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Preface to “Mathematical and Molecular Topology”

Topology is one of the fundamental tools in relating entities. Topology naturally finds

application in all fields of engineering, physical sciences, life sciences, social sciences, medicine,

business and even the arts. The motivating insight behind topology is that some geometric problems

depend not on the exact shape of the objects involved, but rather on the way they are put together.

Circa 1750, Euler stated the polyhedron formula, V − E + F = 2 (where V, E, and F respectively

indicate the number of vertices, edges, and faces of the polyhedron), which may be regarded as the

first theorem, signaling the birth of topology. Subjects included in topology are algebraic topology

and graph theory. A related branch to graph theory is molecular topology (with concerns of either

chemical or biological structure).

The Special Issue Mathematical and Molecular Topology received 10 submitted manuscripts

from which 5 were accepted and published (50% success rate). Two manuscripts are related to

mathematical topology, while the other three are related to molecular topology.

Mathematical Topology Related Works

A preclosure operator or Čech closure operator is a map between subsets of a set, similar

to a topological closure operator, except that it is not required to be idempotent. π-normal,

weakly π-normal and κ-normal generalizations of normality in Čech closure space are defined and

characterized using canonically closed sets in [1]. An important result connects those spaces: the

class of κ-normal spaces contains both the classes of weakly π-normal and almost normal Cech

closure spaces.

A Banach space B is a complete normed vector space which, in terms of generality, lies in between

a metric space (that has a metric, but no norm) and a Hilbert space (that has an inner-product, and

hence a norm, that in turn induces a metric). In [2], the local convergence analysis of a fifth order

method and its multi-step version in Banach spaces is studied. Starting from hypotheses based on the

first Fréchet-derivative only, the proposed approach provides a computable radius of convergence,

error bounds on the distances involved, and estimates on the uniqueness of the provided solution.

Taylor expansions of higher-order derivatives may not exist or may be very expensive or impossible to

compute, so approaches that use them do not produce such estimates. The authors provide numerical

examples to validate the theoretical results. Basins of attraction are used to represent convergence

domains of the methods and the boundaries of the basins reveal symmetric fractal-like shapes.

Molecular Topology Related Works

Graph algorithms, or algorithms operating on graphs is conceptually a branch of combinatorial

algorithms having uses in many problems, from graph coloring, to fining a perfect matching and

computing the lowest common ancestor, and to graph-based searching, routing and network theory.

Complete subgraphs (or cliques) are subsets of vertices which are all adjacent one to the other, while

maximal cliques are the largest such substructures in a graph. Maximal cliques of protein graphs serve

to determine their similarity and function of the protein. In [3], improvements based on machine

learning are added to a Maximum Clique Dynamic algorithm for finding the maximum clique in

large graphs such as are protein graphs. The work is based on an algorithm published in 2007 [4] and

has been widely used in bioinformatics since then, which uses an empirically determined parameter,

Tlimit, that determines the algorithm’s flow. In [3], the authors extended the MCQD algorithm with

an initial phase of a machine learning-based prediction of the Tlimit parameter that is best suited for

each input graph. The authors note that a such adaptability to graph types based on state-of-the-art

ix



machine learning is a novel approach that has not been used in most graph-theoretic algorithms. It

is shown empirically that the resulting new algorithm MCQD-ML improves search speed on certain

types of graphs, in particular molecular docking graphs used in drug design where they determine

energetically favorable conformations of small molecules in a protein binding site. In such cases, the

speed-up is twofold.

Entropy is a fundamental concept associated with measuring the state of disorder, randomness,

or uncertainty. Clausius, Boltzmann, or Gibbs (statistical) entropy and Shannon’s (information)

entropy are practically one and the same. The values of entropy are key parameters driving

the direction of spontaneous change for many commonplace events. In [5] the authors use

various computational and mathematical techniques to calculate atom–bond connectivity entropy,

atom–bond sum connectivity entropy, the newly defined Albertson entropy using the Albertson

index, and the IRM entropy using the IRM index. An example of the calculation is given on H3BO3

by using the subdivision and line graph of the layer structure.

Complementing the molecular topology of a molecule, molecular geometry provides surface and

structural representation, and is the key element differentiating among various molecules sharing

the same topology. Various methods (from molecular mechanics and semi-empirical to ab initio

and density functional theory) are involved in geometry optimization (energy minimization) of the

molecules. Having as template a series of 20 amino acids with near-optimal geometry were used

to reach the optimum geometries by using 39 methods (HF, MP2, B3LYP included) in [6]. Next, a

pool of molecular descriptors was used to characterize each optimized geometric conformation and

cluster analysis and principal component analysis were performed to get the similarities between

the different optimization methods. As authors noted, the results after the analysis are classified

into three main groups and can provide alternate selection accordingly to solve different types

of problems.

Several topology problems on topics such cohomology, compactness, connectedness,

homeomorphisms, homology, homotopy, symmetry and similarity are still to be explored to provide

further insight on theoretical aspects of mathematical and molecular topology and their applications.
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1. Introduction and Preliminaries

It is evident from the literature that topological structures which are more general than
the classical topology are more suitable for the study of digital topology, image processing,
network theory, pattern recognition and related areas. Various generalized structures such
as closure spaces, generalized closure spaces, Čech closure spaces, generalized topolo-
gies (GT), weak structures (WS), Generalized neighborhood systems (GNS) etc. were
introduced and studied in the past (see [1–5]). However, recently Čech closure spaces
attracted the attention of researchers due to its possibility of application in other applied
fields discussed above. Usefulness of this Čech closure setting in variety of allied fields
such as digital topology, computer graphics, image processing and pattern recognition
are available in the literature [6–9]. Čech closure space was defined by Čech [1], are ob-
tained from Kuratowski [10] closure operator by omitting the idempotent condition. In
this setting Galton [11] studied the motion of an object in terms of a function giving its
position at each time and systematically investigated what a continuous motion looks
like. J. Šlapal [6] observed that this structure is more suitable than others for application
in digital topology because Čech closure spaces are well-behaved with respect to connect-
edness. Allam et al. [12,13] introduced a new method for generating closure spaces via
a binary relation which was subsequently used by G. Liu [14] to establish a one-to-one
correspondence between quasi discrete closures and reflexive relation. Furthermore, J.
Šlapal and John L. Pfaltz [15] studied network structures via associated closure operators.
Higher separation axioms in Čech closure space was introduced by Barbel M. R. Stadler
and F. Peter Stadler [16] in 2003 and discussed the concept of Urysohn functions, normal,
regular, completely normal etc. in the form of neighborhood. In 2018 Gupta and Das [17]
introduced higher separation axioms via relation. Since normality is an important topo-
logical property, many weak variants of normality introduced and studied in the past to
properly study normality in general topology (See [18–22]). In the present paper, we intro-
duced some variants of normality in Čech closure space as π-normal, weakly π-normal
and κ-normal using canonically closed sets. It is observed that some characterizations
of normality and almost normality which holds in topological spaces may not hold in

Mathematics 2021, 9, 1225. https://doi.org/10.3390/math9111225 https://www.mdpi.com/journal/mathematics
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Čech closure spaces. Further relation between newly defined notions and already defined
notions was also investigated.

A closure space is a pair (X, cl), where X is any set and closure cl : P(X) → P(X)
is a function associating with each subset A ⊆ X to a subset cl(A) ⊆ X, called the
closure of A, such that cl(∅) = ∅, A ⊆ cl(A), cl(A ∪ B) = cl(A) ∪ cl(B). With any
closure cl for a set X there is associated the interior operation intcl , usually denoted by
int, which is a single-valued relation on P(X) ranging in P(X) such that for each A ⊆ X,
intcl(A) = X− cl(X− A). The set intcl(A) is called the interior of A in (X, cl). In a closure
space (X, cl), a set A is closed if cl(A) = A and open if its complement is closed i.e., if
cl(X− A) = (X− A). In other words, a set is open if and only if int(A) = A. Additionally,
from closure axioms we have cl(A ∩ B) ⊆ cl(A) ∩ cl(B) and int(A) ∪ int(B) ⊆ int(A ∪ B).
In a Čech closure space a canonically closed (regularly closed) set is a closed set A of X
such that cl(int(A)) = A and a canonically open (regularly open) set is an open set U of X
such that int(cl(U)) = U.

Definition 1. [23] A Čech closure space (X, cl) is said to be

1. normal if for every two disjoint closed sets A = cl(A) and B = cl(B) there exist disjoint
open sets U and V containing cl(A) and cl(B) respectively.

2. almost normal if for every two disjoint closed sets cl(A) = A and cl(B) = B out of
which one is canonically closed there exist disjoint open sets U and V containing cl(A) and
cl(B) respectively.

3. weakly normal if for every two disjoint closed sets cl(A) = A and cl(B) = B there exists an
open set U such that A ⊆ U and int(cl(U)) ∩ B = ∅.

Remark 1. The notion of normality defined above in the Definition 1 is different from the notion
of normality defined in [1]. A closure space is said to be normal [1] if every pair of sets with
disjoint closures are separated by disjoint neighborhoods. The disjoint sets considered by Čech for
separation in the definition of normality are not necessarily closed sets and neighborhoods need not
be open. Throughout the present paper, we have taken the notion of normality only in the sense of
Definition 1.

Lemma 1. [1] If U and V are subsets of a closure space (X, cl) such that U ⊆ V then cl(U) ⊆ cl(V).

Theorem 1. [23] Suppose (X, cl) is a Čech closure space such that int(cl(U)) is canonically open
for every open set U. Then (X, cl) is weakly normal and almost normal implies (X, cl) is normal.

2. Variants of Normal Čech Closure Space

Definition 2. Let (X, cl) be a Čech closure space then A is said to be π-closed if it is equal to the
intersection of two canonically closed set.

Example 1. Let X = {a, b, c, d} be the set and define cl : P(X) → P(X) as cl({a}) = {a},
cl({b}) = cl({a, b}) = {a, b}, cl({c}) = cl({a, c}) = cl({c, d}) = cl({a, c, d}) = {a, c, d},
cl({d}) = {d}, cl({a, d}) = {a, d}, cl({b, c}) = cl({a, b, c}) = cl({b, c, d}) = cl(X) = X,
cl({b, d}) = cl({a, b, d}) = {a, b, d}, cl(∅) = ∅. Here, the set A = {a} is π-closed as it is the
intersection of two canonically closed set i.e., {a, c, d} and {a, b} but {a} is not canonically closed.
In this Čech closure space, cl(A) = {d} = A is closed but not π-closed as it is not equal to the
intersection of two canonically closed set.

The implications in Figure 1 are obvious from the definitions. However, none of these
implications is reversible as shown in the above example.

canonically closed �� π-closed �� closed

Figure 1. Interrelation of types of closed sets.
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Definition 3. A Čech closure space (X, cl) is π-normal if for every two disjoint closed sets one
of which is π-closed there exist two disjoint open sets U and V containing the closed set and the
π-closed set respectively.

It is obvious that in a Čech closure space (X, cl), every normal space is π-normal.
However, the converse need not be true as shown below.

Example 2. A Čech closure space which is π-normal but not normal.
Let X = Y ∪ {p, q} be an infinite set, then any set A ∈ P(X) is one of the following four types
of sets:

Type-I: A is finite in X.
Type-II: A is infinite in Y such that p /∈ A and q /∈ A.
Type-III: (Y− A) is finite and A contains either p or q.
Type-IV: (Y− A) is finite and A contains both p and q.

Define cl : P(X)→ P(X) by

cl(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A, if A is of type-I;

A ∪ {p, q}, if A is of type-II;

A ∪ {p, q}, if A is of type-III;

A, if A is of type-IV.

In this Čech closure space, type-I and type-IV sets are closed sets. A set U is open if U is an
infinite set containing p and/or q whose complement is finite. Additionally, a finite set U in Y
whose complement is infinite is an open set in X. In this space only two types of sets are canonically
closed. i.e., (1) Every finite set in Y is canonically closed (2) a set containing both p and q whose
complement is finite in Y is canonically closed. This space is π-normal but not normal because for
two disjoint closed sets A = C ∪ {p} and B = D ∪ {q}, where C and D are finite in Y, there does
not exist disjoint open sets satisfying the condition of normal Čech closure space.

Example 3. A space which is not π-normal.
Let X be the set of integers defined by

cl({x}) =
⎧⎨
⎩

x, if x is even ;

{x− 1, x, x + 1}, if x is odd .

and cl(A) =
⋃

x∈A
cl(x).

This Čech closure space is not π-normal because for the π-closed set cl(A) = {4} = A and
a closed set cl(B) = {0, 1, 2} = B there does not exist disjoint open sets containing cl(A) and
cl(B) respectively.

Following examples establish that the notion of weak normality defined earlier, and
the notion of π-normality are independent notions.

Example 4. A space which is weakly normal but not π-normal.
Let X be the set of positive integers. Define cl : P(X)→ P(X) as defined in Example 3. Here, the
Čech closure space (X, cl) is weakly normal but not π-normal as shown in Example 3.

Example 5. A space which is π-normal but not weakly normal.
Let X = {a, b, c, d} be the set and define cl : P(X) → P(X) as cl({a}) = {a}, cl({b}) = {b},

3
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cl({c}) = {a, c, d}, cl({d}) = {d}, cl({a, b}) = {a, b}, cl({a, c}) = {a, c, d}, cl({a, d})
= {a, d}, cl({b, c}) = X, cl({b, d}) = {b, d}, cl({c, d}) = {a, c, d}, cl({a, b, c}) = X,
cl({a, b, d}) = {a, b, d}, cl({a, c, d}) = {a, c, d}, cl({b, c, d}) = X, cl(X) = X, cl(∅) = ∅.
Here, (X, cl) is a π-normal Čech closure space which fails to be weakly normal because for two
disjoint closed sets A = {a} = cl(A) and B = {d} = cl(B) there does not exists an open set U
such that cl(A) ⊆ U and int(cl(U)) ∩ B = ∅.

Theorem 2. If (X, cl) is a π-normal Čech closure space then for every π-closed set cl(A) = A
and for every open set U containing cl(A) there exists an open set V such that cl(A) ⊆ V ⊆
cl(V) ⊆ U.

Proof. Let cl(A) = A be a π-closed set and U be an open set containing cl(A). Since, (X, cl)
is π-normal, there exist disjoint open sets V and W such that cl(A) ⊆ V and (X−U) ⊆ W
implies V ⊆ (X −W). Thus, by Lemma 1, cl(V) ⊆ cl(X −W) implies W ⊆ X − cl(V).
Therefore, (X−U) ⊆ W ⊆ X− cl(V) and hence cl(A) ⊆ V ⊆ cl(V) ⊆ U.

Theorem 3. If (X, cl) is a π-normal Čech closure space then for every closed set cl(A) = A
and for every π-open set U containing cl(A) there exists an open set V such that cl(A) ⊆ V ⊆
cl(V) ⊆ U.

Proof. Let cl(A) = A be a closed set and U be a π-open set containing cl(A) implies
(X − U) is a π-closed set which is disjoint from the closed set A. Since, (X, cl) is π-
normal, there exist disjoint open sets V and W such that cl(A) ⊆ V and (X −U) ⊆ W.
Thus, V ⊆ (X −W) implies cl(V) ⊆ cl(X −W) = (X −W), and so, W ⊆ (X − cl(V)).
Therefore, (X−U) ⊆ W ⊆ (X− cl(V)) and hence cl(A) ⊆ V ⊆ cl(V) ⊆ U.

Definition 4. [24] A Čech closure space (X, cl) is said to be regular if for a closed set cl(A) = A
and a point x /∈ cl(A) there exist disjoint open sets U and V such that x ∈ U and cl(A) ⊆ V.

Definition 5. [1] A Čech closure space is said to be

1. T1 if for two distinct points x and y, we have x /∈ cl({y}) and y /∈ cl({x}).
2. T2 if any two distinct points x and y are separated.

Remark 2. In a Čech closure space, every normal T1 space is regular and T2. but if we replace
normal by π-normal then the result need not be true. Consider the space defined in Example 2
which is π-normal and T1 but neither T2 nor regular. The space is not T2 because disjoint points ‘p’
and ‘q’ cannot be separated and is not regular because for closed set A = C ∪ {p} where C is finite
in Y and a point ‘q’ there does not exist disjoint open sets satisfying the required condition.

Definition 6. [24] A Čech closure space is said to be almost regular if for canonically closed set
cl(int(A)) = A and a point x /∈ cl(int(A)) there exist disjoint open sets U and V such that
x ∈ U and cl(int(A)) ⊆ V.

Theorem 4. In a Čech closure space, every π-normal T1 space is almost regular.

Proof. let cl(int(A)) = A be a canonically closed set and x /∈ cl(int(A)) be a point. Since
the space is a T1 Čech closure space, the singleton set {x} is closed. As every canonically
closed set is π-closed, by π-normality there exist disjoint open sets U and V such that
cl(int(A) ⊆ U and {x} ⊆ V. Hence (X, cl) is an almost regular Čech closure space.

Definition 7. A Čech closure space is said to be weakly π-normal if for two disjoint π-closed sets
there exist disjoint open sets separating them.

