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mathematics

Editorial

Preface to the Special Issue on “Identification, Knowledge
Engineering and Digital Modeling for Adaptive and Intelligent
Control”—Special Issue Book

Natalia Bakhtadze

Institute for Control Sciences, Russian Academy of Sciences, 117806 Moscow, Russia; sung7@yandex.ru

Starting our work on this Special Issue, we assumed that the research results presented
here would reflect the solutions to various problems related to production management;
however, the set of identified problems showed that their solutions could be useful for a
wider range of applications. Therefore, we have presented 14 articles covering various
aspects of the new trends in adaptive and intelligent control and identification.

The results of research on the theories and methodologies of identification are pre-
sented. New methods for solving the problems of parametric and non-parametric identifi-
cation are proposed, and the possibilities of using data mining and knowledge engineering
methods for identifying control systems and building digital models of dynamic processes
in real time are studied. Various aspects of constructing intelligent control systems with
an identifier and reinforcement learning are discussed and the possibilities of intelligent
model predictive control and its application to control objects of various natures, as well as
stability problems, are investigated. Approaches to building models of strategic decision
making under informational control are also proposed.

A general complex model is presented in [1] for collective dynamical strategic decision
making with explicitly interconnected factors reflecting both the psychic (internal state)
and behavioral (external action, result of activity) components of agents’ activity under
specified environmental and control factors. This model unifies and generalizes the ap-
proaches of game theory, social psychology, and the theory of multi-agent systems and
control in organizational systems through a simultaneous consideration of both the internal
and external parameters of the agents. Article [2] carries out a comparative analysis of the
known methods for the synthesis of various control laws ensuring the invariance of the
output (controlled) variable with respect to external disturbances, under various assump-
tions about their type and channels of acting on the control plant. Synthesis methods are
presented by the example of a third-order nonlinear system with a single input and single
output (SISO-system). For the systems where the matching conditions are not satisfied, the
paper draws a conclusion on the expediency of introducing smooth and bounded nonlinear
local feedbacks. In Ref. [3], the stability of bilinear systems is investigated using spectral
techniques such as selective modal analysis. Predictive models of bilinear systems based
on inductive knowledge extracted by big data mining techniques are applied with associa-
tive search of statistical patterns. In Ref. [4], the intelligent computational algorithms of
evolutionary computing paradigms (ECPs) are presented, which effectively solve complex
nonlinear optimization problems. The maximum-likelihood-based adaptive differential
evolution algorithm (ADEA) is investigated for the identification of nonlinear Hammer-
stein output error (HOE) systems that are widely used for modeling various nonlinear
processes in engineering and applied sciences. In Ref. [5], the stability of a bilinear system
is investigated by the Gramian method. The paper shows that the state of a bilinear control
system can be split uniquely into generalized modes corresponding to the eigenvalues of
the dynamics matrix. The Gramians of the controllability and observability of a bilinear
system can be divided into parts (sub-Gramians) that characterize the measure of these
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generalized modes and their interactions. In Ref. [6], the system identification properties
of Dynamic Mode Decomposition (DMD) are studied. DMD is a popular data-driven
framework for extracting linear dynamics from complex high-dimensional systems. In
Ref. [7], a direct method for the synthesis of robust systems operating under parametric
uncertainty in a control plant model is proposed. The developed robust control procedures
are based on the assumption that the structural properties of the nominal system survive
over the entire range of parameter changes. The authors in [8] show that for simulators
providing vestibular stimulus, the automatic vestibular–ocular reflex (VOR) bodily function
can objectively measure the accuracy of motion simulation. This requires a model of ocular
response to enforced accelerations, which is offered in the paper. The model corresponds to
a single-layer spiking differential neural network; its activation functions are based on the
dynamic Izhikevich model of neuron dynamics.

The authors in [9] discuss the analysis and optimization of stochastic systems based
on canonical wavelet expansions. A wavelet model for the calibration of essentially nonsta-
tionary stochastic processes and parameters is developed. In Ref. [10], a new algorithm is
proposed for constructing an integral model of an input–output-type nonlinear dynamic
system in the form of a quadratic segment of the Volterra integro-power series (polyno-
mial). It examines the nonparametric identification of models using physically realizable
piecewise linear test signals in the time domain.

In Ref. [11], a multi-output soft sensor for the industrial reactive distillation process of
methyl tert-butyl ether (MTBE) is developed. Unlike the existing approaches, the paper
offers soft sensors with filters to predict model errors, which are further considered as
corrections in the final output forecasts. The authors in [12] consider the mathematical
aspects of the problem of the optimal interception of a mobile search vehicle moving along
random tacks on a given route and searching for a target, which travels parallel to this
route. The interception problem was formulated as an optimal stochastic control problem,
which was transformed to a deterministic optimization one.

The article [13] is aimed at numerical studies of inverse problems of experiment pro-
cessing (identification of unknown parameters of mathematical models from experimental
data) based on balanced identification technology. This technology uses the cross-validation
root-mean-square error to select the values of the regularization parameters. The authors
in [14] discuss the identification of plasma equilibrium reconstruction in D-shaped toka-
maks on the basis of external magnetic plasma measurements. Such identification methods
are aimed at increasing the speed of response when plasma discharges are relatively short,
such as in the spherical Globus-M2 tokamak.

As Guest Editor of this Special Issue, I am grateful to the authors of these articles
for their quality contributions, to the reviewers for their valuable comments, and to the
administrative staff of MDPI for the support to complete this Special Issue. Special thanks
to the Section Managing Editor Ms. Krystal Wang for her excellent collaboration and
valuable assistance.

Funding: This research was funded by the Russian Science Foundation, grant number [19-19-00673-P].

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: A general complex model is considered for collective dynamical strategic decision-making
with explicitly interconnected factors reflecting both psychic (internal state) and behavioral (external-
action, result of activity) components of agents’ activity under the given environmental and control
factors. This model unifies and generalizes approaches of game theory, social psychology, theories of
multi-agent systems, and control in organizational systems by simultaneous consideration of both
internal and external parameters of the agents. Two special models (of informational control and
informational confrontation) contain formal results on controllability and properties of equilibri-
ums. Interpretations of a general model are conformity (threshold behavior), consensus, cognitive
dissonance, and other effects with applications to production systems, multi-agent systems, crowd
behavior, online social networks, and voting in small and large groups.

Keywords: decision-making; psychic and behavioral components of activity; action; result of activity;
equilibrium stability; consensus; threshold behavior; cognitive dissonance; conformity; informational
control; informational confrontation

1. Introduction

What factors influence the decisions one makes? Each scientific domain gives its own
answer, which is correct in the paradigm of its particular domain. For example, the theory of
individual decision-making says that the main factor is the utility of the decision-maker. Game
theory answers that it’s a set of decisions made by others. Psychology says that it’s a person’s
internal state (including their beliefs, attitudes, etc.). Table 1 contains factors of decision-
making (columns), scientific domains (rows), and the author’s subjective expert judgment
on the degree (conventionally reflected by the number of plus signs in the corresponding
cell) of taking into account the factors by the domains. Since all these domains are immense
(but none of them explores a combination of more than two factors), references are given
on several main books or representative survey papers.

In this paper, a model of strategic collective decision-making, which equally considers
all of the factors listed in the columns of Table 1, is considered. The model includes explicit
interconnected parameters, reflecting both psychic (state) and behavioral (action and activ-
ity result, see [1]) components of an agent’s activity. Following the methodology proposed
in [2], we study the mutually influencing processes of the dynamics of the agent’s internal
states, actions, and activity results and the properties of the corresponding equilibria.

In decision-making, organizational systems control, and collective behavior, the tradi-
tional models of dynamics cover either the behavioral components of activity [1] (externally
manifested, observable), the actions and (or) activity results of different agents [3], or the
psychic components of activity, their “internal states” (opinions, beliefs, attitudes, etc.; see
surveys in [4,5]), which are “internal” variables and are not always completely observable.

Mathematics 2021, 9, 1889. https://doi.org/10.3390/math9161889 https://www.mdpi.com/journal/mathematics
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Table 1. Decision-making factors and related scientific domains.

Factor
Scientific Domain

Utility Action
Actionsof

Others
Environment (and

Results of Activity)
Internal

State
History Control

Individual decision-making [6,7] +++ ++ ++ + +
Game theory [8],

theory of collectivebehavior [9–11],
behavioral economics [12]

++ +++ +++ + + + +

Social psychology [13–16],
Psychology of personality [17–19]
Mathematical psychology [20–22]

+ ++ + ++ +++ + +

Multi-agent systems [23,24] +++ + ++ ++ + +
Control theory (of social

and organizational systems) [25,26] ++ ++ ++ +++ + + +++

In the general case, the strategic (goal-oriented) decisions of an agent can be affected by:

• his preferences as reflected by his objective or utility function;
• his actions and the results of activity carried out jointly with other agents;
• the state of an environment (the parameters that are not purposefully chosen by any

of the agents);
• purposeful impacts (controls) from other agents.

The first three groups of sources of informational influence are “passive.” The fourth
source of influence—control—is active, and there may exist several agents affecting a given
agent; see the model of informational confrontation in Section 6 below.

In the following paper, we introduce a general complex model of collective decision-
making and control with explicit interconnected factors, reflecting both the psychic and be-
havioral components of activity. Some practical interpretations are conformity effects [10,11]
as well as applications to production systems [25,27], multi-agent systems [23], crowd be-
havior [28], online social networks [29], and voting in small and large groups [9].

The main results are:

• The general model of decision-making, which embraces all the factors listed above,
influencing the decisions made by a strategic agent (see Figure 1 and Equations (1)–(3));

• Particular cases of the general model, reflecting many effects well known in social
psychology and organizational behavior: consensus, conformity, hindsight, cognitive
dissonance, etc.;

• Two models (of informational control and informational confrontation) and formal
results on controllability and the properties of equilibriums.

yi zi ri 

i

ui 

 z-i  y-i 

Figure 1. Structure of decision-making process [2].
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This paper is organized as follows: in Section 2, the general structure of the decision-
making process is considered. In Section 3, the well-known particular models of informa-
tional control, conformity behavior, etc., are discussed. In Section 4, the simple majority
voting model is used as an example to present the original results on the mutually in-
fluencing processes of the dynamics of the agent’s states and actions (the psychic and
behavioral components of activity) and the properties of the corresponding equilibria.
Section 5 is devoted to the model of informational confrontation between two agents,
trying to control—influence on the third one—simultaneously in their own interests.

2. Decision-Making Model

Consider a set N = {1, 2, . . . , n} of interacting agents. Each agent is assigned a number
(subscript). Discrete time instants (periods) are indicated by superscripts. Assume that
there is a single control authority (principal) purposefully affecting the activity of different
agents by control {ui ∈ Ui}.

We introduce a parameter ri ∈ Ri (internal “state”) of agent i, which reflects all his
characteristics of interest, including his personality structure [1]. In applications, the agent’s
state can be interpreted as his opinion, belief, or attitude (e.g., his assessment of some object
or agent), the effectiveness of his activity, the rate of his learning, the desired result of his
activity, etc.

Let agent i choose actions from a set of admissible ones; Ai. His action is denoted by
yi (yi ∈ Ai). The agent chooses their actions, and the results of their activity are realized
accordingly, which is denoted by zi ∈ Azi, where Azi is a set of admissible activity results of
agent i. The agent’s action and the result of his activity may mismatch due to uncertainty
factors, including an environment with a state ω ∈ Ω or the actions of other agents; see
Figure 1.

The connection between the agent’s action and the result of his activity may have
a complex nature described by probability distributions, fuzzy functions, etc. [26]. For
the sake of simplicity, assume that the activity result zi of agent i is a given real-valued
deterministic function Ri(yi, y-i, ω) that depends on his action, the vector y−i = (y1, . . . , yi−1,
yi+1, . . . , yn) of actions of all other agents (the so-called opponent’s action profile for agent i),
and the environment’s state ω. The function Ri(·) is called the technological function [27,30].

Suppose that each agent always knows his state, and his action is completely observ-
able for him and all other agents.

Let agent i have preferences on a set Azi of activity results. In other words, agent i has
the ability to compare different results of his activity. The agent’s preferences are described
by his utility function (goal function, or payoff function) Φi: Azi × Ri → ◦1: under a fixed
state, of the two activity results, the agent prefers the one with the utility function of greater
value. The agent’s behavior is rational in the sense of maximizing his utility.

When choosing an action, the agent is guided by his preferences and how the chosen
action affects the result of his activity. Given his state, the environment’s state, and the
actions of other agents, agent i chooses an action y∗i maximizing his utility:

y∗i (y
∗
−i, ri, ω) = arg max

yi∈Ai
Φi(Ri(yi, y∗−i, ω),ri), i ∈ N. (1)

The expression (1) defines a Nash equilibrium of the agents’ normal form game [8], in
which they choose their actions once, simultaneously, and independently under common
knowledge about the technological functions, utility functions, the states of different agents,
and the environment’s state [26].

The structure in Figure 1 is very general and covers, as particular cases, the following
processes and phenomena:

• individual (n = 1) decision-making (arrow no. 3);
• self-reflexion (the arrow sequence 2–6, 7, 8–2);
• decision-making under uncertainty (the arrow sequence 8–3–4, 10);

7



Mathematics 2021, 9, 1889

• game-theoretic interaction of several agents and their collective behavior (the arrow
sequence 4––11, 12);

• models of complex activity (the arrow sequence 1, 8–3–4, 10–5, 12);
• control of a single agent (the arrow sequence 1–3–4–5). Control consists of a purposeful

impact on the set of admissible actions, the technological function, the utility function,
the agent’s state, or a combination of these parameters. Impact’s purposefulness
means that the agent chooses a required action, or a required result of his activity is
realized. Depending on the subject of control, under fixed staff and structure of the
system, there are institutional, motivational, and informational controls;

• control of several agents (the arrow sequence 1–3–4, 11–5);
• social influence [29] (the arrow sequence 1, 8, 9–2, 3); in particular, conformity ef-

fects [24];
• learning during activity [30] (the arrow sequence 2–3–4, 10–7);
• learning [30] (the arrow sequence 1, 2–3–4, 10–5, 7).

(Whenever several factors appear simultaneously in a process or phenomenon, the
corresponding arrows in a sequence are conventionally separated by commas.)

Let us specify the decision-making model.

3. General Model

We introduce a series of assumptions. (Their practical interpretations are discussed below).

Assumption 1. Ai = Azi = Ri = Ui = [0, 1], i ∈ N.

Assumption 2. Ri(yi, y−i, θ) = R(yi, y−i), i ∈ N.

Assumption 3. Under a fixed state ri of agent i, his utility function Φi: [0, 1]2 → � is single-
peaked with the peak point ri, i ∈ N [26].

Assumption 4. The function R(·) is continuous, strictly monotonically increasing in all variables,
and satisfies the unanimity condition: ∀a ∈ [0, 1] R(a, . . . , a) = a.

Assumption 1 is purely “technical”: as seen in the subsequent presentation, many
results remain valid for a more general case of convex and compact admissible sets.

Assumption 2 is more significant, as it declares the following. First, the activity result
(collective decision) z = R(yi, y−i) is the same for all agents. Second, there is no uncertainty
about the environment’s state. The agent’s state determines his preferences—-attitude
towards the results of collective activity. The vector of individual results of the agents’
activity depending, among other factors, on the actions of other agents can be considered
by analogy. This line seems promising for future research. By Assumption 2, there is no
uncertainty. Therefore, the dependence of the activity result (and the equilibrium actions
of different agents) on the parameter ω is omitted.

According to Assumption 3, the agent’s utility function, defined on the set of activity
results, has a unique maximum achieved when the result coincides with the agent’s state.
In other words, the agent’s state parameterizes his utility function, reflecting the goal of
his activity. (Recall that a goal is a desired activity result [3].) Also, the agent’s state can be
interpreted as his assessment, opinion, or attitude [1] towards certain activity results; see the
terminology of personality psychology in [1].

Assumption 4 is meaningfully transparent: if the goals of all agents coincide, then the
corresponding result of their joint activity is achievable.

The expression (1) describes an agent’s single decision (single choice of his action). To
consider repetitive decision-making, we need to introduce additional assumptions. The
decision-making dynamics studied below satisfy the following assumption.

Assumption 5. The agent’s action dynamics are described by the indicator behavior procedure [26]:

yt
i =
(
1 − γt

i
)

yt−1
i + γt

i y
∗
i

(
yt−1
−i , rt

i

)
, t = 1, 2, . . . , (2)

8
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with given initial values
(
y0

i , r0
i
)
, i ∈ N, where γt

i ∈ (0, 1] are known constants. The action

y∗i
(

yt−1
−i , rt

i

)
is called the local (current) position for the goal of agent i. In each period, the agent

makes a “step” (proportional to γt
i ) from his current state to his best response (1) to the action profile

in the previous period.

Assumption 6. The agent’s state dynamics are described by the procedure:

rt
i =
[
1 − biBi

(
rt−1

i , ut
i

)
− ciCi

(
rt−1

i , yt−1
i

)
− diDi

(
rt−1

i , zt−1
)
− ei

]
rt−1

i +

biBi

(
rt−1

i , ut
i

)
ut

i + ciCi

(
rt−1

i , yt−1
i

)
yt−1

i + diDi

(
rt−1

i , zt−1
)

zt−1 + eiEi

(
rt−1

i , yt−1
−i

)
t = 1, 2, . . . , i ∈ N.

(3)

Assumption 7. The nonnegative constant degrees of trust (bi, ci, di, ei) satisfy the constraints:

bi + ci + di + ei ≤ 1, i ∈ N. (4)

Assumption 8. The trust functions Bi(·), Ci(·), Di(·), and Ei(·), i ∈ N, have the domains [0, 1]; in
addition, ∀a ∈ [0, 1] Ei(a, . . . , a) = a, i ∈ N.

Assumption 9. The nonnegative constant degrees of trust (bi, ci, di, ei) and the trust functions
Bi(·), Ci(·), and Di(·), i ∈ N , satisfy the condition:

∀ x1, x2, x3, x4 ∈ [0, 1] biBi(x1, x2) + ciCi(x1, x3) + diDi(x1, x4)+ei, i ∈ N. (5)

Assumptions 7–9 guarantee that the state of the dynamic system (2) and (3) stay within
the admissible set.

The constant weights (bi, ci, di, ei) possibly reflect the attitude (trust) of agent i to the corre-
sponding information source, whereas the functions Bi(·), Ci(·), Di(·), and Ei(·) reflect his trust in the
information source. The factor

[
1 − biBi

(
rt−1

i , ut
i

)
− ciCi

(
rt−1

i , yt−1
i

)
− diDi

(
rt−1

i , zt−1
)
− ei

]
(see the first term on the right-hand side of the procedure (3)) conditionally reflects the
power of the agent’s beliefs.

Note that, for unitary values of the trust functions, the expression (3) also has a
conditional probabilistic interpretation: with some probability, the agent does not change
his state (opinion); with the probability bi, the state becomes equal to the control and with
the probability ci, to his action, etc.

Let us present and discuss practical interpretations of the five terms on the right-hand
side of the expression (3). According to (3), the state rt

i of agent i in period t is a linear
combination of the following parameters:

I. his state rt−1
i in the previous period (t − 1) (arrow no. 2 in Figure 1);

II. his action yt−1
i in the previous period (t − 1) (arrow no. 6 in Figure 1);

III. the actions yt−1
−i and, generally, the activity results zt−1

−i of other agents in the
previous period (t − 1) (arrows no. 11 and 9 in Figure 1, possibly indirect influence
via the agent’s activity result);

IV. the activity result zt−1 in the previous period (t − 1) (arrow no. 7 in Figure 1);
V. the external impact (control) ut

i applied to him in period t (arrow no. 1 in Figure 1).

Thus, the model (2)–(3) embraces both external (explicit) and internal (implicit) infor-
mational control of decision-making.

An example is the interaction of group members in an online social network. Based on
their beliefs (states), they publicly express their opinions (assessments or actions) regarding
some issue (phenomenon or process). In this case, the collective decision (opinion or
assessment) may be, e.g., the average value of the expressed assessments (opinions). Some
agents can apply informational control (without changing their states and actions); some
honestly reveal their beliefs in assessments; some try to bring the collective assessment

9
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closer to their beliefs. The beliefs of some agents may “drift,” depending on the current
actions (both their own and other agents), control, and (or) collective assessment.

An equilibrium y∗i (a, . . . , a) = r∗i = a ∈ [0,1], i ∈ N, is called unified: the final decision
and all states and actions of all agents are the same.

Under Assumptions 1–9, we have the following result:

Proposition 1 ([2]). Let Assumptions 1–9 hold, and let all constant degrees of trust and trust
functions be strictly positive. Without any control (bi = 0, i ∈ N), a fixed point of the dynamic
system (2) and (3) is the unified equilibrium.

Really, substituting the unified equilibrium into the expressions (2) and (3), we obtain
identities: the unified equilibrium satisfies (1) due to the properties of the utility function
(see Assumption 3).

The unified equilibrium of the dynamic system (2) and (3) always exists, but its domain
of attraction does not necessarily include all admissible initial states and actions. Moreover,
it may be nonunique. Therefore, the properties of equilibria of the dynamic system (2) and
(3) should be studied in detail, focusing on practically important particular cases.

4. Particular Cases

Several well-studied models represent particular cases of the dynamic model (2) and
(3). Let us consider some of them; also, see the survey in [2].

4.1. Models of Informational Control

Models of informational control [29], in which the agent’s opinions evolve under
purposeful messages, e.g., from the mass media. In these models ci = di = ei = 0, i ∈ N:

rt
i =
(

1 − biBi

(
rt−1

i , ut
i)) rt−1

i + bi Bi

(
rt−1

i , ut
i

)
ut

i , t = 1, 2, . . . , i ∈ N.

The agent’s state dynamics model (6) was adopted in the book [29] to pose and solve
informational control problems.

The dynamics of opinions, beliefs, and attitudes of a personality can be described by
analogy; see a survey of the corresponding models of personality psychology in [1,21].

4.2. Models of Consensus

Models of consesus (see [29] and surveys in [23,31]). In this class of models bi = ci =
di = 0, and each agent averages their state with the states or actions of other agents:

Ei

(
rt−1

i , yt−1
−i

)
= ei ∑

j∈N\{i}
eij Êi

(
rt−1

i , yt−1
j

)
yt−1

j .

In other words, the expression (3) takes the form:

rt
i = (1 − ei)rt−1

i + ei ∑
j∈N\{i}

eij Êi

(
rt−1

i , yt−1
j

)
yt−1

j , t = 1, 2, . . . , i ∈ N,

where the elements of the matrix
∣∣∣∣eij
∣∣∣∣ (the links between different agents) satisfy the

condition ∑
j∈N\{i}

eij = 1, i ∈ N.

The existence conditions of equilibria can be found in [23,29].

10
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4.3. Models of Conformity Behavior

Models of conformity behavior (see [9,11] and a survey in [28]). In this class of models,
bi = ci = di = 0, ei = 1 and each agent makes a binary choice between being active or
passive (Ai = {0; 1}). Moreover, his action coincides with his state evolving as follows:

rt
i =

⎧⎪⎨⎪⎩
1, ∑

j∈N
eijyt−1

j ≥ ςi,

0, ∑
j∈N

eijyt−1
j < ςi,

, t = 1, 2, . . . , i ∈ N, (6)

where ςi ∈ [0,1] is the agent’s threshold. The agent demonstrates conformity behavior [9,11]:
he begins to act when the weighted share of active agents exceeds his threshold (the weights
are the strengths of links between different agents). Otherwise, the agent remains passive.
The dynamics of conformity behavior (6) were studied in the book [28].

In the models of informational control, consensus, and conformity behavior, the main
emphasis is on the agent’s states: his actions are not considered, or the action is assumed to
coincide with the state.

4.4. Models of Social Influence

Models of social influence (see a meaningful description of social influence effects
and numerous examples in [13,16]). On the one hand, the models of informational control,
consensus, and conformity behavior can undoubtedly be attributed to the models of social
influence. On the other hand, the general model (3) reflects other social influence effects
known in social psychology, including the dependence of beliefs, relationships, and attitudes
on the previous experience of the agent’s activity [20–22].

Similar effects occur under cognitive dissonance: an agent changes his opinions or
beliefs in dissonance with the performed behavior, e.g., with the action he chooses (see
arrow no. 6 in Figure 1). In this case, an adequate model has the form:

rt
i =
(

1 − ci Ci

(
rt−1

i , yt−1
i )) rt−1

i + ci Ci

(
rt−1

i , yt−1
i

)
yt−1

i , t = 1, 2, . . . , i ∈ N,

(bi = di = 0, eij = 0). Within this model, the agent changes his state depending on the
actions chosen.

Another example is the hindsight effect (explaining events by the retrospective view, “It
figures”). This effect is the agent’s inclination to perceive events that have already occurred
or facts that have already been established, as obvious and predictable, despite insufficient
initial information to predict them. In this case, an adequate model has the form:

rt
i =
(

1 − di Di

(
rt−1

i , zt−1)) rt−1
i + di Di

(
rt−1

i , zt−1
)

zt−1 , t = 1, 2, . . . , i ∈ N,

(bi = ci = 0, eij = 0). Within this model, the agent changes his state depending on the
activity result (see arrow no. 7 in Figure 1).

The two models mentioned were considered in detail in [2].

5. Model of Voting

Consider a decision-making procedure by simple majority voting. Assume that the
agents report their true opinions (actions) yt

i ∈ {0; 1}: they either support a decision (yt
i = 1)

or not (yt
i = 0). (Truth-telling means no strategic behavior.) The decision (the result of

collective activity) is accepted (zt = 1) if at least half of the agents voted for it; otherwise,

the decision is rejected (zt = 0): zt = I

(
∑

j∈N
yt

j ≥ n
2

)
, where I(·) denotes the indicator

function. Examples are: election of some candidate or authority, support of resources or
costs allocation variant, etc.

11
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Agent i has a type (opinion or belief) rt
i ∈ [0,1] reflecting his inclination to sup-

port the decision. Assume that the agent chooses his action depending on his type:
yt

i = I
(

rt−1
i ≥ 1

2

)
, i ∈ N.

Let the dynamics of the agent’s type be described by the procedure:

rt
i = [1 − bi − ci − di] rt−1

i + bi ut
i + ci yt−1

i + di zt−1, t = 1, 2, . . . , i ∈ N, (7)

where ut
i ∈ [0, 1] is the control (i.e., informational influence via mass media, social media,

or personal communication), and the nonnegative constant degrees of trust (bi, ci, di) satisfy
the constraints:

bi + ci + di ≤ 1, i ∈ N. (8)

(Also, see the expression (3)).
Due to relations (8), the state of the dynamic system (7) stays within the admissible

set [0,1]n.
According to the expression (7), the type rt

i of agent i in period t is a linear combination
of the following parameters:

i. his type (opinion) rt−1
i in the previous period (t − 1) (the value (1 − bi − ci − di)

reflects the strength of the agent’s beliefs);
ii. the external impact (control) ut

i applied to him in period t;
iii. his action yt−1

i in the previous period (t − 1) (a change in the agent’s type due to
mismatch with the action chosen can be treated as the cognitive dissonance effect);

iv. the activity result zt−1 in the previous period (t − 1) (a change in the agent’s type
due to mismatch with the collective decision can be treated as conformity behavior).

Within this model, an active system is controllable if the action of any agent can be
changed to the opposite in finite time using admissible controls according to (7).

Let {r0
i ∈ [0, 1]} be given initial types of all agents. Consider different modifications of

the model (7), as described in Table 2.

Table 2. Modifications of model (7).

Modification Control Cognitive Dissonance Conformity Behavior

1 − − −
2 + − −
3 − + −
4 − − +

5 + + −
6 + − +

7 − + +

8 + + +

Modification 1 corresponds to no influence on the types of any agents. In these
conditions, the types are static: rt

i = r0
i , t = 1, 2, . . . , i ∈ N.

Modification 2. Here the expression (7) takes the form rt
i = [1 − bi] rt−1

i + bi ut
i , t = 1,

2, . . . , i ∈ N.

Proposition 2. In modification 2 with bi > 0, i ∈ N, the system (7) is controllable. For ut
i ∈ {0; 1}

and bi > max
{

1/2−r0
i

1−r0
i

; 1 − 1
2r0

i

}
, i ∈ N, the action of any agent can be changed to the opposite in

one period.

12
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Lower bounds for constants {bi} in propositions 2, 4, 5, and 6 characterize minimal
“strength” of informational control or minimal trust in the source of the control information
to provide the system’s controllability.

Modification 3. Here the expression (7) takes the form:

rt
i = [1 − ci] rt−1

i + ci yt−1
i , t = 1, 2, . . . , i ∈ N.

In this modification, the types of agents vary, but their actions and activity result are
stationary: yt

i = y0
i , zt = z0, t = 1, 2, . . . , i ∈ N. The agents become increasingly convinced

of the correctness of their beliefs and initial action.
Modification 4. Here the expression (7) takes the form:

rt
i = [1 − di] rt−1

i + di zt−1, t = 1, 2, . . . , i ∈ N. (9)

In this modification, the types and actions of agents vary, but the activity result is
stationary: zt = z0, t = 1, 2, . . . , i ∈ N. The prior majority of agents do not change their
actions and, affecting those who prefer another alternative, gradually draw the latter to
their side.

Proposition 3. In modification 4 with di > 0, i ∈ N, for any initial conditions {r0
i ∈ [0, 1]} the

system (9) has the unique equilibrium z0.

Modification 5. Here the expression (7) takes the form:

rt
i = [1 − bi − ci] rt−1

i + bi ut
i + ci yt−1

i , t = 1, 2, . . . , i ∈ N. (10)

Writing the monotonicity condition for the agent’s type depending on the control goal,
we easily establish the following result.

Proposition 4. In modification 5 with bi > ci, i ∈ N the system (10) is controllable.

Modification 6. Here the expression (7) takes the form:

rt
i = [1 − bi − di] rt−1

i + bi ut
i + di zt−1, t = 1, 2, . . . , i ∈ N. (11)

Writing the monotonicity condition for the agent’s type depending on the control goal,
we easily establish the following result:

Proposition 5. In modification 6 with bi > di, i ∈ N, the system (11) is controllable.

Modification 7. Here there is no control, and the expression (7) takes the form:

rt
i = [1 − ci − di] rt−1

i + ci yt−1
i + di zt−1, t = 1, 2, . . . , i ∈ N.

In this modification, the types of agents and, generally speaking, their actions vary,
but the activity result is stationary: zt = z0, t = 1, 2, . . . , i ∈ N. The prior majority of agents
do not change their actions and, affecting those who prefer another alternative, possibly
gradually draw the latter to their side (depending on the relation between the parameters
ci and di).

Modification 8. Here the type dynamics are described by the general expression (7).
Writing the monotonicity condition for the agent’s type depending on the control goal, we
easily establish the following result:

Proposition 6. In modification 8 with bi > 3 (ci + di), i ∈ N, the system (7) is controllable.

13
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Concluding this subsection, we also mention an interesting modification of the pro-
cedure (7): no control and anti-conformists (the agents choosing actions to obtain a result
different from the majority’s one):

rt
i = [1 − ci − di] rt−1

i + ci yt−1
i + di

(
1 − zt−1

)
, t = 1, 2, . . . , i ∈ N.

Example. Consider an illustrative example of three agents with the initial types r0
1 = 0.3,

r0
2 = 0.6, and r0

3 = 0.4 Assume that the cognitive dissonance effect is absent (ci = 0, i = 1, 3).
The first agent does not change his type: d1 = 0. The second and third agents are anti-
conformists: d2 = 0.1 and d3 = 0.1. The dynamics of the agents’ types (second and third
agents) and activity result (unstable!) are shown in Figure 2.

 

Figure 2. Dynamics of agents’ types and activity result in the example.

6. Model of Informational Confrontation

Consider three agents: the first and second agents perform informational control
(choose controls as their actions), affecting (due to the informational influence) the type
(internal state—opinion or belief) of the third agent. The common activity result for all
agents is the state of the third agent by a terminal period T.

Let the opinion rt of the third agent in period t be a linear combination of his opinion and
the opinions of the first and second agents in the previous period: rt = [1 − b1 − b2] rt−1 +
b1rt−1

1 + b2rt−1
2 . (All opinions have the range [0, 1).)

Assume that the goals of the first and second agents are opposite (the first one is
interested in turning rt to state “0”, while the second one—to state “1”) and their states are
invariable: rt

1 ≡ 0, rt
2 ≡ 1. Interpretations of agents states are the same as in Section 4 above.

If, in each period, the agents exchanged their opinions (true states), the opinion
dynamics would be rt = [1 − b1 − b2] rt−1 + b2.

The controls of the first and second agents are to inform the third agent about their
opinions in some periods. Therefore, we have:

rt =
[
1 − b1 I

(
yt

1 = 1
)− b2 I

(
yt

2 = 1)] rt−1 + b1 I
(
yt

1 = 1
)
rt−1

1 + b2 I
(
yt

2 = 1
)
rt−1

2 .

The sets of admissible actions have the form yt
i ∈ {0; 1}, i = 1, 2, (such controls are

called binary). Then yt
i = I
(
yt

i = 1), i = 1, 2 . Substituting rt
1 ≡ 0, rt

2 ≡ 1, we arrive at the
following state dynamics of the third agent:

rt =
[
1 − b1yt

1 − b2yt
2
]

rt−1 + b2yt
2, t = 1, 2, . . . (12)

where b1 + b2 ≤ 1 and r0 is a given initial state. (Also, see the expressions (3) and (7) above.)
Let the first agent be interested in minimizing the terminal state rT, whereas the second in
maximizing it. Note that the consumption of resources and other costs are not included in
the goal functions.

14
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In a practical interpretation, the state of the third agent (his opinion, belief, or attitude
towards some issue or phenomenon) is reduced by the first agent and increased by the
second. There is an informational confrontation between the first and second agents,
described by game theory. In the dynamic case considered below, we have a differential
game; static models of informational confrontation and models of repeated games can be
found in [28,29].

According to (12), the combinations, presented in Table 3, are possible in each period.

Table 3. The combinations of each period.

y1 = 0 y2 = 0 Δrt = 0 (the state of the third agent is invariable)
y1 = 1 y2 = 0 Δrt = −b1 rt−1 ≤ 0
y1 = 0 y2 = 1 Δrt = b2(1 − rt−1) ≥ 0
y1 = 1 y2 = 1 Δrt = b2 − (b1 + b2) rt−1

In the latter case, the state of the third agent has a nonnegative increment if b2 ≥ b1
rt−1

1−rt−1 .
A differential counterpart of the difference Equation (12) has the form:

.
r(t) = −[b1y1(t) + b2y2(t)] r(t) + b2y2(t). (13)

Assume that the actions of the first and second agents are subjected to the integral
resource constraints (i.e., resources for customized publications in mass media or posts in
social media, advertising costs, etc.)

T∫
0

yi(t) dt ≤ Ci, i = 1, 2. (14)

First, let us study several special cases.
Case 1 (control applied by the first agent only). Substituting yt

2 ≡ 0 or (and) b2 ≡ 0
into (13), we obtain the differential equation

.
r(t) = −b1 y1(t) r(t). Due to the constraint

(14), the solution r(t) = r0 exp {−b1

t∫
0

y1(τ)dτ} yields the estimate r(T) = r0 exp {−b1C1}
of the terminal state, which is independent of the trajectory y1(t).

Case 2 (control applied by the second agent only). Substituting yt
1 ≡ 0 or (and)

b1 ≡ 0 into (13), we obtain the differential equation
.
r(t) = b2 y2(t) (1 − r(t)) . Due

to the constraint (14), the solution r(t) = 1 − (1 − r0) exp {−b2

t∫
0

y2(τ)dτ} yields the

estimate r(T) = 1 − (1 − r0) exp {−b2C2} of the terminal state, which is independent of
the trajectory y2(t).

Case 3 (unlimited resources, both agents choose the actions yt
1 ≡ 1,yt

2 ≡ 1 in all
periods). In this case, Equation (13) takes the form:

.
r(t) = −[b1 + b2] r(t) + b2. (15)

The solution is given by:

r(t) =
b2

b1 + b2
−
(

b2

b1 + b2
− r0
)

e−(b1+b2)t. (16)

The characteristic time is τ0 ∼ 3
b1+b2

, and the asymptotic value is r∞ = b2
b1+b2

.

Now, we return to the general case (13). Let ci(t) =
t∫

0
yi(τ)dτ ∈ [0; t], ci(T) ≤ Ci,

i = 1, 2, denote the resource consumption of agent i by a period t, representing a nonde-

15



Mathematics 2021, 9, 1889

creasing function of time. The choice of these functions by the first and second agents can
be treated as their strategies.

The solution of Equation (13) is given by:

r(c1(·), c2(·), t) =
r0 + b2

t∫
0

y2(τ) exp{b1c1(τ) + b2c2(τ)}dτ

exp{b1c1(t) + b2c2(t)} . (17)

Consider the differential zero-sum two-person (antagonistic) game in normal
form [32,33] of the first two agents. At the initial time instant of this game, the first and
second agents choose their open-loop strategies y1(t)|Tt=0 and y2(t)|Tt=0, respectively, once,
simultaneously, and independently of one another.

Further analysis will be restricted to the class of strategies with a single switch. In
this class, at the initial time instant, the first and second agents simultaneously and inde-
pendently choose some instants t1 and t2, respectively, when they start consuming their
resource (apply controls) until complete exhaustion. Therefore, the open-loop strategies
have the form:

yi(ti, Ci, t) =

⎧⎨⎩
0, t < ti;

1, t ∈ [ti, ti + Ci];
0, t > ti + Ci.

(18)

The functional (17) monotonically decreases in c1(·) and increases in c2(·). Hence,
the first and second agents benefit from consuming the entire resource, and consequently,
t1 ≤ T − C1 and t2 ≤ T − C2.

There are four possible relations among the parameters C1, C2, and T.
The first relation: T ≤ min{C1; C2} (both agents have enough resources).
Here the Nash equilibrium strategies are: ∀t ∈ [0, T] yt

i ≡ 1, i = 1, 2, due to the
monotonicity mentioned above.

The second and third relations: for some i = 1, 2, Ci ≥ Ti and C3−i < Ti.
Here, for agent i, the optimal strategy is: ∀t ∈ [0, T] yt

i ≡ 1. For agent (3 − i), the
optimal switching instant t3−i is the solution of a scalar optimization problem. The case
t3−i = T − C3−i is of practical interest. Note that the binary control is optimal under the
constraints yt

i ∈ [0, 1], i = 1, 2, due to the linearity of (13) in the controls.
The fourth relation: T > max{C1; C2} (both agents lack resources).
Here the agents play a complete game. If τ0 � min{C1; C2}, then the equilibrium of

this game is t∗1 = T − C1, t∗2 = T − C2. Therefore, both agents start spending resources as
late as possible, and the terminal value is r(T) ≈ r∞. The same pair of strategies will be an
equilibrium for T � C1 + C2 (when the quantities of resources are such that the controls
are short-term on the scale of the period T). Practical interpretation is “save all reserves
until the last decisive moment”.

Hence, the results of this section give optimal strategies of the first two agents and
characterize the equilibrium of their informational confrontation.

7. Conclusions

The main result is a general model (1)–(3) of joint dynamics of agents’ actions and
internal states, depending as on previous actions and states, as on the environment and the
results of activity (see Figure 1). It allows combining methods and approaches of various
decision-making paradigms, game theory, and social psychology to external and internal
aspects of collective strategic decision-making.

Many known models and results of the above-mentioned scientific domains—reflecting
the effects of consensus, threshold behavior, cognitive dissonance, informational influence,
control, and confrontation—turn out to be the particular cases of the general model.

Three main directions seem prospective for future researches. First, the analysis
of the general models in order to explore maximally general but analytical conditions
for equilibrium existence, uniqueness, and its comparative statics. Second, generating
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new particular/applied models of collective activity and organizational behavior and
management, taking into account not only “economical” rationality but psychological
aspects as well. The third direction is the field of model identification and verification to
put them closer to reality and practical applications.
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Abstract: The paper deals with the problem of developing a multi-output soft sensor for the industrial
reactive distillation process of methyl tert-butyl ether production. Unlike the existing soft sensor
approaches, this paper proposes using a soft sensor with filters to predict model errors, which are
then taken into account as corrections in the final predictions of outputs. The decomposition of the
problem of optimal estimation of time delays is proposed for each input of the soft sensor. Using the
proposed approach to predict the concentrations of methyl sec-butyl ether, methanol, and the sum of
dimers and trimers of isobutylene in the output product in a reactive distillation column was shown
to improve the results by 32%, 67%, and 9.5%, respectively.

Keywords: soft sensing; multivariate filter; reactive distillation

1. Introduction

As the size and complexity of industrial systems increases, there is a need to accurately
measure most process variables. Unfortunately, not all variables can be accurately measured
using online hard sensors. For certain variables, such as concentration or density, the only
accurate measurements can be obtained by manually taking samples and analyzing them in
a laboratory. One solution to this problem is the development of soft sensors, which take the
easy-to-measure variables and create models to predict the hard-to-measure variables [1].

All soft sensor systems consist of a process model that takes the easy-to-measure
variables and provides an estimate of the hard-to-measure variables. These models can be
constructed using methods ranging from linear regression to principal component analysis
and support vector machines. Although the main focus has been on the development of the
soft sensor models [2–5], advanced soft sensor systems have also a bias update term that
can take any slowly sampled information to update the soft sensor prediction [1]. This bias
update term is normally designed as some function of the difference between the predicted
and measured values [6]. Of note, it should be mentioned that the measured values are
often sampled very slowly and with considerable time delay. This means that during the
points at which there are no updates, the previously available bias value is used. When
such a system is properly designed, it can provide good tracking of the process, i.e., the
predicted and measured values are close to each other.

Recently, it has been suggested that instead of only using the available slowly sampled
data for updating the bias term, it should be possible to also model the historical errors
and use them to predict the future errors [7]. It has been shown that such an approach
can improve the overall performance of the soft sensor system. However, there still
remain issues with how best to model and implement this predictive bias update term.

Mathematics 2021, 9, 1947. https://doi.org/10.3390/math9161947 https://www.mdpi.com/journal/mathematics
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Furthermore, there are issues with incorporating time delays into this approach since they
will greatly increase the size of the required search space.

Therefore, this paper will examine the development of a predictive bias update term
for a nonlinear system using dimension reduction. The proposed approach will be tested
using data from an industrial reactive distillation column that produces methyl tert-butyl
ether (MTBE).

2. Background

Consider the soft sensor system shown in Figure 1, where ut is the input, yt is the
measured (true) output, ŷm,t the predicted soft sensor value, ŷα,t and ŷβ,t are intermediate
soft sensor values, Gp is the true process, Ĝp is the soft sensor process model, and GB is
the bias update term. It can be noted that purpose of the bias update term is to take the
information from the measured values and correct the output of the soft sensor system. This
comes primarily from the unknown disturbances and the inherent plant-model mismatch.

Figure 1. Soft sensor system of interest [1].

Another approach to this problem is to re-arrange the bias update term so that it
contains a predictive model that can predict the errors between the measured and predicted
values. This re-arrangement is shown in Figure 2, where the predicted value from the soft
sensor is corrected based on the modeled errors of the system. The question becomes how
to design this model so that the best predictions can be obtained.

 

Figure 2. Bias update term as a predictive model with feedback: —plant, —predictive model.

For prediction of time series, the Box-Jenkins methodology is traditionally used,
according to which the time series model is found in the class of autoregressive-moving
average (ARMA) models, i.e., is considered a rational algebraic function of the backward
shift operator. The flexibility of the ARMA class makes it possible to find parsimonious
models, i.e., the adequacy of the evaluated model is achieved with a small number of
estimated parameters. Since this property is especially important for empirical models,
the Box-Jenkins methodology is widely used to solve various practical problems. This
approach is adopted in this paper.
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In industrial processes, where it is desired to implement the model on programmable
logic control (PLC) units, the complexity of the model Ĝp can be an issue. Therefore, this
paper will consider a simple model for Ĝp of the form

yt = b0 + bxt + et (1)

where b are the parameters to be estimated and xt is the input(s). Model (1) can be improved
by taking into account possible delays of the output variables relative to inputs. Consider
the following model for a multi-output soft sensor

yt, m = bm um (t, τm) + et, m (2)

where t = 1, 2, . . . , n; m = 1, 2, 3 (the number of outputs m is given by the industrial
production team and reflecting the key quality indices of MTBE product). Vector bm = (bm,

1, bm, 2, . . . , bm, 10) is a row vector of unknown coefficients; τm = (τm, 1, τm, 2, . . . , τm, 10) is
a row vector of unknown time delays; um (t, τm) = (ut, m, 1, ut, m, 2, . . . , ut, m, 10)T; ut, m, k is
the measurement of the xk value at time t − τm, k with k = 1, 2, . . . , 10. Please note that it
has been assumed here that the maximal time delay is 10 samples and justified from the
industrial process dynamics point of view. However, it can easily be extended to arbitrary
values.

Solving model (2) by minimizing the mean squared error (MSE) gives an estimate for
the unknown parameters b̂m and τ̂m. The MSE depends not only on the coefficients bm, but
also on the delays τm, i.e.,

Dem(bm τm) =
1
n

n

∑
t=1

{ytm − bmum(t, τm)}2, m = 1, 2, 3 (3)

Thus, (
b̂m , τ̂m) = arg min

bm , τm
Dem(bm, τm). (4)

Please note that if Dem(b∗m, τ∗
m) = min

bm , τm
Dem(bm, τm), than Dem(b∗m, τ∗

m) =

min
bm

Dem(bm, τ∗
m).

Consequently,

min
bm , τm

Dem(bm, τm) = min
τm

{
min

bm
Dem(bm, τm)

}
= min

τm
Dem(b̂m, τm) (5)

Furthermore, the estimates b̂m are found using standard regression analysis which gives

b̂m=

{(
UT

mUm

)−1
UT

mYm

}T
, m = 1, 2, 3 (6)

where Ym is the m-th column of the matrix Y; Um is a matrix with dimension n × 10, whose
t-th row is the row um (t, τm)T.

Since all variables are measured at discrete moments in time, the gradient descent
methods cannot be directly applied to minimize the objective function Dem(b̂m, τm) for
the argument τm. However, this difficulty can be avoided by calculating Dem for any
values of the elements of the vector τm by interpolating between the nearby nodes of the
discrete grid. Interpolation with a large search space dimension is a difficult problem.
Among the various characteristics of the algorithms used, such properties as visibility and
relative simplicity come to the fore. Therefore, in this situation, the most preferable is the
polynomial interpolation.
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2.1. Error Modeling

If the et, m error were known at time t − 1, then using Equation (2), it would be possible
to predict the yt, m variable with absolute accuracy. Unfortunately, the et, m error is not
known in advance, but it can be predicted using any statistical patterns found in the
sequence e1, m, e2, m, . . . . This error prediction can be used as a correction to model (2) as
shown in Figure 2, therefore improving the prediction accuracy of the yt,m output variable.
To evaluate a predictive model for the sequence e1, m, e2, m . . . , let us consider the class of
ARMA models. Let us introduce the predicted process as the output of an invertible linear
filter, called a shaping filter, driven by white noise, i.e., a process with a constant spectral
density. In this case, the transfer function of the shaping filter is considered a rational
algebraic function of the backward shift operator, i.e.,

et =

Nn
∏
l=1

(1 − Hlq−1)

Nd
∏

k=1
(1 − Gkq−1)

εt (7)

where εt and et are values of the input and output processes of the shaping filter at time t;
Nn is the order of the moving average; Nd is the order of the autoregressive component; Hl,
Gk are constants (generally speaking, complex-valued); and q−1 is the backshift operator.
The stationarity and invertibility conditions, which are necessary to predict the et process,
are [8]

|Gk| < 1, k = 1, . . . , Nd; |Hl | < 1, l = 1, . . . , Nn (8)

The flexibility of the ARMA class provides the possibility of finding parsimonious
models, i.e., the adequacy of the constructed model is achieved with a relatively small
number of estimated parameters. Since this property is especially important for empirical
models, the models with the structure given in Equation (7) and their variants are widely
used for solving practical problems.

The filter for predicting the et process can be found using the prediction error method
(PEM) [9]. Expanding the brackets in Equation (7) gives

et =
(1 − θ1q−1 − . . . − θNn q−Nn)

(1 − η1q−1 − . . . − ηNd q−Nd)
εt (9)

where θl and ηk are the model parameters. It is assumed that the polynomials in the
numerator and denominator have no common roots, since otherwise it would be possible
to reduce the common multipliers in the numerator and denominator of Equation (7).

The PEM function finds the parameter values that minimize the predictive MSE of the
et process for given polynomial orders (Nn, Nd) and the initial estimates of the parameters
θl and ηk. It is possible to choose suitable orders of the polynomials based on sample
estimations of the spectral density of the considered process. Recall that the frequency
response of the shaping filter is the value of Equation (7) on a circle of unit radius centered
on the origin and the spectral density S(ω) of the output process et is equal to the product
of the variance of the input process and the square of the frequency response modulus,
i.e., [10]

S(ω) = σ2
ε

Nn
∏
l=1

(1 − Hle−jω)

Nd
∏

k=1
(1 − Gke−jω)

Nn
∏
l=1

(1 − Hlejω)

Nd
∏

k=1
(1 − Gkejω)

, (10)
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where σ2
ε is the variance of random process εt and Hl and Gk are the complex conjugates of

the constants Hl and Gk. Furthermore, since we desire that our filter be invertible, it follows
that for the model

εt =

Nd
∏

k=1
(1 − Gkq−1)

Nn
∏
l=1

(1 − Hlq−1)

et (11)

the et process is invertible if the absolute values of all the Hl constants are less than one.
Similarly, if the absolute values of all the Gk constants is less than one, then the et process is
stationary [8]. Thus, although multiple processes can have the same spectral density, there
is only one that is both stationary and invertible.

Once the general model has been obtained, we can rewrite it as an infinite impulse
response model, i.e.,

et = εt +
∞

∑
k=1

ψkεt−k (12)

where ψ is an impulse response coefficient. Since we know that the general model con-
verges [8], it follows that we only need a finite number of terms in Equation (12). Further-
more, we note that

et−i = εt−i +
∞

∑
k=1

ψkεt−i−k (13)

which implies that for any positive i the random variables εt and et−i are uncorrelated (since
the process εt is white noise). Therefore, successively multiplying both sides of Equation (12)
by the values of the corresponding process at delays i and taking expectations, we obtain
equations for finding the initial estimates of the parameters that involve the covariances of
the errors for different lags [10]. Obviously, since the true covariances are not known, they
will need to be replaced by the sample estimates. This method of estimating the coefficients
does not lead to too large error as long as the absolute values of the parameters of model (7)
are not too close to the boundary of unit circle centered on the origin. Thus, it is possible to
design the required filter.

2.2. Filter Design

Let et = (et, 1, et, 2, . . . , et, N)T be an N-dimensional stationary process of the soft
sensor’s errors whose shaping filter transfer matrix is F0(q−1), i.e.,

et = F0(q−1)εt (14)

where q−1 is the backshift operator; εt = (εt, 1, εt, 2, . . . , εt, N)T is an N-dimensional vector of
white noise; and F0(q−1) = [fkm(q−1)] is an N × N matrix function, whose entries denoted
as fkm(q−1) are the rational transfer function from εt,m to et, k. Thus, it is desired to construct
the filter that will predict et+1 given the past values.

Let P(q−1) be the desired one-step ahead predictor transfer matrix, êt+1 = P(q−1)et
the prediction of the vector et+1 at time t, and ε̃t+1 = et+1 − êt+1 the error of the prediction
obtained with the aid of the filter P(q−1). Then

ε̃t= et − êt= et − q−1 êt+1 = et − q−1P
(

q−1
)

et =
[

IN − q−1P
(

q−1
)]

et (15)

where IN is identity matrix of order N. Consequently, the filter in the square brackets
transforms the initial series into the prediction error series. If the random vector ε̃t includes
components correlated with those of the vector ε̃t−j at some j > 0, we can predict the
errors ε̃t using the known previous errors. Using those predictions as corrections to the
ẽt that were obtained, we could improve the accuracy of the predictions. Hence, in order
to maximize the predictor accuracy, we must find a P(q−1) such that the errors ε̃t are
uncorrelated with the errors ε̃t−j at any j > 0 with some nonzero correlation between the
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components of ε̃t (i.e., at j = 0) being admissible. In other words, the time series ε̃t must
be N-dimensional white noise. Consequently, IN − q−1P(q−1) = F0

−1(q−1), from which it
follows that P(q−1) = q[IN − F0

−1(q−1)].
Thus, the predictor transfer matrix P(q−1) can be expressed through the transfer matrix

of the shaping filter F0(q−1). The matrix F0(q−1) can be found from

G(q−1) = F0(q−1)F0
T(q), (16)

where G(q−1) = [gkm(q−1)], gkm(q−1) is the q-transform of the statistical estimate of the
cross-covariance function of the time series et, k and et, m (in particular, when m = k, gmm is a
q-transform of the sample covariance function, i.e., the autocovariance generating function
(AGF) of the time series etm).

The algorithm for finding F0(q−1) is simplified by decomposing it into N stages. At the
kth stage, a shaping filter Fk(q−1) of the k-dimensional process (et, 1, et, 2, . . . , et, k)T is found.
At this stage, the filter Fk−1(q−1), found at the (k−1)th stage, is used in order to transform
the matrix Gk(q−1) = Fk(q−1)Fk

T(q) so that its transform contains nonzero elements in only
one line, one column, and on the main diagonal. This technique substantially simplifies the
procedure of spectral factorization (finding the matrix function Fk(q−1)) [11].

The proposed approach allows us to identify the vector time series transfer matrix
without resorting to a complicated phase state representation. This advantage is used to
obtain an adequate model with relatively few estimated parameters for the initial time
series shaping filter F0(q−1). Simultaneously, the model for the transfer matrix of the inverse
filter F0

−1(q−1), which transforms the initial time series into the white noise, is also found.
The algorithm for constructing both the shaping filter F0(q−1) and its inverse F0

−1(q−1)
is described in [11]. Based on this algorithm, the sequence of prediction errors ε̃t should
be N-dimensional white noise. However, since in practice, the true characteristics of the
original process are not known, but only their estimates, containing inevitable statistical
errors, in reality, the properties of the sequence ε̃t can be significantly different from the
properties of white noise. Thus, to verify the optimality of the resulting model P(q−1)
of the predictive filter, a criterion is needed to test the hypothesis that the process ε̃t is
N-dimensional white noise. To construct such a criterion, we can transform the process ε̃t
in such a way that its spectral density matrix is diagonal. Such a transformation is achieved
by means of a rotation of axes in the N-dimensional variable space ε̃1, ε̃2, · · · , ε̃N [12].
Since the variances of these variables can be made equal to each other by normalization,
without loss of generality, we suppose that spectral density matrix of the noise ε̃t is an N ×
N identity matrix IN.

Consider a univariate sequence ξk = ε̃t−j,m, where k = jN + m. Please note that each pair
couple (j, m) determines one k and each k determines one pair couple (j, m). Consequently,
ε̃t is multivariate white noise if and only if ξk is univariate white noise. It is known that the
spectral density of univariate white noise is constant [8,13]. Thus, testing the hypothesis
that ε̃t is multivariate white noise is reduced to testing the hypothesis on the constancy
of the spectral density of a univariate sequence. This hypothesis can be tested using
Kolmogorov’s criterion [14].

Please note that only a time series containing prediction errors is used as the initial
information for constructing a predictor with the proposed approach. Information about
the model with which the predictions were obtained is not used. Therefore, this approach is
applicable to any predictive model that involves errors, regardless of the specific properties
of the model used.

2.3. Summary of the Proposed Approach

Thus, the proposed procedure for developing the model can be summarized as follows:
Step 1: Create an initial sample ut, yt, t = 1, 2, . . . , K. If the plant is already functioning

then the initial sample consists of the historical values of ut, yt. Otherwise, the initial
sample is forming during the trial period of the plant. The initial sample is divided into
training and testing datasets.
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Step 2: Based on the data included in the training sample, the coefficients and delays
of the model given by Equation (2) are estimated via solving optimization problem (4).

Step 3: Based on the data included in the training sample, the errors for the model
and the corresponding sample spectrum of errors are calculated.

Step 4: Based on the sample spectrum, the order of the ARMA model is selected in
order to predict the unknown future error given the known current and past errors.

Step 5: The least squares method is used to find the values of the ARMA model pa-
rameters.

Step 6: The ARMA model obtained is used as the predictive filter F(q−1) in the feedback
loop of the compensator (bias update term) as shown in Figure 2.

Step 7: If the resulting soft sensor improves the accuracy of the prediction for the test
sample then it can be recommended for practical use.

Please note that the obtained predictive filter model can be recommended for further
use for the same plant on the data of which it was built. As for the approach, it will certainly
be successful if the sequence of errors of the plant is a stationary (or close to it) process.
In addition, the class of successful applicability of this approach can be extended to those
plants, for whose errors it is possible to find an invertible transformation that brings the
sequence of errors to a stationary process. The quality of the developed model should be
checked on a test sample that was not used at the stage of the model training.

3. Industrial Application of the Proposed Method

Industrial methyl tert-butyl ether (MTBE) production occurs in a reactive distillation
unit, as shown in Figure 3. The feed containing isobutylene and methanol (MeOH) enters
the column. The distillate (D) is a lean butane-butylene fraction with a certain amount of
MeOH. The raffinate is the heavy product MTBE that is withdrawn from the bottom part
of the column. Table 1 shows the main process variables for the industrial unit. The goal is
to develop a soft sensor for the prediction of the concentrations of methyl sec-butyl ether
(MSBE), MeOH, and the sum of dimers and trimers of isobutylene (DIME) in the bottom
product MTBE.

The measured values of output ym and input xk variables at the time moment t are
denoted as ytm, xtk; m = 1, 2, 3; k = 1, 2, . . . , 10; and t = 1, 2, . . . , n. The existing measurements
may be used for development of a predictive model of the form

yt = b0 + bxt + et, t = 1, 2, . . . , n (17)

where yt = (yt, 1, yt, 2, yt, 3)T; xt = (xt, 1, xt, 2, . . . , xt, 10)T; b is a matrix of the model parameters
[bmk] of dimension 3 × 10; b0 = (b1, b2, b3)T is a vector of the constant biases; et = (et, 1, et,

2, et, 3)T is a vector of the residuals, and the superscript T denotes the transpose. Since
Equation (17) can be rewritten as

(yt − y) = b(xt − x) + et (18)

where y = 1
n

n
∑

t=1
yt, x = 1

n

n
∑

t=1
xt, then expectations of all the elements of vectors yt, xt, and et,

as well as biases vector b0, may be considered to be equal to zero without loss of generality.
Although the elements of matrix b are unknown, they are easily estimated using the

ordinary least squares (OLS) method, which gives [10]

b̂=
{(

XTX
)−1

XTY

}T
(19)

where X = [xtk]; Y = [ytm]; m = 1, 2, 3; k = 1, 2, . . . , 10; and t = 1, 2, . . . , n.
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Figure 3. Reactive distillation unit of MTBE production.

Table 1. Soft sensor input and output variables.

Description of Process Variable Notation SS Variable

Feed flowrate, m3/s FIR−1 x1
MeOH flowrate to Rx, m3/s FIR-2 x2

Reflux flowrate, m3/s FIR-3 x3
MeOH flowrate to P-Rx, m3/s FIR-4 x4

Bottoms flowrate from Rx, m3/s FIR-5 x5
Bottom pressure, MPa PIR−1 x6

Temperature in P-Rx, K TIR−1 x7
Temperature in Rx, K TIR-2 x8

Bottom temperature, K TIR-3 x9
Vapor flow temp. from C − 1, K TIR-4 x10

Concentration of MSBE in MTBE, wt.% - y1
Concentration of MeOH in MTBE, wt.% - y2
Concentration of DIME in MTBE, wt.% - y3
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For the training sample containing n = 400 measurements, the following estimates
were obtained:

x = (51.8154 1.8747 52.1154 3.0859 51.9866 0.7580 60.7100
66.4516 136.3077 64.5725)T

y = (0.5440 0.1461 0.0595 )T

b̂=

⎛⎝ −0.0151 0.2383 −0.0342 0.1401 0.0476...
−0.0173 0.0794 0.0281 0.1191 −0.0171...
−0.0080 0.1118 −0.0061 0.0537 0.0134 . . .

−1.7361 0.0430 −0.0012 −0.1019 0.0388
2.9800 −0.0093 −0.0072 −0.1333 0.0353
0.3490 0.0215 −0.0011 −0.0467 0.0098

⎞⎠.

The estimated MSE vector for the model (17) is (0.0094 0.0095 0.0021)T, while the
vector of sample estimates of variances of the output variables is (0.0321 0.0184 0.0047)T.

Let R2
m be a sample estimate of the coefficient of determination, i.e., the estimate of a

fraction of variance of the dependent variable ym explained by model (18), i.e.,

R2
m = 1 − De,m

Dm
(20)

where Dm is a sample estimate of the variance of the output variable ym, De, m is the mean
squared value of the et, m errors, and m = 1, 2, 3. This gives R2

1 = 0.7061, R2
2 = 0.4822, and

R2
3 = 0.5467.

Assuming a sampling time of one hour, the estimates of the delay vector τ̂1 for
predicting the output variable y1 is

τ̂1 = (4.83 0 2.00 5.00 1.83 0 2.00 0.83 1.00 2.00)

and the estimate of the coefficient vector is equal to

b̂1 = (0.0002 0.1341 − 0.0360 0.0064 0.0451 − 2.3289 0.0519 − 0.0029 − 0.0819 0.0442)

with De, 1(b̂1, τ̂1) = 0.0091.
Similarly, for variables y2 and y3, we obtain

τ̂2 = (0.33 0.33 1.67 4.50 0.50 0.67 0.33 0.50 0.50 1.67)

b̂2= (−0.0263 0.1481 0.0315 0.1947 − 0.0168 3.4223 − 0.0064 − 0.0092 − 0.1513 0.0385); D2

(
b̂2 , τ̂2) = 0.0088

τ̂3 = (4.17 0 0.83 4.33 0.83 0.50 2.00 0.67 0.83 1.00)

b̂3= (−0.0021 0.0811 − 0.0070 − 0.0016 0.0130 0.3795 0.0259 − 0.0015 − 0.0455 0.0098); D3

(
b̂3 , τ̂3) = 0.0020

The sample estimate of the coefficient of determination to predict the output variable
ym denoted by R2

Lm is R2
L1 = 0.7160; R2

L2 = 0.5200; R2
L3 = 0.5726.

The effect of delay accounting was evaluated on a test sample containing 167 measure-
ments. As a result, the MSE of the predictions of output variables y1, y2 and y3 decreased
by 23%, 10%, and 3%, respectively.

Now, let us consider modeling the error term. From the spectral density of the
errors for et, 1 and et, 3 shown in Figures 4 and 5, it can be seen that the maximum within
the interval [0, 0.5] Hz indicates the presence in the denominator of the spectral density
function S(ω) a factor (1 − Ge−jω) with a complex-valued constant G. Since the sampling
time is equal to 12 h, the frequency unit 1/(12 h) is used instead of Hz. However, for
the practical application of the filter given by Equation (9), it is necessary that all the
coefficients be real [8]. Therefore, the denominator of density S(ω) must contain a factor
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(1 − Ge−jω) along with a factor (1 − Ge−jω). If the frequency response models for et, 1
and et, 3 processes are limited to these two factors (assuming the numerator is equal to
one), then the corresponding spectral density of the second-order autoregressive process
approximates well the sample estimates of the spectrum of et, 1 and et, 3 processes at
different values of G. However, the insufficiently rapid decrease of the spectral density in
the high-frequency region justifies the inclusion in the denominator of the model another
multiplier with a real value of the constant G.

 
Figure 4. Sample spectrum of the process et, 1.

 
Figure 5. Sample spectrum of the process et, 3.

In Figure 6, which shows the spectral density for the et, 2 errors, the sample spectrum
of this time series resembles the spectrum of a first-order autoregressive process [15–17].
However, we note that the stochastic process is not uniquely determined by its spectral
density [8]. Therefore, as previously mentioned, we need to include two additional con-
straints that the resulting model be invertible and realizable. This will ensure that we have
a unique model.
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Figure 6. Sample spectrum of the process et, 2.

Based on the theoretical properties of the process, the error models are

et, 1 − η11e(t−1), 1 − η21e(t−2), 1 − η31e(t−3), 1 = εt, 1
et, 2 − η12e(t−1), 2 = εt, 2

(21)

et, 3 − η13e(t−1), 3 − η23e(t−2), 3 − η33e(t−3), 3 = εt, 3

where η are the parameters to be determined. These parameters can be found using the
approach presented in Section 2.2 by multiplying the finite impulse response model by the
delayed errors and taking the expectations. For example, for e1, this gives

γi = η11γi−1 + η21γi−2 + η31γi−3, i = 1, 2, 3 (22)

where γi = cov(et1, e(t−i)1) = γ−i.
For the process et, 1, the estimates of the coefficients η11, η21 and η31 are, respectively,

equal to 0.4131, −0.0093, and −0.0528. These values were used as the initial guesses passed
to the PEM function. As a result of calculations, the model parameters were found to be:
η11 = 0.4175, η21 = 0.03234, η31 = −0.07026. The initial value of coefficient η12 is 0.3748 and
its final value is η12 = 0.3758.

Similarly, using Equation (22), the initial guesses were η13 = 0.5142, η23 = −0.0507, and
η33 = −0.0207 to give final values of η13 = 0.5151, η23 = −0.02676, and η33 = −0.03246.

The performance of predictive filter models obtained from the analysis of the training
dataset is validated using the testing sample. Figures 7–9 compare the predictions against
the true values, where the solid line shows the true et, m errors and the dashed line their
predicted values for m = 1, 2, and 3. At the time point t on the x-axis, the corresponding
error et, m and the predicted error êt,m computed at t − 1.
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Figure 7. Prediction of the process et, 1.

 

Figure 8. Prediction of the process et, 2.

 

Figure 9. Prediction of the process et, 3.

Figures 10–12 compare the performance of the soft sensors with the proposed filter
for error prediction and a traditional method, in which adaptive bias term is calculated
based on the moving window (MW) approach [18]. It can be seen that the filter provides
better tracking of the process values, therefore improving the accuracy of the overall soft
sensor system reducing the MSE of the output variables y1, y2, and y3 by 32%, 67%, and
9.5%, respectively.

30



Mathematics 2021, 9, 1947

 

Figure 10. Estimation of ym1.

 

Figure 11. Estimation of ym2.

 

Figure 12. Estimation of ym3.
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4. Conclusions

This paper proposed a new approach to handling the bias update term in a soft sensor
system. Rather than purely using available samples, the new bias update term seeks to
predict what the errors will be in the future. Tests of this approach on a reactive distillation
column show that the approach can handle the errors well. However, the predictive filters
used only work for areas without serious disturbances or outliers.

Therefore, it makes sense to consider more complex models for the predictive filters
including models with an additional component in the form of some flow, for example,
Poissonian flow, of events (outliers). If the flow of outliers is added to the process model
then the intensity of this flow needs to be estimated. In this case, the number of outliers
in the training dataset should be sufficient to estimate the intensity of the flow of outliers
with acceptable accuracy.
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Abstract: This article considers the mathematical aspects of the problem of the optimal interception of
a mobile search vehicle moving along random tacks on a given route and searching for a target, which
travels parallel to this route. Interception begins when the probability of the target being detected by
the search vehicle exceeds a certain threshold value. Interception was carried out by a controlled
vehicle (defender) protecting the target. An analytical estimation of this detection probability is
proposed. The interception problem was formulated as an optimal stochastic control problem, which
was transformed to a deterministic optimization problem. As a result, the optimal control law of the
defender was found, and the optimal interception time was estimated. The deterministic problem is
a simplified version of the problem whose optimal solution provides a suboptimal solution to the
stochastic problem. The obtained control law was compared with classic guidance methods. All the
results were obtained analytically and validated with a computer simulation.

Keywords: optimal stochastic control; path planning; 2D random search; interception

1. Introduction

Search problems have become increasingly popular recently and have attracted a
significant number of researchers [1–5]. The search process is considered to be that of
exploring a certain area of a physical space in order to detect a searched object (SO) in this
area with the search vehicle (SV) using various types of physical sensors. The basis for
solving these problems is a symbiosis of models and methods from multiple branches of
science, which allows establishing causal relationships among the search conditions, the
physical characteristics of the SOs, and the search results.

Mathematical formulations of search problems can include various criteria [6,7] with
the goal of the minimization or maximization of these criteria. All search problems can
be divided into two groups according to the SO’s type: it can be stationary or mobile.
The problems of the first type (Chapter 2 of [1]) are easier to solve than the problems of
mobile SOs (Chapter 3 of [1,5]), since the parameters of their movement may be unknown
to the SV. The problems of the second type have become popular in recent years due
to the development of unmanned vehicles such as unmanned aerial vehicles (UAVs) or
unmanned underwater vehicles (UUVs), operating in a largely unpredictable and uncertain
marine environment [1,8].

