z mathematics

Special Issue Reprint

Mathematical Optimization
and Evolutionary Algorithms
with Applications

Edited by
Antonin Ponsich, Mariona Vila Bonilla and Bruno Domenech

www.mdpi.com/journal/mathematics

Mathematical Optimization and
Evolutionary Algorithms with
Applications

Mathematical Optimization and
Evolutionary Algorithms with
Applications

Editors

Antonin Ponsich
Mariona Vila Bonilla
Bruno Domenech

MDPI e Basel o Beijing @ Wuhan e Barcelona e Belgrade ¢ Manchester e Tokyo e Cluj e Tianjin

Editors

Antonin Ponsich Mariona Vila Bonilla Bruno Domenech
Universitat Politécnica de EAE Business School Universitat Politécnica de
Catalunya (UPC) Barcelona Catalunya (UPC)
Barcelona Spain Barcelona

Spain Spain

Editorial Office

MDPI

St. Alban-Anlage 66
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access
journal Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/si/mathematics/
Mathematical Optimization_Evolutionary_Algorithms).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,
Page Range.

ISBN 978-3-0365-7978-8 (Hbk)
ISBN 978-3-0365-7979-5 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
published articles, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons
license CC BY-NC-ND.

Contents

Aboutthe Editors

Antonin Ponsich, Bruno Domenech and Mariona Vila

Preface to the Special Issue “Mathematical Optimization and Evolutionary Algorithms with
Applications”

Reprinted from: Mathematics 2023, 11,2229, doi:10.3390/math11102229

Francisco Yuraszeck, Gonzalo Mejia, Jordi Pereira and Mariona Vila

A Novel Constraint Programming Decomposition Approach for the Total Flow Time Fixed
Group Shop Scheduling Problem

Reprinted from: Mathematics 2022, 10, 329, d0i:10.3390/math10030329

Min Wang, Guoshan Liu and Xinyu Lin

Dynamic Optimization of the Multi-Skilled Resource-Constrained Project Scheduling Problem
with Uncertainty in Resource Availability

Reprinted from: Mathematics 2022, 10, 3070, doi:10.3390/math10173070

Daniela Ambrosino and Carmine Cerrone
The Cost-Balanced Path Problem: A Mathematical Formulation and Complexity Analysis
Reprinted from: Mathematics 2022, 10, 804, d0i:10.3390/math10050804

Saul Zapotecas-Martinez, Abel Garcia-Ndjera and Adriana Menchaca-Méndez

Improved Lebesgue Indicator-Based Evolutionary Algorithm: Reducing Hypervolume
Computations

Reprinted from: Mathematics 2022, 10, 19, d0i:10.3390/math10010019

Akram Belazi, Héctor Migall6n, Daniel Génzalez-Sanchez, Jorge Génzalez-Garcia,

Antonio Jimeno-Morenilla and José-Luis Sanchez-Romero

Enhanced Parallel Sine Cosine Algorithm for Constrained and Unconstrained Optimization
Reprinted from: Mathematics 2022, 10, 1166, doi:10.3390/ math10071166

Jun Wu, Yuanyuan Li, Li Shi, Liping Yang, Xiaxia Niu and Wen Zhang

ReRec: A Divide-and-Conquer Approach to Recommendation Based on Repeat Purchase
Behaviors of Users in Community E-Commerce

Reprinted from: Mathematics 2022, 10, 208, d0i:10.3390/math10020208

Jin Qin, Xiqiong Li, Kang Yang and Guangming Xu

Joint Optimization of Ticket Pricing Strategy and Train Stop Plan for High-Speed Railway: A
Case Study

Reprinted from: Mathematics 2022, 10, 1679, doi:10.3390/math10101679

Jimmy H. Gutiérrez-Bahamondes, Daniel Mora-Melia, Bastidn Valdivia-Muiioz,

Fabian Silva-Aravena and Pedro L. Iglesias-Rey

Infeasibility Maps: Application to the Optimization of the Design of Pumping Stations in Water
Distribution Networks

Reprinted from: Mathematics 2023, 11, 1582, doi:10.3390/math11071582

Bruno Domenech, Laia Ferrer-Marti, Facundo Garcia, Georgina Hidalgo, Rafael Pastor and
Antonin Ponsich

Optimizing PV Microgrid Isolated Electrification Projects—A Case Study in Ecuador

Reprinted from: Mathematics 2022, 10, 1226, doi:10.3390/ math10081226

Rosa Galleguillos-Pozo, Bruno Domenech, Laia Ferrer-Marti and Rafael Pastor

Balancing Cost and Demand in Electricity Access Projects: Case Studies in Ecuador, Mexico and

Peru

Reprinted from: Mathematics 2022, 10, 1995, doi:10.3390/math10121995 219

Mohamed Abdelhamid, Salah Kamel, Emad M. Ahmed and Ephraim Bonah Agyekum

An Adaptive Protection Scheme Based on a Modified Heap-Based Optimizer for Distance and
Directional Overcurrent Relays Coordination in Distribution Systems

Reprinted from: Mathematics 2022, 10, 419, d0i:10.3390/math10030419 239

Luis Miguel Reyes-Barquet, José Octavio Rico-Contreras, Catherine Azzaro-Pantel,

Constantino Gerardo Moras-Sinchez, Magno Angel Gonzalez-Huerta,

Daniel Villanueva-Véasquez and Alberto Alfonso Aguilar-Lasserre

Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial
Wastes from the Sugarcane Industry: A Mexican Case Study

Reprinted from: Mathematics 2022, 10, 437, d0i:10.3390/math10030437 261

Luis Fernando Grisales-Norefia, Brandon Cortés-Caicedo, Gerardo Alcald and

Oscar Danilo Montoya

Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC
Networks

Reprinted from: Mathematics 2023, 11, 387, d0i:10.3390/math11020387 303

Jeewon Park, Oladayo S. Ajani and Rammohan Mallipeddi
Optimization-Based Energy Disaggregation: A Constrained Multi-Objective Approach
Reprinted from: Mathematics 2023, 11, 563, d0i:10.3390/math11030563 321

Denis D. Chesalin and Roman Y. Pishchalnikov

Searching for a Unique Exciton Model of Photosynthetic Pigment-Protein Complexes:
Photosystem II Reaction Center Study by Differential Evolution

Reprinted from: Mathematics 2022, 10, 959, d0i:10.3390/math10060959 335

Xavier Martinez, Jordi Pons-Prats, Francesc Turon, Marti Coma, Lucia Gratiela Barbu and
Gabriel Bugeda

Multi-Objective Multi-Scale Optimization of Composite Structures, Application to an Aircraft
Overhead Locker Made with Bio-Composites

Reprinted from: Mathematics 2023, 11, 165, d0i:10.3390/math11010165. 353

vi

About the Editors

Antonin Ponsich

Antonin Ponsich, Ph.D., is a lecturer at the Department of Management of the Technical
University of Catalonia (UPC). He is a Process Engineer and a Doctor in Process and Environmental
Engineering from the National Polytechnic Institute of Toulouse (INPT, France). He has held various
positions as a researcher and teacher at the INPT, Autonomous Technological Institute of Mexico,
Center for Research and Advanced Studies of the National Polytechnic Institute (Mexico) and
Systems Department of the Autonomous Metropolitan University (UAM, Mexico), Azcapotzalco
unit. His research focuses on the adaptation and application of mono- and multi-objective
optimization techniques for operations research problems, mainly based on metaheuristics and
evolutionary algorithms. He has participated in several research projects and is the author or
co-author of books and articles published in international reference journals (ASOC, IEEE TEVC,
COR, among others).

Mariona Vila Bonilla

Mariona Vila Bonilla, Ph.D., is a lecturer at EAE Business School and an associate professor at
Universitat Politecnica de Catalunya, where she teaches courses regarding business management,
supply chain management and project management. She is a Chemical Engineer and Doctor in
Business Management from the UPC (Universitat Politecnica de Catalunya), with more than 11 years
of experience in higher education teaching, both within public and private institutions. Her research
focus is on the application of heuristic and exact algorithms in solving production, logistics and

transportation problems.

Bruno Domenech

Bruno Domenech, Ph.D., is an associate professor at the Department of Management of the
Technical University of Catalonia (UPC), under the Serra Hunter program of the Generalitat de
Catalunya, at the Barcelona School of Industrial Engineering (ETSEIB) and the Barcelona East School
of Engineering (EEBE). He is an Industrial Engineer, Scheduling Engineer and Doctor in Industrial
Engineering from the UPC (Universitat Politecnica de Catalunya). He has held various positions
as a researcher and teacher at the UPC, Open University of Catalonia (UOC) and Pompeu Fabra
University (UPF), as well as at the University College Dublin (UCD), co-funded by the Marie Curie
FP7-PEOPLE-2013-COFUND program. Within the framework of the Institute of Industrial and
Control Engineering of the UPC, his research focuses on the application of quantitative methods
of operational research to solve logistics and industrial organization problems, with a practical,
applied, social and sustainable approach. Specifically, he has conducted studies in the areas of
energy planning, production organization and supply chain design. He has participated in several
competitive projects and is the author or co-author of many book chapters and scientific articles
published in reference journals (EJOR, RSER, EGY, JEPO, RENE, ESD, IJPDLM, among others).

vii

. mathematics

Editorial

Preface to the Special Issue “Mathematical Optimization and
Evolutionary Algorithms with Applications”

Antonin Ponsich *, Bruno Domenech ! and Mariona Vila 2

Citation: Ponsich, A.; Domenech, B.;
Vila, M. Preface to the Special Issue
“Mathematical Optimization and
Evolutionary Algorithms with
Applications”. Mathematics 2023, 11,
2229. https://doi.org/10.3390/
math11102229

Received: 27 April 2023
Accepted: 4 May 2023
Published: 10 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Management Department, Universitat Politecnica de Catalunya—BarcelonaTech, 08028 Barcelona, Spain;
bruno.domenech@upc.edu

Academic Department, EAE Business School, 08015 Barcelona, Spain; mariona.vila.bonilla@upc.edu
Correspondence: antonin.sebastien.ponsich@upc.edu

It is recognized that many real-world problems can be interpreted and formulated as
optimization problems. This feature has fostered the development of research studies aim-
ing to design and implement efficient optimization methods, able to address the increasing
complexity of the applications that are intended to be solved. These research studies have
mostly followed two main axes.

The first one focuses on the theoretical development of advanced solution strategies
through the perspective of tackling problems of increasing complexity. For instance, mul-
timodal objective functions, highly constrained search spaces, single vs. multi-objective
problems, optimization of stochastic systems, among others. In this matter, thanks to both
cutting-edge mathematical tools and the increasing power of computational hardware,
exact solution methods (in general based on mathematical programming) now enable
solving large-size intricate problems. However, many problems have also required the
implementation of approximated, heuristic or metaheuristic techniques, which are not
affected by the mathematical properties of the tackled problem but, on the other hand,
are unable to guarantee result optimality. Within this class of approximated optimization
methods, evolutionary algorithms occupy a relevant part of the devoted literature.

On the other hand, a great effort has also been made towards developing problem-
devoted techniques that aim to efficiently find high-quality solutions to specific applications
drawn from a wide spectrum of areas (engineering, social sciences, biotechnologies, fi-
nances, etc.). The corresponding studies do not usually start designing a new solution
strategy from scratch, but rather reuse techniques developed in general frameworks and
adapt their working mode to the specific feature of the problem that is being tackled. As
a consequence, it is necessary to take advantage of the problem structure, conditioning
factors or particular characteristics of the considered application for an efficient solution
technique to be built.

The Special Issue proposed here illustrates both types of studies. Indeed, as shown in
Table 1, 5 out of the 16 published articles tackle the issue of the theoretical development
of optimization techniques or the formulation of academic operations research problems.
Among these theoretical papers, two of them propose novel mathematical formulations
for academic problems, while the other three focus on the development of evolutionary
algorithms as a solution technique. The remaining 11 papers propose original and ad hoc
solution strategies for different applications. Table 1 provides an overview of the topics
addressed in these papers. It is worth highlighting that among these 11 studies, a majority
of them use evolutionary algorithms, while four are based on mathematical programming.

The papers will be explained in detail, beginning with the theoretical studies. Yuraszeck
et al. [1] propose a novel heuristic procedure to solve the fixed group shop scheduling
problem, in which the tasks corresponding to each job have been assigned to stages, and
the tasks of each stage share a set of machines. The authors introduce an algorithm that
uses both a decomposition-based approach, as well as a constraint programming solver,

Mathematics 2023, 11, 2229. https:/ /doi.org/10.3390/math11102229

https:/ /www.mdpi.com/journal/mathematics

Mathematics 2023, 11, 2229

allowing for the inclusion of extra constraints found in real-life instances. To test the
performance of the proposed approach, computational tests are carried out to compare
the algorithm with some available solvers; the former obtained the best solution in most
instances. The heuristic procedure is also used in a Colombian automotive company case
study, in which not only is the scheduling of jobs optimized, but also information about
bottlenecks is easily obtained.

Table 1. Classification of the papers included in the Special Issue.

s Mathematical Evolutionary
Type Application Modelling Algorithms
Scheduling [1] [2]
Theory Mathematics [3] [4,5]
Distribution and Commerce [6] [7,8]
Application Energy [9,10] [11-14]
Physics and Materials [15] [16]

In Zapotecas et al. [4], the authors focus on one of the main paradigms employed for
handling multi-objective optimization problems (MOPs) with evolutionary algorithms,
which use hypervolume as a performance indicator governing the selection operator. A
well-known drawback of this strategy is the complexity of the hypervolume computa-
tion when the number of objectives increases. This paper uses the property regularity of
continuous MOPs, as well as the locality property of the hypervolume in order to reduce
the number of computations of this indicator within a novel and efficient multi-objective
evolutionary algorithm (MOEA). Three academic applications, with a number of objectives
ranging from 4 to 7, are solved with the new algorithm, and the numerical experiments
highlight the benefits of the proposed methodology for identifying efficiently better ap-
proximations of the Pareto front (when compared with classical MOEAs based on the
hypervolume indicator).

In Ambrosino and Cerrone [3], a variant of the shortest path problem is proposed,
considering both negative and positive costs at the edges of a graph. The aim consists
of obtaining the Hamiltonian cycle such that the sum of the costs associated with each
edge on the chosen path is close to 0. The resulting problem, called the cost-balanced
path problem, is proved to be NP-hard since it can be reduced to the Hamiltonian path
problem, which is NP-hard. Different versions of this problem are also introduced, so
that practical conditions can be included through the appropriate constraints, and their
complexity is also studied. Finally, computational experiments empirically confirm the
problem complexity and suggest the need for heuristic or metaheuristic solution techniques
to address large-size instances.

Belazi et al. [5] introduce an improved version of the sine-cosine algorithm (SCA),
which is a population-based metaheuristic recently developed in the area of continuous
optimization. The modifications proposed consist of the introduction of a new equation
within the algorithm'’s variation operator, leading to an enhanced intensification effect,
which promotes convergence towards the best solutions found. In addition, several paral-
lelization strategies are implemented and tested in order to identify the best performing
one. Finally, the new technique proves to significantly outperform the original SCA when
both versions are compared over a benchmark, including 30 classical unconstrained text
functions and several constrained engineering problems. Additionally, the enhanced SCA
obtains very good results when its performance levels are compared with those of a set of
state-of-the-art algorithms, such as differential evolution or grey wolf optimizer.

In the last theoretical work of this Special Issue, Wang et al. [2] address the multi-skilled
resource-constrained project scheduling problem, which combines a typical scheduling of
activities with the skill assignment of resources, taking into account uncertainty in resource
availability. The authors formulate the corresponding mathematical model and, given its
complexity, propose a genetic algorithm combined with priority rules. A computational

Mathematics 2023, 11, 2229

experiment is performed comparing dynamic, random and static scheduling, showing the
effectiveness of the first option. These results can help project managers in the selection
of resources at the beginning of a project and the reinforcement of resources during the
execution, especially under uncertain contexts such as COVID-19.

Regarding the 11 studies devoted to the solution of specific applications, Wu et al. [6]
present a novel approach for algorithms devoted to community commerce recommendation
for repeated purchases. The authors attempt to fill in the perceived gap in these types of
purchase recommendation algorithms by accounting not just for past customer behaviors,
but also for the repeat purchase behavior of different types of customers. The method
uses a divide-and-conquer strategy, separating users into four categories: active users with
stable interest, active users with unstable interest, inactive users with stable interest and
inactive users with unstable interest. The proposed algorithm is tested on a real dataset and
outperforms well-known recommendation algorithms by at least 13.6% in all categories,
showing an even greater performance among active users.

Abdelhamid et al. [11] propose an adaptive protection scheme, used to overcome the
coordination problems presented by protection relays. The adaptive protection scheme
presented is based on both original and modified heap-based optimization. The algorithm
proposed is tested using the IEEE 8-bus and the IEEE 14-bus test systems, obtaining better
results than the existing algorithms. Specifically, the adaptive protection scheme is able to
more reliably investigate the benefits of both directional overcurrent relays and distance
relays. Additionally, the modified heap-based optimization makes the algorithm more
effective at solving relay coordination.

Reyes-Barquet et al. [12] present a multi-objective genetic algorithm, which, combined
with a TOPSIS analysis for multi-criteria decision making, is applied in the design stage of
hydrogen supply chain networks. A specific case study is selected, where the hydrogen
is obtained using energy generated by the biomass waste produced by Mexican sugar
factories. The algorithm uses both the maximization of profit and the minimization of
greenhouse gas emissions as optimization objectives. The results of the study highlight the
benefits that could be obtained from this unorthodox energy source, as the case study was
validated by several economic metrics, such as an internal rate of return of 21.5%, while
remaining environmentally respectful.

In Chesalin and Pishchalnikov [15], the optical properties of pigment-protein com-
plexes (PPCs) are investigated due to their major relevance in the study of photosynthetic
mechanisms of living species. These properties and, in particular, the spectral response of
PPC can be assessed either experimentally or through a simulation. However, the simula-
tion process uses a set of input parameters that should be appropriately tuned in order to
produce valid results. In this study, the differences between the experimental and simulated
spectral responses of different PPCs are minimized through an evolutionary algorithm,
differential evolution (DE), which has proved to perform very well for real-parameter
optimization problems. Ten different DE strategies are implemented and their performance
levels are compared, showing that the DE/rand-to-best/1/exp version consistently obtains
the best results, although the authors recommend the use of self-adaptive implementations
to improve the convergence rate.

Domenech et al. [9] deals with the design of autonomous electrification systems in
Ecuador’s amazon region (RAE), which is an isolated area with communities scattered
across the rainforest. This situation involves great practical and economic difficulties
for the development of electrification systems promoting the access to power for rural
and indigenous local populations. This work introduces a mathematical model for the
design of stand-alone rural electrification systems based on photovoltaic technologies,
including both microgrid or individual supply configurations. The corresponding mixed
integer linear programming (MILP) problem considers economic, technical and social
aspects, and it is used to design electrification systems (equipment location and sizing and
microgrid configurations) in three real communities, providing relevant insights regarding
RAE electrification.

Mathematics 2023, 11, 2229

Another original application is presented in Qin et al. [7], which tackles the manage-
ment of a high-speed railway in China. In particular, the problems of ticket pricing, train
stop planning and seat allocation are all addressed in this study. A mathematical model is
formulated, with the aim of maximizing the total revenue of the railway company while
minimizing passengers’ time loss. Due to the complexity of the resulting MILP problem, a
simulated annealing algorithm is adopted as a solution technique, with two nested neigh-
borhood structures; the first one deals with the stop plan, and the second focuses on ticket
pricing and seat allocation. A solution using the proposed methodology is provided for
the case study that is presented in this study, allowing for significant improvements of
the chosen performance criteria when compared with those observed in the real system
operation mode.

Galleguillos-Pozo et al. [10] develop a fuzzy MILP model to design wind-PV-battery
electricity access projects for remote communities of developing countries. It is hard to
estimate the electricity needs of the population in those areas, so fuzziness is introduced to
balance the project cost vs. the demand supplied within a range of predefined values. Two
approaches are considered: maximizing the general satisfaction of the whole community
and maximizing the satisfaction of the least satisfied consumption point. The model is used
to design electricity access projects in Ecuador, Mexico and Peru. The results achieve a
generally better balance between the project cost and the electricity supplied than those
that would have been obtained without using a fuzzy MILP model.

In Martinez et al. [16], a multi-objective and multi-scale optimization procedure is
designed to improve the structure performance of eco-composites. As objectives, the shelf
stiffness and the material cost and weight are optimized by modifying the configuration of
the structure at macro and micro levels. The results highlight the importance of considering
both the micro and macro structure when designing composite materials. An illustrative
example is shown for the design of the cabin stowage bin located above the seats in
airplanes. This procedure can be helpful for optimizing the design of eco-composites in
many engineering structures, reducing the environmental impact.

Grisales-Norefia et al. [13] propose a mixed integer non-linear programming model
to minimize the yearly operation costs of PV generators integrated into DC grids. The
problem is solved through a primary—secondary methodology. First, the primary problem
is addressed to locate and size the PV modules using a discrete-continuous version of the
crow search algorithm. Second, the secondary problem searches the objective function
value through the successive approximation power flow method. Test instances are used to
validate the proposed methodology, which better performs in terms of applicability and
effectiveness in comparison to other literature approaches; lower operation costs of the
solution and computation times to solve the problem are achieved.

Park et al. [14] focus on the energy disaggregation problem, which consists of esti-
mating the energy consumption of each device given the aggregated measure from the
smart meter. In this perspective, the authors develop a multi-objective model that opti-
mizes sparsity and disaggregation, subject to constraints related to equipment operational
characteristics. The model is solved by means of an evolutionary algorithm. The results
are compared to those obtained using different formulations from the literature, achieving
better performance either on the appliance level or on the disaggregation accuracy.

Finally, Gutiérrez-Bahamontes et al. [8] identify the complexity of designing pump
stations in real-size water distribution networks. To address this gap, they propose reducing
the problem size through a preprocess where the range of flows that every pump station
can manage is calculated, which leads to the construction of infeasibility maps. Then,
the problem is optimized by means of a pseudo-genetic algorithm. They later perform a
computational experiment showing that the preprocess effectively reduces the solution
space, significantly improving the computation time and achieving better solutions in terms
of the objective function value obtained.

Finally, it is worth providing a general overview of the Special Issue in terms of the
geographical origin of the institutions of the papers” authors in this Special Issue. Figure 1

Mathematics 2023, 11, 2229

illustrates the fact that the most represented institutions are from Spain, followed by China
and Latin American countries (20, including Mexico, Chile and Colombia). Additionally, it
can be mentioned that the mean number of authors per paper is 4.3.

Number of Authors

Ny & O N U &Y > 3 & NS
L & P & & @Q RN &
AR & & s
& S
&
Q.

Figure 1. Geographical distribution of the institutions of accepted papers” authors.

In conclusion, the resulting mixture of methods, algorithms and applications for
the treatment of complex optimization problems presented in this Special Issue, either
through mathematical tools or metaheuristic algorithms, is expected to contribute to the
development of research in this area. We also believe that the new knowledge acquired
here, as well as the applied results are attractive and useful for young scientists, doctoral
students and researchers from various scientific specialties.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

Yuraszeck, F.; Mejia, G.; Pereira, J.; Vila, M. A Novel Constraint Programming Decomposition Approach for the Total Flow Time
Fixed Group Shop Scheduling Problem. Mathematics 2022, 10, 329. [CrossRef]

Wang, M; Liu, G.; Lin, X. Dynamic Optimization of the Multi-Skilled Resource-Constrained Project Scheduling Problem with
Uncertainty in Resource Availability. Mathematics 2022, 10, 3070. [CrossRef]

Ambrosino, D.; Cerrone, C. The Cost-Balanced Path Problem: A Mathematical Formulation and Complexity Analysis. Mathematics
2022, 10, 804. [CrossRef]

Zapotecas-Martinez, S.; Garcia-Najera, A.; Menchaca-Méndez, A. Improved Lebesgue Indicator-Based Evolutionary Algorithm:
Reducing Hypervolume Computations. Mathematics 2022, 10, 19. [CrossRef]

Belazi, A.; Migallon, H.; Gonzalez-Sanchez, D.; Gonzalez-Garcia, J.; Jimeno-Morenilla, A.; Sanchez-Romero, J.L. Enhanced Parallel
Sine Cosine Algorithm for Constrained and Unconstrained Optimization. Mathematics 2022, 10, 1166. [CrossRef]

Wu, J.; Li, Y,; Shi, L.; Yang, L.; Niu, X.; Zhang, W. ReRec: A Divide-and-Conquer Approach to Recommendation Based on Repeat
Purchase Behaviors of Users in Community E-Commerce. Mathematics 2022, 10, 208. [CrossRef]

Qin, J.; Li, X;; Yang, K.; Xu, G. Joint Optimization of Ticket Pricing Strategy and Train Stop Plan for High-Speed Railway: A Case
Study. Mathematics 2022, 10, 1679. [CrossRef]

Gutiérrez-Bahamondes, J.H.; Mora-Melia, D.; Valdivia-Mufioz, B.; Silva-Aravena, F.; Iglesias-Rey, P.L. Infeasibility Maps:
Application to the Optimization of the Design of Pumping Stations in Water Distribution Networks. Mathematics 2023, 11, 1582.
[CrossRef]

Domenech, B.; Ferrer-Marti, L.; Garcia, F.; Hidalgo, G.; Pastor, R.; Ponsich, A. Optimizing PV Microgrid Isolated Electrification
Projects—A Case Study in Ecuador. Mathematics 2022, 10, 1226. [CrossRef]

Galleguillos-Pozo, R.; Domenech, B.; Ferrer-Marti, L.; Pastor, R. Balancing Cost and Demand in Electricity Access Projects: Case
Studies in Ecuador, Mexico and Peru. Mathematics 2022, 10, 1995. [CrossRef]

Mathematics 2023, 11, 2229

11.

12.

13.

14.

15.

16.

Abdelhamid, M.; Kamel, S.; Ahmed, E.M.; Bonah Agyekum, E. An Adaptive Protection Scheme Based on a Modified Heap-Based
Optimizer for Distance and Directional Overcurrent Relays Coordination in Distribution Systems. Mathematics 2022, 10, 419.
[CrossRef]

Reyes-Barquet, L.M.; Rico-Contreras,].O.; Azzaro-Pantel, C.; Moras-Sanchez, C.G.; Gonzalez-Huerta, M.A; Villanueva-Vasquez,
D.; Aguilar-Lasserre, A.A. Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes
from the Sugarcane Industry: A Mexican Case Study. Mathematics 2022, 10, 437. [CrossRef]

Grisales-Norena, L.F,; Cortés-Caicedo, B.; Alcala, G.; Danilo Montoya, O. Applying the Crow Search Algorithm for the Optimal
Integration of PV Generation Units in DC Networks. Mathematics 2023, 11, 387. [CrossRef]

Park, J.; Ajani, O.S.; Mallipeddi, R. Optimization-Based Energy Disaggregation: A Constrained Multi-Objective Approach.
Mathematics 2023, 11, 563. [CrossRef]

Chesalin, D.D.; Pishchalnikov, R.Y. Searching for a Unique Exciton Model of Photosynthetic Pigment-Protein Complexes:
Photosystem II Reaction Center Study by Differential Evolution. Mathematics 2022, 10, 959. [CrossRef]

Martinez, X.; Pons-Prats, J.; Turon, E; Coma, M.; Gratiela Barbu, L.; Bugeda, G. Multi-Objective Multi-Scale Optimization
of Composite Structures, Application to an Aircraft Overhead Locker Made with Bio-Composites. Mathematics 2023, 11, 165.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

. mathematics

Article

A Novel Constraint Programming Decomposition Approach for
the Total Flow Time Fixed Group Shop Scheduling Problem

Francisco Yuraszeck 2, Gonzalo Mejia 3, Jordi Pereira 5 and Mariona Vila %*

Citation: Yuraszeck, F.; Mejia, G.;
Pereira, J.; Vila, M. A Novel
Constraint Programming
Decomposition Approach for the
Total Flow Time Fixed Group Shop
Scheduling Problem. Mathematics
2022, 10, 329. https://doi.org/
10.3390/math10030329

Academic Editor: Ripon Kumar

Chakrabortty

Received: 20 December 2021
Accepted: 17 January 2022
Published: 21 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Facultad de Ingenieria, Universidad Andres Bello, Quillota 980, Vifia del Mar 2531015, Chile;
francisco.yuraszeck@unab.cl

Escuela de Ingenieria Industrial, Pontificia Universidad Catdlica de Valparaiso, Avenida Brasil 2241,
Valparaiso 2362807, Chile

Facultad de Ingenieria, Universidad de La Sabana, Campus Universitario Puente del Comtn, Km 7 Autopista
Norte de Bogotd, Chia 250001, Colombia; gonzalo.mejia@unisabana.edu.co

Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibdnez, Av. Padre Hurtado 750,

Vina del Mar 2520001, Chile; jorge.pereira@uai.cl or jordi.pereira@bsm.upf.edu

UPF Barcelona School of Management, Universitat Pompeu Fabra, C. Balmes 132-134, 08008 Barcelona, Spain
Academic Department, EAE Business School, 08015 Barcelona, Spain

Correspondence: mariona.vila.bonilla@upc.edu

Abstract: This work addresses a particular case of the group shop scheduling problem (GSSP) which
will be denoted as the fixed group shop scheduling problem (FGSSP). In a FGSSP, job operations are
divided into stages and each stage has a set of machines associated to it which are not shared with
the other stages. All jobs go through all the stages in a specific order, where the operations of the job
at each stage need to be finished before the job advances to the following stage, but operations within
a stage can be performed in any order. This setting is common in companies such as leaf spring
manufacturers and other automotive companies. To solve the problem, we propose a novel heuristic
procedure that combines a decomposition approach with a constraint programming (CP) solver
and a restart mechanism both to avoid local optima and to diversify the search. The performance
of our approach was tested on instances derived from other scheduling problems that the FGSSP
subsumes, considering both the cases with and without anticipatory sequence-dependent setup
times. The results of the proposed algorithm are compared with off-the-shelf CP and mixed integer
linear programming (MILP) methods as well as with the lower bounds derived from the study of
the problem. The experiments show that the proposed heuristic algorithm outperforms the other
methods, specially on large-size instances with improvements of over 10% on average.

Keywords: scheduling; fixed group shop; group shop; constraint programming

1. Introduction

In the academic world, traditional scheduling problems such as the flow shop schedul-
ing problem, FSSP, the job shop scheduling problem, JSSP, or the open shop scheduling
problem (OSSP) have been widely studied (see [1] for a general reference on scheduling
problems). However, these scheduling problems may not cover all the requirements for
specific manufacturing settings [2]. In this context, the group shop scheduling problem
(GSSP) emerges as a generalized shop scheduling problem that includes, among others, the
OSSP and the JSSP as special cases [3]. Due to its characteristics, the GSSP is a more flexible
model with which address the requirements of multiple challenging real-life scheduling
problems often found in the manufacturing industry.

In this paper, we consider a particular case of a GSSP that we denote as fixed group
shop scheduling problem (FGSSP) [4]. In a fixed group shop environment, the operations
of each job have been divided into stages, and the operations corresponding to each stage
share the same set of machines. All jobs must proceed through each stage and perform the

Mathematics 2022, 10, 329. https:/ /doi.org/10.3390 /math10030329

https:/ /www.mdpi.com/journal/mathematics

Mathematics 2022, 10, 329

associated operations in the stage before proceeding to the next stage. Therefore, the FGSSP
generalizes both OSSP and FSSP, and contains common features from many industrial
environments in which manufacturing is organized in multiple sequential OSSP stages. By
contrast, the classical GSSP formulation contains the OSSP and the JSSP as special cases, as
each job may have a different route through the stages.

An example of a FGSSP can be found in mechanical workshops where routine car
maintenance operations are performed. The number of operations for each job (car) and
their processing times depend on different factors as the odometer count or the time
between maintenances. For each car the set of maintenance operations can be divided into
stages and the tasks to be performed on each stage must be completed before proceeding
to the next stage (i.e., change the air filter, change the motor oil, etc.) with an ordering of
stages predefined by the layout of the workshop, but there is no specific order in which
operations within a single stage are to be performed (i.e., they have no relationship between
them). Additionally, some setup operations may be required between jobs performed in a
single machine, and thus sequence-dependent setup times are to be expected.

Another example of the FGSSP can be found in the manufacturing process of leaf
springs. Each leaf requires several punching and forming operations that can be performed
in any order. Once all these operations have been performed, the leaf is transferred to the
heat treatment, sandblasting, painting, and assembly workstations. In the computational
experiments section, see Section 6, we present a case study taken from a Colombian
automotive company that falls within this specific example of application.

As in any other scheduling problems, multiple objective functions may be considered.
In this work, we consider minimizing the total flow time.

To the best of our knowledge, the FGSSP has not been studied before even if the
model has practical applications. Due to its computational complexity, it subsumes several
well-known hard-to-solve problems. This work presents a novel ad hoc heuristic approach
to solving the FGSSP with and without anticipatory sequence-dependent setup times under
the total flow time minimization objective. According to the three-field notation proposed
in [5], these problems can be denoted as the FGSSP; | Sji | 1; Cj and the FGSSPs || I; Cj,
respectively.

The proposed heuristic relies on decomposing the problem into smaller subproblems
and solving each subproblem through constraint programming (CP) [6] for a fixed amount
of time. The heuristic can be seen as a hybrid metaheuristic [7] or a matheuristic [8]
as it combines two optimization solution methods (i.e., a heuristic and an exact method
approach). To test the performance of the decomposition approach, we performed extensive
computational experiments with small, medium and large instances. We report the results
of a computational study in which we compare our approach with off-the-shelf state-of-the-
art CP and mixed integer linear programming (MILP) approaches. The results show the
validity of our decomposition approach over a traditional method providing significant
improvements over commercial solvers, specially for large instances.

The remainder of the paper is organized as follows. Section 2 reviews the literature on
problems with similar characterstics to the FGSSP. Section 3 introduces the FGSSP, provides
a problem definition, and gives an illustrative example of it. Section 4 puts forward a MILP
and a CP formulation for the problem, and provides some lower bounds on the optimal
objective value. Section 5 describes the decomposition-based procedure used to solving
the problem, including the generation of initial solutions, the local search phase, and a
shaking procedure designed to escape from local optima. Section 6 provides the results of
the computational experiments conducted to test the method, as well as an industrial case
study. Finally, Section 7 concludes and provides some possible research lines.

2. Literature Review

Scheduling corresponds to the allocation of scarce resources (i.e., machines) to perform
tasks (i.e., jobs) over time [1]. Due to its generality and broad use, scheduling has become
an important area within the operations research (OR) and operations management (OM)

Mathematics 2022, 10, 329

communities that focus their contributions on the development of decision-making methods
to optimize one or multiple goals.

Among the scheduling problems, we focus our attention on a family known as “shop”
problems. Among the different classifications of “shop” problems we are interested in a
classification based on (i) their routes, that is, the path that the jobs must follow on the
machines and, (ii) the sequence of operations that must be processed in each machine.
The most common models in the literature consider that jobs follow a unique route (the
FSSP), each job has its own route (the JSSP), or arbitrary routes (the OSSP)—but other
cases exist. For these cases more elaborate models are needed to cope with different
scheduling conditions.

An early example of these models can be found in [9]. In [9] the authors propose a
hybrid model denoted as the mixed shop scheduling problem (MSSP) problem in which
some jobs have their own predefined routes (i.e., as in a JSSP) and some jobs do not (i.e., as
in an OSSP). Another example of alternative route schemes is the group shop scheduling
problem (GSSP), also known as the stage shop problem [10]. The GSSP generalizes the
MSSP and considers a set of distinct machines that perform operations on the jobs. Each
stage must perform a subset of operations associated to the jobs and can perform these
operations in any order within the stage, but the stages to be must be processed in a
predetermined order. Note that the MSSP is a special case of GSSP, in which each stage has
one operation or there is only one stage that contains all operations [11].

We now proceed to review the literature on the GSSP, as well as some works that make
use of CP approaches within the scheduling literature.

The literature of the GSSP is abundant and mainly focuses on the makespan mini-
mization objective [3,12-19]; other optimization objectives for the GSSP have been less
studied. An example of other objectives can be found in [20], where the authors propose an
application of a chance-constrained version of the GSSP with a total weighted completion
time objective.

Sequence-dependent setup times, as well as transportation times have also been
studied within the GSSP literature, [13]. In [21] the authors considered the use of a robot to
transport material through the multiple processing stages in a GSSP environment.

Additionally, other publications have addressed stochastic and/or fuzzy extensions
for the GSSP [12,13,20,22,23].

Regarding solution procedures, most of the literature focuses on metaheuristic ap-
proaches. Among them, genetic algorithms [13,18], Tabu Search [11,16,18,24], artificial
bee colonies [17], iterated local search [24], Simulated Annealing [24], evolutionary algo-
rithms [24], multi-start multi-level evolutionary local search [15] and ant colony optimiza-
tion [3,24] are the most common. According to [24] the Tabu search showed the best results
among the compared methods (an ant colony optimization, an evolutionary algorithm, an
iterated local search, and a simulated annealing approach).

Exact methods, such as constraint programming (CP), have also been used to solve
scheduling problems but, to the best of our knowledge, they have not been used to address
the GSSP or similar problems. We review the works on exact methods for shop scheduling
problems that are relevant to the method proposed in this work.

In [25] the authors proposed a CP approach to solve the JSSP, and in [26] the authors
propose a CP approach to solve the OSSP. The approach proposed in [26] uses a new
upper bound heuristic combined with constraint propagation and a branching technique
to solve the problem. In [27] the authors proposed MILP and CP models to solve the online
printing shop scheduling problem (OPSSP). The OPSSP can be seen as a JSSP where there
are multiple units of some of the machines (hence, leading to a degree of flexibility within
the sequence of operations for each job). The numerical experiments in [26] show that the
CP method outperforms the MILP approach by a large extent. In [28], the authors used
a CP model as their benchmark to compare the performance of a variable neighborhood
search (VNS) for the OSSP with travel/setup times. Their VNS makes use of a probabilistic
learning mechanism to self-tune a parameter that balance the generation of active or non-

Mathematics 2022, 10, 329

delay solutions. More recently, in [29] the authors proposed four CP formulations to
tackle four complex flexible shop scheduling problems (i.e., the no-wait hybrid flow shop
scheduling problem, the hybrid flow shop scheduling problem with sequence-dependent
setup times, the flexible job shop scheduling problem with worker flexibility and the
semiconductor final testing problem). Their experimental results report that the CP models
outperform previously proposed solution methods. Authors in [30] address the distributed
flexible job shop scheduling problem (an environment with multiple factories in which
each factory is a flexible JSSP) comparing the performance of a MILP and a CP approached,
showing that the CP method outperforms the CP.

A third type of solution procedure combines exact and heuristic approaches. Such
methods are known as hybrid methods or matheuristics. In [31] the authors describe an
method that combines constraint programming with a decomposition method and use it
to solve the JSSP. Authors in [32] described a hybrid decomposition method to solve the
continuous-time scheduling problem of multipurpose batch plants where the assignment of
units to tasks is made using a MILP master problem, and CP subproblems are used to check
the feasibility of specific assignments as well as to generate cuts for the master problem.
Additionally, in [33], a hybrid method based on CP and local search is proposed in order to
solve the routing and the scheduling of feeder vessels in multi-terminal ports. The results
indicate that the the variability in solution quality provided by local search heuristics can be
decreased by combining of the local search and the CP method. In another study, authors
in [34] provided a survey of intelligent scheduling systems. The work categorizes previous
contributions according to five solution techniques: fuzzy logic, expert systems, machine
learning, stochastic local search optimization algorithms, and CP. Lastly, authors in [35]
hybridize a VNS with a CP search strategy for the OSSP with operation repetitions under a
makespan criterion, showing good performance on the tested instances.

3. The Fixed Group Shop Scheduling Problem
3.1. Problem Definition

The fixed group shop scheduling problem (FGSSP) is a variant of the group shop
scheduling problem (GSSP) in which not only jobs, but also machines are grouped into stages.

The FGSS considers a set of 7 jobs | = {1, J2, ..., Ju}, each of them consisting of a set
of non-preemtive operations o0;; = {O 11,0/, -+, ij} that must be performed on a set of m
machines M = {Mj, My, ..., My }. Eachjob j €] must be processed by each machine and
must proceed through each stage S = {51, Sy, ..., Ss}, wherein a subset of its operations
must be performed before advancing to the next stage. The operations of all jobs j € | that
must be processed at stage S require the same set of machines.

As in the GSSP, in the FGSSP all jobs must perform an operation on each machine, and
the operations associated to a given job in a given stage can be performed in any order.
Unlike the GSSP, in the FGSSP each machine is associated to a given stage and stages are
ordered in a fixed route that all jobs perform. Consequently, when the number of machines
in each stage is 1, the GSSP becomes a job shop, while the FGSSP becomes a flow shop. The
OSSP is both a special case of the GSSP and the FGSSP in which all operations belong to a
single stage.

3.2. An Illustrative Example

Table 1 provides a small-size example with 3 jobs and 7 machines for a total of
21 operations. The table details the processing times of each operation associated to each
job in the 7 machines.

A solution to the FGSSP can be visualized through a classical disjunctive graph
representation or a Gantt chart. Figure 1a provides an arbitrary solution to the example
problem with Z]- Cj =60, C; = 23, C; = 12, C3 = 24, where C; is the completion time of job
j- The red dotted arcs in Figure 1a show the sequence at the machines and the black dotted
arcs show the groups-permutations (i.e., the route of operations for J; at Sq is O12, O13 and

10

Mathematics 2022, 10, 329

011 then the route within the stage is My — M3 — M;). A Gantt chart representation of the
solution is provided in Figure 1b.

Table 1. Processing times of the small-size instance. For every job, J; ,/» and J3, and machine,
My, ..., My, the processing time is provided. Additionally, machines are grouped according to their
stage, S1, Sp and S3.

Stages S1 Sz S3
M M, M3 My M5 Mg M;
A 1 3 4 1 1 9 1
1P 2 1 3 2 2 1 1
Js 3 2 1 2 4 2 3

M1
Stage 1 M2

M3

M4 J1l J3
Stage 2 .

M5 J3 J1

H i

: »
I I H H i M

v T v - | - H 1

i H i | '
* V @ " @ “‘ <‘\

v v v
s?

(b)

Figure 1. Graphical representations of a solution to the example instance provided in Table 1. (a) Gantt
chart representation of an arbitrary feasible solution for the FGSSP instance presented in Table 1
with }7; C; = 60. (b) Disjunctive graph representation of an arbitrary feasible solution for the FGSSP

instance presented in Table 1 with }-; C; = 60.

The representations in Figure 1a,b show the major characteristics of a FGSSP solution.
The disjunctive graph representation visualizes the FGSSP as a sequence of serially arranged
OSSP subproblems. Once a job finishes all operations in a stage and then job can start its
operations in the subsequent stage. The Gantt chart representation also shows the FSSP
behavior among stages. While in the GSSP, a job may have different machines in any given
stage, in the FGSSP each job has the same machines in each stage. As a result, the machines
of later stages remain idle until operations in preceding stages are completed. These
differences motivate the need to separately consider resolution procedures for the FGSSP.

11

Mathematics 2022, 10, 329

4. FGSSP Formulations and Lower Bounds

This section presents an MILP and a CP formulation for the FGSS problem with
total flow time minimization objective and anticipatory sequence-dependent setup times
(FGSSs | sjix | Y C)). The section also introduces three lower bounds on the value of the
optimal objective function. The extension of both formulations for the case without setup
times is straightforward, and the changes are described after providing the models with
sequence-dependent setup times.

4.1. MILP Formulation

The formulation is an adaptation of the formulation provided in [28] for the OSSP, |
Sjik | Z‘,]v C;j. We now proceed to define the parameters, sets, indices and decision variables
of the formulation.

Parameters and Indices:

e nbjobs: Number of jobs.

e nbMchs: Number of machines.

* nbStgs: Number of stages.

e j, k: Indices for jobs, {1,...,nbjJobs}.

e i, [: Indices for machines, {1,...,nbMchs}.

e s:Index for the stages, {1,...,nbStgs}.

* 0ji: Operation associated to job j at machine i.

® pji Processing time of operation oj;.

® Sji: Setup time of job j if it is performed immediately after job k on machine i (j # k).

® Bj: 1if machine i belongs to stage s; and 0 otherwise.

e Ay 1if machine I belongs to the stage immediately before the stage to which machine
i belongs; and 0 otherwise (i # I).

e M: A sufficiently large number.

Decision variables:

e Cj: Continuous variable that takes the value of the completion time of job j.

e C jit Continuous variable that takes the value of the completion time of job j at ma-
chine i.

* fjs: Continuous variable that takes the value of the completion time of job j at stage s.

* xj: Binary variable that takes value equal to 1 if operation oj; is performed after
operation 0j; or 0 in any other case.

* yji: Binary variable that takes value equal to 1 if operation oj; is performed after
operation oy;; or 0 in any other case.

12

Mathematics 2022, 10, 329

An MILP formulation follows.

nbJobs
min Z G 1)
=1
s.t. Cji > pji Vl,] 2)
Cit 2 Gji + pj — Mg Vil]i#1 ®)
Cjz' ZC]‘[+pﬁ*M(1*X]‘,‘/) Vi, j,1 |i#1 4)
Cji = Cyi + pji + Sjik — M(1 - yjik) Vi jk | j# k ®)
Cri = Cji + pji + Skij — My Vi j k| j#k (6)
Cji — pji > CitAy; Vi, jlli > 1INA =1 ?)
fis = BisCji Vi, j,s ®)
Ci > fjs Vj, s = nbStgs)
Ciez> Vi, j (10)
fis€2*° Vj,s (11)
Yjik € {0,1} Vi j,k|j#k (13)

The objective (1) minimizes the total flow time, i.e., the sum of completion times of
the jobs. Constraint set (2) imposes that the completion time of each operation must be
larger than the processing time of the job. Disjunctive constraints sets (3) and (4) ensure
that each job is not processed in two machines simultaneously. Constraints sets (5) and
(6) consider anticipatory sequence-dependent setup times and ensure that each machine
does not perform multiple jobs simultaneously. Constraint set (7) defines that the starting
time of job j at machine i must be equal to or greater than the completion time of job j at
machine [if and only if machine / belongs to the stage immediately before the stage to
which machine i belongs. Constraint set (8) calculates the completion time of ajob jin a
stage s as the maximum completion time of the job j on the machines belonging to the stage.
Constraint set (9) computes the flow time of a job as the completion time in the last stage.
Finally, constraint sets (10)-(13) define the domain of the decision variables.

Note that while we do not provide a model for the case without sequence-dependent
setup times, removing, or setting to 0 the values of, S in constraint sets (5) and (6)
constitutes a valid model for the case without setup times.

4.2. CP Formulation

As in the MILP case, we develop a CP formulation for the FGSSP problem with
total flow time minimization objective and anticipatory sequence-dependent setup times
(FGSSs | s ik | Y C)). The formulation makes use of several constructs that are available in
many CP modeling languages. Specifically, we use interval and sequence variables as well
as specific scheduling constraints that are available in the IBM CP Optimizer solver as it is
the one used in our our experimental tests.

An interval variable is a construct defined by two variables (the start value and the end
value of the interval) as well as a known parameter, the size, that indicates the difference
between the end and the start value. A sequence variable is a construct that encodes an
ordering of variables. Here, the sequence variables provide an ordering of interval variables
corresponding to jobs and machines.

We now proceed to describe the elements of the proposed model.

Parameters and Indices:

e nbjobs: Number of jobs.
e nbMchs: Number of machines.

13

Mathematics 2022, 10, 329

e j, k: Indices for the jobs, {1,...,nbjJobs}.

e i, I: Indices for the machines, {1, ..., nbMchs}.

* 0ji: Operation associated to job j at machine i.

® pji Processing time of operation oj;.

e Ay 1if machine [belongs to the stage immediately before the stage to which machine
i belongs; and 0 otherwise (i #).

e T;: A transition matrix that reports the minimum delay required by any pair of jobs j,
k, to perform in machine i. The transition matrix values equal Sj.

Decision variables:

* itvsj;: Interval variables that define the start and the end of the operation of job j at
machine i. The interval variable ensures that the difference between the start and the
end value equals the processing time p;;.

® jobs;j: Sequence of interval variables itvs;; associated to the operations of job j.

* mchs;: Sequence of interval variables itvs;; associated to operations performed in
machine i.

The objective function consists of minimizing the total flow time of jobs, which is
computed using the end value of the interval variables:

nbJobs
min 2 max}ﬁll\AChsendOf(itvsji) (14)
j=1

where endOf () is an integer expression that reports the end of an interval variable. Con-
sequently, max?ﬂ“hsendo f(itvsj;) reports the flowtime of job j and (14) provides the
total flowtime.

The model contains three constraint sets, (15)—(17).

noOverlap (jobs;) Vi (15)
noOverlap(mchs;, T;) Vi (16)
endBeforeStart (itvsﬂ,itvsﬁ> Vi, jl[i>INA,; =1 17)

Constraint set (15) ensures that each job j is processed on no more than one machine i at
any given time (i.e., since jobs; is the subset of operations associated to a job, j noOverlap()
ensures that the intersection of these intervals is empty).

Constraint set (16) ensures that each machine i does not process more than one job
j at a time. Moreover, the transition matrix T; enforces the setup times between two
consecutive operations (the difference between the finalization of an operation and the
start of the succeeding operation must be no smaller than their corresponding values in the
transition matrix).

Finally, constraint set (17) enforces the stage condition by ensuring that the end of all
operations of any given job in a given stage must precede the start of any operation of said
job in the next stage.

As in the case of the MILP model, the proposed model can be adapted to the case
without sequence-dependent setup times by ignoring setup time values. Here, the change
applies to constraint set (16) and the transition matrix of each machine i.

4.3. Lower Bounds

We provide three lower bounds that serve as a basis for comparison of our solution
methods. Moreover, as the lower bounds relax some of the conditions of the FGSSP, the gap
between the solutions to the FGSSP and the lower bounds may help identify some sources
of complexity of the problem, see the results provided in Section 6.

14

Mathematics 2022, 10, 329

4.3.1. Lower Bound LB,

This lower bound considers that the completion time of each job must be no smaller
than the sum of its processing times at the machines. Consequently, we can obtain a lower
bound by summing the operation time of each job on each machine, see (18). We should
expect this bound to be tight when routing decisions are not important, and the stages do
not play an important role in the instances, that is, problems where it is possible to obtain
solutions without idle times.

by =)) pji (18)

jejiel

4.3.2. Lower Bounds LB, and LBj3

LB; and LB3 both build upon the relationship of each stage of the FGSSP with the
OSSP. As each stage of the FGSSP is an OSSP instance, we can derive a general lower
bound by optimally solving (or finding a lower bound) on a OSSP instance with special
characteristics (i.e., release dates and delivery times derived from the operation times in
the remaining stages).

Consider any stage s € {1,...,nbStgs} and divide the set of stages into three groups,
a first group with the stages {1,...,s — 1} that contains all stages that precede stage s, a
second group containing stage s, and a third group with stages {s +1,..., S5t} that
correspond to the stages following stage s. Clearly, the optimal solution to the OSSP
associated to stage s is a lower bound to the objective value of the FGSSP, as it disregards
all other stages

Consequently, and to include the remaining stages into the calculation of the lower
bound, we estimate the operation times required to complete the operations associated
to these stages and associate them to the release dates and delivery times for the OSSP
problem in stage s (i.e., we estimate the minimum time unit in which the job can start their
operations in stage s and the minimum time required to finish the job once they depart
stage s).

The resulting problem corresponds to problem OSSP | r;, d; | L; C; or to problem
OSSP | rj, dj, Sji | L;C; for case without or with sequence-dependent setup times
respectively, and the optimal solution, as well as any lower bound of its value is a lower
bound for the original FGSSP instance. In order to calculate the bound, we search for
a solution to the resulting OSSP model for a limited amount of time using a CP exact
solver, see Section 6, and report the optimal solution, if found, or best-known lower bound
reported by the solver when the time limit is reached.

The described method provides nbStgs different lower bounds, but we focus our
attention on two of these bounds, i.e., the bounds provided by the first and the last stage,
as they related problems are easier for the CP solver, and it is more likely that the solver
finds the optimal solution, or a better lower bound, for them.

The lower bound for the first stage, LB,, corresponds to the optimal resolution of
problem OSSP || Y; Cj, or OSSP | Sy | ; C; for the case with sequence-dependent setup
times, plus the sum of operation times in the remaining stages, see Equations (19) and (20),
as it is easy to show that the delivery times are constant values that add to the total flow
time of the operations independently of the job they are associated to.

Iby :lbossp(s:l)uz,.c]‘*‘z Y. pii (19)
jejiel:s>2
Iby =lbossp(s=1)[slr;c; + 2 Yo P (20)
jejicl:s>2

The lower bound for the last stage, LB3 only contains release dates, which may play a
role on the optimal schedule of the operations as release dates change the instance where
the jobs are available. The resulting bounds correspond to Equation (21), for the case

15

Mathematics 2022, 10, 329

without sequence-dependent setup times, and (22), for the case with sequence-dependent
setup times.

Ibs :lbOSSP(s:antuges)|rj|2/ C; (21)

Ibs =1bossp(s=nbstgs)|r;, Siulx; C; (22)

5. Proposed Solution Method

The proposed decomposition-based approach (which we will denote as DEC) exploits
the inherent structure of the FGSSP. The structure of a fixed group sShop is similar to the
structure of a flow shop but each stage corresponds to an OSSP rather than a single machine.
This structure naturally leads to a decomposition in which each Open Shop is individually
optimized considering that the sequence of operations on preceding and succeeding stages
for each job and on each machine to be known and fixed.

While the approach does not globally optimize the problem, there are intrinsic advan-
tages of the decomposition, specifically, (1) the subproblems do not structurally differ from
the original problem and (2) the optimization of each stage allows for minor changes within
other stages (i.e., the sequence is fixed but the start time and end time of each operation
may vary to accommodate for the changes introduced within the stage under inspection).
Moreover, as the sequence of most stages is fixed, the resulting problem is smaller and,
supposedly, easier to solve through exact methods. As a result, the proposed method mixes
exact and heuristic ideas into a single procedure, a type of method usually referred to as a
matheuristic [8] within the literature.

Algorithm 1 provides an outline of the approach. The DEC algorithm creates an initial,
incumbent, solution using a constructive heuristic that solves the scheduling problem of
each stage sequentially, starting from the first stage, proceeding to the second stage and
repeating the process until all nbStgs have been solved. After the initial solution is found,
the local search phase is initialized. The local search attempts to improve the solution by
solving the subproblems associated to each stage in non-sequential order. If an improving
solution is found, the incumbent is updated and the local search is repeated. Otherwise,
the incumbent is modified in order to escape from local optimality and the local search
phase is called again.

Algorithm 1 gives an overview of the procedure. We now provide details of each step
of the DEC method, including an example of the behavior of the algorithm solving the
example introduced in Section 3.2.

16

Mathematics 2022, 10, 329

Algorithm 1: Outline of the DEC procedure.