Definition 8. A Čech closure space is said to be κ-normal if for two disjoint canonically closed sets
A and B there exist disjoint open sets U and V containing A and B respectively.

4
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From the definitions it is observed that every π-normal space is weakly π-normal,
every weakly π-normal space as well as every almost normal space is κ-normal. Thus,
the implications in Figure 2 are obvious but none of them is reversible which is exhibited
below by Examples.

normal

��
π-normal ��

��

almost normal

��
weakly π-normal �� κ-normal

Figure 2. Interrelation of variants of normality.

Example 6. A Čech closure space which is weakly π-normal but not π-normal.
Let X = {a, b, c, d} be a set and define cl : P(X)→ P(X) as cl({a}) = cl({b}) = cl({a, b}) =
{a, b}, cl({c}) = {c}, cl({d}) = cl({c, d}) = {b, c, d}, cl({a, c}) = cl({b, c}) = cl({a, b, c})
= {a, b, c}, cl({a, d}) = cl({b, d}) = cl({a, b, d}) = cl({a, c, d}) = cl({b, c, d})
= cl(X) = X, cl(∅) = ∅. This space is vacuously weakly π-normal but not π-normal because
for the π-closed set {a, b} and a closed set {c}, there does not exist disjoint open sets containing
{a, b} and {c}.

Example 7. A Čech closure space which is weakly π-normal but not almost normal.
Let X = {a, b, c, d} be the set and define cl : P(X) → P(X) as cl({a}) = {a}, cl({b}) =
cl({a, b}) = {a, b}, cl({c}) = cl({a, c}) = cl({c, d}) = cl({a, c, d}) = {a, c, d}, cl({d}) =
{d}, cl({a, d}) = {a, d}, cl({b, d}) = cl({a, b, d}) = {a, b, d}, cl({b, c}) = cl({a, b, c}) =
cl({b, c, d}) = cl(X) = X, cl(∅) = ∅. Clearly, (X, cl) is a Čech closure space which is vacuously
weakly π-normal but not almost normal because for the canonically closed set cl(int(A)) =
{a, b} = A and the closed set cl(B) = {d} = B there does not exist disjoint open sets containing
A and B respectively.

Example 8. A Čech closure space which is κ-normal but not almost normal.
The Čech closure space defined in Example 7 is vacuously κ-normal but not almost normal as shown
in Example 7.

Example 9. A Čech closure space which is κ-normal.
Let X = Y ∪ {p, q} be an infinite set. Define cl : P(X)→ P(X) as in Example 2. Here, the closure
space (X, cl) is κ-normal as for two disjoint canonically closed sets there exist disjoint open sets
containing them.

Example 10. A Čech closure space which is not κ-normal.
Let X be the set of integers and define cl : P(X)→ P(X) as shown in Example 3. This Čech closure
space (X, cl) is not κ-normal because for two disjoint canonically closed sets A = {0, 1, 2} =
cl(int(A)) and B = {4, 5, 6} = cl(int(B)) there does not exist disjoint open sets containing them.

Theorem 5. If (X, cl) is a weakly π-normal Čech closure space then for every π-closed set A and
for every π-open set U containing A there exists an open set V such that A ⊆ V ⊆ cl(V) ⊆ U.

Proof. Let cl(A) = A be a π-closed set and U be a π-open set containing cl(A). Since,
(X, cl) is weakly π normal, there exist disjoint open sets V and W such that cl(A) ⊆ V
and (X −U) ⊆ W. Thus, V ⊆ X −W implies cl(V) ⊆ cl(X −W) = (X −W). Therefore,
A ⊆ V ⊆ cl(V) ⊆ U.
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Theorem 6. If (X, cl) is a κ-normal Čech closure space then for every canonically closed set
cl(int(A)) = A and for every canonically open set int(cl(U)) = U containing cl(int(A)) there
exists an open set V such that cl(int(A)) ⊆ V ⊆ cl(V) ⊆ int(cl(U)).

Proof. Proof of this theorem is similar to the proof of Theorem 5.

Theorem 7. Suppose (X, cl) is a Čech closure space such that int(cl(U)) is canonically open for
every open set U. Then (X, cl) is weakly normal and κ-normal implies (X, cl) is almost normal.

Proof. let cl(int(A)) = A be a canonically closed set and cl(B) = B be a closed set
disjoint from canonically closed set cl(int(A)) = A. Since, (X, cl) is a weakly normal
Čech closure space, there exists an open set U such that A ⊆ U and int(cl(U)) ∩ B = ∅.
Since int(cl(U)) is canonically open, X− int(cl(U)) is canonically closed containing cl(B).
Thus, by κ-normality there exist disjoint open sets P and Q such that cl(int(A)) ⊆ P and
cl(B) ⊆ X− (int(cl(U))) ⊆ Q. Hence (X, cl) is an almost normal Čech closure space.

Theorem 8. Suppose (X, cl) is a T1 Čech closure space such that int(cl(U)) is canonically open
for every open set U. Then (X, cl) is weakly π-normal and weakly normal implies (X, cl) is
almost regular.

Proof. let cl(int(A)) = A be a canonically closed set and x /∈ cl(int(A)) be a point. Since
(X, cl) is T1, the singleton set {x} is closed. By weak normality, there exists an open
set U such that A ⊆ U and int(cl(U)) ∩ {x} = ∅. Since int(cl(U)) is canonically open,
X − int(cl(U)) is canonically closed containing {x}. Thus, by weak π-normality, there
exist disjoint open sets P and Q such that cl(intA) ⊆ P and {x} ⊆ X− (int(cl(U))) ⊆ Q.
Hence (X, cl) is an almost regular Čech closure space.

It is clear from Example 11 that the T1 axiom cannot be relaxed from the Theorem 8 as
the space is weakly π-normal and weakly normal but not almost regular.

Example 11. Let X = {a, b, c} be the set and define cl : P(X) → P(X) as cl({a}) = {a},
cl({b}) = {a, b}, cl({c}) = {a, c}, cl({a, b}) = {a, b}, cl({a, c}) = {a, c}, cl({b, c}) =
cl(X) = X, cl(∅) = ∅. Clearly, (X, cl) is a Čech closure space which is weakly π-normal and
weakly normal but not almost regular.

Definition 9. [24] A Čech closure space (X, cl) is said to be β-normal if for two disjoint closed
sets cl(A) = A and cl(B) = B there exist disjoint open sets U and V whose closures are disjoint
such that cl(A ∩U) = cl(A) and cl(B ∩V) = cl(B).

Definition 10. [24] A Čech closure space is extremally disconnected (E. D) if for every open set U,
cl(U) is open.

Example 12. A Space which is extremally disconnected.
Let X = {a, b, c, d} be the set. Define cl : P(X) → cl as cl({a}) = cl({a, c}) = {a, c},
cl({b}) = {b}, cl({c}) = {c}, cl({d}) = cl({b, d}) = {b, d}, cl({a, b}) = cl({a, b, c})
= {a, b, c}, cl({b, c}) = {b, c}, cl({c, d}) = cl({b, c, d}) = {b, c, d}, cl({a, d}) = cl({a, b,
d}) = cl({a, c, d}) = cl(X) = X, cl(∅) = ∅. In this space, closure of every open set is open.
Thus, the space is extremally disconnected.

Theorem 9. In an extremally disconnected Čech closure space (X, cl), every β-normal space is
κ-normal.

Proof. Let cl(int(A)) = A and cl(int(B)) = B be two disjoint canonically closed sets. Thus,
cl(int(A)) and cl(int(B)) are two disjoint closed sets. We must show (X, cl) is κ-normal.
Since (X, cl) is β-normal, there exist disjoint open sets U and V such that cl(cl(A) ∩U) =

6
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cl(A), cl(cl(B) ∩V) = cl(B) and cl(U) ∩ cl(V) = ∅. Thus, cl(A) = cl(cl(A) ∩U) ⊆ cl(U)
and cl(B) = cl(cl(B) ∩V) ⊆ cl(V). By extremally disconnectedness of (X, cl), cl(U) and
cl(V) are two disjoint open sets containing cl(A) and cl(B) respectively. Hence (X, cl)
is κ-normal.

Example 13. A Čech closure space which is κ-normal but not β-normal.
Let X = Y∪ {p, q} be an infinite set. Define cl : P(X)→ P(X) as in Example 2. Here, the closure
space (X, cl) is κ-normal but not β-normal because for two disjoint closed sets cl(A) = C ∪ {p}
and cl(B) = D ∪ {q}, where C and D are finite in Y, there does not exist disjoint open sets
satisfying the condition of β-normal Čech closure space.

Example 14. Let X be an infinite set. Define cl : P(X)→ P(X) as defined in [1] by

cl(A) =

⎧⎨
⎩

A, if A is finite;

X, otherwise.

Here, (X, cl) is a Čech closure space which is T1 almost normal but not regular because for
closed set cl(A) = A and a point disjoint from the closed set A there does not exist disjoint open
sets separating them.

The following theorem directly follows from the Theorem 1.

Theorem 10. Suppose (X, cl) is a weakly normal Čech closure space such that int(cl(U)) is
canonically open for every open set U. Then following are equivalent:

1. (X, cl) is normal.
2. (X, cl) is π-normal.
3. (X, cl) is weakly π-normal.
4. (X, cl) is κ-normal.
5. (X, cl) is almost normal.

3. Discussion and Conclusions

Closure space was first appeared in 1966 in the book “Topological Spaces” is popularly
known as Čech closure space in the name of the author of the book E. Čech. After many
decades of its introduction, it is now slowly becoming objects of increasing interest and im-
portance. The purpose of this discussion is to discuss some important developments in this
area in the last two decades. In 2003, some higher separation axioms including completely
regular and completely normal spaces are studied in closure setting by Stadler et al. [16].
In 2008, Dimitrije Andrijević and others [25] considered families of subset of a closure
space equipped with different Vietoris-like topologies and studied properties such as con-
nectedness and compactness of the space and its hyperspaces. Subsequently in 2010, they
generalized the notions of the compact-open and graph topology to the set of functions
between two Čech closure spaces [26]. Additionally, they investigated how the separation
properties (T0, T1 and regular) of the initial spaces are related to those of function spaces.

Recently, in 2021, Antonio Rieser [27] studied homotopy theory on the category of
Čech closure spaces, whose objects are sets endowed with a Čech closure operator and
whose morphisms are the continuous maps between them. They introduced some new
classes of Čech closure structures on metric spaces, graphs, and simplicial complexes.

Another approach of generating closure spaces via a binary relation was also adopted
by many researchers to address various issues in mathematics and other allied fields
(see [12–15]). In [17], we have introduced and studied some new separation axioms on
closure spaces generated through binary relations.

Apart from this, Junsheng Qiao [28] shown that the category of Čech closure spaces
can be embedded in the category of stratified L-Čech closure spaces as a coreflective
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full subcategory. Perfilieva et al. [29] investigated the relationship between L-Fuzzy
Čech closure spaces and L-Fuzzy co-topological spaces from the categorical viewpoint.
Relational variants of categories related to L-Fuzzy closure spaces was studied in [30].

In this paper, we have defined and investigated few variants of normality in Čech clo-
sure spaces using canonically closed sets. Normality is an important topological property,
and its importance is due to its behaviour as it behaves differently from other separation ax-
ioms for subspaces and products. Additionally, the class of normal spaces are more general
than the important class of compact Hausdorff spaces. Normality involves separation of
closed sets by open sets. On the other hand, in digital image processing a picture needs to
be segmented into subsets where relationship of these subset from other neighboring sub-
sets and adjoining points plays a prominent role for the processing of images. Such types
of relationships between sets/points are either geometrical or topological. Geometrical
relation involves position of points whereas topological relation involves concepts such as
adjacency, neighborhood, separation, connectedness and compactness. So, the possibility
of application of the notions defined in this paper in digital topology and digital image
processing cannot be ruled out.
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30. Močkoř, J. Functors among Relational Variants of Categories Related to L-Fuzzy Partitions, L-Fuzzy Pretopological Spaces and

L-Fuzzy Closure Spaces. Axioms 2020, 9, 63. [CrossRef]

9





mathematics

Article

Convergence Analysis and Dynamical Nature of an Efficient
Iterative Method in Banach Spaces

Deepak Kumar 1,*, Sunil Kumar 2, Janak Raj Sharma 1 and Lorentz Jantschi 3,4,*

Citation: Kumar, D.; Kumar, S.;

Sharma, J.R.; Jantschi, L. Convergence

Analysis and Dynamical Nature of an

Efficient Iterative Method in Banach

Spaces. Mathematics 2021, 9, 2510.

https://doi.org/10.3390/math9192510

Academic Editors: Juan Benigno

Seoane-Sepúlveda and Alicia Cordero

Barbero

Received: 14 August 2021

Accepted: 26 September 2021

Published: 7 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Sant Longowal Institute of Engineering and Technology,
Longowal 148106, India; jrshira@yahoo.co.in

2 Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Channai 601103, India; k_sunil@ch.amrita.edu

3 Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
4 Chemical Doctoral School, Babes-Bolyai University, 400028 Cluj-Napoca, Romania
* Correspondence: deepak.babbi@gmail.com (D.K.); lorentz.jantschi@chem.utcluj.ro (L.J.)

Abstract: We study the local convergence analysis of a fifth order method and its multi-step version in
Banach spaces. The hypotheses used are based on the first Fréchet-derivative only. The new approach
provides a computable radius of convergence, error bounds on the distances involved, and estimates
on the uniqueness of the solution. Such estimates are not provided in the approaches using Taylor
expansions of higher order derivatives, which may not exist or may be very expensive or impossible to
compute. Numerical examples are provided to validate the theoretical results. Convergence domains
of the methods are also checked through complex geometry shown by drawing basins of attraction.
The boundaries of the basins show fractal-like shapes through which the basins are symmetric.

Keywords: local convergence; nonlinear equations; Banach space; Fréchet-derivative

1. Introduction

Let X, Y be Banach spaces and D ⊆ X be a closed and convex set. In this study, we
locate a solution x∗ of the nonlinear equation

G(x) = 0, (1)

where G : D ⊆ X → Y is a Fréchet-differentiable operator. In computational sciences,
many problems can be written in the form of (1). See, for example, [1–3]. The solutions of
such equations are rarely attainable in closed form. This is why most methods for solving
these equations are usually iterative. The most well-known method for approximating a
simple solution x∗ of Equation (1) is Newton’s method, which is given by

xm+1 = xm − G′(xm)
−1G(xm), for each m = 0, 1, 2, . . . (2)

and has a quadratic order of convergence. In order to attain the higher order of convergence,
a number of modified Newton’s or Newton-like methods have been proposed in the
literature (see [2–20]) and references cited therein. In particular, Sharma and Kumar [18]
recently proposed a fifth order method for approximating the solution of G(x) = 0 using
the Newton–Chebyshev composition defined for each n = 0, 1, 2, . . . by

ym = xm − ΓmG(xm),

zm = ym − ΓmG(ym),

xm+1 = zm −
(
2 I − Γn[zm, ym ; G]

)
ΓmG(zm),

(3)
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where Γm = G′(xm)−1, and [zm, ym ; G] is the first order divided difference of G. The
method has been shown to be computationally more efficient than existing methods of a
similar nature.

The important part in the development of an iterative method is to study its conver-
gence analysis. This is usually divided into two categories, namely the semilocal and local
convergence. The semilocal convergence is based on the information around an initial
point and gives criteria that ensure the convergence of iteration procedures. The local
convergence is based on the information of a convergence domain around a solution and
provides estimates of the radii of the convergence balls. Local results are important since
they provide the degree of difficulty in choosing initial points. There exist many studies
which deal with the local and semilocal convergence analysis of iterative methods such
as [3–5,7–11,13,16,19,21–23]. The semilocal convergence of the method (3) in Banach spaces
has been established in [18]. In the present work, we study the local convergence of this
method and its multi-step version, including the computable radius of convergence, error
bounds on the distances involved, and estimates on the uniqueness of the solution.

We summarize the contents of the paper. In Section 2, the local convergence (including
radius of convergence, error bounds, and uniqueness results of method (3)) is studied.
The generalized multi-step version is presented in Section 3. Numerical examples are
performed to verify the theoretical results in Section 4. In Section 5, the basins of attractors
are studied to visually check the convergence domain of the methods. Finally, some
conclusions are reported in Section 6.

2. Local Convergence

The local convergence analysis of method (3) is presented in this section. Let L0 > 0,
L > 0, L1 > 0, and M ≥ 0 be given parameters. It is convenient to generate some functions
and parameters for the local convergence study that follows. Define function g1(t) on
interval [0, 1

L0
) by

g1(t) =
Lt

2(1− L0t)

and parameter

r1 =
2

2L0 + L
<

1
L0

. (4)

Then, we have that g1(r1) = 1 and 0 ≤ g1(t) ≤ 1 for each t ∈ [0, r1). Moreover, define
the function g2(t) and h2(t) on interval [0, 1

L0
) by

g2(t) =
(

1 +
M

1− L0t

)
g1(t)

and
h2(t) = g2(t)− 1.

