145 × 103 1.011 × 103 5.318 × 102

331

Mathematics 2023, 11, 862

Table 6. Cont.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F6
Avg 7.114 × 102 6.499 × 102 6.112 × 102 6.862 × 102 6.745 × 102 6.001 × 102

Min 6.991 × 102 6.393 × 102 6.075 × 102 6.776 × 102 6.645 × 102 6.000 × 102

F7
Avg 4.585 × 103 1.052 × 103 9.899 × 102 3.206 × 103 1.338 × 103 8.682 × 102

Min 4.142 × 103 9.353 × 102 9.057 × 102 2.735 × 103 1.289 × 103 8.099 × 102

F8
Avg 1.687 × 103 1.059 × 103 9.862 × 102 1.499 × 103 1.354 × 103 8.610 × 102

Min 1.575 × 103 1.033 × 103 9.423 × 102 1.423 × 103 1.283 × 103 8.318 × 102

F9
Avg 5.170 × 104 9.873 × 103 4.844 × 103 3.622 × 104 2.153 × 104 9.243 × 102

Min 3.909 × 104 7.955 × 103 2.552 × 103 3.021 × 104 1.416 × 104 9.066 × 102

F10
Avg 1.441 × 104 7.948 × 103 5.919 × 103 1.429 × 104 1.412 × 104 6.534 × 103

Min 1.356 × 104 6.701 × 103 4.473 × 103 1.342 × 104 1.324 × 104 5.135 × 103

F11
Avg 2.610 × 104 4.813 × 103 2.766 × 103 1.573 × 104 3.782 × 103 1.259 × 103

Min 1.947 × 104 3.034 × 103 1.652 × 103 1.157 × 104 3.239 × 103 1.146 × 103

F12
Avg 4.300 × 1010 1.287 × 107 3.406 × 108 2.210 × 1010 2.417 × 109 1.873 × 106

Min 2.464 × 1010 4.289 × 106 3.715 × 107 1.421 × 1010 1.705 × 109 1.078 × 106

F13
Avg 1.683 × 1010 5.864 × 104 1.026 × 108 6.132 × 109 5.696 × 108 5.362 × 103

Min 5.672 × 109 2.099 × 104 8.150 × 104 3.709 × 109 4.310 × 108 1.749 × 103

F14
Avg 6.142 × 106 5.701 × 105 3.453 × 105 4.140 × 106 8.316 × 105 4.016 × 104

Min 1.659 × 106 1.615 × 105 2.928 × 104 1.829 × 106 2.222 × 105 1.202 × 104

F15
Avg 5.029 × 109 1.956 × 104 4.078 × 106 1.190 × 109 2.294 × 108 2.964 × 103

Min 2.307 × 109 9.499 × 103 2.722 × 104 4.163 × 108 9.908 × 107 1.534 × 103

F16
Avg 7.306 × 103 3.250 × 103 2.896 × 103 6.252 × 103 5.184 × 103 2.614 × 103

Min 6.699 × 103 2.463 × 103 2.326 × 103 5.731 × 103 4.749 × 103 2.148 × 103

F17
Avg 1.334 × 104 3.359 × 103 2.661 × 103 5.190 × 103 3.888 × 103 2.474 × 103

Min 5.938 × 103 2.849 × 103 2.264 × 103 4.547 × 103 3.183 × 103 2.018 × 103

F18
Avg 3.800 × 107 2.330 × 106 3.051 × 106 3.471 × 107 8.478 × 106 1.247 × 106

Min 1.430 × 107 1.131 × 106 3.848 × 105 1.224 × 107 4.500 × 106 1.067 × 105

F19
Avg 2.060 × 109 1.719 × 105 1.231 × 106 5.231 × 108 7.924 × 107 1.276 × 104

Min 6.897 × 108 2.586 × 104 9.261 × 103 2.060 × 108 2.979 × 107 2.447 × 103

F20
Avg 4.010 × 103 3.276 × 103 2.743 × 103 3.903 × 103 3.675 × 103 2.485 × 103

Min 3.712 × 103 2.764 × 103 2.380 × 103 3.680 × 103 3.261 × 103 2.081 × 103

F21
Avg 3.164 × 103 2.556 × 103 2.473 × 103 2.994 × 103 2.850 × 103 2.360 × 103

Min 3.046 × 103 2.455 × 103 2.422 × 103 2.896 × 103 2.767 × 103 2.335 × 103

F22
Avg 1.609 × 104 1.049 × 104 8.211 × 103 1.603 × 104 1.527 × 104 8.339 × 103

Min 1.492 × 104 9.115 × 103 6.990 × 103 1.493 × 104 4.474 × 103 6.317 × 103

F23
Avg 4.077 × 103 3.379 × 103 2.916 × 103 3.777 × 103 3.749 × 103 2.793 × 103

Min 3.763 × 103 3.052 × 103 2.826 × 103 3.595 × 103 3.533 × 103 2.761 × 103

F24
Avg 4.174 × 103 3.643 × 103 3.109 × 103 3.983 × 103 3.744 × 103 2.970 × 103

Min 3.943 × 103 3.406 × 103 2.991 × 103 3.738 × 103 3.597 × 103 2.931 × 103

F25
Avg 2.556 × 104 3.092 × 103 3.355 × 103 1.580 × 104 4.331 × 103 3.070 × 103

Min 1.693 × 104 3.052 × 103 3.146 × 103 1.384 × 104 3.997 × 103 2.985 × 103

F26
Avg 1.697 × 104 9.335 × 103 5.804 × 103 1.506 × 104 5.800 × 103 4.406 × 103

Min 1.280 × 104 3.159 × 103 4.993 × 103 1.326 × 104 5.170 × 103 4.051 × 103

F27
Avg 5.456 × 103 4.354 × 103 3.516 × 103 5.185 × 103 5.049 × 103 3.307 × 103

Min 4.582 × 103 3.985 × 103 3.402 × 103 4.636 × 103 4.657 × 103 3.266 × 103

F28
Avg 1.242 × 104 3.346 × 103 3.927 × 103 1.039 × 104 4.740 × 103 3.378 × 103

Min 9.606 × 103 3.311 × 103 3.545 × 103 8.991 × 103 4.469 × 103 3.310 × 103

332

Mathematics 2023, 11, 862

Table 6. Cont.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F29
Avg 1.018 × 104 5.360 × 103 4.202 × 103 8.981 × 103 6.514 × 103 3.545 × 103

Min 8.653 × 103 4.196 × 103 3.826 × 103 7.451 × 103 6.113 × 103 3.289 × 103

F30
Avg 2.508 × 109 4.241 × 107 7.032 × 107 1.287 × 109 3.337 × 108 1.144 × 106

Min 1.281 × 109 1.429 × 107 3.629 × 107 6.453 × 108 2.374 × 108 9.567 × 105

Average rank 5.93 2.70 2.29 4.98 3.92 1.18

Total rank 6 3 2 5 4 1

The exploratory data analysis shown in Figure 3 was conducted to investigate the
ranking of algorithms for each test function. Overall, it can be noted that the proposed
MFO-SFR algorithm was ranked first among the other compared algorithms for all test
functions, except for F10 in 30 dimensions. For 50 dimensions, it is notable that MFO-SFR
was ranked first for all test functions except for F4, F10, F22, and F28.

Figure 3. Exploratory data analysis of MFO-SFR and other well-known MFO algorithms on CEC
2018 with 30 and 50 dimensions.

As shown in Figure 4, we analyzed MFO-SFR’s convergence behavior and compared
it with that of the other algorithms. Overall, it can be seen that the proposed MFO-SFR
algorithm was able to converge toward more accurate solutions by avoiding local optimum
solutions and striking a balance between its search abilities. It is also notable that the
proposed MFO-SFR algorithm maintained its solution accuracy by enhancing the number
of dimensions, which demonstrates the scalability of the proposed algorithm.

333

Mathematics 2023, 11, 862

Figure 4. Comparison of the convergence behavior of MFO-SFR and well-known algorithms for CEC
2018 test functions with 30 and 50 dimensions.

5.3. Population Diversity Analysis

Maintaining population diversity is essential in metaheuristic algorithms since low
diversity among search agents may cause the algorithm to become stuck at local optimum
areas. In this experiment, the population diversity of MFO-SFR and five representatives
of comparative algorithms was investigated on several CEC 2018 benchmark test suites
with 30 and 50 dimensions. The population diversity curves presented in Figure 5 were
calculated by measuring the moment of inertia (Ic) [99], where Ic denotes the spreading
of each individual from their centroid, which was determined by Equation (14), and
the centroid cj for j = 1, 2, ... D was calculated using Equation (15). Comparing the
population diversity curves with the convergence curves plotted in Figures 2 and 4, it
can be noted that the proposed MFO-SFR algorithm effectively maintained diversification
among solutions until the near-optimal solution was met. This behavior occurred mainly
because of the introduced SFR strategy, which identified stagnant solutions using a distance-
based technique and replaced them with a solution selected from the archive constructed
from the previous solutions. The introduced archive was able to maintain not only the
diversification of solutions by preserving the generated representative flame but also the
convergence of solutions toward promising areas by preserving the best solutions in each
iteration.

Ic =
D

∑
i=1

N

∑
j=1

(
Mij − ci

)2 (14)

ci =
1
N

N

∑
j=1

Mij (15)

334

Mathematics 2023, 11, 862

Figure 5. Population diversity of MFO-SFR and comparative algorithms on CEC 2018 test functions.

5.4. The Overall Effectiveness of MFO-SFR

The overall effectiveness (OE) achieved by the proposed MFO-SFR algorithm in
solving test functions with 30 and 50 dimensions was computed using Equation (16) and
the results are reported in Tables 7 and 8. OEi indicates the overall effectiveness of the
i-th algorithm, Li is the total number of test functions that the i-th algorithm lost, and TF
is the total number of test functions. Table 7 compares the OE achieved by the proposed
MFO-SFR with the other MFO variants, showing that MFO-SFR attained the highest OE
value, equal to 74.14%. Moreover, Table 8 shows that MFO-SFR achieved a higher OE value
of 91.38% compared to other well-known optimization algorithms.

OEi(%) =
TF− Li

TF
(16)

Table 7. The overall effectiveness of MFO-SFR and MFO variants.

Algorithms
30

(W|T|L)
50

(W|T|L)
Total

(W|T|L)
OE

MFO 0|0|29 0|0|29 0|0|58 0%

LMFO 0|0|29 0|0|29 0|0|58 0%

WCMFO 1|0|28 2|0|27 3|0|55 5.17%

CMFO 0|0|29 0|0|29 0|0|58 0%

ODSFMFO 1|0|28 1|0|28 2|0|56 3.45%

SMFO 0|0|29 0|0|29 0|0|58 0%

WMFO 4|0|25 6|0|23 10|0|48 17.24%

MFO-SFR 23|0|6 20|0|9 43|0|15 74.14%

335

Mathematics 2023, 11, 862

Table 8. The overall effectiveness of MFO-SFR and contender algorithms.

Algorithms
30

(W|T|L)
50

(W|T|L)
Total

(W|T|L)
OE

PSO 0|0|29 0|0|29 0|0|58 0%

KH 0|0|29 2|0|27 2|0|56 3.45%

GWO 1|0|28 2|0|27 3|0|55 5.17%

CSA 0|0|29 0|0|29 0|0|58 0%

HOA 0|0|29 0|0|29 0|0|58 0%

MFO-SFR 28|0|1 25|0|4 53|0|5 91.38%

6. Applicability of MFO-SFR to Solving Mechanical Engineering Problems

There is a growing interest in using optimization algorithms in mechanical and engi-
neering systems to improve performance, cost, and product lifespan [50,100]. Therefore, in
this section we assessed the applicability of MFO-SFR using two challenging real-world
optimization issues from the most recent CEC 2020 test suite [72]. The constraints of the
problems were handled using a death penalty function. The maximum number of iterations
for MFO-SFR and the variants of MFO was (D× 104)/N, where D is the number of decision
variables and N is the number of search agents, which was set to 20.

6.1. Welded Beam Design (WBD) Problem

The WBD [101], stated in Equation (17), is a well-known optimization issue in con-
strained engineering problems. The primary goal of this task, as indicated in Figure 6, is
to minimize the total fabrication cost of a welded beam by determining the best design
parameters for the clamped bar length (l), weld thickness (h), bar thickness (b), and bar
height (t). The results tabulated in Table 9 indicate that the proposed MFO-SFR exhibited
superior performance compared with the other algorithms.

Consider →
x = [x1, x2, x3, x4] = [h, l, t, b], (17)

Min f
(→

x
)
= 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2),

Subject to g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0,

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0,

g3

(→
x
)
= x1 − x4 ≤ 0,

g4

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0,

g5

(→
x
)
= 0.125− x1 ≤ 0,

g6

(→
x
)
= δ

(→
x
)
− δmax ≤ 0,

g7

(→
x
)
= P− Pc ≤ 0,

Variable range 0.1 ≤ xi ≤ 2, i = 1, 4,
0.1 ≤ xi ≤ 10, i = 2, 3.

where τ
(→

x
)
=
√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′)2, τ′ = P√
2x1x2

, τ′′ = MR
J , M = P

(
L + x2

2
)
,

R =

√
x2

2
4 +

(x1+x3
2
)2, J = 2

{√
2x1x2

[
x2

2
12 +

(x1+x3
2
)2
]}

, σ
(→

x
)
= 6PL

x4x2
3
,

δ
(→

x
)
= 6PL3

Ex2
3 x4

, Pc

(→
x
)
=

4.013E

√
x2

3 x6
4

36

Ex2
3 x4

(
1− x3

2L

√
E

4G

)
, P = 6000lb, L = 14in.,

E = 30× 106 psi, G = 12× 106 psi, τmax = 13, 600psi, σmax = 30, 000psi,
δmax = 0.25 in.

336

Mathematics 2023, 11, 862

Figure 6. Schematic of the welded beam design problem [101].

Table 9. Comparison of the results obtained for the welded beam design problem.

Algorithms
Optimal Values for Variables Optimum

Costh l t b

MFO 0.20576 3.47017 9.03582 0.20577 1.72499
LMFO 0.20739 3.43588 9.25131 0.20807 1.77799

WCMFO 0.20573 3.47035 9.03670 0.20573 1.72489
CMFO 0.18276 4.49027 8.98308 0.20819 1.82934

ODSFMFO 0.20569 3.47128 9.03662 0.20573 1.72490
SMFO 0.20836 3.46324 8.99144 0.20853 1.74135
WMFO 0.20722 3.45341 8.99834 0.20748 1.73151

MFO-SFR 0.20573 3.47056 9.03662 0.20573 1.72486

6.2. The Four-Stage Gearbox Problem

The design of a four-stage gearbox [102] was the second engineering design optimiza-
tion problem examined in this study. To reduce the weight of the gearbox, the mathematical
model specified in Equation (18) was used, together with 86 non-linear constraints and 22
discrete decision variables. According to the results reported in Table 10, the MFO-SFR
algorithm outperformed the other algorithms in terms of the quality of its solution.

Minimize : F
(−

x
)
=
(π

1000

)
∑4

i=1

bic2
i

(
N2

pi + N2
gi

)
(

Npi + Ngi
)2 , i = (1, 2, 3, 4) (18)

Table 10. Comparison of the results obtained for the four-stage gearbox problem.

Variables MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

x1 21.9311 26.0390 13.2709 14.4470 19.9522 7.4896 11.6081 19.7537
x2 56.2686 59.6014 38.0428 35.9087 42.7879 36.8603 36.5289 51.3053
x3 6.5100 23.4280 47.0038 13.7051 16.7363 9.6905 32.5497 17.3633
x4 21.2349 62.1487 64.7345 27.4891 34.3685 35.0066 48.2554 35.7343
x5 17.8415 41.7704 6.9925 19.5000 15.1662 15.4976 18.6551 17.4063
x6 37.9201 50.8023 16.3730 32.6744 27.1178 36.7195 35.1674 30.5308
x7 23.1300 18.5328 16.3790 13.5190 22.4386 37.1973 15.6177 21.5071
x8 27.5979 49.6525 33.9110 31.5029 56.4417 15.5455 38.4569 44.0394
x9 0.5100 0.9809 0.7443 1.3021 0.9727 2.0702 1.4277 0.8917
x10 3.3914 0.5964 0.8894 2.4919 0.8552 0.7589 1.3920 1.2137
x11 0.5100 0.7173 4.2285 1.4999 1.2069 0.8063 0.9781 0.6197
x12 0.5100 0.5100 1.2452 1.4996 0.9356 1.3444 1.0893 1.1821
x13 7.8792 5.4735 6.3799 3.4649 2.3679 0.9250 1.6757 4.1070
x14 5.9533 4.8956 5.5138 6.4560 5.1076 4.7899 5.7668 6.8698
x15 5.3993 4.9521 5.8834 5.1835 5.0748 0.5867 5.6259 2.6797
x16 6.9070 4.8722 2.7391 5.1577 4.1023 4.6470 5.0989 2.2119
x17 6.7122 4.6078 5.4174 6.4936 5.1441 4.0477 4.6631 4.2234
x18 7.5214 7.5663 8.3727 6.4751 5.1403 3.3638 3.5762 1.5645
x19 4.7338 3.7869 3.5741 4.4972 3.9364 3.6366 3.7593 3.7526
x20 5.3254 4.3966 3.3184 3.4597 4.8508 4.6303 3.5222 5.4510
x21 4.8923 3.3528 5.7764 4.4278 2.8171 2.9203 2.6439 4.0416
x22 5.6086 4.0724 4.8985 4.4763 2.7781 3.9267 5.6805 5.2131

Optimum
Weight 7.2632 × 101 6.6228 × 101 2.1631 × 1012 5.2157 × 101 3.6565 × 101 3.4380 × 1017 2.6870 × 1014 3.6555 × 101

337

Mathematics 2023, 11, 862

Subject to:

g1

(−
x
)
=
(

366000
πω1

+
2c1 Np1

Npi+Ng1

)(
(Np1+Ng1)

2

4b1c2
1 Np1

)
− σN JR

0.0167WK0Km
≤ 0

g2

(−
x
)
=
(

366000Ng1
πω1 Np1

+
2c2 Np2

Np2+Ng2

)(
(Np2+Ng2)

2

4b2c2
2 Np2

)
− σN JR

0.0167WK0Km
≤ 0

g3

(−
x
)
=
(

366000Ng1 Ng2
πω1 Np1 Np2

+
2c3 Np3

Np3+Ng3

)(
(Np3+Ng3)

2

4b3c2
3 Np3

)
− σN JR

0.0167WK0Km
≤ 0

g4

(−
x
)
=
(

366000Ng1 Ng2 Ng3
πω1 Np1 Np2 Np3

+
2c4 Np4

Np4+Ng4

)(
(Np4+Ng4)

2

4b4c2
4 Np4

)
− σN JR

0.0167WK0Km
≤ 0

g5

(−
x
)
=
(

366000
πω1

+
2c1 Np1

Np1+Ng1

)(
(Np1+Ng1)

3

4b1c2
1 Ng1 N2

p1

)
−
(

σH
Cp

)2(sin(∅)cos(∅)
0.0334WK0Km

)
≤ 0

g6

(−
x
)
=
(

366000Ng1
πω1 Np1

+
2c2 Np2

Np2+Ng2

)(
(Np2+Ng2)

3

4b2c2
2 Ng2 N2

p2

)
−
(

σH
Cp

)2(sin(∅)cos(∅)
0.0334WK0Km

)
≤ 0

g7

(−
x
)
=
(

366000Ng1 Ng2
πω1 Np1 Np2

+
2c3 Np3

Np3+Ng3

)(
(Np3+Ng3)

3

4b3c2
3 Ng3 N2

p3

)
−
(

σH
Cp

)2(sin(∅)cos(∅)
0.0334WK0Km

)
≤ 0

g8

(−
x
)
=
(

366000Ng1 Ng2 Ng3
πω1 Np1 Np2 Np3

+
2c4 Np4

Np4+Ng4

)(
(Np4+Ng4)

3

4b4c2
4 Ng4 N2

p4

)
−
(

σH
Cp

)2(sin(∅)cos(∅)
0.0334WK0Km

)
≤ 0

g9–12

(−
x
)
= −Npi

√
sin2(∅)

4 − 1
Npi

+
(

1
Npi

)2
+ Ngi

√
sin2(∅)

4 − 1
Ngi

+
(

1
Ngi

)2
+

sin(∅)(Npi+Ngi)
2 + CRminπcos(∅) ≤ 0

g13–16

(−
x
)
= dmin −

2ci Npi
Npi+Ngi

≤ 0

g17–20

(−
x
)
= dmin −

2ci Ngi
Npi+Ngi

≤ 0

g21

(−
x
)
= xp1 +

(
(Np1+2)c1
Np1+Ng1

)
− Lmax ≤ 0

g22–24

(−
x
)
= −Lmax +

(
(Npi+2)ci
Npi+Ngi

)
i=2,3,4

+ xg(i−1) ≤ 0

g25

(−
x
)
= −xp1 +

(
(Np1+2)c1
Np1+Ng1

)
≤ 0

g26–28

(−
x
)
=

(
(Npi+2)ci
Npi+Ngi

− xg(i−1)

)
i=2,3,4

≤ 0

g29

(−
x
)
= yp1 +

(Np1+2)c1
Np1+Ng1

−Lmax ≤ 0

g30–32

(−
x
)
= −Lmax +

(
ci(2+Npi)
Npi+Ngi

− yg(i−1)

)
i=2,3,4

≤ 0

g33

(−
x
)
=

(2+Np1)c1
Np1+Ng1

− yp1 ≤ 0

g34–36

(−
x
)
=

(
ci(2+Npi)
Npi+Ngi

− yg(i−1)

)
i=2,3,4

≤ 0

g37–40

(−
x
)
= −Lmax +

(2+Ngi)c1
Npi+Ngi

+ xgi ≤ 0

g41–44

(−
x
)
= −xgi +

(
(Ngi+2)ci
Npi+Ngi

)
+ xgi ≤ 0

g45–48

(−
x
)
= −ygi +

(
(Ngi+2)ci
Npi+Ngi

)
−Lmax ≤ 0

g49–52

(−
x
)
= −ygi +

(
(Ngi+2)ci
Npi+Ngi

)
≤ 0

g53–56

(−
x
)
= (bi − 8.255)(bi − 5.715)(bi − 12.70)(−Npi + 0.945ci − Ngi)(−1) ≤ 0

g57–60

(−
x
)
= (bi − 8.255)(bi − 3.175)(bi − 12.70)(−Npi + 0.646ci − Ngi) ≤ 0

g61–64

(−
x
)
= (bi − 5.715)(bi − 3.175)(bi − 12.70)(−Npi + 0.504ci − Ngi) ≤ 0

g65–68

(−
x
)
= (bi − 5.715)(bi − 3.175)(bi − 8.255)(0ci − Ngi − Npi) ≤ 0

338

Mathematics 2023, 11, 862

g69–72

(−
x
)
= (bi − 8.255)(bi − 5.715)(bi − 12.70)(Ngi + Npi − 1.812ci) ≤ 0

g73–76

(−
x
)
= (bi − 8.255)(bi − 3.175)(bi − 12.70)(−0.945ci + Npi + Ngi) ≤ 0

g77–80

(−
x
)
= (bi − 5.715)(bi − 3.175)(bi − 12.70)(−0.646ci + Npi + Ngi)(−1) ≤ 0

g81–84

(−
x
)
= (bi − 5.715)(bi − 3.175)(bi − 8.255)(Npi + Ngi − 0.504ci) ≤ 0

g85

(−
x
)
= ωmin +

ω1(Np1 Np2 Np3 Np4)
(Ng1 Ng2 Ng3 Ng4)

≤ 0

g86

(−
x
)
=

ω1(Np1 Np2 Np3 Np4)
(Ng1 Ng2 Ng3 Ng4)

−ωmin ≤ 0

(1)

where

−
x =

{
Np1, Ng1, Np2, Ng2 . . . b1, b2 . . . xp1, xg1, xg2 . . . yp1, yg1, yg2 . . . yg4

}
ci =

√(
ygi − ypi

)2
+
(
xgi − xpi

)2, K0 = 1.5, dmin = 25, JR = 0.2, ∅ = 120
◦
, W = 55.9,

KM = 1.6, CRmin = 1.4,
Lmax = 127, Cp = 464, σH = 3290, ωmax = 255, ω1 = 5000, σN = 2090, ωmin = 245.

with bounds:

b1 ∈ {3.175, 12.7, 8.255, 5.715}
yp1, xp1, ygi, xgi ∈ {12.7, 38.1, 25.4, 50.8, 76.2, 63.5, 88.9, 114.3, 101.6}
7 ≤ Ngi, Npi ≤ 76 ∈ integer.

7. Conclusions and Future Works

MFO is a prominent metaheuristic algorithm, inspired by the nighttime convergent
behavior of moths in relation to a light source. A large part of MFO’s popularity in recent
years has been attributed to its straightforward construction. However, due to its rapid
loss of population diversity and inadequate exploration ability, the MFO algorithm often
encounters local optimum entrapment and premature convergence. In this study, an
enhanced moth-flame optimization (MFO-SFR) algorithm was proposed to tackle these
weaknesses. MFO-SFR introduces an effective stagnation finding and replacing (SFR)
strategy to effectively maintain population diversity by finding stagnant solutions using
a distance-based technique and replacing them with a solution selected from the archive
constructed on the basis of previous solutions.

The performance of the proposed MFO-SFR algorithm was evaluated on global op-
timization problems using the CEC 2018 benchmark test suite in two different sets of
experiments. In the first set of experiments, the performance of MFO-SFR was bench-
marked by conducting the CEC 2018 benchmark functions with 30 and 50 dimensions. The
obtained results were compared to those obtained using MFO and its six recent variants,
including Lévy-flight moth-flame optimization (LMFO), an efficient hybrid algorithm based
on the water cycle and moth-flame (WCMFO), chaos-enhanced moth-flame optimization
(CMFO), death mechanism-based moth-flame optimization (ODSFMFO), the synthesis
of the moth-flame optimizer with sine cosine mechanisms (SMFO), and the hybrid of
whale and moth-flame optimization (WMFO). In the second set of experiments, the results
obtained using MFO-SFR were compared with the results of five well-known swarm intelli-
gence algorithms, including particle swarm optimization (PSO), krill herd (KH), the grey
wolf optimizer (GWO), the crow search algorithm (CSA), and the horse herd optimization
algorithm (HOA) in 30 and 50 dimensions. Furthermore, the results of the two sets of ex-
periments were statistically analyzed and ranked based on their average fitness values. To
further analyze the performance of the proposed algorithms, convergence and population
diversity results were plotted and compared with those of the other studied algorithms.
The plotted curves showed that MFO-SFR could avoid premature convergence and local
optimum solutions by maintaining its population diversity throughout the optimization
process. To verify the viability of MFO-SFR in solving real-world optimization problems,

339

Mathematics 2023, 11, 862

two well-known mechanical engineering problems from the CEC 2020 dataset were con-
sidered. For future studies, solving the problem of improving the exploitation ability of
MFO-SFR without degrading its exploration ability is a worthwhile direction of research.
Furthermore, the SFR strategy could be considered as a reference in solving the issue of
low population diversity for those metaheuristic algorithms that suffer from this problem.
Moreover, alternative methods to construct an archive, such as history-based methods, as
used in SHADE [103], can be investigated in future studies.

Author Contributions: Conceptualization, M.H.N.-S., A.F. and H.Z.; methodology, M.H.N.-S., A.F.
and H.Z.; software, M.H.N.-S., A.F. and H.Z.; validation, M.H.N.-S., H.Z. and S.M.; formal analysis,
M.H.N.-S., H.Z., A.F. and S.M.; investigation, M.H.N.-S., A.F. and H.Z.; resources, M.H.N.-S., H.Z.
and S.M.; data curation, M.H.N.-S., A.F. and H.Z.; writing, M.H.N.-S., H.Z. and A.F.; original draft
preparation, M.H.N.-S., A.F. and H.Z.; writing—review and editing, M.H.N.-S., H.Z., A.F. and S.M.;
visualization, M.H.N.-S., A.F. and H.Z.; supervision, M.H.N.-S., H.Z. and S.M.; project administration,
M.H.N.-S. and S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and code used in the research may be obtained from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 provides the results of the pretest conducted on the canonical MFO in
30 dimensions to investigate the average and maximum percentages of situations when ϕi
was equal to 0.

Table A1. The analysis of situations where ϕi was equal to zero with D = 30.

#F
Max

Percentage
Average

Percentage
#F

Max
Percentage

Average
Percentage

#F
Max

Percentage
Average

Percentage

F1 2.03 0.40 F12 26.05 3.32 F22 22.13 3.51

F3 0.00 0.00 F13 1.16 0.16 F23 0.12 0.01

F4 0.90 0.13 F14 6.85 0.34 F24 3.41 0.42

F5 0.60 0.16 F15 2.12 0.21 F25 0.27 0.03

F6 0.00 0.00 F16 0.10 0.01 F26 2.53 0.65

F7 4.25 0.34 F17 0.02 0.00 F27 3.40 0.28

F8 14.97 0.84 F18 0.37 0.02 F28 11.15 0.64

F9 0.01 0.00 F19 2.00 0.13 F29 28.22 1.46

F10 12.05 1.22 F20 5.24 0.81 F30 9.30 0.47

F11 1.25 0.31 F21 0.01 0.00

References

1. Zabinsky, Z.B. Stochastic methods for practical global optimization. J. Glob. Optim. 1998, 13, 433–444. [CrossRef]
2. Pardalos, P.M.; Romeijn, H.E.; Tuy, H. Recent developments and trends in global optimization. J. Comput. Appl. Math. 2000,

124, 209–228. [CrossRef]
3. Hosseinzadeh, M.; Masdari, M.; Rahmani, A.M.; Mohammadi, M.; Aldalwie, A.H.M.; Majeed, M.K.; Karim, S.H.T. Improved

butterfly optimization algorithm for data placement and scheduling in edge computing environments. J. Grid Comput. 2021,
19, 1–27. [CrossRef]

4. Hassan, B.A.; Rashid, T.A.; Mirjalili, S. Formal context reduction in deriving concept hierarchies from corpora using adaptive
evolutionary clustering algorithm star. Complex Intell. Syst. 2021, 7, 2383–2398. [CrossRef]

340

Mathematics 2023, 11, 862

5. Hassan, B.A. CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Comput. Appl. 2021,
33, 7011–7030. [CrossRef]

6. Yi, H.; Duan, Q.; Liao, T.W. Three improved hybrid metaheuristic algorithms for engineering design optimization. Appl. Soft
Comput. 2013, 13, 2433–2444. [CrossRef]

7. Nadimi-Shahraki, M.H.; Asghari Varzaneh, Z.; Zamani, H.; Mirjalili, S. Binary Starling Murmuration Optimizer Algorithm to
Select Effective Features from Medical Data. Appl. Sci. 2022, 13, 564. [CrossRef]

8. Piri, J.; Mohapatra, P.; Acharya, B.; Gharehchopogh, F.S.; Gerogiannis, V.C.; Kanavos, A.; Manika, S. Feature Selection Using
Artificial Gorilla Troop Optimization for Biomedical Data: A Case Analysis with COVID-19 Data. Mathematics 2022, 10, 2742.
[CrossRef]

9. Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S. Binary Approaches of Quantum-Based Avian Navigation Optimizer
to Select Effective Features from High-Dimensional Medical Data. Mathematics 2022, 10, 2770. [CrossRef]

10. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
11. Siddiqi, U.F.; Shiraishi, Y.; Dahb, M.; Sait, S.M. A memory efficient stochastic evolution based algorithm for the multi-objective

shortest path problem. Appl. Soft Comput. 2014, 14, 653–662. [CrossRef]
12. Kavoosi, M.; Dulebenets, M.A.; Abioye, O.; Pasha, J.; Theophilus, O.; Wang, H.; Kampmann, R.; Mikijeljević, M. Berth scheduling

at marine container terminals: A universal island-based metaheuristic approach. Marit. Bus. Rev. 2019, 5, 30–66. [CrossRef]
13. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng.

2019, 137, 106040. [CrossRef]
14. Agushaka, J.O.; Ezugwu, A.E. Initialisation Approaches for Population-Based Metaheuristic Algorithms: A Comprehensive

Review. Appl. Sci. 2022, 12, 896. [CrossRef]
15. Singh, A.; Kumar, A. Applications of nature-inspired meta-heuristic algorithms: A survey. Int. J. Adv. Intell. Paradig. 2021,

20, 388–417. [CrossRef]
16. Fister Jr, I.; Yang, X.-S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013,

arXiv:1307.4186.
17. Dehghani, M.; Mardaneh, M.; Malik, O.P.; NouraeiPour, S.M. DTO: Donkey theorem optimization. In Proceedings of the 2019

27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019; pp. 1855–1859.
18. Fard, E.S.; Monfaredi, K.; Nadimi, M.H. An Area-Optimized Chip of Ant Colony Algorithm Design in Hardware Platform Using

the Address-Based Method. Int. J. Electr. Comput. Eng. 2014, 4, 989–998. [CrossRef]
19. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
20. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
21. Beyer, H.-G.; Schwefel, H.-P. Evolution strategies–a comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
22. Jiao, L.; Li, Y.; Gong, M.; Zhang, X. Quantum-inspired immune clonal algorithm for global optimization. IEEE Trans. Syst. Man

Cybern. Part B 2008, 38, 1234–1253. [CrossRef]
23. Lu, T.-C.; Juang, J.-C. Quantum-inspired space search algorithm (QSSA) for global numerical optimization. Appl. Math. Comput.

2011, 218, 2516–2532. [CrossRef]
24. Arpaia, P.; Maisto, D.; Manna, C. A Quantum-inspired Evolutionary Algorithm with a competitive variation operator for

Multiple-Fault Diagnosis. Appl. Soft Comput. 2011, 11, 4655–4666. [CrossRef]
25. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
26. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
27. Kashan, A.H. A new metaheuristic for optimization: Optics inspired optimization (OIO). Comput. Oper. Res. 2015, 55, 99–125.

[CrossRef]
28. Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic

competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007;
pp. 4661–4667.

29. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.
[CrossRef]

30. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput. -Aided Des. 2011, 43, 303–315. [CrossRef]

31. Shi, Y. Brain storm optimization algorithm. In Proceedings of the International Conference in Swarm Intelligence, Chongqing,
China, 12–15 June 2011; pp. 303–309.

32. Moosavian, N.; Roodsari, B.K. Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of
water distribution networks. Swarm Evol. Comput. 2014, 17, 14–24. [CrossRef]

33. Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [CrossRef]
34. Moosavi, S.H.S.; Bardsiri, V.K. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng.

Appl. Artif. Intell. 2019, 86, 165–181. [CrossRef]
35. Naik, A.; Satapathy, S.C. Past present future: A new human-based algorithm for stochastic optimization. Soft Comput. 2021,

25, 12915–12976. [CrossRef]
36. Chakraborty, A.; Kar, A.K. Swarm intelligence: A review of algorithms. Nat. -Inspired Comput. Optim. 2017, 10, 475–494.

341

Mathematics 2023, 11, 862

37. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. CCSA: Conscious neighborhood-based crow search algorithm for solving
global optimization problems. Appl. Soft Comput. 2019, 85, 105583. [CrossRef]

38. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
39. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
40. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
41. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
42. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
43. Wang, G.-G.; Deb, S.; Coelho, L.d.S. Elephant herding optimization. In Proceedings of the 2015 3rd International Symposium on

Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; pp. 1–5.
44. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. -Based Syst. 2015, 89, 228–249.

[CrossRef]
45. MiarNaeimi, F.; Azizyan, G.; Rashki, M. Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional

optimization problems. Knowl. -Based Syst. 2021, 213, 106711. [CrossRef]
46. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl.

Artif. Intel. 2021, 104, 104314. [CrossRef]
47. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
48. Shayanfar, H.; Gharehchopogh, F.S. Farmland fertility: A new metaheuristic algorithm for solving continuous optimization

problems. Appl. Soft Comput. 2018, 71, 728–746. [CrossRef]
49. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf mongoose optimization algorithm. Comput. Method Appl. M 2022, 391, 114570.

[CrossRef]
50. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global

and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [CrossRef]
51. Abdollahzadeh, B.; Soleimanian Gharehchopogh, F.; Mirjalili, S. Artificial gorilla troops optimizer: A new nature-inspired

metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [CrossRef]
52. Pandey, H.M.; Chaudhary, A.; Mehrotra, D. A comparative review of approaches to prevent premature convergence in GA. Appl.

Soft Comput. 2014, 24, 1047–1077. [CrossRef]
53. Chaitanya, K.; Somayajulu, D.; Krishna, P.R. Memory-based approaches for eliminating premature convergence in particle swarm

optimization. Appl. Intell. 2021, 51, 4575–4608. [CrossRef]
54. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 2010,

217, 3166–3173. [CrossRef]
55. Banharnsakun, A.; Achalakul, T.; Sirinaovakul, B. The best-so-far selection in artificial bee colony algorithm. Appl. Soft Comput.

2011, 11, 2888–2901. [CrossRef]
56. Xiang, W.-L.; Li, Y.-Z.; Meng, X.-L.; Zhang, C.-M.; An, M.-Q. A grey artificial bee colony algorithm. Appl. Soft Comput. 2017,

60, 1–17. [CrossRef]
57. Nadimi-Shahraki, M.H.; Zamani, H. DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-

decomposition large-scale global optimization. Expert Syst. Appl. 2022, 198, 116895. [CrossRef]
58. Wang, F.; Liao, X.; Fang, N.; Jiang, Z. Optimal Scheduling of Regional Combined Heat and Power System Based on Improved

MFO Algorithm. Energies 2022, 15, 3410. [CrossRef]
59. Kaur, K.; Singh, U.; Salgotra, R. An enhanced moth flame optimization. Neural Comput. Appl. 2020, 32, 2315–2349. [CrossRef]
60. Li, Z.; Zhou, Y.; Zhang, S.; Song, J. Lévy-flight moth-flame algorithm for function optimization and engineering design problems.

Math. Probl. Eng. 2016, 2016, 1–22. [CrossRef]
61. Khalilpourazari, S.; Khalilpourazary, S. An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization

algorithms for solving numerical and constrained engineering optimization problems. Soft Comput. 2019, 23, 1699–1722.
[CrossRef]

62. Hongwei, L.; Jianyong, L.; Liang, C.; Jingbo, B.; Yangyang, S.; Kai, L. Chaos-enhanced moth-flame optimization algorithm for
global optimization. J. Syst. Eng. Electron. 2019, 30, 1144–1159.

63. Chen, C.; Wang, X.; Yu, H.; Wang, M.; Chen, H. Dealing with multi-modality using synthesis of Moth-flame optimizer with sine
cosine mechanisms. Math. Comput. Simul. 2021, 188, 291–318. [CrossRef]

64. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global
optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]

65. Li, Z.; Zeng, J.; Chen, Y.; Ma, G.; Liu, G. Death mechanism-based moth–flame optimization with improved flame generation
mechanism for global optimization tasks. Expert Syst. Appl. 2021, 183, 115436. [CrossRef]

66. Xu, Y.; Chen, H.; Heidari, A.A.; Luo, J.; Zhang, Q.; Zhao, X.; Li, C. An efficient chaotic mutative moth-flame-inspired optimizer
for global optimization tasks. Expert Syst. Appl. 2019, 129, 135–155. [CrossRef]

342

Mathematics 2023, 11, 862

67. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and
Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University: Singapore, 2016.

68. Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S.; Oliva, D. Hybridizing of Whale and Moth-Flame Optimization
Algorithms to Solve Diverse Scales of Optimal Power Flow Problem. Electronics 2022, 11, 831. [CrossRef]

69. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Non-Linear Sci. Numer. Simul. 2012,
17, 4831–4845. [CrossRef]

70. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
71. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]
72. Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A test-suite of non-convex constrained optimization

problems from the real-world and some baseline results. Swarm Evol. Comput. 2020, 56, 100693. [CrossRef]
73. Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S.; Abualigah, L. An improved moth-flame optimization algorithm with

adaptation mechanism to solve numerical and mechanical engineering problems. Entropy 2021, 23, 1637. [CrossRef] [PubMed]
74. Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Deng, Y. An Improved Moth-Flame Optimization algorithm with hybrid

search phase. Knowl. -Based Syst. 2020, 191, 105277. [CrossRef]
75. Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S.; Abualigah, L.; Abd Elaziz, M. Migration-based moth-flame

optimization algorithm. Processes 2021, 9, 2276. [CrossRef]
76. Ma, L.; Wang, C.; Xie, N.-g.; Shi, M.; Ye, Y.; Wang, L. Moth-flame optimization algorithm based on diversity and mutation strategy.

Appl. Intell. 2021, 51, 5836–5872. [CrossRef]
77. Zhao, X.; Fang, Y.; Liu, L.; Li, J.; Xu, M. An improved moth-flame optimization algorithm with orthogonal opposition-based

learning and modified position updating mechanism of moths for global optimization problems. Appl. Intell. 2020, 50, 4434–4458.
[CrossRef]

78. Sapre, S.; Mini, S. Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint
handling for global optimization. Soft Comput. 2019, 23, 6023–6041. [CrossRef]

79. Sahoo, S.K.; Saha, A.K.; Nama, S.; Masdari, M. An improved moth flame optimization algorithm based on modified dynamic
opposite learning strategy. Artif. Intell. Rev. 2022, 1–59. [CrossRef]

80. Li, C.; Niu, Z.; Song, Z.; Li, B.; Fan, J.; Liu, P.X. A double evolutionary learning moth-flame optimization for real-parameter global
optimization problems. IEEE Access 2018, 6, 76700–76727. [CrossRef]

81. Li, Y.; Zhu, X.; Liu, J. An improved moth-flame optimization algorithm for engineering problems. Symmetry 2020, 12, 1234.
[CrossRef]

82. Shehab, M.; Alshawabkah, H.; Abualigah, L.; AL-Madi, N. Enhanced a hybrid moth-flame optimization algorithm using new
selection schemes. Eng. Comput. 2021, 37, 2931–2956. [CrossRef]

83. Zhang, H.; Li, R.; Cai, Z.; Gu, Z.; Heidari, A.A.; Wang, M.; Chen, H.; Chen, M. Advanced orthogonal moth flame optimization
with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems. Expert Syst. Appl. 2020, 159, 113617.
[CrossRef]

84. Yu, C.; Heidari, A.A.; Chen, H. A quantum-behaved simulated annealing algorithm-based moth-flame optimization method.
Appl. Math. Model. 2020, 87, 1–19. [CrossRef]

85. Alzaqebah, M.; Alrefai, N.; Ahmed, E.A.; Jawarneh, S.; Alsmadi, M.K. Neighborhood search methods with moth optimization
algorithm as a wrapper method for feature selection problems. Int. J. Electr. Comput. Eng. 2020, 10, 3672. [CrossRef]

86. Xu, L.; Li, Y.; Li, K.; Beng, G.H.; Jiang, Z.; Wang, C.; Liu, N. Enhanced moth-flame optimization based on cultural learning and
Gaussian mutation. J. Bionic Eng. 2018, 15, 751–763. [CrossRef]

87. Helmi, A.; Alenany, A. An enhanced Moth-flame optimization algorithm for permutation-based problems. Evol. Intell. 2020,
13, 741–764. [CrossRef]

88. Sayed, G.I.; Hassanien, A.E. A hybrid SA-MFO algorithm for function optimization and engineering design problems. Complex
Intell. Syst. 2018, 4, 195–212. [CrossRef]

89. Buch, H.; Trivedi, I.N.; Jangir, P. Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation
validation. Cogent Eng. 2017, 4, 1286731. [CrossRef]

90. Trivedi, I.N.; Jangir, P.; Parmar, S.A.; Jangir, N. Optimal power flow with voltage stability improvement and loss reduction in
power system using Moth-Flame Optimizer. Neural Comput. Appl. 2018, 30, 1889–1904. [CrossRef]

91. Jangir, P.; Jangir, N. Optimal power flow using a hybrid particle Swarm optimizer with moth flame optimizer. Glob. J. Res. Eng.
2017, 17, 15–32.

92. Sahoo, S.K.; Saha, A.K. A hybrid moth flame optimization algorithm for global optimization. J. Bionic Eng. 2022, 19, 1522–1543.
[CrossRef]

93. Khan, B.S.; Raja, M.A.Z.; Qamar, A.; Chaudhary, N.I. Design of moth flame optimization heuristics for integrated power plant
system containing stochastic wind. Appl. Soft Comput. 2021, 104, 107193. [CrossRef]

94. Singh, P.; Bishnoi, S. Modified moth-Flame optimization for strategic integration of fuel cell in renewable active distribution
network. Electr. Power Syst. Res. 2021, 197, 107323. [CrossRef]

343

Mathematics 2023, 11, 862

95. Zhang, H.; Heidari, A.A.; Wang, M.; Zhang, L.; Chen, H.; Li, C. Orthogonal Nelder-Mead moth flame method for parameters
identification of photovoltaic modules. Energy Convers. Manag. 2020, 211, 112764. [CrossRef]

96. Cui, Z.; Li, C.; Huang, J.; Wu, Y.; Zhang, L. An improved moth flame optimization algorithm for minimizing specific fuel
consumption of variable cycle engine. IEEE Access 2020, 8, 142725–142735. [CrossRef]

97. Khurma, R.A.; Aljarah, I.; Sharieh, A. A simultaneous moth flame optimizer feature selection approach based on levy flight and
selection operators for medical diagnosis. Arab. J. Sci. Eng. 2021, 46, 8415–8440. [CrossRef]

98. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

99. Morrison, R.W. Designing Evolutionary Algorithms for Dynamic Environments; Springer: Berlin/Heidelberg, Germany, 2004;
Volume 178.

100. Altabeeb, A.M.; Mohsen, A.M.; Abualigah, L.; Ghallab, A. Solving capacitated vehicle routing problem using cooperative firefly
algorithm. Appl. Soft Comput. 2021, 108, 107403. [CrossRef]

101. Ragsdell, K.; Phillips, D. Optimal design of a class of welded structures using geometric programming. Eng. Ind. 1976,
98, 1021–1025. [CrossRef]

102. Yokota, T.; Taguchi, T.; Gen, M. A solution method for optimal weight design problem of the gear using genetic algorithms.
Comput. Ind. Eng. 1998, 35, 523–526. [CrossRef]

103. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 71–78.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

344

Citation: Pichardo, E.; Anides, E.;

Vazquez, A.; Garcia, L.; Avalos, J.G.;

Sánchez, G.; Pérez, H.M.; Sánchez,

J.C. A Compact and High-

Performance Acoustic Echo Canceller

Neural Processor Using Grey Wolf

Optimizer along with Least Mean

Square Algorithms. Mathematics 2023,

11, 1421. https://doi.org/10.3390/

math11061421

Academic Editor: Gaige Wang

Received: 1 February 2023

Revised: 28 February 2023

Accepted: 13 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Compact and High-Performance Acoustic Echo Canceller
Neural Processor Using Grey Wolf Optimizer along with Least
Mean Square Algorithms

Eduardo Pichardo *, Esteban Anides *, Angel Vazquez, Luis Garcia, Juan G. Avalos, Giovanny Sánchez,

Héctor M. Pérez and Juan C. Sánchez

Instituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de México 04260, Mexico
* Correspondence: edua_95pim@hotmail.es (E.P.); eanidesc1800@alumno.ipn.mx (E.A.);

Tel.: +52-55-2101-9551 (E.P. & E.A.)

Abstract: Recently, the use of acoustic echo canceller (AEC) systems in portable devices has signif-
icantly increased. Therefore, the need for superior audio quality in resource-constrained devices
opens new horizons in the creation of high-convergence speed adaptive algorithms and optimal
digital designs. Nowadays, AEC systems mainly use the least mean square (LMS) algorithm, since
its implementation in digital hardware architectures demands low area consumption. However,
its performance in acoustic echo cancellation is limited. In addition, this algorithm presents local
convergence optimization problems. Recently, new approaches, based on stochastic optimization
algorithms, have emerged to increase the probability of encountering the global minimum. How-
ever, the simulation of these algorithms requires high-performance computational systems. As a
consequence, these algorithms have only been conceived as theoretical approaches. Therefore, the
creation of a low-complexity algorithm potentially allows the development of compact AEC hardware
architectures. In this paper, we propose a new convex combination, based on grey wolf optimization
and LMS algorithms, to save area and achieve high convergence speed by exploiting to the maxi-
mum the best features of each algorithm. In addition, the proposed convex combination algorithm
shows superior tracking capabilities when compared with existing approaches. Furthermore, we
present a new neuromorphic hardware architecture to simulate the proposed convex combination.
Specifically, we present a customized time-multiplexing control scheme to dynamically vary the
number of search agents. To demonstrate the high computational capabilities of this architecture, we
performed exhaustive testing. In this way, we proved that it can be used in real-world acoustic echo
cancellation scenarios.

Keywords: grey wolf optimization; swarm intelligence; real world application; spiking neural P
system; AEC system; LMS; neuromorphic architecture; FPGA

MSC: 68W10; 68Q06; 68Q45; 68W99; 94A12

1. Introduction

Nowadays, acoustic echo canceller (AEC) systems mainly use the least mean square
(LMS) adaptive filter algorithm, since it exhibits low computational complexity [1]. There-
fore, this algorithm is easy to implement in low-area devices. However, its use can cause
instability in the system, since it has an uni-model error surface. Hence, this algorithm
is limited when a multimodal error surface is considered, since this algorithm must be
initialized in the valley of the global optimum to converge to the global optimum [2].
Another aspect is linked to its convergence speed, because this depends on the eigen-value
spread of the correlation Matrix (R) [3]. To overcome these problems, bio-inspired evo-
lutionary [4,5] and swarm intelligence (SI) techniques [6–8], have emerged as potential
solutions for the parameter optimization. Recently, the grey wolf optimization (GWO)

Mathematics 2023, 11, 1421. https://doi.org/10.3390/math11061421 https://www.mdpi.com/journal/mathematics
345

Mathematics 2023, 11, 1421

algorithm [6], which is considered to be one of the most recent metaheuristic SI methods,
has proven to be very successful in multiple fields, such as image processing [9,10], health
care/bioinformatics [11,12], control systems [13], electromagnetics [14,15], environmental
applications [16,17], and adaptive filtering [18,19], among others [20,21], since this algo-
rithm offers impressive characteristics in contrast with other swarm intelligence methods.

In general terms, the GWO algorithm shows a good balance between the exploration
and exploitation processes during the search. As a consequence, this allows high accuracy.
From the engineering point of view, this algorithm can be seen as a potential solution
in practical applications, since it involves fewer parameters and less memory compared
with the most advanced metaheuristic SI methods. Therefore, this algorithm requires few
controlling parameters. As a consequence, its practicality is increased significantly [21].
Based on these features, new variants of the GWO algorithm can be developed to be applied
in practical and real-time acoustic echo canceller (AEC) systems.

In general, bio-inspired algorithms are capable of globally optimizing any class of adap-
tive filter structures. Therefore, the use of these algorithms opens new opportunities in the
development of advanced adaptive filters and enables their implementation in embedded
devices [22]. Specifically, recent studies have proven that the particle swarm optimization
(PSO) algorithm can be used in the development of AEC systems. For example [23] pro-
posed a PSO-based AEC system to guarantee a high degree of accuracy in terms of echo
return loss enhancement (ERLE). Specifically, the authors used the PSO to perform the
error minimization in the frequency domain. Ref. [24] presented a PSO-based AEC system,
in which the PSO algorithm provides a very fast convergence rate by performing the error
minimization in the time domain. Another PSO-based AEC system was developed by [25].
This approach was applied to multichannel systems to improve stability.

After analysing all the works mentioned above, we found that the PSO algorithm
may suffer some limitations, especially when a heavy constraint optimization is required.
Under this situation, one may get trapped in local minima. To avoid this, the GWO
algorithm can be seen as a potential solution, since it offers a high convergence rate at
the cost of exhibiting high computational complexity and low tracking capabilities [26–28].
In particular, good performance can be obtained, especially when a large population is used,
i.e., population-based meta-heuristics generally have greater exploration when compared
to a single solution-based algorithm [6]. However, its implementation in current embedded
devices becomes infeasible. Hence, the development of new variants of GWO algorithms, to
decrease their computational cost whilst maintaining performance, is still a great challenge.
Recently, some authors have proposed convex combinations of adaptive filters, in which
two adaptive algorithms with complementary capabilities are used to improve the steady-
state MSE and the tracking performance [29,30]. With respect to the latter, the tracking
performance determines the capabilities of the system to track variations in the statistics of
the signals of interest [31]. Therefore, in practical AEC systems, the improvement of this
factor is highly required [32].

Here, we propose a new variant of the convex adaptive filter, based on the GWO and
LMS algorithms. In addition, we include the block-processing scheme in both algorithms
to easily implement them in parallel hardware architectures. As a consequence, these
algorithms were applied to real-time and practical AEC applications. Specifically, we used
the GWO algorithm to guarantee a high convergence rate and high tracking capabilities.
With respect to the latter, we added new exploration capabilities by dynamically adjusting
the search space, especially in the context of abrupt changes occurring in the acoustic
environment, which cannot be achieved when using the conventional GWO algorithm.
A significant improvement in terms of computational cost was achieved by dynamically
decreasing the population of the GWO algorithm over the filtering process. In addition,
the use of the LMS allowed us to improve the steady-state MSE.

From an engineering perspective, the development of low computational complexity
metaheuristic SI methods makes their implementation in current resource-constrained
devices feasible. In addition, the development of advanced and novel implementation

346

Mathematics 2023, 11, 1421

techniques also opens new opportunities in the creation of compact and high-performance
devices. Specifically, the simulation of the proposed convex GWO/LMS adaptive filter
requires an enormous number of large precision multipliers. Therefore, the development
of low area, low latency and large precision adders and multipliers is still a challenging
task. Inspired by the neural phenomena, Ionescu presented, for the first time, a class of
distributing and parallel computing models, denominated as spiking neural P systems [33].
This new area of membrane computing intends to exploit, to the maximum, the intrinsic
parallel capabilities of the soma of the neurons to create novel processing systems. In recent
years, several authors focused their efforts to create advanced arithmetic circuits, such as
adders and multipliers.

• Parallel neural adder.
Recently, Ref. [34] developed a neural adder circuit to compute two large integer
numbers in parallel. In spite of this achievement, this adder demands an enormous
number of synapses and neurons to process large integer numbers. As a result, its use
for simulation purposes becomes impractical, since metaheuristic SI methods demand
high precision numerical accuracy.

• Parallel neural multiplier.
In [35], the authors intended to significantly reduce the number of synapses to cre-
ate an ultra-compact parallel multiplier. Despite decreasing the area consumption,
the processing speed was still high.

Analyzing previous works, we noted that these circuits were proposed to process large
integer numbers in parallel at the cost of increasing their processing speed. Therefore, any
of these circuits can be used in the simulation of real-time AEC systems. In addition, arith-
metic circuits with more precision exhibit a clear trade-off between area consumption and
processing speed. From an engineering perspective, several authors still continue to make
tremendous efforts to design advanced neural arithmetic circuits with high-precision to be
used in real-time AEC systems. Specifically, these developments face two large challenges:

• Design of high-speed and high-precision neural adders and neural multipliers.
• Design of high-processing speed hardware architectures to efficiently simulate the

proposed convex GWO/LMS adaptive filter in embedded devices.

