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It is recognized that many real-world problems can be interpreted and formulated as
optimization problems. This feature has fostered the development of research studies aim-
ing to design and implement efficient optimization methods, able to address the increasing
complexity of the applications that are intended to be solved. These research studies have
mostly followed two main axes.

The first one focuses on the theoretical development of advanced solution strategies
through the perspective of tackling problems of increasing complexity. For instance, mul-
timodal objective functions, highly constrained search spaces, single vs. multi-objective
problems, optimization of stochastic systems, among others. In this matter, thanks to both
cutting-edge mathematical tools and the increasing power of computational hardware,
exact solution methods (in general based on mathematical programming) now enable
solving large-size intricate problems. However, many problems have also required the
implementation of approximated, heuristic or metaheuristic techniques, which are not
affected by the mathematical properties of the tackled problem but, on the other hand,
are unable to guarantee result optimality. Within this class of approximated optimization
methods, evolutionary algorithms occupy a relevant part of the devoted literature.

On the other hand, a great effort has also been made towards developing problem-
devoted techniques that aim to efficiently find high-quality solutions to specific applications
drawn from a wide spectrum of areas (engineering, social sciences, biotechnologies, fi-
nances, etc.). The corresponding studies do not usually start designing a new solution
strategy from scratch, but rather reuse techniques developed in general frameworks and
adapt their working mode to the specific feature of the problem that is being tackled. As
a consequence, it is necessary to take advantage of the problem structure, conditioning
factors or particular characteristics of the considered application for an efficient solution
technique to be built.

The Special Issue proposed here illustrates both types of studies. Indeed, as shown in
Table 1, 5 out of the 16 published articles tackle the issue of the theoretical development
of optimization techniques or the formulation of academic operations research problems.
Among these theoretical papers, two of them propose novel mathematical formulations
for academic problems, while the other three focus on the development of evolutionary
algorithms as a solution technique. The remaining 11 papers propose original and ad hoc
solution strategies for different applications. Table 1 provides an overview of the topics
addressed in these papers. It is worth highlighting that among these 11 studies, a majority
of them use evolutionary algorithms, while four are based on mathematical programming.

The papers will be explained in detail, beginning with the theoretical studies. Yuraszeck
et al. [1] propose a novel heuristic procedure to solve the fixed group shop scheduling
problem, in which the tasks corresponding to each job have been assigned to stages, and
the tasks of each stage share a set of machines. The authors introduce an algorithm that
uses both a decomposition-based approach, as well as a constraint programming solver,
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allowing for the inclusion of extra constraints found in real-life instances. To test the
performance of the proposed approach, computational tests are carried out to compare
the algorithm with some available solvers; the former obtained the best solution in most
instances. The heuristic procedure is also used in a Colombian automotive company case
study, in which not only is the scheduling of jobs optimized, but also information about
bottlenecks is easily obtained.

Table 1. Classification of the papers included in the Special Issue.

Type Application
Mathematical

Modelling
Evolutionary
Algorithms

Theory Scheduling [1] [2]
Mathematics [3] [4,5]

Application
Distribution and Commerce [6] [7,8]

Energy [9,10] [11–14]
Physics and Materials [15] [16]

In Zapotecas et al. [4], the authors focus on one of the main paradigms employed for
handling multi-objective optimization problems (MOPs) with evolutionary algorithms,
which use hypervolume as a performance indicator governing the selection operator. A
well-known drawback of this strategy is the complexity of the hypervolume computa-
tion when the number of objectives increases. This paper uses the property regularity of
continuous MOPs, as well as the locality property of the hypervolume in order to reduce
the number of computations of this indicator within a novel and efficient multi-objective
evolutionary algorithm (MOEA). Three academic applications, with a number of objectives
ranging from 4 to 7, are solved with the new algorithm, and the numerical experiments
highlight the benefits of the proposed methodology for identifying efficiently better ap-
proximations of the Pareto front (when compared with classical MOEAs based on the
hypervolume indicator).

In Ambrosino and Cerrone [3], a variant of the shortest path problem is proposed,
considering both negative and positive costs at the edges of a graph. The aim consists
of obtaining the Hamiltonian cycle such that the sum of the costs associated with each
edge on the chosen path is close to 0. The resulting problem, called the cost-balanced
path problem, is proved to be NP-hard since it can be reduced to the Hamiltonian path
problem, which is NP-hard. Different versions of this problem are also introduced, so
that practical conditions can be included through the appropriate constraints, and their
complexity is also studied. Finally, computational experiments empirically confirm the
problem complexity and suggest the need for heuristic or metaheuristic solution techniques
to address large-size instances.

Belazi et al. [5] introduce an improved version of the sine–cosine algorithm (SCA),
which is a population-based metaheuristic recently developed in the area of continuous
optimization. The modifications proposed consist of the introduction of a new equation
within the algorithm’s variation operator, leading to an enhanced intensification effect,
which promotes convergence towards the best solutions found. In addition, several paral-
lelization strategies are implemented and tested in order to identify the best performing
one. Finally, the new technique proves to significantly outperform the original SCA when
both versions are compared over a benchmark, including 30 classical unconstrained text
functions and several constrained engineering problems. Additionally, the enhanced SCA
obtains very good results when its performance levels are compared with those of a set of
state-of-the-art algorithms, such as differential evolution or grey wolf optimizer.

In the last theoretical work of this Special Issue, Wang et al. [2] address the multi-skilled
resource-constrained project scheduling problem, which combines a typical scheduling of
activities with the skill assignment of resources, taking into account uncertainty in resource
availability. The authors formulate the corresponding mathematical model and, given its
complexity, propose a genetic algorithm combined with priority rules. A computational
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experiment is performed comparing dynamic, random and static scheduling, showing the
effectiveness of the first option. These results can help project managers in the selection
of resources at the beginning of a project and the reinforcement of resources during the
execution, especially under uncertain contexts such as COVID-19.

Regarding the 11 studies devoted to the solution of specific applications, Wu et al. [6]
present a novel approach for algorithms devoted to community commerce recommendation
for repeated purchases. The authors attempt to fill in the perceived gap in these types of
purchase recommendation algorithms by accounting not just for past customer behaviors,
but also for the repeat purchase behavior of different types of customers. The method
uses a divide-and-conquer strategy, separating users into four categories: active users with
stable interest, active users with unstable interest, inactive users with stable interest and
inactive users with unstable interest. The proposed algorithm is tested on a real dataset and
outperforms well-known recommendation algorithms by at least 13.6% in all categories,
showing an even greater performance among active users.

Abdelhamid et al. [11] propose an adaptive protection scheme, used to overcome the
coordination problems presented by protection relays. The adaptive protection scheme
presented is based on both original and modified heap-based optimization. The algorithm
proposed is tested using the IEEE 8-bus and the IEEE 14-bus test systems, obtaining better
results than the existing algorithms. Specifically, the adaptive protection scheme is able to
more reliably investigate the benefits of both directional overcurrent relays and distance
relays. Additionally, the modified heap-based optimization makes the algorithm more
effective at solving relay coordination.

Reyes-Barquet et al. [12] present a multi-objective genetic algorithm, which, combined
with a TOPSIS analysis for multi-criteria decision making, is applied in the design stage of
hydrogen supply chain networks. A specific case study is selected, where the hydrogen
is obtained using energy generated by the biomass waste produced by Mexican sugar
factories. The algorithm uses both the maximization of profit and the minimization of
greenhouse gas emissions as optimization objectives. The results of the study highlight the
benefits that could be obtained from this unorthodox energy source, as the case study was
validated by several economic metrics, such as an internal rate of return of 21.5%, while
remaining environmentally respectful.

In Chesalin and Pishchalnikov [15], the optical properties of pigment–protein com-
plexes (PPCs) are investigated due to their major relevance in the study of photosynthetic
mechanisms of living species. These properties and, in particular, the spectral response of
PPC can be assessed either experimentally or through a simulation. However, the simula-
tion process uses a set of input parameters that should be appropriately tuned in order to
produce valid results. In this study, the differences between the experimental and simulated
spectral responses of different PPCs are minimized through an evolutionary algorithm,
differential evolution (DE), which has proved to perform very well for real-parameter
optimization problems. Ten different DE strategies are implemented and their performance
levels are compared, showing that the DE/rand-to-best/1/exp version consistently obtains
the best results, although the authors recommend the use of self-adaptive implementations
to improve the convergence rate.

Domenech et al. [9] deals with the design of autonomous electrification systems in
Ecuador’s amazon region (RAE), which is an isolated area with communities scattered
across the rainforest. This situation involves great practical and economic difficulties
for the development of electrification systems promoting the access to power for rural
and indigenous local populations. This work introduces a mathematical model for the
design of stand-alone rural electrification systems based on photovoltaic technologies,
including both microgrid or individual supply configurations. The corresponding mixed
integer linear programming (MILP) problem considers economic, technical and social
aspects, and it is used to design electrification systems (equipment location and sizing and
microgrid configurations) in three real communities, providing relevant insights regarding
RAE electrification.

3



Mathematics 2023, 11, 2229

Another original application is presented in Qin et al. [7], which tackles the manage-
ment of a high-speed railway in China. In particular, the problems of ticket pricing, train
stop planning and seat allocation are all addressed in this study. A mathematical model is
formulated, with the aim of maximizing the total revenue of the railway company while
minimizing passengers’ time loss. Due to the complexity of the resulting MILP problem, a
simulated annealing algorithm is adopted as a solution technique, with two nested neigh-
borhood structures; the first one deals with the stop plan, and the second focuses on ticket
pricing and seat allocation. A solution using the proposed methodology is provided for
the case study that is presented in this study, allowing for significant improvements of
the chosen performance criteria when compared with those observed in the real system
operation mode.

Galleguillos-Pozo et al. [10] develop a fuzzy MILP model to design wind–PV–battery
electricity access projects for remote communities of developing countries. It is hard to
estimate the electricity needs of the population in those areas, so fuzziness is introduced to
balance the project cost vs. the demand supplied within a range of predefined values. Two
approaches are considered: maximizing the general satisfaction of the whole community
and maximizing the satisfaction of the least satisfied consumption point. The model is used
to design electricity access projects in Ecuador, Mexico and Peru. The results achieve a
generally better balance between the project cost and the electricity supplied than those
that would have been obtained without using a fuzzy MILP model.

In Martínez et al. [16], a multi-objective and multi-scale optimization procedure is
designed to improve the structure performance of eco-composites. As objectives, the shelf
stiffness and the material cost and weight are optimized by modifying the configuration of
the structure at macro and micro levels. The results highlight the importance of considering
both the micro and macro structure when designing composite materials. An illustrative
example is shown for the design of the cabin stowage bin located above the seats in
airplanes. This procedure can be helpful for optimizing the design of eco-composites in
many engineering structures, reducing the environmental impact.

Grisales-Noreña et al. [13] propose a mixed integer non-linear programming model
to minimize the yearly operation costs of PV generators integrated into DC grids. The
problem is solved through a primary—secondary methodology. First, the primary problem
is addressed to locate and size the PV modules using a discrete-continuous version of the
crow search algorithm. Second, the secondary problem searches the objective function
value through the successive approximation power flow method. Test instances are used to
validate the proposed methodology, which better performs in terms of applicability and
effectiveness in comparison to other literature approaches; lower operation costs of the
solution and computation times to solve the problem are achieved.

Park et al. [14] focus on the energy disaggregation problem, which consists of esti-
mating the energy consumption of each device given the aggregated measure from the
smart meter. In this perspective, the authors develop a multi-objective model that opti-
mizes sparsity and disaggregation, subject to constraints related to equipment operational
characteristics. The model is solved by means of an evolutionary algorithm. The results
are compared to those obtained using different formulations from the literature, achieving
better performance either on the appliance level or on the disaggregation accuracy.

Finally, Gutiérrez-Bahamontes et al. [8] identify the complexity of designing pump
stations in real-size water distribution networks. To address this gap, they propose reducing
the problem size through a preprocess where the range of flows that every pump station
can manage is calculated, which leads to the construction of infeasibility maps. Then,
the problem is optimized by means of a pseudo-genetic algorithm. They later perform a
computational experiment showing that the preprocess effectively reduces the solution
space, significantly improving the computation time and achieving better solutions in terms
of the objective function value obtained.

Finally, it is worth providing a general overview of the Special Issue in terms of the
geographical origin of the institutions of the papers’ authors in this Special Issue. Figure 1
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illustrates the fact that the most represented institutions are from Spain, followed by China
and Latin American countries (20, including Mexico, Chile and Colombia). Additionally, it
can be mentioned that the mean number of authors per paper is 4.3.

Figure 1. Geographical distribution of the institutions of accepted papers’ authors.

In conclusion, the resulting mixture of methods, algorithms and applications for
the treatment of complex optimization problems presented in this Special Issue, either
through mathematical tools or metaheuristic algorithms, is expected to contribute to the
development of research in this area. We also believe that the new knowledge acquired
here, as well as the applied results are attractive and useful for young scientists, doctoral
students and researchers from various scientific specialties.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This work addresses a particular case of the group shop scheduling problem (GSSP) which
will be denoted as the fixed group shop scheduling problem (FGSSP). In a FGSSP, job operations are
divided into stages and each stage has a set of machines associated to it which are not shared with
the other stages. All jobs go through all the stages in a specific order, where the operations of the job
at each stage need to be finished before the job advances to the following stage, but operations within
a stage can be performed in any order. This setting is common in companies such as leaf spring
manufacturers and other automotive companies. To solve the problem, we propose a novel heuristic
procedure that combines a decomposition approach with a constraint programming (CP) solver
and a restart mechanism both to avoid local optima and to diversify the search. The performance
of our approach was tested on instances derived from other scheduling problems that the FGSSP
subsumes, considering both the cases with and without anticipatory sequence-dependent setup
times. The results of the proposed algorithm are compared with off-the-shelf CP and mixed integer
linear programming (MILP) methods as well as with the lower bounds derived from the study of
the problem. The experiments show that the proposed heuristic algorithm outperforms the other
methods, specially on large-size instances with improvements of over 10% on average.

Keywords: scheduling; fixed group shop; group shop; constraint programming

1. Introduction

In the academic world, traditional scheduling problems such as the flow shop schedul-
ing problem, FSSP, the job shop scheduling problem, JSSP, or the open shop scheduling
problem (OSSP) have been widely studied (see [1] for a general reference on scheduling
problems). However, these scheduling problems may not cover all the requirements for
specific manufacturing settings [2]. In this context, the group shop scheduling problem
(GSSP) emerges as a generalized shop scheduling problem that includes, among others, the
OSSP and the JSSP as special cases [3]. Due to its characteristics, the GSSP is a more flexible
model with which address the requirements of multiple challenging real-life scheduling
problems often found in the manufacturing industry.

In this paper, we consider a particular case of a GSSP that we denote as fixed group
shop scheduling problem (FGSSP) [4]. In a fixed group shop environment, the operations
of each job have been divided into stages, and the operations corresponding to each stage
share the same set of machines. All jobs must proceed through each stage and perform the
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associated operations in the stage before proceeding to the next stage. Therefore, the FGSSP
generalizes both OSSP and FSSP, and contains common features from many industrial
environments in which manufacturing is organized in multiple sequential OSSP stages. By
contrast, the classical GSSP formulation contains the OSSP and the JSSP as special cases, as
each job may have a different route through the stages.

An example of a FGSSP can be found in mechanical workshops where routine car
maintenance operations are performed. The number of operations for each job (car) and
their processing times depend on different factors as the odometer count or the time
between maintenances. For each car the set of maintenance operations can be divided into
stages and the tasks to be performed on each stage must be completed before proceeding
to the next stage (i.e., change the air filter, change the motor oil, etc.) with an ordering of
stages predefined by the layout of the workshop, but there is no specific order in which
operations within a single stage are to be performed (i.e., they have no relationship between
them). Additionally, some setup operations may be required between jobs performed in a
single machine, and thus sequence-dependent setup times are to be expected.

Another example of the FGSSP can be found in the manufacturing process of leaf
springs. Each leaf requires several punching and forming operations that can be performed
in any order. Once all these operations have been performed, the leaf is transferred to the
heat treatment, sandblasting, painting, and assembly workstations. In the computational
experiments section, see Section 6, we present a case study taken from a Colombian
automotive company that falls within this specific example of application.

As in any other scheduling problems, multiple objective functions may be considered.
In this work, we consider minimizing the total flow time.

To the best of our knowledge, the FGSSP has not been studied before even if the
model has practical applications. Due to its computational complexity, it subsumes several
well-known hard-to-solve problems. This work presents a novel ad hoc heuristic approach
to solving the FGSSP with and without anticipatory sequence-dependent setup times under
the total flow time minimization objective. According to the three-field notation proposed
in [5], these problems can be denoted as the FGSSPs | Sjik | ∑j Cj and the FGSSPs || ∑j Cj,
respectively.

The proposed heuristic relies on decomposing the problem into smaller subproblems
and solving each subproblem through constraint programming (CP) [6] for a fixed amount
of time. The heuristic can be seen as a hybrid metaheuristic [7] or a matheuristic [8]
as it combines two optimization solution methods (i.e., a heuristic and an exact method
approach). To test the performance of the decomposition approach, we performed extensive
computational experiments with small, medium and large instances. We report the results
of a computational study in which we compare our approach with off-the-shelf state-of-the-
art CP and mixed integer linear programming (MILP) approaches. The results show the
validity of our decomposition approach over a traditional method providing significant
improvements over commercial solvers, specially for large instances.

The remainder of the paper is organized as follows. Section 2 reviews the literature on
problems with similar characterstics to the FGSSP. Section 3 introduces the FGSSP, provides
a problem definition, and gives an illustrative example of it. Section 4 puts forward a MILP
and a CP formulation for the problem, and provides some lower bounds on the optimal
objective value. Section 5 describes the decomposition-based procedure used to solving
the problem, including the generation of initial solutions, the local search phase, and a
shaking procedure designed to escape from local optima. Section 6 provides the results of
the computational experiments conducted to test the method, as well as an industrial case
study. Finally, Section 7 concludes and provides some possible research lines.