We have that h2(0) = −1 < 0 and h2(r1) =
M

1−L0r1
> 0. According to the intermediate

value theorem, function h2(t) has zeros in the interval (0, r1). Denote such zeros by r2.
Finally, define functions K(t), g3(t), and h3(t) on the interval [0, 1

L0
) by

K(t) = 1 +
1

1− L0t
(

L0 + L1t(g2(t) + g1(t))
)
t,

g3(t) =
(

1 +
MK(t)
1− L0t

)
g2(t)

and
h3(t) = g3(t)− 1.

12
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We have that h3(0) = −1 < 0 and h3(r2) =
MK(r2)
1−L0r2

> 0. According to the intermediate
value theorem, function h3(t) has zeros in (0, r2). Denote such zeros by r3 of function h3(t)
in interval [0, r2). Set

r = min{ri}, i = 1, 2, 3. (5)

Then, we obtain that
0 < r ≤ r1. (6)

Then, for each t ∈ [0, r)
0 ≤ g1(t) ≤ 1, (7)

0 ≤ g2(t) ≤ 1 (8)

and
0 ≤ g3(t) ≤ 1. (9)

Let U(v, ρ) and Ū(v, ρ) symbolise the open and closed balls in X, with a radius ρ > 0
and a centre v ∈ X.

Using the above notations, we then describe the local convergence analysis of method (3).

Theorem 1. Suppose G : D ⊆ X → Y is a Fréchet-differentiable function. Let [., .; G] : X× X →
L(Y) be the divided difference operator. Consider that there exist x∗ ∈ D, L0 > 0, L > 0, L1 > 0,
and M ≥ 1, such that for each x, y ∈ D

G(x∗) = 0, G(x∗)−1 ∈ L(Y, X), (10)

‖G′(x∗)−1(G′(x)− G′(x∗)
)‖ ≤ L0‖x− x∗‖, (11)

‖G′(x∗)−1(G′(x)− G′(y)
)‖ ≤ L‖x− y‖, (12)

‖G′(x∗)−1G′(x)‖ ≤ M, (13)

‖G′(x∗)−1([x, y; G]− G′(x∗)
)‖ ≤ L1(‖x− x∗‖+ ‖y− x∗‖), (14)

and
Ū(x∗, r) ⊂ D, (15)

where r is defined by (5). Then, for each m = 0, 1, . . ., the sequence {xm} generated by method (3)
for x0 ∈ U(x∗, r)− {x∗} is well defined, stays in U(x∗, r), and converges to x∗. Furthermore, the
following estimates hold:

‖ym − x∗‖ ≤ g1(‖xm − x∗‖)‖xm − x∗‖ < ‖xm − x∗‖ < r, (16)

‖zm − x∗‖ ≤ g2(‖xm − x∗‖)‖xm − x∗‖ < ‖xm − x∗‖ < r (17)

and
‖xm+1 − x∗‖ ≤ g3(‖xm − x∗‖)‖xm − x∗‖, (18)

where the “g” functions are defined previously. Furthermore, if there exists T ∈ [r, 2
L0
) such that

Ū(x∗, T) ⊂ D, then x∗ is the only solution of G(x) = 0 in Ū(x∗, T).

Proof. We shall show the estimates (16)–(18) using mathematical induction. Using (4), (11),
and the hypotheses x0 ∈ U(x∗, r)− {x∗}, we obtain that

‖G′(x∗)−1(G(x0)− G(x∗)
)‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (19)

It follows from (19) and the Banach Lemma [3] that G′(x0)
−1 ∈ L(Y, X) and

‖G′(x0)
−1G′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖ <
1

1− L0r
. (20)
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Hence, y0 is well defined for m = 0. Then, by using (4), (7), (12), and (20), we have

‖y0 − x∗‖ ≤ ‖x0 − x∗ − G′(x0)
−1G(x0)‖

≤ ‖G′(x0)
−1G′(x∗)‖

∥∥∥ ∫ 1

0
G′(x∗)−1[G′(x∗ + θ(x0 − x∗))− G′(x0)]]

∥∥∥dθ

× ‖x0 − x∗‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (21)

which shows (16) for m = 0 and y0 ∈ U(x∗, r).
Notice that for each θ ∈ [0, 1] and ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r. That is,

x∗ + θ(x0 − x∗) ∈ U(x∗, r). We can write

G(x0) = G(x0)− G(x∗) =
∫ 1

0
G′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (22)

Then, using (13) and (21), we have

‖G′(x∗)−1G(x0)‖ =
∥∥∥ ∫ 1

0
G′(x∗)−1G′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

∥∥∥
≤ M‖x0 − x∗‖. (23)

Similarly, we obtain

‖G′(x∗)−1G(y0)‖ ≤ M‖y0 − x∗‖, (24)

‖G′(x∗)−1G(z0)‖ ≤ M‖z0 − x∗‖. (25)

Using the second substep of method (3), (8), (20), (21), (27), and (24), we obtain that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖G′(x0)
−1G(y0)‖

= ‖y0 − x∗‖+ ‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1G(y0)‖

≤ ‖y0 − x∗‖+ M‖y0−x∗‖
1−L0‖x0−x∗‖

≤
(

1 + M
1−L0‖x0−x∗‖

)
‖y0 − x∗‖

≤
(

1 + M
1−L0‖x0−x∗‖

)
g1(‖x0 − x∗‖)‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r.

(26)

Which shows (17) for m = 0 and z0 ∈ U(x∗, r).
Next, we have the linear operator A0 = 2I − G′(x0)

−1[y0, x0; G]; by using (11), (14),
and (20), we obtain

14
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‖A0‖ = ‖2I − G′(x0)
−1[z0, y0; G]‖

≤ 1 + ‖G′(x0)
−1(G′(x0)− [z0, y0; G]

)‖
≤ 1 + ‖G′(x0)

−1G′(x∗)‖‖G′(x∗)−1(G′(x0)− [z0, y0; G])‖
≤ 1 + ‖G′(x0)

−1G′(x∗)‖‖G′(x∗)−1(G′(x0)− G′(x∗) + G′(x∗)− [z0, y0; G]
)‖

≤ 1 + ‖G′(x0)
−1G′(x∗)‖

(
‖G′(x∗)−1(G′(x0)− G′(x∗))‖+ ‖G′(x∗)−1(G′(x∗)− [z0, y0; G])‖

)
≤ 1 + 2

1−L0‖x0−x∗‖
(

L0‖x0 − x∗‖+ L1
(‖z0 − x∗‖+ ‖y0 − x∗‖))

≤ 1 + 2
1−L0‖x0−x∗‖

(
L0‖x0 − x∗‖+ L1

(
g2(‖x0 − x∗‖) + g1(‖x0 − x∗‖)

)
‖x0 − x∗‖

)
≤ 1 + 2

1−L0‖x0−x∗‖
(

L0 + L1

(
g2(‖x0 − x∗‖) + g1(‖x0 − x∗‖)

))
‖x0 − x∗‖

= K(‖x0 − x∗‖).

(27)

Then, using Equations (4), (9), (25), and (26), we obtain that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+ ‖A0‖‖G′(x0)
−1G(z0)‖

= ‖z0 − x∗‖+ ‖A0‖‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1G(z0)‖

≤ ‖z0 − x∗‖+ MK(‖x0−x∗‖)‖z0−x∗‖
1−L0‖x0−x∗‖

≤
(

1 + MK(‖x0−x∗‖)
1−L0‖x0−x∗‖

)
‖z0 − x∗‖

≤
(

1 + MK(‖x0−x∗‖)
1−L0‖x0−x∗‖

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

≤ g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(28)

which proves the (18) for m = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, z0, and
x1 by xm, ym, zm, and xm+1 in the preceding estimates, we arrive at (16)–(18). Then,
from the estimates ‖xm+1 − x∗‖ < ‖xm − x∗‖ < r, we deduce that limm→∞xm = x∗ and
xm+1 ∈ U(x∗, r).

Finally, we show the uniqueness part; let Q =
∫ 1

0 G′(y∗ + t(x∗ − y∗))dt for some
y∗ ∈ Ū(x∗, r) with G(y∗) = 0. Using (15), we obtain that

‖G′(x∗)−1(Q− G′(x∗)‖ ≤ ∫ 1
0 L0‖y∗ + t(x∗ − y∗)− x∗‖dt

≤ ∫ 1
0 (1− t)‖x∗ − y∗‖dt

≤ L0
2 T < 1.

(29)

It follows from (29) that Q is invertible. Then, from the identity 0 = G(x∗)− G(y∗) =
Q(x∗ − y∗), we deduce that x∗ = y∗.

Remark 1. By (11) and the estimate

‖G′(x∗)−1G′(x)‖ = ‖G′(x∗)−1(G′(x)− G′(x∗)) + I‖
≤ 1 + ‖G′(x∗)−1(G′(x)− G′(x∗))‖
≤ 1 + L0‖x− x∗‖

condition (13) can be dropped and be replaced by

M(t) = 1 + L0t

15
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or
M(t) = M = 2, since t ∈ [0,

1
L0

).

3. Generalized Method

The multistep version of (3) consisting of q + 1, (q ∈ N), steps is expressed as

z(0)m = ym − ΓmG(ym),

z(1)m = zm − ψ(xm, ym, zm)G(zm),

z(2)m = z(1)m − ψ(xm, ym, zm)G(z(1)m ),

. . . . . . . . . . . . . . . . . .

z(q−1)
m = z(q−2)

m − ψ(xm, ym, zm)G(z(q−2)
m ),

z(q)m = xm+1 = z(q−1)
m − ψ(xm, ym, zm)G(z(q−1)

m ),

(30)

where ym = xm − ΓmG(xm), z(0)m = zm, ψ(xm, ym, zm) = (2I − Γm[zm, ym ; G])Γm, and
Γm = G(xm)−1.

Next, we show that the generalized scheme (30) possesses convergence order 2q + 3.

3.1. Order of Convergence

The definition of divided difference is required to derive (30) convergence order.
Recalling the result of Taylor’s expansion on vector functions (see [24]) for this:

Lemma 1. G : D ⊂ Rn → Rn be r-times Fréchet differentiable in a convex set D ⊂ Rn then for
any x, h ∈ Rn, the following expression holds:

G(x + h) = G(x) + G′(x)h + 1
2! G′′(x)h2 + 1

3! G′′′(x)h3 + ... + 1
(r−1)! G(r−1)(x)hr−1 + Rr, (31)

where
||Rr|| ≤ 1

r!
sup

0≤t≤1
||G(r)(x + th)|| ||h||r and hr = (h, h, r. . ., h).

The divided difference operator [·, · ; G] : D× D ⊂ Rn ×Rn −→ L(Rn) is defined by
(see [24])

[x + h, x ; G] =
∫ 1

0
G′(x + th) dt, ∀ x, h ∈ R

n. (32)

When we expand G′(x + th) in the Taylor series at point x and integrate, we obtain

[x + h, x ; G] =
∫ 1

0
G′(x + th) dt = G′(x) +

1
2

G′′(x)h +
1
6

G′′′(x)h2 + O(h3). (33)

where hi = (h, h, i. . ., h), h ∈ Rn.
Let em = xm − x∗. Expanding G(xm) in a neighbourhood of x∗ and assuming

Γ = G′(x∗)−1 exists, we obtain

G(xm) = G′(x∗)(em + A2(em)
2 + A3(em)

3 + A4(em)
4 + A5(em)

5 + O((em)
5)), (34)

where Ai =
1
i! ΓG(i)(x∗) ∈ Li(R

n,Rn) and (em)i = (em, em, i. . ., em), em ∈ Rn, i = 2, 3, . . .
Additionally,

G′(xm) = G′(x∗)(I + 2A2em + 3A3(em)
2 + 4A4(em)

3 + O((em)
4)), (35)

G′′(xm) = G′(x∗)(2A2 + 6A3em + 12A4(em)
2 + O((em)

3)), (36)

16



Mathematics 2021, 9, 2510

G′′′(xm) = G′(x∗)(6A3 + 24A4em + O((em)
2)). (37)

The inversion of G′(xm) yields

G′(xm)−1 = (I −2A2em + (4A2
2 − 3A3)(em)2 − (4A4 − 6A2 A3 − 6A3 A2 + 8A3

2)(em)3

+O((em)4))Γ.
(38)

We are in a position to investigate scheme (30)’s convergence behaviour. As a result,
the following theorem is established:

Theorem 2. Suppose that
(i) G : D ⊂ Rn → Rn is many times differentiable mapping.
(ii) There exists a solution x∗ ∈ D of equation G(x) = 0 such that G′(x∗) is nonsingular.
Then, sequence {xn} generated by method (30) for x0 ∈ D converges to x∗ with order 2q + 3,
q ∈ N.

Proof. Employing (34) and (38) in the Newton iteration ym, we obtain that

ẽm = ym − x∗ = A2e2
m + (2A2

2 − A3)e3
m + (4A3

2 − 4A2 A3 − 3A3 A2 + 3A4)e4
m

−(8A4
2 + 6A2

3 + 6A2 A4 + 4A4 A2 − 8A2
2 A3 − 6A2 A3 A2 − 6A3 A2

2)e
5
m + O(e6

m).
(39)

The Taylor series of G(ym) about x∗ yields

G(ym) = G′(x∗)(ẽm + A2 ẽ2
m + A3 ẽ3

m + A4 ẽ4
m + O(ẽ5

m)), (40)

Substituting (38)–(40) in first step of (30), we obtain

ēm = zm − x∗ = 2A2
2e3

m + (4A2 A3 − 9A3
2 + 3A3 A2)e4

m + O(e5
m). (41)

Using Equations (35)–(37) in (33) for x + h = zm, x = ym, and h = ēm − ẽm, it
follows that

[ zm, ym; G ] = G′(x∗)
(

I + A2(ēm + ẽm) + O((ẽm)
2, (ēm)

2)
)

and

Γm[ zm, ym ; G ] = I − 2A2em + (4A2
2 − 3A3)(em)

2 + A2(ēm + ẽm) + O((em)
3).

As a result, we arrive at the conclusion

ψ(xm, ym, zm) =
(

I − 5A2
2(em)2 + 2(10A3

2 − 4A2 A3 − 3A3 A2)(em)3 + O((em)4))
)
G′(x∗)−1. (42)

In addition, we have

G(zm) = G′(x∗)(ēm + O((ēm)
2)). (43)

Using (42) and (43) in the second step of method (30), it follows that

z(1)m − x∗ = 10A4
2(em)

5 + O
(
(em)

6). (44)

The expansion of G(z(q−1)
m ) about x∗ yields

G(z(q−1)
m ) = G′(x∗)

(
(z(q−1)

m − x∗) + A2(z
(q−1)
m − x∗)2 + · · · ). (45)

17
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Then, we have

ψ(xm, ym, zm)G(z(q−1)
m ) =

(
I − 5A2

2(em)2 + 2(10A3
2 − 4A2 A3 − 3A3 A2)(em)3 + O((em)4))

)
G′(x∗)−1

×G′(x∗)
(
(z(q−1)

m − x∗) + A2(z
(q−1)
m − x∗)2 + · · · )

= (z(q−1)
m − x∗)− 5A2

2(z
(q−1)
m − x∗)(em)2 + A2(z

(q−1)
m − x∗)2 + . . . .

(46)

Using (46) in (30), we obtain

z(q)m − x∗ = 5A2
2(z

(q−1)
m − x∗)(em)

2 − A2(z
(q−1)
m − x∗)2 + · · · . (47)

As we know from (44) that z(1)m − x∗ = 10A4
2(em)5 + O

(
(em)6), from (47) for q = 2, 3,

we therefore have

z(2)m − x∗ = 5A2
2(em)

2(z(1)m − x∗) + · · ·
= 50A6

2(em)
7 + O

(
(em)

8)
and

z(3)m − x∗ = 5A2
2(em)

2(z(2)m − x∗) + · · ·
= 250A8

2(em)
9 + O

(
(em)

10).

Proceeding by induction, it follows that

em+1 = z(q)m − x∗ = 2 · 5q A2q+2
2 (em)

2q+3 + O
(
(em)

2q+4).

This completes the proof of Theorem 2.

Remark 2. Note that method (3) utilizes three functions, one derivative, and one inverse operator
per full iteration and converges to the solution with the fifth order of convergence. The generalized
scheme (30) based on (3) (for q = 1) generates the methods with increasing convergence orders
5, 7, 9, . . . corresponding to q = 1, 2, 3, . . . at an additional cost of one function evaluation per each
iteration. This fulfils the main aim of developing higher order methods, keeping computational cost
under control.

3.2. Local Convergence

Along the same lines as method (3), we offer the local convergence analysis of method (30).
Define ḡ2, λ, μ, and hμ on the interval [0, r2) by

ḡ2(t) =
K(t)

1− w0(t)
,

λ(t) = 1 + ḡ2(t)M,

μ(t) = λq(t)g2(t)tλ−1

and
hμ(t) = μ(t)− 1.