Regarding the latter, we developed three potential proposals:

1. Design of a high-precision floating-point parallel adder circuit. Here, we present, for the
first time, a neural adder, which computes the numbers in a customized floating-point
model. We employ new variants of the SN P systems, called coloured-spikes [36], rules
on the synapses [37], target indications, extended channel rules [38] and extended
rules [39] to process numbers under this format in the proposed arithmetic circuit.

2. Design of a high-precision floating-point parallel multiplier. Here, we present, for the first
time, the development of a neural multiplier to compute floating-point numbers at
high processing speeds.

3. Design of a new FPGA-based GWO/LMS neuromorphic architecture. We design the pro-
posed neuromorphic architecture employing basic digital components, such as shift
registers, adders and multiplexors, to guarantee a low area consumption. Since
the proposed convex GWO/LMS adaptive filter dynamically varies the number of
search agents, we propose, for the first time, a time-multiplexing control scheme to
adequately support this behavior.

Our results showed that the proposal of new variants of the GWO algorithm, along
with new implementation techniques, generates a compact neuromorphic architecture to
be used in practical and real-time AEC applications.

The paper is structured as follows. Section 2 introduces the fundamentals of GWO and
LMS algorithms. Additionally, we introduce the proposed Convex GWO/LMS algorithm,
which involves the use of a new set of equations to improve its tracking capabilities
and computational complexity. Section 3 presents software simulation tests, including
the justification of the selection of some tuning parameters and display comparisons

347

Mathematics 2023, 11, 1421

between existing approaches and the proposed algorithm. In Section 4, we present a
new parallel neural adder circuit and a new parallel neural multiplier circuit, which
are highly demanded in the computation of the proposed algorithm. In addition, this
section introduces experimental results of the implementation of the proposed Convex
GWO/LMS algorithm in the Stratix IV GX EP4SGX530 FPGA. Finally, in Section 5 we
provide the conclusions.

2. The Proposed Block Convex GWO/LMS Algorithm

2.1. GWO Algorithm

In general terms, the GWO is considered a population-based optimization technique
inspired by the behavior of the Canis lupus [6]. This algorithm intends to mimic the hunting
and hierarchical behavior of grey wolves. Regarding the latter, this algorithm involves four
hierarchical levels; alpha (α) represents the fittest solution in the population, while beta (β)
and delta (δ) denote the second and third best solutions, respectively. Finally, omega (ω)
are the search agents. To simulate the GWO algorithm, the following equations are used:

−→
W (n + 1) =

−→
W p(n)−

−→
A · |−→C ×−→W p(n)−

−→
W (n)| (1)

where n denotes the current iteration,
−→
W p is the position vector of the prey,

−→
W represents

the position of a grey wolf,
−→
A = 2−→a · −→r 1 −−→a and

−→
C = 2−→r 2 denote coefficient vectors,

where −→r 1 and −→r 2 represent random vectors in [0, 1], respectively, and −→a is linearly
decreased from 2 to 0 using the following equation

−→a (t) = 2− 2t
MaxIter

(2)

where MaxIter is the total number of iterations.
To update the position of the search agents, the following equations must be used

−→
W 1(n) =

−→
W α(n)−

−→
A 1 · |

−→
C 1 ·

−→
W α(n)−

−→
W (n)| (3)

−→
W 2(n) =

−→
W β(n)−

−→
A 2 · |

−→
C 2 ·

−→
W β(n)−

−→
W (n)| (4)

−→
W 3(n) =

−→
W δ(n)−

−→
A 3 · |

−→
C 3 ·

−→
W δ(n)−

−→
W (n)| (5)

−→
W p(n + 1) =

−→
W 1(n) +

−→
W 2(n) +

−→
W 3(n)

3
(6)

where
−→
W α(n),

−→
W β(n),

−→
W δ(n) are the best three wolves at each iteration and

−→
W p(n + 1) is

the new position of the prey.

2.2. LMS Algorithm

The LMS algorithm is a practical method to obtain estimates of a filter’s weights, w(n),
in real time [1]. The equation for updating the weights of the LMS algorithm in a sample
by sample fashion is given by:

w(n + 1) = w(n) + μe(n)x(n) (7)

where x(n) is the current input vector, μ is a fixed step-size [0, 1], e(n) is the error signal
and is calculated using:

e(n) = d(n)−wT(n)x(n) (8)

and d(n) is the desired signal.

2.3. Convex GWO/LMS

As discussed above, the GWO algorithm is widely used to solve a variety of problems
since it exhibits significant properties. However, it has a number of limitations and suffers

348

Mathematics 2023, 11, 1421

from inevitable drawbacks. The main limitation comes from the no-free-lunch (NFL)
theorem, which states that no optimization algorithm is able to solve all optimization
problems [40]. This means that GWO might require modification when solving some
real-world problems. In particular, we proposed some modifications to the conventional
GWO to be used in the development of AEC systems. Specifically, we present a new
combination between the GWO and the LMS algorithms to improve tracking-capabilities
and the steady-state error of the filter, respectively, since it has been proven that the use
of convex combination approaches significantly improve the performance of adaptive
schemes by using two adaptive algorithms [41].

As can be observed in Figure 1, the proposed system computes the coefficients of the
filters, w1 and w2, as follows:

• The calculation of the filter coefficients by employing the LMS algorithm. Here, we use
the block LMS algorithm to calculate the w1 weights. This has allowed us to create
efficient implementations by using commercially available embedded devices [42,43].
The adaptive filter coefficients w1 are defined as:

w1(n + 1) = w1(n) + μX(n)eLMS(n) (9)

where w1(n) is the weight-vector w1(n) =
[
w(0), w(1), · · · w(N − 1)

]T , μ is the
step-size, and eLMS(n) is the error vector. The error vector is composed as:

eLMS(n) =
[
e(nL), e(nL− 1), · · · e(L(n + 1) + 1)

]T (10)

and X(n) is derived from the current input block

x(n) =
[
x(nL), x(nL− 1), · · · x(nL− N + 1)

]
(11)

where L depicts the length of the block and N is the size of the filter. Additionally,
X(n) is calculated as follows:

X(n) =

⎡⎢⎢⎢⎣
x(nL), x(nL− 1), · · · x(nL− N + 1)

x(nL− 1) x(nL− 2) · · · x(nL− N)
...

...
. . .

...
x(nL− L + 1) x(nL− L) · · · x(nL− L− N + 2)

⎤⎥⎥⎥⎦
T

(12)

The error vector is obtained as follows:

eLMS(n) = d(n)− yLMS(n) (13)

where the desired response vector d(n) is given by L

d(n) =
[
d(nL), d(nL− 1), · · · d(nL− N + 1)

]T (14)

The filter output yLMS(n) of each block is given by the following matrix vector product:

yLMS(n) = X(n) ·w1(n) (15)

• The calculation of the filter coefficients by employing the GWO algorithm. Here, the use
of the block-processing scheme in SI algorithms allowed us to process the signal in
real-time applications. As a consequence, this potentially allows full exploitation of
the performance capabilities of the parallel hardware architectures by simulating the
intrinsic parallel computational capabilities of the SI algorithms. In this work, we
introduce, for the first time, the block-based GWO algorithm to be applied in practical
and real-time AEC applications, as shown in Figure 2.

349

Mathematics 2023, 11, 1421

The encircling behavior of the grey wolves is mathematically described as follows:

−→
W (n + 1) =

−→
W p(n)−

−→
A · |−→C · −→W p(n)−

−→
W (n)| (16)

where
−→
A = 2φ(n) · −→r 1 − φ(n) denotes a coefficient vector, and φ(n) is in function of

the value of instantaneous error. In addition, this value is in a range of 0 and 2. This
can be described by:

φ(n) =
4

1 + e−[eGWO(n)]
− 2 (17)

To obtain the best solution, a fitness function, which is defined in terms of the mean
square error (MSE), is used to evaluate each search agent. Hence, the fitness value fk

of the position
−→
W is expressed as:

fk(n) =
1
L

L

∑
i=1

e2
k(i) (18)

where k = 1, 2, . . . , P(n). Here, we propose a mechanism to dynamically adjust the
number of search agents over the filtering process, i.e., P(n) denotes the current
number of search agents. Specifically, this adjustment is a function of the power of the
instantaneous error, and is obtained as follows:

P(n) = �2 · (Pmax − Pmin)

(1 + e−[eGWO(n)])
− (Pmax − Pmin)�+ Pmin (19)

where Pmax and Pmin defines the maximum and the minimum number of search agents,
respectively. In addition, we use Equations (3)–(6) to update the position of the search
agents and the prey. On the other hand, the error signal, eGWO(n), and filter output,
yGWO(n), are described as follows:

eGWO(n) = d(n)− yGWO(n) (20)

yGWO(n) = X(n) ·w2(n) (21)

where w2(n) =
−→
W α.

Considering the output of both filters, yGWO(n) and yLMS(n) at time n, we obtain the
output of the parallel filter as:

y(n) = λ(n) · yGWO(n)− [1− λ(n)] · yLMS(n) (22)

where λ(n) is a mixing parameter, which is in the range [0, 1]. This parameter is used
to control the combination of the two filters at each iteration, and is defined by:

λ(n) =
1

e−a(n)
(23)

where a(n) is an auxiliary parameter used to minimize the instantaneous square error
of the filters, and is obtained as follows:

a(n + 1) = a(n) + μa · e(1) · {eGWO(1)− eLMS(1)} · λ(n) · [1− λ(n)] (24)

Finally, the performance of the combined filter can be further improved by transferring
a portion of w1 to

−→
W α,

−→
W β and

−→
W δ. This can be formulated as follows:

−→
W α(n) = λ(n) · −→W α(n)− [1− λ(n)] ·w1(n) (25)

−→
W β(n) = λ(n) · −→W β(n)− [1− λ(n)] ·w1(n) (26)

350

Mathematics 2023, 11, 1421

−→
W δ(n) = λ(n) · −→W δ(n)− [1− λ(n)] ·w1(n) (27)

In this way, the GWO filter can reach a lower steady-state MSE and continues to keep
a high convergence rate.

Figure 1. Proposed convex structure.

Figure 2. The flowchart of the block GWO algorithm.

351

Mathematics 2023, 11, 1421

3. Pure Software Simulation

Before implementing the proposed convex GWO/LMS adaptive filter in parallel
hardware architectures, we simulated it in Matlab software for testing and comparison
purposes. Specifically, we simulated the conventional LMS, GWO and our proposal to
compare their performances. In addition, we used AEC structure, in which the existing
approaches and the proposed convex GWO/LMS adaptive filter were used, as shown in
Figure 3. As can be observed, x(n) is the far-end input signal, e(n) denotes the residual echo
signal, d(n) represents the sum of the echo signal, y(n) and the background noise, e0(n).

To simulate the proposed convex GWO/LMS adaptive filter and existing approaches,
we considered the following conditions:

1. We used an impulse response as the echo path, obtained from the ITU-T G168 rec-
ommendation [44]. This echo path was modeled using 500 coefficients, as shown in
Figure 4.

2. The echo signal was mixed with white Gaussian noise (SNR = 20 dB).
3. We used an AR(1) process as input signal.
4. The filter and the block had the same length as the echo path. As is well known,

the efficiency of the block processing scheme is guaranteed when the length of the
blocks is greater than, or equal to, the order of the filter [45,46].

5. In the proposed algorithm, the swarm size was defined in the range of 15–30
search agents.

6. To test the tracking capabilities of the proposed algorithm, we induced an abrupt
change in the impulse response of the acoustic echo path in the middle of the adaptive
filtering process by multiplying the acoustic paths by −1.

7. The maximum number of iterations was set to 2,000,000.

Figure 3. Structure of the acoustic echo canceller.

352

Mathematics 2023, 11, 1421

Figure 4. Acoustic echo path used for the simulation of the existing and the proposed algorithms.

Considering a single-talk scenario, we performed three experiments to verify the
performance of the proposed convex GWO/LMS adaptive filter in terms of echo return

loss enhancement, (ERLE = 10log10(
d(n)2

e(n)2)).

• Effect of changing the order of the adaptive filter.
Figure 5 shows the evaluation of the ERLE level of the proposed algorithm. In this
evaluation, we used a population size of 30 search agents and varied the number of
coefficients of the adaptive filter from 150 to 500. The aim of this experiment was to
observe how the ERLE level was affected by using different numbers of coefficients.
Here, the proposed convex GWO/LMS adaptive filter guaranteed the same ERLE
level regardless of the number of coefficients, as shown in Figure 5. Therefore, we
used the minimum number of coefficients, since this factor is relevant, especially when
it is implemented in resource-constrained devices.

Figure 5. ERLE level for different number of coefficients N.

• Effect of varying the number of search agents of the proposed convex GWO/LMS adaptive
filter. In this experiment, we varied the number of search agents from 30 to 200 to
evaluate the performance of the proposed algorithm in terms of ERLE level. Since
the minimum number of adaptive filter coefficients (150) guaranteed a good ERLE
level, we used this number for the experiment. As can be observed from Figure 6, we
obtained the same performance by using different numbers of search agents. In this
way, we confirmed that, when employing the minimum number of search agents,
the proposed method reached a good ERLE level. From an engineering perspective,
this has a great impact on the performance of resource-constrained devices, since
the proposed algorithm intends to reduce its computational cost by decreasing the
number of search agents over the adaptive process.

353

Mathematics 2023, 11, 1421

Figure 6. ERLE for different numbers of search agents P.

• Performance comparison between the proposed convex GWO/LMS and existing approaches.
We performed two experiments to make a coherent comparison between the pro-
posed convex GWO/LMS and the following existing approaches: LMS algorithm [1],
conventional GWO [6], PSO [23], differential evolution (DE) algorithm [47], artifi-
cial bee colony optimization (ABC) [48], hybrid PSO–LMS [49] and modified ABC
(MABC) [50]. In the first experiment, we shifted the acoustic path, and in the second ex-
periment, we multiplied the acoustic path by −1 at the middle of the adaptive process.
In addition, the tuning parameters of all the algorithms were selected to guarantee the
best performance. Such tuning parameters are displayed in the following list:

1. LMS

– Convergence factor = 9× 10−7

2. GWO

– a decreases linearly from 2 to 0
– lower bound = −1
– Upper bound = 1
– Population size = 50

3. PSO

– Acceleration coefficient, c1 = 1.6
– Acceleration coefficient, c2 = 1
– Inertia weight = 0.8
– Lower bound = −1
– Upper bound = 1
– Population size = 100

4. DE

– Crossover rate = 0.35
– Scaling factor = 0.8
– Combination factor = 0.25
– Lower bound = −1
– Upper bound = 1
– Population size = 50

5. ABC

– Evaporation parameter = 0.1
– Pheromone = 0.6
– Lower bound = −1
– Upper bound = 1
– Population size = 50

354

Mathematics 2023, 11, 1421

6. PSO-LMS

– Acceleration coefficient, c1 = 0.00005
– Acceleration coefficient, c2 = 1.2
– Inertia weight = 1
– Lower bound = −1
– Upper bound = 1
– Convergence factor = 1× 10−9

– Population size = 60

7. MABC

– Evaporation parameter = 0.1
– Pheromone = 0.6
– Lower bound = −1
– Upper bound = 1
– Population size = 50
– Convergence factor = 3× 10−5

As can be observed from Figure 7, the proposed convex GWO/LMS adaptive filter
showed the best performance, in terms of ERLE level and convergence speed, by
expending a large number of additions and multiplications, as shown in Table 1.
In contrast, the LMS algorithm expended fewer additions and multiplications com-
pared with the proposed algorithm at the cost of exhibiting a slow convergence speed.
In general, the excessive number of additions and multiplications makes the imple-
mentation of the GWO adaptive filter in current embedded devices, such as DSP and
FPGA devices, impractical since they have a limited number of these circuits. Here,
our proposal intended to dynamically decrease the number of search agents, as shown
in Figure 8. As a consequence, the number of multiplications and additions also
reduced (Equation (19)). In this way, the implementation of our proposal in embedded
devices can be feasible.

Table 1. Comparison between the proposed convex GWO/LMS system and existing approaches in
terms of the number of additions and multiplications.

Algorithm Multiplications Additions

LMS [1] 6,000,118,333 6,000,118,333

GWO [6] 1,349,996,758,333 2,249,994,508,333

PSO [23] 1,500,036,249,900 1,500,036,249,900

DE [47] 149,999,625,000 299,999,250,000

ABC [48] 600,058,499,850 749,938,125,150

PSO-LMS [49] 903,077,742,300 906,037,734,900

MABC [50] 1,799,955,500,100 1,620,075,949,800

Convex GWO/LMS 73,599,043,327 46,560,966,659

355

Mathematics 2023, 11, 1421

(a)

(b)

Figure 7. ERLE learning curves obtained by simulating existing approaches and the proposed
algorithm; (a) by shifting the acoustic path at the middle of iterations and (b) by multiplying the
acoustic path by −1 at the middle of iterations [1,15,23,48–51].

Figure 8. The number of search agents used during the adaptation process.

• Statistical comparison between the proposed convex GWO/LMS and existing approaches
Statistical results were obtained with two different evaluations: average value of ERLE
in dB and its corresponding standard deviation. The maximum number of iterations
was set to 2,000,000 and each algorithm ran 10 times. The results are reported in
Table 2.

356

Mathematics 2023, 11, 1421

Table 2. Comparison between the proposed convex GWO/LMS system and existing approaches in
terms of average value of ERLE and standard deviation in dB.

Algorithm Average Value Standard Deviation

LMS [1] 14.7202 4.1761

GWO [6] 4.5653 0.3892

PSO [23] 20.2452 1.5622

DE [47] 11.7972 4.4434

ABC [48] 21.0656 3.4164

PSO-LMS [49] 11.2859 1.1497

MABC [50] 23.6927 3.0326

Convex GWO/LMS 22.7590 2.0259

As can be observed from Table 2, the proposed convex GWO/LMS achieved a good
average ERLE level, in comparison with other existing algorithms. It should be noted
that the MABC algorithm possessed the highest average value. Nonetheless, this
algorithm presented a lower convergence speed, especially when abrupt changes
occurred, as shown in Figure 7b. On the other hand, the GWO, PSO and PSO-LMS
algorithms presented lower standard deviations in comparison with the proposed
Convex GWO/LMS algorithm. Nonetheless, the proposed method achieved a higher
average value.

4. Pure Hardware Simulation

To adequately simulate the proposed convex GWO/LMS system, we made extraor-
dinary efforts to develop compact, high-processing and high-precision neural arithmetic
circuits, such as adder and multiplier, since these two circuits are highly demanded in the
computation of the proposed algorithm, as shown in Table 1. Specifically, we developed,
for the first time, a customized floating-point representation to perform additions and
multiplications with high precision.

To compute the numbers in floating-point format, we established the format criteria of
the input numbers u and v to be either added or multiplier, as follows:

1. In general terms, the numbers u and v are separated in integer and fractional digits.
Specifically, the number of integer digits and the number of fractional digits can be
chosen over a range (ug0 · · · ug1 · · · ugm , vg0 · · · vg1 · · · vgm), as shown in Figure 9.
Here, we painted the digits with a specific color by using a variant of the SN P
systems called coloured spikes to easily distinguish the units, tens, hundreds, etc.,
of the integer part and tenths, hundredths, thousandths, etc., of the fractional part.
This strategy was also used to represent the digits of the results of the addition and
multiplication operations.

357

Mathematics 2023, 11, 1421

Figure 9. General structure of the proposed floating-point neural adder.

2. Here, each synaptic channel (1) and synaptic channel (2) has a set of dendritic branches.
To perform customized floating-point addition, the integer and fractional digits of u
and v were represented as the number of active dendritic branches, labeled as 1, · · · , 9.
In the case of calculating a customized floating-point multiplication, the integer and
fractional digits of u are represented as the number of spikes denoted in the extended
rule (ap

u)
+/ap

u → ap
u. On the other hand, the integer and fractional digits of v activate

the number of branches according to their value.

• Parallel neural adder circuit ∏add.
The proposed neural adder circuit ∏add has a set of neurons, σA0 , · · · , σAm , · · · , and a
neuron, σp. The set of neurons σA is in charge of computing the addition of two
numbers, where each number is composed of an integer part and a fractional part,
and neuron, σp, determines the position of the point to segment the number into an
integer part and a fractional part, as shown in Figure 9.
The proposed neural adder circuit ∏add computes the addition as follows:
In the initial state, the neurons, σA, are empty. At this time, the dendritic branches of
synaptic channels, (1) and (2), are activated according to the value of the digits, u and

358

Mathematics 2023, 11, 1421

v, respectively. For example, if the value of a digit, v or u, is equal to five, then five
dendritic branches are activated. Therefore, these dendritic branches allow the flow of
five spikes towards a specific neuron, σA. Simultaneously, the neuron, σp, places the
point to segment the number into integer digits and the fractional digits by setting
the firing rule, a → ap{X}. This spiking rule implies that, if neuron σp receives a
spike at any time, it fires and sends a spike to a specific neuron, σAx . To do this, we
used a variant of the SN P systems called target indications. In this way, the point
was allocated according to the desired precision. Therefore, the point, which was
represented as a spike, was stored in a specific neuron, σAx . Once the neural circuit
was configured, the partial additions of the spikes started.
Here, the addition of the numbers was performed in a single simulation step, since
all neurons, σA, processed their respective input spikes simultaneously. Additionally,
the carry spike was obtained when any neuron, σA, accumulated ten spikes. At this
moment, the spiking rule, a9a+/a10 → a(3), was set. After one simulation step,
the result, represented by the remaining spikes in the soma of each neuron, is placed at
the output synapses. In addition, neuron σAx sends the spike point to the environment
by enabling its spiking rule, ap → ap.
In this work, we proved that the use of several variants of the SN P systems, such
as coloured-spikes [36], rules on the synapses [37], target indications [51], extended
channel rules [38], extended rules [39] and dendritic trunks [52] creates an ultra-
compact and high performance circuit, instead of only using the soma as conventional
SN P systems do. In particular, the proposed neural circuit required fewer simulation
steps, neurons and synapses compared with the existing approach [34], as shown in
Table 3.

Table 3. Comparison between the existing neural adder [34] and this work in terms of
synapses/neurons and simulation steps. Here, n represents the number of digits of v and u. Adapted
from [53].

Approach [34] This Work

Synapses 41 n 14 n

Neurons 12 n n

Simulation steps 28 + (n/2− 1) 1

• Parallel neural multiplier circuit ∏mul .
Since the multiplier is one of the most demanding in terms of processing and area
consumption, a large number of techniques have been developed to minimize these
factors. Recently, several authors have used SN P systems to create an efficient parallel
multiplier circuit. However, the improvement of processing speed is still an issue
since most of the studies improved the area consumption. The improvement of this
factor potentially allows the development of high performance systems to support
AEC systems in real-time. In addition, the development of a high-precision neural
multiplier is still a challenging task, since this factor is especially relevant when
metaheuristic algorithms are simulated. Here, we developed a neural multiplier that
shows higher processing speeds, in comparison with existing approaches, by keeping
the area consumption low. To achieve this, we reduced the processing time by using
cutting-edge variants of the SN P systems, such as coloured-spikes [36], rules on the
synapses [37], target indications [51], extended rules [39] and dendritic trunks [52].
Specifically, we used these variants to significantly improve the time expended in the
computation of the partial products of the multiplication, in comparison with the most
recent approach [35].
The proposed neural multiplier circuit ∏mul is composed of a set of neurons (σA0 ,
· · · , σAn−j , · · · , σAn−1 , · · · , σA2(n−j)

, · · · , σA2n−1), and neuron, σin, as shown in Figure 10.
In general terms, neurons, σA, perform the addition of the partial products, where

359

Mathematics 2023, 11, 1421

each partial product is computed by using dendritic branches. In particular, each
neuron σA computes the partial product between a single digit of u and a digit of
v, where the digits of u are represented as p spikes, which are generated by neuron
σin when its spiking rule, (ap

u)
+/ap

u → ap
u, is applied, and the value of each digit of v

activates an equal number of dendritic branches.
The proposed neural multiplier circuit ∏mul performs the multiplication, as follows:
At the initial simulation step, neurons, σA, are empty. At this time, neuron, σin, places
the spike point by receiving a spike. Therefore, it fires and sends the spike point to a
specific neuron, σAx , using the target indications [51]. In this way, the digits of u or
v are segmented into integer and fractional parts. Once the multiplier is configured,
m · n partial products are executed in parallel. To perform any partial product, neuron,
σin, fires p spikes which are sent to its corresponding neuron, σA. The soma of this
neuron receives many copies of the spikes, p, in function of the number of active
dendritic branches. For example, if neuron multiplies 3 × 3, this implies that neuron,
σAx , receives three copies of three spikes by means of three dendritic branches. In this
way, the neuron, σA, increases its potential of the soma by performing three additions.
Therefore, the synaptic weights are not required since many approaches use them to
perform partial products. Hence, the number of branched connections can be variable.
In this way, the neuron σA enables the optimal number of synaptic connections.
From an engineering perspective, we proposed the use of a variable number of forked
connections, since the implementation of a very-large number of synaptic connections
in advanced FPGAs creates critical routing problems. Once the result is obtained,
neuron, σin, places the spike point according to the addition of the number of fractional
digits, as in conventional multiplication. Therefore, σA, which received the spike point
at the initial simulation, fired the point spike by applying it firing rule (ap → ap).
As can be observed from Table 4, we achieved a significant improvement in terms
of simulation steps, since only one simulation step was required to perform a multi-
plication of two numbers with any length. This aspect is relevant, especially when
real-time AEC system simulations are required. Additionally, we reduced the number
of synapses in comparison with the existing work.

Table 4. Comparison between the proposed neural multiplier and the existing neural multiplier [35]
in terms of simulation steps, synapses and neurons. Where n denotes the number of digits of v and u.
Adapted from [53].

Existing Neural Multiplier [35] This Work

Synapses 9 · n ·m n ·m
Neurons n n

Simulation steps 10 1

360

Mathematics 2023, 11, 1421

Figure 10. Structure of the neural multiplier.

4.1. Experimental Results

To demonstrate the computational capabilities of the proposed convex GWO/LMS
adaptive filter, we considered an arbitrary single-talk scenario, as shown in Figure 11.

361

Mathematics 2023, 11, 1421

Figure 11. Scheme of the AEC prototype.

Under this configuration, we used the proposed AEC system to perform the simulation
of the proposed algorithm by using the experimental setup of Figure 11. Specifically,
the proposed system has an AEC neural processor as its main core to cancel the echo
signal and the background noise by simulating the proposed convex GWO/LMS adaptive
filter. As can be observed from Figure 12, the AEC neural processor is composed of a
control unit, CU, a set of processing cores, α, β, δ, ω, LMS, convex, and BRAMs. Figure 13
shows a sequence diagram to specify how each processing core computes specific parts
of the proposed convex GWO/LMS adaptive filter. Here, we used the BRAMs to store
L and N samples of the signals, x, and d, where L = N. In this way, we implemented
the block processing scheme. Once these values are stored in their respective BRAMs,
the computation of the proposed convex GWO/LMS adaptive filter starts. In this way,
the AEC neural processor computes the new variant of the GWO algorithm and the
LMS algorithm simultaneously. Specifically, we propose a new time-multiplexing control
scheme to automatically update the number of search agents of the GWO algorithm over
the processing time. Under this scheme, the number of search agents, ω, which are divided
into three parts, is enabled or disabled either by the processor, α, or β, or δ. It is important
to keep in mind that processing cores, α, β, δ evaluate the response of their respective
processors, ω, simultaneously. According to this, the proposed time-multiplexing control
scheme uses the signals, en_w_α, en_w_β, and en_w_δ, to enable or disable the number of
search agents according to the simulation needs, as shown in Figure 12. Here, the use of
the time-multiplexing control scheme allowed us to significantly decrease the number of
buses to transfer the coefficients between the processing cores, ω, and the processing cores,
α, or β, or δ. This saving allowed us to implement a full connection between the processing
cores, α, β and δ. As a consequence, the evaluation of the searching point of each agent was
performed by processing cores, α, β and δ simultaneously.

362

Mathematics 2023, 11, 1421

Figure 12. Scheme of the proposed AEC neural processor.

Figure 13. The sequential diagram to describe how the proposed convex GWO/LMS adaptive filter
is executed by means of the processing cores.

In this work, we used the proposed AEC neural processor to simulate the single-talk
and double-talk scenarios by considering the following conditions:

• We employed 1024 adaptive filter coefficients and varied the search agents from 70
to 15.

363

Mathematics 2023, 11, 1421

• The filter and the block had the same length as the echo path.
• As input signals, we used an AR(1) process and speech sequence signals.
• The step-size of the LMS algorithm was set to μ = 0.000001 and the step-size of the

convex algorithm was selected to be μa = 15
• The search agents were initialized using normally distributed random numbers and

their positions were bounded between [−1, 1] over the filtering process.

4.2. Single-Talk Scenario

In this section, we demonstrate the computational capabilities of the proposed algo-
rithm under a single-talk scenario. As can be observed from Figures 14 and 15, the pro-
posed AEC neural processor, which simulated the proposed convex GWO/LMS algorithm,
reached a good ERLE level by processing two different signals. To carry this out, we
configured the AEC neural processor to support one α, one β, one δ, and 70 ω processing
cores. Here, the most demanding core, in terms of area and processing speed, was the ω
processing core, since each one required 1000 neural multipliers and 1000 neural adders.
Therefore, we physically implemented six ω processing cores to simulate virtually 70 ω
processing cores. In this way, we saved a large area consumption. In general terms, the im-
plementation of these components required 420,380 LEs, which represented 79% of the
total area of an Stratix IV GX EP4SGX530 FPGA. Furthermore, the AEC neural processor
required 114.56 μs, which was obtained by multiplying 14,320 clock cycles by the system
clock period (8 ns) to simulate the proposed convex GWO/LMS algorithm. This time
was calculated when all the search agents were used, i.e., by considering the worse case.
However, the number of search agents decreased over the processing time. In the case of
employing fifteen search agents, which represented the minimum number, only 1300 clock
cycles were expended. Therefore, the processing time reduced from 114.56 μs to 10.4 μs.
Therefore, the simulation of real-time AEC systems was guaranteed since the maximum
latency was 125 μs.

Figure 14. ERLE learning curve of the proposed convex GWO/LMS considering an AR(1) process as
input signal.

4.3. Double-Talk Scenario

To perform the experiments under this configuration, we employed a double-talk
detector circuit to avoid adaptation during periods of simultaneous far and near-end speech.
It should be noted that the area consumption in the implementation of this circuit was
negligible. Therefore, this implementation expended around 79% of the total area of an
Stratix IV GX EP4SGX530 FPGA, as in the previous case. Figures 16 and 17 show the
ERLE of the proposed Convex GWO/LMS algorithm by considering an AR(1) process
and a speech sequence signal, respectively. As can be observed from the above figures,
the proposed algorithm showed good tracking capabilities and achieved a good ERLE level.
This aspect is relevant since these levels are required in the development of practical and
real-world AEC applications.

364

Mathematics 2023, 11, 1421

Figure 15. ERLE learning curve of the proposed convex GWO/LMS considering a speech sequence
signal as input signal.

Figure 16. ERLE learning curve of the proposed convex GWO/LMS considering an AR(1) process as
input signal and a double-talk scenario.

Figure 17. ERLE learning curve of the proposed convex GWO/LMS considering a speech sequence
signal as input signal considering a double-talk scenario.

5. Conclusions

In this work, we present, for the first time, the development of a high-speed and com-
pact FPGA-based AEC neural processor to efficiently simulate a new convex GWO/LMS
algorithm. Here, we grouped our contributions as follows:

• From the AEC model point of view.
Here, we made intensive efforts to reduce the computational cost of the AEC systems
to be implemented in resource-constrained devices. In addition, we significantly
increased the convergence properties of these systems by using a cutting-edge meta-
heuristic swarm intelligence method, in combination with a gradient descent algo-
rithm to be used in practical acoustic environments. Specifically, we present a new

365

Mathematics 2023, 11, 1421

variant of GWO algorithm along with the LMS algorithm. The use of this combi-
nation allowed us to guarantee a higher convergence rate and lower MSE level, in
comparison to when gradient descent algorithms or metaheuristic SI methods were
used separately. To improve the tracking capabilities of the conventional GWO algo-
rithm, the proposed variant has new exploration capabilities, since the search space
is dynamically adjusted. To make the implementation of the proposed variant of the
GWO algorithm in embedded devices feasible, we used the block-processing scheme.
In this way, the proposed convex GWO/LMS algorithm can be easily implemented
in parallel hardware architectures. As a consequence, it can be simulated at high
processing speeds. In addition, we significantly reduced the computational cost of the
proposed convex GWO/LMS algorithm. To achieve this aim, we propose a method
to dynamically decrease the population of a variant of the GWO algorithm over the
filtering process.

• From the SN P systems point of view.
Here, we present, for the first time, a compact and high-processing speed floating-point
neural adder and multiplier circuit. We used cutting-edge variants of the SN P systems,
coloured-spikes, rules on the synapses, target indications, extended channel rules,
extended rules and dendritic trunks to create a customized floating-point neural adder
and multiplier. Specifically, the proposed neural adder and multiplier exhibits higher
processing speed, compared with existing SN P adders and multipliers, since both
expend only one simulation step, which is the best improvement achieved until now.

• From the digital point of view.
In this work, we present, for the first time, the development of a parallel hardware
architecture to simulate a variable number of search agents by using the proposed
time-multiplexing control scheme. In this way, we implemented the proposed GWO
method properly, in which the number of search agents increase or decrease according
to the simulation needs. In addition, the use of this scheme allowed us to exploit, to
the maximum, the flexibility and scalability features of the GWO algorithm.

Finally, we carried out several experiments to prove that the proposed convex GWO/
LMS algorithm, along with the new techniques inspired by biological neural processes,
potentially allow the creation of practical and real-time AEC processing tools. Part of
the future work is to develop new convex combinations, in which other meta-heuristic
algorithms can be used in other adaptive filtering applications, such as active noise control,
channel equalization and noise cancellers. In addition, new digital techniques will be
explored to mimic bio-inspired behavior with high accuracy.

Author Contributions: Conceptualization, E.P.; Data curation, L.G. and H.M.P.; Formal analysis, G.S.;
Funding acquisition, J.G.A. and J.C.S.; Investigation, A.V. and J.G.A.; Methodology, J.G.A. and G.S.;
Resources, E.P., E.A. and A.V.; Software, E.P., E.A. and A.V.; Supervision, G.S. and J.C.S.; Validation,
E.P. and E.A.; Writing—original draft, L.G. and H.M.P.; Writing—review & editing, H.M.P. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Instituto Politécnico Nacional for the financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank the Consejo Nacional de Ciencia y Tecnologia
(CONACYT) and the IPN for the financial support to make this work.

Conflicts of Interest: The authors declare no conflict of interest.

366

Mathematics 2023, 11, 1421

References

1. Benesty, J.; Duhamel, P. A fast exact least mean square adaptive algorithm. IEEE Trans. Signal Process. 1992, 40, 2904–2920.
[CrossRef] [PubMed]

2. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95, Sixth International
Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

3. Ling, Q.; Ikbal, M.A.; Kumar, P. Optimized LMS algorithm for system identification and noise cancellation. J. Intell. Syst. 2021,
30, 487–498. [CrossRef]

4. Botzheim, J.; Cabrita, C.; Kóczy, L.T.; Ruano, A. Fuzzy rule extraction by bacterial memetic algorithms. Int. J. Intell. Syst. 2009,
24, 312–339. [CrossRef]

5. Ariyarit, A.; Kanazaki, M. Multi-modal distribution crossover method based on two crossing segments bounded by selected
parents applied to multi-objective design optimization. J. Mech. Sci. Technol. 2015, 29, 1443–1448. [CrossRef]

6. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
7. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
8. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
9. Khehra, B.S.; Singh, A.; Kaur, L.M. Masi Entropy-and Grey Wolf Optimizer-Based Multilevel Thresholding Approach for Image

Segmentation. J. Inst. Eng. Ser. B 2022, 103, 1619–1642. [CrossRef]
10. Vashishtha, G.; Kumar, R. An amended grey wolf optimization with mutation strategy to diagnose bucket defects in Pelton

wheel. Measurement 2022, 187, 110272. [CrossRef]
11. Rajammal, R.R.; Mirjalili, S.; Ekambaram, G.; Palanisamy, N. Binary Grey Wolf Optimizer with Mutation and Adaptive K-nearest

Neighbour for Feature Selection in Parkinson’s Disease Diagnosis. Knowl.-Based Syst. 2022, 246, 108701. [CrossRef]
12. Reddy, V.P.C.; Gurrala, K.K. Joint DR-DME classification using deep learning-CNN based modified grey-wolf optimizer with

variable weights. Biomed. Signal Process. Control 2022, 73, 103439. [CrossRef]
13. Dey, S.; Banerjee, S.; Dey, J. Implementation of Optimized PID Controllers in Real Time for Magnetic Levitation System. In

Computational Intelligence in Machine Learning; Springer: Berlin/Heidelberg, Germany, 2022; pp. 249–256.
14. Zhang, X.; Li, D.; Li, J.; Liu, B.; Jiang, Q.; Wang, J. Signal-Noise Identification for Wide Field Electromagnetic Method Data Using

Multi-Domain Features and IGWO-SVM. Fractal Fract. 2022, 6, 80. [CrossRef]
15. Premkumar, M.; Jangir, P.; Kumar, B.S.; Alqudah, M.A.; Nisar, K.S. Multi-objective grey wolf optimization algorithm for solving

real-world BLDC motor design problem. Comput. Mater. Contin. 2022, 70, 2435–2452. [CrossRef]
16. Nagadurga, T.; Narasimham, P.; Vakula, V.; Devarapalli, R. Gray wolf optimization-based optimal grid connected solar

photovoltaic system with enhanced power quality features. Concurr. Comput. Pract. Exp. 2022, 34, e6696. [CrossRef]
17. Musharavati, F.; Khoshnevisan, A.; Alirahmi, S.M.; Ahmadi, P.; Khanmohammadi, S. Multi-objective optimization of a biomass

gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network. Chemosphere
2022, 287, 131980. [CrossRef]

18. Meidani, K.; Hemmasian, A.; Mirjalili, S.; Barati Farimani, A. Adaptive grey wolf optimizer. Neural Comput. Appl. 2022,
34, 7711–7731. [CrossRef]

19. Zhang, L.; Yu, C.; Tan, Y. A method for pulse signal denoising based on VMD parameter optimization and Grey Wolf optimizer.
Journal of Physics: Conference Series. In Proceedings of the 2021 2nd International Conference on Electrical, Electronic
Information and Communication Engineering (EEICE 2021), Tianjin, China, 16–18 April 2021; Volume 1920, p. 012100.

20. Negi, G.; Kumar, A.; Pant, S.; Ram, M. GWO: A review and applications. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 1–8. [CrossRef]
21. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.

Appl. 2018, 30, 413–435. [CrossRef]
22. Salinas, G.; Pichardo, E.; Vázquez, Á.A.; Avalos, J.G.; Sánchez, G. Grey wolf optimization algorithm for embedded adaptive

filtering applications. IEEE Embed. Syst. Lett. 2022, 1. [CrossRef]
23. Mahbub, U.; Acharjee, P.P.; Fattah, S.A. A time domain approach of acoustic echo cancellation based on particle swarm

optimization. In Proceedings of the International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka,
Bangladesh, 18–20 December 2010; pp. 518–521.

24. Mahbub, U.; Acharjee, P.P.; Fattah, S.A. An acoustic echo cancellation scheme based on particle swarm optimization algorithm.
In Proceedings of the TENCON 2010—2010 IEEE Region 10 Conference, Fukuoka, Japan, 21–24 November 2010; pp. 759–762.

25. Kimoto, M.; Asami, T. Multichannel Acoustic Echo Canceler Based on Particle Swarm Optimization. Electron. Commun. Jpn. 2016,
99, 31–40. [CrossRef]

26. Mishra, A.K.; Das, S.R.; Ray, P.K.; Mallick, R.K.; Mohanty, A.; Mishra, D.K. PSO-GWO optimized fractional order PID based
hybrid shunt active power filter for power quality improvements. IEEE Access 2020, 8, 74497–74512. [CrossRef]

27. Suman, S.; Chatterjee, D.; Mohanty, R. Comparison of PSO and GWO Techniques for SHEPWM Inverters. In Proceedings of the
2020 International Conference on Computer, Electrical & Communication Engineering (ICCECE), Kolkata, India, 17–18 January
2020; pp. 1–7.

28. Şenel, F.A.; Gökçe, F.; Yüksel, A.S.; Yiğit, T. A novel hybrid PSO–GWO algorithm for optimization problems. Eng. Comput. 2019,
35, 1359–1373. [CrossRef]

367

Mathematics 2023, 11, 1421

29. Wang, W.; Wang, J. Convex combination of two geometric-algebra least mean square algorithms and its performance analysis.
Signal Process. 2022, 192, 108333. [CrossRef]

30. Bakri, K.J.; Kuhn, E.V.; Matsuo, M.V.; Seara, R. On the behavior of a combination of adaptive filters operating with the NLMS
algorithm in a nonstationary environment. Signal Process. 2022, 196, 108465. [CrossRef]

31. Jeong, J.J.; Kim, S. Robust adaptive filter algorithms against impulsive noise. Circuits Syst. Signal Process. 2019, 38, 5651–5664.
[CrossRef]

32. Silva, M.T.; Nascimento, V.H. Improving the tracking capability of adaptive filters via convex combination. IEEE Trans. Signal
Process. 2008, 56, 3137–3149. [CrossRef]

33. Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fundam. Inform. 2006, 71, 279–308.
34. Frias, T.; Sanchez, G.; Garcia, L.; Abarca, M.; Diaz, C.; Sanchez, G.; Perez, H. A new scalable parallel adder based on spiking

neural P systems, dendritic behavior, rules on the synapses and astrocyte-like control to compute multiple signed numbers.
Neurocomputing 2018, 319, 176–187. [CrossRef]

35. Avalos, J.G.; Sanchez, G.; Trejo, C.; Garcia, L.; Pichardo, E.; Vazquez, A.; Anides, E.; Sanchez, J.C.; Perez, H. High-performance and
ultra-compact spike-based architecture for real-time acoustic echo cancellation. Appl. Soft Comput. 2021, 113, 108037. [CrossRef]

36. Song, T.; Rodríguez-Patón, A.; Zheng, P.; Zeng, X. Spiking neural P systems with colored spikes. IEEE Trans. Cogn. Dev. Syst.
2017, 10, 1106–1115. [CrossRef]

37. Peng, H.; Chen, R.; Wang, J.; Song, X.; Wang, T.; Yang, F.; Sun, Z. Competitive spiking neural P systems with rules on synapses.
IEEE Trans. NanoBiosci. 2017, 16, 888–895. [CrossRef]

38. Lv, Z.; Bao, T.; Zhou, N.; Peng, H.; Huang, X.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Spiking neural p systems with extended
channel rules. Int. J. Neural Syst. 2021, 31, 2050049. [CrossRef] [PubMed]

39. Chen, H.; Ionescu, M.; Ishdorj, T.O.; Păun, A.; Păun, G.; Pérez-Jiménez, M.J. Spiking neural P systems with extended rules:
Universality and languages. Nat. Comput. 2008, 7, 147–166. [CrossRef]

40. Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. In Approximation and
Optimization; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–82.

41. Scarpiniti, M.; Comminiello, D.; Uncini, A. Convex combination of spline adaptive filters. In Proceedings of the 2019 27th
European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5.

42. Khan, M.T.; Kumar, J.; Ahamed, S.R.; Faridi, J. Partial-LUT designs for low-complexity realization of DA-based BLMS adaptive
filter. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 1188–1192. [CrossRef]

43. Khan, M.T.; Shaik, R.A. Analysis and implementation of block least mean square adaptive filter using offset binary coding. In
Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5.

44. International Telecommunication Union ITU-T. Digital Network Echo Cancellers; Standardization Sector of ITU: Geneva, Switzer-
land, 2002.

45. Clark, G.; Mitra, S.; Parker, S. Block implementation of adaptive digital filters. IEEE Trans. Acoust. Speech Signal Process. 1981,
29, 744–752. [CrossRef]

46. Burrus, C. Block implementation of digital filters. IEEE Trans. Circuit Theory 1971, 18, 697–701. [CrossRef]
47. Reddy, K.S.; Sahoo, S.K. An approach for FIR filter coefficient optimization using differential evolution algorithm. AEU-Int. J.

Electron. Commun. 2015, 69, 101–108. [CrossRef]
48. Bansal, J.C.; Sharma, H.; Jadon, S.S. Artificial bee colony algorithm: A survey. Int. J. Adv. Intell. Paradig. 2013, 5, 123–159.

[CrossRef]
49. Krusienski, D.; Jenkins, W. A particle swarm optimization-least mean squares algorithm for adaptive filtering. In Proceedings of

the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
7–10 November 2004; Volume 1, pp. 241–245.

50. Ren, X.; Zhang, H. An Improved Artificial Bee Colony Algorithm for Model-Free Active Noise Control: Algorithm and
Implementation. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [CrossRef]

51. Wu, T.; Zhang, L.; Pan, L. Spiking neural P systems with target indications. Theor. Comput. Sci. 2021, 862, 250–261. [CrossRef]
52. Garcia, L.; Sanchez, G.; Vazquez, E.; Avalos, G.; Anides, E.; Nakano, M.; Sanchez, G.; Perez, H. Small universal spiking neural P

systems with dendritic/axonal delays and dendritic trunk/feedback. Neural Netw. 2021, 138, 126–139. [CrossRef]
53. Maya, X.; Garcia, L.; Vazquez, A.; Pichardo, E.; Sanchez, J.C.; Perez, H.; Avalos, J.G.; Sanchez, G. A high-precision distributed

neural processor for efficient computation of a new distributed FxSMAP-L algorithm applied to real-time active noise control
systems. Neurocomputing 2023, 518, 545–561. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

368

Citation: Tian, F.; Wang, J.; Chu, F.

Improved Multi-Strategy Harris

Hawks Optimization and Its

Application in Engineering Problems.

Mathematics 2023, 11, 1525.

https://doi.org/10.3390/

math11061525

Academic Editor: Gaige Wang

Received: 19 February 2023

Revised: 13 March 2023

Accepted: 18 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Improved Multi-Strategy Harris Hawks Optimization and Its
Application in Engineering Problems

Fulin Tian *, Jiayang Wang and Fei Chu

School of Computer Science and Engineering, Central South University, Changsha 410083, China
* Correspondence: fulintian@csu.edu.cn

Abstract: In order to compensate for the low convergence accuracy, slow rate of convergence,
and easily falling into the trap of local optima for the original Harris hawks optimization (HHO)
algorithm, an improved multi-strategy Harris hawks optimization (MSHHO) algorithm is proposed.
First, the population is initialized by Sobol sequences to increase the diversity of the population.
Second, the elite opposition-based learning strategy is incorporated to improve the versatility and
quality of the solution sets. Furthermore, the energy updating strategy of the original algorithm is
optimized to enhance the exploration and exploitation capability of the algorithm in a nonlinear
update manner. Finally, the Gaussian walk learning strategy is introduced to avoid the algorithm
being trapped in a stagnant state and slipping into a local optimum. We perform experiments
on 33 benchmark functions and 2 engineering application problems to verify the performance of
the proposed algorithm. The experimental results show that the improved algorithm has good
performance in terms of optimization seeking accuracy, the speed of convergence, and stability, which
effectively remedies the defects of the original algorithm.

Keywords: swarm intelligence; Harris hawks optimization; elite opposition-based learning; Sobol
sequence; nonlinear weight; Gaussian walk learning

MSC: 68T20

1. Introduction

The swarm intelligence algorithm is a common approach in computational intelligence
and an emerging evolutionary computing technique whose basic theory is to emulate the
behavior of groups of ants, birds, bees, wolves, bacteria, and other organisms in nature
and to use the mechanism of interaction to form group intelligence to solve complex
problems through the exchange of information and cooperation between groups. Numerous
researchers have carried out much work on such intelligent algorithms and proposed
many novel algorithms, such as the grey wolf optimizer (GWO) [1], lightning search
algorithm (LSA) [2], marine predators algorithm (MPA) [3], sine cosine algorithm (SCA) [4],
salp swarm algorithm (SSA) [5], water cycle algorithm (WCA) [6], whale optimization
algorithm (WOA) [7], cuckoo serach (CS) [8], artificial bee colony (ABC) [9], and moth
flame optimization (MFO) [10].

The Harris hawks optimization (HHO) algorithm is a novel swarm intelligence al-
gorithm proposed by Herdari et al. [11], who were inspired by observing the chase and
escape action between Harris hawks and their prey. The algorithm is simple in principle,
with few parameters while having a powerful global search capability, so it has received
widespread attention and has been adopted in many engineering fields since its intro-
duction. However, similar to other intelligent optimization algorithms, the basic Harris
hawks algorithm is susceptible to such defects as low precision of convergence and the
trend of falling into the local optimum during the search process when solving complex
optimization problems. Numerous scholars have proposed different improvement schemes

Mathematics 2023, 11, 1525. https://doi.org/10.3390/math11061525 https://www.mdpi.com/journal/mathematics
369

Mathematics 2023, 11, 1525

to address these shortcomings. Qu et al. [12] introduced a method of information exchange
to increase the diversity of populations, and a nonlinear energy escape factor was pro-
posed and perturbed by chaotic interference to balance the local exploitation and global
exploration of the algorithm. Xiaolong Liu et al. [13] optimized the method by setting
up a square neighborhood topology with multiple subgroups to lead individuals in each
subgroup to explore randomly in both directions. Andi Tang et al. [14] introduced the
elite hierarchy strategy to make full use of the dominant population for enhancing the
population diversity and improving the convergence of the algorithm in terms of speed
and accuracy. Kaveh et al. [15] combined HHO and the imperialist competitive algorithm
(ICA) [16] named imperialist competitive Harris hawks optimization (ICHHO), and it
had good performance in structure optimization problems. Elgamal et al. [17] presented
application of the chaotic maps at the initialization phase of the HHO, and the current best
solution was analyzed using the simulated annealing (SA) [18] algorithm to improve the
utilization of the HHO. Wenyu Li [19] invented a form of HHO by incorporating the novice
protection tournament (NpTHHO), which was developed by adding a novice protection
mechanism to better reallocate resources and introducing a variation mechanism in the
exploration phase to further enhance the global search efficiency of the HHO algorithm.
Essam H. et al. [20] combined HHO with a support vector machine (SVM) for the selection
of chemical descriptors as well as the activity of compounds and drug design and discov-
ery. Wunnava et al. [21] introduced an adaptive improvement algorithm performed by
differencing to address the problem of the exploration ability of the algorithm being limited
if the escape energy of the HHO is equal to zero, resulting in invalid random behavior at
that stage, and they applied the algorithm to image segmentation.

In summary, the main improvement of the HHO algorithm is to improve the opti-
mization ability of local exploitation and global exploration through various optimization
strategies and then improve the the accuracy of convergence and performance of the algo-
rithm before applying it in practical engineering. Among the existing improved versions of
HHO, some are achieved by incorporating other algorithms, such as those in [15,17], while
others are achieved by improving one or several stages of the underlying algorithm to
achieve optimization. Compared with the improved algorithms that have been proposed,
the improved strategies proposed in this paper include a more comprehensive scope, in-
cluding the population initialization phase, the population update phase, the energy escape
factor optimization, and the variation strategy. To overcome the weaknesses of the basic
Harris hawks algorithm, such as low accuracy, slow speed of convergence, and easily being
trapped in the local optimum, this paper presents improved multi-strategy Harris hawks
optimization (MSHHO). The main contributions of this research are as follows:

• We propose an improved multi-strategy Harris hawks optimization algorithm. To
compensate for the shortcomings of the algorithm, four strategies are adopted in this
work to improve the basic HHO algorithm. First, the population is initialized using
Sobol sequences to increase the variety of the population. Second, we incorporate elite
opposition-based learning to improve the population diversity and quality. Further-
more, the energy update strategy of the basic HHO algorithm is optimized to enhance
the exploration and exploitation capability of the algorithm in a nonlinear update
manner. Finally, Gaussian walk learning is introduced to avoid the algorithm being
trapped in a stagnant state and falling into a local optimum.

• The presentation of the proposed algorithm in working out 33 global optimization
benchmark functions in multiple dimensions is investigated by comparing it with other
novel swarm intelligence algorithm experiments. The results suggest that MSHHO
had a positive performance. The Wilcoxon signed-rank test was passed to validate the
effectiveness of the scheme. The advantages of this algorithm are demonstrated by
comparing it with other HHO improvement algorithms. The original HHO algorithm
is selected for comparison tests on each benchmark function in 100 dimensions versus
500 dimensions to inspect the utility of the algorithm in high-dimensional problems.

370

Mathematics 2023, 11, 1525

• We apply it to two engineering application problems to inspect the practicality of the
introduced algorithm. A new scheme is provided for the swarm intelligence algorithm
in practical engineering applications.

This paper is organized as follows. Section 1 describes the current state of develop-
ment of swarm intelligence algorithms and some existing strategies for improving the
Harris hawks algorithm. Section 2 describes the basic principles of the basic Harris hawks
algorithm. Section 3 details the improvement strategy introduced in this paper and gives
the time complexity of the algorithm. Section 4 shows the experimental results conducted
to demonstrate the effectiveness of the proposed algorithm. Section 5 shows the application
of the algorithm presented in this paper to engineering optimization problems. Section 6
concludes the paper and provides an outlook for future work.

2. Harris Hawks Optimization (HHO)

The HHO algorithm models the Harris hawk’s strategy for capturing prey under
different mechanisms in a mathematical formulation, where individual Harris hawks form
candidate solutions and the optimal solution produced by every iteration is considered the
prey. The algorithm comprises two main phases, namely exploration and exploitation, and
transitions between the two phases are performed by the magnitude of the prey’s escape
energy. The original Harris hawks optimization algorithm is described below.

2.1. Exploration Phase

The global search phase is majorly dictated by the location information of the Harris
hawk population, and its update strategy is as follows:

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)|
(Xprey(t)− Xm(t))− r3(LB + r4(UB− LB))

q ≥ 0.5
q < 0.5

(1)

where X(t+ 1) represents the location of the hawks in the iteration t+ 1, Xprey(t) represents
the location of the prey, X(t) represents the position of the hawks in the current generation
t, r1–r4 and q are randomly generated between (0,1), being renewed in each iteration, UB
and LB are the upper and lower bounds of the population, respectively, Xrand(t) represents
a hawk chosen randomly from the current population, and Xm(t) represents the average of
the positions of individuals in the current population, which is obtained from Equation (2):

Xm(t) =
1
n

n

∑
k=1

Xk(t) (2)

where Xk(t) denotes the position of hawk k in the iteration t and n denotes the number
of hawks.

2.2. Transition from Exploration to Exploitation

The energy equation controlling the escape of prey is as follows:

E = 2E0(1− t/T) (3)

where t is the current number of iterations, T denotes the maximum number of iterations,
and the value of E0 is a random number within (−1,1) that indicates the initial state of the
energy. When the escape energy |E| ≥ 1, the Harris hawks search different areas to further
explore for the location of the prey, which corresponds to the global exploration phase, and
when |E| < 1, the Harris hawks explore the adjacent solutions locally, thus corresponding
to the local exploitation phase.