The practical applications of such autonomous vehicles and search problems can vary
from environmental monitoring and geological exploration to combat and reconnaissance
tasks. Therefore, the parameters of the mathematical models can vary greatly depending
on the different characteristics of real-world objects and their operating conditions. The
problem considered in this article can be applied to objects in the marine environment such
as UUVs or autonomous surface vehicles (ASVs), which can serve as both the SO and SV
in the model under discussion.

The search can be performed by one [3,5] or several SVs [9,10]. If the SV and SO are
on conflicting sides and the search itself is undesirable for the SO [11,12], then we can talk

Mathematics 2021, 9, 2386. https://doi.org/10.3390/math9192386 https://www.mdpi.com/journal/mathematics
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about the so-called threat environment [13,14]. Several SVs can be connected in a network
structure and form a dynamically changing threat map [10,15]. The task of the SO (UUV or
UAV) in this case is to avoid these threats while moving. The trajectory planning problem
can be formulated for the SO when the threat mapping is known. If the dynamics of the SO
is also known, then these problems are classical problems of deterministic optimal control.

If the SV presents a danger to the SO, the problem of interception can be consid-
ered. There is a vast class of such problems with various formulations and models of the
moving vehicles. These models may include restrictions on the maneuverability of the
vehicles [16–18]. Moreover, the problem can be considered optimal if any criterion, as
for example, the intercept time, must be minimized [19–21]. In most problems studied in
the literature, the intercepted vehicle moves along a given programmed trajectory [22].
Meanwhile, real vehicles as a rule move in a stochastic way, and this case is considered in
the presented article.

The article relates to various branches of mathematics, such as stochastic control,
guidance, information processing and search, and optimization, and is devoted to the
problem of the optimal interception of an SV that moves randomly on tacks along a
given course and searches for a target SO. The interception is carried out by a controlled
mobile vehicle protecting the target SO. The presence of an arbitrarily maneuvering search
vehicle requires an adequate mathematical formalization in the form of a stochastic control
problem. The maneuvering process can be conveniently formalized using a jump-like
Markov process with a given state vector and a given matrix of the transition intensities
between these states. Such a model allows us to describe the trajectory of the SV in the form
of a linear stochastic differential equation, which makes it possible to obtain the equations
of the evolution of the mathematical expectation and variance. These equations allow us to
formulate the problem of SV interception by the controlled vehicle with the criterion of
a predicted miss or with a given mathematical expectation of a miss at the final position
of the SV [16–21]. The purpose of the article is to find an interception trajectory of the
controlled defender vehicle as a result of solving the optimal stochastic control problem and
comparing this trajectory with classical guidance algorithms such as the pursuit guidance
method and the method of proportional navigation guidance [23–25].

The considered problem belongs to the “attacker–target–defender” type [26–28], the
essence of which is a counteraction to the SV (attacker) from the SO (target), which can be
a certain strategically important mobile vehicle, by using an autonomous attacking robotic
complex (defender), for example an UAV or UUV.

In this article, by SV, we mean a vehicle moving programmatically or randomly on
a plane equipped with a circular detection zone of a fixed radius. The goal of the SV is
to detect the SO, i.e., to cover the point of the plane depicting the SO with its detection
zone and maximize some functional that characterizes the reliability of detecting the SO
in this zone. The reliability of the detection (probability of correct classification) of the SV
may depend on various physical factors, in particular on the time spent by the SO in the
detection zone, its current distance from the SV, the direction of the velocity vector of the
SO, etc. [29].

We considered the SO to be able to observe the real trajectory of the SV and evalu-
ate the characteristics of its movement, i.e., current coordinates and components of the
velocity vector. At some point in time, the SO releases a mobile defender, which moves
autonomously and stealthily and does not have a communication channel with the SO.
It was also assumed that the defender can evaluate the current motion characteristics of
the SV using its passive onboard sensors. The stealthiness of the defender is provided, in
particular, with its low velocity.

The proposed work has the following structure. In Section 2, the model of the SV
with a given detection zone is considered. Section 3 contains a statistic description of the
detection probability of the SO moving along a straight-line trajectory. In Section 4, the
interception problem is formulated as an optimal stochastic control problem. This problem
is analytically solved in Section 5, and the obtained results are discussed and illustrated
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with simulation examples in Section 6. Section 7 concludes the article and suggests the
direction for future work.

2. Model of the SV’s Movement on Tacks

The search system consists of one SV, which has a circle detection zone of radius R.
The SV moves piecewise-rectilinearly on a plane, tacking randomly around the line of the
general course. The origin O of the stationary Cartesian coordinate system XOY is situated
in the initial position of the SV, as shown in Figure 1. This coordinate system is oriented in
such a way that its OX axis coincides with the line of the general course of the SV.

O
Xgeneral course

Y

R

SV’s path

v

Figure 1. The SV’s trajectory.

The SV moves on tacks in accordance with the following law:{
ẋSV = vx = v cos α,
ẏSV = vy = θtv sin α,

(1)

where α is the specified tacking angle, v is the SV’s search speed, and θt is a random
jump-like Markov process. The component of the SV’s velocity vector �v along the line of
the general course is constant:

vx = const.

Figure 2 shows a velocity diagram of the SV. As follows from (1), tacking was per-
formed by periodically changing the velocity component vy according to a random Markov
process θt with a finite vector of states J = (j1, j2, . . . , jn) and a given matrix of the transition
intensities between these states Λ. This article discusses the case of processes with three
states J = (−1, 0, 1). This means that the SV’s velocity vector can coincide with the general
course line (θt = 0) or deviate from it by a constant angle equal to ±α (when θt = ±1), as
shown in Figure 2.

SV vx

�v vy

α

vy

-α

Figure 2. Velocity diagram of the SV.

We considered transitions between process states equally possible with transition
intensity matrix:
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Λ = λ

⎛⎝ −2 1 1
1 −2 1
1 1 −2

⎞⎠, (2)

corresponding to the state vector J. The variable λ here is λ = 1/τ0, where τ0 is the average
time of the SV being on one tack. This model generates random trajectories that have the
approximate shape shown in Figure 1.

For the mathematical formulation of the stochastic optimization problem, it is con-
venient to study the Gaussian Markov analog instead of the jump-like process θt. This
diffusion process Θt has the same mathematical expectation and correlation function as
the process θt. It follows from the theory of jump-like Markov processes that Θt allows the
stochastic Ito differential [30]:

dΘt = −DΘtdt + σdwt, (3)

where wt is a standard Wiener process and D, σ are constants related to the original Markov
process θt: D � 3λ and σ � 2 tan α

√
λ.

3. Detection Probability of the SO Moving at a Constant Velocity

Firstly, let us consider the task of detecting a target SO (target) with the SV, whose
dynamics is described in Section 2. The following model was investigated. The target
moves at a constant speed parallel to the general course line of the SV at a distance l from
it.

The initial distance between the vehicles along the general course is L, so the initial
Cartesian distance is

√
L2 + l2. The SV is moving according to (1), where θt is a random

Markov process with the state vector J and the transition matrix Λ from (2). The target
moves according to the law: {

ẋ = −u,
ẏ = 0,

(4)

where u is its constant velocity.
The target will be detected if the distance between it and the SV becomes less than R.

To simplify the model, let us assume that the detection is successful when the target’s and
SV’s x-coordinates become equal at some point in time: xSV(ϑ) = x(ϑ), and the inequality
|ySV(ϑ)− y(ϑ)| ≤ R is satisfied for the y coordinates.

The rendezvous instant ϑ is defined as:

ϑ =
L

v cos α + u
. (5)

The probability of detection will be determined by including the ySV coordinate in the
interval [l − R, l + R], namely:

Pdet = P{l − R ≤ ySV(ϑ) ≤ l + R} = P

{
l − R
v sin α

≤
∫ ϑ

0
θs ds ≤ l + R

v sin α

}
. (6)

As mentioned in (3), the random jump-like Markov process θt can be replaced with its
Gaussian Markov analog Θt, which has the same mathematical expectation and correlation
function as the process θt.

Further, instead of calculating the random integral (6), we estimated the target detec-
tion probability by the SV through the analytical approximation of probability histograms,
obtained in the numerical simulation. We assumed that at the instant t0 = 0, the target is
situated in the position E0 = (L, l) and L � 1 (as shown in Figure 3) and the velocity of
the target u < 1.

36



Mathematics 2021, 9, 2386

SV

v
R

O
X

Y

SO
u

l

L
Figure 3. Relative positions of the SV and SO.

Due to the latter assumption, the SV’s detection zone can be considered as a flat-line
segment with the length of the diameter instead of the circle. Thus, the detection probability
can be estimated as the probability of meeting the target with this segment.

The histograms of the distribution density of the ySV coordinate obtained in the
interval [l − Δl, l + Δl] for some small Δl are well approximated by the symmetric density
of the Gaussian distribution. Figure 4 depicts the histogram of the probability of meeting
between the target and SV and the corresponding density of the Gaussian distributions:
N (0, σ2

1 ) for σ1 = 0.705 for the case L = L1 = 5 (Figure 4a) and N (0, σ2
2 ) for σ2 = 0.993 for

the case L = L2 = 10 (Figure 4b). The histograms were constructed as a result of computer
simulation of the movement of the target and SV for 10,000 implementations of the SV
trajectory corresponding to λ = 5/3.
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(a) Case of σ1
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(b) Case of σ2

Figure 4. Histograms of the probability detection distribution density of the target moving at a constant velocity.

These graphs allowed us to estimate the SV’s detection probability Pdet at its various
initial positions. Now, Equation (6) may be approximated as:

Pdet = P{l − R ≤ ySV(ϑ) ≤ l + R} =
1√

2πσi

∫ l+R

l−R
exp
(
−y2/(2σ2

i )
)

dy, (7)
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where σi corresponds to various parameters (Li, li, ui). In particular, when l = l1 = 1.5 and
l = l2 = 2.5 for L1 and L2, respectively, these probabilities are presented in Table 1. In all
cases, the velocity of the target is u = 0.3. All values are given in a normalized scale.

Table 1. The detection probability of the target Pdet at its various initial positions E0 = (L, l).

L l Pdet

5 1.5 0.238
5 2.5 0.017

10 1.5 0.304
10 2.5 0.065

Next, we introduced a certain threshold value (security threshold) h < 1 of the
permissible detection probability of Pdet, for example h = 0.07. The situation with Pdet ≤ h
is considered safe. In this case, the target continues to move in a straight line without
changing its course and speed. If Pdet > h, then the situation is considered dangerous. It
was assumed that in the case of a dangerous situation, the target (to prevent the negative
consequences of possible detection) uses the mobile defender mentioned in the Introduction,
whose task is to intercept the SV with a minimum standard error at a given point in the
plane relative to the SV.

The minimization of this miss is associated with the solution of the following optimal
stochastic control problem.

4. Optimal Stochastic Control Problem

The problem was considered in a moving Cartesian coordinate system XtOtYt, where
the origin Ot is associated with the current position Pt of the SV and the axis OtXt is
directed parallel to the SV’s general course. The current position of the defender Et

2 is given
by a two-dimensional vector Zt

2 directed from Ot � Pt to Et
2.

Terminal position Eϑ
2 of the defender is defined by a given two-dimensional vector d,

as shown in Figure 5. An auxiliary vector ηt � Zt
2 − d was introduced for a more convenient

formulation of the defender’s optimal control problem.

Ot

XtPt

Yt

R

d

Eϑ
2

ηt

Zt
2

Et
2

Figure 5. Geometry of the problem.

In the selected coordinate system, the equations of the relative motion of the defender–
SV system have the form:

Żt
2 = ut −

(
1

Θt

)
, ut =

(
ut

x
ut

y

)
, (8)
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where Θt is from (3) and the initial position of Z0
2 were set. The two-dimensional velocity

vector ut of the defender plays the role of the control and is subject to the restrictions:

|ut| ≤ β < 1 (9)

with the specified constant β.
In terms of the auxiliary vector ηt introduced above, the equations of motion (8) take

the compact form:
η̇t = ut + A + BΘt, η0 � Z0

2, (10)

where:

A =

( −1
0

)
, B =

(
0

−1

)
. (11)

At the terminal moment ϑ, the following condition must be met:

Eηϑ = 0, (12)

where E is the sign of the mathematical expectation. As a criterion, we took the terminal
functional:

EG(ηϑ, Θϑ) → min
ut

, (13)

where:
G(ηϑ, Θϑ) = η2

ϑ + γΘϑ. (14)

In (13) and (14), the summand η2
ϑ characterizes the standard deviation of the defender

from the end of the vector d at the terminal moment ϑ. The term γE Θϑ, where γ is
a given constant, plays the role of an additional terminal penalty for the “convenient”
or “inconvenient” tack of the SV at the time of ϑ. Here, the words “convenient” or
“inconvenient” are used in the following sense. The tack of the SV at the time of ϑ is
considered “convenient” if Θϑ < 0, i.e., the component of the velocity of the SV along the
OY axis is negative (the SV is moving away from the line of the movement of the target E1).
Otherwise, we considered the tack of the SV “inconvenient”.

5. Optimal Stochastic Control

5.1. Reduction of the Optimal Stochastic Control Problem to the Deterministic One

It is known that solving stochastic optimization problems in real time is associated
with certain difficulties [30]. For this reason, instead of the original stochastic problem (3),
(9)–(14), we solved its deterministic analog. To construct this analog, we need the following
auxiliary results.

The solution of Equation (3) has the form:

Θt = e−DtΘ0 + σ
∫ t

0
e−D(t−s)dws. (15)

Integration (15) leads to the equation:∫ t

0
Θsds =

Θ0

D
(
1 − e−Dt)+ σ

D

∫ t

0

(
1 − e−D(t−s))dws. (16)

Now, let us calculate the value of the criterion (13) with an arbitrary permissible
program control ut and the parameter ϑ fixed at the moment t0 = 0. To this end, we
integrated the equations of motion (10) taking into account (16). We have:

ηϑ = η0 + Aϑ + B
θ0

D
(
1 − e−Dϑ

)
+ B

σ

D

∫ ϑ

0

(
1 − e−D(ϑ−s))dws +

∫ ϑ

0
usds. (17)
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From (12) and (17) follows:

Eηϑ = η0 + Aϑ + B
Θ0

D
(
1 − e−Dϑ

)
+
∫ ϑ

0
usds = 0. (18)

Finally, from (17) and (18), we obtain:

E η2
ϑ =

σ2

D2

[
ϑ − 2

D
(
1 − e−Dϑ

)
+

1
2D
(
1 − e−2Dϑ

)]
. (19)

Thus, the (13) criterion takes the form:

EG =
σ2

D2

[
ϑ − 2

D
(
1 − e−Dϑ

)
+

1
2D
(
1 − e−2Dϑ

)]
+ γe−DϑΘ0 → min

ut
. (20)

Now, we transformed (18) by introducing a two-dimensional vector ξt subordinate to
the equation:

ξ̇t = A + BΘ0e−Dt + ut (21)

with boundary conditions:
ξ0 = η0, ξϑ = 0. (22)

In terms of the vector ξt, the desired deterministic analog is the following auxiliary
problem of optimal (deterministic) control, which includes the equations of motion (21),
boundary conditions (22), control constraints (9), and terminal criterion F(ϑ) → min

ut
, where

F(ϑ) denotes the right-hand side of (20) with the excluded additive constants −2σ2/D3

and σ2/(2D3):

F(ϑ) � σ2

D2

[
ϑ +

2
D

e−Dϑ − 1
2D

e−2Dϑ
]
+ γe−DϑΘ0 → min

ut
. (23)

5.2. Pontryagin’s Maximum Principle in the Auxiliary Optimal Problem (23)

To solve the auxiliary problem, we used Pontryagin maximum principle (PMP) [31].
According to the procedure of PMP, firstly, we constructed the Hamiltonian:

H = λξ ·
(

A + Bθ0e−Dt)+ λξ · ut → max
ut

. (24)

Here, the dot between the two-dimensional vectors means a scalar product, and
λξ = λξ(t) is a conjugate variable corresponding to the phase variable ξt. From (24), we
found the explicit form of the optimal control (here and further, the * symbol indicates the
optimal controls):

u∗
t = β

λξ(t)
|λξ(t)| . (25)

The conjugate variable satisfies [31]:

λ̇ξ(t) = −∂H
∂ξ

(t) = 0; (26)

hence λξ(t) = λξ = const, which leads to u∗
t = u∗ = const with |u∗| = β. In other words,

the program motion of the controlled object is implemented in a straight line with the
maximum possible speed. The transversality conditions at instant ϑ are given by:

δF(ϑ) + λξ · δξ − Hδϑ = 0, (27)

where according to (23):

δF(ϑ) =
∂F(ϑ)

∂ϑ
δϑ =

σ2

D2

[
1 − 2e−Dϑ + e−2Dϑ

]
δϑ − γDe−Dϑθ0 δϑ. (28)
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Following (27), (28):

H(ϑ) =
σ2

D2

[
1 − 2e−Dϑ + e−2Dϑ

]− γDe−Dϑθ0. (29)

Integrating (21), taking into account (22), gives:

η0 + Aϑ + B
θ0

D
(
1 − e−Dϑ

)
+ u∗ϑ = 0 (30)

that naturally coincides with (18) under ut = u∗.
Next, we put ⎧⎨⎩ u∗ � β(cos ϕ, sin ϕ), with ϕ = const,

η0 � (x0, y0).
(31)

Then, from (30) and (31), we have in a componentwise form of the system of two
equations with respect to ϕ and ϑ:⎧⎪⎨⎪⎩

x0 − ϑ + βϑ cos ϕ = 0,

y0 + βϑ sin ϕ − θ0

D

(
1 − e−Dϑ

)
= 0.

(32)

From (32) follows:⎧⎪⎨⎪⎩
cos ϕ = (ϑ − x0)(βϑ)−1,

sin ϕ =
[Θ0

D

(
1 − e−Dϑ

)
− y0

]
(βϑ)−1,

(33)

where ϑ can be found as the least-positive root of the equation, following from the identical
equality cos2 ϕ + sin2 ϕ = 1 with respect to the right parts of (33), namely:

(ϑ − x0)
2 +

[
Θ0

D

(
1 − e−Dϑ

)
− y0

]2
= β2ϑ2. (34)

Formulas (33) and (34) allow us to find the velocity components of the controlled
object and the time interval [0, ϑ] of its motion from the initial position to the end of the
vector d.

If Dϑ in (34) is sufficiently large, then the term e−Dϑ is close to zero and can be omitted.
In this case, (34) takes the form:

(ϑ − x0)
2 +

(
Θ0

D
− y0

)2
= β2ϑ2. (35)

Then, the instant ϑ can be found as the least root of the square Equation (35):

ϑ =

x0 −
√√√√x2

0 − (1 − β2)

(
x2

0 +

(
Θ0

D
− y0

)2
)

1 − β2 . (36)

To construct a positional optimal control (feedback control) of the defender, the current
moment t was taken as the initial t0, the current position (xt, yt) was taken as the initial
(x0, y0), and the current value of Θt—for the initial Θ0; after that, the instantaneous
direction of the vector u∗

t of the defender’s velocity was calculated using the formulas (31)
taking into account (33) and (36). Next, u∗

t was recalculated at the rate of updating the
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current information. Note that at a high rate of updating this information, it may be
quite justified to use the piecewise program control of the defender, in which its control is
recalculated only at certain moments called correction moments with intervals between
them Δtu. During these intervals, the defender moves programmatically according to
control u∗

t , calculated in the previous step.

6. Examples

To demonstrate the effectiveness of the obtained optimal control, a numerical simula-
tion was performed for two approaches for studying the interaction between the defender
and SV. These approaches differ in the mathematical description of the evolution of the y-
component of the SV’s velocity. In the first (discrete) approach, this component is piecewise
constant and its evolution is described as a jump-like Markov process θt with three states
(1, 0,−1) and the transition intensity matrix Λ from (2). The description of this process is
given in the beginning of Section 2. In the second (continuous) approach, an evolution of
the y-component of the SV’s velocity vector is set by Gaussian process Θt, i.e., continuous
diffusion process (3).

In both approaches, the control of the defender was obtained through Equations (31),
(33), and (36). In other words, the control of the defender is always calculated according to
the continuous diffusive model (3) of the evolution of the y-component of the SV’s velocity
vector. Strictly speaking, as this control law is the result of the solution of the continuous
problem, it should not always successfully solve the discrete problem, simulated in the
first approach. The idea of these experiments is to apply the solution of the continuous
problem, which can be solved analytically, to the similar discrete practical model, which
cannot be studied in the same convenient way. In all experiments, vector d was considered
to be null, i.e., the defender has to intercept the SV.

Both approaches to the simulation are shown in further examples, which were devoted
to two different applications of the studied interception problem.

The realization of diffusive process Θt was acquired in Maple with the package for
stochastic equations. An approximate formula for ϑ (36) was used for the stochastic
differential Equation (15). Thus, Maple allows integrating this equation numerically and
obtaining the optimal trajectory of the defender, as well as the random trajectory of the
SV corresponding to the process with the appropriate mathematical expectation and
dispersion.

A more practical discrete jump-like process θt was simulated in Python script. The
movement of the SV and defender was computed with a very small discretization step
Δt, which is the quality of the simulation. At each step, the SV, according to the model
from Section 3, can change the direction of its vy velocity component with probability
2λΔt or not change it with probability (1 − 2λΔt). However, in practice, this model is not
very useful. This process is identical to a Gaussian process: the time of another SV tack is
sampled exponentially with mathematical expectation 1/λ, and the direction of the vertical
velocity for this tack is chosen from two directions, different from the current one with
probability 1/2. The defender, on the other hand, has its own parameter Δtu and corrects
its control law according to (36) every interval Δtu, considering the current positions to
be initial.

6.1. Intrusion in the Detection Zone

The first application is the intrusion of the SV’s detection zone by the defender to
distract the SV from the target. In normalized scale, these parameters are:

R = 1, vx = 1, τo = 0.6.

Let tan α = 0.5. Then, the parameters for Gauss process Θt are:

λ =
1
τ0

≈ 1.67, D = 3λ ≈ 5, σ = 2 tan α
√

λ = 1.29.
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In the coordinate system associated with the initial position of the SV, the initial
coordinates of the defender’s position are (10, 1) in the normalized scale. The velocity of
the defender was chosen as β = 0.5. The probability of the detection of the target following
a parallel course from this coordinates equals Pdet = 0.5, which is higher than the accepted
security threshold h = 0.07. Thus, according to the above-described security concept, the
target must use a mobile defender.

The results of this experiment are shown in Figure 6. The red line depicts the trajectory
of the defender, whereas the blue one, that of the SV. Figure 6a shows the evolution of
the y-component of the SV’s velocity according to Markov jump-like process θt. Figure 6b
shows the trajectories of the vehicles for the diffusion approximation Θt of the process θt.
In Figure 6a, the black ellipse depicts the circular detection zone of radius R, which looks
ellipsoidal due to the different scale of the OX and OY axes. In the case of the discrete
model, the parameter Δtu is equal to τ0. In the case of the continuous model, the calculation
of the defender’s optimal control is performed in time with the SV’s information updating,
i.e., almost continuously (Δtu equals the simulation discretization step).

0 2 4 6 8 10

−1.0

−0.5

0.0

0.5

1.0

(a) (b)

Figure 6. Intrusion of the SV’s detection zone. (a) SV and defender trajectories corresponding to the
path of θt; (b) SV and defender trajectories corresponding to the path of Θt.

For the estimation of time ϑ, Equation (36) was used. According to (36), interception time
ϑ = 7, which means e−Dϑ ≈ 0, i.e., 1− e−Dϑ ≈ 1, so ut can be found from Equations (31), (33),
and (36). One can see in Figure 6 that the trajectories of the defender for the discrete and
continuous models of the SV’s movement were quite close. The difference of the trajectories
in the final sections was due to the significant duration of the interval Δtu between the
updates of the information about the SV and, thereby, the corrections of the defender’s
program control in the discrete approach.

As one can see, the problem of interception was solved successfully, as the defender
moving from the initial position with the found u control finally occurred in the close
vicinity of the SV.

6.2. Destruction of the SV

The second application is the task of the destruction of the SV using the defender. To
complete this task, the defender must come close enough to the SV. In the normalized scale:

R = 1, vx = 1, τo ≈ 60.
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Let tan α = 0.5. Therefore:

λ = 0.017, D = 0.05, σ = 0.13.

In the coordinate system associated with the initial position of the SV, the initial
coordinates of the defender are (300, 20) in the normalized scale. The velocity of the
defender was chosen as β = 0.5. As the target moves parallel to the general course of
the SV, then the detection probability Pdet equals Pdet = 0.37 > h = 0.07; thus, using the
defender is justified.

The results of the modeling are presented in Figure 7. As in the first example, Figure 7a
corresponds to the discrete approach to the simulation and the process θt, and Figure 7b
relates to the continuous approach and the process Θt.
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(a) (b)

Figure 7. Destruction of the SV. (a) SV and defender trajectories corresponding to the path of θt;
(b) SV and defender trajectories corresponding to the path of Θt.

The accuracy of the interception of the SV by the defender or the so-called terminal
miss obviously depends on the parameter Δtu—the time interval between corrections of the
defender’s control. Figure 8 presents the results of different simulations of the interception
of the SV by the defender for the discrete approach. Figure 8a corresponds to the case of
Δtu = τ0. A sufficient miss of the defender can be explained by the relatively significant
duration Δtu of its movement without control correction and the “inconvenient” realization
of the tack, which combined with the velocity advantage (β < 1) allowed the SV to avoid
interception by the defender. However, decreasing the parameter Δtu helped achieve more
satisfactory results, as shown in Figure 8b. For two similar realizations of process θt (blue
lines), the trajectories of the controlled defender (red lines) were clearly very different with
dependence on the parameter Δtu (τ0 and τ0/10, respectively).
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(a) Δtu = τ0
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(b) Δtu = τ0/10

Figure 8. Interception trajectories with different values of Δtu.

6.3. Comparison with Classic Guidance Methods

The optimal control law of the defender obtained here was compared with classic
guidance methods, mentioned in the Introduction, such as the pursuit guidance method
and parallel guidance, which is a specific case of the proportional navigation guidance
method. On average, our method gave better results than the others. In Figure 9, a
typical realization of different simulated guidance methods is presented. The orange line
designates the trajectory of the defender, acting according to the pursuit guidance method;
the red line denotes the trajectory generated by the parallel guidance algorithm; the blue
graph shows the SV’s movement. The defender, controlled according to Equations (31), (33)
and (36), has a green trajectory. Dashed lines illustrate the distances on the Y axis between
the SV and defender at instant ϑ when their X-coordinates coincide.

Figure 9. Comparison of different guidance methods.

As one can see, the green defender was closer to the SV than the others. Classic
guidance methods are effective when the pursuer velocity is higher than the one of the
evader. That is not the case in the current study, because the defender’s velocity β was less
than the velocity of the SV. Moreover, the classic guidance methods are not intended to be
use for intercepting stochastic targets, unlike the control law obtained in this article as a
solution of the stochastic optimal control problem.
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7. Conclusions

The article considered one “attacker–target–defender”-type problem of the interaction
on a plane between the search system, consisting of one search vehicle with the circle
detection zone, and the mobile searched object. The search vehicle tacked randomly along
a given general course towards the searched object, and its movement was described
using a Markov jump-like process. The searched object had a mobile defender onboard,
which can be used for the distraction and destruction of the search vehicle, if it presents a
danger to the searched object in the sense of its detection. The feature of this problem is
that the defender has lower dynamic capabilities in comparison to the searching vehicle
being intercepted.

It was shown that, being stochastic in nature, the optimal control problem of the
interception of a search vehicle can be transformed into the classic deterministic problem
of optimal control in the class of piecewise-programmatic controls. The optimal time of
interception was estimated, and an optimal control law was found. The examples of the
numerical simulations for both the discrete and continuous (stochastic and deterministic)
problems were presented to reveal the efficiency of the designed results. Furthermore, a
comparison with the interception solutions, based on classic guidance laws, was presented.

In the future, it is planned to consider a similar problem statement with a group of
search vehicles instead of one.
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Abstract: In this paper, we carry out a demonstration and comparative analysis of known methods
of the synthesis of various control laws ensuring the invariance of the output (controlled) variable
with respect to external disturbances under various assumptions about their type and channels of
acting on the control plant. Methods of the synthesis are presented on the example of a third-order
nonlinear system with single input and single output (SISO-systems), dynamic feedback synthesis
is presented at a descriptive level and the focus is on procedures of static feedback synthesis. For
the systems in which the matching conditions are not satisfied, it is concluded that it is expedient
to introduce smooth and bounded nonlinear local feedbacks. Within the framework of the block
control principle, we developed an iterative procedure of synthesis of S-shaped sigmoid feedbacks
for such systems. Nonlinear local feedbacks ensure stabilization of the output variable with the given
accuracy and settling time as in a system with traditionally used linear local feedbacks with high
gains. However, in contrast to it, sigmoid functions do not lead to a large overshoot of state variables
and control actions.

Keywords: external disturbances; invariance; block control principle; decomposition; high-gain
factors; sliding mode control; sigmoid function

1. Introduction

The basic issue of automatic control theory is the tracking problem, which consists in
a convergence of the output variables to the reference admissible signals with the given
performance of the transient and steady-state processes. The main efforts of researchers are
aimed at solving this problem for the control plants, operating under the action of external
uncontrolled disturbances. The methods of the synthesis of invariant systems used at the
present stage are quite diverse. However, their effectiveness and applicability depend
on many factors. Firstly, our goal is to systematize the existing methods of disturbance
suppressing and compensating, to formalize the requirements on the degree of certainty
of the control plant, at which it is advisable to use one or another approach. We also
present the methods of synthesizing the corresponding control laws. The results of the
survey are presented in Sections 2 and 3. Secondly, in Section 4 we propose a new, more
universal approach to the synthesis of invariant systems with nonlinear feedback, in which
the advantages of classical methods are concentrated. Moreover, this approach gives an
effective result in cases where classical methods are not applicable.

To strengthen the methodological component of the presented material, we will con-
sider all the stated approaches specifically on the example of a single-channel nonlinear
minimum-phase system of the third order operating under the action of external uncon-
trolled disturbances. The given synthesis procedures for a third-order system fully describe
all the features of the presented methods. Therefore, the algorithms can be easily extended
to similar systems of a higher order. In this sense, without loss of generality, the considered
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control plant model can be interpreted as one of the subsystems of external dynamics
equations of a multichannel system [1]

For the sake of presentation simplicity, let us suppose that the mathematical model of
control plant has a relative degree of three and is representable in the following canonical
input-output form:

.
x1 = x2 + η1(t),.
x2 = x3 + η2(t),.
x3 = f (x) + b(x)u + η3(t),

(1)

where x = (x1, x2, x3)
T ∈ X ⊂ R3 is measured state vector, X is open bounded region;

x1 ∈ R is controlled variable (output), u ∈ R is control action (input); b(x) �= 0, x ∈ X is
the structural requirement, needed for system controllability. In the system (1) ηi(t) are
unknown functions of time that depend on external deterministic disturbances and other
uncertainties in the description of the control plant model, which are bounded in modulus
by known constants: ∣∣ηi(t)

∣∣≤ Hi = const > 0, t ≥ 0, i = 1, 3. (2)

The assumptions about the smoothness/non-smoothness of these functions, as well
as the requirements of definiteness of f (x), b(x) will be refined further.

Note that the output variable x1(t) can represent a tracking error which is the residual
between the controlled variable and the given signal. We can assume that the analytical
form of the given signal is not known, there are only its measured current values. Then
its derivative is assumed to be an unknown bounded function that is additively included
in η1(t).

It should be understood that in the presence of persistent disturbances η1,2(t), stabi-
lization of all state variables of the system (1) is not possible for any control law. In a closed
system, the variables x2(t) and x3(t) will have to describe the external actions η1(t) and
η2(t) correspondingly. Therefore, for the system (1), the problem of feedback synthesis,
ensured stabilization of only the output variable x1(t), is posed, which in the general case
can be achieved with some accuracy,

|x1(t)| ≤ Δ1, t ≥ t1. (3)

Further, it is assumed that the value Δ1 > 0 is given. The settling time t1 > 0 depends
on the initial conditions. In addition, the requirement on the given settling time often
leads to cumbersome constructions and conservative estimates on the regulator parameters
selection. Therefore, in the review section, we consider sufficient conditions for solving the
posed problem (3) without the given settling time. A complete solution of the problem (3)
will be given in the presentation of the author’s method.

Then, for the system (1) the known and new methods of solving the posed problem
are considered under various assumptions. The article is structured as follows. In Section 2,
we consider a particular case of system (1), when an external disturbance acts on the same
channel as the control (matched disturbance). The methods of synthesis and the results of a
comparative analysis of the following approaches of solving the problem (3) are presented:

- Dynamic feedback and disturbance compensation by using its estimate in com-
bined control;

- Static feedback and complete suppression of disturbance using discontinuous controls
and organizing a sliding mode;

- Static feedback and suppression of disturbance with a given accuracy using linear
control with high-gain factors;

- Static feedback and suppression of disturbance with a given accuracy using piecewise
linear continuous control.

In Section 3, we deal with the system (1) with unmatched disturbances. The main
attention is paid to the case when external disturbances are not smooth. For the solution of
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the posed problem (3), a standard procedure of block synthesis of linear local feedbacks
with high-gain factors is presented. The advantages and disadvantages of this method are
described, and a conclusion about the advisability of introducing smooth and bounded
nonlinear feedbacks in practical applications is made.

In Section 4 a new approach developed by the authors and implemented in practical
applications is presented. Sufficient conditions of the posed problem (3) solution for the
given settling time are formalized, and a constructive procedure of block synthesis of
nonlinear sigmoid local feedbacks is developed. In the conclusion, the prospect for the
further development of the results presented in Section 4 is indicated.

2. Feedback Synthesis Methods in a System with a Matched Disturbance

The most developed case in the automatic control theory means that functions with
parametric uncertainties and external disturbances are affine and act in the control space.
In this case, the disturbances are said to be matched with the control and the matching
conditions are satisfied. For example, for a linear system

.
x = Ax + Bu + Qη(t)

matching conditions have a form [1,2]

ImQ ⊂ ImB ⇔ rankB = rank(B Q).

This means that the columns of the matrix Q are a linear combination of the columns
of the matrix B, therefore, the original system can be represented as

.
x = Ax + B(u + Λη),Q = BΛ.

For the system (1), the matching conditions take a form

ηi(t) ≡ 0, t ≥ 0, i = 1, 2 (4)

Thus, in this section, we consider a special case of the system (1) and (4)

.
x1 = x2,
.
x2 = x3,
.
x3 = f (x) + b(x)u + η3(t),

where the requirements on the smoothness of the functions f (x), η3(t) are generally
not imposed.

Note that if x1(t) is a tracking error, then x2(t) and x3(t) are the first and second
derivatives of the tracking error, which depend on the first and second derivatives of a
given signal and are supposed to be known functions of time. Uncertainty is allowed only
for the third derivative of the given signal, which is bounded and additively included
in η3(t).

In contrast to the general case, in Systems (1) and (4) with matched disturbance it is
possible to ensure the stabilization of all state variables using:

(i) Dynamic feedback and disturbance compensation;
(ii) Static feedback and disturbance suppression.

According to the first approach, firstly, the complete definiteness of the factor b(x)
before control is required. Secondly, we need to estimate the unknown disturbance
η3(t) using any method to ensure asymptotically decreasing of the estimation error
Δη(t) = η3(t)− η̂3(t) or its convergence to some small vicinity of zero rather quickly,

lim
t→+∞

Δη(t) = 0 or |Δη(t)| ≤ δ, t ≥ t0, 0 < t0 < t1.
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The obtained estimate η̂3(t) is used for the synthesis of combined control

u = −(φ(x) + η̂3(t))/b(x),

where φ(x) is a stabilizing component. If the function f (x) is complete defined, then we
can linearize the closed system by feedback

u = − 1
b(x)

(
f (x) + η̂3(t) +

3

∑
i=1

cixi

)
, (5)

where ci > 0 are the coefficients of stable polynomial λ3 + c3λ2 + c2λ + c1.
The closed system (1), (4) and (5) has a form

.
x1 = x2,
.
x2 = x3,
.
x3 = −c1x1 − c2x2 − c3x3 + Δη(t),

where, in the general case, the given control accuracy (3) is ensured. Particularly, when
estimate error decreases, an asymptotic stabilization of all state vector and, hence, the
output variable

lim
t→+∞

x1(t) = 0, (6)

is occurred. In both cases by the selection of ci > 0 we can ensure the required characteris-
tics of the transient process of the output variable.

The standard approach of obtaining an estimate of an external disturbance η̂3(t) is to
expand the state space using a dynamic model, simulating the action of external distur-
bance, and construction of extended observer [3–5]. In the case of parametric uncertainty
of the control plant model, the identification and adaptation algorithms are additionally
used to estimate the unknown parameters [6–8].

However, the implementation of these approaches will lead to large estimation errors
if the parameters and disturbances vary significantly during the operation of the control
plant, and the used model does not describe these changes adequately. On the other
side, taking into account all possible variations of external disturbances will lead to an
unacceptable expansion of the dynamic model, a significant complication of the controller,
and an increase in computing time of the control signal. An alternative to introducing
a model of external influences is the construction of an observer based on the model of
the control plant, which allows to obtain the estimates of unknown inputs without their
dynamical model under certain conditions [9–12].

The second approach of invariance ensuring does not require the external disturbance
estimation and consists in it suppressing by discontinuous controls with the organization
of sliding modes or continuous feedbacks with high-gain factors. As a rule, these are
linear controls.

To organize the sliding mode in the system (1) and (4), it is necessary to specify the
switching surface (plane)

s = c1x1 + c2x2 + x3,

where c1,2 > 0 are the coefficients of the stable polynomial λ2 + c2λ + c1, and introduce
the discontinuous control law

u = −Msign(b(x))sign(s), sign(b(x)) = const,

where M = const > 0 is the amplitude of discontinuous control, sign(s) is the sign function

sign(s) =
[ −1, s < 0,

+1, s > 0,
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which value is undefined when s = 0, but it bounded on interval [−1; 1].
Within the framework of this method, complete certainty of f (x), b(x) is not required,

but the boundaries of their varying are assumed to be known

| f (x(t))| ≤ F,
0 < bmin ≤ |b(x)| ≤ bmax, x ∈ X, t ≥ 0

(7)

A sufficient condition of sliding mode occurrence on the plane s = 0 has the form of
inequality s

.
s < 0 [12–14], where

.
s = c2s − c2c1x1 + (c1 − c2

2)x2 + f (x)− M|b(x)|sign(s) + η3(t),∣∣c2s(t)− c2c1x1(t) + (c1 − c2
2)x2(t)

∣∣ ≤ C, t ≥ 0.

They are satisfied when we select amplitude from the inequality

M > (C + F + H3)/bmin. (8)

When determining the upper estimate C of the admissible region of initial conditions
|x(0)| ≤ X0, it is necessary to estimate the region of variation of closed system variables

.
x1 = x2,

.
x2 = −c1x1 − c2x2 + s

with respect |s(t)| ≤ |s(0)|, t ≥ 0.
When (8) is valid, the requirement s

.
s ≤ |s|(C + F + H3 − Mbmin) < 0 is satisfied, and

the sliding mode arises on the plane s = 0 in a finite time t > t0, 0 < t0 < t1. In the sliding
mode, the dynamic order of the closed system decreases

.
x1 = x2,
.
x2 = −c1x1 − c2x2, s(t) = 0, t ≥ t0,

and the stability of the accepted polynomial implies asymptotic stabilization of the output
variable (6).

Thus, according to this method, the synthesis problem is divided into two successively
solved subproblems of lower dimension:

(i) The selection of switching plane parameters c1,2 > 0 at which the reduced second-
order system is stable;

(ii) Selection of the amplitude of discontinuous control (8), at which stabilization of the
virtual elementary system of the first order is ensured. This decomposition simplifies
the synthesis of a controller for the multidimensional system with vector control. The
main advantage of the method is that motion in the sliding mode does not depend on
the operator of the control plan, external matched disturbances and is determined by
the selection of the switching surface. The disadvantages include the need to calculate
the upper estimate C in systems with a constant amplitude of discontinuous control,
if the factor b(x) before control contains undefined parameters. Such estimates are
always conservative and lead to excessive consumption of control resources in a
sliding mode.

.
s = c2s − c2c1x1 + (c1 − c2

2)x2 + f (x)− M|b(x)|sign(s) + η3(t)

Note that the use of discontinuous controls is natural in the presence of electrical
inertia-less actuators that function exclusively in the key mode. In this case, the imple-
mentation of constant amplitude is a standard technical solution. Now let us consider
systems in which there are no electrical actuators and only continuous control is permis-
sible. Another method, based on disturbance suppression, is to use linear controls with
high-gain factors [14–16]. For system (1) and (4) we introduce linear feedback instead of
discontinuous control
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u = −ksign(b(x))s, sign(b(x)) = const,

where k = onst > 0 is a high-gain factor inversely proportional to the desired accuracy
of suppression of matched disturbances and uncertainties: |s(t)| ≤ Δ, t ≥ t0, 0 < t0 < t1.
With respect,

.
s = c2s − c2c1x1 + (c1 − c2

2)x2 + f (x)− k|b(x)|s + η3(t),∣∣(c1 − c2
2)x2(t)− c2c1x1(t)

∣∣ ≤ C1, t ≥ 0

the selection of the high-gain factor from inequality

k >
C1 + F + H3

Δbmin
+

c2

bmin
(9)

will ensure that sufficient condition s
.
s ≤ |s|(C1 + F + H3 − (kbmin − c2)|s|) < 0 is satisfied

outer the region |s(t)| ≤ Δ, in which the variable s(t) converges in a finite time. When
t ≥ t0, the closed system can be represented in the form

.
x1 = x2,
.
x2 = −c1x1 − c2x2 + s, |s(t)| ≤ Δ,

(10)

which ensures the control goal (3), where Δ1 depend on Δ and accepted c1,2.
Note, if we exactly know f (x), b(x), the combined control laws can be formed, which

resources will be used only on the suppression of external disturbances. Selected based on
the virtual system

.
s = c1x2 + c2x3 + f (x) + b(x)u + η3(t) combine control law

u = −(c1x2 + c2x3 + f (x) + Msign(s) [or ks])/b(x)

leads to the closed system
.
x1 = x2,
.
x2 = −c1x1 − c2x2 + s,
.
s = −Msign(s) [or − ks] + η3(t)

and when M > H3 [or k > H3/Δ] ensure the fulfillment (6) [or (3)].
The main restriction of the synthesis method of systems with high-gain factors is that

it is unrealizable in practical applications. To satisfy the constraints on control actions, the
continuous piecewise linear controls in the form of saturation functions are used [17,18],
which are the hybrid of linear and discontinuous controls. These functions are bounded,
and they tend to a sign function with the increasing of high-gain factors. Consequently, in
the closed system saturation functions ensure similar properties as in the systems, operating
in sliding mode, and with some accuracy.

For system (1) and (4) let us consider feedback in the form of saturation function

u = −Msign(b(x))sat(ks), sign(b(x)) = const,

where M = const > 0 is the amplitude, k = const > 0 is the high-gain factor

Msat(ks) =
[

Msign(ks), |s| > 1/k,
Mks, |s| ≤ 1/k.

Amplitude is selected so as in a system with discontinuous control (8), that ensures
|s(t)| ≤ 1/k ≤ Δ, t > t0, when |s(0)| > 1/k. Selection of k ≥ 1/Δ ensures the desired
stabilization accuracy, and as a result, the fulfillment of (10) and (3).

Significantly, that in contrast to a discontinuous control law with constant amplitude,
which value does not vary in modulus during all control process, the values of saturation
control automatically decrease in modulus in the steady-state mode (this fact is also valid
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for linear continues control). It occurs due to the stabilization of state variables, and
when t > t1, the control signal describes only external disturbance η3(t) with small not-
decreasing components.

Thus, the combined control makes it possible to compensate for external matched
disturbances, but for this, it is necessary to obtain their estimates and identify the unknown
parameters of the system. In the case when the combined control cannot be realized, it
remains to use the control aimed at suppressing external disturbances and model uncer-
tainties. The selection of the type of control depends on the properties of the system and
the existing design requirements on the smoothness and boundness.

3. Block Synthesis of Linear Local Feedbacks in System with Unmatched Disturbances

The most difficult are the control plants with unmatched disturbances (when condi-
tions (4) are not satisfied), which cannot be compensated or suppressed by true control. In
the tracking problem, these disturbances also include the derivatives of the reference sig-
nals. In addition, the problem of ensuring invariance with respect to disturbances is posed
only for controlled outputs (tracking errors), since the remaining variables have to describe
the corresponding external influences. According to the classical approach of the synthesis
of a tracking system under the assumption of the smoothness of external influences, the
state space is expanded due to the generators of reference and external influences, as well
as the corresponding dynamic observers and identifiers of parameters [1]. In this case,
the dynamic order of the closed system can increase by a factor of five or more times (in
comparison with the dimension of the control plant model) if the external disturbances
(and the corresponding autonomous models) vary significantly during the control process.
If it is possible to formulate a model that accurately describes the dynamics of external
disturbances, then asymptotic stabilization of tracking errors is theoretically achieved by
expanding the state space.

Another approach is to represent the model of the control plant in the canonical
or block input-output form, with the differentiation of external signals. In the process
of obtaining this form, mixed variables are generated, which are the functions of state
variables with additive external influences and their derivatives [19,20]. For system (1)
under the assumption of differentiability of external disturbances η1,2(t), the canonical
system in mixed variables has the form

.
x1 =

.
x2,

.
x2 = x3,
.
x3 = f (x) + b(x)u + η3(t),

(11)

where

x1 = x1, x2 = x2 + η1(t), x3 = x3 + η2(t) +
.
η1(t), η3(t) = η3(t) +

.
η2(t) +

..
η1(t).

In the last equation of the system (11), the initial variables x are left in the arguments
of the functions f (x), b(x) for the convenience of synthesis. Structurally, system (11)
repeats system (1), (4) with matched disturbances, since all uncertainties are concentrated
in the control space and are subject to compensation or suppression using the control laws
presented in Section 2.

The feature of this approach of ensuring invariance is that the problem of evaluating
external influences separately is not considered, the autonomous models that generate
them are not introduced into the constructions. Assuming that the output variable x1 = x1,
is measured, an observer is constructed based on the transformed system (11) with an
indefinite input. Due to the suppression function of corrective action of the observer, it
gives an estimate of mixed variables and uncertainties to form feedback and leads to an
increase in the dynamic order of closed system by no more than twice. As a rule, in this
case, ε-invariance of the output variable with respect to external unmatched disturbances
is achieved.
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However, the mentioned approaches are not applicable in the case when external
unmatched disturbances and other model uncertainties are not smooth enough and cannot
be differentiated. An example is shock loads and dry friction forces when controlling
mechanical objects, taking into account the dynamics of actuators [21–25]. In the particular
case, when a non-smooth disturbance is separated from the true control by one integrator, it
can be suppressed using “vortex” control with continuous and discontinuous components.
The result is achieved due to the organization of an oscillatory transient process in the
system, in which part of the state variables automatically compensates for the influence of
unknown terms [26].

In the general case, when external unmatched disturbances act on the control plant,
the estimation, and compensation or suppression of which are not possible by true control,
it remains to use the possibilities of disturbance suppression using local feedbacks. The
methodological basis for the implementation of this approach is the decomposition methods
and the block control principle [16,27]. According to this approach, using a non-degenerate
change of variables, the equations of external dynamics are reduced to a block input-output
form with an affine occurrence of fictitious and true controls. It consists of elementary
blocks, in each of which the dimension of the controlled variables is equal to the rank of
the matrix before the fictitious controls, which are the variables of the next block. For the
general case of a controllable minimum-phase nonlinear system of the n-th order with
affine external influences η, the block form is the following [20]:

.
x1 = f1(x1) + B1(x1)x2 + Q1(x1)η;
.
xi = fi(x1, . . . , xi) + Bi(x1, . . . , xi)xi+1 + Qi(x1, . . . , xi)η, i = 2, r − 1;
.
xr = fr(x1, . . . , xr) + Br(x1, . . . , xr)u + Qr(x1, . . . , xr)η,

where Bi ∈ Rpi×pi+1 , i = 1, r − 1, Br ∈ Rpr×pr , Qi ∈ Rpi×1, dimxi = rankBi = pi, i = 1, r,
p1 + p2 + . . . + pr = n.

Sequentially (from top to bottom) formed stabilizing local feedbacks in each block are
provided by the selection of true control. When a block form is obtained, external influences
are not differentiated and do not participate in transformations, but with a block organiza-
tion, they become matched with fictitious controls. Then, with an appropriate selection of
fictitious controls, it is possible to stabilize the output variables with some accuracy.

Let us explain the essence of the block control principle using the example of system (1),
which, as we see, is a special case of the block form and consists of three elementary blocks
of the first order. In the first and second equations, the variables x2 and x3, respectively, are
treated as fictitious controls, with which the bounded disturbances η1 and η2 are matched,
respectively. The smoothness requirement is not imposed on external disturbances. The
question arises about the selection of the form of stabilizing functions in fictitious and true
controls, that would ensure the invariance of the output variable with respect to external
disturbances by suppressing them.

As shown above, the classical methods of suppressing external and parametric
bounded disturbances acting in the control space are: (1) continuous linear feedbacks
with high-gain factors; (2) discontinuous controls bounded in modulus with the organiza-
tions of sliding modes. In addition, only controls of the first type (due to their smoothness)
can be used to form local feedbacks. We emphasize once again that with the help of
linear local feedbacks in a system with unmatched disturbances, it is possible to ensure
stabilization of the controlled variable only with certain accuracy (3).

For system (1), let us consider the standard step-by-step procedure of block synthesis
of linear local feedbacks with high-gain factors under the action of unmatched bounded
disturbances [16]. It consists of the following stages: (1) introduction of local feedbacks
(stabilizing fictitious controls) by non-degenerate change of variables of the original system
(1) to residuals between real and adopted fictitious controls; (2) the selection of the control
law; (3) setting the parameters of the feedback that meets the control goal. We represent
the first stage in the form of the following procedure, which for system (1) consists of
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three steps and is similarly extended to systems of any order presented in the block form
of controllability.

Procedure 1 : Non-degenerate transformation with the introduction of linear local
feedbacks.

Step 1. In the first equation of system (1), we introduce linear local feedback
x∗2 = −k1x1, k1 = const > 0 and the residual between the actual and the selected fic-
titious control

e2 = x2 − x∗2 = x2 + k1x1. (12)

Taking into account the notation e1 = x1 and (12), the first equation of System (1) takes
the form

.
e1 = −k1e1 + e2 + η1. (13)

Step 2. Let us write the differential equation for the residual (12) by (1) and (13)

.
e2 = x3 + η2 + k1

.
e1 = −k2

1e1 + k1e2 + x3 + η2 + k1η1,

where we form a combined fictitious control with a linear stabilizing component
x∗3 = k2

1e1 − k2e2, k2 = const, k2 > k1 and a residual between the actual and the selected
fictitious control

e3 = x3 − x∗3 = x3 − k2
1e1 + k2e2. (14)

With respect (14), the second equation of the system (1) takes the form

.
e2 = −(k2 − k1)e2 + e3 + η2 + k1η1. (15)

Step 3. Let us write the differential equation for the residual (14) by (1) and (15)

.
e3 = f (x) + b(x)u + η3(t)− k2

1
.
e1 + k2

.
e2 = k3

1e1 − (k2
1 + k2

2 − k2k1)e2 + k2e3+
+ f (x) + b(x)u + η3 + k2η2 + (k2k1 − k2

1)η1.
(16)

The procedure is over.
Thus, we have obtained system (13), (15) and (16) using a nondegenerate linear

transformation of the system (1). The final transformation matrix is obtained as a result of
the product of the transformation matrices performed at the first (12) and second (14) steps
of the procedure (in the indicated order)

P =

⎛⎝ 1 0 0
0 1 0

−k2
1 k2 1

⎞⎠⎛⎝ 1 0 0
k1 1 0
0 0 1

⎞⎠ =

⎛⎝ 1 0 0
k1 1 0

k1k2 − k2
1 k2 1

⎞⎠, detP �= 0

For simplicity of presentation, we will consider the case of complete definiteness of
functions f (x), b(x), which allows us to accept a combined true control in the form

u = −(k3
1e1 − (k2

1 + k2
2 − k2k1)e2 + k2e3 + f (x) + ϕ(e3))/b(x). (17)

The closed system (13) and (15)–(17) takes the form

.
e1 = −k1e1 + e2 + η1,
.
e2 = −(k2 − k1)e2 + e3 + η2 + k1η1,
.
e3 = −φ(e3) + η3 + k2η2 + (k2k1 − k2

1)η1.
(18)

The stabilizing component φ(e3) of the control law (17) must ensure the suppression of
the linear combination of disturbances η3 + k2η2 + (k2k1 − k2

1)η1 and the stabilization of the
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variable e3. For this, either discontinuous control or linear with high-gain factors or their
piecewise-linear continuous hybrid in the form of a saturation function is applied, namely:

(1) φ(e3) = Msign(e3);
(2) φ(e3) = k3e3;
(3) φ(e3) = Msat(k3e3),

(19)

where M, k3, k3 = const > 0. Note that the control laws (19) are formed by the variable
e3 (14), which is a linear combination of the measured state variables of the original
system (1).

As shown above, in the first case (19) when the amplitude is selected based on
the inequality

M > H3 + k2H2 + (k2k1 − k2
1)H1 (20)

the sufficient condition e3
.
e3 < 0 is satisfied. The sliding mode arises on the plane e3 = 0

in a finite time t > t0 > 0, and the dynamical order of the system is reduced. In the
second case (19), a high-gain factor is selected taking into account the specified stabilization
accuracy similarly to (9), namely:

k3 >
H3 + k2H2 + (k2k1 − k2

1)H1

Δ3
. (21)

In the third case (19), the lower bounds of the parameter’s selection of the piecewise
linear control have the form (20) and k3 > 1/Δ3, Δ3 > 0. In both the second and third
cases, the convergence of the variable to some neighborhood of zero is ensured

|e3(t)| ≤ Δ3, t > t0. (22)

Using (22), let us consider the procedure of selection the high-gain factors
k1 > 0, k2 > 0 based on the second Lyapunov method. We introduce a candidate on
the Lyapunov function as the sum of two terms V = V1 + V2, Vi = 1

2 e2
i , i = 1, 2, and

estimate their derivatives by (2), (13) and (15):

e1
.
e1 ≤ |e1|(|e2|+ H1 − k1|e1|),

e2
.
e2 ≤ |e2|(|e3|+ H2 + k1H1 − (k2 − k1)|e2|). (23)

It follows from inequalities (23) that sufficient stability conditions
.

V < 0 are met if the
high-gain factors satisfy the inequalities

k1 > H1+Δ2
Δ1

, |e3| ≤ Δ3, |e2| ≤ Δ2, |e1| > Δ1,
k2 > H2+k1 H1+Δ3

Δ2
+ k1 , |e3| ≤ Δ3, |e2| > Δ2.

(24)

Thus, first, we set the desired accuracy of the stabilization Δi, i = 1, 3 of the vir-
tual variables e = (e1, e2, e3)

T. Then, with a sequential (from top to bottom) selec-
tion of high-gain factors based on inequalities (24) and (21), the variables of the closed
system (18) and (19) sequentially (from bottom to top) converge into the given neighbor-
hoods of zero

|e3(t)| ≤ Δ3 ⇒ |e2(t)| ≤ Δ2 ⇒ |e1(t)| ≤ Δ1, (25)

and the control goal (3) is achieved. When selecting the high-gain factors, one should take
into account that as the k1 increases, the accuracy improves (3) (in the limited case Δ1 → 0
when k1 → +∞ ) and the settling time decreases. However, due to the unboundedness of
linear controls, this leads to the well-known problem of large overshoot [28]. On the other
hand, in practical applications control resources are always bounded, so there is an upper
bound of the selection of k1 ≤ k1max and the corresponding minimum achievable tracking
error Δ1,min ≤ Δ1.
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The bounded control in the form of a saturation function is not smooth. On the one
hand, it is not an obstacle when these functions are used in corrective actions of observers
of the state of systems with disturbances [20,29]. However, on the other hand, it narrows
the possibilities of its application as fictitious controls in practical problems.

Summing up, we can conclude that for the universal formation of invariant local
feedbacks and the practical realizability of control Algorithms, it is advisable to use
smooth analogs of the saturation function. These include transcendental S-shaped func-
tions: arctangent, hyperbolic tangent, logistic function, etc. The odd hyperbolic tangent
th(x) = 1− 2/(exp(2x) + 1) appears to be a constructive tool for the analysis and synthesis
of nonlinear control. This bounded function depends on the exponent, its derivatives are
also bounded everywhere and are recursively expressed through the antiderivative.

In this paper, a modification of the hyperbolic tangent, which is more convenient for
constructions, is used in the form of a sigmoid function σ(x) = −th(−x/2). Its properties
and the corresponding synthesis procedure developed by the authors are presented in the
next section and constitute the main result of this work.

4. Block Synthesis of Nonlinear Local Feedbacks in Systems with
Unmatched Disturbances

Let us consider a smooth and bounded sigmoid function

σ(kx) =
2

1 + exp(−kx)
− 1, k = const > 0,

which is defined on the whole number axis and has the following properties:
σ(−kx) = −σ(kx), σ(kx) ∼

x→0
kx/2, σ(kx) ∼

k→+∞
sign(x). In its argument, a factor k is

specially introduced, which plays a role of a high-gain factor in a small neighborhood of
zero in further constructions. The derivative of the sigmoid function has a recursive form:

σ′(kx) = k(1 − σ2(kx))/2 > 0, x ∈ R, σ′(−kx) = σ′(kx).

To simplify the analysis of a nonlinear sigmoid function, let us establish its analogy
with a piecewise linear saturation function. Consider some neighborhood of zero with
radius Δ > 0. The following estimates

σ(kΔ) < |σ(kx)| < 1, 0 < σ′(kx) < σ′(kΔ), |x|> Δ;
σ(kΔ)|x|

Δ ≤ |σ(kx)| ≤ σ(kΔ), σ′(kΔ) ≤ σ′(kx) ≤ σ′(0) = k
2 , |x| ≤ Δ

(26)

are valid for the sigmoid function and its derivative in the indicated intervals. Inequali-
ties (26) demonstrate that when |x| > Δ the sigmoid function is close to a constant, and
when |x| ≤ Δ it is close to a linear function. To formalize the abscissa of the specified
division, we introduce the parameter c = const > 0: |x| = Δ = c/k, which is advisable to
select from the interval

kΔ = c ∈ [1.3; 3], (27)

where ±1.3 are the abscissas of the inflection points of the first derivative σ′′′ (±1.3) = 0,
and σ(±1.3) ≈ ±0.57, σ′(±1.3) ≈ 0.34k; ±3 are the abscissas of the vertices of the
sigmoid function, in which its curvature reaches its maximum, while σ(±3) ≈ ±0.9,
σ′(±0.9) ≈ 0.095k [19].

For the convenience of calculations, we take

c = 2.2; σ(c) ≈ 0.8;
1

σ(c)
≈ 1.25; σ′(c) ≈ 0.18k. (28)

Using (28), estimates (26) take the following form:

0.8 < |σ(kx)| < 1, 0 < σ′(kx) < 0.18k, |x|> c/k, c = 2.2;
0.8k|x|

c = 0.36k|x| ≤ |σ(kx)| ≤ 0.8, 0.18k ≤ σ′(kx) ≤ σ′(0) = k
2 , |x| ≤ c/k.

(29)
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Let us explain the idea of using sigmoid feedback and the selection of its parameters
in the problem of ensuring invariance using the example of an elementary system with
external disturbance

.
x = η(t) + u, (30)

where x ∈ R is the state variable, η(t) is the external disturbance, which is described by a
deterministic, unknown, but bounded function of a time. The requirement of smoothness is
not imposed on it, it is sufficient that it be piecewise continuous. The problem of stabilizing
system (30) with a given accuracy using the sigmoid control

u = −mσ(kx) (31)

with a constant amplitude m = onst > 0 and high-gain factor k = const > 0 is posed.

Lemma 1. If in system (30), (31) the external disturbance is bounded by a known constant
|η(t)| ≤ H = const > 0, t ≥ 0, then for any arbitrary small Δ > 0, T > 0 and any initial values
x(0) from some bounded domain X0 ≥ |x(0)| there are positive real numbers k u m, such that for
any k ≥ k, m ≥ m, the following inequality is valid

|x(t)| ≤ Δ, t ≥ T. (32)

Proof. Let us introduce the parametric dependence (27), then, with respect to (28) and (29),
the following lower estimates are valid for control (31) on the indicated intervals. To analyze
the stability of closed system (30) and (31), we use the second Lyapunov method. Let us
introduce a candidate on the Lyapunov function V = x2/2 and estimate its derivative on
the indicated intervals taking into account (33).

|u(x)| = |mσ(kx)| ≥
[

0.8m, |x| > Δ,
0.8mk|x|/2.2, |x| ≤ Δ

(33)

.
V = x(η(t)− mσ(kx)) ≤

[ |x|(H − 0.8m), |x| > Δ,
|x|(H − 0.8mk|x|/2.2), |x| ≤ Δ.

(34)

It follows from (34) that the derivative of the Lyapunov function is negative if the
feedback parameters satisfy the following conditions:

0.8m > H ⇔ m > 1.25H,
k > H

0.8m · 2.2
Δ .

(35)

The fulfillment of the first inequality (35) means that the state variable will converge
into the region |x| ≤ Δ or will not leave it if it was there initially. In addition, the fulfillment
of the second inequality guarantees stabilization with a given accuracy (32), namely:

|x| ≤ H
0.8m

Δ < Δ.

Using 0 < H/(0.8m) < 1, it is possible to simplify the lower bound for selection a
high-gain factor in comparison with the second inequality (35) and take

k ≥ k = 2.2/Δ. (36)

In the general case |x(0)| > Δ to guarantee the achievement of the state variable
of a given region in a given time T > 0, let us increase the lower bound of selection of
amplitude. With respect to the estimate of the solution of system (30) and (31) on the
interval t ∈ [0; T]

|x(t)| ≤ |x(0)|+ (H − 0.8m)T ≤ Δ. (37)

we obtain

m ≥ m = 1.25
(

X0 − Δ
T

+ H
)

, X0 > Δ. (38)
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Thus, we defined such k (36) and m (38) that for any k ≥ k, m ≥ m, the stabilization
of the state variable with the given accuracy and for the given time (32) is ensured in the
closed system (30) and (31). Lemma 1 is proved. �

As you can see, the sigmoid control, as well as the piecewise-linear saturation function,
is bounded everywhere and contains two adjustable parameters. The selection of the
amplitude provides the given time of convergence of the controlled variable to a certain
neighborhood of zero, and the selection of a high-gain factor provides the radius of this
area, i.e., the given stabilization accuracy. In a first-order system, the transient process
is monotonic.

We use the results obtained in Lemma 1 to stabilize the output variable of system (1)
taking into account (2) and (7) under the following assumptions: the requirements of
smoothness of external disturbances are not imposed, the functions f (x), b(x) are not
required to be completely defined, the sign of b(x) is constant and known. In further
constructions, we will take into account the given settling time (3), which is guaranteed for
all initial values of the variables from the bounded admissible region

|x1(0)| ≤ X1, |x2(0)| ≤ X2, |x3(0)| ≤ X3. (39)

As a methodological basis of the synthesis procedure, we use the block control prin-
ciple, demonstrated in Section 3 for the synthesis of linear feedbacks. Let us emphasize
that the idea of the approach proposed below is similar to the backstepping [30]. The main
differences of our approach are that it does not require smoothness of functions f (x), b(x),
and ηi(t), i = 1, 3; we use static feedback, do not expand the state space, and do not aim to
obtain estimates of the existing uncertainties. To avoid large overshoot, which is typical for
linear feedbacks with high-gain factors, we will select stabilizing fictitious controls in the
form of smooth and bounded sigmoid functions

x∗i = −mi−1σ(ki−1ei−1), ki−1 = const > 0, mi−1 = const > 0, i = 2, 3,

where e2 and e3 are the residuals between the variables x2 and x3, respectively, and the
selected fictitious controls

ei = xi − x∗i = xi + mi−1σ(ki−1ei−1), i = 2, 3,e1 = x1. (40)

For uniformity, true control is also accepted as a sigmoid function

u = −sign(b)m3σ(k3e3), k3 = const > 0, m3 = const > 0 (41)

Note that to simplify the computational implementation, instead of (41), one can also
use a continuous, bounded, but non-smooth saturation function or discontinuous control
in systems with electric actuators as a true control.

Also note that, unlike Procedure 1 with linear transformations in changes of vari-
ables (40) and control law (41), we did not compensate the nonlinear components that do
not depend on external disturbances in order not to complicate the control function.

Let us rewrite closed system (1), (41) with respect to residuals (40)

.
e1 = −m1σ(k1e1) + e2 + η1,
.
e2 = −m2σ(k2e2) + e3 + η2 + Λ1,
.
e3 = −|b(x)|m3σ(k3e3) + f (x) + η3 + Λ2,

(42)

where terms

Λi = mi
ki(1 − σ2(kiei))

2
.
ei, i = 1, 2, (43)

are the derivatives of the corresponding fictitious controls, which arise in the transition to
the new coordinate basis (40).

There is no need to change the arguments of functions b(x) and f (x) in the last
equation of transformed system (42) since constraints (7) are specified in terms of the
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variables of the original system (1), and the specific of these functions do not matter for the
formation of control law (41).

We will perform feedback synthesis according to the block approach in terms of
virtual system (42). The idea is that sigmoid fictitious and true controls introduced into
each subsystem using non-degenerate change of variables (40) and feedback (41) serve
to suppress external uncontrolled disturbances. This will ensure the stabilization of the
residuals ei, i = 1, 3 with any given accuracy. By virtue of the inverse change of vari-
ables (40), namely, this means that in the closed system (1) with nonlinear control (41),
which is realized in the form

u = −sign(b)m3σ(k3(x3 + m2σ(k2(x2 + m1σ(k1x1))))) , (44)

in the steady-state, the variables x2(t) and x3(t) describe external disturbances η1(t)
and η2(t), accordingly. In addition, the stabilization accuracy of the output variables
of both systems will be the same. Thus, the fulfillment of the objective condition in closed
system (42) and (41)

|e1(t)| ≤ Δ1, t ≥ t1, (45)

is equivalent to solving the problem (3).
As shown in Section 3, the block approach in multidimensional systems consists in

sequentially solving elementary synthesis problems in subsystems (blocks) similar to (30).
However, only the last subsystem is directly regulated by the true control, and in the rest,
the variables of the next block act as fictitious controls. As a consequence, in the general
case of nonzero initial conditions only in the last block, a monotonic transient process is
guaranteed.

Sufficient conditions of the existence of feedback parameters mi, ki, i = 1, 2, 3 that
ensure the fulfillment of objective condition (45) in the system (42) are formulated in
Lemma 2. In the process of constructive proof, a step-by-step procedure of adjusting the
amplitudes of sigmoid controls was formalized, in which the decomposition principle is
implemented [31,32].

Lemma 2. Let us consider closed system (1), (44), presented in the form (42) using non-degenerate
changes of variables. If conditions (2) and (7) are satisfied for this system, then for any initial values
of variables from the bounded domain (39) and for any, arbitrarily small Δ1 > 0, t1 > 0, there
are real numbers ki > 0, i = 1, 3, 0 < mi < mi, i = 1, 2, m3 > 0, such that for any ki ≥ ki,
mi : mi < mi ≤ mi, inequality (45) is satisfied.

Constructive Proof. According to the ideology of the block approach, in the closed sys-
tem (42) it is necessary to provide the following sequence of convergence of residuals:

|e3| ≤ Δ3( t ≥ t3 > 0) ⇒ |e2| ≤ Δ2( t ≥ t2 > t3) ⇒ |e1| ≤ Δ1( t ≥ t1 > t2), (46)

where Δ1 > 0, t1 > 0 are the given (45), Δ2,3 > 0 are assigned arbitrarily. The dependences
t2,3 on the initial conditions and accepted Δ2,3 > 0 are established in the course of the proof.

Lemma 1 demonstrates the existence of ki > 0, i = 1, 3 such as for any ki ≥ ki, i = 1, 3
the desired radii Δ1,2,3 > 0 (46) of neighborhoods of zero are guaranteed, at which the
residuals converge in the indicated times (46). With respect (28) and similarly to (36), we
fix the values of high-gain factors based on the inequalities

k∗i ≥ ki = 2.2/Δi, i = 1, 3. (47)

In (47) and below, using the symbol ∗ in the superscript, we will denote specific
accepted numerical values of the parameters.