2. Literature Review

Scheduling corresponds to the allocation of scarce resources (i.e., machines) to perform
tasks (i.e., jobs) over time [1]. Due to its generality and broad use, scheduling has become
an important area within the operations research (OR) and operations management (OM)
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communities that focus their contributions on the development of decision-making methods
to optimize one or multiple goals.

Among the scheduling problems, we focus our attention on a family known as “shop”
problems. Among the different classifications of “shop” problems we are interested in a
classification based on (i) their routes, that is, the path that the jobs must follow on the
machines and, (ii) the sequence of operations that must be processed in each machine.
The most common models in the literature consider that jobs follow a unique route (the
FSSP), each job has its own route (the JSSP), or arbitrary routes (the OSSP)—but other
cases exist. For these cases more elaborate models are needed to cope with different
scheduling conditions.

An early example of these models can be found in [9]. In [9] the authors propose a
hybrid model denoted as the mixed shop scheduling problem (MSSP) problem in which
some jobs have their own predefined routes (i.e., as in a JSSP) and some jobs do not (i.e., as
in an OSSP). Another example of alternative route schemes is the group shop scheduling
problem (GSSP), also known as the stage shop problem [10]. The GSSP generalizes the
MSSP and considers a set of distinct machines that perform operations on the jobs. Each
stage must perform a subset of operations associated to the jobs and can perform these
operations in any order within the stage, but the stages to be must be processed in a
predetermined order. Note that the MSSP is a special case of GSSP, in which each stage has
one operation or there is only one stage that contains all operations [11].

We now proceed to review the literature on the GSSP, as well as some works that make
use of CP approaches within the scheduling literature.

The literature of the GSSP is abundant and mainly focuses on the makespan mini-
mization objective [3,12–19]; other optimization objectives for the GSSP have been less
studied. An example of other objectives can be found in [20], where the authors propose an
application of a chance-constrained version of the GSSP with a total weighted completion
time objective.

Sequence-dependent setup times, as well as transportation times have also been
studied within the GSSP literature, [13]. In [21] the authors considered the use of a robot to
transport material through the multiple processing stages in a GSSP environment.

Additionally, other publications have addressed stochastic and/or fuzzy extensions
for the GSSP [12,13,20,22,23].

Regarding solution procedures, most of the literature focuses on metaheuristic ap-
proaches. Among them, genetic algorithms [13,18], Tabu Search [11,16,18,24], artificial
bee colonies [17], iterated local search [24], Simulated Annealing [24], evolutionary algo-
rithms [24], multi-start multi-level evolutionary local search [15] and ant colony optimiza-
tion [3,24] are the most common. According to [24] the Tabu search showed the best results
among the compared methods (an ant colony optimization, an evolutionary algorithm, an
iterated local search, and a simulated annealing approach).

Exact methods, such as constraint programming (CP), have also been used to solve
scheduling problems but, to the best of our knowledge, they have not been used to address
the GSSP or similar problems. We review the works on exact methods for shop scheduling
problems that are relevant to the method proposed in this work.

In [25] the authors proposed a CP approach to solve the JSSP, and in [26] the authors
propose a CP approach to solve the OSSP. The approach proposed in [26] uses a new
upper bound heuristic combined with constraint propagation and a branching technique
to solve the problem. In [27] the authors proposed MILP and CP models to solve the online
printing shop scheduling problem (OPSSP). The OPSSP can be seen as a JSSP where there
are multiple units of some of the machines (hence, leading to a degree of flexibility within
the sequence of operations for each job). The numerical experiments in [26] show that the
CP method outperforms the MILP approach by a large extent. In [28], the authors used
a CP model as their benchmark to compare the performance of a variable neighborhood
search (VNS) for the OSSP with travel/setup times. Their VNS makes use of a probabilistic
learning mechanism to self-tune a parameter that balance the generation of active or non-
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delay solutions. More recently, in [29] the authors proposed four CP formulations to
tackle four complex flexible shop scheduling problems (i.e., the no-wait hybrid flow shop
scheduling problem, the hybrid flow shop scheduling problem with sequence-dependent
setup times, the flexible job shop scheduling problem with worker flexibility and the
semiconductor final testing problem). Their experimental results report that the CP models
outperform previously proposed solution methods. Authors in [30] address the distributed
flexible job shop scheduling problem (an environment with multiple factories in which
each factory is a flexible JSSP) comparing the performance of a MILP and a CP approached,
showing that the CP method outperforms the CP.

A third type of solution procedure combines exact and heuristic approaches. Such
methods are known as hybrid methods or matheuristics. In [31] the authors describe an
method that combines constraint programming with a decomposition method and use it
to solve the JSSP. Authors in [32] described a hybrid decomposition method to solve the
continuous-time scheduling problem of multipurpose batch plants where the assignment of
units to tasks is made using a MILP master problem, and CP subproblems are used to check
the feasibility of specific assignments as well as to generate cuts for the master problem.
Additionally, in [33], a hybrid method based on CP and local search is proposed in order to
solve the routing and the scheduling of feeder vessels in multi-terminal ports. The results
indicate that the the variability in solution quality provided by local search heuristics can be
decreased by combining of the local search and the CP method. In another study, authors
in [34] provided a survey of intelligent scheduling systems. The work categorizes previous
contributions according to five solution techniques: fuzzy logic, expert systems, machine
learning, stochastic local search optimization algorithms, and CP. Lastly, authors in [35]
hybridize a VNS with a CP search strategy for the OSSP with operation repetitions under a
makespan criterion, showing good performance on the tested instances.

3. The Fixed Group Shop Scheduling Problem

3.1. Problem Definition

The fixed group shop scheduling problem (FGSSP) is a variant of the group shop
scheduling problem (GSSP) in which not only jobs, but also machines are grouped into stages.

The FGSS considers a set of n jobs J = {J1, J2, . . . , Jn}, each of them consisting of a set
of non-preemtive operations oij = {Oj1, OJ2 , . . . , Ojm} that must be performed on a set of m
machines M = {M1, M2, . . . , Mm}. Each job j ∈ J must be processed by each machine and
must proceed through each stage S = {S1, S2, . . . , Ss}, wherein a subset of its operations
must be performed before advancing to the next stage. The operations of all jobs j ∈ J that
must be processed at stage S require the same set of machines.

As in the GSSP, in the FGSSP all jobs must perform an operation on each machine, and
the operations associated to a given job in a given stage can be performed in any order.
Unlike the GSSP, in the FGSSP each machine is associated to a given stage and stages are
ordered in a fixed route that all jobs perform. Consequently, when the number of machines
in each stage is 1, the GSSP becomes a job shop, while the FGSSP becomes a flow shop. The
OSSP is both a special case of the GSSP and the FGSSP in which all operations belong to a
single stage.

3.2. An Illustrative Example

Table 1 provides a small-size example with 3 jobs and 7 machines for a total of
21 operations. The table details the processing times of each operation associated to each
job in the 7 machines.

A solution to the FGSSP can be visualized through a classical disjunctive graph
representation or a Gantt chart. Figure 1a provides an arbitrary solution to the example
problem with ∑j Cj = 60, C1 = 23, C2 = 12, C3 = 24, where Cj is the completion time of job
j. The red dotted arcs in Figure 1a show the sequence at the machines and the black dotted
arcs show the groups-permutations (i.e., the route of operations for J1 at S1 is O12, O13 and
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O11 then the route within the stage is M2 − M3 − M1). A Gantt chart representation of the
solution is provided in Figure 1b.

Table 1. Processing times of the small-size instance. For every job, J1 ,J2 and J3, and machine,
M1, . . . , M7, the processing time is provided. Additionally, machines are grouped according to their
stage, S1, S2 and S3.

Stages S1 S2 S3

M1 M2 M3 M4 M5 M6 M7

J1 1 3 4 1 1 9 1
J2 2 1 3 2 2 1 1
J3 3 2 1 2 4 2 3

(a)

(b)

Figure 1. Graphical representations of a solution to the example instance provided in Table 1. (a) Gantt
chart representation of an arbitrary feasible solution for the FGSSP instance presented in Table 1
with ∑j Cj = 60. (b) Disjunctive graph representation of an arbitrary feasible solution for the FGSSP
instance presented in Table 1 with ∑j Cj = 60.

The representations in Figure 1a,b show the major characteristics of a FGSSP solution.
The disjunctive graph representation visualizes the FGSSP as a sequence of serially arranged
OSSP subproblems. Once a job finishes all operations in a stage and then job can start its
operations in the subsequent stage. The Gantt chart representation also shows the FSSP
behavior among stages. While in the GSSP, a job may have different machines in any given
stage, in the FGSSP each job has the same machines in each stage. As a result, the machines
of later stages remain idle until operations in preceding stages are completed. These
differences motivate the need to separately consider resolution procedures for the FGSSP.
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4. FGSSP Formulations and Lower Bounds

This section presents an MILP and a CP formulation for the FGSS problem with
total flow time minimization objective and anticipatory sequence-dependent setup times
(FGSSs | sjik | ∑j Cj). The section also introduces three lower bounds on the value of the
optimal objective function. The extension of both formulations for the case without setup
times is straightforward, and the changes are described after providing the models with
sequence-dependent setup times.

4.1. MILP Formulation

The formulation is an adaptation of the formulation provided in [28] for the OSSPm |
Sjik | ∑j Cj. We now proceed to define the parameters, sets, indices and decision variables
of the formulation.

Parameters and Indices:

• nbJobs: Number of jobs.
• nbMchs: Number of machines.
• nbStgs: Number of stages.
• j, k: Indices for jobs, {1, . . . , nbJobs}.
• i, l: Indices for machines, {1, . . . , nbMchs}.
• s: Index for the stages, {1, . . . , nbStgs}.
• oji: Operation associated to job j at machine i.
• pji: Processing time of operation oji.
• Sjik: Setup time of job j if it is performed immediately after job k on machine i (j �= k).
• Bis: 1 if machine i belongs to stage s; and 0 otherwise.
• Ali: 1 if machine l belongs to the stage immediately before the stage to which machine

i belongs; and 0 otherwise (i �= l).
• M: A sufficiently large number.

Decision variables:

• Cj: Continuous variable that takes the value of the completion time of job j.
• Cji: Continuous variable that takes the value of the completion time of job j at ma-

chine i.
• f js: Continuous variable that takes the value of the completion time of job j at stage s.
• xjil : Binary variable that takes value equal to 1 if operation oji is performed after

operation ojl ; or 0 in any other case.
• yjik: Binary variable that takes value equal to 1 if operation oji is performed after

operation oki; or 0 in any other case.

12
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An MILP formulation follows.

min
nbJobs

∑
j=1

Cj (1)

s.t. Cji ≥ pji ∀i, j (2)

Cjl ≥ Cji + pjl − Mxjil ∀i, j, l | i �= l (3)

Cji ≥ Cjl + pji − M
(

1 − xjil

)
∀i, j, l | i �= l (4)

Cji ≥ Cki + pji + Sjik − M
(

1 − yjik

)
∀i, j, k | j �= k (5)

Cki ≥ Cji + pji + Skij − Myjik ∀i, j, k | j �= k (6)

Cji − pji ≥ Cjl Ali ∀i, j, l|i > l ∧ Ali = 1 (7)

f js ≥ BisCji ∀i, j, s (8)

Cj ≥ f js ∀j, s = nbStgs (9)

Cji ∈ Z≥0 ∀i, j (10)

f js ∈ Z≥0 ∀j, s (11)

xjil ∈ {0, 1} ∀i, j, l | i �= l (12)

yjik ∈ {0, 1} ∀i, j, k | j �= k (13)

The objective (1) minimizes the total flow time, i.e., the sum of completion times of
the jobs. Constraint set (2) imposes that the completion time of each operation must be
larger than the processing time of the job. Disjunctive constraints sets (3) and (4) ensure
that each job is not processed in two machines simultaneously. Constraints sets (5) and
(6) consider anticipatory sequence-dependent setup times and ensure that each machine
does not perform multiple jobs simultaneously. Constraint set (7) defines that the starting
time of job j at machine i must be equal to or greater than the completion time of job j at
machine l if and only if machine l belongs to the stage immediately before the stage to
which machine i belongs. Constraint set (8) calculates the completion time of a job j in a
stage s as the maximum completion time of the job j on the machines belonging to the stage.
Constraint set (9) computes the flow time of a job as the completion time in the last stage.
Finally, constraint sets (10)–(13) define the domain of the decision variables.

Note that while we do not provide a model for the case without sequence-dependent
setup times, removing, or setting to 0 the values of, Sjik in constraint sets (5) and (6)
constitutes a valid model for the case without setup times.

4.2. CP Formulation

As in the MILP case, we develop a CP formulation for the FGSSP problem with
total flow time minimization objective and anticipatory sequence-dependent setup times
(FGSSs | sjik | ∑j Cj). The formulation makes use of several constructs that are available in
many CP modeling languages. Specifically, we use interval and sequence variables as well
as specific scheduling constraints that are available in the IBM CP Optimizer solver as it is
the one used in our our experimental tests.

An interval variable is a construct defined by two variables (the start value and the end
value of the interval) as well as a known parameter, the size, that indicates the difference
between the end and the start value. A sequence variable is a construct that encodes an
ordering of variables. Here, the sequence variables provide an ordering of interval variables
corresponding to jobs and machines.

We now proceed to describe the elements of the proposed model.
Parameters and Indices:

• nbJobs: Number of jobs.
• nbMchs: Number of machines.
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• j, k: Indices for the jobs, {1, . . . , nbJobs}.
• i, l: Indices for the machines, {1, . . . , nbMchs}.
• oji: Operation associated to job j at machine i.
• pji: Processing time of operation oji.
• Ali: 1 if machine l belongs to the stage immediately before the stage to which machine

i belongs; and 0 otherwise (i �= l).
• Ti: A transition matrix that reports the minimum delay required by any pair of jobs j,

k, to perform in machine i. The transition matrix values equal Sjik.

Decision variables:

• itvsji: Interval variables that define the start and the end of the operation of job j at
machine i. The interval variable ensures that the difference between the start and the
end value equals the processing time pji.

• jobsj: Sequence of interval variables itvsji associated to the operations of job j.
• mchsi: Sequence of interval variables itvsji associated to operations performed in

machine i.

The objective function consists of minimizing the total flow time of jobs, which is
computed using the end value of the interval variables:

min
nbJobs

∑
j=1

maxnbMchs
i=1 endO f (itvsji) (14)

where endO f () is an integer expression that reports the end of an interval variable. Con-
sequently, maxnbMchs

i=1 endO f (itvsji) reports the flowtime of job j and (14) provides the
total flowtime.

The model contains three constraint sets, (15)–(17).

noOverlap
(

jobsj
)

∀j (15)

noOverlap(mchsi, Ti) ∀i (16)

endBe f oreStart
(

itvsjl , itvsji

)
∀i, j, l | i > l ∧ Al,i = 1 (17)

Constraint set (15) ensures that each job j is processed on no more than one machine i at
any given time (i.e., since jobsj is the subset of operations associated to a job, j noOverlap()
ensures that the intersection of these intervals is empty).

Constraint set (16) ensures that each machine i does not process more than one job
j at a time. Moreover, the transition matrix Ti enforces the setup times between two
consecutive operations (the difference between the finalization of an operation and the
start of the succeeding operation must be no smaller than their corresponding values in the
transition matrix).

Finally, constraint set (17) enforces the stage condition by ensuring that the end of all
operations of any given job in a given stage must precede the start of any operation of said
job in the next stage.

As in the case of the MILP model, the proposed model can be adapted to the case
without sequence-dependent setup times by ignoring setup time values. Here, the change
applies to constraint set (16) and the transition matrix of each machine i.

4.3. Lower Bounds

We provide three lower bounds that serve as a basis for comparison of our solution
methods. Moreover, as the lower bounds relax some of the conditions of the FGSSP, the gap
between the solutions to the FGSSP and the lower bounds may help identify some sources
of complexity of the problem, see the results provided in Section 6.
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4.3.1. Lower Bound LB1

This lower bound considers that the completion time of each job must be no smaller
than the sum of its processing times at the machines. Consequently, we can obtain a lower
bound by summing the operation time of each job on each machine, see (18). We should
expect this bound to be tight when routing decisions are not important, and the stages do
not play an important role in the instances, that is, problems where it is possible to obtain
solutions without idle times.

lb1 =∑
j∈J

∑
i∈I

pji (18)

4.3.2. Lower Bounds LB2 and LB3

LB2 and LB3 both build upon the relationship of each stage of the FGSSP with the
OSSP. As each stage of the FGSSP is an OSSP instance, we can derive a general lower
bound by optimally solving (or finding a lower bound) on a OSSP instance with special
characteristics (i.e., release dates and delivery times derived from the operation times in
the remaining stages).

Consider any stage s ∈ {1, . . . , nbStgs} and divide the set of stages into three groups,
a first group with the stages {1, . . . , s − 1} that contains all stages that precede stage s, a
second group containing stage s, and a third group with stages {s + 1, . . . , snbStgs} that
correspond to the stages following stage s. Clearly, the optimal solution to the OSSP
associated to stage s is a lower bound to the objective value of the FGSSP, as it disregards
all other stages

Consequently, and to include the remaining stages into the calculation of the lower
bound, we estimate the operation times required to complete the operations associated
to these stages and associate them to the release dates and delivery times for the OSSP
problem in stage s (i.e., we estimate the minimum time unit in which the job can start their
operations in stage s and the minimum time required to finish the job once they depart
stage s).

The resulting problem corresponds to problem OSSP | rj, dj | ∑j Cj or to problem
OSSP | rj, dj, Sjik | ∑j Cj for case without or with sequence-dependent setup times
respectively, and the optimal solution, as well as any lower bound of its value is a lower
bound for the original FGSSP instance. In order to calculate the bound, we search for
a solution to the resulting OSSP model for a limited amount of time using a CP exact
solver, see Section 6, and report the optimal solution, if found, or best-known lower bound
reported by the solver when the time limit is reached.