Read instance;
incumbent < @;
fors € {1,...,nbStgs} do
incumbent < incumbent U solve(OSSPs | r; | ; Cj), or
solve(OSSPs | 1j, S5 | L Cj);
end
best < incumbent;
change < true;
while time limit not exceeded do
change < false;
pending < {1,...,nbStgs};
while pending # @ A timelimitnotexceeded do
s < random(pending);
pending < pending \ {s};
candidate < solve(FGSSP || L; C;) (or FGSSP | Sj | ¥ C;) with
additional constraints on stages {1,...,s — 1} U{s+1,...,nbStgs};
if obj(candidate) < obj(incumbent) then
incumbent < candidate;
change < true;
if obj(candidate) < obj(best) then
‘ best < candidate;
end
end
end
if time limit not exceeded then
incumbent < shake(incumbent);
end
end
return best;

5.1. Initial Solution

In order to obtain an initial solution to the problem, see lines 3—6 from Algorithm 1,
the DEC method starts from an empty solution, and obtains a schedule for the opera-
tions of each stage by solving an open shop scheduling problem with release dates and
with/without setup times with total flow time objective for each stage (i.e., problem
OSSPy | 1} | Y Cj or OSSPy, | 7j, Sij | ¥j Cj, according to [5]).

The procedure starts by obtaining a schedule for the first stage. For this stage, release
dates are set to 0. For the remaining stages, stages 2 to nbStgs, we solve an OSSP with
release dates for each job that are equal to their completion times in their previous stage,
These release dates ensure that the operations for any job in a given stage cannot start
before the operations of the job finish in previous stages.

Each subproblem is then solved using the model described in Section 4.2 considering
only one stage, the stage under consideration, and adding a constraint set, see Equation (23),
to impose release dates to the operations associated to each job.

startOf (itvsj;) >1; Vil (23)

Constraint set (23) imposes the release date condition by ensuring that the start of any
operation cannot be smaller than the release date of the job. In constraint set (23), 7; stands
for the release date of job j in the previous stages.

To illustrate the proposed method, let us consider the example introduced in Section 3.2.
The construction procedure would start from Stage 1, solving an OSSPy, || ¥; C; problem

17

Mathematics 2022, 10, 329

with machines M1, M2 and M3. The completion time of the jobs in the optimal schedule
correspond to 8, 6 and 6 time units for job 1, job 2 and job 3, respectively. These completion
times constitute the release dates for the problem associated with stage 2. In this case,
the optimal solution has completion times equal to 11, 10 and 13 for job 1, job 2 and job
3 respectively. Finally, we solve the problem associated to stage 3. The objective function
value of the solution provided by the method is 54, Figure 2a shows the Gantt chart of the
solution and Figure 2b its disjunctive graph representation.

As the OSSP is a computationally difficult problem by itself, the CP solver is truncated
by imposing a time limit. The time limit given to the solver to solve each stage as well
as the overall time devoted to the initialization step is controlled through an algorithmic
parameter a %, that limits the total time devoted by the algorithm to the step. The time
assigned to this step is then evenly divided into each stage to define the time limit set to
the CP solver. Note that the time required to reach and to verify the optimal solution of the
problem for any given stage may be smaller than the time limit. In this case, the remaining
time is reserved for the local search step of the algorithm.

1 2 3 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25

Stage 1

Stage 2

Stage 3 M
age
9 M

J
1y
H
H
i
H
Jp i
: — :
H R i B
' P T X
H ” TN
| \
5\
J3 “ \‘
\ \
R .
S

1

(b)

Figure 2. Graphical representation of the constructive heuristic solution of the DEC method for
the example instance provided in Table 1. (a) Gantt chart representation of the solution provided
by the constructive heuristic for the FGSSP instance presented in Table 1. (b) Disjunctive graph
representation of the solution provided by the constructive heuristic for the FGSSP instance given in
Table 1.

5.2. Neighborhood Exploration

The above constructive procedure provides a feasible solution in which greedy deci-
sions in early stages may have a negative impact on later ones. Consequently, and after an

18

Mathematics 2022, 10, 329

initial solution is available, the neighborhood procedure tries to improve the incumbent by
reoptimizing stages, taking into account the scheduling decisions from every other stage,
see lines 12-24 from Algorithm 1.

The reoptimization stage is performed as follows: first, we add all stages to a list of
pending problems. Then, we randomly select a stage from the list, say, stage s, remove it
from the list, and fix the sequence of operations for each job and for each machine in the
remaining stages, i.e., each stage g € S\ {s}. The resulting model (i.e., the original model
with some fixed variables) is then solved using the CP formulation provided in Section 4.2
truncating the search with a time limit which is a parameter of the method. When the
time limit is reached or the solver returns that optimality has been verified the best-found
solution is compared to the incumbent and the best ever solution

The neighborhood exploration step ends when the list is empty and no improving
solution has been found during the last exploration step, in which case we conclude that a
local optimum has been found and proceed to restart the local search by slightly altering the
solution using the shaking procedure described in Section 5.3. Otherwise, the exploration
step is repeated, i.e., the list is initialized with all stages and an optimization problem is
solved for each stage, as described above.

To illustrate the proposed method, let us consider the example introduced in Section 3.2,
starting from the solution found in Section 5.1 and depicted in Figure 2.

The neighborhood exploration phase starts by initializing the list of pending problems
with the three stages. Then, we randomly select a stage from the list. For the sake of
this example, let us suppose that stage 2 is selected. Then, stage 2 is removed from the
list and a problem with the routes in stages 1 and 3 fixed is given for the CP solver for
resolution. Figure 3a gives a disjunctive graph representation of the problem: the routes in
stages 1 and 3 are fixed and the problem is allowed to reoptimize the scheduling decisions
for stage 2. The optimal solution to the stage 2 problem improves the incumbent as the
objective function value is decreased by two time units from 54 to 52 time units, see
Figure 3b. The solution also improves the best found solution, hence it replaces both the
incumbent, and the best found.

After updating the incumbent, the method would select another random stage among
those still in the list, either stage 1 or 3, and build and solve their respective problems. The
solutions to either problem do not provide a better solution and thus a complete iteration
of the local search ends. As the method has found an improving solution within the last
iteration, another iteration of the local search phase is performed. This second iteration
does not lead to improvements, hence we conclude that the incumbent is a local optimum
and stops the neighborhood exploration step.

Note that each problem solved in this phase is not theoretically easier than the original
problem (i.e., they are NP-hard problems). Consequently, and in order to control the total
time used within the resolution of the problems, as well as with the complete local search
phase, we control both the total time used by the local search phase, and the time allocated
to the CP solver to solve each subproblem. Section 6 gives details on the time allotted to
each of these parameters in our computational experiments.

Finally, we attempt to improve the performance of the CP solver by providing a
“warmstart” solution to it. In this case, we use the incumbent solution from the procedure
as it is a feasible solution for the problem, including the additional constraints. As a result,
the solver will never provide a worse solution than the initial one, and it will focus the
search of areas that may provide improvements over the initial one.

19

Mathematics 2022, 10, 329

M, M, M. M, M, M, M.
Jl / :: @ ! 4'

AW B -
E i
\
|-
\ | E 1 s
'\ 3 t
)) |
) 3 \
> = ,
S

2 3

(a)

M1
Stage 1l M2
M3

St 2 M
age

_J_l__ I

— M6 J3

age

9 wr lozf 9z]
(b)

Figure 3. Graphical representation of the neighborhood exploration phase of the DEC method for the

example instance provided in Table 1. (a) Disjunctive graph representation of the problem associated

to the stage 2. The arcs represent the fixed decisions (i.e., the decisions from stage 1 and 3). (b) Gantt

chart representation of the solution after solving the problem of stage 2. The solution improves the
problem by rearranging the order of operations of the stage.

5.3. Shake Procedure

After reaching a local optimum, i.e., the neighborhood exploration step does not
improve the incumbent, if the total time limit has not been reached we slightly perturb the
solution in order to restart the search from a different position of the solution landscape,
i.e., we perform a shake step as in a classical variable neighborhood (VNS) method [36].
Note that the term local optimum in this context is not completely correct, as the truncated
nature of our neighborhood exploration scheme may lead us to report that no improving
solution has been found when such a solution may exist.

The perturbation scheme considers two randomly-selected consecutive stages and
creates an alternative set of routes and assignments for the jobs and the machines in these
stages by solving the resulting CP model as in the neighborhood exploration step (i.e., fixing
the sequences on the stages that we do not want to modify), but stopping the search when
the solver provides a feasible solution and not including the incumbent as a warmstart
solution. These decisions help the algorithm to find a solution with enough changes in
these stages to move the complete solution away from the current local optimum while the
use of the CP model ensures that a solution is found without having to rely on specifically
tailored code to ensure feasibility conditions.

To continue with our example of the proposed method, let us continue with the
example introduced in Section 3.2 and used in this Section. After reaching a local optimum,
see Section 5.2, the incumbent depicted in Figure 2b is modified by selecting two consecutive

20

Mathematics 2022, 10, 329

stages and generating a random feasible solution for these stages. For the sake of this
example, consider that stages 1 and 2 are selected. Then, we solve a problem in which the
routes of stage 3 is fixed, and stop the search when the CP solver finds a solution. This
solution becomes the incumbent and we return to the neighborhood exploration phase.
Figure 4 illustrates the new solution.

M
-“6
Jl
JZ
J3
M1
Stage 1 M2
M3
%
Stage 2
J3 J1
cages M 13 J1 |
age
9 M7 J1 J3 I
(b)

Figure 4. Graphical representation of the incumbent solution of the DEC method after the shake is
performed for the example instance provided in Table 1. (a) Disjunctive graph representation of the
incumbent solution after the shake. (b) Gantt chart representation of the incumbent solution after
the shake.

6. Computational Experiments

All computational experiments were run on an Intel i7-10750H CPU @2.60 GHz with
6 cores and 16 GB of RAM. The code was written and Java and executed in the Java
8 runtime. The IBM ILOG CP and IBM ILOG CPLEX versions 20.1 were used to solve
the CP and MILP formulations. The CP model was solved using five different strategies
provided by the solver, namely: Auto (a combined search approach automatically controlled
by the solver) CP DF (explores the search tree using a depth-first search approach) RS
(combines a depth-first search approach with a restart mechanism after a certain number of
backtracking decisions), MP (for multi-point search method, an approach that uses some of
the characteristics of a population-based metaheuristic) and ID (for iterative diving search
method, an approach that resembles a local search-based heuristic).

Each instance was run with the proposed DEC method with a total CPU time limit

nbJobs nbMchs
4

equal to seconds, hence we allocate time proportional to the size of the in-

21

Mathematics 2022, 10, 329

stances. Consequently, for the exact solvers we provide the total time to the solver, while
for the DEC approach, the total time allotted to the solution procedure is divided into an
initialization phase, that takes a maximum of &% of the total time, and the local search
phase that takes the remaining time.

During the initialization phase, the resolution of the OSSP associated to each stage is
allotted a maximum amount of time equal to %&S% of the total time allotted to this phase
(i.e., ﬁtgs%)' As the allotted time for each subproblem may not be used up (i.e., the CP
solver n{ay report that an optimal solution has been found before the time limit has been
reached) the initialization phase may take less than the allotted time. Moreover, it is also
possible that the CP solver does not find a solution within the time limit. While this never
occurred during our experiments, the default implemented strategy allows the algorithm
to continue the search until a feasible solution is found.

During the local search phase, each subproblem is allotted a fixed amount of time

equal to A. Parameter A controls the trade-off between exploitation and exploration within
the local search, i.e., a large value of A has a higher chance to reach an optimal solution for
the subproblems at the expense of considering fewer subproblems, while a smaller value of
A leads to considering a larger number of subproblems but the CP solver may fail to reach
the optimal solution for the subproblem.
g stds 7y
value of A should lead to consider each stage no less than three times within the local search
phase (our preliminary tests showed that this number usually sufficed to reach the best-
found solution and reducing the time to solve each subproblem only lead to degradation in
the solution quality).

For the exact methods we impose the following run time limits: For the MILP experi-
ments, we impose a 3600 s time limit, while for the stand-alone CP solver we allocate the
same running time as our decomposition approach. Please note that the larger amount of
time devoted to the MILP formulation tries to ensure that the performance issues reported
in Section 6.2 could not be solved by allocating more computational resources, i.e., running
time, to the method.

After some preliminary tests we opted for « = 0.25 and A =

6.1. Instance Generation

As no previous work for the FGSSP is available in the literature, we generated our
own instance set. The generation procedure follows the procedure described in [28] for the
OSSPy, | S ik |)W C;j, which extends the procedure described in [37]. Processing times for
instances with up to 20 jobs and 20 machines are identical to the processing times used
in [37]. For larger instances, the processing times were generated following the indications
provided in [37], i.e., they are randomly generated using a discrete uniform distribution
u [1,99].

As a result, we generated instances with 4 to 80 jobs, 4 to 80 machines and 2 to 8 stages.

: : nbMchs : nbMchs :
In each instance, the first nbMchs — L HbStgs anStgs stages contain (nbStgs w machines,
nbMchs

while the remaining stages have { J We generate 37 groups of instances, each

nbStgs
containing 10 instances for a total of 370 ginstances.

For instances with sequence-dependent setup times we additionally generated setup
times as follows: first we generate a random two dimensional Cartesian coordinate (x, y)
for each job drawing each coordinate value from a discrete uniform distribution U [0,30].
Then, the setup time between any pair of jobs, j, k, in a given machine is computed as
the rectilinear distance between the coordinates associated to each pair of jobs, [x; — x| +
[y — k|- This method ensures that setup times comply with the triangle inequality, hence
Sjik < Sjiy + Suix for any triplet of jobs j, k, u and machine i. Finally, initial setup times were
set to 0, i.e., we allow the machines to start working on any job without any setup.

As aresult, a total of 740 instances were used for the reported experiments, 370 without
sequence-dependent setup times and 370 with setup times.

22

Mathematics 2022, 10, 329

6.2. Results for Small Size Instances

To evaluate the quality of the solutions provided by the lower bounds and the exact
methods introduced in Section 4 we perform two sets of experiments using small instances
(those with 10 or fewer jobs and machines) both on the instances with and without sequence-
dependent setup times.

The first experiment considers the performance of the exact methods and the DEC
procedure. The DEC procedure is run ten times with different random seeds and the results
report their average performance among different runs as well as the best solution found
within the ten runs.

Tables 2 and 3 report the results. For each solution method, we report the average
relative gap rel.gap, see Equation (24), in which UB stands for the objective function value
reported by the method and UB,, corresponds to the best-known objective value among
all solution approaches, and, in parentheses, the number of best-known solutions found
by the method. For the average performance of the DEC method, UB correspond to the
average obtained by the ten independent runs. We also include the results provided by the
DEC method using the MILP solver rather than the CP solver for comparison purposes.

UB — UB,

rel.gap =100 UB

(24)

Table 2. Results for small instances without sequence-dependent setup times (problem FGSSPs ||
Y; C)). For each instance size (represented by the number of jobs, column nbJobs, machines, column
nbMchs, and stages, column nbStgs, we report the average gap to the best known solution and the
number of best known solutions (in parentheses) provided by each CP search strategy (columns
Auto, DF, RS, MP and ID), the best solution provided by all combined CP approaches (column CP),
the results from the MILP approach (column MILP) and the best and the average found among 10
independent runs of the DEC approach (columns, (best) and (av.) respectively) using both the MILP
and the CP solvers as their underlying methods to tackle the subproblems required by the approach
(columns DEC MILP and DEC CP). The results of the best performing method for each group of
instances are highlighted in boldface.

DEC MILP DEC CP

nbJobs nbMchs nbStgs Auto DF RS MP ID CP MILP (av) (Best) (av.) (Best)
4 4 2 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

5 5 2 0.0 (10) 1.2(0) 0.0(10) 0.4 (4) 0.4(5) 0.0(10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

7 7 2 0.3(4) 10.3(0) 0.8(2) 24(0) 3.7(0) 0.1(6) 21(0) 27(0) 23(0) 04(3) 03(4)

3 0.1(8) 13.7(0) 0.3(7) 1.6(0) 25(1) 0.0(10) 0.5(5) 24(0) 1.9(1) 26(0) 25(0)

10 10 2 22(1) 147(0) 1.7(0) 3.7(0) 3.7(0) 13(1) 89(0) 11.1(0) 10.4(0) 0.5(3) 0.1(9)

3 1.0(2) 158(0) 12(2) 29(1) 31(0) 04(5) 62(0) 74(0) 74(0) 06(1) 05(5)

4 1.0() 157(0) 1.1(1) 1.6(2) 25(1) 04(6) 34(1) 49(0) 29(2) 1.9(0) 14(4)

23

Mathematics 2022, 10, 329

Table 3. Results for small instances with sequence-dependent setup times (problem FGSSPs | Sjjy |
Y Cj). For each instance size (represented by the number of jobs, column nbJobs, machines, column
nbMchs, and stages, column nbStgs, we report the average gap to the best-known solution (in
parentheses) provided by each CP search strategy (columns Auto, DF, RS, MP and ID), the best
solution provided by all combined CP approaches (column CP), the results from the MILP approach
(column MILP) and the best and the average found among 10 independent runs of the DEC approach
(columns, (best) and (av.) respectively) using both the MILP and the CP solvers as their underlying
methods to tackle the subproblems required by the approach (columns DEC MILP and DEC CP). The
results of the best performing method for each group of instances are highlighted in boldface.

DEC MILP DEC CP

nbJobs nbMchs nbStgs Auto DF RS MP ID CP MILP (av) (Best) (av.) (Best)
4 4 2 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

5 5 2 0.0 (10) 4.1(0) 0.0(10) 0.5(4) 2.2(1) 0.0(10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

7 7 2 14(1) 157(0) 14(1) 23(1) 48(0) 07(3) 14(2) 260 2.0 03(3) 0.2(5)

3 0.7(6) 17.3(0) 0.8(3) 1.9(2) 42(0) 01() 06(5) 31(0) 23(0) 24(1) 23(1)

10 10 2 42(0) 22.0(0) 43(0) 57(0) 6.00) 28(0) 9.2(0) 13.1(0) 11.3(0) 0.5(3) 0.0 (10)

3 22(3) 236(0) 14(4) 39(1) 55(0) 04(8) 54(0) 740 610 15(0) 12(2)

4 1.7(3) 223(0) 1.6(8) 39(0) 36(1) 03(7) 4.0(1) 6.1(0) 42(0 18(0) 1.3(2)

The results in Tables 2 and 3 show a similar trend, hence we discuss them together
pointing out to the differences when needed:

e If we consider the behavior of the exact methods, i.e., the CP variants as well as the
MILP, the results show that each of these methods have difficulties even for moderately
small instances with 10 jobs and 10 machines. In fact, we do not report the number of
optimal solutions found by any of these methods because they fail to verify optimality
even for instances with 7 jobs and 7 machines and up. Note that these methods solve
all instances with 4 or 5 jobs and machines to optimality, but the combined effort of all
the exact methods only verifies optimality for four additional instances.

e Among the different search strategies available in the CP solver, all methods perform
similarly except for DF. If we consider this result together with the difficulty of each
exact method to verify optimality, we are led to believe that a depth-first search
approach as conducted by the DF strategy fails to backtrack to the initial stages of the
problem, leading to suboptimal early decision never being reconsidered.

e When we compare the CP approaches and the MILP approach, the CP outperforms
the MILP method in every instance group and metric (either number of best found
or relative gap to best known). Moreover, the additional time allocated to the MILP
does not result in better solutions and the CP approaches, except for the DF strategy,
outperform the MILP. Specifically, for instances with 10 jobs and machines, the MILP
fails to find solutions of the quality provided by the CP approaches. Consequently, we
recommend the use of a CP strategy for the problem and avoid the use of the MILP
approach in larger instances.

e The CP methods do not perform as well on instances with sequence-dependent setup
times. Specifically, relative gaps increase and two search strategies, i.e., Auto and RS,
tend to provide the best solutions among the five search methods. This result may be
attributed to shortcomings of the CP approach that makes use of internal components
within its search procedure that are more efficient in problems with fewer features
to consider.

¢ The performance of the DEC approach using a CP solver to tackle the subproblems
for small and medium instances is similar to the exact CP methods. The same does
not hold true for the DEC method using the MILP solver, as their results are inferior
to either the CP or the DEC method using CP.

24

Mathematics 2022, 10, 329

While the DEC method finds better solutions than the CP methods, specially on
instances with fewer stages and the relative gaps are small, it does not outperform
the exact methods for these instances. Please note that for small instances, the exact
method benefits from considering the problem as a whole, unlike our method that
tackles smaller parts of the complete problem. For small sized instances, dividing
the problem into part leads to disadvantages in terms of the ability of the method to
optimize all stages simultaneously.

The similarity between the results of both methods was statistically checked using a
paired t-test for statistical significance. The paired t-test compares the best solution
found by any CP method with the best found among the ten replicates of the DEC
method using the CP solver, as well as with each of its individual runs.

The tests between the best solutions show that the results are not statistically different,
with a p-value of 0.204 for the instances without sequence dependent setup times, and
a p-value of 0.981 for the case with setup times. Note that Anderson-Darling tests
show that the differences among values are not normally distributed, and thus we
conduct Wilcoxon signed-rank non-parametric tests that confirm the results from the
parametric tests. With regards to the statistical test between individual run of the
DEC method when compared to the CP method, similar results are found. For the
cases without sequence dependent setup times, six report statistical differences for
the parametric test, but after a Bonferroni correction is run to account for multiple
comparisons, none of the p-values suffice to point to statistically significant differences.
For instances with setup times, none of the replicates report statistically significant
differences to the best CP solutions.

To conclude, the results show that the exact methods fail to verify optimal solutions
even for moderately small instances, being the CP approaches more competitive in terms
of solution quality than their MILP counterparts. While the decomposition scheme can
reach solutions of similar quality than the combined effort of all CP methods, and it even
outperforms the exact methods for instances with a small number of stages, the results
suggest that relying on exact methods is the best approach to solve small-sized instances.

To further analyze the performance of the exact methods, we conducted a second exper-
iment considering the lower bounds introduced in Section 4.3 as well as the lower bounds
reported by the CP and the MILP methods after reaching their termination condition, either
proving optimality of the incumbent or reaching the imposed time limit.

Lower bounds Ib; and Ib3 require the resolution of an OSSP model which is solved
using a CP formulation for a fixed time limit equal to w seconds using the default,
i.e., Auto strategy, provided by the CP solver. If the time limit is reached without verifying
optimality, the lower bound provided by the code is used for the computation of /b, and
Ib3. Tables 4 and 5 report, respectively, the results for small size instances without and with
sequence-dependent setup times.

For each group of instances, we report the results for each lower bound described
in Section 4, columns [by, Ib, and [b3, as well as the best lower bound reported by the
CP methods and the MILP model. For each method, we provide two metrics; namely:
the optimality gap, calculated as in (25), where ubj, is the best known solution and /by
corresponds to the lower bound provided by the method and, in parentheses, the number
of instances in which the lower bound provides the best bound among all of the methods.

by — 1by

opt.gap =100" bubb (25)

25

Mathematics 2022, 10, 329

Table 4. Results for the lower bounds for small-size instances without sequence-dependent setup
times (problem FGSSP; || Y Cj). For each combination of instance size (represented by the number
of jobs, column nbJobs, machines, column nbMchs, and stages, column nbStgs, and solution method
(columns Iby, Iby, Ibs, CP and MILP), we report the optimality gap and, in parentheses, the number
of instances (out of 10) in which the method reported the best solution. The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs b1 1b, 1bs CP MILP
4 4 2 215(0) 3.5(0) 50(0) 0.0(10) 0.0 (10)

5 5 2 214(0) 3.6(0) 49(0) 0.0(10) 0.0 (10)

7 7 2 20.7 (0) 15.7 (2) 12.7(4) 354(0) 12.74)

3 242(0) 167(0) 89(0) 21.1(2) 1.6(10)

10 10 2 22.1(0) 17.9(0) 195(0) 46.2(0) 40.4(0)

3 26.1(0) 19.3(10) 224(0) 355(0) 29.3(0)

4 28.9 (0) 16.4 (6) 19.7(3) 32.0(0) 22.6(1)

Table 5. Results for the lower bounds for small-size instances with sequence-dependent setup times
(problem FGSSP; | S ik | Y C j). For each combination of instance size (represented by the number of
jobs, column nbJobs, machines, column nbMchs, and stages, column nbStgs, and solution method
(columns Iby, Iby, Ib3, CP and MILP), we report the optimality gap and, in parentheses, the number
of instances (out of 10) in which the method reported the best solution. The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs 1by 1b, Ibs CP MILP
4 4 2 28.6 (0) 4.7 (0) 72(0) 0.0(10) 0.0 (10)

5 5 2 28.6 (0) 5.1 (0) 53(0) 0.0(10) 0.0 (10)

7 7 2 282(0) 227(0) 205(2) 41.0(0) 13.9(8)

3 314(0) 247(0) 109(0) 342(0) 3.2(10)

10 10 2 30.6(0) 26.2(10) 27.6(0) 51.8(0) 44.4(0)

3 345(0) 283(9 30.8(0) 427(0) 339(1)

4 369(0) 257(8) 30.8(0) 394(0) 27.6(2)

The results show that large gaps are common. Specifically, for instances with 7 or
10 jobs and machines, the gap after reaching the time limit is very large, hence the inability
of the exact solution methods to verify optimality as it cannot prune the search space
through tight bounds and has to rely on enumeration to verify optimality. Moreover, the
specially tailored lower bounds outperform the general bounds provided by the off-the-
shelf solvers. but they still cannot provide tight bounds and the gaps are still large. Finally,
we would also like to discuss the differences between the results provided by b, and 1b3.
While theoretically both bounds should report similar results (we try to optimally solve one
stage and estimate the contribution of the remaining stages) the experiments show that /b,
usually outperforms Ib3. We conjecture that this result comes from the performance of the
CP solver on the problems solved using this approach. While /b, solves a classical OSSP as
a subproblem, /b3 solves an OSSP with release dates. The differences may be attributed to a
better ability of the CP solver to solve the said subproblem.

To conclude. These results highlight the computational hardness of the problem and
the need to rely on specially tailored heuristics to solve large-size instances.

6.3. Results for Medium and Large Size Instances

In this section, we report the results for medium to large-size instances. Due to the
results found for small instances, we focus our analysis on solution methods and do not

26

Mathematics 2022, 10, 329

report lower bounds, as the large gaps found for small instances show the difficulty of
finding good lower bounds.

Tables 6 and 7 show average results for these instances grouped according to the
number of jobs, the number of machines and the number of stages. The tables compare the
results of the best-performing CP strategy, the Auto strategy of the solver, the best solution
found among the five search strategies provided by the solver the average result provided
by ten independent runs of the DEC method and the best-found solution among these ten
independent runs.

Table 6. Results for medium and large instances without sequence-dependent setup times (problem
FGSSPs || Z]- C]v). For each instance size (represented by the number of jobs, column nbJobs, machines,
column nbMchs, and stages, column nbStgs, we report the average gap to the best solution and the
number of instances where the best known solution was found (in parentheses) by the best CP search
strategy (column Auto), the best solution provided among the CP approaches (column CP), the results
from the MILP approach (column MILP) and the best and the average found among 10 independent
runs of the DEC approach (columns, DEC (best) and DEC (av.) respectively). The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs Auto CcP DEC (av.) DEC (Best)
15 15 2 2.9(0) 2.3(0) 0.3 (0) 0.0 (10)
3 132 1.0 05 (3) 0.2 (8)
4 03(5) 03(7) 1.4 (0) 1.1 (3)
5 0.7 (4) 0.4 (5) 1.3 (1) 1.0 (5)
20 20 2 3.8(0) 3.1(0) 0.2(3) 0.0 (10)
3 250) 1.9(0) 0.3 (0) 0.0 (10)
4 192 17(2) 0.7 (0) 0.1 (8)
5 1.3 (2) 1.1(2) 0.8 (0) 0.2 (8)
6 12(3) 08(4) 1.2 (0) 0.6 (6)
7 1.0Q2) 0.4(6) 1.4 (0) 1.0 (4)
30 30 2 5.7 (0) 4.5 (0) 0.0 (5) 0.0 (10)
3 3.0 (0) 2.9(0) 0.1(5) 0.0 (10)
4 3.5(0) 2.5(0) 0.2 (3) 0.0 (10
5 2200 1.9(0) 05(2) 0.0 (10)
6 1.9 (1) 1.6 (1) 0.5(1) 0.1(9
7 20(1) 172 0.6 (0) 0.0 8)
50 50 2 8.6 (0) 6.6 (0) 0.0 (2) 0.0 (10)
3 5.7 (0) 5.4 (0) 0.1(1) 0.0 (10)
4 4.5 (0) 4.3 (0) 0.3 (0) 0.0 (10)
5 4.0 (0) 3.7(0) 0.1(0) 0.0 (10
6 4.3 (0) 4.0 (0) 0.3 (0) 0.0 (10)
7 3.3(0) 3.2(0) 0.0 (0) 0.0 (10)
8 39(0) 3.7(0) 0.4 (0) 0.0 (10)
80 80 2 9.6 (0) 9.6 (0) 0.0(7) 0.0 (10)
3 6.9 (0) 6.6 (0) 0.1(1) 0.0 (10)
4 5.2 (0) 5.0 (0) 0.2 (1) 0.0 (10)
5 3.7(0) 3.6 (0) 0.2 (0) 0.0 (10
6 3.5(0) 3.3(0) 0.2 (0) 0.0 (10)
7 3.3(0) 3.1(0) 0.3 (0) 0.0 (10)
8 31(0) 3.1(0) 0.3 (0) 0.0 (10)

27

Mathematics 2022, 10, 329

Table 7. Results for medium and large instances without sequence-dependent setup times (problem
FGSSP; | Sjik | i Cj). For each instance size (represented by the number of jobs, column nbjobs,
machines, column nbMchs, and stages, column nbStgs, we provide the average gap to the best
solution and (in parentheses) the number instances where the best CP strategy finds the best known
solution (column Auto), the best solution provided among the CP approaches (column CP), the results
from the MILP approach (column MILP) and the best and the average found among 10 independent
runs of the DEC approach (columns, DEC (best) and DEC (av.) respectively). The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs Auto CP DEC (av.) DEC (Best)
15 15 2 4.6 (0) 3.2(0) 0.7 (0) 0.0 (10)
3 1.6 (1) 1.3(2) 0.6 (0) 0.1(8)
4 1.2 (5) 0.6 (7) 2.5 (0) 1.6 (3)
5 2.7(2) 0.4 (6) 1.8 (0) 1.3 (4)
20 20 2 5.0 (0) 4.1(0) 0.5(0) 0.0 (10)
3 4200 31 1.1 (0) 0.3 (8)
4 2.1(4) 1.1@ 2.8(2) 2.0 (6)
5 2.7 (1) 0.8 (6) 3.0(2) 2.5 (4)
6 24(3) 0805 1.2 (0) 0.4 (5)
7 2.0 (0) 0.5 (4) 1.3 (0) 0.7 (6)
30 30 2 9.6 (0) 7.7 (0) 0.5 (4) 0.0 (10
3 5.4 (0) 4.2(0) 0.5 (0) 0.0 (10)
4 6.3 (0) 5.3 (0) 1.8 (0) 0.0 (10
5 3.4 (1) 3.3 (1) 1.5(0) 0.2(9)
6 3.3 (1) 2.8(2) 1.2(0) 0.1(8)
7 34(1) 25(1) 1.0 (0) 0.0 9)
50 50 2 12.6 (0) 8.4 (0) 0.1(8) 0.0 (10)
3 7.1(0) 5.4 (0) 1.0 (0) 0.0 (10)
4 9.9 (0) 9.1 (0) 1.9 (0) 0.0 (10)
5 48(0) 44(1) 1.4 (0) 0.1 (9
6 6.2 (0) 6.0 (0) 1.1(0) 0.0 (10)
7 4.1 (0) 4.0 (0) 0.0 (0) 0.0 (10)
8 47(1) 43() 1.5 (0) 0.4 (9)
80 80 2 144(1) 122() 2.0(2) 1.4 8)
3 248 (0) 23.5(0) 1.9 (0) 0.0 (10)
4 232(0) 21.9(0) 3.4 (0) 0.0 (10)
5 21.1(0) 19.9 (0) 4.1 (0) 0.0 (10)
6 16.0(0) 14.0(1) 3.0 (0) 03 (9
7 124(0) 11.7(1) 4.9 (0) 0.1(9)
8 142(0) 13.1(0) 1.9 (0) 0.0 (10)

The results show similar trends to those found in the small instances (i.e., a deteriora-
tion on the performance of the methods when the number of jobs and machines increase).
Specifically, for large size instances, the relative gaps increase up to a 9.6% for instances
with a small number of stages, and remain above 3% for any number of stages in instances
without sequence-dependent setup times. For instances with sequence-dependent setup
times, the gaps increase, reporting average relative gaps above 10% on average for any
number of stages. These large instances highlight the advantages of the decomposition
approach, which is still able to outperform the combined effort of all CP methods in most
of the medium-sized and large-sized instances.

While the DEC decomposition approach still relies on a CP solver, the division of
the larger problem into smaller subproblems that can be more efficiently tackled in short
running times leads to clear improvements over the off-the-shelf method.

28

Mathematics 2022, 10, 329

The dissimilarity between the results from the CP and the DEC methods were statisti-
cally checked using a paired t-test. The paired t-test compares the best solution found by
each of the methods.

The test shows that the results are statistically different, with a p-value of 8.79 x 103!
for the instances without sequence dependent setup times, and a p-value of 2.05 x 10~
for the case with setup times. The Anderson-Darling test for normality showed that the
differences between the values are not normally distributed, and thus we conduct Wilcoxon
signed-rank non-parametric tests to confirm the results from the parametric test. The results
of the Wilcoxon tests confirmed the conclusions reached by the parametric tests with a
p-value of 7.18 x 10~4® for instances without setup times and a p-value of 2.05 x 10~ for
instances with setup times.

6.4. An Industrial Case Study

The case study provided below is taken from a Colombian automotive company. The
company is dedicated to the manufacturing and assembling of leaf springs that are part of
the suspension systems of cars and trucks. The company has over 200 hundred customers
and exports to over ten countries. The customers are the car assemblers and the many car
and truck repair shops and dealers of the country. A leaf spring consists of “leaves” that
are metal plates that are bolted together. Each batch of springs of the same reference is
considered a master production order (MPO). In turn, each batch of plates conforming a
leaf spring is defined a single production order (SPO) derived from the MPO. Consider a
typical reference with 10 plates. If an MPO for 100 leaf springs is issued, a total of 10 SPOs
are generated, each with 100 leaf springs. The manufacturing of leaf springs consists of
seven stages: (1) plate cutting, (2) center hole drilling and stamping, (3) tempering and
quenching, (4) bending, (5) sand blasting, (6) painting and (7) assembly. The assembly
operation was not considered in this research as this stage is not really scheduled. All
stages have a single machine except stage two that has five forming operations. Stage two is
generally the bottleneck station and, for this reason, the company keeps a buffer equivalent
to 4-5 days of demand. Each SPO is transferred between workcenters by lift trucks. In
this research, jobs correspond to SPOs. The 73 jobs used in this case study correspond
to roughly the production of one week, which is the time lapse at which the schedule is
revised and updated.

The total number of machines is 16. At the time of writing, there were one cutting sta-
tion, one drilling machine, ten stamping presses, one tempering/quenching equipment, one
bending and adjustment press, one sand blasting equipment and one painting workcenter.

Although the company has and uses an MRP system, the scheduling task is made
manually. This is due to the inherent complexity of the manufacturing process and the
constant pressure exerted by the vendors of the sales department. Although the company
has implemented the Sales and Operations Planning (S and OP) methodology, frequent
changes are common on the agreed schedules. For this reason, the company wanted to
implement a scheduling system and wanted to test a prototype computer scheduler.

For the tests, we collected data of processing times and production orders from the
MRP system. The processing times ranged between 25 min and 5 h depending on the
operation. Setups are also important, but the company does not have exact records of the
setups. For this reason, we generated setup times based on the suggestions of the plant
personnel. Setups are only important in the stamping and drilling operations.

We ran all CP-based algorithms on the proposed instance. The CP DEC was run ten
times. Table 8 summarizes the results.

29

Mathematics 2022, 10, 329

Table 8. Results for case study. For each algorithm the objective value is reported.

Algorithm Objective Function Value (Minutes)
CP AUTO 263,366
CP DF 293,522
CP RS 274,561
CP MP 293,442
CPID 264,043
CP DEC (av.) 261,532
CP DEC (best) 260,349

As expected, the CP-DEC outperformed the other algorithms showing that the method
can also performed well on realistic instances. The best performer among the CPs was the
CP AUTO. The difference in terms of the objective function between CP AUTO and CP
DEC was around 2200 min per week, which translates into an improvement of 30 min per
job (2200/73).

After analyzing the schedule resulting from the CP DEC algorithm, we validated that
the bottleneck station (as it is called by the plant personnel) was stage 2. The machine
utilizations at this stage ranged from 25% to 78% (average 47%) whereas at the other stages,
with the exception of tempering/quenching (66%), was around 30%. These figures of
utilization are expected to be higher as the machines are always loaded with jobs from the
previous week. We did not have such an information, and therefore we assumed that the
factory floor was empty for the purpose of this case. In the experience of the authors, not
only the better performance of the scheduling algorithms but also the information they
provide, justifies its use.

7. Conclusions and Future Work

In this paper, we introduce fixed group shop scheduling problem (FGSSP) with-
out/with sequence-dependent setup time. The FGSSP is a particular case of the group shop
scheduling problem (GSSP) in which the machines of a given stage are the same for all jobs.
This case can be found in different settings, as mentioned above.

We describe the characteristics of the proposed problem and provide two formu-
lations, one based on mixed integer linear programming (MILP) and one on constraint
programming (CP).

To solve the FGSSP, we developed a novel hybrid heuristic procedure based on a
decomposition approach (which we denoted as DEC). Our procedure solves sequentially
smaller scheduling problems with CP and presents a simple mechanism to escape from local
optima. Moreover, the proposed method can accommodates for additional characteristics
required in specific settings by introducing additional constraints within the formulations
without the need to modify the solution procedure itself.

To test the performance of the approach, we performed computational experiments
where we compare our method to the results provided by off-the-shelf CP and MILP solvers.
Additionally, we computed several lower bounds for the FGSSP to have a baseline comparison.

The experimental results show that the DEC and all the tested CP are very similar in
terms of performance for small and medium-sized instances, especially when the number
of stages is small. For medium and large-sized instances, the DEC outperforms the CP
methods with independence of the number of stages, finding the best solution in most of
the cases.

Future work will be devoted to studying other solution approaches for the problem,
to study the application of the proposed method to similar problems with the proposed
approach and to study issues related to Industry 4.0 technologies, such as re-scheduling in
the presence of real-time information and rework.

30

Mathematics 2022, 10, 329

Author Contributions: Conceptualization, G.M.,].P. and F.Y.; methodology, G.M.,].P, M.V. and FY.;
software, J.P. and FY.; validation, M.V. and EY.; formal analysis, G.M. and J.P,; investigation, EY.;
resources, G.M.,].P, M.V. and FY.; data curation, F.Y.; writing—original draft preparation, G.M.,].P,
M.V. and EY.; writing—review and editing,].P,; visualization, M.V. and EY.; supervision, G.M. and
J.P; project administration, G.M.; funding acquisition, G.M., J.P. and M.V. All authors have read and
agreed to the published version of the manuscript.

Funding: J.P. acknowledges the support of ANID through the grant FONDECYT No. 1191624
“Assembly line balancing for industry 4.0”.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets available at https:/ /github.com/yuraszeck/fgssp (accessed
on 1 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pinedo, M.L. Scheduling: Theory, Algorithms and Systems, 5th ed.; Springer: New York, NY, USA, 2016.

2. Zobolas, G.I; Tarantilis, C.D.; Ioannou, G. Exact, Heuristic and Meta-heuristic Algorithms for Solving Shop Scheduling Problems.
In Metaheuristics for Scheduling in Industrial and Manufacturing Applications. Studies in Computational Intelligence, 128; Xhafa, .,
Abraham, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008.

3. Blum, C.; Sampels, M. An ant colony optimization algorithm for shop scheduling problems.]. Math. Model. Appl. 2004, 3, 285-308.
[CrossRef]

4. Yuraszeck, F; Mejia, G.; Pereira, J. Modeling and Solving the Total Flow Time Fixed Group Shop Scheduling Problem. In
Proceedings of the ICPR Americas, Bahia Blanca, Argentina, 9-11 December 2020; Editorial de la Universidad Nacional del Sur:
Bahia Blanca, Argentina, 2020; pp. 2819-2822.

5. Graham, R.L.; Lawler, E.L.; Lenstra,] K., Kan, A.H.G.R. Optimization and heuristic in deterministic sequencing and scheduling:
A survey. Ann. Discrete Math. 1979, 5, 287-326.

6. Rossi, F.; Beek, V.P.; Walsh, T. Handbook of Constraint Programming, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2006.

7. Blum, C.; Raidl, G.R. Hybrid Metaheuristics: Powerful Tools for Optimization, 1st ed.; Springer: New York, NY, USA, 2016.

8. Maniezzo, V.; Boschetti, M.A.; Stiitzle, T. Matheuristics: Algorithms and Implementations (EURO Advanced Tutorials on Operational
Research), 1st ed.; Springer: New York, NY, USA, 2021.

9. Masuda, T.; Ishii, H.; Nishida, T. The mixed shop scheduling problem. Discret. Appl. Math. 1985, 11, 175-186. [CrossRef]

10. Nasiri, M.M.; Kianfar, F. A hybrid scatter search for the partial job shop scheduling problem. Int.]. Adv. Manuf. Syst. 2011, 52,
1031-1038. [CrossRef]

11. Zubaran, TK; Ritt, M. An effective heuristic algorithm for the partial shop scheduling problem. Comput. Oper. Res. 2018, 93,
51-65. [CrossRef]

12. Ahmadizar, F.; Ghazanfari, M.; Mohammad, S.; Fatemi, T. Group shops scheduling with makespan criterion subject to random
release dates and processing times. Comput. Oper. Res. 2010, 37, 152-162. [CrossRef]

13. Ahmadizar, F.; Rabanimotlagh, A. Group shop scheduling with uncertain data and a general cost objective. Int. |. Adv. Manuf.
Technol. 2014, 70, 1313-1322. [CrossRef]

14. Ahmadizar, E; Shahmaleki, P. Group-shop scheduling with sequence-dependent set-up and transportation times. Appl. Math.
Model. 2014, 38, 5080-5091. [CrossRef]

15. Kemmoé-Tchomté, S.; Fénies, P.; Lamy, D.; Tchernev, N. A Multi-start Multi-level ELS for the Group-Shop Scheduling Problem.
IFAC-PapersOnLine 2018, 51, 1299-1304. [CrossRef]

16. Liu, S.Q.; Ong, H.L.; Ng, K.M. A fast tabu search algorithm for the group shop scheduling problem. Adv. Eng. Softw. 2005, 36,
533-539. [CrossRef]

17. Nasiri, M.M. A modified ABC algorithm for the stage shop scheduling problem. Appl. Soft Comput. 2015, 28, 81-89. [CrossRef]

18. Nasiri, M.M.; Kianfar, F. A GA/TS algorithm for the stage shop scheduling problem. Comput. Ind. Eng. 2011, 61, 161-170.
[CrossRef]

19. Nasiri, M.M.; Hamid, M. The stage shop scheduling problem: Lower bound and metaheuristic. Sci. Iran. 2020, 27, 862-879.
[CrossRef]

20. Ahmadizar, F; Ghazanfari, M.; Fatemi Ghomi, S.M.T. Application of chance-constrained programming for stochastic group shop
scheduling problem. Int. |. Adv. Manuf. Syst. 2009, 42, 321-334. [CrossRef]

21. Nie, X.D.; Chen, Y.P; Yang, Y.J. The Cyclic Scheduling of Material Transporting Robot in Group Shop. Appl. Mech. Mater. 2012,
263-266, 634—638. [CrossRef]

22. Ahmadizar, F; Zarei, A. Minimizing makespan in a group shop with fuzzy release dates and processing times. Int.]. Adv. Manuf.

Syst. 2013, 66, 2063-2074. [CrossRef]

31

Mathematics 2022, 10, 329

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Ahmadizar, F; Rabanimotlagh, A.; Arkat, J. Stochastic group shop scheduling with fuzzy due dates. J. Intell. Fuzzy Syst. 2017, 33,
2075-2084. [CrossRef]

Sampels, M.; Blum, C.; Mastrolilli, M.; Rossi-doria, O. Metaheuristics for Group Shop Scheduling. In Proceedings of the
LNCS 2439, PPSN VII, Granada, Spain, 7-11 September 2002; Merelo Guervés, J.J.; Adamidis, P., Beyer, H.-G., Schwefel, H.-P.,
Fernandez-Villacafas, J.-L., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 631-640.

Zhou, J. A Permutation-Based Approach for Solving the Job-Shop Problem. Constraints 1997, 2, 185-213. [CrossRef]

Malapert, A.; Cambazard, H.; Guéret, C.; Jussien, N.; Langevin, A.; Rousseau, L.M. An optimal constraint programming approach
to the open-shop problem. INFORMS |. Comput. 2012, 24, 228-244. [CrossRef]

Lunardi, W.T.; Birgin, E.G.; Laborie, P.; Ronconi, D.P.; Voos, H. Mixed Integer Linear Programming and Constraint Programming
Models for the Online Printing Shop Scheduling Problem. Comput. Oper. Res. 2020, 123, 105020. [CrossRef]

Mejia, G.; Yuraszeck, F. A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop
scheduling problems with travel/setup times. Eur. J. Oper. Res. 2020, 285, 484-496. [CrossRef]

Meng, L.; Lu, C; Zhang, B.; Ren, Y,; Lv, C.; Sang, H.; Li, J.; Zhang, C. Constraint programing for solving four complex flexible
shop scheduling problems IET Collab. Intell. Manuf. 2021, 3, 147-160. [CrossRef]

Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for
solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347. [CrossRef]

Dorndorf, U.; Pesch, E.; Phan-Huy, T. Constraint propagation and problem decomposition: A preprocessing procedure for the job
shop problem. Ann. Oper. Res. 2002, 115, 125-145. [CrossRef]

Maravelias, C.T.; Grossmann, LE. A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipur-
pose batch plants. Comput. Chem. Eng. 2004, 28, 1921-1949. [CrossRef]

Sacramento, D.; Solnon, C.; Pisinger, D. Constraint Programming and Local Search Heuristic: A Matheuristic Approach for
Routing and Scheduling Feeder Vessels in Multi-terminal Ports. SN Oper. Res. Formu 2020, 1, 32. [CrossRef]

Fazel Zarandi, M.H.; Sadat Asl, A.A_; Sotudian, S.; Castillo, O. A state of the art review of intelligent scheduling. Artif. Intell. Rev.
2020, 53, 501-593. [CrossRef]

de Abreu, L.R.; Guimara es Aratjo, K.A.; de Athayde Prata, B.; Nagano, B.S.; Moccellin, J.V. A new variable neighbourhood
search with a constraint programming search strategy for the open shop scheduling problem with operation repetitions. Eng. Opt.
2021. [CrossRef]

Hansen, P.; Mladenovi¢, N. Variable Neighborhood Search. In Handbook of Heuristics; Marti’, R., Pardalos, PM., Resende, M.G.C.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2018.

Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278-285. [CrossRef]

32

. mathematics

Article

Dynamic Optimization of the Multi-Skilled
Resource-Constrained Project Scheduling Problem with
Uncertainty in Resource Availability

Min Wang !, Guoshan Liu 2 and Xinyu Lin %%

Citation: Wang, M.; Liu, G.; Lin, X.
Dynamic Optimization of the
Multi-Skilled Resource-Constrained
Project Scheduling Problem with
Uncertainty in Resource Availability.
Mathematics 2022, 10, 3070. https://
doi.org/10.3390/math10173070

Academic Editors: Antonin Ponsich,
Mariona Vila Bonilla and

Bruno Domenech

Received: 12 July 2022
Accepted: 22 August 2022
Published: 25 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/ licenses /by /
4.0/).

1
2

College of Business Administration, Fujian Jiangxia University, Fuzhou 350108, China
Business School, Renmin University of China, Beijing 100872, China
* Correspondence: 2020000696@ruc.edu.cn

Abstract: Multi-skilled resources have brought more flexibility to resource scheduling and have
been a key factor in the research of resource-constrained project scheduling problems. However,
existing studies are mainly limited to deterministic problems and neglect some uncertainties such as
resource breakdowns, while resource availability may change over time due to unexpected risks such
as the COVID-19 pandemic. Therefore, this paper focuses on the multi-skilled project scheduling
problem with uncertainty in resource availability. Different from previous assumptions, multi-skilled
resources are allowed a switch in their skills, which we call dynamic skill assignment. For this
complex problem, a nested dynamic scheduling algorithm called GA-PR is proposed, which includes
three new priority rules to improve the solving efficiency. Moreover, the algorithm’s effectiveness is
verified by an example, and the modified Project Scheduling Problem Library (PSPLIB) is used for
numerical experimental analysis. Numerical experiments show that when the uncertainty in resource
availability is considered, the more skills the resource has and the more resources are supplied, the
better the dynamic scheduling method performs; on the other hand, the higher the probability of
resource unavailability and the more skills are required, the worse the dynamic scheduling method
performs.The results are helpful for improved decision making.

Keywords: project scheduling; uncertainty in resource availability; multi-skilled resource; dynamic
skill assignment

MSC: 90B36

1. Introduction

The resource-constrained project scheduling problem (RCPSP) has been an important
topic within project management over the past few decades. Extensive focus has been
placed on single-skilled resources, while multi-skilled resources are becoming increasingly
common with the development of the economy [1]. This extension of the RCPSP is known
as the multi-skilled resource-constrained project scheduling problem (MSRCPSP). It was
inspired by a problem in the software development industry, where employees had several
skills relating to programming, data analysis, debugging and so on [2]. MSRCPSP is
suitable in projects with multi-skilled human resources or multi-functional machines. It
has been a prevalent topic in recent years and has been gradually applied in production
scheduling [3], research and development [4], construction engineering [5] and other
projects [6,7]. Although multi-skilled resource increases scheduling flexibility and expands
alternatives for project scheduling, it makes the problem more challenging. One needs to
decide not only resource scheduling matters but also skill assignments.

In practice, resource unavailability is a frequent occurrence, especially in the wake of
COVID-19, such as staff turnover, equipment maintenance, and transportation interruption.
In this situation, project managers are forced to take a series of measures to make the project

Mathematics 2022, 10, 3070. https:/ /doi.org/10.3390/math10173070

https:/ /www.mdpi.com/journal/mathematics
33

Mathematics 2022, 10, 3070

scheduling more efficient and to adapt quickly as possible to uncertainties [8]. Therefore,
we focus on the MSRCPSP with uncertainty in resource availability in this paper. Moreover,
distinct from previous assumptions, multi-skilled resources are allowed to switch their
skills, which we call dynamic skill assignment. This means that when some resources
with one skill are unavailable, the impact of resource shortage can be alleviated by skill
switching from other idle resources with the same skill. If dynamic skill assignment still
fails to make up for the shortage of resources, additional resources will be considered under
the constraint of deadlines, such as the recruitment of temporary workers, equipment
renting and so on. According toWEC (Word Employment Confederation), temporary
employment accounts for 70 percent of the global HR market, which is worth nearly USD
4 hundred billion. It plays an important role in reducing the cost and relieving the shortage
of resources. Methods for optimizing project scheduling and dynamic skill assignment
with uncertainty in resource availability so as to achieve the goal of minimum additional
resource costs are the focus of this paper.

This paper has the following three contributions. First, we extend the MSRCPSP
with uncertainty in resource availability, and the uncertainty is described by the Markov
process. Second, dynamic skill assignment is proposed, which allows multi-skilled re-
sources to switch skills. Third, a nested dynamic scheduling algorithm called GA-PR is
proposed, which includes three new priority rules to improve the solving efficiency, and
the effectiveness of the algorithm is proved by comparing the existing static and random
scheduling method.

The remainder of this paper is organized as follows. A literature review is presented
in Section 2. Definitions of the MSRCPSP with uncertainty in resource availability are
discussed in Section 3. The nested dynamic scheduling algorithm is explained in detail in
Section 4. A numerical example is provided in Section 5 to illustrate the new model and the
new algorithm. The computational experiments and results analysis are shown in Section 6.
Section 7 is the conclusion.

2. Literature Review

Although multi-skilled resource make solving MSRCPSP more flexible, it also renders
the scheduling procedure more complex and difficult; thus, modern methods and tools
are usually used to improve scheduling processes [9]. Methods for designing more effec-
tive scheduling procedures with modern methods have become important topics in the
MSRCPSP. Bellenguez and Néron (2007) [2] proposed that each activity needs a specific set
of skills, and the resources are staff members who possess fixed skill(s). Moreover, these
staff members have unavailable periods. To minimize the makespan, a Branch-and-Bound
method is proposed. Generally, the more skills a staff member possesses, the more costs are
incurred. To minimize the total costs for multi-skilled personnel, Li and Womer (2009) [10]
develop a hybrid Benders decomposition (HBD) algorithm that combines the complemen-
tary strengths of mixed-integer linear programming and constraint programming. Correia
and Saldanha-da-Gama (2014) [11] consider that the costs associated with resources include
fixed and variable costs. The fixed costs are incurred simply by using resources, while
variable costs depend on the final makespan of the project. For this problem, a mathemati-
cal programming modeling framework is proposed, and a non-linear objective function is
included, which can be linearized at the expense of an additional set of continuous variables.
For resources considering skills, in addition to the cost, the skill level also directly affects
the project scheduling scheme such that the higher the skill, the shorter the task duration.
Heimerl and Kolisch (2010) [4] consider the MSRCPSP in a multi-project-environment
(i.e., the processing of the projects’ external and internal resources with different skills and
at different performance levels). Thus, the question is how projects are scheduled and how
resources are assigned to a project such that different requirements are met, keeping the
costs minimal. To address the complex project-scheduling problem, a mixed-integer linear
program with a tight LP-relaxation, which makes solving real-world problems possible,
is proposed. A related problem was examined by Firat and Hurkens (2012) [12]. The

34

Mathematics 2022, 10, 3070

authors consider a mixed-integer-based approach for a multi-skill work-load problem and
where skill levels are not homogeneous. Each activity has requirements for each skill-level
combination. The goal is to maximize the number of tasks processed in each workday.
Snauwaert and Vanhoucke (2021) [13] addressed an MSRCPSP with breadth and depth of
skills, where the breadth of a resource is perceived as the amount of skills an employee
masters and the depth of a skill is the efficiency level at which work can be performed by
a resource that masters that skill. After that, in 2022, they studied how hierarchical skills
(depth of skills) affect project scheduling from aspects of efficiency, cost, and quality [14].