We have that hμ(0) < 0. Suppose that

μ(t)→ +∞ or a positive number as t → r−2 . (48)

Denote by r(q) the smallest zero on the interval (0, r2) of function hμ . Define r∗ by

r∗ = min{r1, r(q)}. (49)

18
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Proposition 1. Suppose that the conditions of Theorem 2 hold. Then, sequence {xm} generated
for x0 ∈ U(x∗, r∗)− {x∗} by method (30) is well defined in U(x∗, r∗), remains in U(x∗, r∗), and
converges to x∗. Moreover, the following estimates hold:

‖ym − x∗‖ ≤ g1(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖ < r∗,

‖zm − x∗‖ ≤ g2(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖,

‖z(i)m − x∗‖ ≤ λi(‖xm − x∗‖)‖zm − x∗‖

≤ λi(‖xm − x∗‖)g2(‖xm − x∗‖)‖xm − x∗‖λ

≤ ‖xm − x∗‖, i = 1, 2, . . . , q− 1,

(50)

and

‖xk+1 − x∗‖ = ‖z(q)m − x∗‖ ≤ λq(‖xm − x∗‖)‖zm − x∗‖

≤ μ(‖xm − x∗‖)‖xm − x∗‖.
(51)

Furthermore, x∗ is the only solution of G(x) = 0 in D1 = D ∩U(x∗, r∗).

Proof. Only new estimations (50) and (51) will be shown. We show the first two estimations
using the evidence of Theorem 1. Then, we will be able to obtain that

‖ψ(xm, ym, zm)G′(x∗)‖ ≤ ‖(2I − G′(xm)−1[zm, ym; G]
)
G′(xm)−1G′(x∗)‖

≤ ‖(2I − G′(xm)−1[zm, ym; G]
)‖‖G′(xm)−1G′(x∗)‖

≤ K(‖xm−x∗‖)
1−w0(‖xm−x∗‖)

≤ ḡ2(‖xm − x∗‖).

(52)

Moreover, we have

‖z(1) − x∗‖ = ‖zm − x∗ − ψ(xm, ym)G(zm)‖
≤ ‖zm − x∗‖+ ‖ψ(xm, ym, zm)G′(x∗)‖‖G′(x∗)−1G(zm)‖
≤ ‖zm − x∗‖+ ḡ2(‖xm − x∗‖)M‖zm − x∗‖
≤ λ(‖xm − x∗‖)‖zm − x∗‖
≤ μ(‖xm − x∗‖)‖xm − x∗‖.

Similarly, we obtain

‖z(2)m − x∗‖ ≤ λ(‖xm − x∗‖)‖z(1)m − x∗‖
≤ λ2(‖xm − x∗‖)‖zm − x∗‖
. . . . . . . . . . . . . . . . . .

‖z(i)m − x∗‖ ≤ λi(‖xm − x∗‖)‖zm − x∗‖
‖xm+1 − x∗‖ ≤ ‖z(q)m − x∗‖ ≤ λq(‖xm − x∗‖)‖zm − x∗‖

≤ μ(‖xm − x∗‖)‖xm − x∗‖.

That is, we have xm, ym,zm, z(i)m ∈ U(x∗, r∗), i = 1, 2, . . . , q, and

‖xm+1 − x∗‖ ≤ c̄‖xm − x∗‖, (53)
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where c̄ = μ(‖x0 − x∗‖) ∈ [0, 1), so limm→∞ xm = x∗ and xm+1 ∈ U(x∗, r∗). The unique-
ness result is standard, as shown in Theorem 1.

4. Numerical Examples

Here, we shall demonstrate the theoretical results of local convergence which we have
proved in Sections 2 and 3. To do so, the methods of the family (30) of order five, seven,
and nine are chosen. Let us denote these methods by M5, M7, and M9, respectively. The
divided difference in the examples is computed by [x, y ; F] =

∫ 1
0 F′(y + θ(x− y))dθ. We

consider three numerical examples, which are presented as follows:

Example 1. Let us consider B = Rm−1 for natural integer m ≥ 2. B is equipped with the max-norm
‖x‖ = max1≤i≤m−1‖xi‖. The corresponding matrix norm is ‖A‖ = max1≤i≤m−1 ∑

j=m−1
j=1 |aij| for

A = (aij)1≤i,j≤m−1. Consider the two-point boundary value problem on interval [0, 1]:

{
v′′ + v3/2 = 0,
v(0) = v(1) = 0.

(54)

Let us denote Δ = 1/m, ui = Δi, and vi = V(ui) for each i = 0, 1, . . . , m. We can write
the discretization of v

′′
at points ui in the following form:

v
′′
i �

vi−1 − 2vi + vi+1

Δ2 for each i = 2, 3, . . . , m− 1.

Using the initial conditions in (54), we obtain that v0 = vm = 0, and (54) is equiva-
lent to the system of the nonlinear equation F(v) = 0 with v = (v1, v2, . . . , vm−1) in the
following form:{

Δ2v3/2
1 − 2v1 + v2 = 0,

vi−1 + Δ2v3/2
i − 2vi + vi+1 = 0 for each i = 2, 3, . . . , m− 1.

(55)

Using (55), the Fréchet-derivative of operator F is given by

F′(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2 Δ2v1/2

1 − 2 1 0 . . . 0

1 3
2 Δ2v1/2

1 − 2 1
. . . 0

0 1
. . . . . .

...
...

. . . . . . . . . 1
0 . . . 0 1 3

2 Δ2v1/2
1 − 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Choosing m = 11, the corresponding solution is x∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , and we
have L0 = L = L1 = 3.942631477 and M = 2. The parameters using method (30) are given
in Table 1.

Table 1. Numerical results for example 1.

M5 M7 M9

r1 = 0.00791011 r1 = 0.00791011 r1 = 0.00791011
r(1) = 0.00470691 r(2) = 8.50886× 10−10 r(3) = 1.61122× 10−13

r∗ = 0.00470691 r∗ = 8.50886× 10−10 r∗ = 1.61122× 10−13

Thus, it follows that the above-considered methods of scheme (30) converge to x∗ and
remain in Ū(x∗, r∗).
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Example 2. Scholars have determined that the speed of blood in a course is an element of the
distance of the blood from the conduit’s focal pivot (Figure 1). As per Poiseuille’s law, the speed
(cm/s) of blood that is r cm from the focal hub of a supply route is given by the capacity

S(r) = C(R2 − r2), (56)

where R is the range of the course, and C is a consistent that relies upon the thickness of the blood
and the tension between the two closures of the vein. Assume that for a specific course,

C = 1.76× 105 cm/s

and
R = 1.2× 10−2 cm.

Figure 1. Cut-away view of an artery.

Using the numerical values, the problem reduces to

f2(x) = 25.344− 176,000x2 = 0,

where x = r.
The graph of the function f2(x) is shown in Figure 2.

� �

� �

� �

Figure 2. Graph of f2(x).

The zero of f2(x) = 0 is x∗ = 0.012; then, we have L0 = L = L1 = 84.2803 and
M = 5280. The parameters using method (30) are given in Table 2.

It follows that the above-considered methods of scheme (30) will converge to x∗ and
remain in Ū(x∗, r∗) if r∗ is chosen as shown in Table 2.

21



Mathematics 2021, 9, 2510

Table 2. Numerical results for example 2.

M5 M7 M8

r1 = 0.169092 r1 = 0.169092 r1 = 0.169092
r(1) = 0.0724823 r(2) = 0.0331151 r(3) = 0.0140628
r∗ = 0.0724823 r∗ = 0.0331151 r∗ = 0.0140628

Example 3. Consider the quasi-one-dimensional isentropic flow of a perfect gas through a variable-
area channel, shown in Figure 3.

Figure 3. In quasi-one-dimension flows, the stream tube cross section area is allowed to vary in one
direction A = A(x).

The relationship between the Mach number M and the flow area A, derived by Zucrow
and Hoffman [25], is given by

ε =
A
A∗ =

1
M

( 2
γ + 1

(
1 +

γ− 1
2

M2
))(γ+1)/2(γ−1)

, (57)

where A∗ is the choking area (i.e., the area where M = 1), and γ is the specific heat ratio of
the flowing gas shown in Figure 4.

Figure 4. The area–Mach-number relation.

For each value of ε, two values of M exist, one less than unity (i.e., subsonic flow)
and one greater than unity (i.e., supersonic flow). For the values of ε = 5.00 and γ = 1.4,
Equation (57) becomes
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f3(x) = 5− 0.578704(1 + 0.2x2)3

x
. (58)

where x = M. The graph of the function f3(x) is shown in Figure 5, and the zero is
x∗ = 0.116689. Then, we have that

L = L0 = L1 = 8.137146, and M = 0.610065.

�

�

�

�

�

Figure 5. Graph of f3(x).

The parameters using method (30) are given in Table 3.

Table 3. Numerical results for example 3.

M5 M7 M9

r1 = 0.0819303 r1 = 0.0819303 r1 = 0.0819303
r(1) = 0.050974 r(2) = 0.0355748 r(3) = 0.0254287
r∗ = 0.050974 r∗ = 0.0355748 r∗ = 0.0254287

The computed values of r∗ show that the considered methods of the scheme (30) will
converge to x∗ and remain in Ū(x∗, r∗).

5. Study of Complex Dynamics of the Method

To view the geometry of the methods of the family (30) of five, seven, and nine
order methods, in the complex plane, we present the attraction of basins of the roots by
performing the methods on some functions (see Table 4). The basins are displayed in
Figures 6–8 concerning capacities. To draw basins, we use square shapes R ∈ C of size
[−2, 2]× [−2, 2] and allot various shadings to the basins. The dark region is appointed to
the focuses for which the strategy is disparate.

Table 4. Comparison of performance based on basins of attraction of methods.

S. No. Test Problems Roots Color of Fractal Best Performer Poor Performer

1 P1(z) = z2 − 4 −2 red M5, M7, M9
2 green

2 P2(z) = z3 − z −1 red M5 M7, M9
0 green
1 blue

3 P3(z) = z6 + 15
7 z5 + 5z4 −0.8277 . . . cyan M5, M7 M9

+ 7
3 z3 − z2 + z + 1 −0.7654− 1.9514i yellow

−0.6562 . . . purple
−0.7654 + 1.9514i blue
0.4357− 0.4786i green
0.4357 + 0.4786i red
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Figure 6. Basins of attraction of M5, M7, and M9 for polynomial P1(z).
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Figure 7. Basins of attraction of M5, M7, and M9 for polynomial P2(z).
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Figure 8. Basins of attraction of M5, M7, and M9 for polynomial P3(z).

6. Conclusions

In this work, we have extended the utilization of technique (3) by introducing its
assembly investigation and complex elements. Rather than using different procedures
depending on the higher subordinate request just as a Taylor series, we have utilized only
a subsidiary of request one, since this actually shows up in the technique. One more benefit
of our methodology is the calculation of uniqueness balls where the repeats lie just as
appraisals on ‖xn − x∗‖. These objectives are accomplished utilizing our Lipschitz-like
conditions. The hypothetical outcomes so determined are confirmed on some useful issues.
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Finally, we have checked the security of the technique through utilizing a complex element
apparatus, specifically a bowl of fascination.
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Abstract: Various methods (Hartree–Fock methods, semi-empirical methods, Density Functional
Theory, Molecular Mechanics) used to optimize a molecule structure feature the same basic approach
but differ in the mathematical approximations used. The geometry optimization procedure calculates
the energy at an initial geometry of a molecule and then proceeds to search a new geometry with a
lower energy. Using the 3D structures collected from the PubChem database, 20 amino acid geometry
optimization calculations were performed with several methods. The purpose of the study was to
analyze these methods (39) to find the relationship between them and to determine which to use
under different circumstances. Cluster analysis and principal component analysis were performed to
evaluate the similarities between the different methods. The results after the analysis can classified
into three main groups and can be selected accordingly to solve different types of problems.

Keywords: Gaussian; optimization; geometry; molecular modeling; amino acids

1. Introduction

A basis set is essentially a finite number of atomic-like functions, over which the molec-
ular orbital is formed via linear combination of atomic orbitals (LCAO). There are multiple
choices for the basis set, such as Slater type orbitals [1] (STOs) or Gaussian-type orbitals [2]
(GTOs). The wave functions are also called “stationary states” or “energy eigenstates”; in
chemistry they are called “atomic orbitals” or “molecular orbitals”. Consequently, they are
important in molecular modeling [3,4].

Stationary states be described by the time-independent Schrödinger equation:

Hψ = Eψ, (1)

where ψ is the state vector of the quantum system, E is the energy, and H is the Hamilto-
nian operator.

In the time-independent Schrödinger equation, the operation may produce specific
values for the energy called energy eigenvalues. In addition to its role in determining
system energies, the Hamiltonian operator generates the time evolution of the wavefunction
in the form:

Hψ = j�
∂

∂t
, (2)

where the j constant is the imaginary unit, � is the reduced Planck constant, and t is time.
The Schrödinger equation provides a method for calculating the wave function of a

system and its dynamic change over time. The equation is a wave equation in terms of
the wave function which predicts analytically and precisely the probability of events or
outcome. The spatial part needs to be solved for in time-independent problems, because
the time-ependent phase factor is always the same.
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The Schrödinger Equation (1) for molecular systems can only be solved approxi-
mately [5]. The energy operator can be replaced by the energy eigenvalue E, so the time-
independent Schrödinger equation is an eigenvalue equation for the Hamiltonian operator.
Approximation methods can be classified into ab initio or semi-empirical categories.

An unknown one-electron function, such as an orbital ψi can be expanded in a set of
known functions χk (k = 1, 2, . . . , M), the basis set:

ψi =
M

∑
k=1

ckiχk. (3)

In Hartree–Fock (HF) and Kohn–Sham density function theory (DFT), the coefficients
cki are determined by minimizing the total energy, which by traditional methods lead to
a matrix eigenvalue problem that is solved iteratively to provide a self-consistent field
(SCF) solution.

The foundations of the orbital theory were laid by Hartree, Fock, and Slater. If the 2n
electrons in a molecule are assigned to a set of n molecular orbitals ψi (i = 1, . . . , n), the
corresponding many electron wavefunction is:

ψ = (2n!)−1/2 det[(ψ_1 α)(ψ_1 β)(ψ_2 α) . . .]. (4)

The ψi are orthonormal and α and β are spin functions.
Slater-Type Orbitals (STOs) and Gaussian-Type Orbitals (GTOs) are used to describe

AOs (atomic orbitals). STOs describe the shape of AOs more accurately than GTOs, but
GTOs feature an advantage: they are much easier to compute. In fact, calculating multiple
GTOs and combining them to describe an orbital is faster than calculating an STO. This is
why combinations of GTOs are usually used to describe STOs, which, in turn, describe AOs.

The simplest and standard basis set in the Gaussian Program is Slater-Type- Orbitals
simulated by three Gaussian functions each (STO-3G). Generally, if n < 3 the calculations
produce poor results, in consequence, STO-3G is called the minimal basis set. We use
minimal basis sets for qualitative results, very large molecules, or quantitative results
for very small molecules (atoms) [6]. STOs represent the exact solutions for hydrogen-
like atoms and provide a better representation than Gaussian functions for multielectron
systems on a function-to-function comparison.

The most commonly used bases set for geometry optimization is 3-21G [7–9]. This
method uses three Gaussians for the core orbitals and a two/one split for the valence
functions. Usually, d orbitals for all heavy (non-hydrogen) atoms are added to improve a
basis set. The polarization basis sets are those that include the d orbitals; they are indicated
by the symbol “*”. A further development is the 6-31G** basis, in which a set of p orbitals
is added to each hydrogen in the 6-31G* basis set [10].

A number of methods are used to optimize the geometry of molecules: empirical
force field methods (molecular mechanics, a cheaper method in terms of computational
speed, able to provide exceptional structural parameters), semi-empirical methods (to solve
the Schrödinger equation, with certain approximations and description of the electron
properties of atoms and molecules), and ab initio methods (e.g., Hartree–Fock, Post-Hartree-
Fock, and Density Functional Theory) [6].

John A. People [11] pioneered the development of ab initio methods using Slater type
bases sets or Gaussian orbitals to model the wave function. He defined models, selecting
a combination of methods and bases sets, and compared the experimental results of the
analysis. With his team, he established an extended basis of contracted Gaussian functions
that considers the same properties but is still simple enough to be widely applied to organic
molecules [10]. Gaussian-type atomic orbitals have been used broadly to calculate atomic
and molecular wavefunctions. They were involved in the growth of one of the most
common computational chemistry packages, the Gaussian programs.

For ab initio methods, the first step is a single-determinant SCF (self-consistent field)
calculation. Ab initio quantum chemistry methods present the challenge of solving the
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electronic Schrödinger equation based on the positions of the nuclei and the number of
electrons to provide valuable data.

Their quality depends on the basis set used. The Hartree and Hartree–Fock methods
can be regarded as reference methods for many calculations in complex systems. The first
solutions to be obtained are used in the next iteration. Hartree-Fock equations must be
solved by an iterative procedure and offer the second set of solutions. This approach, SCF,
continues as long as the energies of all the electrons remain unaffected. Almost all ab initio
calculations use GTO basis sets.

Pure density functional theory (DFT) [12,13] methods are characterized by pairing
an exchange functional with a correlation functional. Most current DFT studies use BP86,
B3LYP, or BPW91 functionals.