The described method provides nbStgs different lower bounds, but we focus our
attention on two of these bounds, i.e., the bounds provided by the first and the last stage,
as they related problems are easier for the CP solver, and it is more likely that the solver
finds the optimal solution, or a better lower bound, for them.

The lower bound for the first stage, LB2, corresponds to the optimal resolution of
problem OSSP || ∑j Cj, or OSSP | Sjik | ∑j Cj for the case with sequence-dependent setup
times, plus the sum of operation times in the remaining stages, see Equations (19) and (20),
as it is easy to show that the delivery times are constant values that add to the total flow
time of the operations independently of the job they are associated to.

lb2 =lbOSSP(s=1)||∑j Cj
+ ∑

j∈J
∑

i∈I:s≥2
pji (19)

lb2 =lbOSSP(s=1)|Sjik |∑j Cj
+ ∑

j∈J
∑

i∈I:s≥2
pji (20)

The lower bound for the last stage, LB3 only contains release dates, which may play a
role on the optimal schedule of the operations as release dates change the instance where
the jobs are available. The resulting bounds correspond to Equation (21), for the case
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without sequence-dependent setup times, and (22), for the case with sequence-dependent
setup times.

lb3 =lbOSSP(s=nbStages)|rj |∑j Cj
(21)

lb3 =lbOSSP(s=nbStgs)|rj , Sjik |∑j Cj
(22)

5. Proposed Solution Method

The proposed decomposition-based approach (which we will denote as DEC) exploits
the inherent structure of the FGSSP. The structure of a fixed group sShop is similar to the
structure of a flow shop but each stage corresponds to an OSSP rather than a single machine.
This structure naturally leads to a decomposition in which each Open Shop is individually
optimized considering that the sequence of operations on preceding and succeeding stages
for each job and on each machine to be known and fixed.

While the approach does not globally optimize the problem, there are intrinsic advan-
tages of the decomposition, specifically, (1) the subproblems do not structurally differ from
the original problem and (2) the optimization of each stage allows for minor changes within
other stages (i.e., the sequence is fixed but the start time and end time of each operation
may vary to accommodate for the changes introduced within the stage under inspection).
Moreover, as the sequence of most stages is fixed, the resulting problem is smaller and,
supposedly, easier to solve through exact methods. As a result, the proposed method mixes
exact and heuristic ideas into a single procedure, a type of method usually referred to as a
matheuristic [8] within the literature.

Algorithm 1 provides an outline of the approach. The DEC algorithm creates an initial,
incumbent, solution using a constructive heuristic that solves the scheduling problem of
each stage sequentially, starting from the first stage, proceeding to the second stage and
repeating the process until all nbStgs have been solved. After the initial solution is found,
the local search phase is initialized. The local search attempts to improve the solution by
solving the subproblems associated to each stage in non-sequential order. If an improving
solution is found, the incumbent is updated and the local search is repeated. Otherwise,
the incumbent is modified in order to escape from local optimality and the local search
phase is called again.

Algorithm 1 gives an overview of the procedure. We now provide details of each step
of the DEC method, including an example of the behavior of the algorithm solving the
example introduced in Section 3.2.
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Algorithm 1: Outline of the DEC procedure.

Read instance;
incumbent ← ∅;
for s ∈ {1, . . . , nbStgs} do

incumbent ← incumbent ∪ solve(OSSPs | rj | ∑j Cj), or
solve(OSSPs | rj, Sij | ∑j Cj);

end

best ← incumbent;
change ← true;
while time limit not exceeded do

change ← f alse;
pending ← {1, . . . , nbStgs};
while pending �= ∅ ∧ timelimitnotexceeded do

s ← random(pending);
pending ← pending \ {s};
candidate ← solve(FGSSP || ∑j Cj) (or FGSSP | Sjik | ∑j Cj) with
additional constraints on stages {1, . . . , s − 1} ∪ {s + 1, . . . , nbStgs};

if obj(candidate) ≤ obj(incumbent) then

incumbent ← candidate;
change ← true;
if obj(candidate) ≤ obj(best) then

best ← candidate;
end

end

end

if time limit not exceeded then

incumbent ← shake(incumbent);
end

end

return best;

5.1. Initial Solution

In order to obtain an initial solution to the problem, see lines 3–6 from Algorithm 1,
the DEC method starts from an empty solution, and obtains a schedule for the opera-
tions of each stage by solving an open shop scheduling problem with release dates and
with/without setup times with total flow time objective for each stage (i.e., problem
OSSPm | rj | ∑j Cj or OSSPm | rj, Sij | ∑j Cj, according to [5]).

The procedure starts by obtaining a schedule for the first stage. For this stage, release
dates are set to 0. For the remaining stages, stages 2 to nbStgs, we solve an OSSP with
release dates for each job that are equal to their completion times in their previous stage,
These release dates ensure that the operations for any job in a given stage cannot start
before the operations of the job finish in previous stages.

Each subproblem is then solved using the model described in Section 4.2 considering
only one stage, the stage under consideration, and adding a constraint set, see Equation (23),
to impose release dates to the operations associated to each job.

startO f (itvsj,l) ≥rj ∀ j, l (23)

Constraint set (23) imposes the release date condition by ensuring that the start of any
operation cannot be smaller than the release date of the job. In constraint set (23), rj stands
for the release date of job j in the previous stages.

To illustrate the proposed method, let us consider the example introduced in Section 3.2.
The construction procedure would start from Stage 1, solving an OSSPm || ∑j Cj problem
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with machines M1, M2 and M3. The completion time of the jobs in the optimal schedule
correspond to 8, 6 and 6 time units for job 1, job 2 and job 3, respectively. These completion
times constitute the release dates for the problem associated with stage 2. In this case,
the optimal solution has completion times equal to 11, 10 and 13 for job 1, job 2 and job
3 respectively. Finally, we solve the problem associated to stage 3. The objective function
value of the solution provided by the method is 54, Figure 2a shows the Gantt chart of the
solution and Figure 2b its disjunctive graph representation.

As the OSSP is a computationally difficult problem by itself, the CP solver is truncated
by imposing a time limit. The time limit given to the solver to solve each stage as well
as the overall time devoted to the initialization step is controlled through an algorithmic
parameter α %, that limits the total time devoted by the algorithm to the step. The time
assigned to this step is then evenly divided into each stage to define the time limit set to
the CP solver. Note that the time required to reach and to verify the optimal solution of the
problem for any given stage may be smaller than the time limit. In this case, the remaining
time is reserved for the local search step of the algorithm.

(a)

(b)

Figure 2. Graphical representation of the constructive heuristic solution of the DEC method for
the example instance provided in Table 1. (a) Gantt chart representation of the solution provided
by the constructive heuristic for the FGSSP instance presented in Table 1. (b) Disjunctive graph
representation of the solution provided by the constructive heuristic for the FGSSP instance given in
Table 1.

5.2. Neighborhood Exploration

The above constructive procedure provides a feasible solution in which greedy deci-
sions in early stages may have a negative impact on later ones. Consequently, and after an
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initial solution is available, the neighborhood procedure tries to improve the incumbent by
reoptimizing stages, taking into account the scheduling decisions from every other stage,
see lines 12–24 from Algorithm 1.

The reoptimization stage is performed as follows: first, we add all stages to a list of
pending problems. Then, we randomly select a stage from the list, say, stage s, remove it
from the list, and fix the sequence of operations for each job and for each machine in the
remaining stages, i.e., each stage q ∈ S \ {s}. The resulting model (i.e., the original model
with some fixed variables) is then solved using the CP formulation provided in Section 4.2
truncating the search with a time limit which is a parameter of the method. When the
time limit is reached or the solver returns that optimality has been verified the best-found
solution is compared to the incumbent and the best ever solution

The neighborhood exploration step ends when the list is empty and no improving
solution has been found during the last exploration step, in which case we conclude that a
local optimum has been found and proceed to restart the local search by slightly altering the
solution using the shaking procedure described in Section 5.3. Otherwise, the exploration
step is repeated, i.e., the list is initialized with all stages and an optimization problem is
solved for each stage, as described above.

To illustrate the proposed method, let us consider the example introduced in Section 3.2,
starting from the solution found in Section 5.1 and depicted in Figure 2.

The neighborhood exploration phase starts by initializing the list of pending problems
with the three stages. Then, we randomly select a stage from the list. For the sake of
this example, let us suppose that stage 2 is selected. Then, stage 2 is removed from the
list and a problem with the routes in stages 1 and 3 fixed is given for the CP solver for
resolution. Figure 3a gives a disjunctive graph representation of the problem: the routes in
stages 1 and 3 are fixed and the problem is allowed to reoptimize the scheduling decisions
for stage 2. The optimal solution to the stage 2 problem improves the incumbent as the
objective function value is decreased by two time units from 54 to 52 time units, see
Figure 3b. The solution also improves the best found solution, hence it replaces both the
incumbent, and the best found.

After updating the incumbent, the method would select another random stage among
those still in the list, either stage 1 or 3, and build and solve their respective problems. The
solutions to either problem do not provide a better solution and thus a complete iteration
of the local search ends. As the method has found an improving solution within the last
iteration, another iteration of the local search phase is performed. This second iteration
does not lead to improvements, hence we conclude that the incumbent is a local optimum
and stops the neighborhood exploration step.

Note that each problem solved in this phase is not theoretically easier than the original
problem (i.e., they are NP-hard problems). Consequently, and in order to control the total
time used within the resolution of the problems, as well as with the complete local search
phase, we control both the total time used by the local search phase, and the time allocated
to the CP solver to solve each subproblem. Section 6 gives details on the time allotted to
each of these parameters in our computational experiments.

Finally, we attempt to improve the performance of the CP solver by providing a
“warmstart” solution to it. In this case, we use the incumbent solution from the procedure
as it is a feasible solution for the problem, including the additional constraints. As a result,
the solver will never provide a worse solution than the initial one, and it will focus the
search of areas that may provide improvements over the initial one.
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(a)

(b)

Figure 3. Graphical representation of the neighborhood exploration phase of the DEC method for the
example instance provided in Table 1. (a) Disjunctive graph representation of the problem associated
to the stage 2. The arcs represent the fixed decisions (i.e., the decisions from stage 1 and 3). (b) Gantt
chart representation of the solution after solving the problem of stage 2. The solution improves the
problem by rearranging the order of operations of the stage.

5.3. Shake Procedure

After reaching a local optimum, i.e., the neighborhood exploration step does not
improve the incumbent, if the total time limit has not been reached we slightly perturb the
solution in order to restart the search from a different position of the solution landscape,
i.e., we perform a shake step as in a classical variable neighborhood (VNS) method [36].
Note that the term local optimum in this context is not completely correct, as the truncated
nature of our neighborhood exploration scheme may lead us to report that no improving
solution has been found when such a solution may exist.

The perturbation scheme considers two randomly-selected consecutive stages and
creates an alternative set of routes and assignments for the jobs and the machines in these
stages by solving the resulting CP model as in the neighborhood exploration step (i.e., fixing
the sequences on the stages that we do not want to modify), but stopping the search when
the solver provides a feasible solution and not including the incumbent as a warmstart
solution. These decisions help the algorithm to find a solution with enough changes in
these stages to move the complete solution away from the current local optimum while the
use of the CP model ensures that a solution is found without having to rely on specifically
tailored code to ensure feasibility conditions.

To continue with our example of the proposed method, let us continue with the
example introduced in Section 3.2 and used in this Section. After reaching a local optimum,
see Section 5.2, the incumbent depicted in Figure 2b is modified by selecting two consecutive
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stages and generating a random feasible solution for these stages. For the sake of this
example, consider that stages 1 and 2 are selected. Then, we solve a problem in which the
routes of stage 3 is fixed, and stop the search when the CP solver finds a solution. This
solution becomes the incumbent and we return to the neighborhood exploration phase.
Figure 4 illustrates the new solution.

(a)

(b)

Figure 4. Graphical representation of the incumbent solution of the DEC method after the shake is
performed for the example instance provided in Table 1. (a) Disjunctive graph representation of the
incumbent solution after the shake. (b) Gantt chart representation of the incumbent solution after
the shake.

6. Computational Experiments

All computational experiments were run on an Intel i7-10750H CPU @2.60 GHz with
6 cores and 16 GB of RAM. The code was written and Java and executed in the Java
8 runtime. The IBM ILOG CP and IBM ILOG CPLEX versions 20.1 were used to solve
the CP and MILP formulations. The CP model was solved using five different strategies
provided by the solver, namely: Auto (a combined search approach automatically controlled
by the solver) CP DF (explores the search tree using a depth-first search approach) RS
(combines a depth-first search approach with a restart mechanism after a certain number of
backtracking decisions), MP (for multi-point search method, an approach that uses some of
the characteristics of a population-based metaheuristic) and ID (for iterative diving search
method, an approach that resembles a local search-based heuristic).

Each instance was run with the proposed DEC method with a total CPU time limit
equal to nbJobs nbMchs

4 seconds, hence we allocate time proportional to the size of the in-
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stances. Consequently, for the exact solvers we provide the total time to the solver, while
for the DEC approach, the total time allotted to the solution procedure is divided into an
initialization phase, that takes a maximum of α% of the total time, and the local search
phase that takes the remaining time.

During the initialization phase, the resolution of the OSSP associated to each stage is
allotted a maximum amount of time equal to 100

nbStgs % of the total time allotted to this phase
(i.e., α

nbStgs %). As the allotted time for each subproblem may not be used up ( i.e., the CP
solver may report that an optimal solution has been found before the time limit has been
reached) the initialization phase may take less than the allotted time. Moreover, it is also
possible that the CP solver does not find a solution within the time limit. While this never
occurred during our experiments, the default implemented strategy allows the algorithm
to continue the search until a feasible solution is found.

During the local search phase, each subproblem is allotted a fixed amount of time
equal to λ. Parameter λ controls the trade-off between exploitation and exploration within
the local search, i.e., a large value of λ has a higher chance to reach an optimal solution for
the subproblems at the expense of considering fewer subproblems, while a smaller value of
λ leads to considering a larger number of subproblems but the CP solver may fail to reach
the optimal solution for the subproblem.

After some preliminary tests we opted for α = 0.25 and λ = 100 nbJobs nbMchs
4nbStgs(1−α)

. This
value of λ should lead to consider each stage no less than three times within the local search
phase (our preliminary tests showed that this number usually sufficed to reach the best-
found solution and reducing the time to solve each subproblem only lead to degradation in
the solution quality).

For the exact methods we impose the following run time limits: For the MILP experi-
ments, we impose a 3600 s time limit, while for the stand-alone CP solver we allocate the
same running time as our decomposition approach. Please note that the larger amount of
time devoted to the MILP formulation tries to ensure that the performance issues reported
in Section 6.2 could not be solved by allocating more computational resources, i.e., running
time, to the method.

6.1. Instance Generation

As no previous work for the FGSSP is available in the literature, we generated our
own instance set. The generation procedure follows the procedure described in [28] for the
OSSPm | Sjik | ∑j Cj, which extends the procedure described in [37]. Processing times for
instances with up to 20 jobs and 20 machines are identical to the processing times used
in [37]. For larger instances, the processing times were generated following the indications
provided in [37], i.e., they are randomly generated using a discrete uniform distribution
U [1,99].

As a result, we generated instances with 4 to 80 jobs, 4 to 80 machines and 2 to 8 stages.
In each instance, the first nbMchs −

⌊
nbMchs
nbStgs

⌋
nbStgs stages contain

⌈
nbMchs
nbStgs

⌉
machines,

while the remaining stages have
⌊

nbMchs
nbStgs

⌋
. We generate 37 groups of instances, each

containing 10 instances for a total of 370 instances.
For instances with sequence-dependent setup times we additionally generated setup

times as follows: first we generate a random two dimensional Cartesian coordinate (x, y)
for each job drawing each coordinate value from a discrete uniform distribution U [0,30].
Then, the setup time between any pair of jobs, j, k, in a given machine is computed as
the rectilinear distance between the coordinates associated to each pair of jobs, |xj − xk|+
|yj − yk|. This method ensures that setup times comply with the triangle inequality, hence
Sjik ≤ Sjiu + Suik for any triplet of jobs j, k, u and machine i. Finally, initial setup times were
set to 0, i.e., we allow the machines to start working on any job without any setup.

As a result, a total of 740 instances were used for the reported experiments, 370 without
sequence-dependent setup times and 370 with setup times.
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6.2. Results for Small Size Instances

To evaluate the quality of the solutions provided by the lower bounds and the exact
methods introduced in Section 4 we perform two sets of experiments using small instances
(those with 10 or fewer jobs and machines) both on the instances with and without sequence-
dependent setup times.

The first experiment considers the performance of the exact methods and the DEC
procedure. The DEC procedure is run ten times with different random seeds and the results
report their average performance among different runs as well as the best solution found
within the ten runs.

Tables 2 and 3 report the results. For each solution method, we report the average
relative gap rel.gap, see Equation (24), in which UB stands for the objective function value
reported by the method and UBb corresponds to the best-known objective value among
all solution approaches, and, in parentheses, the number of best-known solutions found
by the method. For the average performance of the DEC method, UB correspond to the
average obtained by the ten independent runs. We also include the results provided by the
DEC method using the MILP solver rather than the CP solver for comparison purposes.

rel.gap =100
UB − UBb

UB
(24)

Table 2. Results for small instances without sequence-dependent setup times (problem FGSSPs ||
∑j Cj). For each instance size (represented by the number of jobs, column nbJobs, machines, column
nbMchs, and stages, column nbStgs, we report the average gap to the best known solution and the
number of best known solutions (in parentheses) provided by each CP search strategy (columns
Auto, DF, RS, MP and ID), the best solution provided by all combined CP approaches (column CP),
the results from the MILP approach (column MILP) and the best and the average found among 10
independent runs of the DEC approach (columns, (best) and (av.) respectively) using both the MILP
and the CP solvers as their underlying methods to tackle the subproblems required by the approach
(columns DEC MILP and DEC CP). The results of the best performing method for each group of
instances are highlighted in boldface.