Although the above studies provide references for the model and algorithmic design
of MSRCPSP, they assume that the availability of renewable resources remains constant
over time and rarely consider uncertainties in resource availability [1]. This assumption
may be too strict. Resource availability might change in response to the availability of
labor due to vacation days or varying availability of equipment due to maintenance [15]. A
relatively common type of research is the project scheduling problem under uncertainties
in project duration, including proactive scheduling [16] and reactive scheduling [17]. Once
resources are unavailable (staff turnover, machine failure, etc.), the original scheduling
is no longer feasible, especially for key resources. Therefore, the uncertainty in resource
availability has gradually become an important and difficult point in project scheduling.
Lambrechts et al. (2008) [18] introduced a variant of the RCPSP, for which the uncertainty in
resource availability is considered. The objective is to find a robust schedule that minimizes
the schedule’s instability cost. The schedule’s instability cost is the expected weighted
sum of the absolute deviations between the planned and the actual starting times of the
activity during the execution of proposed proactive and reactive strategies. Furthermore,
to determine the impact of unexpected resource breakdowns on activity durations, they
developed an approach for inserting explicit idle time into the project schedule. This was
also implemented to protect it from disruptions caused by resource unavailability [19].

The literature cited above indicates that regardless of whether project scheduling
considers uncertainties in terms of duration or resource availability, the idea is to set a buffer,
namely time or resource buffer. The buffer can effectively protect the scheduling benchmark
and improve the robustness of the solution. However, considering multi-skilled resources,
effectively using this attribute to deal with the disturbance caused by uncertainties in
resource availability has become a noteworthy problem. To our knowledge, there are only a
few authors that incorporate uncertainty in resource availability in MSRCPSP, thus making
this topic an interesting and novel path for research.

Ahmadpour and Ghezavati (2019) [20] provide a fuzzy scheduling model for the
RCPSP, which considers fuzzy conditions for the calendar of the project. Multi-skilled
human resources are also being considered to cope with the risk of resource shortages
and delays in project completion. The results obtained from the fuzzy model for the
value of objective function were evaluated under the influence of the resource calendar,
consequently showing its benefits. The results provide a research idea for the MSRCPSP
with resources uncertainty. However, this study assumes that once resources are assigned to
a specific skill, they will be completely unchangeable until the end of the project. However,
when a resource is unavailable due to resource uncertainty, other resources with the same
skill are often recruited to continue the activity and avoid delay. When the resource is
available again, the resource may be required to use other skills and perform other tasks to
avoid information asymmetry caused by the resource transition. This multi-skilled resource
dynamic skill assignment realizes the rotation of different resources with different skills
among different tasks and alleviates the disturbance caused by the uncertainty in resource
availability [21]. Compared with the situation that skills cannot be changed, this scheduling
is closer to real-world issues, thus making resource scheduling more flexible and effective
in dealing with absenteeism [22]. Moreover, as multi-skilled resources are often acquired
through cross-training, a worker who does not frequently practice one skill may tend to
forget it [23,24]. In the long run, multi-skill can be easily transformed into single-skill.
Therefore, in this study, we relax the assumption that resources are allowed to change skills.

35

Mathematics 2022, 10, 3070

Compared to the existing literature, uncertainties in resource availability and dynamic
skill assignment of multi-skilled resources are considered on the basis of MSRCPSP in this
paper. When a resource is unavailable, it can be replaced by skill switching relative to
other multi-skilled resources; alternatively, the external supplement of resources is another
method. The uncertainty in resource availability is described by the Markov process. This
is mainly because the evolution of availability or unavailability of resources is a discrete
stochastic process that evolves with time. In other words, only the present determines the
future, and the past is irrelevant. This corresponds to the Markov chain [25]. Then, we
designed a nested scheduling algorithm combined with three new priority rules to solve
this complex problem to minimize additional resource costs. Finally, the effectiveness of
the proposed algorithm is verified by experimental analysis. The results of this research
are helpful in the decision making of multi-skilled project scheduling. It is also valuable
for expanding the project scheduling research in an uncertain environment, especially
since uncertainty appears to be an extremely difficult element to deal with. Although
most researchers recognize the importance and ubiquity of uncertainty, it remains the most
popular topic of future research sections in many papers [26].

3. Problem Description

In the MSRCPSP, we employ the activity-on-node (AoN) representation and assume a
zero time lag for precedence relations. The project consists of # + 2 activities. The duration of
activity j(j € V, V. ={0,1,2,...,j,...n+1}) isdj(d; € Ng) and dy = d,, 11 = 0. We assume
that the project needs K types of renewable resources, the setis R(R = {1,2,...,k,...,K}),
and the availability of each type of resource is |Ri|; thatis, Ry = {r1, k2, k3, - - -, This - - - }-
Moreover, the project needs sk types of skills, and the set is Sx(Sx = {s1,52,...,5k ..., Sk })-
The skill(s) mastered by each resource is predefined, and we assume that all resources in the set
of Ry master skill s;, which we call the initial skill of resource ry;. Whether there is mastery of
other skills or not is randomly generated, and it is indicated by x;,, 5, , where x;,, 5, = 1 indicates
that resource ry; has mastery of skill s;. When - cs, X5, > 1, resource ry; masters more than
one skill. We describe the uncertainty in resource availability by the Markov stochastic process,
and we set the state of the resource as Z; (Zt = {z;” ,z?z, .. ,z;”, ..., z:k", .. .|t =1,2,..., T}),
where T is the deadline of project and z;* represents whether resource ry; is available or
not at time ¢. If it is available, z:k’ = 1; otherwise, it is 0. We assume that the project starts at
time zero; thus, Z; denotes the initial available/unavailable status of all resources, and we
set zj" = 1 for each resource.

The variables and parameters are shown in Table 1.

Table 1. Variables and parameters.

Variables and Parameters

Xt Binary variable, if activity j is executed in period [t, f 4+ 1) or not.
Xryjis Binary variable, if resource ry; with skill s; or not.
Xrei i sict Binary variable, if resource ry; with skill s in period [t, t + 1) or not.
Re t The additional amount of the resource with skill s at period ¢.
v={12...,j....n+1} The set of activities.
SUCC; The immediate successor set of activity ;.
Zy={z",z}2, ..z, Lz, |t =1,2,..., T} The set of resources state.
zZ}¥ Binary parameters, if the resource ry; is available at time f or not.
Sj The start time of activity j.
d; The duration of activity ;.

36

Mathematics 2022, 10, 3070

Table 1. Cont.

Variables and Parameters

R={1,2,...,k..., K} The set of K types of renewable resources.
Re = {rk1, "2 Th3r -+ o ki - -} The set of Ry.
|Rg| The availability of Ry.
Sk ={s1,82,++,5k -, Sk} The set of skills.
Xpy 5k Binary parameters, if resource ry; has mastery of the skill s; or not.

Tis The requirements of skill s, for executing activity j.

Pry The unavailability probability of resource ry;

Csy The cost of the resource with skill s.
T The deadline of the project.

Py, The state transition matrix of ry;.

uk The state probability vector of resource ry; at period f.
e The degree of infeasibility.

M A sulfficiently large penalty coefficient.

General RCPSP’s goal is to study how to schedule activities under the constraint of
resources and precedence relations in order to minimize the makespan of the project. While
in the MSRCPSP, as resources are multi-skilled, it is necessary to decide not only activity
scheduling but also the skill assignment of resources. To ensure that activities remain
uninterrupted and to avoid delays in the project, we allow other idle resources with the
same skill to replace the unavailable resources when the skill requirements of activities
cannot be met. If this still does not work, additional resources with the same skill would be
considered (purchasing, renting, or overtime). Adopting additional resources is an easy
and popular method to increase flexibility [26]. According to some studies, it is a proper
assumption where there is no difference in performance between temporary and permanent
resources [27-29]. Given this situation, a problem arises as to which idle resource will
be selected and how to assign them, how many additional resources are needed to meet
skill requirements. To solve this, we set the goal to minimize additional costs. Thus, the
MSRCPSP with uncertainties in resource availability studied in this paper can be described
as follows: Under the constraints of precedence relations, resource availability, and project
deadline, determine activity scheduling and dynamic skill assignment of multi-skilled
resources to minimize additional costs of the project. The research assumptions of this
paper is as follows:

(1) There are many types of multi-skilled resources needed by the project. Each resource
can possess one or more skills, and the initial skill of the resource has priority in
scheduling. Skill levels are homogeneous among resources.

(2) The availability or unavailability of different resources is independent of each other.

(8) The idle resources are allowed to switch skills to replace unavailable resources.

(4) The unavailability probability of resource ry; is py;, and the state transition matrix of

i can be denoted as follows:
1 0
P = 1
o (Pki 1- Pki) @

pri cannot be changed in per unit time, and the state z;* is subject to the Bernoulli
distribution of py;. If uk’ represents the state probability vector of resource ry; at period
t, then uﬂ_lzu’f’ Py, and the initial state probability vectors of all resources are (0,1).

37

Mathematics 2022, 10, 3070

(5) The initial resource cost of the project is fixed; in other words, it will not decrease or
increase because of the unavailability of resources. Thus, the objective function does
not consider the initial sunk cost of the resource and only considers additional costs.

Mathematically, the MSRCPSP with uncertainty in resource availability can be concep-
tually formulated as follows.

K
Min Y c5, Ry +eM @
k=1
Sj—ngd]- (je V,geSUCC/-) 3)
Sy T 4)
Y xy=di(jeV) (5)
tE[S/’,S]‘+dI']
xp=0(jeV) (6)
t€(0,5;)U (Sj+dj,Sn41]
Y t(xj—xjp1) =S; (€ V) ?)
teT
Yo xst <1(keK teT) ®)
sKESK jeV
Y Fise <) er,,skZ:k'ka,,j,sk,t +Rgt (k€K,sp €S, teT) 9)
jev i ERg
wki, = u¥'P, (i € RykeK, teT) (10)
Xitr Xrijsir Xreajsit € {0,1} (11)
Re >0 (12)

Objective Function (2) minimizes the cost of additional resources, and a penalty
value of eM is considered if scheduling is infeasible. Constraint (3) ensures that the
precedence relations among activities need to be satisfied. Constraint (4) ensures that the
makespan of the project should not exceed the deadline. Equations (5) and (6) ensure that
the activity cannot be interrupted. Equation (7) is a representation of the activity’s start
time. Constraint (8) ensures that every resource can be assigned only in one activity at any
time. Constraint (9) guarantees that the activity’s skills need need to be met. Equation (10)
is the state probability vector of each resource. Equations (11) and (12) describe the domain
of decision variables.

4. The GA-PR Algorithm

As the MSRCPCP is NP-Hard [30], the possibility of solving the problem optimally
using exact solution procedures is limited by the size of instances. However, real instances
of project scheduling problems are considerably large. Therefore, having efficient heuristics
for finding good quality solutions is of great relevance, especially when considering the dy-
namic skill assignment of multi-skilled resources with uncertainties in resource availability.

The proposed model not only optimizes activity scheduling (the start time of each
activity) but also resource scheduling (dynamic skill assignment of multi-skilled resources).
To solve the new model, we designed a modified genetic algorithm combined with priority
rules, called GA-PR. Based on the characteristics of the model, the algorithm is divided into
two layers. The outer layer comprises activity scheduling optimization according to genetic
algorithm, and the inner layer comprises resource scheduling optimizations according to
priority rules.

38

Mathematics 2022, 10, 3070

4.1. The Outer Algorithm-GA
Step 1. Initialization of activity scheduling

In the outer layer, activity scheduling is the decision maker. Assuming that the project
consists of 11 4- 1 activities, there are 1 4 1 genes on each chromosome, representing the start
time (ST) of each activity. The earliest start time (ES) of the dummy activity 0is 1, and the
project deadline is set as the latest start time (LS) of the dummy activity n + 1. According to
the forward and backward iteration algorithms in the critical path theory (CPM), the start
time interval of activity j is [ESj, LS]'} . The initial ST} is a random value among [ES i, LS j]~

Step 2. Calculation of objective function

The objective is to minimize the additional resource cost. First, if the activity schedul-
ing is subjected to precedence constraints, insert it into the inner algorithm. If not, the
fitness value is a relatively large penalty value eM, where M is a sufficiently large penalty
coefficient, and e reflects the degree of infeasibility—the degree of violating constraints.
All individuals in the population are listed in a descending order of fitness value, and the
individual with the minimum fitness value is set as the optimal individual.

Step 3. Selection, crossover, and mutation

The binary tournament method is used to select parent individuals from the popula-
tion. Subsequently, crossover and mutation are carried out to generate the new population.
Then the optimal individual is updated. This step is iterated until the maximum number of
iterations has been reached, and then the final optimal individual is output. (Parameters,
such as crossover probability and mutation probability, are determined after many tests.)

4.2. The Inner Algorithm-PR

Step 1. Identify the unavailability probability pyi(k =1,2,...K, i =1,2,...) of each re-
source and generate the resource state matrix Z; based on the Markov process.

Step 2. Internal resources ranking

Assume that the project requires sx types of skill, and there are K types of resource.
For each type of resource, we rank the internal resource’s scheduling order according to
their skill number in ascending order, and the internal resource’s scheduling order is Ay.
Here, we define the first resource-scheduling priority rule.

Priority Rule 1: Within each type of resource, the one with the lowest skill number is
scheduled preferentially because the one with more skills can replace unavailable resources.

Step 3. External skills ranking

The set of activities that are executed at moment f is Oy, generated based on activity
scheduling, which is the outer layer’s solution. Calculate the total demand of each type of
skill at moment Ds;, and calculate the total initial supply of each type of skill at moment
Sst according to the resources’ initial skills and their available state. The gap between Dy
and Ss; is defined as skill-demand tension Lg;. The smaller the gap, the smaller the demand
tension of s. We rank these skills according to the demand tension in ascending order, and
the external skill order at moment t is W;.

When the scheduling of the skill with the smallest demand tension is completed, the
unscheduled resources with this skill can convert its skill to the next skill that needs to
be scheduled and so on. Thus, the demand tension of the next skill can be alleviated.
Therefore, here, we define the second skill scheduling priority rule.

Priority Rule 2: Among different skills, the one with the smaller demand tension
is scheduled preferentially.

39

Mathematics 2022, 10, 3070

Step 4. Feasibility analysis of activity scheduling with resource constraints

There are three cases for resource scheduling with constraints.

Case 1: The skill demand tensions are all negative, indicating that the initial skill
provided by resources can satisfy the demand under the given activity scheduling (see
Step 5).

Case 2: The skill demand tensions are all positive, indicating that the initial skills
provided by resources cannot satisfy the demand under the given activity scheduling. This
means that every skill needs to be complemented by additional resources (see Step 6).

Case 3: In other cases, it indicates that the initial skills provided by the resources
cannot satisfy the demand under the given activity scheduling, but multi-skilled resources
may satisfy skill needs through skill switching (see Step 6).

Step 5. Resource scheduling without multi-skill

First, the skill with the smallest demand tension is scheduled. The scheduling order
of resources with initial skill Wy; is Ay,,. For each resource, it is necessary to determine
whether it is available. If available, it is removed from Ay, and added to the resource
profile of the task in O;. If it is unavailable, it is removed directly from AW1 -

Step 6. Resource scheduling with multi-skill

The cost of skill is used as the basis of the skill scheduling order; the skill with high
cost is scheduled first to satisfy its demand as far as possible and to minimize the cost
of additional resources as much as possible. Here, we define the third skill scheduling
priority rule.

Priority rule 3: When the skill’s demand tension is positive at a certain moment,
the skill with high costs has priority.

For other cases, based on step 5, after completing the scheduling of skill Wy, as its
demand tension is the smallest, if Ay, is a non-empty set, then merge Ay, into Ay, to
schedule skill Wy; and so on. If it is still unable to satisfy the skills demand, to ensure that
activity scheduling is feasible, additional resources should be considered, and the project’s
cost will increase.

Step 7. Inner iteration

Steps 4-6 are iterated before resource scheduling is completed. Then, output the final
fitness, activity scheduling, and resource scheduling.
The flow chart of GA-PR algorithm is shown in Figure 1.

40

Mathematics 2022, 10, 3070

| Calculation of [ES;, LS}] |

v

| Population initialization |

Establishment of resource
unavailability probability matrix
and skill matrix

Establishment of resource intial
state matrix

| Internal resource ranking
(Priority rule 1)

| I

Feasibility judgment of activity
scheduling without resource
constraints

Feasibility analysis of activity

Feasible or not

I scheduling with resource
constraints

Calculation of skill demand tension
(Priority rule 2)

kills demand tension are al
negative or not

| N
l 1

Resource scheduling with multi-skill
| (Priority rule 3)

Resource scheduling without multi-
skill

1l activities have completed
resource scheduling or not

— Calculation of objective

| Selection, crossover and mutation

aximum number of iteration:
achieved or not

No 1
Update the resource state matrix
and go to the next moment —
(Monte Carlo simulation)

Figure 1. Flowchart of the GA-PR.

41

wyjLIog[e Jduuy

Mathematics 2022, 10, 3070

5. A Numerical Example

A project with 12 activities is defined to illustrate the new model and the new al-
gorithm. The duration of each activity is known, and precedence relations are shown in
Figure 2 as finish-to-start relations. Assume that the project needs three types of renew-
able resources: Ry, Ry, andR3, i.e., K = 3, and the total number of each type of resources
was considered be 10; then, the set of each type of resources can be described as fol-
lows: Ry = {ri1, 712,713,714, 715, 716, 717, 718, 719, 7110 }; R2 = {121,722, 723,724,725, 126,127,728, 729, 7210 };
Rs = {rs1,732,733, 734,35, 36, 37, 738, 39, 310 } - All resources in Ry master initial skill sy, all re-
sources in R, master initial skill s,, all resources in Rz master initial skill s3, and whether
these resources master other skill(s) is generated randomly. The resource state matrix is
generated by a Markov process (see Table A2 in Appendix A for details). Each activity
demands different skills. Table 2 shows the number of skills required for performing
activities and other information.

Figure 2. Project Network Example.

Table 2. Project information.

Activists Successors d; s1 sy s3
0 1,2 0 0 0 0
1 3 2 5 6 6
2 4,5 3 7 5 4
3 6 6 6 4 4
4 6 5 4 6 3
5 7 3 7 7 6
6 8 6 5 6 4
7 8,10 4 8 5 5
8 9 5 3 4 3
9 11 4 6 5 4
10 11 2 6 3 6
11 - 0 0 0 0

Csy 10 8 12

5.1. The Effectiveness of Dynamic Scheduling

According to the critical path method, the shortest makespan of the project is 23.
Considering the unavailability of resources, we assume that the deadline of the project
is 26 (any number greater than 23 is allowed) (that is, T = 26). According to the GA-PR
algorithm, the optimized scheduling scheme can be obtained, as shown in Figure 3 and
Table 3. Taking scheme 1 as an example, the detailed project scheduling is shown in Figure 4
and the detailed resource scheduling is shown in Table 4.

42

Mathematics 2022, 10, 3070

Non-dominated Solutions
1050 T T T T

1000 q

950 q

Cost

900 q

800 L I I L L
23 235 24 245 25 255 26

Makespan

Figure 3. The schedule solution. Note: The red dots indicate the makespan and additional cost of 4
scheduling schemes respectively.

Table 3. Optimization Schedules.

Scheme Makespan (Costs ogging:a‘r;alI::sources) Schedule
1 23 1032 [0,1,1,3,4,8,9,11, 15, 20, 15, 23]
2 24 934 [0,1,2,3,5,9,10, 12,16, 21, 18, 24]
3 25 888 [0,3,1,5,4,9,11,12,17, 22, 21, 25]
4 26 802 [0,3,1,5,7,4,12,12,18, 23, 21, 26]

According to Figure 3, it can be found that with the extension of the project deadline,
the cost of the additional resources becomes increasingly smaller. In other words, the buffer
period plays a role in alleviating resource unavailability. Resource scheduling in Table 3
shows that multiple resources have performed more than one skill. This gives scheduling
more flexibility. Therefore, the dynamic scheduling considering multi-skilled resources
can effectively alleviate the impact of uncertainty in resource availability on a project’s
makespan and cost.

s1 2 3
18 18 18
16 16 16
14 14 14
12 12 12
2 2 — 2
€ 10 5 g 10 5 10
5 5 5
3 3 3
2 s s S s
3 3 3 .
6 2 £ 6 7 6 2
7
4 10 4 7
4 10 4 4 10
2 2 2
olils 6 8 9 olls 6 8 9 olils 6 8 9
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

Time Time Time

Figure 4. The scheduling of scheme 1.

43

Mathematics 2022, 10, 3070

Table 4. Multi-skilled resource scheduling of scheme 1.

j t s1 s2 s3
1 7115 7125 7145 115; 1110 121; 1225 123; 124; 127; 129 7325 133; 1345 1365 375 139
! 2 714; 717, T110; 2 temporary 722; 129; 4 temporary 132; 135; 137, 138; 13; 210
1 713; 165 717; 185 T19; 2 temporary 125; 126; T28; 1210; 1 temporary 731; 1355 138; 310
2 2 1165 1185 1195 T24; 125; 28; 1 temporary 5 temporary 133; 365 13105 11
3 712; 114; T17; 110; 3 temporary 122; 123; 129; 1210; 1 temporary 113; 345 137, 138
3 7115 1155 1185 1195 125, 128 ry7; 3 temporary 131, 733, 365 139
4 7115 7125 1145 1155 1175 7110 1215 122; 123; 129 732; 34; 365 139
3 5 7115 7125 1155 117; 1185 7110 1215 1225 127 129 7345 1365 137; 139
6 712; 1145 717; 11105 T26; 1 temporary 122; T29; 1210; 1 temporary 123; 1325 137; 138
7 712; 713; 7145 115; 1185 719 1215 1225 1275 129 7325 1365 137 139
8 713; 1165 71105 T28; 2 temporary 723; 27; 2 temporary 734; 35; 139; 1310
4 713; 1185 119; 138 125; 126; 128; 1210; 1310; 1 temporary 131, 133; 135
5 713; 119; r310; 1 temporary 123; 1245 126; 1285 12105 138 732, T33; 135
4 6 T16, 118, 119, 121 125, 127; 28; 3 temporary 731,133, 36
7 4 temporary 123; 125; 1267 128; 1385 310 7315733, 135
8 714; 117; 719; 124 129; T210; 4 temporary 115 1315 736
8 715; 26, 5 temporary 722; 6 temporary 718; 125; 133; 138; 2 temporary
5 9 r12; T14; 117; T110; 1265 2 temporary 1225 129; T210; 4 temporary 713; 123; 132; 135; 137; 38
10 r14; 1175 1110 265 3 temporary r22; 29; 5 temporary r13; 123; 37; 138; 2 temporary
9 7115 1155 1185 119; 1310 121; 25; T27; 3 temporary 1315 33; 1365 139
10 7155 1185 119; 1245 128 725; 127; 4 temporary T11; 1335 136, 310
P 11 7115 1125 1155 115; 117 121; 122; 123; 124; 127; 129 7345 1365 137; 139
12 712; 114; 717, 1110 26 7210; 5 temporary 737, 1385 123, 13
13 115 1125 1145 65 117 722; 123; T28; T29; 2 temporary 7325 1345 136; 137
14 712; 145 715; 1175 1110 1215 122; 123; 1245 1275 129 734; 1365 137 139
11 r13; 1185 119; 5 temporary 125; 4 temporary 731; 1325 135; 1385 1310
12 7115 1155 1165 118; 119; 215 7245 125 r27; 4 temporary 1315 133; 367 139; 1310
7 13 r13; 18; '19; 5 temporary 5 temporary 731, 133; 35; 138, 1310
14 r13; 1185 r19; 5 temporary 725; 1210; 1310; 2 temporary 7315 132; 133; 1355 38
15 711; 1145 T110 122; 123; 127, 129 736; 137; 1310
16 712, 715, 1110 722; 26; 127, 129 734; 1365 137
8 17 714, 115, 7110 722; 123; 724; 129 734; 136 137
18 714; 1155 7110 1215 122; 1275 129 1345 1365 137
19 7145 1155 7110 1215 122; 127; 129 1365 137; 310
20 713; 115; 117; 185 1195 725 1215 1225 123; 1245 127 1325 134; 1365 137
9 21 115 1125 1145 115; 1165 117 1215 122; 123; 1245 729 731; 1325 133; 137
22 7115 7125 1145 115; 165 7110 1215 1225 123; 1245 129 7345 1365 137; 139
23 11; 125 715; 165 717; 7110 721; 122; 123; 127, 129 7345 1365 137; 139
15 712; 113; T16; 1175 7185 719 1265 1285 1210 1255 1315 133; 138; 310; 1 temporary
10 16 713; 165 717; 185 T19; 1 temporary 125; 12105 1310 731; 1325 133; 1355 1385 139

44

Mathematics 2022, 10, 3070

5.2. Comparison of Three Scheduling Methods

As shown in Section 4, we know that scheduling multi-skilled resources is mainly
determined by the priority rules in the inner algorithm, which we call dynamic schedul-
ing. To further analyze the effectiveness of these priority rules, we set up two groups of
experiments to compare with the dynamic scheduling method proposed in this paper—
random scheduling and static scheduling. Random scheduling means that the priority
rules designed in Section 4.2 and the skill scheduling order and resource scheduling order
are random. Static scheduling means that once a resource is assigned a skill, it cannot
be changed. The pseudo-codes of dynamic, random and static scheduling are shown in
Appendix B, and the results relative to three different scheduling methods are shown in
Figure 5a—c, respectively. The figures indicate that the objective of dynamic scheduling
is the best: There is minimum additional cost, followed by random scheduling and static
scheduling. This is because of the design of scheduling priority rules. This proves the
effectiveness of the proposed dynamic scheduling method. The operation times of the three
scheduling methods are 19.44 s, 16.39 s, and 0.57 s, respectively.

1100 dynamic scheduling
1090
1080
H
3§ 1070
D
3
@ 1060
1050
1040 Additional Cost=1032
1030
0 5 10 15 20 25 30 35 40
Iterations
(a)

1260

Random scheduling

1250
1240

1230

Best Cost

1220
1210

1200

Additional cost=1194

1190
0 5 10 15 20 25 30 35 40
Iterations

(b)

2500

static scheduling

2400
2300
2200
2100

2000

Best Cost

1900
1800
1700
1600

Additional cost=1480

0 10 20 30 40 50
Iterations

(©
Figure 5. (a) Dynamic scheduling. (b) Random scheduling. (c) Static scheduling.

1500

45

Mathematics 2022, 10, 3070

5.3. The Effect of the Buffer Period

We can know that a project’s deadline affects the objective value from the results of
Figure 3. Therefore, we define parameter Cj,4jiy,- to represent the buffer coefficient, which
is used to reflect the margin of buffer duration interval—C,ugiie = T/ DueDate, and the
DueDate refers to the makspan of the critical path of the project. The larger Cgeqg1ine is, the
larger the buffer period. The objective values of three scheduling methods with different
parameters are shown in Table 5.

Table 5. The effect of the buffer period.

Dynamic Random Static
Parameter Best Cost
est Cos
11 952 1154 1076
1.3 538 802 556
Cdendline

1.5 364 476 402
1.7 250 406 270

Table 5 shows that with the increase in buffer period, the objective values decrease for
three different scheduling programs. This is because when the activities cannot be started
due to the unavailable resources, the larger the buffer period, the more likely that activity
can be allowed to delay, and fewer additional resources will be added. Thus, the cost will
be reduced.

6. Experiment Analysis

In this section, a computational experiment is designed to assess the performance of
the heuristic algorithm proposed in this paper. The algorithm was coded in Matlab R2018b
and ran in the environment of Microsoft Windows 10 (CPU 1.68 GHZ, RAM 8 GB).

6.1. Test Data

Considering that the resources are multi-skilled and their availabilities are uncertain,
the following changes are made to the dataset from PSPLIB (http:/ /www.om-db.wi.tum.
de/psplib/, accessed on 17 June 2020):

(1) The number of skill types required by the project corresponds to that of resource
types required by the project in the original PSPLIB. Each type of resource has a
corresponding initial skill. Assuming that the original PSPLIB J30 needs four types
of resources (Ry, Ry, R3, and Ry), the project in this paper needs four types of skills
in which all resources in Ry have initial skill s;, those in R, have initial skill s;,
and so on. Except for the initial skills, whether every resource has other skill(s) is
randomly generated.

(2) The skill requirements of activities correspond to the resource requirements in PSPLIB—
assuming that the resource requirements of Ry, Ry, Rz, and Ry for activity 1 in a case of
PSPLIB is 4, 5, 7, and 8, respectively, then the skill requirements of sy, s, 53, and s, for
activity 1is 4, 5,7, and 8 in this paper.

Network complexity (NC) reflects the precedence relations of activities. Resource
Strength (RS) reflects the intensity of resources, where the larger the value is, the more
resources are supplied. Resource Factor (RF) reflects the activity’s skill requirement, where
the larger the value is, the more skills are needed. In addition, we defined Modified
Resource Strength (MRS) based on the Resource Strength (RS), which reflects the skill
strength mastered by resources. The formula of MRS is shown in Equation (13). The larger
the value, the more the skills are mastered by resources. The Rate of Resource Unavailability
(RRU) is introduced to reflect the unavailability of resources. The larger the value, the
greater the probability that the resource is unavailable.

46

Mathematics 2022, 10, 3070

(5 T X)/ (5 5)
K
As the problem studied in this paper adds uncertainty in resource availability and
dynamic skill assignment to the classical MSRCPSP, this improves scheduling flexibility
while increasing the difficulty for solutions. As such, solution times increase exponentially.
Therefore, this paper only selected the J30-dataset from the PSPLIB. The parameters of
dataset are shown in Table 6 below.

MRS = (13)

Table 6. Parameters and values.

Parameters Values
NC 1.5 1.8 2.1 — —
RS 0.2 0.5 0.7 1 —
RF 0.25 0.5 0.75 1 —
MRS 0.25 0.625 1 — —
RRU 0.1 0.2 0.3 0.4 0.5

6.2. Computational Results

In this section, dynamic, random, and static scheduling are compared based on the
same dataset. The comparison results under different parameters are shown in Figure 6a—e,
where Opt(%) is the proportion of the optimal solution. The optimal solution refers to
the minimum cost of the three scheduling methods (dynamic, stochastic, and static). The
proportion of the optimal solution refers to that of the number of optimal solutions in all
480 instances.

As Figure 6a—e indicate, regardless of how parameters change, the performance of
dynamic scheduling is always superior than random and static scheduling. Moreover,
compared to static scheduling, random scheduling is superior. This is because static
scheduling limits the resource’s skill switching; thus, more additional resources need to be
supplied to reach skill requirements, leading to an increase in costs. This shows that multi-
skilled scheduling can effectively alleviate the disturbance caused by resource uncertainty,
and the design of priority rules in dynamic scheduling leads to improved optimization
results, which further shows the effectiveness of the proposed algorithm.

As shown in Figure 6a, network complexity (NC) has no obvious impact on the results
of the three scheduling schemes. This is because the three types of scheduling mainly
optimize results from the perspective of resources and skills. Therefore, regardless of how
NC changes, the results are relatively stable. With the increase in Resource factor (RF), the
proportion of optimal solution of dynamic scheduling gradually decreases, as shown in
Figure 6b. With limited resources, when the activity skill requirements increase, project
scheduling is more easily affected by resources. With the increase in skill requirements,
the flexibility of multi-skilled resources is limited. As such, more additional resources are
needed, which leads to an increase in costs. Therefore, compared with random and static
scheduling, the optimal proportion of the target value decreases. As observed in Figure 6¢,
with the increase in RS, the proportion of the optimal solution of dynamic scheduling
gradually increases. This is because the greater RS is, the more resources are likely to meet
the skill requirements of activities, and the replacement of idle resources is easier. Thus,
there is less necessity for additional resources, and costs will be less. In other words, the
increase in RS weakens the impact of uncertainty in resource availability. Similarly, MRS
reflects the strength of skills. The greater the MRS, the more skills the resources can master.
There is more flexibility in resources scheduling, and it is more likely to produce improved
solutions compared with static scheduling. Consequently, costs are lower, as shown in
Figure 6d. As RRU reflects the state of resources, the higher the value, the greater the
probability of resource unavailability. At this time, the role of multi-skilled resources will be
weakened, and there are fewer resources that can meet skill requirements. Therefore, with

47

Mathematics 2022, 10, 3070

the increase in RRU, more additional resources are needed, and the optimal proportion of
dynamic scheduling will also decrease, as shown in Figure 6e.

—+— dynamic T T
ool ——random [o |
—————— static
80| g 8 1
[—
7of g 70 1
60 g 60]
g g
< sof g g g
E
8 S
4of g P g
£ E Y 1
20 i 20 1
— 0
10] 10 1
\ \ .
15 18 21

—+— dynamic

oo 4 sl —6—random |
———= static
80 ES // 4
7of R 7oF 1
60 1 60 g
g -
E sop 4 § sof]
o o
40 4 wb 4

op)

Figure 6. (a) Comparison results of NC. (b) Comparison results of RF. (c) Comparison results of RS.
(d) Comparison results of MRS. (e) Comparison results of RRU.

Therefore, as a project manager, to reduce the additional cost of the project in an
uncertain environment, it is necessary to improve the multi-skilled level of resources, avoid
the unavailability of resources, and pay attention to the order in which skills and resources
are scheduled, which have certain guiding significance for maximizing project benefits.

48

Mathematics 2022, 10, 3070

7. Conclusions

This paper studies the MSRCPSP with uncertainty in resource availability, and dy-
namic skill assignment and additional resource replenishment are considered simultane-
ously when resources are not available. Although extensive research has been conducted
for the MSRCPSP, little research focused on uncertainty in resource availability. In an un-
certain environment, it is easy to encounter resource shortage or conflict. Idle resources can
replace unavailable resources to complete activities through skill switching; thus, dynamic
skill assignment has become a method for alleviating resource conflict. If it still does not
work, additional resources are considered to ensure that activities are not interrupted. To
solve this complex problem, a new model is built and a nested GA-PR dynamic scheduling
algorithm is proposed. Finally, an example and numerical experiments are used to verify
the performance of the algorithm. Simultaneously, the performance of the algorithm is
illustrated by comparing the solution efficiency of static and random scheduling, and the
influences of different parameters on the algorithm scheduling are analyzed.

Numerical experiments show that, although the running time of the proposed dy-
namic scheduling is not optimal, its solution is always superior compared to the other
two scheduling methods. When uncertainties in resource availability are considered, the
resource has more skills and more resources are supplied, and the dynamic scheduling
method has improved performance; on the other hand, the higher the probability of re-
source unavailability and the more skills are required, the worse the dynamic scheduling
method performs. Moreover, by comparing the performance of dynamic scheduling and
random scheduling, we can find that the scheduling order has a significant impact on
the results and the three new priority rules contribute to the optimization of costs. By
comparing the performance of dynamic scheduling and static scheduling, we can find that
the skill switching of multi-skill resources also plays an important role.

Our research findings can also provide project managers with some guidance when
scheduling projects in an uncertain environment. First, at the start-up stage of the project,
mangers should select as many multi-skilled resources as possible when establishing the
project team. Second, at the project planning stage, it is important to decide which skill
should be scheduled first and which resource should be scheduled first. Moreover, dynamic
skill assignment and additional resource replenishment are great methods for alleviating
resource shortages. Third, during the project-execution period, managers can take some
incentives to encourage single-skilled person to learn from multi-skilled persons to master
more skills.

However, it should be noted that this paper has still some limitations. First, this paper
assumes that the skill level of each resource is homogeneous. For future research, the
heterogeneity of skill level can be considered. Second, when the splitting of activity is
allowed, resource conflicts can also be solved by interrupting activities so as to reduce
the additional cost of resources. In this case, scheduling will be a more interesting and
difficult problem. Finally, in this paper, the costs of resource skill switching are not taken
into account, which will render MSRCPSP a trade-off problem between additional resource
costs and skill-switching costs.

Author Contributions: All authors contributed to the study conception and design. Material prepa-
ration, data collection, and analysis were performed by G.L., M.W. and X.L. The first draft of the
manuscript was written by M.W., and all authors commented on previous versions of the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data of PSPLIB can be downloaded from “http://www.omdb.wi.
tum.de/psplib/getdata_sm.html” (accessed on 17 June 2015).

49

Mathematics 2022, 10, 3070

Acknowledgments: We are grateful to anonymous reviewers for their thorough reviews and valu-

able comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The skill matrix mastered by resources.

S1 S2 S3

Skill

S1 S2 S3

Skill

S1 S2 S3

Skill

Resource

Resource

Resource

31

21

m

32

22

2

33

23

3

34

724

4

35

25

s

36

26

16

r37

127

nz

38

728

s

39

29

19

310

210

110

Table A2. The resource state matrix.

Resource

23

12 13 14 15 16 17 18 19 20 21 22

11

10

4%}

2

3

T4

15

16

(a4

s

19

110

21

22

723

24

25

26

127

28

50

Mathematics 2022, 10, 3070

Table A2. Cont.

~

Resource

[y
(=}
—
j
s
N
J—y
W
Juny
S

=
a

Juy
(=)}
Jury
3
Juy
@®
Juy
o
N
=]
N
=
N
N

N
[}

729

210

31

32

33

34

35

36

37

38

39

L e I T e S I S e e e B e R Y
| O|l=|=m | == OlR|Rr|O|lR|=, N
=N N el = el el = e]
el e e = e A e e T B B N N
N e e e N e N =l e e 1

310

oclo|lr|lmr|Rr|lo|lolrRr|~r|Rr|r|~=|lo

= == = = O =R | =R ==
== =R O =R =R =R =] O| ===
el el e =N i B A S i -
| O|=R|l=mR| ROl =R ||| ==
e e e T T e =R N I BT B
R R R R | ROl Rr|O|Rr|~R|lO
Rl el e e e e e e =
e e e e e e e

= R = e = | O O | O e e | =

e e e e e e N N I B A
=R e e N T = = =
—lo|lr|Rr|lr|~r|lo|~r|loc|lo|~r|r
L I e B e T A S A e B B e B B Y
—lo|lo|l—|rRr|lo|lr|~r|rRr|lo|~]|oO
—lo|lr|r|lo|lo|lo|r|r|Rr|~|Fr
el e e = E= =R N

=R = e = N

Appendix B

Algorithm for Dynamic Scheduling

Algorithm for Random Scheduling

Algorithm for Static Scheduling

Begin
Input dj, Tjser R, S, Pkis Zi—
While it < MaxIt
forj=1:n
Calculate [ESj, LS]-]
end
Initialize ST;
Resource ranking (Priority rule 1)
If ST; +d; < STy, g € SUCC;, Vj
Then
fort=1:T
Calculate Ly (Priority rule 2)
Update Oy, W;
Case1Lg <0,VK
Resource scheduling
Case 2 Lg; > 0, VK (Priority rule 3)
Resource scheduling
Case 3 others (Priority rule 3)
Resource scheduling
Update Z;11
end
Calculate Rs and Output Result
Else
Output Result
Update ST]- (Select, Crossover, Mutate)
End

Begin
Input dj, Tjser R, S, Pkis Zi—
While it < MaxIt
forj=1:n
Calculate {ES]-, LS]}
end
Initialize ST;
If ST; +d; < STy, g € SUCC;, Vj
Then
fort=1:T
Update O
Resource scheduling (No order)
Update Z;q
end
Calculate Rs and Output Result
Else
Output Result
Update ST]- (Select, Crossover, Mutate)
End

Begin

Input dj, Tjser R, S, Pkir Zi=1
While it < MaxIt

forj=1:n

Calculate [ES]v, LS]]

end

Initialize ST]v, SK;

If ST; +d; < STy, g € SUCC;, Vj
Then

Calculate R

Else

Output Result

Update ST]-, SK; (Select, Crossover,
Mutate)

End

References

1. Afshar-Nadjafi, B. Multi-skilling in scheduling problems: A review on models, methods and applications. Comput. Ind. Eng. 2021,

151, 107004.

2. Bellenguez, O.; Néron, E. A Branch-and-Bound method for solving Multi-Skill Project Scheduling Problem. RAIRO-Oper. Res.

2007, 41, 155-170. [CrossRef]

51

Mathematics 2022, 10, 3070

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

Benavides, A.J.; Ritt, M.; Miralles, C. Flow shop scheduling with heterogeneous workers. Eur. |. Oper. Res. 2014, 237, 713-720.
[CrossRef]

Heimerl, C.; Kolisch, R. Scheduling and staffing multiple projects with a multi-skilled workforce. OR Spectr. 2010, 32, 343-368.
[CrossRef]

Isah, M.A.; Kim, B.S. Integrating cchedule risk analysis with multi-skilled resource scheduling to improve resource-constrained
project scheduling problems. Appl. Sci. 2021, 11, 650. [CrossRef]

Chen, R; Liang, C.Y.; Gu, D.X;; Joseph, Y.-T.L. A multi-objective model for multi-project scheduling and multi-skilled staff
assignment for IT product development considering competency evolution. Int. J. Prod. Res. 2017, 55, 6207-6234. [CrossRef]
Polo-Mejia, O.; Artigues, C.; Lopez, P.; Basini, V. Mixed-integer/linear and constraint programming approaches for activity
scheduling in a nuclear research facility. Int.]. Prod. Res. 2020, 58, 7149-7166. [CrossRef]

Filip, D. Applying to the mathematical methods to optimize the launching process in manufacturing. Acta Tech. Napoc. Ser.-Appl.
Math. Mech. Eng. 2018, 61, 585-592.

Filip, D. Modern methods and tools to improve the production processes from small series and unique production. Acta Tech.
Napoc. Ser.-Appl. Math. Mech. Eng. 2018, 61, 575-584.

Li, H.; Womer, K. Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J.
Sched. 2009, 12, 281-298. [CrossRef]

Correia, I.; Saldanha-da-Gama, F. The impact of fixed and variable costs in a multi-skill project scheduling problem: An empirical
study. Comput. Ind. Eng. 2014, 72, 230-238. [CrossRef]

Firat, M.; Hurkens, C. An improved MIP-based approach for a multi-skill workforce scheduling problem. J. Sched. 2012, 15,
363-380. [CrossRef]

Snauwaert, J.; Vanhoucke, M. A new algorithm for resource-constrained project scheduling with breadth and depth of skills. Eur.
J. Oper. Res. 2021, 292, 43-59. [CrossRef]

Snauwaert,].; Vanhoucke, M. Mathematical formulations for project scheduling problems with categorical and hierarchical skills.
Comput. Ind. Eng. 2022, 169, 108147. [CrossRef]

Buddhakulsomsiri, J.; Kim, D.S. Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems
with resource vacations and activity splitting. Eur.]. Oper. Res. 2007, 178, 374-390. [CrossRef]

Goldratt, E. Critical Chain; North River Press: Great Barrington, MA, USA, 1997.

Herroelen, W.; Demeulemeester, E.; De Reyck, B. A classification scheme for project scheduling. In International Series in Operations
Research and Management Science; Project Scheduling: Recent Models, Algorithms and Applications; Weglarz, J., Ed.; Kluwer
Academic: Boston, MA, USA, 1998.

Lambrechts, O.; Demeulemeester, E.; Herroelen, W. Proactive and reactive strategies for resource-constrained project scheduling
with uncertain resource availabilities. J. Sched. 2008, 11, 121-136. [CrossRef]

Lambrechts, O.; Demeulemeester, E.; Herroelen, W. Time slack-based techniques for robust project scheduling subject to resource
uncertainty. Ann. Oper. Res. 2011, 186, 443-464.

Ahmadpour, S.; Ghezavati, V. Modeling and solving multi-skilled resource-constrained project scheduling problem with calendars
in fuzzy condition. J. Ind. Eng. Int. 2019, 15, 179-197. [CrossRef]

Azizi, N.; Liang, M. An integrated approach to worker assignment, workforce flexibility acquisition, and task rotation. J. Oper.
Res. Soc. 2013, 64, 260-275. [CrossRef]

Wongwai, N.; Malaikrisanachalee, S. Augmented heuristic algorithm for multi-skilled resource scheduling. Autom. Construct.
2011, 20, 429-445.

Kher, H.V.; Malhotra, M.K_; Philipoom, P.R.; Fry, T.D. Modelling simultaneous worker learning and forgetting in dual resource
constrained systems. Eur. J. Oper. Res. 1999, 115, 158-172. [CrossRef]

Yue, H.; Slomp, J.; Molleman, E.; Vanderzee, D.]. Worker flexibility in a parallel dual resource constrained job shop. Int.]. Prod.
Res. 2008, 46, 451-467. [CrossRef]

Gans, N.; Zhou, Y. Managing Learning and Turnover in Employee Staffing. Oper. Res. 2002, 50, 991-1006. [CrossRef]

De Bruecker, P; Ven den Bergh, J.; Belién, J.; Demeulemeester, E. Workforce planning incorporating skills: State of the art. Eur. J.
Oper. Res. 2015, 243, 1-16. [CrossRef]

Bard, J.E; Purnomo, H.W. Preference scheduling for nurses using column generation. Eur.]. Oper. Res. 2005, 164, 510-534.
[CrossRef]

Lagodimos, A.G.; Leopoulos, V. Greedy heuristic algorithms for manpower shift planning. Int. J. Prod. Econ. 2000, 68, 95-106.
[CrossRef]

Lagodimos, A.G.; Mihiotis, A.N. Overtime vs. regular shift planning decisions in packing shops. Int.]. Prod. Econ. 2006, 101,
246-258. [CrossRef]

Correia, I.; Lourengo, L.L.; Saldanha-da-Gama, F. Project scheduling with flexible resources: Formulation and inequalities. OR
Spectr. 2012, 34, 635-663. [CrossRef]

52

. mathematics

Article

The Cost-Balanced Path Problem: A Mathematical Formulation
and Complexity Analysis

Daniela Ambrosino ** and Carmine Cerrone

Citation: Ambrosino, D.; Cerrone, C.
The Cost-Balanced Path Problem: A
Mathematical Formulation and
Complexity Analysis. Mathematics
2022, 10, 804. https://doi.org/
10.3390/math10050804

Academic Editor: Aleksandr

Rakhmangulov

Received: 9 January 2022
Accepted: 1 March 2022
Published: 3 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

t

Department of Economics and Business Studies, University of Genoa, 16126 Genoa, Italy;
carmine.cerrone@unige.it

* Correspondence: ambrosin@economia.unige.it

1 These authors contributed equally to this work.

Abstract: This paper introduces a new variant of the Shortest Path Problem (SPP) called the
Cost-Balanced Path Problem (CBPP). Various real problems can either be modeled as BCPP or
include BCPP as a sub-problem. We prove several properties related to the complexity of the CBPP
problem. In particular, we demonstrate that the problem is NP-hard in its general version, but it
becomes solvable in polynomial time in a specific family of instances. Moreover, a mathematical
formulation of the CBPP, as a mixed-integer programming model, is proposed, and some additional
constraints for modeling real requirements are given. This paper validates the proposed model and
its extensions with experimental tests based on random instances. The analysis of the results of
the computational experiments shows that the proposed model and its extension can be used to
model many real applications. Obviously, due to the problem complexity, the main limitation of the
proposed approach is related to the size of the instances. A heuristic solution approach should be
required for larger-sized and more complex instances.

Keywords: shortest path problem; mixed-integer linear programming; cost-balanced paths

1. Introduction

This paper introduces a new variant of the Shortest Path Problem (SPP) called the
Cost-Balanced Path Problem (CBPP). The CBPP is defined on a directed graph G(N, A),
where N is the set of nodes and A is the set of directed arcs. For each arc (i,j) € A is also
defined a cost ¢;; € R. Let the nodes o,d € N, respectively, called origin and destination. A
feasible solution of this problem is an acyclic path p = ((o,1;), (n;,n}), ..., (ny, ni), (nx, d))
in the graph G from node o to node d. Let ¢(p) = ¥ (; j)cp Cij the cost of the pah p, i.e., the
sum of the cost of all the arcs used in the path p; the objective of CBPP is the minimization
of the absolute value of this cost: MIN|c(p)]|.

Various real problems that present some elements in common with the cost-balanced
path problem can either be modeled as BCPP or include BCPP as a sub-problem; some
are here briefly discussed. The first mentioned problem is related to the path of an electric
vehicle. The route choices of drivers of battery electric vehicles are affected by the many
factors related to the battery recharge [1]. The cost-balanced path problem can be solved
when defining the path that an electric vehicle has to perform for going from an origin
point to a destination one, with the aim of maintaining the same level of electric charge.
Suppose that a vehicle starts its trip in the origin node with a charge of 80% and has to
arrive at a destination node with the same charge. During the trip, the vehicle can recharge
the battery on the downhill roads, while the vehicle reduces its charge on the roads that
go uphill. This problem can be formulated on a direct graph G where the weights of arcs
represent the charge consumption (negative arc costs) and the recharge (positive costs). In
this case, additional constraints are required, such as the level of electric charge to maintain
along the whole path that can range from 0 to 100%.

Mathematics 2022, 10, 804. https:/ /doi.org/10.3390 /math10050804

https:/ /www.mdpi.com/journal/mathematics
53

Mathematics 2022, 10, 804

In the bike-sharing systems [2], a particular problem linked to bikes management can
be modeled as a CBPP. Suppose to have to re-locate bikes among a set of points that can
be modeled as arcs in a direct graph G, with weights on the arcs representing the number
of bikes to deliver (negative costs) and the number of bikes to pick up (positive costs). A
vehicle has to perform a path in such a way to redistribute the bikes. In this example, the
additional constraints are related to the number of bikes on the vehicle, that can range from
zero to the vehicle capacity; moreover, additional requirements can be added for obtaining
a constrained path concerning the duration, the number of arcs visited, the length, that,
for example, should be maintained within a given range. Alternatively, suppose to have a
depot and a vehicle that has to deliver a certain number of bikes to some points that are
the locations for bikes. The vehicle has to deliver bikes to some locations, while eventually
re-locate some bikes, that is, to pick up bikes from some locations. In the end, the vehicle
has to finish its trip, possibly without bikes on board; the same additional requirements
cited here above can be added.

This paper introduces a new problem, thus it can be helpful to summarize the novelties
of this work in the following list: (i) definition of a new problem, the CSPP; (ii) proof that
CSPP is NP-hard; (iii) proof that it is possible to solve the CSPP in polynomial time under
specific configurations of the arc costs; (vi) first mathematical formulation for CSPP.

The remaining of the paper is organized as follows. Section 2 summarizes the
literature related to BCPP. Section 3 presents an evaluation of the BCPP complexity,
the BCPP mathematical formulation and some model extensions, while Section 4 reports
the computational experiments for the validation of the proposed model and its extensions.
Section 5 gives some conclusions and perspectives.

2. Literature Review

To the authors’ knowledge, the BCPP has never been studied in the literature, although
there are many variants of the classic SPP, and there is a paper related to the Traveling
Salesman Problem (TSP) that introduces the same objective function of BCPP [3]. The
authors of [3] introduce the cost-balanced TSP, in which the main objective is to find a
Hamiltonian cycle with total travel cost as close as possible to 0. The authors assumed a
cost/length matrix, while negative costs are allowed. To solve the cost-balanced TSP, they
proposed a variable neighborhood search algorithm. A similar problem is the balanced
TSP, which is related to the uniform (equitable) distribution of resources [4]. In [5], the
multiple balanced traveling salesmen problem is proposed to model and optimize the
problems with multiple objectives (salesmen). The goal is to find m Hamiltonian cycles in
G by minimizing the difference between the highest edge cost and the smallest edge cost in
the tours. The SPP [6,7] and many variants have been proposed in the literature for facing
problems arising in various fields, together with ever more efficient algorithms (see, for
example, in [8-11]). Although the SPP can be solved in polynomial time using various
algorithms, many of its variants are known to be NP-hard. Among these variants of the SPP,
in the k-Color Shortest Path Problem proposed by Ferone et al. [12,13], the classic SPP is
solved on graphs with colored arcs. In the recent Steiner bi-objective Shortest Path Problem
introduced in [14], the authors present this new variant of the SPP capable of preprocessing
data to solve the well-known vehicle routing problem. SPP in which the cost of the arcs is
not known in advance has been studied in the recent literature [15,16]. Stochastic shortest
path (SSP) dealing with applications in routing problems and in road networks can be
found in [17,18]. Another problem on graphs linked to the balance concept is the balanced
trees [19], which are the appropriate structures (balanced tree structures) for managing
networks with the aim of balancing two objectives. The constrained path has been studied
in [20]; the authors proposed a robust formulation for the Resource-Constrained Shortest
Path Problem that is the problem of determining a path p from an origin to a destination
with the smallest cost, such that the consumption of a given resource for that path is lower
or equal to the maximum amount of available resource.

54

Mathematics 2022, 10, 804

In the following section the complexity of CSPP is investigated and a mathematical
formulation is proposed.

3. Problem Complexity and Mathematical Formulation for CBPP

Many variants of SPP are known to be NP-hard; thus, in this section, before presenting
a mathematical formulation for modeling and solving CBPP, the problem complexity is
investigated. In particular, thanks to a reduction algorithm [21,22], it has been proved that
the problem is NP-hard in its general form.

3.1. Problem Complexity
Theorem 1. If not all costs have the same sign, the Cost-Balanced Path Problem is NP-hard.

Proof of Theorem 1. To prove the theorem, we will describe a reduction algorithm which
in polynomial time, reduces the classic Hamiltonian Path Problem (HPP) in an instance
of the Cost-Balanced Path Problem. The HPP is a classic problem belonging to the
NP-complete complexity class [23]. Let a directed graph G(N, A) where N is a set of
nodes, and A is a set of arcs. Let us suppose we want to compute the Hamiltonian path
that goes from node / to node k of the graph G. We create the graph G'(N’, A’) such that
N' = NU{o}, A" = AU{(0,1)}. We create the cost ¢;; such that ¢;; = 1V(ij) € A and
con =1 —|N|. Considering that [N’| = |N| + 1 and that the longest path in G’ can contain
[N| arcs. Considering that in every feasible solution the arc (o, 1) will always be present
and that the value of a solution with k arcs will be equal to 1 — |[N| + (k — 1). If the value
of the solution of CBPP on the graph G’ is equal to zero, then in G, there is a Hamiltonian
path between the nodes and k (see Figure 1). [

Figure 1. (a) An example of a graph G. (b) Graph G’ derived from G. (c) A solution of CBPP with
cost zero. (d) The Hamiltonian path.

Figure 1 shows an example useful to understand Proof of Theorem 1. In Figure 1a,
a direct graph (i.e., G) with six nodes is depicted, while in Figure 1b, a graph G’ derived
from G is represented: node o0 has been added together with the weights for the arcs. In
Figure 1c, the solution for the CBPP is shown. Finally, the Hamiltonian path from node h
tonode k, is depicted in Figure 1d).

Corollary 1 (Corollary of Theorem 1). Given a generic instance of CBPP, if even one cost has
the opposite sign to the others, then the problem is NP-hard.

55

Mathematics 2022, 10, 804

Proposition 1. Ifall costs are non-negative c;j > 0, the problem is equivalent to the classic Shortest
Path Problem, therefore it can be solved in polynomial time.

Proposition 2. If all costs are non-positive c;; < 0, the problem is equivalent to the classic Shortest
Path Problem, therefore it can be solved in polynomial time.

Proof of Proposition 2. By inverting the sign of each cost, we will obtain a scenario in
which all costs are positive. Proposition 1 assures us that we can solve the resulting
problem in polynomial time. The obtained solution is an optimal solution also for the initial
problem with the unique difference that the value of the objecting function is negative. [

A graph with particular characteristics for CBPP is the graph in which the cost of the
arc is a function of the elevation difference of the two nodes associated with the arc. This
graph could represent points positioned at different altitudes (see Figure 2).