The combination of the method and the basis set determines the chemistry model as
Gaussian, specifying a level of theory. HF methods are considered the default if no other
keywords are mentioned. Most methods also require a basis set; if no basis set keyword is
specified, then STO-3G is used automatically. Some examples of basis sets are: STO-3G,
3-21G, 6-21G, and 6-31G. Single first-polarization functions can also be requested by using
the usual * or ** notation. 6-31G* (or 6-31G(d)) is 6-31G with additional d polarization
functions on non-hydrogen atoms; 6-31G** (or 6-31G(d, p)) is 6-31G* plus p polarization
functions for hydrogen [5]. The + and ++ diffuse functions are accessible with some basis
sets. 6-31+G is 6-31G plus diffuse s and p functions for non-hydrogen atoms; 6-31++G
also features diffuse functions for hydrogen. Thom Dunning introduced optimized basis
sets with correlated wavefunctions: cc (correlations-consistent basis) or pV (polarized
valence basis) [14]. The prefix aug (augmented) can be used to add diffuse functions.
Which a basis set is used, it is related to the purpose of the calculation and the molecules
to be studied. Even a large basis set is not always a guarantee of agreement with the
experimental data [13,15].

Different approaches [16–18] to the comparison of basis sets agree that, even if they are
similar, basis sets cannot be generalized. Some recommendations we found in the articles
studied and by consulting Gaussian tutorials are:

A large basis set is not always the best (ex: cc-pVQZ is overkill for Hartree-Fock).
The minimal basis set (STO-3G) allows the analysis of the largest molecules while

having the lowest resolution/quality for quantum level. In general, cc-pVDZ is equivalent
to or worse than 6-31G (d, p).

cc-pVTZ is better than 6-311G(d,p) or similar.
The convergence of ab initio methods is time-consuming.
The following bases sets are approximately equivalent:

6-31G→ cc-pVDZ
6-311G→ aug-cc-pVDZ
6-31+G(d)→ cc-pVTZ
6-311+G(d)→ aug-cc-pVTZ
6-31++G(d,p)→ cc-pVQZ
6-311++G(d,p)→ aug-cc-pVQZ

Due to the many basis sets and optimization methods, it is very difficult to find the
optimal approach for scientific calculations. The choice of basis set for chemical calculations
can have a major impact on the quality of the results, particularly for correlated ab initio
methods [19]. The choice can be made based on the knowledge related to the design,
development, and optimization of the latest developments in the field. For example, appli-
cations of basis sets are in the simulation and optimization of ultrasonic non-destructive
tests, which are highly important in structural materials such as fiber composites, but also
in columnar grained stainless steels [20]. Another approach could be functional cluster
analysis (FCA) for multidimensional functional datasets, using orthonormalized Gaussian
basis functions, which can be applied for example, to protein structures [21].

The purpose of this study was to analyze 39 optimization methods to find the rela-
tionship between them and determine which to use under different circumstances. Cluster
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analysis, Statistical analysis (ANOVA), and principal component analysis (PCA) were
performed to evaluate the similarities between the different methods.

2. Materials and Methods

The 20 amino acid structures (3D) shown in Table 1 were collected from the PubChem
compound database [22].

Table 1. Amino acids used as input data to our algorithm.

Amino Acids (AA)

Arginine Lysine Methionine Leucine
Asparagine Serine Alanine Phenylalanine
Aspartate Threonine Valine Proline
Glutamate Cysteine Glycine Tryptophan
Glutamine Histidine Isoleucine Tyrosine

These 20 amino acids feature different forms, isomers, enantiomers, and conformers.
In biological systems, amino acids feature the same chirality; most are levorotatory (L) and
not dextrorotatory (D). Using the L conformer of these compounds, geometry optimizations
were performed on the structures (Table 2). The most frequent procedure to establish the
basis functions describing the occupied atomic orbitals by HF/DFT optimization followed
by addressing the issue of polarization functions subsequently. Whatever optimization
method is used, it defines a local minimum, and it is possible that optimization starting
from different initial exponents will lead to different outcomes.

Table 2. Geometry optimization methods used in the calculations.

Gaussian Optimization Methods

Semi-Empirical Methods (Default Spin)

1. Parameterized Model 6 PM6 (opt-pm6)
2. Austin Model 1 AM1 (opt-am1)
3. Parameterized Model 3 PM3 (opt-pm3)
4. Parameterized Model 3 (Molecular Mechanics correction) PM3MM
(opt-pm3mm)
5. Pairwise Distance Directed Gaussian function PDDG (opt-pddg)
6. Complete Neglect of Differential Overlap CNDO (opt-cndo)
7. Intermediate Neglect of Differential Overlap INDO (opt-indo)

Density Functional Theory (Default Spin)

Becke(three-parameter)–Lee–Yang–Parr (functional) B3LYP
8. opt-b3lyp-sto-3g; 9. opt-b3lyp-3-21g; 10. opt-b3lyp-6-31g; 11. opt-b3lyp-6-311g;
12. opt-b3lyp-cc-pvdz;)
Local Spin Density Approximation LSDA 13. opt-lsda-3-21g; 14. opt-lsda-sto-3g;
15. opt-lsda-cc-pvdz; 16. opt-lsda-6-311g; 17. opt-lsda-6-31g;)
18. Perdew–Burke-Ernzerhof (functional) PBEPBE opt-pbepbe-sto-3g
BVP86 19. opt-bvp86-sto-3g; 20. opt-bvp86-3-21g; 21. Opt-bvp86-6-31g; 22.
opt-bvp86-6-311g;)
B3PW91 23. opt-b3pw91-sto-3g; 24. opt-b3pw91-6-31g; 25. opt-b3pw91-6-311g;)

Møller–Plesset Perturbation Theory
MP2 26. opt-mp2-sto-3g; 27. opt-mp2-3-21g; 28. opt-mp2-6-31g; 29.
opt-mp2-6-311g; 30. opt-mp2-cc-pvdz;)

Coupled-Cluster Theory 31. Coupled Cluster single-double CCSD (opt-ccsd-sto-3g)

Molecular Mechanics (Default Spin)
32. Universal Force Field UFF (opt-uff)
33. Dreiding (opt-dreiding)

Hartree–Fock (Default Spin)

34. STO-3G (opt-hf-sto-3g)
35. 3-21G (opt-hf-3-21g)
36. 3-21G* (opt-hf-3-21g*)
37. 6-31G (opt-hf-6-31g)
38. 6-311G (opt-hf-6-311g)
39. CC-pvdz (opt-hf-cc-pvdz)
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The workflow is represented in the next figure (Figure 1). After the Gaussian program
made the calculations based on the 39 methods selected, a family of molecular descriptors
(FMPI- Fragmental Matrix Property Indices) [23] was also calculated to evaluate the degree
of similarity between the methods. The results were submitted to cluster, PCA, and other
statistical analyses.

Figure 1. The working algorithm.

We collected the structures (3D) of the 20 essential amino acids (L conformers) from
PubChem databases (.sdf files) and analysed them with the Gaussian program, taking into
consideration the following steps, also shown in Figure 1:

• Enter the PubChem .sdf files to the Gaussian program.
• Save the file in .gjf file format (the input file format for the program).
• Analyse the amino acids using the following t command: Calculate → Gaussian

Calculation Setup→ Job type (Optimization).
• From the Calculation Setup menu select the Gaussian Geometry Optimization Meth-

ods one after another and run the calculations.
• Save for every calculation the .out file (the output file format for the program).

With a homemade *php program we generated .hin files from the .sdf files and
generated the molecular descriptors (FMPI). FMPI molecular descriptors are the improved
version of SMPI (Szeged Matrix Property Indices) [24,25] descriptors. With SMPI, distance
matrix are calculated, and then for each pair of (distinct) atoms the atoms closer to the
first than to the second atom of the pair are collected into a matrix [15]. The improvement
made to SMPI is the extension of the principle applied in Szeged fragments to the other
two matrices collecting fragments from molecules for pairs of atoms.

Therefore, the gene sequence of FMPI was increased from SMPI with one gene and the
number of descriptors was multiplied by three (arriving at 4536) [23]. After we obtained
4536 descriptors for every amino acid, we used the Statistica program to perform the
clustering and PCA analysis.

3. Results and Discussion

After applying the algorithm described in the Methodology section, a principal com-
ponent analysis (PCA) and a clustering analysis were performed. The next figure (Figure 2)
shows the first and second component as the result of the PCA analysis.

31



Mathematics 2021, 9, 2855

Figure 2. The explained variation (R2X) and the predictive variation (Q2X) of the PCA components.

Each principal component is a linear combination of the variables from the whole data
set. A total of 90,720 descriptors for each component and each method were analysed, or a
total of 3.538.080 descriptors.

The result of the PCA analysis indicated that the principal components (Figure 2)
explained our large amount of data at 99.8851%, which reflected the variance of the data.

The first component accounted for a maximum amount of total variance (71.25%) in
the data analysed. The second component accounted for the maximum variance that was
not explained by the first component (14.9%). The third component also accounted for the
maximum variance (6.51%) after the first two.

The R2X describes the predictive accuracy and takes values between 0 and 1. The more
significant a principal component, the larger its R2X. The explained variance (R2Xadj) is
simply the explained variation (R2X) adjusted for the degrees of freedom.

The quality assessment, goodness-of-prediction (Q2) statistic is typically reported as a
result of cross-validation and provides a qualitative measure of consistency between the
predicted and original data. As we add more variables to the PCA analysis, the value of Q2

increases. Large values of Q2 indicates a relevant and significant analysis.
In the next figure (Figure 3), a score loading plot, the distribution of component

1 versus component 2 is represented. The plot indicates that the similar methods are
indeed roughly grouped together. Furthermore, the loadings define the orientation of the
principal components in space. The loading vectors are p1 and p2. In our case, the first
three components explained most of the data. In the next figure, a score loading plot, the
distribution of component 3 versus component 2 is represented (Figure 4).

The classification of the methods into four categories (Semi-Empirical, Density Func-
tional Theory, Molecular Mechanics Møller–Plesset Perturbation Theory, Coupled-Cluster
Theory and Hartree–Fock) in the Section 2 is not entirely valid if we take into consideration
the similarity between them. The degree of similarity between the methods grouped the
data into the main categories presented above, but also into different and mixed groups.
The PCA and cluster analyses produced comparable results.

The cluster analysis dendrogram (Figure 5) shows the Euclidean distances between
the 39 methods compared. The single linkage or nearest neighbour technique is one of the
simplest hierarchical clustering methods. The Euclidian distance between the methods
due to the large data set (3.538.080 variables) was very high. To compare these methods,
the standardization of the linkage distance was chosen on the X-axis. (Dlink/Dmax) *100
represents the linkage distances (Dlink) divided by maximum linkage distance (Dmax).
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Figure 3. Score plot showing the distribution of the methods in the two principal components.

Figure 4. Score plot showing the distribution of the methods in the principal components p2 and p3.

The similarity between the optimization methods varies between the basis sets used.
After obtaining the results of the PCA and clustering analyses, a classification can be made
within the several different groups. The difference between the optimization methods was
minimal; the tree clustering shows the relationship among them. For an extensive analysis,
the data should be selected from different groups to obtain various results from multiple
points of view.
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Figure 5. Clustering results.

Several studies use hybrid methods in their analysis [26–28] in order to obtain consid-
erably better results. Davidson and Feller [28] in 1986 described a few criteria upon which
a selection of the basis sets could be made, although since then many other methods have
been introduced in computational chemistry. Because different theoretical methods and
molecular properties have different basis set demands, different computer architectures
and algorithms have different efficiency requirements, and the desired accuracy varies
with the application, it is not possible to design one ‘optimum’ basis set.

Cramer [29] discussed the evolution of basis sets from the most widely used split-
valence basis sets, such as 3-21G, 6-21G, 4-31G, 6-31G, and 6-311G [30], to modern examples
of basis sets, such as cc-pCVDZ, cc-pCVTZ, etc. [31]. Comparing all the sets of comparisons,
it is evident that the geometries for the molecules containing second-row elements are
considerably more difficult to predict accurately than those for simpler organics. For
example, it was found that AM1 is less successful when extended to these species than
PM3 [32]. Furthermore, DFT methods feature limitations, such as different trends and high
error accuracy [33].

The effort to determine the ‘best’ combinations of methods and basis sets that pro-
duce statistically good results for certain molecules and properties has become especially
pronounced with the proliferation of the modern methods. Geometry optimization and
energy minimization are fundamental tasks in molecular modelling and drug design. The
failure to minimize energy and/or optimize geometry is directly converted to wrong
molecular descriptors [34].

Because we used a very large data set, the results are more explicable if we divide
them into different subgroups. After we performed the cluster and PCA analyses for every
subgroup the following results were obtained.

For the semi-empirical methods, two principal components explain most of the data
(Figure 6), and thecluster analysis showed the same tendency. The results can be divided
into three main groups: am1; indo, cndo; and pm6, pm3mm, pm3, pddg. In conclusion, if
we use one method from each group, this should be enough to describe our data.

For the Density Functional Theory methods, the statistical analysis looks a little
different, because the dataset was larger this time. Most of the analyzed methods were part
of this family.
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Figure 6. Score plot showing the distribution of the methods in the principal components p1 and p2 and cluster analysis.

Figure 7 demonstrates that the DFT methods are similar to each other, but also some
‘outlier’ methods can be observed. The methods can be divided into four major groups,
and three methods, which are positioned separately.

Figure 7. Score plot showing the distribution of the methods in the principal components p1 and p2 and cluster analysis.

In the Møller–Plesset Perturbation Theory methods, one principal component was
identified (Figure 8). The methods are divided into two main groups, with one (mp2-3-21g)
remaining a basis set.

Figure 8. Score plot showing the distribution of the methods in the principal components p1 and p2 and cluster analysis.

The most widely used optimization calculation is the Hartree–Fock method. Based on
our analysis, we identified two principal components (Figure 9) and two main groups.
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Figure 9. Score plot showing the distribution of the methods in the principal components p1 and p2 and cluster analysis.

The other methods, which are part of Coupled-Cluster Theory and Molecular Mechan-
ics, could not be analysed separately because of the small dataset they represented. One
method (CCSD) in Coupled-Cluster Theory and two methods (UFF, Dreiding) in Molecular
Mechanics Theory did not reveal statistical significance if we analysed them alone. They
are included in the first analysis, where all the methods are examined.

We performed another statistical analysis: the Single-Factor ANOVA test.
The reason for performing ANOVA was to see whether any difference existed between

the groups for particular variables. The null hypothesis states that there was no significant
difference between the methods analysed, based on the molecular descriptors calculated.

The p-value was 0.9995 > 0.05, so we accepted the null hypothesis, and concluded that
there were no significant differences between the methods. In the Figure 10, the results of
the ANOVA indicate that we cannot reject the null hypothesis.

Figure 10. ANOVA test results.

4. Conclusions

In conclusion, we can state that the size of the basis set does not reflect its applicability
in different circumstances. It is not possible to find the best basis set, only a couple of basis
sets that fit our dataset. If we use different basis sets we obtain different results. Therefore,
care must be taken to select the correct basis set. What makes the difference in results are
the different selections and the correct use of optimization methods.

To find the best geometry optimization method to use in different situations, we must
know are related. Two similar methods excluded each other in the analysis because they
provided almost the same results. The results of our analysis show the correlation and
the degree of relationship between the methods studied. The reclassification of the 39
examined methods facilitates the selection of the best basis sets for different study areas.
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Abstract: Finding a maximum clique is important in research areas such as computational chemistry,
social network analysis, and bioinformatics. It is possible to compare the maximum clique size
between protein graphs to determine their similarity and function. In this paper, improvements
based on machine learning (ML) are added to a dynamic algorithm for finding the maximum clique
in a protein graph, Maximum Clique Dynamic (MaxCliqueDyn; short: MCQD). This algorithm was
published in 2007 and has been widely used in bioinformatics since then. It uses an empirically
determined parameter, Tlimit, that determines the algorithm’s flow. We have extended the MCQD
algorithm with an initial phase of a machine learning-based prediction of the Tlimit parameter
that is best suited for each input graph. Such adaptability to graph types based on state-of-the-art
machine learning is a novel approach that has not been used in most graph-theoretic algorithms. We
show empirically that the resulting new algorithm MCQD-ML improves search speed on certain
types of graphs, in particular molecular docking graphs used in drug design where they determine
energetically favorable conformations of small molecules in a protein binding site. In such cases, the
speed-up is twofold.

Keywords: maximum clique; protein graphs; machine learning; ProBiS

1. Introduction

Finding the maximum clique in a graph is a well-studied NP-complete problem [1].
Recently developed algorithms significantly reduce the time required to search for a maxi-
mum clique, which is of great practical importance in many fields such as bioinformatics,
social network analysis, and computational chemistry [2,3].