DEC MILP DEC CP
nbJobs nbMchs nbStgs Auto DF RS MP ID CP MILP (av.) (Best) (av.) (Best)

4 4 2 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

5 5 2 0.0 (10) 1.2 (0) 0.0 (10) 0.4 (4) 0.4 (5) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

7 7 2 0.3 (4) 10.3 (0) 0.8 (2) 2.4 (0) 3.7 (0) 0.1 (6) 2.1 (0) 2.7 (0) 2.3 (0) 0.4 (3) 0.3 (4)
3 0.1 (8) 13.7 (0) 0.3 (7) 1.6 (0) 2.5 (1) 0.0 (10) 0.5 (5) 2.4 (0) 1.9 (1) 2.6 (0) 2.5 (0)

10 10 2 2.2 (1) 14.7 (0) 1.7 (0) 3.7 (0) 3.7 (0) 1.3 (1) 8.9 (0) 11.1 (0) 10.4 (0) 0.5 (3) 0.1 (9)
3 1.0 (2) 15.8 (0) 1.2 (2) 2.9 (1) 3.1 (0) 0.4 (5) 6.2 (0) 7.4 (0) 7.4 (0) 0.6 (1) 0.5 (5)
4 1.0 (2) 15.7 (0) 1.1 (1) 1.6 (2) 2.5 (1) 0.4 (6) 3.4 (1) 4.9 (0) 2.9 (2) 1.9 (0) 1.4 (4)
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Table 3. Results for small instances with sequence-dependent setup times (problem FGSSPs | Sjik |
∑j Cj). For each instance size (represented by the number of jobs, column nbJobs, machines, column
nbMchs, and stages, column nbStgs, we report the average gap to the best-known solution (in
parentheses) provided by each CP search strategy (columns Auto, DF, RS, MP and ID), the best
solution provided by all combined CP approaches (column CP), the results from the MILP approach
(column MILP) and the best and the average found among 10 independent runs of the DEC approach
(columns, (best) and (av.) respectively) using both the MILP and the CP solvers as their underlying
methods to tackle the subproblems required by the approach (columns DEC MILP and DEC CP). The
results of the best performing method for each group of instances are highlighted in boldface.

DEC MILP DEC CP
nbJobs nbMchs nbStgs Auto DF RS MP ID CP MILP (av.) (Best) (av.) (Best)

4 4 2 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

5 5 2 0.0 (10) 4.1 (0) 0.0 (10) 0.5 (4) 2.2 (1) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

7 7 2 1.4 (1) 15.7 (0) 1.4 (1) 2.3 (1) 4.8 (0) 0.7 (3) 1.4 (2) 2.6 (0) 2.0 (0) 0.3 (3) 0.2 (5)
3 0.7 (6) 17.3 (0) 0.8 (3) 1.9 (2) 4.2 (0) 0.1 (8) 0.6 (5) 3.1 (0) 2.3 (0) 2.4 (1) 2.3 (1)

10 10 2 4.2 (0) 22.0 (0) 4.3 (0) 5.7 (0) 6.0 (0) 2.8 (0) 9.2 (0) 13.1 (0) 11.3 (0) 0.5 (3) 0.0 (10)
3 2.2 (3) 23.6 (0) 1.4 (4) 3.9 (1) 5.5 (0) 0.4 (8) 5.4 (0) 7.4 (0) 6.1 (0) 1.5 (0) 1.2 (2)
4 1.7 (3) 22.3 (0) 1.6 (3) 3.9 (0) 3.6 (1) 0.3 (7) 4.0 (1) 6.1 (0) 4.2 (0) 1.8 (0) 1.3 (2)

The results in Tables 2 and 3 show a similar trend, hence we discuss them together
pointing out to the differences when needed:

• If we consider the behavior of the exact methods, i.e., the CP variants as well as the
MILP, the results show that each of these methods have difficulties even for moderately
small instances with 10 jobs and 10 machines. In fact, we do not report the number of
optimal solutions found by any of these methods because they fail to verify optimality
even for instances with 7 jobs and 7 machines and up. Note that these methods solve
all instances with 4 or 5 jobs and machines to optimality, but the combined effort of all
the exact methods only verifies optimality for four additional instances.

• Among the different search strategies available in the CP solver, all methods perform
similarly except for DF. If we consider this result together with the difficulty of each
exact method to verify optimality, we are led to believe that a depth-first search
approach as conducted by the DF strategy fails to backtrack to the initial stages of the
problem, leading to suboptimal early decision never being reconsidered.

• When we compare the CP approaches and the MILP approach, the CP outperforms
the MILP method in every instance group and metric (either number of best found
or relative gap to best known). Moreover, the additional time allocated to the MILP
does not result in better solutions and the CP approaches, except for the DF strategy,
outperform the MILP. Specifically, for instances with 10 jobs and machines, the MILP
fails to find solutions of the quality provided by the CP approaches. Consequently, we
recommend the use of a CP strategy for the problem and avoid the use of the MILP
approach in larger instances.

• The CP methods do not perform as well on instances with sequence-dependent setup
times. Specifically, relative gaps increase and two search strategies, i.e., Auto and RS,
tend to provide the best solutions among the five search methods. This result may be
attributed to shortcomings of the CP approach that makes use of internal components
within its search procedure that are more efficient in problems with fewer features
to consider.

• The performance of the DEC approach using a CP solver to tackle the subproblems
for small and medium instances is similar to the exact CP methods. The same does
not hold true for the DEC method using the MILP solver, as their results are inferior
to either the CP or the DEC method using CP.
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While the DEC method finds better solutions than the CP methods, specially on
instances with fewer stages and the relative gaps are small, it does not outperform
the exact methods for these instances. Please note that for small instances, the exact
method benefits from considering the problem as a whole, unlike our method that
tackles smaller parts of the complete problem. For small sized instances, dividing
the problem into part leads to disadvantages in terms of the ability of the method to
optimize all stages simultaneously.
The similarity between the results of both methods was statistically checked using a
paired t-test for statistical significance. The paired t-test compares the best solution
found by any CP method with the best found among the ten replicates of the DEC
method using the CP solver, as well as with each of its individual runs.
The tests between the best solutions show that the results are not statistically different,
with a p-value of 0.204 for the instances without sequence dependent setup times, and
a p-value of 0.981 for the case with setup times. Note that Anderson–Darling tests
show that the differences among values are not normally distributed, and thus we
conduct Wilcoxon signed-rank non-parametric tests that confirm the results from the
parametric tests. With regards to the statistical test between individual run of the
DEC method when compared to the CP method, similar results are found. For the
cases without sequence dependent setup times, six report statistical differences for
the parametric test, but after a Bonferroni correction is run to account for multiple
comparisons, none of the p-values suffice to point to statistically significant differences.
For instances with setup times, none of the replicates report statistically significant
differences to the best CP solutions.

To conclude, the results show that the exact methods fail to verify optimal solutions
even for moderately small instances, being the CP approaches more competitive in terms
of solution quality than their MILP counterparts. While the decomposition scheme can
reach solutions of similar quality than the combined effort of all CP methods, and it even
outperforms the exact methods for instances with a small number of stages, the results
suggest that relying on exact methods is the best approach to solve small-sized instances.

To further analyze the performance of the exact methods, we conducted a second exper-
iment considering the lower bounds introduced in Section 4.3 as well as the lower bounds
reported by the CP and the MILP methods after reaching their termination condition, either
proving optimality of the incumbent or reaching the imposed time limit.

Lower bounds lb2 and lb3 require the resolution of an OSSP model which is solved
using a CP formulation for a fixed time limit equal to nbJobs nbMchs

4 seconds using the default,
i.e., Auto strategy, provided by the CP solver. If the time limit is reached without verifying
optimality, the lower bound provided by the code is used for the computation of lb2 and
lb3. Tables 4 and 5 report, respectively, the results for small size instances without and with
sequence-dependent setup times.

For each group of instances, we report the results for each lower bound described
in Section 4, columns lb1, lb2 and lb3, as well as the best lower bound reported by the
CP methods and the MILP model. For each method, we provide two metrics; namely:
the optimality gap, calculated as in (25), where ubb is the best known solution and lbx
corresponds to the lower bound provided by the method and, in parentheses, the number
of instances in which the lower bound provides the best bound among all of the methods.

opt.gap =100
ubb − lbx

ubb
(25)
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Table 4. Results for the lower bounds for small-size instances without sequence-dependent setup
times (problem FGSSPs || ∑j Cj). For each combination of instance size (represented by the number
of jobs, column nbJobs, machines, column nbMchs, and stages, column nbStgs, and solution method
(columns lb1, lb2, lb3, CP and MILP), we report the optimality gap and, in parentheses, the number
of instances (out of 10) in which the method reported the best solution. The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs lb1 lb2 lb3 CP MILP

4 4 2 21.5 (0) 3.5 (0) 5.0 (0) 0.0 (10) 0.0 (10)

5 5 2 21.4 (0) 3.6 (0) 4.9 (0) 0.0 (10) 0.0 (10)

7 7 2 20.7 (0) 15.7 (2) 12.7 (4) 35.4 (0) 12.7 (4)
3 24.2 (0) 16.7 (0) 8.9 (0) 21.1 (2) 1.6 (10)

10 10 2 22.1 (0) 17.9 (10) 19.5 (0) 46.2 (0) 40.4 (0)
3 26.1 (0) 19.3 (10) 22.4 (0) 35.5 (0) 29.3 (0)
4 28.9 (0) 16.4 (6) 19.7 (3) 32.0 (0) 22.6 (1)

Table 5. Results for the lower bounds for small-size instances with sequence-dependent setup times
(problem FGSSPs | Sjik | ∑j Cj). For each combination of instance size (represented by the number of
jobs, column nbJobs, machines, column nbMchs, and stages, column nbStgs, and solution method
(columns lb1, lb2, lb3, CP and MILP), we report the optimality gap and, in parentheses, the number
of instances (out of 10) in which the method reported the best solution. The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs lb1 lb2 lb3 CP MILP

4 4 2 28.6 (0) 4.7 (0) 7.2 (0) 0.0 (10) 0.0 (10)

5 5 2 28.6 (0) 5.1 (0) 5.3 (0) 0.0 (10) 0.0 (10)

7 7 2 28.2 (0) 22.7 (0) 20.5 (2) 41.0 (0) 13.9 (8)
3 31.4 (0) 24.7 (0) 10.9 (0) 34.2 (0) 3.2 (10)

10 10 2 30.6 (0) 26.2 (10) 27.6 (0) 51.8 (0) 44.4 (0)
3 34.5 (0) 28.3 (9) 30.8 (0) 42.7 (0) 33.9 (1)
4 36.9 (0) 25.7 (8) 30.8 (0) 39.4 (0) 27.6 (2)

The results show that large gaps are common. Specifically, for instances with 7 or
10 jobs and machines, the gap after reaching the time limit is very large, hence the inability
of the exact solution methods to verify optimality as it cannot prune the search space
through tight bounds and has to rely on enumeration to verify optimality. Moreover, the
specially tailored lower bounds outperform the general bounds provided by the off-the-
shelf solvers. but they still cannot provide tight bounds and the gaps are still large. Finally,
we would also like to discuss the differences between the results provided by lb2 and lb3.
While theoretically both bounds should report similar results (we try to optimally solve one
stage and estimate the contribution of the remaining stages) the experiments show that lb2
usually outperforms lb3. We conjecture that this result comes from the performance of the
CP solver on the problems solved using this approach. While lb2 solves a classical OSSP as
a subproblem, lb3 solves an OSSP with release dates. The differences may be attributed to a
better ability of the CP solver to solve the said subproblem.

To conclude. These results highlight the computational hardness of the problem and
the need to rely on specially tailored heuristics to solve large-size instances.

6.3. Results for Medium and Large Size Instances

In this section, we report the results for medium to large-size instances. Due to the
results found for small instances, we focus our analysis on solution methods and do not
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report lower bounds, as the large gaps found for small instances show the difficulty of
finding good lower bounds.

Tables 6 and 7 show average results for these instances grouped according to the
number of jobs, the number of machines and the number of stages. The tables compare the
results of the best-performing CP strategy, the Auto strategy of the solver, the best solution
found among the five search strategies provided by the solver the average result provided
by ten independent runs of the DEC method and the best-found solution among these ten
independent runs.

Table 6. Results for medium and large instances without sequence-dependent setup times (problem
FGSSPs || ∑j Cj). For each instance size (represented by the number of jobs, column nbJobs, machines,
column nbMchs, and stages, column nbStgs, we report the average gap to the best solution and the
number of instances where the best known solution was found (in parentheses) by the best CP search
strategy (column Auto), the best solution provided among the CP approaches (column CP), the results
from the MILP approach (column MILP) and the best and the average found among 10 independent
runs of the DEC approach (columns, DEC (best) and DEC (av.) respectively). The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs Auto CP DEC (av.) DEC (Best)

15 15 2 2.9 (0) 2.3 (0) 0.3 (0) 0.0 (10)
3 1.3 (2) 1.0 (2) 0.5 (3) 0.2 (8)
4 0.3 (5) 0.3 (7) 1.4 (0) 1.1 (3)
5 0.7 (4) 0.4 (5) 1.3 (1) 1.0 (5)

20 20 2 3.8 (0) 3.1 (0) 0.2 (3) 0.0 (10)
3 2.5 (0) 1.9 (0) 0.3 (0) 0.0 (10)
4 1.9 (2) 1.7 (2) 0.7 (0) 0.1 (8)
5 1.3 (2) 1.1 (2) 0.8 (0) 0.2 (8)
6 1.2 (3) 0.8 (4) 1.2 (0) 0.6 (6)
7 1.0 (2) 0.4 (6) 1.4 (0) 1.0 (4)

30 30 2 5.7 (0) 4.5 (0) 0.0 (5) 0.0 (10)
3 3.0 (0) 2.9 (0) 0.1 (5) 0.0 (10)
4 3.5 (0) 2.5 (0) 0.2 (3) 0.0 (10)
5 2.2 (0) 1.9 (0) 0.5 (2) 0.0 (10)
6 1.9 (1) 1.6 (1) 0.5 (1) 0.1 (9)
7 2.0 (1) 1.7 (2) 0.6 (0) 0.0 (8)

50 50 2 8.6 (0) 6.6 (0) 0.0 (2) 0.0 (10)
3 5.7 (0) 5.4 (0) 0.1 (1) 0.0 (10)
4 4.5 (0) 4.3 (0) 0.3 (0) 0.0 (10)
5 4.0 (0) 3.7 (0) 0.1 (0) 0.0 (10)
6 4.3 (0) 4.0 (0) 0.3 (0) 0.0 (10)
7 3.3 (0) 3.2 (0) 0.0 (0) 0.0 (10)
8 3.9 (0) 3.7 (0) 0.4 (0) 0.0 (10)

80 80 2 9.6 (0) 9.6 (0) 0.0 (7) 0.0 (10)
3 6.9 (0) 6.6 (0) 0.1 (1) 0.0 (10)
4 5.2 (0) 5.0 (0) 0.2 (1) 0.0 (10)
5 3.7 (0) 3.6 (0) 0.2 (0) 0.0 (10)
6 3.5 (0) 3.3 (0) 0.2 (0) 0.0 (10)
7 3.3 (0) 3.1 (0) 0.3 (0) 0.0 (10)
8 3.1 (0) 3.1 (0) 0.3 (0) 0.0 (10)
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Table 7. Results for medium and large instances without sequence-dependent setup times (problem
FGSSPs | Sjik | ∑j Cj). For each instance size (represented by the number of jobs, column nbJobs,
machines, column nbMchs, and stages, column nbStgs, we provide the average gap to the best
solution and (in parentheses) the number instances where the best CP strategy finds the best known
solution (column Auto), the best solution provided among the CP approaches (column CP), the results
from the MILP approach (column MILP) and the best and the average found among 10 independent
runs of the DEC approach (columns, DEC (best) and DEC (av.) respectively). The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs Auto CP DEC (av.) DEC (Best)

15 15 2 4.6 (0) 3.2 (0) 0.7 (0) 0.0 (10)
3 1.6 (1) 1.3 (2) 0.6 (0) 0.1 (8)
4 1.2 (5) 0.6 (7) 2.5 (0) 1.6 (3)
5 2.7 (2) 0.4 (6) 1.8 (0) 1.3 (4)

20 20 2 5.0 (0) 4.1 (0) 0.5 (0) 0.0 (10)
3 4.2 (0) 3.1 (2) 1.1 (0) 0.3 (8)
4 2.1 (4) 1.1 (4) 2.8 (2) 2.0 (6)
5 2.7 (1) 0.8 (6) 3.0 (2) 2.5 (4)
6 2.4 (3) 0.8 (5) 1.2 (0) 0.4 (5)
7 2.0 (0) 0.5 (4) 1.3 (0) 0.7 (6)

30 30 2 9.6 (0) 7.7 (0) 0.5 (4) 0.0 (10)
3 5.4 (0) 4.2 (0) 0.5 (0) 0.0 (10)
4 6.3 (0) 5.3 (0) 1.8 (0) 0.0 (10)
5 3.4 (1) 3.3 (1) 1.5 (0) 0.2 (9)
6 3.3 (1) 2.8 (2) 1.2 (0) 0.1 (8)
7 3.4 (1) 2.5 (1) 1.0 (0) 0.0 (9)

50 50 2 12.6 (0) 8.4 (0) 0.1 (8) 0.0 (10)
3 7.1 (0) 5.4 (0) 1.0 (0) 0.0 (10)
4 9.9 (0) 9.1 (0) 1.9 (0) 0.0 (10)
5 4.8 (0) 4.4 (1) 1.4 (0) 0.1 (9)
6 6.2 (0) 6.0 (0) 1.1 (0) 0.0 (10)
7 4.1 (0) 4.0 (0) 0.0 (0) 0.0 (10)
8 4.7 (1) 4.3 (1) 1.5 (0) 0.4 (9)

80 80 2 14.4 (1) 12.2 (2) 2.0 (2) 1.4 (8)
3 24.8 (0) 23.5 (0) 1.9 (0) 0.0 (10)
4 23.2 (0) 21.9 (0) 3.4 (0) 0.0 (10)
5 21.1 (0) 19.9 (0) 4.1 (0) 0.0 (10)
6 16.0 (0) 14.0 (1) 3.0 (0) 0.3 (9)
7 12.4 (0) 11.7 (1) 4.9 (0) 0.1 (9)
8 14.2 (0) 13.1 (0) 1.9 (0) 0.0 (10)

The results show similar trends to those found in the small instances (i.e., a deteriora-
tion on the performance of the methods when the number of jobs and machines increase).
Specifically, for large size instances, the relative gaps increase up to a 9.6% for instances
with a small number of stages, and remain above 3% for any number of stages in instances
without sequence-dependent setup times. For instances with sequence-dependent setup
times, the gaps increase, reporting average relative gaps above 10% on average for any
number of stages. These large instances highlight the advantages of the decomposition
approach, which is still able to outperform the combined effort of all CP methods in most
of the medium-sized and large-sized instances.