Increasing the accepted values k∗i leads to a decrease in the stabilization errors of
residuals. The convergence of the residuals into the established areas in the specified
time (46) is ensured by selection mi, i = 1, 3.
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The stabilization of system (42) is carried out “from the bottom up” (46). Sufficient
conditions of the selection of amplitudes, similar to the first inequality in (35), are valid
when the indicated conditions are met:

0.8m1 > H1 + Δ2, |e2| ≤ Δ2
0.8m2 > H2 + |Λ1|+ Δ3, |e3| ≤ Δ3,
0.8bminm3 > F + H3 + |Λ2|.

(48)

The fulfillment of (47) and (48) ensures the sequential stabilization of the residuals
with a given accuracy without taking into account the convergence time, which depends
on the initial conditions. In a particular case, the fulfillment of (47) and (48) will ensure
|ei(t)| ≤ Δi, i = 1, 3 at t ≥ 0, i.e., the goal of control (45) is achieved.

In the tracking system, the following variants of the initial conditions are also subject
of interest: if |e3(0)| ≤ Δ3,|e2(0)| > Δ2, then the transient process of e2(t) will be mono-
tonical; if |ei(0)| ≤ Δi, i = 2, 3, |e1(0)| > Δ1, then the transient process of e1(t) will be
without overshoot.

In the rest of the particulars, as well as in the general case |ei(t)| > Δi, i = 1, 3, within
the framework of these constructions, a monotonic transient process is guaranteed only for
the variable e3(t).

Until the variables of the lower blocks of system (42) reach the specified neighbor-
hoods (46), the variables of the upper blocks grow in absolute value and reach their
maximum value no later than at the following times:

|e3(t)| ≤ |e3(0)| = e3,max,|e2(t)| ≤ |e2(t3)| = e2,max,|e1(t)| ≤ |e1(t2)| = e1,max, t ≥ 0 (49)

By (39) and (40), we estimate the ranges of initial values of the variables of system (42)

|e1(0)| ≤ X1, |ei(0)| ≤ Xi + mi−1, i = 2, 3 (50)

Using (42), (48) and (50) and taking into account that the proper motions in closed
system (42) are stable, we estimate the maximum values (49)

e1,max ≤ X1 + (e2,max − Δ2)t2,
e2,max ≤ X2 + m1 + (e3,max − Δ3)t3,
e3,max ≤ X3 + m2.

(51)

To ensure the given convergence time, it is necessary to increase the lower bounds
of the selection of amplitudes (48). First, we give estimates of the derivatives of fictitious
controls (43). They differ at different intervals and depend on the corresponding estimates
of the derivatives of the sigmoid functions and the derivatives of the corresponding
residuals (42). Using (48), for the derivatives of the residuals, the following estimates
are valid:

t ∈ [0; t2) :
∣∣ .e1(t)

∣∣ ≤ H1 + Δ2︸ ︷︷ ︸
<0.8m1

+ e2, max − Δ2 + m1 < 2m1 + e2, max − Δ2,

t ≥ t2 :
∣∣ .e1(t)

∣∣ ≤ H1 + Δ2 + m1 < 2m1;
t ∈ [0; t3) :

∣∣ .e2(t)
∣∣ = H2 + |Λ1|+ Δ3︸ ︷︷ ︸

<0.8mi

+ e3,max − Δ3 + m2 < 2m2 + e3, max − Δ3,

t ≥ t3 :
∣∣ .e2(t)

∣∣ = H2 + |Λ1|+ Δ3 + m2 < 2m2.

(52)

For the derivative of the sigmoid function, by (29) on the indicated intervals, we have

|ei(t)| > c/ki, t ∈ [0; ti) : 0 < 0.5ki(1 − σ2(kiei)) < 0.18ki,
|ei(t)| ≤ c/ki, t ≥ ti 0.18ki ≤ 0.5ki(1 − σ2(kiei)) ≤ 0.5ki, i = 1, 2

(53)
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Combining (52) and (53), we obtain estimates of the derivatives of fictitious con-
trols (43) on the indicated intervals

|Λi| = mi
ki(1 − σ2(kiei))

2

∣∣ .ei
∣∣ ≤
⎡⎣ 0.36kim2

i + 0.18kimi(ei+1, max − Δi+1), t ∈ [0; ti+1);
0.36kim2

i , t ∈ [ ti+1; ti);
kim2

i , t ≥ ti; i = 1, 2

To uniformly accept as an estimate

|Λi| ≤ kim2
i , t ≥ 0; i = 1, 2, (54)

we need to provide 0.18kimi(ei+1, max − Δi+1) ≤ 0.64kim2
i ⇒ ei+1, max − Δi+1 ≤ 3.5mi ,

i = 1, 2. For this we introduce constraints on the peak values of the residuals, slightly
lowering the limiting estimates for the convenience of calculations:

ei, max ≤ 3mi−1 + Δi, i = 1, 2 (55)

For consistency, limitation on the overshoot of the output variable also can
be introduced:

|e1(0)| ≤ X1 < e1,max ≤ E1. (56)

In a particular case |e1(0)| < Δ1, the implementation of e1,max ≤ E1= Δ1 provides
|e1(t)| ≤ Δ1, t ≥ 0.

With respect (55) and (56), inequalities (51) take the form

e1,max ≤ X1 + 3m1t2 ≤ E1,
e2,max ≤ X2 + m1 + 3m2t3 ≤ 3m1 + Δ2,

e3,max ≤ X3 + m2 ≤ 3m2 + Δ3,
(57)

whence additional conditions follow, which must be taken into account when selecting t2,3
(0 < t3 < t2 < t1) and amplitudes of fictitious controls:

0 < m1 ≤ E1 − X1

3t2
, 0 < m2 ≤ 2m1 + Δ2 − X2

3t3
; (58)

m1 >
X2 − Δ2

2
, m2 >

X3 − Δ3

2
. (59)

Note that, according to constructions (48) mi−1 > Δi, i = 2, 3, while Δi > 0, i = 2, 3
can be accepted less or more than values Xi. The requirement of smallness is not imposed
on them. To simplify the calculations, one can initially fix Δi = Xi, i = 2, 3, which removes
the need to check the fulfillment of conditions (59).

In the general case Δi < Xi, i = 2, 3, the inequalities of the lower bound of the selection
of amplitudes mi will contain two basic components. Due to the first component mi1, as
well as m3, similarly to (38), the convergence of residuals e1(t), e2(t), e3(t) on intervals
[t2; t1], [t3; t2], [0; t3], respectively, from the peak values (51), (57) into the given areas in
a given time (46) is ensured. The second component mi2 provides the implementation of
constraints (59). In addition, in contrast to the amplitude of the true control m3, which is
selected only based on the lower estimate, there are upper constraints on the selection of
the amplitudes of the fictitious controls (58).

Let us formalize a step-by-step procedure of sequential, “top-down” selection of the
amplitudes of sigmoid controls and admissible times t2,3 for the given Δ1, t1, assigned
E1 (56), Δ2,3 > 0, and adopted on their basis k∗i , i = 1, 3 (47). During the procedure,
variation of free parameters is allowed.
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Procedure 2. Selection of sigmoid feedback amplitudes

Step 1. Using (57), the first inequality (48) takes the form

0.8m1 ≥ X1 + 3m1t2 − Δ1

t1 − t2
+ H1 + Δ2 ⇒ m11 ≥ X1 − Δ1 + (H1 + Δ2)(t1 − t2)

0.8t1 − 3.8t2
,

whence the constraint on the selection 0 < t2 < t1 follows:

0.8t1 − 3.8t2 > 0 ⇒ t2 < 0.2t1. (60)

Based on (60), we select t∗2 > 0 and substitute it into the double inequality

max{m11; m12} < m1 < m1, (61)

m11 =
X1 − Δ1 + (H1 + Δ2)(t1 − t∗2)

0.8t1 − 3.8t∗2
, m12 =

X2 − Δ2

2
, m1 =

E1 − X1

3t∗2
. (62)

If inequality (61) is satisfied, then we fix t∗2, m∗
1 ∈(m1; m1] and go to the second step.

If (61) is not satisfied, arbitrary parameters should be varied. This can be performed in
two ways.

First way. If it is required to ensure accepted E1 (56), then we vary Δ2 and/or t2.
If with the initially accepted 0 < t∗2 < 0.2t1 inequality m12 > m11 (62) is valid, then by
increasing Δ2 (up to Δ2 = X2) it is necessary to ensure m11 > m12. If with the new Δ∗

2 the
inequality (61) is not valid and initially m11 > m12, then we decrease t∗2. The critical value
t2 > 0 :m11(t2) = m1(t2) exists and equals

t2 =

√
p2

2 − 4p1 p3 − p2

2p1
,

p1 = −3(H1 + Δ2),
p2 = 0.8(E1 − X1) + 3(E1 − Δ1 + (H1 + Δ2)t1),
p3 = −0.8(E1 − X1)t1.

From the limit relation

lim
t2→+0

m11(t2) =
X1 − Δ1 + (H1 + Δ2)t1

0.8t1
= const < lim

t2→+0

E1 − X1

3t2
= +∞, (63)

it follows that m1 can be made arbitrarily large and for any t∗2 > 0 :0 < t∗2 < t2 inequal-
ity (61) will be satisfied.

Thus, by reducing t2, it is possible to provide any sufficiently small overshoot in the
output variable (56). However, this can lead to a significant increase in the lower bounds of
the selection of amplitudes in the following blocks.

Second way. If we abandon the accepted E1 (56) and increase its value

E1 > E = X1 + 3m∗
1t∗2, (64)

where E is the minimum possible overshoot of the output variable with the initial accepted
value 0 < t∗2 < 0.2t1, then one can arbitrarily increase the upper bound m1 of the selection
of the amplitude (61).

Step 2. The second inequality (46) is ensured by selection m2. With respect (54), (57),
the second inequality (48) takes the form

0.8m2 ≥ X2+m∗
1+3m2t3−Δ∗

2
t∗2−t3

+ H2 + k∗1(m
∗
1)

2 + Δ3 ⇒
m21 ≥ X2+m∗

1−Δ∗
2+(H2+k∗1(m∗

1)
2+Δ3)(t∗2−t3)

0.8t∗2−3.8t3
,

(65)
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whence follows a constraint on the selection 0 < t3 < t∗2, similar to (60)

0.8t∗2 − 3.8t3 > 0 ⇒ t3 < 0.2t∗2. (66)

Based on (66), we select t∗3 > 0 and substitute it into the double inequality

max{m21; m22} < m2 < m2, (67)

where m21(t∗3) (65),

m22 =
X3 − Δ3

2
, m2 =

2m∗
1 + Δ∗

2 − X2

3t∗3
. (68)

If (67) is satisfied, then we fix t∗3, m∗
2 ∈(m2; m2] and go to the third step. If (67) is

not fulfilled, arbitrary parameters Δ3 and/or t3 should be varied. If initially m22 > m21,
then by increasing Δ3 (up to Δ3 = X3) we need to ensure m21 > m22. If with new Δ∗

3 the
inequality (67) is not satisfied or initially m21 > m22, then we decrease t∗3. The critical value
t3 > 0 :m21(t3) = m2(t3) exists and equals

t3 =

√
q2

2 − 4q1q3 − q2

2q1
,

q1 = −3(H2 + k∗1(m
∗
1)

2 + Δ3),
q2 = 3(3m∗

1 + (H2 + k∗1(m
∗
1)

2 + Δ3)t∗2) + 0.8(2m∗
1 + Δ2 − X2),

q3 = −0.8(2m∗
1 + Δ2 − X2)t∗2.

(69)

From a limit relation similar to (63), namely

lim
t3→+0

m21(t3) =
X2 + m∗

1 − Δ∗
2 + (H2 + k∗1(m

∗
1)

2 + Δ3)t∗2
0.8t∗2

= const < lim
t3→+0

2m∗
1 + Δ∗

2 − X2

3t3
= +∞

it follows that for any t∗3 > 0 : 0 < t∗3 < t3 inequality (48) is valid.
Note that at the second step (as opposed to the first), the fulfillment of (67) can be

ensured only in the indicated way. Increasing the upper limit m2 by increasing m∗
1 will also

lead to an increase in the lower limit m2(m21), and at a faster rate.
Allowable values t∗3, m∗

2, Δ∗
3 and k∗3(Δ∗

3) are fixed, and then we go to the third step.
Step 3. Using (54), (57), the third inequality (48) takes a form similar to (38)

m3 ≥ m3 =
1.25
bmin

(
X3 + m∗

2 − Δ∗
3

t∗3
+ F + H3 + k∗2(m∗

2)
2
)

. (70)

Based on (70), let us fix m∗
3. The amplitude adjustment procedure is complete.

Thus, there are exist such ki > 0, i = 1, 3(47), 0 < mi < mi, i = 1, 2(61), (62) and (67)
and m3 > 0 (70), that for all ki ≥ ki, mi : mi < mi ≤ mi, ∀m3 ≥ m3 the variables in closed
system (42) sequentially converge into the indicated regions within the specified time (46),
which ensures the fulfillment of the target condition. Lemma 2 is proved. �

The theoretical significance of the obtained results is as follows. It is shown that it
is fundamentally possible to ensure any arbitrary small stabilization error of the output
variable with any sufficiently small overshoot (56) in any arbitrary small time for any
admissible initial conditions (39). However, it must be understood that a decrease in target
characteristics (45) will lead to an increase in the parameters of the controller and the
values of fictitious and true controls in the transient process, which is undesirable in real
automatic control systems.

We can easily extend the procedure presented in the proof of Lemma 2 to n-dimensional
canonical systems with one input. Accordingly, without restrictions, this approach is appli-
cable to MIMO systems with m outputs, in which: (i) the number of inputs is not less than
outputs; (ii) the system is representable in the form of m input-output subsystems with
one input, in which the matrix before the controls has full rank; (iii) there is no internal
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dynamics subsystem or its solutions are bounded (i.e., the system is a minimum phase).
The more general case of MIMO systems requires additional research.

5. Discussion

The main result of this work is the use of S-shaped smooth sigmoid functions in the
feedback loop as fictitious and true controls when unmatched non-smooth disturbances act
on the system. The parameters of the nonlinear stabilizing controller are iteratively selected
at the stage of synthesis based on inequalities obtained from the worst possible values of
the parameters of the control plant and the boundaries of changes in external influences.
This approach does not require reconfiguring the controller when internal and external
factors change within acceptable limits. Thus, it simplifies the structure of the controller
and decreases the formation time of the control signal, since additional identification of
unknown parameters, a compilation of models, and the use of an external disturbance ob-
server are not required. In the process of regulation, the sigmoid fictitious and true controls
converge to the unknown bounded external signals matched with them in a finite time
and repeat their shape with a predetermined accuracy. Thus, a mechanism of suppressing
disturbances, including those that are not into the space of true control, is automatically
implemented, which ensures the invariance of the output (controlled) variable.

The boundness of sigmoid feedbacks is their undoubted advantage over the tradi-
tionally used linear feedbacks with high-gain factors, leading to a large overshoot. In the
paper [33], the results of comparative analysis and modeling of systems with linear and
nonlinear local feedbacks operating under uncertainty conditions are shown. In [34,35],
the results of modeling closed systems with sigmoid local feedbacks as applied to various
electromechanical control plants are presented. The disadvantages of the method include
a more complex computational implementation compared to a linear control. However,
given the constantly increasing power of modern control microprocessors, this is not a
serious obstacle to the use of nonlinear functions in automatic control systems of modern
and promising technical objects.

Due to the organization of local feedbacks, the state variables of the closed initial
system will “track” bounded sigmoid signals, while the maximum deviations of fictitious
controls from “reference influences” are bounded (51). This fact is a prerequisite for the
creation of analytical methods of the synthesis of invariant systems, taking into account
design constraints on the state and control variables. The solution of this problem is the
subject of future research by the authors.
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Abstract: The stability of bilinear systems is investigated using spectral techniques such as selective
modal analysis. Predictive models of bilinear systems based on inductive knowledge extracted by big
data mining techniques are applied with associative search of statistical patterns. A method and an
algorithm for the elementwise solution of the generalized matrix Lyapunov equation are developed
for discrete bilinear systems. The method is based on calculating the sequence of values of a fixed
element of the solution matrix, which depends on the product of the eigenvalues of the dynamics
matrix of the linear part and the elements of the nonlinearity matrixes. A sufficient condition for
the convergence of all sequences is obtained, which is also a BIBO (bounded input bounded output)
systems stability condition for the bilinear system.

Keywords: Gramian method; bilinear system process identification; generalized Lyapunov equation;
knowledgebase; associative search models; wavelet analysis

1. Introduction

Stability estimators (soft sensors) are increasingly used in mode planning and super-
visory control in present day electric power systems (EPS) [1–19]. Due to the growing
popularity of distributed generation and renewable energy sources (RES) in EPS, its opera-
tion modes may approach the stability limits. It is, therefore, necessary to improve both
predictive modeling techniques and the methods of analysis and preventive control not
only for small deviation modes, but also for essentially nonlinear ones [14,20–23]. Bilinear
systems are the closest ones to the essentially nonlinear class among all nonlinear systems.
Therefore, research methods for bilinear systems have been actively developed over recent
decades [2–5,20,21,24–28]. Spectral methods of stability analysis, in particular, selective
modal analysis, are widely used in the design and operation of EPS [16,18,22,23].

This article presents the results of the development of these methods and their
extension over the class of bilinear EPS models. This will expand their application
area [7,8,19,21,28]. To create bilinear models of discrete stationary dynamical systems,
digital identification methods and associative search algorithms are used, based on the
intelligent analysis of big data obtained from system operation monitoring.

The work [13] develops the Poincaré normal form method for analyzing the stability
of energy systems based on continuous dynamical systems with smooth nonlinearities.
This approach can be considered to be an alternative to stability estimator development.
The article [21] uses a virtual model of energy system’s inertia to control the frequency in
a system with a high level of microgrid penetration that shows the possibility of using
stability estimators not only for stability monitoring tasks, but also for controlling the
frequency of low-frequency oscillations.

In [26], Volterra equations are proposed for analyzing the stability of power systems
with renewable energy sources. As against [26], Volterra equations are used by the authors
for developing digital twins of bilinear models for EPS. The work [27] shows an effective
method of Lyapunov stability indices for studying small-signal stability of EPS, which can
be used to solve problems discussed in our article.

Mathematics 2021, 9, 3194. https://doi.org/10.3390/math9243194 https://www.mdpi.com/journal/mathematics
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Separable spectral expansions of discrete Lyapunov equations are obtained for MISO
LTI (multiple input single output linear time invariant) discrete dynamical systems gov-
erned by state equations in controllability and observability forms. A method and an
algorithm for the element-wise solution of the generalized matrix Lyapunov equation are
developed for discrete bilinear systems. The method is based on calculating the sequence
of values of a fixed element of the solution matrix, which depends on the product of the
eigenvalues of the dynamics matrix of the linear part and the elements of the nonlinearity
matrixes. The new method is a spectral version of the iterative method used for solving
this equation.

The new method changes the very computing paradigm: sequences of elements are
now calculated instead of decision matrixes. In addition to this paradigm change, the
method changes the approach to studying the stability of the initial nonlinear model of the
power system. The convergence of all sequences of elements means BIBO stability of the
original system in a wider area than the area of “small-signal stability of power systems”,
as well as identify new indicators of stability in this area.

For developing bilinear models of discrete stationary dynamical systems of this class,
the authors propose digital identification methods and associative search algorithms, based
on the intelligent analysis of big data collected during system operation.

Computing speed is the key advantage of such identification techniques against the
known methods of bilinear model development. The off-line training of the identification
system is carried out in advance; further, in the course of real-time operation, the current
values of model parameters are obtained using the knowledge accumulated at the training
phase [29]. This is done by choosing analogs from the appropriate cluster [18]. It should
be noted that the associative search method creates a new linear model at each time
step. Section 2 shows how such a model can be further used for digital bilinear model
development. In Section 6, an example of obtaining the values of the parameters of linear
associative models is cited. In future studies, it is planned to develop a version of this
method for the non-stationary case.

2. Knowledge-Based Bilinear Models of Discrete Stationary Dynamic Systems

The essence of the machine learning procedure is as follows [9]. For the current time
instant k, a set of impacts uk (uk ∈ Rm) on the stationary system during the time interval
T = {k − T, k − T + 1, . . . , k}, is divided into clusters (together with the corresponding
values of the outputs yk−i, i = 0, . . . , T). The clustering procedure is carried out with
reference to the distance between the vectors. For the current vector uk, a set of vectors
uk−i and the corresponding outputs yk−i are collected within the corresponding cluster.
Next, a system of linear equations is formed for the unknown coefficients and the output
yk. Unlike traditional regression models, this model does not contain all the prehistory, but
rather especially selected vectors (the closest to the current input vector subject to a certain
criterion) named “associations”.

The least squares method provides a solution to this system of equations, which is op-
timal if the conditions of the Gauss-Markov theorem are met [30]. Statistical independence
of the model variables is a condition of this theorem, which is not met for closed-loop sys-
tems. The transition to a system of simultaneous linear equations can be done in particular
per the Moore-Penrose procedure [31,32]. As a result, a pseudo-solution of the original
system of equations can be obtained such that the resulting linear model will have accuracy
admissible for a wide range of applications.

It should be noted that the described identification algorithm generates point models,
the best ones for the nonlinear system under investigation at a time instant. Therefore,
unlike traditional identification algorithms, we do not improve a single model ad infinitum,
rather we deal with a sequence of digital ad hoc models; each one is the best fit at the
specific time instant subject to the chosen criterion.

Another feature of the models obtained by machine learning is the fact that if the
corresponding model accuracy requirements are met, then the solution does not need to be
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found every time, it can be rather “found” in the cluster, which contains the current vector
uk. This can be the “nearest neighbor”, or a vector selected in some other way, in particular,
the cluster’s centroid.

If it is nevertheless necessary to solve a system of linear equations, it will be possible
in the near future using quantum algorithms.

Machine learning procedures are carried out off-line, at the training stage. Therefore,
this identification algorithm demonstrates high speed.

There is a class of essentially nonlinear systems, for which the accuracy of point linear
models may be insufficient. This class can include nonlinear systems described by the
following equations:

.
x(t) = f (x, u, t) = f (x, t) + b(x)u(t), x(0) = 0

y(k) = Cx(k),
(1)

where x(t) is the state vector of the system, x(t) ∈ Rn, f and b are nonlinear functions.
Models of such systems in the form of:

.
x(t) = ax(t) + Nx(t)u(t) + bu(t) (2)

where ax(t) + bu(t) is the system’s linear part, are called bilinear models.
If the matrix B ∈ Rn×m, the system can be represented as

.
x(t) = Ax +

m
∑

γ=1
Nγxuγ + Bu,

y = Cx,
(3)

or, in the discrete case:

x(k + 1) = Ax(k) +
m
∑

γ=1
Nγx(k)uγ(k) + Bu(k), x(0) = 0,

y(k) = Cx(k),
(4)

where x ∈ Rn, y ∈ R1, u ∈ Rm, A, B, C, Nγ are matrices of appropriate dimensions.
Equation (4) can be rewritten as:

x(k + 1) = [A
... N1

... · · · ... Nm ]x̃(k) + Bu(k), (5)

where

x̃(k) =

⎡⎢⎢⎣
x(k)

x(k)·u1(k)
. . .

x(k)·um(k)

⎤⎥⎥⎦ ∈ R
1×(n×(m+1)). (6)

Thus, we get the representation:

x(k + 1) = Ãx̃(k) + Bu(k),

Ã = [A
... N1

... · · · ... Nm ],
(7)

where:

x̃(k) = Dn·x(k),

Dn =

⎡⎣ D0n

. . .
Dnn

⎤⎦, D0n=

⎡⎢⎣ 1 · · · 0
... 1

...
0 · · · 1

⎤⎥⎦, Din =

⎡⎢⎣ ui(k) · · · 0
... ui(k)

...
0 · · · ui(k)

⎤⎥⎦, i = 1, . . . , n.
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For simplicity, we assume that m = n. Otherwise, the matrices Ni are padded with
zero rows so that the number of rows is equal to n.

Then Equation (4) can be represented as

x(k + 1) = ÃDnx(k) + Bu(k). (8)

Furthermore, to identify the parameters of the system, we will carry out the transition
from a state-space model to a linear input-output model. This transition is a standard
procedure described, e.g., in [33]. The identification is carried out using the associative
search algorithm together with the Moore-Penrose procedure [31,32], which delivers a
solution to a system of linear equations with the statistical dependence of the components
of the vector x̃.

Returning to the canonical form of the model results in an estimate of all parameters,
i.e., the updated bilinear model. The ability to determine the system’s state and output
for various control impacts enables the usage of identification models for predicting the
approach to stability boundaries in advance.

3. Controllability and Observability Gramians of Discrete Stationary Bilinear Systems

Let the model (4) of a discrete stationary dynamical system be obtained as a result of
identification using the algorithms described in Section 2. We will assume that it belongs
to the class of MISO LTI systems.

Consider a MISO LTI discrete stationary dynamical system in the form:

x(k + 1) = Ax(k) + Bu(k), x(0) = 0,
y(k) = Cx(k),

(9)

where x ∈ Rn, y ∈ R1, u ∈ Rm

We will consider real matrices of the corresponding sizes A, B, C. Let us assume that
the system (9) is stable, fully controllable and fully observable, all eigenvalues of matrix A
are different. Consider discrete algebraic Lyapunov equations associated with Equation (9)
in the form:

APc A∗ + BB∗ = Pc,
A∗Po A + C∗C = Po.

Consider a bilinear discrete stationary dynamical system in the form:

x(k + 1) = Ax(k) +
m
∑

γ=1
Nγx(k)uγ(k) + Bu(k), x(0) = 0,

y(k) = Cx(k),
(10)

where x ∈ Rn, y ∈ R1, u ∈ Rm, A, B, C, Nγ are matrices of appropriate dimensions.
One of the most important properties of control systems is the controllability. In [4,5],
controllability and observability Gramians of discrete bilinear dynamical systems were
introduced and iterative algorithms for their computation were proposed. Let us denote:

P1(k1) = Ak1 B,
Pi(k1, . . . , ki) = Aki [N1Pi−1N2Pi−1 . . . NmPi−1], i ≥ 2,

The controllability Gramian of a bilinear system is defined as follows:

P =
∞

∑
i=1

∞

∑
ki=0

. . . . . .
∞

∑
ki=0

PiPT
i . (11)
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It was shown in [5] that if the spectrum of A belongs to the interior of the unit circle,
then, under certain additional conditions, the solutions to the following two Lyapunov
generalized matrix equations:

APA∗ + BB∗ +
m

∑
j=1

NjPN∗
j = P, (12)

A∗QA + C∗C +
m

∑
j=1

NjQN∗
j = Q, (13)

are the Gramians of controllability and observability. The Gramian of controllability of a
bilinear system is the limiting solution

P = lim
i→∞

Pi (14)

obtained as a result of the implementation of the following iterative procedure

AP1 A∗ − P1 = −BB∗,

APi A∗ − Pi +
m

∑
j=1

NjPi−1N∗
j = 0, i = 2, . . . ∞. (15)

Similarly, the observability Gramian of a bilinear system is the limiting solution
obtained by implementing a similar iterative procedure. The disadvantage of such proce-
dures is that the resulting limiting solution is not always the corresponding Gramian of the
bilinear system.

Our goal is to create improved iterative algorithms for calculating the Gramians of
bilinear systems and to develop a method and algorithms for calculating the stability
indices of bilinear systems based on them. To achieve this goal, it is proposed to change the
computation paradigm by transferring computations from the matrixes to their elements
in the course of iterations.

The very idea of the element-wise computation of Gramians is not new: for example,
the method for vectorizing the solution of generalized matrix Lyapunov equations is based
on it [3,5]. However, the calculation of sequences of numeric elements of Gramian matrixes
will reveal new patterns of sequences behavior, for example, the formation of geometric
progressions of elements. This will allow investigating the behavior of sequences for small,
medium and large matrixes and develop new approaches to approximate calculations.
Another argument in favor of the element-wise approach is that this approach to calculating
the spectral decompositions of Gramians of linear continuous systems was previously
proposed in [7] and has shown its effectiveness.

4. Iterative Methods for Calculating the Solutions of the Generalized Lyapunov
Equations for Canonical State form Equations

Consider further the spectral methods of Gramians calculating for discrete linear
systems. These methods were studied in early works [1–3,7,11] Consider a MIMO LTI
discrete system reduced using a non-degenerate coordinate transformation to the diagonal
form of the dynamics matrix

x = Txd xd(k + 1) = Λxd(k) + Bdu(k), yd(k) = Cdxd(k),
Λ = T−1AT, Bd = T−1B, Cd = CT,

(16)
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or

A =
[

u1 u2 · · · un
]
⎡⎢⎢⎢⎣

z1 0 0 0
0 z2 0

0
. . .

0 0 zn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

v∗1
v∗2
...

v∗n

⎤⎥⎥⎥⎦ = TΛT−1, TV = VT = I, (17)

where the matrix T consists of the right eigenvectors ui, and matrix T−1 consists of the left
eigenvectors v∗i corresponding to the eigenvalues zi. The last equality is a condition for
eigenvectors normalization.

In particular, in [8], the spectral decompositions of Gramian controllability and ob-
servability matrixes for LTI MIMO discrete stable systems with a simple spectrum are as
follows:

Pc =
n

∑
k=1

n

∑
ρ=1

Pc
k,ρ, Pc

k,ρ =
n−1

∑
η=0

n−1

∑
j=0

zj
kzη

ρ
.

N(zk)
.

N
(
zρ

) · 1
1 − zρzk

AjBBT AT
η , (18)

Po =
n

∑
k=1

n

∑
ρ=1

Po
k,ρ, Po

k,ρ =
n−1

∑
η=0

n−1

∑
j=0

zj
kzη

ρ
.

N(zk)
.

N
(
zρ

) · 1
1 − zρzk

AT
η CTCAj, (19)

where zk, zρ are the roots of the characteristic equation, Aj, AT
η are the Faddeev matrices.

For the Lyapunov equations of the same diagonalized systems of the form:

ΛPc
dΛ∗+BdB∗

d = Pc
d ,Vd= BdB∗

d ,
Λ∗Po

d Λ + C∗
d Cd = Po

d ,Wd= C∗
d Cd,

we have the following formulas for spectral decomposition:

Pc
d,ρk =

1
1 − zρzk

RkBdB∗
d R∗

ρ , ∀z : |z| < 1, (20)

Po
d,ρk =

1
1 − zρzk

R∗
k C∗

d CdRρ, ∀z : |z| < 1, (21)

where Rk are the residues of the resolvent of the matrix Λ in the eigenvalues of the matrix zk.
The elements “ρk” of the sub-Gramian matrixes (20)–(21) satisfy the formulas:

pc
dρk=

1
1 − zρzk

vdρk, po
dρk=

1
1 − zρzk

wdρk. (22)

When transforming Equation (4) by decomposing the matrix A in its eigenvalues
(16)–(17), we obtain the equations

xd(k + 1) = Λxd(k) +
m
∑

γ=1
Ndγxd(k)uγ(k) + Bdu(k), xd(0) = 0,

y(k) = Cdx(k).k = 0, 1, 2 . . .
(23)

Ndγ = TNγ.

Definition 1. Consider the following matrix and vector identities:

A ≡ ∑
i,j

aij1ij, {a} ≡ ∑
i

ai1i, 1ij = eieT
j , 1i = ei,

where the unit vector is as follows:

ei =
[

0 . . . 0 1 0 . . . 0
]T .
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We call the above decompositions of matrixes and vectors separable decompositions. The
separability property means the change in the very paradigm of solution computing: the
transition from the matrix-vector consideration to the element-wise one.

Let us derive a formula for spectral decomposition of Gramian for the dynamics
matrix of the system, transformed into the canonical controllability form using a linear
nondegenerate transformation of coordinates with the following matrix:

RF
c , x = RF

c xc.

We assume full-controllability and full-observability conditions are fulfilled. Fur-
thermore, we consider the channel “γ” MISO LTI of the linear system in the canonical
controllability form:

xc(k + 1) = AF
c xc(k) + bF

γu(k), xc(0) = 0,
y(k) = cF

γx(k),k = 0, 1, 2 . . .
(24)

AF
c =

⎡⎢⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 0 1

−a0 −a1 −a2 . . . −an−1

⎤⎥⎥⎥⎥⎦, bF
γ=
[

0 0 . . . 0 1
]T , NF

cγ =
(

RF
c
)−1Nγ.

cF
γ =
[

ξ0 ξ1 · · · ξn−2 ξn−1
]
.

The following relations are valid:

RF
c =
[

B AB . . . . . . An−1B
]
⎡⎢⎢⎢⎢⎣

a1 a2 an−1 1
a2 a3 an−1 1

an−1 0
an−1 1 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎦,

(
RF

c
)−1 ARF

c = AF,
(

RF
c
)−1B = BF, CRF

c = CF.

Lemma 1. Consider a linear discrete MISO system in the form (2) represented by equations in the
canonical form of controllability of the form (24). Let us further consider the decomposition of the
dynamics matrix AF resolvent into a segment of the Faddeev series of the form

(
Iz − AF

)−1
=

n−1

∑
j=0

AF
j zj

N(z)
,

where: N(z) is a characteristic polynomial, AF
j is Faddeev matrix, j = 1, 2, . . . n.

The elements of the last column of the matrix AF
j satisfy the statements:

{
aF

n−k,n

}T
= eT

n−k, k = 0, 1, 2 . . . , n − 1. (25)

Comment. Note, first that the decomposition of the resolvent in the Faddeev series form does not
require calculating the eigenvalues of the dynamics matrix AF. Second, the transfer function of the
“γ” channel of the linear part is determined by the formula:

VFln
γ =

[
ξ0 ξ1 . . . ξn−2 ξn−1

](
Iz − AF

)−1
bF

γ, bF
γ =
[

0 . . . 0 1
]T ,

hence it follows that it is determined only by the elements of the last column of the matrix AF.
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Proof. Consider the expansion of the resolvent of the matrix AF in the form of a segment
of the Faddeev series

(
Iz − AF

)−1
=

n−1
∑

j=0
AF

j zj

N(z)
.

We will accept

N(z) = zn + an−1zn−1 + · · · a1z + a0, Rj = AF
j−1, j = 1, 2, . . . n.

We apply the method of mathematical induction. An iterative algorithm for calculating
the Faddeev matrixes and the coefficients of the characteristic equation has the form at the
first step [17]:

an = 1, Rn = AF
cn−1 = I,

at the step “k”:

an−k = −1
k

tr
(

AFRn−k+1

)
, Rn−k = an−k I + AFRn−k+1, k = 1, 2, . . . n.

Consider the formation of the last column of matrixes AF
n−k.

The first step:

AF
cn−1 = I.

{
aF

n−1,n

}
=
[

0 0 . . . 0 1
]T .

The second step:

AF
cn−2=

⎡⎢⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 0 1

−a1 −a2 . . . −an−2 0

⎤⎥⎥⎥⎥⎦,
{

aF
cn−2,n

}
=
[

0 . . . 0 1 0
]T .

Suppose that for step “k − 1”, the last column of the matrix AF
cn−(k−1) has the form:

{
aF

cn−(k−1),n

}
=

[
0︸︷︷︸
1

. . .
0︸︷︷︸

n−(k−2)

1 . . .︸︷︷︸
n−(k−1)

0︸︷︷︸
n

]T

.

We introduce the notation:

AF
c AF

cn−(k−1) = S, S =
[ {s1} {s2} . . . {sn}

]
.

The last column of the matrix is:

{sn} =

[
0︸︷︷︸
1

. . .
1︸︷︷︸

n−k

0.︸︷︷︸
n−(k−1)

−aF
cn−(k−1),n︸ ︷︷ ︸

n

]T

.

In accordance with the Faddeev—Le Verrier algorithm, we have:

{
aF

cn−k,n

}
=

[
0︸︷︷︸
1

. . .
1︸︷︷︸

n−k

0︸︷︷︸
n−(k−1)

0︸︷︷︸
n

]T

.

�
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Corollary 1. Without loss of generality, we assume m = 1. The general formulas (9) of spectral
decompositions for the controllability Gramians of the linear system transformed in the canonical
controllability form, taking into account the Lemma 1, acquire a simpler form:

PcF =
n

∑
k=1

n

∑
ρ=1

PcF
k,ρ, PcF

k,ρ =
n−1

∑
η=0

n−1

∑
j=0

zj
kzη

ρ
.

N(zk)
.

N
(
zρ

) 1
1 − zρzk

ej+1eT
η+1. (26)

A similar approach can be used to derive a formula for spectral decompositions
for observability Gramians of the MISO system transformed in the canonical form of
observability. In this case, the following formulas are valid [18]:

x = RF
0 xo,

RF
0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
a1 a2 an−1 1
a2 a3 an−1 1

an−1 0
an−1 1 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

c
cA
...

cAn−1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

−1

.

Let us use (16) and consider the formation of the expression AFT
oj cFTcF AF

oj. In accor-
dance with duality principle, due to the complete controllability and observability, the
following formula is valid:

cF AF
oj =
(

AF
cj

)T
bF. (27)

Substituting (27) into (19), we obtain the expression:

PoF =
n

∑
k=1

n

∑
ρ=1

PoF
k,ρ =

n−1

∑
η=0

n−1

∑
j=0

zj
kzη

ρ
.

N(zk)
.

N
(
zρ

) 1
1 − zρzk

ej+1eT
η+1, PoF = PcF. (28)

The Gramians of the original system are related to the Gramians of the systems
transformed into canonical forms as follows

RF
c PcFRFT

c = Pc,
(

RFT
o

)−1
PoF
(

RF
o

)−1
= Po.

Please note that in this case the expressions of the Gramians and sub-Gramians of
controllability and observability depend only on the eigenvalues of the dynamics matrix.
In addition, the proposed approach using canonical forms made it possible to simplify the
general formulas significantly.

5. Separable Spectral Method and Algorithm for Solving the Generalized
Lyapunov Equation

Theorem 1. Consider a MISO (multiple input single output) discrete bilinear stationary system in
the form (4) [3–5,24].

(1) Let the matrix A be a Hurwitz one with the simple spectrum,
(2) Let the vector u(k) be bounded:

‖u(k)‖ = 2

√
m

∑
i=1

|ui(k)|2 < M.

77



Mathematics 2021, 9, 3194

(3) There exist real numbers α, ρ such that the following inequalities hold:

‖A‖ ≤ αρi, i = 0, 1, 2, . . . ,
ρ< i, α >0,

M <
√

1 − ρ2α−1.

(4) Suppose, in addition, the following conditions are satisfied:∣∣∣∣∣∣
pC bln(k+1)

ij

pC bln(k)
ij

∣∣∣∣∣∣ ≤ NL < 1, ∀k, ν, μ, j, η, γ, (29)

where
N = supn2|nγ

dνi||nγ
dνj|︸ ︷︷ ︸

ν,μ,j,η,γ

, L =
∣∣∣(1 − zνmaxzνmax

∗)−1
∣∣∣. (30)

In (30), zνmax denotes the maximum eigenvalue of the dynamics matrix of the linear
part of the system.

Then, there also exists a uniquely following separable iterative spectral solution to the
generalized Lyapunov equation (12) for the diagonalized system (16):

p(k)ijd =

(
∑
ν,μ

p(k−1)ij
dνμ

)[(
1 − zνzμ

)−1nγ
dνin

γ
dμj

]
, k = 2, 3, . . . ∞. (31)

∀ν, μ, i, j = 1, 2, . . . n; γ = 1, 2, . . . m.

Sequences of partial sums (31) converge uniformly and absolutely to the corresponding
elements of the solution matrix of the generalized Lyapunov equation (12) if the conditions
of the theorem are satisfied. The controllability Gramian of the original bilinear system
Pcbln is related to the controllability Gramian of the diagonalized bilinear system Pcbln

d as
follows

TPcbln
d TT = Pcbln. (32)

Proof. Consider an iterative process, which develops the solution of (31).
Step 1. Let us consider the forming of the right-hand side of the generalized Lyapunov

equation for the case m = 1. We do not need the matrix of the Lyapunov equation solution
of the linear part; rather we need a separable spectral decomposition of this solution in the
pair spectrum of the matrix [18]:

Pbln(1)
d =

m

∑
γ=1

n

∑
ν=1

n

∑
μ=1

vd,γνμ

1 − zνzμ
1νμ. (33)

Step 2. Consider the formation of the right-hand side of the generalized Lyapunov
equation with the example of the matrix Nγ

d 1ij
(

Nγ
d
)T :

Nγ
d 1ij
(

Nγ
d
)T

=
n

∑
ν=1

n

∑
μ=1

nγ
d,νin

γ
μj1νμ, (34)

The solution of the Lyapunov equation takes at Step 2 the form:

Pbln(2)
d =

m

∑
γ=1

n

∑
ν=1

n

∑
μ=1

1
1 − zνzμ

(
nγ

d,νin
γ
dμj

)
pbln(1)ijγ

νμ 1νμ.
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Proceeding in a similar way and taking into account the summation of sub-Gramians
over the index “γ”, we obtain a formula for calculating the matrix of the Gramian kernel of
the order “k” at step “k”.

Pbln(k)ijγ
d =∑

ν,μ
r(k)ijγ p(k−1)ijγ

νμ 1νμ, r(k)ijγ =
[(

1 − zνzμ

)−1nγ
dνin

γ
dμj

]
, (35)

p(k)ijγdνμ =

(
∑
ν,μ

p(k−1)ijγ
dνμ

)[(
1 − zνzμ

)−1nγ
dνin

γ
dμj

]
, k = 2, 3, . . . ∞,

∀ν, μ, i, j = 1, 2, . . . n; γ = 1, 2, . . . m. (36)

�

This proves the theorem’s statement about the iterative spectral decomposition of
the solution in the case of solution convergence. Let us show that under the conditions
of Theorem 2, the convergence of the sequences is absolute and uniform. To this end, we
construct a majorizing sequence for the elements of the sub-Gramian matrixes. Suppose
that conditions (29)–(30) are satisfied. For all converging sequences’ elements “ij”, the
following conditions must be satisfied:∣∣∣p(k)ijγd

∣∣∣ ≤ ∣∣∣p(k−1)ijγ
d

∣∣∣ . . . ≤
∣∣∣pbln(1)ijγ

d

∣∣∣ ≤ max︸︷︷︸
ij

∣∣∣pbln(1)ijγ
d

∣∣∣ = Mijγ
max.

Let us introduce the notation Mmax = max︸︷︷︸
ijγ

Mijγ
max. For the matrix Nγ

d , the exact upper

bound of the products exists:

n2
∣∣∣nγ

dνj

∣∣∣∣∣∣nγ
dμη

∣∣∣ ≤ N, N > 0, ∀γ, ν, i, μ, j : γ, ν, i, μ, j = 1, 2, . . . n.

In addition, in addition, due to the stability of the linear part, the exact upper bound
exists for the functions:

L = max︸︷︷︸
νμ

∣∣∣(1 − zνmaxzνmax
∗)−1
∣∣∣, L > 0, ∀ν, μ, : ν, μ = 1, 2, . . . n,

where zνmax is the maximum eigenvalue of the dynamics matrix of the system’s linear part.
Therefore, the following inequality holds:∣∣∣∣∣∣

pcbln(k+1)
dij

pcbln(k)
dij

∣∣∣∣∣∣ ≤ NL ∀γ, ν, i, μ, j : γ, ν, i, μ, j = 1, 2, . . . n.

We choose a single majorant for all numerical sequences in the form:

S0 , S1 , . . . Sk .

Sk = Mijγ
maxn2

⎡⎣max︸︷︷︸
νμ

∣∣∣(1 − zνmaxzνmax
∗)−1
∣∣∣ max︸︷︷︸

νμijγ

∣∣∣nγ
dνin

γ
dμj

∣∣∣
⎤⎦k−1

.

k = 2, 3, . . . ∞.

Obviously, with such a choice, according to (36), the following inequality holds:∣∣∣p(k)ijγdνμ

∣∣∣ < Sk , ∀k, i, j, ν, μ, γ. (37)
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It follows thereof that under conditions (29)–(30), the inequality∣∣∣∣∣∣
pbln(k+1)

dij

pbln(k)
dij

∣∣∣∣∣∣ ≤ Sk+1
Sk

< 1, (38)

is valid.
The majorizing sequence for all sub-Gramians of the bilinear system forms a geometric

progression with positive terms. In accordance with the convergence criterion for geometric
progressions, it converges if the following condition is satisfied:

NL < 1.

In accordance with the Weerstrass test (37)–(38), the sequences of partial sums pcbln(k)
dij

converge uniformly and absolutely. The uniqueness of the iterative solution under condi-
tions (1)–(3) was proved in [5].

The Gramians method can be used simultaneously for state monitoring and control of
large-scale power systems, in particular, for static stability analysis, for developing stability
estimators, detecting dangerous free and forced oscillations, and assessing the resonant
interaction of dangerous oscillations [1,7–10].

Algorithm of the spectral iterative solution of the generalized Lyapunov equation of
the form (12) is as follows:

Step 1. Calculate the spectrum of the dynamics matrix of the linear part, check the stability
of the linear part, the absence of multiple roots of the characteristic equation. Find a non-
degenerate coordinate transformation that transforms the dynamics matrix of the linear
part into a diagonal matrix. Let us transform the equations of the bilinear system (9) to the
diagonal form.
Step 2. Check the fulfillment of conditions (1)–(4) of Theorem 1.
Step 3. By analyzing conditions (4), we identify the numerical sequences of elements of
the matrixes of the kernels of the spectral expansion of the matrixes of the solution of the
generalized Lyapunov equation, which are critical from the point of view of convergence.
Step 4. Using algorithm (34), we compute the sequences of elements “ij” of the matrixes
of the kernels of the Gramian expansion of the bilinear system at each step. We aggregate
the elements of the sequences into the matrixes of the kernels of the decomposition of the
bilinear system Gramian. We estimate the accuracy of the solution.
Step 5. Using Formula (32), we calculate the Gramian matrix of the original bilinear system.

Comment. In [3,5,20,24], various versions of the generalized Lyapunov equation
solutions are proposed using conditions (1)–(3) given in Theorem 1., but the similarity
transformation of the dynamics matrix of the linear part to the diagonal form is not used,
and the separable spectral decomposition is not used solutions of the Lyapunov equation
of the linear part and the generalized Lyapunov equation for a bilinear system. Such a
technique allows one to switch from calculating decision matrixes at separate iterations to
calculating sequences of their elements.

As is known [2], the necessary and sufficient condition for energy stability of the
system in terms of the square of the H2 norm of the linear system transfer function G(z) has
the form:

‖G(z)‖2
2 = trCPcCT = trBTPoB < +∞.

Therefore, we define the stability loss risk functional of a bilinear system as:

J(z1, z2, . . . , zn) = trCPcblnCT = trBTPoblnB. (39)
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As the system approaches the stability threshold caused by the approaching of the
characteristic equation roots to the imaginary axis, the risk functional approaches the
infinity. Let us define the acceptable risk of stability loss of the bilinear system as:

J(γ)(z1, z2, . . . , zn, γ) = Mγperm, γ = 1, 2, . . . m.

We will consider any system as conditionally unstable if all its roots lie in a unit circle,
but the functional of the stability loss risk (39) exceeds the established acceptable risk value.
Accordingly, we will consider the system conditionally stable if:

J(γ)(z1, z2, . . . , zn, γ) < Mγperm. γ = 1, 2, . . . m. (40)

The inequalities (40) define a set of energy functionals, the boundedness whereof
guarantees the BIBO stability of the bilinear system. Conditions (1)–(4) of the theorem are
sufficient conditions for the BIBO stability of the bilinear system and, at the same time,
sufficient conditions for the boundedness of the energy functionals J(γ).

It is easy to see that inequalities (40) determine the stability conditions for a bilinear
energy system in a wider range as against the traditional selective modal analysis. The
analysis of expressions (37), (38) shows that the elements of the numerical sequences for
the Gramian of the bilinear system converge at different rates, the guaranteed estimate
whereof is specified by expressions (29)–(30).

This estimate depends on the choice of the “γ” channel, on the values of the elements
of the nonlinearity matrixes for a specific channel, and on the proximity of the product
of two eigenvalues of the linear part to unity. Sufficient conditions for BIBO stability of a
bilinear system were obtained earlier in [3,5,24]. Theorem 1 establishes additional sufficient
conditions (29)–(30) that guarantee the existence of not only a matrix for the solution of
the generalized Lyapunov equation, but also of complete controllability and observability
properties for the bilinear system.

6. Case Studies

The increased requirements for speed, accuracy and control capabilities under condi-
tions of uncertainty in the presence of various kinds of disturbances in the control systems
of production processes in industry and the electric power industry have demonstrated
the inadequacy of the capabilities of traditional approaches to the synthesis of automatic
control systems. Methods of identification synthesis, in which models are developed on
the basis of data mining and machine learning, are gaining more and more popularity [18].

The authors have developed an intelligent system designed to dynamically assess
the state of facilities in the power system [34]. The system is underpinned by intelligent
algorithms of grid dynamics identification with automatic on-line self-tuning based on the
data from monitoring systems.

State estimation models for power facilities with on-line model tuning are based
on data monitoring and application of a predictive method for state estimation—the
associative search method.

The acquisition, storage, processing, displaying, analysis and documenting of the
information are executed in real time based on the data from automated power generation,
distribution and consumption systems and supervisory control, monitoring and accounting.
Figure 1 demonstrates power dynamic estimation for a certain facility in the power system.
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Figure 1. Power dynamic estimation.

In Figure 1, we have:

• the black line represents the dynamics of the real process;
• the red line shows the result in a linear model;
• and the blue line shows the result obtained by associative search model.

Figure 1 shows how a more accurate estimate of a real process dynamics can be
obtained using the associative search model, compared with the classical linear models.

7. Conclusions

Predictive bilinear models of discrete dynamical systems are obtained using the
associative search algorithm. The method is based on the use of machine learning proce-
dures and inductive knowledge (associative patterns) extraction from historical data. The
method features high algorithmic speed, since the main computational load falls on the
training stage.

According to the proposed scheme, we, at first, obtain a bilinear model of a nonlinear
dynamic object, and then analyze the stability. The advantages of the scheme are the
accuracy and speed of the identification algorithm. Section 6 demonstrates the operation of
the associative search algorithm. It shows that for nonlinear systems the models obtained
through this algorithm are more accurate as against the ones obtained using traditional
linear techniques.

Furthermore, according to our scheme, separable spectral expansions of discrete
Lyapunov equations are obtained for MISO LTI discrete dynamical systems governed by
state equations in controllability and observability forms. A method and an algorithm for
the element-wise solution of the generalized matrix Lyapunov equation are developed for
discrete bilinear systems. The new method is a spectral version of the well-known iterative
method used for solving this equation.

A sequence of values is calculated for a fixed element of the solution matrix. The
element depends on the eigenvalues product of the dynamics matrix of the linear part and
the elements of the nonlinearity matrixes. A sufficient condition for the convergence of all
sequences is obtained, which is also a BIBO stability condition for a bilinear system.

The article discusses MIMO, MISO, and SISO classes of bilinear systems of the form
(10) but does not consider bilinear systems with distributed parameters. In the future, the
authors intend to extend the new method over this class of systems. Time-variant systems
will be also investigated.

Author Contributions: Conceptualization, N.B. and I.Y.; methodology, N.B. and I.Y.; formal anal-
ysis, N.B. and I.Y.; investigation, N.B. and I.Y.; writing—original draft preparation, N.B. and I.Y.;
writing—review and editing, N.B. and I.Y.; visualization N.B. and I.Y.; supervision, N.B. and I.Y.;
project administration, N.B. and I.Y.; funding acquisition, N.B. and I.Y. All authors have read and
agreed to the published version of the manuscript.

82



Mathematics 2021, 9, 3194

Funding: The APC was funded by the Russian Science Foundation. This work was supported by
the Russian Science Foundation project no. 19-19-00673 and by the Russian Foundation for Basic
Re-search (RFBR), project number 21-57-53005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yadykin, I.; Bakhtadze, N.; Lototsky, V.; Maximov, E.; Sakrutina, E. Stability Analysis Methods of Discrete Power Supply Systems
in Industry. IFAC PaperOnLine 2016, 49, 355–359. [CrossRef]

2. Antoulas, A.C. Approximation of Large-Scale Dynamical Systems; SIAM Press: Philadephia, PA, USA, 2005.
3. Benner, P.; Damm, T. Lyapunov equations, Energy Functionals and Model Order Reduction of Bilinear and Stochastic Systems.

SIAM J. Control Optim. 2011, 49, 686–711. [CrossRef]
4. Alessandro, P.D.; Isidori, A.; Ruberti, A. Realization and structure theory of bilinear dynamic systems. SIAM J. Control 1974, 12,

517–535. [CrossRef]
5. Zhang, L.; Lam, J.; Huang, B.; Yang, G.H. On Gramians and balanced truncation of discrete—time bilinear systems. Int. J. Control

2003, 76, 414–427. [CrossRef]
6. Polyak, B.T.; Khlebnikov, M.V.; Rapoport, L.B. Mathematical Theory of Automatic Control; LENAND: Moscow, Russia, 2019.

(In Russian)
7. Yadykin, I.; Galyaev, A. On the Methods for Calculation of Gramians and Their Use in Analysis of Linear Dynamic Systems.

Autom. Remote Control. 2013, 74, 207–224. [CrossRef]
8. Yadykin, I.B.; Iskakov, A.B. Spectral Decompositions for the Solutions of Sylvester, Lyapunov, and Krein Equations. Doklady Math.

2017, 95, 103–107. [CrossRef]
9. Bakhtadze, N.; Kulba, V.; Lototsky, V.; Maximov, E. Identification Methods Based on Associative Search Procedure. Control

Cybernetics 2011, 2, 6–18.
10. Yadykin, I.; Lototsky, V.; Bakhtadze, N.; Maximov, E.; Nikulina, I. Soft Sensors of Power Systems Stability Based on Predictive

Models of Dynamic Discrete Bilinear Systems. IFAC PapersOnLine 2018, 51, 897–902. [CrossRef]
11. Hauksdóttir, S.; Sigurðsson, S.P. The continuous closed form controllability Gramian and its inverse. In Proceedings of the 2009

American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, 10–12 June 2009; pp. 5345–5351.
12. Sauer, P.W.; Pai, M.A. Power System Dynamics and Stability; Printice Hall: New Jersey, NJ, USA, 1998.
13. Ugwuanyi, N.S.; Kestelyn, X.; Marinescu, B.; Thomas, O. Power System Nonlinear Modal Analysis Using Computationally

Reduced Normal Form Method 4. Energies 2020, 13, 1249. [CrossRef]
14. Gibbard, M.J.; Pourbeick, P.; Vowless, D.J. Small Signal Stability, Control and Dynamic Performance of Power Systems; University

Adelaide Press: Adelaide, Australia, 2015.
15. Voropai, N.I.; Tomin, N.V.; Sidorov, D.N.; Kurbatsky, V.G.; Panasetsky, D.A.; Zhukov, A.V.; Efimov, D.N.; Osak, A.B. A suite

of intelligent tools for early detection and prevention of blackouts in power interconnections. Autom. Remote Control. 2018, 79,
1741–1755. [CrossRef]

16. Garofalo, F.; Iannelli, L.; Vasca, F. Participation Factors and their Connections to Residues and Relative Gain Array. IFAC Proc. Vol.
2002, 35, 125–130. [CrossRef]

17. Faddeev, D.K.; Faddeeva, V.N. Computational Methods of Linear Algebra; Freeman: San-Francisco, CA, USA, 2016.
18. Bahtadze, N.; Yadykin, I. Discrete Predictive Models for Stability Analysis of Power Supply Systems. Mathematics 2020, 8,

1943. [CrossRef]
19. Mellodge, P. A Practical Approach to Dynamical Systems for Engineers; Elsevier: Oxford, UK, 2016.
20. Benner, P.; Breiten, T. Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear

Approximations. In Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry; Günther, M., Bartel, A., Brunk, M.,
Schöps, S., Striebel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012.

21. Golpîra, H.; Messina, A.R.; Bevrani, H. Emulation of Virtual Inertia to Accommodate Higher Penetration Levels of Distributed
Generation in Power Grids. IEEE Trans. Power Syst. 2019, 34, 3384–3394. [CrossRef]

22. Hamzi, B.; Abed, E.H. Local modal participation analysis of nonlinear systems using Poincare linearization. Nonlinear Dyn. 2020,
99, 803–811. [CrossRef]

23. Häger, U.; Rehtans, C.; Voropai, N. (Eds.) Monitoring, Control and Protection of Interconnected Power Systems; Springer:
Berlin/Heidelberg, Germany, 2014.

24. Siu, T.; Schetzen, M. Convergence of Volterra series representation and BIBO stability of bilinear systems. Int. J. Syst. Sci. 1991, 22,
2679–2684. [CrossRef]

83



Mathematics 2021, 9, 3194

25. Shaker, H.R.; Takavori, M. Generalized Hankel Interaction Index Array for Control Structure Selection for Discrete-Time MIMO
Bilinear Processes and Plants. In Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), Los
Angeles, CA, USA, 15–17 December 2014; pp. 3149–3154.

26. Sidorov, D.; Muftahov, I.; Tomin, N.; Karamov, D.; Panasetsky, D.; Dreglea, A.; Liu, F.; Foley, A. Dynamic Analysis of Energy.
Storage With Renewable and Diesel Generation Using Volterra Equations. IEEE Trans. Ind. Inform. 2020, 16, 3451–3459. [CrossRef]

27. Iskakov, A.B.; Yadykin, I.B. Lyapunov modal analysis and participation factors applied to small-signal stability of power systems.
Automatica 2021, 132, 109814. [CrossRef]

28. Lubbok, J.; Bansal, V. Multidimensional Laplace transforms for solution of nonlinear equation. Proc. IEEE 1969, 116,
2075–2082. [CrossRef]

29. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1995.
30. Shaffer, J.P. The Gauss-Markov Theorem and random regressors. Am. Stat. 1991, 45, 269–273. [CrossRef]
31. Moore, E. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 1920, 26, 394–395.
32. Penrose, R. A generalized inverse for matrices. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [CrossRef]
33. Polyak, B.; Shcherbakov, P. Robust Stability and Control; Nauka: Moscow, Russia, 2002. (In Russian)
34. Bakhtadze, N.; Maximov, E.; Maximova, N. Digital Identification Algorithms for Primary Frequency Control in Unified Power

System. Mathematics 2021, 9, 2875. [CrossRef]

84



mathematics

Article

Maximum-Likelihood-Based Adaptive and Intelligent
Computing for Nonlinear System Identification

Hasnat Bin Tariq 1, Naveed Ishtiaq Chaudhary 1, Zeshan Aslam Khan 1, Muhammad Asif Zahoor Raja 2,*,

Khalid Mehmood Cheema 3 and Ahmad H. Milyani 4

Citation: Tariq, H.B.; Chaudhary,

N.I.; Khan, Z.A.; Raja, M.A.Z.;

Cheema, K.M.; Milyani, A.H.

Maximum-Likelihood-Based

Adaptive and Intelligent Computing

for Nonlinear System Identification.

Mathematics 2021, 9, 3199. https://

doi.org/10.3390/math9243199

Academic Editors: Natalia Bakhtadze,

Igor Yadykin, Andrei Torgashov and

Nikolay Korgin

Received: 11 November 2021

Accepted: 9 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, International Islamic University, Islamabad 44000, Pakistan;
hasnat.msee143@iiu.edu.pk (H.B.T.); naveed.ishtiaq@iiu.edu.pk (N.I.C.); zeeshan.aslam@iiu.edu.pk (Z.A.K.)

2 Future Technology Research Center, National Yunlin University of Science and Technology,
123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan

3 School of Electrical Engineering, Southeast University, Nanjing 210096, China; kmcheema@seu.edu.cn
4 Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

ahmilyani@kau.edu.sa
* Correspondence: rajamaz@yuntech.edu.tw

Abstract: Most real-time systems are nonlinear in nature, and their optimization is very difficult due
to inherit stiffness and complex system representation. The computational intelligent algorithms of
evolutionary computing paradigm (ECP) effectively solve various complex, nonlinear optimization
problems. The differential evolution algorithm (DEA) is one of the most important approaches
in ECP, which outperforms other standard approaches in terms of accuracy and convergence per-
formance. In this study, a novel application of a recently proposed variant of DEA, the so-called,
maximum-likelihood-based, adaptive, differential evolution algorithm (ADEA), is investigated for
the identification of nonlinear Hammerstein output error (HOE) systems that are widely used to
model different nonlinear processes of engineering and applied sciences. The performance of the
ADEA is evaluated by taking polynomial- and sigmoidal-type nonlinearities in two case studies
of HOE systems. Moreover, the robustness of the proposed scheme is examined for different noise
levels. Reliability and consistent accuracy are assessed through multiple independent trials of the
scheme. The convergence, accuracy, robustness and reliability of the ADEA are carefully examined
for HOE identification in comparison with the standard counterpart of the DEA. The ADEA achieves
the fitness values of 1.43 × 10−8 and 3.46 × 10−9 for a population size of 80 and 100, respectively,
in the HOE system identification problem of case study 1 for a 0.01 nose level, while the respective
fitness values in the case of DEA are 1.43 × 10−6 and 3.46 × 10−7. The ADEA is more statistically
consistent but less complex when compared to the DEA due to the extra operations involved in
introducing the adaptiveness during the mutation and crossover. The current study may consider
the approach of effective nonlinear system identification as a step further in developing ECP-based
computational intelligence.

Keywords: adaptive differential evolution; evolutionary computing; Hammerstein; nonlinear
system identification

1. Introduction

1.1. Background and Motivation

System identification or parameter estimation involves the approximation of unknown
variables of the system, and this concept provides the foundation for solving different
engineering, science and technology problems [1]. Most real-time systems are nonlinear
and complex in nature. There are many applications for nonlinear systems in science and
engineering, such as the inverted pendulum system [2], motion control of a motor driven
robot [3], average dwell-time switching [4], tail-control missile system [5], and weather
station systems [6].
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Nonlinear systems can be described through different nonlinear models, including
the Volterra series [7], Wiener series [8], NARMAX model [9], Wiener model [10–12] and
Hammerstein model [13], etc. Researchers revealed the strong relations between different
nonlinear models and the Volterra series [14]. Sidorov et al. contributed significantly in the
theory and applications of Volterra equations by proposing different methods [15–17] and
exploring the applications in power system operations and energy storage systems [18].
The Volterra series can also represent the Hammerstein model, and Kibangou et al. [19]
described Hammerstein model through Volterra series representation and identified the
coefficients of the Hammerstein model using the Volterra series. The Hammerstein model
has a simpler structure with easier identification than the Volterra series [20]. Therefore, the
Hammerstein model is often used to represent a wide class of nonlinear systems [21–24].

The Hammerstein structure, presented in Figure 1, belongs to a class of input nonlinear
systems (INL) where a nonlinear block is cascaded with a linear block. Different local and
global search algorithms were proposed for the identification of INL models. Local search
algorithms are easy to implement but prone to become stuck in local minima. Local search
algorithms include the key term separation technique for the parameter estimation of the
Hammerstein-controlled autoregressive system [25]; impulse response, constrained, least-
square support vector machine modeling for multiple-input and multiple-output Hammer-
stein system identification [26]; fractional calculus-based adaptive techniques [27,28]; and
the parameter estimation problems of input-nonlinear-output error autoregressive systems,
based on the key variable separation technique and the auxiliary model-based identifica-
tion [29], whereas global search techniques effectively handle the local minima issues. The
global search methods based on evolutionary and swarm optimization heuristics are effec-
tively applied for the parameter estimation of different-input nonlinear systems, such as
genetic algorithms, which are used for the parameter estimation of nonlinear, Hammerstein-
controlled autoregressive systems [30]. Meta-heuristic computing techniques are used
for the parameter estimation of Hammerstein-controlled auto-regressive, moving-average
systems using differential evolution, genetic algorithms, pattern searches and simulated
annealing algorithms [31]. Evolutionary computational heuristics are presented for the
parameter estimation problem of nonlinear Hammerstein-controlled, auto-regressive sys-
tems through a global search competency of the backtracking search algorithm, differential
evolution, and genetic algorithms [32]. The neural networks and fuzzy-logic-based, com-
putational, intelligent approaches are also used to solve complex system identification
problems [33–37].

s t tys t

Figure 1. Block Diagram of INL systems.

The DEA was also effectively applied to INL systems, and it showed better results than
its standard counterparts [38]. Recently, a new variant of the DEA called the maximum-
likelihood-based adaptive DEA (ADEA) was proposed [39] for linear systems. The ADEA
showed an improved performance compared to the standard DAE in terms of convergence
speed and accuracy. The increasing complexity of nonlinear systems requires a contin-
uous search for more accurate and reliable computing algorithms. Thus, the enhanced
performance of the DEA and ADEA inspired authors to investigate the behavior of these
algorithms for effective INL system identification.

1.2. Objectives and Contribution

In this study, the performance of the DEA and ADEA in terms of correctness, robust-
ness, and convergence, is examined for different nonlinearities, as well as noise levels, in
INL systems. The most important contributions of this study are as follows:
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• A novel application of the evolutionary computing paradigm through maximum-
likelihood-based adaptive, differential, evolution algorithm, ADEA, is explored for
efficient optimization in nonlinear system identification.

• The ADEA is developed by introducing the concept of adaptiveness in the mutation
and crossover operators of the standard DEA approach.

• The convergence, accuracy and robustness analyses of the ADEA are conducted for
different types of nonlinearities and noise levels considered in two case studies of
nonlinear systems.

• The reliability of the ADEA is tested in comparison with the standard counterpart of
the DEA through executing multiple independent executions of both schemes.

• The ADEA is statistically more consistent than the DEA but less complex due to
the extra operations involved in introducing the adaptiveness during the mutation
and crossover.

1.3. Paper Outline

The rest of the paper is presented as follows: the INL-based system model of the
Hammerstein output error (HOE) structure is given in Section 2. The differential evolution
based proposed schemes are presented in Section 3. The simulation results for two case
studies of HOE systems are provided in Section 4. The main conclusions and some future
research directions are listed in Section 5.

2. Mathematical Model of HOE Systems

Figure 2 shows the block diagram of the HOE model [40].

s t ty

v t

s t
( )
( )

C z
D z

f
u t

Figure 2. Mathematical structure of HOE system.

The input–output relation of HOE system in Figure 2 is represented as:

y(t) = u(t) + v(t) (1)

where y(t) represents the systems’ output, v(t) denotes the additive noise, and u(t) denotes
noise-free output, defined as:

u(t) =
C(z)
D(z)

s(t) (2)

s(t) shows the nonlinear block’s output and is defined as a nonlinear function of the system
input s(t) with a known basis: γ1, γ2, . . . , γm,

s(t) = f (s(t)) = e1γ1(s(t)) + e2γ2(s(t)) + . . . + emγm(s(t)) (3)

or:

s(t) =
m

∑
j=1

ejγj(s(t)) (4)

Substituting (3) in (2) yields:

u(t) =
C(z)
D(z)

e1γ1(s(t)) + e2γ2(s(t)) + · · ·+ emγm(s(t)) (5)
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where D(z) and C(z) represents the polynomials with shifting operator as: z−1[z−1 y(t)
= y(t − 1)]

D(z) = 1 + d1z−1 + d2z−2 + . . . + dnz−n

C(z) = c1z−1 + c2z−2 + · · ·+ cnz−n (6)

The output of the HOE can be expressed in terms of information and parameter
vectors, where the information vector containing the input and output delay terms is
denoted by w(t) and the corresponding parameter vector of the HOE is defined as [40]:

θ = [d, c, e]TεRn0

where n0 = 2n + m and the variables in the parameter vector are:

d = [d1, d2, . . . . . . . . . . . . .dn]
T ε Rn

c = [c1, c2, . . . . . . . . . . . . .cn]
T ε Rn

e = [e1, e2, . . . . . . . . . . . . .em]
T ε Rm

The block diagram of the identification of the nonlinear system modelled through
the block-oriented HOE structure shown in Figure 2, by using the proposed evolutionary
algorithms, is shown in Figure 3. The objective is to minimize the error z(t) between the
desired response and the estimated response by exploiting the proposed evolutionary
computing approach, such that y(t) approaches ŷ(t).

y t

z t

y t

s t

Figure 3. Identification model of nonlinear systems.

3. Proposed Methodology

In this section, the proposed methodology based on the DEA and ADEA with
maximum-likelihood criteria are presented for the identification of the HOE system given
in Section 2.