Figure 2. Example of an altimetric graph.

Proposition 3 (Elevation difference). Given a directed graph G(N, A) in which for each node
i € N is defined a value v; € R, and such that ¢;; = v; — v; V(ij) € A. The Cost-Balanced Path
Problem is solvable in polynomial times.

Proof of Proposition 3. Given a graph G created as described in Proposition 3, let be p a
path in G, such that p = ((n1,m2), (n2,n3), (n3,14),..., (ny,nx)), c(p) = c12 + €23 + cza +
coto = (02— v1) + (03 —02) + (4 —03) + ...+ (v —vp) = —v1 + (v2 —v2) + (V3 —
v3) + (v4 —v4) + ...+ (v —vp) + o = c(p) = v — v1. This implies that the cost of
a path depends only on the starting node and the destination node, so each path is also
optimal (see Figure 3). O

Figure 3. Example of a graph in which the cost of an arc depends on the elevation of the nodes.

3.2. Mathematical Model

In this sub-section, a model for solving CBPP is presented; it is a mixed integer
linear programming with binary variables (MILP). Let us introduce the following decision
variables:

x;j € {0,1},Vi,j € N: x;; = 1if and only if arc (7,) is included in the problem solution.

56

Mathematics 2022, 10, 804

t;, Vi € N that represents the flow leaving node i and is used to prevent the creation of
loops in the solution.

b represents the costs (in absolute value) of the optimal path.

The resulting model is the following;:

z=Minb (@)
subject to:
Y cijij < b @
(ij)eA
-) cijxj < b ®
(ij)eA

Y x = 1 @

(0,j)€A
Y X = 1 ®)

(id)eA
Y oxi— Y - 0 vie N\ {o,d} (6)

(ji)eA (ij)eA
Y. < 1 Vi€ N\ {o,d} @)

(ij)eA
Y x; < 1 vie N\ {o,d} ®)

(ij)eA
to = 0)
tj—1t > 1—[NJ(1 = x) V(i j) € A (10)
x;j € {0,1} v(i,j) € A (1)
t; € [0,|N| —1] Vie N (12)

Equation (1) minimizes variable b that represents the cost of the selected path in
absolute value. Variable b is defined thanks to Equations (2) and (3). Equations (4) and
(5) impose that one arc leaves the origin node o, and one arc enters the destination node
d. (6) impose, for each node of the network that is different from either the origin or the
destination node, that the number of arcs entering the node is equal to the number of arcs
exiting it. Equations (7) and (8) impose that at most one arc can enter in and exit from
each node, except for the origin and the destination ones. Equations (9) and (10) defines
variables t;; t, is set to zero (i.e., from the origin node the outflow is equal to zero), while ¢;
is set greater than the flow leaving node i, if arc (i, j) is selected. Finally, in (11) and (12) the
decision variables are defined.

3.3. Model Extensions

In the introduction, some real applications that can be solved by the here above
proposed model have been briefly described. Unfortunately, some additional constraints
should be required, and thus in this sub-section, some of the additional constraints for
model (1)—(12) are described.

CBPP has the objective of cost balancing instead of cost minimization. The cost that it
is necessary to balance may represent a measure of a level of a particular element that has
to be maintained near a pre-defined value (for example, the electric charge, the load of a
vehicle, etc.). Each decision, expressed in the graph by the selection of an arc, may increase
or decrease the level of the considered element. The scope is to take a sequence of decisions
in such a way to have at the end of the process the same starting level that, in particular
cases, can be zero.

In real applications, there is often the necessity to maintain this level within given
upper and lower limits after each decision, that is, along the selected path. This means that,

57

Mathematics 2022, 10, 804

i.e., in the example of the electric car, the charge must always be within a lower and an
upper bound. The same can be required for the cargo loaded on a vehicle.

Constraints for limiting the variance of the level within the given interval (a
are based on flow variables defined as follows:

fij,¥i,j € N: fij represents the level reached at node i, that will leave node i for
reaching node j if and only if arc (i, j) is included in the selected path, i.e., xj; = 1.

Thanks to Equations (13) and (14), the flow (f;;) on each selected arc must be less or
equal to its maximum value and greater or equal to the minimum required, while thanks to
Equation (15) the outflow from the origin node (f,;) is fixed equal to the starting level (a,).

Equation (16) gives the flow conservation constraints. For each node i, different from
either the origin node or the destination one, the flow that leaves node i is equal to the flow
that leaves the initial node of the arc entering in 7, plus the cost of arc entering in node i.

min ,max
,a™m)

fl] S a’naxX[]‘,V(i,j) cA (13)
fij = a™"x;, (i,) € A (14)
Y. fij=a (15)
(dj)eA
2 fji + Z CjiXji = Z f,j,Vl S N\ {D,d} (16)
(ji)eA (ji)eA (ij)eA

Thanks to the above constraints, we are able to balance the cost and maintain it in the
given required interval along the whole path.

Sometimes, together with the aim of cost balancing some other objectives must be
included in the problem. In fact, when dealing with paths, the most common problem
is the shortest path problem. For example, in the problem of the electric car, it should be
required to have a path not too expensive in terms of either kilometers traveled or times. In
this case, it is possible to insert an additional constraint that permits to find a path from
origin to destination no longer than a given % of the shortest path.

Let d;; be the distance associated to the arc (7, j), and 3P the distance associated to the
shortest path from the origin node to the destination one in the graph under investigation,
« the percentage of deterioration accepted, the resulting constraint is the following:

Y djx; < (1+a)c? 17)
(ij)eA
In other cases, the limitations may concern the length of the path in terms of number
of arcs belonging to the path; the model can be extended by simply adding the following
constraints that are related, respectively, to the maximum number of arcs that can build the
path (b"%%) and the minimum number of arcs to select (b"").

Yo ox < b (18)
(ij)eA

Z xij > bmin (19)
(ij)eA

4. Results

In this section, the computational results obtained by applying the proposed mathematical
model (1)—-(12) are described. Some computational experiments related to the extended
model are presented too. The computational campaigns are based on some generated
instances described in the following subsection.

58

Mathematics 2022, 10, 804

The MILP model has been implemented in Java, using CPLEX version 12.8 as a
solver. The computational tests were performed on a MacBook Pro, with a 2.9 GHz Intel
i9 processor and 32 GB of RAM. Figure 4 shows the flow chart of the proposed approach.
Step 1 load the input graph G(N, A) from the text file. Step 2 creates the mathematical
model. Its complexity depends on the number of constraints created, which is in the order
of |A|. Using the MILP solver of the CPLEX software, in Step 3, the problem is solved.
The computation time for Step 3 is exponential [24] as stated in Theorem 1. In Step 4, all
the values associated with the model decision variables are extracted to create a textual
representation of the solution.

G :=load Create MILP CPLEX MILP 4
start (swp”)
from file model solver

Figure 4. Algorithm flowchart.

4.1. Instances

The proposed mathematical model has been validated with two sets of generated
instances for the above described problem. The first set of instances, named Grid, is
characterized by complete square grids where each node is connected to its four neighbors.
In the name of these instances, the first value represents the number of nodes; the second
value represents the size of the grid. The second set of instances named Rand is characterized
by connected graphs in which each node is randomly connected to other nodes until the
desired density is reached. In the name of these instances, the first value represents the
number of nodes; the second value represents the percentage of arcs incident on each vertex.
The costs associated with the arcs of each instance were generated following 5 different
schemes.

[—10, 10] Random homogeneous distribution of costs in the range [—10, 10].

[—100, 100] Random homogeneous distribution of costs in the range [—100, 100].

[—1k, 1k] Random homogeneous distribution of costs in the range [—1000, 1000].

EL After associating a random height to each node, the cost of the arc represents the
displacement in height.

P-EL Perturbation of the 1% random of the EL costs.

4.2. Computational Results for the Proposed Model

Tables 1-3 show the results of the computational tests performed on the grid instances.
Each row reports the average of five instances. The last row of each table AVG is the average
of all solved scenarios. We used 1800 s as the time limit for the CPLEX solver (Step 3).
This implies that in the event of a higher running time, the optimality of the obtained
solution is not guaranteed. Table 1 shows the computational times. It is interesting to
note that the running time is mainly related to the costs associated with the arcs rather
than to the size of the graph. Table 2 shows the number of zero-value solutions identified.
For instances with random costs, in the scenarios with homogeneous weight distribution
([-10,10], [-100,100], [-1k, 1K]), it is always possible to obtain a solution with a cost equal
to zero. Using the EL policy to create the costs, all paths will have a cost equal to the
difference in height between the source node and the destination node. It is interesting to
see that analyzing the P-EL policy is sufficient a 1% perturbation of the EL policy cost in
order to identify solutions with a cost equal to zero, in particular as the graph size increases.
Table 3 shows the obtained objective function values. The analysis of Table 3 shows that as
the size of the graph increases, the solution for the P-EL policy will tend to approach zero.

59

Mathematics 2022, 10, 804

Table 1. Running times for the grid instances.

Instance [—10, 10] [—100, 100] [—1k, 1k] EL P-EL
Grid_100_10 0.27 0.79 1.71 0.02 38.23
Grid_225_15 0.43 0.95 3.60 0.07 1502.42
Grid_400_20 0.69 1.66 4.30 0.11 961.81

AVG 0.46 1.13 3.20 0.07 834.15

Table 2. Number of solutions with an objective function value equal to zero.

Instance [—10, 10] [—100, 100] [—1k, 1k] EL P-EL
Grid_100_10 5 5 5 0 0
Grid_225_15 5 5 5 0 0
Grid_400_20 5 5 5 0 3

AVG 5 5 5 0 1

Table 3. Objective function value for the grid instances.

Instance [—10, 10] [—100, 100] [—1k, 1k] EL P-EL
Grid_100_10 0 0 0 4467 3806
Grid_225_15 0 0 0 4809 3405
Grid_400_20 0 0 0 2920 878

AVG 0 0 0 4065 2696

Tables 4-6 show the results of the computational tests performed on the random generated
instances. As before, each row reports the average of five solved instances, while the two
rows AVG refer to the average of all solved scenarios, respectively, for the instances with
100 and 200 nodes. Table 4 shows the computational times. In this test, the running time
remains highly dependent on the used cost scheme, but the P-EL scheme is much easier to
solve than the [—1k, 1k] scheme. Table 5 shows the number of zero-value solutions identified.
For instances with random costs, in the scenarios with homogeneous weight distribution
([—10, 10],[—100, 100],[—1k, 1K]), it is always possible to obtain a solution with a cost equal to
zero. This test confirms the results obtained previously for the grid instances. In this scenario,
it becomes even more evident that the cost scheme P-EL tends as the graph grows to produce
instances with cost zero solution (see also Table 6). Table 6 shows the obtained objective
function values. Considering that the execution of the model stops reaching a solution equal
to zero (Lower Bound), we justify the computational times shown in Table 4.

Table 4. Running times for the random instances.

Instance [—10, 10] [—100, 100] [—1k, 1k] EL P-EL
Rand_100_02 0.06 0.09 1.28 0.01 0.05
Rand_100_03 0.13 0.29 1.17 0.02 0.13
Rand_100_04 0.18 0.29 2.40 0.02 0.82
Rand_100_05 0.12 0.48 237 0.03 0.50
Rand_100_10 0.13 0.42 2.25 0.05 0.23
Rand_100_20 0.18 0.68 4.14 0.10 0.46

AVG 0.13 0.38 2.27 0.04 0.36
Rand_200_02 0.30 1.18 391 0.05 0.50
Rand_200_03 0.22 1.11 4.53 0.06 0.71
Rand_200_04 0.16 0.35 6.63 0.09 1.30
Rand_200_05 0.25 0.59 6.28 0.11 0.66
Rand_200_10 0.23 3.88 4.95 0.18 1.01
Rand_200_20 0.15 12.66 23.08 0.38 6.66

AVG 0.22 3.30 8.23 0.14 1.81

60

Mathematics 2022, 10, 804

Table 5. Number of solutions with an objective function value equal to zero.

Instance [—10, 10] [—100, 100] [—1k, 1k] EL P-EL

Rand_100_02
Rand_100_03
Rand_100_04
Rand_100_05
Rand_100_10
Rand_100_20

AVG

Rand_200_02
Rand_200_03
Rand_200_04
Rand_200_05
Rand_200_10
Rand_200_20

AVG

(9]
a1
a1
—_

SO OO OO || OO O OO

G| G|g| o g aG
(S [N IO, INO) BLG, INS; RS, BNG, [¢) BN BG) BNE) INO) BNO) I]
gl | O a1 1Ot Qr Q1| ur | O a1 a1 G Q1
N | AN NRR, R, R = NDNN=R,DNO

Table 6. Objective function value for the random instances.

Instance [—10, 10] [—100, 100] [—1k, 1k] EL P-EL
Rand_100_02 0 0 0 3634 1435
Rand_100_03 0 0 0 3040 6005
Rand_100_04 0 0 0 3358 434
Rand_100_05 0 0 0 2343 2982
Rand_100_10 0 0 0 3330 1888
Rand_100_20 0 0 0 2107 1762

AVG 0 0 0 2969 2418
Rand_200_02 0 0 0 2959 2835
Rand_200_03 0 0 0 4109 2559
Rand_200_04 0 0 0 4240 1545
Rand_200_05 0 0 0 2550 1762
Rand_200_10 0 0 0 2512 1676
Rand_200_20 0 0 0 2721 74

AVG 0 0 0 3182 1742

4.3. Results for the Extended Model

In this section, some results related to the extended model are presented. In particular,
these tests are based on the 50 instances named Grid_100_10 and Grid_225_15. In all
experiments, @ is equals to —a™". Looking at Table 7, it is possible to note that by
decreasing the value of alpha, the computational time decreases, according to the decrease
in the dimension of the admissible region. On the other hand, by introducing in the
model the constraints associated with the parameter 4™, the computational time increases,
according to the increase in the number of decision variables and constraints associated
with the problem. As in Table 8, we can see that obviously, as the number of constraints
increases, it becomes increasingly challenging to identify zero-sum solutions. Table 9 shows
that as the number of constraints increases, it becomes even more difficult to identify
feasible solutions: the values reported in round brackets indicate the number of unfeasible
solutions. Analyzing Tables 8 and 9, it is possible to state that as the size of the graph
increases, the quality of the solutions worsens less by adding further constraints. This is
probably due to the increase in alternative paths between source and destination nodes.

61

Mathematics 2022, 10, 804

Table 7. Running times in seconds.

INI o a™x [-10,10] [—100,100] [—1k, 1k] EL P-EL
o 00 0.27 0.79 1.71 0.02 38.23
0.2 00 0.14 0.54 143 0.03 0.04
0.1 00 0.13 0.27 0.29 0.03 0.04

100 0.1 4C 0.27 0.77 1.12 0.15 0.16
0.1 3C 0.39 0.60 0.88 0.14 0.16
0.2 3C 0.73 0.86 2.38 0.22 0.20
0 00 0.43 0.95 3.60 0.07 1502.42
0.2 00 0.99 10.15 113.64 0.13 0.50
0.1 00 147 5.09 11.57 0.16 0.24

225 0.1 4C 4.94 30.00 30.21 0.75 0.49
0.1 3C 5.81 9.16 12.77 0.90 0.79
0.2 3C 13.15 19.65 144.18 0.85 0.60

Table 8. Number of solutions with an objective function value equal to zero.

INI ® am® [—10,10] [—100,100] [—1k, 1k] EL P-EL
o0 o 5 5 5 0 0
0.2 00 3 2 1 0 0
0.1 0o 2 0 1 0 0

100 0.1 4C 2 0 0 0 0
0.1 3C 2 0 0 0 0
0.2 3C 2 2 0 0 0
o 00 5 5 5 0 0
0.2 00 5 4 2 0 0
0.1 00 4 2 0 0 0

225 0.1 4C 2 1 0 0 0
0.1 3C 1 0 0 0 0
0.2 3C 4 2 1 0 0

Table 9. Objective function value—values in round brackets indicate the number of unfeasible

solutions.

INI o a™x [-10,10] [—100,100] [—1k, 1k] EL P-EL
0 o 0 0 0 4467 3806
0.2 00 6 15 13 4467 4379
0.1 00 12 95 233 4467 4402

100 0.1 4C 3(2) 15 (2) 260 4467 4402
0.1 3C 3(2) 15 (2) 179 (1) 4467 (1) 5003 (1)
0.2 3C 3(1) 42 100 4467 4379
0 00 0 0 0 4809 3405
0.2 00 0 1 10 4809 4870
0.1 00 1 4 175 4809 4900

225 0.1 4C 3 5(1) 5(2) 4809 4900
0.1 3C 1(2) 17 (2) 18 (3) 4809 4900
0.2 3C 1(1) 26 35 4809 4870

5. Conclusions

This paper deals with the Cost-Balanced Path Problem (CBPP), a variant of the classic
Shortest Path Problem introduced in this paper for the first time. The characteristic of
this problem is that it can be used as a sub-problem to model many real scenarios. Using
the mixed-integer linear programming model introduced in Section 3.2, we computed the
optimal solution for many test instances. It is interesting to note that analyzing the results
shown in Section 4, in the case of uniform distribution of the costs of the arcs, there is
always an optimal solution with an objective function value equal to zero. To prevent or

62

Mathematics 2022, 10, 804

make the presence of solutions with an objective function value equal to zero rarer, smart
methods for defining the cost of the edges (EL, P — EL) have been used. Note that when
the model reaches an objective function value equal to zero, it stops instantaneously having
reached its lower bound; this implies that the computational time for instances that do not
have zero as an optimal solution is significantly higher. Considering these observations,
the future developments for this work are manifold. First of all, it would be interesting
to develop instance generators capable of preventing or minimizing the presence of zero
solutions in order to create computationally complex instances. Using more complex
instances, realizing heuristic or meta-heuristic approaches for this problem would become
necessary. A constructive approach based on the Dijkstra algorithm [25] improved through
the Carousel Greedy, an enhanced Greedy algorithm proposed in [26,27], might identify a
feasible solution to the problem. According to the authors” experience, the tabu search, a
technique introduced by Glover [28] and widely used in the literature, also by the authors
of this work, for example, in [29], might be used to improve the Greedy solution.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SPP Shortest Path Problem

CBPP Cost-Balanced Path Problem

HPP Hamiltonian Path Problem

MILP Mixed Integer Linear Programming

References

1. He, F; Yin, Y.; Lawphongpanich, S. Network equilibrium models with battery electric vehicles. Transp. Res. Part B Methodol. 2014,
67,306-319. [CrossRef]

2. Dell’Amico, M.; Hadjicostantinou, E.; Iori, M.; Novellani, S. The bike sharing rebalancing problem: Mathematical formulations
and benchmark instances. Omega 2014, 45, 7-19. [CrossRef]

3. Akbay, M.; Kalayci, C. A Variable Neighborhood Search Algorithm for Cost-Balanced Travelling Salesman Problem. In
Metaheuristics Summer School; Springer: Cham, Switzerland, 2018; pp. 23-36.

4. Larusic, J.; Punnen, A.P. The balanced traveling salesman problem. Comput. Oper. Res. 2011, 38, 868-875. [CrossRef]

5. Dong, X.; Xu, M; Lin, Q.; Han, S.; Li, Q.; Guo, Q. IT algorithm with local search for large scale multiple balanced traveling
salesmen problem. Knowl.-Based Syst. 2021, 229, 107330. [CrossRef]

6. Gallo, G.; Pallotino, S. Shortest path algorithms. Ann. Oper. Res. 1988, 13, 3-79. [CrossRef]

7. Cherkassy, B.V.; Goldberg, A.V.; Radzik, T. Shortest path algorithms: Theory and experimental evaluation. Math. Program. 1996,
73,129-174. [CrossRef]

8. Fu, L, Sun, D; Rilett, L.R. Heuristic shortest path algorithms for transportation applications: State of the art. Comput. Oper. Res.
2006, 33, 3324-3343. [CrossRef]

9. Raith, A,; Ehrgott, M. A comparison of solution strategies for bi-objective shortest path problems. Comput. Oper. Res. 2009, 36,
1299-1331. [CrossRef]

10. Panda, M.; Mishra, A. A survey of shortest-path algorithms. Int. |. Appl. Eng. Res. 2018, 13, 6817-6820.

11. Yuan, H; Hu, J.; Song, Y,; Li, Y.; Du, J. A new exact algorithm for the shortest path problem: An optimized shortest distance
matrix. Comput. Ind. Eng. 2021, 158, 107407. [CrossRef]

12. Ferone, D.; Festa, P; Pastore, T. The k-color shortest path problem. In Advances in Optimization and Decision Science for Society,
Services and Enterprises; Springer: Cham, Switzerland, 2019; pp. 367-376.

13. Ferone, D.; Festa, P.; Fugaro, S.; Pastore, T. A dynamic programming algorithm for solving the k-Color Shortest Path Problem.

Optim. Lett. 2021, 15, 1973-1992. [CrossRef]

63

Mathematics 2022, 10, 804

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

Ticha, H.B.; Absi, N.; Feillet, D.; Quilliot, A. The Steiner bi-objective shortest path problem. EURO]. Comput. Optim. 2021, 9.
[CrossRef]

Ketkov, S.S.; Prokopyev, O.A.; Burashnikov, E.P. An approach to the distributionally robust shortest path problem. Comput. Oper.
Res. 2021, 130, 1105212. [CrossRef]

Zhang, D.; Wallace, S.W.; Guo, Z.; Dong, Y.; Kaut, M. On scenario construction for stochastic shortest path problems in real road
networks. Transp. Res. Part E Logist. Transp. Rev. 2021, 152, 102410. [CrossRef]

Ehmke,].F.; Campbell, A.M.; Thomas, B.W. Data-driven approaches for emissions-minimized paths in urban areas. Conput. Oper.
Res. 2016, 67, 34—47. [CrossRef]

Prakash, A.A. Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks. Transp. Res.
Part B Methodol. 2018, 108, 127-147. [CrossRef]

Moharam, R.; Morsy, E. Genetic algorithms to balanced tree structures in graphs. Swarm Evol. Comput. 2017, 32, 132-139.
[CrossRef]

Di Puglia Pugliese, L.; Guerriero, F.; Poss, M. The Resource Constrained Shortest Path Problem with uncertain data: A robust
formulation and optimal solution approach. Comput. Oper. Res. 2019, 107, 140-155. [CrossRef]

Carrabs, E; Cerrone, C.; Cerulli, R.; Silvestri, S. On the complexity of rainbow spanning forest problem. Optim. Lett. 2018, 12,
443-454. [CrossRef]

Carrabs, F; Cerrone, C.; Cerulli, R; Silvestri, S. The rainbow spanning forest problem. Soft Comput. 2018, 22, 2765-2776. [CrossRef]
Garey, M.; Johnson, D. Computers and Intractability, 3rd ed.; Freeman: San Francisco, CA, USA, 1979.

Schrijver, A. Theory of Linear and Integer Programming; John Wiley & Sons: Hoboken, NJ, USA, 1998.

Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269-271. [CrossRef]

Cerrone, C.; Cerulli, R.; Golden, B. Carousel greedy: A generalized greedy algorithm with applications in optimization. Comput.
Oper. Res. 2017, 85, 97-112. [CrossRef]

Carrabs, E; Cerrone, C.; D’Ambrosio, C.; Raiconi, A. Column generation embedding carousel greedy for the maximum network
lifetime problem with interference constraints. In International Conference on Optimization and Decision Science; Springer: Cham,
Switzerland, 2017; pp. 151-159.

64

Mathematics 2022, 10, 804

28. Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190-206. [CrossRef]
29. Carrabs, E; Cerrone, C.; Cerulli, R. A tabu search approach for the circle packing problem. In Proceedings of the 17th International
Conference on Network-Based Information Systems, Salerno, Italy, 10-12 September 2014; pp. 165-171.

65

. mathematics

Article

Improved Lebesgue Indicator-Based Evolutionary Algorithm:
Reducing Hypervolume Computations

Satil Zapotecas-Martinez *, Abel Garcia-N4jera ! and Adriana Menchaca-Méndez 2

Citation: Zapotecas-Martinez, S.;
Garcia-Najera, A.;
Menchaca-Méndez, A. Improved
Lebesgue Indicator-Based
Evolutionary Algorithm: Reducing
Hypervolume Computations.
Mathematics 2022, 10, 19.
https://doi.org/10.3390/
math10010019

Academic Editor: David Greiner

Received: 30 October 2021
Accepted: 15 December 2021
Published: 21 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/ licenses /by /
4.0/).

1 Departamento de Matematicas Aplicadas y Sistemas, Universidad Auténoma Metropolitana Unidad

Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Ciudad de México 05348, México;
agarcian@cua.uam.mx

Licenciatura en Tecnologias para la Informacién en Ciencias, ENES, Campus Morelia,

Universidad Nacional Autéonoma de México, Morelia 58190, México; amenchaca@enesmorelia.unam.mx
* Correspondence: szapotecas@cua.uam.mx

Abstract: One of the major limitations of evolutionary algorithms based on the Lebesgue measure
for multi-objective optimization is the computational cost required to approximate the Pareto front of
a problem. Nonetheless, the Pareto compliance property of the Lebesgue measure makes it one of
the most investigated indicators in the design of indicator-based evolutionary algorithms (IBEAs).
The main deficiency of IBEAs that use the Lebesgue measure is their computational cost which
increases with the number of objectives of the problem. On this matter, the investigation presented in
this paper introduces an evolutionary algorithm based on the Lebesgue measure to deal with box-
constrained continuous multi-objective optimization problems. The proposed algorithm implicitly
uses the regularity property of continuous multi-objective optimization problems that has suggested
effectiveness when solving continuous problems with rough Pareto sets. On the other hand, the
survival selection mechanism considers the local property of the Lebesgue measure, thus reducing
the computational time in our algorithmic approach. The emerging indicator-based evolutionary
algorithm is examined and compared versus three state-of-the-art multi-objective evolutionary
algorithms based on the Lebesgue measure. In addition, we validate its performance on a set of
artificial test problems with various characteristics, including multimodality, separability, and various
Pareto front forms, incorporating concavity, convexity, and discontinuity. For a more exhaustive
study, the proposed algorithm is evaluated in three real-world applications having four, five, and
seven objective functions whose properties are unknown. We show the high competitiveness of our
proposed approach, which, in many cases, improved the state-of-the-art indicator-based evolutionary
algorithms on the multi-objective problems adopted in our investigation.

Keywords: multi-objective optimization; Lebesgue measure; indicator-based evolutionary algorithms

1. Introduction

In several engineering and sciences applications, some problems require the simulta-
neous optimization of a number of objective functions. In the specialized literature, such
problems are referred to as multi-objective optimization problems (MOPs). The optimiza-
tion of a multi-objective problem involves determining the best compensation alternatives
considered in a set of conflicting objective functions. Therefore, instead of an optimal solu-
tion, as in single-objective optimization, a set of solutions manifesting the best trade-offs
among objectives is reached. The population on which evolutionary algorithms are based
makes these algorithms a practical tool to solve these types of problems. For this reason,
evolutionary multi-objective algorithms (EMOAs) have become a flexible and popular
instrument to deal with MOPs. In the specialized literature, a variety of investigations
concerning the development of evolutionary approaches for multi-objective optimization
can be found. See the extensive review of such approaches presented in [1,2]. According to
their conceptual foundations, EMOAs are categorized into three main groups: Pareto-based,

Mathematics 2022, 10, 19. https:/ /doi.org/10.3390/math10010019

https:/ /www.mdpi.com/journal/mathematics
67

Mathematics 2022, 10, 19

decomposition-based, and indicator-based approaches. These approaches incorporate dif-
ferent search strategies that define by themself the performance of a particular EMOA.
Distinctly, EMOASs based on indicators—the topic investigated in this work—explicitly
optimize a quality indicator (e.g., R2 [3], Lebesgue measure [4], € indicator [5], IGD [6],
among others) to approximate the Pareto front of a MOP. In this manner, since its origin in
the early 2000s, the indicator-based evolutionary algorithm (IBEA) [7] traced a new research
line investigated to date.

IBEAs adopting indicators that use reference sets (e.g., R2, € indicator, IGD, etc.) are
a design challenge since the optimal solutions are unknown. Consequently, reference
sets cannot be adequately pre-established. Despite this, some researchers have studied
diverse techniques to predict the reference set for these IBEAs [8,9]. In the evolutionary
multi-objective optimization (EMOO) literature, the Lebesgue measure, also referred to as
hypervolume indicator or S-metric, was introduced by Zitzler and Thiele [4] to evaluate the
performance of EMOAs. This quality indicator possesses an attractive property—it is Pareto
compliant [5]—that has called the attention of several researchers working on IBEAs. In
particular, IBEAs adopting the Lebesgue measure benefit from not requiring reference sets
because they exclusively employ reference vectors that are much simpler to state. Therefore,
these IBEAs have been a practical approach to solving real-life applications where the
characteristics of the problems are not known. Although IBEAs based on the Lebesgue
measure are highly docile solving MOPs, their application is restricted by the computational
cost of the Lebesgue measure, which grows with the number of objective functions. As
pointed out in [10], this indicator cannot be calculated in polynomial time concerning
the number of objectives except that P = NP. In addition, the complex characteristics of
multi-objective problems (for example, multimodality, bias, non-separability, etc.) faced by
an IBEA, further increase the computational cost in the search process for such algorithms.
In other words, IBEAs use many more iterations (computational efforts) to approximate the
real Pareto front of a problem. As a consequence, extensive investigations concerning the
design of IBEAs using the Lebesgue measure as a quality indicator have been studied in
the last few years [11-15]. To date, the development of EMOAs based on the hypervolume
indicator is recognized as an actual area of investigation within the EMOO community, and
this is precisely the topic of the investigation presented in this work.

This paper introduces an improved Lebesgue indicator-based evolutionary algorithm
for multi-objective optimization. The introduced approach can be seen as an improve-
ment of the Lebesgue indicator-based evolutionary algorithm (LIBEA) [15]. Analogous to
LIBEA, the proposed algorithm addresses the notion of IBEA [7] in the sense of optimizing
a quality indicator. Nevertheless, it is directed at maximizing the Lebesgue measure of
non-dominated solutions obtained through the search. In contrast to several Lebesgue
indicator-based EMOAs, the introduced algorithm implicitly applies the regularity prop-
erty of continuous MOPs advised to approximate continuous MOPs with complicated
characteristics [16-18]. Additionally, in order to reduce the computational time, the local
property of the Lebesgue measure is considered in the survival mechanism of the proposed
algorithm [19]. We hypothesize that an algorithm considering the Lebesgue measure, the
regularity property of continuous MOPs, and the local property of the Lebesgue measure
can solve problems with difficult features more efficiently than traditional EMOAs based
on the Lebesgue measure.

The proposed IBEA is tested by solving a set of artificial test problems known to be
challenging in the EMOO literature. As discussed by some researchers [20], algorithms able
to solve test problems having different difficulties can be candidates to deal properly with
real-life problems. Consequently, we present an analysis of the proposed algorithm solving
three real-life applications where the fitness landscapes and Pareto fronts are unknown.
A comparison is carried out to analyze the performance of the suggested IBEA versus
three state-of-the-art IBEAs based on the Lebesgue measure. We show that the algorithmic
proposal outperforms the state-of-the-art IBEAs in most test problems, including the three

68

Mathematics 2022, 10, 19

real-life problems considered in our study. The obtained results are statistically validated
over a number of experiments performed as part of our experimental research.

The rest of the manuscript is organized as follows. Section 2 introduces the fundamen-
tal concepts to understand the content of this work. Section 3 introduces an overview of
the related work to this investigation. Section 4 introduces the proposed algorithm and
details its components. Section 5 presents an experimental study of performance on a set of
test problems with complicated features. Section 6 introduces three real-life applications
from practice in which the suggested algorithm is tested and analyzed with other IBEAs.
Lastly, Section 7 presents our outcomes and describes some paths for future investigation.

2. General Background

This section provides the foundations of multi-objective optimization, introduces
the indicator-based multi-objective evolutionary algorithms, and presents some concepts
related to performance quality indicators.

2.1. Multi-Objective Optimization

Using standard notation and terminology, a multi-objective optimization problem
(MOP) can be defined as follows.

Definition 1 (Multi-objective optimization problem). Without loss of generality, assuming
minimization in all the objective functions, a multi-objective optimization problem can be defined as:

minien}Yize: F(x) = (f1(x),..., fu)T
subjectto gi(x) <0 ,Vie{l,...,p}, 0]
hi(x) =0 ,Vje{l,...,q}

where x € X C R" is a solution to the problem, X is the solution space, and f; : X — R, for all
i€ {1,...,m}, are m objective functions. The constraint functions g;, hj : X — R restrict x toa
feasible region X' C X.

In multi-objective optimization, a set of trade-off solutions are normally aimed for,
because the minimization of one objective function could lead to the deterioration of the
others. To describe the concept of optimality in which we are interested in, the following
definitions are presented.

Definition 2 (Pareto dominance). Let x,y € X’. We say that x weakly dominates y (x < y)
if fi(x) < fily) foralli € {1,...,m}. If, in addition y 4 x, we say that x strictly dom-
inates y (x < y). If fi(x) < fi(x) forall i € {1,...,m}, we say that x strongly domi-
nates y (x <<y).

Definition 3 (Pareto optimality). Let x* € X’. We say that x* is a Pareto optimal solution if
there is no other solution'y € X such that'y < x*.

Definition 4 (Pareto optimal set). The Pareto optimal set PS of a multi-objective problem is
defined by PS = {x € X' | x is Pareto optimal solution}.

Definition 5 (Pareto optimal front). The Pareto optimal front PF of a multi-objective problem
is stated by the image of the Pareto optimal set, that is, PF = {F(x) | x € PS}.

An interesting property observed in continuous multi-objective problems that has
been considered when designing multi-objective algorithms is presented below.

Property 1 (Regularity property of continuous MOPs). From the Karush-Kuhn-Tucker condi-
tions, it can be induced that under certain assumptions, the PS (PF) of a continuous MOP with

69

Mathematics 2022, 10, 19

m objectives defines an (m — 1)-dimensional piecewise continuous manifold in the decision space
(objective space) [21,22].

The regularity property of continuous MOPs defined above was firstly employed
by Hillermeier [22] in the well-known continuation methods for multi-objective optimiza-
tion. As identified by some authors [18], multi-objective solvers should take into account
this property explicitly or implicitly.

A critical condition of a multi-objective optimization problem is the conflict among its
objectives. If there is no conflict among the objectives, then the problem could be solved
by the optimization of each objective function independently. Although several authors
have given distinct definitions for the relation between pairs of objectives, the following
definition will be used in this paper.

Definition 6 (Conflict relation). Let S C X'. According to Carlsson and Fullér [23], two
objective functions f; and f; can be related in the following three ways (assuming minimization):

1. fiisin conflict with fion Sif fi(x) < fi(y) = fi(x) > fi(y) Vxy€S;
2. fisupports fion Sif fi(x) > fily) = fi(x) = fi(y) Vx,y € S;
3. fiand fjare independent on S, otherwise.

2.2. Indicator-Based Evolutionary Algorithms for Multi-Objective Optimization

Quality indicators have been introduced to compare the outcomes of multi-objective
algorithms in a quantitative manner. They map a Pareto front approximation to a scalar
number that quantifies the performance of a multi-objective approach.

Definition 7 (Quality indicator). An n-ary quality indicator T is a function T : F" — R, which
assigns each vector (Ay, ..., Ay) of n approximation sets (which can be singletons) a real value
I(Ay, ..., An).

Currently, we can find a large number of quality indicators for multi-objective op-
timization. A comprehensive compilation of them can be found in [5,24-26]. Quality
indicators can assess convergence and diversity of solutions along the Pareto front of a
given MOP. However, some indicators require certain knowledge of the problem which, in
many cases, is not available. For example, quality indicators based on reference sets (e.g.,
R2, ¢ indicator, IGD, etc.) require a discretization of the entire Pareto front.

Although quality indicators were initially employed for comparison purposes of
multi-objective solvers, their use has been extended to guide the optimization process in
EMOAs. In this way, with its emergence in the early 2000s, the indicator-based evolutionary
algorithm (IBEA) [7] posed the possibility to optimize a quality indicator to approximate
the Pareto front of a MOP.

Let us consider the (y 4 A)-selection scheme of an EMOA and the combined popula-
tion Q¢ of y parents and A offspring. In order to choose the best p solutions for the next
population (i.e., the updated set of parents), the fitness assignment to each individual is
necessary. Traditionally, EMOAs employ the Pareto ranking and a diversity indicator to
update the parents set. The selection mechanism in IBEAs consists of finding the solution
that contributes the least to the indicator under consideration. Making allowance for the
fitness value ¢(q’) of an individual q' € Q;, Algorithm 1 shows the survival selection
mechanism in IBEAs.

70

Mathematics 2022, 10, 19

Algorithm 1: IBEAs survival selection mechanism.

Input:
Q¢: Combined population of y parents and A offspring.
Output:
P;14: Updated population of y parents.
1 while |Q;| > u do
2 | Compute ¢(ql),..., ¢(q/%l) where q' € Q; foralli € {1,...,|Q:};
3 Quorst < argminqieQ[max{(ﬁ(ql)};

4 Qt — Qt \ {qworst};

5 return Qy;

In the sense of evolutionary algorithms, the higher the fitness value ¢(q'), the better
the individual q'. Note, however, that according to their conceptual foundations, quality
indicators can be either maximized or minimized. Therefore, the adequate fitness values
assignment depends directly on the concerned quality indicator. Note that besides the
computational time required to estimate the worst solution in IBEAs could be considerably
costly (line 2 in Algorithm 1). To date, in the EMOO literature, we can find several
evolutionary algorithms based on various quality indicators. A comprehensive review of
these types of algorithms can be found in [27].

2.3. Performance Quality Indicators

As pointed out, performance indicators are employed in IBEAs and are also employed
to compare performance between algorithms. In the follows, we present some relevant
performance indicators in this study.

2.3.1. Hypervolume Performance Indicator

The hypervolume performance indicator, as well known as Lebesgue measure or
S metric, has been employed to guide the search in evolutionary algorithms for multi-
objective optimization. The follow definitions are relevant in this work [28,29].

Definition 8 (Hypervolume indicator). Let S C R™ and r € R™ be a point set and a reference
point, respectively. The hypervolume indicator of S is the measure of the region weakly dominated
by S and bounded by vector r. Formally:

H(S,r) =L({qeR"|IpeS:p<qandq<r}) (2)

where L(-) refers to the Lebesgue measure.

Definition 9 (Hypervolume Contribution). The exclusive hypervolume contribution of a solu-
tion q € R™ toa set S € R™ respect to the reference vector t, is defined as:

He(S,q,1) = H(SU{q}, 1) = H(S\{q},1) ®

The hypervolume contribution of a point is sometimes referred to as Lebesgue contri-
bution, incremental, or exclusive hypervolume contribution. In this regard, some contribu-
tions to the state of the art on this topic can be found in [30-32].

In the specialized literature, we can find several issues addressed by investigators
in relation to the hypervolume indicator, see the comprehensive review on this topic
presented in [33]. However, one of the most important challenges in this research area is
the exact computation of the hypervolume indicator on a point set S. In this regard, some
researchers have designed algorithms that are efficient in a few dimensions, see the works
reported in [31,34,35]. The computational complexity of the hypervolume computation is
exponential to the number of points in S [19]. An interesting property observed in the two-

71

Mathematics 2022, 10, 19

dimensional objective space that has been exploited for a fast hypervolume computation is
presented below.

Property 2 (Locality property of the hypervolume indicator). Given three consecutive points
on the Pareto front, moving the middle point will only affect the hypervolume contribution that is
solely dedicated to this point, but the joint hypervolume contribution of the other points remains
fixed [19].

Nonetheless, the challenges presented in high-dimensional objective spaces have moti-
vated a vast research in the design of algorithms for the efficient hypervolume computation.
As a flavor of approaches devoted to the exact hypervolume calculation generalized in the
number of dimension, Table 1 presents some algorithms known by the EMOO community
and their complexities for an m-dimensional set of 1 points.

Table 1. Algorithms for the exact hypervolume computation on an m-dimensional set of 7 points.

Algorithm Dimension Computational Complexity
HSO [36] m>2 o(n™1)
LebMeasure [37] m>2 O(n™)
FPL [38] m>2 O(n"=2logn)
HOY [39] m>2 O(n?/?logn)
WEFG [40] m>2 Q(n"/?logn)
QHV [41] m>2 O(2m(n-1))

2.3.2. Normalized Hypervolume Indicator

The H indicator (stated in Definition 8) can quantify convergence and distribution
of solutions on the P.F of a given problem. The normalized hypervolume can be defined
as follows.

Definition 10 (Normalized hypervolume indicator). Let S C R™,u € R"™ and r € R" be a
point set, an ideal point, and a reference point, respectively, such that u <'s < r (forall s € S).
The normalized hypervolume indicator of S is the measure of the region weakly dominated by S and
bounded by vector w and r. Mathematical it can be stated as:

H(S, 1)

Hy(S,u,r) = ———F—— 4
R @

where H (S, r) denotes the hypervolume indicator of S with reference vector r.

The H, indicator value is in the range [0, 1]. In this way, a large H,, value indicates
that the set of solutions S has a suitable approximation and spread on the real P.F.

2.3.3. IGD" Indicator

The inverted generational distance plus (IGD") [42] is an extension of the IGD indi-
cator [6]. This quality indicator is weakly Pareto compliant and it can quantify how far
a given approximation set is from the real Pareto front. Formally, the IGD" indicator is
stated as follows.

Definition 11 (Inverted Generational Distances plus). Let F € R™ and S € R™ be a discretiza-
tion of the real Pareto front of a given MOP and a set of objective vectors given by an algorithm,
respectively. The IGD™ quality indicator is stated as:

1

1/p
7] Y. mind*(r,s)) (©)

reF €S

IGD*(F,S) = (

72

Mathematics 2022, 10, 19

where p = 2 and d* is defined by,

4" (5,5) = || 3 (max{s; — 7;,0})2 ©
i=1

where m is the number of objective functions of a given MOP.

A value of zero of the IGD™ indicator notices that all the objective vectors obtained by
an algorithm are on the true P.F.

3. Previous Related Work

The hypervolume indicator (#), as well known as Lebesgue or S metric, is a quality
indicator widely used to assess the performance of evolutionary multi-objective algo-
rithms [26]. Its peculiar property—it is strictly Pareto compliant [5]—has motivated several
investigators working on the design of IBEAs. It has been proved that given a finite search
space and a reference point, maximizing the hypervolume indicator is equivalent to finding
the Pareto optimal set of a given problem [37]. For this reason, several IBEAs have incorpo-
rated this indicator in their survival selection mechanism (see the comprehensive survey
of approaches presented in [43]). Lebesgue indicator-based EMOAs need to compute
the hypervolume contribution (#.) of non-dominated objective vectors to estimate the
worst solution in the current population. As pointed out before, the main disadvantage
of the hypervolume indicator is its computation cost which increases exponentially with
the number of objectives of the problem. Traditionally, EMOAs based on the H indicator
need to compute the H, of each individual in the population per iteration. Examples
of these algorithms are SIBEA [44], SMS-EMOA [11], MO-CMA-ES [45], HMOPSO [46],
FV-MOEA [14], LIBEA [15], among others. These approaches become impractical when
dealing with many objective functions (more than three), employing large populations, or
requiring a significant number of generations. Consequently, some authors have focused
their investigation on reducing the computational complexity of methods to compute either
the H or H. [33,43]. Other alternatives studied by some researchers are the approximation
methods to estimate the H or H. [33,43]. In this regard, some authors have incorporated
into their IBEAs, approximation methods to calculate H.. A pioneering study adopting
this idea is the HypE algorithm introduced in [47]. Another example of these types of
approaches is the RZHCA-EMOA [48], which works similar to SMS-EMOA, but it uses
the R2-based hypervolume contribution approximation method [49]. Experimental results
presented by the authors show that it outperforms the HypE algorithm in terms of H. Al-
though the approximation methods have decreased the computational cost of IBEAs based
on the Lebesgue measure, the performance quality in these algorithms is compromised.
This is, in effect, the price to compensate for efficiency in these types of IBEAs.

In this paper, we are interested in designing IBEAs based on the exact hypervolume
computation. In this regard, Menchaca-Mendéz and Coello [50] presented an improved ver-
sion of SMS-EMOA called iSMS-EMOA.. iSMS-EMOA generates an offspring per iteration.
After that, the nearest individual to the offspring (measured by the Euclidean distance in
the objective space) and another randomly selected individual compete with the offspring
to survive (comparing their H.). Therefore, iSMS-EMOA only needs to compute three
hypervolume contributions per iteration, unlike SMS-EMOA that calculates 7 contributions,
where 7 is the population size. The core idea of iSMS-EMOA is to move a solution within
its neighborhood to improve its H. This idea is based on the locality property stated in [19]
(see Property 2). iSMS-EMOA significantly improves the efficiency of SMS-EMOA, and it
achieves comparable performance to SMS-EMOA. In [51], the authors studied the behavior
of iSMS-EMOA using the approximation method to calculate . proposed by Bringmann
and Friedrich [52]. The experimental results show that this version of iSMS-EMOA outper-
forms HypE. In [53], the authors studied the behavior of iSMS-EMOA if it does not use the
randomly selected individual in the competition always. Rostami and Neri [54] proposed

73

Mathematics 2022, 10, 19

the algorithm CMA-PAES-HAGA, which incorporates a fast hypervolume-driven selection
mechanism for many-objective optimization called HAGA to CMA-ES. HAGA divides the
objective space into grids. Then, it separates the population into subpopulations (each grid
contains one subpopulation). When a new individual is created, it only competes with the
individuals in its grid. Experimental results show that CMA-PAES-HAGA is able to solve
problems with more than three objective functions. Recently, Zapotecas-Martinez et al. [15]
introduced a novel Lebesgue-based IBEA (LIBEA) adopting the regularity property of con-
tinuous MOPs (see Property 1). The introduced LIBEA employs different neighborhoods for
the mating selection mechanism. In this way, if a solution is close to the PS of a problem, it
is possible to create new solutions close to the PS recombining with neighboring solutions.
The authors show the effectiveness of LIBEA when solving continuous MOPs with roughed
Pareto optimal sets.

In contrast to the related work, we introduce an improved multi-objective solver
considering the Lebesgue measure, the regularity property of continuous MOPs, and the
local property of the Lebesgue measure. We investigate a new framework to solve problems
with difficult features and unknown fitness landscapes more efficiently than traditional
IBEAs based on the Lebesgue measure. In the next section, we describe the components of
the proposed algorithm thoroughly.

4. Improved Evolutionary Multi-Objective Algorithm Based on the Lebesgue Indicator

The proposed algorithm presented in this paper is an improvement of the Lebesgue
indicator-based evolutionary algorithm (LIBEA) [15] for multi-objective optimization. In
analogy to LIBEA, the suggested algorithm addresses the notion of IBEA [7] regarding the
optimization of a quality indicator. Nevertheless, it is directed at maximizing the Lebesgue
indicator of non-dominated solutions obtained through the search. The differences are
clearly observed between our algorithmic proposal and IBEAs adopting the Lebesgue
measure. This section introduces details of the new algorithm and its components to be
compared against state-of-the-art IBEAs.

4.1. Framework of the Improved Lebesgue Indicator-Based Evolutionary Algorithm

Analogous to its predecessor (LIBEA [15]), the proposed algorithm implicitly adopts
the regular property of continuous MOPs to approximate solutions towards the Pareto
front of a given problem. The framework of the improved LIBEA (namely here LIBEA-II) is
presented in Algorithm 2. Initially, a set P = {x!,...,x} (t = 0) of N candidate solutions
is generated randomly (Algorithm 2, line 2). A matrix D allocating the distances between
pairs of objective vectors is calculated and used in the parent selection mechanism of LIBEA-
II (Algorithm 2, line 3). At each iteration, for each candidate solution xi € P, a parent
solution y is selected according to the mating selection mechanism (Algorithm 2, line 5).
Thus, the recombination procedure is performed by employing the current solution x' and
the parent solution y (Algorithm 2, line 6). Section 4.3 illustrates different recombination
models that could be adopted into LIBEA-II. Finally, in line 8 of Algorithm 2, a the new
population Py is updated employing the current population P; and the offspring solution
y’ according to the survival selection mechanism described in Section 4.4. In the following,
the rest of the components of LIBEA-II are described.

74

Mathematics 2022, 10, 19

Algorithm 2: LIBEA-II Framework.
Input:
A stopping criterion;
N: Population size;
Output:
Py;: PF approximation of a given MOP.
1t+0;
2 P; < InitializePopulation();
3 Djj ComputeEuclideanDistances(F(x'), F(x))), Vi,j € {1,...,N};
4 while stopping criterion is not satisfied do
5 forie {1,...,N} do

6 y < MatingSelection(P, D;);

. y' + Recombination(x',y);

s Py 1 < SurvivalSelection(Pr U {y'});
Lt t+1;

4.2. Mating Selection Mechanism

The regularity property of continuous MOPs, establish that, under certain conditions,
the PS (PF) of a continuous MOP with m objectives defines an (m — 1)-dimensional
piecewise continuous manifold in the decision space (objective space) [21,22]. Although
this property was firstly introduced by Hillermeier [22] to solve multi-objective problems,
its use has been adopted by several EMOAs based on different natures (see for example,
the approaches reported in [15-17,55,56]). LIBEA-II adopts the regularity property of
continuous MOPs in an implicit form by promoting the recombination between neighboring
solutions. In this way; if a solution x' and its neighbors are close to the PS (PF), the new
offspring solution should also be close to the PS (PF). In other words, the local manifold
approximated by solution x’ and its neighbors should generate a new solution also close to
the PS (PF). In the following, the mating selection mechanism of LIBEA-II is described.

Let C; C P; be the solutions set of the closest solutions to x (in the space of the
objective functions). LIBEA-II uses a probability ¢ to select the solutions set () to be taken
into account in the recombination procedure. In the proposed approach, the solutions set
B is stated by either the neighboring solutions to x* or the solutions in P; according to a
probability 5. More precisely:

@)

_J G, rand(0,1) <6,
p P;, otherwise.

In this way, the parameter J denotes the probability of picking a neighboring solution
to be recombined with solution x'. Otherwise, with probability 1 — 4, any other solution
taken from the whole population P; can be chosen for recombination.

Once the solutions set f is stated, a parent solution y # x' is chosen randomly from
B. It is worth noticing that LIBEA-II keeps a distance matrix D updated during the search
process (we refer to Section 4.4 for more details). Therefore, the solutions set C; can be
computed by employing the partial sorting algorithm [57] with a computational complexity
of O(N + TlogN), such that T denotes the number of desirable solutions in C; and N
represents the number of solutions in P;.

4.3. Recombination Mechanism

LIBEA-II can be seen as a framework that allows incorporating any recombination
mechanism available in the evolutionary computation research area. Nonetheless, it
is worth mentioning that for certain recombination operators coming from some meta-
heuristics (e.g., PSO [58], DE [59], etc.), consider more than one solution. In such cases, the

75

Mathematics 2022, 10, 19

mating selection mechanism should produce more than one solution for the concerned
recombination operator. That is, instead of picking one solution y from j, various solutions
yl,¥% ... € B,such that y' # y? # ... # x have to be selected. In order to exemplify the
mating selection and recombination procedures in the LIBEA-II framework, two popular
operators coming from the evolutionary computing field are illustrated below.

Operators from Genetic Algorithms.

Genetic algorithms employ crossover and mutation operators to create offspring
solutions throughout the search process. In LIBEA-II, an offspring solution y’ can be
created employing such operators according to following equation

y = MUT(CX(x,y)) ®)

where y is a solution randomly chosen from B, CX, and MUT are the crossover and muta-
tion operators, respectively. Therefore, LIBEA-II could adopt operators for combinatorial,
integer, or mixed optimization.

Operators from Differential Evolution.

A recombination method employed for solving MOPs with difficult PS [17] exhibiting
good results, is the differential evolution (DE) operator [58]. In LIBEA-II, an offspring
solution y’ can be created employing DE operator according to the following equation:

y' = CX(x',u))

such that CX is the DE crossover, u = y' + F(y? — y?) is the perturbed vector, where
y!,y* and y? are solutions chosen randomly from g with, y! # y? # y® # x/, and F
denotes the differential factor, respectively. After performing the DE crossover, a mutation
mechanism can be applied to improve the search capabilities, as has been employed by a
few researchers [17,18].

4.4. Survival Selection Mechanism

The survival selection mechanism in LIBEA-II (line 8 in Algorithm 2) chooses the
best solutions from Q = P; U {y} considering either the Pareto dominance relation or the
Lebesgue measure. Since the number of solutions in Q is N + 1, it is necessary to remove
one solution from Q to make way for the next iteration.

Let d(q, Q) and P* be the number of solutions from Q that dominate solution q € Q,
and the set of non-dominated solutions in Q, respectively. That is,

d(q,Q) = Hp<€Ql|F(p) <F(q)F(p) #F(q)} (10)
P* = {qeQ|#peQ:F(p) <F(q)} (11)

Traditionally, IBEAs based on the Lebesgue indicator employ Pareto ranking [60]
followed by computing the exclusive Lebesgue contribution (see Definition 2) of each
solution allocated in the last rank (see for example the algorithmic proposals introduced
in [11,15,61,62]). Therefore, if the last rank contains a large number of solutions, the
computational complexity to estimate the solution to be removed becomes extremely
high. In evolutionary many-objective optimization, it can be observed that a population
constituted by non-dominated solutions can be preserved for several iterations of an
algorithm. Therefore, a high computational time is required to decide which solution
should be removed from the population. LIBEA-II considers the following two scenarios in
the survival selection mechanism.

e If P* # Q, there are solutions in Q dominated by some solution in P*. In such a case,
we shall remove the solution with the largest d(q, Q) value avoiding the Lebesgue
measure computation and reducing the computational cost of LIBEA-II;

76

Mathematics 2022, 10, 19

e If P* = Q, all solutions in Q are non-dominated, and all of them are equally acceptable
in terms of the Pareto dominance relation. In such a case, we shall remove the solution
x € § C Q that maximizes the contribution to the Lebesgue measure. In other words,
the solution to be removed is the one such that:

X = argming g Hc(S,s,1) (12)

Therefore, a total of |S| Lebesgue measures are required to identify the worst solution
(i.e., the solution that contributes the least to the Lebesgue measure) in the population.

Note that in the case of S = Q, the worst solution is found after N 4 1 Lebesgue
measures. This is, in fact, computationally expensive and impractical in many-objective
optimization problems. LIBEA-II saves Lebesgue measures by reducing the number of
candidate solutions in the set S.

A problem observed in IBEAs based on the Lebesgue indicator is the overestimation
of the reference vector, which could divert the search. Although the correct estimation of
the reference vector for certain types of PF has been discussed [63], there is no strategy to
correctly define this vector for all P forms. In such a case, a reference vector close to the
nadir vector (the vector opposite the ideal vector) should properly measure the coverage
and distribution of solutions along the P.F, including the extreme portions of it. Therefore,
the solutions that provide information on the nadir vector should be considered in the
survival selection mechanism. In other words, the solutions whose objectives vectors are
the farthest to the ideal vector should be considered.