2.3. Exploitation Phase

In this phase, the Harris hawk will besiege the target prey after finding it, based on
the exploration results of the previous phases, while the prey will try to escape from the

371

Mathematics 2023, 11, 1525

pursuit. On the basis of the behavior of Harris’s hawk and prey, four possible strategies are
proposed to be used for this phase of the simulation. The hard beseige and soft besiege
by Harris’s hawk are simulated by E. The parameter r is specified to indicate whether the
prey successfully escapes or not.

2.3.1. Soft Besiege

When |E| ≥ 0.5 and r ≥ 0.5, the prey tries to escape from the pursuit by jumping,
and the Harris hawk will use a soft besiege to gradually consume the prey’s energy. The
behavior is modeled as follows:

X(t + 1) = ΔX(t)− E
∣∣JXprey(t)− X(t)

∣∣ (4)

ΔX(t) = Xprey(t)− X(t) (5)

where r5 represents a randomly generated number within (0,1) and J is introduced to
simulate the nature of prey movement, with its value randomly varied in each iteration.

2.3.2. Hard Besiege

When |E| < 0.5 and r ≥ 0.5, the prey does not have enough energy to escape, and so
the Harris hawk attacks in a hard besiege manner, using Equation (6) to update the current
position:

X(t + 1) = Xprey(t)− E|ΔX(t)| (6)

2.3.3. Soft Besiege with Progressive Rapid Dives

When |E| ≥ 0.5 and r < 0.5, at this time, the prey has enough energy to escape from
the pursuit. Harris hawks will update their positions according to the rule in Equation (7):

Y = Xprey(t)− E
∣∣JXprey(t)− X(t)

∣∣ (7)

Z = Y + S× LF(D) (8)

where D is the dimension of the problem, S is a random vector of a size 1× D, and LF is
the levy flight function, which can be described as in Equation (9):⎧⎪⎪⎪⎨⎪⎪⎪⎩

LF(x) = 0.01× u×σ

|υ|
1
β

σ =

(
Γ(1+β)×sin(πβ

2)

Γ(1+β
2)×β×2(

β−1
2)

) 1
β (9)

where u and v are random values within (0,1) and β is the default constant, set to 1.5.
Hence, the final strategy for updating the hawks’ positions during the soft siege phase

can be executed by Equation (10):

X(t + 1) =
{

Y, ifF(Y) < F(X(t))
Z, ifF(Z) < F(X(t))

(10)

where Y and Z are obtained using Equations (7) and (8), respectively.

2.3.4. Hard Besiege with Progressive Rapid Dives

When |E| < 0.5 and r < 0.5, the prey does not have enough energy to make an escape,
and the following strategy is defined to be executed under these conditions:

X(t + 1) =
{

Y, ifF(Y) < F(X(t))
Z, ifF(Z) < F(X(t))

(11)

372

Mathematics 2023, 11, 1525

Y = Xprey(t)− E
∣∣JXprey(t)− Xm(t)

∣∣ (12)

Z = Y + S× LF(D) (13)

where Xm(t) is obtained using Equation (2).

2.4. The Main Steps of HHO

The main steps of the overall HHO algorithm are as shown in Algorithm 1.

Algorithm 1 Main steps of HHO algorithm
Input: Population size N and the maximum number of iterations T
1: Initialize the population
2: while t < T do
3: Calculate the fitness of each solution and get the optimal individual
4: for i=1:N do
5: According to Equation (3) update the escape energy E
6: if |E| ≥ 1 then
7: According to Equation (1) update the location
8: else if then|E| < 1
9: if |E| ≥ 0.5 and r ≥ 0.5 then

10: According to Equation (4) update the location
11: else if then|E| < 0.5 and r ≥ 0.5
12: According to Equation (6) update the location
13: else if then|E| ≥ 0.5 and r < 0.5
14: According to Equation (10) update the location
15: else if then|E| < 0.5 and r < 0.5
16: According to Equation (11) update the location
17: end if
18: end if
19: end for
20: t = t + 1
21: end while
22: return Xprey

3. Improved Multi-Strategy Harris Hawks Optimization (MSHHO)

The HHO algorithm has multiple development modes, and the algorithm shifts
between the different modes, making it good for local development, but it is also prone
to the problem of falling into the local optimum. To remedy this deficiency, we introduce
four improvement strategies to improve the original algorithm in this chapter, which are
described in detail in the following subsections.

3.1. Sobol Sequence Initialization Populations

The distribution of the primitive solution in the solution space largely affects the
convergence speed and the convergence precision of the intelligent algorithm. In the
basic HHO algorithm, the initialized population is generated by randomization. However,
the individuals generated in this way are not homogeneously distributed throughout the
exploration space, which in turn affects the speed of convergence and precision of the
algorithm. The Sobol sequence [22] is a deterministic low-difference sequence that has
the feature of distributing the points in the space as uniformly as possible compared to
the random sequence. The expression for the original population generated by the Sobol
sequence can be represented by

Xi = Lb + Sn × (Ub− Lb) (14)

373

Mathematics 2023, 11, 1525

where Lb and Ub are the lower and upper bounds of the exploration space, respectively,
and Sn is the random number generated by the Sobol sequence, where Sn ∈ [0, 1].

Assuming that the search space is two-dimensional, the population size is 100, and the
upper and lower bounds are 1 and 0, respectively, the distribution of the original population
space comparing the random initialization and the Sobol sequence initialization population
space is shown in Figure 1.

Figure 1. Comparison of Sobol population generation and random population generation.

As shown in Figure 1, the original population generated by the Sobol sequence is
more uniformly distributed, thus enabling the optimization algorithm to perform a better
global exploration in the exploration space, increasing the diversity of the population and
enhancing the convergence speed of the algorithm.

3.2. Elite Opposition-Based Learning

Opposition-based learning (OBL) [23] is an effective method of intelligent comput-
ing which was proposed by Tizhoosh in 2005. In recent years, this strategy has been
employed for the improvement of various algorithms and has achieved outstanding op-
timization results [24,25]. Assuming that a feasible solution in a d-dimensional search
space is X= (x1, x2, · · · , xd)(xj ∈ [aj, bj]), then its opposition-based solution is defined as
X= (x1, x2, · · · , xd), where xj = r(aj + bj)− xj, r is the coefficient of uniform distribution
inside [0, 1].

The inverse solution generated by the opposition-based learning strategy is not neces-
sarily searching for the global optimal solution more easily than the current exploration
space. To address this problem, elite opposition-based learning (EOBL) is proposed. As-
suming that the extreme point of the current population in the search space is the elite
individual Xe = (xe

1, xe
2, · · · , xe

d), then its inverse solution Xe = (xe
1, xe

2, · · · , xe
d) can be

specified as follows:
xe

j = k · (aj + bj)− xe
j (15)

where xe
j ∈ [aj, bj], k is a random value inside [0, 1], bj and aj are the upper and lower

bounds of the dynamic boundary, respectively, and aj = min(xe
j), bj = max(xe

j). Replacing
the fixed boundary with a dynamic boundary is beneficial for making the generated inverse
solution gradually reduce the search space and speed up the convergence of the algorithm.
Since the elite inverse solution may jump out of the boundary and lose its feasibility, the
following approach is taken to reset the value:

xe
i = rand(aj, bj) (16)

3.3. Escape Energy Update Optimization

In the basic HHO, a Harris hawk relies on the energy factor E to manage the transition
of the algorithm from the global search phase to the local search phase. However, as shown
in Equation (3), its energy factor E is reduced from 2 to 1 using a linear update, which tends

374

Mathematics 2023, 11, 1525

to trap it in a local optimum in the second half of the iteration. To overcome the deficiency
of only local searching when the algorithm proceeds to the later phase, a new updated
version of the energy factor is used:

E =

{
cos(π × (t/T + 1/2) + 2), t ≤ T/2
cos(π × (t/T − 1/2)1/3), t > T/2

(17)

E1 = E× (2× rand− 1) (18)

where t is the current number of iterations, T is the maximum number of iterations, and r
is the random number inside [0, 1].

From Figure 2, we can see that early in the iteration, the deceleration rate is fast to
control the global search capability of the algorithm. In the middle of the iteration, the
decreasing rate slows down to balance the capability of local exploitation and global explo-
ration. In the later part of the iteration, the local search speeds up, and its value becomes
smaller rapidly. From Figure 3, it can be seen that E1 has fluctuating energy parameters
throughout the iterative process and is capable of both global and local searching through-
out the iterative process, with global exploration being undertaken mainly in the early
stage and more local exploitation while still retaining the possibility of global exploration
in the later stage.

Figure 2. Iterative change graph of E.

Figure 3. Iterative change graph of E1.

3.4. Gaussian Walk Learning

Gaussian walk learning (GWL) is a classical stochastic walk strategy with strong
exploitation capability [26–28]. Thus, this paper uses this strategy to mutate the population
individuals to improve the diversity of the population while helping it leap out of the local
optimum trap. The Gaussian walk learning model is shown in Equation (19):

X(t + 1) = Gauss(X(t), τ) (19)

τ = cos(π/2× (t/T)2)× (X(t)− Xr(t)) (20)

375

Mathematics 2023, 11, 1525

where X(t) indicates the individual in the generation population t, Gauss(X(t), τ) is the
Gaussian distribution with X(t) as the expectation and τ as the standard deviation, and
X(t) is the location of the random individual in the generation population t. The step size
of Gaussian walk learning is adjusted by the function cos(π/2× (t/T)2). An image of
this is shown in Figure 4. To balance the search ability of the algorithm, the perturbation
applied in the early iterations is larger and rapidly decreases in the later stages to increase
the algorithm’s development ability.

Figure 4. Graph of wandering step length change control.

3.5. Flow of the MSHHO Algorithm

In summary, the main steps of the the improved multi-strategy Harris hawks opti-
mization (MSHHO) algorithm is shown in Algothrim 2, and the flow chart of MSHHO is
shown in Figure 5.

Algorithm 2 Main steps of MSHHO algorithm
Input: Population size N and the maximum number of iterations T
1: According to Equation (14) initialize the population
2: while t < T do
3: Generate the reverse population using the elite opposition-based learning mech-

anism and calculate the fitness of the original population and its reverse population
individuals

4: if the algorithm is stagnant then
5: According to Equation (19) update the location
6: else
7: for i=1:N do
8: According to Equation (18) update the escape energy E
9: if |E| ≥ 1 then

10: According to Equation (1) update the location
11: else if then|E| < 1
12: if |E| ≥ 0.5 and r ≥ 0.5 then
13: According to Equation (4) update the location
14: else if then|E| < 0.5 and r ≥ 0.5
15: According to Equation (6) update the location
16: else if then|E| ≥ 0.5 and r < 0.5
17: According to Equation (10) update the location
18: else if then|E| < 0.5 and r < 0.5
19: According to Equation (11) update the location
20: end if
21: end if
22: end for
23: end if
24: t = t + 1
25: end while
26: return Xprey

376

Mathematics 2023, 11, 1525

Figure 5. The flow chart of MSHHO.

3.6. Time Complexity Analysis of the Algorithm

The time complexity of the basic HHO algorithm depends mainly on three stages:
the initialization phase, the fitness calculation process, and the location update operation
of the population. Assuming that the size of the Harris hawk population is N, the prob-
lem dimension is D, and the maximum number of iterations is T, the time complexity of
the initialization phase is O(N), and the time complexity of finding the prey’s location
and updating the population’s location vector is O(N ∗ T) + O(N ∗ D ∗ T), so the time
complexity of the basic HHO algorithm is O(N ∗ (1 + T + D ∗ T)). For the improved
algorithm proposed in this paper, the time complexity of the Sobol sequence initialization
population is O(N ∗ D), the time complexity of the elite reverse learning strategy to op-
timize the population is O(N ∗ D ∗ T), and the average time complexity of the Gaussian
random wandering strategy is O(N/2 ∗ D ∗ T). Thus, the time complexity of MSHHO is
O(N ∗ (3/2 ∗ D ∗ T + D + 1)).

4. Experiment and Results

To verify the performance of the proposed MSHHO algorithm, the GWO [1], SCA [4],
SSA [5], and WOA [7] approaches were selected for running a comparison with the original
HHO [11] algorithm. The same experimental environment, platform, and parameters were
selected for the experiments. Table 1 shows the parameter settings of the comparison
algorithms. The environment of the simulation test for the experiment was the 64 bit
Windows 10 operating system, the CPU was an Intel(R) Core(TM) i7-7700HQ at 2.80 GHz,
and the simulation software was MATLAB R2016b.

377

Mathematics 2023, 11, 1525

Table 1. Parameter sets of the algorithms.

Algorithm Parameters

GWO A variable decreases linearly from 2 to 0
r1, r2 (random numbers) ∈ [0, 1]

SSA C2, C3 (random numbers) ∈ [0, 1]

SCA A (constant) = 2

WOA A variable decreases linearly from 2 to 0
a2 variable decreases linearly from 2 to 0

4.1. Benchmark Functions and Numerical Experiment

Twenty-three functions were selected from the CEC2005 benchmark [29,30], where
F1–F7 are unimodal functions, F8–F13 are multimodal functions, and F14–F23 are fixed-
dimension functions. The specific information of the benchmark function is shown in
Tables A1–A3. For this experiment, the selected dimension of the test functions F1–F13 was
30, while the other functions had different dimensions lower than 30. For each algorithm,
the population size was set to 30, and the maximum number of iterations was 500. Each
algorithm was run 30 times independently on each test function to prevent chance from
bringing bias to the experimental results, and the mean, best value, and standard deviation
of each algorithm run are shown in Tables 2 and 3.

The CEC2017 benchmark functions are characterized by a large problem size and more
complex optimization searching, which can effectively distinguish the direct differences
in the searching ability of different algorithms. There are 30 single-objective benchmark
functions in CEC2017, including unimodal functions (F1–F3), simple multimodal functions
(F4–F10), hybrid functions (F11–F20), and composition functions (F21–F30). In order to further
verify the improvement effect of the MSHHO algorithm, 10 benchmark functions (F1, F3, F5,
F7, F14, F15, F18, F21, F24, and F30) with different characteristics were selected for testing in
the experiment, and their characteristics are shown in Table 4. Each algorithm was also run
30 times in the experiment, with a maximum number of iterations of 1000 and a population
size of 100. The experimental results are shown in Table 5.

4.2. Results Analysis

In the experiment with CEC2005 as the test function, the unimodal functions F1–F7
selected for this experiment were used to test the development capability of the algorithm.

From the experimental results, it can be seen that for the test functions F1–F4, MSHHO
could directly find the best value of zero, and HHO has the second-best performance, while
the SCA, SSA and WOA performed poorly to varying degrees. For F5 and F6, MSHHO
performed best in terms of both average and best results and with much higher accuracy
than the other algorithms. For F7, MSHHO performed similarly to HHO, but numerically,
MSHHO had a slightly better mean, optimal value, and stability and performed significantly
better than the other comparison algorithms. Overall, among all unimodal test functions,
MSHHO had the best performance, stable results, and significantly better optimization
than the comparison algorithms.

F8–F23 are multimodal functions to evaluate the exploration capability of the algo-
rithm. The experimental results show that in functions F8–F23, compared with the other
algorithms, MSHHO could achieve the optimal optimization effect in most functions, and
many functions could find the best value, such as F9, F11, F14,F16, F17, F18, and F19. In F17 and
F19, the stability performance of MSHHO was slightly inferior to that of the SSA. Overall,
the combined performance of MSHHO in the multimodal test function was still the best
result.

In the experiments with CEC2017 as the test function, it can be seen that MSHHO
performed well in the hybrid functions and composition functions, both of which could
obtain the best optimal and mean values with good stability. In unimodal functions and

378

Mathematics 2023, 11, 1525

simple multimodal functions, although the performance was not the best, it had a great
improvement effect compared with the original HHO.

To visualize the convergence performance of MSHHO, the iterative convergence
curves of the test functions were experimentally plotted, and the convergence plots of some
of the test functions are shown in Figures 6–9. As can be seen from the figures, both in
terms of the speed of convergence and the accuracy of convergence, MSHHO outperformed
the other comparison algorithms. It showed good performance not only in the unimodal
test functions but also the multimodal functions. The box graph shows that MSHHO also
performed better in terms of stability compared with the other algorithms.

Table 2. Results of CEC2005 benchmark functions.

Fun Item MSHHO HHO GWO SCA SSA WOA

F1
Ave 0.00E+00 1.86E−99 1.12E−27 1.84E+01 2.01E−07 1.64E−73
Best 0.00E+00 1.36E−116 3.16E−29 4.46E−02 2.50E−08 7.96E−91
Std 0.00E+00 5.80E−99 1.91E−27 4.25E+01 2.80E−07 6.89E−73

F2
Ave 0.00E+00 4.53E−49 9.67E−17 4.13E−02 2.30E+00 9.59E−50
Best 0.00E+00 3.91E−58 1.51E−17 4.04E−05 8.17E−02 1.41E−58
Std 0.00E+00 2.44E−48 6.31E−17 1.17E−01 1.56E+00 2.94E−49

F3
Ave 0.00E+00 1.00E−69 1.68E−05 8.64E+03 1.80E+03 4.34E+04
Best 0.00E+00 1.32E−95 1.89E−08 5.50E+02 3.28E+02 1.69E+04
Std 0.00E+00 5.50E−69 4.68E−05 4.43E+03 1.27E+03 1.45E+04

F4
Ave 0.00E+00 2.18E−47 5.89E−07 3.42E+01 1.14E+01 4.05E+01
Best 0.00E+00 7.44E−57 3.16E−08 1.59E+01 4.69E+00 1.93E−03
Std 0.00E+00 1.19E−46 3.23E−07 9.96E+00 4.13E+00 2.68E+01

F5
Ave 2.73E−06 1.22E−02 2.70E+01 3.57E+04 2.65E+02 2.80E+01
Best 4.98E−09 6.77E−06 2.61E+01 3.36E+01 2.73E+01 2.75E+01
Std 4.55E−06 1.76E−02 6.27E−01 6.43E+04 3.70E+02 3.98E−01

F6
Ave 9.27E−09 2.00E−04 7.53E−01 1.51E+01 3.40E−07 4.92E−01
Best 6.52E−12 1.58E−07 8.51E−05 4.37E+00 2.77E−08 5.80E−02
Std 1.55E−08 2.75E−04 4.13E−01 1.37E+01 8.01E−07 3.22E−01

F7
Ave 6.17E−05 1.28E−04 1.88E−03 8.26E−02 1.72E−01 2.97E−03
Best 2.04E−06 1.13E−06 8.16E−04 7.69E−03 5.79E−02 6.12E−05
Std 4.51E−05 1.73E−04 9.00E−04 8.56E−02 6.42E−02 3.80E−03

F8
Ave −12,537.7 −12,493.4 −5872.01 −3826.45 −7321.88 −10,872.7
Best −12,569.5 −12,569.5 −7039.92 −4714.89 −8719.91 −12,563.3
Std 1.74E+02 3.74E+02 7.59E+02 3.14E+02 8.06E+02 1.64E+03

F9
Ave 0.00E+00 0.00E+00 3.21E+00 3.15E+01 5.65E+01 1.89E−15
Best 0.00E+00 0.00E+00 0.00E+00 3.53E−01 1.79E+01 0.00E+00
Std 0.00E+00 0.00E+00 4.32E+00 3.42E+01 2.41E+01 1.04E−14

F10
Ave 8.88E−16 8.88E−16 9.65E−14 9.77E+00 2.69E+00 4.44E−15
Best 8.88E−16 8.88E−16 7.55E−14 2.32E−02 1.65E+00 8.88E−16
Std 0.00E+00 0.00E+00 1.85E−14 9.50E+00 6.90E−01 2.64E−15

F11
Ave 0.00E+00 0.00E+00 8.17E−03 9.35E−01 1.80E−02 1.18E−02
Best 0.00E+00 0.00E+00 0.00E+00 1.17E−01 5.11E−04 0.00E+00
Std 0.00E+00 0.00E+00 1.23E−02 2.69E−01 1.35E−02 4.53E−02

F12
Ave 2.58E−09 7.55E−06 5.32E−02 4.12E+04 7.10E+00 2.26E−02
Best 3.05E−11 2.78E−08 1.32E−02 7.84E−01 2.63E+00 7.38E−03
Std 4.14E−09 1.35E−05 2.45E−02 2.18E+05 4.09E+00 1.71E−02

379

Mathematics 2023, 11, 1525

Table 3. Results of CEC2005 benchmark functions.

Fun Item MSHHO HHO GWO SCA SSA WOA

F13
Ave 2.86E−08 9.53E−05 6.28E−01 4.14E+04 1.24E+01 5.56E−01
Best 3.40E−10 4.10E−09 3.62E−01 7.40E+00 6.43E−02 1.02E−01
Std 4.29E−08 1.23E−04 2.06E−01 7.62E+04 1.26E+01 2.87E−01

F14
Ave 0.998004 1.22863 5.85033 2.11766 1.03114 2.96061
Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
Std 2.92E−16 9.23E−01 4.84E+00 1.90E+00 1.81E−01 3.31E+00

F15
Ave 0.0003106 0.0003540 0.0051331 0.0010104 0.0022031 0.0007264
Best 0.0003075 0.0003093 0.0003075 0.0003330 0.0005801 0.0003134
Std 1.42E−05 4.40E−05 8.55E−03 3.73E−04 4.94E−03 4.69E−04

F16
Ave −1.03163 −1.03163 −1.03163 −1.03156 −1.03163 −1.03163
Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Std 1.23E−13 1.34E−09 2.28E−08 7.53E−05 1.98E−14 9.76E−10

F17
Ave 0.397887 0.397895 0.397888 0.399336 0.397887 0.397903
Best 0.397887 0.397887 0.397887 0.3979 0.397887 0.397887
Std 1.09E−11 1.37E−05 9.13E−07 0.00123355 1.20E−14 4.34E−05

F18
Ave 3 3 3.00004 3.00014 3 3.00018
Best 3 3 3 3 3 3
Std 5.99E−13 3.38E−07 5.20E−05 2.98E−04 1.74E−12 3.37E−04

F19
Ave −3.86278 −3.86063 −3.86161 −3.85458 −3.86278 −3.85393
Best −3.86278 −3.86278 −3.86278 −3.86093 −3.86278 −3.86278
Std 1.69E−07 4.26E−03 2.31E−03 2.45E−03 5.41E−10 1.82E−02

F20
Ave −3.32199 −3.05318 −3.27542 −2.89641 −3.2164 −3.22982
Best −3.32199 −3.24908 −3.32199 −3.12557 −3.322 −3.32197
Std 7.06E−06 9.88E−02 6.34E−02 3.92E−01 5.50E−02 1.03E−01

F21
Ave −5.90486 −5.21017 −9.56373 −3.03801 −7.48769 −10.1446
Best −10.1532 −9.80978 −10.1532 −7.11165 −10.1532 −10.1531
Std 1.76E+00 8.69E−01 1.83E+00 1.96E+00 3.59E+00 2.91E+00

F22
Ave −6.3279 −5.24959 −10.0479 −3.06053 −8.91931 −10.3984
Best −10.4029 −10.1296 −10.4026 −6.68804 −10.4029 −10.4013
Std 2.29E+00 9.22E−01 1.34E+00 1.68E+00 2.78E+00 2.96E+00

F23
Ave −7.29165 −5.46617 −10.535 −3.35072 −8.67822 −10.535
Best −10.5364 −10.4401 −10.536 −6.52536 −10.5364 −10.535
Std 2.69E+00 1.30E+00 6.93E−04 1.72E+00 3.20E+00 3.46E+00

Table 4. The CEC2017 benchmark functions selected for the experiment.

Type Function Dim Range f min

Unimodal
Functions

Shifted and Rotated Bent Cigar Function
(CEC2017-01) 10 [−100,100] 100

Shifted and Rotated Zakharov Function
(CEC2017-03) 10 [−100,100] 300

Simple
Multimodal
Functions

Shifted and Rotated Rastrigin’s Function
(CEC2017-05) 10 [−100,100] 500

Shifted and Rotated Lunacek Bi_Rastrigin
Function (CEC2017-07) 10 [−100,100] 700

Hybrid
Functions

Hybrid Function 4 (N = 4) (CEC2017-14) 10 [−100,100] 1400
Hybrid Function 5 (N = 4) (CEC2017-15) 10 [−100,100] 1500
Hybrid Function 6 (N = 5) (CEC2017-18) 10 [−100,100] 1800

Composition
Functions

Composition Function 1 (N = 3) (CEC2017-21) 10 [−100,100] 2100
Composition Function 4 (N = 4) (CEC2017-24) 10 [−100,100] 2400
Composition Function 10 (N = 3) (CEC2017-30) 10 [−100,100] 3000

380

Mathematics 2023, 11, 1525

Table 5. Results of CEC2017 benchmark functions.

Fun Item MSHHO HHO GWO SCA SSA WOA

CEC2017-01
Ave 49,440.6 181,877 2.48E+06 5.99E+08 3183.02 338,954
Best 3140.59 63,447.7 3764.24 1.40E+08 100.984 23,441.5
Std 108,718 117,594 8.64E+06 2.35E+08 3397.61 755,780

CEC2017-03
Ave 300.329 300.732 625.499 975.373 300 573.145
Best 300.037 300.165 336.522 495.131 300 308.754
Std 0.272803 0.270405 496.478 371.953 4.94E−10 289.931

CEC2017-05
Ave 519.841 538.494 511.584 542.678 524.008 551.057
Best 502.985 511.036 505.978 527.153 508.955 526.905
Std 10.1552 10.6904 3.68135 7.29722 11.1746 15.8918

CEC2017-07
Ave 733.654 772.701 725.715 767.856 735.3 781.678
Best 718.843 734.95 709.702 753.853 718.987 730.015
Std 6.70906 17.7422 9.62029 7.82372 10.7958 27.0508

CEC2017-14
Ave 1478.58 1510.07 2341.04 1555.82 1484.17 1527.32
Best 1433.7 1471.91 1433.95 1462.98 1442.56 1439.08
Std 24.7266 25.6782 1573.34 51.9076 28.7598 45.6609

CEC2017-15
Ave 1664.99 1934.25 2292.48 1867.08 1940.31 3336.1
Best 1522.89 1558.06 1535.8 1556.09 1590.51 1644.25
Std 98.0525 510.481 1068.21 234.834 434.466 1660.81

CEC2017-18
Ave 14,985.7 16,253.9 25882.7 75,409.4 16,880.7 17,233.1
Best 2206.4 2398.88 3143.44 23,592.5 2254.64 2129.58
Std 12612.1 10,061.8 17,274.9 39,931.8 11,704.2 13,153.9

CEC2017-21
Ave 2204.27 2315.2 2303.95 2219.69 2257.21 2299.47
Best 2201.18 2202.1 2201.51 2204.12 2202.02 2203.47
Std 1.79373 58.7998 35.5829 32.6286 60.6996 61.1923

CEC2017-24
Ave 2503.62 2756.83 2743.72 2760.06 2738.66 2767.97
Best 2500.03 2500.86 2729.3 2535.92 2501.05 2503.79
Std 19.301 106.455 9.339 64.0151 45.6911 52.9464

CEC2017-30
Ave 102,074 953,406 528643 591,396 198,622 523,855
Best 5427.23 6507.98 5859.89 91465.3 6371.17 5601.07
Std 238,447 1.37E+06 679,480 463,886 377,547 590,372

4.3. Nonparametric Statistical Analysis

In order to analyze the test results of each experiment more precisely and avoid the
influence of chance on the validation of the experimental results, the results of 30 instances
of the 6 algorithms solving 33 test functions were passed through the Wilcoxon rank sum
test at a significance level of 0.05 to identify significant discrepancies between the results of
the comparison algorithms and MSHHO. If the p-value of the rank sum test was greater
than 0.05, then this meant that there was no significant difference between the two results;
otherwise, it meant that the results of the two algorithms were significantly different in the
whole. The results of the rank sum test are shown in Table 6, and NaN indicates that the
two groups of samples were the same. For the CEC2005 benchmark functions, the results
in the table show that MSHHO was significantly different from GWO and the SCA and
SSA in all 23 functions, from HHO in 22 functions, and from WOA in 19 functions. Among
the 10 benchmark functions in CEC2017, MSHHO was significantly different from the SCA
in all functions, from HHO and the WOA in 9 functions, from GWO in 8 functions, and
from the SSA in 5 functions. Therefore, it can be concluded that there was a statistically
significant difference in the optimization performance of MSHHO compared with the other
algorithms, and the MSHHO algorithm performed significantly better.

381

Mathematics 2023, 11, 1525

0 100 200 300 400 500
Iteration

10

10

100

105

1010

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f5

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

0.5

1

1.5

2

105

0 100 200 300 400 500
Iteration

10-10

10-5

100

105

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f6

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

10

20

30

40

50

60

0 100 200 300 400 500
Iteration

10

10

10

100

102

104

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f7

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500
Iteration

5

4

3

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f8

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

Figure 6. Qualitative results of F5, F6, F7, and F8 (CEC2005).

382

Mathematics 2023, 11, 1525

0 100 200 300 400 500
Iteration

10

10

10

10

100

105

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f10

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500
Iteration

10

10

100

105

1010

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f12

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

2

4

6

8

10

12

105

0 100 200 300 400 500
Iteration

10

10

100

105

1010

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f13

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

0.5

1

1.5

2

2.5

3

3.5
105

0 100 200 300 400 500
Iteration

100

101

102

103

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f14

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

2

4

6

8

10

12

Figure 7. Qualitative results of F10, F12, F13, and F14 (CEC2005).

383

Mathematics 2023, 11, 1525

0 100 200 300 400 500
Iteration

10

10

10

10

100

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f15

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

50 100 150 200 250 300
Iteration

100

101

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f17

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0.398

0.3985

0.399

0.3995

0.4

0.4005

0.401

0.4015

0.402

0.4025

0 100 200 300 400 500
Iteration

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f19

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0 100 200 300 400 500
Iteration

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

f20

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

Figure 8. Qualitative results of F15, F17, F19, and F20 (CEC2005).

384

Mathematics 2023, 11, 1525

0 200 400 600 800 1000
Iteration

104

105

106

107

108

109

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

0.5

1

1.5

2

105

0 200 400 600 800 1000
Iteration

2220

2240

2260

2280

2300

2320

2340

2360

2380

2400

2420

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

2200

2250

2300

2350

2400

0 200 400 600 800 1000
Iteration

2550

2600

2650

2700

2750

2800

2850

2900

2950

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

2500

2550

2600

2650

2700

2750

2800

2850

0 200 400 600 800 1000
Iteration

105

106

107

108

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

MSHHO
HHO
GWO
SCA
SSA
WOA

MSHHO HHO GWO SCA SSA WOA

0

1

2

3

4

5

106

Figure 9. Qualitative results of F18, F21, F24, and F30 (CEC2017).

385

Mathematics 2023, 11, 1525

Table 6. Results of Wilcoxon rank sum test for different algorithms.

Fun HHO GWO SCA SSA WOA

CEC2005-F1 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
CEC2005-F2 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
CEC2005-F3 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
CEC2005-F4 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
CEC2005-F5 4.50E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
CEC2005-F6 3.02E−11 3.02E−11 2.61E−10 3.02E−11 3.02E−11
CEC2005-F7 0.093341 3.02E−11 3.02E−11 3.02E−11 1.33E−10
CEC2005-F8 1.85E−09 3.00E−11 3.00E−11 3.00E−11 1.46E−10
CEC2005-F9 NaN 4.53E−12 1.21E−12 1.21E−12 0.333711

CEC2005-F10 NaN 1.13E−12 1.21E−12 1.21E−12 1.22E−08
CEC2005-F11 NaN 6.61E−05 1.21E−12 1.21E−12 0.160802
CEC2005-F12 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
CEC2005-F13 2.37E−10 3.02E−11 3.02E−11 3.02E−11 3.02E−11
CEC2005-F14 2.16E−11 2.15E−11 1.79E−05 2.16E−11 2.16E−11
CEC2005-F15 3.47E−10 8.84E−07 3.02E−11 3.34E−11 5.49E−11
CEC2005-F16 1.14E−09 2.92E−11 2.19E−03 2.92E−11 2.92E−11
CEC2005-F17 1.63E−05 3.01E−11 5.42E−07 3.01E−11 1.09E−10
CEC2005-F18 1.20E−08 3.01E−11 6.00E−08 3.01E−11 3.01E−11
CEC2005-F19 3.02E−11 3.69E−11 9.92E−11 3.02E−11 6.07E−11
CEC2005-F20 3.02E−11 2.20E−07 6.77E−05 3.02E−11 3.34E−11
CEC2005-F21 3.82E−10 4.08E−05 0.0281287 3.82E−10 0.304177
CEC2005-F22 3.02E−11 2.84E−04 9.53E−07 2.92E−09 0.53951
CEC2005-F23 2.03E−09 1.95E−03 1.11E−04 9.06E−08 1.56E−02
CEC2017-F1 3.69E−11 0.28378 3.02E−11 5.57E−10 3.50E−09
CEC2017-F3 2.38E−07 3.02E−11 3.02E−11 3.02E−11 3.02E−11
CEC2017-F5 1.36E−07 2.53E−04 6.12E−10 0.52978 3.65E−08
CEC2017-F7 2.37E−10 2.26E−03 1.46E−10 0.8418 1.78E−10

CEC2017-F14 2.13E−05 1.18E−04 5.97E−09 0.37108 2.49E−06
CEC2017-F15 3.03E−04 1.02E−04 5.27E−05 1.34E−05 2.61E−10
CEC2017-F18 0.36322 0.024157 2.87E−10 0.40354 0.53951
CEC2017-F21 4.68E−08 4.31E−08 4.62E−10 0.72827 1.96E−10
CEC2017-F24 4.50E−11 3.02E−11 3.69E−11 5.57E−10 3.34E−11
CEC2017-F30 9.03E−04 0.70617 7.11E−09 0.00824 0.00111

4.4. Comparison with Other Improved Strategies of the HHO Algorithm

To better illustrate the improvement of the algorithm in terms of optimization perfor-
mance, the experimental results of the chaotic elite Harris hawks optimization (CEHHO)
algorithm in [14] were selected for comparison with the MSHHO algorithm proposed in
this paper, with the same parameters as those set in [14], setting the number of populations
to 50 and the maximum number of iterations to 300, with 17 common test functions selected
for the experiments, and the comparison results are shown in Table 7.

Table 7. Comparison of the results of different improved algorithms.

Fun
CEHHO MSHHO

Ave Std Ave Std

CEC2005-F1 3.11E−82 9.82E−82 0.00E+00 0.00E+00
CEC2005-F2 4.57E−40 2.50E−39 0.00E+00 0.00E+00
CEC2005-F3 1.59E−59 8.70E−59 0.00E+00 0.00E+00
CEC2005-F4 3.03E−44 1.04E−43 0.00E+00 0.00E+00
CEC2005-F5 6.62E−04 8.52E−04 7.31E−06 2.73E−05
CEC2005-F6 6.04E−06 7.14E−06 1.73E−18 9.41E−18
CEC2005-F7 1.32E−04 1.18E−04 7.48E−05 9.25E−05
CEC2005-F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00

CEC2005-F10 8.88E−16 0.00E+00 8.88E−16 0.00E+00
CEC2005-F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00
CEC2005-F12 5.41E−07 6.13E−07 4.43E−12 2.00E−11
CEC2005-F14 1.16E+00 3.77E−01 9.98E−01 9.06E−14
CEC2005-F15 3.28E−04 1.49E−05 3.08E−04 1.39E−06
CEC2005-F16 −1.03E+00 2.88E−10 −1.03E+00 6.86E−12
CEC2005-F17 3.00E+00 3.59E−08 3.00E+00 1.37E−12
CEC2005-F18 −3.86E+00 3.16E−04 −3.86E+00 7.00E−07
CEC2005-F20 −3.20E+00 8.75E−02 −3.32E+00 7.60E−06

386

Mathematics 2023, 11, 1525

From the results in the table, it is apparent that for functions F9, F10, and F11, both
optimization algorithms could reach the optimal results with a standard deviation of zero,
while for F16, F17, and F18, both algorithms found the optimal values as well. The standard
deviation of MSHHO was smaller, and the algorithm was more stable in comparison. For
the other functions, MSHHO had better performance in terms of both mean and standard
deviation.

4.5. Experimental Analysis of Solving High-Dimensional Functions

Based on the experimental results above, we verified the optimization effectiveness
of the improved MSHHO algorithm in low-dimensional functions. However, most al-
gorithms would be much less effective or even fail when solving complex problems in
high-dimensional functions.

In order to verify the practicality of MSHHO in high-dimensional problems, the origi-
nal HHO algorithm and the improved MSHHO algorithm were selected for comparison
experiments on 100-dimensional and 500-dimensional F1–F13 functions, respectively, and
the experimental results are shown in Table 8.

From the results in Table 8, it can be seen that the improved MSHHO algorithm still
had better result values than the original HHO algorithm for each test function in 100 and
500 dimensions with good stability, and the MSHHO algorithm still found the optimal
results in functions F1–F4.
Table 8. Experimental analysis of solving high-dimensional functions.

Fun Dim
HHO MSHHO

Ave Std Ave Std

CEC2005-F1 100 2.40E−94 8.30E−94 0.00E+00 0.00E+00
500 4.64E−94 2.53E−93 0.00E+00 0.00E+00

CEC2005-F2 100 3.08E−50 1.21E−49 0.00E+00 0.00E+00
500 4.11E−49 1.22E−48 0.00E+00 0.00E+00

CEC2005-F3 100 2.23E−54 9.48E−54 0.00E+00 0.00E+00
500 1.46E−30 7.38E−30 0.00E+00 0.00E+00

CEC2005-F4 100 4.93E−47 2.68E−46 0.00E+00 0.00E+00
500 3.30E−48 1.48E−47 0.00E+00 0.00E+00

CEC2005-F5 100 5.06E−02 6.33E−02 1.75E−04 4.20E−04
500 2.42E−01 2.62E−01 2.56E−02 3.82E−02

CEC2005-F6 100 4.59E−04 6.12E−04 7.23E−05 7.42E−05
500 1.82E−03 1.84E−03 2.70E−03 5.80E−03

CEC2005-F7 100 1.55E−04 1.69E−04 8.85E−05 1.15E−04
500 1.91E−04 1.89E−04 1.91E−04 1.89E−04

CEC2005-F8 100 −4.19E+04 1.47E+00 −4.19E+04 1.33E−03
500 −2.09E+05 2.65E+01 −2.09E+05 6.97E−06

CEC2005-F9 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

CEC2005-F10 100 8.88E−16 0.00E+00 8.88E−16 0.00E+00
500 8.88E−16 0.00E+00 8.88E−16 0.00E+00

CEC2005-F11 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

CEC2005-F12 100 5.74E−06 7.54E−06 9.23E−07 1.12E−06
500 3.43E−06 3.78E−06 2.72E−06 2.30E−06

CEC2005-F13 100 1.77E−04 1.63E−04 4.65E−05 3.73E−05
500 7.29E−04 7.97E−04 3.95E−04 3.58E−04

387

Mathematics 2023, 11, 1525

5. Engineering Optimization Problems

5.1. Pressure Vessel Design Problem

The pressure vessel is an essential and important piece of equipment in industrial
production, the main function of which is to store liquids or gases under a certain pressure.
The design problem of the pressure vessel is a nonlinear programming problem that
belongs to the category of existence of multiple constraints. The objective of the problem is
to minimize the cost of making the pressure vessel. The design of the pressure vessel is
shown in Figure 10.

Figure 10. Pressure vessel design problem.

The pressure vessel was composed of a cylindrical vessel part and a hemispherical
capping part at the head end and a tail end. L is the length of the cylindrical section, R is
the radius of the inner wall of the vessel section, S is the wall thickness of the vessel section,
and H is the wall thickness of the hemispherical cap, where, L, R, S, and H were the four
variables to be optimized for the pressure vessel design problem. The objective function
and constraints of the problem can be expressed as follows:

x = [x1, x2, x3, x4] = [S, H, R, L]
Min f (x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3

subject to
g1(x) = −x1 + 0.0193x3 ≤ 0
g2(x) = −x2 + 0.00954x3 ≤ 0
g3(x) = −πx2

3 − 4
3 πx3

3 + 1296000 ≤ 0
g4(x) = x4 − 240 ≤ 0
0 ≤ xi ≤ 100, i = 1, 2
10 ≤ xi ≤ 200, i = 3, 4

The problem was solved by the MSHHO and HHO algorithms [11] as well as the
SCA [4], SSA [5], and WOA [7] with the same relevant parameter settings for the algorithms,
and the results are shown in Table 9. It can be seen that MSHHO demonstrated the best
results in solving this problem.

Table 9. Results of pressure vessel design problem for different algorithms.

Algorithm S H R L Ave Best Std

MSHHO 1.08995 4.04e−10 65.13547 10.3871 2530.8 2302.55 384.066
HHO 0.48292 0 41.29134 186.901 3033.73 2302.55 427.569
SCA 0 0 40.39128 200 5199.8 2310.76 1590.27
SSA 0.55132 0 43.5991 158.888 3495.34 2302.55 379.247
WOA 1.15242 0 65.22523 10 4074.13 2302.56 2367.06

The convergence curve and box plot of the problem are shown in Figure 11. It can be
visually seen that the MSHHO performed well in terms of accuracy and stability.

388

Mathematics 2023, 11, 1525

0 100 200 300 400 500
Iteration

103

104

105

106

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

MSHHO
HHO
SCA
SSA
WOA

MSHHO HHO SCA SSA WOA

2000

4000

6000

8000

10,000

12,000

14,000

Figure 11. Qualitative results of pressure vessel design problem.

5.2. Compression Spring Design Problem

The optimal design of the spring must achieve the minimum value of its mass within
the constraints of the shear stress, surge frequency, fluke curvature, and other relevant
index criteria. The design is shown in Figure 12 and includes three design variables, namely
the spring wire diameter d, the average spring coil diameter D, and the number of effective
spring coils N. The objective function and constraints are described as follows:

x = [x1, x2, x3] = [d, D, N]
Min f (x) = (x3 + 2)x2

1x2

subject to

g1(x) = 1− x3
2x3

71785x4
1
≤ 0

g2(x) = x2
2−x1x2

12566(x3
1x2−x4

1)
+ 1

5108x2
1
≤ 0

g3(x) = 1− 140.45x1
x2

2x3
≤ 0

g4(x) = x1+x2
1.5 ≤ 0

0.05 ≤ x1 ≤ 2.00
0.25 ≤ x2 ≤ 1.3
2.00 ≤ x3 ≤ 15.0

The problem was solved by the MSHHO and HHO algorithms [11], as well as the
SCA [4], SSA [5], and WOA [7] with the same relevant parameter settings for the algorithms,
and the results are shown in Table 10, while the convergence curve and box plot of the
spring design problem are shown in Figure 13. It can be seen that MSHHO demonstrated
the best results in solving this problem.

Figure 12. Sping design problem.

Table 10. Results of spring design problem for different algorithms.

Algorithm d D N Ave Best Std

MSHHO 0.13904 1.29578 11.9715 3.67349 3.66189 0.022855
HHO 0.13865 1.28423 12.1601 3.69087 3.66189 0.029172
SCA 0.13531 1.19215 13.9361 3.7371 3.66788 0.058998
SSA 0.13505 1.18479 13.9285 3.71434 3.66192 0.123823

WOA 0.13622 1.21712 13.3052 3.70061 3.66189 0.028036

389

Mathematics 2023, 11, 1525

0 100 200 300 400 500
Iteration

100

101

102

103

B
es

t f
in

es
s

ob
tia

ne
d

so
 f

ar

MSHHO
HHO
SCA
SSA
WOA

488490492494496

3.6

3.8

4

MSHHO HHO SCA SSA WOA

3.7

3.8

3.9

4

4.1

4.2

4.3

Figure 13. Qualitative results of spring design problem.

6. Conclusions

In this paper, a multi-strategy improvement method was presented to improve the
original Harris hawks optimization algorithm by removing the weaknesses, such as low
accuracy, slow speed of convergence, and easy being trapped in the local optimality. The
improvement algorithm first uses a Sobol sequence to initialize the population and improve
the population diversity. In the process of population update iteration, elite opposition-
based learning is used to increase the population diversity and population quality. The
energy update strategy in the original algorithm is improved to balance the exploration
and exploitation capability of the algorithm in a nonlinear update way. The Gaussian walk
learning strategy is incorporated to avoid the algorithm from stagnating and falling into
the local optimum.

To validate the performance of MSHHO, 23 benchmark functions with unimodal,
multimodal, and fixed dimensions in CEC2005 and 10 benchmark functions with unimodal
functions, simple multimodal functions, hybrid functions, and composition functions in
CEC2017 were selected for comparison experiments with other algorithms, including and
HHO GWO as well as the SCA, SSA, and WOA. Subsequently, comparisons with the
basic HHO algorithm were made at 100 and 500 dimensions to verify the practicality
of the high-dimensional problem. The results show that the improved algorithm had
good performance in terms of search accuracy, convergence speed, and stability, which
effectively compensated for the defects of the original algorithm. In addition, the MSHHO
algorithm was applied to solve two engineering application problems in this paper. The
experimental results show that MSHHO could achieve the best results compared with the
other algorithms.

In future work, the next step in research focuses on applying the MSHHO algorithm
to solving large-scale, complex multi-objective optimization and practical engineering
applications, such as microgrid scheduling optimization problems.

Author Contributions: Conceptualization, F.T. and J.W.; methodology, F.T.; software, F.T. and F.C.;
validation, F.T., J.W., and F.C.; formal analysis, F.T.; investigation, F.T.; resources, J.W.; data curation,
F.T.; writing—original draft preparation, F.T.; writing—review and editing, F.T.; visualization, F.T.;
supervision, J.W.; project administration, J.W.; funding acquisition, J.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grant number 61772031 and the Natural Science Foundation of Hunan Province under grant number
2020JJ4753.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

390

Mathematics 2023, 11, 1525

Appendix A

Appendix A.1

Tables A1–A3 provide specific information on the benchmark function.

Table A1. Information on unimodal benchmark functions.

Function Dimension Range f min

F1(x) =
n
∑
1

x2
i 30 [−100,100] 0

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10,10] 0

F3(x) =
n
∑

i=1

(
i

∑
j=1

∣∣xj
∣∣)2

30 [−100,100] 0

F4(x) = maxi{ |xi|, 1 ≤ i ≤ n} 30 [−100,100] 0

F5(x) =
n
∑

i=1

[
100(x2

i − xi+1)
2
+ (xi − 1)2

]
30 [−30,30] 0

F6(x) =
n
∑

i=1
([xi + 0.5])2 30 [−100,100] 0

F7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28,1.28] 0

Table A2. Information on multimodal benchmark functions.

Function Dimension Range f min

F8(x) =
n
∑

i=1
−xi sin(

√
|xi|) 30 [−500,500] −418.9829 ∗ n

F9(x) =
n
∑

i=1
[x2

i − 10 cos(2πxi) + 10] 30 [−5.12,5.12] 0

F10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32,32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600,600] 0

F12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

}
+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 , u(xi, a, k, m) =

⎧⎨⎩
k(xi − a)m, xi > a
0,−a < xi < a
k(−xi − a)m, xi < −a

30 [−50,50] 0

F13(x) = 0.1
{

sin2(3πxi) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)]

+(xi − 1)2[1 + sin2(2πxi)]
}
+

n
∑

i=1
u(xi, 5, 100, 4) 30 [−50,50] 0

391

Mathematics 2023, 11, 1525

Table A3. Information on fixed-dimension benchmark functions.

Function Dimension Range f min

F14(x) =

⎛⎜⎝ 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6

⎞⎟⎠
−1

2 [−65,65] 1

F15(x) =
11
∑

i=1

[
ai − x1(b2

i +bix2)

b2
i +bix3+x4

]2
4 [−5,5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10(1− 1

8π) cos x1 + 10 2 [−5,5] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]
×[30 + (2x1 − 3x2)

2 × (18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)] 2 [−2,2] 3

F19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij(xj − pij)

2

)
3 [0,1] −3.86

F20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij(xj − pij)

2

)
6 [0,1] −3.32

F21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,10] −10.1532

F22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,10] −10.4028

F23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,10] −10.5363

References

1. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
2. Shareef, H.; Ibrahim, A.A.; Mutlag, A.H. Lightning search algorithm. Appl. Soft Comput. 2015, 36, 315–333. [CrossRef]
3. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
4. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
5. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
6. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for

solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [CrossRef]
7. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
8. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
9. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
10. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
11. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
12. Qu, C.; He, W.; Peng, X.; Peng, X. Harris hawks optimization with information exchange. Appl. Math. Model. 2020, 84, 52–75.

[CrossRef]
13. Liu, X.; Liang, T. Harris hawk optimization algorithm based on square neighborhood and random array. Control. Decis. 2021, 37,

2467–2476.
14. TANG, A.; HAN, T.; XU, D. Chaotic elite Harris hawks optimization algorithm. J. Comput. Appl. 2021, 41, 2265.
15. Kaveh, A.; Rahmani, P.; Eslamlou, A.D. An efficient hybrid approach based on Harris Hawks optimization and imperialist

competitive algorithm for structural optimization. Eng. Comput. 2021, 38, 1555–1583. [CrossRef]
16. Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic

competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007;
pp. 4661–4667.

17. Elgamal, Z.M.; Yasin, N.B.M.; Tubishat, M.; Alswaitti, M.; Mirjalili, S. An improved harris hawks optimization algorithm with
simulated annealing for feature selection in the medical field. IEEE Access 2020, 8, 186638–186652. [CrossRef]

392

Mathematics 2023, 11, 1525

18. Kirkpatrick, S.; Gelatt Jr, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
19. Li, W.; Shi, R.; Dong, J. Harris hawks optimizer based on the novice protection tournament for numerical and engineering

optimization problems. Appl. Intell. 2023, 53, 6133–6158. [CrossRef]
20. Houssein, E.H.; Hosney, M.E.; Oliva, D.; Mohamed, W.M.; Hassaballah, M. A novel hybrid Harris hawks optimization and

support vector machines for drug design and discovery. Comput. Chem. Eng. 2020, 133, 106656. [CrossRef]
21. Wunnava, A.; Naik, M.K.; Panda, R.; Jena, B.; Abraham, A. A differential evolutionary adaptive Harris hawks optimization

for two dimensional practical Masi entropy-based multilevel image thresholding. J. King Saud-Univ.-Comput. Inf. Sci. 2022,
34, 3011–3024. [CrossRef]

22. Bratley, P.; Fox, B. Implementing sobols quasirandom sequence generator (algorithm 659). ACM Trans. Math. Softw. 2003,
29, 49–57.

23. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Washington, DC, USA, 28–30 November 2005; Volume 1,
pp. 695–701.

24. Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.; Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based
learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113122. [CrossRef]

25. Ewees, A.A.; Abd Elaziz, M.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning.
Expert Syst. Appl. 2018, 112, 156–172. [CrossRef]

26. Peng, H.; Zeng, Z.; Deng, C.; Wu, Z. Multi-strategy serial cuckoo search algorithm for global optimization. Knowl.-Based Syst.
2021, 214, 106729. [CrossRef]

27. Zhu, X.; Ghahramani, Z.; Lafferty, J.D. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 912–919.

28. Farahani, S.M.; Abshouri, A.A.; Nasiri, B.; Meybodi, M. A Gaussian firefly algorithm. Int. J. Mach. Learn. Comput. 2011, 1, 448.
[CrossRef]

29. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem definitions and evaluation criteria for
the CEC 2005 special session on real-parameter optimization. KanGAL Rep. 2005, 2005005, 2005.

30. García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617–644. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

393

Citation: Chen, Y.; Li, J.; Zhu, S.;

Zhao, H. Further Optimization of

Maxwell-Type Dynamic Vibration

Absorber with Inerter and Negative

Stiffness Spring Using Particle

Swarm Algorithm. Mathematics 2023,

11, 1904. https://doi.org/10.3390/

math11081904

Academic Editor: Jian Dong

Received: 6 March 2023

Revised: 7 April 2023

Accepted: 14 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Further Optimization of Maxwell-Type Dynamic Vibration
Absorber with Inerter and Negative Stiffness Spring Using
Particle Swarm Algorithm

Yuying Chen 1, Jing Li 1,*, Shaotao Zhu 1,2,* and Hongzhen Zhao 1

1 Interdisciplinary Research Institute, Faculty of Science, Beijing University of Technology, Beijing 100124, China
2 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
* Correspondence: leejing@bjut.edu.cn (J.L.); zhushaotao@bjut.edu.cn (S.Z.)

Abstract: Dynamic vibration absorbers (DVAs) are widely used in engineering practice because
of their good vibration control performance. Structural design or parameter optimization could
improve its control efficiency. In this paper, the viscoelastic Maxwell-type DVA model with an
inerter and multiple stiffness springs is investigated with the combination of the traditional theory
and an intelligent algorithm. Firstly, the expressions and approximate optimal values of the system
parameters are obtained using the fixed-point theory to deal with the H∞ optimization problem, which
can provide help with the range of parameters in the algorithm. Secondly, we innovatively introduce
the particle swarm optimization (PSO) algorithm to prove that the algorithm could adjust the value
of the approximate solution to minimize the maximum amplitude by analyzing and optimizing the
single variable and four variables. Furthermore, the validity of the parameters is further verified
by simulation between the numerical solution and the analytical solution using the fourth-order
Runge–Kutta method. Finally, the DVA demonstrated in this paper is compared with typical DVAs
under random excitation. The timing sequence and variances, as well as the decreased ratios of the
displacements, show that the presented DVA has a more satisfactory control performance. The inerter
and negative stiffness spring can indeed bring beneficial effects to the vibration absorber. Remarkably,
the intelligent algorithm can make the resonance peaks equal in the parameter optimization of the
vibration absorber, which is quite difficult to achieve with theoretical methods at present. The results
may provide a theoretical and computational basis for the optimization design of DVA.

Keywords: particle swarm optimization algorithm; dynamic vibration absorber; Maxwell-type;
inerter; negative stiffness

MSC: 37N99; 68W99

1. Introduction

Dynamic vibration absorbers (DVAs), known as tuned mass dampers (TMDs), are
widely utilized in mechanical equipment and building structures owing to their favorable
vibration control performance. The fundamental principle is to reduce the vibration state
when an exciting force response occurs in the frequency domain by choosing the forms
and parameters of the DVA as well as the coupling relationship with the primary system.
In 1909, Frahm first proposed the concept of DVA as a passive vibration control device.
In 1928, Ormondroyd and Den Hartog [1] introduced the damping effect to obtain the
classical Voigt-type DVA and set minimizing the maximum amplitude response as the
optimization goal. Hahnkamm [2] and Brock [3] successively derived the optimum tuning
ratio and optimum damping ratio of this model, the method of which is now called the
fixed-point theory through the textbook written by Den Hartog [4]. Subsequently, the
design of three-element type DVA was further improved by Asami and Nishihara [5] based
on the superb properties of viscoelastic devices. In 2001, Ren [6] developed a grounded

Mathematics 2023, 11, 1904. https://doi.org/10.3390/math11081904 https://www.mdpi.com/journal/mathematics
395

Mathematics 2023, 11, 1904

damped DVA that significantly enhances the vibration control. Under identical parameter
conditions, the optimized Asami model and Ren model perform with superior control
performance to the Voigt-type DVA. These three traditional models provide an irreplaceable
reference value for future scholars to improve and optimize DVA structures.