3.1. Differential Evolution Algorithm (DEA)

The DEA is one of the most broadly exploited algorithms in ECP, developed by Rainer
Stron and Kenneth Price in 1995 [41]. This is a population-based algorithm which has
the ability to solve global optimum problems. Due to its usefulness and efficiency, this
algorithm is applied to various problems, such as the parameter estimation of Hammerstein
control autoregressive systems [38], deep belief network [42], effective long short-term
memory for electricity price prediction [43], parameter estimation of solar cells [44], ef-
fective electricity energy consumption forecasting using an echo state network [45]. In
this study, a recently introduced maximum-likelihood-based adaptive DEA is exploited
for HOE identification and the maximum-likelihood-based DEA is used for the purpose
of comparison [39]. The flowchart describing the main steps of the DEA is presented in
Figure 4.
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Figure 4. Flowchart of the DEA.

3.2. Adaptive Differential Evolution Algorithm (ADEA)

Different variants of the DEA are proposed through introducing the adaptivity in the
process of mutation and crossover. These adaptive DEA variants are effectively exploited
to solve many nonlinear problems, such as those involving photovoltaic models and other
optimization problems [46–54]. The main steps of the adaptive DEA are similar to the
simple DEA that starts from population initialization, mutation, crossover, selection and
then termination. The only aspect which differs is the adaptiveness factor of both the muta-
tion and crossover processes. Recently, a maximum-likelihood-criterion-based adaptive
DEA, i.e., ADEA, was proposed, where the fitness value is calculated by the maximum-
likelihood-criterion function [39]. In ADEA, the values of mutation and crossover process
change automatically according to the generation (T). The pseudocode of the ADEA is
presented in Algorithm 1, whereas the stepwise mechanism involved in the learning of the
ADEA is as follows:

Step 1. Initialization:
Set the generation t = 1 and set the initial population Pi,0.
Given the population size Np, the mutation Factor F and the maximum generation T.
Step 2. Data Collection:
Collect the calculated data {wi (1), wi (2), . . . , wi (N)} and {yi (1), yi (2), . . . , yi (N)}.
Step 3. Adaptive Mutation Operation:
Calculate the mutation vector Vi.a,t using L = exp(1 − T

T+1−t ); AMF = F · 2L;
Vi.a,t = pi.X1,t−1 + AMF · (pi.X2,t−1 − pi.X3,t−1);
Step 4. Adaptive Crossover Operation:
Read Vi.a,j,t from mutation vector Vi.a,t = [Vi.a,1,t, Vi.a,2,t, . . . , Vi.a,D,t]

T ; and read pi.a,j,t−1

from target vector pi.a,t−1 = [pi.a,1,t−1, pi.a,2,t−1, . . . , pi.a,D,t−1 ]
T ; to create the crossover

vector Ui.a,t.
For t = 1, the adaptive crossover probability Pc will be Pc = 1+cos(t)

2 ; and for t = 2l the

adaptive crossover probability Pc will be Pc = 1+cos(t−1)
2 ;

Step 5. Selection Procedure:
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Compute the maximum-likelihood criterion function of Ui.a,t and pi.a,t−1 using
the equations:

J(Ui.a,t) = 1
N ∑N

t=1 [yi(t)− wT
i (t)Ui.a,t]

2; J(pi.a,t−1) = 1
N ∑N

t=1 [yi(t)− wT
i (t)pi.a,t−1]

2;

• Develop the target vector pi.a,t.

Step 6. Optimal Target Vector:

• Compute the optimal target vector pi.best,t.

• Using equations J(pi.a,t) = 1
N ∑N

t=1 [yi(t)− wT
i (t)pi.a,t]

2; pi.best,t = arg minpi.a,t
J(pi.a,t);

Step 7. Iteration:

• If t > T, then let t := t + 1 and go back to Step 2; otherwise, obtain the optimal target
vector pi.best,t.

Algorithm 1 Pseudo-code of the ADEA

Input: Collect data {wi (1), wi (2), . . . , wi (N)} and {yi (1), yi (2), . . . , yi (N)}. Given the
population size Np, the mutation factor F and maximum generation T. Let the generation t = 1.
Output: pi,best,t

(1) for a = 1 : Np do

(2) for j = 1: D do

(3) pi.a,j,0 = rand(0, 1)
(4) end

(5) pi.a,0 =
[
pi.a,1,0, pi.a,2,0, . . . , pi.a,D,0

]T
(6) end

(7) Pi,0 =
[
pi.1,0, pi.2,0, . . . , pi.Np,0

]T
(8) for t = 1 : T do

(9) for i = 1 : Np do

(10) X1 = randperm(Np, 1)
(11) while X1 = p do

(12) X1 = randperm(Np, 1)
(13) end

(14) X2 = randperm(Np, 1)

(15) while X2 = p or X2 = X1 do

(16) X2 = randperm(Np, 1)
(17) end

(18) X3 = randperm(Np, 1); while X3 = p or X3 = X1 or X3 = X2 do

(19) X3 = randperm(Np, 1)
(20) end

(21) L = exp (1 − T
T+1−t ); AMF = F · 2L; Vi.a,t = pi.X1,t−1 + AMF · (pi.X2,t−1 − pi.X3,t−1)

(22) if t = 1 or t = 2l then

(23) Pc = 1+cos(t)
2

(24) else

(25) Pc = 1+cos(t−1)
2

(26) end

(27) Vi.a,t =
[
Vi.a,1,t, Vi.a,2,t, . . . , Vi.a,D,t

]T ; pi.a,t−1 =
[
pi.a,1,t−1, pi.a,2,t−1, . . . , pi.a,D,t−1

]T
(28) for j = 1 : D do

(29) if rand(0, 1) � Pc or j = randperm(D, 1) then

(30) Ui.a,j,t = Vi.a,j,t

(31) else

(32) Ui.a,j,t = pi.a,j,t−1

(33) end

(34) end
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Algorithm 1 Pseudo-code of the ADEA

(35) Ui.a,t =
[
Ui.a,1,t, Ui.a,2,t, . . . , Ui.a,D,t

]T
(36) J(Ui.a,t) = 1

N ∑N
t=1 [yi(t)− wT

i (t)Ui.a,t]
2

(37) J(pi.a,t−1) = 1
N ∑N

t=1 [yi(t)− wT
i (t)pi.a,t−1]

2

(38) if J(Ui.a,t) > J(pi.a,t−1) then

(39) pi.a,t = Ui.a,t

(40) else

(41) pi.a,t = pi.a,t−1
(42) end

(43) J(pi.a,t) = 1
N ∑N

t=1 [yi(t)− wT
i (t)pi.a,t]

2

(44) pi.best,t = arg minpi.a,t
J(pi.a,t)

(45) End

4. Simulation and Performance Analyses

This section includes the simulation results of two case studies for HOE system
identification using DEA and ADEA. The simulations for both algorithms are performed in
MATLAB. The identification of HOE systems is performed by considering different noise
levels, as well as various sets of generation size and diverse population size, while the
results are presented in a variety of convergence graphs and multiple statistical analyses.
The input s(t) for this system is taken as a zero mean and unit variance, while noise v(t) is
an additive noise. The performance of algorithms in terms of convergence speed, accuracy,
robustness and reliability is evaluated through fitness function formulation. The equation
for the fitness function is given below:

Fitness = mean(y − ŷ)2

where y represents the desired response and ŷ is the estimated response through proposed
evolutionary algorithms. The optimal parameter settings for DAE and ADAE technique
are presented in Table 1.

Table 1. Parameter settings of DEA and ADEA.

Sr. No. Type of Parameter DEA ADEA

1 Number of variables 8 8
2 Mutation factor 0.25 Adaptive
3 Crossover probability 0.8 Adaptive
4 Lower bound −2 −2
5 Upper bound 2 2

4.1. Case Study 1

The desired response for case study 1 of the HOE system is obtained through a set of
parameters taken in [40]. The performance of the ADEA is assessed by considering two type
of nonlinearities and different noise levels in the HOE system. The performances of DEA
and ADEA in terms of fitness are initially investigated for the variable size of generations
(400, 600, 800) and populations (50, 100, 150). The detailed results with polynomial-type
nonlinearity are presented in Table 2. It is observed from the fitness values in Table 2 that,
for the given generations size (400, 600, 800), the fitness of both algorithms decreases with
the increase in population size. Furthermore, both methods achieved minimum fitness
values for largest generation sizes. It is observed that the ADEA showed an improved
performance compared to the DEA for almost all generations and population sizes. The
best fitness achieved by ADEA for 800 generations with 150 population size is 7.08 × 10−15.
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Table 2. Comparison of DEA and ADEA with respect to generations and population size for
polynomial-type nonlinearity in case study 1.

Generations (T) Population Size (Np) DEA Fitness ADEA Fitness

400
50 1.32 × 10−4 2.33 × 10−6

100 2.89 × 10−6 7.86 × 10−9

150 3.41 × 10−10 6.63 × 10−9

600
50 1.09 × 10−4 3.44 × 10−7

100 2.44 × 10−7 4.21 × 10−11

150 4.53 × 10−9 3.33 × 10−12

800
50 5.16 × 10−5 6.54 × 10−9

100 1.01 × 10−6 3.24 × 10−14

150 2.26 × 10−9 7.08 × 10−15

The fitness-based learning curves for different generations and population sizes with
polynomial-type nonlinearity are shown in Figure 5. Figure 5a–c represent the learning
curves for DEA with different generations and population size, whereas Figure 5d–f denote
learning curves for ADEA with variations in generations and population size. Figure 5a–c
show that the DEA aachieved a fast and accurate convergence for a large number of
generations and population sizes, but a slight difference in convergence is observed for
DEA until 100 generations with different populations are reached. Likewise, Figure 5d–f
show that the ADEA also accomplished minimum fitness values for more generations
and populations.

 
(a) Fitness plot of DEA for T = 400 

 
(b) Fitness plot of DEA for T = 600 

 
(c) Fitness plot of DEA for T = 800 

 
(d) Fitness plot of ADEA for T = 400 

Figure 5. Cont.
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(e) Fitness plot of ADEA for T = 600 

 
(f) Fitness plot of ADEA for T = 800 

Figure 5. Fitness plots of DEA vs. ADEA, with respect to generations and population size for polynomial-type nonlinearities
in case study 1.

The performance of DAE and ADAE is further examined for three noise variances
(0.09, 0.05, 0.01) with fixed population sizes, (50, 80, 100) and a changing size of generations.
To analyze the methods in terms of optimal fitness, the results with polynomial-type nonlin-
earity are provided in Table 3 for three noise levels, as well as three different populations. It
is witnessed from the fitness values in Table 3 that both the DEA and ADEA accomplished
a significant performance in terms of fitness for small values of noise variances along with
a different number of populations. However, both methods did not perform significantly
for higher noise variances with different population sizes. The optimal fitness achieved by
both DEA and ADEA with a noise variance of 0.01 and population size of 100 is 2.12 × 10−6

and 8.69 × 10−10, respectively.

Table 3. Comparison of DEA and ADEA with respect to noise variance and fixed population size for
polynomial-type nonlinearity in case study 1.

Noise Variance Population Size (Np) DEA Fitness ADEA Fitness

0.09
50 2.84 × 10−3 5.02 × 10−3

80 4.94 × 10−3 3.73 × 10−3

100 3.71 × 10−3 4.21 × 10−3

0.05
50 2.01 × 10−4 1.13 × 10−5

80 1.30 × 10−5 9.05 × 10−6

100 1.44 × 10−5 8.68 × 10−6

0.01
50 1.11 × 10−4 3.03 × 10−8

80 8.22 × 10−6 9.18 × 10−10

100 2.12 × 10−6 8.69 × 10−10

The learning curves for the fitness achieved with polynomial-type nonlinearity, three
noise variances and three population variations are presented in Figure 6. Learning curves
for DEA and ADEA are shown in Figures 6a–c and 6d–f, respectively. Figure 6a–c show
that the convergence and steady-state performance of the DEA increases with the reducing
population size, noise variance and generations and vice versa. Similar behavior was
shown by the ADEA for lower noise levels and smaller population sizes. Moreover, ADEA
accomplishes optimal fitness for generations, twice that of the DEA.
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(a) Fitness plot of DEA for Np = 50 

 

(b) Fitness plot of DEA for Np = 80 

 
(c) Fitness plot of DEA for Np = 100 

 
(d) Fitness plot of ADEA for Np = 50 

 
(e) Fitness plot of ADEA for Np = 80 

 
(f) Fitness plot of ADEA for Np = 100 

Figure 6. Fitness plots of DEA vs. ADEA with respect to noise variance and population size for polynomial-type nonlineari-
ties in case study 1.

The fitness with regard to MSE for both DEA and ADEA is also evaluated by intro-
ducing sigmoidal-type nonlinearity to the HOE system. The investigations are made for
different populations (50, 100, 150) and generations (400, 600, 800). The comparison of
fitness results between DEA and ADEA for the HOE system under consideration with
sigmoidal-type nonlinearity are shown in Table 4. It is seen from the MSE results shown in
Table 4 that the performances of DEA and ADEA increase with the increase in population
size for various generations (400, 600, 800). The optimal fitness of both algorithms is accom-
plished for the largest values of generations and populations. The relative performance, in
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terms of minimum value of fitness achieved by both methods with respect to particular
generations and populations, is not consistent. The minimum fitness attained by DEA
and ADEA with a maximum number of generations and populations is 6.26 × 10−11 and
3.24 × 10−9, respectively.

Table 4. Performance comparison of DEA and ADEA with regard to generations and population size
for sigmoidal-type nonlinearity in case study 1.

Generations (T) Population Size (Np) DEA Fitness ADEA Fitness

400
50 7.14 × 10−5 1.77 × 10−4

100 9.44 × 10−6 1.37 × 10−5

150 8.89 × 10−7 1.41 × 10−4

600
50 2.08 × 10−5 1.18 × 10−4

100 3.82 × 10−7 3.40 × 10−8

150 8.54 × 10−8 8.18 × 10−9

800
50 1.10 × 10−5 1.21 × 10−7

100 5.17 × 10−7 4.63 × 10−8

150 6.26 × 10−11 3.24 × 10−9

The learning plots representing fitness for sigmoidal-type nonlinearity with variations
of generation and population are shown in Figure 7. The fitness curves for DEA are shown
in Figure 7a–c and the learning curves for ADEA are given in Figure 7d–f. A similar trend
in performance of DEA and ADEA is noticed from Figure 7a–f regarding convergence
speed and final estimated accuracy. Both methods exhibit fast convergence for smaller
population and generation size. However, they have achieved optimal fitness for bigger
values of population and generation.

 
(a) Fitness plot of DEA for T = 400 

 
(b) Fitness plot of DEA for T = 600 

 
(c) Fitness plot of DEA for T = 800 

 
(d) Fitness plot of ADEA for T = 400 

Figure 7. Cont.
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(e) Fitness plot of ADEA for T = 600 

 
(f) Fitness plot of ADEA for T = 800 

Figure 7. Fitness curves of DEA vs. ADEA with regard to generations and population size for sigmoidal-type nonlinearities
in case study 1.

The behavior of DEA and ADEA methods in terms of minimal fitness achieved with
sigmoidal-type nonlinearity for the HOE system is also assessed by fixing the three popu-
lation sizes, i.e., [50, 80, 100] against three noise variances [0.09, 0.05, 0.01] and different
generations set. The optimal fitness attained for different noise levels and population sizes
are presented in Table 5. It is observed that both DEA and ADEA performed well for small-
est value of noise by obtaining optimal fitness of 1.67 × 10−7 and 3.46 × 10−9, respectively.

Table 5. Performance comparison of DEA and ADEA with regard to noise variance and population
size for sigmoidal-type nonlinearity in case study 1.

Noise Variance Population Size (Np) DEA Fitness ADEA Fitness

0.09
50 5.60 × 10−3 6.79 × 10−3

80 3.60 × 10−3 5.37 × 10−3

100 3.70 × 10−3 3.82 × 10−3

0.05
50 5.50 × 10−5 1.91 × 10−5

80 8.68 × 10−6 1.29 × 10−5

100 9.04 × 10−6 8.27 × 10−5

0.01
50 1.67 × 10−7 6.63 × 10−7

80 8.74 × 10−6 1.43 × 10−8

100 5.49 × 10−7 3.46 × 10−9

Figure 8 shows the fitness-based learning curves with sigmoidal-type nonlinearity
for various noise levels, population sizes, and different generations. The learning curves
for DEA, shown in Figure 8a–c, demonstrate that DEA performs effectively in terms of
convergence rate for low noise variances with the maximum number of populations. DEA
achieves a fast convergence by increasing the generation size up to 200, whereas the graphs
in Figure 8d–f show a fast convergence rate for ADEA up to 600 generations with low noise
levels, e.g., 0.01, and a small population size, e.g., 50.

4.2. Case Study 2

The desired response for case study 2 of the HOE system is obtained through a set of
parameters taken in [55]. The performance of the ADEA is assessed by considering two
type of nonlinearities and different noise levels in the HOE system.
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(a) Fitness plot of DEA for Np = 50 

 
(b) Fitness plot of DEA for Np = 80 

 
(c) Fitness plot of DEA for Np = 100 

 
(d) Fitness plot of ADEA for Np = 50 

 
(e) Fitness plot of ADEA for Np = 80 

 
(f) Fitness plot of ADEA for Np = 100 

Figure 8. Fitness curves of DEA vs. ADEA with regard to noise variance and population size for sigmoidal-type nonlineari-
ties in case study 1.

In case study 2, the methods DEA and ADEA are assessed for various populations, (50,
100, 150) and generations (400, 600, 800) using two types of nonlinearities: polynomial and
sigmoidal. The performance outcomes of DEA and ADEA for polynomial- and sigmoidal-
type nonlinearities are shown in Tables 6 and 7 respectively. Tables 6 and 7 show that the
performance of both DEA and ADEA for different numbers of generations increases for
both types of nonlinearities with an increase in the population size. Moreover, the best
performance of both methods is achieved for a larger generation size. For polynomial-type
nonlinearity, the minimum fitness values achieved by DEA and ADEA are 6.32 × 10−19

97



Mathematics 2021, 9, 3199

and 6.84 × 10−12, respectively, whereas the minimum fitness values accomplished by DEA
and ADEA for sigmoidal-type nonlinearity are 7.68 × 10−12 and 3.78 × 10−12, respectively.

Table 6. Comparison of DEA and ADEA with respect to generations and population size for
polynomial-type nonlinearity.

Generations (T) Population Size (Np) DEA Fitness ADEA Fitness

400
50 6.60 × 10−5 5.04 × 10−4

100 3.39 × 10−5 2.06 × 10−6

150 2.12 × 10−11 9.71 × 10−7

600
50 8.87 × 10−4 1.54 × 10−3

100 7.26 × 10−7 9.41 × 10−9

150 7.01 × 10−16 1.69 × 10−9

800
50 1.65 × 10−4 4.00 × 10−4

100 9.14 × 10−8 9.87 × 10−12

150 6.32 × 10−19 6.84 × 10−12

Table 7. Comparison of DEA and ADEA with respect to generations and population size for
sigmoidal-type nonlinearity in case study 2.

Generations (T) Population Size (Np) DEA Fitness ADEA Fitness

400
50 1.46 × 10−3 2.51 × 10−5

100 3.18 × 10−5 4.79 × 10−7

150 1.04 × 10−5 1.90 × 10−7

600
50 2.34 × 10−4 3.30 × 10−5

100 3.88 × 10−6 3.67 × 10−7

150 4.66 × 10−10 4.37 × 10−9

800
50 5.55 × 10−4 5.84 × 10−10

100 2.31 × 10−7 5.03 × 10−10

150 7.68 × 10−12 3.78 × 10−12

Figures 9 and 10 show fitness-based learning curves with different populations and
generations for polynomial-type and sigmoidal-type nonlinearities, respectively. Figure 9
shows that both DEA and ADEA show fast convergence for a smaller population and
generation size, but both methods obtained better steady-state performance for larger
population and generation sizes. A similar performance trend was shown by DEA and
ADEA in Figure 10 for sigmoidal-type nonlinearity.

To prove the robustness of DEA and ADEA, the performance of both techniques was
evaluated for different noise variances (0.09, 0.05, 0.01), variable generation sizes and three
population sizes (50, 80, 100). The optimal results achieved by DEA and ADEA with
polynomial- and sigmoidal-type nonlinearities for three noise variances and populations
are presented in Tables 8 and 9, respectively. It is seen from the fitness values shown in
Tables 8 and 9 that both DEA and ADEA obtained optimal fitness values for the smallest
value of noise level. Furthermore, the performance of both methods in terms of fitness is
increased by increasing the population size for different noise levels. The optimum fitness
values achieved by DEA and ADEA with polynomial-type nonlinearity and smallest value
of noise (0.01) are 1.03 × 10−6 and 5.02 × 10−10, respectively. However, the minimum
fitness values accomplished by DEA and ADEA with a sigmoidal-type nonlinearity are
1.09 × 10−9 and 1.39 × 10−7, respectively.
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(a) Fitness plot of DEA for T = 400 

 
(b) Fitness plot of DEA for T = 600 

 
(c) Fitness plot of DEA for T = 800 

 
(d) Fitness plot of ADEA for T = 400 

 
(e) Fitness plot of ADEA for T = 600 

 
(f) Fitness plot of ADEA for T = 800 

Figure 9. Fitness plots of DEA vs. ADEA with respect to generations and population size for polynomial-type nonlinearities
in case study 2.

The fitness-based learning curves for polynomial- and sigmoidal-type nonlinearities
with three noise variances, three populations and varying generation sizes are shown in
Figures 10 and 11, respectively. Figures 10a–c and 11a–c represent the performance-based
learning curves of DEA; Figures 10d–f and 11d–f denote the plots for ADEA with different
settings. Figure 9 shows that the convergence rate of both DEA and ADEA with polynomial-
type nonlinearity increases by increasing the population size and decreasing the noise level,
as well as generation size, while both methods accomplished an optimum steady-state
performance for the smallest value of noise, a larger population, and larger generation size.
A similar performance was demonstrated by both methods for sigmoidal-type nonlinearity,
as shown in Figure 12.
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(a) Fitness plot of DEA for T = 400 

 
(b) Fitness plot of DEA for T = 600 

 
(c) Fitness plot of DEA for T = 800 

 
(d) Fitness plot of ADEA for T = 400 

 
(e) Fitness plot of ADEA for T = 600 

 
(f) Fitness plot of ADEA for T = 800 

Figure 10. Fitness plots of DEA vs. ADEA with respect to generations and population size for sigmoidal-type nonlinearity
in case study 2.
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Table 8. Comparison of DEA and ADEA with respect to noise variance and fixed population size for
polynomial-type nonlinearity.

Noise Level Population Size (Np) DEA Fitness ADEA Fitness

0.09
50 0.013 4.23 × 10−3

80 0.008 2.91 × 10−3

100 0.001 1.98 × 10−3

0.05
50 4.89 × 10−5 1.05 × 10−5

80 8.97 × 10−4 7.46 × 10−6

100 3.57 × 10−5 5.01 × 10−6

0.01
50 1.54 × 10−6 8.66 × 10−8

80 1.03 × 10−6 8.66 × 10−10

100 3.40 × 10−6 5.02 × 10−10

Table 9. Comparison of DEA and ADEA with respect to noise variance and fixed population size for
sigmoidal-type nonlinearities in case study 2.

Noise Variance Population Size (Np) DEA Fitness ADEA Fitness

0.09
50 1.36 × 10−3 4.60 × 10−3

80 3.90 × 10−3 3.29 × 10−3

100 2.70 × 10−3 1.59 × 10−3

0.05
50 5.28 × 10−5 1.14 × 10−5

80 8.80 × 10−6 2.63 × 10−5

100 4.61 × 10−6 3.97 × 10−6

0.01
50 2.58 × 10−5 1.54 × 10−7

80 1.09 × 10−9 4.39 × 10−6

100 4.20 × 10−7 1.39 × 10−7

 
(a) Fitness plot of DEA for Np = 50 

 
(b) Fitness plot of DEA for Np = 80 

 
(c) Fitness plot of DEA for Np = 100 

 
(d) Fitness plot of ADEA for Np = 50 

Figure 11. Cont.
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(e) Fitness plot of ADEA for Np = 80 

 
(f) Fitness plot of ADEA for Np = 100 

Figure 11. Fitness plots of DEA vs. ADEA with respect to noise variance and population size for polynomial-type
nonlinearities in case study 2.

 
(a) Fitness plot of DEA for Np = 50 

 
(b) Fitness plot of DEA for Np = 80 

 
(c) Fitness plot of DEA for Np = 100 

 
(d) Fitness plot of ADEA for Np = 50 

Figure 12. Cont.
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(e) Fitness plot of ADEA for Np = 80 

 
(f) Fitness plot of ADEA for Np = 100 

Figure 12. Fitness plots of DEA vs. ADEA with respect to noise variance and population size for sigmoidal-type nonlineari-
ties in case study 2.

4.3. Statistical Study of DEA and ADEA

The statistical investigations of DEA and ADEA for various numbers of runs, with
different noise variances, fixed population sizes, and constant generation sizes are shown
in Figure 13. It is witnessed from Figure 13a–c that, for all values of noise variances, ADEA
is more convergent than DEA, and the optimal fitness achieved by ADEA is much better
than that of DEA for all noise variances. It is also noticed that the performance of both
DEA and ADEA only slightly degrades by increasing the noise level.

 
(a) Noise variance = 0.0001 

Figure 13. Cont.
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(b) Noise variance = 0.001 

(c) Noise variance = 0.01 

Figure 13. Statistical analyses plots of DEA and ADEA for Np = 100, T = 500 and multiple
noise variances.

It is observed from the detail results presented for the two case studies that the
proposed evolutionary algorithms can be effectively utilized for nonlinear systems identifi-
cation with polynomial- and sigmoidal-type nonlinearities. The proposed evolutionary
algorithms identify the unknown HOE system through optimizing the fitness function
that makes the difference between the desired and the estimated response approach to
zero. However, the optimal fitness value is not required to correspond to the same set of
parameters taken to generate the desired response since, in practical applications, only the
desired response is available, rather than the set of parameters.

5. Conclusions

The following are the conclusions drawn from the extensive simulation results pre-
sented in the last section:

The evolutionary, computing, paradigm-based DEA and ADEA are effectively used
for the nonlinear system identification of Hammerstein output error structures. The DEA
and ADEA are accurate and convergent for different nonlinearities, based on polynomial-
and sigmoidal-type nonlinearities. The robustness of the DEA and ADEA is established
for different levels of external disturbances. However, the accuracy of both algorithms
decreases by increasing the noise level. The performance of both DEA and ADEA improves
by increasing the population size and generation count, but at the cost of a higher computa-
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tional budget. The reliable inferences regarding the performance of the DEA and ADEA are
drawn through statistical analyses based on 20 independent executions of the algorithms.
The convergence speed of the ADEA is slightly slower than the DEA due to the crossover
and mutation adaptiveness factor. In comparison, the ADEA is more accurate and statis-
tically consistent compared to the DEA, but at the cost of a little more complexity due to
the extra operations involved in introducing the adaptiveness during the mutation and
crossover steps. The presented study is a step further in the domain of nonlinear system
identification through the use of intelligent computing based on evolutionary algorithms.

In future, the application of the proposed methodology can be investigated for solving
nonlinear supply energy systems [56], industrial reactive distillation processes [57], power
supply systems [58] and delivery systems [59]. Moreover, the other recently introduced
evolutionary algorithms [60] and fuzzy predictive control [61–64] can be used for efficient
nonlinear system identification.
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Abstract: The article proves that the state of a bilinear control system can be split uniquely into
generalized modes corresponding to the eigenvalues of the dynamics matrix. It is also shown that
the Gramians of controllability and observability of a bilinear system can be divided into parts
(sub-Gramians) that characterize the measure of these generalized modes and their interactions.
Furthermore, the properties of sub-Gramians were investigated in relation to modal controllability
and observability. We also propose an algorithm for computing the Gramians and sub-Gramians
based on the element-wise computation of the solution matrix. Based on the proposed algorithm,
a novel criterion for the existence of solutions to the generalized Lyapunov equation is proposed,
which allows, in some cases, to expand the domain of guaranteed existence of a solution of bilinear
equations. Examples are provided that illustrate the application and practical use of the considered
spectral decompositions.

Keywords: bilinear systems; eigenmode decomposition; spectral expansions; generalized Lyapunov
equation; Gramians; observability; controllability; small-signal analysis; numerical algorithm

1. Introduction

Monitoring the state of various technical, social, and biological systems using non-
linear mathematical models and modern information technology is a widely relied upon
trend in the development of modern civilization. An example is the state estimation and
control in modern electric power systems. Renewable energy sources and distributed gen-
eration, electric vehicles and charging networks, and the increased use of power electronics
pose new challenges for the monitoring and controling of complex oscillations in energy
systems [1]. New problems require the development of new methods for the analysis of
non-linear dynamic systems, including computational methods for their solutions.

Bilinear control systems represent an important class of non-linear systems, which
are linear in inputs and states, but they are not linear in both. Research in the field of
non-linear and “weakly non-linear” control systems described by the Volterra series dates
back more than half a century. In [2], a theory of realization was developed, and structural
decompositions of the Gramians of bilinear systems were investigated; furthermore, explicit
representations of the Gramian of a bilinear system were obtained in the form of a Volterra
series, and the conditions for its convergence were investigated. In [3,4], the multivariate
Laplace transform was used to construct a solution for systems with smooth non-linearities.
In [5], an iterative solution of the generalized Lyapunov equation was obtained, which was
first used to analyze the state of an electric power system. It was shown that a solution to
this equation exists if the linear part of the bilinear system is stable, and the input signal
and non-linearity matrices are bounded in the norm. In [6], these results were generalized
for multiple-input and multiple-output (MIMO) dynamical systems.

Research in the field of bilinear control systems is closely related to the problem of
model order reduction (MOR) by constructing an approximating model of a lower di-
mension. Among the methods for solving this problem, we note balanced truncation,
singular decomposition, the Krylov subspace method, optimal methods for the H2-norm of
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Gramians, and hybrid methods. For most of the methods, iterative algorithms for their im-
plementation have been developed, and conditions for the existence and uniqueness of the
solution of the corresponding generalized Lyapunov equations have been established [6–9].
In these studies, the squared H2-norm of Gramians of the bilinear system was used, and its
spectral expansions using singular values were obtained. To estimate the error between
the full and reduced models, energy functionals were introduced, and the corresponding
H2-norm optimal algorithms for the interpolation of bilinear systems were proposed.

Modal analysis and selective modal analysis are among the main methods for ana-
lyzing the stability of electric power systems with small deviations from the steady state.
These methods involve identifying dominant weakly stable modes of the power system and
are widely used in combination with other linear and non-linear analysis methods [1,10].
To assess bilinear effects in power systems analysis, the technique of normal forms [11],
modal series methods [12], and bilinear approximation [13] are used. These methods
consider the higher-order terms of the Taylor expansion in the system approximation and
use normal Poincaré forms. In [14], a method was proposed for the fast computation of
normal forms, considering the interaction of dominant modes. Ref. [15] proposes a hybrid
method combining selective modal analysis and Koopman mode decomposition.

In contrast to these methods, in this study, we consider the spectral decomposition,
not for the instantaneous dynamics of state variables, but for the Lyapunov functions,
which characterize the L2-norms of variables or signals in the time domain. This approach
allows us to consider the non-linear effects associated with the accumulation of influence
over time. For linear dynamic systems, Lyapunov functions are usually associated with the
controllability and observability Gramians, which characterize the integrated energy of the
input and output signals. The concept of Gramians was further generalized and interpreted
for deterministic bilinear systems using energy functionals [16]. For linear systems, ref. [7]
obtained singular expansions for infinite Gramians of controllability and observability
based on the diagonalization of the dynamics matrix. A more general form of the spectral
decomposition of Gramians into components (sub-Gramians) corresponding to the indi-
vidual eigenvalues of the system or their pairwise combinations was proposed in [17,18].
In [19], the spectral expansions for the Gramians of controllability and observability were
generalized to the case of bilinear continuous systems.

The purpose of this study is to develop and provide a rationale for the application of
the spectral expansions of the Gramians proposed in [19] for the analysis and monitoring
of bilinear systems. As the state of a bilinear system is not the sum of eigenmodes as in the
linear case, a number of important theoretical questions arise. How should eigenmodes
be viewed and interpreted in a bilinear system? What interpretation can be given to the
spectral expansions of the Gramians in [19]? What is their connection with the expansion
of the Gramians in linear systems?

Main Contribution

As spectral expansions of states of bilinear systems are closely related to the corre-
sponding expansions of states of linear systems, in Section 2, we first consider the concepts
of modal controllability and observability for a linear dynamical system. The following new
results were obtained: Criteria for modal controllability and observability are proposed
(Propositions 3 and 5), and a relation is established between the eigenmodes of the linear
system and sub-Gramians of controllability and observability (Propositions 7 and 9).

The main theoretical results are presented in Section 3. We show that the solution
of a bilinear system under any control can be split uniquely into generalized modes cor-
responding to the eigenvalues of the dynamics matrix (Proposition 11). The definitions
of sub-Gramians are proposed in a new form, and their relationship with the definitions
in [19] are clarified (Property 4). The conditions for the existence of sub-Gramians (Prop-
erty 1) and their consistency with the concept of sub-Gramians in linear theory (Property 3)
are established.
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In [19], expressions for sub-Gramians were proposed in the form of solutions to the
modal Lyapunov equations. In this study, the same quantities are derived as the sums
of squared convolution kernels arising in the Volterra series expansion of the state of the
bilinear system. Moreover, it is proved (in Property 4) that if these quantities exist, then for
a stable matrix of dynamics, they coincide with the definition in [19]. Although the new
definition of sub-Gramians essentially coincides with the definition in [19], it allows us to
establish a relation between sub-Gramians and the corresponding generalized modes of
a bilinear system, namely, to prove that sub-Gramians characterize some measure of the
corresponding generalized eigenmodes and their pairwise scalar products (Proposition 5)
under the condition that controls are small enough. From a theoretical point of view,
this result provides a conceptual justification for the concept of sub-Gramians for bilinear
systems. From the point of view of applications, it allows one to make energy-based
estimates of individual generalized modes and their pairwise interactions in the system.
Such estimates, in turn, can become the basis for stability analysis and optimal control in
bilinear dynamical systems.

Section 4 proposes an iterative algorithm for computing the Gramians and sub-
Gramians based on the element-wise computation of the solution matrix on an eigenvector
basis. This algorithm is similar to the algorithms in [20]. However, based on the proposed
algorithm, a novel criterion for the existence of solutions to the generalized Lyapunov
equation is formulated (Theorem 4), which, in some cases, allows the expansion of the
domain of guaranteed existence of a solution of bilinear equations. At the end of Section 4,
some examples that illustrate the application and practical use of the considered spectral
decompositions are presented.

2. Spectral Expansions of Gramians of Linear Systems

2.1. Eigenmode Decompositions of the Dynamics of a Linear System

In this section, we consider the eigen-decomposition of the dynamics of a linear
stationary system, which will be required for further presentation. Consider a linear
dynamical system of the form {

ẋ = A x + B u
y = C x

, (1)

where x ∈ Rn is the state vector, and y ∈ Rl , u ∈ Rm are the output signal and control,
respectively. A, B, C are real matrices. Suppose that the dynamics matrix A has a simple
spectrum σ(A) = {λ1, λ2, . . . , λn}.

Proposition 1. A matrix A with a simple spectrum can be represented as

A = λ1 R1 + λ2 R2 + · · ·+ λn Rn, (2)

where Ri are the matrices of residues in the decomposition of the resolvent of matrix A:

(Is − A)−1=
R1

s − λ1
+

R2

s − λ2
+ · · ·+ Rn

s − λn
. (3)

Proof. When all eigenvalues are distinct, the residue matrices of the resolvent of matrix A
can be calculated using the normalized right and left eigenvectors as Ri = uivT

i (see [21]).
Then, representation (2) directly follows from the eigen decomposition of matrix A.

From the representation of the residue matrices through the eigenvectors and the or-
thogonality of the eigenvectors, it follows that the residue matrices Ri satisfy the following
the orthogonality property:

Ri Rj = Ri δij , (4)

where δij is the Kronecker delta. Thus, representation (2) of matrix A is separable in the sense
that all terms in it are orthogonal to each other in accordance with (4). If the matrices Ri of
residues are known, then using (2)–(4), one can easily find all the powers of the matrix A
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Ak = ∑
i

λk
i Ri , k = 0,±1,±2, . . . , (5)

and the summation index here and in the following are assumed to be from one to n.
Substituting (5) into the Taylor expansion of the matrix exponent of A, we obtain

eAt = ∑
i

Ri eλi t . (6)

Proposition 2 (Eigenmode decomposition). Solution, control, and output signal of linear
system (1) are separable with respect to the eigenmodes, i.e., there is a representation

x(t) = ∑
i

xi(t) , u(t) = ∑
i

ui(t) , y(t) = ∑
i

yi(t) , where

xi(t) = Rix(t) = Ri eλi tx0 + Beλi t
t∫

t0

e−λiτui(τ)dτ , (7)

ui(t) = B#RiBu(t) , yi(t) = Cxi(t) = CRix(t) ,

x0 = x(t0) is the initial position of the system, and B# denotes the Moore–Penrose inverse. The
system (1) splits into separate subsystems{

ẋi(t) = λi xi(t) + B ui(t)
yi(t) = C xi(t)

, i = 1, · · · , n . (8)

Recall that the Moore–Penrose inverse matrix B# exists and is unique for any complex
or real matrix B and it is defined by four conditions: (i) BB#B = B, (ii) B#BB# = B#, (iii) BB#

is Hermitian, and (iv) B#B is Hermitian.

Proof. The expression (7) for xi(t) = Rix(t) is obtained by multiplying the solution to (1):

x(t) = eAtx0 + eAt
∫ t

t0

e−Aτ B u(τ) dτ

on the left by Ri, taking into account property (4) and also that RieAt = Rieλi t, e−Aτ =

∑j Rje
−λjτ , Bui(τ) = RiBu(τ). If we differentiate (7), we obtain (8).

The expression (7) for xi(t) = Rix(t) determines the dynamics of the eigenmode
corresponding to the eigenvalue λi in system (1). The corresponding mode in the output
signal is determined by the expression yi(t) = Cxi(t).

2.2. Modal Observability and Controllability of a Linear System

In this section, by analogy with the classical definitions of an observable and control-
lable linear system, we introduce the corresponding concepts for individual eigenmodes.
We also establish simple criteria for modal controllability and observability for a linear
stationary system (1).

Definition 1. The mode corresponding to the eigenvalue λi is observable in the linear system (1)
at the moment t0, when yi(t, t0, x0, u = 0) ≡ 0 at t ≥ t0 if, and only if, xi(t0) = 0.

According to (7), the observability of a mode in a stationary system (1) is entirely
determined by the matrices Ri and C. Therefore, we can also discuss the modal observability
of a pair {C, Ri}. For stationary systems, modal observability can be verified using the
following simple criterion.

Proposition 3. The mode corresponding to λi in the linear system (1) is observable. if, and only if,
CRi �= 0.
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Proof. If the stationary pair {C, Ri} is modally observable, then CRix0 �= 0 holds for any
Rix0 �= 0, that is, for some x0 �= 0, CRix0 �= 0 is fulfilled, and therefore CRi �= 0. If
CRi �= 0, then there is some x0 �= 0 such that CRix0 �= 0. Let us now choose an arbitrary
Rix̃0 �= 0. It is easy to show that the vectors Rix0 and Rix̃0 are both eigenvectors of
matrix A corresponding to the eigenvalue λi. Because, by assumption, the spectrum of
σ(A) is simple, these vectors are proportional, that is, Rix̃0 = αRix0, α ∈ C. Therefore,
CRix̃0 = αCRix0 �= 0, that is, the pair {C, Ri} is modally observable.

One can check the observability of the system by checking the observability of its
individual modes.

Proposition 4. The stationary system (1) is observable (identifiable) if, and only if, each mode is
observable (identifiable).

Proof. It follows from the definitions and equivalence of the following statements

∀i : yi(t, t0, x0, u = 0) ≡ 0 at t ≥ t0 <=> y(t, t0, x0, u = 0) ≡ 0 at t ≥ t0 ;

∀i : xi(t0) = 0 <=> x(t0) = 0. �
However, individual modes can be observable when the dynamical system (1) as a

whole is unobservable.
Similarly, one can consider the concept of modal controllability and obtain a criterion

for modal controllability.

Definition 2. The mode corresponding to the eigenvalue λi in the linear system (1) is controllable,
if for each event (t0, x0 = xi(t0)), there is a control u(t), which brings the system to the zero state
in a finite time.

For stationary systems, modal controllability can be verified using the following
simple criterion.

Proposition 5. The mode corresponding to λi in the linear system (1) is controllable if, and only if,
RiB �= 0.

Proof. If RiB = 0, then it follows from (7) that mode xi(t) is not controllable. If RiB �= 0,
then u(t) can always be chosen, such that

∫ t0+T

t0

e−λjτu(τ)dτ =

{
u0

i , j = i
0, j �= i

, Rix0 = −RiBu0
i , j = 1, . . . , n

Then, in a finite time T, the control u(t) brings the system from state xi(t0) = Rix0 to
the zero state, i.e., the eigen-mode corresponding to λi is controllable.

According to Proposition 5, the controllability of a mode in a stationary system is
entirely determined by the matrices Ri and B. Thus, we can discuss the modal controllability
of the stationary pair {Ri, B}. The controllability of the system can be verified by checking
the controllability of its individual modes.

Proposition 6. A stationary linear system (1) is controllable if, and only if, each mode is control-
lable.

Proof. If the system (1) is controllable, then each of its modes, by definition, is also control-
lable. Consider a system in which each mode can be controlled. Let at the moment t0, it is
in the state x0 �= 0. Let us choose modal control in the form

113



Mathematics 2021, 9, 3288

u(t) = ∑
i

ui(t) , ui(t) =
{

u0
i fi(t) , t ∈ [t0, t0 + T]

0, t /∈ [t0, t0 + T]
, (9)

where the set of scalar functions f1, f2, · · · , fn satisfies the condition

∀i, k = 1, · · · , n :
∫ t0+T

t0

e−λkt fi(t)dt = δik =

{
0 , i �= k
1 , i = k

. (10)

As functions fi, for example, one can always choose piecewise constant functions on n
sections of the interval t ∈ [t0, t0 + T]. Substituting the control u(t) from (9) and (10) into
the solution to (1),

x(t) = eAtx0 + eAt
∫ t

t0

e−Aτ Bu(τ)dτ ,

we obtain
x(t) = ∑

i
xi(t) = ∑

i
(Rix0 + RiBu0

i )e
−λi t , t ≥ t0 + T . (11)

Because all eigenvalues λi are simple, the vectors Rix0 and RiBu0
i coincide up to a

scalar factor with the corresponding right eigenvector of the system. In addition, according
to Proposition 5, RiB �= 0 for all i. Therefore, it is always possible to choose vectors u0

i , such
that x(t) ≡ 0, t ≥ t0 + T in (11). Thus, system (1) is controllable.

The choice of the control u(t) in the form (9–10) also proves the following property:

Corollary 1. If an individual mode of system (1) is controllable, then there is a control ui(t) that
allows one to change this eigenmode arbitrarily on any finite interval without changing other
eigenmodes of the solution.

Note that individual modes can be controllable even when the dynamical system as a
whole is uncontrollable.

2.3. Spectral Decompositions of Gramians of a Linear System

In this section, we recall the basic facts about the observability and controllability
Gramians of the linear system (1) and their spectral expansions, and also offer a meaningful
interpretation of the corresponding spectral components in these expansions.

The Gramians of controllability and observability of a stable linear system (1) are, respec-
tively, the quantities

PC =
∫ ∞

0
eAtBBTeATtdt, PO =

∫ ∞

0
eATtCTCeAtdt , (12)

which are also solutions of the corresponding Lyapunov equations

APC + PC AT = −BBT , AT PO + PO A = −CTC . (13)

If x0 = x(0) is the initial state of system (1), then the integral energy of the output
signal at zero control is determined by the observability Gramian∫ ∞

0
yT(t) y(t)dt = xT

0 PO x0 . (14)

If the state x0 is reachable, then the minimum energy for bringing the system from the
zero state to x0 and the corresponding optimal control û(t) are determined by the inverse
matrix of the controllability Gramian

inf
x(−∞)=0

∫ 0

−∞
ûT(t)û(t)dt = xT

0 P#
C x0 , û(t) = BTe−ATtP#

C x0 , −∞ < t < 0 , (15)
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where P#
C is the Moore–Penrose inverse.

In [17], the spectral decompositions of Gramians (12) were proposed. In [18], they
were generalized to a more general class of solutions of the matrix Krein equations. The
eigenterms of the expansions are represented using the residues of the resolvent of the
matrix A. Let us formulate this result for Equation (13) in the following form:

Theorem 1 ([18]). If λ∗
i + λj �= 0 for all λi, λj ∈ σ(A), Then, for any matrices B and C, there is

a unique solution of the Lyapunov Equation (13), and it is presented in the form

P =
n

∑
i=1

P̃i =
n

∑
i,j=1

Pij, P̃i =
n

∑
j=1

Pij , (16)

where the spectral components for the controllability and observability Gramians, respectively, are
given by

P̃C
i = −

{
RiBBT(λi I + A∗)−1

}
Herm

, PC
ij =

{
−1

λi + λ∗
j

RiBBT R∗
j

}
Herm

, (17)

P̃O
i = −

{
R∗

i CTC(λ∗
i I + A)−1

}
Herm

, PO
ij =

{
−1

λ∗
i + λj

R∗
i CTCRj

}
Herm

, (18)

where {·}Herm denotes the Hermitian part of the matrix, and Ri and Rj are the matrix residues (3)
that correspond to the eigenvalues λi and λj.

The eigenterms P̃i and Pij in expressions (16) are called in [17] the sub-Gramians and
pairwise sub-Gramians, respectively. They characterize the contribution of the correspond-
ing eigenmodes or their pairs to the energy variation of the system, determined by the
corresponding Gramian over an infinite time interval. The following statement holds:

Proposition 7 (Interpretation of observability sub-Gramians). For system (1) with zero con-
trol, the value xT

0 P̃O
i x0 is the cross-correlation between the output signal y(t) and its i-th modal

component at a lag of zero. The value xT
0 PO

ij x0 is the cross-correlation between the i-th and j-th
modal components of the output signal at a lag of zero.

Proof. Considering that y(t) = CeAtx0 and yi(t) = CRieλi tx0, we obtain

1
2

∫ ∞

0
(y∗i y + y∗yi)dt =

1
2

xT
0

∫ ∞

0
(eλ∗

i tR∗
i CTCeAt + eATtCTCRieλi t)dt x0 = xT

0 P̃O
i x0

Similarly, we directly verify that 1
2

∫ ∞
0 (y∗i yj + y∗j yi)dt = xT

0 PO
ij x0.

Similar to the Lyapunov Equation (13) hold for Gramians, the corresponding modal
Lyapunov equations hold for sub-Gramians.

Proposition 8. Under the conditions of Theorem 1, the observability sub-Gramians P̃O
i and PO

ij in
expansions (16) and (18) satisfy the following modal Lyapunov equations:

AT P̃O
i + P̃O

i A = −1
2

(
R∗

i CTC + CTCRi

)
, (19)

AT PO
ij + PO

ij A = −1
2

(
R∗

i CTCRj + R∗
j CTCRi

)
. (20)

Proof. This is verified by the direct substitution of (18) into (19) and (20).

Similar statements are proved for controllability sub-Gramians.
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Proposition 9 (Interpretation of controllability sub-Gramians). For system (1) and reachable
state x0, consider problem (15) of finding the required control û(t) with the minimum energy. Then,
the value xT

0 (P#
C)

T P̃C
i P#

Cx0 is the cross-correlation between the optimal control û(t) and its i-th
modal component at a lag of zero. The value xT

0 (P#
C)

T PC
ij P#

Cx0 is the cross-correlation between the
the i-th and j-th modal components of the optimal control at a lag of zero.

Proposition 10. Under the conditions of Theorem 1, the controllability sub-Gramians P̃C
i and PC

ij
in (16) and (17) satisfy the following modal Lyapunov equations:

AP̃C
i + P̃C

i AT = −1
2

(
RiBBT + BBT R∗

i

)
,

APC
ij + PC

ij AT = −1
2

(
RiBBT R∗

j + RjBBT R∗
i

)
.

3. Spectral Decompositions of Gramians of a Bilinear Control System

In this section, we extend the results obtained for linear systems to the case of bilinear
control systems. In particular, we introduce the concept of a generalized eigenmode and
prove that the state of the bilinear system can be uniquely split into generalized modes
corresponding to the eigenvalues of the dynamics matrix. Further, we recall some known
facts about the controllability and observability Gramians of bilinear systems and propose
their spectral decomposition into parts (sub-Gramians) corresponding to the spectrum of the
dynamics matrix. We prove that individual sub-Gramians characterize some measure of
the corresponding generalized eigenmodes or their pairwise scalar products.

3.1. Partitioning the Solution into Generalized Modes of the Matrix A

Consider a bilinear control system of the form [5,6]

ẋ(t) = Ax(t) +
m

∑
j=1

Nj x(t)uj(t) + Bu(t) , y(t) = Cx(t) , (21)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are the state, input, and output vectors, respectively,
and A, N1, · · · , Nm, B, and C are the real matrices. Assume that the initial state is x(0) = 0,
and the system input satisfies u(t) = 0, t < 0. Then, the solution of (21) can be considered
as a solution to the following recursive system of linear equations:

ẋ(1)(t) = Ax(1)(t) + B u(t) ,

ẋ(k)(t) = Ax(k)(t) +
m

∑
j=1

Njx(k−1)(t)uj(t) + B u(t) , k = 2, 3, · · · (22)

Solving the systems (22) sequentially, we obtain

x(1)(t) =
∫ ∞

0
eAτ1 B u(t − τ1)dτ1 ,

x(2)(t) = x(1)(t) +
m

∑
j2=1

∫ ∞

0

∫ ∞

0
eAτ2 .Nj2 eAτ1 B u(t − τ2 − τ1)uj2 (t − τ2)dτ1dτ2 , · · · ,

x(k)(t) = x(k−1)(t) +
m

∑
j2,··· ,jk=1

∫ ∞

0
· · ·
∫ ∞

0
eAτk Njk · · · eAτ2 .Nj2 eAτ1 B u(t − τ1 − · · · − τk)

uj2 (t − τ2 · · · − τk) · · · ujk (t − τk) dτ1dτ2 · · · dτk , k = 3, · · · (23)

It was proved in [22] that if the sequence x(k)(t) in (23) converges (that is, the corre-
sponding Volterra series of corrections converges), then it converges to the solution of (21),
that is,

x(t) = lim
k→∞

x(k)(t) . (24)

116



Mathematics 2021, 9, 3288

It was proved in [23] that this sequence always converges if matrix A is stable, input
control is bounded, and all the matrices Nj are sufficiently bounded in norm. In what follows,
we assume that the corresponding Volterra series converges, and the limit (24) exists.

From (23), it follows that the solution to the bilinear system (21) is constructed as the
sum of (i) the solution of its linear part x(1)(t), (ii) the bilinear correction x(2)(t)− x(1)(t)
generated by the linear part, (iii) the bilinear correction x(3)(t)− x(2)(t) generated by the
first correction, etc. Moreover, all non-linear corrections of the form x(k)(t)− x(k−1)(t),
k = 2, 3, · · · are integral transformations of the linear part x(1)(t) of order k with respect to
control, that is,

x(t) = x(1)(t) +
∞

∑
k=1

Fkx(1)(t) , where

Fx(t) =
m

∑
j=1

∫ ∞

0
eAτ Nj x(t − τ) uj(t − τ) dτ . (25)

Moreover, according to our assumption, the integral operator F in (25) is a contraction.
The solution x(1)(t) of the linear part of the system (21) can be divided into eigenmodes

of the matrix A, in accordance with the definitions (7) in Section 2.1.

x(1)(t) = ∑
i

x(1)i (t) , where

x(1)i (t) = Ri x(1)(t) =
∫ ∞

0
eλiτ Ri B u(t − τ) dτ , (26)

where Ri is the residue matrix in (3) corresponding to λi.

Definition 3. The generalized mode of the bilinear system (21) corresponding to the eigenvalue
λi of the matrix A is the sum of the mode x(1)i (t) of the linear part of the system and non-linear
corrections generated by this mode, obtained in the course of solving the recursive system (22), i.e.,

xi(t) = x(1)i (t) +
∞

∑
k=1

Fkx(1)i (t) , (27)

where the integral operator F is defined in (25) and is assumed to be a contraction, and x(1)i is
defined in (26).

The significance of Definition 3 is justified by the following statement.

Proposition 11. Let the initial state of the bilinear system (21) x(0) = 0, which satisfies u(t) = 0,
t < 0, and the Volterra series in (23) converges. Then, the solution of (21) is uniquely split into
generalized modes (27), corresponding to the eigenvalues of matrix A.

x(t) = ∑
i

xi(t) . (28)

Proof. By constructing the sequence in (23),

x(k)(t) = x(1)(t) +
k−1

∑
j=1

Fjx(1)(t)

According to Proposition 2, the solution of the linear part x(1)(t) is uniquely decom-
posed into eigenmodes

x(1)(t) =
n

∑
i=1

x(1)i (t)
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Since the integral operator F is linear, we obtain

x(k)(t) =
n

∑
i=1

x(1)i (t) +
k−1

∑
j=1

Fj

(
n

∑
i=1

x(1)i (t)

)
=

n

∑
i=1

(
x(1)i (t) +

k−1

∑
j=1

Fjx(1)i (t)

)
=

n

∑
i=1

x(k)i (t)

If Volterra series ∑k(x(k)(t) − x(k−1)(t)) in (23) converges, then according to [22],
the sequence {x(k)(t)} converges to the solution of (21). Due to the convergence of the
sequence {x(k)(t)}, the sequences {x(k)i (t)} for each i also converge to xi(t) in (27), since
they are obtained by multiplying {x(k)(t)} by constant matrices Ri. Therefore, taking the
limit k → ∞ in the previous equation, we obtain the assertion of the proposition.

3.2. Spectral Decompositions of Gramians

The concept of controllability and observability Gramians for a bilinear system was
studied in [2]. The controllability Gramian of system (21) is defined as

PC =
∞

∑
k=1

P(k) =
∞

∑
k=1

∫ ∞

0
· · ·
∫ ∞

0
GkBBTGT

k dτ1 · · · dτk , where

G1 = eAτ1 , Gk(τ1 · · · τk) = eAτk [N1Gk−1, · · · , NmGk−1], k = 2, 3, · · · (29)

It characterizes the input-to-state energy of the system [16]. Additionally, the following
statements hold:

Theorem 2 ([6]). The controllability (observability) Gramian exists if (i) A is stable, such that
||eAt|| ≤ βe−αt, t ≥ 0, α, β > 0. (ii) ||∑m

γ=1 NγNT
γ || < 2α/β2.

Theorem 3. If matrix A is stable and the controllability Gramian exists, then (i) system (1) is
controllable if, and only if, PC > 0 [2], and (ii) the Gramian PC satisfies the generalized Lyapunov
equation [5]

APC + PC AT +
m

∑
γ=1

NγPC NT
γ = −BBT . (30)

A study in [6] (in Proposition 1) also showed that if the matrix A is stable, then
the terms of the series P(k) in (29) can be found as successive solutions of the following
recursive system of linear Lyapunov equations:

AP(1) + P(1)AT + BBT = 0 ,

AP(k) + P(k)AT +
m

∑
γ=1

NγP(k)NT
γ = 0 , k = 2, 3, · · · (31)

The following useful addition can be made to this statement.

Proposition 12. The controllability Gramian (29) of the bilinear system (21) is the sum of the
controllability Gramian P(1) of the linear part and the integrals of the Gram matrices formed by
convolution kernels that arise when calculating the non-linear corrections x(k)(t) − x(k−1)(t),
k = 2, 3, · · · in the recursive solution to system (22).

Proof. According to (31), P(1) in (29) is the controllability Gramian of the linear part of the
system (21), and the other terms P(k) are calculated in (29) as integrals of the Gram matrices:

P(k) =
∫ ∞

0
· · ·
∫ ∞

0
GkBBTGT

k dt1 · · · dtk ,
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and it can be verified that these Gram matrices

GkBBTGT
k =

m

∑
jk=1

eAτk Njk Gk−1BBTGT
k−1NT

jk eATτk = · · · =

m

∑
j2,··· ,jk=1

eAτk Njk · · · eAτ2 Nj2 eAτ1 BBTeATτ1 NT
j2 eATτ2 · · · NT

jk eATτk

are formed by convolution kernels, arising when calculating the corrections x(k)(t) −
x(k−1)(t), k = 2, 3, · · · in (23).

Definition 4. Controllability sub-Gramians and pairwise sub-Gramians of the bilinear
system (21) are, respectively, the matrices

P̃C
i =

∞

∑
k=1

P̃(k)
i =

1
2

∞

∑
k=1

∫ ∞

0
· · ·
∫ ∞

0
Gk(RiBBT + BBT R∗

i )G
T
k dτ1 · · · dτk , (32)

PC
ij =

∞

∑
k=1

P(k)
ij =

1
2

∞

∑
k=1

∫ ∞

0
· · ·
∫ ∞

0
Gk(RiBBT R∗

j + RjBBT R∗
i )G

T
k dτ1 · · · dτk , (33)

where Ri and Rj are the residue matrices in (3) corresponding to the eigenvalues λi and λj of matrix
A, and the matrices Gk are defined in (29).

We now establish some basic properties of sub-Gramians (32) and (33) in Definition 4.

Property 1. Under the conditions of Theorem 2, sub-Gramians (32) and (33) exist.

Proof. Under the conditions of Theorem 2, the series in (32) and (33) are formed using
the same contracting operator F as a series (29) in the definition of Gramian. Therefore,
sub-Gramians exist.

Suppose, further, that the matrix A is stable and controllability sub-Gramians (32)
and (33) exist. Then the following properties are satisfied.

Property 2. The sum over all sub-Gramians is Gramian (29)

PC =
n

∑
i=1

P̃C
i =

n

∑
i,j=1

PC
ij , P̃C

i =
n

∑
j=1

PC
ij . (34)

Proof. This is verified by the direct summation of expressions (32) and (33) considering
the uniform convergence of the series and integrals and the property of residue matrices
∑i Ri = I.

Property 3 (Consistency with linear theory). The sub-Gramians P̃(1)
i and P(1)

ij in (32) and (33)
are the controllability sub-Gramians of the linear part of system (21) in accordance with the
definitions (17) of Section 2.3.

Property 4. Controllability sub-Gramians of the bilinear system in (32) and (33) satisfy the
corresponding generalized modal Lyapunov equations

AP̃C
i + P̃C

i AT +
m

∑
γ=1

Nγ P̃C
i NT

γ = −1
2

(
RiBBT + BBT R∗

i

)
, (35)

APC
ij + PC

ij AT +
m

∑
γ=1

NγPC
ij NT

γ = −1
2

(
RiBBT R∗

j + RjBBT R∗
i

)
. (36)
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Proof. We can directly verify that when A is stable, the terms P̃(k)
i in (32) can be obtained

from the following Lyapunov equations:

AP̃(1)
i + P̃(1)

i AT +
1
2

(
RiBBT + BBT R∗

i

)
= 0 ,

AP̃(k)
i + P̃(k)

i AT +
m

∑
γ=1

Nγ P̃(k−1)
i NT

γ = 0 , k = 2, 3, · · ·

We sum the first K equations. Because we assumed that sub-Gramians exist, that
is, the series in (32) and (33) converge, then, the series ∑K

k=1 P̃(k)
i converges uniformly as

K → ∞. Taking the limit K → ∞, we obtain (35). Similarly, we obtain (36).

Corollary 2. If Equation (30) has a unique solution and the sub-Gramians P̃C
i and PC

ij exist, then
they are defined as unique solutions to (35) and (36).

Proof. According to Property 4, sub-Gramians must satisfy (35) and (36). If (30) has a
unique solution, then the operator on the left-hand side of (30) is non-singular. Therefore
the sub-Gramians P̃C

i and PC
ij are defined uniquely by (35) and (36) for any matrix on the

right-hand side.

Choose the input control satisfying the conditions u(t) = 0, t < 0 and
∫ ∞

0 |u(t)|2dt =
M2 < 1. Consider the set of vector functions

Ωu = { f (t) : f (t) =
∞

∑
k=0

Fk f (1)(t), f (1)(t) =
∫ ∞

0
G1(τ)Bf u(t − τ)dτ} ,

where operator F is defined in (25), G1(τ) = eAτ as in (29), and Bf is a matrix of appropriate
dimensions. Then for any x, y ∈ Ωu we define the scalar product as

(x, y)Ω =
∞

∑
k=1

M2k · Trace
(∫ ∞

0
· · ·
∫ ∞

0
GkBxB∗

y GT
k dτ1 · · · dτk

)
, (37)

where Gk are defined as in (29). This definition satisfies the axioms of linearity, commuta-
tivity and positive definiteness. Then, the following analog of Proposition 7 holds for the
sub-Gramians of the bilinear system.

Property 5. Suppose that in the bilinear system (21), the initial state is x(0) = 0, and the control
satisfies the condition u(t) = 0, t < 0. Then, for a sufficiently small control

∫ ∞
0 |u(t)|2dt = M2 < 1,

the trace of controllability sub-Gramian P̃C
i estimates from above the value of the dot product (37) of

a solution vector x(t) with generalized mode xi(t) in (28), and the trace of pairwise sub-Gramian
PC

ij estimates from above the value of the dot product of a generalized mode xi(t) with generalized
mode xj(t)

|(x, xj)Ω| ≤ |Trace P̃C
i | ,

|(xi, xj)Ω| ≤ |Trace PC
ij | . (38)

The observability Gramian and observability sub-Gramian of system (21) are defined in
a similar manner. Properties similar to Properties 1–5 are satisfied for them. Gramian of
observability is defined as

PO =
∞

∑
k=1

P(k) =
∞

∑
k=1

∫ ∞

0
· · ·
∫ ∞

0
QT

k CTCQkdτ1 · · · dτk , where

Q1 = eAτ1 , Qk(τ1 · · · τk) =
[

NT
1 QT

k−1, · · · , NT
mQT

k−1

]T
eAτk , k = 2, 3, · · · (39)
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Definition 5. Observability sub-Gramians and pairwise sub-Gramians of the bilinear sys-
tem (21) are, respectively, the matrices

P̃O
i =

∞

∑
k=1

P̃(k)
i =

1
2

∞

∑
k=1

∫ ∞

0
· · ·
∫ ∞

0
QT

k (R∗
i CTC + CTCRi)Qk dτ1 · · · dτk , (40)

PO
ij =

∞

∑
k=1

P(k)
ij =

1
2

∞

∑
k=1

∫ ∞

0
· · ·
∫ ∞

0
QT

k (R∗
i CTCRj + R∗

j CTCRi)Qk dτ1 · · · dτk . (41)

The observability sub-Gramians satisfy the following modal Lyapunov equations:

AT P̃O
i + P̃O

i A +
m

∑
γ=1

NT
γ P̃O

i Nγ = −1
2

(
R∗

i CTC + CTCRi

)
,

AT PO
ij + PO

ij A +
m

∑
γ=1

NT
γ PO

ij Nγ = −1
2

(
R∗

i CTCRj + R∗
j CTCRi

)
.

4. Iterative Algorithms for Computing Gramians and Sub-Gramians

In this section, we propose iterative algorithms for computing the Gramians and
sub-Gramians for bilinear control systems based on the element-wise computation of the
solution matrix on an eigenvector basis. Similar formulas for linear systems were proposed
in [24]. Based on the proposed iterative procedure, we introduce a new criterion for the
existence of solutions to generalized Lyapunov equations, which in some cases allows us
to expand the region of guaranteed existence of solutions in comparison with the estimate
of Theorem 2. The proposed criterion, however, uses more detailed information on the
coefficients of matrices Nγ and eigenvalues of matrix A.

4.1. Algorithm for the Element-Wise Computation of Gramian in the Eigenvector Basis

Assume that the matrix A in (21) has a simple spectrum σ(A) = {λ1, λ2, · · · , λn} and
the following eigenvalue decomposition

A = UΛV, UV = VU = I, (42)

where Λ = diag{λ1, λ2, · · · , λn}. The columns of matrix U are composed of the normal-
ized right eigenvectors of matrix A, and the rows of matrix V are the normalized left
eigenvectors. Then, the Lyapunov Equation (30) in the eigenbasis takes the form

ΛP̃C + P̃CΛ∗ +
m

∑
γ=1

Ñγ P̃C ÑT
γ = −Q̃ , (43)

where P̃C = VPCV∗, Q̃ = VBBTV∗, Ñγ = VNγU, and (·)∗ denotes the Hermitian conjuga-
tion. The iterative procedure (31) for solving Equation (43) in the eigenbasis of matrix A
takes the form

ΛP̃(1) + P̃(1)Λ∗ = −Q̃ ,

ΛP̃(k) + P̃(k)Λ∗ = −
m

∑
γ=1

Ñγ P̃(k)Ñ∗
γ, k = 2, 3, · · · , (44)

P̃C =
∞

∑
k=1

P̃(k) , PC = UP̃CU∗ ,

where P̃(k) = VP(k)V∗. Let (νγ
i )

T = eT
i Ñγ be the i-th raw matrix Ñγ, where ei is the i-th

column of the unit matrix. Then, (44) can be written in terms of the matrix components as
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(
P̃(1)
)

ij
=

−1
λi + λ∗

j

(
Q̃
)

ij ,

∀k > 1 :
(

P̃(k)
)

ij
= −

m

∑
γ=1

−ν
γ
i P̃(k−1)

(
ν

γ
j

)T

λi + λ∗
j

, PC = U

(
∞

∑
k=1

P̃(k)

)
U∗ , (45)

4.2. Novel Criterion for the Existence of Gramians

The iterative procedure (45) assumes an appropriate criterion for the existence of Gramian
PC, which is based on the convergence of its elements in an iterative process.

Theorem 4. The controllability Gramian PC in (29) exists if (i) the matrix A is stable, and (ii) the
inequality holds

√
∑
i,j

q2
ij < 1, qij =

m

∑
γ=1

|νγ
i | · |νγ

j |
|λi + λ∗

j |
, i, j = 1, · · · , n , (46)

where the vectors ν
γ
i = U∗NT

γ V∗ei, the matrices V, U are defined in (42), and λi, λj are the
eigenvalues of the matrix A. Under the above conditions, the Gramian PC can be obtained using an
iterative algorithm (45).

Proof. For the proof, we use the Frobenius norm || · ||F. From expressions (45), it fol-
lows that ∣∣∣∣νγ

i P̃(k−1)
(

ν
γ
j

)T
∣∣∣∣ ≤ |νγ

i | · |νγ
j | · ||P̃(k−1)||F ,∣∣∣∣(P̃(k)

)
ij

∣∣∣∣ ≤ qij||P̃(k−1)||F , ||P̃(k)||F ≤
√

∑
i,j

q2
ij · ||P̃(k−1)||F

Thus, under (46), the series ∑∞
k=1 P̃(k) in (44) is bounded from above by a converging

geometric progression, and therefore converges. Adding the K equations in (44) and
taking the limit K → ∞, we obtain a solution to the generalized Lyapunov equation in the
eigenvector basis (43). If the series ∑∞

k=1 P̃(k) converges in the iterative procedure (44) on an
eigenbasis, then the corresponding series ∑∞

k=1 P(k) converges in procedure (31). According
to [6] (Proposition 1), if the matrix A is stable, then the terms of the series defining the
Gramian PC in (29) are calculated using terms P(k) obtained in the iterative procedure (31),
that is, PC = ∑∞

k=1 P(k). Hence, the Gramian PC exists.

The conditions for the existence of a solution in the Lyapunov Equation (30), estab-
lished in Theorem 2 [6], are based on the characteristics of the matrices as a whole, whereas
Theorem 4 uses the convergence criterion, which is based on more detailed information
about the coefficients of the matrices Nγ and the eigenvalues of the matrix A. Therefore,
we can expect that the criterion of Theorem 4 will allow, in general, to expand the domain
of guaranteed existence of a solution in comparison with the criterion of Theorem 2. Let us
compare them using an illustrative example.

Example 1. Consider the following generalized Lyapunov equation with parameter ε:(−1 0
0 −2

)
· P + P ·

(−1 0
0 −2

)
+ ε2
(

1 1
0 1

)
· P ·
(

1 0
1 1

)
=

(−3 −3
−3 −3

)
(47)
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In the notation of Theorem 2, we have

α = β = 1, NNT = ε2
(

2 1
1 1

)
, (NNT)2 = ε4

(
5 3
3 2

)
,

||NNT ||F =
√

trace((NNT)2) = ε2
√

7 .