While the DEC decomposition approach still relies on a CP solver, the division of
the larger problem into smaller subproblems that can be more efficiently tackled in short
running times leads to clear improvements over the off-the-shelf method.
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The dissimilarity between the results from the CP and the DEC methods were statisti-
cally checked using a paired t-test. The paired t-test compares the best solution found by
each of the methods.

The test shows that the results are statistically different, with a p-value of 8.79 × 10−31

for the instances without sequence dependent setup times, and a p-value of 2.05 × 10−19

for the case with setup times. The Anderson–Darling test for normality showed that the
differences between the values are not normally distributed, and thus we conduct Wilcoxon
signed-rank non-parametric tests to confirm the results from the parametric test. The results
of the Wilcoxon tests confirmed the conclusions reached by the parametric tests with a
p-value of 7.18 × 10−46 for instances without setup times and a p-value of 2.05 × 10−43 for
instances with setup times.

6.4. An Industrial Case Study

The case study provided below is taken from a Colombian automotive company. The
company is dedicated to the manufacturing and assembling of leaf springs that are part of
the suspension systems of cars and trucks. The company has over 200 hundred customers
and exports to over ten countries. The customers are the car assemblers and the many car
and truck repair shops and dealers of the country. A leaf spring consists of “leaves” that
are metal plates that are bolted together. Each batch of springs of the same reference is
considered a master production order (MPO). In turn, each batch of plates conforming a
leaf spring is defined a single production order (SPO) derived from the MPO. Consider a
typical reference with 10 plates. If an MPO for 100 leaf springs is issued, a total of 10 SPOs
are generated, each with 100 leaf springs. The manufacturing of leaf springs consists of
seven stages: (1) plate cutting, (2) center hole drilling and stamping, (3) tempering and
quenching, (4) bending, (5) sand blasting, (6) painting and (7) assembly. The assembly
operation was not considered in this research as this stage is not really scheduled. All
stages have a single machine except stage two that has five forming operations. Stage two is
generally the bottleneck station and, for this reason, the company keeps a buffer equivalent
to 4–5 days of demand. Each SPO is transferred between workcenters by lift trucks. In
this research, jobs correspond to SPOs. The 73 jobs used in this case study correspond
to roughly the production of one week, which is the time lapse at which the schedule is
revised and updated.

The total number of machines is 16. At the time of writing, there were one cutting sta-
tion, one drilling machine, ten stamping presses, one tempering/quenching equipment, one
bending and adjustment press, one sand blasting equipment and one painting workcenter.

Although the company has and uses an MRP system, the scheduling task is made
manually. This is due to the inherent complexity of the manufacturing process and the
constant pressure exerted by the vendors of the sales department. Although the company
has implemented the Sales and Operations Planning (S and OP) methodology, frequent
changes are common on the agreed schedules. For this reason, the company wanted to
implement a scheduling system and wanted to test a prototype computer scheduler.

For the tests, we collected data of processing times and production orders from the
MRP system. The processing times ranged between 25 min and 5 h depending on the
operation. Setups are also important, but the company does not have exact records of the
setups. For this reason, we generated setup times based on the suggestions of the plant
personnel. Setups are only important in the stamping and drilling operations.

We ran all CP-based algorithms on the proposed instance. The CP DEC was run ten
times. Table 8 summarizes the results.
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Table 8. Results for case study. For each algorithm the objective value is reported.

Algorithm Objective Function Value (Minutes)

CP AUTO 263,366
CP DF 293,522
CP RS 274,561
CP MP 293,442
CP ID 264,043
CP DEC (av.) 261,532
CP DEC (best) 260,349

As expected, the CP-DEC outperformed the other algorithms showing that the method
can also performed well on realistic instances. The best performer among the CPs was the
CP AUTO. The difference in terms of the objective function between CP AUTO and CP
DEC was around 2200 min per week, which translates into an improvement of 30 min per
job (2200/73).

After analyzing the schedule resulting from the CP DEC algorithm, we validated that
the bottleneck station (as it is called by the plant personnel) was stage 2. The machine
utilizations at this stage ranged from 25% to 78% (average 47%) whereas at the other stages,
with the exception of tempering/quenching (66%), was around 30%. These figures of
utilization are expected to be higher as the machines are always loaded with jobs from the
previous week. We did not have such an information, and therefore we assumed that the
factory floor was empty for the purpose of this case. In the experience of the authors, not
only the better performance of the scheduling algorithms but also the information they
provide, justifies its use.

7. Conclusions and Future Work

In this paper, we introduce fixed group shop scheduling problem (FGSSP) with-
out/with sequence-dependent setup time. The FGSSP is a particular case of the group shop
scheduling problem (GSSP) in which the machines of a given stage are the same for all jobs.
This case can be found in different settings, as mentioned above.

We describe the characteristics of the proposed problem and provide two formu-
lations, one based on mixed integer linear programming (MILP) and one on constraint
programming (CP).

To solve the FGSSP, we developed a novel hybrid heuristic procedure based on a
decomposition approach (which we denoted as DEC). Our procedure solves sequentially
smaller scheduling problems with CP and presents a simple mechanism to escape from local
optima. Moreover, the proposed method can accommodates for additional characteristics
required in specific settings by introducing additional constraints within the formulations
without the need to modify the solution procedure itself.

To test the performance of the approach, we performed computational experiments
where we compare our method to the results provided by off-the-shelf CP and MILP solvers.
Additionally, we computed several lower bounds for the FGSSP to have a baseline comparison.

The experimental results show that the DEC and all the tested CP are very similar in
terms of performance for small and medium-sized instances, especially when the number
of stages is small. For medium and large-sized instances, the DEC outperforms the CP
methods with independence of the number of stages, finding the best solution in most of
the cases.

Future work will be devoted to studying other solution approaches for the problem,
to study the application of the proposed method to similar problems with the proposed
approach and to study issues related to Industry 4.0 technologies, such as re-scheduling in
the presence of real-time information and rework.
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Abstract: Multi-skilled resources have brought more flexibility to resource scheduling and have
been a key factor in the research of resource-constrained project scheduling problems. However,
existing studies are mainly limited to deterministic problems and neglect some uncertainties such as
resource breakdowns, while resource availability may change over time due to unexpected risks such
as the COVID-19 pandemic. Therefore, this paper focuses on the multi-skilled project scheduling
problem with uncertainty in resource availability. Different from previous assumptions, multi-skilled
resources are allowed a switch in their skills, which we call dynamic skill assignment. For this
complex problem, a nested dynamic scheduling algorithm called GA-PR is proposed, which includes
three new priority rules to improve the solving efficiency. Moreover, the algorithm’s effectiveness is
verified by an example, and the modified Project Scheduling Problem Library (PSPLIB) is used for
numerical experimental analysis. Numerical experiments show that when the uncertainty in resource
availability is considered, the more skills the resource has and the more resources are supplied, the
better the dynamic scheduling method performs; on the other hand, the higher the probability of
resource unavailability and the more skills are required, the worse the dynamic scheduling method
performs.The results are helpful for improved decision making.

Keywords: project scheduling; uncertainty in resource availability; multi-skilled resource; dynamic
skill assignment

MSC: 90B36

1. Introduction

The resource-constrained project scheduling problem (RCPSP) has been an important
topic within project management over the past few decades. Extensive focus has been
placed on single-skilled resources, while multi-skilled resources are becoming increasingly
common with the development of the economy [1]. This extension of the RCPSP is known
as the multi-skilled resource-constrained project scheduling problem (MSRCPSP). It was
inspired by a problem in the software development industry, where employees had several
skills relating to programming, data analysis, debugging and so on [2]. MSRCPSP is
suitable in projects with multi-skilled human resources or multi-functional machines. It
has been a prevalent topic in recent years and has been gradually applied in production
scheduling [3], research and development [4], construction engineering [5] and other
projects [6,7]. Although multi-skilled resource increases scheduling flexibility and expands
alternatives for project scheduling, it makes the problem more challenging. One needs to
decide not only resource scheduling matters but also skill assignments.

In practice, resource unavailability is a frequent occurrence, especially in the wake of
COVID-19, such as staff turnover, equipment maintenance, and transportation interruption.
In this situation, project managers are forced to take a series of measures to make the project
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scheduling more efficient and to adapt quickly as possible to uncertainties [8]. Therefore,
we focus on the MSRCPSP with uncertainty in resource availability in this paper. Moreover,
distinct from previous assumptions, multi-skilled resources are allowed to switch their
skills, which we call dynamic skill assignment. This means that when some resources
with one skill are unavailable, the impact of resource shortage can be alleviated by skill
switching from other idle resources with the same skill. If dynamic skill assignment still
fails to make up for the shortage of resources, additional resources will be considered under
the constraint of deadlines, such as the recruitment of temporary workers, equipment
renting and so on. According toWEC (Word Employment Confederation), temporary
employment accounts for 70 percent of the global HR market, which is worth nearly USD
4 hundred billion. It plays an important role in reducing the cost and relieving the shortage
of resources. Methods for optimizing project scheduling and dynamic skill assignment
with uncertainty in resource availability so as to achieve the goal of minimum additional
resource costs are the focus of this paper.

This paper has the following three contributions. First, we extend the MSRCPSP
with uncertainty in resource availability, and the uncertainty is described by the Markov
process. Second, dynamic skill assignment is proposed, which allows multi-skilled re-
sources to switch skills. Third, a nested dynamic scheduling algorithm called GA-PR is
proposed, which includes three new priority rules to improve the solving efficiency, and
the effectiveness of the algorithm is proved by comparing the existing static and random
scheduling method.

The remainder of this paper is organized as follows. A literature review is presented
in Section 2. Definitions of the MSRCPSP with uncertainty in resource availability are
discussed in Section 3. The nested dynamic scheduling algorithm is explained in detail in
Section 4. A numerical example is provided in Section 5 to illustrate the new model and the
new algorithm. The computational experiments and results analysis are shown in Section 6.
Section 7 is the conclusion.

2. Literature Review

Although multi-skilled resource make solving MSRCPSP more flexible, it also renders
the scheduling procedure more complex and difficult; thus, modern methods and tools
are usually used to improve scheduling processes [9]. Methods for designing more effec-
tive scheduling procedures with modern methods have become important topics in the
MSRCPSP. Bellenguez and Néron (2007) [2] proposed that each activity needs a specific set
of skills, and the resources are staff members who possess fixed skill(s). Moreover, these
staff members have unavailable periods. To minimize the makespan, a Branch-and-Bound
method is proposed. Generally, the more skills a staff member possesses, the more costs are
incurred. To minimize the total costs for multi-skilled personnel, Li and Womer (2009) [10]
develop a hybrid Benders decomposition (HBD) algorithm that combines the complemen-
tary strengths of mixed-integer linear programming and constraint programming. Correia
and Saldanha-da-Gama (2014) [11] consider that the costs associated with resources include
fixed and variable costs. The fixed costs are incurred simply by using resources, while
variable costs depend on the final makespan of the project. For this problem, a mathemati-
cal programming modeling framework is proposed, and a non-linear objective function is
included, which can be linearized at the expense of an additional set of continuous variables.
For resources considering skills, in addition to the cost, the skill level also directly affects
the project scheduling scheme such that the higher the skill, the shorter the task duration.
Heimerl and Kolisch (2010) [4] consider the MSRCPSP in a multi-project-environment
(i.e., the processing of the projects’ external and internal resources with different skills and
at different performance levels). Thus, the question is how projects are scheduled and how
resources are assigned to a project such that different requirements are met, keeping the
costs minimal. To address the complex project-scheduling problem, a mixed-integer linear
program with a tight LP-relaxation, which makes solving real-world problems possible,
is proposed. A related problem was examined by Fırat and Hurkens (2012) [12]. The
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authors consider a mixed-integer-based approach for a multi-skill work-load problem and
where skill levels are not homogeneous. Each activity has requirements for each skill-level
combination. The goal is to maximize the number of tasks processed in each workday.
Snauwaert and Vanhoucke (2021) [13] addressed an MSRCPSP with breadth and depth of
skills, where the breadth of a resource is perceived as the amount of skills an employee
masters and the depth of a skill is the efficiency level at which work can be performed by
a resource that masters that skill. After that, in 2022, they studied how hierarchical skills
(depth of skills) affect project scheduling from aspects of efficiency, cost, and quality [14].

Although the above studies provide references for the model and algorithmic design
of MSRCPSP, they assume that the availability of renewable resources remains constant
over time and rarely consider uncertainties in resource availability [1]. This assumption
may be too strict. Resource availability might change in response to the availability of
labor due to vacation days or varying availability of equipment due to maintenance [15]. A
relatively common type of research is the project scheduling problem under uncertainties
in project duration, including proactive scheduling [16] and reactive scheduling [17]. Once
resources are unavailable (staff turnover, machine failure, etc.), the original scheduling
is no longer feasible, especially for key resources. Therefore, the uncertainty in resource
availability has gradually become an important and difficult point in project scheduling.
Lambrechts et al. (2008) [18] introduced a variant of the RCPSP, for which the uncertainty in
resource availability is considered. The objective is to find a robust schedule that minimizes
the schedule’s instability cost. The schedule’s instability cost is the expected weighted
sum of the absolute deviations between the planned and the actual starting times of the
activity during the execution of proposed proactive and reactive strategies. Furthermore,
to determine the impact of unexpected resource breakdowns on activity durations, they
developed an approach for inserting explicit idle time into the project schedule. This was
also implemented to protect it from disruptions caused by resource unavailability [19].

The literature cited above indicates that regardless of whether project scheduling
considers uncertainties in terms of duration or resource availability, the idea is to set a buffer,
namely time or resource buffer. The buffer can effectively protect the scheduling benchmark
and improve the robustness of the solution. However, considering multi-skilled resources,
effectively using this attribute to deal with the disturbance caused by uncertainties in
resource availability has become a noteworthy problem. To our knowledge, there are only a
few authors that incorporate uncertainty in resource availability in MSRCPSP, thus making
this topic an interesting and novel path for research.

Ahmadpour and Ghezavati (2019) [20] provide a fuzzy scheduling model for the
RCPSP, which considers fuzzy conditions for the calendar of the project. Multi-skilled
human resources are also being considered to cope with the risk of resource shortages
and delays in project completion. The results obtained from the fuzzy model for the
value of objective function were evaluated under the influence of the resource calendar,
consequently showing its benefits. The results provide a research idea for the MSRCPSP
with resources uncertainty. However, this study assumes that once resources are assigned to
a specific skill, they will be completely unchangeable until the end of the project. However,
when a resource is unavailable due to resource uncertainty, other resources with the same
skill are often recruited to continue the activity and avoid delay. When the resource is
available again, the resource may be required to use other skills and perform other tasks to
avoid information asymmetry caused by the resource transition. This multi-skilled resource
dynamic skill assignment realizes the rotation of different resources with different skills
among different tasks and alleviates the disturbance caused by the uncertainty in resource
availability [21]. Compared with the situation that skills cannot be changed, this scheduling
is closer to real-world issues, thus making resource scheduling more flexible and effective
in dealing with absenteeism [22]. Moreover, as multi-skilled resources are often acquired
through cross-training, a worker who does not frequently practice one skill may tend to
forget it [23,24]. In the long run, multi-skill can be easily transformed into single-skill.
Therefore, in this study, we relax the assumption that resources are allowed to change skills.
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Compared to the existing literature, uncertainties in resource availability and dynamic
skill assignment of multi-skilled resources are considered on the basis of MSRCPSP in this
paper. When a resource is unavailable, it can be replaced by skill switching relative to
other multi-skilled resources; alternatively, the external supplement of resources is another
method. The uncertainty in resource availability is described by the Markov process. This
is mainly because the evolution of availability or unavailability of resources is a discrete
stochastic process that evolves with time. In other words, only the present determines the
future, and the past is irrelevant. This corresponds to the Markov chain [25]. Then, we
designed a nested scheduling algorithm combined with three new priority rules to solve
this complex problem to minimize additional resource costs. Finally, the effectiveness of
the proposed algorithm is verified by experimental analysis. The results of this research
are helpful in the decision making of multi-skilled project scheduling. It is also valuable
for expanding the project scheduling research in an uncertain environment, especially
since uncertainty appears to be an extremely difficult element to deal with. Although
most researchers recognize the importance and ubiquity of uncertainty, it remains the most
popular topic of future research sections in many papers [26].

3. Problem Description

In the MSRCPSP, we employ the activity-on-node (AoN) representation and assume a
zero time lag for precedence relations. The project consists of n + 2 activities. The duration of
activity j(j ∈ V, V = {0, 1, 2, . . . , j, . . . n + 1}) is dj

(
dj ∈ N0

)
and d0 = dn+1 = 0. We assume

that the project needs K types of renewable resources, the set is R(R = {1, 2, . . . , k, . . . , K}),
and the availability of each type of resource is |Rk|; that is, Rk = {rk1, rk2, rk3, . . . , rki, . . .}.
Moreover, the project needs sK types of skills, and the set is Sk(Sk = {s1, s2, . . . , sk, . . . , sK}).
The skill(s) mastered by each resource is predefined, and we assume that all resources in the set
of Rk master skill sk, which we call the initial skill of resource rki. Whether there is mastery of
other skills or not is randomly generated, and it is indicated by xrki ,sk , where xrki ,sk = 1 indicates
that resource rki has mastery of skill sk. When ∑sk∈Sk

xrki ,sk > 1, resource rki masters more than
one skill. We describe the uncertainty in resource availability by the Markov stochastic process,
and we set the state of the resource as Zt

(
Zt =

{
zr11

t , zr12
t , . . . , zr1i

t , . . . , zrki
t , . . .