The following criteria to define the set S (line 5 in Algorithm 3) are based on the
locality property of the hypervolume indicator studied in [19] (the first three criteria)
and the problem to estimate the reference vector for computing the Lebesgue indicator
discussed in [63] (the last criterion). The set of candidate solutions S is composed by:

1. The offspring solution y;

2. The solution q € Q such that the objective vector F(q) is the closest to the objective
vector F(y);

3. A percentage (o) of solutions q € Q which objective vectors are the closest;

4. A percentage (o) of solutions q € Q which objective vectors are the farthest to the
ideal vector z, where the ideal vector z = (zq,..., zm)T is estimated by
zj = minyeq fj(x) forall j € {1,...,m}.

~In the case that the offspring solution y is accepted, it shall replace solution
x € Q (X < y) and the distance matrix D has to be updated calculating the Euclidean
distances between the objective vector F(x/) and each objective vector F(x), that is:

Djj + |[F(x') = F(x)|]2, VX' € Py

In order to deal with different scales (in the objective space), LIBEA-II considers objec-
tive vectors normalized in the hypercube bounded by the ideal (z) and the nadir (n) vectors.
In such cases, the ideal and nadir vectors are defined by the smallest and the largest values
of each objective function found in the set of solutions Q U {y}. Therefore, the Lebesgue
measure is computed employing the normalized objective vectors and considering the ref-
erence vector r = (1.1,...,1.1)T. In Algorithm 3, we show the complete survival selection
mechanism of LIBEA-IL.

77

Mathematics 2022, 10, 19

Algorithm 3: EnvironmentalSelection(Q).

Input:
Q: the population to be truncated;
Output:
Q*: the population updated;
1 P* < NondominatedSolutions(Q);
2 if P* £ Q then
3 t X ¢ argmingco d(q,Q);
4 else
5 | S+« CandidateSolutions(Q); // Defining the set S
6 L ;x + argming.g He(S,s,1);
7 Q"= Q\ (¥}

8 return Q*;

5. Experimental Study

This section presents the experimental setup and the analysis of results. Firstly, the
IBEAs and the benchmark problems adopted for comparison are introduced. Then, the ex-
perimental settings are given. Finally, the results on the benchmark problems are analyzed.

5.1. IBEAs Considered for Comparison of Performance

The performance of the proposed LIBEA-II is compared with respect to state-of-the-art
IBEAs based on the hypervolume quality indicator. In the first instance, we adopt the
S-metric selection EMOA (SMS-EMOA) [11] for performance comparison. SMS-EMO em-
ploys a survival mechanism based on Pareto ranking joined by the exclusive Lebesgue
contribution of each solution located in the last rank. This evolutionary algorithm has
shown its effectiveness and has become popular among state-of-the-art IBEAs. Another
algorithm contemplated in this investigation is the improved version of the SMS-EMOA
(iSMS-EMOA) [50], which adopts ideas coming from the local property of the hypervolume
indicator. Finally, the Lebesgue indicator-based algorithm (LIBEA) [15] for multi-objective
optimization is selected. As noticed before, LIBEA adopts the regularity property of contin-
uous MOPs in the mating selection mechanism. Since the proposed LIBEA-II also employs
this regularity property, its predecessor, LIBEA, is an obvious competing algorithm.

5.2. Adopted Test Problems

The study presented in this investigation considers the continuous box-constrained
MOPs with difficult Pareto sets introduced in [64]. These problems are part of the CEC’2009
competition related to the performance of evolutionary multi-objective algorithms. The
adopted test problems have been formulated to assess the performance of EMOASs solving
continuous MOPs that exhibit the property of complicated PS topologies. Since this
property has been seen in real-life problems [17], this test suite is a challenge to evaluate the
performance of our algorithmic proposal. The adopted test problems (as well known as UFs)
offer diverse characteristics regarding separability, multi-modality, and include different
‘PF shapes, incorporating discontinuities, concavity, convexity, etc. More precisely, we
consider the two-objective problems UF1-UF7 and the three-objective problems UF8-UF10.

5.3. Experimental Settings

As pointed out, the results achieved by our proposed algorithm (i.e., LIBEA-II) are
analyzed versus those obtained by SMS-EMOA, iSMS-EMOA, and LIBEA on the test prob-
lems with roughed PF (UF1-UF10). As discussed by some authors, MOPs exhibiting
complicated PF shapes shall test specific components of EMOAs, such as the parent se-
lection mechanism and the recombination operators [15,17]. In this work, we use the DE
operator whose effectivity has been proved in MOPs with this singular characteristic (see
the studies reported in [17]). Therefore, all the IBEAs adopted for performance compar-

78

Mathematics 2022, 10, 19

ison employ DE operator as their main recombination procedure, such as described in
Section 4.3. In order to improve the search capabilities after performing the DE operator,
the Polynomial-based mutation [65] is implemented. However, note that for other test
problems such as ZDT [66] and DTLZ [67], the performance of IBEAs could be improved
by using recombination operators from genetic algorithms, for example, Simulated Binary
Crossover (SBX) and Polynomial-based mutation (PBM) [65]. The parameters used by the
IBEAs are presented in Table 2, where N denotes the population size. Gy;qx represents
the maximum number of generations, in our study Gyax = 2000. Therefore, the search
process was limited to performing 200,000 fitness function evaluations. In the case of the
DE operator, F and CR denote the differential amplitude factor and the crossover rate,
which were set as guested in [17] to solve MOPs with complicated PS. P, and 1, are
the mutation probability and the mutation index used by PBM, respectively. For LIBEA
and LIBEA-II, T and § are the neighborhood size and the probability of picking solutions
from a determined neighborhood (see Section 4.2), respectively. Note that the smaller the
o value, the effect of the regular property of continuous MOPs is diluted. For LIBEA-II,
oc and p;, are parameters that define the percentage of solutions to be considered in the
survival selection mechanism (see Section 4.4). It is worth emphasizing that the smaller
these parameters values (o, and p;;), the more efficient LIBEA-II is.

Table 2. Parameter settings for SMS-EMOA, iSMS-EMOA, LIBEA, and LIBEA-II.

Parameter SMS-EMOA iSMS-EMOA LIBEA LIBEA-II
N 100 100 100 100
Ginax 2000 2000 2000 2000
F 0.5 0.5 0.5 0.5
CR 1 1 1 1
Py, 1/n 1/n 1/n 1/n
W 20 20 20 20
T — — 20 20
o — 0.9 0.9
Oc — — 0.1
On — — — 0.1

For each IBEA, 30 executions were independently performed on each MOP. The IBEAs
were assessed employing the 7, and IGD™ quality indicators presented in Section 2.3.
For each test problem, a statistical analysis was performed over the final approximation
produced by the IBEAs in all the experiments using the concerned quality indicator. Since
the properties of the UF test functions are known, the #,, quality indicator was calculated
by employing the reference vector r = (1.1,...,1.1)T and the ideal vector u = (0,...,0)T.
Therefore, a reliable measure of approximation and distribution of solutions obtained by
the algorithms along the Pareto front is reported. The IGD™" indicator was calculated by
employing the reference sets provided by the authors of the UF test functions.

5.4. Analysis of Results on the UF Test Problems

The non-dominated solutions found by LIBEA-II, and those from SMS-EMOA, iSMS-
EMOA, and LIBEA, to each UF test function, were subjected to the H, and I GD™.
Tables 3 and 4 show the average H,, and IGD™ values, respectively, over 30 repetitions for
each UF problem. These tables have five columns: the first identifies the UF test function,
and the remaining four correspond to each of the four algorithms under comparison. The
best average H, and IGD™ values for each UF problem are in boldface. Moreover, in
order to distinguish if there is a statistically significant difference among the average H,
and IGD™ values for each test function, the Mann-Whitney-Wilcoxon [68] non-parametric
statistical test, employing a p-value of 0.05, and Bonferroni correction [69] were applied on
them. In this manner, an algorithm can be considered the best regarding the test function

79

Mathematics 2022, 10, 19

and quality indicator if it statistically surpasses the other three. If this is the case, the value
presented in the Table is underlined.

Table 3. Average H, values for the non-dominated solutions found by the IBEAs to each UF
test problem.

MOP SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

UF1 0.6674 + 0.010 0.6654 £ 0.010 0.6654 & 0.009 0.6669 £ 0.008
UF2 0.7048 + 0.001 0.7039 + 0.002 0.7051 + 0.001 0.7054 + 0.002
UF3 0.6057 + 0.028 0.6050 + 0.029 0.6117 £ 0.023 0.6108 £ 0.025
UF4 0.2779 £ 0.007 0.2792 + 0.006 0.2781 £ 0.006 0.2761 £ 0.006
UF5 0.0087 £ 0.015 0.0143 £ 0.034 0.0154 £ 0.024 0.0175 £ 0.021
UF6 0.3137 £ 0.054 0.3001 £ 0.047 0.3329 + 0.037 0.3319 £+ 0.043
UF7 0.5595 + 0.004 0.5511 £+ 0.039 0.5608 £ 0.004 0.5489 £ 0.039
UF8 0.3539 £ 0.041 0.3563 £+ 0.038 0.3641 £+ 0.054 0.3667 £ 0.052
UF9 0.7582 + 0.012 0.7464 £+ 0.011 0.7550+ 0.015 0.7366 £ 0.025
UF10 0.0000 =+ 0.000 0.0000 =+ 0.000 0.0000 £ 0.000 0.0000 £ 0.000

Table 4. Average IGD™" values for the non-dominated solutions found by the IBEAs to each UF
test problem.

\%(0) 4 SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

UF1 0.0341 + 0.006 0.0354 + 0.005 0.0350 £ 0.005 0.0340 £ 0.005
UF2 0.0142 £ 0.001 0.0148 + 0.001 0.0141 £ 0.001 0.0140 £ 0.001
UF3 0.0709 £ 0.025 0.0696 £ 0.021 0.0666 £ 0.018 0.0665 + 0.019
UF4 0.1232 £ 0.006 0.1223 £ 0.005 0.1230 £ 0.005 0.1252 £ 0.005
UF5 0.7429 £ 0.101 0.7470 £+ 0.133 0.7232 £+ 0.109 0.7106 £ 0.098
UF6 0.2163 £ 0.048 0.2221 £ 0.061 0.2005 £ 0.036 0.2028 £ 0.045
UF7 0.0149 £ 0.002 0.0229 £+ 0.035 0.0142 £ 0.002 0.0241 £ 0.036
UF8 0.1542 £ 0.029 0.1528 £+ 0.027 0.1468 £ 0.038 0.1454 + 0.037
UF9 0.0518 £ 0.007 0.0563 £ 0.008 0.0517 £ 0.007 0.0642 £ 0.017
UF10 1.3045 + 0.222 1.2999 + 0.227 1.2335 £ 0.203 1.3563 + 0.207

In Table 3, we can see the average results for the 7, indicator. As we can see, the
performance of the four algorithms was very similar: SMS-EMOA obtained the best average
results for two test problems, solutions from iSMS-EMOA were the best for one test problem,
LIBEA found solutions that were the best to three test problems, and the solutions found
by LIBEA-II were the best for three test problems. Actually, these results were expected
since all four algorithms are based on the # indicator. However, something remarkable is
that LIBEA-II was able to find statistically better solutions than those from the other three
algorithms for test instance UF8.

Hy quality indicator assesses, to some extent, the closeness and spreading of the
non-dominated solutions obtained by an EMOA. Nevertheless, quality indicators based
on reference sets could provide more information regarding how distant a set of solutions
is from the real PF. To this end, the IGD* indicator was selected to further evaluate the
performance of the IBEAs. Table 4 presents the obtained results of the proposed LIBEA-
II and those reached by the adopted IBEAs in terms of the IGD" indicator. It can be
observed that the results achieved by LIBEA-II exceeded those obtained by SMS-EMOA,
iSMS-EMOA, and LIBEA in five out of the ten test problems in terms of H, indicator.
LIBEA obtained the best average results in four test problems, while iSMS-EMOA was the
best in only one. More importantly, LIBEA-II obtained results that are statistically better
than the results from the other three algorithms in problem UF8.

Additionally to the quality indicators, Figure 1 shows the average convergence of the
four algorithms under comparison. This figure contains ten plots, one for each UF test
function, that show the convergence of the IGD™" indicator for each algorithm. We can see
that the convergence of the IGD™ indicator is very similar for all four algorithms in each
test problem, except for test problem UF7.

80

Mathematics 2022, 10, 19

After these results, regarding the 7, and IGD™" quality indicators, we can say that
LIBEA-II performs slightly better on the UF test problems than SMS-EMOA, iSMS-EMOA,
and LIBEA, since, despite solutions from LIBEA-II, have comparable hypervolumes, they
are closer to the P F in more benchmark functions. Moreover, for the p. and p,, parameters
adopted in this study, LIBEA-II reduces up to approximately 80% the hypervolume indica-
tor calculations, as shown in Figure 2. This means that LIBEA-II is more efficient than the
other three algorithms since, with fewer computational resources, it can find solutions with
as high quality as those found by SMS-EMOA, iSMS-EMOA, and LIBEA.

UF1 UF2 UF3 UF4
0.20
1.00 1.04
0.30 0.18
0.304
0.104 0.3 0.16+
0.104 014
0.034 014
0.03 012
UFs UF6 UF7 UF8
_® 1.004 3.0
[}
5 5 3.0
2 0.304 10
8
= 10 0.10
&
0.3+
9] <
= 1 034 0.03
UFo =0 0 500 1000 1500 2000 0 500 1000 1500 2000
3.0
104
1.04
51 — SMS-EMOA
0.3
31 —+— iSMS-EMOA
0.1 —=— LIBEA
T T T T T T T T T T —— LIBEA-II
0 500 1000 1500 2000 0 500 1000 1500 2000
Generations

Figure 1. Convergence plots of the IGD+ quality indicator on the UF test problems.

100%
o 80% |- [
=
g 60% / |
S a0% |]
=]
& 20% | |
Y Hypervolume
0% I I | | | L |_calculation reduction
50 100 150 200 250 300 350 400 450 500

Population size

Figure 2. Reduction of H, computations in LIBEA-II adopting o = 0.1 and p, = 0.1.

In order to illustrate the Pareto approximations obtained by the algorithms, Figure 3
presents the non-dominated solutions found by the four algorithms under consideration
to the test problems UF1, UF3, and UF7. It is clear that no algorithm could find a proper
approximation set to any of the three test problems. However, solutions from SMS-EMOA
and LIBEA-II show the best approximations to the Pareto front.

81

Mathematics 2022, 10, 19

UF1 UF3 UF7
1 1 1
s - \ rppoain - T
08 08 \; 1 08
]
é °
o “
06 06 1 06
= S N
= ":‘,Q
E 04 04 "u%%% B 04 N
& *®ag
02 N 02 TR o o] 02
0 0 0
0 02 04 06 08 1 0 02 04 06 038 1 0 02 0.4 06 08 1
I —= ! ! T
Approximation ~ * Approximation + Approximation
o
W 08 [N 1 08
S o
g 06 06 ° 4 06
& 3 .
E 04 04 1 04
%) oo o %
02) 02 T, 02
>, J
0 0 0
0 02 04 06 08 1 0 02 04 06 03 1 0 02 0.4 06 08 1
1 1 = 1
T True PF —— True PF ——
3 Approximation Approximation + Approximation
H A}
08 08 1 08
®,
< 06 S 06 1 06
s
o %
=)
— 0.4 0.4 Bl 04
02] 02 ! 02
oy ~o
S -
0 0 0
0 02 04 06 08 1 0 02 04 06 03 1 0 02 04 06 08 1
1 1 1
% — True PF ——
Approximation ~ * N, Approximation Approximation
08 08 1 08
& B
— X, °
D 0.6 ® 0.6 % o 1 0.6
<
2
= 04 3, 04 Bl 04
= X °
02 200 o 02 1 02
2% cmomy
%, .
0 0 0
0 02 04 06 08 1 0 02 04 06 038 1 0 02 04 06 08 1

Figure 3. Non-dominated solutions found by the four algorithms under study to the test problems
UF1, UF3, and UF7.

6. Three Real-World Applications from Practice

After testing LIBEA-II on the UF benchmark test problems, it is now tested on three
real-world applications. This section introduces, firstly, the three real-world applications
under consideration. Secondly, the experimental setup is presented. Thirdly, the results are
analyzed. Finally, the correlation between pairs of objectives are analyzed.

6.1. Description of the Real-World Applications

The three real-world applications considered in this study are introduced next.

6.1.1. RWA1: Liquid-rocket single element injector design

The design of a liquid-rocket single element injector aims at improving its perfor-
mance and enlarging its life [70]. Vaidyanathan et al. [71] states that, in order to optimally
design such an injector, four objectives should be considered: the maximum injector face
temperature (T Fyqy), the wall temperature at a distance of three inches from the injector
face (TWy), the maximum oxidizer post tip temperature (TT)x), and the centerline axial

82

Mathematics 2022, 10, 19

location where the combustion is 99% complete (X,c). Specifically, this multi-objective
optimization problem can be written as:

minimize: fj(x) = Xcc (13)
minimize: f,(x) = TFyax

minimize: f3(x) = TWy

minimize: f4(x) = TTyax

where x = (a, AHA,AOA, OPTT)T, such that 0° < a < 20° is the hydrogen flow angle,
0% < AHA < 25% is the hydrogen area increment with respect to the baseline cross-section
area (0.0186 in?), —40% < AOA < 0% is the oxygen area decrement with respect to the
baseline cross-section area (0.0423 in?) of the tube carrying oxygen, and X” < OPTT < 2X"
is the oxidizer post tip thickness, where X" denotes the tip thickness with a baseline value
0.01 in. The mathematical definition of this problem can be seen in [71].

6.1.2. RWA2: Ultra-wideband antenna design

In order to design an ultra-wideband antenna with two stopbands within the WiMAX
and WLAN bands, besides achieving the expected impedance features, gain uniformity
and high fidelity are also required [72]. Such antenna comprises a planar rectangular patch
and a pair of notches at the two lower corners. Two U-shaped thin slots are carved in the
monopole patch for the two stopbands. In order to design this antenna, ten parameters
have to be considered and five objective functions, which are the voltage standing wave
ratio (VSWR) over the passband (f1), the VSWR among the WiMAX (f,) and WLAN (f3)
bands, respectively, the fidelity factors in the E-plane and H-plane (f4), and the relatively
uniform peak gains over the passband (f5) [73]. Hence, the multi-objective optimization
problem is stated as:

minimize: fi(x) (14)
maximize: f(x)
maximize: f3(x)
maximize: f;(x)
minimize: f5(x)

where x = (ay,a3,b1,by,dq,do, 11, 1p, w1, w;)T, such that 5 < a; < 7,10 < ap < 12,
5<01<6,6<bp<73<d <4115<dy <125,175 <1 <225,2 <1, <3,
175 < wy <225, and 2 < wp < 3. The mathematical formulation of this problem is
presented in [73].

6.1.3. RWA3: Development of oil and water repellent fabric

In the textile industry, one aim is to produce fabrics with added high value. Par-
ticularly, the hydrophobicity effect, that is, water, oil, and stain repellence, is one of the
most widely used textile surface modification [74]. Hydrophobicity depends on several
process parameters, such as the concentration of oil and water repellent (O-CPC) finish, the
concentration of the crosslinking agent (K-FEL), and the curing temperature (C-Temp) [75].
The hydrophobicity effect can be measured by means of the following seven responses [76]:
the contact angle of a water (WCA) and oil (OCA) droplet touching a surface; the air
permeability (AP), which is the comfort property of a woven fabric used to measure the
flow of air through it; the crease recovery angle (CRA), which measures the textiles ability
to recover from creasing; the stif fness, which is a comfort property of cotton fabric; the
tear strength of the finished fabric, which depends on the chemical finishing treatment
applied to the fabric; and the tensile strength, which describes the behavior of the fabric

83

Mathematics 2022, 10, 19

under axial stretching load. These seven responses can be considered as objective functions

as follows:
maximize: f;(x) = WCA (15)
maximize: f,(x) = OCA
maximize: f3(x) = AP
maximize: f;i(x) = CRA
minimize: f5(x) = Stif fness
maximize: f¢(x) = Tear strength
()

maximize: f;(x) = Tesile strength

where x = (O-CPC, K—FEL,C—Temp)T, such that 10 g/L < O-CPC < 50 g/L, 10 g/L
< K-FEL < 50 g/L, and 150 °C < C-Temp < 170 °C. The mathematical description of the
problem is presented in [76].

6.2. Experimental Setup

In order to analyze the results achieved by LIBEA-II versus those achieved by SMS-
EMOA, iSMS-EMOA, and LIBEA, the following experimental setup was carried out. Since
the characteristics of the real-world applications(RWA) described above are not known, the
reference PF had to be constructed to compute the quality indicator IGD ™.

1. The non-dominated solutions obtained by all four IBEAs from the 30 executions
were recorded;

2. The maximin fitness function [77] was applied to choose 5000 from these non-dominated
solutions and they were considered as the reference set for the IDG ™" quality indicator.

Regarding the #, quality indicator, for each RWA problem, the ideal point
u=(uy,..., um)T was calculated by finding the minimum value for each objective function
in the reference P.F. On the other hand, the reference vector r = (r,. .., rm)T was stated
by finding the maximum value for each objective function in the reference PF and scaling
its magnitude (with respect to the ideal point) by 10% for each dimension. More precisely,
rp=11x]| fj’””x — 1], such that f]?"” is the maximum value of each objective function in
the reference PF, forall j € {1,...,m}. Hence, the H, indicator will consider, in a more
appropriate scope, the boundaries of the P approximation found by each IBEA. Due to
the computational cost of the original SMS-EMOA and LIBEA when dealing with more
than four objectives, the exact calculation of the . was replaced by the HypE indicator [13]
employing 1000 x m samples for the /. approximation, where m denotes the number of
objectives in the problem. It is worth noticing that the computational cost of LIBEA-II and
the other IBEAs depends directly on the population size and on the number of objectives.
Our experimental study adopts N = 100 solutions to solve the three real-world applica-
tions. With this number of solutions, LIBEA-II could deal with problems with up to seven
objectives in approximately five days. However, LIBEA-II spent less than 24 h performing
a single run for problems having four and five objective functions. The experimental study
presented in this work was carried out on a desktop PC with a 32-core 2.6 GHz processor
and 64GB of RAM.

6.3. Analysis of Results

The results achieved by LIBEA-II were examined versus those obtained by SMS-
EMOA, iSMS-EMOA, and LIBEA. Tables 5 and 6 show the results achieved by the algo-
rithms in the three real-world applications described above, for the H, and IGD* quality
indicators, respectively. The structure of these tables is similar to that of Tables 3 and 4.
That is, the best average H,, and IGD™ values for each real-world application are in bold-

84

Mathematics 2022, 10, 19

face, while the best algorithm regarding the concerned real-world application and quality
indicator is underlined.

Regarding the H, indicator, we can see from Table 5 that LIBEA-II found solutions
that cover a larger hypervolume for the three real-world problems and, remarkably, for
problem RWAS3, the difference is statistically significant. Concerning the I GD™ indicator,
Table 6 shows that solutions from LIBEA-II obtained, on average, the smallest values for all
three real-world problems. In this case, there is a tie between LIBEA-II and iSMS-EMOA
for problem RWAI.

Table 5. Average #, values for the non-dominated solutions found by the IBEAs to each real-
world application.

MOor SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

RWA1 0.5495 £ 0.001 0.5550=40.001 0.5487 £ 0.001 0.5557 £ 0.001
RWA2 0.6883 & 0.005 0.6947 0007 0.6906 £ 0.005 0.6969 £ 0.005
RWA3 0.1982 + 0.007 0.1951 + 0.012 0.1963 + 0.009 0.2052 + 0.007

Table 6. Average IGD ™" values for the non-dominated solutions found by the IBEAs to each real-
world application.

\%(0) 4 SMS-EMOA iSMS-EMOA LIBEA LIBEA-II
RWA1 0.0157 £ 0.001 0.0126 £ 0.000 0.0160 £ 0.001 0.0126 £ 0.000
4163.9243 + 3829.6227 +
RWA2 4318.4205 + 952.777 1770.699 3939.6710 £ 539.990 1063.089
RWA3 3.3550 £ 0.871 3.9980 £ 1.691 3.5676 + 1.213 3.0701 £ 0.797

Figure 4 shows the average convergence for the IGD™ indicator. This Figure contains
three plots, one for each real-world application. It is evident that the convergence of LIBEA-
II is faster than those of the other three algorithms for the two real-world applications
RWA1 and RWA3. The convergence for problem RWA2 is similar for all three algorithms.

RWA1 RWA2 RWA3
)
g 0107 104051 10+ — SMS-EMOA
87 0.05 - 3e+04 —— iSMS-EMOA
= | 54
'D" 008 1e+04 1 —— LIBEA

3_
Q T T T T T T T T T T T T T T T T T T —=— LIBEA-II
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Generations

Figure 4. Convergence of the IGD+ quality indicator on the three real-world applications.

After these results, it is clear that the performance of LIBEA-II on the three real-world
applications is higher than that of SMS-EMOA,, iSMS-EMOA, and LIBEA.

6.4. Analysis of the Conflict Relation Between Pairs of Objectives

In addition to studying the performance of the four IBEAs on real-world applications,
it is also of interest to know the conflict relation (see Definition 5) between the objective
functions for each RWA. To this end, Figure 5 presents the parallel coordinates plots for the
three real-world applications considered in this study.

Parallel coordinates are a handy tool for identifying conflict, support, or independence
between pairs of objectives. Even though they do not specify information regarding
the characteristics of the approximation sets, they are generally utilized for realizing the
correlation, whether positive, negative, or neutral, between pairs of objectives [78]. As

85

Mathematics 2022, 10, 19

mentioned earlier, the reference PF was obtained, for each RWA, by recording all non-
dominated solutions found by all four algorithms. For each of these solutions, the values
for each objective function were plotted. In Figure 5, the conflict between pairs of objectives
is illustrated. This Figure shows three boxes, one for each RWA. For each problem, the
objective values are normalized in the vertical axis in the range [0, 1] for a straightforward
interpretation, while the objective functions are on the horizontal axis. Lines are plotted
from one objective function f; to the next adjacent f; 1 to reflect the correlation between the
pair of objectives (f;, fi+1). If a line depicts a significant slope (whether negative or positive)
from one objective to the next, it can be interpreted that those objectives are in conflict, and
the longer the slope, the greater the conflict. On the contrary, if a line is horizontal, i.e., it
has no slope at all, the objectives support each other.

Normalized Objective Values
Normalized Objective Values
3
Normalized Objective Values

[] fl 2

[] [[B f
Objectives Objectives Objectives

(a) (b) (©

Figure 5. Parallel coordinate plots for the three real-world applications. (a) RWA1; (b) RWA2;
(c) RWA3.

In the case of RWA1, we can see that most of the lines between objectives (fi, f2)
are nearly horizontal or with a slight slope, which indicates that those objectives support
each other. For the pair of objectives (f2, f3), a considerable number of lines have a more
significant slope, whether positive or negative, from which we can infer that those objective
functions are in conflict. For the last pair (f3, fa), we see that some lines have a slope while
others are almost horizontal. Hence, there is no clear conclusion for this pair of objectives.

Following the same analysis as in RWALI, in the case of RWA2, we see that objectives
(f1, f2) and (fa, f5) are clearly in conflict since nearly all the lines present a significant slope
and only a few are horizontal or with a slight slope. For the pair of objectives (f2, f3) and
(f3, f1), on the contrary, most of the lines have a slight slope or are horizontal, while the rest
of the lines present a significant slope. For these cases, nothing can be said from these plots.

Finally, for problem RWAS3, it is evident that there is conflict for the pairs of objec-
tives (f1, f2), (f2, f3), (f3, f1), and (fs, fe), since the vast majority of the lines presents a
significantly large slope, whether positive or negative. For the other two pairs of objec-
tives, (fa, f5) and (fe, f7), there is no clear indication whether the objectives are in conflict,
support each other, or are independent.

In order to complete the conflict relation analysis between objectives, a numerical
analysis of the reference PFs is presented next. Figure 6 contains three matrices, one
for each RWA problem. Each matrix shows: in the upper triangular matrix, the Pearson
correlation coefficients [79] between pairs of objectives; in the lower triangular matrix, the
projection of the objective function values of the non-dominated solutions between pairs of
objectives; and in the diagonal, the densities of each objective function.

For problem RWA1, we can see that the pairs of objectives (f1, f2) and (f3, f1) are
positively correlated. Remarkably, the correlation for (fi, f2) is approximately 1.0, which
means that optimizing one of them, whether f; or f,, will lead to the optimization of the
other and vice versa. These results are in accordance with the analysis of the parallel
coordinates plots. The remaining four pairs of objectives, i.e., (1, f3), (f1, fa), (f2, f3), and
(f2, f1), present a negative correlation. This means that there is a conflict between the
objectives in each pair. That is, the optimization of one objective function deteriorates the
other and vice versa.

86

Mathematics 2022, 10, 19

In the case of problem RWA2, we see a positive correlation for pairs of objectives
(f1,15), (f2, f3), (f2, fa), and (fs, fa), which means that, to some extent, the objectives in
each pair support each other. Particularly for the pair (f1, f5), we can observe that the
correlation is nearly 1.0. The other six pairs of objective functions, that is (f1, f2), (f1, f3),
(f1,f1), (f2, f5), (f3, f5), and (fa, f5), present a negative correlation. From these last pairs of
objectives, the conflict that exists in (f1, f2) and (f4, f5) is in agreement with the observed
in the parallel coordinates plots.

Finally, for the RWA3 problem, we can confirm what was noticed from the parallel
coordinates plots, that is, the pairs of objective functions (f1, f2), (f2, f3), (f3, fa), and (fs, f6)
presents a negative correlations, which means the objectives in each pair are in conflict
with each other. Other pairs of objectives that present a negative correlation are (f1, f5),
(f1.f7), (f2, fa), (f2, f5), (f3, fe), (f3, f7), (fu, f6), (fa, f7), and (fs, f7). The remaining eight
pairs of objectives show a positive correlation, however, this does not mean that they can
be removed from the problem since they show conflict with other objective functions.

f1 f2 3 4 5
f1 f2 f3 f4 /\ Corr Corr Corr Corr -
-0.686*** -0.838*** -0.529*** 0.968*** -
Corr Corr cor: | o
0.988" -0665" | | -0.926m | =
Corr Corr i
0.573" 0.496" -0.582

Corr: Corr:
-0.594 -0.882"**)

Corr.
0.596***

Corr: Corr.
/\ 0.483*** -0.813"* &

Corr.
-0.562***

v

4l (NBi
Sy

N

c

Corr:
0.782***

(a)
f1 f2 3 4 5 6 f7
Corr Corr Corr Corr Corr Corr .
0747 0,426 0.493"* 0.893" -0.888" 088t | =
= Corr Corr Corr Corr Corr =
\‘; - -0.424** 0538 0812 0.731% 0.551%
R s Corr Corr Corr Corr =
L ! -0.376" 0,543+ ~0.007 -0.369"*
N Corr Corr Corr -
SEE3 : 0.496** 0782 -0.4ag | B
: o Corr Corr: .
f‘) \ -0.756"* -0 |9

ol
s

(0

Figure 6. Pearson correlation coefficients between pairs of objectives for the three RWA problems.
(a) RWA1T; (b) RWA2; (c) RWA3.

7. Conclusions

This paper introduced an improved Lebesgue indicator-based evolutionary algorithm
(LIBEA-I) for solving multi-objective optimization problems. The hypothesis put forward

87

Mathematics 2022, 10, 19

in this paper about the efficiency of IBEAs considering the Lebesgue measure, the regularity
property of continuous MOPs, and the local property was held. In terms of results, the
proposed LIBEA-II and the other three IBEAs, namely SMS-EMOA, iSMS-EMOA, and
LIBEA, were tested on the well-known UF benchmark set. These test functions have
properties that have been seen in real-life optimization problems in terms of separability,
multi-modality, and different P F shapes, including convexity, concavity, discontinuities,
etc. The non-dominated solutions achieved by LIBEA-II and by the other three algorithms,
for each test function, were applied the two quality indicators: normalized hypervolume
(Hn) and inverted generational distance plus (IGD™). Results from the H, indicator
showed that the performance of the four algorithms is similar. Given that all four algorithms
are based on the H, quality indicator, this result was rather expected. Regarding the IGD™"
indicator, the performance of LIBEA-II was slightly better than the other three algorithms
since it obtained the best average results for five out of the ten test functions, and the
difference was statistically significant for one of them. In general, LIBEA-II is an efficient
algorithm since it can find solutions with the same quality as those found by the other three
algorithms but using only 20% of the computing resources.

LIBEA-II was also tested on three real-world applications, precisely: the liquid-rocket
single element injector design (RWA1), which has four objective functions and four vari-
ables, the ultra-wideband antenna design (RWA?2), which considers five objective functions
and ten variables, and the development of oil and water repellent fabric (RWA3), which
optimizes seven objective functions with three variables. In this case, LIBEA-II was also
compared with the same IBEAs used for the UF test instances. Remarkably, LIBEA-II was
able to obtain non-dominated solutions with higher quality than those found by the other
three IBEAs, since the average value from both quality indicators, i.e., H, and I GD*, was
the best. The superiority of LIBEA-II was demonstrated in real-world applications since it
obtained higher-quality non-dominated solutions and saved up to approximately 80% of
the hypervolume calculations.

As part of our future research, we are interested in extending the applicability of
LIBEA-II to deal with constrained MOPs. This line of research has been slightly explored,
and it is the course of our outcoming investigations. On the other hand, we would like to
test the performance of the proposed LIBEA-II in other real-life applications in order to
identify insights that allow us to understand the main weaknesses of IBEAs based on the
Lebesgue measure. On the other hand, the hybridization of these types of approaches with
mathematical programming is certainly a good path that deserves to be investigated. These
are, in fact, part of our future program of investigations.

Author Contributions: Conceptualization, S.Z.-M.; methodology, S.Z.-M.; software, S.Z.-M. and
AM.-M,; validation, S.Z.-M., A.G.-N; formal analysis, 5S.Z.-M. and A.G.-N.; investigation, S.Z.-M.,
AM.-M., and A.G.-N.; data curation, S.Z.-M.; writing—original draft preparation, S.Z.-M., AM.-M.,
and A.G.-N.; writing—review and editing, S.Z.-M. and A.G.-N.; visualization, S.Z.-M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Zhou, A.; Qu, B.Y; Li, H.; Zhao, S.Z.; Suganthan, PN.; Zhang, Q. Multiobjective evolutionary algorithms: A survey of the state of
the art. Swarm Evol. Comput. 2011, 1, 32-49. [CrossRef]
Nedjah, N.; de Macedo Mourelle, L. Evolutionary multi-objective optimisation: A survey. Int. . -Bio-Inspired Comput. 2015,

References
1.
2.
7,1-25. [CrossRef]
3.

Hansen, M.P,; Jaszkiewicz, A. Evaluating the Quality of Approximations to the Non-Dominated Set; Technical Report IMM-REP-1998-7;
Technical University of Denmark: Kongens Lyngby, Denmark, 1998.

88

Mathematics 2022, 10, 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.
23.

24.

25.

26.

27.

28.

Zitzler, E.; Thiele, L. Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Study. In Parallel Problem
Solving from Nature V; Eiben, A.E., Ed.; Springer: Amsterdam, The Netherlands, 1998; pp. 292-301.

Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; da Fonseca, V.G. Performance Assessment of Multiobjective Optimizers: An
Analysis and Review. IEEE Trans. Evol. Comput. 2003, 7, 117-132. [CrossRef]

Coello, C.A.C.; Reyes Sierra, M. A Study of the Parallelization of a Coevolutionary Multi-Objective Evolutionary Algorithm. In
Proceedings of the Third Mexican International Conference on Artificial Intelligence (MICAI'2004), Mexico City, Mexico, 26-30 April 2004;
Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H., Eds.; Lecture Notes in Artificial Intelligence; Springer: Amsterdam, The
Netherlands, 2004; Volume 2972, pp. 688-697.

Zitzler, E.; Kiinzli, S. Indicator-based Selection in Multiobjective Search. In Parallel Problem Solving from Nature—PPSN VIII;
Lecture Notes in Computer Science; Springer: Amsterdam, The Netherlands, 2004; Volume 3242, pp. 832-842.

Rodriguez Villalobos, C.A.; Coello, C.A. A new multi-objective evolutionary algorithm based on a performance assessment
indicator. In Proceedings of the GECCO’2012, Philadelphia, PA, USA, 7-11 July 2012; ACM: New York, NY, USA, 2012;
pp- 505-512.

Zapotecas Martinez, S.; Sosa Hernandez, V.A.; Aguirre, H.; Tanaka, K.; Coello Coello, C.A. Using a Family of Curves to
Approximate the Pareto Front of a Multi-Objective Optimization Problem. In Parallel Problem Solving from Nature—PPSN XIII.
Proceedings of the 13th International Conference, Ljubljana, Slovenia, 13-17 September 2014; Bartz-Beielstein, T., Branke, J., Filipi¢, B.,
Smith, J., Eds.; Lecture Notes in Computer Science; Springer: Amsterdam, The Netherlands, 2014; Volume 8672, pp. 682-691.
Bringmann, K.; Friedrich, T. Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice.
In Evolutionary Multi-Criterion Optimization, Proceedings of the 5th International Conference, EMO 2009, Nantes, France, 7-10 April
2009; Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao,] K., Sevaux, M., Eds.; Lecture Notes in Computer Science; Springer:
Amsterdam, The Netherlands, 2009; Volume 5467, pp. 6-20.

Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. . Oper. Res.
2007, 181, 1653-1669. [CrossRef]

Tsukamoto, N.; Sakane, Y.; Nojima, Y.; Ishibuchi, H. Incorporation of Hypervolume Approximation with Scalarizing Functions
into Indicator-based Evolutionary Multiobjective Optimization Algorithms. Trans. Inst. Syst. Control Inf. Eng. 2010, 23, 165-177.
Bader, J.; Deb, K.; Zitzler, E. Faster Hypervolume-Based Search Using Monte Carlo Sampling. In Multiple Criteria Decision Making
for Sustainable Energy and Transportation Systems; Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J., Eds.; Lecture Notes in
Economics and Mathematical Systems; Springer: Amsterdam, The Netherlands, 2010; Volume 634, pp. 313-326.

Jiang, S.; Zhang, J.; Ong, Y.S.; Zhang, A.N.; Tan, PS. A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary
Algorithm. IEEE Trans. Cybern. 2015, 45, 2202-2213. [CrossRef]

Zapotecas-Martinez, S.; Garcia-Najera, A.; Lopez-Jaimes, A. LIBEA: A Lebesgue Indicator-Based Evolutionary Algorithm for
multi-objective optimization. Swarm Evol. Comput. 2019, 44, 404-419. [CrossRef]

Zhang, Q.; Li, H. MOEA /D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712-731. [CrossRef]

Li, H.; Zhang, Q. Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA /D and NSGA-II. IEEE Trans. Evol.
Comput. 2009, 13, 284-302. [CrossRef]

Zhou, A.; Zhang, Q.; Zhang, G. A multiobjective evolutionary algorithm based on decomposition and probability model. In
Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC"2012), Brisbane, QLD, Australia, 10-15 June 2012;
IEEE Press: Brisbane, Australia, 2012; pp. 3151-3158.

Auger, A.; Bader,].; Brockhoff, D.; Zitzler, E. Theory of the Hypervolume Indicator: Optimal {}-Distributions and the Choice Of
The Reference Point. In Proceedings of the FOGA "09: Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms,
Orlando, FL, USA, 9-11 January 2009; ACM: Orlando, FL, USA, 2009; pp. 87-102.

Chand, S.; Wagner, M. Evolutionary many-objective optimization: A quick-start guide. Surv. Oper. Res. Manag. Sci. 2015,
20, 35-42. [CrossRef]

Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999.

Hillermeier, C. Nonlinear Multiobjective Optimization—A Generalized Homotopy Approach; Birkhaduser: Basel, Switzerland, 2001.
Carlsson, C.; Fullér, R. Multiple criteria decision making: The case for interdependence. Comput. Oper. Res. 1995, 22, 251-260.
[CrossRef]

Okabe, T.; Jin, Y.; Sendhoff, B. A Critical Survey of Performance Indices for Multi-Objective Optimization. In Proceedings of
the 2003 Congress on Evolutionary Computation (CEC"2003), Canberra, Australia, 8-12 December 2003; IEEE Press: Canberra,
Australia, 2003; Volume 2, pp. 878-885.

Jiang, S.; Ong, Y.S.; Zhang, |.; Feng, L. Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization.
IEEE Trans. Cybern. 2014, 44, 2391-2404. [CrossRef]

Li, M.; Yao, X. Quality Evaluation of Solution Sets in Multiobjective Optimisation: A Survey. ACM Comput. Surv. 2019, 52, 1-38.
[CrossRef]

Falcon-Cardona, J.G.; Coello, C.A.C. Indicator-Based Multi-Objective Evolutionary Algorithms: A Comprehensive Survey. ACM
Comput. Surv. 2020, 53, 1-35. [CrossRef]

Knowles, J.; Corne, D.; Fleischer, M. Bounded archiving using the lebesgue measure. In Proceedings of the 2003 Congress on
Evolutionary Computation, 2003 CEC ‘03, Canberra, ACT, Australia, 8-12 December 2003; Volume 4, pp. 2490-2497. [CrossRef]

89

Mathematics 2022, 10, 19

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

While, L.; Bradstreet, L. Applying the WFG algorithm to calculate incremental hypervolumes. In Proceedings of the 2012 IEEE
Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10-15 June 2012; pp. 1-8. [CrossRef]

Emmerich, M.T.; Fonseca, C.M. Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm
and complexity results. In International Conference on Evolutionary Multi-criterion Optimization; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 121-135.

Guerreiro, A.P.; Fonseca, C.M. Computing and updating hypervolume contributions in up to four dimensions. IEEE Trans. Evol.
Comput. 2017, 22, 449-463. [CrossRef]

Russo, L.M.; Francisco, A.P. Extending quick hypervolume. |. Heuristics 2016, 22, 245-271. [CrossRef]

Guerreiro, A.P,; Fonseca, C.M.; Paquete, L. The Hypervolume Indicator: Computational Problems and Algorithms. ACM Comput.
Surv. 2021, 54, 119. [CrossRef]

Beume, N.; Fonseca, C.M.; Lopez-Ibanez, M.; Paquete, L.; Vahrenhold, J. On the complexity of computing the hypervolume
indicator. IEEE Trans. Evol. Comput. 2009, 13, 1075-1082. [CrossRef]

Guerreiro, A.P; Fonseca, C.M.; Emmerich, M.T. A Fast Dimension-Sweep Algorithm for the Hypervolume Indicator in Four
Dimensions. In Proceedings of the Canadian Conference on Computational Geometry, Charlottetown, PEI, Canada, 8-10 August
2012; pp. 77-82.

Knowles,].D. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. Ph.D. Thesis, University of Reading,
Reading, UK, 2002.

Fleischer, M. The measure of Pareto optima applications to multi-objective metaheuristics. In International Conference on
Evolutionary Multi-Criterion Optimization; Springer: Berlin/Heidelberg, Germany, 2003; pp. 519-533.

Fonseca, C.M.; Paquete, L.; Lopez-Ibanez, M. An improved dimension-sweep algorithm for the hypervolume indicator. In
Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16-21 July 2006;
pp. 1157-1163.

Beume, N. S-metric calculation by considering dominated hypervolume as Klee’s measure problem. Ewol. Comput. 2009,
17,477-492. [CrossRef]

While, L.; Bradstreet, L.; Barone, L. A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 2011, 16, 86-95.
[CrossRef]

Russo, L.M.; Francisco, A.P. Quick hypervolume. IEEE Trans. Evol. Comput. 2013, 18, 481-502. [CrossRef]

Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y. Modified Distance Calculation in Generational Distance and Inverted
Generational Distance. In Evolutionary Multi-Criterion Optimization, Proceedings of the 8th International Conference, EMO 2015,
Guimardes, Portugal, 29 March-1 April 2015; Gaspar-Cunha, A., Antunes, C.H., Coello Coello, C., Eds.; Lecture Notes in Computer
Science; Springer: Amsterdam, The Netherlands, 2015; Volume 9019, pp. 110-125.

Shang, K.; Ishibuchi, H.; He, L.; Pang, L.M. A Survey on the Hypervolume Indicator in Evolutionary Multiobjective Optimization.
IEEE Trans. Evol. Comput. 2021, 25, 1-20. [CrossRef]

Zitzler, E.; Brockhoff, D.; Thiele, L. The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via
Weighted Integration. In Evolutionary Multi-Criterion Optimization; Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 862-876.

Igel, C.; Hansen, N.; Roth, S. Covariance Matrix Adaptation for Multi-objective Optimization. Evol. Comput. 2007, 15, 1-28.
[CrossRef]

Mostaghim, S.; Branke, J.; Schmeck, H. Multi-Objective Particle Swarm Optimization on Computer Grids. In Proceedings of
the 9th Annual Conference on Genetic and Evolutionary Computation, London, UK, 7-11 July2007; Association for Computing
Machinery: New York, NY, USA, 2007; pp. 869-875. [CrossRef]

Bader, J.; Zitzler, E. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evol. Comput. 2011,
19, 45-76. [CrossRef]

Shang, K.; Ishibuchi, H. A New Hypervolume-Based Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans.
Evol. Comput. 2020, 24, 839-852. [CrossRef]

Shang, K.; Ishibuchi, H.; Ni, X. R2-Based Hypervolume Contribution Approximation. IEEE Trans. Evol. Comput. 2020, 24, 185-192.
[CrossRef]

Menchaca-Mendéz, A.; Coello, C.A.C. A new selection mechanism based on hypervolume and its locality property. In Proceedings
of the 2013 IEEE Congress on Evolutionary Computation, Canctin, México, 20-23 June 2013; pp. 924-931. [CrossRef]
Menchaca-Mendez, A.; Coello Coello, C.A. An alternative hypervolume-based selection mechanism for multi-objective evolu-
tionary algorithms. Soft Comput. 2017, 21, 861-884. [CrossRef]

Bringmann, K.; Friedrich, T. Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. Theor.
Comput. Sci. 2012, 425, 104-116. [CrossRef]

Menchaca-Méndez, A.; Montero, E.; Zapotecas-Martinez, S. An Improved S-Metric Selection Evolutionary Multi-Objective
Algorithm With Adaptive Resource Allocation. IEEE Access 2018, 6, 63382-63401. [CrossRef]

Rostami, S.; Neri, F. Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid
algorithm. Integr. Comput.-Aided Eng. 2016, 23, 313-329. [CrossRef]

Zhang, Q.; Zhou, A.; Jin, Y. RM-MEDA: A Regularity Model-Based Multiobjective Estimation of Distribution Algorithm. IEEE
Trans. Evol. Comput. 2008, 12, 41-63. [CrossRef]

90

Mathematics 2022, 10, 19

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

78.

79.

Schiitze, O.; Coello Coello, C.A.; Mostaghim, S.; Talbi, E.G.; Dellnitz, M. Hybridizing evolutionary strategies with continuation
methods for solving multi-objective problems. Eng. Optim. 2008, 40, 383-402. [CrossRef]

Chambers,]. M. Algorithm 410: Partial Sorting. Commun. ACM 1971, 14, 357-358. [CrossRef]

Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural
Networks, Perth, WA, Australia, 27 November-1 December 1995; pp. 1942-1948.

Storn, R.M.; Price, K.V. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces;
Technical Report TR-95-012; International Computer Science Institute: Berkeley, CA, USA, 1995.

Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing Company: Reading,
MA, USA, 1989.

Knowles, J.; Corne, D. Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Trans. Evol.
Comput. 2003, 7, 100-116. [CrossRef]

Huband, S.; Hingston, P.; White, L.; Barone, L. An Evolution Strategy with Probabilistic Mutation for Multi-Objective Optimisation.
In Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003), Canberra, Australia, 8-12 December 2003; IEEE
Press: Canberra, Australia, 2003; Volume 3, pp. 2284-2291.

Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. Reference Point Specification in Hypervolume Calculation for Fair Comparison
and Efficient Search. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15-19 July 2017;
Association for Computing Machinery: New York, NY, USA, 2017; pp. 585-592. [CrossRef]

Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, PN.; Liu, W.; Tiwari, S. Multiobjective Optimization Test Instances for the CEC 2009
Special Session and Competition. In Special Session on Performance Assessment of Multi-Objective Optimization Algorithms; Technical
Report CES-487; University of Essex: Colchester, UK; Nanyang Technological University: Singapore, 2008; Volume 264.

Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182-197. [CrossRef]

Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000,
8,173-195. [CrossRef]

Deb, K; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Multi-Objective Optimization Test Problems. In Proceedings of the
Congress on Evolutionary Computation (CEC"2002), Honolulu, HI, USA, 12-17 May 2002; IEEE Service Center: Piscataway, NJ,
USA, 2002; Volume 1, pp. 825-830.

Wilcoxon, E. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80-83. [CrossRef]

Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilita. Pubbl. R Ist. Super. Sci. Econ. Commer. Firenze 1936, 8, 3-62.
Goel, T.; Vaidyanathan, R.; Haftka, R.T.; Shyy, W.; Queipo, N.V.; Tucker, K. Response surface approximation of Pareto optimal
front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 2007, 196, 879-893. [CrossRef]

Vaidyanathan, R.; Tucker, PX.; Papila, N.; Shyy, W. Computational-fluid-dynamics-based design optimization for single-element
rocket injector. |. Propuls. Power 2004, 20, 705-717. [CrossRef]

Chen, Y.S. Performance enhancement of multiband antennas through a two-stage optimization technique. Int. J. Microw.-Comput.-
Aided Eng. 2017, 27, €21064. [CrossRef]

Chen, Y.S. Multiobjective optimization of complex antenna structures using response surface models. Int. |. Microw. Comput.-Aided
Eng. 2016, 26, 62-71. [CrossRef]

Genzer, J.; Marmur, A. Biological and synthetic self-cleaning surfaces. MRS Bull. 2008, 33, 742-746. [CrossRef]

Sun, T.; Feng, L.; Gao, X.; Jiang, L. Bioinspired surfaces with special wettability. Accounts Chem. Res. 2005, 38, 644-652. [CrossRef]
[PubMed]

Ahmad, N.; Kamal, S.; Raza, Z.A.; Hussain, T. Multi-objective optimization in the development of oil and water repellent cellulose
fabric based on response surface methodology and the desirability function. Mater. Res. Express 2017, 4, 035302. [CrossRef]
Balling, R. The maximin fitness function for multiobjective evolutionary optimization. In Optimization in Industry; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 135-147.

Tusar, T.; Filipi¢, B. Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review
and the Prosection Method. IEEE Trans. Evol. Comput. 2015, 19, 225-245. [CrossRef]

Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240-242.

91

. mathematics

Article

Enhanced Parallel Sine Cosine Algorithm for Constrained and
Unconstrained Optimization

Akram Belazi '*, Héctor Migallén 2% Daniel Génzalez-Sanchez 2, Jorge Goénzalez-Garcia
Antonio Jimeno-Morenilla >t and José-Luis Sanchez-Romero

Citation: Belazi, A.; Migallon, H.;
Gonzalez-Sanchez, D.;
Gonzalez-Garcia, J.;
Jimeno-Morenilla, A.;
Séanchez-Romero, J.-L. Enhanced
Parallel Sine Cosine Algorithm for
Constrained and Unconstrained
Optimization. Mathematics 2022, 10,
1166. https://doi.org/10.3390/
math10071166

Academic Editors: Antonin Ponsich,
Mariona Vila Bonilla and Bruno

Domenech

Received: 8 March 2022
Accepted: 30 March 2022
Published: 3 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

2,1
7
3,1

1 Laboratory RISC-ENIT (LR-16-ES07), Tunis El Manar University, Tunis 1002, Tunisia;
akram belazi@enit.utm.tn

Department of Computer Engineering, Miguel Hernandez University, 03202 Elche, Spain;
daniel.gonzalez07@goumh.umh.es (D.G.-S.); jorge.gonzalezl1@goumh.umh.es (J.G.-G.)
Department of Computer Technology, University of Alicante, 03071 Alicante, Spain;
jimeno@dtic.ua.es (A.J.-M.); sanchez@dtic.ua.es (J.-L.S.-R.)

* Correspondence: hmigallon@umh.es; Tel.: +34-966-65-8390

1t These authors contributed equally to this work.

Abstract: The sine cosine algorithm’s main idea is the sine and cosine-based vacillation outwards or
towards the best solution. The first main contribution of this paper proposes an enhanced version of
the SCA algorithm called as ESCA algorithm. The supremacy of the proposed algorithm over a set of
state-of-the-art algorithms in terms of solution accuracy and convergence speed will be demonstrated
by experimental tests. When these algorithms are transferred to the business sector, they must
meet time requirements dependent on the industrial process. If these temporal requirements are
not met, an efficient solution is to speed them up by designing parallel algorithms. The second
major contribution of this work is the design of several parallel algorithms for efficiently exploiting
current multicore processor architectures. First, one-level synchronous and asynchronous parallel
ESCA algorithms are designed. They have two favors; retain the proposed algorithm’s behavior and
provide excellent parallel performance by combining coarse-grained parallelism with fine-grained
parallelism. Moreover, the parallel scalability of the proposed algorithms is further improved by
employing a two-level parallel strategy. Indeed, the experimental results suggest that the one-level
parallel ESCA algorithms reduce the computing time, on average, by 87.4% and 90.8%, respectively,
using 12 physical processing cores. The two-level parallel algorithms provide extra reductions of the
computing time by 91.4%, 93.1%, and 94.5% with 16, 20, and 24 processing cores, including physical
and logical cores. Comparison analysis is carried out on 30 unconstrained benchmark functions and
three challenging engineering design problems. The experimental outcomes show that the proposed
ESCA algorithm behaves outstandingly well in terms of exploration and exploitation behaviors,
local optima avoidance, and convergence speed toward the optimum. The overall performance of
the proposed algorithm is statistically validated using three non-parametric statistical tests, namely
Friedman, Friedman aligned, and Quade tests.

Keywords: constrained optimization; metaheuristic; heuristic algorithm; OpenMP; parallel
algorithms; SCA algorithm; unconstrained optimization

MSC: 49M99; 68Q10

1. Introduction

Metaheuristic optimization methods are widely used. Many of these algorithms are
based on populations that evolve towards the optimal through an iterative process. In many
cases, this iterative process is governed by rules based on natural phenomena, physical
processes, or mathematical functions. Depending on both the evolutionary process of the
populations (i.e., the algorithm used) and the characteristics of the function to be optimized

Mathematics 2022, 10, 1166. https:/ /doi.org/10.3390/math10071166

https:/ /www.mdpi.com/journal/mathematics
93

Mathematics 2022, 10, 1166

(single-objective or multi-objective), the use of these methods may not be feasible, either
because of the high computing cost or because of the poor quality of the result.