The condition for the existence of a solution to Equation (47) established by Theorem 2 takes
the form

||NNT || < 2α/β2, ε2 < 2/
√

7 ≈ 0.756 .

In the notation of Theorem 4, we have

λ1 = −1, λ2 = −2, |ν1| =
√

2, |ν2| = 1, (q)ij = ε2
(

1
√

2/3√
2/3 1/4

)
.

The condition for the existence of a solution to Equation (47) established by Theorem 4 takes
the form √

∑
i,j

q2
ij = ε2

√
217/144 < 1, ε2 < 12/

√
217 ≈ 0.815 .

In this example, the criterion of Theorem 4 allows us to expand the domain of guaranteed
existence of solutions (47) in comparison with the criterion of Theorem 2. However, the application
of this criterion requires more detailed information about the system.

We calculate the solution to Equation (47) using the iterative algorithm (45) for ε = 0.5.
In this case, we obtain

P̃(1) =

(
1.5 1
1 0.75

)
, P̃(2) =

(
0.5312 0.1458
0.1458 0.04687

)
,

P̃(3) =

(
0.1089 0.01614

0.01614 0.002930

)
, P̃(4) =

(
0.01599 0.001589

0.001589 0.0001831

)
,

P̃ ≈
4

∑
k=1

P̃(k) =

(
2.15609 1.1635
1.1635 0.79998

)
. (48)

The criterion of Theorem 2 guarantees convergence with the common ratio of geomet-
ric progression q = ε2

√
7/2 ≈ 0.3307, and the relative accuracy of the solution (48) after

four iterations is not worse than q4/(1 − q) ≈ 0.0179, that is, 1.79%.
The criterion of Theorem 4 guarantees convergence with the common ratio of geomet-

ric progression q = ε2
√

217/144 ≈ 0.3069 and the relative accuracy of solution (48) after
four iterations is not worse than q4/(1 − q) ≈ 0.0128, that is, 1.28%.

In this case, the exact solution to (47) and the actual error after four iterations are
as follows:

P =

(
832/385 64/55
64/55 4/5

)
, P − P̃ =

( −0.0049 −0.00014
−0.00014 0.00002

)
, ||P − P̃||F = 0.0049

that is, for ||P||F = 2.83, the relative accuracy of the solution (48) is 0.17%.

4.3. Iterative Algorithm for Computing Sub-Gramians

Modal Lyapunov Equations (35) and (36) for the controllability sub-Gramians differ
from Equation (30) for the Gramian PC only on the right-hand side. Therefore, to apply the
iterative procedure (45) to compute the sub-Gramians P̃C

i and PC
ij , the matrix Q̃ = VBBTV∗

in the first Equation (45) must be replaced with matrices
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Q̃i =
1
2

V(RiBBT + BBT R∗
i )V

∗ and Qij =
1
2

V(RiBBT R∗
j + RjBBT R∗

i )V
∗,

respectively. The elements of these matrices in the eigenvector basis are calculated as

(Q̃i)pr =
1
2
(δip + δir)(Q̃)pr and, (Q̃ij)pr =

1
2
(δipδjr + δjpδir)(Q̃)pr ,

where δls is the Kronecker delta. Substituting these expressions into the iterative proce-
dure (45) instead of (Q̃)pr , we obtain the following iterative procedure for computation of
sub-Gramians P̃C

i in (35) (
P̃(1)

i

)
pr

= −1
2
· 1

λp + λ∗
r
(δip + δir)

(
Q̃
)

pr ,

∀k > 1 :
(

P̃(k)
i

)
pr

=
m

∑
γ=1

−ν
γ
p P̃(k−1)

i
(
ν

γ
r
)T

λp + λ∗
r

, (49)

P̃C
i = U

(
∞

∑
k=1

P̃(k)
i

)
U∗,

and an iterative procedure for computation of pairwise sub-Gramians PC
ij in (36)

(
P̃(1)

ij

)
pr

= −1
2
· 1

λp + λ∗
r
(δipδjr + δjpδir)

(
Q̃
)

pr ,

∀k > 1 :
(

P̃(k)
ij

)
pr

=
m

∑
γ=1

−ν
γ
p P̃(k−1)

ij
(
ν

γ
r
)T

λp + λ∗
r

, (50)

PC
ij = U

(
∞

∑
k=1

P̃(k)
i

)
U∗ .

Sufficient conditions for the applicability of iterative procedures (49) and (50) are the
same as those for the iterative procedure (44) established in Theorem 2 or in Theorem 4.

Example 2. To illustrate the definition of sub-Gramians and algorithms for their computation, we
calculate the controllability sub-Gramians for Equation (47) with ε = 1/2. As was established
in Example 1, the Gramian P exists, and according to Property 1, all sub-Gramians also exist.
According to Property 2, the Gramian is split into sub-Gramians in the form

P = P1 + P2 =

(
144/77 6/11
6/11 0

)
+

(
112/385 34/55
34/55 4/5

)
=

(
832/385 64/55
64/55 4/5

)
P = P11 + P12 + P21 + P22 =

(
12/7 0

0 0

)
+(

12/77 6/11
6/11 0

)
+

(
12/77 6/11
6/11 0

)
+

(
52/385 4/55
4/55 4/5

)
.

Moreover, the sub-Gramians themselves, according to Property 4, can be calculated from the
corresponding modal Lyapunov Equations (35) and (36), respectively.

Example 3. For completeness, we present an example of using sub-Gramians to analyze a bilinear
model of an electric power system from [20]. As a test bilinear model, the 17th-order model from [5]
was used for two interconnected power systems, each area having one steam and one hydro unit.
In a test experiment, the contribution of generalized eigenmodes (28) and their pair interactions to
the small-signal perturbation energy of the system was estimated based on the coefficient α, which
characterized the magnitude of all bilinear terms. To illustrate the process of selecting eigenmodes
that are sensitive to bilinear effects, as well as the selection of areas of linear and bilinear behavior of
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the system, consider Figure 1. One can see the Frobenius norm of sub-Gramians P̃i for generalized
eigenmodes as a function of the weighting coefficient α. The behavior of the spectral components
indicates the range of applicability of the linear model in general and reveals particular eigenmodes
that are sensitive to bilinear effects. The arrowhead in Figure 1 indicates the threshold between
the linear and bilinear behavior of the system at α ≈ 4.17. This threshold can be defined from the
condition that the difference between the norms of “linear” and full sub-Gramians corresponding
to some eigenmode reaches a certain percentage. In this case, we can see in Figure 1 that the most
sensitive to bilinear effects are the S15 and S14 modes. At α ≈ 4.17 the norm of their sub-Gramians
has increased by 17% and 15%, respectively. The modes S1 and S4/S5 are also sensitive to bilinear
effects. The norms of their sub-Gramians have increased by 6.6% and 4.6%, respectively. Other
modes are less sensitive, and can be considered in the linear approximation, as long as the norms
of their sub-Gramians remain less than the chosen threshold value. The threshold, after which the
non-linear behavior of the eigenmode must be considered, can be determined individually for each
mode. This information can be used for small-signal or transient stability analyses. A detailed
description of the model, test experiment, and its results can be found in [5,20].

Figure 1. The Frobenius norm of sub-Gramians P̃i for generalized eigenmodes as a function of the
weighting coefficient α in the test experiment in [20].

5. Discussion

In this study, we show that (i) the solution of a bilinear system can be split uniquely into
generalized modes corresponding to the eigenvalues of the dynamics matrix, and (ii) the
controllability and observability Gramians can be split into “sub-Gramians” that charac-
terize the magnitude of these generalized modes and their pairwise interactions. This
characterization, however, was proven only for small enough input control. A similar
condition arises when establishing the relationship between the Gramians and the energy
of states in the system in [16] and, apparently, it is typical for bilinear systems.

In contrast to the spectral expansions of the instantaneous dynamics of a bilinear
system in [11–13], the spectral expansions of the L2-norms of states and signals considered
in this paper can be useful for analyzing the non-linear effects associated with the accumu-
lation of the influence of disturbances over time. Therefore, the practical significance of the
obtained results is that they allow the characterization of the contribution of generalized
modes or their pairwise combinations to the asymptotic dynamics of the integrated pertur-
bation energy in bilinear systems. In particular, the norm of the obtained sub-Gramians
increases when the frequencies of the corresponding oscillating modes approximate each
other. Thus, the proposed decompositions may provide a new fundamental approach for
quantifying resonant modal interactions in bilinear systems.
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When the bilinear effects decrease, the proposed expansions allow a smooth transition
to the linear case (see Property 3). This property can be useful in determining the range of
applicability of a linear model and identifying generalized eigenmodes that are sensitive to
bilinear effects and require “non-linear refinement” of their dynamics. It can be expected
that in some large systems, there will be only a few such modes. Therefore, a non-linear
examination of their dynamics will not take much time when real-time state estimation is
required. The first test experiment with a bilinear model of an electric power system in [20]
showed that the proposed spectral decompositions allow one to determine the range of
applicability of linear model in general and to reveal particular generalized eigenmodes
that sensitive to bilinear effects.

Although this study focuses on continuous bilinear systems, the results obtained can
be extended to different classes of systems. First, they can be extended to discrete dynamical
systems. In the linear case, this was partially performed in [18]. Meanwhile, the generalized
Lyapunov equations that we consider for deterministic bilinear systems can be naturally
associated with stochastic linear control systems (see [8]). Therefore, the results of spectral
decomposition of Gramians can immediately be carried over to this class of systems.
In this case, the results must be interpreted in terms of probabilities. Finally, the equations
considered in this study can describe a special class of linear parameter-varying systems
that can be reformulated as bilinear dynamical systems [9]. In this case, the interpretation
of the spectral decompositions must include the effect of parameter variation.

It should be noted that the main object of research in this study is matrix Lyapunov
equations, that is, matrix equations. An alternative approach is to apply the apparatus of
linear matrix inequalities and semi-definite programming [25]. Therefore, another possible
area of research is the combination of these approaches. In terms of applications, the authors
plan to apply the developed methods to study the stability of electric power systems using
linear and non-linear graph models. Another emerging area is the analysis of the stability
of neural networks, including the use of Lyapunov functions [26,27]. The dissipativity
principle in the synchronization of neural networks is very similar to the synchronization
of generators in power systems. Therefore, the application of the developed methods
to the problem of synchronization of neural networks is another possible direction for
future research.
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Abstract: The paper deals with the identification of plasma equilibrium reconstruction in D-shaped
tokamaks on the base of plasma external magnetic measurements. The methods of such identification
are directed to increase their speed of response when plasma discharges are relatively short, like in
the spherical Globus-M2 tokamak (Ioffe Inst., St. Petersburg, Russia). The new approach is first to
apply to the plasma discharges data the off-line equilibrium reconstruction algorithm based on the
Picard iterations, and obtain the gaps between the plasma boundary and the first wall, and the second
is to apply new identification methods to the gap values, producing plasma shape models operating
in real time. The inputs for on-line robust identification algorithms are the measurements of magnetic
fluxes on magnetic loops, plasma current, and currents in the poloidal field coils measured by the
Rogowski loops. The novel on-line high-performance identification algorithms are designed on the
base of (i) full-order observer synthesized by linear matrix inequality (LMI) methodology, (ii) static
matrix obtained by the least square technique, and (iii) deep neural network. The robust observer is
constructed on the base of the LPV plant models which have the novelty that the state vector contains
the gaps which are estimated by the observer, using input and output signals. The results of the
simulation of the identification systems on the base of experimental data of the Globus-M2 tokamak
are presented.

Keywords: tokamak; plasma equilibrium reconstruction; linear plasma models; identification; state
observer; LMI; least square technique; deep neural network

1. Introduction

Tokamaks [1], toroidal vessels with magnetic coils (Figure 1), originated at the I.V.
Kurchatov Institute of Atomic Energy in the USSR and spread around the world to solve
the problem of controlled thermonuclear fusion: obtaining energy from the fusion of the
light elements nuclei. The most promising devices for solving this problem are vertically
elongated tokamaks with increased gas-kinetic pressure (D-shaped tokamaks) (Figure 1).
Plasma (the fourth state of matter) vertically elongated by an external magnetic field is
unstable in the vertical direction, and it is necessary to use automatic feedback control
systems to keep it near the first tokamak wall.

In our studies, we developed, modeled, and applied control systems of plasma position,
current and shape for various tokamaks: ITER (International Thermonuclear Experimental
Reactor, Cadarache, France) [2,3], T-15MD (tokamak created at NRC “Kurchatov Institute”,
Moscow, Russia, planned to be launched in the near future) [4–6], Tuman-3 (toroidal instal-
lation with adiabatic compression) [3,4], Globus-M2 (spherical tokamak) [4,7,8] (operating
at Ioffe Physics and Technology Institute of RAS, St. Petersburg, Russia), T-11M (operating
circular tokamak) [9], and IGNITOR (JSC “SSC RF TRINITI”, Troitsk, Russia) [10].

Mathematics 2022, 10, 40. https://doi.org/10.3390/math10010040 https://www.mdpi.com/journal/mathematics
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Figure 1. Vertically elongated tokamak without iron core: 1 is the VV; 2 is the toroidal field coil; 3 are
the poloidal field inner and outer coils; 4 are plasma and helical magnetic lines (©ITER Project Center
(Russia): https://www.iterrf.ru/index.php/istoriya-sozdaniya-proekta, accessed on 21 December
2021).

Since optical reconstruction codes such as OFIT [11] are not available in many toka-
maks, the plasma boundary in D-shaped tokamaks usually is not measured directly but
rather reconstructed from the external measurements. There are a number of codes which
are able to solve that problem, off-line and on-line [12]. The most popular of them are EFIT
(equilibrium fitting) [13], which uses the Picard iterations [14] and which is applied on-line
on a set of tokamaks, such as DIII-D, NSTX (U.S.), EAST (China), KSTAR (S. Korea) and
RTLIUQE [15] used on TCV (Switzerland). These codes were adopted for ITER.

In this work, the new plasma equilibrium reconstruction algorithms are to be inserted
into the plasma position, current, and shape feedback control system of the Globus-M2
tokamak. In Figure 2, one can see the digital model of that system [16] where the plasma
equilibrium reconstructed algorithm is to be identified by the new methods proposed in
the paper.
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Figure 2. Structure scheme of the plasma position, current and shape control system of Globus-
M2 tokamak.

2. Reconstructing Plasma Equilibria from External Magnetic Measurements

A tokamak is an axially symmetrical device, so the tokamak plasma equilibrium is
described in the poloidal plane (r, z), typically in terms of the poloidal magnetic flux
distribution Ψ(r, z), which is defined as the flux of the magnetic field vector �B through a
surface S bounded by the line (r = const, z = const):

Ψ(r, z) =
1

2π

∫∫
S

�Bd�S. (1)

The magnetic field lines, along which plasma particles move, lie on the flux surfaces
Ψ(r, z) = const; therefore, the boundary of the magnetically confined plasma can be found
as the largest closed flux surface.

The toroidal current density Jϕ in the tokamak is connected with the poloidal flux
through the linear second-order partial differential equation [1]:

− μ−1
0

(
∂

∂r
1
r

∂

∂r
+

1
r

∂2

∂z2

)
Ψ = Jϕ. (2)

The boundary conditions for the equation are obtained from the definition and the
physical meaning of the poloidal flux:

Ψ|r=0 = 0, Ψ|r=∞ = 0. (3)

When the right-hand side of the Equation (2) is known, it can be solved with the
standard numerical methods, for example, using the corresponding Green’s function
G [17]:
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Ψ(r, z) =
∫∫

Jϕ(r′, z′)G(r, z, r′, z′)dr′dz′,

G(r, z, r′, z′) = μ0

π

√
rr′
k2

((
1 − k2

2

)
K(k2)− E(k2)

)
,

where K and E are the elliptic integrals of the first and the second kind respectively, and

k2 =
4rr′

(r + r′)2 + (z − z′)2 .

In practice, the plasma current distribution and the induced currents in the con-
ductive Vacuum Vessel (VV) of the tokamak are often not available for real-time recon-
struction and must be identified together with the poloidal flux distribution from the
external magnetic measurements, which include coil currents I1, . . . , INc , total plasma cur-
rent Ip measured by Rogowski coils and poloidal flux values Ψ at finite number of points{
(r1, z1), . . . , (rNl , zNl )

}
by magnetic loops outside the plasma.

Hence, the plasma equilibrium reconstruction problem is to find plasma area Sp,
plasma current distribution Jp and induced current density Jv such that:

χ2 =

(
Ip −

∫
JpdS
)2

/σ2
p +

Nl

∑
j=1

(
Ψj − Ψ(rj, zj)

)2/σ2
j −−→

Jp ,Jv
min, (4)

where σp and σj are uncertainties of the plasma current and poloidal flux at jth magnetic
loop, Ψ(r, z) is the solution of the Equation (2) with boundary conditions (3) and the
right-hand side:

Jϕ(r, z) =

⎧⎪⎨⎪⎩
Jp, (r, z) ∈ Sp,
Ik Nk/Sk, (r, z) ∈ Sk, k = 1, . . . , Nc,
Jv (r, z) ∈ Sv,

Sk and Sv are the area occupied by the kth coil and the VV, respectively, Nk is the number of
turns of the kth coil.

Optionally, coil current measurements may also be considered uncertain and ac-

counted in the functional (4) by terms
(

Ik − Imeasured
k

)2
/σ2

Ik
, k = 1, . . . , Nc. The functional

may also include other measurements that can be expressed in terms of the currents and
the magnetic flux. Finally, as the plasma equilibrium reconstruction problem is ill-posed in
the sense of Hadamard, the functional may include a regularization term.

To find the plasma shape in the Globus-M2 tokamak (Figure 3), the flux-current
distribution identification (FCDI) code was used [14]. The FCDI code applies the following
expression for the plasma toroidal current density, obtained from the plasma force balance
equations [1,14]:

Jp = rp′(Ψ) +
1

μ0r
F(Ψ)F′(Ψ).

where p is plasma pressure and F is poloidal current defined analogous to poloidal flux (1):

F =
μ0

2π

∫∫
S

�Jd�S.
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The Picard iteration method is used to find the poloidal flux distribution. Since F and
p depend only on poloidal flux, on each iteration, the FCDI code approximates the plasma
current density by polynomials of the poloidal flux from the previous iteration:

p′(Ψ) =
Np

∑
k=0

c(p)
k Ψk,

F(Ψ)F′(Ψ) =
NF

∑
k=0

c(F)
k Ψk.

Similarly, the VV currents are approximated as a linear combination of some basis
functions, for example, orthogonal VV current modes [18]:

Jv =
Nv

∑
k=0

c(v)k Jk.

The coefficients of the Jp polynomials and the Jv basis function regression are found
then by minimizing the error functional (4) which can be written in the matrix form:

χ2 = ‖Ac − b‖2.

Here, c is the N × 1 column-vector of the coefficients c(p), c(F), c(v), N = Np + NF + Nv,
A is the M × N matrix, where M is the number of magnetic measurements used, and
b is the N × 1 column-vector. To regularize the problem, the SVD truncation method is
used to minimize the quadratic functional [19]. After the coefficients are determined, the
corresponding poloidal flux distribution is calculated, which is used for the polynomi-
als construction on the next iteration. The iterations are continued until the error χ2 is
sufficiently small or the maximal number of iterations is reached.

Figure 3. Globus-M2 tokamak (©Ioffe Physics and Technology Institute of RAS, St. Petersburg,
Russia).
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3. Experimental Data

The FCDI code was applied to 50 discharges of the Globus-M2 tokamak. For each
discharge, there are magnetic measurements available y(1), y(2), . . . , y(50), which include
currents in the 8 control coils (Horizontal Field Coil, Vertical Field Coil, Central Solenoid,
Poloidal Field Coil 1, upper and lower sections of the Poloidal Field Coil 2, Poloidal Field
Coil 3 and Correcting Coil) (Figure 4), poloidal magnetic flux from 21 loops, vertical dipole
magnetic flux (difference between magnetic flux above and below plasma), horizontal
dipole magnetic flux (difference between magnetic flux on the left and on the right of
the plasma), and quadrupole magnetic flux (expressed as ψ(L1)− ψ(L2) + ψ(L3)− ψ(L4),
with location of loops L1–L4 shown in Figure 4) so that y(i) ∈ R33×si , i ∈ [1; 50], where
each si = Ti/τ, Ti is the duration of the discharge, τ is the discretization step. Here,
the discretization step is the time step between the reconstructed off-line equilibria. It is
constrained only by the discretization time of the experimental measurements.

Figure 4. Poloidal system of the Globus-M2 tokamak and plasma boundary with strike points g1, g2
and gaps g3–g6.
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From these data, the FCDI code obtains plasma current distribution and plasma
boundary coordinates for the divertor phases of the discharges. The calculated plasma
shapes are represented by the positions of 2 strike points (g1, g2) on the VV and values
of 4 gaps (g3–g6) between plasma and VV (Figure 4) g(1), g(2), . . . , g(50); g(i) ∈ R6×si . The
strike points are points of intersection of the poloidal flux isoline, which bounds the plasma
and the VV. Their coordinates g1 and g2 are calculated as the distance from point P6 in
Figure 4 along the VV. The gap g3 is calculated as the distance between point P3 on the VV
outer wall and the plasma boundary on the horizontal line, g4 is the distance between P4
and the plasma boundary on the 45◦ line, g5 is the distance between P5 and the plasma
boundary along the vertical line, and g6 is the distance between point P6 on the VV inner
wall and the plasma along the horizontal line. The g1–g6 values describe plasma shape in the
LSND (lower single null divertor) configuration, typical for the Globus-M2 tokamak. Other
configurations may require different sets of descriptors, but the identification methods
described below are applicable all the same.

4. Plasma Model

The plasma dynamics is described by Faraday’s law equations:

d
dt

Φ(Jp, I) + RI = U, (5)

and force balance equation
�F(Jp, I) = 0. (6)

The measured fluxes and the plasma shape are determined by currents in the tokamak:

Ψ = Ψ(Jp, I),

g = g(Jp, I).
(7)

Here, I = [IT
c , IT

v , Ip]T, Φ, R, and U are respectively the column-vector of currents,
column-vector of magnetic flux, diagonal matrix of electrical resistance and column-vector
of the voltage applied to the control coils, VV, and plasma �F is the force acting on the plasma,
g is the column vector of strike points positions on the VV and the gaps between the plasma
and VV, Ψ is the column vector of the fluxes measured by the tokamak diagnostics. The
plasma mass is neglected.

The magnetic flux vector can be expressed as Φ(Jp, I) = M(Jp)I, where M is the
inductance matrix. The dependence of the inductance matrix M, force �F and plasma shape
g on plasma current distribution Jp is nonlinear but for the small deviations from the
reconstructed equilibrium, the linearized model is sufficient. Assuming that plasma can
rigidly move in vertical and radial directions, the linearized Equations (5)–(7) take form:

M
dI
dt

+
∂Φ
∂�rp

d�rp

dt
+ RδI = δU,

∂�F
∂I

δI +
∂�F
∂�rp

δ�rp = 0,

δΨ =
∂Ψ

∂I
δI +

∂Ψ

∂�rp
δ�rp,

δg =
∂g
∂I

δI +
∂g
∂�rp

δ�rp,

where�rp is the radius-vector�rp = [rp, zp]T of plasma center of mass, δ denotes deviation
from the scenario value.
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Introducing state vector x = δI = [δIT
c , δIT

v , δIp]T, input vector u = δU and output
vector of plasma and coil currents, gaps, and fluxes deviations y = [δIp, δIT

c , δΨT, δgT]T, the
LPV (linear parameter varying) model takes the standard state-space form:{

ẋ(t) = Am(Jp, t)x(t) + Bm(Jp, t)u(t),
y(t) = Cm(Jp, t)x(t).

(8)

The reconstructed plasma current distributions Jp are used to calculate series of linear
models {A, B, C}nm describing plasma dynamics in each considered discharge. Here, index
n denotes time moment tn for which the model is obtained

Anm = Am(Jp, tn), Bnm = Bm(Jp, tn), Cnm = Cm(Jp, tn), n = 1, . . . , Nm,

where t1, . . . , tNm correspond to the time points of the divertor phase of the mth tokamak
discharge with the time step of 1 ms and index m denotes the serial number of discharge.
This represents the LPV model (8) as an array of LTI (linear time invariant) models. During
modeling each discharge, a linear interpolation is performed between time points from t1
to tNm .

The models have 24 states, 8 inputs, and 39 outputs. Each obtained model has a single
real positive pole.

Although the models include expressions for the gaps as the outputs, the gaps are not
directly measured on the tokamak, so it may be convenient to apply state-space coordinate
transformation, replacing any 6 currents with gaps in the state vector and removing gaps
from the outputs. Furthermore, use the ZOH (zero-order hold) for discretization with
sample time Ts = 0.1 ms such that

t(Tsk) ≤ t ≤ t(Tsk + Ts), k ∈ Z,

Ad
nm = exp(AnmTs), Bd

nm = A−1
nm(Ad

nm − I)Bnm, Cd
nm = Cnm.

The final array of discrete-time models in the state-space form is obtained{
x(Tsk + Ts) = Ad

nmx(Tsk) + Bd
nmu(Tsk),

y(Tsk) = Cd
nmx(Tsk).

(9)

The models have 8 inputs u = δU, 24 states x = [δgT, δ ÎT]T consisting of 6 gaps
and truncated to 18 elements current vector Î, 33 outputs y = [δIp, δIT

c , δΨT]T directly
corresponding to the values measured by the diagnostics at Globus-M2 tokamak: plasma
current, 8 currents in control coils, poloidal magnetic flux from 21 loops, quadrupole
magnetic flux, and vertical and horizontal dipole magnetic flux. The inclusion of the gaps
in the state vector is convenient for some applications, one of which is described in the
next section.

5. Plasma Shape Identification by Robust Observer Synthesized by LMI

The idea of gap estimation with a robust discrete state observer is as follows. Using
the FCDI code, a series of LPV models for a series of plasma discharges is computed. The
gaps are included in the state vector of all linear models, and the output vector includes the
signals measured by the magnetic diagnostics system of the tokamak. Then, using the LMI
method, a unified state observer is synthesized, which provides minimal error between
states and state estimates for a series of LPV models.

The synthesized observer can be used in a real experiment, with experimental signals
connected to its input as shown in Figure 5.

The unified observer for an array of linear models of the plant ensures the minimum
error between the state vectors and state estimation and consequently between the gaps
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values and gaps estimation over the entire discharge duration. This further guarantees the
robust behavior of the synthesized plasma shape control system.

Figure 5. Robust observer synthesized via LMIs for use in a real experiment. The red vector signal
includes experimental signals obtained by the magnetic diagnostic system. The blue vector signal
includes voltages on the poloidal coils. The yellow signal contains states estimation, which includes
gaps estimation.

The state equation of the full-order discrete-time observer [20] is given as follows

x̃(Tsk + Ts) = Adx̃(Tsk) + Bdu(Tsk) + L
(

y(Tsk)− Cdx̃(Tsk)
)

,

where x̃ is the state estimation vector of discrete-time state-space plant model {Ad, Bd, Cd},
Ts is the sample time and L is the matrix of the observer.

Then it is necessary to perform the transition to the error equation of the observer

e(Tsk + Ts) =
(

Ad − LCd
)

e(Tsk),

where e = x − x̃ is the error between the states and state estimations.
The matrix inequalities systems for the observer synthesis are obtained using the

generalized Lyapunov theorem [21]⎧⎨⎩X � 0,

R(X, V) = LD ⊗ X + MD ⊗
(

X(Ad − LCd)
)
+ MT

D
⊗
(

X(Ad − LCd)
)T ≺ 0,

where the symbol “⊗” denotes the Kronecker product.
The poles of the observer are placed in the D-region formed by the disk with the

characteristic function
FD(s) = LD + sMD + s̄MT

D
< 0,

where

LD =

[−0.5 0
0 −0.5

]
, MD =

[
0 1
0 0

]
. (10)

The choice of this D-region is due to the need, on the one hand, to provide shorter
transition times in the observer compared to the plant model, and on the other hand, the
D-region should not be too small; otherwise, it would be impossible to find a solution of
the LMI system for the array of plant models.

The synthesizable observer should qualitatively estimate the states for each LTI model
from (9), which is obtained from the LPV model (8) for the mth plasma discharge. In
addition, the same observer should qualitatively estimate the states for several LPV models
corresponding to several discharges. In this approach, the robust performance of the
synthesized observer is achieved.

The LMI system for obtaining the observer matrix for the array of models in state-space
(9) with the replacement of V = XL is as follows
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X � 0,

R1(X, V) = LD ⊗ X + MD ⊗
(

XA11

)
+ MT

D
⊗
(

XA11

)T

− MD ⊗
(

VC11

)
− MT

D
⊗
(

VC11

)T ≺ 0,
...

Rr(X, V) = LD ⊗ X + MD ⊗
(

XAnm

)
+ MT

D
⊗
(

XAnm

)T

− MD ⊗
(

VCnm

)
− MT

D
⊗
(

VCnm

)T ≺ 0,

(11)

where n = 1, . . . , Nm, m = 1, . . . , M and r = 1, . . . , Nm M.
The LMI system (11) includes Nm M + 1 LMIs, and it must be solved with respect to

the two unknown matrices, X and V. The matrix of the observer is defined as

L = X−1V.

Finally, the gap estimation vector δg̃ is obtained as follows

δg̃ = Sgx̃,

where Sg (Figure 5) is the gaps estimation selection matrix from the state vector estimation

Sg =
[
I6 06,18

]
,

where I6 is the identity matrix and 06,18 is the zeros matrix of the appropriate size.
The comparison of the gaps variations δg derived by LPV model obtained from

the FCDI code and the gaps variations estimation δg̃ obtained by the robust observer
synthesized via LMIs for plasma discharge #37263 is shown in Figure 6.

Figure 6. Comparison of gaps variations δg derived by LPV model obtained from the FCDI code
(blue line) and estimation of gap variations δg̃ obtained from robust observer synthesized by LMIs
(red line). Globus-M2 discharge #37263.
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6. Static Matrix Plasma Shape Identification

The idea of the static matrix plasma shape estimation is that at any time moment
j ∈ [1; si] of any discharge i ∈ [1; 50], the plasma shape estimation ĝ(i)j ∈ R6 may be

obtained by multiplication of the measurable signals at this time moment y(i)j ∈ R33 and

matrix K ∈ R6×33 summing the base gap values g̃ ∈ R6. As this takes place, the matrix K
and vector g̃ are constant for all plasma discharges:

ĝ(i)j = Ky(i)j + g̃, K = const, g̃ = const, ĝ(i)j ∈ R
6, (12)

The matrix K and vector g̃ are obtained by the minimization of the summed squared
differences between the estimated and the reconstructed values of all 6 gaps in all 50
discharges at all time moments:

E(K, g̃) =
50

∑
i=1

6

∑
k=1

si

∑
j=1

(ĝ(i)jk − g(i)jk )
2 =

50

∑
i=1

6

∑
k=1

si

∑
j=1

(Ky(i)j + g̃ − g(i)jk )
2 −→

K,g̃
min, (13)

where ĝ(i) = [ĝ(i)1 , ĝ(i)2 , . . . , ĝ(i)si ] ∈ R6×si is the matrix estimation of ith discharge gaps, g(i) =

[g(i)1 , g(i)2 , . . . , g(i)si ] ∈ R6×si is the matrix of the reconstructed values of ith discharge gaps. If

y(i) = [y(i)1 , y(i)2 , . . . , y(i)si ] ∈ R6×si is the matrix of measurable signals of the ith discharge so
r(i)(g̃) = [g̃, g̃, . . . , g̃] ∈ R6×si is the matrix with the same columns g̃. Equation (12) can be
rewritten in the matrix form,

ĝ(i) = Ky(i) + r(i)(g̃), ĝ(i) ∈ R
6×si . (14)

Equation (13) can be rewritten in matrix form as follows:

E(K, g̃) =
50

∑
i=1

‖ĝ(i) − g(i)k ‖2 −→
K,g̃

min . (15)

Let Y = [y(1), y(2), . . . , y(50)]; Y ∈ R33×S, where S = ∑50
i=1 si, G = [g(1), g(2), . . . , g(50)];

G ∈ R6×S and Ĝ = [ĝ(1), ĝ(2), . . . , ĝ(50)]; Ĝ ∈ R6×S. Matrix Y contains all measurements,
matrix G is all reconstructed gaps. Since Ĝ = [ĝ(1), ĝ(2), . . . , ĝ(50)] = [Ky(1) + r, Ky(2) +
r, . . . , Ky(50) + r], problems (14) and (15) are equivalent to

Ĝ(K, ĝ) = KY + R(g̃), Ĝ ∈ R
6×S

E(K, g̃) = ‖Ĝk(ĝ)− Gk‖2 −→
K,g̃

min ⇒ K(g̃) = (G − R(g̃))Y+

Y+ = (YTY)−1YT (16)

where R(g̃) = [g̃, g̃, . . . , g̃] ∈ R6×S is the matrix with the corresponding columns g̃. If g̃
is known, then the problem is the overdetermined system of linear equations and can be
solved by the generalized inverse matrix: K(g̃) = (G − R(g̃))Y+. Then Ĝ(g̃) = K(g̃)Y +
R(g̃). Problem (16) is equivalent to:

E(g̃) = ‖Ĝk(g̃)− Gk‖2 −→̃
g

min . (17)

This problem can be solved by the iterative gradient method:

g̃′ = g̃ − γ∇E(g̃). (18)
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This is done to obtain matrix K and the base gap values using the data of 50 discharges
of the Globus-M2 tokamak. The calculated base gap values are

g̃1 = 0.5235 m, g̃2 = 0.6264 m, g̃3 = 0.0217 m,

g̃4 = 0.1058 m, g̃5 = 0.1590 m, g̃6 = 0.0278 m.
(19)

The obtained matrix K and base gap values are tested on the discharge #37712 that was
not used for identification (Figure 7). The mean squad error (MSE) of all gaps estimation at
all moments of time is 1.5 × 10−5 m2.

Figure 7. Estimation of the gap values in the discharge #37712 of the Globus-M2 spherical tokamak.

7. Neural Network for Plasma Shape Identification

In this section, the identification system based on an artificial neural network is
proposed. It is assumed that the input and the output data can be linked using some
unknown function f . Neural networks are well known for their ability to approximate
unknown functions [22]. Attempts to apply them to plasma research in tokamaks began
as early as the 1990s. Several major results have been achieved, including the tasks of
plasma equilibrium reconstruction [23–26]. However, the vast majority of studies use
feed-forward neural networks with multiple hidden layers to approximate the unknown
mapping function, which have not shown good results in this problem in the area of
generalization to various unknown discharges. To improve this ability, this paper proposes
an approach using an encoder–decoder network structure [27].

Neural networks are based on the concept of artificial neurons. The first concept was
proposed by Rosenblat [28], called perceptron. It receives inputs (X1, X2, .., Xn) and sums
it with weights (W1, W2, .., Wn). Then the special function, named the transfer function, is
applied to this sum product. The result of the transfer function is the output of the neuron.
The most simple neural network, called multilayer perceptron, consists of three layers of
neurons: the first one gets the input data, the second one is hidden and processes this data,
and the third one is an output layer (Figure 8).
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To approximate an unknown function f , a neural network needs to be trained on
some given data. The better approximation is achieved by adjusting weights of network’s
neurons to minimize the value of the loss function, which is computed between the network
output and groundtruth values.

In this work, the input and output data are represented as time sequences. Each point
in time corresponds to a vector of features, so the data can be described by the matrix
with dimensions of time intervals and parameters. The dimensionality in time is equal
to 4110, i.e., there are 4110 data vectors at each time point of discharge. The time step
is 6.38 × 10−5 s, so the entire signal is 0.262154 s. The variation in the absolute values of
the various parameters, particularly the coil currents, is quite large, so the normalized
values are used. They are obtained by subtracting the average value over the entire time
sequence from each value of a particular parameter, and then dividing the result by the
standard deviation.

However, the time dimension length is not fixed, as the plasma shape parameters
are only determined during the divertor phase, when the strike points and corresponding
values g1 and g2 exist. The start time and duration of this phase are not known from the
available for the real-time reconstruction diagnostic (currents and magnetic fluxes) and
require further determination.

Figure 8. Multilayer perceptron.

In general, the plasma shape identification problem is dynamic, i.e., the gap values at
some point in time during the divertor phase depend not only on the values of magnetic
fluxes and coil currents at the same point in time, but also on the values at previous time
steps. Therefore, to determine the required parameters, it is advisable to use recurrent-
based neural networks. However, it is not practical to use the entire input signal in such a
network for several reasons. First, the longer the sequence of the data fed to the recurrent
network input, the longer the training and prediction processes, which are important factors
in real-time identification. Second, the coordinate values are only significantly affected by
data over a relatively small time range. Based on this, the task can be divided into two
subtasks. The first one is to determine whether a given moment in time is a divertor phase.
The second one is calculation of the required parameters during the already known divertor
phase. The first subtask can be solved using a simple feed forward network without the
use of recurrence blocks because it is a classification problem, not a regression problem,
unlike the second one. In addition, the first subtask is only necessary to limit the length of
the input signal to the recurrent network and achieve a simultaneous increase in system
speed and improved positioning accuracy.

The values of magnetic fluxes through the loops and coil currents are fed into the
network separately. Each input is processed by a densely connected layer, whose outputs
are then concatenated. The merged result is fed into two densely connected layers with
a dropout between them. This solution is designed to combat overtraining, which has
a significant impact in this task because the signals provided for training have a similar
structure. The output of the network is the probability that the current time moment
belongs to the divertor phase (Figure 9).
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Figure 9. FNN model.

After this, the binary crossentropy is used as the loss function to measure the difference
between the network output and training data

BCS(Θ, y) = −y log(x) + (1 − y) log(1 − x),

where Θ is the neural network parameters, x is the network’s output value, and y is a label.
The sigmoid function is taken as a transfer function of the output neuron and RelU for

the neural network hidden layer ones

sigm(S) =
1

1 + e−S .

The Adam [29] optimization algorithm with learning rate α = 0.0001 is used to
minimize the loss function. Learning takes place on 50 discharges and the remaining one
is left for tests. To measure how often output values match with groundtruth values, the
binary accuracy function is utilized. The obtained accuracy of the identification of the
divertor phase for all time points equals 0.986 (Figure 10).
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Figure 10. Divertor phase of the test discharge #37270.

The second subtask is to determine the required gap values during the divertor
phase. As mentioned above, the recurrent neural network based on an encoder–decoder
architecture [27] can combat this problem. This type of networks allows to capture temporal
dependencies both in input and output data and build mapping between them. The first
major block-encoder-created state describing input signal and the second block decoder is
responsible for mapping the data into an output sequence. Both the encoder and decoder
consist of GRU cells [30].

Figure 11 shows the encoder–decoder network schematic diagram. The network input
is divided into two parts: encoder input and decoder input. An input signal is a sequence
of vectors with the values of magnetic fluxes and currents, and it is applied to the encoder
input. The decoder input can vary. Therefore, it is best to set the decoder input to 0, which
will make it work with the dependencies passed to it by the encoder.

Figure 11. Encoder–decoder model.

The MSE as loss function and linear function as transfer function for the output neuron
have the best performance for this regression problem.

MSE(g̃, g) =
1
N

N

∑
i=1

(g̃i − gi)
2, (20)

where g̃i are the network’s estimation of gaps and coordinates, gi are the groundtruth
values, and N is the number of values.

This network is also trained on 50 signals and tested on the remaining one. Figure 12
shows the results for the required plasma parameters during the divertor phase of the
discharge #37270.

The deviation is calculated for all values of each gap using the MSE. The results
obtained have the order of 10−5.
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Figure 12. Neural network estimation of the gap values. Discharge #37270 of the Globus-M2 spherical
tokamak.

8. Real Time Simulation of Identification Systems

To develop and realize plasma control systems for tokamaks, it is effective to apply
so-called digital twins with real and digital control systems (Figure 13). This idea is used
intensively in the industry because it gives a lot of advantages for the design, modeling,
and application of control systems in real time. The digital twin is the interface between
the digital and real world because it can have the ability to link physical and virtual worlds
in real time, which provides more a realistic and holistic measurement of unforeseeable
and unpredictable scenarios [31].

All signals from the magnetic diagnostics system of the tokamak are analog, which are
then digitized by passing through an analog–digital converter (ADC). We can simulate the
signal digitization process on our real-time test bed (Figures 14 and 15).
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Figure 13. Digital twin containing a real dynamical plant with real feedback controller and virtual
dynamical plant with a real feedback controller closed by the feedback of information flows: real-time
data and algorithms, commands, adaptations, and recommendations.

Figure 14. Real-time test bed for plasma control in tokamaks. The test bed consists of two Speedgoat
performance real-time target machines that are connected in feedback: one computer plays the role of
the controlled plant model and the other one is the MIMO controller (https://www.ipu.ru/press-
center/62866, accessed on 21 December 2021).
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Figure 15. Scheme of digital twin of Globus-M2. The block with plasma equilibrium reconstruction
algorithm is marked by red color.

In Figure 13, one can see the digital twin containing the real dynamical plant with
the real feedback controller in the real space and the virtual dynamical plant with the
real feedback controller in the virtual space. Between these spaces, there is a feedback of
information flows that offers the opportunity to use the results obtained on the digital
feedback system for the real control system, and vice versa. The data flows between an
existing physical object and a digital object are fully integrated in both directions, which one
might refer to as a digital twin [32]. The digital twin in the paper consists of the spherical
Globus-M2 tokamak with a plasma feedback control system and a test bed with a digital
controlled plant model and a feedback controller. The test bed was created by Lomonosov
Moscow State University, Trapeznikov Institute of Control Sciences (Moscow), and Ioffe
Institute (St. Petersburg). A photo of the test bed for Globus-M2 that is operating in real time
is given in Figure 14. In Figure 15, one can see the test bed scheme in detail consisting of
the digital plant model and the digital controller with an internal plant model for controller
tuning. The digital plant model contains the plasma model in the tokamak and a set of
feedback loops for plasma horizontal and vertical position control, for currents control in
the poloidal field coils. The digital controller contains plasma equilibrium reconstruction
algorithm as well as plasma current and shape controller.

This connection of the two real-time target machines is real and reliable. The real-
time test bed is away from sources of powerful electromagnetic radiation, and all of its
components have high-quality protection by means of shielding and grounding.

The two identification algorithms described in this paper are applied on the real-time
testbed. Figure 16 shows the real-time running of a robust observer synthesized via LMIs.
Figure 17 shows the real-time running of the identification algorithm with the static matrix.
Real-time simulations are performed with a sample time of 0.1 ms.

These signals demonstrate the workability of two new approaches to reconstruct
plasma equilibrium in real time on the test bed. That means important value of these
signals in Figures 16 and 17.
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Figure 16. Real-time simulation of gaps variations δg derived by LPV model obtained from the FCDI
code (blue line) and estimation of gap variations δg̃ obtained from robust observer synthesized by
LMIs (red line). Discharge #37263.

Figure 17. Real-time simulation of gaps g derived by LTI model obtained from the FCDI code (blue
line) and estimation of gaps g̃ obtained from static matrix (red line). Discharge #37263.
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9. Comparison of Identification Algorithms

Table 1 shows the comparison results of the different gap identification algorithms. For
each gap g and an estimate of this gap g̃, the value of the MSE (20) is calculated. For each
algorithm, the value of the TET (task execution time) in the real-time simulation is given.

Table 1. Comparison of identification results.

MSE(g̃, g) · 10−6 m2

Algorithms g1 g2 g3 g4 g5 g6 TET, μs

Robust Observer 0.06 0.16 0.08 0.43 1.92 0.02 9.7
Static Matrix 9.61 11.44 5.51 6.98 50.66 3.04 6.3

Neural Network 6.48 30.18 4.54 7.64 37.18 0.76 60

The FCDI code has an execution time of approximately 25 ms, which is too slow for
real-time applications at Globus-M2 tokamak. To apply a plasma shape identification
algorithm in real time, the algorithm must have an execution time of less than 1 ms,
preferably less than 0.1 ms. All algorithms in Table 1 satisfy that criteria.

The MSE of the robust observer is 100 times smaller than other algorithms. This
advantage is due to the fact that the observer is the dynamic model in the state-space form
with 24 states. It contains 24 integrators with the help of which the error between the states
of the plant model and the estimates of the states at the observer’s output is fast minimized.
The time it takes to minimize the error is determined by the location of the observer’s poles.
The observer’s poles are defined by the D-region (10).

The disadvantages of using the observer include the fact that it requires the use of
scenario values of currents and fluxes, i.e., values relative to which the deviations from
gaps are calculated. Other algorithms use the full values of experimental signals as inputs.
The synthesis of the observer is possible only in the presence of linear models of the plasma
in the tokamak as (9). Linear plant models can be derived only for deviations of currents
and fluxes from the scenario values.

The fastest of these estimation algorithms of the gaps between the plasma boundary
and the first wall is the static matrix algorithm with a TET of 6.3 μs because it is the simplest
and requires only matrix-vector multiplication. The neural network algorithm is attractive
because it can be adapted to a large number of discharges during experiments.

10. Discussion

In this work, the authors developed the original direction of plasma equilibrium
reconstruction in D-shaped tokamaks using the magnetic measurements outside the hot
plasma [33]. The basic criteria of this development are speed of response and accuracy. In
practice, there is a set of such approaches, mentioned in the Introduction, which are used
on working D-shaped tokamaks all over the world. Some of them use Picard iterations
or current filaments methods. However, they rely only on the measurements outside
plasma and most do not use the information from the database of the previous plasma
discharges. If one uses this information, it may be possible to increase the speed of
plasma equilibrium reconstruction. Moreover, when the history information of the plasma
discharges is used, one can apply various reconstruction approaches from very simple
ones, such as approximation with static matrices, to complex ones, such as artificial neural
networks, which can be adjusted by and learn from dynamic processes. It gives a chance
to improve not only the process of plasma identification on-line, but to understand the
patterns of plasma processes from the experiment. These patterns cannot be deduced from
the theory of high-temperature plasma physics because the plasma in a magnetic field is an
extremely complicated object. These patterns represent the relationships between the gaps,
which are the outputs of the plasma equilibrium reconstruction algorithm applied off-line
to a set of plasma discharges and the inputs of this algorithm. The input signals are the
measured fluxes on the magnetic loops, the currents in the CS/PF coils, and the plasma
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current. Then, one can use these patterns to apply any plasma reconstruction algorithms
with the highest speed of response, e.g., state observers, static matrices, neural networks,
and others. This activity is similar to machine learning techniques, where the search process
is automated on big data [34]. In future, we can use these patterns for effective plasma
control systems design with the fast plasma equilibrium reconstruction algorithms in the
feedback with the usage of our new testbed for the installation of plasma control systems
in real time on operating tokamaks [16].

11. Conclusions

The development of the fusion problem is moving forward but not very quickly
because the plasma in tokamaks is an extremely complicated plant. In spite of that, the
technologies in this field have had great progress and new technologies are appearing. One
of these directions is plasma diagnostics to which our research belongs. The algorithms of
plasma equilibrium reconstruction, such as ones using static matrix, state observer, and
artificial neural network, can be included into the feedback of plasma shape control. The
first real-time test of these algorithms is done on the digital model of the plasma shape
control system (Figures 2 and 15). After that, the control system can be used in a real
experiment on the Globus-M2 tokamak by means of a controller based on the third machine
of the digital complex shown in Figures 14 and 15. The third machine will be connected to
the tokamak as the control unit of the real control system, like in Figure 13. The real control
system will interact with the virtual control system shown in Figures 14 and 15, realizing
the concept of the digital twin shown in Figure 13. This approach is in line with the digital
twins which are applied in Industry 4.0 [35].

In any case, there is a critical point in this new identification approach. The point is that
this approach greatly increases the response rate of plasma equilibrium reconstruction, but
the estimation accuracy may not be as high as, for example, in the filaments (current rings)
approach. So, the designer of the magnetic plasma control system should choose what is
more adequate for the specific control problem since the plasma equilibrium reconstruction
algorithm is included in the feedback (Figure 15).

12. Patents

The authors received the patent of the RF on the approach of modeling plasma mag-
netic control systems with the plasma equilibrium reconstruction algorithm in feedback
#2702137 with the priority from 28 April 2017 [36]. The next application for the RF patent
was submitted for the structure and approach of the digital testbed under the number
2021128495.
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Abbreviations

The following abbreviations are used in this manuscript:

PF Poloidal Field
VV Vacuum Vessel
ITER International Thermonuclear Experimental Reactor
EFIT Equilibrium Fitting
FCDI Flux-Current Distribution Identification
SVD Singular Value Decomposition
LMI Linear Matrix Inequality
LTI Linear Time-Invariant
LPV Linear Parameter-Varying
TET Task Execution Time
MSE Mean Square Error
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Abstract: In this paper, we propose a direct method for the synthesis of robust systems operating
under parametric uncertainty of the control plant model. The developed robust control procedures
are based on the assumption that the structural properties of the nominal system are conservated
over the entire range of parameter changes. The invariant-to-parametric-uncertainties transformation
of the initial model to a regular form makes it possible to use the concept of super-stable systems
for the synthesis of a stabilizing feedback. It is essential that the synthesis of super-stable systems is
carried out not on the basis of assigning eigenvalues to the matrix of the close-loop system, but in
terms of its elements. The proposed approach is applicable to a wide class of linear systems with
parametric uncertainties and provides a given degree of stability.

Keywords: parametric uncertainty; robust control; super-stability; regular form; decomposition

1. Introduction

The problem of stabilizing the state variables of dynamic automatic control plants
is a fundamental problem, the formulation and solution of which served as the basis for
the formation and development of control theory. Classical methods of control theory,
in particular modal control, are based on the assumption of an accurate description of
the mathematical model of the control process and the environment of its operation. In
reality, there is often parametric uncertainty in the mathematical model of control plants, in
particular due to the discarding of residual terms of higher order in the linearized models.
This leads to the need to consider a parametrically indeterminate model when synthesizing
feedback and to set the robust control problem. Many researchers are currently paying
increased attention to control problems in conditions of parametric uncertainty. The direct
way to solve the stabilization problem is to obtain estimates of unknown parameters of
the control plant model, either directly using the parametric identification theory [1,2], or
indirectly, based on the adaptation theory [3,4]. After obtaining estimates of unknown
parameters, it becomes possible to use well-developed modal control methods. Another
trend in solving the problem of stabilization of parametrically uncertain systems refers to
the currently actively developing theory of robust control, in which we can roughly define
two main fields: problems of analysis and problems of synthesis. Classical methods for an-
alyzing open-loop systems include results on interval stability of polynomials [5,6], robust
frequency methods [7], the D-partition technique [8], H∞ optimization methods [9], and
others. Direct and very effective methods of robust control include the use of sliding-mode
technique [10] and deep feedback [11]. Note that both methods provide the independence
of motions in the sliding mode (slow motions) only from the matching uncertainties. It
should be noted that usually on the problem statement step of these approaches, no as-
sumptions are made about the structural properties of the controllability of the system.
These methods of robust theory allow us to establish only the fact of system stability and
do not give a direct answer to the question of the nature of convergence, which reduces
their practical value.
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This paper considers a different approach to robust stabilization, where a guaran-
teed stability margin for linear stationary systems with interval parameter uncertainty is
achieved using linear state feedback. The methodological basis of the developed approach
is the synthesis of super-stable closed systems [12], and decomposition is based on the
transformation of the control plant model to a regular form [13]. It is essential that in
these approaches, the results are expressed in terms of matrix elements rather than their
eigenvalues. Possibilities for extending this approach are available by using the block
approach [14–16].

The paper has the following structure. Section 2 considers parametrically certain linear
stationary systems. As a methodological basis for further discussion, the procedure of
modal synthesis based on transformation to a regular form is presented. For the partic-
ular case of a regular form, which consists of two elementary subsystems, we formalize
a procedure for the synthesis of a stabilizing feedback that ensures super-stability of the
closed-loop system in the new coordinate basis and a guaranteed stability margin in the
initial system. Section 3 considers a significant practical class of linear stationary systems, in
which, for all values of uncertain parameters from intervals with known bounds, the struc-
tural controllability properties defined by the nominal system are conserved. For a class
of systems with a controllability indicator equal to two, we formalize rank requirements
for the structure of indeterminate matrices, in case of which the indeterminate system is
reduced to a regular form regardless of the unknown parameters. Sufficient conditions for
the feasibility of robust control are formalized. The procedure for synthesizing a stabilizing
feedback is also formalized. In this case, the super-stability of the system is ensured in the
coordinate basis of a regular form, and for the original system, a given stability margin is
provided in all intervals of uncertain parameters. Section 4 contains numerical examples to
illustrate the developed theoretical results.

2. Parametrically Certain Systems

2.1. The Elementary Control Problem

A mathematical model of a linear stationary control plant is considered

.
x = Ax + Bu, (1)

where x ∈ Rn is measurable state vector, u = col(u1, . . . , um) ∈ Rm is control vector;
A ∈ Rn×n, B ∈ Rn×m are constant known matrices, and pair (A, B) is controllable.

For system (1), there is a problem of stabilization by means of a linear static feedback

u = Fx, (2)

resulting in a closed-loop system

.
x = (A + BF)x = A0x. (3)

Typical for a linear system is the modal control problem, in which the choice of the
feedback matrix F ∈ Rm×n must assign a given spectrum σd to the closed-loop matrix

σd = σ(A0) =
{

λi ∈ C : det (λi In − A0) = 0, i = 1, n
}

, Reλi(A0) < 0, i = 1, n, (4)

which ensures asymptotic convergence of the state vector to the zero equilibrium position

lim
t→+∞

x(t) =
→
0 .

In Formula (4) and below, I is unit matrix of a given dimension.
In general, the following problems arise when solving the modal control problem:

(1) by assigning only eigenvalues in a closed system (3), it is not always possible to
achieve the desired transients of the state variables;
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(2) in multidimensional systems with vector control, there are certain computational
difficulties in synthesis, called the “curse of dimensionality”;

(3) full parametric certainty of the matrices A and B is required.

The first two problems can be solved in some special cases of system (1). These include
elementary systems with full-rank control.

Definition 1. System (1) is called elementary if the number of controls in it is not less than the
dimensionality of the state vector and the control matrix has a full rank:

dimu = m ≥ n = dimx, rankBn×m = n.

The synthesis problem in the elementary system is also called elementary, because the
feedback matrix is directly found from the matrix equation A + BF = A0, such as

m > n : F = B+(A0 − A); m = n : F = B−1(A0 − A), (5)

where in the first expression B+—pseudo-inverse matrix B, BB+B = B. In the elementary
system, the matrix B rows are linearly independent, hence Bn×mB+

m×n = In and B+ =

BT(BBT)
−1 [17].

Thus, in the elementary system, at first, the synthesis problem (5) is solved in terms of
matrix elements rather than their eigenvalues. Second, one can easily provide the desired
transients in all state variables by choosing a reference matrix of simple structure, in a
Jordanian form or diagonal form. In the latter case, the transient process of each state
variable will be monotonous with a given rate of convergence to zero, which is determined
by the values of the diagonal elements of the reference matrix.

The advantages of systems with full control are obvious, but in practice, usually the
control problem is not elementary. In the next subsection, the procedure of nonsingular
linear transformations is given, which allows extracting an elementary subsystem with full
control from the initial system of general form.

2.2. Synthesis of Modal Control Based on a Regular Form

We will consider the general case of system (1), where the number of controls is less
than the dimension of the state vector and 0 < rankBn×m = m0 ≤ m < n, i.e., out of n
matrix rows B only m0 are basic. For such a system, there is an equivalent representation in
a new coordinate basis, which is called a regular form (RF) with respect to the control [13,18].
In this form, the elementary subsystem with full control is singled out. The point of the
corresponding linear nonsingular transformation is grouping of basis rows and zeroing
linearly dependent rows of the matrix B.

Definition 2. A regular form with respect to the control vector is an equivalent representation of
system (1), rankBn×m = m0 ≤ m < n in the form of two subsystems

.
x1 = A11x1 + A12x2,
.
x2 = A21x1 + A22x2 + B2u,

(6)

which are obtained as a result of nonsingular variable change

Tx = x =

(
x1
x2

)
, detT(n×n) �= 0, x1 ∈ Rn−m0 , rankB = rankB2 = dimx2 = m0

and similarity transformation

TAT−1 = A =

(
A11(n−m0)×(n−m0)

A12(n−m0)×m0

A21(m0×(n−m0))
A22(m0×m0)

)
, TB = B =

(
O(n−m0)×m
B2(m0×m)

)
.

Here and further in the text, O is the zero matrix of the corresponding dimension.
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The second subsystem of system (6) contains full-rank control, which is a condition
for the solution of the elementary control problem in this subsystem; similar to (5), pair
(A22, B2) is obviously controllable. In the first subsystem of system (6), which in the general
case is not elementary, the vector x2 is considered virtual control action. If system (1) pair
(A, B) is controllable, then due to invariance of the controllability property to nonsingular
linear transformations, this means that in the first subsystem of (6) the pair (A11, A12) is
also controllable.

Note that there can be several sets of basis rows in matrix B, so in general there are
several equivalent realizations of the regular form (6) for a particular system. They differ
by the values of the matrix elements A and B2, but all have the same structure, in that the
first subsystem has no control, and the second has a dynamic order m0 and is elementary.

Based on the regular form, the problem of synthesis of modal control is decomposed
into two successively solvable subproblems of lesser dimensions than the original system.
In the first subsystem n − m0 with virtual control x2, the problem of assigning a part of
a given spectrum (4) is solved. The derived linear local feedback is introduced by a non-
singular linear transformation, and the assignment of the second part of the spectrum is
provided by a real linear control u, meaning the elementary synthesis problem of dimen-
sion m0 is solved. As a result, a linear control law for the variables of the transformed
system will be obtained. Using the resulting transformation matrix, it should be presented
with respect to the state variables of the initial system in the form (2). According to the
property of invariance of the roots of the characteristic equation to nondegenerate linear
transformations, the characteristic polynomials (and hence the spectrum) of matrices of
closed-loop initial and transformed systems will be equal to each other. Let us present
these transformations in the form of a step-by-step description.

Procedure 1. Synthesis of modal control based on transition to a regular form.

1. Nonsingular transformation of system (1) to the regular form (6).

1.a. Grouping basis rows of the matrix B and forming matrix B2(m0×m).
If necessary, rearrange the matrix B rows in a way that m0 of its last rows are linearly

independent, and perform an appropriate variable change, in which the transformation
matrix is a permutation matrix Tp(n×n), detTp �= 0:

TpB = B̃ =

(
B̃1
B2

)
,Tpx = x̃ =

(
x̃1
x2

)
,x̃1 ∈ Rn−m0 ,Tp AT−1

p = Ã =

(
Ã11 Ã12
Ã21 Ã22

)
,

rankB = rankB2 = dimx2 = m0.
(7)

System (1) will be represented in the following equivalent form:

.
x̃1 = Ã11 x̃1 + Ã12x2 + B̃1u,

.
x2 = Ã21 x̃1 + Ã22x2 + B2u. (8)

If no permutations are required, then Tp = I, and to obtain the system (8), the
appropriate notation is introduced.

1.b. Zeroing out the linearly dependent rows of a matrix B.
If in system (8) B̃1(n−m0)×m �= O, then the matrix B̃1, which consists of linearly depen-

dent rows of a matrix B2, needs to be reset to zero. It is required that as a result of partial
change of the variables,

x1 = x̃1 − B∗
2 x2, x1 ∈ Rn−m0 . (9)

In the new subsystem relative to x1 control was absent, as follows

.
x1 =

.
x̃1 − B∗

2
.
x2 = (Ã11 − B∗

2 Ã21)x̃1 + (Ã12 − B∗
2 Ã22)x2 + (B̃1 − B∗

2 B2)u ⇒ B̃1 − B∗
2 B2 = O.

From the resulting matrix equation, we have

m0 < m : B∗
2 = B̃1B+

2(m×m0)
, B+

2 = BT
2 (B2BT

2 )
−1

; m0 = m : B∗
2 = B̃1B−1

2(m×m)
. (10)
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The corresponding transformation of partial variable change (9) has the form

TaB̃ = Ta

(
B̃1
B2

)
= B =

(
O
B2

)
,detTa(n×n) �= 0, Tax̃ = Ta

(
x̃1
x2

)
= x =

(
x1
x0

)
,Ta ÃT−1

a = A

, Ta =

(
In−m0 −B∗

2(n−m0)×m0
Om0×(n−m0)

Im0

)
,T−1

a =

(
In−m0 B∗

2(n−m0)×m0
Om0×(n−m0)

Im0

) (11)

and leads system (8) to the regular form (6). If in system (8) B̃1(n−m0)×m = O, it corresponds
exactly to the regular form (6) and Ta = I.

The sequence of the above transformations of system (1) to the regular form (6) is

Tx = Ta(Tpx) = x, T = TaTp, (12)

where some cases may be Tp = I and/or Ta = I. Clearly, the equality Tp = Ta = I occurs
in mathematical models that are initially of the regular form (6), and this situation is typical
of many practical applications.

Procedure 2. Decomposition synthesis of modal control based on RF.

2.a. Synthesis of fictitious control in the first RF subsystem.
We have to choose n − m0 values from a given spectrum σd (4) so as not to disconnect

complex-conjugate pairs, if any. If an odd n − m0 and/or m0 is required to break the
complex-conjugate pair, then the decomposition will have to be dropped, and a different
synthesis method should be used. Otherwise, this method will produce a complex feedback
matrix (2), which is not acceptable in practical applications.

If the above choice is possible, in the first subsystem of system (6) we form a linear
virtual control x2 = F1x1 and obtain the local feedback matrix

F1(m0×(n−m0))
:A1 = A11 + A12F1,σ(A1) ⊂ σd. (13)

Due to the controllability of the pair (A11, A12), this problem has a solution. In
the particular case rankA12 = dimx1 = n − m0 ≤ m0, when also the first subsystem is
elementary, then similarly to (5) we can assign in it both a given spectrum and a given
matrix of own movements. In the general case, problem (13) is not elementary, but the
dimensions of the desired matrix are smaller than when solving problem (3) in the original
system (1), (2), where dimF = m × n.

Remark 1. In many applications, the transition to the RF simplifies the synthesis procedure
sufficiently, and it is possible to simply represent the initial system in the form of two subsystems.
In general case for large-dimensional systems, one can continue the mentioned transformations
and in the first subsystem of (6) allocate in a similar way an elementary subsystem with respect
to virtual control x2, etc. As a result, the first subsystem of system (6) will be represented as
associated elementary subsystems (blocks) with full-rank virtual controls, which are the variables of
the following block. The form in this case is called the block form of controllability, on the basis of
which the synthesis problem is divided into consecutive elementary control problems [14].

In order to implement the local relation of variables that has been formed, we need to
introduce a mismatch between the real control and the selected virtual control by means of
partial variable change

x2 = F1x1, e1 := x1, e2 = x2 − F1x1, e2 ∈ Rm0 (14)

and the corresponding linear transformation

Tex =

(
x1
x2

)
= e =

(
e1
e2

)
, Te =

(
I(n−m) O(n−m0)×m0−F1(m0×(n−m0))

Im0

)
,T−1

e =

(
I(n−m0)

O(n−m0)×m0
F1(m0×(n−m0))

Im0

)
,

detTe(n×n) �= 0,Te AT−1
e = Ae =

(
A1 A12
C21 C22

)
,TeB = Te

(
O
B2

)
=

(
O
B2

)
.

(15)
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As a result, RF with local relation closed-loop will be obtained:

.
e1 = A1e1 + A12e2,
.
e2 = C21e1 + C22e2 + B2u.

(16)

2.b. Synthesis of real control by variables of transformed systems.
Next, the local feedback generated in the first subsystem of (16) must be provided

by the real control. For the second elementary subsystem of (16) we have to compose a
reference matrix A2(m0×m0)

with m0 with eigenvalues from the rest of the given spectrum
σ(A1) ∪ σ(A2) = σd, and form a feedback on the variables of the transformed system:

m0 < m : u = B+
2 (−C21e1 − C22e2 + A2e2) = Ke;

m0 = m : u = B−1
2 (−C21e1 − C22e2 + A2e2) = Ke.

(17)

System (16), with closed-loop by control (17), will take the form

.
e1 = A1e1 + A12e2,

.
e2 = A2e2. (18)

Its matrix has an upper triangular block structure(
A1 A12
O A2

)
and is stable according to (4), and its eigenvalues meet the characteristic equation det(λI −
A1)det(λI − A2) = 0.

2.c. A modal control law based on the state of the initial system.
Finally, based on (17), it is necessary to form a feedback on the variables of the original

systems (1) and (2), since it is these variables that are measured. By substitutions of variables
(7), (11), and (15), the resulting transformation matrix and the resulting modal control law
(2) are as follows:

TeTaTpx = e, u = Ke = Fx,Fm×n = KTeTaTp, (19)

which provides (3), (4), and a solution to the stabilization problem.
Modal control synthesis is complete.
As stated in subsection 2.a, full parametric certainty of the matrices A and B is required

to implement modal control, which limits its applicability in practical applications, as
models of real-world control plants often depend on unknown parameters.

In such cases, the requirements of the closed-loop system are relaxed, and the stability
margin, which is one of the key quality indicators of the transition process, is considered as
the target condition. The problem is to synthesize a linear feedback (2), which provides in
the closed-loop system (3) a stability margin not less than a given ηd > 0:

min{−Reλi(A + BF)}i=1,n = η ≥ ηd. (20)

As a methodological basis for problem (20), we will use the concept of super-stability
of the system, which is defined in terms of matrix elements using inequalities rather than
characteristic Equation (4), which is a precondition for using this concept in solving robust
control problems in systems with uncertain parameters.

Definition 3 ([12]). Matrix A = (aij) ∈ Rn×n and, consequently, the system
.
x = Ax are called

super-stable if A is a negative-diagonal-dominated matrix, i.e., all the elements of its main diagonal
are negative numbers aii < 0, i = 1, n, which are greater in absolute value than the sum of the
modules of the non-diagonal elements in the row:

min

{
−aii −

n

∑
j=1, j �=i

∣∣aij
∣∣}

i=1,n

= ν > 0, (21)
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where ν has the meaning of a margin of super-stability.

The statements in Lemma 1 below are rather obvious. However, we will present a
rigorous proof of them, because they are important for further discussion.

Lemma 1. Any super-stable matrix A = (aij) ∈ Rn×n, (21) is Hurwicz, and its stability margin
min{−Reλi(A)}i=1,n = η > 0 is as much as the margin of her super-stability (21), i.e.,

η ≥ ν. (22)

Proof 1. According to Gershgorin’s theorem [17], each of the eigenvalues λ of matrix A

is always located in one of the circles of the complex plane |aii − λ| ≤
n
∑

j=1,j �=i

∣∣aij
∣∣, i = 1, n

centered at aii and with a radius of
n
∑

j=1,j �=i

∣∣aij
∣∣. Each eigenvalue λ of matrix A corresponds

to the eigenvector h:
n
∑

j=1
aijh = λh, i = 1, n. Let |hk| = max

i
|hi| > 0; then,

|akk − λ||hk| =
∣∣∣∣∣ n

∑
i,j �=k

akjhi

∣∣∣∣∣ ≤ |hk|
n

∑
j �=k

∣∣∣akj

∣∣∣ and |akk − λ| ≤
n

∑
j �=k

∣∣∣akj

∣∣∣.
It follows that if the matrix A is super-stable and −akk >

n
∑

j �=k

∣∣∣akj

∣∣∣, then each of its

eigenvalues lies in the left half-plane of the complex plane, i.e., matrix A is Hurwitz and its
stability margin is defined as η = −Reλ0 = min{−Reλi(A)} > 0.

Let λ0 be a real simple eigenvalue of the matrix A, to which corresponds the eigen-
vector h0 = (h1, . . . , hn)

T , λ0h0 = Ah0, and for the k-th (k = 1, 2, . . . , n) element we have:

λ0hk =
n
∑

j=1
akjhj. Let hk be an element with a maximum module h0: |hk| = max{|hi|}i=1,n.

Then, a fair estimate is |λ0||hk| ≥ |akk||hk| −
n
∑

j=1,j �=k

∣∣∣akj

∣∣∣|hj| ≥ |hk|(|akk| −
n
∑

j=1,j �=k

∣∣∣akj

∣∣∣) =

|hk|ν, whence it follows η = |λ0| ≥ ν, inequality (20) is satisfied. The case of Reλ0 corre-
sponds to a pair of complex-conjugate eigenvalues, and the estimate becomes |Reλ0||hk| ≥
|akk||hk| −

n
∑

j=1,j �=k

∣∣∣akj

∣∣∣∣∣hj
∣∣ ≥ |hk|ν inequality (26) is satisfied.