There have been many advances in the search for faster algorithms for maximum
cliques, many of which focus on specific domains of graphs [4–7]. To make the algorithm
work fast on general graphs, some good heuristics have been proposed to speed up the
branch-and-bound search [1,4,8–15]. One such algorithm is MCQD, on which we have
built [4]. It has been shown that the MCQD algorithm is faster than many other similar
branch-and-bound algorithms in finding maximum cliques [1]. In the MCQD algorithm,
there is a single parameter that can be set before the algorithm is executed. This parameter,
called Tlimit, controls the fraction of a graph on which tighter upper bounds apply to the
size of a maximal clique. These upper bounds require that (O(N2)) be computed. The
fraction of a graph on which looser upper bounds are used (O(NlogN)) is empirically
estimated to be 0.025 for random graphs. Even though MCQD seems to progress quickly
with a default value of Tlimit in many graphs, there are some graphs where Tlimit performs
poorly [4]. In particular, the Tlimit parameter is suboptimal in some dense and synthetic
graphs of the DIMACS benchmark [16]. Here, we present an improvement to the original
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MCQD algorithm that automatically determines the value of the Tlimit parameter for
the MCQD algorithm. We predict that the Tlimit parameter uses machine learning for
the input graph. The code used to perform the experiments is freely available at http:
//insilab.org/mcqd-ml (accessed on 9 November 2021).

1.1. Problem Description and Notation

Let G = (V, E) be an undirected graph, where V = 1, . . . , n is a set of vertices and
E⊂V × V is a set of edges. A clique C in the graph G is a set of nodes defined such that
there exists an edge between every two nodes in C. We say that C is a maximum clique if
its cardinality |C| is the largest among all cliques in the graph G. The maximum clique
problem (MCP) is an optimization problem that seeks the maximum clique in a given graph.
The clique number w(G) of graph G is the number of nodes in the maximum clique of graph
G. The maximum clique problem is strictly equivalent to a maximum independent set (MIS)
as well as the minimum vertex cover problem (MVC). Finding the maximum clique is an
NP-complete problem. We do not know if there is an algorithm for this group of problems
that can find the solution in polynomial time. It is likely that no such algorithm exists.

1.2. Maximum Clique Dynamic (MCQD) Algorithm

The MCQD algorithm is based on a branch and bound principle [4]. It uses approxi-
mate graph coloring to estimate the upper bound of the maximum clique size and is shown
in Algorithm 1.

Algorithm 1. Dynamic algorithm for maximum clique search.

1: procedure MaxCliqueDyn(R, C, level)
2: S[level]← S[level] + S[level - 1] – Sold[level]
3: Sold[level]← S[level - 1]
4: while R �= Ø do
5: choose a vertex p with maximum C(p) (last vertex) from R
6: R← R \ {p}
7: if |Q| + C[index_of_p_in_R] > |Qmax| then

8: Q← Q ∪ {p}
9: if R ∩ Γ(p) �= Ø then

10: if S[level] / ALL_STEPS < Tlimit then

11: calculate the degrees of vertices in G(R ∩ Γ(p))
12: sort vertices in R ∩ Γ(p) in descending order with respect to
their degrees
13: ColorSort(R ∩ Γ(p), C’)
14: S[level]← S[level] + 1
15: ALL_STEPS← ALL_STEPS + 1
16: MaxCliqueDyn(R ∩ Γ(p), C’, level + 1)
17: else if |Q| > |Qmax| then

18: Qmax← Q
19: Q← Q \ {p}

The algorithm stores the current clique in the variable Q and keeps track of the current
maximum clique size in the variable Qmax. As an input, it accepts an ordered set of nodes
based on their color, a set of colors, and the level variable which provides the current depth
of the recursive function. The algorithm also uses two global variables, S[level] and Sold
[level], which store the sum of steps up to the current level of algorithm progression and
the previous level Sold [level] = S[level − 1]. With the Tlimit parameter, we can limit the
use of the graph coloring of vertices R sorted by their degree. When the proportion of
steps up to a certain level of recursion is less than Tlimit, we perform additional operations
of recalculating the vertex degrees for the remainder of the graph and of resorting these
vertices according to their descending degrees. This additional work increases the tendency
of the ColorSort function to estimate a tighter upper bound for the size of a maximum
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clique, generally reducing the number of steps and time necessary for the algorithm to
find a maximum clique. The Tlimit value used in the original paper [4] was empirically
determined on a sample of random graphs and was set to a value of 0.025.

1.3. Protein Product Graphs and Use of Molecular Docking Graphs in Drug Discovery

To move drugs from the research phase to the trial phase, the most promising molecules
must be identified from a set of potential candidates. This requires a detailed knowledge
of the functions of drug target proteins, which is often lacking. Protein functions can be
determined by comparing the structure of unknown proteins to proteins with known func-
tions [2]. To compare proteins with each other, we can represent them as protein graphs,
such as we did with the ProBiS (Protein Binding Sites) algorithm [17]. Two protein graphs
can be compared by constructing a protein product graph, which is a Cartesian product
of the two protein graphs and captures all possible overlaps of one protein with the other.
Finding a maximum clique in this protein product graph is directly equivalent to finding
the alignment that overlaps most of the vertices of the protein graphs. The quality of the
overlap is an indication of the similarity of the proteins.

Another application for maximum clique search is molecular docking, which is often
performed as a high-throughput screening approach whose goal is to predict the binding
position and binding affinity of potential ligands of a target protein [18]. In a particular class
of molecular docking called fragment docking, which was explored in our ProBiS-Dock
docking algorithm, a maximum clique algorithm is used to reconstruct a docking graph
of the small molecule in a protein-bound conformation from fragments of the previously
docked molecule. The calculated binding affinities of the docked fragments can be included
in this graph as node weights, resulting in a weighted docking graph. A clique with
maximum weight in such a graph represents the docked conformation of a small molecule
with the highest binding affinity among all possible conformations of that small molecule.
This allows the algorithm to discover potential new ligands of a protein that could become
drugs in the future.

2. Overview of Graph Theory and Neural Networks Approaches

We describe the novel developed MCQD-ML (Maximum Clique Dynamic–Machine
Learning) algorithm that was tested with different types of graphs and incorporates differ-
ent machine learning models.

2.1. Graphs Used for Training and Testing

To train the machine learning algorithm, we first create a variety of graphs. In or-
der to capture the largest possible variety of target graphs in our training set, we in-
clude 10,000 sparse and dense random graphs, as well as 15 complete protein graphs and
200 molecular docking graphs. The random graphs are generated such that each edge
exists with probability d, where d is greater than 0.99 in dense graphs. The types of graphs
are presented in the following sections.

2.2. Molecular Docking Graphs

To identify energetically preferred docking conformations of potential ligands, we
performed a maximum clique search in molecular docking graphs. A molecular docking
graph is a graph whose nodes are docked molecular fragments and in which two nodes
are connected if the docked fragments can be connected with linker atoms to reconstruct
the original docked molecule. Each node is assigned a weight representing the binding
energy (or binding affinity) of a docked fragment. By performing a maximum weight clique
search on docking graphs, we can find the combination of docked fragments that yields the
conformation with the lowest energy of the docked small molecule with a given protein.
We use the ProBiS-Dock algorithm to build molecular docking graphs. The algorithm is
used to find the ligands with the highest potential when screening multiple ligands on a
target protein [18,19].
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2.3. Protein Product Graphs

In the ProBiS algorithm [17], proteins are represented as protein graphs. Each node
in a protein graph represents the spatial coordinates of the surface amino acid functional
groups. If the distance between nodes u and v is less than 15 Å, there is an edge between
two nodes in a protein graph. We can formulate the comparison of two proteins as a
maximum clique search by using the notion of a protein product graph. A maximum clique
in a protein product graph is a superposition of protein graphs in which the majority of the
nodes of two graphs are aligned. The protein product graph of two protein graphs G1 and
G2 is defined by a set of nodes, V (G1, G2) = V (G1)× V (G2). Each node in a product graph
consists of a node u from graph G1 and a node v from graph G2, both of which represent a
similar functional group in the original proteins. In general, a protein product graph can
have |V1| × |V2| nodes, but this number is reduced by keeping only the nodes from the
original protein graphs G1 and G2 that have similar neighbourhoods in a 6 Å sphere.

2.4. Small Protein Product Graphs

The problem with protein product graphs is the large size of the adjacency matrix,
which can exceed the available memory depending on the size of the proteins being
compared. It is possible to split a large protein product graph into smaller product graphs
that are much denser and contain only a subset of the nodes of the original product graph.
The advantage of smaller and denser graphs is the speed at which they can be processed. A
disadvantage of smaller protein graphs is the loss of information. If we look for a maximum
clique in a small product graph, there is no guarantee that the same clique will be the
maximum clique in the entire protein product graph.

2.5. Protocol for Machine Learning on Graphs

To gather as much information as possible about the graph, it is necessary to perform
machine learning directly on the graph. To this end, we tested several different graph
neural network models and a support vector regression algorithm with the Weisfeiler–
Lehman kernel function [20–30], which are listed in Table 1. We tested three different graph
neural network models that can model data of different complexity with inductive biases.
They are (i) Graph Convolutional Networks (GCN) [28], (ii) Graph Attention Networks
(GAT) [29,30], and (iii) Graph Isomorphism Networks (GIN) [15,25]. We trained the models
on a given training set and then used them to predict Tlimit values for graphs on the test
set. The test set contained 15 dense random graphs, 10 small product graphs, 3 product
graphs, and 10 docking graphs. We evaluated the performance of the algorithms and
calculated the average speed of the standard MCQD algorithm for each set of test graphs.
We also calculated the combined speed for the entire test set by summing the runtimes of
the algorithms for many different types of graphs and dividing the sum by the runtime
required for the MCQD algorithm.

Table 1. Different machine learning methods employed.

ML Method Description Works on Graphs Representative Power References

XGBoost Ensemble of gradient
boosted trees.

No. Best for
tabular data.

Works well on tabular data and
extracted features of a graph. Results

depend on the quality of
features extracted.

[21,22]

SVR-WL Support vector machine with
Weisfeiler–Lehman kernel Yes. Can distinguish

non-iso-morphic graphs. [24]

GNN Graph Neural Networks
(GCN, GAT, GIN) Yes. Can distinguish most graphs and learn

good representations. [15,25,28–30]
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3. Materials and Methods

3.1. Preparation of a Labeled Training Set

Before attempting to use machine learning to improve the selection of the Tlimit
parameter value for specific input graphs, we prepared a labeled training set in which
different Tlimit values were identified for each graph with the time required to detect
the maximum clique. So, we performed the maximum clique search with different Tlimit
values on a set of graphs and recorded the time taken by the MCQD algorithm to find
the maximum clique. For each generated graph, we ran the MCQD algorithm multiple
times for different values of the Tlimit parameter to record the Tlimit values approximately
uniformly on a logarithmic scale from 0 to 1. When running MCQD for many graphs and
many Tlimit values for each graph, this step becomes computationally intensive. After
collecting all Tlimit pairs and their corresponding computation time, we selected the Tlimit
value with the lowest time as the best Tlimit value for a graph. This value was then used
as the label value for training the machine learning models. The training set consists of
graphs as input and the optimal Tlimit value for each graph as the target variable.

3.2. Maximum Clique Dynamic Algorithm with Machine Learning (MCQD-ML)

The idea behind the MCQD-ML algorithm is shown in Figure 1. The algorithm per-
forms inference on the graph to determine a Tlimit parameter before the MCQD algorithm
starts, and the MCQD algorithm then uses this parameter instead of the hard-coded param-
eter. In this way, we obtain the best Tlimit parameter for a given graph and use it to make
the MCQD algorithm run faster.

 

Figure 1. MCQD-ML algorithm architecture.

We used an implementation of the MCQD algorithm that can search for a maximum
clique as well as a maximum weighted clique. This algorithm is available as source code at
https://gitlab.com/janezkonc/insidrug/-/blob/master/lib/glib/mcqd.cpp (accessed on
9 November 2021). For experimental purposes, we created two training sets and two test
sets for molecular docking graphs. One set contains the docking graphs with weights, and
in the other set we omit the weights from the docking graphs and assume that all nodes
have the same weight. All other graphs are unweighted.

3.3. Evaluation of Possible Acceleration of the MCQD Algorithm

To determine if any speed-ups are possible by tuning the parameter Tlimit, we plot
the time needed for MCQD to find the maximum clique at different values of the Tlimit
parameter. In Figure 2, it can be observed that on a random 150 node graph, the default
value of parameter is well suited and the maximum clique can be found relatively quickly
compared to other values of Tlimit.
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Figure 2. Time necessary for MCQD to find the maximum clique on a random graph with 150 nodes
and density p = 0.7. The red line represents the default value (0.025) of the MCQD algorithm.

In Figure 3 we evaluate the impact of the initial sorting of vertices on the time required
for MCQD to finish searching. We found that initial sorting of vertices has no significant
impact on the time needed by MCQD to find the maximum clique.

3.4. Evaluation of the Effect of Machine Learning Models on Validation Sets

We perform an evaluation of the trained machine learning models we presented. The
models are evaluated using the R2 score on the validation set, which contains graphs from
different domains. This value (also called coefficient of determination) is used in statistics
to evaluate statistical models. Values of R2 typically range from 0 to 1, with 1 being the best
possible value. If the model predicts the mean of the data (constant value), the R2 value is
0. The value can also be negative if the model does not perform as well as the mean of the
data. The results of our evaluation are shown in Table 2.

We find that the model GAT achieves the highest R2 value, with any machine learning
model performing better than the standard MCQD parameter choice, which is nearly equal
to 0. Thus, we expect the GAT model to perform the best, while the other models in the test
set are not as fast. In the next section, we evaluate the models based on the time they take
to find the maximum clique.
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Figure 3. Time needed by the MCQD algorithm to find the maximum clique on different graphs
independent of Tlimit. The blue line represents the mean time and the shaded area represents
standard deviation over 20 runs of the MCQD algorithm.

Table 2. R2 values from different machine learning models.

Model Name R2 Score on Validation Set

MCQD −0.02
XGB 0.15

SVR-WL 0.21
GCN 0.42
GAT 0.55
GIN 0.16

4. Results

Our Maximum Clique Dynamic–Machine Learning (MCQD-ML) algorithm was im-
plemented in Python (ML part) and C++ (MCQD part) and uses only 1 CPU core. Here we
evaluated the MCQD-ML algorithm on several previously described sets and compared
the results with the standard MCQD algorithm. The MCQD algorithm was extensively
compared and benchmarked [1,2,4]. The computational experiments were performed on an
AMD Ryzen 9 3900X 12-core with a CPU frequency of 2 GHz. The MCQD-ML maximum
clique algorithm was compared with the original MCQD algorithm on random graphs,
protein product graphs, and molecular docking graphs. We limited the time available
for the algorithms to 2000 s. To compare the performance of the algorithms, we use two
metrics: (i) the speed-up on a test set, i.e., the time taken by the MCQD algorithm to find the
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maximum clique for each graph in a test set divided by the time taken by the MCQD-ML
algorithm to find the maximum clique on a given set of graphs and (ii) the average speed-up
on a test set is calculated by taking the speed-up of the MCQD-ML algorithm for each
graph and averaging it over all graphs.

We used various machine learning models to predict the value of the Tlimit parameter,
and then used this value in the MCQD-ML algorithm to evaluate its performance on several
test sets, including random graphs, protein product graphs, and molecular docking graphs.
We compared it with the basic MCQD algorithm with default value Tlimit = 0.025. MCQD-
ML is implemented with the following machine learning models: XGBoost (XGB), Graph
Convolutional Neural Network (GCN), Graph Attention Neural Network (GAT), Graph
Isomorphism Network (GIN), and Support Vector Regressor with the Weisfeiler–Lehman
Kernel (SVR-WL). For each model, we record the time it takes MCQD to find the maximum
clique with a predicted value of the parameter Tlimit.

4.1. Dense Random Graphs

In a series of tests with dense random graphs, we found that GAT outperforms other
models, including the original MCQD algorithm. The faster speed of GAT compared to
MCQD is not great, as GAT is about 18% faster on average and only 4% faster on the entire
test set of dense random graphs.

From Table 3 and Figure 4 we can see that the default MCQD algorithm is nearly
optimal for some graphs and almost two times slower compared to tests with a better
choice of the value of the parameter. There exists no Tlimit for which MCQD will find the
maximum clique substantially faster.

Table 3. Times needed by algorithms to find the maximum clique for each graph in a test set of dense
random graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

63 0.9944 0.0008 0.0007 0.0007 0.0007 0.0011 0.0007
113 0.9987 0.0024 0.0022 0.0023 0.0022 0.0028 0.0023
121 0.9955 0.0044 0.0042 0.0042 0.0041 0.0065 0.0047
175 0.9954 0.0171 0.0159 0.0157 0.0151 0.0194 0.0157
304 0.9911 8.8271 6.4638 7.305 6.2747 8.6368 9.3515
414 0.9943 2.3677 1.8574 1.7514 1.2559 5.0611 1.9631
443 0.9938 57.898 55.2395 66.4033 58.8421 428.473 265.817
475 0.9979 0.2406 0.2327 0.2413 0.2305 0.2336 0.2287
476 0.9977 0.3262 0.2695 0.3024 0.2906 0.2703 0.2652
524 0.9992 0.5042 0.438 0.466 0.4482 0.4341 0.4278
622 0.9981 0.6802 0.6225 0.6212 0.6082 0.6253 0.612
690 0.9978 326.052 1124.65 511.101 428.92 115.922 −1.0000
828 0.9979 382.55 322.846 431.302 254.81 −1.0000 1217.84
931 0.9995 1.98 1.7438 1.7799 1.7807 1.7584 1.7017
941 0.9988 25.4684 12.2125 22.7202 20.2954 12.3739 12.044

Speedup 0.52 0.77 1.04 0.73 0.31
Average speedup 1.14 1.04 1.18 1.09 1.05
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Figure 4. Time that MCQD algorithm and each variant of the MCQD-ML algorithm needs to find the
maximum clique on three different graphs from a test set of dense random graphs dependent on the
Tlimit parameter.