Some of the well-known metaheuristic optimization algorithms are based on natu-
ral phenomena. The most common algorithms are the ant colony optimization (ACO)
algorithm [1], which imitates the foraging behavior of ant colonies; the evolutionary
strategy (ES) algorithm [2], which is based on the processes of mutation and selection
seen in evolution; the evolutionary programming [3] uses techniques for evolving pro-
grams based on the selection of individuals for reproduction (crossover) and mutation, as
well the genetic programming [4]; the particle swarm optimization (PSO) algorithm [5],
which is based on the social behavior of fish schooling or bird flocking; the shuffled
frog leaping [6] algorithm, which imitates the collaborative behavior of frogs; and the
artificial bee colony (ABC) algorithm [7], which was inspired by the foraging behavior
of honey bees. Some algorithms are based on physical phenomena, for instance, the
simulated annealing (SA) algorithm [8], which is based on the annealing process in met-
allurgy. Some algorithms based on human or non-human physiological processes have
been proposed, such as genetic algorithms (GA) [9], which reflects the process of natural
selection; the differential evolution (DE) [10-12] optimizes a problem by iteratively work-
ing to promote an agent concerning a given measure of quality; and the artificial immune
algorithm (AIA) [13], which is based on the behavior of the human immune system. Some
algorithms based on human social processes have also been proposed, such as the harmony
search algorithm (HSA) [14] inspired by the process of musical performance. Finally, there
are proposed algorithms based on mathematical processing, such as the SCA algorithm [15],
which is based on the sine and cosine trigonometric functions.

Almost all of the algorithms mentioned require configuration parameters for an opti-
mal optimization process. An incorrect setting of these parameters can cause either a poor
quality solution or that the computational cost drastically increases as more generations are
required to be processed. For example, ABC needs the number of bees and limits to be de-
fined, HSA needs the harmony memory consideration rate, the number of improvisations,
etc., to be adjusted. However, some of these algorithms do not require parameter tunings,
such as teaching-learning based optimization algorithm (TLBO), Jaya, and SCA algorithms.
The latter is employed in this paper.

The SCA algorithm has been proven to be efficient in various applications. In [16],
SCA is used to train feed foreword neural network to breast cancer classification. Authors
in [17] employ SCA algorithm to improve an adaptive fuzzy logic PID (proportional
integral derivative) controller for the load frequency control of an autonomous power
generation system. In addition, it is used to optimize the parameters of a fractional-order
proportional integral differential controller for coordinated control of power consumption
in heat pumps [18]. In [19], the unified power quality conditioner is formulated as a
single objective problem optimized using SCA. The application spectrum of the SCA
algorithm is too large, see for example [20-27]. However, its convergence speed is a bit
slow, especially when considered multimodal objectives functions. Indeed, it maintains
high global searchability even at the end of iterations. This paper aims to improve the SCA
algorithm optimization behavior by intensifying the current solution’s refinement with a
promising diversification level during the course of the algorithm, speeding it up both in
terms of optimization and computational cost.

The major findings of the work are:

* A new optimization algorithm is proposed, dubbed the Enhanced Sine Cosine Algo-
rithm (ESCA), which improves the SCA algorithm and offers better performance than
a set of state-of-the-art algorithms. The outstanding optimization performance of the
ESCA algorithm is based on the embedding of a best-guided approach along with the
local search capability already existing in the SCA algorithm, leading to a decrease in
the diversification behavior at the end of the iterations.

e Toimprove the computational performance of the proposed algorithm, synchronous
and asynchronous parallel algorithms have been designed based on parallelization,

94

Mathematics 2022, 10, 1166

initially at an outer, i.e., at a coarse-grained level. Since this level of parallelization is

related to subpopulations, the number of subpopulations cannot increase indefinitely.

These synchronous and asynchronous one-level parallel ESCA algorithms decrease

the computing time by 87.4% and 90.8%, respectively, using 12 processing cores.

e To improve parallel scalability without harming the optimization performance and
increasing the number of processes, two-level parallel algorithms have been designed.

The parallel strategy includes two levels, namely the outer level and the internal

level. The outer level corresponds to coarse-grained parallelization, while the internal

level corresponds to fine-grained parallelization. Accordingly, the parallel scalability
of the proposed algorithms is extremely improved. The experimental results show

significant reductions in the computing time of 91.4%, 93.1%, and 94.5% with 16, 20,

and 24 processes mapped on 12 physical cores. These time reductions correspond to

speed-ups of x12.5, x15.9, and x19.0 with 16, 20, and 24 processes correctly mapped
on 12 physical cores, i.e., using hyperthreading.

The rest of the paper is organized as follows. The preliminaries, including the sine
cosine algorithm (SCA) and the related works, are provided in Section 2. The proposed
enhanced SCA algorithm (ESCA) along with the proposed parallel algorithms based on
multi-population are described in Section 3. Section 4 lists the benchmark functions and
the engineering problems employed for testing the performance of the proposed algorithm.
The experimental results of these algorithms are discussed in Section 5. Finally, Section 6
concludes the paper.

2. Related Work

The SCA algorithm, on which our ESCA proposal is based, is described in Section 2.1.
Other proposals based on the SCA algorithm are listed and briefly described in Section 2.2.

2.1. Sine Cosine Algorithm

The SCA algorithm is an optimization algorithm based on an initial population that
evolves in search of a function’s optimum, called a cost function. This evolution, i.e., the
generation of consecutive new populations (the typical procedure of population-based
algorithms), is mainly based on (1) and (2).

Popk, = Popk, + (ry * sin(r5) ‘ré‘ % BestPop — Pop’,‘n‘) (1)
Popk, = Popk, + (r1 x cos(r}) ‘ré‘ * BestPopk — Pop’,‘n‘) (2)

As can be seen, (1) and (2) differ only in the use of the mathematical functions sine
or cosine. In these equations, it has been adopted that each population is composed of m
individuals, each individual consists of k variables (this parameter depends on the cost
function), and finally, the best current individual is denoted by BestPop. Each individual
is generated based on both the current individual (Pop;,) and the current best individual
(BestPop). However, the generation of each variable of each new individual is tuned by
using three random values that define the magnitude of the sine or cosine range (r7), the
sine or cosine domain (r’ﬁ), and the magnitude of the contribution of the target (BestPop) in
defining the new position of the solution (ré‘).

In practice, the random numbers r; divide the search space into two sub-spaces based
on the current individual and the best individual in the current population. Thus, if rq is
greater than 1, the candidate solutions vacillate outwards the destination, else they fluctuate
inwards the destination (see Figure 1).

Both exploration and exploitation phases of the SCA optimization algorithm depend
on the capabilities provided by (1) and (2). This selection is decided at random with the
same probability.

95

Mathematics 2022, 10, 1166

BestPop x

r<1

Figure 1. Searching spaces of SCA depending on ry.

In heuristic optimization algorithms, which are iterative, the exploration phase is
usually more decisive in the iterative procedure’s final phase. The SCA algorithm prioritizes
the exploration phase as more iterations are performed through r; (see Equation (3)).

iniValuey,

r1 = iniValue, — currentyr
maxjrs

@)

From an initial value (iniValue_rq), the value of r; decreases as the number of iterations
performed increases, towards the r; minimum value when the last iteration is performed
(max_ITs). The initial value of r; is set to 2. The number of iterations to be performed
(max_ITs) is necessary for all population-based heuristic optimization algorithms. In
practice, the value of r; modifies the range of values of the terms associated with the sine
and cosine, from the original range [—1, 1] to the decreasing variable range, this variables
range starts at [—iniValue_ry, iniValue_r1]. These variables’ contribution can be seen in
Algorithm 1, which shows the steps of the SCA algorithm. The computed new individual
is newPopy,, the number of individuals in the population is popSize and the number of cost
function design variables is numDesignVars.

Algorithm 1 The SCA optimization algorithm.

1: Set iniValue, =2

2: Set maxs variable

3: Set population size (m - iterator for individuals)

4: Define function cost (k - iterator for design variables)
5: Generate initial population Popg
6
7.
8
9

. for iterator = 1 to maxrs do
Search for the current BestPop

r1 = iniValue, — iterutor%
for m = 0 to popSize do
10: for k = 1 to numDesignVars do
11: 1y = 2% 7T x randg
12: ry = 2xrandy 1
13: rqy = randy 1
14: if r4 < 0.5 then
15: newPopk, = Popk, + (rl *sin(ry) ‘1’3 % BestPop* — Popk, D
16: else
17: newPopk, = Popk, + (rl xcos(r7) ’r3 % BestPop* — Pop’f,,‘)
18: end if
19: end for
20: Popy, = newPopy,
21: end for
22: end for

23: Search for the current BestPop

96

Mathematics 2022, 10, 1166

2.2. SCA-Based Proposals

Thanks to its simplicity, the SCA algorithm was widely adopted and refined in many
research proposals. In [28], the authors proposed a modified SCA algorithm in which
the linear transition rule was substituted by a non-linear transition to guarantee a better
transition from exploration to exploitation. Second, the best guidance based on the elite
candidate solution was entered in the SCA’s search equations. Third, to escape from local
optimums, a mutation operator is utilized to produce a new position during the course
of the algorithm. An improved alternative of SCA named HSCA for train multilayer
perceptrons was reported in [29]. The HSCA adjusted the search mechanism of SCA
by combining the leading guidance and the simulated quenching algorithm. In [30], a
novel SCA based on orthogonal parallel information was presented. It is based on two
approaches; multiple-orthogonal parallel information and experience-based opposition
direction strategy. The former enabled the algorithm to save the solution diversification
and search around promising regions simultaneously. The latter serves to guard the
exploration ability of the SCA algorithm. Authors in [31] proposed an improved sine
cosine algorithm (ISCA) for feature selection of text categorization. In addition to the
position of the leading solution, the ISCA worked with random positions from the search
space. That alteration of the solution’s position mitigated premature convergence and
submitted adequate performance. Ref. [32] suggested an improved sine cosine algorithm
in which a couple of new mechanisms are provided. One is the mixing of the exploitation
abilities of crossover with the personal lead position of individual solutions. The other
is the combination of self-learning and global search tools. Zhiliu et al. proposed a
modified SCA algorithm based on vicinity search and greedy levy mutation [33]. It suggests
three optimization tactics. Firstly, it mixed the exponential decreasing of conversion
parameter and the linear decreasing of inertia weight, which yielded an equilibrium
between the algorithm’s global and local search abilities. Secondly, to escape from local
optimums, a random strategy for search agents around the best one is performed. Thirdly,
the greedy Levy mutation strategy is adopted for the best individuals to intensify the
algorithm’s local searchability. A hybrid modified SCA algorithm was studied in [34].
It was benefited from the ability of random populations through the Latin hypercube
sampling method. Next, it was used for hybridization with the cuckoo search algorithm.
The algorithm showed sufficient local and global search skills. Mohamed et al. presented
an improved SCA algorithm based on opposition-based learning (OBL) [35]. Indeed, OBL
is a machine learning approach usually utilized to boost the performance of metaheuristic
optimization algorithms. It allowed better accuracy of the obtained solutions by promoting
the exploration skills of the algorithm. Since OBL elected the leading element falling
between a given solution and its opposite, better solutions are afforded accordingly. An
enhanced SCA algorithm for feature selection was described in [36]. It embedded an
elitism strategy and a new strategy of best solution updating, yielding better accuracy for
pattern classification. In [37], the authors proposed an improved SCA algorithm for solving
high-dimensional global optimization problems. The equation for renovating the position
of the current solution and the linearly decreasing parameter were modified. In the former,
inertia weight was introduced to speed up the convergence rate and avoid local optimums.
The latter was replaced by a Gaussian function-based strategy that enabled a non-linear
decrease of the parameter. Therefore, a promising exploration-exploitation balance was
yielded. Other good attempts for improving the SCA algorithm can be found in [38-42]. In
this subsection, some SCA-based algorithms have been reviewed. The motivation for the
improvements in each of them is briefly described.

3. Proposed Work

In Section 3.1 our proposed optimization algorithm based on the SCA algorithm,
called ESCA, is presented. Then in Section 3.2, the parallel algorithms developed to
computationally accelerate the ESCA algorithm are presented.

97

Mathematics 2022, 10, 1166

3.1. Enhanced Sine Cosine Algorithm

The proposed enhanced sine cosine algorithm (ESCA) aims to improve the optimiza-
tion behavior of the original SCA algorithm. For this purpose, we enhance the exploration
and exploitation phases of the SCA optimization algorithm. Indeed, they depend on the
capabilities provided by (1) and (2). These capacities are boosted by introducing a new
alternative, defined by (4), to generate each new individual.

Popk, = BestPop* + r&(Popk, — re * BestPop") (4)

When using (4), the new individual is generated based on the current individual and
the distance between that individual and the best individual in the current population.
Both the magnitude of the best individual and the magnitude of the distance are tuned
using two random numbers, 5 (which is squared) and r¢ respectively, as shown in (4).

The probability of using the sine-based equation, i.e., (1), remains at 50%. While the
probability of using the cosine-based equation, i.e., (2), decreases to only 20%. The new
equation uses neither sine nor cosine, and it has a 30% chance of being used. The proposed
enhanced sine cosine algorithm (ESCA) is described in Algorithm 2.

Algorithm 2 Enhanced SCA (ESCA) optimization algorithm
1: Set iniValue, =2
2: Set max s variable
3: Set population size (m - iterator for individuals)
4: Define function cost (k - iterator for design variables)
5: Generate initial population Popy
6
7
8
9

. for iterator = 1 to maxrs do
Search for the current BestPop

r = iniValue,, — iteratorm;:jll;l:l
for m = 0 to popSize do '
10: for k = 1 to numDesignVars do
11: 79 = 2% 7T x randg 1
12: r3 = 2*randy 1
13: ty = rd?ld()nl
14: if 4, < 0.5 then
15: newPopk, = Popk, + <r1 *sin(rp) ‘1’3 % BestPop* — Popk, D
16: else if 7, < 0.7 then
17: newPopk, = Popk, + <r1 * cos(rp) ‘1’3 % BestPop* — Popk,)
18: else
19: rs = randg 1
20: re = round(1 + rand 1)
21: newPopk, = BestPop* + r2(Popk, — re * BestPop*)
22: end if
23: end for
24: Popy, = newPopy,
25. end for
26: end for

27: Search for the current BestPop

In more detail, in the SCA algorithm two equations can be used to obtain a new individual,
as can be seen in Algorithm 1 (lines 14-18), the first based on the sine function and the second
based on the cosine function. Both equations have the same probability of being used, as
can be seen in line 14 of Algorithm 1. In contrast, in our proposal up to three equations
can be used, the first two coincide with the functions of the SCA algorithm, and the third is
shown in Equation (4). The probability of using the equation based on the sine of the SCA
algorithm remains unchanged.The probability of using the cosine-based equation of the SCA

98

Mathematics 2022, 10, 1166

algorithm is reduced to 20%, while the new equation proposed in the ESCA algorithm has a
30% probability of being used, as can be seen in Algorithm 1 (lines 18-22).

To compare search agents” behavior of the SCA and ESCA algorithms, the two-
dimensional versions of the benchmark functions are solved by 30 search agents. The search
maps of the search agents under 300 function evaluation times are shown in Figures 2—4.
Similarly, the distributions of all possible solutions over the entire search space are depicted
in Figures 5-7. These figures reveal that the ESCA algorithm searches around thoroughly
narrow regions from the promising regions of the search space, which means reaching the
optimum faster. In contrast, the SCA algorithm searches in dispersed areas of the entire
space, so more time is required to attain the promising regions. In addition, the obtained
solutions by the ESCA algorithm are almost distributed around the global optimum. This
proves that it efficiently exploits the previous solutions to improve the current one and
bypass significant jumps in the search space. The SCA algorithm’s weakness is that it
favors exploration even at the end of iterations. An efficient optimization algorithm should
hit an equilibrium of exploitation and exploration. Indeed, it should maintain a high level
of diversification at the beginning and a lower one at its end to avoid falling on local
optimums. Simultaneously, the algorithm refines the current solution progressively. Briefly,
the algorithm should promote exploration in the beginning and exploitation at the end. In
this context, the ESCA algorithm is guided by the current best solution (see Equation (4))
to converge toward the optimum and sustain a high level of intensification at the end of
the algorithm. Accordingly, a better balance between local search and global search is
guaranteed over the course of iterations.

"'
3 e *

£ L &

s = N\ . - e L
-100 - - 100
“100 50 o 50 100 4 2 o 2l 4 “100 50 o 50 100

100wes e R R T] e e s e s ceeme oo memme 100g e seogeee o emmecmepom som oo oo s oo
P . e .

X
D

“100 LY e e
-100 50 o 50 100 - 2 o 2 4

B s .

50 o 50 100

Figure 2. Search maps of search agents when solving functions f1, f3, and f4; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

9

Mathematics 2022, 10, 1166

Figure 3. Search maps of search agents when solving functions fg, f19, and f1; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

Figure 4. Search maps of search agents when solving functions f1, fo4, and fo5; by the ESCA
algorithm (first row); and the SCA algorithm (second row).

100 100

100100

Figure 5. Obtained solutions in the search space of functions fi, f3, and fy; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

100

Mathematics 2022, 10, 1166

— 50
100 -100

Figure 6. Obtained solutions in the search space of functions f9, f19, and fiy; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

Figure 7. Obtained solutions in the search space of functions f1, fo4, and f5; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

3.2. Proposed Parallel Algorithms

Almost all newer computing platforms, regardless of their computing power, are
parallel. The main trends to increase the platforms” computing power are (i) increasing
the number of processing units (physical cores and/or logical threads) and (ii) including
hardware accelerators (GPUs, FPGAs, etc.). We propose parallel algorithms based on
multicore platforms to efficiently use the computational resources available on shared
memory parallel platforms.

First, two parallel coarse-grained algorithms based on multi-population are developed.
Similar strategies applied to different heuristic optimization are presented in [43,44] and
some other well-known algorithms. In both, the SCA and the proposed ESCA algorithms,
only the population size and the stop criterion need to be established. Since the proposed
parallel algorithms are based on multi-populations, the selected population size is that of
the initial population, i.e., before it is partitioned. The stop criterion is the number of new
generations to be computed. Note that the number of generations and the population’s
size implicitly determine the number of cost function evaluations to be performed.

The initial population is divided into subpopulations of equal or similar size. The
size of the subpopulations depends on the number of used processing units as shown in
Algorithm 3 (line 4). If the size of the initial population is not divisible by the number of

101

Mathematics 2022, 10, 1166

processing units, the sizes of some subpopulations are increased by one as exhibited in
lines 5-9 of Algorithm 3.

Algorithm 3 Multi-population sizes computing

1: Initial population size: popInitSize
: Number of cores (or processes): NoCs
. Process ID: idPr € [0, NoCs — 1]
. subpopSize = PPz
. if (subpopSize%NoCs)! = 0 then
if idPr < (PopulationSize%NoCs) then
subpopSize = subpopSize + 1
end if
end if

O N O Ul W N

Once the size of the subpopulations is determined according to the size of the initial
population and the number of processes, as can be seen in Algorithm 3, each subpopulation
is processed by a single process. The required communications between these concurrent
processes depend on the operating algorithm. The asynchronous approach reduces these
communications with respect to the synchronous algorithm. Note that when hyperthread-
ing is not used, each core runs only one process. In our case, hyperthreading is used when
more than 12 processes are required.

As stated, the proposed parallel algorithms are suitable for shared memory platforms.
In both algorithms, to efficiently exploit shared-memory platforms, private memory has
been used preferably. The first proposed parallel algorithm, shown in Algorithm 4, is asyn-
chronous, i.e., communications between processes are not needed. Algorithm 4 shows the
parallel processing implemented in the asynchronous parallel method, i.e., the processing
performed once each sequential thread has spawned the parallel region. A new subpop-
ulation individual (newSP,,;) is computed based on the current subpopulation individual
(SPy;) and the best subpopulation individual (subpopBest).

It is worth mentioning that the concurrent processing shown in Algorithm 4 lacks syn-
chronization points. This strategy allows having populations of significantly different sizes
and leads to balancing the computing load through the number of generations processed
by each thread and thus not degrading parallel efficiency.

Algorithm 5 presents the second parallel strategy in which the concurrent processes
share data to obtain the best individual from the whole population, i.e., the best of all
subpopulations. This process is done both at the beginning (line 7) and after computing
each new generation by each parallel process (line 29). To ensure that all concurrent
processes use the best individual from the whole population (wholepopBest) in each new
generation, a synchronization point is needed after the critical section (line 35).

As shown in Algorithms 4 and 5, the population size assigned to each process depends
on the size of the whole population (popInitSize) and the number of computing processes
NoCs (see Algorithm 3). That is, as the number of processes increases, the size of the
subpopulations decreases. When tiny populations are used in population-based heuristic
optimization algorithms, the optimization behavior can be significantly degraded. To fur-
ther increase the number of processes and thus further reduce the computing time without
drastically reducing the subpopulation sizes, we propose a two-level parallel algorithm.
The parallel second level (fine-grained level) is applied to obtain a new generation of each
subpopulation (see lines 10 and 26 of Algorithm 4).

102

Mathematics 2022, 10, 1166

Algorithm 4 Asynchronous parallel algorithm.

1: Allocate private memory for subpopulation: SP(gsppopsize]

2: Allocate private memory for best individual: subpopBest

3: SetiniValue, =2

4: Generation counter: genlt = 0

5. Generate initial subpopulation SPy

6: while genlt < numGenerations do

7. Search for the current subpop best subpopBest

8: genlt = genlt+1

9: r1 = iniValue,, fgenlt#i’:;;}ons
10: form =1 to subpopSize do
11: for k = 1 to numDesignvars do
12: 1) = 2% 7T x randy 1
13: r3 = 2xrandy 1

14: Ty = mnd()“l

15: if 4 < 0.5 then

16: newSPK, = SPk + (rl *sin(rp) ‘r3 * subpopBest* — SPX, D
17: else if ry < 0.7 then

18: newSPK, = SPk + (rl x cos(rp) ‘r3 * subpopBest* — SPk, D
19: else
20: r5 = randg 1
21: re = round(1 + randy 1)

22: newSPk, = subpopBest® + r2(SPk, — re * subpopBest*)
23: end if

24: end for

25: SP,, = newSPy,

26: end for
27: end while

In the two-level algorithm the subpopulations are not calculated as a function of the
total number of processes, since a single process will not process each subpopulation. The
total number of processes in the two-level algorithm is equal to the number of subpopu-
lations multiplied by the number of processes that will process each subpopulation. The
number of subpopulations will be equal to the number of external processes (NoCs), while
the number of processes that will process each subpopulation will be denoted by inCs.
Therefore, the total number of processes equals to NoCs x inCs.

Important modifications in Algorithm 4 are required that could degrade the parallel
performance of the two-level parallel algorithm given in Algorithm 6. Since several threads
will process each subpopulation, it must be stored in shared memory (line 1 of Algorithm 6),
instead of being stored in private memory as in Algorithm 4. Moreover, before processing
each subpopulation, the best individual must be available for all the processes involved in
processing each subpopulation. This implies a synchronization point (line 9 of Algorithm 6)
that determine the best individual. Thereafter each process checks if the current best
individual stored in its private memory (subpopBest) should be updated.

103

Mathematics 2022, 10, 1166

Algorithm 5 Parallel algorithm with data sharing.

1: Shared memory: wholepopBest

: Allocate private memory for: SPjg s,ppopsize] and subpopBest
: SetiniValue, =2

: Generation counter: genlt =1

Generate initial subpopulation SP,

. Search for the current subpopulation best subpopBest

. wholepopBest = Besto f (subpopBestn,cs)

: while genlt < numGenerations do

genlt = genlt +1

O ® NS U W N

.. iniValue,
: — iniV. _ _ rmvaiuer
10: r =1 alue?l gen“mmlcenemrions

11: form =1 to subpopSize do

12: for k = 1 to numDesignvars do

13: 19 = 2% 7T x randg 1

14: ry = 2xrandy 1

15: ry = randy 1

16: if r4 < 0.5 then

17: newSPX, = SPX + (rl s sin(ry) ‘r3 * subpopBest* — SPX D
18: else if r4, < 0.7 then

19: newSPK = SPk + (rl * cos(r7) ‘r3 % subpopBest* — SPX,)
20: else

21: rs = randg 1

22: re = round(1 + randg 1)

23: newSPX = subpopBest* + r%(SP,]; — 16 % subpopBest¥)

24: end if

25: end for

26: SP,, = newSPy,

27: end for

28: Search for the current subpopulation best subpopBest
29: CRITICAL parallel section:

30: if Fopq (subpopBest) < F,yq (wholepopBest) then

31: wholepopBest = subpopBest
32: else

33: subpopBest = wholepopBest
34: end if

35: end CRITICAL
36: end while

Note that, in Algorithm 6 the total number of processes is increased from NoCs to
NoCs x inCs, using the same subpopulation size. There are several options to implement
the second level of parallelism (lines 1329 of Algorithm 6), which will be discussed in

Section 5.

104

Mathematics 2022, 10, 1166

Algorithm 6 Two-level parallel algorithm.

1: Allocate shared memory for NoCs subpopulations: SPjo suppopsize]

2: Total number of processes: NoCs x inCs processes.

3: Allocate private memory for best individual: subpopBest

4: SetiniValue, =2

5: Generation counter: genlt = 0

6: Generate initial subpopulation SPy

7: while genlt < numGenerations do

8: Search for the current subpopulation best subpopBest

9: {Synchronization point}
10: genlt = genlt+1
11: 1y = iniValue,, — genlt#ﬁr‘z}ms
122 {FOR processed in PARALLEL using inCs processes}
13 form =1 to subpopSize do
14: for k = 1 to numDesignvars do
15: ry = 2% 7wk randy 1

16: r3 = 2% I’L‘lndoul

17: rqy = randy 1

18: if r4 < 0.5 then

19: newSPK, = SPk + (rl *sin(ry) ‘r3 * subpopBest* — SPk,)
20: elseif r;, < 0.7 then
21: newSPK, = SPk + (rl % cos(ra) ‘1’3 x subpopBest* — SPX D
22: else
23: rs = randg 1

24: re = round(1 + randy 1)

25: newSPk, = subpopBest* + r2(SPY, — re * subpopBest*)
26: end if

27: end for

28: SP,, = newSPy,

29: end for
30: end while

4. Benchmark Test

The benchamark test used in this work is composed of 30 well-known unconstrained
functions shown in Section 4.1, and three constrained engineering design problems shown
in Section 4.2.

4.1. Benchmark Functions

A total of 30 well-known unconstrained functions used for the performance analysis
are listed and described in Tables 1 and 2.

4.2. Engineering Optimization Problems

The proposed algorithms’ optimization performance will be further examined through
three constrained engineering design problems.

4.2.1. Pressure Vessel Design Problem

The structural design problem of pressure vessels is shown in Figure 8. In this design
problem, four variables have to be computed: the thickness of the shell (ds), the thickness
of the heads (d}), the internal radius (R), and the length (L) of the cylindrical section. These
variables should minimize the financial cost by meeting the non-linear stress constraints and
yield criteria. Note that d; and dj, are not continuous variables. Indeed, from 0.0625 inches,
the possible values are calculated in steps of 0.0625 inches. The pressure vessel design
problem is formulated as in (5).

105

Mathematics 2022, 10, 1166

Pressure vessel design problem:
f =0.6224xx3x4 + 1.7781x02% 4

3.1661x7xy +19.84x7 x5
X1 =ds,Xp =dp,x3 =R, x4 =L
Constraints:

g1 = —x1+0.0193x3 <0

g2 = —x2 +0.00954x3 < 0

g3 = —7tx3xy — (4/3)70x3 + 1296000 < 0

g4 =x4—240<0
0.0625 < x1,xp < 99 x0.0625
10 < x3, x4 < 240 (5)

Figure 8. Pressure vessel design problem.

Table 1. Benchmark functions: dimensions and domain.

1d. Name Dim. (V) Domain (Min, Max)
fi Sphere 30 —100,100
f2 SumSquares 30 —10,10
f3 Beale 2 —45,45
fa Easom 2 —100, 100
f5 Matyas 2 —-10,10
fe Colville 4 —10,10
f7 Trid 6 6 —V2,v?
fs Trid 10 10 —Vv2,v2
fo Zakharov 10 —5,10
fio Schwefel 1.2 30 —100, 100
fn Rosenbrock 30 —30,30
fi2 Dixon-Price 5 -10,10
f13 Foxholes 2 216 716
f1a Branin 2 le(z _O?,léo
fis Bohachevsky_1 2 —100,100
fi6 Booth 2 —10,10
fi7 Michalewicz_2 2 0,7
f1s Michalewicz_5 5 0,7
f19 Bohachevsky_2 2 —100,100
f20 Bohachevsky_3 2 —100,100
fn GoldStein-Price 2 -2,2
fa2 Perm 4 -V, v
f23 Hartman_3 3 0,1

foa Ackley 30 —32,32
fas Penalized_2 30 —50,50
S Langermann_2 2 0,10
far Langermann_5 5 0,10
fas Langermann_10 10 0,10
f29 Fletcher-Powell_5 5 a,;i;,;ci ;I(;B,TOO
f30 Fletcher-Powell_10 10 Xig i 2 70, 70

a;j, byj - —100,100

106

Mathematics 2022, 10, 1166

Table 2. Benchmark functions: Definitions.

Id. Function

v
A f= ;X?

v
fZ f = ;ix,z

f=(15-x1+x1%2)% + (225 — x1 + x1%3)?
f3 +(2.625 — x1 + x1%3)2
P f = — cos(x1) cos(xz) exp(—(x1 — 7 — (12— 7)?)
s f=026(x2 +x3) — 0.48x1 x>
f=100(x? — x2)2 + (x1 — 1)2 + (x5 — 1)+ 90(x% — x4)?

fs +10.1((x2 — 1)2 + (x4 — 1)2) +19.8(x2 — 1) (x4 — 1)
f7 f= Z(\',fl Zx,“c, 1
fs

v v 2 1
f f= Zv,z + <ZO 51x,) + <ZO 5115,)

fo = Z(Z)

i=1\j=1
V-1
fu F= ¥ (100(xi1 = 327+ (x = 1)%)
i=1
4 2
iz f=(n —1)2+Zi(2x,27x,,1)
i
-1
. B 1
fis f=1sm0+ Z% 2
= j+ Z(x - a,])
i=1
2
fir f= (AsznlzXIJﬁ Sy — 6) +10(17817)cosx1+10
fis f=x%+2x3 —03cos(37x;) — 0.4 cos(4mxy) + 0.7
i f=(x1—2x2—7)*+ (2x1 + x, — 5)?
v 2 20
fiz fzfzsinx,(sin(i))
fis i=1 T
Fio f=x}+2x3 — 03cos(37x1) cos(47xz) + 0.3
fa0 f =23 +2x3 —0.3cos(37x; +47x2) + 0.3
f=[1+4 (1 + 22+ 1)%(19 — 14x; + 323 — 14x, + 6x1x2 + 3x3) |
fa [30 + (21 — 3x2)?(18 — 32x1 + 12x} + 48x) — 36x1x +2723)]
2
Vv i H
j
Bl)
j=1Li=1
4
o3 f==Yciexp|— Z”f/ j pl,
i=1

107

Mathematics 2022, 10, 1166

Table 2. Cont.

Id. Function
v v
fa f=—20exp|—02,/$ Y a7 | —exp| ¢ ¥ cos(2mx;) | +20+e
i=1 i=1
V-1
f=01{sin®(3rx;) + Y (x; —1)? [1 + sin2(37rx,v+1)] + (xy —1)? [1 + sinz(Zm(V)} }
i=1
fos .
+ Y u(x;,5,100,4),
i=1
w(xj,a,k,m) =k(x; —a)",x; > a;0,—a < x; < a;k(—x; —a)",x; < —a.
5 v v
26 1
;27 f=-Yc¢ [exp<7; Yx— a,-/-)2> cos<rz Y (x— ui/)2>]
s i=1 =1 =
fao 7f:A'_B'2'A'7{: csina; 4 bif) B'ii(sin x; 4 bij)
Fo f*_ 1(i—Bi)% i = 1(a,,sma, ijcosa;), B = |) a;sin xj + bij cos x;
= i= =

4.2.2. Welded Beam Design Problem

The welded beam design problem is depicted in Figure 9. The cost of manufacturing
and assembling the welded beams must be minimized by considering the welding work,
material, and labor cost. The variables to be computed are the thickness of the weld (&), the
length of the welded joint (I), the width of the beam (), and the thickness of the beam (b).
The optimization problem is formulated as in (6), where 7(x) is the shear stress in the weld,
Tmax is the allowable shear stress of the weld, o(x) is the normal stress in the beam, oy is
the allowable normal stress for the beam material, Pc(x) is the bar buckling load, P is the
load, §(x) is the beam end deflection, and 8,y is the allowable beam end deflection. Some
auxiliary functions and constant values used to solve the welded beam design problem are

given in (7).

Figure 9. Welded beam design problem.

108

Mathematics 2022, 10, 1166

Welded beam design problem:
F = 1.10471x3x; + 0.04811x3x4 (14.0 + x7)
x1=hxy=1Lx3=tx4="0
Constraints:
81 =T(x) — Tax <0
g0 =0(X) — Opax <0
83 =x1—x4 <0
g4 = 0.10471x3 + 0.04811x3x4(14.0 + x5) — 5.0 < 0
g5 =0125—x, <0
26 = 0(X) — Spax <0
87 =P(x) = P(x) <0
0.1 <xq1,x4 <20
0.1 < xp,x3 < 10.0 (6)

Functions and constants of welded beam problem:

— 72 2///2 2.
o) = (@R 200 22 (e
/ P n_ MR

T=—F7";T = —
\/§X1X2]

2 2
M=P(L+2)iR= 12+ <x1+x3)

2 2
_ X3 X1+ X3
,2{\/52(1)(2 12+(3) }
6PL
o(x) = —
X4X3
. 4pL3
5(x) = s
X3X4

4013Ey/ 24 w [E
= 36 3
P (x) = — (1 ~3L E)

P = 60001b; L = 14in; émmax = 0.25in
E = 30e"0psi; G = 12¢ O psi
Tinax = 13,600ps1; 0yax = 30,000psi @)

4.2.3. Rolling Element Bearing Design Problem

The rolling element bearing design problem is a maximization problem aimed to
maximize the dynamic load capacity of a rolling element bearing. This problem, depicted
in Figure 10, has five decision variables, namely pitch diameter (D), ball diameter (Dy,),
number of balls (Z), curvature radius coefficient of inner raceway groove (f; = r;/Dy),
curvature radius coefficient of outer raceway groove (f, = ,/Dp), and the inner and
outer ring groove curvature ratio 7; and r,, respectively. In addition, it has five constraints
constants, Kpyin, Kpmax, €, € and ¢. This problem can be formulated as in (8).

109

Mathematics 2022, 10, 1166

Rolling element bearing design problem:

f=fox33x8;if xy < 254

f=3.647fcx3 x4 if xp > 254
X1 =Dy, xp = Dp,x3 = Z,x4 = fi,x5 = fo

Constraints:

$o

2sin~! 2
X1

g =20xy—x4(D—d) >0
g3 =x7(D—d)—20x, >0
84 =x10Bw —x2 20

g5 =x1—05(D+d) >0

81

—x3+1>0

86 = (0.5+X9)(D+d) —x12>0
g7 =05(D —x1 —x2) —xgx2 > 0

88 = X4 —0515>0
89 = X5 —0515>0

X6 = Kpmin, X7 = Kppax, X§ = €,X9 = €,X5 =

Auxiliary functions and constant values of rolling problem:
_ Dycosu
=5,

1.04<%> 17z (%>041} 10/3}0.3) { (

fo =37.91 x {1 +

T

Il
g
|
W
I
—~
N
=3
=

N
2

D =160;d = 90; B, = 30,0 =0
90.0 < x; < 150.0
10.5 < xp <315
4 <x3 <50
0.515 < x4, x5 < 0.6
0.4 < x5 <05
0.6 <xy <07
03 <x3 <04
0.02 <x9 <1.0
0.6 < x19 < 0.85

110

,YO.3(1 _ ,7)1.39

2fi

1+m)173

)

2fi—1

)}

®)

©)

Mathematics 2022, 10, 1166

Figure 10. Rolling element bearing design problem.

5. Numerical Experiments

All the numerical experiments have been obtained in Fujitsu Server PRIMERGY
TX300 S8 Tower Server. This platform is a multicore platform equipped with a D2949-B1
motherboard with two CPU sockets. In each CPU the processor installed is an Intel(R)
Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, with 15 MB Intel Smart Cache. Each processor is
composed of 6 physical cores, resulting in a total number of 12 physical cores in the system.
The Intel Hyper-Threading Technology is enabled, the number of threads per physical core
is 2, therefore the maximum number of processes (or threads) should not exceed 24, in order
to obtain the best possible computational performance. The main memory size is 32 GB
of DDR3. All the developments, both sequential and parallel, were implemented in the C
programming language, using the GCC v.4.4.7 [45]. The OpenMP API v3.1 [46] has been
used to develop parallel algorithms. Therefore, all the data in tables and figures included
in this section have been obtained running simulations in this platform. In addition, for the
computational results to be reliable, the Sun Grid Engine queuing system has been used.

5.1. Comparative Analysis ESCA vs. SCA

First, the computational costs of the SCA algorithm and the proposed ESCA algorithm
are examined in Table 3. This table shows the computing time cost when optimizing the
benchmark test reported in Section 4 with population sizes of 240, 120, and 60. The number
of generations was 50,000, and the number of independent runs was 30. The results in Table
3 point that the proposed ESCA algorithm does not increase the computing cost compared
to the SCA algorithm. On the contrary, in more than 80% of the experiments conducted, the
computational cost decreases.

Table 3. Computational times (s.) for sequential SCA and ESCA algorithms.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA
fi 349.3 308.8 683.5 711.5 1432.5 1325.7
f 388.5 312.9 739.0 668.4 1474.9 1405.0
f3 25.2 23.4 50.4 46.8 100.6 93.6
fa 27.8 26.4 55.6 52.8 111.2 105.6
f5 33.9 31.4 68.8 70.2 131.7 138.5
fe 31.3 28.6 62.4 57.1 124.7 114.1
f7 48.6 44.1 96.9 87.9 193.7 179.3
fs 80.5 69.8 160.0 140.8 321.4 279.2
fo 144.7 132.7 280.6 268.0 558.3 530.3

111

Mathematics 2022, 10, 1166

Table 3. Cont.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA
fio 3745 4137 773.6 815.8 1562.5 1657.5
fin 223.1 2083 4426 4164 8845 833.1
fi 38.4 36.4 77.9 72.5 154.9 145.5
fi3 4617 466.7 923.8 933.9 18458 1867.0
fia 19.7 18.9 39.5 37.8 79.1 75.6
fis 17.8 17.1 339 33.9 70.7 68.0
fi6 155 14.6 312 29.1 62.0 58.1
fir 72.3 55.6 1447 111.0 291.4 221.9
fis 174.7 125.1 309.0 280.3 620.4 493.1
f1o 18.7 16.5 36.1 322 722 70.2
a0 17.6 16.8 352 31.2 69.9 59.7
fr 16.3 15.3 326 30.6 65.1 61.0
fo 105.5 101.8 212.0 205.5 419.7 409.7
o3 36.3 36.5 72.0 73.2 146.1 146.3
fos 125.6 1232 251.6 246.3 501.5 493.8
fos 406.4 3217 812.3 674.4 1707.8 1321.8
fos 56.4 57.1 113.3 1135 225.6 207.2
for 82.0 82.0 164.3 164.1 3318 328.8
fos 130.6 1185 262.2 236.1 523.4 4732
fao 174.0 168.7 346.9 339.4 700.0 675.1
fx0 583.4 568.9 11655 1134.6 2334.1 2290.9

Once it has been proven that the proposed method decreases the computational cost of
the SCA algorithm, the optimization behavior is investigated by comparing both methods
in Table 4. This table shows the number of function evaluations for an error of less than
<1 x10~3(for functions marked with * an error less than <1 x10?), with population sizes
of 240, 120, and 60. Fewer function evaluations are required when the ESCA method is
used instead of the SCA method. The dramatic decrease, particularly for the functions that
require more evaluations, is higher than 100 x, demonstrating the significant improvement
of the SCA’s optimization behavior.

To perform a parallel efficiency analysis of both parallel proposals, experimental
tests are conducted using the same parameters as those used so far, i.e., population sizes
of 240, 120, and 60. The number of generations is equal to 50,000, and the number of
independent runs is 30. The parallel speed-up values for the data sharing parallel algorithm,
depending on the total population size (popInitSize) and the number of processes (NoCs),
are exhibited in Table 5. The obtained speed-up values are close to ideal ones for the
largest population size. These values slightly decrease, in most cases, as the population
size decreases. However, the values significantly degrade when 12 parallel processes are
used for the smaller population size and lower computing cost functions.

The parallel asynchronous algorithm’s speed-up values, shown in Table 6, remain close to
the ideal values when the number of concurrent processes is increased or when the population
size is decreased. Note that this behavior implies outstanding parallel scalability.

Considering the outstanding parallel performance results obtained for the parallel
asynchronous algorithm using the 12 available physical cores (see Table 6), it can be

112

Mathematics 2022, 10, 1166

concluded that the parallel scalability of the asynchronous algorithm allows increasing the
number of processes efficiently. However, the results shown in Table 4 confirm that the size
of the subpopulations requires a minimum dimension, which depends on the optimization
algorithm and the problem under consideration. Algorithm 6 has been proposed to increase
the number of processes without reducing the size of the subpopulations. To implement the
inner level of parallelism of Algorithm 6, nested parallelism can be applied using OpenMP
features. This strategy has been discarded due to poor experimental results that excessively
degrade parallel scalability. When using nested parallelism the generation of each nested
parallel region involves computational overhead [47]. The poor experimental results are
due to many nested regions (numGenerations x NoCs) and the insufficient computational
cost of each nested parallel region. Note that this computational cost depends on the
considered algorithm (quasi-non-variable cost) and the objective function.

Table 4. Number of function evaluations for an error <1 x1073 (* <1 x102).

Population Size

240 120 60
SCA ESCA SCA ESCA SCA ESCA
fi 3,639,144 75,384 1,842,864 48,504 971,802 28,074
£ 3,596,880 73,464 1,808,004 43,500 988,380 24,888
fs 24,000 2136 24,888 3072 13,878 2082
f 306,912 4152 218,220 3432 239,166 2088
fs 1584 840 756 564 540 312
f - 9,627,227 - 4,450,577 - 2,654,280
fr* 3888 960 5724 612 3222 354
fe* 5,031,792 317,376 2,684,760 190,053 1,565,184 196,337
fo 1,528,656 16,848 848,544 9708 490,854 6420
fio 5,048,616 739,296 2,623,800 462,456 1,400,712 311,640
fir * 3,677,160 78,720 1,906,380 45,328 - 32,424
fio - 6,186,240 - 4,982,240 - 2,624,640
fis 571,008 14,088 547,320 6288 236,148 36,126
fia 70,392 1920 118,296 2256 52,782 1998
fis 5928 2352 2964 1380 2262 762
fi6 187,560 3120 236,952 2508 131,712 2400
fir 401,688 3888 419,220 1812 236,400 2910
fis* 480 480 240 240 120 120
fio 6120 2448 3624 1392 1896 882
fao 5160 2112 4560 1296 2340 834
for 26,856 2040 28,596 1080 15,924 912
fo - 3,966,264 - 3,528,912 - 1,907,900
fos 7920 57,090 3,739,200 81,345 123,720 27,760
fos 2,290,464 30,408 1,207,956 17,940 668,790 8304
fos * 3,591,960 46,032 1,952,616 33,756 951,708 17,022
fo6 20,400 9672 21,744 4848 10,193 2208
for - 6,840,528 - 5,366,040 - 2,930,112
fos 480 480 252 252 120 120
fao* 1,127,832 24,168 1,148,604 27,672 840,288 26,940
fao* - 9,787,467 - 5,338,960 - 2,939,910

113

Mathematics 2022, 10, 1166

Table 5. Parallel speed-up for parallel data sharing algorithm.

Population Size

240 120 60
NoCs
2 6 12 2 6 12 2 6 12
fi 2.0 5.7 10.4 2.0 5.7 11.4 1.8 5.0 9.7
f 2.0 5.8 10.9 1.8 55 105 2.0 49 9.3
f 1.9 4.9 6.9 19 4.6 45 1.9 3.7 25
fa 2.0 5.5 10.9 19 55 103 1.6 5.3 3.8
fs 1.9 5.0 9.0 1.8 4.9 7.4 1.6 42 3.7
fo 2.0 5.5 10.9 1.9 5.4 10.4 1.9 5.4 3.6
fr 13 33 45 1.9 4.7 5.1 1.9 4.1 34
fs 2.0 5.4 9.9 2.0 5.3 9.0 1.9 5.1 6.8
fo 1.9 5.2 102 1.8 5.3 10.1 1.9 5.1 9.2
fio 2.0 55 11.0 1.9 5.4 10.6 2.0 5.5 10.4
fi1 2.0 55 11.0 2.0 55 10.9 2.0 55 10.9
fi2 2.0 5.3 9.1 1.9 5.1 7.2 1.9 46 40
fi3 2.0 5.5 11.1 2.0 5.5 11.0 2.0 5.5 10.8
fia 2.0 5.5 10.7 2.0 5.4 8.8 1.9 5.2 2.4
fis 19 5.4 10.2 2.0 5.7 6.3 2.0 5.2 22
fi6 1.9 55 10.4 19 5.3 5.2 1.9 5.1 1.8
fi7 2.0 5.4 9.5 2.0 5.2 8.2 1.9 4.8 5.8
f1s 1.9 5.4 9.3 1.9 6.0 8.7 1.7 48 6.0
fio 2.0 5.1 7.1 1.7 43 3.8 15 3.7 1.9
fa0 17 48 6.4 1.8 45 3.8 1.6 4.1 1.9
for 19 5.1 6.4 1.9 4.6 35 1.9 3.6 1.7
f 19 5.2 10.2 1.9 5.3 9.9 1.9 5.1 8.8
fa3 2.0 55 10.6 2.0 5.4 10.2 1.9 5.4 8.9
fou 2.0 55 10.4 1.9 5.4 9.6 2.0 5.2 8.5
fos 2.0 5.6 10.4 2.0 55 10.0 2.0 5.2 9.1
fag 2.0 5.2 8.4 19 5.0 7.2 1.9 4.8 5.6
for 2.0 5.4 9.8 2.0 5.1 8.7 2.0 5.0 6.9
fos 2.0 5.5 10.9 1.9 5.5 10.9 1.9 5.4 10.8
fa9 2.0 5.5 11.0 2.0 5.5 10.6 2.0 5.4 10.4
fa0 2.0 5.6 11.1 2.0 5.5 11.0 2.0 5.5 10.9

114

Mathematics 2022, 10, 1166

Table 6. Parallel speed-up for asynchronous parallel algorithm.

Population Size

240 120 60
NoCs
2 6 12 2 6 12 2 6 12
fi 2.0 5.7 11.6 2.0 5.8 11.6 1.9 5.7 11.2
f 1.9 5.5 11.4 1.9 5.6 11.2 1.9 52 10.5
f 1.9 5.5 11.0 1.9 55 11.0 1.9 5.5 8.2
fa 19 5.5 11.0 2.0 55 11.0 2.0 5.5 11.0
fs 1.9 5.5 11.0 2.0 55 1.1 1.8 5.5 11.0
fo 19 5.5 11.0 2.0 5.5 1.1 2.0 5.5 11.0
fr 13 3.6 7.3 2.0 55 11.0 1.9 5.5 11.0
fs 1.9 55 11.0 2.0 55 11.1 2.0 55 11.1
fo 1.9 5.6 11.1 2.1 5.3 10.6 1.9 52 10.7
f10 1.9 5.4 10.9 2.0 5.6 11.1 2.0 55 10.9
fin 1.9 5.5 10.9 2.0 5.5 1.1 1.9 55 11.1
fi2 1.9 5.5 10.7 2.0 55 11.0 2.0 5.5 10.9
fi3 19 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.1
fia 19 5.5 10.9 2.0 5.5 11.0 1.9 5.5 10.9
fis 19 5.4 10.9 1.8 5.2 10.3 18 5.4 10.9
fi6 1.9 5.5 11.0 1.9 5.5 10.9 1.9 5.5 10.8
fi7 1.9 5.5 11.1 2.0 5.5 10.7 2.0 5.5 10.9
fis 1.9 5.6 113 2.0 5.6 1.1 2.0 5.6 113
fio 1.8 5.1 9.9 19 5.4 10.5 1.9 5.0 9.9
fa0 19 5.3 10.4 2.0 5.5 11.0 1.9 5.5 10.9
for 19 5.5 11.0 2.0 5.5 10.2 1.9 5.5 10.9
f 19 5.2 10.4 1.9 5.2 105 1.9 5.3 103
fa3 1.9 5.4 10.7 2.0 5.5 10.9 2.0 5.5 10.8
fou 19 5.5 11.0 2.0 5.6 11.2 2.0 5.5 11.0
fos 1.9 5.4 10.9 2.0 5.5 1.1 1.9 5.6 11.0
fo6 1.9 5.5 11.0 2.0 55 11.0 1.9 5.5 11.0
for 19 5.5 10.9 2.0 5.4 11.0 2.0 5.5 11.0
fos 19 5.5 11.0 2.0 5.5 1.1 1.9 5.6 11.1
fa9 19 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.0
fa0 19 5.5 10.9 2.0 5.6 11.0 2.0 5.6 11.1

The two-level parallel algorithm generates a parallel region of NoCs x inCs processes,
organized into NoCs groups of inCs processes each. In each group, only one process works
outside the inner parallel region, while all the processes in the group cooperate in the
processing associated with the inner level of parallelism (lines 13-29 of Algorithm 6).

As mentioned above, the used parallel platform has two processors with six physical
cores each. Hyperthreading can be enabled, allowing to run two processes (or threads)
per core efficiently. Thus, it can be run up to 24 concurrent processes without excessively
degrading the computer platform’s efficiency. Using hyperthreading and fine-grained
parallelism, such as the proposed two-level algorithm, the strategy of thread placement

115

Mathematics 2022, 10, 1166

on the cores may be relevant. To control the strategy of process placement in the cores,
OpenMP affinity features are used. Figure 11a shows that the platform’s architecture is
equipped with two processors of six physical cores and twelve logical cores each. An
example of thread placement of 5 processes when no affinity is used is shown in Figure 11b,
in which the operating system decides the process placement. There is no problem in this
thread placement if neither hyperthreading nor fine-grained parallelism are used.

Processor 0 Processor 1 Processor 0 Processor 1

Core 0
Core 6
Core 0

Core 6

Core 7

Core 1

Core 1
Core 7

Core 2
Core 8
Core 2
Core 8

Core 3

Core 9

Core 10
Core4 Cor

I l
Core 10

Core 4

Core 5
Core 11
Core 5

re 3

Core 11

—

a) (b)

Figure 11. Thread placement when no affinity is used. (a) Platform’s architecture. (b) Example of
thread placement without control

For instance, using 20 processes organized into 5 groups of 4 processes, a thread
placement option without using affinity features is displayed in Figure 12a. To optimize
parallel performance, the optimal thread placement can be forced using OpenMP affinity
features as shown in Figure 12b.

Processor 0 Processor 1

6 16

Processor 0

re 8

1
o ~
-
o
Core 7

H 1 13 BF
H 8 18
H 3 19
H 10 14
@ (b)

Figure 12. Optimal thread placement. (a) Example of thread group placement without control.
(b) Example of thread group placement with affinity control.

Table 7 shows the parallel speed-up when more than 12 processes are used, i.e., using
hyperthreading for the highest computational cost functions. Results manifested in Table 7
have been obtained using 16 and 20 processes by varying the number of groups (NoCs) and
consequently varying the number of processes per group (inCs). Important conclusions
can be drawn by analyzing the results of this table: remarkable scalability is obtained
through the two-level parallel algorithm, even using logical cores (hyperthreading); al-
though the parallel performance allows setting the NoCs value (i.e., number of groups)
according to the desired size of the subpopulations, i.e., according to the optimization
performance rather than parallel behavior. All efficiency values are above 72%, except
for the Foxholes function (fi3), characterized by having only two design variables (see
Table 1), which penalizes fine-grained parallelism. Although both fine-grained parallelism

116

Mathematics 2022, 10, 1166

and hyperthreading slightly penalize parallel efficiency, a remarkable average greater than
75% parallel efficiency is obtained. The average efficiency barely decreases as the number
of processes increases from 16 to 20, resulting in a slight fall of the average efficiency from
75.6% to 74.9%, i.e., the outstanding parallel scalability is maintained.

This outstanding behavior is confirmed by the results shown in Table 8, which are the
results conducted on all the available threads (24) when hyperthreading is activated. It
is found that the two-level parallel algorithm has remarkable parallel scalability with an
average parallel efficiency of 74.4%.

Table 7. Parallel speed-up for the two-level parallel algorithm using groups of processes. Population
size = 240.

16 Processes 20 Processes
NoCs;inCs 8;2 4;4 2;8 10;2 5;4 4;5 2,10
f1 12.5 12.5 12.1 15.9 15.0 15.2 15.2
f2 12.5 12.1 11.6 14.4 14.8 15.0 14.7
fio 11.9 11.8 11.8 14.7 14.7 14.7 14.7
f13 10.1 10.0 9.7 12.7 12.4 12.3 11.7
f30 12.2 12.1 12.2 15.3 15.2 15.1 15.1

Table 8. Parallel speed-up for the two-level parallel algorithm using groups of processes. Population
size = 240. Number of processes = 24.

24 Processes

NoCs;inCs 12;2 6;4 4;6 2,12
f1 19.0 18.3 18.7 17.4
f 18.0 174 16.9 18.0
fio 17.6 17.6 17.4 174
f30 18.2 18.0 18.1 17.8

Tables 9 and 10 show the number of functions evaluations required by the data
sharing parallel algorithm to obtain an error of less than 1 x 1072 (1 x 10? for functions
marked with an asterisk), when the total population size is 240 (popInitSize = 240) and
60 (poplnitSize = 60), respectively. These results show that the number of concurrent
processes does not modify the optimization behavior. The heuristic nature of the proposed
optimization algorithm results in different evaluations for the same function depending on
the concurrent processes.

Tables 11 and 12 listed the number of functions evaluations required by the asynchronous
parallel algorithm for population sizes 240 (popInitSize = 240) and 60 (popInitSize = 60),
respectively. It is clear that, unlike the sharing data-parallel algorithm, the ratio of convergence
depends on the number of concurrent processes used for the asynchronous parallel algorithm.
In addition, the convergence ratio slightly worsens as the number of concurrent processes
increases, but the outstanding parallel scalability offsets this behavior. Note that this behavior
depends on the subpopulation sizes, which depend on the population size.

117

Mathematics 2022, 10, 1166

Table 9. Sharing data parallel algorithm: number of function evaluations for error <1 x1073 (* < 1 x102).

popInitSize = 240.