Before introducing Maxwell model, we first trace the air damper that has a history
of more than 80-year. This kind of damper is proposed due to its benefits such as tem-
perature independent, less maintenance, low cost, and no long-term change. Asami and
Sekiguchi [7,8] further put forward the piston-cylinder type air damper that could be rep-
resented by the Voigt model. This means that the elements of spring and damping were
set in parallel. However, this equivalent structure made both the spring and damping
parameters change with the frequency and affect each other. Taking into account the
connection between the damping and restoring force in the actual damper, Asami and
Nishihara [5] optimized the prior model and designed Maxwell structure, in which the
spring and damping were connected in series. Moreover, the addition of a second spring
element positioned parallel to the air damper could drive the piston to recover, and together
they constitute the three-element type DVA. For viscoelastic materials with both damping
and stiffness properties, the mechanical model with the Maxwell structure exhibits better
results under the same mass ratio, one that has the value of further research in this paper.

Numerous experts also consider how to select and adapt parameters to achieve the
best reduction in structural vibration in DVA while designing the ideal structure. The
H∞ optimization, the H2 optimization, and the stability maximization criterion [9,10]
are three common optimization criteria. The H∞ optimization used in this study is more
intuitive and convenient in practical application. The principle is to minimize the maximum
amplitude when harmonic excitation acts on the primary system. Once we determined the
optimization objective, the fixed-point theory can be applied as an approximate way to solve
the parameter problem of the system. In addition, a new method was also developed by
Asami et al. [11,12] to address the precise solution of H∞ optimization. Both approaches aid
in further improving the vibration reduction capacity of DVA. The conclusion shows that
the approximate optimal solution is quite close to the precise solution, which verifies the
usefulness of the fixed-point theory in an engineering context. Considering the simple and
convenient reasons, this paper chooses the fixed-point theory to deal with H∞ optimization
and adjusts the value of the approximate solution with an intelligent algorithm to achieve
minimizing the maximum amplitude more efficiently.

In the structural design of the vibration absorber, we can achieve the effect of vibration
reduction by adding components. Negative stiffness usually means that the displacement
of the object is opposite to the direction of the external force. It is a characteristic that is
different from the negative Poisson ratio. Springs with negative stiffness are less stable.
However, the study discovered that better vibration control performance will play out, and
the natural frequency will decrease if the system has both positive and negative stiffness
springs. This combination not only plays a role in high flexibility and high deformability
but also maintains optimal stability under certain parameter conditions [13–15]. A negative
stiffness characteristic has been applied to the design of composite materials and seismic
retrofitting [16]. To lower the amplitude of the primary system, Shen and Wang et al. [17,18]
inserted negative stiffness into the vibration absorbers (Ren model, three-element model)
and confirmed the effective control performance. In addition to the negative stiffness
elements discussed above, there is another element that is receiving increasing attention.
Smith [19] proposed the idea of an inerter and solved the problem of synthesis on mechani-
cal networks in 2002. As a new type of structural control device with two independent and
free endpoints, the inerter has been found to achieve good results in vibration reduction or
isolation and applied to suspension support design and simulation quality [20,21]. Based on
the classical theory, Barredo et al. [22,23] and Wang et al. [24,25] optimized the DVA with an
inerter, proving that it could maximize the applicable frequency range in vibration control.
Furthermore, adding an amplifying mechanism [26] or distributed arrangement [27,28]

396

Mathematics 2023, 11, 1904

also makes the structure of the vibration absorber able to be further optimized, which is
worth discussing in future work.

The optimization of DVA/TMD parameters has been investigated in depth in different
various research backgrounds. Zhang and Xu [29] developed the optimization approach
of TMD parameters, blending nonlinear aeroelastic effects for speeding control. Wang
et al. [30] proposed a quasi-zero-stiffness energy harvesting DVA and optimized the pa-
rameters with the perturbation method to suppress vibration. In this paper, a swarm
intelligence algorithm is innovatively introduced to find the global optimal value by fol-
lowing the currently searched optimal value and then determining the actual optimal value
of each parameter [31,32]. In 1995, Kennedy and Eberhart proposed particle swarm opti-
mization (PSO) when studying the predation behavior of birds. The algorithm transforms
the entire group from disorder to order in the solution space by utilizing the sharing of
information among group individuals. Moreover, the two extreme values of individual
optimal value and group optimal value are tracked and updated by calculating the fitness
of each particle. The particle swarm can identify the best position in accordance with
the iteration termination condition and output the optimal parameter values when the
maximum number of iterations is set. The theoretical optimal value obtained by the fixed-
point theory to deal with the H∞ optimization problem directly determines the range of
parameters. With the support of the particle swarm optimization algorithm, the effect of
the equal resonance peak is further realized, and the maximum amplitude of the primary
system is minimized. This cannot be directly achieved by only using the theoretical method
for parameter optimization. Using the algorithm to further optimize on the basis of the
fixed-point theory can fully demonstrate its advantages in data processing. In the existing
research on a Maxwell-type DVA/TMD with an inerter and negative stiffness spring, the
combination of intelligent algorithm and theoretical analysis to automatically adjust the
parameter strategy is our motivation and novelty.

The organization of this paper is as follows. The basic DVA model is given and the
expressions of the system parameters are obtained in Section 2. The PSO algorithm is
introduced in detail, and the numerical simulation is carried out according to different
situations in Section 3. The DVA studied in this paper is compared with typical DVAs in
Section 4. Finally, conclusion and prospect are drawn in Section 5.

2. Dynamic Vibration Absorber Model and Basic Parameter Optimization

2.1. The Basic Model and the Amplitude Response

This paper investigates the viscoelastic Maxwell-type DVA with an inerter and multi-
ple stiffness springs, as displayed in Figure 1. The DVA is connected to a primary system
with a single degree of freedom. m1, m2, k1, and k2 are the masses and linear stiffness
coefficients of the primary system and DVA severally. k3 and c describe the stiffness and
damping coefficient of Maxwell structure. b is the inerter. k4 is the stiffness coefficient of
the grounded negative stiffness spring. F0 and ω denote the amplitude and frequency of
the exciting force. x1, x2, and x3 express the displacement of the primary system, DVA, and
the division point about spring and damping in Maxwell structure.

Figure 1. The viscoelastic Maxwell-type DVA with an inerter and multiple stiffness springs.

397

Mathematics 2023, 11, 1904

The dynamic equation of the system is established and obtained in accordance with
Newton’s second law⎧⎨⎩

m1 ẍ1 + k1x1 + k2(x1 − x2) + k3(x1 − x3) = F0 sin(ωt)
m2 ẍ2 + bẍ2 + c(ẋ2 − ẋ3) + k2(x2 − x1) + k4x2 = 0
c(ẋ3 − ẋ2) + k3(x3 − x1) = 0

(1)

By using the following parametric transformations

ω1 =

√
k1

m1
, ω2 =

√
k2

m2
, ξ =

c
2m2ω2

, μ =
m2

m1
, α1 =

k3

k1
, α2 =

k4

k1
, β =

b
m1

, f =
F0

m1

Equation (1) can be expressed as⎧⎪⎨⎪⎩
ẍ1 + ω2

1x1 + μω2
2(x1 − x2) + α1ω2

1(x1 − x3) = f sin(ωt)

ẍ2 +
β
μ ẍ2 + 2ω2ξ(ẋ2 − ẋ3) + ω2

2(x2 − x1) +
α2ω2

1
μ x2 = 0

2μω2ξ(ẋ3 − ẋ2) + α1ω2
1(x3 − x1) = 0

(2)

It should be noted that the representations of parameters α1, α2, β are different from
the existing literature [25]. Using this expressive method makes the process of theo-
retical derivation easier to implement in software. On the basis of Laplace transform,
Equation (2) becomes⎧⎪⎪⎨⎪⎪⎩

(
s2 + ω2

1 + μω2
2 + α1ω2

1
)
X1(s)− μω2

2X2(s)− α1ω2
1X3(s) = f ejωt

−ω2
2X1(s) +

(
s2 + β

μ s2 + 2ω2ξs + ω2
2 +

α2ω2
1

μ

)
X2(s)− 2ω2ξsX3(s) = 0

−α1ω2
1X1(s)− 2μω2ξsX2(s) +

(
2μω2ξs + α1ω2

1
)
X3(s) = 0

(3)

Supposing X1(s) = H1(jω)ejωt, X2(s) = H2(jω)ejωt, X3(s) = H3(jω)ejωt and letting
s = jω, j =

√
−1, one could obtain by substituting them into Equation (3)

H1(jω) =
f (A1 + B1 j)

C1 + D1 j

The other parameters are presented as

A1 =α1ω2
1

[
α2ω2

1 + μω2
2 − (μ + β)ω2

]
B1 =2μωω2ξ

[
(α1 + α2)ω

2
1 + μω2

2 − (μ + β)ω2
]

C1 =α1ω2
1{(μ + β)ω4 −

[
(α2 + μ + β)ω2

1 + μ(1 + μ + β)ω2
2

]
ω2

+ μ(1 + α2)ω
2
1ω2

2 + α2ω4
1}

D1 =2μωω2ξ{(μ + β)ω4 + μ(1 + α2)ω
2
1ω2

2 + (α1 + α2 + α1α2)ω
4
1

− {[α1 + α2 + (μ + β)(1 + α1)]ω
2
1 + μ(1 + μ + β)ω2

2}ω2}

Introducing the parameters

ν =
ω2

ω1
, λ =

ω

ω1
, Xst =

F0

k1

where Xst is the static deformation of the primary system under sinusoidal excitation. The
amplitude amplification factor should be

A2 =

∣∣∣∣ H1

Xst

∣∣∣∣2 =
A2

2 + ξ2B2
2

C2
2 + ξ2D2

2
(4)

398

Mathematics 2023, 11, 1904

where
A2 =α1

[
α2 + μν2 − (μ + β)λ2

]
B2 =2μλν

[
α1 + α2 + μν2 − (μ + β)λ2

]
C2 =α1{(μ + β)λ4 −

[
α2 + μ + β + μ(1 + μ + β)ν2

]
λ2

+ μ(1 + α2)ν
2 + α2}

D2 =2μλν{(μ + β)λ4 + μ(1 + α2)ν
2 + α1 + α2 + α1α2

−
[
α1 + α2 + (μ + β)(1 + α1) + μ(1 + μ + β)ν2

]
λ2}

2.2. The Optimum Frequency Ratio νopt and the Optimum Stiffness Ratio α1opt

It can be demonstrated after simple derivation of Equation (4) that the normalized
amplitude–frequency curves pass through three fixed points of DVA, which are indepen-
dent of the damping ratio ξ. Figure 2a provides the curves under different damping ratios
of 0.3, 0.5, and 0.9. Three fixed points are represented here as P, Q, and R. Other parameters
are fixed as μ = 0.1, β = 0.3, ν = 1.4, α1 = 0.3, and α2 = − 0.1. Since the fixed points are
independent of the damping ratio, it is necessary to make the response values of ξ → 0 and
ξ → ∞ equal to solve its analytical expression, which satisfies the following equation∣∣∣∣A2

C2

∣∣∣∣
ξ→0

=

∣∣∣∣ B2

D2

∣∣∣∣
ξ→∞

(5)

One can obtain from simplification

g(λ) = a1λ6 + a2λ4 + a3λ2 + a4 = 0 (6)

where

a1 =− 2(μ + β)2

a2 =2ν2μ3 +
[
2 + α1 + 4(1 + β)ν2

]
μ2 + [2(α1 + 2α2) + β(2 + α1)]β

+ 2
[
α1(1 + β) + 2(α2 + β) + β(2 + β)ν2

]
μ

a3 =− {2μ3ν4 + 2
[
2 + α1 + 2α2 + (1 + β)ν2

]
μ2ν2

+ 2{[α1(1 + β) + 2α2 + 2β(1 + α2)]ν
2 + α1(1 + α2) + 2α2}μ

+ 2β[α1(1 + α2) + 2α2] + 2α2(α1 + α2)}
a4 =2(1 + α2)μ

2ν4 + 2μ[α1(1 + α2) + α2(2 + α2)]ν
2 + α1α2(2 + α2) + 2α2

2

When ξ → 0, one has

|A| =
∣∣∣∣ H1

Xst

∣∣∣∣ = ∣∣∣∣A3

C3

∣∣∣∣ (7)

When ξ → ∞, one has

|A| =
∣∣∣∣ H1

Xst

∣∣∣∣ = ∣∣∣∣ B3

D3

∣∣∣∣ (8)

where
A3 =

A2

α1
, B3 =

B2

2μλν
, C3 =

C2

α1
, D3 =

D2

2μλν

Equations (7) and (8) are combined to determine the coordinates of three points:

|A| =
∣∣∣∣ H1

Xst

∣∣∣∣ = ∣∣∣∣α1 + 2α2 + 2μν2 − 2(μ + β)λ2

α1[1 + α2 − (1 + μ + β)λ2]

∣∣∣∣ (9)

399

Mathematics 2023, 11, 1904

Let λ2
P, λ2

Q, and λ2
R be the three roots of Equation (9). As long as the values of λP, λQ,

and λR are determined, the coordinates of the three points can be written. The optimum
frequency ratio, the optimum stiffness ratio, and the optimum damping ratio can be
obtained when the vertical ordinates are adjusted to the same height, thereby solving the
problem of minimizing the maximum amplitude. By drawing the normalized amplitude–
frequency curves of ξ → 0 and ξ → ∞ as shown in Figure 2b, it is found that there is a
fixed phase difference between two points P, R, and point Q. Therefore, there is a positive
and negative sign difference when the absolute value is removed in Equation (9).

(a) (b)

Figure 2. The normalized amplitude–frequency curves under different damping ratios: (a) ξ = 0.3,
ξ = 0.5, and ξ = 0.9; (b) ξ → 0 and ξ → ∞.

The first step is adjusting the ordinates of point P and point R to the equal height∣∣∣∣ H1

Xst

∣∣∣∣
P
=

∣∣∣∣∣A4 + B4λ2
P

C4 + D4λ2
P

∣∣∣∣∣,
∣∣∣∣ H1

Xst

∣∣∣∣
R
=

∣∣∣∣∣A4 + B4λ2
R

C4 + D4λ2
R

∣∣∣∣∣ (10)

where
A4 = α1 + 2α2 + 2μν2, B4 = −2(μ + β)

C4 = α1(1 + α2), D4 = −α1(1 + μ + β)

When the parameter α1 satisfies A4D4 = B4C4, the ordinates of two fixed points P and
R are independent of λ2. One could gain

α1 =
2
[
μ + β− α2 − μ(1 + μ + β)ν2]

1 + μ + β
(11)

Substituting α1 into Equation (6), we can obtain

2
1 + μ + β

[
(1 + μ + β)λ2 − (1 + α2)

]
{(μ + β)2λ4 − 2(μ + β)2λ2

− (1 + μ + β)μ2ν4 + 2(μ + β− α2)μν2 + α2[2(μ + β)− α2]} = 0
(12)

The values of λ2
P, λ2

Q and λ2
R are obtained from Equation (12)

λ2
P =

μ + β−
√
(1 + μ + β)μ2ν4 − 2(μ + β− α2)μν2 + (μ + β− α2)

2

μ + β
(13a)

λ2
Q =

1 + α2
1 + μ + β

(13b)

400

Mathematics 2023, 11, 1904

λ2
R =

μ + β +
√
(1 + μ + β)μ2ν4 − 2(μ + β− α2)μν2 + (μ + β− α2)

2

μ + β
(13c)

Then, Equation (9) becomes∣∣∣∣ H1

Xst

∣∣∣∣
P,R

=
μ + β

μ + β− α2 − μ(1 + μ + β)ν2 (14a)

∣∣∣∣ H1

Xst

∣∣∣∣
Q
=

(1 + μ + β)
[
μ + β− α2 − μ(1 + μ + β)ν2]
(μ + β− α2)

2 (14b)

The second step is adjusting the ordinates of point P (or R) and point Q to the same
height. The optimum frequency ratio could be

νopt =

√√√√ (1 + μ + β)(μ + β− α2)−
√
(μ + β)(μ + β− α2)

2(1 + μ + β)

μ(1 + μ + β)2 (15)

Then, we can substitute Equation (15) into Equation (11) to obtain

α1opt =
2
√
(μ + β)(μ + β− α2)

2(1 + μ + β)

(1 + μ + β)2 (16)

and ∣∣∣∣ H1

Xst

∣∣∣∣
P,Q,R

=

√
(μ + β)(1 + μ + β)

(μ + β− α2)
2 (17)

2.3. The Optimum Stiffness Ratio α2opt and the Optimum Damping Ratio ξopt

Because the inappropriate stiffness value will make the system unstable, it is discov-
ered that the system will be in a stable state when the displacement caused by the pre-load
is equivalent to the response value at the fixed point.∣∣∣∣ H1

Xst

∣∣∣∣
λ=0

=

∣∣∣∣ H1

Xst

∣∣∣∣
P,Q,R

(18)

that is, ∣∣∣∣ H1

Xst

∣∣∣∣
λ=0

=
(1 + μ + β)(μ + β)(1 + α2)−M1

α2(1 + μ + β)2 + (1 + α2){(1 + μ + β)(μ + β− α2)−M1}
(19)

where
M1 =

√
(μ + β)(μ + β− α2)

2(1 + μ + β)

Based on Equations (17) and (19), the stiffness ratio α2 of system is shown as the
following five possible forms

α2a,2b =
μ + β + 2(1 + μ + β)

[
μ + β±

√
(μ + β)(1 + μ + β)

]
3(1 + μ + β) + 1

(20a)

α2c,2d =
μ + β + (1 + μ + β)

[
μ + β±

√
(μ + β)(2 + μ + β)

]
2 + μ + β

(20b)

α2e = −1 (20c)

401

Mathematics 2023, 11, 1904

The frequency of force excitation is obtained according to Equation (4)

ω2
(1,2) =

(μ + β + α2)ω
2
1 + μ(1 + μ + β)ω2

2 ±
√

Δ
2(μ + β)

(21)

where

Δ =
[
(μ + β + α2)ω

2
1 + μ(1 + μ + β)ω2

2

]2
− 4(μ + β)

[
μ(1 + α2)ω

2
1ω2

2 + α2ω4
1

]
When

α2 > − μω2
2

ω2
1 + μω2

2
= α2 > − 1

1 + 1
μν2

> −1

the frequency of force excitation is nonnegative. From this condition, it can be determined
that the value of α2 should first exclude α2e = −1, and the other value relationship is
shown in Figure 3. Furthermore, we substitute α2a–α2d into ν and find that α2a or α2c
makes ν purely imaginary. This loses the significance of variables optimizing the system,
so α2b and α2d are the best values for now. In other words, the inerter-to-mass ratio can
keep the system stable and reduce the vibration within the corresponding range when
αopt = α2b and αopt = α2d. We discuss the selection of the optimal parameters in the
following two situations. The relationship between (μ, β, ν(α2)) and (μ, β, α1(α2)) can be
seen from Figures 4 and 5.

(a) (b)

(c) (d)

Figure 3. The relationship of (μ, β, α2): (a) (μ, β, α2a) space; (b) (μ, β, α2b) space; (c) (μ, β, α2c) space;
(d) (μ, β, α2d) space.

402

Mathematics 2023, 11, 1904

(a) (b)

Figure 4. The relationship of (μ, β, ν(α2)): (a) (μ, β, ν(α2b)) space; (b) (μ, β, ν(α2d)) space.

(a) (b)

Figure 5. The relationship of (μ, β, α1(α2)): (a) (μ, β, α1(α2b)) space; (b) (μ, β, α1(α2d)) space.

According to the fixed-point theory, any damping ratio change will go through three
fixed points. When the three fixed points are adjusted to the same height, the two resonance
peaks can be also maintained to be equal as possible by changing the damping ratio ξ.
In order to obtain the optimum damping ratio, it is necessary to know the horizontal
coordinates of two resonance peaks, namely λ1 and λ2. It can be observed that when
the two resonance peaks are almost at the same height, the vicinity of point Q is in the
region where the slope of the amplitude-frequency curve is zero. According to the previous
calculation results, the abscissa of point Q has been solved. The explicit expression can
obtain the approximate optimum damping ratio based on the abscissa of point Q.

(1) α2opt = α2b ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A2

∂λ2
Q
= 0

α1opt =
2
√
(μ+β)(μ+β−α2b)

2(1+μ+β)

(1+μ+β)2

νopt =

√
(1+μ+β)(μ+β−α2b)−

√
(μ+β)(μ+β−α2b)

2(1+μ+β)

μ(1+μ+β)2

α2b =
μ+β+2(1+μ+β)

[
μ+β−

√
(μ+β)(1+μ+β)

]
3(1+μ+β)+1

λ2
Q = 1+α2b

1+μ+β

403

Mathematics 2023, 11, 1904

(2) α2opt = α2d ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A2

∂λ2
Q
= 0

α1opt =
2
√
(μ+β)(μ+β−α2d)

2(1+μ+β)

(1+μ+β)2

νopt =

√
(1+μ+β)(μ+β−α2d)−

√
(μ+β)(μ+β−α2d)

2(1+μ+β)

μ(1+μ+β)2

α2d =
μ+β+(1+μ+β)

[
μ+β−

√
(μ+β)(2+μ+β)

]
2+μ+β

λ2
Q = 1+α2d

1+μ+β

p1 = (A2
2)
′ =2α2

1(μ + β)
[
(μ + β)λ2 − α2 − μν2

]
p2 = (B2

2)
′ =4μ2ν2

[
3(μ + β)2λ4 − 4(μ + β)M2λ2 + M2

2

]
q1 = (C2

2)
′ =2α2

1{2(μ + β)2λ6 − 3(μ + β)M3λ4 +
[

M2
3 + 2(μ + β)M4

]
λ2 −M3M4}

q2 = (D2
2)
′ =4μ2ν2{5(μ + β)2λ8 − 8(μ + β)M5λ6 + 3

[
M2

5 + 2(μ + β)M6

]
λ4

− 4M5M6λ2 + M2
6}

where
M2 =α1 + α2 + μν2

M3 =α2 + μ + β + μ(1 + μ + β)ν2

M4 =α2 + μ(1 + α2)ν
2

M5 =α1 + α2 + (μ + β)(1 + α1) + μ(1 + μ + β)ν2

M6 =α1 + α2 + α1α2 + μ(1 + α2)ν
2

Let p = A2
2 + ξ2B2

2 and q = C2
2 + ξ2D2

2

∂A2

∂λ2
Q

=

(
p
q

)′
=

p′q− pq′

q2 = 0 ⇔
(

p1 + ξ2 p2

)′
q− (q1 + ξ2q2)

′p = 0 ⇔ solve ξ

In the previous analysis and calculation, we obtained the optimal-value expressions
of some parameters related to μ and β. For the mass ratio μ related to the primary system
and DVA, the final control results are ideal when μ is limited between 0.05 and 0.5. This
is because the range of m2 is not arbitrarily determined in the actual design of DVA, and
it is usually necessary to consider the installation space, manufacturing cost, installation
difficulty, and other factors. If m2 is very small, the natural frequency will be too close to
reduce the vibration control. If m2 is too large, the practicability of the whole device will be
greatly affected. Therefore, it is found in the literature that experts and scholars usually
take the range of μ to optimize the design, so as to determine the optimal value.

We take α2opt = α2b as an example to compare the numerical and analytical solutions
for different mass ratios μ and different inerter-to-mass ratios β in order to confirm the
accuracy of the solution procedure. According to the optimization results derived from the
previous formulas, the basic optimal parameter values are provided in Table 1. The numer-
ical solution of the harmonic excitation with excitation amplitude F=1000N is obtained by
using the fourth-order Runge–Kutta method when the calculation time is 2000 s. After the
transient response is ignored, the greatest value of the steady-state solution is chosen as
the excitation response amplitude and normalized. The normalized amplitude–frequency
curves of the numerical and analytical solutions to the system are shown in Figure 6. The
circle represents the numerical solution and the solid line represents the analytical solution.
Various colors signify the selection of certain parameters. It can be seen intuitively from the

404

Mathematics 2023, 11, 1904

figures that two kinds of solutions are completely consistent under the same case, which
proves the correctness of each parameter expression solved in this paper.

(a) (b)

(c) (d)

Figure 6. Comparison between the numerical solution and analytical solution in initial optimization
(α2opt = α2b): (a) μ = 0.1; (b) μ = 0.2; (c) μ = 0.3; (d) μ = 0.4.

From the macroscopic perspective, the normalized amplitude amplification factor A
of the primary system can be reduced by increasing the value of the inerter-to-mass ratio β
under the same parameter μ. Meanwhile, the distance between the transverse coordinates
corresponding to the peaks becomes larger. In a word, the larger the inerter-to-mass ratio is,
the smaller the amplitude of the system is and the wider the frequency band is. By simply
drawing the amplitude–frequency curves and obtaining the parameters, two different
situations of parameter α2 have different effects. It can be found that the distance between
the vertical coordinates of the two formants in case α2opt = α2d is closer than that in case
α2opt = α2b. However, for the details, the fitting effect of the graph in α2opt = α2b is better
than α2opt = α2d. The main reason is that only when α2d > − 0.1150, the ordinate of
the initial position will gradually become lower than two resonance peaks, and the other
results are not particularly ideal. Therefore, we consider the case of α2opt = α2b in further
optimization analysis. However, it is worth noting that there are some deviations in the
solution process of this parameter. In the following part of the paper, we will introduce the
PSO algorithm to further optimize the parameters, so as to make the two formants reach
the horizontal height under certain parameter conditions.

405

Mathematics 2023, 11, 1904

Table 1. The specific parameters of the system with different inerter-to-mass ratios in initial optimiza-
tion (α2opt = α2b).

Case 1: μ = 0.1, α2opt = α2b

β = 0.1 α1 = 0.2094 , α2 = −0.1078 , ν =1.2320 , ξ =0.6389
β = 0.5 α1 =0.5405 , α2 = −0.1061 , ν =1.3079 , ξ =1.3554
β = 1.0 α1 =0.8209 , α2 = −0.0909 , ν =1.2516 , ξ =1.9951
β = 1.5 α1 =1.0125 , α2 = −0.0780 , ν =1.1794 , ξ =2.5051
β = 2.0 α1 =1.1511 , α2 = −0.0679 , ν =1.1124 , ξ =2.9397

Case 2: μ = 0.2, α2opt = α2b

β = 0.1 α1 =0.3037 , α2 = −0.1110 , ν =0.9063 , ξ =0.6002
β = 0.5 α1 =0.6063 , α2 = −0.1031 , ν =0.9200 , ξ =1.0597
β = 1.0 α1 =0.8648 , α2 = −0.0880 , ν =0.8749 , ξ =1.4885
β = 1.5 α1 =1.0437 , α2 = −0.0757 , ν =0.8241 , ξ =1.8364
β = 2.0 α1 =1.1744 , α2 = −0.0661 , ν =0.7778 , ξ =2.1355

Case 3: μ = 0.3, α2opt = α2b

β = 0.1 α1 =0.3899 , α2 = −0.1106 , ν =0.7523 , ξ =0.5969
β = 0.5 α1 =0.6667 , α2 = −0.1000 , ν =0.7454 , ξ =0.9428
β = 1.0 α1 =0.9057 , α2 = −0.0853 , ν =0.7059 , ξ =1.2763
β = 1.5 α1 =1.0730 , α2 = −0.0736 , ν =0.6649 , ξ =1.5509
β = 2.0 α1 =1.1964 , α2 = −0.0645 , ν =0.6281 , ξ =1.7889

Case 4: μ = 0.4, α2opt = α2b

β = 0.1 α1 =0.4686 , α2 = −0.1087 , ν =0.6548 , ξ =0.6007
β = 0.5 α1 =0.7222 , α2 = −0.0969 , ν =0.6395 , ξ =0.8799
β = 1.0 α1 =0.9437 , α2 = −0.0827 , ν =0.6040 , ξ =1.1561
β = 1.5 α1 =1.1006 , α2 = −0.0716 , ν =0.5691 , ξ =1.3865
β = 2.0 α1 =1.2172 , α2 = −0.0629 , ν =0.5380 , ξ =1.5876

3. Further Optimization Analysis of Particle Swarm Optimization Algorithm

This section studies the further parameter optimization problem of Maxwell-type
DVA involving inerters and negative stiffness elements when the external excitation is
harmonic excitation. In the previous part, we followed the H∞ optimization criterion
and obtained the approximate optimal solution of the model parameters using the fixed-
point theory. Considering the practical engineering applications, the slight difference in
parameter values may cause different effects. The numerical simulation using the Runge–
Kutta method shows that the approximate optimal solution does not make the resonance
peak at the same level, which indicates that the parameters of the model are worth further
optimizing. It should be emphasized that the approximate optimal solution obtained by
theoretical analysis plays a crucial part in introducing the PSO algorithm in this section,
because only when a range is roughly determined can the process of algorithm iteration be
infinitely close to the optimal value.

3.1. Optimizing the Single Variable

There are many parameters that can be adjusted in the model. We first check to see
if adjusting the single variable can minimize the maximum amplitude of the primary
system. Here, the amplitude of the primary system is selected as the objective function,
and the PSO algorithm is employed to optimize it. The condition of the algorithm is that
the dimension of the selected particle is 1; that is, the parameter ξ to be determined. The
values of parameters other than ξ are the same as those in Table 1 according to the settings
of μ and β. In order to obtain more accurate vibration absorption parameters, we set the
following: (1) there are 40 particles in total; (2) the maximum number of iterations is 1000;
(3) the learning factors c1 and c2 are both 2; (4) the maximum and minimum values of
inertia weight are 0.6 and 0.4; (5) the random number sequence in the population is added;
(6) the position and velocity of particles have a definite proportional connection.

406

Mathematics 2023, 11, 1904

The initial state of the algorithm is a group of random particles with two attributes,
velocity and position. The particles update their velocity vector and position vector by
continuously tracking the individual optimal value and global optimal value. Specifically,
the particle will store the magnitude and direction of the preceding velocity in memory and
self-recognize the current point with its own best point while completing group cognition
with the best point in the population. In this way, each particle achieves collaboration
and optimal solution information sharing between populations. When the maximum
number of iterations is set, the particle swarm can seek the best position according to the
termination condition of iterations and output the ideal parameter values. By analyzing
the rule of the amplitude curves, the system will produce two wave peaks depending on
the parameter values, and the two peaks will reach equal height when the parameters
are optimal. When designing the PSO algorithm, the maximum values of the amplitude
curve of the i-th iteration are obtained first, and then the damping ratio that minimizes the
maximum amplitude in all iterations is the optimal damping ratio under the single variable
optimization we are looking for.

As shown in Table 2, we obtained more comprehensive values than in Table 1 accord-
ing to the PSO algorithm after optimizing the single parameter ξ, including the maximum
amplitude under the optimal parameter values, the abscissas λ (λpeak1, λpeak2) correspond-
ing to the two peaks and the difference between them. From this information, we can see
the following: (1) Under the same mass ratio μ, the value of the optimal damping ratio
is larger than the approximate damping ratio obtained in the previous section with the
increase in the inerter-to-mass ratio β, and the amplitude becomes smaller. The λpeak1
corresponding to the left peak gradually moves to the left. The λpeak2 corresponding to the
right peak gradually moves to the right. The larger difference means that the resonance
frequency band is getting wider, and the resonance effect is becoming better and more
stable. (2) Under the same coefficient β, the system amplitude decreases slowly with the
increase in μ and the abscissas λ (λpeak1, λpeak2) become wider. This is consistent with the
results of other scholars, who found that mass ratio can effectively suppress the amplitude
of the system when studying vibration absorbers.

It can be clearly observed in Figures 6 and 7 that the amplitude of the system after
optimization is significantly reduced, showing better stability. Moreover, the number of
iterations largely determines the accuracy of the optimal value. The amplitude of the
primary system finally tends to a straight line after 1000 iterations using PSO from Figure 8.
At the initial iteration, a specific downward trend in the amplitude change can be seen from
the enlarged color section. It should be noted here that the minimum number of iterations
at which the amplitude flattens out is not the optimal number of iterations. Different
iterations make the amplitude have different forms of decline. According to the final
stationary state in the figure, the mass ratio can suppress the amplitude under the same
inerter parameters. The range of parameter given during the iteration is critical, which
determines whether the identified optimal value is reliable. We also calculate the mean
square response of the primary system before and after optimizing the single parameter
ξ. Taking μ = 0.1 as an example, the optimized mean square response outperforms the
value before optimization with the same parameter β. With the increase in β, the response
before and after optimization is gradually reduced. The mean square response reflects the
dispersion degree of individuals in the data set and can be used as a result to measure the
degree of system distribution. For example, two data with the same mean may not have
the same mean square response. If the overall mean square response value is low, it can be
judged that its stability is also good.

407

Mathematics 2023, 11, 1904

Table 2. The specific parameters of the system in different cases of the inerter-to-mass ratio when
optimizing the single variable ξ (α2opt = α2b).

Case 1: μ = 0.1

β ξori σ2
ori(

πS0

ω3
1
) ξopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 0.6389 2.7821 0.7063 2.7370 1.8288 0.625 1.234 0.609
0.5 1.3554 2.2072 1.5275 2.1358 1.5391 0.517 1.243 0.726
1.0 1.9951 1.9117 2.2771 1.8269 1.3865 0.437 1.249 0.812
1.5 2.5051 1.7570 2.8845 1.6649 1.3046 0.383 1.253 0.870
2.0 2.9397 1.6612 3.4085 1.5641 1.2529 0.344 1.257 0.913

Case 2: μ = 0.2

β ξori σ2
ori(

πS0

ω3
1
) ξopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 0.6002 2.5747 0.6679 2.5200 1.7248 0.591 1.237 0.646
0.5 1.0597 2.1280 1.1979 2.0531 1.4986 0.498 1.244 0.746
1.0 1.4885 1.8735 1.7022 1.7870 1.3664 0.425 1.250 0.825
1.5 1.8364 1.7344 2.1177 1.6411 1.2925 0.375 1.254 0.879
2.0 2.1355 1.6463 2.4791 1.5483 1.2447 0.337 1.258 0.921

Case 3: μ = 0.3

β ξori σ2
ori(

πS0

ω3
1
) ξopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 0.5969 2.4220 0.6677 2.3602 1.6480 0.563 1.239 0.676
0.5 0.9428 2.0613 1.0687 1.9834 1.4642 0.481 1.245 0.764
1.0 1.2763 1.8396 1.4623 1.7515 1.3485 0.413 1.251 0.838
1.5 1.5509 1.7138 1.7910 1.6195 1.2814 0.366 1.255 0.889
2.0 1.7889 1.6324 2.0792 1.5336 1.2371 0.331 1.259 0.928

Case 4: μ = 0.4

β ξori σ2
ori(

πS0

ω3
1
) ξopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 0.6007 2.3031 0.6746 2.2359 1.5878 0.539 1.241 0.702
0.5 0.8799 2.0043 0.9999 1.9237 1.4347 0.465 1.247 0.782
1.0 1.1561 1.8092 1.3269 1.7196 1.3324 0.403 1.252 0.849
1.5 1.3865 1.6948 1.6034 1.5995 1.2711 0.359 1.256 0.897
2.0 1.5876 1.6194 1.8474 1.5199 1.2300 0.325 1.260 0.935

In addition to optimizing the single variable ξ, the parameters ν, α1, and α2 can also be
considered as the case of optimizing the single variable. The following Table 3 shows the
system’s optimal target, the abscissa λ (λpeak, λpeak1, λpeak2) corresponding to the amplitude
and the mean square response after optimizing the single variables ν, α1, and α2 respectively.
From the perspective of system amplitude, the maximum amplitudes optimized by these
three single variables are all higher than the optimization results of ξ under the same μ
and β. The optimization of ξ can better minimize the maximum amplitude of the primary
system under the single-parameter optimization. However, the mean square response
of optimized ν is the best, and the difference between the abscissas corresponding to the
two peaks is larger (as manifested in Appendix Table A1). It can be seen from Figure 9
that the amplitude curves of the analytical solution and numerical solution decrease at
the initial position under the optimization of ν, which is why the mean square response
is lower. Through the detailed analysis of the four single parameters in this chapter, the
conclusions we drqaw can be multifaceted. For the purpose of suppressing the amplitude
of the primary system, the optimization parameter ξ is a better choice. If we want to
make the mean square response value of the system lower, we can choose the optimization
parameter ν. Therefore, it is concluded that the influence of different parameters on the
system must exist. The algorithm is further optimized based on the fixed-point theory to
make the discussion of the vibration absorber more accurate.

408

Mathematics 2023, 11, 1904

(a) (b)

(c) (d)

Figure 7. Comparison between the numerical solution and analytical solution when optimizing the
single variable ξ (α2opt = α2b): (a) μ = 0.1; (b) μ = 0.2; (c) μ = 0.3; (d) μ = 0.4.

Table 3. The specific parameters of the system in different inerter-to-mass ratios when optimizing the
other variables (α2opt = α2b, μ = 0.1).

β 0.1 0.5 1.0 1.5 2.0

α1opt 0.2428 0.6467 1.0072 1.2658 1.4591
Amax 1.9098 1.6181 1.4601 1.3744 1.3202

σ2
opt(πS0/ω3

1) 2.7754 2.1711 1.8560 1.6893 1.5853
λpeak 1.142 1.099 1.061 1.034 1.013

β 0.1 0.5 1.0 1.5 2.0

α2opt −0.0981 −0.0733 −0.0302 0.0084 0.0424
Amax 1.8970 1.6372 1.4954 1.4175 1.3677

σ2
opt(πS0/ω3

1) 2.8039 2.2305 1.9323 1.7746 1.6764
λpeak1 0.617 0.517 0.447 0.402 0.370
λpeak2 1.209 1.195 1.182 1.174 1.168

|λpeak1 − λpeak2| 0.592 0.678 0.735 0.772 0.798

β 0.1 0.5 1.0 1.5 2.0

νopt 1.2617 1.3753 1.3464 1.2903 1.2333
Amax 1.8373 1.5504 1.3971 1.3138 1.2607

σ2
opt(πS0/ω3

1) 2.7349 2.1274 1.8151 1.6516 1.5503
λpeak1 0.588 0.459 0.368 0.309 0.268
λpeak2 1.230 1.240 1.247 1.253 1.258

|λpeak1 − λpeak2| 0.642 0.781 0.879 0.944 0.990

409

Mathematics 2023, 11, 1904

(a) (b)

(c) (d)

Figure 8. Iterations when optimizing the single variable ξ (α2opt = α2b, β = 0.1): (a) μ = 0.1;
(b) μ = 0.2; (c) μ = 0.3; (d) μ = 0.4.

(a) (b)

(c) (d)

Figure 9. Comparison between the numerical solution and analytical solution when optimizing the
single variable ν (α2opt = α2b): (a) μ = 0.1; (b) μ = 0.2; (c) μ = 0.3; (d) μ = 0.4.

410

Mathematics 2023, 11, 1904

3.2. Optimizing Four Variables: α1, α2, ν, and ξ

This section will simultaneously optimize four variables to observe the variation in
the system amplitude curve and the degree of mean square response. The difficulty lies
in the need to consider the value range of four parameter values at the same time. The
optimized parameter value cannot be located at the endpoint value of the range, nor can
the parameter value only meet part of the value range. The setting of the value range about
the four parameter values is based on the range considered in the previous optimization of
the single variable, which ensures that the optimal value obtained after the comprehensive
optimization is comparable to the optimal value of the optimized single variable and further
judges the iterative optimization efficiency of the PSO algorithm. The values of α1 and α2
(as shown in Table 4) are higher than those before optimization in Table 1. The values of
ν and ξ are between the approximate optimal value before optimization and the optimal
value after single optimization.

Table 4. The specific parameters of the system in different cases of inerter-to-mass ratio when
optimizing four variables, α1, α2, ν, and ξ (α2opt = α2b).

Case 1: μ = 0.1

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0

ω3
1
)

0.1 0.2346 −0.1045 1.2346 0.6612 1.8151 −0.0137 −0.0222 2.7579
0.5 0.5898 −0.1010 1.3242 1.4165 1.5269 −0.0122 −0.0235 2.1360
1.0 0.9062 −0.0792 1.2712 2.0833 1.3821 −0.0044 −0.0150 1.8276
1.5 1.1576 −0.0664 1.2005 2.6207 1.2930 −0.0116 −0.0208 1.6546
2.0 1.3392 −0.0576 1.1368 3.0753 1.2375 −0.0154 −0.0232 1.5467

Case 2: μ = 0.2

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0

ω3
1
)

0.1 0.3249 −0.1047 0.9086 0.6224 1.7311 0.0063 −0.0037 2.5447
0.5 0.6497 −0.0968 0.9300 1.1182 1.4921 −0.0065 −0.0178 2.0559
1.0 0.9437 −0.0825 0.8868 1.5852 1.3520 −0.0144 −0.0248 1.7799
1.5 1.1789 −0.0666 0.8424 1.9237 1.2782 −0.0143 −0.0232 1.6288
2.0 1.3677 −0.0560 0.7942 2.2385 1.2290 −0.0157 −0.0233 1.5306

Case 3: μ = 0.3

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0

ω3
1
)

0.1 0.4079 −0.1030 0.7544 0.6267 1.6603 0.0123 0.0016 2.3830
0.5 0.7113 −0.0950 0.7547 1.0015 1.4545 −0.0097 −0.0210 1.9817
1.0 1.0262 −0.0754 0.7199 1.3287 1.3365 −0.0120 −0.0221 1.7424
1.5 1.2059 −0.0648 0.6802 1.6278 1.2671 −0.0143 −0.0229 1.6073
2.0 1.4099 −0.0507 0.6371 1.8823 1.2249 −0.0122 −0.0196 1.5177

Case 4: μ = 0.4

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0

ω3
1
)

0.1 0.4877 −0.1009 0.6595 0.6312 1.5985 0.0107 −0.0005 2.2532
0.5 0.7599 −0.0912 0.6441 0.9496 1.4289 −0.0058 −0.0169 1.9254
1.0 1.0724 −0.0694 0.6149 1.2030 1.3251 −0.0073 −0.0171 1.7141
1.5 1.2400 −0.0613 0.5801 1.4608 1.2584 −0.0127 −0.0211 1.5889
2.0 1.4140 −0.0528 0.5505 1.6637 1.2143 −0.0157 −0.0228 1.5020

From the perspective of amplitude, the amplitude amplification factor obtained by
optimizing four variables at the same time is better than that obtained by optimizing single
variables ν and ξ except for a few cases. From the perspective of the mean square response,
it is better than optimizing the single variable ξ but inferior to the single variable ν. This
conclusion holds in most cases and cannot be applied to all cases of μ and β. As can be
seen from Figure 10 of the analytical and numerical solutions, the amplitude–frequency
curves of the four variables optimized at the same time have a lower amplitude than ξ at
the starting position, just like the single variable ν. At the trough between the two peaks,
its steepness is less than that of the optimized single variable ν or ξ, and the stationarity

411

Mathematics 2023, 11, 1904

looks smoother. In sum, whether optimizing a single variable or four variables, there are
advantages and disadvantages. If four variables are selected to be optimized at the same
time, the value range of each variable needs to be determined by optimizing the single
variable, which increases the time cost of numerical simulation. In practical engineering
applications, we need to combine the actual conditions and technical methods to select
the appropriate optimization method. It is advisable to select a single variable or optimize
several variables.

(a) (b)

(c) (d)

Figure 10. Comparison between numerical solution and analytical solution when optimizing four
variables, α1, α2, ν, and ξ, at the same time: (a) μ = 0.1; (b) μ = 0.2; (c) μ = 0.3; (d) μ = 0.4.

3.3. Validity of Parameter Selection

Figure 11 shows the effectiveness of parameters after optimizing variable ξ accord-
ing to the changes in different parameters in the system. When the value of μ and β are
respectively increased, the corresponding amplitude curves not only show low resonance
response peaks but also have a large impact on the vibration reduction bandwidth (as
displayed in Figure 11a,b. On the premise of taking the optimal value as a reference, the nu-
merical simulation is carried out by selecting its adjacent values to obtain the Figure 11c–f).
The most obvious thing is that the orange line represents the curve at the optimal value
and is consistent with the results obtained. Other curves have the following properties: (1)
the left peak and the right peak are not at the same level; (2) the influence of the parameter
value on the vibration reduction bandwidth exists; (3) different parameters affect the posi-
tion of the initial point of the curve, which may be smaller or infinite; (4) the system will be
over-damped, thus affecting the robustness under excitation.

412

Mathematics 2023, 11, 1904

(a) (b)

(c) (d)

(e) (f)

Figure 11. The optimal parameters verification when optimizing the single variable ξ: (a) change μ;
(b) change β; (c) change α1; (d) change α2; (e) change ν; (f) change ξ.

4. The Mean Square Responses of the Primary System for Different DVAs

In nature and engineering, there is a class of vibration sources that cannot be described
in a certain time and space, such as earthquakes, turbulence, noise, etc., which are called
random vibration sources. Usually, the random vibration in structural dynamics is analyzed
for stationary random processes. The difference between it and non-stationary random
processes is whether the statistics such as mean and variance change with time. Due to
the limitation of some necessary conditions, it is almost impossible for us to study the
influence of the whole random process on the system, so we adopt the form of partial
random vibration samples in the analysis process. This section explores the DVA under
random excitation in more detail and uses comparisons to show how effective the design
is. We determine the power spectral density functions S(ω) attached to various DVAs by
considering the primary system under random excitation. The subscripts D, R, A, W, AN,
WN, and M stand for the Voigt-type DVA, Ren model, Asami model, Wang model, Asami
model with negative stiffness, Wang model with negative stiffness, and the DVA in this
study. These models can be found in Figure 12. Based on the equations of each model, the

413

Mathematics 2023, 11, 1904

mean square responses of the primary system under different DVAs can be calculated as
follows.

σ2
D =

∫ +∞

−∞
SD(ω)dω = S0

∫ +∞

−∞
‖HDx1(jω)‖2 dω =

πS0YD

2ω3
1μξν

σ2
R =

∫ +∞

−∞
SR(ω)dω = S0

∫ +∞

−∞
‖HRx1(jω)‖2 dω =

πS0YR

2ω3
1μξν5

σ2
A =

∫ +∞

−∞
SA(ω)dω = S0

∫ +∞

−∞
‖HAx1(jω)‖2 dω =

πS0YA

2ω3
1μξα2ν3

σ2
W =

∫ +∞

−∞
SW(ω)dω = S0

∫ +∞

−∞
‖HWx1(jω)‖2 dω =

πS0YW

2ω3
1μξα2ν7

σ2
AN =

∫ +∞

−∞
SAN(ω)dω = S0

∫ +∞

−∞
‖HANx1(jω)‖2 dω

=
πS0YAN

2ω3
1μξα2

1ν3(1− α2ν2)2(1 + α2 + μα2ν2)

σ2
WN =

∫ +∞

−∞
SWN(ω)dω = S0

∫ +∞

−∞
‖HWNx1(jω)‖2 dω

=
πS0YWN

2ω3
1μξα2

1ν7(1 + α2 + μα2ν2)

σ2
M =

∫ +∞

−∞
SM(ω)dω = S0

∫ +∞

−∞
‖HMx1(jω)‖2 dω

=
πS0YM

2ω3
1μξα2

1ν(μ + β− α2)2[α2 + (1 + α2)μν2]

where

YD =1 +
[
4ξ2(1 + μ)− μ− 2

]
ν2 + (1 + μ)2ν4

YR =1 +
(

4ξ2 + μ− 2
)

ν2 + ν4

YA =4ξ2{1 + (1 + α)
[
−2 + (1 + α)(1 + μ)ν2

]
ν2}

+ α2ν2
[
1− (2 + μ)ν2 + (1 + μ)2ν4

]
YW =4ξ2{1− 2(1 + α− μ)ν2 +

[
(1 + α)2 − (1 + 2α)μ + μ2

]
ν4}

+ α2ν2
[
1 + (μ− 2)ν2 + ν4

]
YAN =4ξ2

(
1 + α2 + α2μν2

)
{1− 2(1 + α1 + α2)ν

2 +
[
(1 + α1 + α2)

2 + μ(1 + α1)
2
]
ν4}

+ α2
1ν2{1 + α2 −

[
2(1 + α2)

2 + μ
]
ν2 +

[
(1 + α2)

3 + 2(1 + α2)μ + μ2
]
ν4}

YWN =4ξ2
(

1 + α2 + α2μν2
)
{1− 2(1 + α1 + α2 − μ)ν2 + [(1 + α1 + α2)

2

− (1 + 2α1 + 2α2)μ + μ2]ν4}+ α2
1ν2{1 + α2 + [−2(1 + α2)

2

+ μ(1 + 2α2)]ν
2 +

[
(1 + α2)

3 − 2α2(1 + α2)μ + α2μ2
]
ν4}

YM =α2
1

(
μν2 + α2

)2[
α2 + (μ + β)2 + μν2(1 + μ + β)2

]
+
[
α2 + (1 + α2)μν2

]
{4ξ2μ2ν2(μ + β)

(
μ + β + α2

2

)
+ (1 + α2)(μ + β)

[
α2

1(μ + β)− 8ξ2μ2ν2
(

μν2 + α1 + α2

)]
− 2(1 + μ + β)

[
α2

1(μ + β)
(

μν2 + α2

)
− 2ξ2μ2ν2

(
μν2 + α1 + α2

)2
]
}

414

Mathematics 2023, 11, 1904

(a) (b) (c)

(d) (e) (f)

Figure 12. The DVA models: (a) Den; (b) Ren; (c) Asami; (d) Wang; (e) Asami with negative stiffness;
(f) Wang with negative stiffness.

According to the optimal parameters in the literature [1,5,6,17,33,34], the mean square
responses of the primary systems when μ = 0.1 can be obtained as

σ2
D =

6.401πS0

ω3
1

, σ2
R =

5.780πS0

ω3
1

, σ2
A =

6.039πS0

ω3
1

σ2
W =

7.065πS0

ω3
1

, σ2
AN =

3.095πS0

ω3
1

, σ2
WN =

3.090πS0

ω3
1

In the previous section, we calculated the mean square responses by optimizing the
single variable and four variables. It was found that the three cases studied in this paper
are better than the above comparison models. This demonstrates that the model achieves
better results than other DVAs under random excitation, and the inerter is crucial to the
model. In addition, the model still outperforms the other DVAs when different mass ratios
are selected. When random excitation is selected, 5000 normalized random numbers with
zero mean value and unit variance are created as a 50 s random excitation (as shown in
Figure 13). Firstly, we investigate three cases based on particle swarm optimization (ξ, ν,
all) in this paper to select one for comparison with other models. As in Figure 14, three cases
have roughly the same trend in the curve direction, and each section does not have the rule
of periodic vibration. By locating the coordinates of the three curve peaks, the maximum
peak appears the most times when the single variable ξ is optimized, and optimizing
the single variable ν appears the fewest times. In the preliminary conclusion obtained in
the previous section, the amplitude amplification factor obtained by optimizing the four
variables simultaneously is better than that obtained by optimizing the single variables
ν and ξ in most cases. From the perspective of mean square response, it is superior to
the optimization of single variable ξ but inferior to the single variable ν. Therefore, the
optimization of the single variable ξ is weaker than the other two cases according to the
judgment. If it is selected to compare with the other models, it indicates that the three cases
of optimization about this model are applicable.

It can be clearly observed from Figure 15a that the influence of the vibration absorber
on the primary system is very great. The displacement can be considerably decreased with
its help. In the meantime, raising the inerter coefficient can lessen the primary system’s
response for the model as shown in Figure 15b. According to the calculation of the model
parameters in the existing literature, the fourth-order Runge–Kutta method is used to

415

Mathematics 2023, 11, 1904

determine the amplitude responses under different DVAs conditions. These time history
diagrams can be seen in Figure 16. Because the displacement variance of the primary
system is frequently related to the vibration energy, the variances and decreasing ratios of
the displacements for different systems are compiled in Table 5. Under random excitation,
the DVA discussed in this work performs with better control performance than other DVAs.
These results demonstrate that the proposed DVA can lower the mean square response of
the system as well as the response peak.

Figure 13. The time history of the random excitation.

(a)

(b)

(c)

Figure 14. The time history of three cases based on particle swarm optimization (ξ, ν, all):
(a) t ⊂ [0, 10]; (b) t ⊂ [10, 20]; (c) t ⊂ [20, 30].

416

Mathematics 2023, 11, 1904

Table 5. The variances and decreasing ratios of the displacements in the primary system.

Models Variances Decrease Ratios (%)

Without DVA 2.57202 × 10−4 /
DVA by Den Hartog 3.73465 × 10−5 85.48
DVA by Ren 3.36063 × 10−5 86.93
DVA by Asami 3.37462 × 10−5 86.88
DVA by Wang 4.12604 × 10−5 83.96
DVA by Asami with negative stiffness 1.83878 × 10−5 92.85
DVA by Wang with negative stiffness 1.86308 × 10−5 92.76
The presented model (μ = 0.1, β = 0.1) 1.60176 × 10−5 93.77
The presented model (μ = 0.1, β = 0.5) 1.26826 × 10−5 95.07
The presented model (μ = 0.1, β = 1.0) 1.10374 × 10−5 95.71
The presented model (μ = 0.1, β = 1.5) 9.66774 × 10−6 96.24
The presented model (μ = 0.1, β = 2.0) 9.16522 × 10−6 96.44

(a)

(b)

Figure 15. The time history of the primary system with models when μ = 0.1: (a) comparison of
this paper and without DVA; (b) comparison between different inerter-to-mass ratios (β = 0.1 and
β = 0.5).

417

Mathematics 2023, 11, 1904

(a) (b)

(c) (d)

(e) (f)

Figure 16. The time history of the primary system with models when μ = 0.1: (a) Den; (b) Ren;
(c) Asami; (d) Wang; (e) Asami with negative stiffness; (f) Wang with negative stiffness.

5. Conclusions and Prospects

Vibration phenomena can be found everywhere around us. Vehicles on the ground,
aircraft in the air, and ships in the ocean are constantly generating vibration. Many aca-
demics concentrate on vibration reduction, vibration isolation, vibration absorption, and
other control measures to design and optimize the structure of the vibration source or
vibration transmission process because some vibrations may cause wear and consumption
of objects. The introduction of DVAs provides an effective path to suppress the vibration
of the primary system. The present paper discusses the viscoelastic Maxwell-type DVA
model with an inerter and negative stiffness spring under the combination of traditional
theory and the intelligent algorithm, which realizes the effect of equal resonance peaks and
effectively reduces the amplitude response of the primary system.