∣∣t = 1, 2, . . . , T
})

,
where T is the deadline of project and zrki

t represents whether resource rki is available or
not at time t. If it is available, zrki

t = 1; otherwise, it is 0. We assume that the project starts at
time zero; thus, Z0 denotes the initial available/unavailable status of all resources, and we
set zrki

0 = 1 for each resource.
The variables and parameters are shown in Table 1.

Table 1. Variables and parameters.

Variables and Parameters

xj,t Binary variable, if activity j is executed in period [t, t + 1) or not.

xrki ,j,sk
Binary variable, if resource rki with skill sk or not.

xrki ,j,sk,t Binary variable, if resource rki with skill sk in period [t, t + 1) or not.

Rsk ,t The additional amount of the resource with skill sk at period t.

V = {1, 2, . . . , j, . . . , n + 1} The set of activities.

SUCCj The immediate successor set of activity j.

Zt =
{

zr11
t , zr12

t , . . . , zr1i
t , . . . , zrki

t , . . .
∣∣t = 1, 2, . . . , T

}
The set of resources state.

zrki
t Binary parameters, if the resource rki is available at time t or not.

Sj The start time of activity j.

dj The duration of activity j.
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Table 1. Cont.

Variables and Parameters

R = {1, 2, . . . , k, . . . , K} The set of K types of renewable resources.

Rk = {rk1, rk2, rk3, . . . , rki, . . .} The set of Rk.

|Rk| The availability of Rk.

Sk = {s1, s2, . . . , sk, . . . , sK} The set of skills.

xrki ,sk Binary parameters, if resource rki has mastery of the skill sk or not.

rj,sk
The requirements of skill sk for executing activity j.

prki The unavailability probability of resource rki

csk The cos t of the resource with skill sk.

T The deadline of the project.

Prki The state transition matrix of rki.

urki
t The state probability vector of resource rki at period t.

e The degree of infeasibility.

M A sufficiently large penalty coefficient.

General RCPSP’s goal is to study how to schedule activities under the constraint of
resources and precedence relations in order to minimize the makespan of the project. While
in the MSRCPSP, as resources are multi-skilled, it is necessary to decide not only activity
scheduling but also the skill assignment of resources. To ensure that activities remain
uninterrupted and to avoid delays in the project, we allow other idle resources with the
same skill to replace the unavailable resources when the skill requirements of activities
cannot be met. If this still does not work, additional resources with the same skill would be
considered (purchasing, renting, or overtime). Adopting additional resources is an easy
and popular method to increase flexibility [26]. According to some studies, it is a proper
assumption where there is no difference in performance between temporary and permanent
resources [27–29]. Given this situation, a problem arises as to which idle resource will
be selected and how to assign them, how many additional resources are needed to meet
skill requirements. To solve this, we set the goal to minimize additional costs. Thus, the
MSRCPSP with uncertainties in resource availability studied in this paper can be described
as follows: Under the constraints of precedence relations, resource availability, and project
deadline, determine activity scheduling and dynamic skill assignment of multi-skilled
resources to minimize additional costs of the project. The research assumptions of this
paper is as follows:

(1) There are many types of multi-skilled resources needed by the project. Each resource
can possess one or more skills, and the initial skill of the resource has priority in
scheduling. Skill levels are homogeneous among resources.

(2) The availability or unavailability of different resources is independent of each other.
(3) The idle resources are allowed to switch skills to replace unavailable resources.
(4) The unavailability probability of resource rki is pki, and the state transition matrix of

rki can be denoted as follows:

Pki =

(
1 0

pki 1 − pki

)
(1)

pki cannot be changed in per unit time, and the state zrki
t is subject to the Bernoulli

distribution of pki. If uki
t represents the state probability vector of resource rki at period

t, then uki
t+1=uki

t Pki, and the initial state probability vectors of all resources are (0,1).
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(5) The initial resource cost of the project is fixed; in other words, it will not decrease or
increase because of the unavailability of resources. Thus, the objective function does
not consider the initial sunk cost of the resource and only considers additional costs.

Mathematically, the MSRCPSP with uncertainty in resource availability can be concep-
tually formulated as follows.

Min
K

∑
k=1

csk Rsk ,t + eM (2)

Sj − Sg ≥ dj
(

j ∈ V, g ∈ SUCCj
)

(3)

Sn+1 ≤ T (4)

∑
t∈[Sj ,Sj+dj ]

xj,t = dj (j ∈ V) (5)

∑
t∈(0,Sj)∪ (Sj+dj ,Sn+1]

xj,t = 0 (j ∈ V) (6)

∑
t∈T

t
(
xj,t − xj,t−1

)
= Sj (j ∈ V) (7)

∑
sk∈Sk

∑
j∈V

xrki ,j,sk ,t ≤ 1 (k ∈ K, t ∈ T) (8)

∑
j∈V

rj,sk ≤ ∑
rki∈Rk

xrki ,sk zrki
t xrki ,j,sk ,t + Rsk ,t (k ∈ K, sk ∈ Sk, t ∈ T) (9)

urki
t+1 = urkii

t Prki (rki ∈ Rk, k ∈ K, t ∈ T) (10)

xj,t, xrki ,j,sk , xrki ,j,sk ,t ∈ {0, 1} (11)

Rsk ,t ≥ 0 (12)

Objective Function (2) minimizes the cost of additional resources, and a penalty
value of eM is considered if scheduling is infeasible. Constraint (3) ensures that the
precedence relations among activities need to be satisfied. Constraint (4) ensures that the
makespan of the project should not exceed the deadline. Equations (5) and (6) ensure that
the activity cannot be interrupted. Equation (7) is a representation of the activity’s start
time. Constraint (8) ensures that every resource can be assigned only in one activity at any
time. Constraint (9) guarantees that the activity’s skills need need to be met. Equation (10)
is the state probability vector of each resource. Equations (11) and (12) describe the domain
of decision variables.

4. The GA-PR Algorithm

As the MSRCPCP is NP-Hard [30], the possibility of solving the problem optimally
using exact solution procedures is limited by the size of instances. However, real instances
of project scheduling problems are considerably large. Therefore, having efficient heuristics
for finding good quality solutions is of great relevance, especially when considering the dy-
namic skill assignment of multi-skilled resources with uncertainties in resource availability.

The proposed model not only optimizes activity scheduling (the start time of each
activity) but also resource scheduling (dynamic skill assignment of multi-skilled resources).
To solve the new model, we designed a modified genetic algorithm combined with priority
rules, called GA-PR. Based on the characteristics of the model, the algorithm is divided into
two layers. The outer layer comprises activity scheduling optimization according to genetic
algorithm, and the inner layer comprises resource scheduling optimizations according to
priority rules.
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4.1. The Outer Algorithm-GA

Step 1. Initialization of activity scheduling

In the outer layer, activity scheduling is the decision maker. Assuming that the project
consists of n + 1 activities, there are n + 1 genes on each chromosome, representing the start
time (ST) of each activity. The earliest start time (ES) of the dummy activity 0 is 1, and the
project deadline is set as the latest start time (LS) of the dummy activity n + 1. According to
the forward and backward iteration algorithms in the critical path theory (CPM), the start
time interval of activity j is

[
ESj, LSj

]
. The initial STj is a random value among

[
ESj, LSj

]
.

Step 2. Calculation of objective function

The objective is to minimize the additional resource cost. First, if the activity schedul-
ing is subjected to precedence constraints, insert it into the inner algorithm. If not, the
fitness value is a relatively large penalty value eM, where M is a sufficiently large penalty
coefficient, and e reflects the degree of infeasibility—the degree of violating constraints.
All individuals in the population are listed in a descending order of fitness value, and the
individual with the minimum fitness value is set as the optimal individual.

Step 3. Selection, crossover, and mutation

The binary tournament method is used to select parent individuals from the popula-
tion. Subsequently, crossover and mutation are carried out to generate the new population.
Then the optimal individual is updated. This step is iterated until the maximum number of
iterations has been reached, and then the final optimal individual is output. (Parameters,
such as crossover probability and mutation probability, are determined after many tests.)

4.2. The Inner Algorithm-PR

Step 1. Identify the unavailability probability pki(k = 1, 2, . . . K, i = 1, 2, . . .) of each re-
source and generate the resource state matrix Zt based on the Markov process.

Step 2. Internal resources ranking

Assume that the project requires sK types of skill, and there are K types of resource.
For each type of resource, we rank the internal resource’s scheduling order according to
their skill number in ascending order, and the internal resource’s scheduling order is Ak.
Here, we define the first resource-scheduling priority rule.

Priority Rule 1: Within each type of resource, the one with the lowest skill number is

scheduled preferentially because the one with more skills can replace unavailable resources.

Step 3. External skills ranking

The set of activities that are executed at moment t is Ot, generated based on activity
scheduling, which is the outer layer’s solution. Calculate the total demand of each type of
skill at moment Dst, and calculate the total initial supply of each type of skill at moment
Sst according to the resources’ initial skills and their available state. The gap between Dst
and Sst is defined as skill-demand tension Lst. The smaller the gap, the smaller the demand
tension of s. We rank these skills according to the demand tension in ascending order, and
the external skill order at moment t is Wt.

When the scheduling of the skill with the smallest demand tension is completed, the
unscheduled resources with this skill can convert its skill to the next skill that needs to
be scheduled and so on. Thus, the demand tension of the next skill can be alleviated.
Therefore, here, we define the second skill scheduling priority rule.

Priority Rule 2: Among different skills, the one with the smaller demand tension

is scheduled preferentially.
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Step 4. Feasibility analysis of activity scheduling with resource constraints

There are three cases for resource scheduling with constraints.
Case 1: The skill demand tensions are all negative, indicating that the initial skill

provided by resources can satisfy the demand under the given activity scheduling (see
Step 5).

Case 2: The skill demand tensions are all positive, indicating that the initial skills
provided by resources cannot satisfy the demand under the given activity scheduling. This
means that every skill needs to be complemented by additional resources (see Step 6).

Case 3: In other cases, it indicates that the initial skills provided by the resources
cannot satisfy the demand under the given activity scheduling, but multi-skilled resources
may satisfy skill needs through skill switching (see Step 6).

Step 5. Resource scheduling without multi-skill

First, the skill with the smallest demand tension is scheduled. The scheduling order
of resources with initial skill W1t is AW1t . For each resource, it is necessary to determine
whether it is available. If available, it is removed from AW1t and added to the resource
profile of the task in Ot. If it is unavailable, it is removed directly from AW1t .

Step 6. Resource scheduling with multi-skill

The cost of skill is used as the basis of the skill scheduling order; the skill with high
cost is scheduled first to satisfy its demand as far as possible and to minimize the cost
of additional resources as much as possible. Here, we define the third skill scheduling
priority rule.

Priority rule 3: When the skill’s demand tension is positive at a certain moment,

the skill with high costs has priority.

For other cases, based on step 5, after completing the scheduling of skill W1t, as its
demand tension is the smallest, if AW1t is a non-empty set, then merge AW1t into AW2t to
schedule skill W2t and so on. If it is still unable to satisfy the skills demand, to ensure that
activity scheduling is feasible, additional resources should be considered, and the project’s
cost will increase.

Step 7. Inner iteration

Steps 4–6 are iterated before resource scheduling is completed. Then, output the final
fitness, activity scheduling, and resource scheduling.

The flow chart of GA-PR algorithm is shown in Figure 1.
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Figure 1. Flowchart of the GA-PR.
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5. A Numerical Example

A project with 12 activities is defined to illustrate the new model and the new al-
gorithm. The duration of each activity is known, and precedence relations are shown in
Figure 2 as finish-to-start relations. Assume that the project needs three types of renew-
able resources: R1, R2, andR3, i.e., K = 3, and the total number of each type of resources
was considered be 10; then, the set of each type of resources can be described as fol-
lows: R1 = {r11, r12, r13, r14, r15, r16, r17, r18, r19, r110}; R2 = {r21, r22, r23, r24, r25, r26, r27, r28, r29, r210};
R3 = {r31, r32, r33, r34, r35, r36, r37, r38, r39, r310}. All resources in R1 master initial skill s1, all re-
sources in R2 master initial skill s2, all resources in R3 master initial skill s3, and whether
these resources master other skill(s) is generated randomly. The resource state matrix is
generated by a Markov process (see Table A2 in Appendix A for details). Each activity
demands different skills. Table 2 shows the number of skills required for performing
activities and other information.

Figure 2. Project Network Example.

Table 2. Project information.

Activists Successors di s1 s2 s3

0 1, 2 0 0 0 0

1 3 2 5 6 6

2 4, 5 3 7 5 4

3 6 6 6 4 4

4 6 5 4 6 3

5 7 3 7 7 6

6 8 6 5 6 4

7 8, 10 4 8 5 5

8 9 5 3 4 3

9 11 4 6 5 4

10 11 2 6 3 6

11 - 0 0 0 0

csk 10 8 12

5.1. The Effectiveness of Dynamic Scheduling

According to the critical path method, the shortest makespan of the project is 23.
Considering the unavailability of resources, we assume that the deadline of the project
is 26 (any number greater than 23 is allowed) (that is, T = 26). According to the GA-PR
algorithm, the optimized scheduling scheme can be obtained, as shown in Figure 3 and
Table 3. Taking scheme 1 as an example, the detailed project scheduling is shown in Figure 4
and the detailed resource scheduling is shown in Table 4.
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Figure 3. The schedule solution. Note: The red dots indicate the makespan and additional cost of 4
scheduling schemes respectively.

Table 3. Optimization Schedules.

Scheme Makespan
Objective Value

(Costs of Temporary Resources)
Schedule

1 23 1032 [0, 1, 1, 3, 4, 8, 9, 11, 15, 20, 15, 23]

2 24 934 [0, 1, 2, 3, 5, 9, 10, 12, 16, 21, 18, 24]

3 25 888 [0, 3, 1, 5, 4, 9, 11, 12, 17, 22, 21, 25]

4 26 802 [0, 3, 1, 5, 7, 4, 12, 12, 18, 23, 21, 26]

According to Figure 3, it can be found that with the extension of the project deadline,
the cost of the additional resources becomes increasingly smaller. In other words, the buffer
period plays a role in alleviating resource unavailability. Resource scheduling in Table 3
shows that multiple resources have performed more than one skill. This gives scheduling
more flexibility. Therefore, the dynamic scheduling considering multi-skilled resources
can effectively alleviate the impact of uncertainty in resource availability on a project’s
makespan and cost.

Figure 4. The scheduling of scheme 1.
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Table 4. Multi-skilled resource scheduling of scheme 1.

j t s1 s2 s3

1
1 r11; r12; r14; r15; r110 r21; r22; r23; r24; r27; r29 r32; r33; r34; r36; r37; r39

2 r14; r17; r110; 2 temporary r22; r29; 4 temporary r32; r35; r37; r38; r13; r210

2

1 r13; r16; r17; r18; r19; 2 temporary r25; r26; r28; r210; 1 temporary r31; r35; r38; r310

2 r16; r18; r19; r24; r25; r28; 1 temporary 5 temporary r33; r36; r310; r11

3 r12; r14; r17; r110; 3 temporary r22; r23; r29; r210; 1 temporary r13; r34; r37; r38

3

3 r11; r15; r18; r19; r25; r28 r27; 3 temporary r31; r33; r36; r39

4 r11; r12; r14; r15; r17; r110 r21; r22; r23; r29 r32; r34; r36; r39

5 r11; r12; r15; r17; r18; r110 r21; r22; r27; r29 r34; r36; r37; r39

6 r12; r14; r17; r110; r26; 1 temporary r22; r29; r210; 1 temporary r23; r32; r37; r38

7 r12; r13; r14; r15; r18; r19 r21; r22; r27; r29 r32; r36; r37; r39

8 r13; r16; r110; r28; 2 temporary r23; r27; 2 temporary r34; r35; r39; r310

4

4 r13; r18; r19; r38 r25; r26; r28; r210; r310; 1 temporary r31; r33; r35

5 r13; r19; r310; 1 temporary r23; r24; r26; r28; r210; r38 r32; r33; r35

6 r16; r18; r19; r21 r25; r27; r28; 3 temporary r31; r33; r36

7 4 temporary r23; r25; r26; r28; r38; r310 r31; r33; r35

8 r14; r17; r19; r24 r29; r210; 4 temporary r11; r31; r36

5

8 r15; r26; 5 temporary r22; 6 temporary r18; r25; r33; r38; 2 temporary

9 r12; r14; r17; r110; r26; 2 temporary r22; r29; r210; 4 temporary r13; r23; r32; r35; r37; r38

10 r14; r17; r110; r26; 3 temporary r22; r29; 5 temporary r13; r23; r37; r38; 2 temporary

6

9 r11; r15; r18; r19; r310 r21; r25; r27; 3 temporary r31; r33; r36; r39

10 r15; r18; r19; r24; r28 r25; r27; 4 temporary r11; r33; r36; r310

11 r11; r12; r15; r15; r17 r21; r22; r23; r24; r27; r29 r34; r36; r37; r39

12 r12; r14; r17; r110; r26 r210; 5 temporary r37; r38; r23; r13

13 r11; r12; r14; r16; r17 r22; r23; r28; r29; 2 temporary r32; r34; r36; r37

14 r12; r14; r15; r17; r110 r21; r22; r23; r24; r27; r29 r34; r36; r37; r39

7

11 r13; r18; r19; 5 temporary r25; 4 temporary r31; r32; r35; r38; r310

12 r11; r15; r16; r18; r19; r21; r24; r25 r27; 4 temporary r31; r33; r36; r39; r310

13 r13; r18; r19; 5 temporary 5 temporary r31; r33; r35; r38; r310

14 r13; r18; r19; 5 temporary r25; r210; r310; 2 temporary r31; r32; r33; r35; r38

8

15 r11; r14; r110 r22; r23; r27; r29 r36; r37; r310

16 r12; r15; r110 r22; r26; r27; r29 r34; r36; r37

17 r14; r15; r110 r22; r23; r24; r29 r34; r36; r37

18 r14; r15; r110 r21; r22; r27; r29 r34; r36; r37

19 r14; r15; r110 r21; r22; r27; r29 r36; r37; r310

9

20 r13; r15; r17; r18; r19; r25 r21; r22; r23; r24; r27 r32; r34; r36; r37

21 r11; r12; r14; r15; r16; r17 r21; r22; r23; r24; r29 r31; r32; r33; r37

22 r11; r12; r14; r15; r16; r110 r21; r22; r23; r24; r29 r34; r36; r37; r39

23 r11; r12; r15; r16; r17; r110 r21; r22; r23; r27; r29 r34; r36; r37; r39

10
15 r12; r13; r16; r17; r18; r19 r26; r28; r210 r25; r31; r33; r38; r310; 1 temporary

16 r13; r16; r17; r18; r19; 1 temporary r25; r210; r310 r31; r32; r33; r35; r38; r39
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5.2. Comparison of Three Scheduling Methods

As shown in Section 4, we know that scheduling multi-skilled resources is mainly
determined by the priority rules in the inner algorithm, which we call dynamic schedul-
ing. To further analyze the effectiveness of these priority rules, we set up two groups of
experiments to compare with the dynamic scheduling method proposed in this paper—
random scheduling and static scheduling. Random scheduling means that the priority
rules designed in Section 4.2 and the skill scheduling order and resource scheduling order
are random. Static scheduling means that once a resource is assigned a skill, it cannot
be changed. The pseudo-codes of dynamic, random and static scheduling are shown in
Appendix B, and the results relative to three different scheduling methods are shown in
Figure 5a–c, respectively. The figures indicate that the objective of dynamic scheduling
is the best: There is minimum additional cost, followed by random scheduling and static
scheduling. This is because of the design of scheduling priority rules. This proves the
effectiveness of the proposed dynamic scheduling method. The operation times of the three
scheduling methods are 19.44 s, 16.39 s, and 0.57 s, respectively.