In the case of an multiple-eigenvalue λ0, similar estimates hold for all linearly inde-
pendent eigenvectors corresponding to a given eigenvalue. Lemma 1 is proved. �

In a controllable linear system with certain parameters, it is always possible to achieve
stability with state feedback, but super-stability is rarely achieved due to a lack of control
actions. In this sense, the only obvious exceptions are elementary systems.

As it is shown in subsection 2.a, it is possible to provide any reference matrix A0,
including a super-stable one, in a closed-loop system using feedback (2) and (5), if the
parameters of the elementary system are known. Let us note that a diagonal matrix with
negative elements A0 = diag{ai}, ai < 0, i = 1, n is a special case of a super-stable matrix,
where min{|ai|} = min{−λi(A0)} = η = ν.

Let us distinguish a class of nonelementary linear systems, for the stabilization of
which with a given stability margin (20) we can interconnectively apply the concept of
super-stability and decomposition synthesis based on the transition to the RF. This class
includes a particular case of controllable systems (1), in which RF (6) will consist of two
elementary subsystems. The possibility of such a representation is contained in the rank
structure of the controllability matrix.
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If system (1), where 0 < rankBn×m = m0 ≤ m < n, is controllable, its controllability
matrix is of full rank:

rank(B AB A2B . . . An−m0 B)n×m(n−m0+1) = n. (23)

The rank structure of the controllability matrix (23) is characterized by a controllability
index and a controllability indicator [19]. If the rank of the controllability matrix (23) is
increased according to the following scheme:

rankB = m0 �= 0, rank(B AB) = m0 + m1, m0 ≥ m1 �= 0,
rank(B AB A2B) = m0 + m1 + m2, m1 ≥ m2 �= 0, . . . ,

rank(B AB . . . ArB) = m0 + m1 + . . . + mr, mr−1 ≥ mr �= 0,
rank(B AB . . . ArB Ar+1B) = m0 + m1 + . . . + mr + 0 ⇒

⇒ rank(B AB . . . Ar+1B Ar+2B) = m0 + m1 + . . . + mr + 0 + 0,

(24)

then pair (A, B) corresponds to a specific set of natural numbers m0, . . . , mr:

rank(B AB . . . ArB) = m0 + m1 + . . . + mr = n, m0 ≥ m1 ≥ . . . ≥ mr, r ≤ n − m0, (25)

which are called the indexes of controllability of the pair (A, B). mi ∈ N, i = 0, r is
the number of linearly independent matrix columns AiB, which form the basis of the
controllability matrix, compiled according to the specified scheme; r + 1 is controllability
indicator of pair (A, B), the number of its controllability indices. �

Lemma 2. If the controllability matrix of a linear controlled system (1) has a controllability indicator
equal to two,

rankB(n×m) = m0 �= 0, rank(B AB)n×2m = m0 + m1 = n, m0 ≥ (n − m0), (26)

then, using the nondegenerate replacement of variables (12), system (1) will be represented in RF
(6), in which not only the second, but also the first subsystem will be elementary with respect to the
virtual control,

rankA12(n−m0)×m0
= n − m0. (27)

Proof 2. Let us rearrange the blocks of the controllability matrix (26) without performing a
rearrangement inside the blocks W(n×2m) = (A B B). For convenience, we denote AB = P.
Let us multiply this matrix from the left by the transition matrix to RF (12). According
to (7) and (12), the matrix obtained as a result of multiplication can be represented in the
following form:

TW = TaTp(P B) = Ta

(
P̃1 B̃1
P̃2 B2

)
=

(
P1(n−m0)×m O

P2 B2(m0×m)

)
= W,

where P1 = P̃1 − B̃1B+
2 P̃2. By design, rankW(n×2m) = n, and rankB = rankB2(m0×m) = m0.

When multiplied by the nonsingular matrix detT(n×n) �= 0, the rank does not change and
rankW(n×2m) = n, which is why matrix P1 is of full rank:

rankP1(n−m0)×m = n − m0. (28)

Considering that the matrices Wn×2m and Wn×2m = TW are of full rank and consist of
linearly independent rows, there are pseudo-inverse matrices for them, and

W+
2m×n : WW+ = In, W+

= (TW)+ =

(
P+

1(m×(n−m0))
O

× B+
2(m×m0)

)
. (29)

In Formula (29) and further in the text, the symbol × denotes matrices, the type of
which does not affect the structural properties.
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Taking (27) into account, the similarity transformation of the matrix A to RF TAT−1 =
A can be represented as

TAT−1 = T AWW+ T−1 = T AW(TW)+ = (TAW)W+,

where TAW = TA(AB B) = T(A2B AB), AB = P. Then,

TAT−1 = (T(A2B AB))W+
=

( × P1
× ×

)(
P+

1 O
× B+

2

)
=

( × P1B+
2

× ×
)
=

(
A11 A12(n−m0)×m0

A21 A22

)
,

where A12(n−m0)×m0
= (P1B+

2 )(n−m0)×m0
due to (28), (29), and rank(P1B+

2 )(n−m0)×m0
=

n − m0, so equality (27) is satisfied. Lemma 2 is proved. �
Let us extend (without proof) the results of Lemma 2 to controlled systems of general

form (25).
A consequence of Lemma 2 is as follows. If condition (25) is satisfied in system (1),

then it can be represented in the block form of controllability, which consists of r + 1
elementary blocks of dimension m0, m1, . . . mr by a linear nonsingular transformation
Tx = (x1, . . . , xr+1), detT �= 0, x1 ∈ Rmr , x2 ∈ Rmr−1 , . . . , xr+1 ∈ Rm0 . Matrix T can be
found by transforming the matrix W to the bottom-triangular block form with matrices of
full rank on the main diagonal:

TW = T(ArB . . . AB B) = W =

⎛⎜⎜⎜⎜⎝
Pr . . . O O O
. . . . . . . . . . . . . . .

. . . P2 O O

. . . P1 O

. . . P0

⎞⎟⎟⎟⎟⎠, (30)

where rankP0(m0×m) = m0, rankPi(mi×mi−1)
= mi, i = 1, r.

Just as in the procedure of converting to the RF (6), the essence of the transformations
is that successively in each block B, AB, . . . , Ar−1B, one needs to group mi basis rows of
matrix Pi by transpositions (similar to (7)) and zero out the top linearly dependent lines
(similar to (11)). In this case, the leftmost block ArB can be discarded, since its elements do
not participate in the formation of the matrix T.

For the selected class of systems (1), (26), it is possible to provide a guaranteed stability
margin (24) by providing super-stability of the closed system (18) in a new coordinate basis,
where the reference matrices A1, A2 can be assigned arbitrarily. Selecting these matrices
diagonally

A1 = diag
{

a1
i

}
i=1, n−m0

, A2 = diag
{

a2
i

}
i=1, m0

, (31)

on the one hand, excludes the presence of complex-conjugate eigenvalues in the matrix
of the closed system, but, on the other hand, simplifies the computational aspect of the
synthesis. Then, for any parameters satisfying the non-strict inequalities

ν ≥ ηd, a1
i ≤ −(ν +

m0

∑
j=1

∣∣∣a12
ij

∣∣∣), A12 = (a12
ij ), i = 1, n − m0; a2

i ≤ −ν > 0, i = 1, m0, (32)

the closed-loop system (18) will be super-stable with a margin of super-stability ν ≥ ηd.
As it was noted, the property of super-stability is formulated in terms of matrix

elements (21) rather than their eigenvalues, so it is not invariant to linear transformations,
and the initial closed system (1), (19), (31), (32) in general case will not be super-stable.
However, because of (22), it guarantees stabilization with a stability margin at least equal
to the one given in (20).

In the next section, we consider the possibility of synthesis of robust control of para-
metrically uncertain systems in the context of the proposed approach.
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3. Parametrically Uncertain Systems

3.1. Elementary Control Problem

This section considers the problem of stabilization of linear stationary systems operat-
ing under interval parameter uncertainty

.
x =
(

A + Â
)
x +
(

B + B̂
)
u, x ∈ Rn, u ∈ Rm, m < n, (33)

where matrices elements A = (aij), i, j = 1, n, B = (bij), i = 1, n, j = 1, m, which define
the nominal system (1), are known, and pair (A, B) is controllable. Elements of matrices
Â = (âij) and B̂ = (b̂ij) are constant but unknown; their values belong to closed intervals
with known boundaries:

aijmin ≤ âij ≤ aijmax, i, j = 1, n; bijmin ≤ b̂ij ≤ bijmax, i = 1, n, j = 1, m.

In the following, to simplify the explanation, we will assume that the values of the
uncertain elements are in intervals symmetric with respect to zero

aij −�
a ij ≤ aij + âij ≤ aij +

�
a ij, i, j = 1, n; bij −

�
b ij ≤ bij + b̂ij ≤ bij +

�
b ij, i = 1, n, j = 1, m. (34)

Then, the values of the matrix elements of the system (33) will be in closed intervals
with known bounds, symmetrical for the corresponding nominal values

aij −�
a ij ≤ aij + âij ≤ aij +

�
a ij, i, j = 1, n; bij −

�
b ij ≤ bij + b̂ij ≤ bij +

�
b ij, i = 1, n, j = 1, m.

It is supposed that pair ((A + Â), (B + B̂)) is controllable in all acceptable intervals of
parameter uncertainty, and moreover, the rank structures of the controllability matrices of
the nominal system (1) and the parametrically perturbed system (33) are the same. This
requirement is due to practical considerations. The uncertain system model (33) describes
the functioning of a real control plant, and, for example, the failure to meet the condition
rank B = rank (B + B̂) indicates a “faulty” actuator or damaged communication with the
control plant.

In a general case, the solution of the modal control problem with the assignment of
a given spectrum (4) in the system (33) is not possible. We set the problem of synthesis
of linear feedback (2), providing stabilization of the system (33) at all acceptable values
of uncertain parameters (34) with stability margin not less than the given one ηd > 0, i.e.,
providing in a closed-loop system

min
{−Reλi[(A + Â) + (B + B̂)F]

}
i=1,n = η ≥ ηd. (35)

We first investigate the possibility of solving the problem (35) for parametrically
uncertain elementary systems of two types. The first type of the considered elementary
systems are the systems with known control matrix

.
x = (A + Â)x + Bu, dimu = m ≥ n = dimx = rankB, (36)

which are obviously controllable. No additional requirements are imposed on them. Vari-
able states with uncertain coefficients cannot be compensated for by feedback, so the control
law can be formed in two ways:

u = Fx = B+(K − A)x or u = Fx = B+Kx, K = diag(ki)i=1, n. (37)

In (37) and below we consider the general case of a rectangular matrix B. In a special
case m = n, instead of B+, matrix B−1 should be used. The corresponding closed-loop
systems have the following form:

.
x = (K + Â)x or

.
x = (K + A + Â)x. (38)
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Obviously, the choice of matrix elements K can provide super-stability of systems (38)
with any stability margin ν > 0. To achieve the control goal (35), let us assume ν ≥ ηd.
Then, for any ki, satisfying the inequalities

ki ≤ −(η +
n

∑
j=1

�
a ij) or ki ≤ −(η + aii +

�
a ij +

n

∑
j=1, j �=i

(
∣∣aij
∣∣+�

a ij)), i = 1, n, (39)

matrices of systems (38) will be super-stable (21), which due to (22) and ν ≥ ηd solves the
problem (35).

In practical applications, in order to save control resources, the first method of feedback
generation is recommended (37), and the calculated values of the super-stability margin
and ki take on the basis of equalities ν = ηd and (39).

Consider the general case of parametrically uncertain elementary systems

.
x = (A + Â)x + (B + B̂)u, dimu = m ≥ n = dimx = rankB, (40)

where the elements of the undefined matrices satisfy (34), but additional constraints must
be imposed on the matrix B̂ so that the system remains controllable.

Remark 2. In a first-order system
.
x = (a + â)x + (b + b̂)u, the condition b �= 0 is added to a

basic requirement b + b̂ �= 0. From a theoretical point of view, the situation is acceptable when
sign(b) �= sign(b + b̂), and the problem (35) has a solution. However, in models of real control
plants the parameters have a certain physical meaning, so the following conditions are proposed:

b �= 0, b + b̂ �= 0 and sign(b) = sign(b + b̂) ⇒ |b| >
�
b ⇔ 1 >

�
b /|b|. (41)

The conditions (41) are characteristic of adequate models of parametrically uncertain control plants,
in which the uncertainty intervals have “reasonable” bounds with respect to the nominal system
parameters.

Then, the control law
u = ksign(b + b̂)x (42)

will result in a closed-loop system
.
x = (a + â + k

∣∣∣b + b̂
∣∣∣)x, and the choice of gain based on

inequality k ≤ −(ηd + a +
�
a )/(|b| −

�
b ) provides a given margin of safety.

The condition under which the multidimensional system (40) is not only controllable,
but also preserves the structural property of the nominal system, namely, it remains
elementary, appears as

rankB = rank(B + B̂) = n. (43)

When making any of the requirements for uncertain matrices in (43) and below, it is
assumed by default that these requirements are met for all values of uncertain elements
from the allowable ranges (34).

However, as will be shown below, in the used approach the fulfillment of (43) is
necessary but not sufficient to solve the problem (35).

Due to the parametric uncertainty of the control matrix in system (40), even state
variables with certain coefficients cannot be compensated for by feedback, so we form a
one-parameter control law in the form

u = Fx = kB+Sx, k = const, S = diag{sign(1 + lii)}i=1, n, L(n×n) = B̂B+ = (lij) . (44)

From the form of the matrix of the closed-loop system (40), (44),

.
x = [A + Â + k(In + L)S]x , (45)
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the choice of matrix S is clear. It contains the signs of the diagonal elements of the matrix
I + L . The conditions for these signs to be constant for all acceptable values of the matrix
B̂ uncertain parameters are formulated in Lemma 3.

Lemma 3. If in system (45), the matrix In + L has a predominant diagonal

min{|1 + lii| −
n

∑
j=1, j �=i

∣∣lij∣∣}
i=1,n

= μ > 0, (46)

there is a real number k such that for any real values of elements of matrix A, Â (34) and ν > 0, the
system (45) will be super-stable with an super-stability margin ν > 0.

Proof 3. In each i-th matrix row of system (45), we substitute k = ki, i = 1, n. The resulting
matrix will be super-stable with a margin of super-stability ν > 0, if

aii +
�
a ii + ki|1 + lii| ≤ −(ν +

n

∑
j=1,j �=i

(
∣∣aij
∣∣+�

a ij) + kisign(ki)
n

∑
j=1,j �=i

∣∣lij∣∣), i = 1, n.

Due to (46), |1 + lii|+ sign(ki)
n
∑

j=1,j �=i

∣∣lij∣∣ > 0 at any sign of ki. Taking the “worst” case into

account, we obtain autonomous upper estimates for the selection of ki:

ki ≤ ki = −
ν + aii +

�
a ii +

n
∑

j=1,j �=i
(
∣∣aij
∣∣+�

a ij)

|1 + lii| −
n
∑

j=1,j �=i

∣∣lij∣∣ , i = 1, n. (47)

Obviously, the number we are looking for is k ≤ min
{

ki

}
i=1,n

, at which all inequalities (47)

are fulfilled simultaneously, which ensures that the system (45) is super-stable with any
super-stability margin ν > 0. Lemma 3 is proved. �

Using (46), we simplify the final inequality, obtaining a slightly higher estimate module
for the choice of the parameter k:

k ≤ min
i=1, n

{−(ν + aii +
�
a ii +

n

∑
j=1,j �=i

(
∣∣aij
∣∣+�

a ij))}/μ. (48)

From the set of elementary parametrically indeterminate systems (40), (34), a class of
systems with additional requirements (43), (46), for which there is a robust control law (44),
(48), provides a solution to the problem (35) if ν = ηd. Notice that condition (41) is a special
case of (46).

In the next subsection, a class of systems is extracted from the set of parametrically
uncertain non-elementary systems whose nominal model satisfies conditions (28), for which
a guaranteed stability margin can be provided by the proposed feedback approach.

3.2. Formalisation of a Class of Acceptable Non-Elementary Systems

Let us consider the question of possibility in the combination of concepts of super-
stability and RF in robust synthesis of parametrically uncertain non-elementary system
(33), (34), under the assumption that in its nominal model (1), a pair (A, B) is controllable
and has a controllability indicator equal to two (26). As is proved in Lemma 2, in this
case, the RF of the nominal system consists of two elementary subsystems, which allows
one to synthesize a super-stable closed-loop system in terms of discrepancies and, as a
consequence, to provide a guaranteed stability margin in the original closed-loop system.
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In order to obtain the RF structure for system (33), it is necessary to impose additional
constraints on the undefined matrices Â and B̂. When fulfilled, the system (33) will not only
be controllable, but it will also retain the structural properties of the nominal system (26);
more specifically, it will have the same dislocation of the basis columns of the controllability
matrix and, hence, the structural zeros in the RF. Thus, it is necessary to formalize the
conditions under which, as a result of a non-singular linear transformation Tx = x (12),
which is determined by the matrices of the nominal system (1), the indeterminate system
(33) will be represented in a form similar to RF (6), (26), that is:

.
x1 = (A11 + Â11)x1 + (A12 + Â12)x2,
.
x2 = (A21 + Â21)x1 + (A22 + Â22)x2 + (B2 + B̂2)u,

(49)

where
rank(B2 + B̂2) = rankB2 = rankB = dimx2 = m0;
rank(A12 + Â12) = rankA12 = dimx1 = n − m0,

(50)

matrices Aij, B2 are known and match the corresponding RF matrices (6) of the nominal
system (1), (26), the elements of the matrices Âij, B̂2 are constant and unknown, and the
limits of the intervals to which their values belong are recalculated with regard to (34) by
the formulas

T(A + Â)T−1 = Â, T(B + B̂) = B̂. (51)

Lemma 4. Let the pair(A, B) in the nominal system (1) be controllable and characterized by the
controllability indices (26). If, in system (33), all uncertainty intervals (34) for pair ((A+ Â), (B+
B̂)) rank conditions are met, including

rankB = rank(B + B̂) = rank(B
(

B + B̂)) = m0,
(rank(B AB) = rank((B + B̂) (A + Â)(B + B̂))
= rank(B AB (B + B̂) (A + Â)(B + B̂) ) = m0 + m1 = n)
⇔ (rank(B AB) = rank(B AB (A + Â)(B + B̂)) = m0 + m1 = n),

(52)

then by means of a non-singular change of the variables Tx = x (12) and transformations (51),
where T depends only on the matrices of the nominal system A, B, system (33) will be represented
in the form of RF (49), where conditions (50) are met.

Proof 4. First condition (52) rankB = rank(B
(

B + B̂)) means that the columns of the ma-
trix B + B̂ are linear combinations of the columns of the matrix B; hence, the indeterminate
matrix can be represented as

Bn×m + B̂n×m = BΛ0(m×m), (53)

where Λ0 is indeterminate matrix, m0 ≤ rankΛ0 ≤ m. The second condition (50), rewritten
with (53) as

rank(B AB ) = rank(BΛ0 (A + Â)BΛ0 ) = rank(B AB (A + Â)BΛ0) = m0 + m1,

means that the columns of the matrix (A + Â)BΛ0 are linear combinations of the columns
of the matrix (B AB) and are represented in the form of

(A + Â)BΛ0 = (B AB )Λ1 = BΛ10 + ABΛ11, Λ1 =

(
Λ10(m×m)

Λ11(m×m)

)
, rankΛ11 ≥ n − m0.

The columns of the matrices BΛ10 are linear combinations of the columns of the
matrix BΛ0 = Bn×m + B̂n×m and can be represented as BΛ10 = BΛ0Λ00. Consequently,
(BΛ0 ABΛ11) ∼ (BΛ0 ABΛ11 BΛ0Λ00), and then rank(BΛ0 ABΛ11) = m0 + m1 = n.
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Thus, the controllability matrix of the pair ((A + Â), (B + B̂)) when conditions (50)
are fulfilled has a full rank and can be represented in the form

((B + B̂) (A + Â)(B + B̂)) = (BΛ0 BΛ0Λ00 + ABΛ11),

where the matrix elements Λ0, Λ00, Λ11 are unknown. Let us denote AB = P, swap the
control matrix blocks Ŵ = (BΛ0Λ00 + PΛ11 BΛ0), and multiply this matrix on the left by
the transition to RF matrix (12), which depends only on the matrix elements of the nominal
system:

TŴ = TaTp(BΛ0Λ00 + PΛ11 BΛ0) = Ta

((
B̃1
B2

)
Λ0Λ00 +

(
P̃1
P̃2

)
Λ11

(
B̃1
B2

)
Λ0

)
=

((
O
B2

)
Λ0Λ00 +

(
P1
P2

)
Λ11

(
O
B2

)
Λ0

)
= Ŵ.

In the obtained matrix, the right-hand block corresponds to the transformation of the
matrix (B + B̂). With (53), it follows that

T(B + B̂) =
(

O
B2

)
Λ0 =

(
O

B2Λ0

)
=

(
O

B2 + B̂2

)
, rank(B2 + B̂2) = rankB2 = m0,

i.e., the first condition (52) is satisfied.
According to the scheme given in Lemma 2, let us perform a similarity transformation

T(A+ Â)T−1 = (T((A + Â)
2
(B+ B̂) (A+ Â)(B+ B̂))Ŵ

+
=

(
A11 + Â11 A12 + Â12
A21 + Â21 A22 + Â22

)
,

where A12 + Â12 = P1Λ11(B2Λ0)
+ ⇒ rankA12 = rank(A12 + Â12) = n − m0, i.e., and the

second condition (50) is satisfied. Hence, system (33) is representable in the form (49),
whose structure corresponds to the structure of the RF of the nominal system (1), (26).
Lemma 4 is proved. �

Thus, a class of systems (35), (50) is defined, which can be reduced to RF (49) consisting
of two elementary blocks (50) in an invariant way to the unknown parameters (34). Let us
adopt without proof the inverse statement for Lemma 4, defining a constructive way to
check the rank conditions (50). In system (1), the pair (A, B) is characterized by control-
lability indices (26). If the change of variables (12) leads system (33) to RF (49), (50), then
in all uncertainty intervals (34) the rank conditions (50) for the pair ((A + Â), (B + B̂)) is
fulfilled.

However, as is shown in the previous subsection, satisfaction of conditions (50) and
RF (49), (50) are necessary but, in general, not sufficient for solving the problem (35) in the
framework of the technique we used.

Let us first distinguish particular cases that do not require any additional constraints
from the theoretical point of view.

If in (26) n = 2, m0 = 1, then the RF will consist of two first-order subsystems, where

(rank (B2 + B̂2) = rankB2 = 1) ⇔ (b2 �= 0 and b2 + b̂2 �= 0);
(rank (A12 + Â12) = rankA12 = 1) ⇔ (a12 �= 0 and a12 + â12 �= 0).

Then, similarly to (42), using virtual control and subsequent variable change,

x2 = k1sign(a12 + â12)x1, e2 = x2 − k1sign(a12 + â12)x1 (54)

The first subsystem of the RF is stabilized, and the second subsystem is stabilized with
real control u = k2sign(b2 + b̂2)e2. In another particular case, for arbitrary m0 ≥ n− m0 > 1
in system (49), Â12 ≡ O and B̂2 ≡ O. Then, the virtual and real control is chosen in a form
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similar to (37). Furthermore, the last particular case is a combination of the first two, where
m0 = n − 1 > 1 and B̂2 ≡ O.

Only for the systems with the mentioned properties is the fulfillment of conditions
(52) necessary and sufficient to ensure the super-stability of the closed-loop system, with
the help of the linear static feedback in terms of the discrepancies.

For the general case of systems from the considered class, sufficient conditions similar
to (46) are formulated in terms of elements of the RF matrices (49). Let us first form in the
system (49) the virtual and real control analogous to (44):

x2 = F1x1 = k1 A+
12S1x1, e1 := x1, e2 = x2 − F1x1,

S1 = diag{sign(1 + l1
ii)}, L1(n−m0)×(n−m0)

= Â12 A+
12 = (l1

ij) ;
u = K2e2 = k2B+

2 S2e2, u = Ke, K = (O K2), k1,2 = const,
S2 = diag{sign(1 + l2

ii)}, L2(m0×m0)
= B̂2B+

2 = (l2
ij),

(55)

and let us change the variables (14), (15) and make a closed-loop RF of the uncertain system
(49), (55) in discrepancies

.
e1 = (A11 + Â11 + k1(I + L1)S1)e1 + (A12 + Â12)e2,
.
e2 = (C21 + Ĉ21)e1 + (C22 + Ĉ22 + k2(I + L2)S2)e2,

(56)

where the ranges of elements of the unknown matrices are assumed to be symmetric and are
calculated from (34), considering the performed transformations (12), (15), which depend
only on the matrices of the nominal system (1) and the selected k1.

From Lemma 3, it follows that by successively selecting at first the parameter k1 =
const, and then k2 = const, the system (56) can be made super-stable with a given margin
of super-stability ν ≥ ηd, if matrices In−m0 + L1, Im0 + L2 (55) have dominant diagonals

min{|1 + l1
ii| −

n−m0

∑
j=1, j �=i

∣∣∣l1
ij

∣∣∣}
i=1,n−m0

= μ1 > 0, min{|1 + l2
ii| −

m0

∑
j=1, j �=i

∣∣∣l2
ij

∣∣∣}
i=1,m0

= μ2 > 0. (57)

Then, similarly to (47), a joint system of inequalities can be obtained, based on which
the feedback parameters are successively specified in the form of (48). Taking into account
the notations

A11(n−m0)×(n−m0)
= (a11

ij ),A12(n−m0)×m0
= (a12

ij ),C21(m0×(n−m0))
= (c21

ij ),C22(m0×m0)
= (c22

ij ),

Â11 = (â11
ij ),Â12 = (â12

ij ),Ĉ21 = (ĉ21
ij ),Ĉ22 = (ĉ22

ij ),∣∣∣â11
ij

∣∣∣ ≤ �
a

11
ij ,
∣∣∣â12

ij

∣∣∣ ≤ �
a

12
ij ,
∣∣∣ĉ21

ij

∣∣∣ ≤ �
c

21
ij ,
∣∣∣ĉ22

ij

∣∣∣ ≤ �
c

22
ij

we have

k1 ≤ min
i=1,n−m0

{−(ν + a11
ii +

�
a

11
ii +

n−m0
∑

j=1,j �=i
(
∣∣∣a11

ij

∣∣∣+�
a

11
ij ) +

m0
∑

j=1
(
∣∣∣a12

ij

∣∣∣+�
a

12
ij ))}/μ1,

k2 ≤ min
i=1,m0

{−(ν + c22
ii +

�
c

22
ii +

m0
∑

j=1,j �=i
(
∣∣∣c22

ij

∣∣∣+�
c

22
ij ) +

n−m0
∑

j=1
(
∣∣∣c21

ij

∣∣∣+�
c

21
ij ))}/μ2.

(58)

The control law based on (55) on the variables of the initial system (19) depends
only on the matrices of the nominal system and selected parameters (58) and ensures
stabilization of the initial parametrically uncertain system (33) with a guaranteed stability
margin (35).

The theoretical statements presented in this subsection and the decomposition synthe-
sis procedure for systems with a controllability indicator equal to two (26) can similarly be
extended to non-elementary controllable systems of the general form (24).
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4. Simulations

We consider a mathematical model of the control plant of the form

.
x = Ax + Bu, A =

⎛⎝ 1 1 0
0 1 0
1 0 1

⎞⎠, B =

⎛⎝ 1 0
2 1
0 1

⎞⎠, dimx = n = 3, dimu = m = 2. (59)

Let us investigate the rank structure of the controllability matrix of the system (59)
according to scheme (24):

rankB = rank

⎛⎝ 1 0
2 1
0 1

⎞⎠ = 2 �= 0, rank(B AB) = rank

⎛⎝ 1 0 3 1
2 1 2 1
0 1 1 1

⎞⎠ = 2 + 1 = 3.

Pair (A, B) is controllable and has a controllability indicator equal to 2. The system
(59) belongs to the valid class (26), and its RF will consist of two elementary subsystems
of the first and second orders. On the example of system (59), let us demonstrate the
decomposition procedures developed in Sections 2 and 3 for the synthesis of modal and
robust control based on the transition to the RF.

Example 1. For the system (59), the goal is to synthesize a linear feedback that provides a given
spectrum in a closed-loop system σd = {−1; −1 ± 3j}. To solve the problem, we use the synthesis
of modal control based on transition to RF (Procedure 1).

1.a. In the matrix B, the bottom two rows are linearly independent and form a basis. It is
not necessary to rearrange the rows. We assume

B2 =

(
2 1
0 1

)
, Tp = I,T = Ta,x = x̃.

1.b. Using the second Formula (10), we find the cancellation matrix

B∗
2 = B̃1B−1

2 =
1
2
(

1 0
) ( 1 −1

0 2

)
=
(

0.5 −0.5
)

and after performing the transformation (11) to the matrix

T =

⎛⎝ 1 −0.5 0.5
0 1 0
0 0 1

⎞⎠, T−1 =

⎛⎝ 1 0.5 −0.5
0 1 0
0 0 1

⎞⎠ (60)

we obtain an equivalent representation of system (59) in RF (6), which has the form

.
x1 = 1.5x1 + (1.25 − 0.25)x2,

.
x2 =

(
0
1

)
x1 +

(
1 0

0.5 0.5

)
x2 +

(
2 1
0 1

)
u.

(61)

2.a. (Procedure 2) In the first subsystem, we take a valid eigenvalue from the given
spectrum (61) as the reference matrix: A1 = −1. The local feedback matrix x2 =
F1(2×1)x1, providing (13), has infinitely many realizations. The solution obtained is
similar to the first equality (5):

A11 + A10F1 = A1 ⇒ F1 = A+
10(A1 − A11) =

(
f1
f2

)
=
( −25/13

5/13

)
, A+

10 =
(

10/13
−2/13

)
which is inconvenient for calculations. To determine F1, we use a direct method:

A11 + A10F1 = A1 ⇒ 1.5 +
(

1.25 −0.25
)( f1

f2

)
= −1 ⇔ f2 = 10 + 5 f1.
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Let us assume, for example F1 = (−1 5)T . After performing the transformation (15),
we obtain the RF closed by the local relation (16), in the form

.
e1 = −e1 + (1.25 − 0.25)e2,

.
e2 =

( −2
8

)
e1 +

(
2.25 −0.25
−5.75 1.75

)
e2 +

(
2 1
0 1

)
u.

2.b. For the remaining complex-conjugate pair from a given spectrum λ = −1 ± 3j, we

make a reference matrix, e.g., in the form of a Jordanian cell A2 =

( −1 3
−3 −1

)
, and

generate the feedback from the second Formula (17) in the form of

u =

(
0.5 − 0.5

0 1

)((
2

−8

)
e1 +

( −2.25 0.25
−5.75 −1.75

)
e2 +

( −1 3
−3 −1

)
e2

)
,

u = Ke =
(

5 −3 3
−8 2.75 −2.75

)
e,

which leads to a closed system of discrepancies (18), that is,

.
e1 = −e1 + (1.25 − 0.25)e2,

.
e2 =

( −1 3
−3 −1

)
e2.

2.c. Considering the transformations performed, let us find the feedback matrix and form
a modal state control law for the initial system in form (19)

F2×3 = KTeT =

(
5 −3 3
−8 2.75 −2.75

)⎛⎝ 1 0 0
1 1 0
−5 0 1

⎞⎠⎛⎝ 1 −0.5 0.5
0 1 0
0 0 1

⎞⎠,

u = Fx =

( −13 3.5 −3.5
8.5 −1.5 1.5

)
x,

(62)

which provides a solution to the problem: σ(A + BF) = σd = {−1; −1 ± 3j}.

Figure 1 shows the behavior of the variables x(t) = (x1(t), x2(t), x3(t))
T and controls

u(t) = (u1(t), u2(t))
T in closed-loop system (59), (62) with x(0) = (0.5, 0.5, 0.5 )T.

 
(a) (b) 

Figure 1. (a) Plots of x1(t), x2(t), x3(t); (b) Plots of u1(t), u2(t) in the closed-loop system (59), (62)
with x(0) = (0.5, 0.5, 0.5 )T.

Example 2. For system (59), the problem is to synthesize a linear feedback that provides a given
margin of stability in the closed-loop system η ≥ ηd = 1. To solve this problem, we use the
procedure for synthesis of a super-stable closed-loop system (18) based on the transition to the
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RF (61). We assign the numerical values of the super-stability margin and the elements of the
reference matrices of the closed-loop system (18) on the basis of equalities (32) ν = ηd = 1, A1 =
−(ν +

∣∣a12
11

∣∣+ ∣∣a12
12

∣∣) = −(1 + 1.25 + 0.25) = −2.5; a2
1 = a2

2 = −ν = −1, which will ensure
that the closed-loop system is super-stable.

.
e1 = −2.5e1 + (1.25 − 0.25)e2,

.
e2 =

( −1 0
0 −1

)
e2.

The matrix of this system has a spectrum of σ = {−1; −1; −2, 5}. This spectrum, and
hence a given stability margin, will be provided in the original closed-loop system (59) by
the control (19). To determine the local feedback matrix F1, we also use the direct method:

A11 + A10F1 = A1 ⇒1.5 + 1.25 f1 − 0.25 f2 = −2.5⇔ f2 = 16 + 5 f1.

Let us take, for example, F1 = (−2 6)T . After performing the transformation (15), we
obtain the RF of the closed-loop system (16) in the form

.
e1 = −2.5e1 + (1.25 − 0.25)e2,

.
e2 =

( −7
18

)
e1 +

(
3.5 −0.5
−7 2

)
e2 +

(
2 1
0 1

)
u.

The second subsystem of this system gives the control laws for the transformed (17)
and initial variables (19) as

u =

(
0.5 − 0.5

0 1

)((
7

−18

)
e1 +

( −3.5 0.5
7 −2

)
e2 +

( −1 0
0 −1

)
e2

)
,

u = Ke =
(

12.5 −5.75 1.75
−18 7 −3

)
e,

F = KTeT =

(
12.5 −5.75 1.75
−18 7 −3

)⎛⎝ 1 0 0
2 1 0
−6 0 1

⎞⎠⎛⎝ 1 −0.5 0.5
0 1 0
0 0 1

⎞⎠,

u = Fx =

( −9.5 −1 −3
14 0 4

)
x.

(63)

The matrix of a closed-loop system (59), (63), expressed as

A + BF =

⎛⎝ −8.5 0 −3
−5 −1 −2
15 0 5

⎞⎠
is not super-stable, but the system has a given margin of stability:

σ(A + BF) = {−1; −1; −2, 5}, min{−Reλi(A + BF)} = 1 = ηd.

Figure 2 shows the behavior of the variables x(t) = (x1(t), x2(t), x3(t))
T and controls

u(t) = (u1(t), u2(t))
T in a closed-loop system (59), (63) with x(0) = (0.5, 0.5, 0.5 )T.
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(a) (b) 

Figure 2. (a) Plots of x1(t), x2(t), x3(t); (b) Plots of u1(t), u2(t) in the closed-loop system (59), (63)
with x(0) = (0.5, 0.5, 0.5 )T.

Compared to the system (59), (62) (see Figure 1), the transients of the closed-loop
system (59), (63) with real spectrum are not oscillatory but aperiodic, but the range of
variation in all the variables has increased by about 2.5 times, and the time of regulation
has not significantly changed.

Example 3. With the nominal system (59) we will consider a parametrically indeterminate system
(33), where Â = αA, B̂ = βB. Parameters α, β are constant and unknown, their values belong to
closed symmetric intervals with known boundaries:

|α| ≤ �
α = 0.1, |β| ≤

�
β = 0.1. (64)

The problem is to synthesize a linear feedback that provides a guaranteed margin of
stability in a closed-loop system η ≥ ηd = 1 in all uncertainty intervals. In this system,

A + Â = A(1 + α), B + B̂ = B(1 + β), α �= −1, β �= −1, (65)

conditions (53), (52) of Lemma 4 are met. The uncertain system is controllable in all
uncertainty intervals and keeps the structural controllability properties of the nominal
system (59). Hence, the uncertain system is representable in the form of RF (49)–(50) by
transformation (12), (51) with matrix (60), where due to (65), Âij = αAij, i, j = 1, 2, B̂2 =
βB2.

Let us check that the condition (57) is met:

L1 = Â12 A+
12 = α(5/4 − 1/4)

(
10/13
−2/13

)
= α = l1

11 ;

L2 = B̂2B−1
2 = β

(
2 1
0 1

)(
0.5 −0, 5
0 1

)
= βI2, l2

11 = l2
22 = β.

(66)

Due to (64) 1 + α > 0, 1 + β > 0, the sufficient condition (57) is fulfilled, and because
μ1 = μ2 = 0.9, in RF of an uncertain system, it is possible to provide super-stability by
means of feedback (55), where

S1 = sign(1 + α) = 1 , S2 = diag{sign(1 + β)} = I.

In the first subsystem of the uncertain RF
.
x1 = (6/4)(1+ α)x1 +(5/4 − 1/4)(1+ α)x2

let us form the virtual control in the form of (55),

x2 = F1x1 = k1 A+
12S1x1 = k1

(
10/13
−2/13

)
x1. (67)
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With variable changes e1 := x1, e2 = x2 − F1x1 we obtain

.
e1 = (1 + α)((A11 + k1)e1 + A12e2) = (1 + α)((1.5 + k1)e1 + (1.25 − 0.25)e2).

As can be seen, in this subsystem the choice of gain k1 does not depend on undefined
parameters. Let us assume ν = ηd = 1; then, similarly to (21), we have

−(1.5 + k1)− (1.25 + 0.25) ≥ 1 ⇒ k1 ≤ −4.

For the convenience of the calculation (67), let us assume k1 = −13/2 = −6.5, then
F1 = (−5 1)T . Let us perform transformations (15) taking into account (61), (65)–(67),
forming the control law in the form (55), that is,

u = K2e2 = k2B−1
2 S2e2 = k2

(
0.5 −0, 5
0 1

)
e2, (68)

and we obtain a closed RF of the uncertain system in terms of discrepancies in the form
(56), namely,

.
e1 = (1 + α)(−5e1 + (1.25 − 0.25)e2,

.
e2 = (1 + α)

( −30
3

)
e1 +

(
(1 + α)

(
7.25 −1.25
−0.75 0.75

)
+ k2(1 + β)

(
1 0
0 1

))
e2.

From the second inequality (58), we find the second gain

k21 ≤ −(1 + (1 +
�
α )(30 + 7.25 + 1.25))/(1 −

�
β ) ≈ −48.2,

k22 ≤ −(1 + (1 +
�
α )(3 + 0.75 + 0.75))/(1 −

�
β ) ≈ −6.62,k2 ≤ min{−48.2; −6.62}.

Let us take k2 = −50. Then due to (68), (19), we get

u = Ke, K = (O K2) =

(
0 −25 25
0 0 −50

)
,

F = KTeT =

(
0 −25 25
0 0 −50

)⎛⎝ 1 0 0
5 1 0
−1 0 1

⎞⎠⎛⎝ 1 −0.5 0.5
0 1 0
0 0 1

⎞⎠.

Control law

u = Fx =

( −150 50 −50
50 −25 −25

)
x (69)

provides in the initial uncertain system a guaranteed margin of stability η ≥ ν = ηd = 1
in all uncertainty intervals, and this solves the problem. For example, in the nominal
system (59) and in the uncertain system with different boundary values of parameters
α = ±0.1, β = ±0, 1 we obtain

σ(A + BF) = {−6.0531; −41.5559; −49.3910},η = 6.0531;

σ(1.1A + 0.9BF) = {−7.0628; −35.3071; −44.33}, η = 7.0628;

σ(1.1A + 1.1BF) = {−6.6585; −45.7114; −54.3301}, η = 6.6585;

σ(0.9A + 1.1BF) = {−5.2231; −47.625; −54.4519}, η = 5.2231;

σ(0.9A + 0.9BF) = {−5.4478; −37.4003; −44.4519}, η = 5.4478.

Figure 3 shows the behavior of the state variables x(t) = (x1(t), x2(t), x3(t))
T and

controls u(t) = (u1(t), u2(t))
T in the closed-loop system

.
x = (1.1A + 0.9BF)x, (59), (69)

with x(0) = (0.5, 0.5, 0.5 )T.
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(a) (b) 

Figure 3. (a) Plots of x1(t), x2(t), x3(t); (b) Plots of u1(t), u2(t) in the closed-loop system
.
x =

(1.1A + 0.9BF)x, (59), (69) with x(0) = (0.5, 0.5, 0.5 )T.

In comparison with system (59), (63) (see Figure 2), the solution norm of the closed-
loop system is practically the same, but the regulation time has been reduced by about 6
times. In addition, the value of ‖u(0)‖ has increased by about 10 times.

It should be noted that the control spikes at the beginning of the transient can be
limited by piecewise linear control with saturation

u = (10sat(u1), 10sat(u2))
T. (70)

Corresponding graphs for the closed-loop system
.
x = (1.1A + 0.9BF)x, (59), (69), (70)

are shown in Figure 4. As can be seen from Figures 3a and 4a, the control constraint (70)
had no effect on the state variable transients.

 
(a) (b) 

Figure 4. (a) Plots of x1(t), x2(t), x3(t); (b) Plots of u1(t), u2(t) in the closed-loop system
.
x =

(1.1A + 0.9BF)x, (59), (69), (70).

Figure 5 shows the behavior of the variables x(t) = (x1(t), x2(t), x3(t))
T and control

vector u(t) = (u1(t), u2(t))
T in a closed-loop system

.
x = ((1 + α)A + (1 + β)BF)x, (59),

(69), (70), x(0) = (0.5, 0.5, 0.5 )T , where the unknown parameters smoothly vary within the
specified ranges (64): α = 0.1 sin 4t, β = 0.1 sin 2t. As we can see, at variable parameters the
nature of the transients is practically unchanged, a fact that opens perspectives for using the
developed approach in relation to parametrically uncertain non-stationary control systems.
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(a) (b) 

Figure 5. (a) Plots of x1(t), x2(t), x3(t); (b) Plots of u1(t), u2(t) in the closed-loop system
.
x =

((1 + α)A + (1 + β)BF)x, (59), (69), (70), x(0) = (0.5, 0.5, 0.5 )T .

5. Discussion

In this paper, we propose a new approach to the synthesis of robust control for a
practically significant class of linear stationary parametrically uncertain systems, in which
the structural controllability properties of the nominal system do not change with parameter
variation within acceptable limits. For the special case of systems with a controllability
indicator equal to two, the procedures for the synthesis of a stabilizing feedback are
formalized in detail, using the concepts of regular form and super-stability. The possibility
of extending this approach to a general form of controllable systems is shown theoretically.

It should be noted that the tuning of the feedback coefficients, which guarantee a
given margin of stability in the closed-loop system in all uncertainty intervals, is done
on the basis of inequalities in terms of matrix elements rather than their eigenvalues. On
the one hand, this is what allows synthesizing of a robust system. However, on the other
hand, these conditions are only sufficient, and the resulting estimates are conservative. As
a result, there may be spikes in the start of transients of state variables and controls that are
not acceptable in practical applications.

Numerical examples show the fundamental possibility of limiting the control actions,
as well as the performance of the proposed method for non-stationary systems. However,
further research is needed to formalize these problems rigorously.
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Abstract: Dynamic mode decomposition (DMD) is a popular data-driven framework to extract linear
dynamics from complex high-dimensional systems. In this work, we study the system identification
properties of DMD. We first show that DMD is invariant under linear transformations in the image
of the data matrix. If, in addition, the data are constructed from a linear time-invariant system,
then we prove that DMD can recover the original dynamics under mild conditions. If the linear
dynamics are discretized with the Runge–Kutta method, then we further classify the error of the DMD
approximation and detail that for one-stage Runge–Kutta methods; even the continuous dynamics
can be recovered with DMD. A numerical example illustrates the theoretical findings.

Keywords: dynamic mode decomposition; system identification; Runge–Kutta method

1. Introduction

Dynamical systems play a fundamental role in many modern modeling approaches
of physical and chemical phenomena. The need for high fidelity models often results in
large-scale dynamical systems, which are computationally demanding to solve, analyze,
and optimize. Thus the last three decades have seen significant efforts to replace the
so-called full-order model, which is considered the truth model, with a computationally
cheaper surrogate model. In the context of model order reduction, we refer the interested
reader to the monographs [1–5]. Often, the surrogate model is constructed by projecting
the dynamical system onto a low-dimensional manifold, thus requiring a state-space
description of the differential equation.

If a mathematical model is not available or not suited for modification, data-driven
methods, such as the Loewner framework [6,7], vector fitting [8–10], operator inference [11], or
dynamic mode decomposition (DMD) [12] may be used to create a low-dimensional realization
directly from the measurement or simulation data of the system. Suppose the dynamical
system that creates the data is linear. In that case, the Loewner framework and vector fitting
are—under some technical assumptions—able to recover the original dynamical system
and hence serve as system identification tools. Despite the popularity of DMD, a similar
analysis seems to be missing, and this paper aims to close this gap.

Since DMD creates a discrete, linear time-invariant dynamical system from data, we
are interested in answering the following questions:

1. What is the impact of transformations of the data on the resulting DMD approximation?
2. Assume that the data used to generate the DMD approximation are obtained from

a linear differential equation. Can we estimate the error between the continuous
dynamics and the DMD approximation?

3. Are there situations in which we are even able to recover the original dynamical
system from its DMD approximation?

Mathematics 2022, 10, 418. https://doi.org/10.3390/math10030418 https://www.mdpi.com/journal/mathematics
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It is essential to know how the data for the construction of the DMD model are
generated to answer these questions. Assuming exact measurements of the solution may
be valid from a theoretical perspective only. Instead, we take the view of a numerical
analyst and assume that the data are obtained via time integration of the dynamics with
a general Runge–Kutta method (RKM) with known order of convergence. We emphasize
that for linear time-invariant systems, a RKM may not be the method of choice; see, for
instance, [13]. Nevertheless, RKMs are a common numerical technique to solve general
differential equations, which is our main reason to consider RKMs in the following.

We can summarize the questions graphically as in Figure 1. Thus, the dashed lines
represent the questions that we aim to answer in this paper.

ẋ = Fx

xi+1 = Axi (xi)
m
i=0 (x̃i := Txi)

m
i=0

x̃i+1 = ADMD x̃i x̃i+1 = ÃDMD x̃i

time
discretization

Section 2.1

data
generation

DMD
Section 2.2

data
transformation

DMD
Section 2.2

error analysis
identification

Section 3.3

transformation
invariance

Section 3.1

iden
tifi

catio
n

Sect
ion 3.2

Figure 1. Problem setup.

Our main results are the following:

• We show in Theorem 1 that DMD is invariant in the image of the data under linear
transformations of the data.

• Theorem 2 details that DMD is able to identify discrete-time dynamics, i.e., for every
initial value in the image of the data, the DMD approximation exactly recovers the
discrete-time dynamics.

• In Theorem 3, we show that if the DMD approximation is constructed from data that
are obtained via a RKM, then the approximation error of DMD with respect to the
ordinary differential equation is in the order of the error of the RKM. If a one-stage
RKM is used and the data are sufficiently rich, then the continuous-time dynamics,
i.e., the matrix F in Figure 1, can be recovered cf. Lemma 1.

To render the manuscript self-contained, we recall important definitions and re-
sults for RKM and DMD in the upcoming Sections 2.1 and 2.2, respectively, before we
present our analysis in Section 3. We conclude with a numerical example to confirm the
theoretical findings.

Notation

As is standard, N, R, and R[t] denote the positive integers, the real numbers, and
the polynomials with real coefficients, respectively. For any n, m ∈ N, we denote with
Rn×m the set of n × m matrices with real entries. The set of nonsingular matrices of size
n × n is denoted with GLn(R). Let A = [aij] ∈ Rn×m, B ∈ Rp×q, and xi ∈ Rn (i = 1, . . . , k).
The transpose and the Moore–Penrose pseudoinverse of A are denoted with AT and A†,
respectively. The Kronecker product ⊗ is defined as

A ⊗ B :=

[ a11B ··· a1mB
...

...
an1B ··· anmB

]
∈ R

np×mq.
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We use span{x1, . . . , xk} to denote the linear span of the vectors x1, . . . , xk and also
casually write span{X} = span{x1, . . . , xk} for the column space of the matrix X with
{x1, . . . , xk} as its columns. For A ∈ Rn×n and a vector x0 ∈ Rn, we denote the reachable
space as C(x0, A) = span{x0, Ax0, . . . , An−1x0}. The Stiefel manifold of n × r dimensional
matrices with real entries is denoted by

St(n, r) :=
{

U ∈ R
n×r | UTU = Ir

}
, (1)

where Ir denotes the r × r identity matrix. For a continuously differentiable function
x : I → Rn from the interval I ⊆ R to the vector space Rn, we use the notation ẋ := d

dt x
to denote the derivative with respect to the independent variable t, which we refer to as
the time.

2. Preliminaries

As outlined in the introduction, DMD creates a finite-dimensional linear model to
approximate the original dynamics. Thus, in view of possibly exact system identification,
we need to assume that the data that are fed to the DMD algorithm are obtained from a
linear ODE, which in the sequel is denoted by

ẋ(t) = Fx(t) (2a)

with given matrix F ∈ Rn×n. To fix a solution of (2a), we prescribe the initial condition

x(0) = x0 ∈ R
n, (2b)

and denote the solution of the initial value problem (IVP) as x(t; x0) := exp(Ft)x0. For the
analysis of DMD, we assume that the matrix F is not available. Instead, the question is to
what extent DMD is able to recover the matrix F solely from measurements of the state
variable x.

Remark 1. While a DMD approximation, despite its linearity, may well reproduce trajectories
of nonlinear systems (see, for example, [14]), the question of DMD being able to recover the full
dynamics has to focus on linear systems. Here, the key observation is that a DMD approximation is
a finite-dimensional linear map. In contrast, the encoding of nonlinear systems via a linear operator
necessarily needs an infinite-dimensional mapping.

2.1. Runge–Kutta Methods

To solve the IVP (2) numerically, we employ a RKM, which is a common one-step
method to approximate ordinary and differential-algebraic equations [15,16]. More pre-
cisely, given a step size h > 0, the solution of the IVP (2) is approximated via the sequence
xi ≈ x(t0 + ih) given by

xi+1 = xi + h
s

∑
j=1

β jkj, (3a)

with the so-called internal stages kj ∈ Rn (implicitly) defined via

kj = Fxi + h
s

∑
�=1

αj,�Fk� for j = 1, . . . , s, (3b)

where s ∈ N denotes the number of stages in the RKM. Using the matrix notation
A = [αj,�] ∈ Rs×s and β = [β j] ∈ Rs, the s-stage RKM defined via (3) is conveniently
summarized with the pair (A, β). Note that we restrict our presentation to linear time-
invariant dynamics, and hence, do not require the full Butcher tableau.

Since the ODE (2a) is linear, we can rewrite the internal stages as
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⎡⎢⎢⎢⎣
In − hα1,1F −hα1,2F . . . −hα1,sF
−hα2,1F In − hα2,2F . . . −hα2,sF

...
. . . . . .

...
−hαs,1F · · · −hαs,s−1F In − hαs,sF

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

k1
k2
...

ks

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Fxi
Fxi

...
Fxi

⎤⎥⎥⎥⎦ (4)

Setting k :=
[
kT

1 . . . kT
s
]T ∈ Rsn and e :=

[
1 . . . 1

]T ∈ Rs, the linear system in (4)
can be written as

(Is ⊗ In − hA⊗ F)k = (e ⊗ F)xi, (5)

where ⊗ denotes the Kronecker product. If h is small enough, the matrix (Is ⊗ In − hA⊗ F)
is invertible, and thus, we obtain the discrete linear system

xi+1 = xi + h
s

∑
j=1

β jkj = xi + h(βT ⊗ In)k

= xi + h(βT ⊗ In)(Is ⊗ In − hA⊗ F)−1(e ⊗ F)xi = Ahxi,

with (using the identity Is ⊗ In = Isn)

Ah := In + h(βT ⊗ In)(Isn − hA⊗ F)−1(e ⊗ F). (6)

Example 1. The explicit (or forward) Euler method is given as (A, β) = (0, 1) and according to
(6) we obtain the well-known formula Ah = In + hF. For the implicit (or backward) Euler method
(A, β) = (1, 1) the discrete system matrix is given by

Ah = In + h(In − hF)−1F = (In − hF)−1(In − hF + hF) = (In − hF)−1.

To guarantee that the representation (6) is valid, we make the following assumption
throughout the manuscript.

Assumption 1. For any s-stage RKM (A, β) and any dynamical system matrix F ∈ Rn×n, we
assume that the step size h is chosen such that the matrix Isn − hA⊗ F is nonsingular.

Remark 2. Using Assumption 1, the matrix Isn − hA⊗ F is nonsingular, and thus, there exists a
polynomial p = ∑sn−1

k=0 pktk ∈ R[t] of degree at most sn − 1 depending on the step size h such that

(Isn − hA⊗ F)−1 = p(Isn − hA⊗ F) =
sn−1

∑
k=0

pk(Isn − hA⊗ F)k

=
sn−1

∑
k=0

pk

k

∑
ρ=0

(
k
ρ

)
(−1)ρhρ(Aρ ⊗ Fρ),

where the last equality follows from the binomial theorem. Consequently, we have

Ah = In +
sn−1

∑
k=0

pk

k

∑
ρ=0

(
k
ρ

)
(−1)ρhρ+1

(
βTAρe

)
Fρ+1. (7)

Rearranging the terms together with the Cayley–Hamilton theorem implies the existence of a
polynomial p̃ ∈ R[t] of degree at most n such that Ah = p̃(F). As a direct consequence, we see that
any eigenvector of F is an eigenvector of Ah and thus, Ah is diagonalizable if F is diagonalizable.

Having computed the matrix Ah, the question that remains to be answered is the
quality of the approximation ‖x(ih; x0) − xi‖, which yields the following well-known
definition (cf. [15]).
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Definition 1. A RKM (A, β) has order p if there exists a constant C ≥ 0 (independent of h)
such that

‖x(h; x0)− x1‖ ≤ Chp+1 (8)

holds, where x1 = Ahx0 with Ah defined as in (6).

For one-step methods, it is well known that the local errors—as estimated in (8) for the
initial time step—basically sum in the global error such that the following estimate holds:

‖x(Nh; x0)− xN‖ ≤ Chp;

see, e.g., ([15], Thm. II.3.6).

2.2. Dynamic Mode Decomposition

For i = 0, . . . , m, assume data points xi ∈ Rn are available. If not explicitly stated,
we do not make any assumption on m. The idea of DMD is to determine a linear time-
invariant relation between the data, i.e., finding a matrix ADMD ∈ Rn×n such that the data
approximately satisfy

xi+1 ≈ ADMDxi for i = 0, 1, . . . , m − 1.

Following [17], we introduce

X :=
[
x0 . . . xm−1

] ∈ R
n×m and Z :=

[
x1 . . . xm

] ∈ R
n×m. (9)

Then, the DMD approximation matrix is defined as the minimum-norm solution of

min
M∈Rn×n

‖Z − MX‖F, (10)

where ‖ · ‖F denotes the Frobenius norm. It is easy to show that the minimum-norm solution
is given by ADMD = ZX† [12], where X† denotes the Moore–Penrose pseudoinverse of X.
This motivates the following definition.

Definition 2. Consider the data xi ∈ Rn for i = 0, 1, . . . , m and associated data matrices X and
Z defined in (9). Then the matrix ADMD := ZX† is called the DMD matrix for (xi)

m
i=0. If the

eigendecomposition of ADMD exists, then the eigenvalues and eigenvectors of ADMD are called
DMD eigenvalues and DMD modes of (xi)

m
i=0, respectively.

The Moore–Penrose pseudoinverse and, thus, also the DMD matrix can be computed
via the singular value decomposition (SVD); see, for example, ([18], Ch. 5.5.4). Let

[
U Ū

][Σ 0
0 0

][
V�
V̄�
]
= X

denote the SVD of X, with r := rank(X), U ∈ St(n, r), Σ ∈ Rr×r and rank(Σ) = r, and
V ∈ St(m, r), where we use the Stiefel manifold as defined in (1). Then

X† =
[
V V̄

][Σ−1 0
0 0

][
U�
Ū�
]
= VΣ−1U� (11)

and, thus,
ADMD = ZVΣ−1UT . (12)

For later reference, we call UΣV� = X the trimmed SVD of X.
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3. System Identification and Error Analysis

In this section, we present our main results. Before discussing system identification
for discrete-time (cf. Section 3.2) and continuous-time (cf. Section 3.3) dynamical systems
via DMD, we study the impact of transformations of the data on DMD in Section 3.1.

3.1. Data Scaling and Invariance of the DMD Approximation

Scaling and more general transformations of data are often used to improve the perfor-
mance of the methods that work on the data. Since DMD is inherently related to the Moore–
Penrose inverse, we first study the impact of a nonsingular matrix
T ∈ GLn(R) on the generalized inverse. To this purpose, consider a matrix X ∈ Rn×m with
r := rank(X). Let X = UΣV� denote the trimmed SVD of X with U ∈ St(n, r), Σ ∈ GLr(R)
and V ∈ St(m, r). Let TU = QR denote the QR-decomposition of TU with Q ∈ Rn×n and
R ∈ Rn×r. We immediately obtain rank(RS) = r. Let RΣ = ÛΣ̂V̂� denote the trimmed
SVD of RΣ with Û ∈ St(n, r), Σ̂ ∈ GLr(R), and V̂ ∈ St(r, r). We immediately infer

V̂V̂� = Ir. (13)

It is easy to see that the matrices UT := QÛ ∈ Rn×r, and VT := VV̂ ∈ Rm×r satisfy
U�

T UT = Ir = V�
T VT , i.e., UT ∈ St(n, r) and VT ∈ St(m, r). The trimmed SVD of TX is thus

given by
TX = TUΣV� = QRΣV� = QÛΣ̂V̂�V� = UTΣ̂V�

T .

We conclude

(TX)†TX = VTV�
T = VV̂V̂�V� = VV� = X†X,

where we used the identity (13). We have thus shown the following result.

Proposition 1. Let X ∈ Rn×m and T ∈ GLn(R). Then (TX)†(TX) = X†X.

With these preparations, we can now show that the DMD approximation is partially
invariant to general regular transformations applied to the training data. More precisely, a
data transformation only affects the part of the DMD approximation that is not in the image
of the data.

Theorem 1. For given data (xi)
m
i=0 consider the matrices X and Z as defined in (9) and the

corresponding DMD matrix ADMD ∈ Rn×n. Consider T ∈ GLn(R) and let

X̃ := TX and Z̃ := TZ

be the matrices of the transformed data. Let ÃDMD := Z̃X̃† denote the DMD matrix for the
transformed data. Then the DMD matrix is invariant under the transformation in the image of X,
i.e.,

ADMDX = T−1 ÃDMDTX = T−1 ÃDMDX̃.

Moreover, if T is unitary or rank(X) = n, then

ADMD = T−1 ÃDMDT. (14)

Proof. Using Proposition 1, we obtain

T−1 ÃDMDTX = T−1TZ(TX)†TX = ZX†X = ADMDX.

If T is unitary or rank(X) = n, then we immediately obtain (TX)† = X†T−1, and thus

T−1 ÃDMDT = T−1TZ(TX)†T = ZX†T−1T = ADMD,
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which concludes the proof.

While Theorem 1 states that DMD is invariant under transformations in the image
of the data matrix, the invariance in the orthogonal complement of the image of the data
matrix, i.e., equality (14), is, in general, not satisfied. We illustrate this observation in the
numerical simulations in Section 4 and in the following analytical example.

Example 2. Consider the data vectors xi := [i + 1, 0]� for i = 0, 1, 2 and T :=
[

1 0
1 1

]
. Then,

X =

[
1 2
0 0

]
, Z =

[
2 3
0 0

]
, X† = 1

5

[
1 0
2 0

]
, TX =

[
1 2
1 2

]
, (TX)† = 1

10

[
1 1
2 2

]
.

We thus obtain

ADMD = 1
5

[
8 0
0 0

]
, ÃDMD = 1

5

[
4 4
4 4

]
, and T−1 ÃDMDT = 1

5

[
8 4
0 0

]
,

confirming that DMD is invariant under transformations in the image of the data, but not in the
orthogonal complement.

Remark 3. One can show that in the setting of Theorem 1, the matrix M̂ := TADMDT−1 is a
minimizer (not necessarily the minimum-norm solution) of

min
M∈Rn×n

∥∥∥Ẑ − MX̂
∥∥∥

F
.

3.2. Discrete-Time Dynamics

In this subsection, we focus on the identification of discrete-time dynamics, which are
exemplified by the discrete-time system

xi+1 = Axi (15)

with initial value x0 ∈ Rn and system matrix A ∈ Rn×n. The question that we want to
answer is to what extent DMD is able to recover the matrix A solely from data.

Proposition 2. Consider data (xi)
m
i=0 generated by (15), associated data matrices X, Z as defined

in (9), and the corresponding DMD matrix ADMD. Moreover let UΣV� = X with U ∈ St(n, r),
Σ ∈ GLr(R), V ∈ St(m, r), and r := rank(X) denote the trimmed SVD of X. Then

ADMD = AUU�. (16)

Proof. By assumption, we have X =
[
x0 Ax0 · · · Am−1x0

]
and Z = AX = AUΣV�.

We conclude

ADMD = ZX† = AUΣV�VΣ−1U� = AUU�.

Remark 4. We immediately conclude that DMD recovers the true dynamics, i.e., ADMD = A,
whenever rank(X) = n. This is the case if and only if (A, x0) is controllable, i.e., C(A, x0) has
dimension n, and the data set is sufficiently rich, i.e., m ≥ n.

Our next theorem identifies the part of the dynamics that is exactly recovered in the
case that rank(X) < n that occurs for (A, x0) is not controllable or m < n.

Theorem 2. Consider the setting of Proposition 2. If span{U} is ADMD invariant, then the DMD
approximation is exact in the image of U, i.e.,
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(Ai − Ai
DMD)x0 = 0 for all i ≥ 0 and x0 ∈ span{U}. (17)

If, in addition, ker(A) ∩ span{U}⊥ = {0}, then also the converse direction holds.

Proof. Let x0 ∈ span{U}. Since span{U} is ADMD invariant, we conclude Ai
DMDx0 ∈

span{U} for i ≥ 0, i.e., there exists yi ∈ Rr such that Ai
DMDx = Uyi. Using Proposition 2

we conclude

Ai+1
DMDx0 = ADMD Ai

DMDx0 = ADMDUyi = Axi = Ai+1x0.

The proof of (17) follows via induction over i. For the converse direction, let
x = xU + x⊥U with xU ∈ span{U} and x⊥U ∈ span{U}⊥. Proposition 2 and (17) imply

(A − ADMD)x = Ax⊥U �= 0,

which completes the proof.

Remark 5. The proof of Theorem 2 details that span{U} is ADMD-invariant if and only if
span{U} is A invariant. Moreover, span{U} = span{X} implies that this condition can be
checked easily during the data-generation process. If we further assume that the data are generated
via (15), then this is the case whenever

rank
([

x0 · · · xi
]
) = rank(

[
x0 · · · xi+1

])
for some i ≥ 0.

3.3. Continuous-Time Dynamics and RK Approximation

Suppose now that the data (xi)
m
i=0 are generated by a continuous process, i.e., via the

dynamical system (2). In this case, we are interested in recovering the continuous dynamics
from the DMD approximation. As a consequence of Theorem 2, we immediately obtain the
following results for exact sampling.

Corollary 1. Let ADMD be the DMD matrix for the sequence xi = exp(iFh)x0 ∈ Rn for
i = 1, . . . , m with m ≥ n. Then

x(ih; x̃0) = Ai
DMD x̃0

if and only if x̃0 ∈ span{x0, . . . , xm}, where x(t; x̃0) denotes the solution of the IVP (2) with initial
value x̃0.

Proof. The assertion follows immediately from Proposition 2 with the observation that
exp(iFh) is nonsingular.

We conclude that we can recover the continuous dynamics with the matrix logarithm
(see [19] for further details), whenever rank(X) = n. In practical applications, an exact
evaluation of the flow map is typically not possible. Instead, a numerical time-integration
method is used to approximate the continuous dynamics.

Suppose we use a RKM with constant step size h > 0 to obtain a numerical ap-
proximation (xi)

m
i=0 ⊆ Rn of the IVP (2) and use these data to construct the DMD matrix

ADMD ∈ Rn×n as in Definition 2. If we now want to use the DMD matrix to obtain an ap-
proximation for a different initial condition, say x(0) = x̃0, we are interested in quantifying
the error

‖x(ih; x̃0)− Ai
DMD x̃0‖.

Theorem 3. Suppose that the sequence (xi)
m
i=0, with xi ∈ Rn for i = 0, . . . , m, is generated from

the linear IVP (2) via a RKM of order p and step size h > 0 and satisfies
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span{x0, . . . , xm−1} = span{x0, . . . , xm}.

Let ADMD ∈ Rn×n denote the associated DMD matrix. Then there exists a constant C ≥ 0
such that

‖x(ih; x̃0)− Ai
DMD x̃0‖ ≤ Chp (18)

holds for any x̃0 ∈ span({x0, . . . , xm−1}).

Proof. Since the data (xi)
m
i=0 are generated from a RKM, there exists a matrix Ah ∈ Rn×n

such that xi+1 = Ahxi for i = 0, . . . , m− 1. Let x̃0 ∈ span({x0, . . . , xm−1}). Then, Theorem 2
implies Ai

hx̃0 = Ai
DMD x̃0 for any i ≥ 0. Thus, the result follows from the classical error

estimates for RKM (see, for example, [15], Thm. II.3.6) and from the equality

‖x(ih; x̃0)− Ai
DMD x̃0‖ = ‖x(ih; x̃0)− Ai

hx̃0‖ ≤ Chp

for some C ≥ 0 since the RKM is of order p.

The proof details that due to Proposition 2, we are essentially able to recover the
discrete dynamics Ah obtained from the RKM via DMD, provided that rank(X) = n. As
laid out in Remark 4, this condition is equivalent to (Ah, x0) being controllable for which
the controllability of (F, x0) is a necessary condition.

The question that remains to be answered is whether it is possible to recover the
continuous dynamic matrix F from the discrete dynamics ADMD (respectively Ah) provided
that the Runge–Kutta scheme used to discretize the continuous dynamics is known. For
any 1-stage Runge–Kutta method (α, β), i.e., s = 1 in (3), this is indeed the case since then
(6) simplifies to

Ah = In + hβ(In − hαF)−1F,

which yields

F = −1
h
(In − Ah)(αAh + (β − α)In)

−1.

Combining (19) with Proposition 2 yields the following result.

Lemma 1. Suppose that the sequence (xi)
m
i=0 ⊆ Rn is generated from the linear IVP (2) via the

1-stage Runge-Kutta method (α, β) with step size h > 0. Let ADMD ∈ Rn×n denote the associated
DMD matrix. If rank({x0, . . . , xm−1}) = n, then

F = −1
h
(In − ADMD)(αADMD + (β − α)In)

−1, (19)

provided that the inverse exists.

If the assumption of Lemma 1 holds, then we can recover the continuous dynamic
matrix from the DMD approximation. The corresponding formula for popular 1-stage
methods is presented in Table 1.

Table 1. Identification of continuous-time systems via DMD with 1-stage Runge–Kutta methods.

Method (α, β) Lemma 1

explicit Euler (0, 1) F = − 1
h (In − ADMD)

implicit Euler (1, 1) F = 1
h (In − A−1

DMD)
implicit midpoint rule ( 1

2 , 1) F = 1
2h (ADMD − In)(ADMD + In)−1

In this scenario, let us emphasize that we can compute the discrete dynamics with the
DMD approximation for any time step.

The situation is different for s ≥ 2, as we illustrate with the following example.
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Example 3. For given h > 0, consider F1 := 0 and F2 := − 2
h . Then, for Heun’s method,

i.e., A =
[

0 0
1 0
]

and β� =
[ 1

2
1
2

]
, we obtain Ah = p(F) with p(x) = 1 + hx + h2

2 x2, and
thus p(F1) = p(F2). In particular, we cannot distinguish the continuous-time dynamics in this
specific scenario.

4. Numerical Examples

To illustrate our analytical findings, we constructed a dynamical system that exhibits
some fast dynamics that is stable but not exponentially stable and has a nontrivial but
exactly computable flow map. In this way, we can check the approximation both quali-
tatively and quantitatively. In addition, the system can be scaled to arbitrary state-space
dimensions. Most importantly, for our purposes, the system is designed such that for any
initial value, the space not reached by the system is at least as large as the reachable space.
The complete code of our numerical examples can be found in the supplementary material.

With N ∈ N, Δ := diag(0, 1, . . . , N − 1) we consider the continuous-time dynamics (2)
with

F :=
[

0 2Δ
0 − 1

2 Δ

]
and exp(tF) =

[
I 4(I − exp(− t

2 Δ))
0 exp(− t

2 Δ)

]
.