418

Mathematics 2023, 11, 1904

On the basis of the H∞ optimization criterion, the approximate optimal values of
frequency ratio, stiffness ratio, and damping ratio are obtained by the fixed-point theory.
Using the fourth-order Runge–Kutta method to simulate the analytical solution and the
numerical solution, it is found that two peaks of the normalized amplitude–frequency
curves are not equal and may be further optimized. Since there are many adjustable
parameters in the model, we use the PSO algorithm to observe whether the maximum
amplitude of the primary system can be minimized by optimizing the single variable
and four variables. After continuously tracking and iterating the individual and global
optimal values, the parameters of the final output make the optimized curves achieve equal
peaks. For the three cases in which the algorithm is used for optimization in this paper, we
obtained our conclusions. From the perspective of amplitude, the amplitude amplification
factor gained by optimizing four variable was better than that obtained by optimizing
single variables, except for a few cases. From the perspective of the mean square response,
it falls between the two cases of optimizing the single variable. In addition, the benefit
of all three cases is that the resonance frequency band is widened and the amplitude is
suppressed. The analysis of the amplitude–frequency curves, the mean square responses,
the variances, and the decreasing ratios of the displacements shows that the presented
model is better than other typical DVAs under the optimization of the algorithm. The
introduction of the algorithm can not only improve the efficiency of calculating the optimal
parameters but also save the calculation time and ensure correctness. The integration of
theoretical analysis and intelligent algorithms provides a solid reference for future research
of DVAs in parameter optimization and structural design.

Author Contributions: Conceptualization, J.L.; Formal analysis, Y.C.; Funding acquisition, J.L.; In-
vestigation, Y.C.; Methodology, J.L. and Y.C.; Project administration, J.L.; Supervision, J.L.; Validation,
S.Z. and Y.C.; Visualization, Y.C. and H.Z.; Writing—original draft, Y.C.; Writing—review and editing,
S.Z. and Y.C. All authors contributed equally to this research. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (Grant
No.12272011) and also supported by the National Key R&D Program of China (Grant No.
2022YFB3806000).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank all the peer reviewers and editors for their
valuable contribution to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The specific parameters of the system in different cases of inerter-to-mass ratio when
optimizing the single variable ν (α2opt = α2b).

Case 1: μ = 0.1

β νori σ2
ori(

πS0

ω3
1
) νopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 1.2320 2.7821 1.2617 2.7349 1.8373 0.588 1.230 0.642
0.5 1.3079 2.2072 1.3753 2.1274 1.5504 0.459 1.240 0.781
1.0 1.2516 1.9117 1.3464 1.8151 1.3971 0.368 1.247 0.879
1.5 1.1794 1.7570 1.2903 1.6516 1.3138 0.309 1.253 0.944
2.0 1.1124 1.6612 1.2333 1.5503 1.2607 0.268 1.258 0.990

419

Mathematics 2023, 11, 1904

Table A1. Cont.

Case 2: μ = 0.2

β νori σ2
ori(

πS0

ω3
1
) νopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 0.9063 2.5747 0.9354 2.5158 1.7348 0.547 1.234 0.687
0.5 0.9200 2.1280 0.9724 2.0436 1.5099 0.436 1.242 0.806
1.0 0.8749 1.8735 0.9446 1.7748 1.3768 0.354 1.249 0.895
1.5 0.8241 1.7344 0.9041 1.6278 1.3014 0.300 1.254 0.954
2.0 0.7778 1.6463 0.8644 1.5344 1.2523 0.261 1.259 0.998

Case 3: μ = 0.3

β νori σ2
ori(

πS0

ω3
1
) νopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 0.7523 2.4220 0.7818 2.3543 1.6587 0.513 1.236 0.723
0.5 0.7454 2.0613 0.7917 1.9732 1.4755 0.416 1.243 0.827
1.0 0.7059 1.8396 0.7649 1.7390 1.3586 0.341 1.250 0.909
1.5 0.6649 1.7138 0.7316 1.6059 1.2900 0.291 1.255 0.964
2.0 0.6281 1.6324 0.6996 1.5196 1.2445 0.255 1.259 1.004

Case 4: μ = 0.4

β νori σ2
ori(

πS0

ω3
1
) νopt σ2

opt(
πS0

ω3
1
) Amax λpeak1 λpeak2 |λpeak1 − λpeak2|

0.1 0.6548 2.3031 0.6847 2.2286 1.5990 0.484 1.238 0.754
0.5 0.6395 2.0043 0.6823 1.9129 1.4458 0.399 1.245 0.846
1.0 0.6040 1.8092 0.6567 1.7068 1.3422 0.330 1.251 0.921
1.5 0.5691 1.6948 0.6279 1.5858 1.2795 0.283 1.256 0.973
2.0 0.5380 1.6194 0.6006 1.5059 1.2371 0.248 1.260 1.012

Table A2. Symbols and nomenclature.

m1 mass of the primary system m2 mass of the absorber system

k1 stiffness of the primary system k2 stiffness of the absorber system

k3 stiffness of the Maxwell structure k4 negative stiffness of the grounded spring

c damping of the Maxwell structure b inerter

F0 amplitude of the force excitation ω frequency of the force excitation

ξ damping ratio (ξ = c
2m2ω2

) μ mass ratio (μ = m2
m1

)

α1 ratio of spring constants (α1 = k3
k1

) α2 ratio of spring constants (α2 = k4
k1

)

β inerter-to-mass ratio (β = b
m1

) f amplitude-to-mass ratio (f = F0
m1

)

ν natural frequency ratio (ν = ω2
ω1

) λ forced frequency ratio (λ = ω
ω1

)

x1 displacement of the primary system x2 displacement of the absorber system

x3 displacement of the division point about spring and damping in Maxwell structure

ω1 natural frequency of the primary system (ω1 =
√

k1
m1

)

ω2 natural frequency of the absorber system (ω2 =
√

k2
m2

)

Xst static deformation of the primary system (Xst =
F0
k1

)

A amplitude amplification factor of the primary system

σ2 mean square response of the primary system

References

1. Ormondroyd, J.; Den Hartog, J.P. The theory of the dynamic vibration absorber. ASME J. Appl. Mech. 1928, 50, 9–22.
2. Hahnkamm, E. The damping of the foundation vibrations at varying excitation frequency. Master Archit. 1932, 4, 192–201.
3. Brock, J.E. A note on the damped vibration absorber. ASME J. Appl. Mech. 1946, 13, A284. [CrossRef]

420

Mathematics 2023, 11, 1904

4. Den Hartog, J.P. Mechanical Vibrations; McGraw-Hill Book Company: New York, NY, USA, 1947.
5. Asami, T.; Nishihara, O. Analytical and experimental evaluation of an air damped dynamic vibration absorber: Design optimiza-

tions of the three-element type model. J. Vib. Acoust. 1999, 121, 334–342. [CrossRef]
6. Ren, M.Z. A variant design of the dynamic vibration absorber. J. Sound Vib. 2001, 245, 762–770. [CrossRef]
7. Asami, T.; Sekiguchi, H. Fundamental investigation on air damper (1st report, theoretical analysis). Trans. Jpn. Soc. Mech. Eng.

1990, 56, 1400–1407. (In Japanese) [CrossRef]
8. Asami, T.; Sekiguchi, H. Fundamental investigation on air damper (2nd report, theoretical and experimental study). Trans. Jpn.

Soc. Mech. Eng. 1990, 56, 3201–3209. (In Japanese) [CrossRef]
9. Asami, T.; Nishihara, O.; Baz, A.M. Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to

damped linear systems. J. Vib. Acoust. 2002, 124, 284–295. [CrossRef]
10. Asami, T.; Nishihara, O. H2 optimization of the three-element type dynamic vibration absorbers. J. Vib. Acoust. 2002, 124, 583–592.

[CrossRef]
11. Nishihara, O.; Asami, T. Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the

maximum amplitude magnification factors). J. Vib. Acoust. 2002, 124, 576–582. [CrossRef]
12. Asami, T.; Nishihara, O. Closed-form exact solution to H∞ optimization of dynamic vibration absorbers (application to different

transfer functions and damping systems). J. Vib. Acoust. 2003, 125, 398–405. [CrossRef]
13. Lakes, R.S.; Lee, T.; Bersie, A.; Wang, Y.C. Extreme damping in composite materials with negative-stiffness inclusions. Nature 2001,

410, 565–567. [CrossRef] [PubMed]
14. Lakes, R.S.; Drugan, W.J. Dramatically stiffer elastic composite materials due to a negative stiffness phase? J. Mech. Phys. Solids

2002, 50, 979–1009. [CrossRef]
15. Wu, L.T.; Wang, K. Optimization design and stability analysis for a new class of inerter-based dynamic vibration absorbers with a

spring of negative stiffness. J. Vib. Control 2022, 0, 1–15. [CrossRef]
16. Mantakas, A.G.; Kapasakalis, K.A.; Alvertos, A.E.; Antoniadis, I.A.; Sapountzakis, E.J. A negative stiffness dynamic base absorber

for seismic retrofitting of residential buildings. Struct. Control Health Monit. 2022, 29, e3127. [CrossRef]
17. Shen, Y.J.; Wang, X.R.; Yang, S.P.; Xing, H.J. Parameters optimization for a kind of dynamic vibration absorber with negative

stiffness. Math. Probl. Eng. 2016, 2016, 9624325. [CrossRef]
18. Shen, Y.J.; Peng, H.B.; Li, X.H.; Yang, S.P. Analytically optimal parameters of dynamic vibration absorber with negative stiffness.

Mech. Syst. Signal Pr. 2017, 85, 193–203. [CrossRef]
19. Smith, M.C. Synthesis of mechanical networks: The inerter. IEEE Trans. Automat. Contr. 2002, 47, 1648–1662. [CrossRef]
20. Wang, F.C.; Liao, M.K.; Liao, B.H.; Su, W.J.; Chan, H.A. The performance improvements of train suspension systems with

mechanical networks employing inerters. Veh. Syst. Dyn. 2009, 47, 805–830. [CrossRef]
21. Chen, M.Z.Q.; Hu, Y.L.; Huang, L.X.; Chen, G.R. Influence of inerter on natural frequencies of vibration systems. J. Sound Vib. 2014,

333, 1874–1887. [CrossRef]
22. Barredo, E.; Blanco, A.; Colin, J.; Penagos, V.M.; Abundez, A.; Vela, L.G.; Meza, V.; Cruz, R.H.; Mayen, J. Closed-form solutions for

the optimal design of inerter-based dynamic vibration absorbers. Int. J. Mech. Sci. 2018, 144, 41–53. [CrossRef]
23. Barredo, E.; Larios, J.G.M.; Colin, J.; Mayen, J.; Flores-Hernandez, A.A.; Arias-Montiel, M. A novel high-performance passive

non-traditional inerter-based dynamic vibration absorber. J. Sound Vib. 2020, 485, 115583. [CrossRef]
24. Wang, X.R.; Liu, X.D.; Shan, Y.C.; Shen, Y.J.; He, T. Analysis and optimization of the novel inerter-based dynamic vibration

absorbers. IEEE Access 2018, 6, 33169–33182. [CrossRef]
25. Wang, X.R.; He, T.; Shen, Y.J.; Shan, Y.C.; Liu, X.D. Parameters optimization and performance evaluation for the novel inerter-based

dynamic vibration absorbers with negative stiffness. J. Sound Vib. 2019, 463, 114941. [CrossRef]
26. Shen, Y.J.; Xing, Z.Y.; Yang, S.P.; Sun, J.Q. Parameters optimization for a novel dynamic vibration absorber. Mech. Syst. Signal Pr.

2019, 133, 106282. [CrossRef]
27. Zhu, X.Z; Chen, Z.B.; Jiao, Y.H. Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates.

J. Low Freq. Noise Vib. Act. Control 2018, 37, 1188–1200. [CrossRef]
28. Basta, E.; Ghommem, M.; Emam, S. Flutter control and mitigation of limit cycle oscillations in aircraft wings using distributed

vibration absorbers. Nonlinear Dyn. 2021, 106, 1975–2003. [CrossRef]
29. Zhang, M.J.; Xu, F.Y. Tuned mass damper for self-excited vibration control: Optimization involving nonlinear aeroelastic effect. J.

Wind. Eng. Ind. Aerodyn. 2022, 220, 104836. [CrossRef]
30. Wang, Q.; Zhou J.X.; Wang, K.; Gao, J.H.; Lin, Q.D.; Chang, Y.P.; Xu, D.L.; Wen, G.L. Dual-function quasi-zero-stiffness dynamic

vibration absorber: Low-frequency vibration mitigation and energy harvesting. Appl. Math. Model. 2023, 116, 636–654. [CrossRef]
31. Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29,

2531–2561. [CrossRef]
32. Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392.

[CrossRef]

421

Mathematics 2023, 11, 1904

33. Wang, X.R.; Shen, Y.J.; Yang, S.P. H∞ optimization of the grounded three-element type dynamic vibration absorber. J. Dyn. Contr.
2016, 14, 448–453. (In Chinese)

34. Wang, X.R.; Shen, Y.J.; Yang, S.P.; Xing, H.J. H∞ parameter optimization of three-element type dynamic vibration absorber with
negative stiffness. J. Vib. Eng. 2017, 30, 177–184. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

422

Citation: Wu, T.-Y.; Li, H.; Chu, S.-C.

CPPE: An Improved Phasmatodea

Population Evolution Algorithm with

Chaotic Maps. Mathematics 2023, 11,

1977. https://doi.org/10.3390/

math11091977

Academic Editor: Jian Dong

Received: 18 March 2023

Revised: 20 April 2023

Accepted: 21 April 2023

Published: 22 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

CPPE: An Improved Phasmatodea Population Evolution
Algorithm with Chaotic Maps

Tsu-Yang Wu, Haonan Li and Shu-Chuan Chu *

College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; wutsuyang@sdust.edu.cn (T.-Y.W.); lihaonan@sdust.edu.cn (H.L.)
* Correspondence: scchu0803@sdust.edu.cn

Abstract: The Phasmatodea Population Evolution (PPE) algorithm, inspired by the evolution of the
phasmatodea population, is a recently proposed meta-heuristic algorithm that has been applied
to solve problems in engineering. Chaos theory has been increasingly applied to enhance the
performance and convergence of meta-heuristic algorithms. In this paper, we introduce chaotic
mapping into the PPE algorithm to propose a new algorithm, the Chaotic-based Phasmatodea
Population Evolution (CPPE) algorithm. The chaotic map replaces the initialization population of the
original PPE algorithm to enhance performance and convergence. We evaluate the effectiveness of
the CPPE algorithm by testing it on 28 benchmark functions, using 12 different chaotic maps. The
results demonstrate that CPPE outperforms PPE in terms of both performance and convergence
speed. In the performance analysis, we found that the CPPE algorithm with the Tent map showed
improvements of 8.9647%, 10.4633%, and 14.6716%, respectively, in the Final, Mean, and Standard
metrics, compared to the original PPE algorithm. In terms of convergence, the CPPE algorithm with
the Singer map showed an improvement of 65.1776% in the average change rate of fitness value,
compared to the original PPE algorithm. Finally, we applied our CPPE to stock prediction. The results
showed that the predicted curve was relatively consistent with the real curve.

Keywords: chaotic-based PPE algorithm; meta-heuristic algorithm; chaotic maps

MSC: 90C26

1. Introduction

The advancement of science and technology has led to the emergence of a multitude
of meta-heuristic algorithms that address engineering problems across various fields [1,2].
These algorithms employ randomness and fall into the following two categories: trajectory-
based meta-heuristics, which include well-known algorithms such as the Genetic Algo-
rithm [3–6] and Differential Evolution [7]; and population-based meta-heuristics, such as
Particle Swarm Optimization [8–10], the Whale Optimization Algorithm (WOA) [11–13],
and the Butterfly Optimization Algorithm [14]. Meta-heuristic algorithms are particularly
effective in avoiding local optima due to their random nature, which is also the most
challenging aspect in their development.

In recent years, chaos theory has been increasingly applied to enhance the performance
and convergence of meta-heuristic algorithms. Chaos theory deals with the randomness
arising from deterministic systems and is extensively utilized in various fields, including
meta-heuristics [15,16]. Several studies have combined chaos theory with meta-heuristics
to enhance their performance, such as the following: Chaotic Particle Swarm Optimiza-
tion [17], Chaotic Imperialist Competitive Algorithm [18], Chaotic Firefly Algorithm [19,20],
Chaotic Bat Algorithm [21], Chaotic Genetic Algorithm [22], Chaotic Whale Optimization
(CWO) Algorithm [23], Chaotic Dragonfly Algorithm [24], Chaotic Grasshopper Optimiza-
tion (CGO) Algorithm [25], Chaotic Bird Swarm Algorithm [26], Chaotic Cloud Quantum

Mathematics 2023, 11, 1977. https://doi.org/10.3390/math11091977 https://www.mdpi.com/journal/mathematics
423

Mathematics 2023, 11, 1977

Bat Hybrid Optimization Algorithm [27], Chaotic Sparrow Search Algorithm [28], Chaotic
GrayWolf Optimization Algorithm [29,30].

One of the more recent meta-heuristic algorithms is the Phasmatodea Population
Evolution (PPE) algorithm [31,32], inspired by the evolution of phasmatodea populations.
This population-based algorithm has strong convergence capabilities and a degree of local
optima avoidance. In this study, we aimed to enhance the PPE algorithm’s performance
and convergence speed by combining it with chaos theory. We propose a new algorithm,
the Chaotic-based Phasmatodea Population Evolution (CPPE) algorithm, which replaces
the probabilistically-initialized population part of the original PPE with a chaotic map. Our
main contributions are listed as follows:

• We combine chaos theory with the PPE algorithm for the first time to propose a new
Chaotic-based PPE algorithm called CPPE.

• We select 12 different chaotic maps and 28 popular benchmark functions to evaluate the
performance of the proposed CPPE algorithm. The experimental results demonstrate
that the performance and convergence of CPPE are greatly enhanced.

The rest of the paper is organized as follows. We review related research on chaotic-
based meta-heuristic algorithms and PPE algorithms in Section 2. Section 3 provides a
detailed description of the CPPE algorithm. Experimental results are discussed in Section 4.
Finally, Section 5 provides the conclusion.

2. Related Work

Previous studies have examined meta-heuristic algorithms that incorporate chaotic
maps. In 2018, Kaur and Arora [23] proposed the CWO algorithm, which combines chaotic
maps and the WOA. They utilized chaotic mapping to adjust the parameter p in WOA,
comparing the effectiveness of 10 different chaotic mappings. Tent mapping was found to
significantly improve the performance of WOA. In a similar vein, Arora and Anand [25]
proposed the CGO algorithm, adjusting the parameters, c1 and c2, of the Grasshopper
Optimization Algorithm (GOA) using chaotic maps and comparing the effectiveness of
10 different chaotic maps. They found that the Circle map significantly improved the
performance of GOA.

Altay and Alatas [26] proposed the Bird Swarm Algorithm with Chaotic Mapping
(CMBSA) in 2019, using chaotic mapping to initialize the population in the Bird Swarm Al-
gorithm (BSA). The experimental results showed that CMBSA outperformed BSA. In 2021,
Zhang and Ding [28] proposed the Chaotic Sparrow Search Algorithm, utilizing Logistic
mapping to initialize the population in the Sparrow Search Algorithm (SSA). Xu et al. [29]
proposed the Chaotic GrayWolf Optimization algorithm, which incorporated Chaotic Local
Search (CLS) to adjust the radius of the algorithm’s local search in the GrayWolf Optimiza-
tion (GWO) algorithm. Similarly, Hao and Sobhani [30] proposed the Adaptive Chaotic
GrayWolf Optimization algorithm, initializing the population using Logistic mapping in
the population initialization phase.

In 2022, Gezici and Livatyalı [33] proposed the Chaotic Harris Hawks Optimization
(CHHO) algorithm, utilizing 10 different chaotic maps to adjust various variables in the
Harris Hawks Optimization (HHO) algorithm. They found that CHHO outperformed
HHO. Gharehchopogh et al. [34] proposed the Chaotic Quasi-oppositional Farmland Fer-
tility Algorithm (CQFFA), utilizing the CLS mechanism to adjust the radius of the local
search using a chaotic map. Experimental results showed that CQFFA performed better
than the Farmland Fertility Algorithm. In 2023, Chen et al. [35] proposed the Chaotic
Satin Bowerbird Optimization Algorithm (CSBOA), utilizing the Bernoulli shift map ini-
tialization algorithm to initialize the population. Naik [36] proposed the Chaotic Social
Group Optimization (CSGO) algorithm, replacing the parameter c in the Social Group
Optimization (SGO) algorithm using a chaotic map. Experimental results showed that
CSGO outperformed SGO.

In 2022, scholars primarily focused on improving and applying the PPE algorithm.
Zhu et al. [37] proposed the Multigroup-based PPE algorithm with Multistrategy (MPPE),

424

Mathematics 2023, 11, 1977

which divided the population into multiple groups in the initialization stage and incorpo-
rated the step size factor of the flower pollen algorithm into the population growth model of
some groups. Similarly, Zhuang et al. [38] proposed the Advanced PPE (APPE) algorithm
in 2022, which removed population competition and partial evolutionary trend updates
and added jumping mechanisms, history-based searches, and population closure moves.

3. Chaotic-Based Phasmatodea Population Evolution (CPPE) Algorithm

3.1. Phasmatodea Population Evolution (PPE) Algorithm

The PPE algorithm simulates the way the phasmatodea population evolves. Three
stages primarily make up the algorithm. The first stage is the initialization stage, the second
stage is the population update stage, and the third stage is the selection of the population
evolution trend. Figure 1 shows the flowchart of the PPE algorithm. In order to explain the
PPE algorithm and CPPE algorithms, we define some symbols in Table 1.

Figure 1. Flowchart of PPE algorithm.

425

Mathematics 2023, 11, 1977

Table 1. The symbols used in PPE and CPPE.

Symbols Interpretation of Symbols

Np The total population size
d The dimensionality
xi i-th population
pi The size of xi
ai The growth rate of xi
ei The evolution trend of xi

f (xi) The fitness value of xi
m Mutation factor

rand A method to generate random numbers in the range (0, 1)
st Impact factor

U, L The upper and lower bounds
Max_gen Total iterations

t Current iteration count

In the initialization phase, we need to randomly initialize a Np× d matrix X, X =
[x1, . . . , xi, . . . , xNp], where each element represents a population xi, the dimension of each
population is d, and there are a total of Np populations. Each population xi has two
attributes: (1) population size pi. (2) growth rate ai. The initial population size is pi =

1
Np ,

and the initial growth rate is ai = 1.1. To initialize, the population evolution trend ei is
set to 0. After calculating the fitness value, use gbest to present the current global optimal
solution. In addition, set a k× d matrix H, H = [xh1, . . . , xhi, . . . , xhk], and use H to store
the historical global optimal solution. The value xhi represents the i-th global optimal
solution, the number being set to k, k = �log(Np)� + 1. Then, sort H from largest to
smallest. The role of H is to guide the update of the surrounding populations.

In the population update phase, the t-th updated population is represented by xt
i , and,

then, the calculation formula of the t + 1-th updated population is Equation (1).

xt+1
i = xt

i + ei (1)

After the population is updated, the fitness value needs to be recalculated, and gbest and H
need to be updated.

Finally, the third stage is the selection of the population evolution trend. Three cases
are involved in this stage. First, we use f (xt

i) to represent the fitness value of the t-th update,
and, then, the fitness value of the t + 1-th update is represented by f (xt+1

i). The first case is
f (xt+1

i) ≤ f (xt
i). Use Equations (2) and (3) to update the pi and ei of the population.

pt+1
i = at+1

i pt
i(1− pt

i) (2)

et+1
i = (1− pt+1

i)[(xt
i,H − xt

i) · c] + pt+1
i (et

i + m) (3)

For Equation (3), m is a mutation factor; xt
i,H is a historical optimal solution in H, and its

fitness value is the closest to the fitness value of xt
i in H, that is, f (xt

i,H) − f (xt
i) is the

smallest; c is the impact factor.The second case is f (xt+1
i) > f (xt

i). However, there is a
probability for the population to accept this update situation. We use the rand method and
pi to make a probability judgment. If the number randomly generated by the rand method
is less than pi, we accept the worse situation and use Equation (2) to update pi. The second
formula for updating ei is Equation (4).

et+1
i = rand · (xt

i,H − xt
i) + st · B (4)

Among them, st is the impact factor, and B is a randomly generated 1× d matrix that
conforms to the standard normal distribution.The third case is the impact of competition

426

Mathematics 2023, 11, 1977

before the population. First, to calculate the distance between the xi and the xj. If the
distance is less than the defined threshold G, there is competition among populations. G is
calculated as Equation (5). At this time, use Equations (6) and (7) to update the pi and ei of
the population.

G = 0.1× (U − L)
Max_gen + 1− t

Max_gen
(5)

pt+1
i = pt

i + at
i pt

i

(
1− pt

i −
f (xt

j)

f (xt
i)

pt
j

)
(6)

et+1
i = et

i +
f (xt

j)− f (xt
i)

f (xt
j)

(xt
j − xt

i) (7)

3.2. The Proposed CPPE Algorithm

Chaos is an unpredictable and random movement in a deterministic system. Given
an initial value for a chaotic system, a chaotic sequence can be generated after chaotic
mapping, which is random. This property can be used as an initialization method in
the PPE algorithm to improve the convergence speed and the ability to find the global
optimal solution. A random generator is used in the initialization phase in the standard
PPE algorithm. Compared with the random generator, using chaotic maps to generate the
initial population can make it more random and uniform.

The initialization of CPPE algorithm is described as follows.

• Initialize a matrix Z with dimension Np× d, where all elements are zero, that is,

Z=

⎡⎢⎣ z11 . . . z1d
...

. . .
...

zNp1 . . . zNpd

⎤⎥⎦, z11 = · · · = zNpd = 0;

• Using the rand method to randomly generate a 1× d vector, and replace the vector in
the first row of the matrix Z;

• Traversing the second to Np-th rows of the matrix Z, and using the chaotic map to
generate Np− 1 vectors, each of which is 1× d;

• Traversing the first to Np-th rows of the matrix Z, and mapping each element to the
(L, U) interval. The mapping formula is Equation (8), where zmn represents an element
in the matrix Z.

zmn = L + (U − L)× zmn (8)

Other initialization content is the same as that in the PPE algorithm. After the initial-
ization phase is completed, the algorithm enters the iterative phase, which includes the
population update phase and the population evolution trend update phase.

The flowchart of the CPPE algorithm is shown in Figure 2.

1. Use the chaotic map to initialize the Np× d matrix, in which each element represents
a population, and initialize the two attributes pi and ai of the population. Initialize
the evolution trend ei is set 0. Calculate the fitness value, and use gbest to represent
the global optimal solution, and use H to store k historical global optimal solutions;

2. Entering the iterative process, update each population, recalculate the fitness value,
and update gbest and H;

3. For the updated fitness value, if f (xt+1
i) ≤ f (xt

i), then update pi and use the first
method to update ei, if f (xt+1

i) > f (xt
i), and, then, judge the first. The value generated

by the rand method is compared with pi. If it is less than pi, the population size needs
to be updated, otherwise it need not be updated. Then use the second method to
update ei;

4. Use the distance between xi and xj to compare with the threshold G. If it is less than
G, this confirms that there is competition between the two populations, and the third
method is used to update ei;

427

Mathematics 2023, 11, 1977

5. Determine whether the maximum number of iterations has been achieved. If the
maximum number of iterations is not reached, proceed to step 2 and repeat the process
until the maximum number is attained.

Figure 2. Flowchart of CPPE algorithm.

According to the above description, the pseudo-code of the CPPE algorithm is shown
in Algorithm 1. The code for the algorithm has been uploaded to the website (https:
//github.com/Leon-paq/CPPE.git).

428

Mathematics 2023, 11, 1977

Algorithm 1: Pseudo-code of the CPPE algorithm.

Initialize Np populations using a chaotic map;
Initialize pi =

1
Np , ai = 1.1, ei = 0;

Initialize k = �log(Np)�+ 1;
Calculate fitness f (xi), set gbest and H;
for t = 2 to Max_gen do

Update each population xi using Equation (1);
Calculate new fitness f (xi), update gbest and H;
for i = 1 to Np do

if f (xt+1
i) ≤ f (xt

i) then

Update pi using Equation (2);
Update ei using Equation (3);

end

else

if rand < pi then

Update pi using Equation (2);
end

Update ei using Equation (4);
end

Calculate G using Equation (5);
if dist(xi,xj) < G then

Update pi using Equation (6);
Update ei using Equation (7);

end

end

end

4. Experimental Results and Discussions

Three experiments were designed to verify the performance and convergence of
the proposed CPPE algorithm. Specifically, these experiments aimed to compare the
CPPE algorithm, which incorporates 12 different chaotic maps, with the unimproved
PPE algorithm, in terms of performance and convergence. The 12 selected chaotic maps
included the Logistic, Piecewise, Singer, Sine, Gauss, Tent, Bernoulli, Chebyshev, Circle,
Cubic, Sinusoidal, and ICMIC maps. To facilitate comparisons between the CPPE algorithm
and the unimproved PPE algorithm, the 12 different CPPE algorithms were labeled as CPP1
to CPPE12, as shown in Table 2.

Table 2. The notations of CPPE.

Symbols Explains

CPPE1 PPE + Logistic map [39]
CPPE2 PPE + Piecewise map [40]
CPPE3 PPE + Singer map [41]
CPPE4 PPE + Sine map [42]
CPPE5 PPE + Gauss map [19]
CPPE6 PPE + Tent map [43]
CPPE7 PPE + Bernoulli map [44]
CPPE8 PPE + Chebyshev map [45]
CPPE9 PPE + Circle map [23]
CPPE10 PPE + Cubic map [46]
CPPE11 PPE + Sinusoidal map [47]
CPPE12 PPE + ICMIC map [48]

429

Mathematics 2023, 11, 1977

4.1. Benchmark Functions and Experimental Environments

For our experiment, we chose to utilize 28 benchmark functions from the widely-used
CEC13 dataset [49]. These functions are commonly utilized for evaluating the efficacy
of various algorithms. The CEC13 dataset is comprised of three types of benchmark
functions: unimodal functions, basic multimedia functions, and composition functions.
The mathematical expressions and attributes of these functions are presented in Table 3.
Unimodal functions are represented by f1 to f5, basic multimedia functions are represented
by f6 to f20, and composition functions are represented by f21 to f28. The dimension of each
function calculation is provided under the “Dimension” column, and the optimal value of
each function is provided under the “Optimal” column.

Table 3. The twenty-eight benchmark functions used in this study.

Benchmark Function Dimension Optimal

f1(x) =
n
∑

i=1
x2

i
10 0

f2(x) =
n
∑

i=1
(106)

i−1
n−1 x2

i
2 0

f3(x) = x2
i + 106

n
∑

i=2
x2

i
2 0

f4(x) = 106x2
i +

n
∑

i=2
x2

i
2 0

f5(x) =

√
n
∑

i=2
|xi|2+4 i−1

n−1 5 0

f6(x) =
n−1
∑

i=1
(100(x2

i − xi+1)
2 + (xi − 1)2) 5 0

f7(x) = (1
n−1

n−1
∑

i=1
(
√

xi +
√

xisin2(50x0.2
i)))2 5 0

f8(x) = −20exp(−0.2

√
1
n

n
∑

i=1
x2

i)− exp(1
n

n
∑

i=1
cos(2πxi)) + 20 + e 2 0

f9(x) =
n
∑

i=1
(

k max
∑

k=0
[akcos(2πbk(xi + 0.5))])− n

k max
∑

k=0
[akcos(2πbk · 0.5)] 10 0

f10(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos(xi√
i
) + 1 10 0

f11(x) =
n
∑

i=1
(z2

i − 10cos(2πzi) + 10), z = Λ10T0.2
asy(Tosz(

5.12(x−o)
100)) 5 0

f12(x) =
n
∑

i=1
(z2

i − 10cos(2πzi) + 10), z = M1Λ10 M2T0.2
asy(Tosz(M1

5.12(x−o)
100)) 5 0

f13(x) =
n
∑

i=1
(z2

i − 10cos(2πzi) + 10), z = M1Λ10 M2T0.2
asy(Tosz(y)) 5 0

f14(x) = 418.9829× n−
n
∑

i=1
g(z), z = Λ10(1000(x−o)

100) + 4.209687462275036e + 002 2 0

f15(x) = 418.9829× n−
n
∑

i=1
g(z), z = Λ10 M1(

1000(x−o)
100) + 4.209687462275036e + 002 2 0

f16(x) = 10
n2

n
∏
i=1

(1 + i
32
∑

j=1

|2j xi−round(2j xi)|
2j)

10
n1.2 − 10

n2
10 0

f17(x) = min(
n
∑

i=1
(
�
xi − μ0)

2, dn + s
n
∑

i=1
(
�
xi − μ1)

2) + 10(n−
n
∑

i=1
cos(2π

�
zi)), z = Λ100(

�
x − μ0) 5 0

f18(x) = min(
n
∑

i=1
(
�
xi − μ0)

2, dn + s
n
∑

i=1
(
�
xi − μ1)

2) + 10(n−
n
∑

i=1
cos(2π

�
zi)), z = M2Λ100(M1

�
x − μ0) 5 0

f19(x) = g1(g2(x1, x2)) + g1(g2(x2, x3)) + ... + g1(g2(xn, x1)),

g1(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos(xi√
i
) + 1,

g2(x) =
n−1
∑

i=1
(100(x2

i − xi+1)
2 + (xi − 1)2)

10 0

f20(x) = g(x1, x2) + g(x2, x3) + ... + g(xn, x1), g(x, y) = 0.5 + (sin2(
√

x2+y2)−0.5)
(1+0.001(x2+y2))2

10 0

430

Mathematics 2023, 11, 1977

Table 3. Cont.

Benchmark Function Dimension Optimal

f21(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1 = f6, g2 = f5, g3 = f3, g4 = f4, g5 = f1 2 0

f22(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1−3 = f14 2 0

f23(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1−3 = f15 2 0

f24(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1 = f15, g2 = f12, g3 = f9, σ = [20, 20, 20] 2 0

f25(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1 = f15, g2 = f12, g3 = f9, σ = [10, 30, 50] 2 0

f26(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1 = f15, g2 = f12, g3 = f2, g4 = f9, g5 = f10 2 0

f27(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1 = f10, g2 = f12, g3 = f15, g4 = f9, g5 = f1 2 0

f28(x) =
n
∑

i=1

{
ω∗i [λigi(x) + biasi]

}
, g1 = f19, g2 = f7, g3 = f15, g4 = f20, g5 = f1 2 0

The experiment was conducted on a Windows 11 laptop, which had an AMD Ryzen 7
5800H CPU with a clock speed of 3.20 GHz and 16 GB of running memory. The experiment
was implemented using MATLAB R2022b.

4.2. Performance Comparison between PPE and CPPEs

Before commencing the experiment, several parameters needed to be configured,
as presented in Table 4. The “Population_Number” denotes the population counts for the
CPPE algorithm and was set to 100 for this experiment. The maximum iteration count
for the CPPE algorithm is denoted by the “Max_Gen” variable and was set to 100 for this
experiment. In this experiment, the CPPE algorithm was run 50 times, as indicated by the
“Run_Nums” variable.

Table 4. Parameters setting for performance experiments.

Parameters Values

Population_Number 100
Max_Gen 100
Run_Nums 50

We ran PPE and CPPE1 to CPPE12 on 28 benchmark functions 50 times and recorded
the respective results. We used the three criteria, Final, Mean and Standard, to compare
algorithmic performance. Final represents the final optimal value of the algorithm, that
is, the minimum result of running the algorithm 50 times. Mean is the average outcome
of executing the algorithm 50 times and represents the method’s average optimal value.
Standard stands for the algorithm’s total standard deviation, and the algorithm’s degree of
dispersion, after 50 iterations.

We displayed the results after running the experiment 50 times in a tabular form,
as shown in Table 5. Where f1−28 represents the 28 benchmark functions, the first col-
umn represents different algorithms, and the second to fourth columns represent three
comparison standards. We have put the data pertaining to results better than the PPE
algorithm in bold in the table to improve the readability for readers. In addition, we made
statistics on 28 benchmark functions in the experiment, and the number of CPPE superior
to PPE is shown in Figure 3 and Table 6. In Figure 3, the horizontal coordinates indicate the
different CPPE algorithms and the vertical coordinates indicate the number of times CPPE
outperformed PPE on Final, Mean, and Std matrices. The data in the figure shows the
number of times CPPE was superior to PPE on the 28 benchmark functions. The detailed
benchmark functions are shown in Table 7.

431

Mathematics 2023, 11, 1977

Table 5. The experimental results of the 50 PPE and CPPE on 28 benchmark functions.

f1 Final Mean Std f2 Final Mean Std f3 Final Mean Std

PPE 9.99E-02 3.89E-01 2.94E-01 PPE 2.33E-02 5.66E+01 1.11E+02 PPE 5.88E-03 4.08E+00 1.29E+01
CPPE1 5.18E-02 2.64E-01 1.43E-01 CPPE1 1.26E-02 1.68E+02 3.28E+02 CPPE1 3.05E-03 2.69E+00 5.81E+00
CPPE2 6.39E-02 3.29E-01 2.40E-01 CPPE2 3.10E-02 1.11E+02 2.08E+02 CPPE2 1.78E-02 2.95E+00 4.41E+00
CPPE3 6.39E-02 7.41E-01 3.97E-01 CPPE3 3.10E-02 3.47E+02 5.46E+02 CPPE3 1.78E-02 1.36E+00 2.61E+00
CPPE4 4.41E-02 3.36E-01 2.05E-01 CPPE4 5.47E-03 1.17E+02 2.76E+02 CPPE4 1.10E-02 4.52E+00 7.25E+00
CPPE5 9.47E-02 3.63E-01 1.98E-01 CPPE5 1.15E-02 1.41E+02 2.55E+02 CPPE5 2.30E-03 3.50E+00 6.33E+00
CPPE6 2.69E-02 3.38E-01 2.01E-01 CPPE6 6.13E-02 9.08E+01 2.35E+02 CPPE6 5.43E-03 2.93E+00 6.14E+00
CPPE7 5.00E-02 3.99E-01 2.36E-01 CPPE7 4.03E-03 7.59E+01 1.33E+02 CPPE7 1.61E-02 3.66E+00 6.01E+00
CPPE8 9.46E-02 3.90E-01 2.36E-01 CPPE8 4.60E-03 6.86E+01 1.19E+02 CPPE8 4.52E-04 4.61E+00 9.50E+00
CPPE9 5.95E-02 4.37E-01 2.49E-01 CPPE9 1.83E-02 2.53E+01 5.59E+01 CPPE9 1.36E-03 3.07E+00 1.18E+01
CPPE10 4.74E-02 3.89E-01 2.08E-01 CPPE10 2.24E-02 7.64E+01 1.56E+02 CPPE10 4.93E-03 2.11E+00 3.52E+00
CPPE11 5.80E-02 3.29E-01 2.13E-01 CPPE11 8.68E-02 1.64E+02 3.00E+02 CPPE11 6.02E-03 4.75E+00 1.37E+01
CPPE12 2.87E-02 3.95E-01 2.34E-01 CPPE12 2.95E-02 6.63E+01 1.11E+02 CPPE12 4.11E-03 7.05E+00 2.49E+0

f4 Final Mean Std f5 Final Mean Std f6 Final Mean Std

PPE 4.44E-03 7.66E+01 2.44E+02 PPE 2.10E-04 3.00E-03 3.39E-03 PPE 3.22E-04 1.11E+00 1.77E+00
CPPE1 1.69E-02 9.47E+01 1.63E+02 CPPE1 5.20E-05 2.97E-03 2.96E-03 CPPE1 5.27E-06 1.14E+00 1.75E+00
CPPE2 2.36E-02 8.54E+01 2.09E+02 CPPE2 5.47E-05 3.80E-03 5.20E-03 CPPE2 4.17E-05 7.00E-01 1.40E+00
CPPE3 2.36E-02 7.23E+01 1.90E+02 CPPE3 5.47E-05 2.27E-02 2.85E-02 CPPE3 4.17E-05 4.10E+00 1.19E+00
CPPE4 1.83E-02 1.43E+02 2.39E+02 CPPE4 7.80E-04 5.00E-03 5.74E-03 CPPE4 6.81E-06 7.04E-01 1.39E+00
CPPE5 9.05E-04 6.24E+01 1.85E+02 CPPE5 3.20E-04 5.07E-03 7.87E-03 CPPE5 3.02E-05 8.88E-01 1.58E+00
CPPE6 1.65E-02 1.82E+02 3.43E+02 CPPE6 1.53E-04 3.24E-03 2.58E-03 CPPE6 5.39E-04 9.89E-01 1.64E+00
CPPE7 3.93E-02 8.55E+01 1.95E+02 CPPE7 1.91E-04 3.38E-03 3.38E-03 CPPE7 1.34E-04 5.88E-01 1.26E+00
CPPE8 1.45E-01 1.40E+02 2.65E+02 CPPE8 3.35E-04 4.99E-03 5.54E-03 CPPE8 2.02E-03 2.88E+00 1.93E+00
CPPE9 3.82E-03 2.43E+01 5.28E+01 CPPE9 5.43E-04 4.30E-03 3.35E-03 CPPE9 2.04E-02 3.48E-01 6.07E-01
CPPE10 4.69E-02 9.29E+01 2.20E+02 CPPE10 2.96E-04 7.14E-03 7.37E-03 CPPE10 1.31E-03 3.56E+00 1.59E+00
CPPE11 1.27E-01 1.65E+02 2.61E+02 CPPE11 1.44E-04 4.44E-03 5.40E-03 CPPE11 3.02E-05 1.04E+00 1.68E+00
CPPE12 3.53E-04 8.67E+01 1.88E+02 CPPE12 4.42E-04 7.36E-03 9.66E-03 CPPE12 2.19E-03 2.86E+00 1.97E+00

f7 Final Mean Std f8 Final Mean Std f9 Final Mean Std

PPE 3.15E-02 7.70E-01 1.23E+00 PPE 6.42E-05 1.61E-03 8.21E-03 PPE 2.59E+00 5.21E+00 1.27E+00
CPPE1 3.61E-02 7.08E-01 1.17E+00 CPPE1 5.00E-05 6.37E-04 6.79E-04 CPPE1 1.98E+00 5.62E+00 1.22E+00
CPPE2 2.70E-02 8.54E-01 1.63E+00 CPPE2 4.44E-05 4.20E-04 3.07E-04 CPPE2 2.53E+00 5.26E+00 1.25E+00
CPPE3 2.70E-02 1.04E+00 1.36E+00 CPPE3 4.44E-05 2.06E+00 6.03E+00 CPPE3 2.53E+00 5.70E+00 1.74E+00
CPPE4 2.93E-02 1.06E+00 2.30E+00 CPPE4 3.75E-05 4.17E-04 2.88E-04 CPPE4 2.61E+00 5.22E+00 1.20E+00
CPPE5 2.40E-02 1.06E+00 2.11E+00 CPPE5 3.42E-05 3.69E-04 3.63E-04 CPPE5 2.95E+00 5.57E+00 1.24E+00
CPPE6 1.08E-02 5.14E-01 1.16E+00 CPPE6 5.51E-05 4.14E-04 3.55E-04 CPPE6 2.52E+00 5.49E+00 1.14E+00
CPPE7 2.35E-02 7.07E-01 1.55E+00 CPPE7 7.07E-05 4.00E-01 2.83E+00 CPPE7 2.95E+00 5.09E+00 1.16E+00
CPPE8 1.43E-02 1.35E+00 2.21E+00 CPPE8 1.29E-05 4.68E-01 2.83E+00 CPPE8 2.35E+00 5.20E+00 1.31E+00
CPPE9 1.58E-02 6.38E-01 9.98E-01 CPPE9 1.58E-05 4.34E-04 3.91E-04 CPPE9 2.61E+00 5.88E+00 1.11E+00
CPPE10 5.88E-02 1.82E+00 2.82E+00 CPPE10 2.63E-05 4.90E-04 4.41E-04 CPPE10 1.88E+00 5.46E+00 1.37E+00
CPPE11 2.09E-02 8.63E-01 1.70E+00 CPPE11 7.62E-05 3.92E-01 2.77E+00 CPPE11 2.05E+00 5.68E+00 1.46E+00
CPPE12 5.03E-02 1.11E+00 1.20E+00 CPPE12 6.32E-05 8.56E-04 2.47E-03 CPPE12 3.06E+00 5.54E+00 1.29E+00

f10 Final Mean Std f11 Final Mean Std f12 Final Mean Std

PPE 1.02E+00 3.79E+00 3.15E+00 PPE 2.86E-04 8.57E-01 9.29E-01 PPE 1.00E+00 6.27E+00 3.20E+00
CPPE1 3.41E-01 3.63E+00 2.19E+00 CPPE1 1.83E-04 6.00E-01 7.10E-01 CPPE1 2.07E-03 4.97E+00 2.77E+00
CPPE2 9.34E-01 2.81E+00 1.62E+00 CPPE2 2.72E-03 5.97E-01 6.04E-01 CPPE2 1.99E+00 5.52E+00 2.73E+00
CPPE3 9.34E-01 2.37E+01 9.73E+00 CPPE3 2.72E-03 3.97E+00 2.47E+00 CPPE3 1.99E+00 1.49E+01 7.33E+00
CPPE4 1.13E+00 4.14E+00 3.52E+00 CPPE4 5.08E-04 7.68E-01 9.91E-01 CPPE4 1.89E-03 5.28E+00 2.93E+00
CPPE5 8.46E-01 3.52E+00 2.46E+00 CPPE5 1.36E-04 6.13E-01 6.64E-01 CPPE5 1.99E+00 6.15E+00 3.38E+00
CPPE6 1.03E+00 3.30E+00 2.15E+00 CPPE6 2.08E-04 8.17E-01 9.67E-01 CPPE6 1.99E+00 5.66E+00 2.49E+00
CPPE7 8.74E-01 3.62E+00 2.08E+00 CPPE7 1.50E-04 5.80E-01 6.44E-01 CPPE7 9.95E-01 5.00E+00 2.80E+00
CPPE8 1.41E+00 6.76E+00 3.81E+00 CPPE8 9.87E-05 1.13E+00 1.19E+00 CPPE8 8.62E-03 8.82E+00 5.06E+00
CPPE9 1.15E+00 3.33E+00 1.66E+00 CPPE9 3.76E-03 9.77E-01 7.03E-01 CPPE9 9.96E-01 7.97E+00 4.15E+00
CPPE10 1.11E+00 8.50E+00 5.68E+00 CPPE10 7.28E-04 1.25E+00 1.54E+00 CPPE10 9.95E-01 8.88E+00 4.92E+00
CPPE11 1.11E+00 4.84E+00 3.37E+00 CPPE11 1.06E-03 6.36E-01 9.28E-01 CPPE11 9.96E-01 5.76E+00 3.10E+00
CPPE12 1.04E+00 5.23E+00 2.87E+00 CPPE12 7.14E-04 9.17E-01 1.03E+00 CPPE12 9.96E-01 7.45E+00 3.61E+00

432

Mathematics 2023, 11, 1977

Table 5. Cont.

f13 Final Mean Std f14 Final Mean Std f15 Final Mean Std

PPE 1.59E+00 8.17E+00 4.15E+00 PPE 3.60E-06 5.78E-02 1.21E-01 PPE 1.26E-05 1.17E+00 5.25E+00
CPPE1 1.00E+00 6.89E+00 3.39E+00 CPPE1 1.09E-07 4.68E-02 1.09E-01 CPPE1 3.14E-06 3.61E+00 1.73E+01
CPPE2 5.17E-04 7.30E+00 3.59E+00 CPPE2 1.82E-06 5.34E-02 1.31E-01 CPPE2 7.14E-06 2.07E-01 2.32E-01
CPPE3 5.17E-04 1.42E+01 8.33E+00 CPPE3 1.82E-06 7.94E-01 3.30E+00 CPPE3 7.14E-06 8.84E+00 2.87E+01
CPPE4 1.39E+00 6.76E+00 3.73E+00 CPPE4 4.32E-07 5.09E-02 1.15E-01 CPPE4 1.68E-05 1.78E+00 4.60E+00
CPPE5 9.95E-01 8.12E+00 3.04E+00 CPPE5 2.99E-06 6.56E-02 1.24E-01 CPPE5 8.55E-07 8.92E-01 3.31E+00
CPPE6 1.59E+00 8.20E+00 3.17E+00 CPPE6 3.09E-08 5.22E-02 1.16E-01 CPPE6 5.26E-07 1.19E+00 3.98E+00
CPPE7 1.59E+00 8.22E+00 2.96E+00 CPPE7 2.78E-06 4.52E-02 1.09E-01 CPPE7 6.87E-07 5.42E-01 2.35E+00
CPPE8 1.39E+00 8.63E+00 3.80E+00 CPPE8 2.63E-06 4.24E-01 2.36E+00 CPPE8 1.80E-06 4.97E+00 2.36E+01
CPPE9 2.19E+00 1.09E+01 4.30E+00 CPPE9 5.03E-06 4.27E-02 1.03E-01 CPPE9 4.05E-06 1.40E-01 2.11E-01
CPPE10 5.03E+00 9.67E+00 4.49E+00 CPPE10 5.20E-08 1.05E-01 1.49E-01 CPPE10 1.49E-05 4.95E+00 2.36E+01
CPPE11 1.39E+00 8.00E+00 4.33E+00 CPPE11 2.82E-06 7.64E-02 1.49E-01 CPPE11 3.53E-06 2.22E+00 5.46E+00
CPPE12 2.03E+00 7.68E+00 3.37E+00 CPPE12 2.54E-08 1.05E-01 1.43E-01 CPPE12 3.05E-06 3.43E+00 1.72E+01

f16 Final Mean Std f17 Final Mean Std f18 Final Mean Std

PPE 5.62E-01 9.91E-01 2.55E-01 PPE 8.77E-01 6.14E+00 1.80E+00 PPE 1.82E+00 9.10E+00 3.13E+00
CPPE1 4.44E-01 9.44E-01 3.00E-01 CPPE1 3.89E-01 5.59E+00 2.06E+00 CPPE1 3.71E+00 8.59E+00 2.28E+00
CPPE2 3.49E-01 9.59E-01 2.29E-01 CPPE2 4.94E-01 6.32E+00 1.67E+00 CPPE2 1.80E+00 8.87E+00 2.63E+00
CPPE3 3.49E-01 8.84E-01 3.25E-01 CPPE3 4.94E-01 8.97E+00 1.87E+00 CPPE3 1.80E+00 1.48E+01 5.10E+00
CPPE4 4.34E-01 9.02E-01 2.77E-01 CPPE4 1.49E-01 5.88E+00 2.27E+00 CPPE4 2.58E+00 8.54E+00 3.02E+00
CPPE5 5.00E-01 9.96E-01 2.61E-01 CPPE5 1.08E+00 6.35E+00 1.73E+00 CPPE5 5.60E+00 8.81E+00 1.80E+00
CPPE6 3.73E-01 9.02E-01 2.92E-01 CPPE6 6.76E-01 6.16E+00 1.84E+00 CPPE6 1.87E+00 9.10E+00 2.76E+00
CPPE7 5.74E-01 9.83E-01 2.51E-01 CPPE7 7.27E-01 6.30E+00 1.81E+00 CPPE7 4.49E+00 1.02E+01 2.76E+00
CPPE8 3.32E-01 9.01E-01 2.89E-01 CPPE8 1.51E+00 7.00E+00 1.85E+00 CPPE8 3.38E+00 1.06E+01 3.97E+00
CPPE9 2.60E-01 8.42E-01 2.86E-01 CPPE9 5.31E+00 6.95E+00 1.11E+00 CPPE9 6.19E+00 1.07E+01 3.00E+00
CPPE10 3.80E-01 9.45E-01 2.51E-01 CPPE10 1.78E+00 7.14E+00 1.51E+00 CPPE10 5.39E+00 1.01E+01 2.65E+00
CPPE11 3.74E-01 9.63E-01 2.85E-01 CPPE11 4.72E-01 6.31E+00 2.18E+00 CPPE11 4.00E+00 9.81E+00 2.77E+00
CPPE12 4.37E-01 8.80E-01 2.57E-01 CPPE12 3.55E-01 6.42E+00 1.85E+00 CPPE12 5.95E+00 1.06E+01 3.22E+00

f19 Final Mean Std f20 Final Mean Std f21 Final Mean Std

PPE 7.65E-01 2.67E+00 1.11E+00 PPE 2.27E+00 3.31E+00 3.97E-01 PPE 3.84E-04 7.86E-03 6.25E-03
CPPE1 1.19E+00 2.20E+00 7.19E-01 CPPE1 2.54E+00 3.33E+00 3.59E-01 CPPE1 1.81E-04 6.24E-03 5.49E-03
CPPE2 9.94E-01 2.52E+00 8.09E-01 CPPE2 1.99E+00 3.34E+00 4.42E-01 CPPE2 4.51E-04 2.01E+00 1.41E+01
CPPE3 9.94E-01 4.60E+00 2.51E+00 CPPE3 1.99E+00 3.78E+00 1.86E-01 CPPE3 4.51E-04 8.75E-03 8.53E-03
CPPE4 8.55E-01 2.17E+00 8.48E-01 CPPE4 2.18E+00 3.36E+00 4.21E-01 CPPE4 9.22E-04 2.01E+00 1.41E+01
CPPE5 8.06E-01 2.86E+00 1.01E+00 CPPE5 2.20E+00 3.37E+00 4.36E-01 CPPE5 1.76E-04 6.36E-03 4.91E-03
CPPE6 7.53E-01 2.64E+00 9.52E-01 CPPE6 2.50E+00 3.31E+00 3.31E-01 CPPE6 1.09E-03 6.53E-03 5.99E-03
CPPE7 1.12E+00 2.89E+00 1.27E+00 CPPE7 2.50E+00 3.30E+00 4.11E-01 CPPE7 4.56E-04 4.01E+00 1.98E+01
CPPE8 5.88E-01 2.74E+00 1.32E+00 CPPE8 2.35E+00 3.46E+00 3.49E-01 CPPE8 4.26E-04 6.81E-03 4.90E-03
CPPE9 1.78E+00 3.43E+00 9.62E-01 CPPE9 2.02E+00 3.28E+00 5.32E-01 CPPE9 4.45E-04 6.16E-03 4.22E-03
CPPE10 7.16E-01 3.03E+00 1.43E+00 CPPE10 3.07E+00 3.69E+00 2.56E-01 CPPE10 2.10E-04 6.71E-03 6.54E-03
CPPE11 7.23E-01 2.23E+00 8.45E-01 CPPE11 1.54E+00 3.30E+00 5.19E-01 CPPE11 2.42E-04 4.01E+00 1.98E+01
CPPE12 5.20E-01 3.35E+00 1.45E+00 CPPE12 2.58E+00 3.53E+00 2.90E-01 CPPE12 1.03E-03 7.21E-03 5.00E-03

f22 Final Mean Std f23 Final Mean Std f24 Final Mean Std

PPE 9.26E-05 2.51E+00 1.24E+01 PPE 3.03E-04 7.19E-03 3.19E-02 PPE 2.79E-05 5.12E-01 2.72E+00
CPPE1 6.80E-05 9.60E-04 7.66E-04 CPPE1 7.24E-05 2.00E+00 1.41E+01 CPPE1 6.98E-06 1.88E+00 5.70E+00
CPPE2 1.14E-04 2.51E+00 1.24E+01 CPPE2 9.60E-05 6.43E-01 3.17E+00 CPPE2 3.42E-06 8.78E-01 3.75E+00
CPPE3 1.14E-04 9.59E+00 2.43E+01 CPPE3 9.60E-05 3.16E+01 4.78E+01 CPPE3 3.42E-06 2.22E+00 8.03E+00
CPPE4 5.06E-05 2.51E+00 1.24E+01 CPPE4 1.19E-04 6.50E-01 3.19E+00 CPPE4 3.56E-06 5.02E-01 2.71E+00
CPPE5 6.93E-05 1.11E-03 8.06E-04 CPPE5 3.29E-05 3.58E+00 1.78E+01 CPPE5 1.21E-05 9.46E-01 3.76E+00
CPPE6 5.84E-05 1.21E-03 1.06E-03 CPPE6 1.72E-04 1.60E+00 1.11E+01 CPPE6 6.13E-06 5.02E-01 2.71E+00
CPPE7 1.25E-04 1.25E+00 8.86E+00 CPPE7 1.82E-04 2.33E-03 2.54E-03 CPPE7 7.00E-06 8.39E-01 2.94E+00
CPPE8 8.38E-05 1.25E+00 8.86E+00 CPPE8 9.04E-05 4.33E+00 1.99E+01 CPPE8 2.45E-05 1.89E-01 7.55E-01
CPPE9 9.54E-05 1.08E-03 8.44E-04 CPPE9 2.21E-04 1.58E+00 1.11E+01 CPPE9 6.21E-06 8.15E-01 3.74E+00
CPPE10 4.11E-05 1.20E-03 9.59E-04 CPPE10 2.19E-04 5.11E+00 2.23E+01 CPPE10 1.62E-05 4.40E-01 2.69E+00
CPPE11 3.67E-05 1.07E-03 9.33E-04 CPPE11 1.38E-04 1.00E+01 3.03E+01 CPPE11 9.83E-06 5.71E-01 2.74E+00
CPPE12 1.38E-04 2.86E+00 1.26E+01 CPPE12 9.71E-05 3.68E+00 1.83E+01 CPPE12 1.56E-05 7.52E-01 3.72E+00

433

Mathematics 2023, 11, 1977

Table 5. Cont.

f25 Final Mean Std f26 Final Mean Std f27 Final Mean Std

PPE 9.41E-05 9.72E-04 7.71E-04 PPE 2.07E-08 1.40E-01 2.04E-01 PPE 2.83E-03 3.95E+01 4.88E+01
CPPE1 3.44E-05 8.99E-04 6.42E-04 CPPE1 1.81E-08 2.26E-01 2.59E-01 CPPE1 1.82E-02 5.73E+01 4.91E+01
CPPE2 7.25E-05 8.78E-04 6.66E-04 CPPE2 8.16E-08 1.57E-01 2.38E-01 CPPE2 6.27E-05 3.91E+01 4.86E+01
CPPE3 7.25E-05 1.32E+01 3.33E+01 CPPE3 8.16E-08 4.81E-01 1.29E+00 CPPE3 6.27E-05 7.94E+01 4.05E+01
CPPE4 3.03E-05 2.09E+00 1.41E+01 CPPE4 2.51E-07 2.07E-01 2.60E-01 CPPE4 3.04E-03 4.89E+01 4.96E+01
CPPE5 5.75E-05 8.96E-04 7.81E-04 CPPE5 1.58E-08 1.66E-01 2.40E-01 CPPE5 3.27E-01 3.56E+01 4.68E+01
CPPE6 7.88E-05 7.72E-04 6.25E-04 CPPE6 1.51E-08 1.72E-01 2.23E-01 CPPE6 4.53E-03 3.16E+01 4.58E+01
CPPE7 2.35E-05 2.00E+00 1.41E+01 CPPE7 7.94E-08 1.34E-01 1.83E-01 CPPE7 9.17E-04 4.78E+01 4.93E+01
CPPE8 8.98E-06 7.29E-04 6.83E-04 CPPE8 8.04E-09 1.19E-01 1.83E-01 CPPE8 1.30E-04 5.54E+01 4.97E+01
CPPE9 4.34E-05 6.38E-04 5.22E-04 CPPE9 2.59E-08 6.16E-02 1.52E-01 CPPE9 9.76E-03 2.15E+00 2.28E+00
CPPE10 1.02E-04 7.46E-04 6.38E-04 CPPE10 1.14E-08 7.49E-01 4.45E+00 CPPE10 1.59E-02 5.37E+01 4.88E+01
CPPE11 2.85E-05 8.42E-04 7.63E-04 CPPE11 2.36E-08 2.10E-01 2.45E-01 CPPE11 2.04E-03 6.48E+01 4.74E+01
CPPE12 5.87E-05 4.00E+00 1.98E+01 CPPE12 7.30E-08 2.12E-01 6.17E-01 CPPE12 6.20E-04 5.47E+01 4.91E+01

f28 Final Mean Std

PPE 4.48E-04 4.42E-03 3.09E-03
CPPE1 4.15E-04 3.64E-03 3.28E-03
CPPE2 1.16E-04 3.11E-03 2.50E-03
CPPE3 1.16E-04 2.00E+00 1.41E+01
CPPE4 2.94E-04 3.90E-03 3.60E-03
CPPE5 3.60E-04 3.43E-03 2.30E-03
CPPE6 4.55E-04 3.92E-03 2.85E-03
CPPE7 8.54E-04 3.91E-03 3.26E-03
CPPE8 3.09E-04 3.80E-03 3.65E-03
CPPE9 7.55E-05 3.56E-03 2.56E-03
CPPE10 2.70E-04 4.02E-03 4.28E-03
CPPE11 2.77E-04 3.76E-03 3.03E-03
CPPE12 1.23E-04 3.12E-03 2.27E-03

Table 6. The number of times CPPE is better than PPE.