4.2. Small Protein Product Graphs

From Table 4 it can be observed that most ML models fail to reach the performance of
the default MCQD algorithm.

Table 4. Times that algorithms need to find maximum clique for each graph from test set of small
product graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

61 0.9792 0.0008 0.0008 0.0008 0.0007 0.0012 0.0008
138 0.9422 0.0079 0.0137 0.0078 0.0074 0.0102 0.0076
200 0.8581 0.0358 0.0398 0.0388 0.0381 0.0327 0.0393
271 0.9852 0.2062 0.2004 0.1972 0.1907 0.1831 0.1913
346 0.9091 2.3032 0.7774 2.8878 2.8278 14.3173 4.7920
451 0.9743 0.8956 0.8989 0.8955 0.8464 1.3257 1.3406
563 0.9800 1.7685 1.8496 1.7348 1.6936 1.7277 1.6994
655 0.9692 2.3652 2.3684 2.4533 2.6894 15.9674 15.8806
750 0.9625 4.7147 5.8504 4.2834 4.1741 8.0964 8.0182
905 0.9412 18.4683 16.2290 25.2455 18.5778 −1.0000 283.5820

Speedup 1.08 0.81 0.99 0.29 0.09
Average speedup 1.13 0.96 1.02 0.69 0.70
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4.3. Protein Product Graphs

In Table 5 and Figure 5 we observe that any substantial speed-ups on product graphs
are not achievable because the default value of parameter Tlimit is almost optimal for all
product graphs in the test set.

Table 5. Times that algorithms need to find the maximum clique for each graph from a test set of full
product graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

27,840 0.0069 9.8018 9.9147 10.2909 9.8759 10.9743 10.1547
36,841 0.0060 18.6482 19.7002 19.1695 19.0900 23.4188 19.9433

121,359 0.0024 198.5920 199.5000 199.4170 199.8520 378.1210 199.3480

Speedup 0.99 0.99 0.99 0.55 0.99
Average speedup 0.98 0.98 0.99 0.74 0.97

Figure 5. Time needed by MCQD algorithm and each variant of the MCQD-ML algorithm to find
a maximum clique on three different graphs from test set of protein product graphs dependent of
Tlimit parameter.

4.4. Molecular Docking Graphs

On the test set of molecular docking graphs, we observe in Table 6 that the GAT
model and SVR-WL outperform every other model, including the MCQD algorithm. The
performance of GAT and SVR-WL is almost two times faster with the whole test set, and
34% faster on average. On Figure 6 we observe that the molecular docking graphs vary
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in the optimal parameter value. While on a graph with 1779 nodes the default value of
the parameter is nearly optimal, it is not suitable for the graph with 5309 nodes where it is
more than three times slower than with the optimal parameter value.

Table 6. Times that algorithms need to find maximum clique for each graph from test set of docking
graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

345 0.1266 0.0025 0.0025 0.0026 0.0025 0.0026 0.0025
1779 0.1108 0.0940 0.0948 0.0943 0.0939 0.0952 0.0952
1851 0.1580 0.1606 0.1606 0.1829 0.1562 0.4394 0.1580
3233 0.1620 3.6941 3.4489 1.9791 1.9817 3.5981 1.9176
4211 0.0448 0.3889 0.3900 0.3990 0.3783 0.3967 0.3823
5293 0.1119 2.7147 6.0876 2.9925 2.6810 5.4606 2.7374
5309 0.1474 26.3695 19.1478 33.7628 7.7648 7.8752 7.5596
5735 0.0592 1.2673 1.2681 1.3803 1.2271 1.3196 1.2476
6294 0.1382 3.0941 15.8609 3.3343 3.0363 3.1517 3.0399
7211 0.1012 4.4230 11.2341 4.5631 4.2580 9.0498 4.3415

Speedup 0.73 0.86 1.96 1.41 1.96
Average speedup 0.84 1.01 1.34 1.10 1.34

Figure 6. Time that MCQD algorithm and each variant of the MCQD-ML algorithm need to find the
maximum clique on three different graphs from a test set of molecular docking graphs dependent of
Tlimit parameter.
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From these experiments we see that the prediction of Tlimit is not an easy task and
differs between graphs from the same general domain. For the XGB model, we conclude
that it does not have sufficient information about the graph to be able to predict a good
Tlimit value. For models GCN and GIN, we hypothesize that due to their expressive power
(GIN, for example, can distinguish between isomorphic graphs), they are harder to train
with relatively small sets and thus perform more poorly than, for example, the GAT model.

4.5. Weighted Molecular Docking Graphs

On a test set of weighted molecular docking graphs, we observed that unlike with
the set of unweighted docking graphs, there are only minor speed-ups with the GAT
model (Table 7).

Table 7. Times that the MCQD algorithm and the MCQD-ML (variant with the GAT model) algorithm
need to find the maximum clique for each graph from a test set of weighted molecular docking graphs.

n p MCQD GAT

345 0.1266 0.0049 0.0048
1779 0.1108 0.1188 0.1122
1851 0.1580 1.0636 1.0563
3233 0.1620 107.3550 106.3990
4211 0.0448 0.4950 0.4960
5293 0.1119 1.1551 1.1550
5309 0.1474 16.5672 16.4841
5735 0.0592 1.3452 1.3416
6294 0.1382 11.4437 10.8346
7211 0.1012 6.8934 6.8882

Speedup 1.01
Average speedup 1.01

From these experiments, above we can see that we can speed up the maximum clique
search with MCQD by augmenting it with the GAT model. The speed-ups were achieved
on random graphs and docking graphs, while on other graph domains we saw very
little improvement.

5. Conclusions

We have developed a new approach to find the maximum clique on a protein graph
using both neural networks and artificial intelligence approaches. It is a new approach that
has not been developed before, and its results show a remarkable speed-up in determining
the correct maximum clique on the product graph. Therefore, we expect that this approach
will be widely applicable in various scientific fields, such as computer science.

Having fast algorithms that solve maximum clique problem is of great importance
in the discovery of new drugs and of protein behavior. We applied a couple of machine
learning methods on a regression problem in order to speed up a dynamic algorithm for
maximum clique search and obtained several variants of the new MCQD-ML algorithm,
which we applied to graph topologies that are particularly important in bioinformatics.

We concluded that improvements using deep learning methods are possible. The most
well-suited model that we tested is the graph attention network (GAT), which can speed up
the maximum clique search on average by 18% on random graphs and by 34% on docking
graphs. The computational cost introduced with the machine learning model is negligible
compared to the maximum clique search.

From experiments on protein product graphs, we can assume that further improve-
ments using the same MCQD algorithm are unlikely to be achievable. In further work, we
could improve the quality of the set with more samples from different graph topologies
such as social network graphs. It would be interesting to test possible speed-ups on other
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algorithms that operate on a domain of graphs and use empirically determined parameters
that determine the progress of the algorithm.
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Abstract: Entropy is essential. Entropy is a measure of a system’s molecular disorder or unpre-
dictability, since work is produced by organized molecular motion. Entropy theory offers a profound
understanding of the direction of spontaneous change for many commonplace events. A formal
definition of a random graph exists. It deals with relational data’s probabilistic and structural prop-
erties. The lower-order distribution of an ensemble of attributed graphs may be used to describe
the ensemble by considering it to be the results of a random graph. Shannon’s entropy metric is
applied to represent a random graph’s variability. A structural or physicochemical characteristic
of a molecule or component of a molecule is known as a molecular descriptor. A mathematical
correlation between a chemical’s quantitative molecular descriptors and its toxicological endpoint
is known as a QSAR model for predictive toxicology. Numerous physicochemical, toxicological,
and pharmacological characteristics of chemical substances help to foretell their type and mode of
action. Topological indices were developed some 150 years ago as an alternative to the Herculean,
and arduous testing is needed to examine these features. This article uses various computational and
mathematical techniques to calculate atom–bond connectivity entropy, atom–bond sum connectivity
entropy, the newly defined Albertson entropy using the Albertson index, and the IRM entropy using
the IRM index. We use the subdivision and line graph of the H3BO3 layer structure, which contains
one boron atom and three oxygen atoms to form the chemical boric acid.

Keywords: entropies via various molecular descriptors; H3BO3 layer structure; subdivision of
H3BO3; line graph of H3BO3

MSC: 05C07; 05C09; 05C31; 05C76; 05C99

1. Introduction

Theoretical chemistry and graph theory are combined in chemical graph theory (CGT).
It makes a contribution to the modeling of actual and fictitious chemical substances, ex-
amines the mathematical structure and connectedness, and then unifies the mathematical
and chemical notions [1]. A chemical compound is modeled by displaying its structural
formula as a chemical graph, in which atoms are represented by vertices and chemical
bonds by edges [2].

We determine a structure’s distance-based entropy by using some well-known topo-
logical indices, which are the numbers that help characterize its topological features after
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it has been reproduced. The many pharmacological, physicochemical (such as melting
point, boiling temperature, volume, molecular weight, density, etc.), and toxicological
properties of a chemical molecule have a link with these invariants [3–5]. Topological
indices have the amazing feature of remaining constant over graph isomorphisms, making
them typically graph-invariant [6–14]. Numerous topological indices based on chemical
graphs that rely on the number of vertices have been discovered and studied [15–19]. The
atom–bond connectivity index and its modified form, the atom–bond sum connectivity
index, the Albertson index, and the IRM index, as well as their mathematical equations, are
introduced and defined in this section. For more explanation, see [20–27].

The atom–bond connectivity index was established by Estrada et al. [28] and is a
modified version of the connectivity index. It is described as

ABC(G, x) = ∑
ai∼ȧ2

x

√
(Vȧ1

+Vȧ2
−2)

(Vȧ1
×Vȧ2

)
& ABC = ∑

ȧ1∼ȧ2

√
(Vȧ1 + Vȧ2 − 2)
(Vȧ1 ×Vȧ2)

(1)

Zhou and Trinajstic [29] proposed the sum-connectivity index, ∑u,v∈ξg
1√

Vai+Vaj
, an al-

ternative to the connectivity index. The atom–bond sum-connectivity (ABS) index is a
recently proposed modification of the atom–bond connectivity index that makes use of the
fundamental concept of the sum-connectivity index [30]. A definition of the ABS index is

ABS(G, x) = ∑
ai∼aj

x

√
(Vai +Vaj−2)

(Vai +Vaj ) & ABS = ∑
ai∼aj

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
(2)

To determine a graph’s irregularity, the authors in [31] established the Albertson index
A(G).

A(G, x) = ∑
ai∼aj

x|Vai−Vaj | & A(G) = ∑
ai∼aj

|Vai −Vaj | (3)

The irregularities of the graph are gauged using the Albertson, Bell, and IRM indices [32].
The definition of IRM(G) is

IRM(G, x) = ∑
ai∼aj

x[Vai−Vaj ]
2

& IRM(G) = ∑
ai∼aj

[Vai −Vaj ]
2 (4)

In this paper, we work with Boric acid H3BO3. It is an acid made up of four oxygen atoms,
one phosphorus atom, and three hydrogen atoms. Boric acid is sometimes referred to as
orthoboric acid, boracic acid, hydrogen borate, or acidum boricum. It possesses antiviral,
antifungal, and antiseptic qualities and is a weak acid. Figure 1 depicts the boric acid
complex, which consists of one boron atom, three oxygen atoms, and three hydrogen atoms.
The floral pattern structure (base unit) depicted in Figure 1 is created by polymerizing the
H3BO3 unit structure, which consists of six repeating units of H3BO3.

The degree of unpredictability (or disorder) in a system is measured by entropy. It may
also be considered a measurement of how evenly the molecules in the system distribute
their energy. The number of alternative configurations of molecule position and the amount
of kinetic energy at a specific thermodynamic state is known as a microstate.
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Figure 1. Boric acid H3BO3.

Entropies via Various Molecular Descriptors

Ghani et al. in [33] and Manzoor et al. in [34] recently offered another strategy that is
a little bit novel in the literature: applying the idea of Shannon’s entropy [35] in terms of
topological indices. The following formula represents the graph entropy:

ENTμ(G) = − ∑
ai∼aj

μ(Vai Vaj)

∑
ai∼aj

μ(Vai Vaj)
log

{ μ(Vai Vaj)

∑
ai∼aj

μ(Vai Vaj)

}
. (5)

where a1, a2 represents atoms, ξG represents the edge set, and μ(Vai Vaj) represents the edge
weight of edge (Vai Vaj).

• Entropy related to ABC index

Let μ((ai)(aj)) =
{√Vai+Vaj−2

Vȧi×Vȧj

}
. Then ABC index (1) is given by

ABCG = ∑
ai ,aj∈ξG

{√Vai + Vaj − 2

Vai ×Vaj

}
= ∑

ai ,aj∈ξG

μ((ai)(aj)).

Adding the parameters of ABCG into Equation (5), then the atom–bond connectivity
(ENTABC) entropy is

ENTABCG = log (ABCG)− 1
ABCG

log
{

∏
ai ,aj∈ξG

(√
Vai + Vaj − 2

Vai ×Vaj

)(√
Vai +Vaj−2

Vai×Vaj

)
}

. (6)

• Entropy related to ABS index

Let μ((ai)(aj)) =
{√Vai+Vaj−2

Vai+Vaj

}
. Then the ABS index (2) is given by

ABSG = ∑
ai ,aj∈ξG

{√Vai + Vaj − 2

Vai + Vaj

}
= ∑

ai ,aj∈ξG

μ((ai)(aj)). (7)

Adding the parameters of ABSG into Equation (5), then the atom–bond sum connectivity
(ENTABC(G)) entropy is

ENTABSG = log (ABSG)− 1
ABSG

log
{

∏
ai ,aj∈ξG

(√
Vai + Vaj − 2

Vai + Vaj

)(√
Vai +Vaj−2

Vai +Vaj

)
}

. (8)
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• Entropy related to Albertson index

Let μ((ai)(aj)) =
{
|Vai −Vaj |

}
. Then the Alberston entropy (3) is given by

A(G) = ∑
ai ,aj∈ξG

{
|Vai −Vaj |

}
= ∑

ai ,aj∈ξG

μ((ai)(aj)).

Adding the parameters of A(G) into Equation (5), then the Alberston (ENTA)) entropy is

ENTA(G)
= log (A(G))−

1
A(G)

log
{

∏
ai ,aj∈ξG

(
|Vai −Vaj |

)(
|Vai−Vaj |

)}
. (9)

• Entropy related to IRM index

Let μ((ai)(aj)) =
{
[Vai −Vaj ]

2
}

. Then the IRM entropy (4) is given by

IRM(G) = ∑
ai ,aj∈ξG

{
[Vai −Vaj ]

2
}
= ∑

ai ,aj∈ξG

μ((ai)(aj)).

Adding the parameters of IRM(G) into Equation (5), then the IRM (ENTIRM) entropy is

ENTIRM(G,x)
= log IRM(G) −

1
IRM(G,x)

log
{

∏
ai ,aj∈ξG

(
[Vai −Vaj ]

2
)(

[Vai−Vaj ]
2
)}

. (10)

2. Layer Structure of H3BO3(s, t)

In this section, we discuss the H3BO3(s, t) layer structure, which serves as the foun-
dation for its subdivision and line graph. The H3BO3(s, t) unit structure polymerizes to
generate the floral pattern structure (base unit) seen in Figure 2, which is made up of six
repeating H3BO3 units. This layer structure may be stretched to whatever number of rows
and columns is desired. The horizontal lines of floral pattern structures are character-
ized as rows “s”, while the vertical lines are designated as columns “t”. Figure 2 depicts
H3BO3(s, t) with one row and two columns, s = 1 and t = 2.

Figure 2. Layer structure of H3BO3.

2.1. Subdivision of the Layer Structure H3BO3(s, t)

Figure 3 shows the subdivision of H3BO3(s, t), the layer structure achieved by in-
stalling one atom between each atom–bond of Figure 2.
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Figure 3. Subdivision of H3BO3.

Result and Discussion

In subdivision of the layer structure H3BO3(s, t), the atom–bond E(G) is divided into
three groups based on the degree of each edge’s end vertices. The set that is disjointed is
shown by the symbols ξ(d(ui),d(Vj))

. The first set that is disjointed is ξ(1,2), the second set that
is disjointed is ξ(2,2), and the third set that is disjointed is ξ(2,3). The table below describes
the different types of edges as well as the equations for calculating the number of edges in
each type of the SH3BO3(s, t) layer structure.