NoCs
1 2 6 12
f 75,384 80,657 83,776 76,385
f2 73,464 70,135 73,034 60,717
f3 2136 2120 2128 2200
fa 4152 4889 4005 3507
f5 840 842 687 312
fe 9,627,227 9,966,401 9,430,103 9,876,351
fr* 960 762 722 583
fs* 317,376 374,307 255,284 324,357
fo 16,848 16,516 17,853 17,829
fio 739,296 854,471 780,928 743,569
fin* 78,720 65,643 75,129 76,902
fi2 6,186,240 7,359,497 8,535,793 5,457,901
f13 14,088 9603 7294 11,392
f1a 1920 2042 3831 2259
fi15 2352 2144 2453 1722
f16 3120 3342 3328 4471
fi7 3888 3517 3275 2470
fig* 480 456 453 373
fi19 2448 2259 2192 1990
f20 2112 2262 2031 1892
a1 2040 1732 1601 974
f2 3,966,264 3,298,233 5,086,208 7,588,192
f23 57,090 3134 4069 3396
foa 30,408 28,982 30,281 30,248
fo5 * 46,032 56,975 35,157 41,468
f26 9672 15,605 13,573 10,713
faz 6,840,528 10,618,500 3,333,940 8,731,516
f28 480 440 462 164
fa9* 24,168 30,604 25,408 26,676
fao* 9,787,467 8,810,661 8,232,263 10,546,564

118

Mathematics 2022, 10, 1166

Table 10. Sharing data parallel algorithm: number of function evaluations for error <1 x 1073 (* < 1 x102).

poplnitSize = 60.

NoCs
1 2 6 12
f 28,074 32,624 28,419 28,128
f2 24,888 24,323 25,030 22,209
f3 2082 2361 1867 1670
fa 2088 2319 1762 2220
f5 312 314 250 173
fe 2,654,280 1,896,252 2,914,210 1,951,487
fr* 354 325 430 262
fs* 196,337 279,480 347,191 238,579
fo 6420 7143 6844 7113
fio 311,640 262,261 308,376 310,209
fin* 32,424 28,081 28,738 32,903
fi2 2,624,640 2,353,703 2,680,174 2,202,838
f13 36,126 18,554 6345 34,818
f1a 1998 1944 1917 2689
fi15 762 820 753 520
f16 2400 2503 3393 2781
fi7 2910 1271 2745 2865
fig* 120 114 105 63
fi19 882 762 879 604
f20 834 807 812 629
a1 912 691 743 543
f2 1,907,900 1,110,490 1,874,520 2,209,849
f23 27,760 3956 2633 3782
foa 8304 9840 10,120 9041
fo5 * 17,022 21,353 28,550 17,609
f26 2208 2626 9685 1920
faz 2,930,112 2,842,249 2,925,193 2,806,709
f28 120 113 113 37
fa9* 26,940 12,415 17,103 17,228
fao* 2,939,910 2,650,149 2,863,317 2,815,149

119

Mathematics 2022, 10, 1166

Table 11. Asynchronous parallel algorithm: number of function evaluations for error <1 x10~3
(* <1 x10%). popInitSize = 240.

NoCs
1 2 6 12

f 80,136 83,277 90,626 84,218
f2 73,824 72,792 73,927 74,209
f3 2568 2578 2989 3313

fa 3264 5795 5436 5963

f5 816 633 750 410

fe 8,974,650 10,097,595 10,025,662 11,314,284
fr* 1032 759 897 481
fs* 253,920 34,7465 61,2221 86,7391
fo 17,184 16,644 23,193 25,164
fio 71,4336 85,8736 1,078,127 1,252,559
fin* 64,656 77,582 88,175 10,3109
fi2 8,937,680 7,699,045 10,565,357 11,289,390
f13 46,872 10,347 17,452 20,750
f1a 1992 3554 4702 5277
fi15 2256 2277 2656 1922
f16 4896 4869 6881 6861
fi7 3264 3640 4408 5952
fig* 480 411 413 306
fi19 2256 2204 2452 2353
f20 2304 2441 2661 1826
a1 1896 1590 2347 2041
f2 4,256,610 7,094,932 7,742,422 6,726,769
f23 10,1640 49,884 14,750 30,406
foa 31,152 32,214 32,039 33,949
fo5 * 37,752 47,883 46,427 41,350
f26 8592 3266 2386 3399
faz 8,689,680 9,215,379 10,203,567 10,787,817
f28 528 456 444 199
fa9* 21,624 29,572 58,600 46,029
fao* 10,729,470 10,103,632 10,519,594 9,802,382

As earlier recorded, the parallel asynchronous algorithm allows each thread to have
its population size without sacrificing parallel performance and thus exploring populations
of different characteristics, which could improve the optimization’s performance. Table 13
compares the number of function evaluations (# FEs) for functions fs, f22, and f7 when
using homogeneous and heterogeneous subpopulation sizes. The latter improving the
optimization performance. Moreover, not reaching a good solution due to small populations
can be avoided by increasing the number of processes. For instance, 12 processes are used
for f¢ and fo7 (see Table 12).

120

Mathematics 2022, 10, 1166

Table 12. Asynchronous parallel algorithm: number of function evaluations for error <1 x10~3
(* <1 x10%). popInitSize = 60.

NoCs
1 2 6 12
f 28,308 25,754 37,605 33,407
f2 24,684 25,346 26,985 26,891
f3 1644 1163 1876 3188
fa 2778 2239 4294 4816
f5 378 307 228 308
fe 2,742,830 2,918,138 2,936,681
fr* 402 415 376 156
fs* 216,387 314,711 495,643 602,778
fo 6822 6827 9873 11,370
fio 314,562 316,765 415,446 413,730
fin* 28,338 26,143 29,280 35,931
fi2 2,444,835 2,056,447 2,802,878 2,993,886
f13 52,848 35,565 30,404 63,877
f1a 1680 2625 7972 5786
fi15 732 926 851 583
f16 2736 6429 4814 8359
fi7 2790 3023 5588 9495
fig* 120 101 105 46
fi19 630 846 877 563
f20 792 736 878 732
a1 858 914 930 1437
f2 1,089,000 1,850,238 2,757,559
f23 1980 11,291 20,030 21,210
foa 8940 9557 8676 11,540
fo5 * 17,652 21,631 17,447 17,945
f26 3342 1151 2377 3869
faz 2,918,580 2,865,679 2,970,869 2,779,579
f28 120 116 105 30
fa9* 23,586 22,921 42,961 59,068
fao* 2,782,130 2,885,935 2,631,535 2,801,275

It is settled that the proposed parallel algorithms achieve a remarkable parallel per-
formance without disordering the optimization behavior. Figures 13 and 14 point the
significant improvement in the convergence speed of the proposed ESCA algorithm com-
pared to the SCA algorithm.

121

Mathematics 2022, 10, 1166

Table 13. Asynchronous parallel algorithm: number of function evaluations for error <1 x1073,

6 processes and homogeneous and heterogeneous subpopulation sizes. popInitSize = 240.

Thread Id.
0 1 2 3 4 5
Subpopulation Sizes #FEs
40 40 40 40 40 40 10,025,662
fo 80 60 40 30 20 10 8,365,248
40 40 40 40 40 40 7,742,422
f2 80 60 40 30 20 10 6,341,866
40 40 40 40 40 40 10,203,567
fo7 80 60 40 30 20 10 9,941,450
B
7 K10 10,000 3
6
8000 25 1
g° g g
Sl 3 6000 2
e 3 515
83 3 3
g © 4000 o
g, g g1
2 2 2000 2
< 1 < < 05
o o 0
o 200 400 600 800 1000 200 400 600 800 1000 0 200 400 600 800 1000
FEs FEs FEs
0 0.04 2000
0035
02
- - 0.03 = 1500
£ £ 2
5 04 5 0025 3
8 8 [
% 7 002 % 1000
2 06 3 3
[y 30015 o
g g g
o g 001 g 500
Z-08 z <
0.005
A 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
FEs FEs FEs
7
600 ! 14,000 1210
500 | 12,000 -
5 400 5 10,000 5 .
3 S 8000 k-
g 300] 3
7 % 6000 B 6
8 200 2 2
o ® 4000 °
£ 100 g g
g’ S 2000 3
< < < 2
o 0
-100 -2000 o
200 400 600 800 1000 o 200 400 600 800 1000 o 200 400 600 800 1000
FEs FEs FEs
4 s
10210 x10 2500
8 25 2000
< < <
£ g 2 £
2 6r 2 2 1500
3 3 [
K 715 %
2 2 2
S 4 2 2 1000
g g g
2 2 2
z 2t <05 Z 500
o o o
0 200 400 600 800 1000 o 200 400 600 800 1000 o 200 400 600 800 1000
FEs FEs FEs

Figure 13. Cont.

122

Mathematics 2022, 10, 1166

1000
1000

1000

1000
1000
1000

800
800
800
800
800
Ry
800

600
600
600

FEs
FEs

FEs

FEs
FEs

400
400
400
400
400

200
200
200
200
200

° 0|r||r|||||r||r|nunuunm . n L °
2 o T o @ A . o

w0 Y e ®© ® ~ © © v © S © ° © o o < © Py -
o @ 5 s 2 B s s s s

uopnjos 1s8q abeseny uonnjos 1seq eBesony uonnjos 1seq abeseny uonnjos 1s0q eBesoAy

o
S g g2 g °©
8 $ 8 88 8 % R

uopnjos 1saq aBesony

25
5000
4000
000
000
1000

uonnjos 159q SBesenY

fu
800
800
800
800

800

600
fu
600
600
600
600

400
FEs
400
FEs
400
FEs
400
FEs
400
FEs
400

200
%u
200
200
200
200

)

© v 9~ w©
e 8 = R

T| | s ‘
- s 2 3 3 3 3 ° ;
o 2 © 3 g 2 88 8 8 8 8

8
-3.83

3 8 8
@ @ @

155 ¢
-1.85
-3.825
-3.835
3.845
3.855
-3.865
0.9
0.95

o

1
12,000
10,000
8000
6000
4000
2000

S S S 7 5 ?
uonnjos }saq abessny uonn|os }saq abesany uonnjos }saq abesany uonnjos }seq abeseny uonnjos }seq abeseny uonnjos }seq abeseny

1000
1000

1000
1000
1000

1000

800
Bf
800
800
800
800

1000
Figure 13. Convergence curves for the benchmark functions f; — f15 in row-major order. Optimization
1000
1000
1000
1000
1000

algorithms are SCA [o], ESCA [x].

8 o l S 8 g 8
8 3 8 g t 8 g
o L4 o o
w o] 3
b a @ & il
Q * -
8 s 8 g s g
. e <? v r < <
o s
g s s 8 S g 8
B g g S 8 8
|.|L ;)
q ‘e
g A s 2 s =° S — 0IT|.|LD = -° - P P P - >° g o - - - . P
g 8 g8 g s e e e ~ ~ o° g 8 8 g 8 & 8§ § § g ® © < & o s 2 2 & &2
uonn|os 1seq abesenY uonn|os 3saq aBeseAY uonnjos 1seq eBeseAy uonnjos Js8q sBeIBAY uoynjos 1saq abeseny uonnjos 3589 aBeseAY

FEs

FEs

Figure 14. Convergence curves for the benchmark functions fi5 — f39 in row-major order. Optimiza-
123

tion algorithms are SCA [o], ESCA [x].

FEs

Mathematics 2022, 10, 1166

The last analysis discusses the optimization’s behavior when solving the engineering
design problems described in Section 4.2. Table 14 compares the convergence ratio of the
SCA and ESCA methods when only 10,000 and 20,000 generations are processed. As can be
observed from this table, the ESCA outperforms the SCA algorithm in terms of convergence
ratio. Similar results are obtained when optimizing the 30 benchmark functions. This
behavior confirms that our proposal significantly boosts the SCA algorithm.

Table 14. Convergence ratio for ESCA and SCA algorithms with different population sizes.

Population Size

60 120 240
Pressure Vessel Problem
ESCA-10000 6060.2070 6060.7420 6059.9340
SCA-10000 6079.0610 6091.4340 6068.5540
ESCA-20000 6060.0950 6059.8290 6059.8000
SCA-20000 6065.7460 6066.9530 6069.2260
Welded beam problem
ESCA-10000 1.728844 1.726625 1.726300
SCA-10000 1.748143 1.749394 1.747236
ESCA-20000 1.726585 1.726704 1.725514
SCA-20000 1.751480 1.747207 1.738482
Rolling element bearing problem
ESCA-10000 81,706.17 81,798.38 81,832.05
SCA-10000 80,673.58 81,333.65 80,318.50
ESCA-20000 81,803.87 81,774.60 81,836.77
SCA-20000 80,224.49 80,335.60 81,086.44

As for solution accuracy, the results on benchmark functions and challenging engi-
neering problems are listed in Table 15. These results are acquired from 30 independent
runs on each function, 10,000 iterations, and three population sizes, i.e., 60, 120, and 240. As
can be observed from this table, the ESCA algorithm performs better than SCA in almost
all functions. These outcomes are statistically compared in Table 16. Indeed, to measure
the overall performance of the ESCA algorithm respect to its original counterpart SCA,
the non-parametric statistical tests of Friedman, Friedman aligned, and Quade test are
employed. The Friedman test or Friedman rank test is a non-parametric test developed by
Milton Friedman [48] consisting of arranging the data by blocks, replacing them by their
respective order, considering the existence of identical data. Therefore, in the Friedman
test the performance of the analyzed algorithms are ranked separately for each data set.
This ranking scheme only allows comparisons between sets, since comparisons between
sets are meaningless. When the number of algorithms to be compared is small, this can
be a disadvantage, in this case inter-dataset comparison may be desirable and we can
employ the Friedman aligned or Friedman aligned rank method [49]. The Quade or Quade
rank test [50] is also a non-parametric test, which shows its robustness for small data sets.
Regardless of the population size, the ESCA is ranked first under all tests.

124

Mathematics 2022, 10, 1166

Table 15. Average values for unconstrained and constrained problems obtained by ESCA and SCA.

Population Size

120 240
SCA ESCA SCA ESCA SCA ESCA
fi 2757179 x 10~% 0.000000 1.712496 x 10770 0.000000 4457065 x 104 0.000000
f 8.616185 x 10~ 0.000000 1.046044 x 10~% 0.000000 1.112510 x 1072 0.000000
f3 6.811942 x 107 5.491076 x 10~° 4783583 x 107 3.114413 x 10~ 1.401307 x 10~° 7.104723 x 1010
fa —9.999516 x 10! —1.000000 —9.999736 x 107! —1.000000 —9.999892 x 10! —1.000000
fs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
fo 9.900274 x 1072 8.185273 x 1073 9.765063 x 1072 2929811 x 1073 6.404594 x 1072 2.334942 x 1073
f7 —4.845251 x 10" —4.990339 x 10" —4.877389 x 10" —4.995156 x 10" —4.896195 x 10" —4.996917 x 10"
fs —1.262160 x 10% —1.539732 x 10% —1.339290 x 10% —1.787089 x 10% —1.501428 x 10% —1.862011 x 10%
fo 8.721680 x 10202 0.000000 3.156447 x 1027 0.000000 2251127 x 10315 0.000000
fio 8.175285 x 101 0.000000 1.361425 x 1073 0.000000 2200964 x 108 0.000000
f 2.701419 x 10! 2.643757 x 10! 2.699064 x 10! 2.614943 x 10! 2.663097 x 10! 2.585579 x 10!
fio 3.584155 x 10! 5.114134 x 10! 3.100522 x 10! 4.890716 x 101 2.815470 x 10! 4.889729 x 10!
fis 1.064141 1.196414 9.980039 x 10~ 1.064141 9.980038 x 10~ 9.980038 x 107"
fua 3.979373 x 10! 3.978874 x 101 3.979186 x 10! 3.978874 x 10! 3.979079 x 10! 3.978874 x 10!
fis 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
f16 2.880073 x 10~° 3.813791 x 10~° 1.142770 x 1075 7.944414 x 10710 6.238591 x 107® 1.858303 x 10~1°
fi7 —1.774460 —1.801303 —1.801248 —1.801303 —1.801272 —1.801303
fis —3.187932 —3.700737 —3.375650 —4.044260 —3.610325 —4.071782
fio 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
f 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
fn 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
f 3214731 x 102 6.673788 x 1073 1.718025 x 1072 3.599778 x 103 1.316666 x 1072 2510527 x 1073
f —3.855633 —3.858840 —3.855658 —3.859628 —3.857749 —3.860941
fou 4588922 x 10715 3.996803 x 107> 4.233650 x 10~1° 3.878379 x 1075 4115227 x 10~'> 3.996803 x 1015
fos 1.888945 1.585867 1.787761 1.515388 1.698389 1.389630
fae —1.069455 —1.080938 —1.080930 —1.080938 —1.080936 —1.080938
far —5.685987 x 1071 —6.957021 x 10~' —6.135416 x 10°1 —8.465688 x 10~ —7.018316 x 10~1 —8.571367 x 10!
fos —3.945496 x 1072 —1.893884 x 10~ —8.203238 x 1072 —2.315995 x 10~1 —1.025653 x 10! —2.631384 x 10!
f29 3.258800 x 101 3.224237 1.912760 x 10! 1.364237 1.720010 x 10" 7.855821 x 10!
f0 3.745441 x 10! 2.581768 2.071528 x 10" 1.359673 1.765572 x 10 9.444320 x 107!
Vessel 6.213857 x 10° 6.097895 x 10° 6.176765 x 10° 6.067191 x 10° 6.150466 x 10° 6.062122 x 10°
Beam 1.792532 1.733833 1.783172 1.731625 1.770235 1.729274
Bearing 7.303758 x 10* 8.116530 x 10* 7.449770 x 10* 8.147987 x 10* 7.689757 x 10* 8.162418 x 10*

125

Mathematics 2022, 10, 1166

Table 16. Comparison of solution accuracy for ESCA and SCA algorithms. The average ranking
results by Friedman, Friedman aligned, and Quade tests.

Population Size

60 120 240
Ranking
Friedman F aligned Quad Friedman F aligned Quad Friedman F aligned Quad
ESCA 1.1970 227121 1.1738 1.2273 23.3485 1.1934 1.2273 22.8333 1.1783
SCA 1.8030 44.2879 1.8262 1.7727 43.6515 1.8066 1.7727 44.1667 1.8217

5.2. Further Comparison with Numerous State-of-the-Art Algorithms

In this section, we compare the sequential version of the ESCA algorithms to several
well-known algorithms. Firstly, the comparison algorithms are benchmarked on a set of
30 unconstrained problems. Then, we test these algorithms in solving three challenging
engineering problems with constrained and unknown search spaces.

5.2.1. Benchmarking of the Comparison Algorithms

The ESCA algorithm is benchmarked on 30 unconstrained functions that are listed
in Tables 1 and 2. The ESCA algorithm runs on each benchmark function 30 times. A
comparison to grey wolf algorithm (GWO) [51], whale optimization algorithm (WOA) [52]
and Harris hawk optimization algorithm (HHO) [53] is provided as well. To ensure a fair
comparison, the individuals are replaced only if there is an improvement of the objective
function over the course of iterations of each algorithm, i.e the selection operator used in
ESCA was “rank selection” also used by GWO, WOA and HHO. Table 17, compares the
convergence speed in terms of the number of functions evaluations (# FEs) required to
obtain an error of less than 1 X103 and (1 x 10 for functions marked with an asterisk), for
a population size of 120. As can be observed from this table, the ESCA algorithm exhibits
the lowest # FEs values for almost all functions. Accordingly, the ESCA algorithm can early
converge to a feasible solution for almost all benchmark functions.

Table 17. Number of function evaluations for error <1 x1073 (* <1 x10?).

ESCA GWO HHO WOA
fi 14,502 6920 2635 7567
f 12,399 6261 2024 5877
f3 1051 1461 535 829
fa 1582 6352 3020 2123
fs 282 400 307 346
fe 1,121,028 1,019,746 1,404,298 1,173,481
fr* 307 281 214 268
fa* 17,545 3946 1329 1165
fo 7543 3501 2219 149,835
f10 77,362 22,158 6625 1,058,019
fin* 10,727 4732 1054 4077
fi2 853,399 1,088,983 11,311 7280
f13 204,227 563,262 46,084 22,772
f1a 2043 7718 4079 2882
f15 856 1012 1286 1701

126

Mathematics 2022, 10, 1166

Table 17. Cont.

ESCA GWO HHO WOA
fi6 1330 2758 5191 6688
fi7 1142 28,240 3073 1279
fis 799,483 1,198,708 1,385,561 1,015,650
fio 880 1046 1227 3460
Fao 866 1029 1606 8337
for 1214 1961 1597 1634
fo 1,058,023 1,142,825 1,481,119 228
fas 1415 96,594 20,375 83,281
fou 15,322 8510 4928 11,575
fos * 7537 2275 674 1708
fas 10,031 11,503 421,650 321,426
far 822,131 1,128,604 583,872 927,182
fas 962,612 968,637 1,171,682 942,952
fao * 6955 11,138 131,846 33,285
fa0* 7654 55,073 158,831 59,033

The statistical data (best cost function, and corresponding average, worst, and standard
deviation) are summarized in Table 18. These results are derived from 30 independent
runs on each function, a population size of 120 individuals, and 10,000 iterations. It can be
seen from this table that the ESCA algorithm holds a competitive performance in terms of
solution accuracy as opposed to the comparison algorithms.

Table 18. Statistical data for 30 runs with a population of 120 and 10,000 iterations for f; to f39.

ESCA GWO HHO WOA
Best 0.000000 0.000000 0.000000 0.000000
f Avg. 0.000000 0.000000 0.000000 0.000000
1 Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 0.000000 0.000000 0.000000 0.000000
s Avg. 0.000000 0.000000 0.000000 0.000000
2 Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 3.262152 x 10718 5.547644 x 10713 0.000000 1.203238 x 10~
7 Avg. 8.895248 x 10~ 1 1.170037 x 10~10 0.000000 6.586553 x 10710
3 Worst 6.298503 x 10710 3.953307 x 1010 0.000000 1.233480 x 10~ 14
SD 1.412547 x 10710 9.315382 x 10~ 11 0.000000 2205548 x 10715
Best —1.000000 —1.000000 —1.000000 —1.000000
f Avg. —1.000000 —1.000000 —1.000000 —1.000000
4 Worst —1.000000 —1.000000 —1.000000 —1.000000
SD 6.943355 x 1013 4337546 x 10710 8.599751 x 1017 9.634141 x 10713
Best 0.000000 0.000000 0.000000 0.000000
f Avg. 0.000000 0.000000 0.000000 0.000000
5 Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

127

Mathematics 2022, 10, 1166

Table 18. Cont.

ESCA

GWO

HHO

WOA

Best 1.807347 x 10~ 4.686073 x 108 4.023087 x 1075 8.462644 x 1074
£ Avg. 6.913877 x 10~* 4.435400 x 1072 3.457026 x 1073 1.179321 x 1072
6 Worst 2.241546 x 1073 1.330605 6.863861 x 10~ 2.110537 x 1072
SD 6.032768 x 10~* 2.388509 x 1071 1.911670 x 10~3 5.070219 x 10~3
Best —5.000000 x 10* —5.000000 x 10* —5.000000 x 10* —5.000000 x 10*
7 Avg. —4.999999 x 10! —5.000000 x 10! —5.000000 x 10! —5.000000 x 10!
7 Worst —4.999997 x 10! —5.000000 x 10* —5.000000 x 10" —5.000000 x 10"
SD 7.486059 x 10° 9.662948 x 108 5.492594 x 10~ 1 2.403252 x 10710
Best —2.099980 x 102 —2.100000 x 102 —2.100000 x 102 —2.100000 x 102
f Avg. —2.099872 x 102 —2.063305 x 102 —2.100000 x 102 —2.100000 x 102
8 Worst —2.099745 x 102 —1.549028 x 102 —2.100000 x 102 —2.100000 x 102
SD 7.246266 x 1073 1.372988 x 10! 5.265073 x 10~8 2.197536 x 10~7
Best 0.000000 0.000000 0.000000 5.909506 x 10178
A Avg. 0.000000 0.000000 0.000000 4294324 x 1082
? Worst 0.000000 0.000000 0.000000 6.977677 x 1081
SD 0.000000 0.000000 0.000000 1.580556 x 10781
Best 0.000000 2.470328 x 107323 0.000000 3.725891 x 1078
Avg. 0.000000 7.905050 x 10732 0.000000 1.000874 x 10~2
o Worst 0.000000 1.729230 x 107322 0.000000 2.032146 x 10~1
SD 0.000000 0.000000 0.000000 3.734209 x 102
Best 2.481895 x 10! 2.522460 x 101 2.489752 x 10! 2.486321 x 10!
f Avg. 4935104 x 10° 2.685818 x 10! 4932600 x 10% 2.612374 x 10*
1 Worst 1.003584 x 10% 2.889938 x 10! 1.002894 x 10% 9.002408 x 10*
SD 4931226 x 10° 7.683004 x 1071 4928556 x 10° 3.000263 x 10*
Best 1.019230 x 108 4395919 x 1077 4.827285 x 1017 6.442491 x 10~ 13
f Avg. 3.333334 x 107! 4.000000 x 101 2551869 x 1012 3.430491 x 1010
12 Worst 6.666667 x 10~ 6.666667 x 1071 2.321049 x 1011 2.552220 x 1077
SD 3.333332 x 107! 3.265986 x 1071 5.095444 x 10712 7.470906 x 1010
Best 9.980038 x 107! 9.980038 x 107! 9.980038 x 10! 9.980038 x 10!
f Avg. 1.588057 1.923918 9.980038 x 101 9.980038 x 101
13 Worst 1.076318 x 10 2.982105 9.980038 x 10! 9.980038 x 10!
SD 1.831761 9.898436 x 107! 4309420 x 10716 6.214605 x 10716
Best 3.978874 x 10~1 3.978874 x 10~1 3.978874 x 10~1 3.978874 x 107!
f Avg. 3.978874 x 107! 3.978878 x 107! 3.978874 x 107! 3.978874 x 107!
14 Worst 3.978874 x 1071 3.978987 x 1071 3.978874 x 1071 3.978874 x 1071
SD 2.664066 x 1010 2.044411 x 10°© 3.707297 x 1015 7.625589 x 1012
Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000
fis Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 7.032691 x 1071 4176314 x 10~12 1.053336 x 10~17 1.518097 x 10~10
f Avg. 8.501715 x 10~ 11 2991300 x 10~10 9.229996 x 1010 1.061443 x 1077
16 Worst 6.188203 x 10~10 1.038909 x 10~? 1.010500 x 10~ 4.095840 x 10~°
SD 1.224357 x 10710 2.805821 x 1010 2.016184 x 1015 7.755945 x 1010
Best —1.801303 —1.801303 —1.801303 —1.801303
Avg. —1.801303 —1.801303 —1.801303 —1.801303
hz Worst —1.801303 —1.801303 —1.801303 —1.801303
SD 3.984603 x 10~12 3.073081 x 10~? 1.314259 x 10~15 1.115984 x 10~12

128

Mathematics 2022, 10, 1166

Table 18. Cont.

ESCA GWO HHO WOA
Best —4.687657 —4.687658 —4.687658 —4.687658
Avg. —4.687651 —4.567539 —4.599323 —4.359473
¥ g
18 Worst —4.687640 —3.749195 —4.332021 —3.573593
SD 3.945663 x 10~° 1.662246 x 101 7.870435 x 1072 3.986633 x 1071
Best 0.000000 0.000000 0.000000 0.000000
\"4>8
Avg 0.000000 0.000000 0.000000 0.000000
fro Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000
fao Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 3.000000 3.000000 3.000000 3.000000
Avg. 3.000000 3.000000 3.000000 3.000000
fa Worst 3.000000 3.000000 3.000000 3.000000
SD 3.827852 x 1013 5.764236 x 10~ 1.924979 x 10~ 14 9.407358 x 10~ 11
Best 2.100529 x 10~° 6.233180 x 10~ 2.762363 x 107+ 2471215 x 1073
f Avg. 1.123810 x 1073 1.300996 x 10~! 6.401639 x 103 6.126825 x 1072
z Worst 2.974472 x 1073 1.035930 3.782117 x 1072 3.768746 x 1071
SD 1.050413 x 1073 3.277276 x 1071 9.226831 x 1073 7.362338 x 1072
Best —3.862780 —3.862780 —3.862780 —3.862780
I Avg. —3.862780 —3.862255 —3.862780 —3.862254
2 Worst —3.862780 —3.854902 —3.862780 —3.854902
SD 1.061189 x 10~10 1.965115 x 10~ 5.382464 x 10715 1.965074 x 10~3
Best 3.996803 x 10~15 3.996803 x 10715 4.440892 x 1016 4.440892 x 10~1¢
£ Avg. 3.996803 x 1015 7.312669 x 10~1° 4.440892 x 10716 2575717 x 10~15
24 Worst 3.996803 x 10~ 15 7.549517 x 10~15 4.440892 x 10~16 7.549517 x 10~ 15
SD 0.000000 8.862025 x 1016 0.000000 1.967404 x 10~15
Best 1.099003 x 1073 4167573 x 1078 2.110681 x 107 1.097794 x 1077
f Avg. 9.811139 x 102 9.347600 x 102 4397173 x 1073 3.273148 x 1077
5 Worst 3.014981 x 10! 3.999622 x 10~1 1.098999 x 102 1.083257 x 10~°
SD 1.046370 x 1071 9.982078 x 1072 5.381619 x 1073 2.209943 x 107
Best —1.080938 —1.080938 —1.080938 —1.080938
s Avg. —1.080938 —1.080938 —1.075192 —1.075192
26 Worst —1.080938 —1.080938 —1.056311 —1.056311
SD 1.216749 x 10~10 4.717320 x 1010 1.041639 x 102 1.041639 x 102
Best —9.649998 x 1071 —9.649999 x 10~1 —9.649999 x 10~1 —9.649999 x 10~!
£ Avg. —9.426906 x 1071 —9.350842 x 10~} —9.355537 x 10~} —7.696397 x 10!
z Worst —9.079998 x 10~} —7.367849 x 10-1 —7.035660 x 10”1 —4.828707 x 10~
SD 2.065763 x 1072 4201816 x 1072 6.553091 x 102 1.953920 x 101
Best —9.649623 x 1071 —9.649673 x 101 —5.170000 x 10~1 —9.079987 x 10~!
I Avg. —5.700238 x 10~1 —4.854299 x 10-! —3.504035 x 10~} —3.186518 x 10!
b Worst —5.317959 x 1072 —5.317959 x 1072 —5.317959 x 1072 —2.813614 x 102
SD 2.867891 x 10~1 2.743351 x 1071 1.736198 x 10! 2.090066 x 10~
Best 2.498726 x 1074 1.093726 x 10~° 9.178611 x 10713 4.883815 x 1078
Avg. 5.554048 x 1073 1.419868 x 101 2.459967 x 10! 1.769584 x 101
f. g
» Worst 5564318 x 102 3.434501 3.684844 x 102 3.925457
SD 9.949693 x 1073 6.288349 x 101 9.190723 x 101 7128277 x 1071
Best 1.696582 x 10~* 9.049588 x 10~° 5.440372 x 10~ 11 4.601300 x 10~8
Avg. 4315053 x 1073 1.263696 x 10! 3.685149 x 10! 2.656585 x 10!
f 8
30 Worst 2.657023 x 102 3.684844 x 102 3.684844 x 102 7.966935 x 102

SD

5.023689 x 1073

6.609445 x 101

1.105443 x 102

1.430091 x 102

129

Mathematics 2022, 10, 1166

Inferential statistics prove how well a sample of data sustains a particular hypothesis
and whether the outcomes can be generalized for other data samples. To evaluate the overall
performance of the ESCA algorithm and determine the significance of data in Table 17 (average)
and Table 18, non-parametric statistical tests dubbed Friedman, Friedman aligned, and Quade
test are employed [54]. Tables 19 and 20 statistically compare the assessed algorithms in
terms of convergence speed and solution accuracy, respectively. Tables 21 and 22 estimate
the contrast between medians of data in Table 17 (average) and Table 18, respectively, while
considering all pairwise comparisons [54]. As can be observed from Table 19, the ESCA
algorithm is ranked first under all statistical tests in terms of convergence speed. Similar
results are obtained in Table 21 in which the ESCA algorithm always obtain a positive
difference value with respect to the comparison algorithms. That is, the ESCA algorithm
performs better than others. As for the solution accuracy, the ESCA and HHO algorithms are
ranked first with a competitive performance, as shown in Table 20. However, according to
the outcomes in Table 22, the proposed algorithm is slightly better than the HHO algorithm.
Unlike this latter, the ESCA algorithm always has a positive contrast compared to the other
tested algorithms.

The effectiveness of the proposed ESCA algorithm in solving high-dimensional prob-
lems is validated in Table 23. The outcomes show that the proposed algorithm exhibits
promising and competitive performance compared to the state-of-the-art algorithms.

Table 19. Comparison of convergence speed for the assessed algorithms. The average ranking
outcomes through Friedman, Friedman aligned, and Quade tests.

Ranking
Algorithm Friedman Friedman Aligned Quade
ESCA 2.1667 54.4667 2.2000
GWO 2.9000 65.8000 2.8387
HHO 2.3667 60.7667 2.5376
WOA 2.5667 60.9667 2.4237

Table 20. Comparison of solution accuracy for the assessed algorithms. The average ranking outcomes
through Friedman, Friedman aligned, and Quade tests.

Ranking
Algorithm Friedman Friedman Aligned Quade
ESCA 2.2000 53.7000 2.0613
GWO 2.8333 66.2000 2.8828
HHO 2.2000 53.0000 2.2065
WOA 2.7667 69.1000 2.8495

Table 21. Comparison of convergence speed for the assessed algorithms. Contrast Estimation based
on medians.

ESCA GWO HHO WOA
ESCA 0 865.5 159.6 398.9
GWO —865.5 0 —705.9 —466.6
HHO —159.6 705.9 0 239.3
WOA —398.9 466.6 —239.3 0

130

Mathematics 2022, 10, 1166

Table 22. Comparison of solution accuracy for the assessed algorithms. Contrast Estimation based

on medians.
ESCA GWO HHO WOA
ESCA 0 8.290 x 1016 4145 x 10~16 4.145 x 10716
GWO —8.290 x 1016 0 —4.145 x 10716 —4.145 x 10716
HHO —4.145 x 10716 4145 x 10716 0 0
WOA —4.145 x 10716 4145 x 10716 0 0

Table 23. Statistical data for 30 runs with a population of 120 and 10,000 iterations for high-dimensional

functions.
#N. var. ESCA GWO HHO WOA
Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000
100 Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 0.000000 1.472678 x 10~26° 0.000000 0.000000
Avg. 0.000000 1.195492 x 10267 0.000000 0.000000
g
h 300 Worst 0.000000 9.890031 x 10267 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 0.000000 6.492796 x 107216 0.000000 0.000000
00 Avg. 0.000000 2.937464 x 10214 0.000000 0.000000
Worst 0.000000 5.611286 x 107213 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000
100 Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 0.000000 2.664037 x 10269 0.000000 0.000000
Avg. 0.000000 1.078682 x 10267 0.000000 0.000000
fa 300 Worst 0.000000 1117063 x 10266 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 0.000000 4.427418 x 10216 0.000000 0.000000
00 Avg. 0.000000 3.940111 x 10214 0.000000 0.000000
Worst 0.000000 2.032876 x 107213 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
Best 8.324341 x 107149 1.977371 x 10~107 0.000000 2.360440 x 102
100 Avg. 7.974122 x 10~116 5.051906 x 1092 0.000000 7.941213 x 10°
Worst 2391764 x 10114 1.513262 x 10~ 0.000000 3.263596 x 10*
SD 4293318 x 107115 2.716247 x 10~ 0.000000 7.423773 x 103
Best 1.527654 x 1082 9.975385 x 10~% 0.000000 5.113928 x 10°
fio 300 Avg. 1.566300 x 105° 4.698595 x 107 0.000000 2.324814 x 10°
Worst 4212831 x 1075 1.409572 x 10~° 0.000000 3.178554 x 100
SD 7.582484 x 10~ 2.530258 x 10~° 0.000000 5.939182 x 10°
Best 1.617417 x 10~70 4140184 x 1014 0.000000 8.236708 x 10°
500 Avg. 2.137194 x 1027 1.223006 x 102 0.000000 1.223004 x 107
Worst 6.411583 x 10726 3.383713 x 10! 0.000000 1.470168 x 107
SD 1.150914 x 10~26 6.061667 x 1072 0.000000 1.446876 x 10°

131

Mathematics 2022, 10, 1166

Table 23. Cont.

N. var.

ESCA

GWO

HHO

WOA

fin

100

Best
Avg.
Worst
SD

9.417182 x 10!

9.690864 x 10!

9.839476 x 10!
1.214620

9.409247 x 101
9.618143 x 10!
9.827330 x 10!
8.735442 x 1071

9.460401 x 10
9.501840 x 10!
9.538590 x 101
1.739057 x 10~1

9.267136 x 10!
9.309575 x 10!
9.337289 x 10!
1.907979 x 10!

300

Best
Avg.
Worst
SD

2.958073 x 102
2.976425 x 102
2.981833 x 102
6.213829 x 10!

2.957236 x 102
2.970865 x 102
2.978485 x 102
7.024913 x 1071

2951796 x 10%
2.957244 x 102
2.959295 x 102
1.326191 x 1071

5.714967
2.828332 x 102
2.928548 x 102
5.145973 x 10!

500

Best
Avg.
Worst
SD

4.973285 x 102
4.978877 x 102
4.981244 x 102
2206418 x 107!

4950355 x 102
4.969489 x 102
4.976162 x 102
6.608382 x 107!

4935614 x 102
4939061 x 102
4.939489 x 102
9.846602 x 1072

4904825 x 102
4910578 x 102
4913822 x 102
2.614029 x 107!

foa

100

Best
Avg.
Worst
SD

3.996803 x 1015

3.996803 x 10~15

3.996803 x 1015
0.000000

1.110223 x 10~ 14
1.453652 x 10~ 14
1.820766 x 1014
1.117208 x 10715

4.440892 x 1016

4440892 x 10716

4.440892 x 1016
0.000000

4440892 x 10716
2.338870 x 10~15
7.549517 x 1015
1.995713 x 10~1>

300

Best
Avg.
Worst
SD

3.996803 x 1071

3.996803 x 10~15

3.996803 x 1015
0.000000

2176037 x 1014
2.614205 x 1014
2.886580 x 1014
3.135436 x 1015

4.440892 x 1016

4.440892 x 10~16

4.440892 x 10716
0.000000

4440892 x 1016
2457294 x 10~15
7.549517 x 1015
2186836 x 1015

500

Best
Avg.
Worst
SD

3.996803 x 10712
4.825769 x 10715
7.549517 x 10715
1.502629 x 10~15

2.886580 x 1014
3.158955 x 10~ 14
3.597123 x 1014
1.985144 x 10~15

4.440892 x 10716

4.440892 x 10716

4.440892 x 10716
0.000000

4440892 x 1016
2457294 x 1015
7.549517 x 1015
2.371435 x 1015

fos

100

Best
Avg.
Worst
SD

4955085
6.169643
7.315961

5.111456 x 10~1

2.624674
4123167
5.184571

5.124575 x 10~1

4.766665 x 1075
4.122016 x 103
2.124806 x 102
5.953081 x 103

3.631265 x 1075
1.910465 x 1073
1.105270 x 102
4083615 x 1073

300

Best
Avg.
Worst
SD

2.643887 x 10!
2.697167 x 10!
2.757999 x 101
3.359007 x 101

2.282209 x 101
2.376806 x 10!
2.474629 x 101
4596044 x 101

2.212745 x 1073
8.795785 x 10~3
1.782640 x 1072
4937780 x 1073

3.726640 x 1073
8.291253 x 1073
2452580 x 102
5.300295 x 1073

500

Best

Worst
SD

4658280 x 10!
4724426 x 10
4.807043 x 10!
3.648753 x 101

4243303 x 10!
4391827 x 10!
4.471744 x 101
5.330605 x 10~1

8.669046 x 1073
2.089506 x 102
2.799315 x 102
4269011 x 1073

2.174499 x 1072
3.314949 x 1072
5.016311 x 1072
7.169631 x 10~

The results for the pressure vessel design problem are compared in Tables 24 and 25.
The multi-strategy enhanced SCA (MSCA) was presented in [55], which also provides numer-
ical results. The numerical results for the improved harmony search algorithm (IHS) [56],
gravitational search algorithm (GSA) [57], DE [10], and HSA [14] were provided in [55].
Moreover, results for PSO [5] were taken from [58]. Results for GA [9] are provided in [59-61]
for GA_1, GA_2 and GA_3 respectively. In [62], results for evolutionary strategy ES were
provided, while those of the ACO algorithm were reported in [63]. GWO, WOA, WOA [52],
and HHO [53] algorithms are included in the comparative study of classical engineering
problems, i.e., pressure vessel problem, welded beam design problem, and rolling element
bearing design.
The comparison for the pressure vessel problem is exhibited in Tables 24 and 25. The
former shows both the variables and the cost function’s optimal value, while the latter
provides the constraints” value. The proposed ESCA algorithm and the DE algorithm achieve

132

5.2.2. Optimization Outcomes for Classical Engineering Problems

Mathematics 2022, 10, 1166

the best feasible results. It should be noted that the solution provided by MSCA and HHO
methods are not feasible since both variables ds; and dj, have been considered as continuous
variables, which is not correct as they are actually discrete variables. In particular, they must
be multiples of 0.0625 inches. The IHS and ACO methods are not feasible because they do
not meet the g3 and g7 constraints, respectively, as shown in Table 25.

The results of the welded beam design problem are reported in Tables 26 and 27.
Table 26 exhibits the optimal cost of the function and its variables for several state-of-the-art
algorithms, including; GSA algorithm [57], the ray optimization (RO) algorithm [64], IHS
algorithm [56], genetic algorithm (GA_3) [61], the GWO algorithm, the WOA algorithm,
and the HHO algorithm. Outcomes reveal that the ESCA algorithm outperforms the state-
of-the-art algorithms in solving the welded beam design problem. The constraints of the
leading solutions are listed in Table 27. It worth mentioning that the solution provided by
HHO algorithm is not feasible as it does not meet the g, constraint.

Table 24. Design variables and comparison of the best solutions obtained for pressure vessel problem.

Variables
Algorithm ds dh R L F“é‘;tsit"“
ESCA 0.8125 0.4375 42,0983 176.6385 6059.7344
SCA 0.8125 0.4375 42,0799 177.0465 6066.1710
MSCA 0.7793 0.3996 403255 199.9213 5935.7161
THS 1.1250 0.6250 58.2902 43.6927 7197.7300
GSA 1.1250 0.6250 55.9887 84.4542 8538.8359
PSO 0.8125 0.4375 420913 176.7465 6061.0777
GA_1 0.8125 0.4345 403239 200.0000 6288.7445
GA2 0.8125 0.4375 42,0974 176.6541 6059.9463
GA_3 0.9375 0.5000 483290 112.6790 6410.3811
ES 0.8125 04375 42,0981 176.6405 6059.7456
DE 0.8125 0.4375 42,0984 176.6377 6059.7340
ACO 0.8125 0.4375 421036 1765727 6059.0888
GWO 0.8125 0.4375 42,0892 176.7587 6061.0135
HHO 0.8176 0.4073 420917 176.7196 6000.4626
WOA 0.8125 0.4375 42,0983 176.6390 6059.7410

The results for the rolling element bearing design problem are compared in Table 28.
In addition to the SCA algorithm, the proposed ESCA algorithm is compared to the genetic
algorithm (GA_4) [65], the TLBO algorithm [66], the mine blasting algorithm (MBA) [67],
the supply demand-based optimization algorithm (SDO) [68], and the HHO algorithm.
Note that, as shown in Table 29, neither TLBO nor MBA, nor SDO, nor HHO obtain feasible
solutions. Indeed, the TLBO violates the g7 constraint, while MBA, SDO and HHO violate
the g4 constraint. As shown in these tables, ESCA also carries the best feasible result on
this constrained maximization problem.

Concisely, the outcomes on the assessed engineering problems prove that ESCA is
high-performing in solving challenging problems as opposed to the comparison algorithms.

133

Mathematics 2022, 10, 1166

Table 25. Constraints of the best solutions obtained for the pressure vessel problem.

Constraints

Algorithm g1 22 g3 S
ESCA —2.81 x 107 —3.59 x 102 —5.57 x 107! —6.34 x 10!
SCA —359 x 1074 —3.61 x 102 —9.97 x 102 —6.30 x 10!
MSCA —9.75 x 10~* —1.49 x 1072 —1.26 x 10! —4.01 x 10
IHS —1.05 x 1077 —6.89 x 1072 6.57 x 1072 —1.96 x 10%
GSA —4.44 x 1072 —9.09 x 1072 —2.71 x 10° —1.56 x 10%
PSO ~139 x 1074 —3.59 x 102 —1.16 x 102 —6.33 x 10!
GA_1 —3.42 x 1072 —4.98 x 1072 —3.04 x 10% —4.00 x 10!
GA 2 —2.02 x 1075 —3.59 x 1072 —2.49 x 10! —6.33 x 10!
GA_3 —4.75 x 1073 —3.89 x 102 —3.65 x 10° —1.27 x 10%
ES —6.92 x 107° —3.59 x 1072 2.90 —6.34 x 10
DE —6.68 x 107 —3.59 x 102 —3.71 —6.34 x 10
ACO 9.99 x 1075 —3.58 x 1072 -1.22 —6.34 x 10’
GWO —1.79 x 1074 —3.60 x 1072 —4.06 x 10 —6.32 x 10!
HHO —521 x 1073 —5.74 x 1073 —6.57 x 10~° —6.33 x 10!
WOA —3.39 x 10 —3.59 x 1072 -1.25 —6.34 x 10

Table 26. Welded beam problem. Function cost and variables.
Variables
Algorithm h 1 t b F“é‘“ﬁ"“
ost

ESCA 0.205727 3.470570 9.036625 0.205730 1.724862
SCA 0.205661 3.471731 9.037817 0.205742 1.725213
GSA 0.182129 3.856979 10.000000 0.202376 1.879952
RO 0.203687 3.528467 9.004233 0.207241 1.735344
IHS 0.203687 3.528467 9.004233 0.207241 1.735344
GA_3 0.248900 6.173000 8.178900 0.253300 2.433100
GWO 0.205676 3.478377 9.03681 0.205778 1.726240
HHO 0.204039 3.531061 9.027463 0.206147 1.731990
WOA 0.205396 3.484293 9.037426 0.206276 1.730499

134

Mathematics 2022, 10, 1166

Table 27. Welded Beam problem. Constraints.

Constraints
Algorithm 81 &2 8 81 85 86 87

ESCA —7.80 x 1072 —598 x 1072 —3.00 x 107¢ —3.43 —8.07 x 1072 —2.36 x 1071 —3.20 x 1072
SCA —0.699753 —9.721939 —0.000081 —3.432575 —0.080661 —0.235547 —1.602377

GSA —535x 102 —510x10° —2.02 x 102 —3.26 —571x1072 —239x10°! —1.33 x 10
RO —2.24 —4.13 —3.55 x 1073 —3.42 —787 x 1072 —235x10"1 124 x 10*
IHS —2.24 —4.13 —3.55x 1073 —3.42 —787 x1072 —235x 1071 —1.24 x 10*
GA_3 —576 x 10° 256 x 102 —4.40 x 1073 -2.98 —124 x 1071 —234x10"! 239 x 10
GWO —2.12 x 10 —8.29 —1.02 x 1074 —3.43 —8.07 x 1072 —2.36 x 107! —4.31
HHO —6.21 x 100 572x 1072 211 x 1073 —3.43 —790 x 1072 —2.36 x 1071 —3.26 x 10!
WOA —215x 100 —848 x 10! 880 x 10~* —3.43 —8.04x1072 —236x10"! —483x10!

Table 28. Design variables and comparison of the best solutions obtained for the rolling element
bearing design problem.

Algorithm
V]:r‘;zibgl’;s SCA GA_4 TLBO MBA SDO HHO ESCA

Du 125.719015 125.717100 125.719100 125.715300 125.700000 125.000000 125.718960
D, 21.425557 21.423000 21.425590 21.423300 21.424905 21.000000 21.425563
Z 11.000000 11.000000 11.000000 11.000000 11.000000 11.090000 11.000000

fi 0.515000 0.515000 0.515000 0.515000 0.515002 0.515000 0.515000

fo 0.515000 0.515000 0.515000 0.515000 0.515930 0.515000 0.515000

Kpmin 0.490213 0.415900 0.424266 0.488805 0.487755 0.400000 0.465124

Kbmax 0.672451 0.651000 0.633948 0.627829 0.629992 0.600000 0.653542

€ 0.300000 0.300043 0.300000 0.300149 0.300039 0.300000 0.300000

e 0.070763 0.022300 0.068858 0.097305 0.053510 0.050474 0.020149

N 0.760058 0.751000 0.799498 0.646095 0.665982 0.600000 0.736634

Function cost 81,859.508 81,841.511 81,859.738 81,843.686 81,575.185 83,011.883 81,859.552

Table 29. Constraints of the best solutions obtained for the rolling element bearing design problem.

Algorithm
Constraints SCA GA_4 TLBO MBA SDO HHO ESCA
g1 0.000009 0.000822 0.000004 0.000564 —0.001272 0.013477 0.000003
4 8.536204 13.733000 13.152560 8.630250 8.706960 14.000000 10.292446
$3 4.220456 2.724000 1.525180 1.101430 1.249630 0.000000 2.896814
84 1.376183 1.107000 2.559350 —2.040450 —1.445445 —3.000000 0.673457
85 0.719015 0.717100 0.719100 0.715300 0.700000 0.000000 0.718960
g6 16.971735 4.857900 16.495400 23.610950 12.677500 12.618500 4.318290
g7 0.000047 0.002129 —0.000022 0.000518 0.009240 0.700000 0.000070
g8 0.000000 0.000000 0.000000 0.000000 0.000002 0.000000 0.000000

g9 0.000000 0.000000 0.000000 0.000000 0.000930 0.000000 0.000000

135

Mathematics 2022, 10, 1166

References

6. Conclusions

This paper proposed an enhanced SCA algorithm dubbed the ESCA algorithm in
which the diversification behavior of the SCA algorithm is reduced at the end of the opti-
mization course. Indeed, the SCA algorithm’s exploitation abilities are strengthened with a
best-guided strategy that refines the current solution and leads the algorithm to converge
swiftly toward the optimum. Experimental tests on benchmark functions and challenging
engineering problems prove the supremacy of the proposed algorithm in overall perfor-
mance, i.e., solution accuracy and convergence speed, compared to a set of state-of-the-art
algorithms. This domination is confirmed through statistical tests. The proposed ESCA
algorithms are ranked first according to Friedman, Friedman aligned, and Quade tests
in terms of convergence speed and solution accuracy. Furthermore, one-level parallel
ESCA algorithms that work synchronously and asynchronously are designed as well. They
efficiently utilize multicore architectures by joining coarse-grained and fine-grained parallel
techniques. The parallel scalability of these algorithms yields an efficient use of the physical
and logical cores when hyperthreading is enabled, which increases the total number of
threads that are efficiently used when the two-level parallel algorithm is executed. It was
identified that the one-level parallel ESCA algorithms diminish the computing time, on
average, by 87.4% and 90.8%, respectively, using 12 processing cores. Moreover, it has
been shown that parallel performance can be improved by affinity techniques that permit
mapping processes over the cores of multicore processors. In fact, the two-level parallel
algorithms provide extra reductions of the computing time by 91.4%, 93.1%, and 94.5%
with 16, 20, and 24 processing cores. Considering its outstanding optimization performance
and computational behavior capability of extracting the maximum performance from the
available computational resources, the proposed algorithm is particularly fitting for high
computational complexity problems.

Author Contributions: H.M. and A.B. conceived the optimization algorithms; HM., J.-L.S.-R., A J.-
M., D.G.-S and].G.-G. conceived the parallel algorithms; H.M.,].G.-G. and D.G.-S. codified the
parallel algorithms; A.B.,, HM.,].G.-G.,].-L.S.-R. and A]J.-M. performed numerical experiments;
H.M., A.B. and].G.-G. analyzed the data; H.M. wrote the original draft. A.B., J.-L.S.-R. and A.J.-M.
reviewed and edited the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Spanish Ministry of Science, Innovation and Uni-
versities and the Research State Agency under Grant RTI2018-098156-B-C54 cofinanced by FEDER
funds and the Ministry of Science and Innovation and the Research State Agency under Grant
PID2020-120213RB-100 cofinanced by FEDER funds.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

1. Dorigo, M.; Di Caro, G. The Ant Colony Optimization Meta-heuristic. In New Ideas in Optimization; McGraw-Hill Ltd.: Maidenhead,

UK, 1999; pp. 11-32.

2. Schwefel, H.P. Evolutionsstrategie Und Numerische Optimierung. Ph.D. Thesis, Department of Process Engineering, Technical
University of Berlin, Berlin, Germany, 1975.

3. Back, T.; Rudolph, G.; Schwefel, H.P. Evolutionary Programming and Evolution Strategies: Similarities and Differences. In
Proceedings of the Second Annual Conference on Evolutionary Programming, La Jolla, CA, USA, 25-26 February 1993; pp. 11-22.

4. Koza, J.R. Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems; Technical
Report; Stanford University: Stanford, CA, USA, 1990.

5. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33-57. [CrossRef]

6. Eusuff, M,; Lansey, K.; Pasha, F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optim.
2006, 38, 129-154. [CrossRef]

136

Mathematics 2022, 10, 1166

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Karaboga, D.; Basturk, B. On the Performance of Artificial Bee Colony (ABC) Algorithm. Appl. Soft Comput. 2008, 8, 687-697.
[CrossRef]

Ingber, L. Simulated annealing: Practice versus theory. Math. Comput. Model. 1993, 18, 29-57. [CrossRef]

Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

Price, K.V. An Introduction to Differential Evolution. In New Ideas in Optimization; McGraw-Hill Ltd.: Maidenhead, UK, 1999;
pp. 79-108.

Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy
Information Processing, Berkeley, CA, USA, 19-22 June 1996; pp. 519-523.

Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential evolution: A review of more than two decades of
research. Eng. Appl. Artif. Intell. 2020, 90, 103479.

Farmer,].D.; Packard, N.H.; Perelson, A.S. The Immune System, Adaptation, and Machine Learning. Phys. D 1986, 2, 187-204.
[CrossRef]

Kim, J.H. Harmony Search Algorithm: A Unique Music-inspired Algorithm. Procedia Eng. 2016, 154, 1401-1405. [CrossRef]
Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120-133. [CrossRef]
Kumar-Majhi, S. An Efficient Feed Foreword Network Model with Sine Cosine Algorithm for Breast Cancer Classification. Int. J.
Syst. Dyn. Appl. (I]SDA) 2018, 7, 202397. [CrossRef]

Rajesh, K.; Dash, S. Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized
on improved sine cosine algorithm. . Ambient. Intell. Humaniz. Comput. 2019, 10, 2361-2373. [CrossRef]

Khezri, R.; Oshnoei, A.; Tarafdar Hagh, M.; Muyeen, S. Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC
in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers. Energies 2018, 11, 420. [CrossRef]

Ramanaiah, M.L.; Reddy, M.D. Sine cosine algorithm for loss reduction in distribution system with unified power quality
conditioner. i-Manag. |. Power Syst. Eng. 2017, 5, 10.