CPPE1 CPPE2 CPPE3 CPPE4 CPPE5 CPPE6 CPPE7 CPPE8 CPPE9 CPPE10 CPPE11 CPPE12

Final 22 19 19 16 21 17 15 20 14 15 20 15
Mean 18 16 3 14 16 18 15 8 17 9 11 5

Std 19 20 5 13 17 21 17 9 22 13 10 10

Table 7. The benchmark function of CPPE is better than PPE.

Final Mean Std

CPPE1 f1−3,5−6,8−17,21−26,28 f1,3,5,7−8,10−14,16−19,21−22,25,28 f1,3−14,18−22,25
CPPE2 f1,5−10,13−18,20,23−25,27−28 f1,3,6,8,10−16,18−19,25,27−28 f1,3−4,6,8−19,22,25,27−28
CPPE3 f1, f5−10, f13−18, f20, f23−25, f27−28 f3−4,16 f3−4, f6, f20, f27
CPPE4 f1−2,6−8,12−14,16−17,20,22−25,28, f1,6,8,11−14,16−19,22,24,28 f1,3−4,6,8−9,12−15,18−19,24
CPPE5 f1−4,6−8,10−11,13−16,20−26,28 f1,3−4,6,8,10−13,15,18,21−22,25,27−28 f1,3−4,6,8−11,13,15,17−19,21−22,27−28
CPPE6 f1,3,5,7−9,11,14−17,19,22−26 f1,3,6−8,10−12,14,16,19−22,24−25,27−28 f1,3,5−10,12−15,18−22,24−25,27−28
CPPE7 f1−2,5−7,10−12,14−15,17,23−25,27 f3,6−7,9−12,14−16,20,22−23,26,28 f1,3−6,9−16,18,22−23,26
CPPE8 f1−3,7−9,11−16,19,22−28 f9,16,21−22,24−26,28 f1,3,13,20−22,24−26
CPPE9 f1−4,7−8,12,15−16,20,23−25,28 f2−4,6−8,10,14−16,20−22,25−28 f1−11,14−15,17−19,21−22,25−28

CPPE10 f1−3,8−9,12,14,16,19,21−24,26,28 f1,3,8,16,21−22,24−25,28 f1,3−4,6,8,16−18,20,22,24−25,27
CPPE11 f1,5−7,9,12−17,19−25,27−28 f1,6,11−13,16,19−20,22,25,28 f1,6,11−12,18−19,22,25,27−28
CPPE12 f1,3−4,8,12,14−17,19,23−25,27−28 f8,13,16,21,28 f1,3−4,7−8,10,13,20−21,28

434

Mathematics 2023, 11, 1977

22
19 19

16

21

17
15

20

14 15

20

15

18

16

3

14

16
18

15
8

17

9

11

5

19

20

5

13

17
21

17

9

22

13

10

10

CPPE1
CPPE2

CPPE3
CPPE4

CPPE5
CPPE6

CPPE7
CPPE8

CPPE9

CPPE10

CPPE11

CPPE12
0

10

20

30

40

50

60

Final
Mean
Std

Figure 3. Number of times different CPPEs were superior to PPE.

Tables 5–7, and Figure 3 show that 12 CPPEs performed well in finding the final
optimal value. In terms of average optimal value, CPPE3, CPPE8, CPPE10 and CPPE12
did not perform well, while CPPE1, CPPE6 and CPPE9 performed well. In terms of
standard deviation, CPPE3 and CPPE8 performed slightly worse, while CPPE1, CPPE2,
CPPE6 and CPPE9 performed very well. To sum up, the performances of CPPE3, CPPE8,
CPPE10 and CPPE12 were not significantly better than that of PPE, that is, CPPE with
Singer map, Chebyshev map, Cubic map and ICMIC map did not significantly improve the
performance of the algorithm. However, CPPE1, CPPE2, CPPE4, CPPE5, CPPE6, CPPE7,
CPPE9 and CPPE11 were obviously superior to PPE. That is, CPPE with the Logistic,
Piecewise, Sine, Gauss, Tent, Bernoulli, Circle, and Sinusoidal maps significantly improved
the algorithm’s performance.

In addition to the initial evaluation, we also tallied the occurrences where the PPE
algorithm and CPPE1 to CPPE12 attained optimal results on three metrics out of 28 bench-
mark functions. The statistical results are shown in Figure 4. In this chart, the horizontal
axis represents 13 different algorithms, and the vertical axis represents the number of times
that algorithm achieved the best results compared to the other algorithms across 3 metrics
among 28 functions. The results show that CPPE9 achieved the best results 25 times, which
was remarkable compared to other algorithms. CPPE9 is the CPPE algorithm with the
Circle map.

Furthermore, to accurately calculate the improved percentage of CPPE compared
to PPE, statistical analysis and calculations were performed on the experimental data.
During the statistical process, we discovered that benchmark functions f4, f21, and f23
had outliers. As a result, we only calculated the results for the remaining 25 benchmark
functions. Our approach was as follows: (1) First, the value of each CPPE was subtracted
from the value of PPE on each indicator for each benchmark function, and, then, the
resulting value was divided by the value of PPE and, finally, converted into a percentage.
This provided the improved percentage of each CPPE over the PPE for each indicator
of each benchmark function. For example, benchmark functions f1, f1(PPE_Final) and
f1(CPPE1_Final) indicate the value of PPE and CPPE1 in the Final indicator, respectively.
Thus, the improved percentage of CPPE1 in the Final indicator compared with PPE is
obtained by the following Equation (9).

f1(PPE_Final)− f1(CPPE1_Final)
f1(PPE_Final)

× 100% (9)

435

Mathematics 2023, 11, 1977

(2) After the obtained values were averaged, the average percentages of 12 CPPE in three
indicators compared with PPE were obtained. The results are shown in Table 8. The first col-
umn indicates different CPPE algorithms, and the last three columns indicate the improved
percentage of the CPPE algorithm compared with the PPE algorithm in the three indicators.
In Table 8, it can be observed that CPPE1 (CPPE with Logistic map), CPPE6 (CPPE with
Tent map), and CPPE8 (CPPE with Chebyshev map) showed improvements over PPE on
the Final indicator. CPPE2 (CPPE with Piecewise map), CPPE6 (CPPE with Tent map),
and CPPE9 (CPPE with Circle map) exhibited improvements over PPE on the Mean indica-
tor. CPPE2 (CPPE with Piecewise map), CPPE5 (CPPE with Gauss map), CPPE6 (CPPE
with Tent map), and CPPE9 (CPPE with Circle map) showed improvements over PPE on
the Standard indicator. Therefore, the CPPE algorithm with Tent map performed the best
compared to the PPE algorithm, with an increase of 8.9647%, 10.4633%, and 14.6716% in
Final, Mean, and Standard indicators, respectively.

0

11

9

7
6

4

6 6
7

25

1
2

4

PPE
CPPE1

CPPE2
CPPE3

CPPE4
CPPE5

CPPE6
CPPE7

CPPE8
CPPE9

CPPE10

CPPE11

CPPE12
0

5

10

15

20

25

Figure 4. Optimal number of times for PPE and CPPEs on performance.

Table 8. The percentage of improved performance of CPPE compared to PPE.

Final Mean Std

CPPE1 12.2222% −16.1146% −3.8127%

CPPE2 −28.3925% 6.0912% 10.2575%

CPPE3 −28.3925% −61,464.2086% −194,171.1520%

CPPE4 −33.2308% −8601.8259% −73,153.7043%

CPPE5 −447.3261% −2.7712% 3.2219%

CPPE6 8.9647% 10.4633% 14.6716%

CPPE7 −6.9034% −9211.8529% −74,512.3505%

CPPE8 7.5525% −1212.8028% −1469.2995%

CPPE9 −329.5657% 16.9592% 26.3463%

CPPE10 −46.3178% −56.9641% −105.2342%

CPPE11 −0.1405% −984.1307% −1354.9638%

CPPE12 −35.6815% −16,492.6669% −102,746.3320%

436

Mathematics 2023, 11, 1977

4.3. Convergence Comparison between PPE and CPPEs

An experiment was designed to compare the convergence of the different algorithms.
All parameters are shown in Table 9, where the number of population was set to 100,
the number of iterations was set to 50, and the number of runs was set to 50 times.

Table 9. Parameters setting for convergence experiments.

Parameters Values

Population_Number 100
Max_Gen 50
Run_Nums 50

In this experiment, an evaluation criterion was designed to compare the convergence
of different algorithms, which we called the average change rate of fitness value. Our
approach was as follows: (1) First, we ran PPE and 12 CPPE algorithms on each benchmark
function once. To subtract the fitness values between the 50th generation and the initial
generation. Finally, the result was divided by 50 to obtain the change rate of each generation.
(2) We repeated this process 50 times and then calculated the average. The results yielded
the average change rate of fitness value for the 28 benchmark functions. Table 10 shows the
results between PPE and 12 CPPE algorithms .

Table 10. The experimental results of PPE and CPPE regarding iteration for 50 times on 28 bench-
mark functions.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

PPE 2.87E+02 3.94E+04 6.97E+04 2.16E+04 4.11E+01 2.86E+00 3.76E+00 3.51E-01 1.52E-01 3.79E+01 1.38E+00
CPPE1 4.43E+02 7.76E+04 1.13E+05 4.98E+04 6.85E+01 3.72E+00 3.29E+00 3.64E-01 1.48E-01 4.83E+01 1.74E+00
CPPE2 2.81E+02 1.92E+04 8.76E+04 2.68E+04 4.40E+01 2.70E+00 5.91E+00 3.51E-01 1.43E-01 3.30E+01 1.33E+00
CPPE3 4.73E+02 4.22E+04 1.85E+06 1.33E+05 7.26E+01 4.75E+00 3.02E+02 3.18E-01 1.39E-01 4.49E+01 1.94E+00
CPPE4 4.12E+02 2.77E+04 1.42E+05 1.90E+04 6.89E+01 3.37E+00 4.01E+00 3.81E-01 1.44E-01 4.86E+01 1.65E+00
CPPE5 2.91E+02 2.62E+04 5.02E+04 3.42E+04 4.34E+01 2.78E+00 3.94E+00 3.67E-01 1.43E-01 3.53E+01 1.35E+00
CPPE6 2.95E+02 2.48E+04 1.16E+05 2.69E+04 3.35E+01 2.80E+00 3.03E+00 3.59E-01 1.55E-01 3.42E+01 1.38E+00
CPPE7 2.79E+02 2.89E+04 4.08E+04 1.54E+04 3.52E+01 2.78E+00 3.07E+00 3.50E-01 1.45E-01 3.37E+01 1.34E+00
CPPE8 3.45E+02 6.47E+04 2.22E+05 4.06E+04 5.84E+01 4.01E+00 1.02E+01 3.68E-01 1.50E-01 4.11E+01 1.45E+00
CPPE9 2.08E+02 8.04E+03 2.44E+04 7.86E+03 7.14E+01 2.39E+00 1.26E+02 2.37E-01 1.25E-01 2.18E+01 1.23E+00
CPPE10 3.77E+02 3.05E+04 2.66E+05 2.91E+04 5.85E+01 3.62E+00 1.31E+01 3.65E-01 1.52E-01 4.12E+01 1.59E+00
CPPE11 3.90E+02 3.37E+04 1.34E+05 1.16E+04 5.04E+01 4.34E+00 3.05E+00 3.87E-01 1.45E-01 5.11E+01 1.63E+00
CPPE12 3.28E+02 4.05E+04 1.12E+05 2.69E+04 4.48E+01 2.59E+00 1.47E+01 3.75E-01 1.49E-01 4.00E+01 1.46E+00

f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

PPE 1.22E+00 1.29E+00 3.65E+00 3.79E+00 5.12E-02 1.84E+00 1.76E+00 2.40E+03 3.00E-02 3.60E+00 4.82E+00
CPPE1 1.80E+00 1.55E+00 4.54E+00 4.39E+00 4.66E-02 2.76E+00 2.66E+00 8.82E+03 2.80E-02 4.30E+00 5.34E+00
CPPE2 1.35E+00 1.28E+00 3.79E+00 3.97E+00 5.19E-02 1.71E+00 1.77E+00 2.66E+03 2.92E-02 3.37E+00 4.15E+00
CPPE3 2.04E+00 1.89E+00 4.37E+00 4.31E+00 5.20E-02 3.11E+00 2.63E+00 4.30E+04 2.00E-02 4.22E+00 5.17E+00
CPPE4 1.61E+00 1.66E+00 5.19E+00 3.91E+00 5.54E-02 2.86E+00 2.68E+00 8.39E+03 2.83E-02 4.06E+00 5.96E+00
CPPE5 1.26E+00 1.20E+00 4.03E+00 3.62E+00 5.15E-02 1.78E+00 1.81E+00 2.84E+03 3.09E-02 3.37E+00 4.87E+00
CPPE6 1.29E+00 1.26E+00 3.86E+00 3.73E+00 5.72E-02 1.78E+00 1.73E+00 2.61E+03 3.06E-02 3.54E+00 4.44E+00
CPPE7 1.37E+00 1.28E+00 3.96E+00 3.94E+00 4.86E-02 1.81E+00 1.70E+00 2.87E+03 2.89E-02 3.41E+00 5.37E+00
CPPE8 1.67E+00 1.46E+00 4.05E+00 4.54E+00 4.96E-02 2.31E+00 2.20E+00 1.38E+04 2.44E-02 3.80E+00 5.34E+00
CPPE9 9.29E-01 9.12E-01 2.81E+00 2.21E+00 5.61E-02 9.47E-01 8.61E-01 3.81E+02 2.38E-02 1.77E+00 3.30E+00
CPPE10 1.79E+00 1.72E+00 3.98E+00 4.48E+00 5.33E-02 2.46E+00 2.27E+00 1.62E+04 2.48E-02 3.95E+00 4.86E+00
CPPE11 1.69E+00 1.61E+00 5.19E+00 3.80E+00 5.07E-02 2.63E+00 2.73E+00 6.41E+03 2.65E-02 4.10E+00 6.83E+00

437

Mathematics 2023, 11, 1977

Table 10. Cont.

f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

CPPE12 1.48E+00 1.55E+00 4.19E+00 4.61E+00 4.78E-02 1.98E+00 2.19E+00 7.88E+03 2.63E-02 3.79E+00 5.18E+00

f23 f24 f25 f26 f27 f28

PPE 5.75E+00 1.71E+00 2.00E+00 1.77E+00 3.69E+00 2.23E+00
CPPE1 6.35E+00 1.89E+00 2.20E+00 1.72E+00 3.72E+00 2.80E+00
CPPE2 5.53E+00 1.59E+00 2.07E+00 1.53E+00 3.31E+00 2.23E+00
CPPE3 5.99E+00 1.92E+00 1.94E+00 2.01E+00 2.73E+00 2.59E+00
CPPE4 6.03E+00 1.91E+00 2.09E+00 1.87E+00 4.20E+00 2.73E+00
CPPE5 5.16E+00 1.67E+00 2.07E+00 1.35E+00 4.28E+00 2.41E+00
CPPE6 6.45E+00 1.54E+00 2.18E+00 1.42E+00 3.31E+00 2.24E+00
CPPE7 5.99E+00 1.63E+00 2.18E+00 1.60E+00 3.60E+00 2.46E+00
CPPE8 6.27E+00 1.81E+00 2.04E+00 1.71E+00 2.75E+00 2.62E+00
CPPE9 3.90E+00 1.03E+00 1.45E+00 7.03E-01 3.62E+00 1.53E+00
CPPE10 5.58E+00 1.87E+00 2.11E+00 1.72E+00 2.90E+00 2.60E+00
CPPE11 7.08E+00 1.93E+00 2.28E+00 1.75E+00 3.25E+00 2.64E+00
CPPE12 6.12E+00 1.70E+00 2.08E+00 1.41E+00 3.02E+00 2.47E+00

Furthermore, to accurately calculate the improved percentage of CPPE compared to
PPE, statistical analysis and calculations were performed on the experimental data. The
same methods mentioned in Section 4.2 were used and the results are shown in Table 11.
The first column indicates different CPPE algorithms and the last column indicates the
improved percentages in the convergence of the CPPE algorithm compared with the PPE
algorithm. In Table 11, it can be observed that CPPE1 (CPPE with Logistic map), CPPE3
(CPPE with Singer map), CPPE4 (CPPE with Sine map), CPPE6 (CPPE with Tent map),
CPPE8 (CPPE with Chebyshev map), CPPE10 (CPPE with Cubic map), CPPE11 (CPPE
with Sinusoidal map), and CPPE12 (CPPE with ICMIC map) increased the convergence.
In addition, CPPE3 (CPPE with Singer map) had a significant effect, of about 65.1776%.

Table 11. The percentage of improved convergence of CPPE compared to PPE.

The Average Change Rate of Fitness Value

CPPE1 3.1636%

CPPE2 −0.0739%

CPPE3 65.1776%

CPPE4 2.3946%

CPPE5 −1.1542%

CPPE6 1.1324%

CPPE7 −1.3921%

CPPE8 6.7471%

CPPE9 −2.8102%

CPPE10 7.2003%

CPPE11 2.2421%

CPPE12 1.7341%

4.4. Discussions

In Section 4.2, the performance of different CPPE algorithms and that of the PPE
algorithm are compared. We performed three different analyses of the experimental data.
Firstly, we counted the number of times that CPPE was better than PPE on three indicators
in 28 benchmark functions. The statistical results showed that CPP1, CPPE2, CPPE4, CPPE5,
CPPE6, CPPE7, CPPE9, and CPPE11 algorithms outperformed the PPE algorithm. Secondly,

438

Mathematics 2023, 11, 1977

we counted the optimal times of all CPPEs and PPE on 3 indicators in 28 benchmark
functions. The statistical results showed that CPPE9 was the most prominent among the
13 algorithms. Finally, the improved percentages of all CPPEs compared with PPE in the
three indicators were counted. The statistical results showed that CPPE6 performed the
best, with an increase of 8.9647%, 10.4633%, and 14.6716% compared with PPE in the three
indicators of Final, Mean, and Standard, respectively. Based on the above analysis, we
believe that, in terms of performance, CPPE6 is the best performing algorithm among all
CPPEs, so the Tent map is the best choice to improve the performance of CPPE algorithms.

In Section 4.3, the convergence of different CPPE algorithms and PPE algorithm were
compared. The experimental results showed that, compared with PPE, CPPE1, CPPE3,
CPPE4, CPPE6, CPPE8, CPPE10, CPPE11, and CPPE12 increased the percentages of the
average change rate of the fitness value. Among them, the improvement offered by CPPE3
was the most obvious, with an increase of 65.1776%. Based on the above analysis, we
believe that, in terms of convergence, CPPE3 is the best performing algorithm among all
CPPEs, so the Singer map is the best choice to improve the convergence of CPPE algorithms.

Though CPPE6 (CPPE with Tent map) had the best performance and CPPE3 had
the best convergence, we found CPPE6 to be the best choice among all CPPEs in regard
to both performance and convergence. It offered improvements of 8.9647%, 10.4633%,
and 14.6716% in the three indicators and 1.1324% in convergence.

4.5. Real-Life Problem: Stock Prediction

We applied our CPPE to stock prediction. Here, Amazon stock and a commonly used
prediction model, the LSTM neural network [50], were selected for our experiments. In
our experiments, we used CPPE to optimize the three hyperparameters, “hidden_size”,
“batch_size” and “epochs”, of the LSTM neural network to improve the effectiveness
of LSTM, where “hidden_size” represents the dimension of hidden layers in LSTM,
“batch_size” represents the number of inputs per batch in LSTM, and “epochs” repre-
sents the number of training sessions for LSTM. Note that, considering the best choice
mentioned in Sections 4.2 and 4.3, we chose the CPPE algorithm with Tent map (CPPE6) to
optimize LSTM.

Firstly, data processing was performed on the experimental data selected, which
included the highest price, opening price, lowest price, closing price, and trading volume of
Amazon’s stock every day from 23 October, 2009, to 31 March, 2020. The data was divided
into a training set and a test set, with a ratio of 9:1, and standardized.

The parameter settings for CPPE6 and LSTM model are shown in Table 12. In the
CPPE6 algorithm, we set the population size to 10, the number of iterations to 10, and all
dimensions to 3, because we needed to optimize the three hyperparameters of LSTM.
The range of the solution was set to [1, 300]. In the LSTM model, the time step was set
to 5, which meant using 5 days of data to predict the next day’s data. The solver was
set to “adam”, and the initial learning rate was set to 0.005. After 100 rounds of training,
we reduced the learning rate to 0.2 times the initial learning rate. Furthermore, in this
experiment, the root mean squared error (RMSE) of the LSTM model was used as the fitness
value of the CPPE6 algorithm.

After the experiment, we obtained three optimized hyperparameters: hidden_size
= 179, batch_size = 110, and epochs = 181 with RMSE = 0.05762. Then, we input the
three solutions into the LSTM model and obtained predicted results, as shown in Figure 5.
The horizontal axis represents days sorted by time and the vertical axis represents stock
value, where the red curve represents the predicted value, and the blue curve represents
the real value. Thus, it can be seen that the predicted curve was relatively consistent with
the real curve.

439

Mathematics 2023, 11, 1977

Table 12. Parameter settings for real application experiments.

Parameters Values

Population_Number 10
Max_Gen 10
Dimension 3
L, U 1, 300
Time_step 5
Solver “adam”
Learning_rate 0.005

0 50 100 150 200 250 300

Days

2

2.2

2.4

2.6

2.8

3

3.2

3.4

V
al

ue

Real stock value
Predicted stock value

Figure 5. Prediction results on Amazon stock using CPPE6-LSTM.

5. Conclusions

This study proposes a Chaotic-based Phasmatodea Population Evolution (CPPE)
algorithm by integrating chaotic mapping into the Phasmatodea Population Evolution
(PPE) algorithm. To investigate the impact of various chaotic maps on the algorithm,
12 different chaotic maps were combined with CPPE, resulting in 12 CPPEs. The objective
of this study was to determine whether CPPE outperforms PPE in terms of performance
and convergence. To validate this claim, 28 benchmark functions were employed in the
testing phase. Experimental results demonstrated that CPPE significantly improved both
the performance and convergence speed of the algorithm. Among all chaotic maps, the Tent
map is considered to be the best choice to improve the performance of the CPPE algorithm.
Compared with PPE, CPPE with Tent map improved Final, Mean, and Standard by 8.9647%,
10.4633%, and 14.6716%, respectively. Moreover, the Singer map is considered to be the best
choice to improve the convergence speed of the CPPE algorithm, and CPPE with Singer map
was 65.1776% higher than PPE. Furthermore, we applied CPPE6 to stock prediction. Overall,
this study contributes to the advancement of population-based optimization algorithms
and provides insights into the impact of chaotic mapping on algorithmic performance.

Author Contributions: Conceptualization, T.-Y.W.; methodology, H.L.; software, S.-C.C.; validation,
T.-Y.W.; investigation, H.L.; writing—original draft preparation, T.-Y.W., H.L. and S.-C.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are included in the article.

440

Mathematics 2023, 11, 1977

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PPE Phasmatodea Population Evolution
CPPE Chaotic-based Phasmatodea Population Evolution
GA Generic Algorithm
DE Differential Evolution
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
BOA Butterfly Optimization Algorithm
GOA Grasshopper Optimization Algorithm
CMBSA Bird Swarm Algorithm with Chaotic Mapping
BSA Bird Swarm Algorithm
SSA Sparrow Search Algorithm
CLS Chaotic Local Search
GWO Gray Wolf Optimization
CHHO Chaotic Harris Hawks Optimization
HHO Harris Hawks Optimization
CQFFA Chaotic Quasi-oppositional Farmland Fertility Algorithm
CSBOA Chaotic Satin Bowerbird Optimization Algorithm
CSGO Chaotic Social Group Optimization
SGO Social Group Optimization
MPPE Multigroup-based Phasmatodea Population Evolution Algorithm with Multistrategy
APPE Advanced Phasmatodea Population Evolution Algorithm

References

1. Wu, T.Y.; Lin, J.C.W.; Zhang, Y.; Chen, C.H. A grid-based swarm intelligence algorithm for privacy-preserving data mining. Appl.
Sci. 2019, 9, 774. [CrossRef]

2. Kang, L.; Chen, R.S.; Chen, Y.C.; Wang, C.C.; Li, X.; Wu, T.Y. Using cache optimization method to reduce network traffic in
communication systems based on cloud computing. IEEE Access 2019, 7, 124397–124409. [CrossRef]

3. Leardi, R. Application of genetic algorithm–PLS for feature selection in spectral data sets. J. Chemom. 2000, 14, 643–655. [CrossRef]
4. Montazeri-Gh, M.; Poursamad, A.; Ghalichi, B. Application of genetic algorithm for optimization of control strategy in parallel

hybrid electric vehicles. J. Frankl. Inst. 2006, 343, 420–435. [CrossRef]
5. Baldo, A.; Boffa, M.; Cascioli, L.; Fadda, E.; Lanza, C.; Ravera, A. The polynomial robust knapsack problem. Eur. J. Oper. Res.

2023, 305, 1424–1434. [CrossRef]
6. Zhang, F.; Wu, T.Y.; Wang, Y.; Xiong, R.; Ding, G.; Mei, P.; Liu, L. Application of quantum genetic optimization of LVQ neural

network in smart city traffic network prediction. IEEE Access 2020, 8, 104555–104564. [CrossRef]
7. Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research.

Eng. Appl. Artif. Intell. 2020, 90, 103479.
8. Saravanan, M.; Slochanal, S.M.R.; Venkatesh, P.; Abraham, P.S. Application of PSO technique for optimal location of FACTS

devices considering system loadability and cost of installation. In Proceedings of the 2005 International Power Engineering
Conference, Singapore, 29 November–2 December 2005; pp. 716–721.

9. Assareh, E.; Behrang, M.; Assari, M.; Ghanbarzadeh, A. Application of PSO (particle swarm optimization) and GA (genetic
algorithm) techniques on demand estimation of oil in Iran. Energy 2010, 35, 5223–5229. [CrossRef]

10. Meng, F.Q.; Wei, S.; Wang, J.D.; Wang, P.F.; Li, B. An Information Feedback-based Particle Swarm Optimization Algorithm for
Multi-regional Image Segmentation. J. Netw. Intell. 2023, 8, 194–210.

11. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
12. Mirjalili, S.; Mirjalili, S.M.; Saremi, S.; Mirjalili, S. Whale optimization algorithm: Theory, literature review, and application in

designing photonic crystal filters. Nat.-Inspired Optim. 2020, 811, 219–238.
13. Liu, X.K.; Li, P.Q.; Zhang, Z.K.; Zen, J.J. Location and Capacity Determination of Energy Storage System Based on Improved

Whale Optimization Algorithm. J. Netw. Intell. 2023, 8, 35–46.
14. Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734.

[CrossRef]
15. Rezaee Jordehi, A. A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation

problems. Neural Comput. Appl. 2015, 26, 827–833. [CrossRef]

441

Mathematics 2023, 11, 1977

16. Chen, C.M.; Hao, Y.; Wu, T.Y. Discussion of “Ultra Super Fast Authentication Protocol for Electric Vehicle Charging Using
Extended Chaotic Maps”. IEEE Trans. Ind. Appl. 2023, 59, 2091–2092. [CrossRef]

17. Gao, J.M.L.Y.L. Chaos particle swarm optimization algorithm. J. Comput. Appl. 2008, 28, 322.
18. Talatahari, S.; Azar, B.F.; Sheikholeslami, R.; Gandomi, A. Imperialist competitive algorithm combined with chaos for global

optimization. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1312–1319. [CrossRef]
19. Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 2013,

18, 89–98. [CrossRef]
20. Baykasoğlu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft

Comput. 2015, 36, 152–164. [CrossRef]
21. Gandomi, A.H.; Yang, X.S. Chaotic bat algorithm. J. Comput. Sci. 2014, 5, 224–232. [CrossRef]
22. Snaselova, P.; Zboril, F. Genetic algorithm using theory of chaos. Procedia Comput. Sci. 2015, 51, 316–325. [CrossRef]
23. Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [CrossRef]
24. Sayed, G.I.; Tharwat, A.; Hassanien, A.E. Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection.

Appl. Intell. 2019, 49, 188–205. [CrossRef]
25. Arora, S.; Anand, P. Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. Appl. 2019, 31,

4385–4405. [CrossRef]
26. Varol Altay, E.; Alatas, B. Bird swarm algorithms with chaotic mapping. Artif. Intell. Rev. 2020, 53, 1373–1414. [CrossRef]
27. Li, M.W.; Wang, Y.T.; Geng, J.; Hong, W.C. Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dyn. 2021,

103, 1167–1193. [CrossRef]
28. Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021,

220, 106924. [CrossRef]
29. Xu, Z.; Yang, H.; Li, J.; Zhang, X.; Lu, B.; Gao, S. Comparative Study on Single and Multiple Chaotic Maps Incorporated Grey

Wolf Optimization Algorithms. IEEE Access 2021, 9, 77416–77437. [CrossRef]
30. Hao, P.; Sobhani, B. Application of the improved chaotic grey wolf optimization algorithm as a novel and efficient method for

parameter estimation of solid oxide fuel cells model. Int. J. Hydrog. Energy 2021, 46, 36454–36465. [CrossRef]
31. Song, P.C.; Chu, S.C.; Pan, J.S.; Yang, H. Phasmatodea population evolution algorithm and its application in length-changeable

incremental extreme learning machine. In Proceedings of the 2020 2nd international conference on industrial artificial intelligence
(IAI), Shenyang, China, 23–25 October 2020; pp. 1–5.

32. Song, P.C.; Chu, S.C.; Pan, J.S.; Yang, H. Simplified Phasmatodea population evolution algorithm for optimization. Complex Intell.
Syst. 2022, 8, 2749–2767. [CrossRef]

33. Gezici, H.; Livatyalı, H. Chaotic Harris hawks optimization algorithm. J. Comput. Des. Eng. 2022, 9, 216–245. [CrossRef]
34. Gharehchopogh, F.S.; Nadimi-Shahraki, M.H.; Barshandeh, S.; Abdollahzadeh, B.; Zamani, H. CQFFA: A Chaotic Quasi-

oppositional Farmland Fertility Algorithm for Solving Engineering Optimization Problems. J. Bionic Eng. 2022, 20, 158–183.
[CrossRef]

35. Chen, X.; Cao, B.; Pouramini, S. Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird
Optimization Algorithm with model predictive control and artificial neural network: A case study. Energy 2023, 270, 126874.
[CrossRef]

36. Naik, A. Chaotic Social Group Optimization for Structural Engineering Design Problems. J. Bionic Eng. 2023. [CrossRef]
37. Zhu, Y.; Yan, F.; Pan, J.S.; Yu, L.; Bai, Y.; Wang, W.; He, C.; Shi, Z. Mutigroup-based phasmatodea population evolution algorithm

with mutistrategy for iot electric bus scheduling. Wirel. Commun. Mob. Comput. 2022, 2022, 1500646. [CrossRef]
38. Zhuang, J.; Chu, S.C.; Hu, C.C.; Liao, L.; Pan, J.S. Advanced Phasmatodea Population Evolution Algorithm for Capacitated

Vehicle Routing Problem. J. Adv. Transp. 2022, 2022. [CrossRef]
39. Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [CrossRef]
40. Seyedzadeh, S.M.; Mirzakuchaki, S. A fast color image encryption algorithm based on coupled two-dimensional piecewise

chaotic map. Signal Process. 2012, 92, 1202–1215. [CrossRef]
41. Ibrahim, R.A.; Oliva, D.; Ewees, A.A.; Lu, S. Feature selection based on improved runner-root algorithm using chaotic singer map

and opposition-based learning. In Proceedings of the Neural Information Processing: 24th International Conference, ICONIP
2017, Guangzhou, China, 14–18 November 2017; Proceedings, Part V 24; Springer: Cham, Switzerland, 2017; pp. 156–166.

42. Belazi, A.; Abd El-Latif, A.A. A simple yet efficient S-box method based on chaotic sine map. Optik 2017, 130, 1438–1444.
[CrossRef]

43. Li, C.; Luo, G.; Qin, K.; Li, C. An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 2017, 87, 127–133.
[CrossRef]

44. Chikushi, R.T.M.; de Barros, R.S.M.; da Silva, M.G.N.M.; Maciel, B.I.F. Using spectral entropy and bernoulli map to handle
concept drift. Expert Syst. Appl. 2021, 167, 114114. [CrossRef]

45. Stoyanov, B.; Kordov, K. Image encryption using Chebyshev map and rotation equation. Entropy 2015, 17, 2117–2139. [CrossRef]
46. Mennis, J.; Viger, R.; Tomlin, C.D. Cubic map algebra functions for spatio-temporal analysis. Cartogr. Geogr. Inf. Sci. 2005,

32, 17–32. [CrossRef]

442

Mathematics 2023, 11, 1977

47. Jiteurtragool, N.; Ketthong, P.; Wannaboon, C.; San-Um, W. A topologically simple keyed hash function based on circular chaotic
sinusoidal map network. In Proceedings of the 2013 15th International Conference on Advanced Communications Technology
(ICACT), Pyeongchang, Republic of Korea, 27–30 January 2013; pp. 1089–1094.

48. Liu, W.; Sun, K.; He, Y.; Yu, M. Color image encryption using three-dimensional sine ICMIC modulation map and DNA sequence
operations. Int. J. Bifurc. Chaos 2017, 27, 1750171. [CrossRef]

49. Liang, J.J.; Qu, B.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session
on Real-Parameter Optimization; Technical Report; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou,
China; Nanyang Technological University: Singapore, 2013; Volume 201212, pp. 281–295.

50. Huang, R.; Wei, C.; Wang, B.; Yang, J.; Xu, X.; Wu, S.; Huang, S. Well performance prediction based on Long Short-Term Memory
(LSTM) neural network. J. Pet. Sci. Eng. 2022, 208, 109686. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

443

Citation: Yan, X.; Li, Y. A Novel

Discrete Differential Evolution with

Varying Variables for the Deficiency

Number of Mahjong Hand.

Mathematics 2023, 11, 2135. https://

doi.org/10.3390/math11092135

Academic Editor: Jian Dong

Received: 20 March 2023

Revised: 27 April 2023

Accepted: 30 April 2023

Published: 2 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Discrete Differential Evolution with Varying Variables
for the Deficiency Number of Mahjong Hand

Xueqing Yan 1 and Yongming Li 2,*

1 School of Computer Science, Shaanxi Normal University, Xi’an 710062, China; xueqingyan@snnu.edu.cn
2 School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710062, China
* Correspondence: liyongm@snnu.edu.cn

Abstract: The deficiency number of one hand, i.e., the number of tiles needed to change in order to
win, is an important factor in the game Mahjong, and plays a significant role in the development
of artificial intelligence (AI) for Mahjong. However, it is often difficult to compute due to the large
amount of possible combinations of tiles. In this paper, a novel discrete differential evolution (DE)
algorithm is presented to calculate the deficiency number of the tiles. In detail, to decrease the
difficulty of computing the deficiency number, some pretreatment mechanisms are first put forward
to convert it into a simple combinatorial optimization problem with varying variables by changing
its search space. Subsequently, by means of the superior framework of DE, a novel discrete DE
algorithm is specially developed for the simplified problem through devising proper initialization,
a mapping solution method, a repairing solution technique, a fitness evaluation approach, and
mutation and crossover operations. Finally, several experiments are designed and conducted to
evaluate the performance of the proposed algorithm by comparing it with the tree search algorithm
and three other kinds of metaheuristic methods on a large number of various test cases. Experimental
results indicate that the proposed algorithm is efficient and promising.

Keywords: Mahjong; differential evolution; deficiency number; combinatorial optimization

MSC: 68T20; 90C27

1. Introduction

Mahjong is a traditional, Chinese, tile-based game with a long history and is often
played by four people [1,2]. In this game, each player is devoted to devising a proper
strategy to win as soon as possible, with luck also playing an important role in this process.
Due to its imperfect information, Mahjong has become a popular testbed for artificial
intelligence (AI) research [3–9]. Nowadays, various variants of Mahjong with different
rules for computing paybacks and/or the legality of actions have emerged due to the
individual cultures of different regions and countries. However, they all have similar
processes and can be easily extended by the basic version of Mahjong. Therefore, the basic
version of Mahjong is just considered in the following without loss of generality.

In the basic version of Mahjong, four players are involved, and 108 tiles are used,
consisting of 36 tiles of bamboo type, 36 tiles of character type, and 36 tiles of dot type. At
the start of the game, each player in turn draws thirteen tiles from the tile wall, and then
they each take one tile from the tile wall and discard one tile from their hand. When one
player gets a winning hand or there are no tiles left in the tile wall, the game ends. So, all
players need to continuously change their hands’ tiles in order to ensure that their hands
win quickly, and these processes involve a number of evaluations on the quality of various
cases of tiles, i.e., calculating the minimum number of tiles needed to be changed to win,
which is called the deficiency number [10]. Thereby, computing the deficiency number has
an important role in Mahjong, and can promote AI development for the game. Moreover,

Mathematics 2023, 11, 2135. https://doi.org/10.3390/math11092135 https://www.mdpi.com/journal/mathematics
445

Mathematics 2023, 11, 2135

the winning hand closely depends on the combinations of the tiles, and these combinations
include a sequence of three or four identical tiles (called a pong or kong), a sequence of
three consecutive tiles with the same type (called a chow), and a pair of identical tiles (called
a pair or an eye). A pong or a chow is also called a meld, and a pseudomeld (abbr. pmeld)
refers to a pair of tiles that can constitute a meld. Therefore, computing the deficiency
number is in fact a combinatorial optimization problem, which is often not easily calculated
due to its large search space.

As far as we know, there are very few studies on the calculation of the deficiency
number at present [10–12]. Specifically, in the paper [10], Li and Yan presented a recursive
method and a tree-based method for calculating the deficiency number. In the recursive
method, for one hand with 14 tiles, all cases of 14 tiles with k deficiency must be known in ad-
vance before the deficiency number of one hand is determined to be k + 1. In the tree-based
method, all pseudo-decompositions of the tiles must be found and evaluated, and then
the deficiency number is obtained by the minimum cost of these pseudo-decompositions.
Herein, a pseudo-decomposition is a sequence π of five subsequences, π[0], π[1], . . . , π[4],
where π[i] for 0 ≤ i ≤ 3 can be a meld, a pmeld, a single tile, or empty, and π[4] can be
a pair, a single tile, or empty. The cost of each pseudo-decomposition is the number of
missing tiles compared to the current hand. Wang et al. [11] constructed a theoretical model
of weighted restarting automaton to compute the deficiency number of 14 tiles, where
the tiles are combined into melds and eyes during the process of simplification, and the
number of changed tiles is counted using its weight function. Recently, Wang et al. [12]
further proposed an efficient algorithmic approach, where the tiles in the player’s hand are
first divided into several groups, such as melds, pseudomelds, and isolated tiles, and then
the deficiency number is computed based on the number of pseudomelds and that of the
isolated tiles. Although these approaches can calculate the deficiency number of a Mahjong
hand, the full searches are all implicit in them, which often take too much computational
time and thus cannot meet the actual demand of response time in the game. Therefore, it is
necessary to develop a more promising search approach for the deficiency number.

As is well known, because of the lower requirement on the problem to be solved,
heuristic intelligent search/optimization methods have been regarded as the most impor-
tant tools for solving real problems, especially complicated ones. In addition, various
metaheuristic algorithms have been presented by simulating nature phenomena, animal
behaviors, human activities, or physical criteria, such as the genetic algorithm (GA) [13],
differential evolution (DE) [14], particle swarm optimization (PSO) [15], artificial bee colony
algorithm [16], water cycle algorithm (WCA) [17], squirrel search algorithm [18], gravi-
tational search algorithm (GSA) [19], teaching–learning-based optimization (TLBO) [20],
gaining–sharing knowledge-based algorithm [21], and so on. In detail, more metaheuristic
algorithms can be found in [22], and they have been widely researched and success-
fully applied in many scientific fields and practical problems up to now, including data
clustering [23,24], stock portfolios [25], knapsack optimization problems [26], multitask
optimization [27], and multimodal optimization [28].

As pointed out in [22], among the existing intelligent approaches, differential evolution
(DE) [14] is one of the most popular population-based stochastic optimizers, and has been
proven to be more efficient and robust on various problems. Due to its simplicity and
simple implementation, DE always attracts more attention from researchers, and numerous
DE variants have been put forward to strengthen its performance [29–34] and/or solve
special practical problems [35–39]. For example, by dividing a population into multiple
swarms and randomly selecting the solutions with better fitness values in each swarm to
conduct mutations, Wang et al. [29] developed a novel adaptive DE algorithm. Through
making full use of the information of the best neighbor, one randomly selected neighbor,
and the current individual for each individual to predict the promising region, Yan and
Tian [30] presented an enhanced adaptive DE variant, while, by adaptively combining the
benefits of multiple operators, Yi et al. [34] developed a novel approach for continuous
optimization problems. Moreover, by designing a Taper-shaped transfer function based

446

Mathematics 2023, 11, 2135

on power functions to transform a real vector representing the individual encoding into a
binary vector, He et al. [35] proposed a novel binary differential evolution algorithm for
binary optimization problems. Meanwhile, for traveling salesman problems, Ali et al. [38]
proposed an improved discrete DE version, where an enhanced mapping mechanism is
devised to map continuous variables to discrete ones, a k-means clustering-based repairing
method is devised to enhance the solutions in the initial population, and an ensemble of
mutation strategies is used to maintain its exploration capability. In particular, a large
number of numerical experiments were conducted in their papers, and the numerical
results validated their effectiveness and superiority. Thereby, DE has a greater potential in a
promising search performance. Following this, we adopt the framework of DE to calculate
the deficiency number of the tiles in this paper, so as to obtain a promising performance.
Specifically, more detailed research on the improvements and applications of DE can be
further referred to in [40].

In this paper, a more efficient method is researched to calculate the deficiency number
of a Mahjong hand, and the framework of DE is adopted to achieve this, based on its
intrinsic advantages. In detail, in order to reduce the difficulty of computing the deficiency
number, some pretreatment mechanisms are first devised to convert the original problem
into a simple combinatorial optimization problem, where the dimensions of the search space
are degraded to five, and each feasible solution may have different lengths. Noticeably, this
makes the dealing problem significantly different to the existing studied discrete and/or
combinatorial optimization problems, in which the size of every solution is fixed and
consistent. Moreover, for this converted new problem, based on the basic framework
of DE, a novel discrete DE (NDDE) algorithm is then specially presented by devising
proper initialization, a mapping solution method, a repairing solution technique, a fitness
evaluation approach, and mutation and crossover operations, which aim to meet the
available search requirement of the discrete space and the characteristic of the varying sizes
of different individuals. Then, the proposed NDDE algorithm is capable of computing
the deficiency number of one hand efficiently and effectively. Finally, a large number of
experiments are designed and conducted to verify the performance of the NDDE algorithm.
Specifically, three representative data sets are employed and tested, including 118,800
hands with one type, 100,000 hands with two types, and 100,000 hands with three types,
and the NDDE algorithm is compared with the tree search method in [10] and three other
kinds of metaheuristic methods. The sensitivity of the parameters involved in the NDDE
algorithm is also investigated. The experimental results show that the proposed algorithm
has a promising performance for the deficiency number of the hand.

For clarity, compared with the existing works, the main contributions and novelties of
this paper are described as follows.

(1) To our knowledge, the research presented in the paper is the first to utilize a heuristic
intelligent algorithm for computing the deficiency number of a Mahjong hand. In
fact, the works on computing the deficiency number of one hand are still rare up to
now, and all of them adopt a deterministic approach. Thus, this study may provide a
new alternative for devising more effective and efficient methods for calculating the
deficiency number.

(2) The original problem of computing the deficiency number is converted into a more
simple combinatorial optimization problem. This may effectively reduce the difficulty
and computational costs of solving it.

(3) To solve the simplified problem above, a novel discrete DE (NDDE) algorithm is
further specially proposed by devising proper initialization, a mapping solution
method, a repairing solution technique, a fitness evaluation approach, and mutation
and crossover operations. Significantly, the simplified problem has the characteristic
that the feasible solutions may have various lengths, which is not involved in the pre-
vious discrete and/or combinatorial optimization problems. Therefore, the proposed
algorithm has different and more rigorous design requirements.

447

Mathematics 2023, 11, 2135

(4) A large number of experiments are designed and conducted to verify the performance
of the NDDE algorithm, where three representative data sets are employed and
tested, including 118,800 hands with one type, 100,000 hands with two types, and
100,000 hands with three types. Moreover, the NDDE algorithm is compared with
the tree search method in [10] and three other kinds of metaheuristic methods, and
the sensitivity of the parameters involved in the NDDE algorithm is also investigated.
Experimental results indicate that the NDDE algorithm is a more promising technique
for the deficiency number of the hand.

Finally, it should also be mentioned that the reason the framework of DE is chosen
to design the solver in this paper is solely because much of the research reported in
the literature has proven its superiority on various problems, but other metaheuristic
algorithms can also be adopted here, which we will further study in our future work.

The reminder of this paper is organized as follows. Some related works and basic
notions on Mahjong are presented in Section 2. The proposed algorithm for computing the
deficiency number of a Mahjong hand is introduced in Section 3, and the experimental tests
are conducted and analyzed in Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries

In this section, the related concepts and research on Mahjong and the classical DE
algorithm shall be described.

2.1. Related Concepts on Mahjong

In this part, some related concepts in Mahjong are introduced to provide a foundation
for the below descriptions. For simplicity, the basic version of Mahjong, denoted as M0, is
considered, which consists of tiles with bamboo type, tiles with character type, and tiles
with dot type. Specifically, these tiles with bamboo, character, and dot type are represented
as follows:

• Bamboos: B1, B2, . . . , B9.
• Characters: C1, C2, . . . , C9.
• Dots: D1, D2, . . . , D9.

Moreover, in M0, each of the above tiles has four identical tiles; thus, there are 108
tiles in M0 in total. Subsequently, some basic notions on Mahjong shall be provided, which
mainly refers to the the literature [10,12].

Definition 1. A pong is a sequence of three identical tiles, that is, a pong has the form of XiXiXi
for X ∈ {B, C, D} and 1 ≤ i ≤ 9; A chow is a sequence of three consecutive tiles with the same
type, that is, a chow has the form of XiXi+1Xi+2 for X ∈ {B, C, D} and 1 ≤ i ≤ 7; An eye
(or pair) is a pair of identical tiles, that is, an eye has the form of XiXi for X ∈ {B, C, D} and
1 ≤ i ≤ 9. A meld is either a pong or a chow.

Definition 2. A pseudochow (pchow) is a pair of tiles XiXj with the same type, having
1 ≤ |j − i| ≤ 2 and X ∈ {B, C, D}, which can become a chow if we add an appropriate tile
with the same type in it. A pseudomeld (pmeld) is a pchow or a pair. We say a tile c completes a
pmeld (ab) if (abc) (after reordering) is a meld. Similarly, a pair is completed from a single tile t if
it is obtained by adding an identical tile to t.

For example, (B1B1B1) is a pong, (C1C2C3) is a chow, (D1D1) is a pair, and (B2B3)
and (C3C5) are two pchows.

Definition 3. A hand is a set of 14 tiles, denoted by H, i.e., a sequence of 14 tiles from M0, where
every tile can not appear more than four times.

Definition 4. A hand H from M0 is winning or complete if it can be decomposed into four melds
and one pair. (For ease of presentation, we do not regard a hand with seven pairs as complete.) Given

448

Mathematics 2023, 11, 2135

a complete hand H, a decomposition π of H is a sequence of five subsequences of H, where π[i] is
a meld for 0 ≤ i ≤ 3 and π[4] is a pair. If this is the case, we call π[4] the eye of this decomposition.

For example, the hand H1 = (B1B2B3B3B3B8B8B8)(C4C5C6)(D6D7D8) is a winning or
complete hand, and its decomposition is π = (B1B2B3)(B8B8B8)(C4C5C6)(D6D7D8)(B3B3).

As is well known, the hands involved in a Mahjong game are mostly incomplete.
That is, there is no decomposition defined above for these hands. So, corresponding to the
decomposition of a winning hand, another concept of predecomposition is further given
here for the hands.

Definition 5. Given a hand H, the predecomposition (abbr. pDCMP) of H is a sequence π of
five subsequences, π(1), . . . , π(5), of H such that each π(i) (1 ≤ i ≤ 5) is a meld, pair, pchow,
or empty.

Noticeably, unlike the concept of pseudo-decomposition in [10], a single tile is not contained
in the predecomposition and the position of the eye is no longer fixed. For example, with respect
to the above hand H1, the sequence π1 = (B1B2)(B3B3B3)(B8B8)(C4C5C6)(D6D7D8) is one
of its pDCMPs.

Definition 6. Suppose π and π′ are two pDCMPs for one hand H. We say π′ is finer than π if
π(i) is identical to or a subsequence of π′(i) for 1 ≤ i ≤ 5. A pDCMP π is completable if there
exists a decomposition π∗ for H that is finer than π. If this is the case, we call π∗ a completion of
π. Moreover, the cost of a completable pDCMP π, written cost(π), is the number of missing tiles
required to complete π into a decomposition, which consists of four melds and one eye.

In particular, for one pDCMP π of one hand H, we say it has infinite cost if it is
incompletable. Moreover, for the above pDCMP π1 of H1, its cost is 1 since it can be
completed by one tile, B3.

Definition 7. For one hand H, the minimal number of necessary tile changes for making T a
winning is called the deficiency number (or simply deficiency) of H. If the deficiency of H is �,
we write d f ncy(H) = �. Obviously, for a winning hand H, it holds that d f ncy(H) = 0.

Based on the above notions, we can see that for one hand, H, its deficiency number
can be obtained by finding all its possible predecompositions and then comparing their
differences with the ideal decompositions.