Starting with an initial value x0 ∈ R2N we can thus generate exact snapshots of the
solution via x(t) = exp(tF)x0, as well as the controllability space

C(F, x0) = span
{

x0,
[

0 2Δ
0 − 1

2 Δ

]
x0,
[

0 2Δ
0 − 1

2 Δ

]2

x0, . . . ,
[

0 2Δ
0 − 1

2 Δ

]2N−1

x0

}
.

One can confirm that dim(C(F, x0)) ≤ N with equality if, for example, the initial state

x0 =

[
x0,1
x0,2

]
has no zero entries in its lower part x0,2 ∈ RN . Due to (7), we immediately infer

dim(C(Ah, x0)) ≤ N

for any Ah obtained by a Runge–Kutta method. We conclude that DMD is at most capable
of reproducing solutions that evolve in C(F, x0). Indeed, as outlined in Proposition 2, all
components of any other initial value x̃0 that are in the orthogonal complement of C(F, x0)
are set to zero in the first DMD iteration.

For our numerical experiments, we set N := 5, x0 := [1, 2, . . . , 10]�, and consider the
time-grid ti := ih for i = 0, 1, . . . , 100 with uniform step size h = 0.1. A SVD of exactly
sampled data

[
U1 U2

][Σ1 0
0 0

]
VT =

[
x0 x(h; x0) x(2h; x0) · · · x(10; x0)

]
(20)

of the matrix of snapshots of the solution x(t; x0) reveals that the solution space is indeed
of dimension N = 5 and defines the bases U1, U2 ∈ St(10, 5) of C(F, x0) and its orthogonal
complement, respectively.

For our numerical experiment, whose results are depicted in Figure 2, we choose the
initial values

x̃0 := U1e ∈ span(U1) and x̂0 := U2e ∈ span(U2) = span(U1)
⊥,

with e = [1, 1, 1, 1, 1]�. The exact solution for both initial values is presented in Figure 2a,b,
respectively. Our simulations confirm the following:
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• As predicted by Theorem 2, the DMD approximation for the initial value x̃0, depicted
in Figure 2c, exactly recovers the exact solution, while the DMD approximation for the
initial value x̂0 (cf. Figure 2d) is identically zero.

• If we first transform the data with the matrix

T =

⎡⎢⎢⎢⎢⎢⎣
1 1

. . . . . .
. . . 1

1

⎤⎥⎥⎥⎥⎥⎦ ∈ GL2N(R),

then compute the DMD approximation, and then transform the results back, the
DMD approximation for x̃0 remains unchanged (see Figure 2e), confirming (14) from
Theorem 1. In contrast, the prediction of the dynamics for x̂0 changes (see
Figure 2f), highlighting that DMD is not invariant under state-space transformations
in the orthogonal complement of the data.

The presented numerical example is chosen to illustrate the importance of the reachable
space. Computing a subspace numerically is a delicate task in particular if, as in our
example, the ratio of the largest and the smallest entry in the controllability matrix is of size
(1/2)2N−3(N−1)2N

(1/2)2N−1 = 4(N − 1)2N , which leads to huge rounding errors already for moderate
N. This mainly concerns the separation of the reachable and the unreachable subspace,
which, however, can be monitored in a general implementation for a general setup. Since
in standard SVD implementations, the dominant directions (and, thus, the Moore–Penrose
inverse) are computed with high accuracy, for quantitative approximations using DMD,
these numerical issues are less severe.
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time t

0 2 4 6 8 10
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Figure 2. Cont.
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0
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time t

(e) (f)

Figure 2. Comparison of the exact solution, DMD approximation, and DMD approximation based on
transformed data for initial values inside the reachable subspace, i.e., x̃0 ∈ C(F, x0) and outside the
reachable subspace, i.e., x̂0 ∈ C(F, x0)

⊥. (a) Exact solution with initial value x̃0. (b) Exact solution
with initial value x̂0. (c) DMD approximation with initial value x̃0. (d) DMD approximation with
initial value x̂0. (e) DMD with transformed data with initial value x̃0. (f) DMD with transformed data
with initial value x̂0.

5. Conclusions

This work highlighted fundamental properties of the DMD approach if applied to
linear problems both in continuous and discrete times. Depending on how the initial data
relate to the reachable space, the DMD can recover the exact discrete-time dynamics. If,
in addition, the discrete-time data are generated from a continuous-time system via time
discretization with a Runge–Kutta scheme, then the error of the DMD approximation is in
the same order as the time-integration method. As a by-product of our analysis, we made
a relation of the Moore–Penrose inverse and regular transformations explicit, which has
not been stated so far. Although the findings mainly confirm what should be expected, the
basic principles, such as controllability, will well generalize to nonlinear problems.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
math10030418/s1. Python script to reproduce the numerical results.
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Abstract: Dynamic motion simulators cannot provide the same stimulation of sensory systems as real
motion. Hence, only a subset of human senses should be targeted. For simulators providing vestibular
stimulus, an automatic bodily function of vestibular–ocular reflex (VOR) can objectively measure how
accurate motion simulation is. This requires a model of ocular response to enforced accelerations, an
attempt to create which is shown in this paper. The proposed model corresponds to a single-layer
spiking differential neural network with its activation functions are based on the dynamic Izhikevich
model of neuron dynamics. An experiment is proposed to collect training data corresponding to
controlled accelerated motions that produce VOR, measured using an eye-tracking system. The
effectiveness of the proposed identification is demonstrated by comparing its performance with a
traditional sigmoidal identifier. The proposed model based on dynamic representations of activation
functions produces a more accurate approximation of foveal motion as the estimation of mean square
error confirms.

Keywords: nonparametric model; artificial neural network; Izhikevich artificial neuron; vestibular–
ocular reflex; control Lyapunov function

MSC: 93B30; 93-10; 93D30; 93C10; 94C30

1. Introduction

Currently, a significant multidiscipline effort deals with developing technologies that
can be applied for training in simulated environments. Such training can be used in
different scenarios, from studying drivers’ behavior to improving road safety and pilot
training, the latter of which has been one of the leading forces for the development of these
systems since the early years. These technologies require understanding human sensory
systems and their influence to be studied effectively with the proposer instrumentation
and modeling tools.

During simulator training, body movements cannot precisely match what is being
shown on screen, causing a mismatch in sensory information and leading to simulator
sickness as described in [1,2]. This discrepancy is caused by several factors like delays due
to tracking and rendering of the output image and physical limitations of the movement
range of training systems. Consequently, attempts to overcome this problem covers several
different research directions, including but not limited to dynamic motion systems, fore-
casting movement, and galvanic vestibular stimulation [3]. However, the problem can also
be reversed, so that body reaction is used to estimate the accuracy of simulated motion.

Mathematics 2022, 10, 855. https://doi.org/10.3390/math10060855 https://www.mdpi.com/journal/mathematics
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One of such indicators is an ocular response to enforced accelerations by an external system
or device, just like a flight simulator.

Due to the size and position of the fovea, which is the part of a human eye retina
with a high density of light-sensitive photoreceptors, clear vision is achieved when the
object of interest is moving slower than 4◦/s. A unique mechanism exists so that the
region of interest on the acquired image stays on the retina as the body moves. It is called
the vestibular–ocular reflex (VOR), and it is one of the interaction processes between a
human body and the surrounding environment. It operates via a neural path between
the vestibular and oculomotor systems: eyes compensate head rotations by rotating in the
opposite direction [4].

Incorrect functioning of VOR leads to disruptions of clear vision such as the inability
to compensate micromovements of the head. However, as an existing connection between
external accelerations and angular velocities with the vestibular response is not entirely
understood, VOR cannot be estimated directly. A natural way to study VOR is to observe it
using immersive technologies (such as virtual or mixed reality) and produce reliable and ac-
curate mathematical models of VOR with human motion as input and electrophysiological
response as output. This response could be electroencephalographic signals, oculographic
information, or eye motion data, among others. Despite the importance of such mathe-
matical model design, the number and complexity of physiological aspects increase the
difficulty of generating specific models for given motion cues that use a reasonably small
number of parameters [5].

An alternative way to represent VOR dynamics is to use nonparametric models to
reproduce the aforementioned input–output relationship while maintaining a tractable
numerical complexity. Several methodologies propose nonparametric models, including
adaptive autoregressive systems, polynomial approximations, swarm optimization tech-
niques, and artificial neural networks. Nevertheless, the dynamic nature of VOR limits
the applicability of the models under a wide variety of working scenarios. Dynamic ap-
proximate models can also be considered as modeling options for systems describing VOR
dynamics. In particular, differential neural networks (DNNs) have been used for a long
time as efficient modeling strategies of dynamic systems with uncertain mathematical
models that are affected by perturbations and modeling inaccuracies. Notice that DNN
based models could be well fitted to represent the VOR dynamics [6,7]. Still, the selection
of activation functions could be a matter of discussion, considering that sigmoidal or other
monotonical functions may not capture the complex electrophysiological VOR response.

Izhikevich model of neuron activity [8] is a bioinspired characterization of electrophy-
siology-based approximate mathematical models. Izhikevich artificial mathematical models
have been proven to be an efficient model of diverse neuron responses [9]. Therefore, an
aggregation of several Izhikevich artificial neurons is named electrophysiology-inspired
approximated DNN or spiking DNNs [10,11].

Because of the modeling abilities of DNN using Izhikevich neuron dynamics, this
paper proposes a method to approximate oculomotor response using the described spiking
DNN model. The main contributions of this study can be summarized as follows:

• a novel modeling strategy is proposed for the ocular response on head movements
based on a spiking DNN with no parameters;

• a new aggregated system is used to confirm the validity of the proposed model.
It consists of an experimental system with a motion platform, inertial sensors, an
eye-tracking device for acquiring data, and a neural network for processing it.

This manuscript is organized as follows. In Section 2, we provide a general description
of the vestibular–ocular response. In Section 3, we introduce the uncertain model of
ocular response, which is then formulated as a spiking-differential-neural-network-based
nonparametric identifier in Section 4. In Section 5, we describe general modeling strategy
as the process of collecting experimental data. In Section 6, we cover processing of the
obtained data and assessing performance of the proposed model. Conclusions and final
remarks of Section 7 close the study.
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2. Description of Vestibular–Ocular Connection

As jet aviation and then crewed spaceflight progressed, they brought attention to
several physiological phenomena: a vestibular–ocular reflex. Its disruption was stated
to lead to deterioration of a human being in the pioneering work by A.L. Yarbus [12].
Possible causes of disorder include biological prerequisites like vestibular neuronitis [13]
or congenital predisposition [14] as well as environmental change. Crewed spaceflight
provided an essential context for studying the activity of the vestibular system and its
connection to the rest of the body. The papers by I. Kozlovskaya and L. Kornilova (Institute
of Biomedical Problems, Moscow, Russia) [15,16] examine vestibular–sensory disorders in
a weightless environment and methodology for diagnosing the VOR functioning.

A general approach for detecting dysfunctions is to compare actual data with the
reference. For vestibular–sensory disorders, the latter takes the form of a VOR model. The
most common method of creating such models is to describe the system as a dynamic
one formed by differential and difference equations. One such example is [17] that uses a
bilateral model of an eye. It describes ocular dynamics based on the activity of extraocular
muscles connected to the right and left sides of an eye. These muscles are more sensitive to
positive difference, so they are more active when the difference is negative [18]. The down-
side of this model is that muscle behavior is described using a large number of parameters
that require the application of genetic algorithms to improve the model accuracy [19].

An alternative method was proposed in [20]. It uses statistical methods to approximate
the actual dynamics of optokinetic–vestibule–cervical and vestibular nystagmus. Typical
dynamics of nystagmus’ slow phase drive the values of the five parameters of the model.
With known dynamics of head rotations and depending on supporting visual information,
this model generates both phases of nystagmus. However, such modeling approaches do
not provide enough flexibility and require vast processing power to solve the underlying
optimization problem.

3. Modeling Ocular Response to Enforced Acceleration

This study is focused on developing a nonparametric model based on a single-layer
DNN able to characterize ocular response. The network uses artificial neurons implemented
as Izhikevich models, so it operates as a Spiking DNN or SDNN for short. The proposed
model produces a vector of two angular coordinates of ocular rotation based on linear accel-
eration and angular velocities from a vestibular system which serves as an input. Training
input data come from a tracking system and ground truth output from a bidimensional eye
tracker. The two signals were resampled to have equally acquired information.

Let ζ = [xeye, yeye]� be the coordinates vector of the eye movement. Its evolution over
time is forced by information from the vestibular system—linear acceleration a = [ax; ay; az]

and angular velocity ω = [ωx; ωy; ωz]�. These values are obtained with respect the
body motion.

The electrophysiological system relating inertial information with ocular movement
operates using the physiological process of VOR. The continuous dynamics of ζ as the
system state vector, coupled with input vector u = [a�; ω�]� justifies that a model of this
relation has uncertain dynamics defined by the following differential equation:

d
dt

ζ(t) = f (ζ(t), u(t)) + η(t). (1)

Here ζ = ζ(t) is the state vector, u ∈ R6 is the input vector that drives uncertain
dynamics described by the proposed vector function f : R2 ×R6 → R2. f is Lipschitz with
respect to its first argument with a positive constant L f > 0. η ∈ R2 is the vector of external
perturbations to the system not involved in the modeling process. These perturbations
belong to a subset of Σ =

{
η | ‖η‖2 ≤ η0, η0 > 0

}
. Such class is admissible considering the

nature of inputs and signals that affect the VOR dynamics.
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4. Formulation of Spiking-Differential-Neural-Network-Based Model

For the vestibular–ocular system with an uncertain mathematical model (1), the SDNN
formulation assumes the following form:

d
dt

ζ(t)=Aζ(t) + Wo
1 φ1(ζ(t)) + Wo

2 φ2(ζ(t))u(t) + f̃e(ζ(t), t) + η(t),

ζ(0) = ζ0 ∈ R2.
(2)

The vector ζ ∈ R2 defines the SDNN state. The matrix A ∈ R2×2 describes the linear
component of the network dynamics. This matrix is selected as a Hurwitz one to provide
boundedness for the state ζ. The two following components form approximation of an
uncertain system with traditional SDNN. Wo

1 ∈ R2×p1 and Wo
2 ∈ R2×p2 are the weights

matrices and φ1 : R2 → Rp1 and φ2 : R2 → Rp2×6 are the vector and matrix of activation
functions respectively. Choice of the exact values of p1 and p2 is left to the SDNN designer,
depending on the value of expected approximation error and methodologies of selecting
the size of each layer of general artificial neural networks.

Dynamic nature of the real biological neural networks bioinspired the proposal in this
study to use activation functions based on neuron evolution. Thus, each component of φ1
and φ2 is described as the output of the Izhikevich model of neuron [8]:

d
dt

�i(t) = f0(�i(t), ζ(t)),

f0(�i, ζ) =

[
0.04v2

i + 5vi − ui + 140 + ZT
i ζ

ai(bivi − ui)

]
, �i =

[
vi
ui

]
,

(3)

if vi ≥ 30 mV, then
{

vi := ci
ui := ui + di.

(4)

Here ai, bi and ci are the scalar parameters of the Izhikevich model. φji = [1, 0]�i

characterizes the artificial neuron response and is used as the model output in (2). Zi ∈ R2

is a vector of input weights.
Function f̃e(ζ(t)) : R2 ×R → R2 in (2) represents approximation error due to selection

of a finite number of Izhikevich neurons in the proposed SDNN design. Based on SDNN mod-
eling characteristics this error belongs to the following set: Ω =

{
f̃e | ‖ f̃e‖2 ≤ f̃0, f̃0 > 0

}
.

This result is a consequence of the dynamics of the Izhikevich artificial neuron.
The term η ∈ R2 in (2) characterises external perturbations, or elements affecting VOR

system dynamics while being independent of the states values. This term can be said to
belong to the set Σ =

{
η | ‖η‖2 ≤ η0

}
with η0 being a positive scalar. Together, the two

terms f̃e and η represent the degree of vagueness of the underlying electrophysiological
system when describing dynamic activation functions of the SDNN representation.

Based on the described approximate dynamical model, this study considers a model
for uncertain dynamics of the VOR based on the design of an adaptive SDNN. The proposed
approximate adaptive model can be described as follows:

d
dt

ζ̂(t)=Aζ̂(t) + W1(t)φ1(ζ̂(t)) + W2(t)φ2(ζ̂(t))u(t), ζ̂(0) = ζ̂0 ∈ R2. (5)

Vector ζ̂ defines the approximated dynamics of the 2 eye coordinates. The right-hand
side of the VOR dynamics consists of spiking neurons and satisfies the model structure
described in (2). The parameters W1 and W2 in (5) must be adjusted by a set of learning
laws. It is necessary to have the learning laws derived in such a way so that the pro-
posed identifier operating under these learning laws and identical input can reproduce
state trajectories of (1). The aforementioned allows issuing the following problem for-
mulation corresponding to the modeling process based on the application of Izhikevich
artificial neurons.
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Problem statement for the nonparametric modeling with SDNN.
The problem considered in this study is designing the nonlinear algorithm Σ(x, x̂, x, u)

adjusting the weights W = [W1 W2] in a way that ensures the identification error Δ = ζ − ζ̂
has a stable equilibrium point at the origin:

lim sup
T→∞

⎧⎨⎩ sup
η∈Σ, f̃e∈Ω

‖Δ(T)‖2
P

⎫⎬⎭ ≤ γ (6)

where γ > 0 defines the quality of approximation of the proposed SDNN. P ∈ R2×2 is
a positive definite matrix that adjusts influence of different components of the modeling
error vector to the overall approximation quality.

This problem can be solved using Lyapunov stability theory by deriving dynamics of
W1 and W2 from identification error Δ. To develop the stability study, the dynamics of Δ
admits the following ordinary differential equation:

d
dt

Δ(t)=AΔ(t) + W∗
1 φ̃1
(
ζ̂(t)
)
+ W∗

2 φ̃2
(
ζ̂(t)
)
u(t)+

W̃1(t)φ1
(
ζ̂(t)
)
+ W̃2(t)φ2

(
ζ̂(t)
)
u(t) + f̃e(t) + η(t).

(7)

The process of applying Lyapunov-based stability confirms that identification error
has an upper ultimate bound [21,22]. The suggested Lyapunov function has a quadratic
form that depends on identification error and SDNN weights. Dynamics of these weights
must be selected in such a way to ensure identification error may have an ultimate bound.
The following theorem demonstrates that such a bound exists.

Theorem 1. If there exist positive definite matrices Λ1 > 0 and Λ2 > 0 and positive and bounded
scalar α > 0 such that for the matrix inequality Ric(P, α) < 0

Ric(P, α):=P
(

A +
α

2
I2×2

)
+
(

A +
α

2
I2×2

)�
P + PRP + Q,

R :=
2
∑

j=1
W+

j

(
Λ−1

j

)
I2×2, Q := 2I2×2 +

2
∑

j=1
LjΛj,

(8)

there exists at least one positive definite solution P ∈ R2×2, P = P� > 0 then the learning laws
described by

d
dt

Wj(t) = −k−1
j Ωj(t) + αW̃j(t),

Ωj(t) = PΔ(t)φ�
j (ζ̂(t)),

W1(0) = W1,0, W2(0) = W2,0, j = {1, 2},

(9)

with scalars k1, k2 > 0, W̃j = Wtr
j − Wj, with Wtr

j any matrix satisfying ‖Wtr
j − W0

j ‖
j
F ≤ W+

j
justify the identification error Δ converging to a ball with its center at the origin and an ultimate
bound given by

γ ≤ η0 + f̃0

α
. (10)

Proof of Theorem 1. Taking into consideration the dynamics of the identification error
Δ presented in (7), one may propose an energetic function depending on the deviation
between the state ζ and ζ̂ as well as the deviation between the weights estimated with the
identifier and the actual values of the approximation.

For the particular case of the SDNN considered in this study, the aforementioned
energetic function is given by:

E
(
Δ, W̃1, W̃2

)
= ‖Δ‖2

2,P + k1‖W̃1‖2
F + k2‖W̃2‖2

F. (11)
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Here Δ is the tracking error already, for which its dynamics has been defined in (7).
The symbol ‖ · ‖2

2,P represents the weighted l2 norm of finite-dimensional vectors with the
positive definite and symmetric matrix P ∈ R2×2. Additionally, the terms ‖W̃j‖2

F, j = 1, 2
are the matrix norms of the deviation weights W̃j. For this study, the trace operator is
selected as the matrix norms for the weights deviations. Hence, the energetic function is

E
(
Δ, W̃1, W̃2

)
= Δ�PΔ + k1tr

{
W̃�

1 W̃1
}
+ k2tr

{
W̃�

2 W̃2
}

. (12)

Notice that the function E operates as a Lyapunov-like class with a positive definite,
null value when the three arguments vanish and are radially unbounded. Now, the full-time
derivative of E corresponds to

d
dt

E(t) = 2Δ�(t)P
d
dt

Δ(t) + 2k1tr
{

W̃�
1

d
dt

W1

}
+ 2k2tr

{
W̃�

2
d
dt

W2

}
(13)

where E(t) := E
(
Δ(t), W̃1(t), W̃2(t)

)
. The term 2Δ�(t)P

d
dt

Δ(t) admits the following up-
per bound

2Δ�(t)P
d
dt

Δ(t) ≤ ‖Δ(t)‖2
2,LM(P) + γ + 2k1tr

{
W̃�

1 ΩW,1(t)
}
+ 2k2tr

{
W̃�

2 ΩW,2(t)
}

(14)

where LM(P) = PA + A�P + PRP + Q, while the value of ΩW,1(t) and ΩW,2(t) have been
presented in the learning laws for the proposed identifier.

Transition in (14) was obtained by applying the Young’s inequality [21] YZ� + ZY� ≤
YΛY� + ZΛ−1Z�, which is valid for any Y ∈ Rr×s, Z ∈ Rr×s and any positive definite and
symmetric matrix Λ ∈ Rs×s a number of times. Taking the result in (14) into the right-hand

side of the time derivative of
d
dt

E(t), leads to

d
dt

E(t) ≤ ‖Δ(t)‖2
LM(P) + γ + 2k1tr

{
W̃�

1 ΩW,1(t)
}
+ 2k2tr

{
W̃�

2 ΩW,2(t)
}
+

2k1tr
{

W̃�
1

d
dt

W1

}
+ 2k2tr

{
W̃�

2
d
dt

W2

}
.

(15)

With the addition and subtraction of the following terms α‖Δ(t)‖2
P, αtr

{
W̃�

1 W̃1
}

and
αtr
{

W̃�
2 W̃2

}
, the next right hand side holds for the time derivative of E(t)

d
dt

E(t) ≤ ‖Δ(t)‖2
Ric(P,α) + γ − α‖Δ(t)‖2

P+

2k1tr
{

W̃�
1 ΩW,1(t)

}
+ 2k2tr

{
W̃�

2 ΩW,2(t)
}
+

tr
{

W̃�
1

(
2k1

d
dt

W1 + αk1W̃1

)}
+ tr
{

W̃�
2

(
2k2

d
dt

W2 + αk2W̃2

)}
−

αk1tr
{

W̃�
1 W̃1

}− αk2tr
{

W̃�
2 W̃2

}
.

(16)

Using the learning laws (9) and the matrix inequality (8) presented in the theorem
statement, transforms the right-hand side of the derivative of E into

d
dt

E(t) ≤ γ − α‖Δ(t)‖2
P − αtr

{
k1W̃�

1 W̃1
}− αtr

{
k2W̃�

2 W̃2
}

. (17)

Using the definition of the Lyapunov yields the following outcome:

d
dt

E(t) ≤ γ − αE(t). (18)

The integration of these last differential inclusions and following the convergence to
an invariant set scheme presented in [21], yields to prove the ultimate boundedness of the
identification error as well as the weights.
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The obtained values of W1 and W2 that minimize the expression (6) may be fixed
and used further for solving the prediction problem. The scheme of the whole process
(identification and prediction) is shown in Figure 1.

Figure 1. Identification and prediction workflow.

5. Modeling Process and Experimental Validation

The proposed approximate model was tested in an experiment that collects the data
from a volunteer using an instrumented controlled acceleration motion device. The data
were recorded at a predefined frequency and then injected (offline) to the proposed SDNN-
based identifier. This section details all the aspects of the experiment.

A rotating dynamic platform was used to enforce controlled rotational movements
on a test subject. This experiment used an XD-motion platform with 4 degrees of freedom
produced by Vympel corporation. The data collecting system is based on a virtual reality
headset HTC Vive Pro Eye. The headset’s position and orientation quaternion in a fixed
coordinate system were obtained from the SteamVR tracking system. SRanipal software
gathered data provided by a built-in eye-tracking system and produced view origin and
direction vectors for each eye as the output at a maximum frequency of 120 Hz. The
whole experimental setup is shown in Figure 2. The resulting ocular movements and head
dynamics were recorded and later processed to be modeled by the proposed SDNN.

The experimental process is as follows. First, a test subject puts on and adjusts the
belts of the headset for it to stay firmly fixed on the head throughout the whole experiment.
Then, the eye tracker is calibrated according to SRanipal documentation and guidelines.
After finishing the calibration procedure, any adjustment of the headset by the test subject
leads to resetting the experiment, according to SRanipal guidelines. The test subject is
then sat on the dynamic platform straight. The platform performs rotational movements
around the vertical axis, alternating clockwise and counterclockwise. Movement frequency
and amplitude remain constant for 30 s, after which a 20-s break takes place, and new
movement parameters are loaded. The order of these parameter sets is randomized. The
test subject isn’t provided any indication of these parameters. Visual and audio cues of
motion are further reduced with the headset screen showing solid black and headphones
playing static during the experiment.

The choice of movement pattern is based on several factors. First, horizontal semi-
circular channels are stimulated more than the other two for this kind of movement, so
ocular response is also primarily horizontal, allowing to focus on a single axis. Second,
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the platform has the most reach on this rotational axis, which allows for more diverse
movement patterns. Additionally, pitch and roll rotations on this platform are performed
by adjusting the length of the legs. However, this adjustment happens even in an idle state
when no rotation is being performed, leading to additional platform vibrations introducing
parasitic ocular response.

Figure 2. Experimental setup for collecting the ocular response to the controlled accelerated movements.

During the processing phase, each movement pattern is handled individually. The
leading and trailing 3 s of each recording are trimmed. The view direction vector is
converted from a headset coordinate system into angles of eye rotation in horizontal and
vertical planes. The head coordinates data were sampled at a lower frequency than eye-
tracking data, so the former were smoothed using a Gaussian filter. Head orientation
quaternion was converted into Euler angles. After leaving only data corresponding to
horizontal angles, angular velocity and linear acceleration were calculated.

6. Numerical Simulation

The collected data from the two motion patterns were used to test the proposed SDNN
model. These two patterns are 18 25-degree rotation cycles per minute and 50-degree rota-
tions at a rate of 4.8 cycles per minute. They are later referred to as high- and low-frequency
movements. As described earlier, linear accelerations and angular velocities formed the
system input u while eye rotation angles were used as a reference state ζ. Figures 3–6 com-
pare dynamics of the proposed SDNN identifier with Izhikevich and sigmoidal activation
functions on the obtained data. Figures 3a and 5a demonstrate recorded head rotation
profile. Figures 3b and 5b show evolution of identification error (shown as mean square
error) of the proposed identifier. In both cases, the origin is shown to be a practical stable
equilibrium point for the analyzed modeling error. Direct comparison between recorded
and modeled data is shown in Figures 3c and 5c. Finally, Figures 3d and 5d show evolu-
tion of the weights from initial conditions. The highlighted dashed line on both figures
illustrates the work of VOR. The correspondence between ground truth eye-tracking data
and identifier state shows the validity of the proposed identifier.

The identification performance of the proposed spiking identifier was compared
against the traditional sigmoidal DNN-based identifier, shown in Figures 4 and 6. These
figures are structured identically to Figures 3 and 5. Note the different y-axis scales
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between all figures on the weights dynamics plot. Parameter values for both identifiers
are presented in Table 1. Numerical values are compared in Table 2 as the performance
of the two approaches using mean square error (MSE), mean absolute error (MAE), and
standardized mean absolute error (sMAE).

Figure 3. Identification with Izhikevich activation function for high-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.

Figure 4. Identification with sigmoidal activation function for high-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.
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Figure 5. Identification with Izhikevich activation function for low-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.

Figure 6. Identification with sigmoidal activation function for low-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.

Table 1. Parameters of the compared identifiers.

Parameter Izhikevich Sigmoidal

Matrix A 20 × diag(−1,−2) 20 × diag(−2,−2)
Matrix P 1575.9 × diag(60, 40) 1575.9 × diag(60, 40)
Matrix K1 0.15 × diag(10, 1) 0.0001 × diag(20, 10)
Matrix K2 0.15 × diag(1, 1) 0.0001 × diag(20, 10)

Matrix W1(0) 20 ×
[

1 1
1 1

]
0.1 ×

[
1 1
1 1

]

Matrix W2(0) 20 ×
[

1 1
1 1

]
20 ×

[
1 1
1 1

]

200



Mathematics 2022, 10, 855

Table 2. Comparison of identification performance.

Identifier
Type

High-Frequency Data Low-Frequency Data

MSE MAE sMAE MSE MAE sMAE

Izhikevich 0.000186 0.008948 0.119975 0.000187 0.009647 0.140333

Sigmoidal 0.000710 0.021099 0.282897 0.000588 0.021496 0.312143

Overall, correspondence between modeled behavior and ground truth data shows
the applicability of the proposed system under different patterns of rotational movements.
Additionally, Izhikevich activation functions for both patterns demonstrate over 50%
better performance for modeling ocular response than the DNN implementing sigmoidal
activation functions. This shows that SDNN can be used as a generalized approximation
class for ocular response dynamics.

7. Conclusions

This study examines modeling physiological VOR systems using SDNN. The proposed
nonparametric model implements an arrangement of the artificial neurons described by
Izhikevich dynamics with fixed parameters to follow eye movements caused by known
head accelerations. Learning laws have been derived for the proposed SDNN to ensure
convergence to the origin of identification error. An experimental setup is proposed and
used to obtain data and confirm the validity of the proposed SDNN-based nonparametric
model. Comparison of the proposed modeling strategy and a traditional identifier with
sigmoidal activation functions was performed for different experimental conditions and
demonstrated the efficacy of the proposed approach. One potential use of this study
is estimating the accuracy of motion cues simulation. Suppose the ground truth of the
ocular motion is acquired using a model of vestibular–ocular response. In that case, it can
be compared with experimental data on a dynamic platform to assess how accurate the
movement was in terms of vestibule system reaction. Despite the additional computational
complexity produced with the application of Izhikevich models, the identification quality
improves significantly compared to the traditional sigmoidal (algebraic form) forms. This
fact justifies the approximated model proposed in this study and opens novel options to
create representations of complex biological systems with multirate dynamics.

8. Patents

A derivative from this work is currently undergoing software registration process.
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Abstract: This article is devoted to analysis and optimization problems of stochastic systems based
on wavelet canonical expansions. Basic new results: (i) for general Bayes criteria, a method of
synthesized methodological support and a software tool for nonstationary normal (Gaussian) linear
observable stochastic systems by Haar wavelet canonical expansions are presented; (ii) a method
of synthesis of a linear optimal observable system for criterion of the maximal probability that a
signal will not exceed a particular value in absolute magnitude is given. Applications: wavelet model
building of essentially nonstationary stochastic processes and parameters calibration.

Keywords: Bayes criterion; Haar wavelets; loss function; mean risk; observable stochastic systems
(OStS); stochastic process (StP); wavelet canonical expansion (WLCE)

MSC: 62C10; 65T60

1. Introduction

Nowadays, for stochastic systems research, e.g., functioning at essentially nonsta-
tionary disturbances of complex structures, we need analytical modeling technologies
for accurate analysis and synthesis. Methods of analysis and synthesis based on canoni-
cal expansions are very suitable for quick analytical modeling realizations using the first
two probabilistic moments. Wavelet canonical expansions essentially increase the flexibility
and accuracy of corresponding technologies.

It is known [1–3] that canonical expansion (CE) of stochastic processes (StP) is widely
used to solve problems of analysis, modeling and synthesis of linear nonstationary stochas-
tic systems (StS). For StS with high availability, corresponding software tools based on
CE were worked out in [4–8]. In [4], we gave a brief review of the known algorithmic
and software tools. In [5,6], the issues of instrumental software for analytical modeling
of nonstationary scalar and vector random functions by means of wavelet CE (WLCE)
are considered. The parameters of WLCE are expressed in terms of the coefficients of the
expansion of the covariance matrix of random function over two-dimensional Dobshy
wavelets. Article [7] continues the thematic cycle dedicated to analytical modeling of linear
nonstationary StS based on wavelet and wavelet canonical expansions. The article describes
wavelet algorithms for analytical modeling of mathematical expectation, a covariance ma-
trix and a matrix of covariance functions, as well as wavelet algorithms for spectral and
correlation-analytical express modeling.

The article [8] continues the thematic cycle devoted to software tools for analytical
modeling of linear with parametric interference (Gaussian and non-Gaussian) StS based
on nonlinear correlation theory (the method of normal approximation and the method
of canonical expansions). Analytical methods are based on orthogonal decomposition of
covariance matrix elements using a two–dimensional Dobshy wavelet with a compact
carrier and Galerkin–Petrov wavelet methods.
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In [5], for an essentially nonstationary StP wavelet, CE (WLCE) was proposed. Nowa-
days, deterministic wavelet methods are intensively applied to the problems of numerical
analysis and modeling. A broad class of numerical methods based on Haar wavelets
achieved great success [9]. These methods are simple in the sense of versatility and flexibil-
ity and possess less computational cost for accuracy analysis problems. The theory and
practice of wavelets has attained its modern growth due to mathematical analysis of the
wavelet in [10–12]. The concept of multiresolution analysis was given in [13]. In [14,15]
method to construct wavelets with compact support and scaling function was developed.
Among the wavelet families, which are described by an analytical expression, the Haar
wavelets deserve special attention. Haar wavelets, in combination with the Galerkin
method, are very effective and popular for solving different classes of deterministic equa-
tions [16–25]. The application of a wavelet for CE of StP and stochastic differential and
integrodifferential equations was given in [7,8,26].

In [27,28], design problems for linear mean square (MS) optimal filters are considered
on the basis of WLCE. Explicit formulae for calculating the MS optimal estimate of the
signal and the MS optimal estimate of the quality of the constructed linear MS optimal
operator are derived. Articles [29,30] are devoted to the synthesis of wavelets in accordance
with complex statistical criteria (CsC). The basic definitions of CsC and approaches are
given. Methodological support is based on Haar wavelets. The main wavelet equations,
algorithms, software tools and examples are given. Some particular aspects of the StS
wavelet synthesis under nonstationary (for example, shock) perturbations are presented
in [31].

The developed wavelet algorithms have a fairly high degree of versatility and can
be used in various applied fields of science. Such complex StS describes organizations–
technical–economical systems functioning in the presence of internal and external noises
and stochastic factors. The developed wavelet algorithms are used for data analysis and
information processing in high-availability stochastic systems, in complex data storage
systems, model building and calibration.

Let us state the general problem of the Bayes synthesis of linear nonstationary normal
observable StS (OStS) by WLCE means. Special attention will be paid to the synthesis of
linear optimal system for criterion of the maximum probability that the signal will not
exceed a particular value in absolute magnitude. For example, the results of computer
experiments are presented and discussed.

2. Bayes Criteria

In practice [1,2], the choice of criterion for comparing alternative systems for the same
purpose, like any question regarding the choice of criteria, is largely a matter of common
sense, which can often be approached from consideration of operating conditions and
purpose of any particular system.

The criterion of the maximum probability that the signal will not exceed a particular
value in absolute magnitude can be represented as

E[l(W, W∗)] = min. (1)

If we take the function l as the characteristic function of the corresponding set of
values of the error, the following formula is valid:

l(W, W∗) =
{

1 at |W∗ − W| > W,
0 at |W∗ − W| ≤ W.

(2)

In applications connected with damage accumulation (1) needs to be employed with
function l in the form:

l(W, W∗) = 1 − e−k2(W∗−W)2
. (3)

Thus, we get the following general principle for estimating the quality of a system
and selecting the criterion of optimality. The quality of the solution of the problem in each
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actual case is estimated by a function l(W, W∗), the value of which is determined by the
actual realizations of the signal W and its estimator W∗. It is expedient to call this the loss
function. The quality of the solution of the problem on average for a given realization of
the signal W with all possible realizations of the estimator W∗ corresponding to particular
realization of the signal W is estimated by the conditional mathematical expectation of the
loss function for the given realization of the signal:

ρ(A|W) = E[l(W, W∗|W)]. (4)

This quantity is called conditional risk. The conditional risk depends on the operator
A for the estimator W∗ and on the realization of signal W. Finally, the average quality of
the solution for all possible realization of W and its estimator W∗ is characterized by the
mathematical expectation of the conditional risk

R(A) = E[ρ(A|W)|W] = E[l(W, W∗)]. (5)

This quantity is called the mean risk.
All criteria of minimum risk which correspond to the possible loss functions or func-

tionals which may contain undetermined parameters are known as Bayes’ criteria.

3. Basic formulae for Optimal Bayes Synthesis of Linear Systems

Let us consider scalar linear OStS with real StP Z(τ) (τ ∈ [t − T, t]), which is the sum
of the useful signal and the additive normal noise X(τ):

Z(τ) =
N

∑
r=1

Urξr(τ) + X(τ). (6)

The useful signal is the linear combination of given random parameters Ur (r = 1, N).
We need to get StP W(t) in the following form:

W(t) =
N

∑
r=1

Urζr(t) + Y(t). (7)

Here, ξ1(τ), . . . , ξN(τ), ζ1(τ), . . . , ζN(τ) are known structural functions; U1, . . . , UN
are given random variables (RV) which do not depend on noises X(τ), Y(τ) (EX(τ) = 0,
EY(τ) = 0).

We state to construct an optimal system with operator A in cases when output StP:

W∗(t) = AZ (8)

based on observation StP Z(τ) at time interval [t − T, t], reproducing given output signal
W(t) for criteria (1) with maximal accuracy.

It is known [1–3] that the solution of this problem through CE is based on two-stage
procedures based on Formulae (4) and (5).

Vector CE
[

X(τ) Y(τ)
]T presents the linear combination of uncorrelated RV with

deterministic coordinate functions:

X(τ) = ∑
ν

Vνxν(τ), Y(τ) = ∑
ν

Vνyν(τ) (9)

According to [1,2] for Vν we have

Vν =

t∫
t−T

aν(τ)X(τ)dτ +

t∫
t−T

aν(τ)Y(τ)dτ (10)
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Then, coordinate functions are calculated by the following formulae:

xν(τ) =
1

Dν

t∫
t−T

aν(θ)KX(τ, θ)dθ +
1

Dν

t∫
t−T

aν(θ)KXY(τ, θ)dθ, (11)

yν(τ) =
1

Dν

t∫
t−T

aν(θ)KXY(θ, τ)dθ +
1

Dν

s∫
t−T

aν(θ)KY(τ, θ)dθ. (12)

Here, E[Vν] = 0. Dν = D[Vν], KX(τ, θ) = E[X(τ) · X(θ)], KXY(τ, θ) = E[X(τ) · Y(θ)],
KY(τ, θ) = E[Y(τ) · Y(θ)]; aν(τ) is a given set of deterministic functions satisfying biorthog-
onality conditions:

t∫
t−T

aν(τ)xμ(τ)dτ +

t∫
t−T

aν(τ)yμ(τ)dτ = δνμ. (13)

Let us consider RV

Zν =

t∫
t−T

aν(τ)Z(τ)dτ, (14)

and its presentation

Zν =
N

∑
r=1

ανrUr + Vν, (15)

where

ανr =

t∫
t−T

aν(τ)ξr(τ)dτ. (16)

The sum of RV Zν, multiplied by xν(τ) gives the CE of StP Z(τ) (τ ∈ [t − T, t])

Z(τ) = ∑
ν

Zνxν(τ). (17)

To find the conditional mathematical expectation of the loss function for StP Z(τ)
(τ ∈ [t − T, t]), it is necessary to find the conditional probability density of output StP
relatively on input StP Z(τ). According to (4), StP W(t) depends upon the given random
parameters Ur (r = 1, N) and random noise Y(t). So, we get

Y(t) = ∑
ν

Vνyν(t) = ∑
ν

(
Zν −

N

∑
r=1

ανrUr

)
yν(t) = ∑

ν

Zνyν(t)−
N

∑
r=1

Ur∑
ν

ανryν(t). (18)

Here,

W(t) =
N

∑
r=1

Urζr(t) + ∑
ν

Zνyν(t)−
N

∑
r=1

Ur∑
ν

ανryν(t). (19)

The last formula shows that StP W(t) depends upon random parameters Ur (r = 1, N)
and the set of Zν.

Let us introduce the vector of RV U =
[

U1 U2 . . . UN
]T . Conditional dis-

tribution of U relative StP Z(τ) coincides with the set of RV Zν . Conditional density
f1(u|z1, z2, . . .) is defined by the known formula:

f1(u|z1, z2, . . .) =
f (u) f2(z1, z2, . . . |u)

+∞∫
−∞

f (u) f2(z1, z2, . . . |u)du
. (20)
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Here, f (u) is a given apriority density of RV U =
[

U1 U2 . . . UN
]T; f2(z1, z2, . . . |u)

is a density of RV Zν , relatively U =
[

U1 U2 . . . UN
]T .

Taking into account that vector random noise is normal, Vν is the linear transform of
vector

[
X(τ) Y(τ)

]T . We conclude that RV are not only correlated, but also indepen-
dent. Joint density of Vν with zero mathematical exactions and variances Dν is expressed
by formula

fV(v1, v2, . . .) =
1√

(2π)LD1 · D2 · . . .
exp

{
−1

2∑
ν

v2
ν

Dν

}
. (21)

In (7), let us replace RV U1, . . . , UN with their realizations u1, . . . , uN ; then, Zν is
the linear function of RV Vν with known joint density. Expressing Vν by Zν and using
Formula (21), we get:

f2(z1, z2, . . . |u) = 1√
(2π)LD1 · D2 · . . .

exp

⎧⎨⎩−1
2∑

ν

1
Dν

(
zν −

N

∑
r=1

ανrur

)2
⎫⎬⎭, (22)

where αν(u) =
N
∑

r=1
ανrur.

After substituting Formula (22) into (20), we get the formula for a posteriori density
f1(u|z1, z2, . . .) of U =

[
U1 U2 . . . UN

]T for input StP Z(τ) (τ ∈ [t − T, t]):

f1(u|z1, z2, . . .) = χ(z) f (u) exp

{
∑
ν

zναν(u)
Dν

− 1
2∑

ν

α2
ν(u)
Dν

}
, (23)

χ(z) =

⎡⎣ +∞∫
−∞

f (u) exp

{
∑
ν

zναν(u)
Dν

− 1
2∑

ν

α2
ν(u)
Dν

}
du

⎤⎦−1

. (24)

This formula may be used after observation when realization Z(τ) is available.
A posteriori mathematical expectation of loss function l(W, W∗) is called conditional

risk, and is denoted as ρ(A|W):

ρ(A|W) = E[l(W, W∗)|Z] = χ(z)
+∞∫
−∞

l(W, W∗) f (u)

× exp
{

∑
ν

zναν(u)
Dν

− 1
2 ∑

ν

α2
ν(u)
Dν

}
du.

(25)

In order to solve the stated problem, it is necessary to calculate the optimal output StP
W∗(t) for every t from condition of minimum of integral (11).

Let us consider this integral as a function of PW = W∗(t) at fixed values of parameters

η0 = η0(z1, z2, . . .) = ∑
ν

zνyν(t), ηr = ηr(z1, z2, . . .) = ∑
ν

ανrzν

Dν
(r = 1, N) (26)

and time t:

I(PW , η1, . . . , ηN , t) =
+∞∫
−∞

. . .
+∞∫
−∞

l
(

N
∑

r=1
ur(ζr(t)− br0) + η0, PW

)
f (u1, . . . , uN)

× exp

{
N
∑

r=1
ηrur − 1

2

N
∑

p,q=1
bpqupuq

}
du1 . . . duN .

(27)

Here,

bp0 = ∑
ν

ανpyν(t), bpq = ∑
ν

1
Dν

ανpανq (q, p = 1, N). (28)
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The value of parameter PW = PW
0 (t, η0, η1, . . . , ηN) when integral (27) reaches the mini-

mum value defines the Bayes optimal operator for criterion (1). Changing ηr, (r = 0, N) and
PW

0 (t, η0, . . . , ηN) variables η1, . . . , ηN and z1, z2, . . . with the corresponding RV H0, . . . , HN
and Z1, Z2, . . ., we get the required optimal operator:

W∗(t) = AZ = Pw
0 (t, H0, . . . , HN), (29)

where
H0 = ∑

ν

Zνyν(t), Hr = Hr(Z1, Z2, . . .) = ∑
ν

ανrZν

Dν
(r = 1, N) (30)

The quality of the optimal operator is estimated by the mean risk [1,2]

R(A) = E[ρ(A|W)|W] = E[l(W, W∗)]

=
+∞∫
−∞

. . .
+∞∫
−∞

l
(

N
∑

r=1
ur(ζr(t)− br0) + η0, PW

0

)
f2(z1, z2, . . . |u) f (u)dz1dz2 . . . du.

(31)

So, we get the following basic Formulae (23)–(31) necessary for wavelet canonical
expansion method.

4. Wavelet Canonical Expansions Method

Let us construct an operator for an optimal linear system using the Haar wavelet CE
method WLCE [5,6]: {

ϕ00(τ), ψjk(τ)
}

(32)

where

ϕ00(τ) = ϕ(τ) =

{
1, τ ∈ [0, 1),
0, τ /∈ [0, 1)

is a scaling function, (33)

ψ00(τ) = ψ(τ) =

⎧⎪⎪⎨⎪⎪⎩
1, τ ∈

[
0, 1

2

)
,

−1, τ ∈
[

1
2 , 1
)

,
0, τ /∈ [0, 1)

is a mother wavelet, (34)

ψjk(τ) =
√

2jψ(2jτ − k) are wavelets of level j for j = 1, 2, . . . , J; k = 0, 1, . . . , 2j − 1; J
is maximal resolution level defined by required accuracy of approximation for any function

f (τ) ∈ L2[0, 1] by finite linear combination of Haar wavelets, equal to 2−
J
2 .

Then, let us present a one-dimensional wavelet basis (32) as:

g1(τ) = ϕ00(τ), g2(τ) = ψ00(τ), gν(τ) = ψjk(τ),
j = 1, 2, . . . , J; k = 0, 1, . . . , 2j − 1; ν = 2j + k + 1; ν = 3, L.

(35)

For construction of the Haar WLCE for vector
[

X(τ) Y(τ)
]T at τ ∈ [t − T, t], we

pass to new time variable τ ∈ [0, 1] , τ = τ−(t−T)
T and assume

KX(τ1, τ2) ∈ L2([t − T, t]× [t − T, t]), KXY(τ1, τ2) ∈ L2([t − T, t]× [t − T, t]),
KY(τ1, τ2) ∈ L2([t − T, t]× [t − T, t]),

(36)

KX(τ1, τ2) ∈ L2([0, 1]× [0, 1]) , KXY(τ1, τ2) ∈ L2([0, 1]× [0, 1]) ,
KY(τ1, τ2) ∈ L2([0, 1]× [0, 1]) .

(37)

Additionally, for presentation of given covariance functions in the form of two-
dimensional wavelet expansion, it is necessary to define the two-dimensional orthogonal
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basis through tensor composition of one-dimensional bases (32) when scaling is performed
simultaneously for two variables

ΦA(τ1, τ2) = ϕ00(τ1)ϕ00(τ2), ΨH(τ1, τ2) = ϕ00(τ1)ψ00(τ2),
ΨB(τ1, τ2) = ψ00(τ1)ϕ00(τ2), ΨD

jkn(τ1, τ2) = ψjk(τ1)ψjn(τ2)
(38)

where j = 1, 2, . . . , J; k, n = 0, 1, . . . , 2j − 1.
So, the two-dimensional wavelet expansion of given covariance functions takes

the form

KX(τ1, τ2) = axΦA(τ1, τ2) + hxΨH(τ1, τ2) + bxΨB(τ1, τ2) + ∑J
j=0 ∑2J−1

k=0 ∑2J−1
n=0 dx

jknΨD
jkn(τ1, τ2) (39)

where

ax =
1∫

0

1∫
0

KX(τ1, τ2)ΦA(τ1, τ2)dτ1dτ2, hx =
1∫

0

1∫
0

KX(τ1, τ2)ΨH(τ1, τ2)dτ1dτ2,

bx =
1∫

0

1∫
0

KX(τ1, τ2)ΨB(τ1, τ2)dτ1dτ2, dx
jkn =

1∫
0

1∫
0

KX(τ1, τ2)ΨD
jkn(τ1, τ2)dτ1dτ2,

(40)

KXY(τ1, τ2) = axyΦA(τ1, τ2) + hxyΨH(τ1, τ2) + bxyΨB(τ1, τ2) + ∑J
j=0 ∑2J−1

k=0 ∑2J−1
n=0 dxy

jknΨD
jkn(τ1, τ2) (41)

where

axy =
1∫

0

1∫
0

KXY(τ1, τ2)ΦA(τ1, τ2)dτ1dτ2, hxy =
1∫

0

1∫
0

KXY(τ1, τ2)ΨH(τ1, τ2)dτ1dτ2,

bxy =
1∫

0

1∫
0

KXY(τ1, τ2)ΨB(τ1, τ2)dτ1dτ2, dxy
jkn =

1∫
0

1∫
0

KXY(τ1, τ2)ΨD
jkn(τ1, τ2)dτ1dτ2,

(42)

KY(τ1, τ2) = ayΦA(τ1, τ2) + hyΨH(τ1, τ2) + byΨB(τ1, τ2) + ∑J
j=0 ∑2J−1

k=0 ∑2J−1
n=0 dy

jknΨD
jkn(τ1, τ2) (43)

here

ay =
1∫

0

1∫
0

KY(τ1, τ2)ΦA(τ1, τ2)dτ1dτ2, hy =
1∫

0

1∫
0

KY(τ1, τ2)ΨH(τ1, τ2)dτ1dτ2,

by =
1∫

0

1∫
0

KY(τ1, τ2)ΨB(τ1, τ2)dτ1dτ2, dy
jkn =

1∫
0

1∫
0

KY(τ1, τ2)ΨD
jkn(τ1, τ2)dτ1dτ2.

(44)

After transition to time variable τ ∈ [0, 1] , τ = τ−(t−T)
T at τ = τ(τ) = Tτ + (t − T),

expression (3) takes the form

Z(τ) = Z(τ(τ)) = Z(τ) =
N

∑
r=1

Urξr(τ) + X(τ). (45)

Analogously, we have

Vν = T · Vν; Vν =

1∫
0

aν(τ)X(τ)dτ +

1∫
0

aν(τ)Y(τ)dτ, Dν = T2Dν, Dν = D
[
Vν

]
. (46)

According to [3,5], functions aν(τ) may be expressed by functions:

a1(τ) = g1(τ), aν(τ) =
ν−1

∑
λ=1

cνλgλ(τ) + gν(τ) (ν = 2, L). (47)
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Using notations:

xν(τ) =
1

Dν

1∫
0

aν(θ)KX(τ, θ)dθ +
1

Dν

1∫
0

aν(θ)KXY(τ, θ)dθ, (48)

yν(τ) =
1

Dν

1∫
0

ax
ν(θ)KXY(θ, τ)dθ +

1
Dν

1∫
0

ay
ν(θ)KY(τ, θ)dθ (49)

we get the following formulae:

xν(τ) = xν(τ(τ)) =
1
T

xν(τ), yν(τ) = yν(τ(τ)) =
1
Ty

yν(τ), (50)

X(τ(τ)) =
L

∑
ν=1

Vνxν(τ(τ)) =
L

∑
ν=1

TVν
1
T

xν(τ) =
L

∑
ν=1

Vνxν(τ), (51)

Y(τ(τ)) =
L

∑
ν=1

Vνyν(τ(τ)) =
L

∑
ν=1

TVν
1
T

yν(τ) =
L

∑
ν=1

Vνyν(τ). (52)

Here, RV Vν have zero mathematical expectations, and variances coordinate functions
xν(τ) and yν(τ) are successively defined by the following formulae:

x1(τ) =
1

D1
hx

1(τ); xν(τ) =
1

Dν

(
ν−1

∑
λ=1

dνλhx
λ(τ) + hx

ν(τ)

)
; (53)

y1(τ) =
1

D1
hy

1(τ); yν(τ) =
1

Dν

(
ν−1

∑
λ=1

dνλhy
λ(τ) + hy

ν(τ)

)
; (54)

where

dνλ = cνλ +
ν−1

∑
μ=λ+1

cνμdμλ (λ = 1, ν − 2); dν,ν−1 = cν,ν−1; ν = 2, L; (55)

cν1 = − kν1
D1

(ν = 2, L); cνμ = − 1
Dμ

(
kνμ −

μ−1
∑

λ=1
Dλcμλcνλ

)
(μ = 2, ν − 1; ν = 3, L);

D1 = k11; Dν = kνν −
ν−1
∑

λ=1
Dλ|cνλ|2 (ν = 2, L).

(56)

Parameters kνμ are expressed by coefficients of two-dimensional wavelet expressions
of covariance functions KX(τ1, τ2), KXY(τ1, τ2) , and KY(τ1, τ2)

k11 = ax + 2axy + ay, k12 = hx + 2hxy + hy, k21 = bx + 2bxy + by,
k22 = dx

000 + 2dxy
000 + dy

000, kνμ = dx
jkn + 2dxy

jkn + dy
jkn

(ν = 2j + k + 1; μ = 2j + n + 1; j = 1, J; k, n = 0, 1, . . . , 2j − 1).
(57)

The other kνμ = 0.
Auxiliary functions hx

ν(τ), hy
ν(τ) are expressed by basic wavelet functions (38) and coef-

ficients of wavelet expansions of covariance functions KX(τ1, τ2), KXY(τ1, τ2) , KY(τ1, τ2) :

hx
1(τ) = (ax + axy)ϕ00(τ) + (bx + bxy)ψ00(τ), hy

1(τ) = (axy + ay)ϕ00(τ) + (bxy + by)ψ00(τ),
hx

1(τ) = (hx + hxy)ϕ00(τ) +
(

dx
000 + dxy

000

)
ψ00(τ), hy

1(τ) = (hxy + hy)ϕ00(τ) +
(

dxy
000 + dy

000

)
ψ00(τ),

hx
ν(τ) =

2j−1
∑

k=0

(
dx

jkn + dxy
jkn

)
ψjk(τ) (v = 3, L; v = 2j + n + 1; n = 0, 1, . . . , 2j − 1).

(58)
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Considering (45), (46), we get

Zν = TZν, Zν =
N

∑
r=1

ανrUr + Vν, (59)

ανr = Tανr, ανr =

1∫
0

aν(τ)ξr(τ)dτ. (60)

If functions ξ1(τ), . . . , ξN(τ) ∈ L2[t − T, t], then ξ1(τ), . . . , ξN(τ) ∈ L2[0, 1] and have
wavelet expansions

ξr(τ) = aξ
r ϕ00(τ) + ∑J

j=0 ∑2j−1
k=0 dξ

rjkψjk(τ) (r = 1, . . . , N), (61)

aξ
r =

1∫
0

ξr(τ)ϕ00(τ)dτ, dξ
rjk =

1∫
0

ξr(τ)ψjk(τ)dτ, (62)

Using notation (38) we get from (61), (62)

ξr(τ) = cξ
r1g1(τ) +

L

∑
ν = 2

(ν = 2j + k + 1; j = 0, J;k = 0, 1, . . . , 2j − 1)

cξ
rνgν(τ) (r = 1, . . . , N), (63)

cξ
r1 = aξ

r , cξ
rν = dξ

rjk . (64)

From (60), (62), (64), we have

α1r = cξ
r1; ανr =

ν−1

∑
λ=1

cνλcξ
rλ + cξ

rν (ν = 2, L). (65)

Finally, using formulae

L

∑
ν=1

Zνxν(τ) =
L

∑
ν=1

(
TZν

)( 1
T

xν(τ)

)
=

L

∑
ν=1

Zνxν(τ) (66)

we get the required WLCE for StP Z(τ) (τ ∈ [t − T, t]):

Z(τ) = Z(τ(τ)) = Z(τ) =
L

∑
ν=1

Zνxν(τ). (67)

In basic Formulae (23)–(31), the parameters are expressed as follows:

η0 =
L

∑
ν=1

zνyν(τ) =
L

∑
ν=1

(Tzν)

(
1
T

yν(τ)

)
=

L

∑
ν=1

zνyν(τ), (68)

ηr =
L

∑
ν=1

ανrzν

Dν
=

L

∑
ν=1

(Tανr)(Tzν)

T2Dν
=

L

∑
ν=1

ανrzν

Dν
(r = 1, N), (69)

bp0 =
L

∑
ν=1

ανpyν(τ) =
L

∑
ν=1

(
Tανp
)( 1

T
yν(τ)

)
=

L

∑
ν=1

ανpyν(τ), (70)

bpq =
L

∑
ν=1

1
Dν

ανpανq =
L

∑
ν=1

1
T2Dν

(
Tανp
)(

Tανq
)
=

L

∑
ν=1

1
Dν

ανpανq. (71)

Note that expression PW
0 (t, η0, . . . , ηN) depends on fixed values z1, . . . , zL of Z1, Z2, . . . , ZL.
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So, the WLCE method is defined by Formulae (67)–(71) at conditions (61)–(65).

5. Synthesis of a Linear Optimal System for Criterion of the Maximum Probability
That Signal Will Not Exceed a Particular Value in Absolute Magnitude

Conditional risk ρ(A|W) in case (2) is equal from interval to probability of error exit

ρ(A|W) = E[l(W, W∗)|W] = P(|W∗ − W| ≥ w(t)) = 1 − P(|W∗ − W| < w(t)). (72)

A priori density f (u) = f (u1, . . . , uN) of RV U = [U1 U2 . . . UN ]
T is defined by formula

f (u1, . . . , uN) =
[
(2π)N |K|

]− 1
2 exp

{
−1

2

N

∑
p,q=1

cpqupuq

}
(73)

where K is the covariance matrix of U, cpq (p, q = 1, N) is K−1 elements.
Let us find minimum of the integral

I(PW , η0, . . . , ηN , t) =
[
(2π)N |K|

]− 1
2

× �
| N

∑
r=1

ur(ζr(t)−br0)+η0−PW |≥w(t)

exp

{
N
∑

r=1
ηrur − 1

2

N
∑

p,q=1

(
cpq + bpq

)
upuq

}
du1 . . . duN . (74)

Integral (74) is propositional to the probability of the normal point (U1, U2, . . . , UN), and

does not get into the subspace defined by inequality | N
∑

r=1
ur(ζr(t)− br0) + η0 − PW | < w(t).

This probability has a minimum, if its mathematical expectation lies on line
N
∑

r=1
ur(ζr(t)− br0) + η0 − PW = 0. Normal density has maximum mathematical expecta-

tion. So, for definition of mathematical expectation, it is enough to equate partial derivatives
in (74) to zero for u1, u2, . . . , uN . The (74) minimization value P0(t, η0, . . . , ηN) is equal to:

PW
0 =

N

∑
r=1

λr(t)(ζr(t)− br0) + η0. (75)

For solution of functions λ1(t), λ2(t), . . . , λN(t) it is necessary to solve the system of
linear algebraic equations:

N

∑
p=1

λp(t)
(
cpq + bpq

)
= ηq (t) (q = 1, N). (76)

In matrix form, Equation (76) is as follows:

C1 · Λ = AT
1 · Z1 (77)

where

C1 =
(
cij + bij

)N
i,j=1, A1 =

(
αij

Di

)L,N

i,j=1
, Z1 = [z1, z2, . . . , zL]

T , Λ = [λ1(t), . . . , λN(t)]
T . (78)

Hence,
Λ = C−1

1 · AT
1 · Z1. (79)
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Using notations

B1 =

⎛⎝ ζ1(t)− b10
. . .

ζN(t)− bN0

⎞⎠, Y1 =

⎛⎝ y1(t)
. . .

yN(t)

⎞⎠ (80)

we get the Bayes optimal operator in matrix form:

A = BT
1 · C−1

1 · AT
1 + YT

1 . (81)

The Bayes optimal estimate of output StP is defined by

W∗(t) = A · Z1. (82)

The mean risk is at

R(A) =
[
(2π)N+L · D1 · . . . · DL · |K|

]− 1
2 �
| N

∑
r=1

ur(ζr(t)−br0)+η0−PW
0 |≥w(t)

exp{− 1
2

L
∑

ν=1

z2
ν

Dν
−

− L
∑

ν=1

N
∑

r=1

ανr
Dν

zνur − 1
2

N
∑

p,q=1

(
cpq + bpq

)
upuq
}

du1 . . . duNdz1 . . . dzL =

= 1 −
[
(2π)N+L · D1 · . . . · DL · |K|

]− 1
2 �
| N

∑
r=1

ur(ζr(t)−br0)+η0−PW
0 |<w(t)

exp{− 1
2

L
∑

ν=1

z2
ν

Dν
−

− L
∑

ν=1

N
∑

r=1

ανr
Dν

zνur − 1
2

N
∑

p,q=1

(
cpq + bpq

)
upuq
}

du1 . . . duNdz1 . . . dzL.

(83)

Equations (75)–(83) define the method of synthesis of a linear system for criterion of
maximum probability that the signal will not exceed a particular value in absolute magnitude.

New results generalize the following particular results [27–31] for different Bayes
criteria in OStS:

– Mean square error;
– Complex statistical criteria;
– Criterion of maximum probability that the signal not exceed particular value in

absolute magnitude.

6. Example

The designed software tools based on results of Section 5 provide the possibility to
compare mathematical models of different classes of linear OStS, its optimal instrumental
potential accuracy in case of stochastic factors and noises.

Let us consider the extrapolator for a radar-location device described by the
following equations:

Z(τ) = U1 + U2τ + X(τ), W(t) = U1 + U2(t +�), τ ∈ [t − T, t] (84)

Here, U1 and U2 are random calibration parameters for the calibration device, and X
is the colored noise. For the criterion of the maximum probability that the signal will not
exceed a particular value a in absolute magnitude, we use algorithm (82).

Suppose that:

– The noise X(t) is normal EX(t) = 0, KX(τ1, τ2) = D exp{−α|τ2 − τ1|};
– Random parameters U1, U2 are normal with joint density:

f (u1, u2) =

√
c11c22 − c2

12

2π
exp

{
−1

2

2

∑
p,q=1

cpqupuq

}
(85)
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(cpq are elements of the inverse covariance matrix K−1);
– Input data:

t ∈ [9; 18], T = 8, � = 1,

D = 1, α = 1, K =

[
1 0
0 1

]
,

ξ1(τ) = 1, ξ2(τ) = τ; ζ1(t) = 1, ζ2(t) = t +�,
J = 2, L = 8.
A typical realization method demonstrates high accuracy in Figure 1. As practice for

quick calibration of typical devices we use, algorithms more simple than (82) were devel-
oped, computed and compared. This information is necessary for passport documentation.

 
(a) (b) 

Figure 1. Graphs of: (a) signal extrapolation W and estimate extrapolation W∗; (b) module |W∗ −W|.

The extrapolator takes values from −38.6099 to 11.9854. At the same time, the extrapo-
lator error modulus does not exceed 0.7568 (Figure 1).

7. Conclusions

This article is devoted to problems with optimizing observable stochastic systems
based on wavelet canonical expansions. Section 2 is devoted to different Bayes criteria
in terms of risk theory. Following [1,2], in Section 3, basic formulae for optimal Bayes
synthesis based on canonical expansions are given. Section 4 is dedicated to the solution
of a general optimization problem using wavelet canonical expansions in case of complex
nonstationary linear systems. In Section 5, a basic algorithm is given for the criterion of
maximal probability that the signal will not exceed a particular value in absolute magnitude.
An example of a radar-location extrapolator device is discussed.

The developed optimization methodology “quick probabilistic analytical numerical
optimization” does not use statistical Monte Carlo methods.

Directions of future generalizations and implementations:

– New models of scalar and vector OStS (nonlinear, with parametric noises, etc.):
– New classes of the Bayes criteria.
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Abbreviations

X(t) random function, noise
Y(t) random function, noise
EX(t) mathematical expectation of random function X(t)
Z(t) input stochastic process
W(t) output stochastic process
W∗(t) estimator W(t)
l(W, W∗) loss function
A system operator
ρ(A|W) conditional risk
R(A) mean risk
Ur random parameter
ξr(τ), ζr(τ) structural functions

Vν random variable of canonical expansion of random vector
[

X(t) Y(t)
]T

xν(t) coordinate function of canonical expansion of random function X(t)
yν(t) coordinate function of canonical expansion of random function Y(t)
Dν variance of random variable Vν

KX(t1, t2) covariance function of random function X(t)
Zν random variable of canonical expansion of StPZ(t)
f (u) probability density of random vector U =

[
U1 U2 . . . UN

]T
f1(u|z1, z2, . . .) conditional probability density of random vector U =

[
U1 U2 . . . UN

]T
relative to random variables Zν

fV(v1, v2, . . .) joint probability density of random variables Vν

f2(z1, z2, . . . |u) conditional probability density of random variables Zν relative to random vector

U =
[

U1 U2 . . . UN
]T

ϕ00(t) Haar scaling function
ψ00(τ) Haar mother wavelet
CE Canonical Expansion
CsC complex statistical criteria
OStS observable Stochastic System
RV random variables
StP Stochastic Process
StS Stochastic System
WLCE Wavelet Canonical Expansion
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Abstract: In this paper, we propose a new algorithm for constructing an integral model of a nonlinear
dynamic system of the “input–output” type in the form of a quadratic segment of the Volterra integro-
power series (polynomial). We consider nonparametric identification of models using physically
realizable piecewise linear test signals in the time domain. The advantage of the presented approach is
to obtain explicit formulas for calculating the transient responses (Volterra kernels), which determine
the unique solution of the Volterra integral equations of the first kind with two variable integration
limits. The numerical method proposed in the paper for solving the corresponding equations includes
the use of smoothing splines. An important result is that the constructed identification algorithm has
a low methodological error.

Keywords: nonparametric identification; dynamic system; integral model; Volterra equations;
smoothing cubic splines; selection of the smoothing option

MSC: 45D05

1. Introduction

The development of the theory of dynamical systems, taking into account the specifics
of applied problems, aims to create new mathematical methods. This paper is devoted to
the develop mathematical tools for studying inverse problems in the theory of dynamical
systems. The work aims to develop a methodology and algorithms for identifying Volterra
polynomials (finite segments of Volterra series) [1].

y(t) =
N

∑
n=1

t∫
0

. . .
t∫

0

Kn(t, s1, . . . , sn)
n

∏
k

x(sk)dsk, t ∈ [0, T]. (1)

The Volterra integro-power series is well known in the theory of mathematical mod-
eling of nonlinear dynamic systems of the “input–output” type. However, modern and
classical studies in this area do not provide a universal mathematical apparatus for studying
problems with restrictions on the dynamic characteristics of systems.

Reference [2] contains an extensive list of references on methods for identifying non-
linear objects using Volterra integral equations. References [3–7] are devoted to methods
for constructing dynamic models using Volterra polynomials. Models based on the Volterra
theory are used to describe stochastic systems [8], as well as for the structural identifi-
cation of nonlinear dynamic systems [9]. A systematic approach to modeling nonlinear
dynamic systems by formalizing the relationship between input x(t) and output y(t) was
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first implemented by Norbert Wiener [10]. He applied the Volterra series in the analysis of
nonlinear electronic circuits. He developed efficient identification algorithms for the case
of an input signal in the form of Gaussian white noise. Wiener’s research was continued
in the works of Marmarelis, Schetzen, Rugh, and other researchers (see, for example, the
reviews in [11,12]). The system responses to test signals in the form of ideal white noise are
used to identify the Wiener kernels. In practice, the implementation of such input actions is
carried out with inevitable errors, which are compensated by choosing the optimal range
in test disturbances [13]. When solving inverse quantum mechanical problems, researchers
use wave functions [14] to construct Volterra integral models. The identification of Volterra
kernels is based on minimizing the root-mean-square error from the response of the dy-
namic system tested. This approach is associated with the extreme complexity of practical
implementation [15].