 
(a) 

 
(b) 

 
(c) 

Figure 5. (a) Dynamic scheduling. (b) Random scheduling. (c) Static scheduling.
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5.3. The Effect of the Buffer Period

We can know that a project’s deadline affects the objective value from the results of
Figure 3. Therefore, we define parameter Cdeadline. to represent the buffer coefficient, which
is used to reflect the margin of buffer duration interval—Cdeadline = T/DueDate, and the
DueDate refers to the makspan of the critical path of the project. The larger Cdeadline is, the
larger the buffer period. The objective values of three scheduling methods with different
parameters are shown in Table 5.

Table 5. The effect of the buffer period.

Parameter
Dynamic Random Static

Best Cost

Cdeadline

1.1 952 1154 1076

1.3 538 802 556

1.5 364 476 402

1.7 250 406 270

Table 5 shows that with the increase in buffer period, the objective values decrease for
three different scheduling programs. This is because when the activities cannot be started
due to the unavailable resources, the larger the buffer period, the more likely that activity
can be allowed to delay, and fewer additional resources will be added. Thus, the cost will
be reduced.

6. Experiment Analysis

In this section, a computational experiment is designed to assess the performance of
the heuristic algorithm proposed in this paper. The algorithm was coded in Matlab R2018b
and ran in the environment of Microsoft Windows 10 (CPU 1.68 GHZ, RAM 8 GB).

6.1. Test Data

Considering that the resources are multi-skilled and their availabilities are uncertain,
the following changes are made to the dataset from PSPLIB (http://www.om-db.wi.tum.
de/psplib/, accessed on 17 June 2020):

(1) The number of skill types required by the project corresponds to that of resource
types required by the project in the original PSPLIB. Each type of resource has a
corresponding initial skill. Assuming that the original PSPLIB J30 needs four types
of resources (R1, R2, R3, and R4), the project in this paper needs four types of skills
in which all resources in R1 have initial skill s1, those in R2 have initial skill s1,
and so on. Except for the initial skills, whether every resource has other skill(s) is
randomly generated.

(2) The skill requirements of activities correspond to the resource requirements in PSPLIB—
assuming that the resource requirements of R1, R2, R3, and R4 for activity 1 in a case of
PSPLIB is 4, 5, 7, and 8, respectively, then the skill requirements of s1, s2, s3, and s4 for
activity 1 is 4, 5, 7, and 8 in this paper.

Network complexity (NC) reflects the precedence relations of activities. Resource
Strength (RS) reflects the intensity of resources, where the larger the value is, the more
resources are supplied. Resource Factor (RF) reflects the activity’s skill requirement, where
the larger the value is, the more skills are needed. In addition, we defined Modified
Resource Strength (MRS) based on the Resource Strength (RS), which reflects the skill
strength mastered by resources. The formula of MRS is shown in Equation (13). The larger
the value, the more the skills are mastered by resources. The Rate of Resource Unavailability
(RRU) is introduced to reflect the unavailability of resources. The larger the value, the
greater the probability that the resource is unavailable.
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MRS =
(∑i ∑K

k=1 Xkisk
)/(∑i ∑K

k=1 rki)

K
(13)

As the problem studied in this paper adds uncertainty in resource availability and
dynamic skill assignment to the classical MSRCPSP, this improves scheduling flexibility
while increasing the difficulty for solutions. As such, solution times increase exponentially.
Therefore, this paper only selected the J30-dataset from the PSPLIB. The parameters of
dataset are shown in Table 6 below.

Table 6. Parameters and values.

Parameters Values

NC 1.5 1.8 2.1 — —

RS 0.2 0.5 0.7 1 —

RF 0.25 0.5 0.75 1 —

MRS 0.25 0.625 1 — —

RRU 0.1 0.2 0.3 0.4 0.5

6.2. Computational Results

In this section, dynamic, random, and static scheduling are compared based on the
same dataset. The comparison results under different parameters are shown in Figure 6a–e,
where Opt(%) is the proportion of the optimal solution. The optimal solution refers to
the minimum cost of the three scheduling methods (dynamic, stochastic, and static). The
proportion of the optimal solution refers to that of the number of optimal solutions in all
480 instances.

As Figure 6a–e indicate, regardless of how parameters change, the performance of
dynamic scheduling is always superior than random and static scheduling. Moreover,
compared to static scheduling, random scheduling is superior. This is because static
scheduling limits the resource’s skill switching; thus, more additional resources need to be
supplied to reach skill requirements, leading to an increase in costs. This shows that multi-
skilled scheduling can effectively alleviate the disturbance caused by resource uncertainty,
and the design of priority rules in dynamic scheduling leads to improved optimization
results, which further shows the effectiveness of the proposed algorithm.

As shown in Figure 6a, network complexity (NC) has no obvious impact on the results
of the three scheduling schemes. This is because the three types of scheduling mainly
optimize results from the perspective of resources and skills. Therefore, regardless of how
NC changes, the results are relatively stable. With the increase in Resource factor (RF), the
proportion of optimal solution of dynamic scheduling gradually decreases, as shown in
Figure 6b. With limited resources, when the activity skill requirements increase, project
scheduling is more easily affected by resources. With the increase in skill requirements,
the flexibility of multi-skilled resources is limited. As such, more additional resources are
needed, which leads to an increase in costs. Therefore, compared with random and static
scheduling, the optimal proportion of the target value decreases. As observed in Figure 6c,
with the increase in RS, the proportion of the optimal solution of dynamic scheduling
gradually increases. This is because the greater RS is, the more resources are likely to meet
the skill requirements of activities, and the replacement of idle resources is easier. Thus,
there is less necessity for additional resources, and costs will be less. In other words, the
increase in RS weakens the impact of uncertainty in resource availability. Similarly, MRS
reflects the strength of skills. The greater the MRS, the more skills the resources can master.
There is more flexibility in resources scheduling, and it is more likely to produce improved
solutions compared with static scheduling. Consequently, costs are lower, as shown in
Figure 6d. As RRU reflects the state of resources, the higher the value, the greater the
probability of resource unavailability. At this time, the role of multi-skilled resources will be
weakened, and there are fewer resources that can meet skill requirements. Therefore, with
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the increase in RRU, more additional resources are needed, and the optimal proportion of
dynamic scheduling will also decrease, as shown in Figure 6e.

Figure 6. (a) Comparison results of NC. (b) Comparison results of RF. (c) Comparison results of RS.
(d) Comparison results of MRS. (e) Comparison results of RRU.

Therefore, as a project manager, to reduce the additional cost of the project in an
uncertain environment, it is necessary to improve the multi-skilled level of resources, avoid
the unavailability of resources, and pay attention to the order in which skills and resources
are scheduled, which have certain guiding significance for maximizing project benefits.
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7. Conclusions

This paper studies the MSRCPSP with uncertainty in resource availability, and dy-
namic skill assignment and additional resource replenishment are considered simultane-
ously when resources are not available. Although extensive research has been conducted
for the MSRCPSP, little research focused on uncertainty in resource availability. In an un-
certain environment, it is easy to encounter resource shortage or conflict. Idle resources can
replace unavailable resources to complete activities through skill switching; thus, dynamic
skill assignment has become a method for alleviating resource conflict. If it still does not
work, additional resources are considered to ensure that activities are not interrupted. To
solve this complex problem, a new model is built and a nested GA-PR dynamic scheduling
algorithm is proposed. Finally, an example and numerical experiments are used to verify
the performance of the algorithm. Simultaneously, the performance of the algorithm is
illustrated by comparing the solution efficiency of static and random scheduling, and the
influences of different parameters on the algorithm scheduling are analyzed.

Numerical experiments show that, although the running time of the proposed dy-
namic scheduling is not optimal, its solution is always superior compared to the other
two scheduling methods. When uncertainties in resource availability are considered, the
resource has more skills and more resources are supplied, and the dynamic scheduling
method has improved performance; on the other hand, the higher the probability of re-
source unavailability and the more skills are required, the worse the dynamic scheduling
method performs. Moreover, by comparing the performance of dynamic scheduling and
random scheduling, we can find that the scheduling order has a significant impact on
the results and the three new priority rules contribute to the optimization of costs. By
comparing the performance of dynamic scheduling and static scheduling, we can find that
the skill switching of multi-skill resources also plays an important role.

Our research findings can also provide project managers with some guidance when
scheduling projects in an uncertain environment. First, at the start-up stage of the project,
mangers should select as many multi-skilled resources as possible when establishing the
project team. Second, at the project planning stage, it is important to decide which skill
should be scheduled first and which resource should be scheduled first. Moreover, dynamic
skill assignment and additional resource replenishment are great methods for alleviating
resource shortages. Third, during the project-execution period, managers can take some
incentives to encourage single-skilled person to learn from multi-skilled persons to master
more skills.

However, it should be noted that this paper has still some limitations. First, this paper
assumes that the skill level of each resource is homogeneous. For future research, the
heterogeneity of skill level can be considered. Second, when the splitting of activity is
allowed, resource conflicts can also be solved by interrupting activities so as to reduce
the additional cost of resources. In this case, scheduling will be a more interesting and
difficult problem. Finally, in this paper, the costs of resource skill switching are not taken
into account, which will render MSRCPSP a trade-off problem between additional resource
costs and skill-switching costs.
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Appendix A

Table A1. The skill matrix mastered by resources.

Resource

Skill s1 s2 s3
Resource

Skill s1 s2 s3
Resource

Skill s1 s2 s3

r11 1 0 1 r21 1 1 0 r31 1 1 1

r12 1 1 0 r22 0 1 0 r32 1 0 1

r13 1 1 1 r23 0 1 1 r33 1 0 1

r14 1 0 0 r24 1 1 0 r34 0 0 1

r15 1 0 0 r25 1 1 1 r35 1 0 1

r16 1 0 1 r26 1 1 0 r36 0 0 1

r17 1 1 0 r27 0 1 0 r37 0 0 1

r18 1 0 1 r28 1 1 0 r38 1 1 1

r19 1 1 1 r29 0 1 0 r39 0 0 1

r110 1 0 0 r210 0 1 1 r310 1 1 1

Table A2. The resource state matrix.

Resource
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

r11 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1

r12 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1

r13 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

r14 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0

r15 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

r16 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1

r17 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

r18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r110 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1

r21 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1

r22 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

r23 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

r24 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1 1

r25 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

r26 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0

r27 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1

r28 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1
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Table A2. Cont.

Resource
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

r29 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

r210 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1

r31 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0

r32 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1

r33 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

r34 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

r35 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0

r36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

r37 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

r39 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1

r310 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1

Appendix B

Algorithm for Dynamic Scheduling Algorithm for Random Scheduling Algorithm for Static Scheduling

Begin

Input dj, rjsk
, R, S, pki, Zt=1

While it < MaxIt
for j = 1 : n

Calculate
[

ESj, LSj

]
end

Initialize STj
Resource ranking (Priority rule 1)
If STj + dj ≤ STg, g ∈ SUCCj, ∀j

Then
for t = 1 : T

Calculate Lst (Priority rule 2)
Update Ot, Wt
Case 1 Lst ≤ 0, ∀K
Resource scheduling
Case 2 Lst > 0, ∀K (Priority rule 3)
Resource scheduling
Case 3 others (Priority rule 3)
Resource scheduling
Update Zt+1

end

Calculate Rs and Output Result
Else

Output Result
Update STj (Select, Crossover, Mutate)
End

Begin

Input dj, rjsk
, R, S, pki, Zt=1

While it < MaxIt
for j = 1 : n

Calculate
[

ESj, LSj

]
end

Initialize STj
If STj + dj ≤ STg, g ∈ SUCCj, ∀j

Then
for t = 1 : T
Update Ot
Resource scheduling (No order)
Update Zt+1
end

Calculate Rs and Output Result
Else

Output Result
Update STj (Select, Crossover, Mutate)

End

Begin

Input dj, rjsk
, R, S, pki, Zt= 1

While it < MaxIt
for j = 1 : n
Calculate

[
ESj, LSj

]
end

Initialize STj, SKi
If STj + dj ≤ STg, g ∈ SUCCj, ∀j
Then
Calculate Rs
Else

Output Result
Update STj, SKi (Select, Crossover,
Mutate)
End
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Abstract: This paper introduces a new variant of the Shortest Path Problem (SPP) called the
Cost-Balanced Path Problem (CBPP). Various real problems can either be modeled as BCPP or
include BCPP as a sub-problem. We prove several properties related to the complexity of the CBPP
problem. In particular, we demonstrate that the problem is NP-hard in its general version, but it
becomes solvable in polynomial time in a specific family of instances. Moreover, a mathematical
formulation of the CBPP, as a mixed-integer programming model, is proposed, and some additional
constraints for modeling real requirements are given. This paper validates the proposed model and
its extensions with experimental tests based on random instances. The analysis of the results of
the computational experiments shows that the proposed model and its extension can be used to
model many real applications. Obviously, due to the problem complexity, the main limitation of the
proposed approach is related to the size of the instances. A heuristic solution approach should be
required for larger-sized and more complex instances.

Keywords: shortest path problem; mixed-integer linear programming; cost-balanced paths

1. Introduction

This paper introduces a new variant of the Shortest Path Problem (SPP) called the
Cost-Balanced Path Problem (CBPP). The CBPP is defined on a directed graph G(N, A),
where N is the set of nodes and A is the set of directed arcs. For each arc (i, j) ∈ A is also
defined a cost cij ∈ R. Let the nodes o, d ∈ N, respectively, called origin and destination. A
feasible solution of this problem is an acyclic path p = ((o, ni), (ni, nj), . . . , (nh, nk), (nk, d))
in the graph G from node o to node d. Let c(p) = ∑(i,j)∈p cij the cost of the pah p, i.e., the
sum of the cost of all the arcs used in the path p; the objective of CBPP is the minimization
of the absolute value of this cost: MIN|c(p)|.

Various real problems that present some elements in common with the cost-balanced
path problem can either be modeled as BCPP or include BCPP as a sub-problem; some
are here briefly discussed. The first mentioned problem is related to the path of an electric
vehicle. The route choices of drivers of battery electric vehicles are affected by the many
factors related to the battery recharge [1]. The cost-balanced path problem can be solved
when defining the path that an electric vehicle has to perform for going from an origin
point to a destination one, with the aim of maintaining the same level of electric charge.
Suppose that a vehicle starts its trip in the origin node with a charge of 80% and has to
arrive at a destination node with the same charge. During the trip, the vehicle can recharge
the battery on the downhill roads, while the vehicle reduces its charge on the roads that
go uphill. This problem can be formulated on a direct graph G where the weights of arcs
represent the charge consumption (negative arc costs) and the recharge (positive costs). In
this case, additional constraints are required, such as the level of electric charge to maintain
along the whole path that can range from 0 to 100%.
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In the bike-sharing systems [2], a particular problem linked to bikes management can
be modeled as a CBPP. Suppose to have to re-locate bikes among a set of points that can
be modeled as arcs in a direct graph G, with weights on the arcs representing the number
of bikes to deliver (negative costs) and the number of bikes to pick up (positive costs). A
vehicle has to perform a path in such a way to redistribute the bikes. In this example, the
additional constraints are related to the number of bikes on the vehicle, that can range from
zero to the vehicle capacity; moreover, additional requirements can be added for obtaining
a constrained path concerning the duration, the number of arcs visited, the length, that,
for example, should be maintained within a given range. Alternatively, suppose to have a
depot and a vehicle that has to deliver a certain number of bikes to some points that are
the locations for bikes. The vehicle has to deliver bikes to some locations, while eventually
re-locate some bikes, that is, to pick up bikes from some locations. In the end, the vehicle
has to finish its trip, possibly without bikes on board; the same additional requirements
cited here above can be added.