2.2. Research on Mahjong Game

With the development of artificial intelligence (AI) techniques, games are continuously
regarded as one of the most important test platforms. In particular, for games with perfect
information, such as checkers [41], chess [42] and Go [43,44], AI has now even been able to
beat the best human players. In contrast, for imperfect information games [45–49], there
are still few works since players have to deal with some invisible information during the
game, especially for Mahjong.

As stated in the Introduction, there have been various variants of Mahjong due
to the unique cultures of each region and country. Among them, Riichi Mahjong is a
popular version played in Japan, and most of the current research on Mahjong is based
on it [5,8,9,49–52]. Specifically, Li et al. [51] proposed a Mahjong AI system, suphx, based
on reinforcement learning, and the test results on the “Tenhou” platform showed its
effectiveness. Kurita [5] abstracted the Mahjong process by defining multiple Markov
decision processes, and then constructed an effective search tree for optimal decision-
making. Mizukami and Tsuruoka [49] built a strong Mahjong AI by modeling opponent
players and performing Monte Carlo simulations. Yoshimura et al. [50] proposed a tabu
search method of optimal movements without using game records, while Sato et al. [52]
presented a new method to classify the opponent players’ strategy by analyzing Mahjong

449

Mathematics 2023, 11, 2135

playing records. Additionally, for the version of bloody Mahjong, Gao and Li [8] developed
a fusion model by using the deep learning and XGBoost algorithm to extract the Mahjong
situation features and derive the card strategy, respectively. In particular, a more detailed
review about the existing works on Mahjong AI can be further found in ref. [9], where the
advantages and disadvantages of each method are analyzed.

Unlike the above works that aim to develop Mahjong AI players, there are still few
studies to evaluate the quality of a Mahjong hand, which is more helpful for a player to
devise an appropriate strategy during the game [10–12]. In [10], Li and Yan first introduced
the notation of the deficiency number for measuring the quality of a hand, and developed
two different calculation methods for it, namely, the recursive method and the tree-based
method. After this, Wang et al. [11] presented a theoretical model of weighted restarting
automaton for computing the deficiency number of 14 tiles. In the developed model, the
tiles are combined into melds and eyes in the process of simplification, and the number of
changed tiles is counted by its weight function. Moreover, by dividing the tiles into some
groups, such as melds, pseudomelds, and isolated tiles, in advance and fully considering
the relation between their numbers, Wang et al. [12] recently further proposed an efficient
algorithm to calculate the deficiency number of 14 tiles. Even though these above methods
have made some progress in measuring the quality of a hand, they all contains the idea
of full searches, which might make their computational time too long to timely satisfy the
actual demand of response time during a game. Therefore, it is necessary to devise a more
promising technique for calculating the deficiency number.

2.3. Traditional DE Algorithm

For the convenience of later descriptions, the detailed operations of a classical DE is
drawn as follows, including initialization, mutation, crossover, and selection [14]. Specifi-
cally, the minimization problem min{ f (�x)|xmin,j ≤ xj ≤ xmax,j, j = 1, 2, . . . , D} is consid-
ered here, where �x = (x1, x2, . . . , xD) is the solution vector, D is the dimension of the search
space, and xmin,j and xmax,j are the lower and upper bounds of the j-th component of the
search space, respectively.

First, one population, P0, consisting of NP solutions is randomly created in the search
space. Each solution is denoted by �x0

i = (x0
i,1, x0

i,2, . . . , x0
i,D) with i = 1, 2, . . . , NP, and NP is

the size of population. Concretely, the j-th component of �x0
i is generated by

x0
i,j = xmin,j + rand · (xmax,j − xmin,j), (1)

where rand is a random number uniformly distributed in [0, 1].
After initialization of the population, for each solution �xg

i at g generation, the mutation
operation is executed to create its mutation individual �vg

i . The detailed process of operator
‘DE/rand/1’ can be provided as

�vg
i = �xg

r1 + F · (�xg
r2 −�xg

r3), (2)

where r1, r2, and r3 are three random integers in [1, NP] and have r1 �= r2 �= r3 �= i, and
F is a scaling factor.

Then, by combining the components of �vg
i and its corresponding target individual �xg

i ,
one trial individual �ug

i = (ug
i,1, ug

i,2, . . . , ug
i,D) is created with the crossover operation. The

rule of the binomial crossover method is just described here as:

ug
i,j =

{
vg

i,j, if rand ≤ Cr or j = randn(i),
xg

i,j, otherwise
(3)

where ug
i,j, vg

i,j, and xg
i,j are, respectively, the j-th components of �ug

i , �vg
i , and �xg

i , Cr ∈ [0, 1] is
the crossover rate, and randn(i) returns a random integer within [1, D], which ensures that
�ug

i obtains at least one component from �vg
i .

450

Mathematics 2023, 11, 2135

Finally, the selection operation is conducted to update the current population by
comparing each target solution �xg

i with its trial vector �ug
i based on their fitness values. In

particular, the greedy selection strategy can be expressed as follows.

�xg+1
i =

{
�ug

i , if f (�ug
i) ≤ f (�xg

i)
�xg

i , otherwise.
(4)

where f (·) is the objective function to be optimized.
Note that DE with (4) will either get better or remain at the same fitness status, but

never deteriorate. Meanwhile, when DE is activated for one optimization problem, the
mutation, crossover, and selection operations will in turn be executed until one satisfying
solution is found or the prescribed termination criterion is met.

3. Proposed Algorithm

As described and discussed in the Introduction, the deficiency number evaluates the
quality of a Mahjong hand and is helpful for a player to devise an appropriate strategy,
which can facilitate the development of Mahjong AI. However, due to the fact that the tiles
in one hand always have a large number of possible combinations, it usually cannot be
easily calculated. To address this issue, several approaches have been presented, but they
are very limited and always require too much computational time. Therefore, inspired
by the advantages of DE, such as simplicity, easy implementation, strong robustness,
and superior performance, we propose a novel discrete DE variant (NDDE) to compute
the deficiency number of a Mahjong hand in this section. Specifically, the problem of
computing the deficiency number is first converted to a simpler combinatorial optimization
problem, and a new DE variant is presented for it by devising proper initialization, a
mapping solution method, a repairing solution technique, a fitness evaluation approach,
and mutation and crossover operations.

3.1. Simplified Problem of Deficiency Number

As stated in [10], the problem of computing the deficiency number is in fact an
optimization problem and can be regarded as a combinatorial optimization problem to
solve, i.e., finding one proper combination of the tiles that has minimal differences between
it and its corresponding ideal winning hand. Recently, several approaches have been
proposed to calculate the deficiency number of the tiles based on this [10–12]. However,
there are often too many combinations in the search space, which might degrade the
efficiency of these methods. To alleviate this demerit, we propose converting the problem
of computing the deficiency number into a simpler one, where the dimension of the new
search space is reduced to five. The details of the concrete processes are described in
the following.

For one Mahjong hand H, we first search all its possible melds and pmelds and denote
them by S. The reason for this is that the decomposition of a winning hand is constituted by
four melds and one eye, and it can be completed by the predecomposition, which consists
of melds and/or pmelds. Then, the problem of computing the deficiency number can be
alternatively described as:

min
π∈Π

g(π) (5)

where π = (π(1), π(2), π(3), π(4), π(5)) is the predecomposition of H with π(i) (1 ≤ i ≤ 5)
being a meld, pair, or pchow from S or empty, Π is the set of all predecompositions of H, and
g(π) denotes the differences between π and its ideal decomposition, i.e., having g(π) = cost(π),
which will be further discussed in the next subsection.

According to the definition of Equation (5), all possible melds and pmelds of one
Mahjong hand H must be found and contained in S, so as to ensure the completeness of
all its predecompositions. Moreover, since the meld has the modes of chow and pong, the
pmeld has the modes of pair and pchow, and the pchow always has two different modes,
such as (D6D7) and (D6D8); then, S can be formed by considering each case above for

451

Mathematics 2023, 11, 2135

each tile. Note that, to form a winning hand, the pchow must be able to constitute a chow,
and thus, the number of tiles used to complete the pchow should be less than four in H.
Thereby, for a Mahjong hand H, its related set S can be generated as follows. First, we find
the distinct tiles of H and denote them by St, while initializing the set S to be empty. Then,
for each tile Xi ∈ St, the following five cases are successively checked to create all possible
melds and pmelds, which will be added into S.

Case 1. If Xi+1 ∈ H and the number of Xi−1 or Xi+2 in H is less than four, then add pchow
(XiXi+1) into S;

Case 2. If Xi+2 ∈ H and the number of Xi+1 in H is less than four, then add pchow (XiXi+2)
into S;

Case 3. If Xi+1 ∈ H and Xi+2 ∈ H, then add chow (XiXi+1Xi+2) into S;

Case 4. If the number of Xi in H is more than two, then add pair (XiXi) into S;

Case 5. If the number of Xi in H is more than three, then add pong (XiXiXi) into S.

Particularly, Cases 1, 2, and 4 can provide all the possible pmelds, and Cases 3 and 5
can give all the possible melds involved in H.

In summary, from the above descriptions, all the possible melds and pmelds can be
obtained for each Mahjong hand H, and then every predecomposition involved in it can
be created by using S. Thus, the predecompositions obtained by the tree-based search
algorithm will be contained in the search space Π of the new problem. Meanwhile, since the
tree-based search algorithm is a full search approach, the legal solution for the new problem
can also be obtained by it. So, the proposed operations cannot affect the deficiency number
of one Mahjong hand, and the converted problem and its original one are equivalent.
Moreover, it is easy to find that the dimension of this new problem is just five, and its search
space is decided by the length of S. Additionally, the generation process of S is relatively
cheap, and its size of S is often smaller; therefore, the new problem has a smaller search
space and is easier to solve.

3.2. Proposed NDDE Algorithm

In this subsection, the special components of the NDDE algorithm shall be introduced,
including the initialization, mapping solution method, repairing solution technique, fitness
evaluation approach, and mutation and crossover operations.

3.2.1. Initialization of Population and Mapping Solution

According to the framework of DE, when DE is activated, an initial population with
NP solutions will first be created. In this paper, since the objective function is a discrete
one, the following special method is used to initialize the population P0.

For convenience, we let NS denote the size of the set S, each solution �x0
i denote a pre-

decomposition π, and then have �x0
i = (x0

i,1, x0
i,2, . . . , x0

i,5) with i = 1, 2, . . . , NP. Specifically,
for each element x0

i,j of �x0
i , j = 1, 2, . . . , 5, it will be created by

x0
i,j = randint(NS), (6)

where randint(A) returns a random integer uniformly distributed in [1, A].
Moreover, from Equation (6), one can easily find that each solution in P0 is only

represented by some integer values, and they are not compatible with the new problem
described in Equation (5). Thus, a mapping method is further provided here for matching
the solutions of the population with those of the new problem. In particular, for each
solution �x0

i in P0, its corresponding solution π0
i for the new problem can be obtained by

π0
i = (π0

i (1), π0
i (2), π0

i (3), π0
i (4), π0

i (5)), (7)

where π0
i (j) is the x0

i,j-th element of S for j = 1, 2, . . . , 5, which may be a meld or pmeld.

452

Mathematics 2023, 11, 2135

From the above descriptions, the solutions matching the DE algorithm and the new
problem can all be obtained. Noticeably, the operations of initializing the population and
mapping it are both simple and easy to implement. Thus, these operations will not add
severe computational burdens.

3.2.2. Repairing Solution Technique

As described above, through the proposed mapping method, each individual in a
population will generate a corresponding solution for the new problem. However, there is
still a shortcoming in it, that is, the mapped solutions cannot be guaranteed to be feasible.
In fact, for one Mahjong hand H and a mapped solution πi, the number of some tiles in
πi may exceed that in H. Thereby, a repairing technique is also necessary to correct these
infeasible solutions.

For the sake of saving the computational cost of the algorithm, the following simple
repairing approach is used in this paper. For one Mahjong hand H and a mapped solution
πi, all distinct tiles of πi are first found and recorded in one set, denoted by Sp. Then, for
each tile Xi in Sp, we separately count its numbers in πi and H, and if the number in πi is
larger than that in H, we gradually remove one meld or pmeld containing Xi from πi until
its number in πi is less than or equal to that in H. At the same time, when one meld or
pmeld is removed in πi, its corresponding element in �xg

i will also be set to empty. Clearly,
by this repairing method, each mapped solution will be changed to be feasible, and this
correcting process is very easy to achieve.

3.2.3. Fitness Evaluation Approach

In order to determine which solutions will be selected in the next iteration, their
fitness values should be evaluated as well. At each generation g, the fitness value of
each individual �xg

i in population Pg is evaluated by the cost of its corresponding mapped
solution π

g
i for the new problem. That is, we let f (�xg

i) = g(πg
i) in this paper.

Concretely, for a mapped solution πg, according to g(πg) = cost(πg) and the defini-
tion of cost(πg), i.e., the number of missing tiles required to complete πg into a decomposi-
tion, the fitness value of �xg

i can be calculated by

f (�xg
i) =

⎧⎨⎩
4−m, if m + n = 5 and p = 1,
5−m, if m + n = 5 and p = 0,
9− 2 ∗m− n, if m + n < 5.

(8)

Herein, m and n are the numbers of meld and pmeld in π
g
i , respectively, and p is the index

of whether there is a pair in π
g
i . If there is a pair in π

g
i , then we have p = 1; otherwise,

p = 0.
Moreover, it should be mentioned that there are still two other special cases in the

evaluation of the solution. For one predecomposition πg, the first case is that it has
m + n = 5 and contains two identical pairs. In this case, one of the two pairs in πg should
have formed a meld, but the number of tiles in πg will have increased to four. Thus, the
actual cost should be added by one due to the invalid pmeld. Another case is that it has
m = 4, n = 0, and the remaining two different tiles will have formed a pong in πg. In this
case, we further need to form a pair to complete πg, but the remaining tiles cannot form a
pair. Therefore, we need to change both of these two tiles to form a pair and the actual cost
of πg should be two.

For example, considering one Mahjong hand H = (B1B2B3B3B3B3B4B8)(C4C5C9)
(D6D7D8) and its three predecompositions π1 = (B1B2B3)(B3B4)(B3B3)(C4C5)(D6D7D8),
π2 = (B1B2B3)(B3B3B3)(C4C5)(D6D7D8), and π3 = (B2B3B4)(B1B3)(B3B3)(C4C5)(D6D7),
by using the above evaluation approach, we can find that for π1, it has m = 2, n = 3, and
p = 1; thus, g(π1) = 2. While for π2, it has m = 3, n = 1, and p = 0; thus, g(π2) = 2. For
π3, it has m = 1, n = 4, and p = 1; thus, g(π2) = 3.

453

Mathematics 2023, 11, 2135

In conclusion, from the above descriptions, the proposed fitness evaluation method
can accurately assess the quality of each solution in the population.

3.2.4. Mutation and Crossover Operators

To fully search the decision space and ensure the computational efficiency of the
algorithm, the mutation operator “DE/rand/1” and the binomial crossover operation are
enhanced and employed to generate the mutant and trial individual, respectively, in the
proposed NDDE algorithm.

Especially considering the fact that the search space involved in the NDDE algorithm
is discrete and the lengths of different solutions may be various, a discrete version of
“DE/rand/1” is devised and employed in this paper. In detail, for each individual �xg

i at
g generation, its mutant individual �vg

i = (vg
i,1, vg

i,2, . . . , vg
i,5) can be generated by

vg
i,j =

{
round(xg

r1,j + F ∗ (xg
r2,j − xg

r3,j)), if xg
r1,j �= ∅ and xg

r2,j �= ∅ andxg
r3,j �= ∅,

randint(NS), otherwise
(9)

where j = 1, 2, . . . , 5, r1, r2, and r3 are three random integers in [1, NP] with r1 �= r2 �= r3 �= i,
F is a scaling factor, round(A) denotes the nearest integer around A. In particular, we set
F = 0.5 in this paper.

Similarly, based on the property of varying variables of individuals and to make
full use of the information of the target individual, the following modified binomial
crossover operation is developed and used to generate the trial individuals. Specifically,
for each individual �xg

i and its mutant individual �vg
i , the corresponding trial individual

�ug
i = (ug

i,1, ug
i,2, . . . , ug

i,5) is obtained by

ug
i,j =

{
xg

i,j, if xg
i,j �= ∅ and rand ≤ Cr,

vg
i,j, otherwise

(10)

where Cr ∈ (0, 1) is the crossover rate, and especially, we set Cr = 0.5 here.
As described above, the proposed mutation and crossover operator can broadly search

the search space, fully utilize the acquired information, and have a simple implementing
process. Consequently, they are capable of boosting the search ability of the algorithm for
finding the deficiency number of one Mahjong hand.

Finally, after generating the trial individual for each target one, the population will be
updated by comparing them based on their fitness values, and the best one among them
will enter the new population. To achieve this process, the greedy selection strategy (see
Equation (4)) is utilized in this paper. Overall, by integrating the proposed initialization,
mapping solution method, repairing solution technique, fitness evaluation approach, and
mutation and crossover operations, the framework of the proposed NDDE algorithm is
shown in Algorithm 1. To improve the understanding of this paper, a flowchart of the
proposed approach for computing the deficiency number is provided in Figure 1, where
G and Gmax denote the current number and maximum number of iterations, respectively.

It should be pointed out that, unlike the existing approaches for obtaining the de-
ficiency number in [10–12], the proposed method simplifies the original problem of cal-
culating the deficiency number and makes full use of the benefits of DE to improve the
computational efficiency. Specifically, by previously finding all possible melds, pmelds, and
pairs contained in one hand and constructing the form of the solution based on the structure
of the decomposition, the problem of calculating the deficiency number is converted to a
more simple combinatorial optimization problem. Meanwhile, according to the properties
of discrete and varying variables of the new problem, a proper initialization, mapping
solution method, repairing solution technique, fitness evaluation approach, and mutation
and crossover operations are separately developed, and then a novel discrete DE algorithm
is proposed. Thereby, the proposed method can effectively and efficiently compute the
deficiency number of one Mahjong hand. It should also be mentioned that, for the hands

454

Mathematics 2023, 11, 2135

with a larger deficiency number, the proposed approach might be less efficient than the
tree-based deterministic algorithms. This is because the ones with a larger deficiency
number always just contain a few melds, pmelds, and/or pairs, which might lead to few
child nodes for each search step in the deterministic methods and then reduce the search
cost, while the stochastic algorithms need to conduct the predefined searches for each hand
at all times. Moreover, compared to the general discrete and/or combinatorial optimization
problems, the simplified problem involved in this paper has a special characteristic that its
feasible solutions may have various lengths. So, the previous discrete DE versions are not
able to directly solve this problem. Meanwhile, for solving the simplified problem, other
metaheuristic algorithms can be alternatively adopted instead of DE by designing some
proper operations, which we will further study in our future work.

Figure 1. The flowchart of the proposed method in this paper for computing deficiency number.

455

Mathematics 2023, 11, 2135

Algorithm 1 (The framework of the proposed NDDE algorithm).

1: Input: the given hand H, the initial size of population NP, the maximum number of
iterations Gmax.

2: Generate the set S consisting of all possible melds and pmleds for H, and calculate NS.
3: Set the current generation g = 0.
4: Initialize the population Pg by Equation (6), map and repair each individual in Pg by

Equation (7) and the proposed repairing technique described in Section 4.2.2, respectively.
5: Evaluate the fitness value of each individual in Pg by Equation (8).
6: while g ≤ Gmax do
7: for i = 1 : NP do
8: Execute the proposed mutation operation to generate �vg

i by Equation (9);
9: Execute the proposed crossover operation to generate �ug

i by Equation (10);
10: Repair �ug

i by Equation (7);
11: Evaluate the fitness value of �ug

i by Equation (8);
12: Execute the selection strategy for the current individual �vg

i and its trial individual
�ug

i by Equation (4);
13: end for
14: Set g = g + 1;
15: end while
16: Output: the best (minimal) fitness value.

4. Experimental Analyses

In this part, the performance of the proposed NDDE algorithm is evaluated by con-
ducting a series of experiments on a large number of various, randomly generated test
hands, including 118,800 hands with one type, 100,000 hands with two types, and 100,000
hands with three types. Meanwhile, the influence analyses of the parameters involved
in the NDDE algorithm are investigated in terms of both search accuracy and running
time, and the tree search algorithm (TSA) in [10] and three other metaheuristic algorithms,
including PSO [15], GA [13], and TLBO [20], are also compared with the NDDE algorithm.
Finally, the effectiveness of the NDDE algorithm is further demonstrated in a large number
of Mahjong game battles.

In these experiments, the performance of each algorithm is measured by the accuracy
rate and average running time. Moreover, in order to make fair comparisons and obtain
statistical conclusions, each algorithm is run 30 times independently for each hand, and
three widely used statistical tests, including the t test [53], Wilcoxon rank sum test [54], and
Friedman test [55], are further adopted to distinguish the differences between the NDDE
algorithm and each compared method. All algorithms are all implemented in Python 3.0
on a personal laptop with Intel i7-6700 CPU and 16 GB RAM.

4.1. Influence Analyses of NP and Gmax

Herein, the influences of NP and Gmax on the performance of the NDDE algorithm are
analyzed. As stated in Algorithm 1, NP determines the number of solutions created at each
iteration, while Gmax decides the total iterations of the NDDE algorithm. Thus, various
values for them might cause different performances of the NDDE algorithm. Specifically,
in order to show the influence of each parameter, the full factorial design (FFD) [56] is
used here, and NP and Gmax are set to four and six different values, respectively, i.e.,
NP ∈ {10, 20, 30, 50} and Gmax ∈ {10, 30, 50, 100, 200, 500}. Tables 1 and 2 list the accuracy
rate and average running time, respectively, of the NDDE algorithm on three kinds of test
hands with one run. Note that when the actual deficiency number for a hand is found, the
proposed NDDE algorithm will be terminated, and the corresponding running time is used
just to measure its performance.

456

Mathematics 2023, 11, 2135

Table 1. Accuracy rates of NDDE algorithm with various NP and Gmax on three kinds of test hands.

NP

Gmax
10 30 50 100 200 500

One type

10 40.246% 73.034% 85.332% 95.154% 98.879% 99.902%
20 56.237% 85.348% 93.325% 98.337% 99.774% 99.988%
30 65.250% 90.253% 96.000% 99.219% 99.927% 99.997%
50 75.591% 94.689% 98.093% 99.751% 99.988% 100%

Two types

10 73.177% 92.509% 96.929% 99.407% 99.915% 99.998%
20 84.632% 97.065% 99.044% 99.878% 99.992% 100%
30 89.621% 98.464% 99.607% 99.955% 99.998% 100%
50 93.979% 99.368% 99.873% 99.994% 100% 100%

Three types

10 87.124% 97.477% 99.146% 99.878% 99.982% 100%
20 93.707% 99.154% 99.797% 99.977% 100% 100%
30 96.130% 99.613% 99.930% 99.994% 100% 100%
50 98.066% 99.863% 99.990% 99.999% 100% 100%

From Table 1, it can be seen that the accuracy rate of the NDDE algorithm is closely
related to the values of NP and Gmax, and gradually improves with their increase in all
cases. Specifically, for the hands with one type, the accuracy rate of the NDDE algorithm
exceeds 90% when Gmax = 30 and NP = 30 and 50, Gmax = 50 and NP = 20, 30, and 50,
and every value for NP with Gmax = 100, 200, and 500. The accuracy rate of the NDDE
algorithm is 100% when Gmax = 500 and NP = 50. Moreover, for the hands with two
types, the accuracy rate of the NDDE algorithm exceeds 90% except when Gmax = 10 and
NP = 10, 20, and 30, while it reaches 100% when Gmax = 200, NP = 50 and Gmax = 500,
NP = 20, 30, and 50. Moreover, for the hands with three types, the accuracy rate of the
NDDE algorithm exceeds 90% except when Gmax = 10 and NP = 10, while it reaches 100%
when Gmax = 200 and NP = 20, 30, and 50, and every value for NP with Gmax = 500. In
addition, from Table 2, one can further find that the average running time of the NDDE
algorithm is also dependent on the values of NP and Gmax, and it always gradually increases
with their increase in all cases. Specifically, when the types of the hands increase, the average
running time of the NDDE algorithm on them gradually decreases. The reason for this
might be that as the types of the hands increase, the corresponding search space will be
reduced. Hence, the proposed NDDE algorithm can always obtain the actual deficiency
number for all hands with certain search costs.

Table 2. Average running time of NDDE algorithm with various NP and Gmax on three kinds of test hands.

NP

Gmax
10 30 50 100 200 500

One type

10 4.97 × 10−3 s 1.01 × 10−2 s 1.20 × 10−2 s 1.48 × 10−2 s 1.56 × 10−2 s 1.72 × 10−2 s
20 8.13 × 10−3 s 1.40 × 10−2 s 1.64 × 10−2 s 1.85 × 10−2 s 1.88 × 10−2 s 1.99 × 10−2 s
30 1.11 × 10−2 s 1.81 × 10−2 s 1.98 × 10−2 s 2.07 × 10−2 s 2.22 × 10−2 s 2.11 × 10−2 s
50 1.54 × 10−2 s 2.21 × 10−2 s 2.40 × 10−2 s 2.44 × 10−2 s 2.55 × 10−2 s 2.52 × 10−2 s

Two types

10 3.28 × 10−3 s 4.96 × 10−3 s 5.49 × 10−3 s 5.90 × 10−3 s 6.04 × 10−3 s 6.22 × 10−3 s
20 4.94 × 10−3 s 6.39 × 10−3 s 7.22 × 10−3 s 7.21 × 10−3 s 7.22 × 10−3 s 7.36 × 10−3 s
30 6.08 × 10−3 s 7.39 × 10−3 s 7.68 × 10−3 s 7.82 × 10−3 s 8.06 × 10−3 s 7.92 × 10−3 s
50 7.95 × 10−3 s 9.00 × 10−3 s 9.28 × 10−3 s 9.61 × 10−3 s 9.74 × 10−3 s 9.57 × 10−3 s

Three types

10 2.31 × 10−3 s 3.08 × 10−3 s 3.12 × 10−3 s 3.22 × 10−3 s 3.25 × 10−3 s 3.27 × 10−3 s
20 3.07 × 10−3 s 3.67 × 10−3 s 3.79 × 10−3 s 3.84 × 10−3 s 3.84 × 10−3 s 3.86 × 10−3 s
30 3.73 × 10−3 s 4.24 × 10−3 s 4.34 × 10−3 s 4.35 × 10−3 s 4.38 × 10−3 s 4.34 × 10−3 s
50 4.83 × 10−3 s 5.23 × 10−3 s 5.21 × 10−3 s 5.28 × 10−3 s 5.21 × 10−3 s 5.23 × 10−3 s

For the sake of clarity, Figures 2 and 3 further depict the accuracy rate and average
running time of the NDDE algorithm on all kinds of hands. From Figures 2 and 3, it can
easily be seen that whenever either NP or Gmax increase, the accuracy rate of the NDDE
algorithm improves for each type of hand. Meanwhile, with the increase in NP, the average
running time of the NDDE algorithm increases in each case, while the NDDE algorithm
has a minimal average running time on the hands with three types. Thus, it is essential to

457

Mathematics 2023, 11, 2135

set suitable NP and Gmax in the NDDE algorithm, and we let NP = 20 and Gmax = 50 in
the following experiments due to its promising performance in terms of both accuracy rate
and average running time.

(a)

(b)

(c)

Figure 2. Accuracy rates of NDDE algorithm with various NP and Gmax on three kinds of test hands.
(a) Hands with one type, (b) hands with two types, and (c) hands with three types.

458

Mathematics 2023, 11, 2135

Figure 3. Average running time of NDDE algorithm with various NP and Gmax = 50 on three kinds
of test hands.

4.2. Comparisons and Discussions

In this subsection, in order to verify the performance of the NDDE algorithm, one
typical deterministic method, namely TSA [10], and three other famous metaheuristic
algorithms, including PSO [15], GA [13], and TLBO [20], are compared with it on all
the above cases of hands. Specifically, to persuasively estimate the performance of these
methods, each approach is run 30 times independently for each hand, and the average
accuracy rate and running time of 30 runs on each kind of hand are employed to measure
its performance. Moreover, t tests [53], Wilcoxon rank sum tests [54], and Friedman
tests [55] are also utilized to show the differences between their performances.

It should be mentioned that PSO [15] is a famous swarm intelligent optimization
algorithm, GA [13] is a typical approach belonging to evolutionary computation, and
TLBO [20] is a promising metaheuristic method inspired by human activities. Meanwhile,
the proposed NDDE algorithm is developed based on just the basic framework of DE.
So, these methods are very representative and suitable and thus chosen as the compared
ones here.

4.2.1. Comparisons of NDDE Algorithm with TSA

First, one typical deterministic method, namely TSA [10], is compared with the NDDE
algorithm on all three kinds of hands. To clearly demonstrate the performance of the NDDE
algorithm, its two versions, named NDDE1 and NDDE2, where NP and Gmax are set to 20
and 50 and 50 and 500, respectively, are simultaneously employed here to compare with
TSA. Tables 3 and 4 provide their average and statistical results of 30 runs on each kind of
hand in terms of the accuracy rate and running time, respectively. Herein, pt-value and
pw-value denote the p-values of the t test [53] and Wilcoxon rank sum test [54], respectively
(the same below).

From Tables 3 and 4, it can be seen that NDDE1 has the worst results among them
in all cases, and NDDE2 and TSA each obtain the actual deficiency number for all hands.
Meanwhile, with respect to the average running time, TSA takes the longest time in each
case, and NDDE1 takes less time than NDDE2. Moreover, according to the results of the t
test and Wilcoxon rank sum test reported in both Tables 3 and 4, NDDE1 has significant
differences compared with TSA, and NDDE1 and NDDE2 are both significantly faster than
TSA in all cases. Thus, the proposed NDDE is more effective and efficient than TSA for the
deficiency number of one Mahjong hand.

459

Mathematics 2023, 11, 2135

Table 3. The average and statistical results of TSA, NDDE1, and NDDE2 on three kinds of hands in
terms of accuracy rate.

Hands Methods Best Result
Worst
Result

Median
Result

Mean Result
Standard
Deviation

pt-Value pw-Value

One type
TSA 100% 100% 100% 100% 0.00 - - - -

NDDE1 93.191% 93.503% 93.301% 93.308% 7.07 × 10−4 <0.0001 <0.0001
NDDE2 99.999% 100% 100% 100% 3.19 × 10−6 0.0192 0.0214

Two types
TSA 100% 100% 100% 100% 0.00 - - - -

NDDE1 99.013% 99.129% 99.070% 99.070% 3.21 × 10−4 <0.0001 <0.0001
NDDE2 100% 100% 100% 100% 0.00 1.0000 1.0000

Three types
TSA 100% 100% 100% 100% 0.00 - - - -

NDDE1 99.760% 99.808% 99.788% 99.785% 1.21 × 10−4 <0.0001 <0.0001
NDDE2 100% 100% 100% 100% 0.00 1.0000 1.0000

Table 4. The average and statistical results of TSA, NDDE1, and NDDE2 on three kinds of hands in
terms of running time.

Hands Methods
Best Result

(s)
Worst

Result (s)
Median

Result (s)
Mean Result

(s)
Standard
Deviation

pt-Value pw-Value

One type
TSA 1.88 × 10−1 1.89 × 10−1 1.88 × 10−1 1.88 × 10−1 1.66 × 10−4 - - - -

NDDE1 1.57 × 10−2 1.59 × 10−2 1.58 × 10−2 1.58 × 10−2 3.87 × 10−5 <0.0001 0.0004
NDDE2 2.40 × 10−2 2.43 × 10−2 2.41 × 10−2 2.41 × 10−2 8.74 × 10−5 <0.0001 0.0004

Two types
TSA 4.32 × 10−2 4.41 × 10−2 4.36 × 10−2 4.36 × 10−2 3.48 × 10−4 - - - -

NDDE1 7.05 × 10−3 7.48 × 10−3 7.09 × 10−3 7.12 × 10−3 9.04 × 10−5 <0.0001 0.0004
NDDE2 7.95 × 10−3 8.94 × 10−3 8.03 × 10−3 8.10 × 10−3 2.10 × 10−4 <0.0001 0.0004

Three types
TSA 1.72 × 10−2 1.72 × 10−2 1.72 × 10−2 1.72 × 10−2 4.46 × 10−6 - - - -

NDDE1 3.85 × 10−3 4.91 × 10−3 3.94 × 10−3 3.97 × 10−3 1.86 × 10−4 <0.0001 0.0004
NDDE2 5.18 × 10−3 5.30 × 10−3 5.21 × 10−3 5.21 × 10−3 2.59 × 10−5 <0.0001 0.0004

4.2.2. Comparisons of NDDE Algorithm with Three Other Famous Metaheuristic Algorithms

To further demonstrate the benefit of the NDDE algorithm, three other famous stochas-
tic intelligent algorithms, including PSO [15], GA [13], and TLBO [20], are also compared
with it in all cases of hands above. Specifically, in these chosen compared methods, the
same mapping, repairing, and evaluation methods as in the NDDE algorithm are adopted,
and the size of the population and the maximum number of iterations are also set to 20
and 50, which is consistent with the setting of the NDDE algorithm. Moreover, to show the
differences between these compared methods and the NDDE algorithm, the three statistical
tests above are further adopted to give statistical conclusions. Tables 5 and 6 list the average
and statistical results of 30 runs on each kind of hand in terms of the accuracy rate and
running time, respectively, and Table 7 reports their final comparison results based on the
Friedman test [55].

As seen from Tables 5 and 6, the NDDE algorithm has a better accuracy rate than PSO,
GA, and TLBO in all cases, and there are significant differences between them and the
NDDE algorithm according to both the t test and Wilcoxon rank sum test. Meanwhile, in
terms of running time, the NDDE algorithm also has the least time on all kinds of hands,
and significantly performs best based on the statistical results. The reason for this might
be because GA needs to calculate the selection probability for each individual at each
generation, PSO always needs to record and update the personal best individual for each
solution, and TLBO has to additionally compute the mean point of the whole population
and compare the two target individuals based on their performances to determine the
search direction. So, the NDDE algorithm has a more efficient search procedure than the
others. Moreover, from Table 7, according to the Friedman test, the NDDE algorithm has
the top performance among them on all three kinds of hands in terms of both the accuracy
rate and running time. Thereby, the NDDE algorithm is the most promising solver for
computing the deficiency number.

460

Mathematics 2023, 11, 2135

Table 5. The average and statistical results of NDDE algorithm, PSO, GA, and TLBO on three kinds
of hands in terms of accuracy rate.

Hands Methods Best Result
Worst
Result

Median
Result

Mean Result
Standard
Deviation

pt-Value pw-Value

One type

PSO 80.900% 81.200% 81.100% 81.100% 6.05 × 10−4 <0.0001 <0.0001
GA 42.600% 43.000% 42.800% 42.800% 1.08 × 10−3 <0.0001 <0.0001

TLBO 67.300% 67.700% 67.500% 67.500% 8.29 × 10−4 <0.0001 <0.0001
NDDE 93.200% 93.500% 93.300% 93.300% 7.07 × 10−4 - - - -

Two types

PSO 94.300% 94.500% 94.400% 94.400% 5.71 × 10−4 <0.0001 <0.0001
GA 72.500% 72.900% 72.700% 72.700% 9.47 × 10−4 <0.0001 <0.0001

TLBO 91.100% 91.400% 91.300% 91.300% 6.50 × 10−4 <0.0001 <0.0001
NDDE 99.000% 99.100% 99.100% 99.100% 3.21 × 10−4 - - - -

Three types

PSO 97.800% 97.900% 97.800% 97.800% 3.09 × 10−4 <0.0001 <0.0001
GA 86.300% 86.700% 86.500% 86.500% 9.58 × 10−4 <0.0001 <0.0001

TLBO 97.000% 97.100% 97.100% 97.100% 3.28 × 10−4 <0.0001 <0.0001
NDDE 99.800% 99.800% 99.800% 99.800% 1.21 × 10−4 - - - -

Table 6. The average and statistical results of NDDE algorithm, PSO, GA, and TLBO on three kinds
of hands in terms of running time.

Hands Methods
Best Result

(s)
Worst

Result (s)
Median

Result (s)
Mean Result

(s)
Standard
Deviation

pt-Value pw-Value

One type

PSO 2.09 × 10−2 2.20 × 10−2 2.10 × 10−2 2.10 × 10−2 1.85 × 10−4 <0.0001 <0.0001
GA 2.85 × 10−2 2.93 × 10−2 2.86 × 10−2 2.88 × 10−2 2.41 × 10−4 <0.0001 <0.0001

TLBO 2.89 × 10−2 3.52 × 10−2 3.00 × 10−2 3.03 × 10−2 1.36 × 10−3 <0.0001 <0.0001
NDDE 1.57 × 10−2 1.59 × 10−2 1.58 × 10−2 1.58 × 10−2 3.87 × 10−5 - - - -

Two types

PSO 1.04 × 10−2 1.05 × 10−2 1.05 × 10−2 1.05 × 10−2 3.46 × 10−5 <0.0001 <0.0001
GA 1.68 × 10−2 1.78 × 10−2 1.70 × 10−2 1.71 × 10−2 3.00 × 10−4 <0.0001 <0.0001

TLBO 1.38 × 10−2 1.55 × 10−2 1.44 × 10−2 1.44 × 10−2 3.94 × 10−4 <0.0001 <0.0001
NDDE 7.05 × 10−3 7.48 × 10−3 7.09 × 10−3 7.12 × 10−3 9.04 × 10−5 - - - -

Three types

PSO 5.87 × 10−3 6.17 × 10−3 6.09 × 10−3 6.08 × 10−3 6.18 × 10−5 <0.0001 <0.0001
GA 9.68 × 10−3 1.07 × 10−2 9.81 × 10−3 9.91 × 10−3 2.15 × 10−4 <0.0001 <0.0001

TLBO 7.77 × 10−3 1.09 × 10−2 7.98 × 10−3 8.10 × 10−3 5.64 × 10−4 <0.0001 <0.0001
NDDE 3.85 × 10−3 4.91 × 10−3 3.94 × 10−3 3.97 × 10−3 1.86 × 10−4 - - - -

Table 7. The final comparison results of NDDE algorithm, PSO, GA, and TLBO on all kinds of hands
according to Friedman test.

Algorithm
Accuracy Rate Running Time

NDDE PSO GA TLBO NDDE PSO GA TLBO

Rank 1.00 2.00 3.67 3.33 1.00 2.00 4.00 3.00

Furthermore, in order to clearly illustrate the performance of the NDDE algorithm,
the convergence curves of the NDDE algorithm, PSO, GA, and TLBO are also depicted
here on six different hands, including H1 = (B4B4B6B6B6B7B7B7B7B8B9B9B9B9), H2 =
(B3B5B5B5B5B6B6B6B7B7B8B8B9B9), H3 = (B1B2B4B5B5)(C2C3C3C3C4C4C5C7C7), H4 =
(B4)(C1C1C3C4C4C4C4C5C7C8C8C9C9), H5 = (B4B6)(C5C7C8C9)(D1D1D2D2D3D7D7D8),
and H6 = (B3)(C9)(D1D4D5D6D6D6D7D7D8D8D9D9). Herein, H1 and H2 have just one
color, H3 and H4 have two colors, and H5 and H6 have three colors. From Figure 4, one
can easily find that the NDDE algorithm always has a better convergence performance
than PSO, GA, and TLBO on each hand. Therefore, the NDDE algorithm has a more
promising performance.

461

Mathematics 2023, 11, 2135

0 10 20 30 40 50
Number of iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
ea

n
fit

ne
ss

 v
al

ue

NDDE
PSO
GA
TLBO

(a)

0 10 20 30 40 50
Number of iterations

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

M
ea

n
fit

ne
ss

 v
al

ue

NDDE
PSO
GA
TLBO

(b)

0 10 20 30 40 50
Number of iterations

2

2.2

2.4

2.6

2.8

3

3.2

3.4

M
ea

n
fit

ne
ss

 v
al

ue

NDDE
PSO
GA
TLBO

(c)

0 10 20 30 40 50
Number of iterations

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

M
ea

n
fit

ne
ss

 v
al

ue

NDDE
PSO
GA
TLBO

(d)

0 10 20 30 40 50
Number of iterations

2

2.2

2.4

2.6

2.8

3

3.2

3.4

M
ea

n
fit

ne
ss

 v
al

ue

NDDE
PSO
GA
TLBO

(e)

0 10 20 30 40 50
Number of iterations

2

2.2

2.4

2.6

2.8

3

3.2

3.4

M
ea

n
fit

ne
ss

 v
al

ue

NDDE
PSO
GA
TLBO

(f)

Figure 4. Convergence curves of NDDE algorithm and PSO, GA, and TLBO on six test hands. (a) H1,
(b) H2, (c) H3, (d) H4, (e) H5, and (f) H6.

4.3. Effectiveness of NNDE on Mahjong Game Battles

In this part, the practicality of the NDDE algorithm is further evaluated by comparing
it with the tree-based search method (TSA) [10] in a Mahjong battle with four players. In
this test, 1000 randomly generated states of Mahjong are employed, where all players have
drawn their hands and the order of tiles on the wall is fixed, and for each Mahjong game,
two rounds are played. Moreover, all players adopt the same strategy to make the decisions
for each action, such as pong, chow, and kong [10], except for the method employed to
calculate the deficiency number. Specifically, for each state of the game, player 1 and player
3 use the NDDE algorithm to compute the deficiency number, while player 2 and player 4
adopt TSA in the first round. In contrast, player 1 and player 3 use TSA to compute the
deficiency number, while player 2 and player 4 adopt the NDDE algorithm in the second
round. The sum of the scores obtained by player 1 and player 3 in the first round and by
player 2 and player 4 in the second round is recorded as the final score to evaluate the

462

Mathematics 2023, 11, 2135

effectiveness of the NDDE algorithm. Herein, we set the basic score in game as 1, and let
NP = 20 and Gmax = 50 in the NDDE algorithm. After conducting these 1000 different
games, the final score of the NDDE algorithm on them is −1.173. Importantly, it should be
mentioned that the NDDE algorithm with NP = 20 and Gmax = 50 has accuracy rates of
93.325%, 99.044%, and 99.797% on the hands with one, two, and three types, respectively,
which can be found in Table 1. This result means that the NDDE algorithm has almost the
same performance as TSA in the real battles. Thus, the NDDE algorithm is a promising
approach for calculating the deficiency number of a Mahjong hand.

5. Conclusions

In this paper, a novel DE-based approach was presented to calculate the deficiency
number of one Mahjong hand, which plays an important role in Mahjong and is helpful for
boosting its AI development. Concretely, in order to decrease the difficulty of computing
the deficiency number, some pretreatment mechanisms were first presented to convert
the original problem into a simpler combinatorial optimization one, where the dimension
of the search space of the new problem was reduced to five, and the feasible solutions
might have various lengths. Meanwhile, inspired by the benefits of DE, such as simplicity,
ease of implementation, a strong robustness, and a superior performance, a novel discrete
DE (NDDE) variant was specially developed for solving this new problem by devising
proper initialization, a mapping solution method, a repairing solution technique, a fitness
evaluation approach, and mutation and crossover operations. Compared to the existing
methods for calculating the deficiency number, where the full searches are all implicit
in them, thus being very costly, the proposed algorithm employed the framework of the
stochastic intelligent approach, and the problem of calculating the deficiency number was
converted into a simpler one to solve in this paper. Thereby, the proposed approach is
capable of more effectively and efficiently computing the deficiency number of one Mahjong
hand. Finally, the performance of the proposed algorithm was evaluated by comparing
with the tree search algorithm and three other kinds of metaheuristic methods on a large
number of various test cases, and the sensitivity of the parameters involved in the NDDE
algorithm was also investigated. The experimental results indicated that the proposed
algorithm is more efficient and promising.

It should also be mentioned that this paper only adopted the framework of DE in
the design of the algorithm due to its previous superior practical experiences, and the
most simple version of DE only was used. Therefore, in our future work, we will focus on
devising other solvers for calculating the deficiency number based on other metaheuristic
algorithms, the existing enhanced DE variants, and discrete DE versions. Meanwhile, we
will also focus on designing a hybrid method by properly integrating the merits of both the
metaheuristic methods and the deterministic ones for calculating the deficiency number of
a Mahjong hand.

Author Contributions: Conceptualization, X.Y. and Y.L.; methodology, Y.L.; software, X.Y.; validation,
X.Y. and Y.L.; formal analysis, X.Y.; investigation, X.Y.; resources, Y.L.; data curation, X.Y.; writing—original
draft preparation, X.Y.; writing—review and editing, X.Y.; visualization, X.Y.; supervision, Y.L.; project
administration, Y.L.; funding acquisition, Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China No.
11671244 and 12071271.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

463

Mathematics 2023, 11, 2135

References

1. The Origins of Mahjong. Available online: http://www.mahjongsets.co.uk/origins-mahjong.html (accessed on 15 December 2022).
2. Wikipedia. Mahjong. Available online: https://en.wikipedia.org/wiki/Mahjong (accessed on 15 December 2022).
3. Tang, J. Designing an Anti-swindle Mahjong Leisure Prototype System using RFID and ontology theory. J. Netw. Comput. Appl.

2014, 39, 292–301. [CrossRef]
4. Silver, D. Technical Perspective: Solving Imperfect Information Games. Commun. ACM 2017, 60, 80–80. [CrossRef]
5. Kurita, M.; Hoki, K. Method for Constructing Artificial Intelligence Player with Abstractions to Markov Decision Processes in

Multiplayer Game of Mahjong. IEEE Trans. Games 2021, 13, 99–110. [CrossRef]
6. Wang, M.; Yan, T.; Luo, M.; Huang, W. A novel deep residual network-based incomplete information competition strategy for

four-players Mahjong games. Multimed. Tools Appl. 2019, 78, 23443–23467. [CrossRef]
7. Gao, S.; Okuya, F.; Kawahara, Y.; Tsuruoka, Y. Building a Computer Mahjong Player via Deep Convolutional Neural Networks.

arXiv 2019, arXiv:1906.02146.
8. Gao, S.; Li, S. Bloody Mahjong playing strategy based on the integration of deep learning and XGBoost. CAAI Trans. Intell.

Technol. 2022, 7, 95–106. [CrossRef]
9. Zheng, Y.; Li, S. A Review of Mahjong AI Research. In Proceedings of the RICAI 2020: 2020 2nd International Conference on

Robotics, Intelligent Control and Artificial Intelligence, Shanghai, China, 17–19 October 2020; pp. 345–349.
10. Li, S.; Yan, X. Let’s Play Mahjong! arXiv 2019, arXiv:1903.03294.
11. Wang, Q.; Li, Y.; Chen, X. A Mahjong-Strategy based on Weighted Restarting Automata. In Proceedings of the MLMI ’20: 2020

the 3rd International Conference on Machine Learning and Machine Intelligence, Hangzhou, China, 18–20 September 2020.
12. Wang, Q.; Zhou, Y.; Zhu, D.; Li, Y. A new approach to compute deficiency number of Mahjong configurations. Entertain. Comput.

2022, 43, 100509. [CrossRef]
13. Holland, J. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1975.
14. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous space. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
15. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
16. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
17. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm-a novel metaheuristic optimization method for

solving constrained engineering optimization problems. Comput. Struct. 2012, 110–111, 151–166. [CrossRef]
18. Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput.

2019, 44, 148–175. [CrossRef]
19. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
20. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]
21. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems:

A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [CrossRef]
22. Ma, Z.Q.; Wu, G.H.; Suganthan, P.N.; Song, A.J.; Luo, Q.Z. Performance assessment and exhaustive listing of 500+ nature-inspired

metaheuristic algorithms. Swarm Evol. Comput. 2023, 77, 101248. [CrossRef]
23. Taib, H.; Bahreininejad, A. Data clustering using hybrid water cycle algorithm and a local pattern search method. Adv. Eng.

Softw. 2021, 153, 102961. [CrossRef]
24. Chen, J.X.; Gong, Y.J.; Chen, W.N.; Li, M.; Zhang, J. Elastic Differential Evolution for Automatic Data Clustering. IEEE Trans.

Cybern. 2021, 51, 4134–4147. [CrossRef]
25. Wang, J.Z.; Zhang, H.P.; Luo, H. Research on the construction of stock portfolios based on multiobjective water cycle algorithm

and KMV algorithm. Appl. Soft Comput. 2022, 115, 108186. [CrossRef]
26. Sallam, K.M.; Abohany, A.A.; Allahi, R.M. An enhanced multi-operator differential evolution algorithm for tackling knapsack

optimization problem. Neural Comput. Appl. 2023.
27. Li, J.Y.; Zhan, Z.H.; Tan, K.C.; Zhang, J. A Meta-knowledge transfer-based differential evolution for multitask optimization. IEEE

Trans. Evol. Comput. 2022, 26, 719–734. [CrossRef]
28. Liao, Z.W.; Mi, X.Y.; Pang, Q.S.; Sun, Y. History archive assisted niching differential evolution with variable neighborhood for

multimodal optimization. Swarm Evol. Comput. 2023, 76, 101206. [CrossRef]
29. Wang, Z.; Chen, Z.; Wang, Z.; Wei, J.; Chen, X.; Li, Q.; Zheng, Y.; Sheng, W. Adaptive memetic differential evolution with

multi-niche sampling and neighborhood crossover strategies for global optimization. Inf. Sci. 2022, 583, 121–136. [CrossRef]
30. Yan, X.; Tian, M. Differential evolution with two-level adaptive mechanism for numerical optimization. Knowl.-Based Syst. 2022,

241, 108209. [CrossRef]
31. Liu, D.; He, H.; Yang, Q.; Wang, Y.; Jeon, S.W.; Zhang, J. Function value ranking aware differential evolution for global numerical

optimization. Swarm Evol. Comput. 2023, 78, 101282. [CrossRef]

464

Mathematics 2023, 11, 2135

32. Li, X.S.; Wang, K.Y.; Yang, H.C. PAIDDE: A permutation-archive information directed differential evolution algorithm. IEEE
Access 2022, 10, 50384–50402. [CrossRef]

33. Li, Y.Z.; Wang, S.H.; Yang, H.Y. Enhancing differential evolution algorithm using leader-adjoint populations. Inf. Sci. 2023,
622, 235–268. [CrossRef]

34. Yi, W.C.; Chen, Y.; Pei, Z.; Lu, J.S. Adaptive differential evolution with ensembling operators for continuous optimization
problems. Swarm Evol. Comput. 2022, 69, 100994. [CrossRef]

35. He, Y.; Zhang, F.; Mirjalili, S.; Zhang, T. Novel binary differential evolution algorithm based on Taper-shaped transfer functions
for binary optimization problems. Swarm Evol. Comput. 2022, 69, 101022. [CrossRef]

36. Han, Y.; Yan, X.; Gu, X. Novel hybrid discrete differential evolution algorithm for the multi-stage multi-purpose batch plant
scheduling problem. Appl. Soft Comput. 2022, 115, 108262. [CrossRef]

37. Gao, Z.; Zhang, M.; Zhang, L. Ship-unloading scheduling optimization with differential evolution. Inf. Sci. 2022, 591, 88–102.
[CrossRef]

38. Ali, M.; Essam, D.; Kasmarik, K. A novel design of differential evolution for solving discrete traveling salesman problems. Swarm
Evol. Comput. 2020, 52, 100607. [CrossRef]

39. Ali, M.; Essam, D.; Kasmarik, K. Novel binary differential evolution algorithm for knapsack problems. Inf. Sci. 2021, 542, 177–194.
[CrossRef]

40. Opara, K.R.; Arabas, J. Differential evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [CrossRef]
41. Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 211–229. [CrossRef]
42. Shannon, C.E.; Hsu, T.S. Programming a Computer for Playing Chess. Philos. Mag. 1950, 314, 256–275. [CrossRef]
43. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L. Mastering the game of Go with deep neural networks and tree search.

Nature 2016, 529, 484–489. [CrossRef]
44. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Hassabis, D. Mastering the game of Go without human knowledge.

Nature 2017, 550, 354–359. [CrossRef]
45. Sandholm, T. Depth-Limited Solving for Imperfect-Information Games. Science 2018, 347, 122–123. [CrossRef]
46. Bowling, M.; Burch, N.; Johanson, M.; Tammelin, O. Heads-up limit hold’em poker is solved. Science 2015, 347, 145–149.

[CrossRef]
47. Zhao, E.; Yan, R.; Li, J.; Li, K.; Xing, J. AlphaHoldem: High-Performance Artificial Intelligence for Heads-Up No-Limit Poker

via End-to-End Reinforcement Learning. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Virtual,
22 February–1 March 2022; Volume 36, pp. 4689–4697.

48. Jiang, Q.; Li, K.; Du, B.; Chen, H.; Fang, H. DeltaDou: Expert-level Doudizhu AI through Self-play. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China, 10–16 August 2019.

49. Mizukami, N.; Tsuruoka, Y. Building a computer Mahjong player based on Monte Carlo simulation and opponent models. In
Proceedings of the 2015 IEEE Conference on Computational Intelligence and Games (CIG), Tainan, Taiwan, 31 August–2 September
2015; pp. 275–283.

50. Yoshimura, K.; Hochin, T.; Nomiya, H. Searching optimal movements in multi-player games with imperfect information.
In Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama,
Japan, 26–29 June 2016; pp. 1–6.

51. Li, J.; Koyamada, S.; Ye, Q.; Liu, G.; Hon, H.W. Suphx: Mastering Mahjong with Deep Reinforcement Learning. arXiv 2020,
arXiv:2003.13590.

52. Sato, H.; Shirakawa, T.; Hagihara, A.; Maeda, K. An analysis of play style of advanced mahjong players toward the implementation
of strong AI player. Int. J. Parallel Emergent Distrib. Syst. 2017, 32, 195–205. [CrossRef]

53. Box, J. Guinness, Gosset, Fisher, and Small Samples. Stat. Sci. 1987, 2, 45–52. [CrossRef]
54. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull 1945, 6, 80–83. [CrossRef]
55. Derrac, J.; Garca, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
56. Lee, Y.; Filliben, J.J.; Micheals, R.J.; Phillips, P.J. Sensitivity analysis for biometric systems: A methodology based on orthogonal

experiment designs. Comput. Vis. Image Underst. 2013, 117, 532–550. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

465

Citation: Long, W.; Hou, T.; Wei, X.;

Yan, S.; Zhai, P.; Zhang, L. A Survey

on Population-Based Deep

Reinforcement Learning. Mathematics

2023, 11, 2234. https://doi.org/

10.3390/math11102234

Academic Editors: Jian Dong and

Marjan Mernik

Received: 31 March 2023

Revised: 7 May 2023

Accepted: 8 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

A Survey on Population-Based Deep Reinforcement Learning

Weifan Long 1, Taixian Hou 1, Xiaoyi Wei 1, Shichao Yan 1, Peng Zhai 1,2,3,* and Lihua Zhang 1,4,5,*

1 Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
2 Ji Hua Laboratory, Foshan 528251, China
3 Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai 200433, China
4 Institute of Meta-Medical, Fudan University, Shanghai 200433, China
5 Jilin Provincial Key Laboratory of Intelligence Science and Engineering, Changchun 130013, China
* Correspondence: pzhai@fudan.edu.cn (P.Z.); lihuazhang@fudan.edu.cn (L.Z.)