In this regard, they strive to achieve a simplification of the methods (see, for exam-
ple, [16–19]). In particular, the authors of [18] implemented the case where Volterra kernels
are assumed to be separable,

Ki(s1, . . . , si) =
i

∏
n=1

g(sn), i = 1, 3, (2)

as well as the satisfiability of a priori conditions,

Kn(s1, . . . , sn) = 0, n > 3. (3)

Reference [16] considered a modified discrete analog of the cubic Volterra polynomial.

y(ti) =
N1−1

∑
m1=0

K1(tm1)x(ti−m1) +
N2−1

∑
m1=0

N2−1
∑

m2=m1

K2(tm1 , tm2)x(ti−m1)x(ti−m2)+

+
N3−1

∑
m1=0

N3−1
∑

m2=m1

N3−1
∑

m3=m2

K3(tm1 , tm2 , tm3)x(ti−m1)x(ti−m2)x(ti−m3),
(4)

where the symmetric kernels K2 and K3 are defined only on one of the subdomains
0 ≤ m1 ≤ m2 ≤ N2 − 1 and 0 ≤ m1 ≤ m2 ≤ m3 ≤ N3 − 1, respectively. To re-
duce computational costs, the authors of [16] proposed a transition from (4) to relations

y(ti) =
N1−1

∑
m1=0

K1(tm1)x
(
ti−m1

)
+

N2−1

∑
m1=0

N2−1

∑
m2=m1

K2(tm1 , tm2)x
(
ti−m1

)
x
(
ti−m2

)
+

N3−1

∑
m=0

K̃3(tm)x3(ti−m) (5)

or

y(ti) =
N1−1

∑
m1=0

K1(tm1)x
(
ti−m1

)
+

N2−1

∑
m=0

K̃2(tm)x2(ti−m) +
N3−1

∑
m=0

K̃3(tm)x3(ti−m). (6)

It depends on the statistical properties of the input signals. In this case, they solve the
problem of restoring the functions K̃n of one variable instead of the problem of determining
in (4) the functions Kn, n = 2, 3, of many variables in (5) and (6). Moreover, instead of search-
ing for Kn(t, s1, . . . , sn) on the entire domain of definition 0 ≤ s1, . . . , sn ≤ t ≤ T, researchers
confine themselves to the values of the function at fixed values s1 = s2 = . . . = sn = t,
t ∈ [0, T]. In particular, this approach was applied in [20] (p. 1387) and [21] (p. 1078). The
critical review of [22] (pp. 178–179) explained the difference between these problems in
detail using the approaches described in [23,24] as an example.

As noted in [25], “for the presentation of information in the time domain, the ex-
pediency of using pulsed and stepped test signals is obvious”. A method based on the
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δ-functions use was proposed in [26] and developed later in [27]. It suggests using the
(n − 1)-parametric family,

xω1,...,ωn−1(t) =
n−1

∑
j=0

δ
(
t − ωj

)
, ω0 = 0, ωj ≥ 0,

n−1

∑
j=0

ωj ≤ t ≤ T, (7)

where δ(s) is the Dirac δ-function,

δ(s) =
{

0, s �= 0,
∞, s = 0,

as test actions for identifying the Kn(s1, . . . , sn).
A discrete analog of this approach is the numerical algorithm proposed in [28]. Note

that the technique based on (6) has a limited scope. An explanation for this can be found
in [29] (p. 142): “ . . . this simple idea is impulse-response analysis. Its basic weakness is
that many physical processes do not allow pulse inputs . . . Moreover, such input could
make the system exhibit nonlinear effect that would disturb the linearized behavior we
have set out to model”. Readers can find a detailed review of identification methods based
on impulse disturbances [27,30].

Let us now turn to methods based on the application of Heaviside functions e(t).
Reference [31] considered an approach related to approximating on [0, T] a periodic test
signal by discretely given stepwise one with a constant quantization step. It is assumed
the initial continuous input signal has a constant period T. This technique was further
developed in [32,33], in which

xω1,...,ωn−1(t) =
n

∑
j=1

Cωj αe
(
t − ωj

)
, ωj ≥ 0,

n

∑
j=1

ωj ≤ t ≤ T,

was used as the test signal for identifying Kn, n ≥ 2, where α is the signal amplitude
(height), and Cωj is a logical variable equal to zero if

ωj = 0.

In [34], a modification was made for a dynamical system with two inputs. Here, the
identification process included a heuristic algorithm for dividing the system response
y(t) into components due to the influence of a separate integral term of the quadratic
Volterra model.

In this paper, we consider dynamic systems, the transient characteristics of which
are presented in the time domain. The possibility of scaling in time makes it possible to
study fast processes that are typical for many technical (energy) systems. The method of
finding the transient characteristics of the system is deterministic. Fewer data are required
to formalize the mathematical model in comparison with the probabilistic method. The
collection of initial data occurs during the execution of an active experiment, which implies
the possibility of influencing the system with test input signals. In comparison with a
passive experiment (observation), this method allows one to reduce the time for collecting
initial data and specify the type of test signal.

Reference [3] presented a method for identifying Volterra kernels using a combination
of Heaviside functions with a deviating argument as test signals. Its advantage lies in
the transition from the original problem to the solution of such special multidimensional
Volterra equations of the first kind with variable upper and lower integration limits, which
have explicit inversion formulas. The scope of this technique for modeling the dynamics of
real-life technical objects is limited by the complexity of the formation of piecewise constant
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test signals. Reference [35] considered the possibility of using test signals of a piecewise
linear form,

x(t) ≡ xν(t) =

⎧⎨⎩
0, t ≤ 0,
t
ν , 0 < t ≤ ν,
1, t > ν,

(8)

in the problem of identifying a two-dimensional continuum of unknowns from a linear
Volterra equation of the first kind with a nonstationary kernel. Figure 1 shows the form of
the input signal (8).

Figure 1. The form of the input signal (8).

The chosen modification of the input signals simplifies their formation in practice,
and the distinguished Volterra integral equations of the first kind, as before, have a unique
solution in the class of continuous functions.

The identification method was developed to further apply it for numerical modeling
the process of automatic simulation of the nonlinear dynamics of heat and electric power
industry objects based on Volterra polynomials with a vector input.

The purpose of this work is, firstly, to use the reserve for increasing the accuracy of
constructing an integral model, presented as a modified quadratic Volterra polynomial,
through the use of piecewise linear signals close to real-life dynamic systems, and secondly,
to develop measurement noise-resistant algorithms for identifying functions two variables.

The paper is organized as follows: Section 2 describes the technique for building an
integral model using piecewise linear test signals. It also presents an example illustrating
the effect of increasing the accuracy of modeling the linear term by applying piecewise linear
signals. Section 3 contains a numerical algorithm for identifying the quadratic term of the
Volterra series based on smoothing cubic splines. Section 4 considers the implementation
of the numerical solution algorithm using the quadrature method. Section 5 suggests
directions for future work. Section 6 contains the main results.

2. Method for Constructing a Quadratic Volterra Polynomial

Let us consider a quadratic model containing a linear nonstationary component,

y(t) =
t∫

0

K1(t, s)x(s)ds +
t∫

0

t∫
0

K2(s1, s2)x(t − s1)x(t − s2)ds1ds2, t ∈ [0, T]. (9)

To identify the Volterra kernels K1(t, s), 0 ≤ s ≤ t ≤ T, K2(s1, s2), 0 ≤ s1, s2 ≤ t ≤ T,
the authors of [36] used test signals

x(t) ≡ xα1,2
ν (t) = α1,2(e(t)− e(t − ν)), 0 ≤ ν ≤ t ≤ T, (10)

where α1 �= α2. Figure 2 shows the form of the input signal (10) when the signal amplitude
is equal to 1.
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Figure 2. The form of the input signal (10).

Substituting (10) in (9) leads to the following system:

α1

ν∫
0

K1(t, s)ds + α2
1

t∫
t−ν

t∫
t−ν

K2(s1, s2)ds1ds2 = yα1(t, ν),

α2

ν∫
0

K1(t, s)ds + α2
2

t∫
t−ν

t∫
t−ν

K2(s1, s2)ds1ds2 = yα2(t, ν),
(11)

where α1 �= α2, 0 ≤ ν ≤ t ≤ T, which implies that

K1(t, ν) = f ′1ν(t, ν), (12)

K2(t, t − ν) =
1
2

(
f ′′2tν(t, ν) + f ′′2ν2(t, ν)

)
, (13)

where

f1(t, ν) =
α2

2yα1(t, ν)− α2
1yα2(t, ν)

α1α2(α2 − α1)
, (14)

f2(t, ν) =
α1yα2(t, ν)− α2yα1(t, ν)

α1α2(α2 − α1)
. (15)

Let us carry out the procedure for identifying the Volterra kernel K2(s1, s2) symmetric
in variables s1, s2, using Equations (13) and (15). Then the problem of identifying K1(t, s)
from (9) reduces to solving

t∫
0

K1(t, s)x(s)ds = q(t),

q(t) = y(t)−
t∫

0

t∫
0

K2(s1, s2)x(t − s1)x(t − s2)ds1ds2,
(16)

where K2(s1, s2) is known. Applying test signals (8) in addition to (10), we obtain
Equation (16), where

q(t) ≡ qν(t) =
{

0, t = 0, ν = 0,
g(t, ν), 0 < ν ≤ t,

which can be represented in the form

ν∫
0

K1(t, s)
s
ν

ds +
t∫

ν

K1(t, s)ds = q(t, ν), (17)

q(t, ν) = g(t, ν)−
t∫

t−ν

t∫
t−ν

K2(s1, s2)
t−s1

ν
t−s2

ν ds1ds2−

−2
t∫

t−ν

ds1

t−ν∫
0

K2(s1, s2)
t−s2

ν ds2 −
t−ν∫
0

t−ν∫
0

K2(s1, s2)ds1ds2.
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Here, g(t, ν) is the response of a dynamic object to a signal (8) at 0 ≤ ν ≤ t ≤ T.
Following [35,37], the inversion Formula (17) has the form

K1(t, ν) = −
(

2g′ν(t, ν) + νg′′
ν2(t, ν)

)
. (18)

Let us compare the effect of using test signals (8) and (10) when building an integral
model (9).

The below example demonstrates the effect of increasing the simulation accuracy when
using test signals of the form (8). Let the “reference” dynamical system be represented by a
cubic Volterra polynomial with kernels K1 = 1, K2 = 1

2 , K3 = 1
3! , so that

yet(t) =
t∫

0

x(s)ds +
1
2

⎛⎝ t∫
0

x(s)ds

⎞⎠2

+
1
3!

⎛⎝ t∫
0

x(s)ds

⎞⎠3

. (19)

The technique for constructing quadratic and cubic Volterra polynomials, based on the
use of piecewise constant test signals of type (10), has been successfully tested on dynamic
systems of various physical nature, including a mathematical model of type (19), as well as
in modeling the dynamics of a heat exchanger element and wind power plant [38]. Note
that (19) is a partial sum of the series for the function

e

t∫
0

x(s)ds
− 1.

This function has proven itself well in the study of the areas of applicability of identifi-
cation algorithms for quadratic and cubic Volterra polynomials [38,39]. We apply the proce-
dure for identifying kernels by using test signals (10) with amplitudes α1 = −α2 = α > 0
and, instead of (9), obtain

y1(t) =
t∫

0

(
1 +

α2

2
s2
)

x(s)ds +
1
2

⎛⎝ t∫
0

x(t − s)ds

⎞⎠2

, (20)

where the Volterra kernels were restored using Equations (12) and (13), respectively.
The combined model (9) with the addition to (10) test signals (8) with amplitude α for

identification K1(t, s) has the form

y2(t) =
t∫

0

(
1 + α2

(
1
4

s2 − 3
4

ts +
1
2

t2
))

x(s)ds +
1
2

⎛⎝ t∫
0

x(t − s)ds

⎞⎠2

, (21)

where the kernel identification was performed using Equations (18) and (13), respectively.
On signals xβ(t) = t

β , β = k · α · 0.01, k = 1, B, model (20) gives residual

n1(t) = yβ
et(t)− yβ

1 (t) =
t6

48β3 − α2t4

8β
,

and model (21) gives residual

n2(t) = yβ
et(t)− yβ

2 (t) =
t6

48β3 − α2t4

16β
,

where yβ
et is the response (19) to signal xβ(t).

Let us present an algorithm for constructing the polynomial (9) for modeling the
response of the dynamic system represented in the form (19).
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Step 1. Calculation of the values of yα
et(t, ν) and y−α

et (t, ν) using substitution (10) with
amplitude α1 = −α2 = α > 0 into the right-hand side of (19).

Step 2. Calculation by (15) of the values of the right-hand side of the integral equation,

t∫
t−ν

t∫
t−ν

K2(s1, s2)ds1ds2 = f2(t, ν) , 0 ≤ ν ≤ t ≤ T.

Step 3. Application of Equation (13) for identifying K2(s1, s2), 0 ≤ s1, s2 ≤ T.
Step 4. Calculation of values yα

et(t, ν) using substitution (8) with an amplitude α into
the right-hand side of (19).

Step 5. Calculation of the right-hand side of (17) q(t, ν), where K2(s1, s2) and
q(t, ν) ≡ yα

et(t, ν) are obtained in the previous steps 3 and 4, respectively.
Step 6. Application of Equation (18) for identifying K1(t, ν), 0 ≤ ν ≤ t ≤ T.
Step 7. Substitution of kernels K2(s1, s2) and K1(t, ν) obtained in steps 3 and 6, respec-

tively, into the right-hand side of (9). This leads to (21).
Modeling accuracy y1(t) was compared with response y2(t). The value of the “mean

absolute error” coefficient was chosen as a criterion for modeling accuracy.

MAEr(t) =
1
B

B

∑
β=1

|nr(t)|, r = 1, 2, t ∈ [0, 15].

In Figure 3, black color shows the areas of fulfillment of the inequality MAE2(t) < MAE1(t)
for B = 10, 25, 40 with an accuracy of δ = 10−2.

Figure 3. Areas of fulfillment of the inequality MAE2(t) < MAE1(t) for (a) B = 10, (b) B = 25, and
(c) B = 40.

The computational experiment showed that the areas of efficiency of the integral
models (20) and (21) depend on the length of the segment T, the amplitude of the test
signals α used to identify the Volterra kernels, and the accuracy of the calculations δ.

Note that we assumed the quadratic term, the two-dimensional kernel K2(t, ν), in
Equation (18) to be known. Therefore, in the next section, we consider an algorithm for
identifying this term using Equation (13).

3. Identification Algorithm for Quadratic Term

Unfortunately, the implementation of the obtained inversion Equation (13) in practice
faces a fundamental difficulty: the differentiation operation is an ill-posed one [40]. One of
the manifestations of ill-posedness is large errors in calculating the derivative, even for very
small errors in specifying a differentiable function. Note that the operation of subtraction
in (15) of the registration errors of two functions leads to an increase in the variance of the
total error in setting the function f2(t, ν). Thus, stable differentiation of noisy data becomes
an urgent problem for the implementation of formula (13) in practice.
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Reference [41] constructed a stable identification algorithm on the basis of Equation (12)
(a stable identification algorithm is an algorithm in which the relative identification error is
comparable to the relative error of the initial data). There, a smoothing cubic spline (SCS)
of a defect unit was used for a stable calculation of the first derivative. The smoothing pa-
rameter was chosen from the condition of the minimum root-mean-square smoothing error.
The use of smoothing splines becomes much more complicated in the case of identifying
the quadratic kernel K2(τ, s). First, to calculate the second-order mixed derivative f ′′2tν(t, ν),
we need to build a smoothing bicubic spline (SBS), which is a function of two variables t,
ν. Secondly, the boundary conditions are now given not at two extreme points of the SCS
construction interval, but on four straight lines, which are the boundaries of the rectangular
area of the SCS construction. Thirdly, due to the different “smoothness” of the function
f2(t, ν) in different variables, we now have to choose two smoothing parameters from the
condition for the minimum smoothing error. These difficulties caused the main problems
that were not solved in the corresponding scientific publications and which are addressed
in this section.

Suppose that the values of the function f2(t, ν) are determined at the nodes of a
rectangular grid. To take into account possible errors (noise) of measurements, the following
representation of noisy measurements f̃2(ti, νj) is taken:

f̃2(ti, νj) = f2(ti, νj) + ηi,j, i = 1, . . . , Nt, j = 1, . . . , Nν,

where ηi,j is random measurement noise with zero mean value and variance σ2
η (equally

accurate measurements). Note that nodes ti and νj may not have the same or equal steps. It
is required to calculate the values of derivatives f ′′2tν(t, ν), f ′′2ν2(t, ν) at the given nodes from

the initial data
{

f̃2
(
ti, νj
)}

.
For a stable calculation of these derivatives, we turn to SCS [42] widely used in the

processing of experimental data [43,44]. Suppose we have Nν nodes V1 = ν1 < ν2 < . . . <
νNν = V2 at some interval [V1, V2]. In these nodes, the values of the function (signal) f (ν)
are measured as follows:

f̃ j = f (νj) + ηj, j = 1 . . . Nν, (22)

where ηj is the random measurement noise with zero mean and variance σ2
η (equally

accurate measurements). The smoothing cubic spline SNν ,α(ν) of a defect unit on each
segment

[
νj, νj+1

)
can be represented by a cubic polynomial of the following form [42]:

SNν ,α(ν) = aj + bj · (ν − νj) + cj · (ν − νj)
2 + dj · (ν − νj)

3. (23)

Moreover, the function SNν ,α(ν) must be twice continuously differentiable on the entire
interval [V1, V2] of its definition. Note that, in contrast to the interpolation spline (passing
through the points

(
νj, f̃ j

)
), the smoothing cubic spline SNν ,α(ν) generally does not pass

through these points, but passes more “smoothly” in some neighborhoods of these points
(depending on the smoothing parameter α), thereby providing smoothing (filtering) of
measurement noise.

To uniquely calculate the spline coefficients aj, bj, cj, dj, boundary conditions are set at
the nodes ν1, νNν . The following conditions are most often used [42,44]:

• conditions on zero second derivatives of the spline (natural boundary conditions),

S′′
Nν ,α(ν1) = 0; S′′

Nν ,α(νNν) = 0, (24)

• conditions on the first derivatives of the spline,

S′
Nν ,α(ν1) = s′1; S′

Nν ,α(νNν) = s′Nν
, (25)
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as well as a combination of these conditions (for example, condition (25) is on the left,
condition (24) is on the right). It was shown [42] the SCS constructed under these
conditions provides a minimum to the functional

Fα(S) = α ·
νNν∫
ν1

|S′′ (ν)|2dv +
Nν

∑
j=1

p−1
j · ( f̃ j − S(νj))

2
, (26)

where pj denotes the weight factors reflecting the accuracy of the j-th measurement f̃ j
(they are given the same in the case of equally accurate measurements).

To calculate the spline coefficients (for a given smoothing parameter), it is necessary
to compose a system of linear algebraic equations with a five-diagonal matrix concerning
some vector (as a rule, these are the values of the second derivative of the spline at the nodes{

νj
}

), through which all the spline coefficients are then found (for details, see [42,44]).
The smoothing parameter α “controls” the smoothness of the spline, and the smooth-

ing error (as well as the differentiation error) depends significantly on the value of this
parameter [44,45]. There is a parameter value (let us call it optimal) for which the smoothing
error (in the accepted norm) is minimal [45]. Let us temporarily assume that we have found
an acceptable (in terms of the minimum smoothing error) value of the smoothing parameter
(the choice of the parameter is discussed in the next section).

Remark 1. It follows from the form of the integrals (11) that the function f2(t, ν) takes nonzero
values for the arguments satisfying the condition ν ≤ t. For other values of ν, t, the function is
equal to zero due to the condition of the technical feasibility of the system with negative values of the
arguments, i.e., k2(t, ν) ≡ 0, if ν < 0, t < 0.

To eliminate the discontinuity of the first kind at ν = t values when constructing a
smoothing spline, we propose to supplement the values of the function f2(t, ν) for ν > t
according to the following rule:

f2(t, t + Δν) =

{
2 f2(t, t)− f2(t, t − Δν), 0Δν ≤ t;
2 f2(t, t), tΔν ≤ T − t.

We denote the function supplemented in this way as f ∗2 (t, ν).
Initially, we focus on the algorithm for calculating the values of the derivative f ′′2ν2(t, ν).

It can be represented by the following steps:
Step 1. We set the boundary conditions, the combination of which at the extreme

points ν1, νNν of the construction interval is determined on the basis of available a priori
information about the function f ∗2 (t, ν). If such reliable information is not available, then
one should turn to the natural boundary conditions (24).

Step 2. For each i = 1, . . . , Nt, we form a dataset{
νj, f̃ 1(i)j = f̃ ∗2

(
ti, νj
)
, j = 1, . . . , Nν

}
,

select the smoothing parameter α1(i), and build the SCS S1(i)
Nν ,α1(i)

(ν), from which we then

calculate the first derivative f̂ ′2ν(ti, νj) = d
dν S1(i)

Nν ,α1(i)
(ν)|ν=νj

= b1(i)j (an estimate of the

derivative f ′2ν(ti, νj)), where b1(i)j is the coefficient of spline S1(i)
Nν ,α1(i)

(ν) in representa-
tion (23).

Step 3. For each Y, we again form the dataset{
νj, f̃ 2(i)j = f̂ ′2ν(ti, νj), j = 1, . . . , Nν

}
,
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select the smoothing parameter α2(i), and build the SCS S2(i)
Nν ,α2(i)

(ν), the first derivative

of which is the estimate f̂ ′′2ν2(ti, νj) =
d

dν S2(i)
Nν ,α2(i)

(ν)|ν=νj
= b2(i)j for the second derivative

f ′′2ν2(ti, νj), where b2(i)j is the coefficient of spline S2(i)
Nν ,α2(i)

(ν) in representation (23).

Thus, we calculate estimates of the second derivative f ′′2ν2(ti, νj) for ti, i = 1, . . . , Nt.
Let us proceed to the construction (following the technique of [46]) of a bicubic smooth-

ing spline for calculating the mixed derivative f ′′2tν(ti, νj). We use the following algorithm:
Step 1. For each j = 1, . . . , Nν, we again form a dataset (fix the value of νj){

ti, f̃ 3(j)
i = f̃ ∗2

(
ti, νj
)
, i = 1, . . . , Nt

}
,

select the smoothing parameter α3(j), build the SCS S3(j)
Nt ,α3(j) (t), from which we then calcu-

late the first derivative f̂ ′2t(ti, νj) =
d
dt S3(j)

Nt ,α3(j) (t)|t=ti
= b3(j)

i (estimation of the derivative

f ′2t(ti, νj)), where b3(j)
i is the coefficient of spline S3(j)

Nt ,α3(j) (t) in representation (23).
Step 2. For each Y, we form a dataset{

νj, f̃ 4(i)j = f̂ ′2t(ti, νj), j = 1, . . . , Nν

}
,

select a smoothing parameter α4(i), build an SCS S4(i)
Nν ,α4(i)

(ν), the first derivative of which

is an estimate f̂ ′′2tν(ti, νj) =
d

dν S4(i)
Nν ,α4(i)

(ν)|ν=νj
= b4(i)j for the mixed derivative f ′′2tν(ti, νj),

where b4(i)j is the coefficient of spline S4(i)
Nν ,α4(i)

(ν) in representation (23).
Thus, we repeat step 1 for νj, j = 1, . . . , Nν, and step 2 for ti, i = 1, . . . , Nt. After

calculating the estimates f̂ ′′2ν2(ti, νj), f̂ ′′2tν(ti, νj) using Equation (13), we find the estimate
k̂2(ti − νj, ti) for the values νj ≤ ti.

Remark 2. The inversion Equation (13) determines the value of the quadratic kernel K2(t, ν) for the
arguments 0 ≤ ν ≤ t ≤ T, i.e., for the values of the argument ν ≤ t. The line ν = t is the axis of
symmetry of the kernel K2(t, ν) (follows from the one-dimensionality of the input signal); therefore,
to determine the values of the kernel for ν = t + Δν > t, where Δν > 0, we propose a symmetrical
supplement of the kernel values according to the formula K2(t, t + Δν) = K2(t + Δν, t).

Remark 3. Since the construction of the SCS by the variable ν requires approximately Coper · Nν

arithmetic operations, where Coper ≈ 30 [42], the proposed algorithm for calculating derivatives
requires approximately C4

oper · N3
ν · Nt operations. Therefore, the proposed algorithms for calculating

derivatives have a high computational efficiency even with a large dimension of the grid
(
ti, νj
)
.

Previously, the values of the smoothing parameters α1(i), α2(i), α3(j), α4(i) selected were
assumed (i.e., determined). Therefore, the question of how to choose these parameters arises,
which will significantly affect the error of smoothing and differentiation. If the variance σ2

η of
the measurement noise (see (22)) were reliably known (at least with an accuracy of 5–8%), then
the selection algorithm constructed on the basis of checking the optimality criterion of the linear
filtering algorithm would allow, with acceptable accuracy (5–8%), to estimate the values of the
optimal smoothing parameter that minimizes the value of the root-mean-square smoothing
error (see [44] (pp. 60–67), [45]). It is obvious that the situation with unknown noise dispersion is
most characteristic in solving practical identification problems. Therefore, to choose a parameter
in this case, we turn to the L-curve method used to choose the regularization parameter in
algorithms for solving linear ill-posed problems (for example, [47,48]). In [49], a modification of
the L-curve method was proposed for choosing the smoothing parameter.
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Let us talk briefly about the essence of this selection algorithm. Let us introduce the
following functionals (see [49]):

ρ(α) =
Nν

∑
j=1

p−1
i · ( f̃ j − Sn,α(νj))

2
, γ(α) =

νNν∫
ν1

∣∣∣S′′
Nν ,α(ν)

∣∣∣2dν.

Then, an L-curve (whose shape resembles the outline of the Latin letter L) is a paramet-
ric curve with coordinates (ρ(α), γ(α)). It can be shown that the curvature of an L-curve is
given by the following formula:

kL(α) = 2 · ρ̂′(α) · γ̂′′ (α)− ρ̂′′ (α) · γ̂′(α)[
(ρ̂′(α))2 + (γ̂′(α)

)2
] 3

2
, (27)

where ρ̂(α) = ln ρ(α), γ̂(α) = ln γ(α). The smoothing parameter is the value αL for which
the curvature kL(α) takes on the maximum value. To effectively calculate the value of the
functional γ(α), the following formula is proposed:

γ(α) =
n−1

∑
i=1

(
4c2

i · hi + 12ci · di · h2
i + 12d2

i · h3
i

)
,

where hi = ti+1 − ti, i = 1, . . . , n − 1, ci, di are the SCS coefficients in representation (23),
calculated for a given parameter α. To calculate the curvature value using Equation (27), an
approach is proposed that uses cubic interpolation splines to approximate the dependences
ρ̂(α), γ̂(α) (for details, see [49]). An extensive computational experiment was also carried
out there to answer the following question: Is the loss due to smoothing error large when
αL is used instead of the optimal αopt (which can only be determined in a computational
experiment)? The experiment was carried out with functions that are “typical” output
signals of a dynamic system when step signals are applied to the input. The analysis of the
results of the experiment showed that the algorithm for selecting the smoothing parameter
on the basis of the L-curve method makes it possible to estimate the optimal value of the
smoothing parameter quite well. The increase in the smoothing error when using the
parameter αL does not exceed 5–15% on average compared to αopt, the calculation of which
is impossible in practice. Therefore, to calculate the smoothing parameters α1(i), α2(i),
α3(j), and α4(i), it is proposed to use the described algorithm for choosing the smoothing
parameter on the basis of the L-curve method.

To test the proposed algorithm of identifying quadratic kernel, a numerical experiment
was carried out, some of the results of which we present in this paper. The test quadratic
kernel K2(τ, s) is a function used to describe the dynamics of some type of heat exchang-
ers [50]. Figure 4a shows the surface of this function, and Figure 4b shows isolines. The
time interval boundary was T = 1, while the number of nodes was Nt = 80, Nν = 80.

First, we define the methodological error of the identification algorithm. To do this, we
calculated the values of the function (15) at the nodes ti, i = 1, . . . , Nt, νj, j = 1, . . . , Nν, which
were interpreted as the exact values of the function f2(ti, νj). These data, presented as a
matrix F with dimensions 80 × 80 with elements Fi,j = f2(ti, νj), were the initial data for the
proposed identification algorithm. Since these initial data were taken as exact, instead of SCS,
we built interpolating cubic splines (including the bicubic spline) with boundary conditions
(24). We calculated estimates for the derivatives f̂ ′′2ν2(ti, νj) and f̂ ′′2tν(ti, νj) on the basis of
these splines and then constructed an estimate for the quadratic kernel using Equation (9) (see
Remark 2). Figure 5 shows the isolines of this estimate, having a relative identification error

δK =
‖K2−K̂2‖

‖K2‖ = 0.011, where K2, K̂2 are matrices composed of the values of the exact kernel

K2(ti, νj) and its estimates K̂2(ti, νj), respectively, and ‖·‖ is the Euclidean norm of the matrix.
Approximately the same error was observed for other grid sizes in t, ν. Therefore, we can
conclude the proposed identification algorithm has a low methodological error.
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Figure 4. Test quadratic kernel: (a) the surface of K2(τ, s); (b) isolines.

Figure 5. Estimation of the kernel K̂2(τ, s), built on exact data.

Let us consider the influence of the measurement noise of the function f2(t, ν) on the
accuracy of identification. To do this, we distorted all elements of the “exact” matrix F

with normally distributed noise with a relative level δF =
‖F−F̃‖
‖F‖ , where F̃ is a matrix with

“noisy” elements. The matrix F̃ thus formed was used as initial data for the previously
described identification algorithm. We chose the smoothing parameter at all steps of
calculating derivatives using the L-curve method described above. Figure 6 shows the
isolines of the estimate K̂2(ti, νj), built at a noise level of 0.02. The relative identification error
was δK = 0.044, which indicates the acceptable accuracy of quadratic term identification by
the proposed algorithm.

Figure 6. Estimation of the kernel K̂2(τ, s), built on noisy data.
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4. Difference Scheme for Finding a Linear Nonstationary Kernel Using the
Quadrature Method

It often happens in practice that the responses of the system (the right-hand side of
equations) are given not analytically, but in the form of a series of numbers. In this case,
we have to turn to the numerical solution. The procedure for the numerical identification
of the Volterra polynomial (9) using piecewise constant test signals (10) was considered
in detail earlier in [36]. This approach to constructing a quadratic polynomial was tested
in applications for thermal power objects [51]. As shown in the previous section, using
signals of a new type with a rising edge of the form (8) makes it possible to improve
the accuracy of modeling, even if they are used to identify only one of the polynomial
kernels (9). Therefore, in this section, we restrict ourselves to the procedure for numerical
identification of a nonstationary linear term from (9) based on test signals of the form (8).

As shown in Section 2, if we assume that identifying the kernel K2(s1, s2) in the
quadratic term of the polynomial (9) has already been achieved in one way or another,
then the substitution of (8) into (16) leads to (17). We present a difference scheme for
finding a linear nonstationary kernel from (17) with a known right-hand side. To do
this, we introduce on the interval [0, T] a uniform grid ti = ih, i = 0, N and a subgrid
ti−1/2 = (i − 1/2)h, i = 1, N, while we denote by Kh

i,j the grid approximation of the kernel
K1
(
ti, tj
)
. To approximate the integrals in (17), we use the middle rectangle rule, taking

into account ν ≤ t,

h
j

∑
k=1

Kh
i, k−1/2

tk−1/2

tj
+ h

i

∑
k=j+1

Kh
i, k−1/2 = q

(
ti, tj
)
, i = 1, N, j = 1, i. (28)

At each step i = 1, N, one has to solve a system of linear algebraic equations of
dimension (i × i) with respect to Kh

i, k−1/2, k = 1, i.
Consider the application of the difference scheme (28) with help of a test example. Let

the right side of (17) have the form

q(t, ν) = t − ν

2
+

5t3

24
− ν3

48
+

tν2

8
− t2ν

4
. (29)

This right side will correspond to the kernel K1(t, ν) from example (21). Table 1 shows
the results of numerical calculations obtained using the difference scheme (28). Here,

ε = max
1≤j≤i≤N

∣∣∣K1

(
ti, tj−1/2

)
− Kh

i, j−1/2

∣∣∣
denotes the errors of the numerical solution. The last column of the table shows the number
of nodes in which the maximum error is achieved. The table shows that the proposed
algorithm has a linear order of convergence.

Table 1. The error of the numerical solution to (17) with the right side (29).

h ε Node Number, (i, j)

1/8 0.00553385 (8, 2)
1/16 0.00268555 (16, 4)
1/32 0.00132243 (32, 8)
1/64 0.00065613 (64, 6)

Thus, the numerical construction of the quadratic Volterra polynomial using the
quadrature of the middle rectangles can be implemented by the formula

h
i

∑
j=1

Kh
1

(
ti, tj−1/2

)
x
(
tj
)
+ h2

i

∑
k=1

i

∑
l=1

Kh
2(tk−1/2, tl−1/2)x(ti − tk−1/2)x(ti − tl−1/2) = g(ti), i = 1, N,
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where the kernels Kh
1

(
ti, tj−1/2

)
are obtained using the difference Equation (28).

5. Future Research

This section is devoted to interpreting the identification method for nonsymmetric
kernel K1(t, s) presented in Section 2 for solving the reconstruction problem for symmetric
function K2(s1, s2). For this, we introduce the system of integral Equation (9), where the
functions x(t) and y(t) have the form

x(t) ≡ xα1,2
ν (t) =

⎧⎨⎩
0, t ≤ 0,

α1,2
t
ν , 0 < t ≤ ν,

α1,2, t > ν,
(30)

y(t) ≡ yα1,2
ν (t) =

{
0, t = 0, ν = 0,

gα1,2(t, ν), 0 < ν ≤ t,
(31)

where α1 �= α2, and gα1,2
ν (t) is a sufficiently smooth function. Assuming that in (9) the kernel

K2(s1, s2) = ϕ(s1)ϕ(s2) is a separable function, such that ϕ(s) ∈ CΩ, CΩ is the space of
continuous functions symmetric on the square Ω = {s1, s2 : 0 ≤ s1, s2 ≤ T}; then, system
(9) can be transformed to the form

t∫
0

K1(t, s)x(s)ds +

⎛⎝ t∫
0

ϕ(s)x(t − s)ds

⎞⎠2

= y(t),

or, taking into account (30) and (31), into the system

α1,2

⎛⎝ ν∫
0

K1(t, s)
s
ν

ds +
t∫

ν

K1(t, s)ds

⎞⎠+ α2
1,2

⎛⎝ ν∫
0

ϕ(t − s)
s
ν

ds +
t∫

ν

ϕ(t − s)ds

⎞⎠2

= gα1,2(t, ν).

(32)
We introduce the following functions f1(t, ν) , f2(t, ν):

f1(t, ν) =

ν∫
0

K1(t, s)
s
ν

ds +
t∫

ν

K1(t, s)ds, (33)

f2(t, ν) =

ν∫
0

ϕ(t − s)
s
ν

ds +
t∫

ν

ϕ(t − s)ds. (34)

The system of linear functional equations of the form (32), presented with the designa-
tions (33) and (34), {

α1 f1(t, ν) + α2
1 f 2

2 (t, ν) = gα1(t, ν),

α2 f1(t, ν) + α2
2 f 2

2 (t, ν) = gα2(t, ν),

where α1 �= α2, has a unique solution

f1(t, ν) =
α2

2gα1(t, ν)− α2
1gα2(t, ν)

α1α2
2 − α2

1α2
, (35)

f 2
2 (t, ν) =

α1gα2(t, ν)− α2gα1(t, ν)

α1α2
2 − α2

1α2
. (36)

According to [35], the inversion formula for (33) has the form

K1(t, ν) = −2
∂ f1(t, ν)

∂ν
− ν

∂2 f1(t, ν)

∂2ν
,
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or, introducing the differentiation operator D2 = 2 ∂
∂ν + ν ∂2

∂2ν 1
,

K1(t, ν) = −D2( f1(t, ν)).

Similarly, for (34) we have

ϕ(t − ν) = −D2( f2(t, ν)).

Here, the functions f1(t, ν) and f2(t, ν) are determined by (35) and (36), respectively.

6. Conclusions

This paper generalized the experience of using piecewise-specified test signals to
identify nonlinear dynamic systems of the input–output type, represented as quadratic
Volterra polynomials, taking into account the nonstationary properties of the object. The
development of this direction is associated with the introduction of test signals with a
rising edge, which are characteristic of input actions that occur in practice. The type of test
signals introduced in this paper can be used to identify the Volterra kernels included in the
quadratic Volterra polynomial.

The new approach to constructing a quadratic Volterra polynomial in the time do-
main is based on the use of physically realizable test signals, which is very promising
for applications. Volterra integral equations of the first kind, to which the problem of
identifying Volterra kernels is reduced, have explicit inversion formulas, which ensures
the construction of high-speed computational procedures. These formulas include mixed
partial derivatives. A new method is proposed for choosing the smoothing parameter of a
cubic spline for a stable numerical calculation of the derivatives included in the constructed
inversion formula. This choice of parameter provides effective filtering of measurement
noise. The results of the computational experiment showed that the relative identification
error is comparable to the relative error of the initial data error; at a noise level of the initial
data of 2%, the methodological error in the identification of the Volterra kernel was 4.4%.
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Abstract: This work is aimed at numerical studies of inverse problems of experiment processing
(identification of unknown parameters of mathematical models from experimental data) based
on the balanced identification technology. Such problems are inverse in their nature and often
turn out to be ill-posed. To solve them, various regularization methods are used, which differ
in regularizing additions and methods for choosing the values of the regularization parameters.
Balanced identification technology uses the cross-validation root-mean-square error to select the
values of the regularization parameters. Its minimization leads to an optimally balanced solution,
and the obtained value is used as a quantitative criterion for the correspondence of the model and
the regularization method to the data. The approach is illustrated by the problem of identifying the
heat-conduction coefficient on temperature. A mixed one-dimensional nonlinear heat conduction
problem was chosen as a model. The one-dimensional problem was chosen based on the convenience
of the graphical presentation of the results. The experimental data are synthetic data obtained on the
basis of a known exact solution with added random errors. In total, nine problems (some original)
were considered, differing in data sets and criteria for choosing solutions. This is the first time such a
comprehensive study with error analysis has been carried out. Various estimates of the modeling
errors are given and show a good agreement with the characteristics of the synthetic data errors. The
effectiveness of the technology is confirmed by comparing numerical solutions with exact ones.

Keywords: modeling; regularization; inverse problems; balanced identification; error analysis; one-
dimensional heat equation

MSC: 93B30

1. Introduction

The experiment preparation and processing of the results involve an extensive use
of mathematical models of the objects under study. To save costs, they must be carefully
planned: one should determine what, when, where and with what accuracy is to be
measured to estimate the sought parameters with the given accuracy. These questions can
be answered by “rehearsing” the experiment and its processing on a mathematical model
simulating the behavior of the object.

Usually, the purpose of an experiment is to evaluate some of the object’s parameters.
In the case of an indirect experiment, some parameters are measured, while others are
to be evaluated. The relationship between the parameters can be described by complex
mathematical models. The formalization of this approach leads to identification problems
that are by their nature inverse. Those problems often turn out to be ill-posed, and specific
approaches using regularization methods are required for the solution [1]. One of the
problems with regularization methods is the choice of regularization weights (penalties):
weights that are too large lead to unreasonable simplification (and distortion) of the model,
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and those that are too small lead to overtraining, an excessive fitting of the model’s trajectory
to experimental data. In the balanced identification method [2], the choice of regularization
weights is carried out by minimizing the cross-validation error. This makes it possible
to find a balanced solution that implements the optimal (in the sense of minimizing the
cross-validation error) compromise between the proximity of the model to the data and the
simplicity of the model [3], formalized in a regularizing additive.

Usually, for each specific identification problem (see examples of modeling pollu-
tants moving in the river corridor [4], parameter identification in nonlinear mechanical
systems [5], identification of conductivity coefficient in heat equation [6–8]), a separate spe-
cial study is carried out, including goal setting, mathematical formalization of the problem,
its study, creating a numerical model, preparing a computer program, solving a numerical
problem and studying the results, including error estimation, etc.

However, such problems have much in common: the mathematical model description,
assignment of operators linking measurements with model variables, formalization of
the solution selection criterion, program preparation, error estimation, etc. Additionally,
the abundance of similar tasks invariably necessitates a technology that summarizes the
accumulated experience.

Balanced Identification Technology or SvF (Simplicity versus Fitting) technology is a
step in this direction.

Here is the general “human–computer” scheme of the SvF technology, which imple-
ments the balanced identification method (a more detailed description of the technical
issues of the technology implementation and the corresponding flowchart can be found
in [2]). At the user level, an expert (with knowledge about the object under study) prepares
data files and a task file. The data files contain tables with experimental data (as plain
text or in MS Excel or MS Access formats). The task file usually contains the data file
names, a mathematical description of the object (formalization of the model in a notation
close to mathematical, see Appendix A), including a list of unknown parameters, as well
as specifications of the cross-validation procedure (CV). These files are transferred to the
client program, which replaces the variational problems with discrete ones, creates various
sets (training and testing) for the CV procedure, formulates a number of NLP (nonlinear
mathematical programming) problems and writes (formalizes) them in the Pyomo package
language [9]. The constructed data structures are transferred to a two-level optimization
routine that implements an iterative numerical search for unknown model parameters and
regularization coefficients to minimize the error of cross-validation. This subroutine can use
the parallel solution of mathematical programming problems in a distributed environment
of Everest optimization services [10], namely SSOP applications [11]. The Pyomo package
converts the NLP description into so-called NL files, which are processed at the server level
by special Ipopt solvers [12]. The solutions are then collected and sent back to the client
level and subsequently analyzed (for example, complete iterative process conditions are
checked). If the iterative process is completed, the program prepares the results (calculates
errors, creates solution files, draws graphs of the functions found) and presents them to the
researcher (who may not know about the long chain of the tasks preceding the result).

The experts then utilize the results (especially the values of modeling errors–root-
mean-square errors of cross validation) for choosing a new (or modified) model or deciding
to cease calculations.

The software package together with examples (including some examples of this article)
is freely available online (file SvF-2021-11.zip in the Git repository https://github.com/
distcomp/SvF, accessed on 1 September 2022).

SvF technology has been successfully applied in various scientific fields (mechanics,
plasma physics, biology, plant physiology, epidemiology, meteorology, atmospheric pol-
lution transfer, etc., and a more detailed enumeration can be found in [2]) as an inverse
problem solving method. In these studies, the main attention was paid to the construction
of object models using specific regularization methods. This article, in contrast, focuses on
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the study of the regularization methods themselves, and the problem of heat conduction is
chosen as a convenient example.

The problem of thermal conductivity is chosen to illustrate the technology. This is a
classic problem in mathematical physics. It is well studied, and the one-dimensionality
allows you to present the results in the form of graphs. Literature reviews can be found
in [7,8]. The main task is to find the dependence of the thermal conductivity coefficient
on temperature based on an array of experimental data. In total, nine problems were
considered, differing in data sets and criteria for choosing solutions. Some of them are
original. This is the first time such a comprehensive study with error analysis has been
carried out. Various estimates of the modeling errors are given and turn out to be in good
agreement with the characteristics of the synthetic data errors.

2. Mixed One-Dimensional Thermal Conductivity Problem

Let us denote M = 0 a set of mathematical statements defining the investigated model
of thermal conductivity:

M = 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ [0, 2], t ∈ [0, 5]
∂T
∂t = ∂

∂x

(
K(T) ∂T

∂x

)
T(x, 0) = ϕ(x)

T(0, t) = l(t)

T(2, t) = r(t)

(1)

where x and t are the spatial and temporal coordinates, T(x,t) is the temperature, K(T) is the
(temperature-dependent) thermal conductivity coefficient, ϕ(t) is the initial condition, l(t)
and r(t) are the left and right boundary conditions.

In what follows, all functions in various (non-difference) statements are considered
twice continuously differentiable.

Remark. The formulas in (1) actually coincide with the records (descriptions of the
model) in the text of the task file (a set of instructions for obtaining a numerical solution)
given in Appendix A.

When conducting numerical experiments, the exact solution of the mathematical
model (1)

Ts(x, t) = 200(t+1)
(x+1)2+(t+1)2

Ks(T) = 100
T

ϕs(x) = 200
(x+1)2+1

ls(t) = 200(t+1)
1+(t+1)2

rs(t) = 200(t+1)
9+(t+1)2

(2)

is used for the generation of pseudo-experimental data sets (observations) and for compari-
son with the numerical solution (calculation of errors).

In the notation of the functions of the exact solution, ‘s’ is used (short for solution).
The functions of the exact solution are shown in Figure 1.
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(T) (T6) (K) 

  
( ) (l&r) 

Figure 1. Functions of the exact solution: (T) contour lines of Ts(x,t); (T6) 6 time slices of Ts(x,t):
Ts(x,0), Ts(x,1), . . . , Ts(x,5); (K) thermal conductivity K(T); (ϕ) initial condition ϕs(t); (l&r) left ls(x)
and right rs(x) boundary conditions.

3. Data Sets

Formalizing the concept of a data set (observations or measurements set):

D : {xi, ti, Ti,}, i ∈ I, I = 0..imax,

where Ti is the temperature measurement at point xi at time ti.
For vectors of dimension |D|, introduce the notation

‖ai‖D = ||a ||D =

√
1
|D| ∑

i∈I
a2

i

Below, for numerical experiments, pseudo-experimental data are used, prepared on
the basis of the exact solution (2) using pseudo-random number generators. The prepared
4 data sets were chosen as the most illustrative.

A basic data set was generated on a regular 11 × 11 grid (11 points in space 0, 0.2, 0.4
. . . , 2 and 11 points in time 0, 0.5, 1, . . . 5)

D_reg11x11 : {xi = n ∗ 0.2, ti = j ∗ 0.5, Ti = Ts(xi, ti) + εi},

i = 11 ∗ j + n, n = 0..10, j = 0..10,

where Ts(xi,ti) are the values of the exact solution, εi is the random error with variance

σd = ||ε||D.

To generate εi, a normal distribution random number generator (gauss (0.2)) with
zero mean and variance equal to 2 (degrees) was used. As a result, the distribution εi
was obtained with average md = −0.10 (degrees) and variance σd = 2.06 (degrees). These
characteristics of errors are not used in calculations but are taken into account when
considering the results.
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By analogy, we introduce a data set of exact measurements:

D_reg11x11(ε = 0)

with zero errors εi = 0.

Let us define a data set containing 121 points randomly distributed on the x,t plane:

D_rnd121 : {xi = uni f orm(0, 2), ti = uni f orm(0, 5), Ti = Ts(xi, ti) + εi}, j = 0..121.

To do this, use uniform(a, b)—a generator of random numbers uniformly distributed
over the interval (a,b). The obtained characteristics of the normal distribution of temperature
measurements are: md = −0.19 (degrees) and σd = 2.14 (degrees).

Finally, let us define a data set containing 1000 points, distributed in a random way:

D_rnd1000 : {xi = uni f orm(0, 2), ti = uni f orm(0, 5), Ti = Ts(xi, ti) + εi}, j = 0..1000,

with the characteristics of the normal distribution of temperature measurements: md = −0.02
(degrees) and σd = 2.01 (degrees).

The location of the measurement points of the D_reg11x11, D_rnd121 and D_rnd1000
sets on the x, t plane can be seen in Figure 2.

 

(A)  = 8.10,  
 

(B) =  = 2.38, rmsd* = 
* = 1.19 

(C)  = 13.86,  
 

Figure 2. Solutions with different weights of regularization (penalties): (A) too big a penalty (under-
trained solution); (B) optimally balanced SvF solution; (C) too small a penalty (overtrained solution).

The data set files can be found in file SvF-2021-11.zip in the Git repository https:
//github.com/distcomp/SvF (accessed on 1 September 2022).

4. Method of Balanced Identification

The general problem is finding a function T(x,t) (and other functions of model (1))
that approximates the data set D and, possibly, satisfies additional conditions (for example,
the heat equation). To formalize it, we define an objective function (or selection criterion),
which is a weighted sum of two terms: one formalizing the concept of the proximity of
the model trajectory to the corresponding observations, the other formalizing the concept
of the complexity of the model, expressed in this case through the measure of curvature
included in the statement of functions.

Let us introduce a measure of the proximity of the trajectory of the model to measure-
ments (data set D) or the approximation error:

MSD(D, T) =
1
|D| ∑

i∈I
(Ti − T(xi, ti))

2 = ‖Ti − T(xi, ti)‖2
D,

where |D| is the number of elements of the set D,

239



Mathematics 2022, 10, 4221

and a measure of curvature (complexity) of functions of one variable

Curv( f (x), α) = α
∫ b

a

(
f ′′(x)

)2dx ,

where [a, b] is the domain of the function f(x), and two variables

Curv
(

f (x, y), αx, αy
)
=

xmax∫
xmin

ymax∫
ymin

(α2
x
(

f ′′xx
)2

+ 2αxαy
(

f ′′xy
)2

+ α2
y
(

f ′′yy
)2
)dxdy.

The objective function is a combination of the measures introduced above. Let us give,
as an example, the objective function

Obj(T, D, αx, αt) = MSD(D, T) + Curv(T(x, y), αx, αt).

The second term is the regularizing addition that makes the problem (of the search for
a continuous function) correct. The choice of its value determines the quality of the solution.
Figure 2 shows two unsuccessful options (A—weights that are too large, C—too small) and
one successful (B—optimal weights chosen to minimize the cross-validation error).

Hereinafter, the following designations are used:

rmsd = ‖ Ti – T(xi,ti) ‖D – the standard deviation of the solution from the measurements;
rmsd* – standard deviation of the balanced solution from measurements;
Err(x,t) = T(x,t) − Ts(x,t) – deviation of the solution from the exact solution;
Δ = ‖ Err(xi,ti) ‖D – the standard deviation of the SvF solution from the exact solution;
Δ* – estimation of Δ;
σcv = ‖Ti − Ti

α(xi, ti)‖D – error (mean square error) of cross-validation,

where Ti
α(xi, ti) is the solution obtained by minimizing the objective functional for given α

on the set D without point (xi,ti). A more detailed (and more general) description of the
cross-validation procedure can be found in [2].

An optimally balanced SvF solution is obtained by minimizing the cross-validation
error by regularization coefficients (α):

σ∗
cv = min

α
‖Ti − Ti

α(xi, ti)‖D

As a justification for using the minimization of σcv to choose a model (regularization
weights), we present the following reasoning (here (·i) stands for (xi,ti)):

σ2
cv =

1
|D| ∑

i∈I

(
Ti − Ti

α(·i)
)2

=
1
|D| ∑

i∈I

(
Ti − Ts(·i)−

(
Ti

α(·i)− Ts(·i)
))2

σ2
cv =

1
|D| ∑

i∈I
(εi)

2 − 2
|D| ∑

i∈I
εi·
(

Ti
α(·i)− Ts(·i)

)
+

1
|D| ∑

i∈I

(
Ti

α(·i)− Ts(·i)
)2

The second term represents the sum of the products of random variables εi by an
expression in parentheses, with the value of εi excluded from the calculation (point i
was removed from the data set). It is expected to tend to zero with an increase of the
observations’ number. Similarly, with an increase of the observations’ number (everywhere
dense in space (x,t)), the third term tends to Δ2, since Ti

α(·i) → T(·i) . As a result, we obtain
the estimate

σ2
cv ≈ σ2

D + Δ2.
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Thus, cross-validation error minimizing leads (if a number of observations go to
infinity) to minimizing the deviation of the solution found from the (unknown) exact
solution. To assess such a deviation, introduce the designation:

Δ∗ =
√

σ∗2
cv − σ2

D. (3)

Remark. The payment for the problem regularization, as a rule, is the distortion of the
solution. Moreover, the greater the weight of the regularization, the greater the distortion.
In the case under consideration, the distortion consists in “straightening” the solution. The
extreme case of “straightening” is shown in Figure 2A.

5. Various Identification Problems and Their Numerical Solution

Nine different identification tasks are discussed below. They differ in choices of data
sets, minimization criteria (various regularizing additives) and additional conditions. For
example, in Problem 5.1 MSD(D_reg11x11) + Curv(T):M = 0, the minimization criterion
is used:

(T, K, ϕ, l, r) = Argmin
T,K,ϕ,l,r

{MSD(Dreg11x6, T) + Curv(T, αx, αt) : M = 0},

which means for the given regularization weights αx,αt and a given data set D_reg11x11, find a
set of functions (T, K, ϕ, l, r) that minimizes the functional MSD(D_reg11x11,T) + Curv(T,αx,αt),
and the sought functions must satisfy the equations of the model M = 0. This criterion is used
to minimize the error of cross-validation, which makes it possible to find the regularization
weights and the corresponding balanced SvF solution (T, K, ϕ, l, r).

To reduce the size of the formulas, a more compact notation for the selection criterion
is used:

MSD(D_reg11x11,T) + Curv(T,αx,αy) → min:(M = 0).

The same notation will be used for the other problems.
The mathematical study of the variational problems is not the subject of the article.

Note that even the original inverse problems of this type can have a non-unique solution,
in particular, there are different heat conductivity coefficients leading to the same solution
T(x,t) [7,8]. Only Problem 5.0 (a spline approximation problem) is known to have a unique
solution under rather simple conditions [13].

To find approximate solutions, we will use numerical models, which are obtained from
analytical ones by replacing arbitrary mathematical functions with functions specified on
the grid or polynomials (only for K(T)), derivatives with their difference analogs, integrals
with the sums. Note that the grid used for the numerical model (41 points in x with a step
equal to 0.05 and 21 points in t with a step equal to 0.25) is not tied to the measurement
points in any way. For simplicity (and stability of calculations), an implicit four-point
scheme was chosen [14]. The choice of scheme requires a separate study and is not carried
out here. However, apparently, the optimization algorithm used for solving the problem as
a whole (residual minimization) makes it possible to avoid a number of problems associated
with the stability of calculations.

For the graphs of the exact solution, blue lines will be used, and for the SvF solution, red.
5.0. Problem MSD(D_reg11x11) + Curv(T)
Generally speaking, this simplest problem has nothing to do with the heat equation

(therefore, its number is 0). It consists of finding a compromise between the proximity of
the surface T(x,t) to observations and its complexity (expressed in terms of the curvature
T(x,t)) based on the minimization functional:

MSD(D_reg11x11,T) + Curv(T,αx,αy) → min (4)
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The results of the numerical solution of the identification problem are shown in
Figure 3. The estimates obtained (resulting errors)

σ∗
cv 2.38, rmsd ∗ = 1.44, Δ∗ = 1.19

are benchmarks for assessing the errors of further problems.

 

(T) (T6) (Err) 

 

( ) (l&r) 

Figure 3. SvF solution of Problem 5.0: (T) contour lines of T(x,t); (T6) 6 slices of T(x,t);
(Err) Err(x,t) = T(x,t) − Ts(x,t) – deviation of the SvF solution from the exact solution; (ϕ) is the
initial condition; (l&r) left and right boundary conditions.

5.1. Problem MSD(D_reg11x11) + Curv(T): M = 0
Now, the identification problem is related to the heat conduction equation. It consists

of minimizing the cross-validation error, provided that the solution sought satisfies the
thermal conductivity equation (M = 0), based on the criterion:

MSD(D_reg11x11,T) + Curv(T,αx,αy) → min:(M = 0)

The results are shown in Figure 4.

 

(T) (T6) (Err) 

Figure 4. Cont.
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( ) (l&r) (K) 

Figure 4. SvF solution of Problem 5.1: (T) contour lines of T(x,t); (T6) 6 slices of T(x,t);
(Err) Err(x,t) = T(x,t)-Ts(x,t); (ϕ) the initial condition; (l&r) boundary conditions; (K) the thermal
conductivity coefficient K(t).

Errors: σ∗
cv = 2.24, rmsd* = 1.58, Δ* = 0.86.

5.2. Problem MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs
Two additional conditions l = ls, r = rs mean that the SvF solution must coincide with

the exact one on the boundaries:

MSD(D_reg11x11,T) + Curv(T,αx,αy) → min:(M = 0, l = ls, r = rs)

Here and below, the figures show not the entire set of functions, but only the essential
ones (the rest do not change much). The results are shown in Figure 5.

 

(T) ( ) (K) 

Figure 5. SvF solution of Problem 5.2: (T) contour lines of T(x,t); (ϕ) the initial condition; (K) the
thermal conductivity coefficient K(t).

Errors: σ∗
cv = 2.15, rmsd* = 1.86, Δ* = 0.61.

5.3. Problem MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs, ϕ = ϕs
Suppose that the initial condition is also known:

MSD(D_reg11x11,T) + Curv(T,αx,αy) → min:(M = 0, l = ls, r = rs, ϕ = ϕs)

Some results are shown in Figure 6.
Errors: σ∗

cv = 2.06, rmsd* = 2.01, Δ* = 0.49.
5.4. Problem MSD(D_reg11x11) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K):M = 0
The problem differs from Problem 5.1 by the penalties of four functions ϕ, l, r and K,

that determine the solution, replacing the penalty for the curvature of the solution T(x,t):

MSD(D_reg11x11,T) + Curv(ϕ,α1) + Curv(l,α2) + Curv(r,α3) + Curv(K,α4) → min:(M = 0).

The formulation seems to be more consistent with the physics of the phenomenon—
regularization occurs at the level of functions that determine the solution, and not at the
solution itself.
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(Err) (K) 

Figure 6. SvF solution of Problem 5.3: (Err) Err(x,t) = T(x,t)-Ts(x,t); (K) the thermal conductivity
coefficient K(t).

Errors: σ∗
cv = 2.22, rmsd* = 1.82, Δ* = 0.83.

Attention should be paid to the incorrect behavior of the thermal conductivity coeffi-
cient near the right border of the graph in Figure 7K.

 
( ) (l&r) (K) 

Figure 7. SvF solution of Problem 5.4: (ϕ) the initial condition; (l&r) boundary conditions; (K) the
thermal conductivity coefficient.

5.5. Problem MSD(D_reg11x11) + Curv(ϕ) +Curv(l) + Curv(r) + Curv(K): M = 0, dK/dT <= 0
Let it be additionally known that the thermal conductivity does not increase with

increasing temperature dK/dT <= 0:

MSD(D_reg11x11,T) + Curv(ϕ,α1) + Curv(l,α2) + Curv(r,α3) + Curv(K,α4) → min:(M =0, dK/dT <= 0)

This is an attempt to correct the solution by adding to the formulation of the minimiza-
tion problem an additional condition formalizing a priori knowledge of the behavior of the
coefficient K(T) (see Figures 7K and 8K).

 
(Err) (K) 

Figure 8. SvF solution of Problem 5.5: (Err) Err(x,t) = T(x,t)-Ts(x,t); (K) the thermal
conductivity coefficient.

Errors: σ∗
cv = 2.23, rmsd* = 1.80, Δ* = 0.85.

5.6. Problem MSD(D_rnd121) + Curv(T): M = 0, l = ls, r = rs, ϕ = ϕs
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The problem is similar to Problem 5.3, except the data set consists of 121 points on an
irregular grid:

MSD(D_rnd121,T) + Curv(T,αx,αy) → min:(M = 0, l = ls, r = rs, ϕ = ϕs)

Some results are shown in Figure 9.

(Err) (K) 

Figure 9. SvF solution of Problem 5.6: (Err) Err(x,t) = T(x,t)-Ts(x,t); (K) the thermal
conductivity coefficient.

Errors: σ∗
cv = 2.13, rmsd* = 2.05, Δ* = 0.39.

5.7. Problem MSD(D_rnd1000) + Curv(T): M = 0, l = ls, r = rs , ϕ = ϕs
The problem is similar to problem 5.6, except the data set consists of 1000 points:

MSD(D_rnd1000,T) + Curv(T,αx,αy) → min:(M = 0, l = ls, r = rs, ϕ = ϕs)

The results are shown in Figure 10.

(Err) (K) 

Figure 10. SvF solution of Problem 5.7: (Err) Err(x,t) = T(x,t)-Ts(x,t); (K) the thermal
conductivity coefficient.

Errors: σ∗
cv = 2.02, rmsd* = 2.01, Δ* = 0.15.

5.8. Problem MSD(D_reg11x11(ε = 0)) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K):M = 0
The problem is similar to Problem 5.4, but with a set of exact measurements (εi = 0):

MSD(D_reg11x11(ε = 0)),T) + Curv(ϕ,α1) + Curv(l,α2) + Curv(r,α3) + Curv(K,α4) → min:(M = 0).

Some results are shown in Figure 11.
Errors: σ∗

cv = 0.06, rmsd* = 0.004, Δ* = 0.
The graphs of the boundary and initial conditions are not shown, since the SvF

solutions actually coincide with the exact one.
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(T) (K) 

Figure 11. SvF solution of Problem 5.8: (T) contour lines of T(x,t); (K) the thermal
conductivity coefficient.

6. Discussion

The errors obtained during problem solving are summarized in Table 1. Analyzing the
table allowed us to identify some of the patterns that appeared during problem modification.

Table 1. Errors: σ∗
cv –error of cross-validation, the main indicator of the “quality” of the constructed

model; rmsd* is the standard deviation of the SvF solution from observations, σd is the data error, Δ is
the standard deviation of the SvF solution from the exact solution, Δ* is the estimate of Δ determined
by Formula (3).

# Problem σ*
cv rmsd* σd Δ Δ*

0 MSD(D_reg11x11) + Curv(T) 2.38 1.44 2.06 1.08 1.19

1 MSD(D_reg11x11) + Curv(T): M = 0 2.24 1.58 2.06 1.06 0.89

2 MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs 2.15 1.86 2.06 0.61 0.61

3 MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs, ϕ = ϕs 2.06 2.01 2.06 0.42 0

4 MSD(D_reg11x11) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K): M = 0 2.22 1.82 2.06 0.83 0.83

5 MSD(D_reg11x11) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K): M = 0, K/dT<=0 2.23 1.80 2.06 0.83 0.85

6 MSD(D_rnd121) + Curv(T): M = 0, l = ls, r = rs , ϕ = ϕs 2.13 2.05 2.08 0.24 0.39

7 MSD(D_rnd1000) + Curv(T): M = 0, l = ls, r = rs , ϕ = ϕs 2.02 2.01 2.01 0.13 0.15

8 MSD(D_reg11x11(ε = 0)) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K): M = 0 0.06 0.004 0 0.06 0

Lines 0–3. Lines 0–3 of Table 1 show some patterns of successive model modifications.
As expected, adding the “correct” additional conditions leads to a more accurate (see
column Δ) modification of the model. These conditions reduce the set of feasible solutions
of the optimization problem, while adding “correct” conditions cuts off unnecessary (non-
essential) parts from it. In the technology used, this leads to a decrease in the σ∗

cv cross-
validation error.

The growth of the rmsd* error seems paradoxical: the more accurate the model, the
greater its root mean square deviation from observations. However, it is easy to explain.
First of all, rmsd* is within the error limits of the initial data σd. Second, the better the
model, the closer it is to the exact solution, and for the exact solution rmsd = σd. Of course,
if regularization penalties that are too large are chosen, the solution will be distorted so
that rmsd will be greater than σd. This situation is shown in Figure 2A.

During modification, every subsequent model (from 0 to 3) is a follow up of the
previous one. Previously found solutions are used as initial approximations, which allows
us to find solutions faster as well as avoid poorly interpreted solutions.

Lines 4–5. The problems considered differ from Problem 5.1 by the selection criterion:
instead of the solution T, the functions ϕ, l, r, and K (defining the solution) are used
for regularization. This formulation seems to be more consistent with the physics of the
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phenomenon—a penalty imposed on the original functions determining the dynamics of
the process, and not on their consequence (solution). The estimates of the cross-validation
error (σcv) obtained are similar to Problem 5.1 but with smaller deviation from the exact
solution Δ. The decrease in deviation may be associated with a special case of generated
errors. The issue requires further research.

In Problem 5.4, the obtained solution of the thermal conductivity coefficient K (T)
(see Figure 7K) rises sharply to the right border. Suppose it is known in advance that
the coefficient is not to increase. This knowledge can be easily added to the model as an
additional condition (dK/dT <= 0). As a result (Problem 5.5), K(T) changed (see Figure 8K).
At the same time, the accuracy indicators (line 5) practically stayed unchanged, which
indicates that such an additional condition does not contradict the model and observations.

Line 6. Problem similar to Problem 5.3 but with a data set with a random arrangement
of observations in space and time. The same number of observations leads to the same
error estimates but the deviation from the exact solution is noticeably smaller. The use of
such data sets should be carefully considered.

Line 7. Increasing the number of observations to 1000 significantly improves the
accuracy of the solution.

Line 8. Using a data set with precise measurements allows us to get a close-to-exact solution.
General notes. The Δ* estimate generally describes Δ (the standard deviation of the SvF

solution from the exact one) well enough. Note, that the data error σd (usually unknown) is
used for the calculations.

Figures 4Err, 6Err, 8Err, 9T and 10Err show how the regularization distorts the solution.
As expected, distortions are mainly observed in regions with high curvature (large values
of the squares of the second derivatives).

It is easy to see that almost for all problems (except problem 5.8), the following
inequalities hold:

σ∗cv ≥ σd ≥ rmsd∗.

It appears to be true when the model used, the regularization method, and the cho-
sen cross-validation procedure are consistent with the data used and the physics of the
phenomenon. At least, if the wrong model is chosen for describing the data (an incorrect
mathematical description or too severe a regularization penalty), then the right-hand side
of the inequality does not hold. If the errors in setting the data are not random (for example,
space position related) or the cross-validation procedure is chosen incorrectly, the left side
of the inequality will be violated. Thus, the violation of the inequality above is a sign of
something going wrong.

7. Conclusions

The problems (and their solution) considered in the article illustrate the effective-
ness of the application of regularization methods and, in particular, the use of balanced
identification technology.

The results above confirm the thesis: the more data, the higher the accuracy, and
the more knowledge about the object, the more complex and accurate models can be
constructed. The technology used allows us to organize the evolutionary process of building
models, from simple to complex. In this case, the indicator determining “the winner in the
competitive struggle of models” is the error of cross-validation—reducing the error is a big
argument in favor of this model.

In addition, this gradual (evolutionary) modification is highly desirable as the formu-
lations under consideration are complex two-level (possibly multi-extreme) optimization
problems and their solution requires significant resources. Thus, finding a solution without
a “plausible” initial approximation would require computational resources that are too
large and, in addition, one cannot be sure that the solution found (one of the local minima
of the optimization problem) will have a subject interpretation that satisfies the researcher.

This step-by-step complication of the problem, together with specific techniques such
as doubling the number of grid nodes, can significantly save computational resources. All
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of this work’s results were obtained on a modern laptop (CORE i5 processor) within a
reasonable time (up to 1 h). The two-level optimization problem, which in this case allows
parallelization, consumes the majority of the resources. Tools for the solution of more com-
plex resource-intensive tasks exist for high-performance multiprocessor complexes [10,11].

As for computing resources, SvF technology is resource intensive. This is justified as it
is aimed at saving the researcher’s time.

Appendix A contains a listing of the task file. The notation used is close to the
mathematical one—a formal description of the model for calculations practically coincides
with the formulas of the model (1). This allows for an easy model modification (no “manual”
program code rewriting). For example, to take into account the heat flux at the border,
a corresponding condition defining the derivative at the border has to be added to the
task file.

Let us take a look at unsolved problems and possible solutions.
One problem is possible local minima. However, there are special solvers designed

to search for global extrema, for example, SCIP [15] (source codes are available) which
implements the branch-and-bound algorithm, including global optimization problems
with continuous variables. Perhaps, if a previously found solution is used as an initial
approximation, a confirmation that the found minimum is global might be obtained in a
reasonable time.

Finally, the paper considers various errors’ estimates of solution T(x,t) only and not
the other functions’ identification accuracy. The evaluation of the accuracy of determining
the thermal conductivity coefficient is particularly interesting. Another problem is the
formalization of errors that arise when replacing a real physical object with a mathematical
model and real observations with a measurement error model. In the future, these issues
should be researched.
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Appendix A. Task File Sample

The software package together with the considered task file (MSD(D_reg11x11) +
Curv(T):M = 0.odt) is freely available online in the Git repository https://github.com/
distcomp/SvF, accessed on 1 November 2022 (file SvF-2021-11.zip) (accessed on 1 Septem-
ber 2022).

Format: .odt-Open/Libre Office.
The file contains a complete formal description of Problem 5.1 (identification of un-

known functions of the mathematical model MSD(D_reg11x11) + Curv(T):M = 0 and a
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number of service instructions required for a numerical solution based on the balanced
identification technology.

The first line (see Figure A1) specifies the maximum number of iterations, the second
specifies the difference scheme, the third specifies the data source (data set), and the
fourth specifies the cross-validation procedure parameters. The following describes the
mathematical model: Set: defines the sets, Var: defines unknown variables—functions to
be identified, EQ: equations of the mathematical model, Obj: objective function (selection
criterion). Note that the first equation was made in the formula editor (Tex notation). A
different, less visual encoding of formulas (commented out line, marked with a # symbol)
can be used instead.

Figure A1. Listing of the example task file.
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