Dhundhara, S.; Verma, Y.P. Capacitive energy storage with optimized controller for frequency regulation in realistic multisource
deregulated power system. Energy 2018, 147, 1108-1128. [CrossRef]

Singh, V.P. Sine cosine algorithm based reduction of higher order continuous systems. In Proceedings of the 2017 International
Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7-8 December 2017; pp. 649-653. [CrossRef]

Das, S.; Bhattacharya, A.; Chakraborty, A.K. Solution of short-term hydrothermal scheduling using sine cosine algorithm. Soft
Comput. 2018, 22, 6409-6427. [CrossRef]

Kumar, V.; Kumar, D. Handbook of Research on Machine Learning Innovations and Trends; IGI Global: Hershey, PA, USA, 2017; pp.
715-726. [CrossRef]

Yildiz, B.S.; Yildiz, A.R. Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of
a vehicle engine connecting rod. Mater. Test. 2018, 60, 311-315. [CrossRef]

Elfattah, M.A.; Abuelenin, S.; Hassanien, A.E.; Pan, J.S. Handwritten Arabic Manuscript Image Binarization Using Sine Cosine
Optimization Algorithm. In Proceedings of the International Conference on Genetic and Evolutionary Computing, Fuzhou,
Fujian, China, 7-9 November 2016; Volume 536, pp. 273-280.

Mirjalili, S.M.; Mirjalili, S.Z.; Saremi, S.; Mirjalili, S. Studies in Computational Intelligence; Springer: Berlin, Germany, 2020;
Volume 811, pp. 201-217. [CrossRef]

Ewees, A.A.; Abd Elaziz, M.; Al-Qaness, M.A.A.; Khalil, H.A.; Kim, S. Improved Artificial Bee Colony Using Sine-Cosine
Algorithm for Multi-Level Thresholding Image Segmentation. IEEE Access 2020, 8, 26304-26315. [CrossRef]

Gupta, S.; Deep, K.; Mirjalili, S.; Kim, J.H. A modified sine cosine algorithm with novel transition parameter and mutation
operator for global optimization. Expert Syst. Appl. 2020, 154, 113395. [CrossRef]

Gupta, S.; Deep, K. A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons.
Appl. Intell. 2020, 50, 993-1026. [CrossRef]

Rizk-Allah, R.M. An improved sine—cosine algorithm based on orthogonal parallel information for global optimization. Soft
Comput. 2019, 23, 7135-7161. [CrossRef]

Belazzoug, M.; Touahria, M.; Nouioua, F.; Brahimi, M. An improved sine cosine algorithm to select features for text categorization.
J. King Saud-Univ.-Comput. Inf. Sci. 2020, 32, 454-464. [CrossRef]

Gupta, S.; Deep, K. Improved sine cosine algorithm with crossover scheme for global optimization. Knowl.-Based Syst. 2019, 165,
374-406. [CrossRef]

Qu, C,; Zeng, Z.; Dai,].; Yi, Z.; He, W. A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation.
Comput. Intell. Neurosci. 2018, 2018. [CrossRef] [PubMed]

Rosli, S.J.; Rahim, H.A.; Abdul Rani, K.N.; Ngadiran, R.; Ahmad, R.B.; Yahaya, N.Z.; Abdulmalek, M.; Jusoh, M.; Yasin, M.N.M.;
Sabapathy, T.; et al. A Hybrid Modified Method of the Sine Cosine Algorithm Using Latin Hypercube Sampling with the Cuckoo
Search Algorithm for Optimization Problems. Electronics 2020, 9, 1786. [CrossRef]

Abd Elaziz, M.; Oliva, D.; Xiong, S. An improved opposition-based sine cosine algorithm for global optimization. Expert Syst.
Appl. 2017, 90, 484-500. [CrossRef]

Sindhu, R.; Ngadiran, R.; Yacob, Y.M.; Zahri, N.A.H.; Hariharan, M. Sine—cosine algorithm for feature selection with elitism
strategy and new updating mechanism. Neural Comput. Appl. 2017, 28, 2947-2958. [CrossRef]

137

Mathematics 2022, 10, 1166

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.
50.
51.
52.
53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.
65.

66.

Long, W.; Wu, T.; Liang, X.; Xu, S. Solving high-dimensional global optimization problems using an improved sine cosine
algorithm. Expert Syst. Appl. 2019, 123, 108-126. [CrossRef]

Issa, M.; Hassanien, A.E.; Oliva, D.; Helmi, A.; Ziedan, I.; Alzohairy, A. ASCA-PSO: Adaptive sine cosine optimization algorithm
integrated with particle swarm for pairwise local sequence alignment. Expert Syst. Appl. 2018, 99, 56-70. [CrossRef]

Chegini, S.N.; Bagheri, A.; Najafi, . PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving
optimization problems. Appl. Soft Comput. 2018, 73, 697-726. [CrossRef]

Nenavath, H.; Jatoth, RK; Das, S. A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global
optimization and object tracking. Swarm Evol. Comput. 2018, 43, 1-30. [CrossRef]

Singh, N.; Singh, S. A novel hybrid GWO-SCA approach for optimization problems. Eng. Sci. Technol. Int. |. 2017, 20, 1586-1601.
[CrossRef]

Nenavath, H.; Jatoth, R K. Hybridizing sine cosine algorithm with differential evolution for global optimization and object
tracking. Appl. Soft Comput. 2018, 62, 1019-1043. [CrossRef]

Migallon, H.; Jimeno-Morenilla, A.; Sinchez-Romero, J.L.; Rico, H.; Rao, R.V. Multipopulation-based multi-level parallel enhanced
Jaya algorithms.]. Supercomput. 2019, 75, 1697-1716. [CrossRef]

Garcia-Monz6, A.; Migallon, H.; Jimeno-Morenilla, A.; Sanchez-Romero, J.L.; Rico, H.; Rao, R.V. Efficient Subpopulation Based
Parallel TLBO Optimization Algorithms. Electronics 2018, 8, 19. [CrossRef]

Free Software Foundation, Inc. GCC, the GNU Compiler Collection. Available online: https://www.gnu.org/software/gcc/
index.html (accessed on 15 October 2021).

OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 3.1. 2011. Available online: http:
//www.openmp.org (accessed on 15 October 2021).

Dimakopoulos, V.V.; Hadjidoukas, P.E.; Philos, G.C. A Microbenchmark Study of OpenMP Overheads under Nested Parallelism.
In OpenMP in a New Era of Parallelism; Eigenmann, R., de Supinski, B.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp.
1-12. [CrossRef]

Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937,
32, 675-701. [CrossRef]

Hodges, J.; Lehmann, E.L. Rank methods for combination of independent experiments in analysis of variance. In Selected Works of
EL Lehmann; Springer: Berlin/Heidelberg, Germany, 2012; pp. 403-418.

Quade, D. On analysis of variance for the k-sample problem. Ann. Math. Stat. 1966, 37, 1747-1758. [CrossRef]

Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46-61. [CrossRef]

Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51-67. [CrossRef]

Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849-872. [CrossRef]

Garcia, S.; Fernandez, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044-2064.
[CrossRef]

Chen, H.; Wang, M.; Zhao, X. A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical
engineering problems. Appl. Math. Comput. 2020, 369, 124872. [CrossRef]

Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl.
Math. Comput. 2007, 188, 1567-1579. [CrossRef]

Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232-2248. [CrossRef]
He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng.
Appl. Artif. Intell. 2007, 20, 89-99. [CrossRef]

Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the
state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245-1287. [CrossRef]

Coello, C.A.C.; Montes, EM. Constraint-handling in genetic algorithms through the use of dominance-based tournament
selection. Adv. Eng. Inform. 2002, 16, 193-203. [CrossRef]

Deb, K. GeneAS: A robust optimal design technique for mechanical component design. In Evolutionary Algorithms in Engineering
Applications; Springer: Berlin/Heidelberg, Germany, 1997; pp. 497-514.

Mezura-Montes, E.; Coello, C.A.C. An empirical study about the usefulness of evolution strategies to solve constrained
optimization problems. Int. |. Gen. Syst. 2008, 37, 443-473. [CrossRef]

Kaveh, A.; Talatahari, S. An improved ant colony optimization for constrained engineering design problems. Eng. Comput. 2010,
27,155-182. [CrossRef]

Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray Optimization. Comput. Struct. 2012, 112-113, 283-294. [CrossRef]
Rajeswara Rao, B.; Tiwari, R. Optimum design of rolling element bearings using genetic algorithms. Mech. Mach. Theory 2007, 42,
233-250. [CrossRef]

Rao, R.V.; Savsani, V.; Vakharia, D. Teaching-learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput.-Aided Des. 2011, 43, 303-315. [CrossRef]

138

Mathematics 2022, 10, 1166

67. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving
constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592-2612. [CrossRef]

68. Zhao, W.; Wang, L.; Zhang, Z. Supply-Demand-Based Optimization: A Novel Economics-Inspired Algorithm for Global
Optimization. IEEE Access 2019, 7, 73182-73206. [CrossRef]

139

. mathematics

Article

ReRec: A Divide-and-Conquer Approach to Recommendation
Based on Repeat Purchase Behaviors of Users in
Community E-Commerce

Jun Wu 2, Yuanyuan Li !, Li Shi %, Liping Yang !, Xiaxia Niu ! and Wen Zhang 3-*

Citation: Wu, J.; Li, Y.; Shi, L.; Yang,
L.; Niu, X.; Zhang, W. ReRec: A
Divide-and-Conquer Approach to
Recommendation Based on Repeat
Purchase Behaviors of Users in
Community E-Commerce.
Mathematics 2022, 10, 208. https://
doi.org/10.3390/math10020208

Academic Editors: Antonin Ponsich,
Mariona Vila Bonilla and

Bruno Domenech

Received: 7 December 2021
Accepted: 4 January 2022
Published: 10 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China;
wujun@mail buct.edu.cn (J.W.); lyyletter@126.com (Y.L.); m17856381770@163.com (L.Y.);
15136212624@163.com (X.N.)

College of Information Science and Technology, Beijing University of Chemical Technology,

Beijing 100029, China; simon_shl@126.com

College of Economics and Management, Beijing University of Technology, Beijing 100124, China

* Correspondence: zhangwen@bjut.edu.cn

Abstract: Existing studies have made a great endeavor in predicting users’ potential interests in items
by modeling user preferences and item characteristics. As an important indicator of users’ satisfaction
and loyalty, repeat purchase behavior is a promising perspective to extract insightful information
for community e-commerce. However, the repeated purchase behaviors of users have not yet been
thoroughly studied. To fill in this research gap from the perspective of repeated purchase behavior
and improve the process of generation of candidate recommended items this research proposed a
novel approach called ReRec (Repeat purchase Recommender) for real-life applications. Specifically,
the proposed ReRec approach comprises two components: the first is to model the repeat purchase
behaviors of different types of users and the second is to recommend items to users based on their
repeat purchase behaviors of different types. The extensive experiments are conducted on a real
dataset collected from a community e-commerce platform, and the performance of our model has
improved at least about 13.6% compared with the state-of-the-art techniques in recommending online
items (measured by F-measure). Specifically, for active users, with w = 1 and N(y;,) € [5,25], the
results of ReRec show a significant improvement (at least 50%) in recommendation. With « and ¢ as
0.75 and 0.2284, respectively, the proposed ReRec for unactive users is also superior to (at least 13.6%)
the evaluation indicators of traditional Item CF when Ny, € [6, 25]. To the best of our knowledge,
this paper is the first to study recommendations in community e-commerce.

Keywords: ReRec; community e-commerce; repeat purchase; user behavior modeling; recommendation
system

1. Introduction

Community e-commerce, which combines the features of traditional e-commerce and
mobile commerce, is a representative of community economy [1] and marks the rise of a
new commercial ideology. Generally speaking, community e-commerce refers to a novel
business model that takes communities as service units and provides a more convenient
manner in online shopping than traditional e-commerce for community residents [2,3].
On the one hand, unlike traditional e-commerce that provides products and services all
over the world or a country, community e-commerce focuses on a relatively stable group
of consumers in a local area as a compatible complement for B2B, B2C and C2C models.
On the other hand, like traditional e-commerce, the huge amount of online information
and items brings about a heavy burden for online consumers, the users of community
e-commerce also suffer from the endless choices and decisions in online shopping and the
merchants in community e-commerce are still struggling to predict the interests of users in

Mathematics 2022, 10, 208. https:/ /doi.org/10.3390 /math10020208

https:/ /www.mdpi.com/journal/mathematics
141

Mathematics 2022, 10, 208

online items beforehand, in order to manage their inventories. For this reason, it is urgent
to develop a recommendation system for community e-commerce platforms to predict the
items that a user may possibly purchase in the near future based on the user’s purchase
history [4].

In community e-commerce, it is a usual case that a user would purchase the same
item repeatedly and periodically. In the scenario of traditional e-commerce, these items
will not be recommended to the user repeatedly in the future. However, with the focus on
limited number of users in a local area, the recommendation for repeat purchase is crucial
for the success of community e-commerce. For instance, by observing user behaviors on the
community e-commerce platform T-app (see Section 5.1), we find that from 1 January 2018
to 1 April 2019, among 955 users who have made purchases on T-app, 58.74% have repeat
purchases. For these users with repeat purchase, their average repurchase is 3.61 times,
and 10.33% of them repurchase the same item six times. In an extreme case, we find
that one user has repurchased the same item up to 43 times during the investigated time
duration. Among all the 105 types of items, 82 (78.10%) have been repurchased by users.
Therefore, it can be seen that repeated purchase behavior is an essential user characteristic
that should be paid enough attention to when community e-commerce platforms make
recommendation plans.

Existing studies have proposed many recommendation algorithms to predict users’
potential interests in items by characterizing user preferences and item characteristics,
e.g., the nearest neighborhood based recommendation algorithm [5-7], the matrix factor-
ization based recommendation algorithm [8,9] and the context aware recommendation
algorithm [10,11]. Clearly, the basic idea of these algorithms is straightforward—that if
a user purchased an item in the past, he or she will also purchase similar items, or items
purchased similar users at that time, in the future. However, if an item has already been
purchased by a user, then the item will not be recommended by theses algorithms to the
user. That is to say, the repeated purchase behavior of users has not yet been thoroughly
studied. To fill in this research gap, this paper proposes a novel approach called ReRec (Re-
peat purchase Recommender) for recommending items to users in community e-commerce.
To the best of our knowledge, this paper is the first to conduct item recommendation
in community e-commerce. For industrial applications, the proposed method can help
manage and identify loyal users and segment users and to improve customer relation-
ship management (CRM) processes. In addition, for managers, this method can also help
them formulate precision marketing strategies, recognize the market, and advance the
sustainable development of products.

Specifically, ReRec comprises two components. The first component is to model the re-
peat purchase behaviors of different types of user. This research models the repeat purchase
behaviors of the users in community e-commerce. based on their activity in the community
and the stability of their interests in items, in a divide-and-conquer manner, using these
categories: active users with stable interest (ASI), active users with unstable interest (AUSI),
inactive users with stable interest (IASI) and inactive users with unstable interest (IAUSI).
The second component is to recommend items to users based on repeat purchase behaviors.
This research proposes the ReRec approach in four variants to deal with different types of
users and interests, i.e., recommendation for active users with stable interest (ReRec-ASI),
recommendation for active users with unstable interest (ReRec-AUSI), recommendation for
inactive users with stable interest (ReRec-IASI) and recommendation for inactive users with
unstable interest (ReRec-IAUSI). Finally, extensive experiments based on a real community
e-commerce platform are conducted and the experimental results demonstrate that the
proposed ReRec approach outperforms state-of-the-art techniques significantly.

The rest of this paper is organized as follows. Section 2 states the problem. Section 3
presents related works. Section 4 proposes the ReRec approach. Section 5 conducts the
experiments. Section 6 concludes the paper and indicates future work.

142

Mathematics 2022, 10, 208

2. Problem Statement

The problem studied in this paper is one of recommendation for repeat purchase in
community e-commerce, which is different from that of traditional recommendation, such
as collaborative filtering [5,6,12]. Essentially, this research can formulate the problem as
follows. Assume that there are a set of users as U = {u|1 < k < m}, and a set of items
as I = {is|1 <s < n} in community e-commerce. The historical sales data until time #

Uyis
cumulative purchases of the user 1 of the item 75 at t. Note that the user 1 has purchased
the item i; repeatedly and periodically. Let R;L.i be the possibility that the user 1y purchases
the item i; on f + 1. We need to speculate the possibilities of user u; purchasing all the

possibleitems is (1 <s <m)ont+1,ie., I?f;: for all the items is on ¢ + 1. After deriving

Is

is recorded as a matrix RtLH = {rt 1<k<m1<s< n}, where rik. is the number of

the E;ﬁ, it sorts all the possibilities in descending order for user uy, and uses the top N
items as the recommendation list to him or her.

3. Related Works
3.1. Nearest Neighborhood Based Recommendation

On the aspect of nearest neighborhood recommendation, the user-based nearest neigh-
bor method and item-based nearest neighbor method are usually adopted. Resnick et al. [13]
propose user-based collaborative filtering to recommend internet news to readers according
to readers’ rating scores of the internet news. This algorithm firstly calculates the simi-
larity between users, and then for a given user it recommends items that are of interest
to similar users to him or her. Considering the large number of items in a recommender
system, Sarwar et al. [14] propose item-based recommendation to compute and store items’
similarities beforehand in the system and use these similarities in real time when needed to
produce a recommendation list for a user. The basic idea of the item-based algorithm is
to assume that people will like items that are similar to those items they have purchased
before. Since a user has purchased an item in history, he or she would also purchase similar
items in the future. The item-based algorithm is very similar to the user-based algorithm.
More details about user-based collaborative filtering and item-based collaborative filtering
approaches can be found in the available literature [5-7,12,15]. The advantage of the nearest
neighborhood algorithms is that they are easy to implement in real practice because of
their simple mathematical form and consolidated intuitiveness. However, due to the sparse
nature of the historical purchasing data, it is difficult to measure similarities between users
and items [8]. Moreover, because the users’ interests in items can change very frequently, it
makes the computation complexity of real-time recommendation intractable [4].

3.2. Matrix Factorization Based Recommendation

On the aspect of matrix factorization based recommendation, SVD (Single Value De-
composition), SVD++ and NMF (non-negative Matrix Factorization) are the most represen-
tative techniques. SVD is a basic matrix decomposition method used in the recommender
systems proposed by Chen et al. [9] and Brand [16]. It decomposes the original matrix
R with higher dimensions into three matrix multiplication forms with lower dimensions,
which brings convenience to matrix calculation and storage. Specifically, SVD decomposes
the rating matrix R;;x, into three matrices: left singular vector Py;x, right singular vector
Qumxn and singular value diagonal matrix S;x, as in Equation (1). Both P and Q matrices
are orthogonal and matrix S is a diagonal matrix composed of singular values where all the
singular values are aligned in descending order from the largest to the smallest. For all the
singular values S;; > 0, the rank of the rating matrix R is 4, and the number of ranks that
can be taken is {a,|1 < h < min(m,n)}.

R = PsQT 1)

SVD++ is an extension of traditional SVD that takes into account both explicit and
implicit information for recommendation [17]. Here, explicit information refers to the users’

143

Mathematics 2022, 10, 208

rating of an item, and implicit information refers to the users’ implicit feedback, such as
browsing, buying, and clicking history [8]. The prediction rating §,; of SVD++ is defined
in Equation (2).

Fui = bui + QIT(PM) =u+ by +b; + q?(Plz) (2)

The prediction rating §,; is composed of two parts: one is the deviation of different
users to different products b,;, the other is the product of the user preference vector p;
and the product feature vector g;, where y denotes the benchmark value in the score, b,
is the deviation value of user rating, and b; is the score deviation of the product. These
parameters need to be trained to obtain specific values.

As for NME, the rating matrix R is approximated by the product of two low-dimensional
matrices P and Q, as shown in Equation (3). The NMF problem is non-convex and is usually
solved by the gradient descent method [18].

R="PTQ (3)

The advantage of the matrix decomposition method is that the users’ preference in the
item is regarded as the product of two components, i.e., as the users’ latent vector represent-
ing the user preference and the item’s latent vector representing the item’s characteristics.
Both the user’s latent vector and the item’s latent vector can be stored in the memory of
the recommender system in advance, so it is convenient to compute and predict the user’s
preference in the item in real time. However, the matrix factorization method also has
some defects. Because most view the user item rating matrix from a global perspective and
perform matrix decomposition, their performance will be affected due to the large scale of
the original user project scoring matrix and the sparse data.

3.3. Context-Aware Recommendation

The collaborative filtering algorithm for recommendation only considers the inter-
active information between users and items, such as the users’ rating matrix for items.
Meanwhile, other information, such as contextual situation information during interactive
behavior, is generally not considered. A context-aware recommender system (CARS) is
used to recommend items to users based on relevant contextual information such as time,
weather and location. Contextual information can improve the performance of recom-
mendation and user satisfaction when it is combined with the recommendation algorithm.
Gorgoglione et al. [19] report that the context-aware recommendation system can achieve
more accurate recommendation by adding contextual information in the experiments, and
this recommendation system can significantly increase the platform profit and users’ stick-
ability. Time information can consist of the time when users purchase, comment, search
or perform other behaviors, or the time of the season or holiday. For instance, around the
time of the Dragon Boat Festival in China, users may have a higher preference for rice
dumplings than usual.

There are also some studies showing that reasonable use of time information can
improve the performance of the recommendation algorithm. Zimdars et al. [20] make use
of time series forecasting in collaborative filtering for recommendation. Campos et al. [21]
find that there is a time-dependent characteristic of user behaviors in online shopping. For
instance, the same user may have different preference patterns on different dates, months
and seasons. Liang et al. [22] propose the Time SVD algorithm to integrate four kinds of
time-affected factors into time functions and they find that the performance of the Time SVD
algorithm is significantly better than that of the traditional SVD algorithm. Qin et al. [23]
claim that users of different professions have obvious differences in understanding items,
and there is an important relationship between user hierarchy classification and user
interest. Traditional collaborative filtering algorithms do not consider change in users’
interests. However, in real practice, users’ interests are constantly changing with time
and the influence of the environment. Therefore, some studies introduce the concept of
user interest drift [24,25]. Chen et al. [26] provide a matrix decomposition optimization

144

Mathematics 2022, 10, 208

model that is constructed to think about the score matrix and combines time information
and the original score matrix to improve the recommendation efficiency. Wu et al. [27]
include the time factor in order optimize the weights of users’ ratings based on time and
user similarities.

4. The Proposed Approach
4.1. The Overview of the ReRec Approach

The overall structure of the proposed ReRec approach is shown in Figure 1. As can be
seen, the proposed ReRec approach is composed of two components, i.e., repeat purchase
behavior analysis and item recommendation. Before the analysis, this research collects the
user-item purchase records as a basic data matrix, i.e., the original user-item interaction
matrix. In the original user-item interaction matrix, the row label is user ID, the column
label is item ID and the element is the cumulative purchase quantity of an item by the
corresponding user at time . Then, users are classified according to activeness and user-
items are classified according to stableness. As shown in the yellow area of Figure 1, users
are partitioned by mathematical modeling as the active and inactive users, and the items
are partitioned as stable and unstable interest. The nodes with black circles denote the users.
The nodes with blue circles denote the items. The nodes with red circles denote user—item
interaction. The nodes with dotted circles denote the immediate process. In addition, the
partition process can be visualized as the user partition matrix and the item partition matrix
derived from the original user—item interaction. As for the user partition matrix, a user ID
with yellow indicates an active user and a user ID with green indicates an inactive user. As
for the item partition matrix, an item ID with red indicates the stable interest of its user and
an item ID with blue indicates the unstable interest of its user. Results of the combined user
and item classification can be seen in the joint user-item partition matrix.

User-Item Purchase Records Matrix Repeat purchase hehaviar anslysiy Results of item classification

Item ID

TASI TAUSI

7
|) sery _)/ﬂcm;'
:)) RO
| S 2 N

Joint user-item partition matrix

Original user-item
interaction matrix

Item recommendation

RePre-ASI

RePre-AUSI

User partition matrix Uy

Item partition matrix

RePre-IASI 1ASI

RePre-IAUSI IAUSI

Figure 1. The overall structure of the proposed ReRec approach.

145

Mathematics 2022, 10, 208

With the above joint user-item partition matrix at hand, this research conducts the
item recommendation by using a divide-and-conquer approach. That is, it partitions the
repeat purchase behaviors of users into four types: active users with stable interest (ASI),
inactive users with stable interest (IASI), active users with unstable interest (AUSI), and
inactive users with unstable interest (IAUSI). Furthermore, this research proposes the
ReRec recommendation algorithm with its four variants to deal with the repeat purchase
behaviors of the four types one by one: the ReRec-ASI approach, the ReRec-IASI approach,
the ReRec-AUSI approach and the ReRec-IAUSI approach, which are shown in the blue
area of Figure 1.

4.2. Repeat Purchase Behavior Modeling

As community e-commerce focuses on the residents in the local community, the
characteristics of user purchase data are different from that of the large-scale e-commerce
platform, such as Alibaba, JD and Amazon. Firstly, the consumer group for community
e-commerce is relatively stable. That is, the users of community e-commerce are local
residents in a limited area such as a residential area, an office area or a campus. Secondly,
the number of item types in a community e-commerce is relatively small. Therefore,
it can study the characteristics of user-item interactions in a finer granularity than that
of the traditional recommendation algorithms and this research holds that the study of
fine-grained interactions between users and items is beneficial for improvement of the
recommendation algorithm. For this purpose, this research classifies and studies the repeat
purchase behaviors of users based on their historical purchase data.

4.2.1. The Classification Models

As the activeness of users is related to the transaction volume of the users’ base over
time [28], this research adopts a mathematical modeling method to model the behav-
iors of users along with user-item by purchase volume and the length of time in using
community e-commerce.

The mathematical models of user classification are shown in Equations (4)-(6), where
hy(uy) is the user activeness. h;(uy) is positively related to the number of item types
purchased by users uy at time t and the number of days of user 1y when using community
e-commerce. This research standardizes these factors to eliminate inconsistent dimensions.
Equations (4)—(6) can divide all the users of the e-commerce platform into two types, as
active users and inactive users.

Hy (ug) — min{hy (ue) }

hulug) = max{hy(ug)} — min{h;(uk)}'uk cu)

o Ny (1) = min{ iy, ()} LAt —min{At(w)) o
o max{nyW(uk)} - min{NfWe(uk)} max{At(u) } — min{At(u)}

At(“k) = t;’akst - t:tkart (6)

Meanwhile, the mathematical models of item classification are shown in Equations (7)—~(9),
where g;(is|uy) is the interest stableness. g;(is|uy) is positively related to the total number
of item is purchased by user u; before time ¢ and the time interval between the last purchase
of user 1y as well as the earliest purchase of item i;. This research also standardized these
factors to eliminate inconsistent dimensions. Equations (7)-(9) can divide users’ interests in
items into stable interest and unstable interest.

The symbolic definitions of the classification models are shown in Table 1. This
research defines the four types of user repeat purchase behaviors based on user activeness
and item stableness.

8 (is|ue) — min{g; (is|uy) }
max{g(is|ue) } — min{gj (isu) }

gi(is|ug) = JupeUigel @)

146

Mathematics 2022, 10, 208

8 (islu) =

P . b s . .)
Nnum(15|uk) _mln{Nnum(lsluk)} % At(ls‘”k) _mln{At(lS|”k)} (8)
Max{Nfyp (isug) } — min{Np,, (is|u) } -~ max{At(is|ug) } — min{At(is[ux) }
. Uyis Ui
At(is|ug) = tl;s; - tstka;t)
Table 1. Symbolic definition.
Index Symbols Definition Description
1 Uy Useruy, up € U, U= {uy,up, -+ U, ,Un}
2 is ItemiSriSEIrI:{ilrin"',iSI"‘rii1}
/ The activeness of user 1 (in using community
3 ht (Ll k) _ .
e-commerce) at time f
4 e (uy) The activeness of user 1 at time # after standardization
5 ny pg(uk) The number of item types purchased by users uy, at time ¢
6 At(y) The number of days of user u; in using community
k e-commerce
7 ik The last time that user uj, purchased an item in using
last community e-commerce
8 ik The first time that user uj, purchased an item in using
strat community e-commerce
9 (s) The stability of user u; purchasing item is after
8elis|tk standardization
10 Qe(is|ug) The stability of user iy purchasing item is
. The total number of item is purchased by user 1 before
11 Ny (is | i) o p y k
ime ¢
. The time interval between the last purchase of user u; and
12 At (is|uy) . . .
the earliest purchase of item i
13 t;‘a’;‘t The last time user uy, purchasing item i
14 t;‘f;;t The first time user uy, purchasing item ig
15 nu, The number of users in Uy
16 N, The number of users in Ug

4.2.2. User-Item Interaction

The user interacts with the item when a purchase record occurs. This section defines
the user—item interactions theoretically by using mathematical modelling. It calculates
the activeness of a user by mathematical model /(1), and the stableness of user-item by
gt(is|ug). The following shows the definitions of active user and inactive user, and the
definitions of stableness interest and unstableness interest.

Definition 1. Assume that U, denotes a set of active users. If a user uy from Uy uses the
community e-commence software for a relatively long time and purchases a variety of items, the
user is an active user, where if hy(uy) > 6, user uy € Uy, d is the threshold of user activeness,
5 € (0,1), and ¢ is decided by the cumulative distribution of hy(uy) of all users.

Definition 2. Assume that Up denotes a set of inactive users. If a user uy uses the threshold of
user activeness for a relatively short time or purchases fewer types of item, the user is an inactive
user, where if hy(uy) < 6, user uy € Up. So the set of all users U consists of U and Ug, i.e.,
U=UyUUs.

147

Mathematics 2022, 10, 208

Definition 3. Let 14 (uy) be a set of stable interests of user uy. If the number of item is purchased
by user uy is relatively large and the time span of the purchase behavior is long, item is is users with
stable interest, where gy (is|uyx) > 0, is(ug) € La(uy). 0 is the threshold of user-item stableness, 6 €
(0,1), and the value of 6 is decided by the cumulative distribution of g (is|uy) of all items.

Definition 4. Let Ig(uy) be a set of unstable interests of user uy. If the number of items is purchased
by user uy is relatively small or the time span of the purchase behavior is short, item i is users with
unstable interest, where g;(is|uy) < 60 and is(uy) € Ig(uy). Thus, the set of all items for user iy
ie., I(uy) consists of 1 (uy) and Ig(uy), I(ug) = La(ug) U Ig(uy).

With the above definitions, the user—item interactions can be divided into four cat-
egories. The notation (I4|U4) denotes the active users with stable interest (ASI). The
notation (Iz|U,) denotes the active users with unstable interest (AUSI). The notation
(Is|Up) denotes the inactive users with stable interest (IASI). The notation (Ig|Ug) de-
notes the inactive users with unstable interest (IAUSI). Figure 2 shows the classification
process as a whole. Mathematical functions of the classification are shown as Equation (10).

IalUa il (u
IB‘UA ,tht(uk
IA|LIB ,lfh (uk
IB‘UB , tht(uk

N

> §and g;(is|ug) > 0
> b and g (is|uy) < 6
< b and g (is|ux) > 0
< &and g¢(is|uy) <6

is(uy) € (10)

NI

hy(u) /Users) _>/flems
\ (U) \ (l)<

gl(' [24)

A

Figure 2. The classification structure of user—item interactions.

4.3. Item Recommendation
4.3.1. Model of ReRec-ASI

The overall interests of ASI users remain active and they have stable interests in items
in I4|U,. This improves the algorithm upon the repurchase cycle of items. Generally,
when a user has just purchased an item, the possibility of repeating the purchase immedi-
ately is very low. However, as time goes on, with the user running out of the item, he/she
is more likely to make repeated purchase. For this reason, this research could prioritize
the recommendation of the item to the user. This research develops a time incentive fac-
tor wy (#'¥+) based on relationship of the last purchase time and the repurchase cycle to
improve the user-KNN recommendation algorithm. Due to users in ASI having stable
purchase interests, it assumes that their stable interests do not change over time, and the
time incentive factor wq (#"4) is a periodic piecewise constant function. The model of the
time incentive function is as shown in Equation (11).

(11

w, tuklb 4 O(Tlg < tuklb < t”klb

w <tukis> B { —w, t”k’s < fitkds < t”k’s + oT’s
o -
last+1

tukls t"kis
last+1 — “last

recommend from time
€ (0,1).

+ T’ T' is the repurchase cycle of item 7s, oT' is the best time to
s
last

Here,
Uls

last 41/ and o is a lead-time factor and

to the next purchase time ¢

148

Mathematics 2022, 10, 208

To be specific, as users in ASI have stable purchasing interest and obvious repeat
purchase behavior, it considers a periodic time incentive factor for item recommendation in
ASI. That is, the time incentive factor changes with the repurchase cycle. In particular, if
Ul
last”

Ujls is 3 Uis ; : 1l Ugls (Ugls is
st T, 1e., Easiet- When the recommendation time s € [tlust’ tast +oT 5),

it is very unlikely for user u; to make a repeat purchase. Thus, a negative time incentive
factor —w should be combined with the recommendation algorithm. However, when
Upis

last+17

puxds ¢ [£k 4 T ks), it is very likely for user u; to repeat purchase item is. Thus, a

the last time user uy purchases item i is time ¢ he/she will purchase item is repeatedly

at time

the recommendation time ¥ is close to the next time of repeat purchase ¢ and

last last+1
positive time incentive factor w should be combined with the recommendation algorithm.
This time incentive process is carried out periodically with repeated purchase.
Next, this research employs cosine similarity to calculate the similarity between users.
The similarity between user u; and user s at time t is shown in Equation (12):
Uj * Uy

Sim (it 146 = T g |

(12)

where uy, uy are the vectors of historical purchase records of user u; and user uy before
time t, respectively. The R;Jkrii function of this kind of items is established as Equation (13).

Dl t ; is , s
RuJ;:z's =) wp € Uy Tt * sim (ug, Upr)+ Xy, We (tukx) + (1 — xyi,) wo (%) (13)
is € IA‘UA

Here, qflk/ ;. is the cumulative purchase of item is by user uy at time £. sim (uy, uy), is

the similarity between user 1y and user iy, at time t. w (t“ki*‘) is the time incentive factor if
user 1y, purchased item i, at time ¢. If user 1y did not purchase item i; before time f, it uses

W (1) to incentive the recommendation process, where w (£ is the time incentive
factor by users uy in Uy except user uy and wq (1) is the average time incentive factor

by all other users . wy (t“k’ iﬁ) is established as Equation (14). x,,;; is a 0-1 variable.

L K 7é k x”k/isw‘x(tuk’is)
up € Uy

(1) = 14
‘{/Uoc(K) 2 k/#k x”k/is ()

up € Uy

. 1 if user uy ever purchased item i,
Here, it regulates x,,;, = { 0 f k erl)se .

4.3.2. Model of ReRec-AUSI

The overall interests of the AUSI users remain active, but they purchase items in
Ig|U, of their random interest, where the activeness of users is more than threshold & but
the stableness of user-item interest is less than threshold 6. The repeat purchase behavior of
users is not significant. Hence, the proposed ReRec-ASI based on the repeat purchase cycle
of items will be invalid for item recommendation in AUSI. For this reason, this research
considers the recommendation algorithm for the AUSI users by combining the user-KNN
algorithm and the one-time hot-sale index, assuming that items with higher one-time
hot-sale index in AUSI may be preferred by users. In particular, one-time hot-sale index of
item i5, denoted by Tii, refers to an index that is the largest single sales quantity before time ¢
of item is, after the range standardized calculation. The calculation of Tfs is as Equation (15),

i igt .
where c';,zx is the largest one-time sales at time ¢ of item i5, max}_; < Ig|Us Crax 1s the largest
s

149

Mathematics 2022, 10, 208

igt it . . . igt . igt
Crivax among all the c;j,y of items in Iz|Uy, and miny; Jelplla Ciiny is the smallest ¢y
s

igt
among all the ¢,y Of items in Ig|U4. The bigger the largest single sales quantity, the
greater the one-time hot-sale index. 7/ is a decimal between 0 and 1.

S
ist . igt
P Crmax — Min Zi5,613|u/\ Crmax
- | . (15)
s igt . igt
max ZiErGIB\UA Cnax — 1N Zis,GIB\UA Crmax

It is similar to the ReRec-ASI approach that this research considers the ReRec-AUSI
method by adding one-time hot-sale index to the user-KNN recommendation algorithm.
However, as users in AUSI have unstable interest, this research recognizes the similarity
by reversing it from 1, and then multiplying by the cumulative purchase amount of other
users for item #s. The improved similarity can pledge that not only the recommended items
were purchased by similar users, but also are not always recommended. This is in line
with the characteristics of unstable purchase interest of users in AUSI. Moreover, combined
with the one-time hot-sale index, the improved similarity will further better the hit rate
of recommended items. The Ef;ril function of ReRec-AUSI is established as Equation (16),
where qik, ;. is the cumulative purchase quantity of item is by user uy at time t. sim (uy, uy),

is the similarity between user 1y and user uy at time t based on KNN algorithm. Tits is the
one-time hot-sale index at time t of item i;.

R,.=Y e € Uy q;k,is * (1 — sim (g, up),) + T (16)
is € IgluA

4.3.3. Model of ReRec-TASI

The overall interests of users in IASI remain inactive, but they purchase items in I4|Up
of their stable interest. This research improves the algorithm upon repurchase cycle of
items. Especially, it is similar to the behavior of users in ASI in that when a user has just
purchased an item the possibility of repeating the purchase immediately is very low, but, as
time goes on, with the user running out of the item, he/she is more likely to make repeated
purchase. However, as the users in IASI remain inactive, the proposed ReRec-ASI for active
users will be invalid for item recommendation in IASI, and the similarity based on users
is unreliable. For this reason, this research prioritizes the item-KNN recommendation
algorithm by adding a time incentive factor. Considering the characteristic of users in
IASI, it assumes that the trajectory of their purchasing interest conforms to the Eibinghaus
forgetting curve [29] and the interest declines over time. So, similar but different from the
time incentive function in ReRec-ASI is that the principal of function segmentation of time
incentive factor wj, (#+"s) of ReRec-IASI is the same, but is improved by the Eibinghaus
forgetting curve, and is a periodic piecewise exponential function. The model of the time
incentive function is as shown in Equation (17).

,M Upls Ugis Uls is
Wy <t”ki5> - - 1, ‘0 Ui ’1?[}“ S ! i < thst N f? A
s k'S ,tks+D¢TlS§fllk1s<tk5

last
T

(17)

last last+1

1—e"

Here, t}lak;; = t;‘ak;; + T's, T’ is the repurchase cycle of item 7s. T’ is the best time to
Uls

recommend from time ;"> to the next purchase time #,
and « € (0,1). o is the forgetting rate, and o € (0,1).
To be specific, as users in IASI have stable purchasing interest in items and obvious
repeat purchase behavior, this research considers a periodic time incentive factor to item
recommendation in IAS], i.e., the time incentive factor according to improved Eibinghaus

forgetting curve changes with the repurchase cycle. In particular, if the last time user
1ils
ast’

Uyis

wst1- Where o is a lead-time factor

uy purchases item i is time #*;, generally he/she will purchase item i; repeatedly at

150

Mathematics 2022, 10, 208

time £ 1 T, ie., {5 When the recommendation time is s € [tukis fids ocTi5>,

last last+1" last’ “last
it is very unlikely for user u; to make a repeat purchase. For this reason, a negative
[kl 7[“1(1‘5
time incentive factor —e 7" should be considered in the recommendation algorithm.

However, when the recommendation time %= is close to the next time of repeat purchase

U ls Upis Ujls is (Ukls ap s .
tasie1, Where £k € [st T, tlast+1)’ it is very likely for user 1, to repeat purchase

Upis Upls
item i, so a positive time incentive factor 1 — e*% should be considered in the
recommendation algorithm. This time incentive process is also carried out periodically
with repeated purchase.
Next, it uses cosine similarity to calculate the similarity between items. The similarity

between item is and item iy at time ¢ is shown in Equation (18).

is * is/

sim(is, iy), = Tis T 1 ig ||

(18)
where i, iy are the vectors of historical purchase records of item is and item iy before time

t, respectively. So, the I?fl;{ function of this kind of items is established as Equation (19).

R’f:krtt = Zisreb\\ug qtukis/ * sim (is, iy) + Xuyi, W (tukis) +(1- Xuyiy)Wy (tuk/is) (19)

Here, is the cumulative purchase of item iy by user iy at time t. sim(is, iy) ; is the

t
qllki5/
similarity between item i; and item iy at time t. wy, (#4) is the time incentive factor when

user 1y purchases item 75 at time ¢. If user u; did not purchase item is before time ¢, this
research uses wy, (#'¥ if) to incentivize the recommendation process, where wy, (¢ is) is the

time incentive factor by users 1y in Up except user uy. wy,(£'¥) is the average value of the
time incentive factor when user up who is not user u, purchases item i; at time £. x,,;, is a
0-1 variable and it is modeled as Equation (20).

1 if user uy ever purchased item is,

XUkis = { 0 f E;;SE s (20)

4.3.4. Model of ReRec-IAUSI

The overall interests of the IAUSI users remain inactive and they usually purchase
itemsin Ig|Up of their random interests, where the activeness of users is less than threshold
5 and the stableness of user—item interest is also less than threshold 6. Users do not have
declining repeat purchase behavior. Hence, the proposed ReRec-IASI based on declining
repeat purchase cycle of items will be invalid for item recommendation in IAUSI. For
this reason, this research considers the recommendation algorithm for the IAUSI users by
combining the item—-KNN algorithm and total hot-sale index, where it assumes that items
with higher total hot-sale index in IAUSI may be preferred by users. In particular, the total
hot-sale index of item i, denoted by (plt-;, refers to an index that is the largest total sales
quantity before time t of item i;, after the range standardized calculation. The calculation
of (pL is as in Equation (21), where C! is the largest total sales before time ¢ of item i,

max Y, e C+'" is the largest C' among all the C*' of items in Ig|Up, and minY;,c; C*
is the smallest C's* among all the C's! of items in Ip|Up. The bigger the largest total sales
quantity, the greater the total hot-sale index. (pfs is a decimal between 0 and 1.

IR it
C' —min Y e pyu, C

it . it
max Y erguy € —minyy ey C's

9l = (1)

Similar to the ReRec-IASI approach, this research considers the ReRec-IASUI method
by adding an incentive factor which is a hot-sale index to the item—KNN recommendation

151

Mathematics 2022, 10, 208

algorithm. However, as users in IAUSI have unstable interest, the research recognizes
the similarity by reversing it from 1, and then multiplying by the cumulative purchase
amount of other users for item i;. The improved similarity can show not only that the
recommended items were purchased by similar users, but also that the recommended items
are diverse. This is in line with the characteristics of unstable purchase interest of users
in IAUSI. Moreover, combined with the total hot-sale index, the improved similarity will
further increase the hit rate of recommended items. The ﬁ;ﬁ function of ReRec-IAUSI can
be formed as Equation (22). &

RLL.: = ES/E slUs q;k,.s, % (1—sim(is, iy),) + ¢}, (22)

where ‘72,{1‘;, is the cumulative purchase of item iy by user uy at time t. sim(is, iy), is the

similarity between item is; and item 7y at time f. (PL is the hot-sale index at time ¢ of item i;.

5. Experiments
5.1. The Dataset

The dataset used in this paper comes from a community e-commerce platform T-app,
with 11,350 purchase records from June 2017 to August 2019. It contains 1064 users and
137 kinds of items. The characteristics of each record include user ID, item 1D, purchase
time, purchase quantity, price, payment method and other attributes. Specifically, the data
from June 2017 to April 2019 (10,343 records) are used as the training set, and the data
from April 2019 to August 2019 (1007 records) are used as the test set. The user—item
recommendation models are trained on the training set, and are tested on the test set.

The purchase behavior of users on the T-app platform has obvious characteristics of
repurchase. For instance, by analyzing the data of a time phase, it is found that among
955 users who have made purchases, 58.74% have repeat purchases. In Figure 3, it can be
seen that the total repurchases of 23% of repurchase users is larger than 15. The average
repurchase time of repurchase users is 3.61. Among the repurchase users, 10.33% repurchase
the same item more than six times. In an extreme case, it is found that one user has
repurchased the same item up to 43 times under the investigated time duration. In Figure 4,
it can be seen that, among all the types of item (105 types), 78.10% (82 types) have been
repurchased by users, and in 17% of the repurchased items, the total number of times
repurchased by users is more than 120.

Repurchase Times

- times5

. S<times=10
10<time=15
15<time

Non-repurchase Users |Repurchase Users

Figure 3. Proportions of repurchase users.

152

Mathematics 2022, 10, 208

\Repurchase Times

. times5

. S<time=10
10<time=15
15<time

31%

44.1% 10%
on-repurchased Items Repurchased Items

55.9%

Figure 4. Proportions of repurchased items.

5.2. Experimental Setup

In the traditional collaborative filtering recommendation, the user—item score matrix
is usually used as the original data for the recommendation calculation. This paper adopts
offline experiments for verification, and the user’s cumulative purchase is used as the score.
First, according to the user classification model, the user-item is classified into four cate-
gories: active users with stable interest, active users with unstable interest, inactive users
with stable interest and inactive users with unstable interest. Then, the recommendation
calculation is carried out for each category, and the improved recommendation algorithms
for active users and inactive users are evaluated respectively. The results are then compared
with that of the traditional CF, SVD, SVD++, and NMF algorithms.

The repurchase cycle refers to the time interval between the nth and the (1 + 1)th
purchase of item is by user u;. For an item, the repurchase cycle of different users at the
same time period is different, and that of the same user at different time periods is also
different. So, if the items’ repurchase cycle is calculated by each user by time, it could be
highly random and prone to overfitting. Therefore, for the active users’ stable purchase
behavior, the average repurchase cycle of the top three users in purchase quantity of a
certain item is used as the repurchase cycle. For the items included in I4|Up, as the overall
interest of users is inactive, the repurchase cycle of the user who purchases the largest
quantity of an item is regarded as the repurchase cycle of this item. Examples of repurchase
cycle for some items included in I4|Uy4 are shown in Table 2 and for some items included
in I4|Up in Table 3.

Table 2. Repurchase cycle of typical items included in I4|Uy, .

Item ID Repurchase Cycle (Days) Name
2 14.07 zY
38 24.65 TB-Mo
61 21.25 TB-Th
68 14.84 ZQB-F
69 20.37 ZYB-We
73 15.51 HB-We

153

Mathematics 2022, 10, 208

Table 3. Repurchase cycle of typical items included in I4 |Up.

Item ID Repurchase Cycle (Days) Name
2 10 zY
38 16 TB-Mo
61 24 TB-Th
68 12 ZQB-Fr
69 14 ZYB-We
73 11 HB-We

In the experiments, each type of user behavior model can produce a corresponding
item recommendation list. After sorting in descending order according to the purchase
possibility, the recommended items can be selected according to the top N method. N,
is the number of active users and N(y;,) is the number of inactive users, and they can be
expressed as Equations (23) and (24), respectively.

Ny = Niajua) TNigjug) (23)

Niuy)= Nityjug) +Ni1glup) (24)

Here, N(j,u,) is the recommended item quantity from items included in I4|U4.
N(11ts)r Ni14up) Nii|ug) are similar in meaning to Ny, 1) So, it is easy to discover
that the recommendation list of active users is composed of N(j, |, stable interests and
N(14|u,) unstable interests. Similarly, the recommendation list of inactive users is composed
of Ny, |uj) stable interests and Ny, ;) unstable interests.

Considering the actual situation of T-app, its operators should select the best combina-
tion of items in different user—item classifications for recommendation. Hence, here this
research uses the grid search method to test the models. Firstly, let the total number of
recommendation items be less than the number of all items, N4y, for each type of user.
Both the number of stable items and unstable items should be less than Nj;,,. That is to
say, it has constraints (25) and (26). In the test experiment, Ny, is set as 25. Secondly,
with constraints (25), N(y;,) has multiple combinations of N(j,i7,) and N(j,ur,), and it
is the same as N(uB)- For instance, when the total number of recommended items Ny
is 5, (N(IA\UA)r N(IB\UA)) can be able to (0,5), (1,4), (2,3), (3,2), (4,1), (5,0). It can select the
optimal combination among the six combinations as the recommended combination when
Ny =5

0 S N(1A|UA) S Nmux
0 S N([B‘UA) S Nmax (25)
0= Nigyjus) + Nigjuy) < Noax

0= N1y jup) < Nimax
0 < Niiyjup) < Nmax 26)
0< N(IA‘UB) + N(IB\UB) < Ninax

5.3. Evaluation Metrics

Three evaluating indicators are used to gauge the algorithm performance, precision
(Pre), recall (Rec) and F-measure, defined in Equations (27)—(29). Precision is defined as the
ratio of items that users like to all recommended items in the recommended list. Recall is
defined as the ratio of the items that users like in the recommended list to all the items that
users like in the system. Generally, precision and recall must be used at the same time to
fully evaluate the quality of the algorithm. Some researchers have proposed an indicator
called F-measure that comprehensively integrates the precision and the recall. Therefore,

154

Mathematics 2022, 10, 208

the evaluation indicators used in this paper are precision, recall, and F-measure to measure
the precision of item recommendation. The three expressions are shown as (27)—(29).

TP
Pre = TP LD (27)
TP
Ree=Tpr N @9
2% P R
F — measure = =~ 12X Re€ (29)

Pre + Rec

Here, TP is the number of items that have been recommended and purchased; FP is
the number of items that are recommended but not purchased; and FN is the number of
items that have not been recommended but purchased.

5.4. Experimental Results

Figure 5 shows the comparison results of the proposed ReRec algorithm on active users
(i.e., the combination of ReRec-ASI and ReRec-AUSI) compared with four baseline methods,
traditional User CF, SVD, SVD++ and NMF algorithms. It sets w = 1, and N, € [5,25].
It can be seen from Figure 5 that, on the purchase prediction of active users, the proposed
ReRec algorithm performs better than the traditional User CE, SVD, SVD++ and NMF
algorithms in terms of the three evaluation indicators, precision, recall and F-measure. This
indicates that the proposed ReRec algorithm for active users in this paper improves the hit
rate of item recommendation and ensures the precision of recommendation results.

a) Precision b) Recall

Precision
Recall
2

e
“7'¢. -
P

T T T T 0o u
s 10 15 » b s 10 15 » b}

¢) F-measure Nw,

—— This paper

—e— Traditional User_CF
+— SVD

0] eeeoe e eI Tt oo s000e <~ SVDH

ol —+— NMF

F —measure

Nw.y

Figure 5. The comparison results of the proposed ReRec algorithm (the combination of ReRec-ASI
and ReRec-AUSI) and four baselines on active users.

Figure 6 shows the comparison results of the proposed ReRec approach with the
baselines on inactive users (the combination of ReRec-IASI and ReRec-IAUSI). It sets the
parameters & and ¢ as 0.75 and 0.2284, respectively. The total number of recommendation
items of N, is the same as N(y;,). It can be seen that, in the purchase prediction of
inactive users, when N(;;) € [6, 25], the improved Item CF algorithm proposed in this
paper is superior to the evaluation indicators of traditional Item CF, SVD, SVD++ and
NMF algorithms in terms of precision, recall and F-measure. Because the number of item
type in the test data is relatively smaller than the number of users, the purchase prediction
performance for inactive users is not as good as that for active users. However, the purchase
prediction of inactive users based on the improved Item CF algorithm still improves the hit

155

Mathematics 2022, 10, 208

rate of item recommendation within a certain range, and also ensures a higher precision of
recommendation results.

a) Precision b) Recall

ols

P
-

>SS0 aaad

010

Precision
Recall

005

000 00

¢) F-measure
o a0 —— This paper
3 ws —e— Traditional Item_CF
3 +— SVD
E olo
; —a— SVD++
Y% o0s —+— NMF

000

Figure 6. The comparison results of the proposed ReRec approach (the combination of ReRec-TIASI
and ReRec-TAUSI) and four baselines on inactive users.

The poor performance of the baselines can be explained because all ratings in the user
item rating matrix are regarded as equal, ignoring the heterogeneity of users’ interests,
i.e., user’s personalized interest and users” public interest. The SVD method, which is
derived from linear algebra, has a solid mathematical foundation in matrix approximation.
However, it lacks a user’s preference model and an item’s preference model of the user’s
interest in the item. In the SVD++ method, a bias model and the latent vectors of the user
and the item are used to model the user’s interest in the item. Using stochastic gradient
descent to update the bias vector and latent vector of each observed rating in the user item
rating matrix can result in a large amount of computation. The advantage of the NFM
model is that the elements of latent users and item vectors can be non-negative, while its
disadvantage is that the precision of rating prediction is reduced.

In summary, none of the baselines improve the recommendation algorithms according
to different types of user behavior on the temporal horizon. Although some scholars have
added the user’s personalized behavior into the item recommendation algorithm, they
more often than not ignore user loyalty in recommendations that may drive the users’
repeat purchase. It holds that the users’ loyalty to the shopping platform and items has a
non-negligible impact on the successful recommendation of items. Following this line of
thought, this research proposes the ReRec algorithm based on user behavior classification
and item repurchase cycle. The proposed ReRec algorithm can predict the possibility of
repeat purchase in order to recommend the top N items to users and improve the user
experience of the recommendation system.

5.5. Sensitivity Analysis of Parameter w

In the proposed ReRec approach for active users, incentive factor w is an important
parameter. In order to analyze the influence of w on the recommendation process, it con-
ducts sensitivity analysis on the parameter w. Figure 7 illustrates the F-measures with
N(1,u,) and Ng|u,), when other conditions are fixed and w varies. The following conclu-
sions can be drawn from Figure 7. When w € [0,5], for N(;, |,y < 10 and Ny g,y < 15,
the F-measures with various combination of N(;, ;) and Ny,) are better than that of
other conditions.

156

Mathematics 2022, 10, 208

a) W=0 b) w=I c) w=2

> o
P
a8

measure

D
————
2 =
I
F—measure

s s
2z
F-

Figure 7. The F-measures of different values of w.

Figure 8 illustrates the F-measures with incentive factor w given N(;;,) = 3. It can
be seen that, with the value of w increasing in [0,5], the value of F-measure first increases
and then decreases. When w > 5, the values of F-measure are kept stable. Therefore, the
research further analyzes the evaluation indicators with w € [0, 5].

e o @°
W B s
®x S B
L L L

0.36 4

F — measure

0.34 4

0.32 4

Figure 8. The F-measures for incentive factor w.

Figure 9 illustrates the evaluating indicators (precision, recall and F-measure) with
the total recommended quantity N;,) when w € [0,5]. It can be seen that when Ny,
increases in the range [0,5], the variation trend of precision is relatively unstable. In
comparison, the recall and F-measure go up firstly and then go down. While Ny;,) increases
in the range [5,25], the precisions gradually decrease, while the recall increases. As a result,
the F-measures decrease. It is evident that when N(U N 7, the performances of three
evaluating indicators at w = 1 are better than that at other values of w. Therefore, the
ReRec algorithm should be used with the setting as w = 1.

157

Mathematics 2022, 10, 208

Precision

Recall
< o o <
o % 5 Z

a) Precision b) Recall

Yy,

Ny, v
08 W=0
g — W=l
§ 06 —— W=2
—_— W=3
€ 4
| —