Abstract: Many real-world applications can be described as large-scale games of imperfect infor-
mation, which require extensive prior domain knowledge, especially in competitive or human–AI
cooperation settings. Population-based training methods have become a popular solution to learn
robust policies without any prior knowledge, which can generalize to policies of other players or
humans. In this survey, we shed light on population-based deep reinforcement learning (PB-DRL)
algorithms, their applications, and general frameworks. We introduce several independent subject
areas, including naive self-play, fictitious self-play, population-play, evolution-based training meth-
ods, and the policy-space response oracle family. These methods provide a variety of approaches to
solving multi-agent problems and are useful in designing robust multi-agent reinforcement learn-
ing algorithms that can handle complex real-life situations. Finally, we discuss challenges and hot
topics in PB-DRL algorithms. We hope that this brief survey can provide guidance and insights for
researchers interested in PB-DRL algorithms.

Keywords: reinforcement learning; multi-agent reinforcement learning; self play; population play

MSC: 68T42

1. Introduction

Reinforcement learning (RL) [1] is a highly active research field in the machine learn-
ing community with decades of development. However, traditional RL methods have
limited performance when it comes to complex, high-dimensional input spaces. Deep
reinforcement learning (DRL) [2] addresses this issue by using deep neural networks as
function approximators, allowing agents to use unstructured data for decision-making.
DRL has shown impressive performance on a range of tasks, including game playing,
robotics, and autonomous driving. There are many impressive research works from differ-
ent fields which were achieved through DRL, such as gaming (AlphaGo [3], AlphaZero [4],
AlphaStar [5]), nuclear energy (fusion control [6]), and mathematics (AlphaTensor [7]).
While DRL has become increasingly popular due to its effectiveness and generality, there
are many real-world applications that require multiple agents’ cooperation or competition.
A multi-agent system is usually employed to research problems that are difficult or impos-
sible for a single agent. Multi-agent reinforcement learning (MARL) is one of the effective
approaches to multi-agent system problems [8]; it has been used to address problems in
a variety of domains, including robotics, distributed control, telecommunications, and
economics [9]. However, many real-world applications can be described as large-scale
games of imperfect information, which require a lot of prior domain knowledge to compute
a Nash equilibrium, especially in a competitive environment. This can be a major challenge
for traditional MARL methods. Population-based reinforcement learning (PB-DRL) has
emerged as a popular solution, allowing for the training of robust policies without any
prior domain knowledge that can generalize to all policies of other players.

Mathematics 2023, 11, 2234. https://doi.org/10.3390/math11102234 https://www.mdpi.com/journal/mathematics
467

Mathematics 2023, 11, 2234

Population-based approaches take advantage of the high parallelism and large search
space typically found in optimization problems. This method has demonstrated remarkable
performance in MARL, resulting in exceptional performance in games such as Pluribus [10]
and OpenAI Five [11] without any expert experience. Czarnecki et al. [12] conducted
research on the importance of population-based training techniques for large-scale multi-
agent environments, which can include both virtual and real-world scenarios. According
to their study, population-based methods offer several benefits for training robust policies
in such environments, including diversity of strategies, scalability, and adaptability to
changing conditions. The population diversity in PB-DRL allows for a more robust policy
because it can handle a wider range of situations and scenarios. This can be particularly im-
portant in real-world applications where there may be plenty of variability and uncertainty.
By using a population-based approach, the policy can be trained to be more robust and
adaptable to different situations, which is crucial for success in real-world applications.

In contrast to prior surveys, the motivation of our survey lies instead in recent PB-DRL
algorithms and applications specifically, which helps to achieve surprisingly outstanding
performance. Accordingly, we also introduce general frameworks of PB-DRL. In this sur-
vey, we give an account of PB-DRL approaches and associated methods. We start with
reviewing selected ideas from game theory and multi-agent reinforcement learning. Then,
we move on to present several recent promising approaches, applications, and frameworks
of PB-DRL. Here, we first give the idea of milestones and briefly describe others in each
kind of PB-DRL; applications for how to use the corresponding methods will then be
introduced. Finally, we finish by discussing challenges and hot topics of PB-DRL. Given the
extensive literature from the MARL community and adjacent fields, we acknowledge that
our survey is not exhaustive and may not cover all prior work. Specifically, in this survey,
our focus is on PB-DRL algorithms including multi-agent reinforcement learning by using
self-play-related technology, evolution-based training methods for reinforcement learning,
and general frameworks. We conducted a comprehensive literature search following the
guidelines for Systematic Literature Reviews (SLRs) [13] to conduct a comprehensive litera-
ture search on PB-DRL. We searched four databases that are widely used and recognized
in the field of software engineering: Google Scholar, IEEE Xplore, ACM Digital Library,
and DataBase Systems and Logic Programming. We used advanced search options to limit
the results to peer-reviewed articles published in English from 2018 to 2023, as this survey
is focused more on recent works and we used snowballing method to cover previous
milestones. We used the following search string: (“population-based” AND “reinforce-
ment learning”) OR (“evolution algorithm” AND “reinforcement learning”) OR (“self-play”
AND “reinforcement learning”). The initial search yielded 200 papers from Google Scholar
(capturing the first 20 pages of search results), 127 papers from IEEE Xplore, 381 papers
from ACM Digital Library, and 80 papers from DataBase Systems and Logic Programming,
resulting in a total of 788 papers before screening. We screened the titles and abstracts
of these papers based on their relevance to our survey topic, which is PB-DRL methods
and applications. We used the following inclusion criteria: (1) the paper must focus on
PB-DRL or a related concept (e.g., evolutionary algorithm, self-play); (2) the paper must
report novel approaches, significant results, or comparative evaluations related to PB-DRL.
To ensure the high quality of the references, we also screened based on the publisher;
famous conferences and journals such as Nature, Science, NeuralPS, ICML, and ICLR were
included. After screening, we included nearly 30 papers for further analysis and excluded
others for various reasons such as being out of scope, being duplicates, or being of low
quality. We then used snowballing to complement our database search and ensure that we
did not miss any relevant studies, i.e., we checked the references of the included papers
to identify any additional relevant studies. Our aim is to provide an overview of recent
developments in PB-DRL, and we hope that it can garner more attention and be applied in
various industries.

468

Mathematics 2023, 11, 2234

2. Background

Population-based deep reinforcement learning is an approach that addresses the
limitations of traditional reinforcement learning algorithms. PB-DRL algorithms maintain a
population of agents that explore the environment in parallel and learn from each other to
improve their collective performance. This approach has shown significant improvements
in terms of sample efficiency and generalization in various applications. In this section, we
start with necessary knowledge which may help to understand PB-DRL algorithms.

2.1. Game Theory

Game theory and MARL are closely related fields, as game theory provides a theoreti-
cal framework for analyzing and understanding strategic interactions between multiple
agents, while MARL provides a practical approach for agents to learn optimal strategies
through experience. Research in this survey usually considers a normal-form game or
extensive-form game. A normal-form game refers to a game where players make deci-
sions simultaneously without knowing the decisions made by other players, whereas an
extensive-form game refers to a game where players make decisions sequentially and can
observe the decisions made by other players before making their own decisions.

Normal-form games represent the game by way of a matrix, represented by a tuple
(π, U, n), where n is the number of players, π = (π1, . . . , πn) is a collection of strategies
for all players, and U : π → Rn is a payoff table mapping each joint policy to a scalar utility
for each player. Each player aims to maximize their own payoff. Assume that πi is a mixed
strategy of player i and π−i refers to the joint mixed strategies except πi. Ui(πi, π−i) is the
expected payoff of player i. Then, Nash equilibrium can be defined.

Definition 1 (Nash equilibrium). A mixed strategy profile π∗ = (π∗1 , . . . , π∗n) is a Nash
equilibrium if for all player i:

max
π′i

Ui(π
′
i , π−i) = Ui(π

∗
i , π−i)

Intuitively, in a Nash equilibrium, no player has an incentive to change their current
strategy unilaterally because doing so would result in no benefits or even negative returns.
Therefore, the strategy profile remains stable. π∗i is the best response (BR) of agent i.

In extensive-form games, players make decisions sequentially, with each player’s
action influencing the subsequent decisions of other players. These games generalize
the normal-form game formalism for sequential decision-making scenarios. Every finite
extensive-form game has an equivalent normal-form game [14], and an approximation of
Nash equilibrium called ε-Nash equilibrium or approximate Nash equilibrium is typically
considered. The corresponding BR is referred to as the ε-best response.

Definition 2 (ε-Nash equilibrium). A mixed strategy profile π∗ = (π∗1 , . . . , π∗n) is a ε-Nash
equilibrium if for all player i:

Ui(π
∗
i , π−i) ≥ Ui(π

′
i , π−i)− ε, f or any policy π′i o f player i

In the context of game theory, a real-life game can be incredibly complex, making it
impractical to explicitly list out all the possible strategies. As a result, researchers often
construct an “empirical game” that is smaller in size but still captures the essential features
of the full game. This empirical game is built by discovering strategies and using meta-
reasoning techniques to navigate the strategy space. In the general framework of PB-DRL
algorithms, this empirical game is also known as the “meta-game.” It starts with a single
policy and grows by adding policies that approximate the best responses to the meta-
strategy of the other players. In other words, the meta-game is a simplified version of the
real game that captures its essential features, allowing PB-DRL algorithms to learn effective
strategies in a computationally efficient manner.

469

Mathematics 2023, 11, 2234

2.2. Multi-Agent Reinforcement Learning

Reinforcement learning is a learning approach that aims to find the optimal way
of mapping situations to actions to maximize a numerical reward signal [1]. It is often
formalized as a Markov Decision Process (MDP) that addresses sequential decision-making
problems in environments with discrete time-steps. Deep reinforcement learning combines
RL with deep neural networks, resulting in improved performance compared to RL without
neural networks. DRL can handle larger state spaces, enabling it to process larger input
matrices such as images, and it can learn more complex policies with fewer hand-specified
features to represent state information [15,16]. Some well-known DRL algorithms used in
various applications include DQN [17], TD3 [18], and PPO [19].

Multi-agent reinforcement learning refers to sequential decision-making with multiple
agents, which poses additional challenges due to the fact that taking action can influence the
rewards of other agents. MARL tasks are commonly divided into cooperative (the agents
work together to reach a common goal, like Overcooked), competitive (each agent has its
own reward function and acts selfishly to maximize only its own expected cumulative
reward, like Go), and mixed settings (each agent has an arbitrary but agent-unique reward
function, like football). PB-DRL has shown good performance in applications with these
settings [4,20,21].

MARL algorithms can be classified into six different learning paradigms, as outlined by
Yang et al. [22]: (1) independent learners with shared policy, (2) independent learners with
independent policies, (3) independent learning with shared policy within a group, (4) one
central controller controlling all agents, (5) centralized training with decentralized execution
(CTDE), and (6) decentralized training with networked agents. Types with independent
learners (type 1-3) use independent reinforcement learning, where each agent treats the
experience of other agents as part of its (non-stationary) environments [23,24]. This makes
it a suitable approach for problems with a large number of agents or a high-dimensional
action space. However, it may result in overfitting to the other agents during training and
insufficient generalization during execution [25]. The fourth type of the learning paradigm
can be seen as a single-agent RL method, which has a problem in large-scale strategy space.
Type 5, CTDE, is a popular approach where agents can exchange information with others
during training and act independently during execution [26,27]. This allows for efficient
training but may suffer from communication overhead during execution. Decentralized
training with networked agents, type 6, involves each agent learning its own policy based
on local observations and communication with its neighbors in a networked structure [28].
This can improve scalability and adaptability but may require significant communication
among agents.

PB-DRL algorithms belong to the CTDE paradigm and maintain a large, diverse
population to train a robust policy that can generalize to non-communication situations. In
PB-DRL, a population of agents explores the environment in parallel, allowing them to learn
from each other to improve their collective performance. This approach has been shown
to be more sample-efficient and to generalize better in various applications, including
cooperative, competitive, and mixed settings, which makes it a promising technique for
addressing the challenges in multi-agent reinforcement learning.

3. Population-Based Deep Reinforcement Learning

In recent years, PB-DRL has emerged as a promising research direction in the field of
DRL. The key idea behind PB-DRL is to employ multiple agents or learners that interact with
their environment in parallel and exchange information to improve their performance. This
approach has shown great potential in achieving superior results compared to traditional
single-agent methods. In this survey paper, we focus on several popular population-based
methods, including naive self-play, fictitious self-play, population play, evolutionary-based
methods, and the general framework. We will discuss the basic concepts, advantages, and
limitations of each method to provide a comprehensive overview of the current state of the

470

Mathematics 2023, 11, 2234

art in this field. For a brief overview of a selected subset of methods for PB-DRL, see also
Table 1.

Table 1. A selected subset of research areas and recent algorithms or frameworks for PB-DRL.

Category Algorithm Advantages Disadvantages Descriptions

Naive Self-Play Naive SP [29] Simplicity, Effectiveness Overfitting, Instability Playing against a mirrored copy of the agent

Fictitious Self-Play

Fictitious play
[30] Flexibility Exploration requirement Players choose the best response to a uniform mix-

ture of all previous policies at each iteration

FSP [31] Robust and efficient
learning

Exploration requirement,
Sensitive initialization Extending FP to extensive-form games

NFSP [32]
Handling complex

environments, High
scalability

Instability,
Hyperparameter tuning

Combining FSP with neural network
function approximation

ED [33] Efficient, No requirement
of average strategies

Exploration requirement,
Scalability issues

Directly optimizes policies against worst-
case opponents

δ-Uniform FSP
[34] Simplicity Limited Exploration Learning a policy that can beat older versions of

itself sampled uniformly at random
Prioritized FSP

[5] Simplicity Limited Exploration Sampling the policies of opponents by their ex-
pected win rate

Population-Play

PP [35] Exploration, Diversity Inefficiency Training a population of agents, all of whom inter-
act with each other

FCP [20] Zero-shot collaboration Inefficiency, Prone to
researcher biases

Using PP to train a diversity policy pool of partners
which is used to train a robust agent in coopera-
tive setting

Hidden-Utility
Self-Play [36] Modeling human bias Inefficiency, Domain

knowledge requirement

Following the FCP framework and uses a hidden
reward function to model human bias to human–AI
cooperation problem

Evolution-based
Method

PBT [37] Efficient search, Dynamic
hyperparameter tuning

Resource-intensive,
Complex implementation

Online evolutionary process that adapts internal
rewards and hyperparameters

MERL [38] No requirement for
reward sharping

Computationally
expensive

Split-level training platform without requiring
domain-specific reward shaping

CERL [39] Efficient sampling Resource-intensive Using a collective replay buffer to share all informa-
tion across the population

DERL [40] Diverse solution Computationally
expensive

Decoupling the processes of learning and evolution
in a distributed asynchronous manner

General
Framework

PSRO [25] Robust learning,
Zero-sum convergence

Low scalability,
Computationally

expensive

Using DRL to compute best responses to a dis-
tribution over policies and empirical game-
theoretic analysis to compute new meta-
strategy distributions

PSROrN [41] Open-ended learning,
Non-transitive cycle

Low scalability,
Computationally

expensive

A framework based on PSRO but defines and uses
the effective diversity to encourage diverse skills

Diverse PSRO
[42]

Open-ended learning,
Low exploitability

Low scalability,
Computationally

expensive

Introducing a new diversity measure based on a
geometric interpretation of games modelled by a
determinantal point process to improve diversity

Pipeline PSRO
[43]

Scalability, High
efficiency Approximation errors

Maintaining a hierarchical pipeline of reinforce-
ment learning workers to improve the efficiency
of PSRO

α-PSRO [44] General-sum
many-player game

Resource-intensive,
Solver dependence

Using an α-Rank method as the meta-solver which
is a critical component of PSRO

3.1. Naive Self-Play

Self-play (SP) is an open-ended learning training scheme that trains by playing against
a mirrored copy of itself without any supervision in various stochastic environments.
Compared with expert opponents, SP has shown more amazing performance in many
complex problems. The simplest and most effective SP method is naive self-play, first
proposed in [29]. As shown in Figure 1, the opponent (mirrored agent) uses the same policy
network, i.e., the opponent downloads the latest policy network while the agent updates
its policy network. Denote π as a policy being trained, πzoo as a policy zoo, π′ as the policy

471

Mathematics 2023, 11, 2234

set of the opponents, Ω as the policy sampling distribution, and G as the gating function
for πzoo [45]. The policy sampling distribution Ω is

Ω(π′|πzoo, π) =

{
1, ∀π′ ∈ πzoo : π′ = π

0. Otherwise
(1)

Since the policy zoo πzoo only keeps the latest version of policy π, it always clears the old
policies πzoo and inserts π, πzoo = π.

Figure 1. Overview of naive self-play.

A variety of works have followed this method since naive self-play is simple and
effective. TD-Gammon [46] features naive SP to learn a policy by using TD(λ) algorithm. At
that time, this work outperforms supervised learning with expert experience. AlphaGo [3]
defeated the world champion of Go in 2017; it uses a combination of supervised learning
on expert datasets and SP technology. SP is used to update the policy and to generate more
data. SP-based applications have been developed rapidly in both academia and industry.
One year after AlphaGo, AlphaZero [47] gained prominence. In contrast to AlphaGo,
AlphaZero does not require domain-specific human knowledge but achieves outstanding
performance. Instead, it learns the game policy by playing against itself, using only the
game rules.

Naive SP is also a solution for handling many-to-many environments, as demonstrated
by JueWu [48] which uses this approach for two players controlling five heroes in Honor
of Kings during lineup and random lineup stages. Another study applied naive SP to
an open-ended environment (hide-and-seek [49]), showing that it can lead to emergent
auto-curricula with many distinct and compounding phase shifts in agent strategy.

Despite its effectiveness, naive SP may not be sufficient to learn a robust policy due to
the lack of diversity in opponent policies. Fictitious self-play is a solution to this problem,
where the agent plays against a mixture of its previous policies and fictional policies that
are generated by sampling from a distribution over policies learned during training.

3.2. Fictitious Self-Play

Fictitious play, introduced by Brown [30], is a popular method for learning Nash
equilibrium in normal-form games. The premise is that players repeatedly play a game
and choose the best response to a uniform mixture of all previous policies at each iteration.
As shown in Figure 2, fictitious self-play (FSP) [31] is a machine learning framework that
implements generalized weakened fictitious play in behavioral strategies in a sample-
based fashion. It can avoid cycles by playing against all previous policies. FSP iteratively
samples episodes of the game from SP. These episodes constitute datasets that are used by
reinforcement learning to compute approximate best responses and by supervised learning
to compute perturbed models of average strategies.

472

Mathematics 2023, 11, 2234

Figure 2. Overview of fictitious self-play.

Neural fictitious self-play (NFSP) [32] combines FSP with neural network function
approximation. NFSP keeps two kinds of memories. One, denoted as MRL, was used
for storing experience of game transitions, while the other,MSL, stored the best response
behavior. Each agent computed an approximate best response β fromMRL and updated
its average policy Π by supervised learning fromMSL. In principle, each agent could learn
the best response by playing against the average policies of other agents. However, the
agent cannot get its best response policy β, which is needed to train its average policy Π,
and its average policy Π is needed for the best response training of other agents. NFSP
uses the approximation of anticipatory dynamics of continuous-time dynamic fictitious
play [50], in which players choose the best response to the short-term predicted average
policy of their opponents, Π−i

t + η d
dt Πt, where η is the anticipatory parameter. NFSP

assumes βt+1 −Πt ≈ d
dt Πt as a discrete-time approximation. During play, all agents mixed

their actions according to σ = Π + η(β−Π). By using this approach, each agent could
learn an approximate best response with predicted average policies of its opponents. In
other words, the policy sampling distribution of all agents Ω is

Ω(π) =

{
β, with probability η

Π. with probability 1− η
(2)

MRL uses a circular buffer to store transition in every step, but MSL only inserts transition
while agent follows the best response policy β.

The Exploitability Descent (ED) algorithm [33] is a PB-DRL method that directly
optimizes policies against worst-case opponents without the need to compute average
policies. In contrast to NFSP algorithm, which requires a large reservoir buffer to compute
an approximate equilibrium, ED focuses on decreasing the “exploitability” of each player,
which refers to how much a player could gain by switching to a best response. The
algorithm has two steps for each player on each iteration. The first step is identical to
the FP algorithm, where the best response to the policy of each player is computed. The
second step performs gradient ascent on the policy to increase the utility of each player
against the respective best responder, aiming to decrease the exploitability of each player.
In a tabular setting with Q-values and L2 projection, the policy gradient ascent update is
defined by equation

θt
S = P�2(θ

t−1
S + αt〈∇θS πt−1

θ (S), Qb(S)〉)
= P�2(θ

t−1
S + αtQb(S)),

(3)

where Qb(S) is the expected return at state S with joint policy set b, P�2 is the L2 projection,
∇θS πt−1

θ (S) is an identity matrix, and α is the step size. In other words, the ED algorithm
directly optimizes policies against worst-case opponents, making it a promising approach
for addressing games with complex strategy spaces.

473

Mathematics 2023, 11, 2234

A related approach from another perspective is δ−Uni f orm FSP [34], which learns a
policy that can beat older versions of itself sampled uniformly at random. The authors use
a percentage threshold δ ∈ [0, 1] to select the old policies that are eligible for sampling from
the policy zoo πzoo, i.e., the opponent strategy π′ is sampled from

Ω(π′|πzoo, π) = Uni f orm(δ|πzoo|, |πzoo|) (4)

Significantly, the algorithm is the same as naive SP while δ = 1. After every episode, the
training policy is always inserted into the policy zoo πzoo. Thus, πzoo is updated with
πzoo = πzoo ∪ π.

While AlphaStar does use FSP as one of its learning algorithms, Prioritized FSP is
actually a modification proposed by the AlphaStar team in their subsequent paper [5]. The
authors argue that many games are wasted against players that are defeated in almost 100%
of games while using regular FSP and propose Prioritized FSP which samples policies by
their expected win rate. Policies that are expected to win with higher probability against
the current agent have higher priority and are sampled more frequently. The opponent
sampling distribution Ω can be written as

Ω(π′|πzoo, π) =
f (P(π beats π′))

∑Π∈πzoo f (P(π betas Π))
(5)

where f is a weighting function, e.g., f (x) = (1− x)p. The policy zoo named league in the
paper is complex; we will introduce the update method latter.

OpenAI Five also employs a similar method, as described in [11]. The method consists
of training with a naive self-play approach for 80% of the games and using past sampling
policies for the remaining 20%. Similar to the Prioritized FSP method, OpenAI Five uses
a dynamic sampling system that relies on a dynamically generated quality score q. This
system samples opponent agents according to a softmax distribution, where the probability
of choosing an opponent p is proportional to eq. If OpenAI Five wins the game, q is updated
with a learning rate constant η as follows:

q = q− η

Np
(6)

where N is the size of policy zoo. At every 10 iterations, the policy of the current agent will
be added to the policy zoo with an initial quality score equal to the maximum quality score
in the zoo.

While self-play can bring remarkable performance improvements to reinforcement
learning, it performs poorly in non-transitive games because it always plays against itself.
Specifically, the opponent’s policy only samples from one policy, which means the training
agent only learns from a single type of opponent. This approach works well in situations
where a higher-ranked player can always beat a lower-ranked player. Population-based
training methods bring more robust policies.

3.3. Population-Play

Another population-based method for multi-agent systems is population-play (PP), which
builds upon the concept of SP to involve multiple players and their past generations [5,35], as
shown in Figure 3. With PP, a group of agents is developed and trained to compete not
only with each other but also with agents from prior generations.

474

Mathematics 2023, 11, 2234

Figure 3. Overview of (naive) population-play.

To train an exceptional agent, AlphaStar [5] maintains three types of opponent pools:
Main Agents, League Exploiters, and Main Exploiters. Main Agents are trained with a
combination of 35% SP and 50% PFSP against all past players in the league, and the agent
plays an additional 15% of matches against opponents who had previously been beaten
but are now unbeatable, as well as past opponents who had previously exploited the
weaknesses of the agent. League Exploiters are used to find a policy that league agents
cannot defeat. They are trained using PFSP against agents in the league and added to the
league if they defeat all agents in the league with a winning rate of more than 70%. Main
Exploiters play against Main Agents to identify their weaknesses. If the current probability
of winning is less than 20%, Main Exploiters employ PFSP against players created by Main
Agents. Otherwise, Main Exploiters play directly against the current Main Agents.

For the Win (FTW) [35] is a training method designed for the game of Capture the
Flag, which involves training a diverse population of different agents by having them
learn from playing with each other. The training process involves sampling agents from
the population to play as teammates and opponents, which is done using a stochastic
matchmaking scheme that biases co-players to be of similar skill to the player. This ensures
that a diverse set of teammates and opponents participate in training, and helps to promote
robustness in the learned policies. A population-based training method is implemented to
enhance the performance of weaker players and improve the overall ability of all players.

PP can accommodate a wide range of agents, making it also suitable for deployment
in cooperative settings. However, Siu et al. [51] observed that in such scenarios, human
players tended to favor rule-based agents over RL-based ones. This finding highlights
the need to take into account human perceptions of AI when designing and developing
systems intended for real-world adoption.

To address this issue, fictitious co-play (FCP) [20] aims to produce robust partners that
can assist humans with different styles and skill levels without relying on human-generated
data (i.e., zero-shot coordination with humans). FCP is a two-stage approach. In the first
stage, N partner agents are trained independently in self-play to create a diverse pool
of partners. In the second stage, FCP trains a best-response agent against the diverse
pool to achieve robustness. Hidden-utility self-play [36] follows the FCP framework and
uses a hidden reward function to model human bias with domain knowledge to solve the
human–AI cooperation problem. A similar work for assistive robots learns a good latent
representation for human policies [52].

3.4. Evolution-Based Training Methods

Evolutionary algorithms are a family of optimization algorithms inspired by the
process of natural selection. They involve generating a population of candidate solutions
and iteratively improving them by applying operators such as mutation, crossover, and
selection, which mimic the processes of variation, reproduction, and selection in biological
evolution. These algorithms are widely used in solving complex optimization problems in
various fields, including engineering, finance, and computer science. Evolutionary-based
DRL is a type of PB-DRL that approaches training from an evolutionary perspective and
often incorporates swarm intelligence techniques, particularly evolution algorithms. In
this subsection, we will focus on recent hybrid DRL algorithms that combine evolutionary

475

Mathematics 2023, 11, 2234

approaches with deep reinforcement learning to accelerate the training phase. These
algorithms can be used alongside SP or PP algorithms [35].

Population-based training (PBT) introduced in [37] is an online evolutionary process
that adapts internal rewards and hyperparameters while performing model selection by
replacing underperforming agents with mutated versions of better agents. Multiple agents
are trained in parallel, and they periodically exchange information by copying weights and
hyperparameters. The agents evaluate their performance, and underperforming agents are
replaced by mutated versions of better-performing agents. This process continues until a
satisfactory performance is achieved, or a maximum budget is reached.

Majumdar et al. [38] propose multi-agent evolutionary reinforcement learning (MERL)
as a solution for the sample inefficiency problem of PBT in cooperative MARL environments
where the team reward is sparse and agent-specific reward is dense. MERL is a split-
level training platform that combines both gradient-based and gradient-free optimization
methods, without requiring domain-specific reward shaping. The gradient-free optimizer is
used to maximize the team objective by employing an evolutionary algorithm. Specifically,
the evolutionary population maintains a variety of teams and uses evolutionary algorithms
to maximize team rewards (fitness). The gradient-based optimizer maximizes the local
reward of each agent by using a common replay buffer with other team members in the
evolutionary population. Collaborative evolutionary reinforcement learning (CERL) [39] is
a similar work which addresses the sample inefficiency problem of PBT. It uses a collective
replay buffer to share all information across the population.

Deep evolutionary reinforcement learning (DERL) [40] is a framework for creating
embodied agents that combines evolutionary algorithms with DRL, which aims to find a
diverse solutions. DERL decouples the processes of learning and evolution in a distributed
asynchronous manner, using tournament-based steady-state evolution. Similar to PBT [37],
DERL maintains a population to encourage diverse solutions. The average final reward is
used as a fitness function, and a tournament-based selection method is used to choose the
parents for generating children via mutation operations. Liu et al. [53] demonstrated that
end-to-end PBT can lead to emergent cooperative behaviors in the soccer domain. They
also applied an evaluation scheme based on Nash averaging to address the diversity and
exploitability problem.

3.5. General Framework

The policy-space response oracles (PSRO) framework is currently the most widely
used general framework for PB-DRL. It unifies various population-based methods, such as
SP and PP, with empirical game theory to effectively solve games [25]. As shown in Figure 4,
PSRO divides these algorithms into three modules: meta strategy, best-response solution,
and policy zoo expansion. The first module, meta strategy, involves solving the meta-game
using a meta-solver to obtain the meta strategy (policy distribution) of each policy zoo.
The second module, best-response solution, involves each agent sampling policies of other
agents π−i and computing its best response πi with fixed π−i. The third module, policy zoo
expansion, involves adding the best response to the corresponding policy zoo. The process
starts with a single policy. In each episode, one player trains its policy πi using a fixed policy
set, which is sampled from the meta-strategies of its opponents (π′−i ∼ πzoo

−i). At the end
of every epoch, each policy zoo expands by adding the approximate best response to the
meta-strategy of the other players, and the expected utilities for new policy combinations
computed via simulation are added to the payoff matrix.

476

Mathematics 2023, 11, 2234

Figure 4. Overview of PSRO.

Although PSRO has demonstrated its performance, several drawbacks have been
identified and addressed by recent research. One such extension is Rectified Nash response
(PSROrN) [41], which addresses the diversity issue and introduces adaptive sequences of
objectives that facilitate open-ended learning. The effective diversity of the population is
defined as:

d(πzoo) =
n

∑
i,j=1

�φ(wi, wj)�+ · pi · pj (7)

where n = |πzoo|, φ(x, y) is the payoff function, p is the Nash equilibrium on πzoo, �x�+ is
the rectifier, denoted by �x�+ = x if x ≤ 0 and �x�+ = 0 otherwise. Equation (7) encourages
agents to play against opponents who they can beat. Perhaps surprisingly, the authors
found that building objectives around the weaknesses of agents does not actually encourage
diverse skills. To elaborate, when the weaknesses of an agent are emphasized during
training, the gradients that guide its policy updates will be biased towards improving
those weaknesses, potentially leading to overfitting to a narrow subset of the state space.
This can result in a lack of diversity in the learned policies and a failure to generalize to
novel situations. Several other works have also focused on the diversity aspect of PSRO
frameworks. In [42], the authors propose a geometric interpretation of behavioral diversity
in games (Diverse PSRO) and introduce a novel diversity metric that uses determinantal
point process (DPP). The diversity metric is based on the expected cardinality of random
samples from a DPP in which the ground set is the strategy population. It is denoted as:

Diversity(πzoo) = Eπ′∼PLπzoo

[
|π′|

]
= Tr(I − (Lπzoo + I)−1), (8)

where a DPP defines a probability P, π′ is a random subset drawn from the DPP, and Lπzoo

is the DPP kernel. They incorporate this diversity metric into best-response dynamics to
improve overall diversity. Similarly, [54] notes the absence of widely accepted definitions
for diversity and offers a redefined behavioral diversity measure. The authors propose
response diversity as another way to characterize diversity through the response of policies
when facing different opponents.

Pipeline PSRO [43] is a scalable method that aims to improve the efficiency of PSRO,
which is a common problem of most of PSRO-related frameworks, in finding approximate
Nash equilibrium. It achieves this by maintaining a hierarchical pipeline of reinforcement
learning workers, allowing it to parallelize PSRO while ensuring convergence. The method
includes two classes of policies: fixed and active. Active policies are trained in a hierarchical
pipeline, while fixed policies are not trained further. When the performance improvement

477

Mathematics 2023, 11, 2234

of the lowest-level active worker in the pipeline does not meet a given threshold within
a certain time period, the policy becomes fixed, and a new active policy is added to the
pipeline. Another work has improved the computation efficiency and exploration efficiency
by introducing a new subroutine of no-regret optimization [55].

PSRO framework has another branch which optimizes the meta-solver concept. Alpha-
PSRO [44] extends the original PSRO paper to apply readily to general-sum, many-player
settings, using an α-Rank [56], a ranking method that considers all pairwise comparisons
between policies, as the meta-solver. Alpha-PSRO defines preference-based best response
(PBR), an oracle that finds policies that maximize their rank against the population. Alpha-
PSRO works by expanding the strategy pool through constructing a meta-game and calcu-
lating a payoff matrix. The meta-game is then solved to obtain a meta-strategy, and finally,
a best response is calculated to find an approximate optimal response. Joint PSRO [57]
uses correlated equilibrium as the meta-solver, and Mean-Field PSRO [58] proposes newly
defined mean-field no-adversarial-regret learners as the meta-solver.

4. Challenges and Hot Topics

In the previous section, we discussed several PB-DRL algorithms that have shown
significant improvements in real-life game scenarios. However, the application of these
algorithms also faces several challenges that need to be addressed to further advance the
field of PB-DRL.

4.1. Challenges

One of the most significant challenges in PB-DRL is the need for increased diver-
sity within the population. Promoting diversity not only helps AI agents avoid checking
the same policies repeatedly, but also enables them to discover niche skills, avoid being
exploited, and maintain robust performance when encountering unfamiliar types of oppo-
nents [22]. As the population grows, it becomes more challenging to maintain diversity
and ensure efficient exploration of the search space. Without adequate diversity, the pop-
ulation may converge prematurely to suboptimal solutions, leading to the stagnation of
the learning process. Overfitting to policies in the policy zoo is a significant challenge to
generalization [25,59]. Although the diversity of a population has been widely discussed
in the evolutionary algorithm community at the genotype level, phenotype level, and
the combination of the previous two cases [60], which typically operate on a fixed set of
candidate solutions, PB-DRL is often used in dynamic and uncertain environments where
the population size and diversity can change over time. Additionally, since policies are
always represented as neural networks, using difference-based or distance-based methods
directly, which are widely used in evolutionary computations, are not suitable choices.
Some heuristic algorithms have been proposed. Balduzzi et al. [41] design an opponents se-
lection method to expand the policy game space to improve diversity. Another approach is
to incorporate different levels of hierarchy within the population to maintain diversity [44].
An interesting work [42] models behavioral diversity for learning in games by using a
determinantal point process as the diversity metric. Other techniques that improve the
diversity of the policy pool can be found in [61–63].

The need for increased efficiency is a significant challenge in PB-DRL, as evaluating
each individual within a growing population becomes computationally expensive, resulting
in a reduced learning rate. PB-DRL is often applied to large-scale environments with high-
dimensional state and action spaces, making the evaluation of each individual within a
population even more computationally expensive. For instance, AlphaStar trained the
league over a period of 44 days using 192 8-core TPUs, 12 128-core TPUs, and 1800 CPUs,
which potentially cost more than 120 billion dollars in renting cloud computing services
for training [5]. One promising approach to improving efficiency in PB-DRL is to develop
more sample-efficient algorithms. This can be achieved through various means, such as
monotonic improvement in exploitability [55], regret bound [64]. Another approach to
improving efficiency in PB-DRL is to use distributed computing techniques [43,65]. These

478

Mathematics 2023, 11, 2234

techniques can enable faster evaluation of individuals within a population, as well as better
parallelization of the learning process. For example, some recent works named distributed
deep reinforcement learning [66] are often used to accelerate the training process in PB-DRL,
such as SEED RL [67], Gorila [68], and IMPALA [69]. In addition to the technical challenges
of improving efficiency in PB-DRL, there are also practical challenges related to the cost and
availability of computing resources. One possible solution to this challenge is to develop
more energy-efficient algorithms that can run on low-power devices or take advantage of
specialized hardware, such as GPUs or TPUs. Flajolet et al. [70] indicate that the judicious
use of compilation and vectorization allows population-based training to be performed
on a single machine with one accelerator with minimal overhead compared to training a
single agent.

4.2. Hot Topics

Despite these challenges, it is essential to note that this field is rapidly evolving.
Currently, there are several hot topics and future directions in PB-DRL worth exploring,
and researchers are actively engaged in these endeavors.

Games: PB-DRL has demonstrated outstanding performance in many games, including
board games [47], online games [5,11], and more. As a result, game manufacturers have
become interested in exploring several directions. These include:

1. AI bots that can learn to make decisions like humans, making them suitable for use in
tutorials, hosting games, computer opponents, and more.

2. AI non-player characters that train agents to interact with players according to their
own character settings, which can be used for virtual hosts, open-world RPG games,
and other applications.

3. AI teammates that are designed to help and support human players in cooperative
games or simulations. AI teammates can provide assistance, such as cover fire, healing,
or completing objectives, to human players in cooperative games or simulations.

Zero-shot coordination: The zero-shot coordination (ZSC) problem refers to the situa-
tion where agents must independently produce strategies for a collaborative game that
are compatible with novel partners not seen during training [63]. Population-based rein-
forcement learning has been used for this problem, starting with FCP [20], and there is
ongoing research using the keywords “zero-shot human-AI coordination.” Researchers aim
to identify a sufficiently robust agent capable of effectively generalizing human policies.
Many methods have been used in this problem, such as lifetime learning [71], population
diversity [62,63], and model human bias [36].

Robotics: Reinforcement learning has become increasingly prevalent in the robotics
field [72–74]. The use of PB-DRL has also expanded to robots, including robotic manipula-
tion [75], assistance with robots [52], multi-robot planning [76], and robot table tennis [77].
In a recent study, it was shown that PB-DRL could generate varied environments [78],
which is advantageous for developing robust robotics solutions.

Financial markets: Population-based algorithms and concepts have immense potential
for use in financial markets and economic forecasting [79]. Despite the widespread use of
MARL in financial trading, the application of PB-DRL to financial markets appears to be
underutilized in both academic and industry-related research. This is partly due to the
high demands placed on simulation environments when working with PB-DRL. Once an
environment that meets the requirements is created, PB-DRL will show its power.

5. Conclusions

In this paper, we have provided a comprehensive survey of representative population-
based deep reinforcement learning (PB-DRL) algorithms, applications, and general frame-
works. We categorize PB-DRL research into the following areas: naive self-play, fictitious
self-play, population-play, evolution-based training methods, and general framework. We
compare the main ideas of different types of algorithms by summarizing the various types
of PB-DRL algorithms and describing how they have been used in real-life applications.

479

Mathematics 2023, 11, 2234

Furthermore, we introduce evolution-based training methods to expound on common
ways to adjust hyperparameters or accelerate training. General frameworks for PB-DRL
are also introduced for different game settings, providing a general training process and
theoretical proofs. Finally, we discuss the challenges and opportunities of this exciting
field. We aim to provide a valuable reference for researchers and engineers working on
practical problems.

Author Contributions: Conceptualization, W.L. and P.Z.; methodology, W.L. and P.Z.; software, T.H.;
validation, X.W. and S.Y.; formal analysis, X.W.; investigation, W.L. and X.W.; resources, W.L.; writing—
original draft preparation, W.L.; writing—review and editing, T.H., X.W. and P.Z; visualization, S.Y.;
supervision, L.Z.; project administration, P.Z. and L.Z.; funding acquisition, L.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: The work reported in this paper was supported by the National Key R&D Program of China
(Grant Number: 2021ZD0113502, 2021ZD0113503), Shanghai Municipality Science and Technology
Major Project (Grant Number: 2021SHZDZX0103), and China Postdoctoral Science Foundation (Grant
Number: BX20220071, 2022M720769), and Research on Basic and Key Technologies of Intelligent
Robots (Grant Number: KEH2310017).

Data Availability Statement: Not applicable.

Acknowledgments: Many thanks to FDU IPASS Group for taking the time to proofread this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
3. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

4. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef]

5. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev,
P.; et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]
[PubMed]

6. Degrave, J.; Felici, F.; Buchli, J.; Neunert, M.; Tracey, B.; Carpanese, F.; Ewalds, T.; Hafner, R.; Abdolmaleki, A.; de Las Casas,
D.; et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 2022, 602, 414–419. [CrossRef]
[PubMed]

7. Fawzi, A.; Balog, M.; Huang, A.; Hubert, T.; Romera-Paredes, B.; Barekatain, M.; Novikov, A.; R Ruiz, F.J.; Schrittwieser, J.;
Swirszcz, G.; et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 2022, 610, 47–53.
[CrossRef]

8. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents
Multi-Agent Syst. 2019, 33, 750–797. [CrossRef]

9. Buşoniu, L.; Babuška, R.; De Schutter, B. Multi-agent reinforcement learning: An overview. In Innovations in Multi-Agent Systems
and Applications-1; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–221.

10. Brown, N.; Sandholm, T. Superhuman AI for multiplayer poker. Science 2019, 365, 885–890. [CrossRef]
11. Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.; et al. Dota 2

with Large Scale Deep Reinforcement Learning. arXiv 2019, arXiv:1912.06680.
12. Czarnecki, W.M.; Gidel, G.; Tracey, B.; Tuyls, K.; Omidshafiei, S.; Balduzzi, D.; Jaderberg, M. Real world games look like spinning

tops. Adv. Neural Inf. Process. Syst. 2020, 33, 17443–17454.
13. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Elsevier: Amsterdam,

The Netherlands, 2007.
14. Kuhn, H. Extensive games and the problem of information. Contributions to the Theory of Games; Princeton University Press:

Princeton, NJ, USA, 1953; p. 193.
15. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
16. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]

480

Mathematics 2023, 11, 2234

17. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

18. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In 35th International
Conference on Machine Learning; Dy, J., Krause, A., Eds.; PMLR: Cambridge, MA, USA, 2018; Volume 80, pp. 1587–1596.

19. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

20. Strouse, D.; McKee, K.; Botvinick, M.; Hughes, E.; Everett, R. Collaborating with humans without human data. Adv. Neural Inf.
Process. Syst. 2021, 34, 14502–14515.

21. Lin, F.; Huang, S.; Pearce, T.; Chen, W.; Tu, W.W. TiZero: Mastering Multi-Agent Football with Curriculum Learning and Self-Play.
arXiv 2023, arXiv:2302.07515.

22. Yang, Y.; Wang, J. An overview of multi-agent reinforcement learning from game theoretical perspective. arXiv 2020,
arXiv:2011.00583.

23. de Witt, C.S.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.; Torr, P.H.; Sun, M.; Whiteson, S. Is independent learning all you need
in the starcraft multi-agent challenge? arXiv 2020, arXiv:2011.09533.

24. Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of ppo in cooperative multi-agent
games. Adv. Neural Inf. Process. Syst. 2022, 35, 24611–24624.

25. Lanctot, M.; Zambaldi, V.F.; Gruslys, A.; Lazaridou, A.; Tuyls, K.; Pérolat, J.; Silver, D.; Graepel, T. A Unified Game-Theoretic
Approach to Multiagent Reinforcement Learning. In Proceedings of the Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY,
USA, 2017; pp. 4190–4203.

26. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach,
H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6379–6390.

27. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. QMIX: Monotonic Value Function Factorisation
for Deep Multi-Agent Reinforcement Learning. In 35th International Conference on Machine Learning; Dy, J., Krause, A., Eds.; PMLR:
Cambridge, MA, USA, 2018; Volume 80, pp. 4295–4304.

28. Sukhbaatar, S.; Szlam, A.; Fergus, R. Learning Multiagent Communication with Backpropagation. In Proceedings of the Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona,
Spain, 5–10 December 2016; Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates Inc.: Red
Hook, NY, USA, 2016; pp. 2244–2252.

29. Al, S. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229.
30. Brown, G.W. Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc. 1951, 13, 374.
31. Heinrich, J.; Lanctot, M.; Silver, D. Fictitious self-play in extensive-form games. In International Conference on Machine Learning;

PMLR: Cambridge, MA, USA, 2015; pp. 805–813.
32. Heinrich, J.; Silver, D. Deep reinforcement learning from self-play in imperfect-information games. arXiv 2016, arXiv:1603.01121.
33. Lockhart, E.; Lanctot, M.; Pérolat, J.; Lespiau, J.; Morrill, D.; Timbers, F.; Tuyls, K. Computing Approximate Equilibria in

Sequential Adversarial Games by Exploitability Descent. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019; Kraus, S., Ed.; pp. 464–470. [CrossRef]

34. Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; Mordatch, I. Emergent Complexity via Multi-Agent Competition. In Proceedings
of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

35. Jaderberg, M.; Czarnecki, W.M.; Dunning, I.; Marris, L.; Lever, G.; Castaneda, A.G.; Beattie, C.; Rabinowitz, N.C.; Morcos, A.S.;
Ruderman, A.; et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science
2019, 364, 859–865. [CrossRef]

36. Yu, C.; Gao, J.; Liu, W.; Xu, B.; Tang, H.; Yang, J.; Wang, Y.; Wu, Y. Learning Zero-Shot Cooperation with Humans, Assuming
Humans Are Biased. arXiv 2023, arXiv:2302.01605.

37. Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W.M.; Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning, I.; Simonyan,
K.; et al. Population Based Training of Neural Networks. arXiv 2017, arXiv:1711.09846v2.

38. Majumdar, S.; Khadka, S.; Miret, S.; Mcaleer, S.; Tumer, K. Evolutionary Reinforcement Learning for Sample-Efficient Multiagent
Coordination. In 37th International Conference on Machine Learning; Daumé, H., Singh, A., Eds.; PMLR: Cambridge, MA, USA,
2020; Volume 119, pp. 6651–6660.

39. Khadka, S.; Majumdar, S.; Nassar, T.; Dwiel, Z.; Tumer, E.; Miret, S.; Liu, Y.; Tumer, K. Collaborative Evolutionary Reinforcement
Learning. In 36th International Conference on Machine Learning; Chaudhuri, K., Salakhutdinov, R., Eds. PMLR: Cambridge, MA,
USA, 2019; Volume 97, pp. 3341–3350.

40. Gupta, A.; Savarese, S.; Ganguli, S.; Fei-Fei, L. Embodied intelligence via learning and evolution. Nat. Commun. 2021, 12, 5721.
[CrossRef]

41. Balduzzi, D.; Garnelo, M.; Bachrach, Y.; Czarnecki, W.; Perolat, J.; Jaderberg, M.; Graepel, T. Open-ended learning in symmetric
zero-sum games. In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2019; pp. 434–443.

481

Mathematics 2023, 11, 2234

42. Perez-Nieves, N.; Yang, Y.; Slumbers, O.; Mguni, D.H.; Wen, Y.; Wang, J. Modelling behavioural diversity for learning in
open-ended games. In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2021; pp. 8514–8524.

43. McAleer, S.; Lanier, J.B.; Fox, R.; Baldi, P. Pipeline psro: A scalable approach for finding approximate nash equilibria in large
games. Adv. Neural Inf. Process. Syst. 2020, 33, 20238–20248.

44. Muller, P.; Omidshafiei, S.; Rowland, M.; Tuyls, K.; Perolat, J.; Liu, S.; Hennes, D.; Marris, L.; Lanctot, M.; Hughes, E.; et al.
A Generalized Training Approach for Multiagent Learning. In Proceedings of the International Conference on Learning
Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

45. Hernandez, D.; Denamganai, K.; Devlin, S.; Samothrakis, S.; Walker, J.A. A comparison of self-play algorithms under a generalized
framework. IEEE Trans. Games 2021, 14, 221–231. [CrossRef]

46. Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Comput. 1994, 6, 215–219.
[CrossRef]

47. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

48. Ye, D.; Chen, G.; Zhao, P.; Qiu, F.; Yuan, B.; Zhang, W.; Chen, S.; Sun, M.; Li, X.; Li, S.; et al. Supervised learning achieves
human-level performance in moba games: A case study of honor of kings. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 908–918.
[CrossRef] [PubMed]

49. Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.; McGrew, B.; Mordatch, I. Emergent Tool Use From Multi-Agent
Autocurricula. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30
April 2020.

50. Shamma, J.S.; Arslan, G. Dynamic fictitious play, dynamic gradient play, and distributed convergence to Nash equilibria. IEEE
Trans. Autom. Control 2005, 50, 312–327. [CrossRef]

51. Siu, H.C.; Peña, J.; Chen, E.; Zhou, Y.; Lopez, V.; Palko, K.; Chang, K.; Allen, R. Evaluation of Human-AI Teams for Learned and
Rule-Based Agents in Hanabi. In Advances in Neural Information Processing Systems; Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 16183–16195.

52. He, J.Z.Y.; Erickson, Z.; Brown, D.S.; Raghunathan, A.; Dragan, A. Learning Representations that Enable Generalization in
Assistive Tasks. In Proceedings of the 6th Annual Conference on Robot Learning, Auckland, New Zealand, 14–18 December 2022.

53. Liu, S.; Lever, G.; Merel, J.; Tunyasuvunakool, S.; Heess, N.; Graepel, T. Emergent Coordination Through Competition. In
Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.

54. Liu, X.; Jia, H.; Wen, Y.; Hu, Y.; Chen, Y.; Fan, C.; Hu, Z.; Yang, Y. Towards unifying behavioral and response diversity for
open-ended learning in zero-sum games. Adv. Neural Inf. Process. Syst. 2021, 34, 941–952.

55. Zhou, M.; Chen, J.; Wen, Y.; Zhang, W.; Yang, Y.; Yu, Y. Efficient Policy Space Response Oracles. arXiv 2022, arXiv:2202.0063v4.
56. Omidshafiei, S.; Papadimitriou, C.; Piliouras, G.; Tuyls, K.; Rowland, M.; Lespiau, J.B.; Czarnecki, W.M.; Lanctot, M.; Perolat, J.;

Munos, R. α-rank: Multi-agent evaluation by evolution. Sci. Rep. 2019, 9, 9937. [CrossRef]
57. Marris, L.; Muller, P.; Lanctot, M.; Tuyls, K.; Graepel, T. Multi-agent training beyond zero-sum with correlated equilibrium

meta-solvers. In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2021; pp. 7480–7491.
58. Muller, P.; Rowland, M.; Elie, R.; Piliouras, G.; Pérolat, J.; Laurière, M.; Marinier, R.; Pietquin, O.; Tuyls, K. Learning Equilibria in

Mean-Field Games: Introducing Mean-Field PSRO. In Proceedings of the 21st International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2022, Auckland, New Zealand, 9–13 May 2022; Faliszewski, P., Mascardi, V., Pelachaud, C.,
Taylor, M.E., Eds.; International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2022; pp. 926–934.
[CrossRef]

59. McKee, K.R.; Leibo, J.Z.; Beattie, C.; Everett, R. Quantifying the effects of environment and population diversity in multi-agent
reinforcement learning. Auton. Agents Multi-Agent Syst. 2022, 36, 21. [CrossRef]

60. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.
(CSUR) 2013, 45, 1–33. [CrossRef]

61. Garnelo, M.; Czarnecki, W.M.; Liu, S.; Tirumala, D.; Oh, J.; Gidel, G.; van Hasselt, H.; Balduzzi, D. Pick Your Battles: Interaction
Graphs as Population-Level Objectives for Strategic Diversity. In Proceedings of the AAMAS’21: 20th International Conference
on Autonomous Agents and Multiagent Systems, Virtual Event, UK, 3–7 May 2021; Dignum, F., Lomuscio, A., Endriss, U., Nowé,
A., Eds.; ACM: New York, NY, USA, 2021; pp. 1501–1503. [CrossRef]

62. Zhao, R.; Song, J.; Hu, H.; Gao, Y.; Wu, Y.; Sun, Z.; Wei, Y. Maximum Entropy Population Based Training for Zero-Shot Human-AI
Coordination. arXiv 2021, arXiv:2112.11701v3.

63. Lupu, A.; Cui, B.; Hu, H.; Foerster, J. Trajectory diversity for zero-shot coordination. In International Conference on Machine
Learning; PMLR: Cambridge, MA, USA, 2021; pp. 7204–7213.

64. Bai, Y.; Jin, C. Provable self-play algorithms for competitive reinforcement learning. In International Conference on Machine
Learning; PMLR: Cambridge, MA, USA, 2020; pp. 551–560.

65. Dinh, L.C.; McAleer, S.M.; Tian, Z.; Perez-Nieves, N.; Slumbers, O.; Mguni, D.H.; Wang, J.; Ammar, H.B.; Yang, Y. Online Double
Oracle. arXiv 2021, arXiv:2103.07780v5.

66. Yin, Q.; Yu, T.; Shen, S.; Yang, J.; Zhao, M.; Huang, K.; Liang, B.; Wang, L. Distributed Deep Reinforcement Learning: A Survey
and A Multi-Player Multi-Agent Learning Toolbox. arXiv 2022, arXiv:2212.00253.

482

Mathematics 2023, 11, 2234

67. Espeholt, L.; Marinier, R.; Stanczyk, P.; Wang, K.; Michalski, M. SEED RL: Scalable and Efficient Deep-RL with Accelerated
Central Inference. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30
April 2020.

68. Nair, A.; Srinivasan, P.; Blackwell, S.; Alcicek, C.; Fearon, R.; De Maria, A.; Panneershelvam, V.; Suleyman, M.; Beattie, C.; Petersen,
S.; et al. Massively parallel methods for deep reinforcement learning. arXiv 2015, arXiv:1507.04296.

69. Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures. In International Conference on Machine Learning;
PMLR: Cambridge, MA, USA, 2018; pp. 1407–1416.

70. Flajolet, A.; Monroc, C.B.; Beguir, K.; Pierrot, T. Fast population-based reinforcement learning on a single machine. In International
Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2022; pp. 6533–6547.

71. Shih, A.; Sawhney, A.; Kondic, J.; Ermon, S.; Sadigh, D. On the Critical Role of Conventions in Adaptive Human-AI Collaboration.
In Proceedings of the 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021.

72. Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for
legged robots. Sci. Robot. 2019, 4, eaau5872. [CrossRef] [PubMed]

73. Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot.
2020, 5, eabc5986. [CrossRef] [PubMed]

74. Miki, T.; Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning robust perceptive locomotion for quadrupedal
robots in the wild. Sci. Robot. 2022, 7, eabk2822. [CrossRef] [PubMed]

75. OpenAI, O.; Plappert, M.; Sampedro, R.; Xu, T.; Akkaya, I.; Kosaraju, V.; Welinder, P.; D’Sa, R.; Petron, A.; Pinto, H.P.d.O.; et al.
Asymmetric self-play for automatic goal discovery in robotic manipulation. arXiv 2021, arXiv:2101.04882.

76. Riviere, B.; Hönig, W.; Anderson, M.; Chung, S.J. Neural tree expansion for multi-robot planning in non-cooperative environments.
IEEE Robot. Autom. Lett. 2021, 6, 6868–6875. [CrossRef]

77. Mahjourian, R.; Miikkulainen, R.; Lazic, N.; Levine, S.; Jaitly, N. Hierarchical policy design for sample-efficient learning of robot
table tennis through self-play. arXiv 2018, arXiv:1811.12927.

78. Li, D.; Li, W.; Varakantham, P. Diversity Induced Environment Design via Self-Play. arXiv 2023, arXiv:2302.02119.
79. Posth, J.A.; Kotlarz, P.; Misheva, B.H.; Osterrieder, J.; Schwendner, P. The applicability of self-play algorithms to trading and

forecasting financial markets. Front. Artif. Intell. 2021, 4, 668465. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

483

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

Academic Open

Access Publishing

www.mdpi.com ISBN 978-3-0365-8255-9