• Entropy related to the ABC index of subdivision H3BO3

Let S(H3BO3) be a subdivision of H3BO3(s, t). Then by using Equation (1) and Table 1, the
atom–bond connectivity index is

ABC(S(H3BO3)) = ∑
ξ(1∼2)

x
√

1+2−2
1×2 + ∑

ξ(2∼2)

x
√

2+2−2
2×2 + ∑

ξ(2∼3)

x
√

2+3−2
2×3

= 2(s + t + 1)x
√

1
2 + 12(st + s + t)x

√
1
2

+ 6(3s + 3t + 4st− 1)x
√

1
2 (11)

Differentiate (11) at x = 1; we get the atom–bond connectivity index

ABCS(H3BO3) =

√
1
2
(32s + 32t + 36st− 4) (12)

Here, we determine the atom–bond connectivity entropy by using Table 1 and
Equation (12) in Equation (6) according to the following:

Table 1. Edge division based on vertices in the layer structure of subdivision H3BO3(s, t).

Atomic bond type ξ(1,2) ξ2∼2 ξ2∼3

Number of atom bonds 2(s + t + 1) 12(st + s + t) 6(3s + 3t + 4st− 1)
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ENTABCS(H3BO3) = log (ABC)− 1
ABC

log
{

∏
ξ(1,2)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]

× ∏
ξ(2,2)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]

× ∏
ξ(2,3)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]}

= log (

√
1
2
(32s + 32t + 36st− 4)− 1√

1
2 (32s + 32t + 36st− 4)

× log
{

2(s + t + 1)(

√
1
2
)

√
1
2 × 12(st + s + t)(

√
1
2
)

√
1
2

× 6(3s + 3t + 4st− 1)(

√
1
2
)

√
1
2
}

. (13)

• Entropy related to the ABS index of subdivision H3BO3

Let S(H3BO3) be a subdivision of H3BO3(s, t). Then by using Equation (2) and Table 1, the
atom–bond sum connectivity is

ABSS(H3BO3) = ∑
ξ(1∼2)

x
√

1+2−2
1+2 + ∑

ξ(2∼2)

x
√

2+2−2
2+2 + ∑

ξ(2∼3)

x
√

2+3−2
2+3

= 2(s + t + 1)x
√

1
3 + 12(st + s + t)x

√
1
2

+ 6(3s + 3t + 4st− 1)x
√

3
5 (14)

Taking the first derivative of Equation (14) at x = 1, we get the atom–bond sum connectivity
index

ABS(S(H3BO3)) = 2(s + t + 1)

√
1
3
+ 12(st + s + t)

√
1
2
+ 6(3s + 3t + 4st− 1))

√
3
5

. (15)

Here, we determine the atom–bond sum connectivity entropy by using Table 1 and
Equation (15) in Equation (6) according to the following:

ENTABS(S(H3BO3)) = log (ABS)− 1
ABS

log
{

∏
ξ(1,2)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]

× ∏
ξ(2,2)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]

× ∏
ξ(2,3)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]}

= log (ABS)− 1
ABS

log
{

2(s + t + 1)(

√
1
3
)

√
1
3 × 12(st + s + t)(

√
1
2
)

√
1
2

× 6(3s + 3t + 4st− 1)(

√
3
5
)

√
3
5
}

. (16)

• Entropy related to the Albertson index S(H3BO3)
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Let S(H3BO3) be a subdivision of H3BO3(s, t). Then by using Equation (3) and Table 1, the
atom–bond connectivity index is

A(G,x)(S(H3BO3)) = ∑
ξ(1∼2)

x|1−2| + ∑
ξ(2∼2)

x|2−2| + ∑
ξ(2∼3)

x|2−3|

= 2(s + t + 1)x + 12(st + s + t) + 6(3s + 3t + 4st− 1)x (17)

Differentiate (17) at x = 1; we get the atom–bond connectivity index

A(G,x)S(H3BO3) = 32s + 32t + 36st− 4 (18)

Here, we determine the atom–bond connectivity entropy by using Table 1 and
Equation (18) in Equation (9) according to the following:

ENTA(G,x)
S(H3BO3) = log (A(G,x))−

1
A(G,x)

log
{

∏
ξ(1,2)

[|Vai −Vaj |]
[|Vai−Vaj | ]

× ∏
ξ(2,2)

[|Vai −Vaj |]
[|Vai−Vaj | ] × ∏

ξ(2,3)

[|Vai −Vaj |]
[|Vai−Vaj | ]

}

= log (32s + 32t + 36st− 4)− 1
32s + 32t + 36st− 4

log
{

2(s + t + 1)

+ 12(st + s + t) + 6(3s + 3t + 4st− 1)
}

. (19)

• Entropy related to the IRM index of subdivision H3BO3

Let S(H3BO3) be a subdivision of H3BO3(s, t). Then by using Equation (4) and Table 1, the
atom–bond connectivity index is

IRM(G,x)(S(H3BO3)) = ∑
ξ(1∼2)

x[1−2]2 + ∑
ξ(2∼2)

x[2−2]2 + ∑
ξ(2∼3)

x[2−3]2

= 2(s + t + 1)x + 12(st + s + t)

+ 6(3s + 3t + 4st− 1)x (20)

Differentiate (20) at x = 1; we get the atom–bond connectivity index

IRM(G,x))S(H3BO3) = 32s + 32t + 36st− 4 (21)

Here, we determine the atom–bond connectivity entropy by using Table 1 and Equation (21)
in Equation (10) according to the following:

ENTIRM(G,x))
S(H3BO3) = log (IRM(G,x)))−

1
IRM(G,x))

log
{

∏
ξ(1,2)

[[Vai −Vaj ]
2]
[[Vai−Vaj ]

2]

× ∏
ξ(2,2)

[[Vai −Vaj ]
2]
[[Vai−Vaj ]

2] × ∏
ξ(2,3)

[[Vai −Vaj ]
2]
[[Vai−Vaj ]

2]
}

= log (32s + 32t + 36st− 4)− 1
32s + 32t + 36st− 4

log
{

2(s + t + 1)

+ 12(st + s + t) + 6(3s + 3t + 4st− 1)
}

. (22)

2.2. Layer Structure of H3BO3 in the Form of a Line Graph

In the line graph of the layer structure H3BO3(s, t), the atom–bond E(G) is divided
into five groups based on the degree of each edge’s end vertices. The set that is disjointed
is shown by the symbols ξ(d(ui),d(Vj))

. The first set that is disjointed is ξ(2,3), the second set
that is disjoint is ξ(2,4), the third set that is disjointed is ξ(3,3), the fourth set that is disjointed
is ξ(3,4), and the fifth set that is disjointed is ξ(4,4).
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Figure 4 displays the H3BO3(s, t) layer structure as a line graph.

Figure 4. Line graph of H3BO3.

• Entropy related to the ABC index of L(H3BO3)

Let L(H3BO3) be a line graph of H3BO3(s, t)). Then by using Equation (1) and Table 2, the
ABC polynomial is

ABCL(H3BO3) = ∑
ξ(2∼3)

x
√

2+3−2
2×3 + ∑

ξ(2∼4)

x
√

2+4−2
2×4 + ∑

ξ(3∼3)

x
√

3+3−2
3×3 + ∑

ξ(3∼4)

x
√

3+4−2
3×4 + ∑

ξ(4∼4)

x
√

4+4−2
4×4

= 6(1 + t + s)x
√

1
2 + 2(s + t + 1)x

1
2 + 4(s + t + 3st− 2)x

2
3

+ 2(5s + 5t + 6st− 1)x
√

5
12 + 2(s + t + 3st− 2)x

√
3
8 . (23)

Taking the first derivative of Equation (23) at x = 1, we get the ABC index

ABCL(H3BO3) = 6(1 + t + s)

√
1
2
+

2
3
(24st + 11s + 11t− 5) + 2(5s + 5t + 6st− 1)

√
5
12

+ 2(s + t + 3st− 2)

√
3
8

(24)

Here, we determine the ABC entropy by using Table 2 and Equation (24) in Equation (6)
according to the following:

ENT = log (ABC)− 1
ABC

log
{

∏
ξ(2,3)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]

× ∏
ξ(2,4)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]

× ∏
ξ(3,3)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]

× ∏
ξ(3,4)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]

× ∏
ξ(4,4)

[

√√√√ (Vai + Vaj − 2)

(Vai ×Vaj)
]

[

√
(Vai +Vaj−2)

(Vai×Vaj )
]}

= log (ABC)− 1
ABS

log
{

6(1 + t + s)(

√
1
2
)

1√
2 + 2(s + t + 1)(

1
2
)

1
2

+ 4(s + t + 3st− 2)(

√
2
3
)

√
2
3 + 2(5s + 5t + 6st− 1)(

√
5

12
)

√
5
12

+ 2(s + t + 3st− 2)(

√
3
8
)

√
3
8
}

. (25)
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Table 2. Edge division based on vertices in the line graph H3BO3(s, t) layer structure.

Atomic bonds ξ2∼3 ξ2∼4 ξ3∼3 ξ3∼4 ξ4∼4

Cardinality 6(1 + t + s) 2(s + t + 1) 4(s + t + 3st− 2) 2(5s + 5t + 6st− 1) 2(s + t + 3st− 2)

• Entropy related to the ABS index of L(H3BO3)

Let L(H3BO3) be a line graph of H3BO3(s, t)). Then by using Equation (2) and Table 2, the
ABS polynomial is

ABSL(H3BO3) = ∑
ξ(2∼3)

x
√

2+3−2
2+3 + ∑

ξ(2∼4)

x
√

2+4−2
2+4 + ∑

ξ(3∼3)

x
√

3+3−2
3+3 + ∑

ξ(3∼4)

x
√

3+4−2
3+4 + ∑

ξ(4∼4)

x
√

4+4−2
4+4

= 6(1 + t + s)x
√

3
5 + 2(s + t + 1)x

√
2
3 + 4(s + t + 3st− 2)x

√
2
3

+ 2(5s + 5t + 6st− 1)x
√

5
7 + 2(s + t + 3st− 2)x

√
3
4 . (26)

Taking the first derivative of Equation (26) at x = 1, we get the ABS index

ABS(L(H3BO3)) = 6(1 + t + s)

√
3
5
+ 2(6st + 3s + 3t− 3)

√
2
3
+ 2(5s + 5t + 6st− 1)

√
5
7

+ 2(s + t + 3st− 2)

√
3
4

. (27)

Here, we determine the ABS entropy by using Table 2 and Equation (27) in Equation (6)
according to the following:

ENTABS(L(H3BO3)) = log (ABS)− 1
ABS

log
{

∏
ξ(2,3)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]

× ∏
ξ(2,4)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]

× ∏
ξ(3,3)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]

× ∏
ξ(3,4)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]

× ∏
ξ(4,4)

[

√√√√ (Vai + Vaj − 2)

(Vai + Vaj)
]

[

√
(Vai +Vaj−2)

(Vai +Vaj )
]}

= log (ABS)− 1
ABS

log
{

6(1 + t + s)(

√
3
5
)

√
3
5 + 2(s + t + 1)(

√
2
3
)

√
2
3

+ 4(s + t + 3st− 2)(

√
2
3
)

√
2
3 + 2(5s + 5t + 6st− 1)(

√
5
7
)

√
5
7

+ 2(s + t + 3st− 2)(

√
3
4
)

√
3
4
}

. (28)

• Entropy related to the Albertson index of L(H3BO3)

Let L(H3BO3) be a line graph of H3BO3(s, t)). Then by using Equation (3) and Table 2, the
Albertson index is

A(G,x)L(H3BO3) = ∑
ξ(2∼3)

x|2−3| + ∑
ξ(2∼4)

x|2−4| + ∑
ξ(3∼3)

x|3−3| + ∑
ξ(3∼4)

x|3−4| + ∑
ξ(4∼4)

x|4−4|

= 6(1 + t + s)x + 2(s + t + 1)x2 + 4(s + t + 3st− 2)

+ 2(5s + 5t + 6st− 1)x + 2(s + t + 3st− 2). (29)
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Taking the first derivative of Equation (29) at x = 1, we get the Albertson index

A(G,x)(L(H3BO3)) = 2(15st + 13s + 13t− 2) (30)

Here, we determine the A entropy by using Table 2 and Equation (30) in Equation (9)
according to the following:

ENTA(G,x)
(L(H3BO3)) = log (A)− 1

A
log

{
∏

ξ(2,3)

[|Vai −Vaj |]
[|Vai−Vaj | ]

× ∏
ξ(2,4)

[|Vai −Vaj |]
[|Vai−Vaj | ] × ∏

ξ(3,3)

[|Vai −Vaj |]
[|Vai−Vaj | ]

× ∏
ξ(3,4)

[|Vai −Vaj |]
[|Vai−Vaj | ] × ∏

ξ(4,4)

[|Vai −Vaj |]
[|Vai−Vaj | ]

}

= log 2(15st + 13s + 13t− 2)− 1
2(15st + 13s + 13t− 2)

log
{

6(1 + t + s)

+ 4(s + t + 1) + 4(s + t + 3st− 2) + 2(5s + 5t + 6st− 1)

+ 2(s + t + 3st− 2)
}

. (31)

• Entropy related to the IRM index of L(H3BO3)

Let L(H3BO3) be a line graph of H3BO3(s, t). Then by using Equation (4) and Table 2, the
IRM index is

IRM(G,x)L(H3BO3) = ∑
ξ(2∼3)

x[2−3]2 + ∑
ξ(2∼4)

x[2−4]2 + ∑
ξ(3∼3)

x[3−3]2 + ∑
ξ(3∼4)

x[3−4]2 + ∑
ξ(4∼4)

x[4−4]2

= 6(1 + t + s)x + 2(s + t + 1)x4 + 4(s + t + 3st− 2)

+ 2(5s + 5t + 6st− 1)x + 2(s + t + 3st− 2). (32)

Taking the first derivative of Equation (32) at x = 1, we get the IRM index

IRM(G,x)(L(H3BO3)) = 30s + 30t + 30st. (33)

Here, we determine the IRM entropy by using Table 2 and Equation (33) in Equation (10)
according to the following:

ENTIRM(L(H3BO3)) = log (IRM)− 1
IRM

log
{

∏
ξ(2,3)

[[Vai −Vaj ]
2]
[[Vai−Vaj ]

2]

× ∏
ξ(2,4)

[[Vai −Vaj ]
2]
[[Vai−Vaj ]

2] × ∏
ξ(3,3)

[[Vai −Vaj ]
2]
[[Vai−Vaj ]

2]

× ∏
ξ(3,4)

[[Vai −Vaj ]
2]
[[Vai−Vaj ]

2] × ∏
ξ(4,4)

[|Vai −Vaj |]
[|Vai−Vaj | ]

}

= log (30s + 30t + 30st)− 1
30s + 30t + 30st

log
{

6(1 + t + s) + 8(s + t + 1)

+ 4(s + t + 3st− 2) + 2(5s + 5t + 6st− 1) + 2(s + t + 3st− 2)
}

. (34)

3. Comparison and Conclusions

Here, molecular descriptors for the subdivision and line graph of the layer structure of
H3BO3 that are multiplicative and degree-based have been studied. Using these molecular
descriptors, we compute the ABC entropy, ABS entropy, A entropy, and IRM entropy of the
subdivision and line graph of the layer structure of H3BO3. Our results (entropies) help
to describe the randomness and disorder of a molecule of H3BO3 based on the number
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of different arrangements available to it in a given system or reaction. For instance, the
atom–bond connectivity (ABC) index offers excellent calculations of the strain energy
of molecules via correlation. When the temperatures of the production of alkanes are
described using the ABC-index, a good quantitative structure–property relationship (QSPR)
model (r = 0.9970) is produced.

The values of four degree-based indices, namely, the ABC-index, ABS-index, A-index,
and IRM-index, are presented in this work, numerically in Table 3 and graphically in
Figure 5. As shown in Figure 5, the values of all indices are directly proportional to the
values of (s, t), with the values of (s, t) along the x-axes and the resultant of the indices
along the y-axes. The disparities between each topological index for a certain structure are
revealed by these charts. The results of the computations demonstrate that the degree-based
indices and entropy estimates depend greatly on the values of s and t or the molecular
structure.

Table 3. Numerical comparison of molecular descriptors.

Values of (s,t) ABC-Index ABS-Index Albertson Index IRM-Index

(1, 2) 115.948 120.98 164 164
(2, 3) 263.004 275.844 372 372
(3, 4) 460.964 484.636 652 652
(4, 5) 709.828 747.356 1004 1004
(5, 6) 1009.596 1064.004 1428 1428
(6, 7) 1360.268 1434.58 1924 1924
(7, 8) 1761.844 1859.084 2492 2492
(8, 9) 2214.324 2337.516 3132 3132

(9, 10) 2717.708 2869.876 3844 3844
(10, 11) 3271.996 3456.164 4628 4628
(11, 12) 3877.188 4096.38 5484 5484
(12, 13) 4533.284 4790.524 6412 6412

Figure 5. Graphical Comparison of ABC-index, ABS-index, Albertson index and IRM-index.
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