This paper introduces a new problem, thus it can be helpful to summarize the novelties
of this work in the following list: (i) definition of a new problem, the CSPP; (ii) proof that
CSPP is NP-hard; (iii) proof that it is possible to solve the CSPP in polynomial time under
specific configurations of the arc costs; (vi) first mathematical formulation for CSPP.

The remaining of the paper is organized as follows. Section 2 summarizes the
literature related to BCPP. Section 3 presents an evaluation of the BCPP complexity,
the BCPP mathematical formulation and some model extensions, while Section 4 reports
the computational experiments for the validation of the proposed model and its extensions.
Section 5 gives some conclusions and perspectives.

2. Literature Review

To the authors’ knowledge, the BCPP has never been studied in the literature, although
there are many variants of the classic SPP, and there is a paper related to the Traveling
Salesman Problem (TSP) that introduces the same objective function of BCPP [3]. The
authors of [3] introduce the cost-balanced TSP, in which the main objective is to find a
Hamiltonian cycle with total travel cost as close as possible to 0. The authors assumed a
cost/length matrix, while negative costs are allowed. To solve the cost-balanced TSP, they
proposed a variable neighborhood search algorithm. A similar problem is the balanced
TSP, which is related to the uniform (equitable) distribution of resources [4]. In [5], the
multiple balanced traveling salesmen problem is proposed to model and optimize the
problems with multiple objectives (salesmen). The goal is to find m Hamiltonian cycles in
G by minimizing the difference between the highest edge cost and the smallest edge cost in
the tours. The SPP [6,7] and many variants have been proposed in the literature for facing
problems arising in various fields, together with ever more efficient algorithms (see, for
example, in [8–11]). Although the SPP can be solved in polynomial time using various
algorithms, many of its variants are known to be NP-hard. Among these variants of the SPP,
in the k-Color Shortest Path Problem proposed by Ferone et al. [12,13], the classic SPP is
solved on graphs with colored arcs. In the recent Steiner bi-objective Shortest Path Problem
introduced in [14], the authors present this new variant of the SPP capable of preprocessing
data to solve the well-known vehicle routing problem. SPP in which the cost of the arcs is
not known in advance has been studied in the recent literature [15,16]. Stochastic shortest
path (SSP) dealing with applications in routing problems and in road networks can be
found in [17,18]. Another problem on graphs linked to the balance concept is the balanced
trees [19], which are the appropriate structures (balanced tree structures) for managing
networks with the aim of balancing two objectives. The constrained path has been studied
in [20]; the authors proposed a robust formulation for the Resource-Constrained Shortest
Path Problem that is the problem of determining a path p from an origin to a destination
with the smallest cost, such that the consumption of a given resource for that path is lower
or equal to the maximum amount of available resource.
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In the following section the complexity of CSPP is investigated and a mathematical
formulation is proposed.

3. Problem Complexity and Mathematical Formulation for CBPP

Many variants of SPP are known to be NP-hard; thus, in this section, before presenting
a mathematical formulation for modeling and solving CBPP, the problem complexity is
investigated. In particular, thanks to a reduction algorithm [21,22], it has been proved that
the problem is NP-hard in its general form.

3.1. Problem Complexity

Theorem 1. If not all costs have the same sign, the Cost-Balanced Path Problem is NP-hard.

Proof of Theorem 1. To prove the theorem, we will describe a reduction algorithm which
in polynomial time, reduces the classic Hamiltonian Path Problem (HPP) in an instance
of the Cost-Balanced Path Problem. The HPP is a classic problem belonging to the
NP-complete complexity class [23]. Let a directed graph G(N, A) where N is a set of
nodes, and A is a set of arcs. Let us suppose we want to compute the Hamiltonian path
that goes from node h to node k of the graph G. We create the graph G′(N′, A′) such that
N′ = N ∪ {o}, A′ = A ∪ {(o, h)}. We create the cost cij such that cij = 1 ∀(ij) ∈ A and
coh = 1 − |N|. Considering that |N′| = |N|+ 1 and that the longest path in G′ can contain
|N| arcs. Considering that in every feasible solution the arc (o, h) will always be present
and that the value of a solution with k arcs will be equal to 1 − |N|+ (k − 1). If the value
of the solution of CBPP on the graph G′ is equal to zero, then in G, there is a Hamiltonian
path between the nodes h and k (see Figure 1).

Figure 1. (a) An example of a graph G. (b) Graph G′ derived from G. (c) A solution of CBPP with
cost zero. (d) The Hamiltonian path.

Figure 1 shows an example useful to understand Proof of Theorem 1. In Figure 1a,
a direct graph (i.e., G) with six nodes is depicted, while in Figure 1b, a graph G′ derived
from G is represented: node o has been added together with the weights for the arcs. In
Figure 1c, the solution for the CBPP is shown. Finally, the Hamiltonian path from node h
to node k, is depicted in Figure 1d).

Corollary 1 (Corollary of Theorem 1). Given a generic instance of CBPP, if even one cost has
the opposite sign to the others, then the problem is NP-hard.
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Proposition 1. If all costs are non-negative cij ≥ 0, the problem is equivalent to the classic Shortest
Path Problem, therefore it can be solved in polynomial time.

Proposition 2. If all costs are non-positive cij ≤ 0, the problem is equivalent to the classic Shortest
Path Problem, therefore it can be solved in polynomial time.

Proof of Proposition 2. By inverting the sign of each cost, we will obtain a scenario in
which all costs are positive. Proposition 1 assures us that we can solve the resulting
problem in polynomial time. The obtained solution is an optimal solution also for the initial
problem with the unique difference that the value of the objecting function is negative.

A graph with particular characteristics for CBPP is the graph in which the cost of the
arc is a function of the elevation difference of the two nodes associated with the arc. This
graph could represent points positioned at different altitudes (see Figure 2).

Figure 2. Example of an altimetric graph.

Proposition 3 (Elevation difference). Given a directed graph G(N, A) in which for each node
i ∈ N is defined a value vi ∈ R, and such that cij = vj − vi ∀(ij) ∈ A. The Cost-Balanced Path
Problem is solvable in polynomial times.

Proof of Proposition 3. Given a graph G created as described in Proposition 3, let be p a
path in G, such that p = ((n1, n2), (n2, n3), (n3, n4), . . . , (nh, nk)), c(p) = c12 + c23 + c34 +
. . . + chk = (v2 − v1) + (v3 − v2) + (v4 − v3) + . . . . + (vk − vh) = −v1 + (v2 − v2) + (v3 −
v3) + (v4 − v4) + . . . + (vh − vh) + vk =⇒ c(p) = vk − v1. This implies that the cost of
a path depends only on the starting node and the destination node, so each path is also
optimal (see Figure 3).

Figure 3. Example of a graph in which the cost of an arc depends on the elevation of the nodes.

3.2. Mathematical Model

In this sub-section, a model for solving CBPP is presented; it is a mixed integer
linear programming with binary variables (MILP). Let us introduce the following decision
variables:

xij ∈ {0, 1}, ∀i, j ∈ N: xij = 1 if and only if arc (i, j) is included in the problem solution.
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ti, ∀i ∈ N that represents the flow leaving node i and is used to prevent the creation of
loops in the solution.

b represents the costs (in absolute value) of the optimal path.
The resulting model is the following:

z = Min b (1)

subject to:

∑
(i,j)∈A

cijxij ≤ b (2)

− ∑
(i,j)∈A

cijxij ≤ b (3)

∑
(o,j)∈A

xoj = 1 (4)

∑
(i,d)∈A

xid = 1 (5)

∑
(j,i)∈A

xji − ∑
(i,j)∈A

xij = 0 ∀i ∈ N \ {o, d} (6)

∑
(i,j)∈A

xij ≤ 1 ∀j ∈ N \ {o, d} (7)

∑
(i,j)∈A

xij ≤ 1 ∀i ∈ N \ {o, d} (8)

to = 0 (9)

tj − ti ≥ 1 − |N|(1 − xij) ∀(i, j) ∈ A (10)

xij ∈ {0, 1} ∀(i, j) ∈ A (11)

ti ∈ [0, |N| − 1] ∀i ∈ N (12)

Equation (1) minimizes variable b that represents the cost of the selected path in
absolute value. Variable b is defined thanks to Equations (2) and (3). Equations (4) and
(5) impose that one arc leaves the origin node o, and one arc enters the destination node
d. (6) impose, for each node of the network that is different from either the origin or the
destination node, that the number of arcs entering the node is equal to the number of arcs
exiting it. Equations (7) and (8) impose that at most one arc can enter in and exit from
each node, except for the origin and the destination ones. Equations (9) and (10) defines
variables ti; to is set to zero (i.e., from the origin node the outflow is equal to zero), while tj
is set greater than the flow leaving node i, if arc (i, j) is selected. Finally, in (11) and (12) the
decision variables are defined.

3.3. Model Extensions

In the introduction, some real applications that can be solved by the here above
proposed model have been briefly described. Unfortunately, some additional constraints
should be required, and thus in this sub-section, some of the additional constraints for
model (1)–(12) are described.

CBPP has the objective of cost balancing instead of cost minimization. The cost that it
is necessary to balance may represent a measure of a level of a particular element that has
to be maintained near a pre-defined value (for example, the electric charge, the load of a
vehicle, etc.). Each decision, expressed in the graph by the selection of an arc, may increase
or decrease the level of the considered element. The scope is to take a sequence of decisions
in such a way to have at the end of the process the same starting level that, in particular
cases, can be zero.

In real applications, there is often the necessity to maintain this level within given
upper and lower limits after each decision, that is, along the selected path. This means that,
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i.e., in the example of the electric car, the charge must always be within a lower and an
upper bound. The same can be required for the cargo loaded on a vehicle.

Constraints for limiting the variance of the level within the given interval (amin, amax)
are based on flow variables defined as follows:

fij, ∀i, j ∈ N: fij represents the level reached at node i, that will leave node i for
reaching node j if and only if arc (i, j) is included in the selected path, i.e., xji = 1.

Thanks to Equations (13) and (14), the flow ( fij) on each selected arc must be less or
equal to its maximum value and greater or equal to the minimum required, while thanks to
Equation (15) the outflow from the origin node ( foj) is fixed equal to the starting level (ao).

Equation (16) gives the flow conservation constraints. For each node i, different from
either the origin node or the destination one, the flow that leaves node i is equal to the flow
that leaves the initial node of the arc entering in i, plus the cost of arc entering in node i.

fij ≤ amaxxij, ∀(i, j) ∈ A (13)

fij ≥ aminxij, ∀(i, j) ∈ A (14)

∑
(d,j)∈A

fdj = ao (15)

∑
(j,i)∈A

fji + ∑
(j,i)∈A

cjixji = ∑
(i,j)∈A

fij, ∀i ∈ N \ {o, d} (16)

Thanks to the above constraints, we are able to balance the cost and maintain it in the
given required interval along the whole path.

Sometimes, together with the aim of cost balancing some other objectives must be
included in the problem. In fact, when dealing with paths, the most common problem
is the shortest path problem. For example, in the problem of the electric car, it should be
required to have a path not too expensive in terms of either kilometers traveled or times. In
this case, it is possible to insert an additional constraint that permits to find a path from
origin to destination no longer than a given % of the shortest path.

Let dij be the distance associated to the arc (i, j), and cSP the distance associated to the
shortest path from the origin node to the destination one in the graph under investigation,
α the percentage of deterioration accepted, the resulting constraint is the following:

∑
(i,j)∈A

dijxij ≤ (1 + α)cSP (17)

In other cases, the limitations may concern the length of the path in terms of number
of arcs belonging to the path; the model can be extended by simply adding the following
constraints that are related, respectively, to the maximum number of arcs that can build the
path (bmax) and the minimum number of arcs to select (bmin).

∑
(i,j)∈A

xij ≤ bmax (18)

∑
(i,j)∈A

xij ≥ bmin (19)

4. Results

In this section, the computational results obtained by applying the proposed mathematical
model (1)–(12) are described. Some computational experiments related to the extended
model are presented too. The computational campaigns are based on some generated
instances described in the following subsection.
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The MILP model has been implemented in Java, using CPLEX version 12.8 as a
solver. The computational tests were performed on a MacBook Pro, with a 2.9 GHz Intel
i9 processor and 32 GB of RAM. Figure 4 shows the flow chart of the proposed approach.
Step 1 load the input graph G(N, A) from the text file. Step 2 creates the mathematical
model. Its complexity depends on the number of constraints created, which is in the order
of |A|. Using the MILP solver of the CPLEX software, in Step 3, the problem is solved.
The computation time for Step 3 is exponential [24] as stated in Theorem 1. In Step 4, all
the values associated with the model decision variables are extracted to create a textual
representation of the solution.

Figure 4. Algorithm flowchart.

4.1. Instances

The proposed mathematical model has been validated with two sets of generated
instances for the above described problem. The first set of instances, named Grid, is
characterized by complete square grids where each node is connected to its four neighbors.
In the name of these instances, the first value represents the number of nodes; the second
value represents the size of the grid. The second set of instances named Rand is characterized
by connected graphs in which each node is randomly connected to other nodes until the
desired density is reached. In the name of these instances, the first value represents the
number of nodes; the second value represents the percentage of arcs incident on each vertex.
The costs associated with the arcs of each instance were generated following 5 different
schemes.

[−10, 10] Random homogeneous distribution of costs in the range [−10, 10].
[−100, 100] Random homogeneous distribution of costs in the range [−100, 100].
[−1k, 1k] Random homogeneous distribution of costs in the range [−1000, 1000].
EL After associating a random height to each node, the cost of the arc represents the
displacement in height.
P-EL Perturbation of the 1% random of the EL costs.

4.2. Computational Results for the Proposed Model

Tables 1–3 show the results of the computational tests performed on the grid instances.
Each row reports the average of five instances. The last row of each table AVG is the average
of all solved scenarios. We used 1800 s as the time limit for the CPLEX solver (Step 3).
This implies that in the event of a higher running time, the optimality of the obtained
solution is not guaranteed. Table 1 shows the computational times. It is interesting to
note that the running time is mainly related to the costs associated with the arcs rather
than to the size of the graph. Table 2 shows the number of zero-value solutions identified.
For instances with random costs, in the scenarios with homogeneous weight distribution
([−10, 10], [−100, 100], [−1k, 1k]), it is always possible to obtain a solution with a cost equal
to zero. Using the EL policy to create the costs, all paths will have a cost equal to the
difference in height between the source node and the destination node. It is interesting to
see that analyzing the P-EL policy is sufficient a 1% perturbation of the EL policy cost in
order to identify solutions with a cost equal to zero, in particular as the graph size increases.
Table 3 shows the obtained objective function values. The analysis of Table 3 shows that as
the size of the graph increases, the solution for the P-EL policy will tend to approach zero.
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Table 1. Running times for the grid instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Grid_100_10 0.27 0.79 1.71 0.02 38.23
Grid_225_15 0.43 0.95 3.60 0.07 1502.42
Grid_400_20 0.69 1.66 4.30 0.11 961.81

AVG 0.46 1.13 3.20 0.07 834.15

Table 2. Number of solutions with an objective function value equal to zero.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Grid_100_10 5 5 5 0 0
Grid_225_15 5 5 5 0 0
Grid_400_20 5 5 5 0 3

AVG 5 5 5 0 1

Table 3. Objective function value for the grid instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Grid_100_10 0 0 0 4467 3806
Grid_225_15 0 0 0 4809 3405
Grid_400_20 0 0 0 2920 878

AVG 0 0 0 4065 2696

Tables 4–6 show the results of the computational tests performed on the random generated
instances. As before, each row reports the average of five solved instances, while the two
rows AVG refer to the average of all solved scenarios, respectively, for the instances with
100 and 200 nodes. Table 4 shows the computational times. In this test, the running time
remains highly dependent on the used cost scheme, but the P-EL scheme is much easier to
solve than the [−1k, 1k] scheme. Table 5 shows the number of zero-value solutions identified.
For instances with random costs, in the scenarios with homogeneous weight distribution
([−10, 10],[−100, 100],[−1k, 1k]), it is always possible to obtain a solution with a cost equal to
zero. This test confirms the results obtained previously for the grid instances. In this scenario,
it becomes even more evident that the cost scheme P-EL tends as the graph grows to produce
instances with cost zero solution (see also Table 6). Table 6 shows the obtained objective
function values. Considering that the execution of the model stops reaching a solution equal
to zero (Lower Bound), we justify the computational times shown in Table 4.

Table 4. Running times for the random instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Rand_100_02 0.06 0.09 1.28 0.01 0.05
Rand_100_03 0.13 0.29 1.17 0.02 0.13
Rand_100_04 0.18 0.29 2.40 0.02 0.82
Rand_100_05 0.12 0.48 2.37 0.03 0.50
Rand_100_10 0.13 0.42 2.25 0.05 0.23
Rand_100_20 0.18 0.68 4.14 0.10 0.46

AVG 0.13 0.38 2.27 0.04 0.36

Rand_200_02 0.30 1.18 3.91 0.05 0.50
Rand_200_03 0.22 1.11 4.53 0.06 0.71
Rand_200_04 0.16 0.35 6.63 0.09 1.30
Rand_200_05 0.25 0.59 6.28 0.11 0.66
Rand_200_10 0.23 3.88 4.95 0.18 1.01
Rand_200_20 0.15 12.66 23.08 0.38 6.66

AVG 0.22 3.30 8.23 0.14 1.81
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Table 5. Number of solutions with an objective function value equal to zero.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Rand_100_02 5 5 5 0 1
Rand_100_03 5 5 5 0 0
Rand_100_04 5 5 5 0 2
Rand_100_05 5 5 5 0 1
Rand_100_10 5 5 5 0 2
Rand_100_20 5 5 5 0 2

AVG 5 5 5 0 1

Rand_200_02 5 5 5 0 1
Rand_200_03 5 5 5 0 1
Rand_200_04 5 5 5 0 1
Rand_200_05 5 5 5 0 2
Rand_200_10 5 5 5 0 2
Rand_200_20 5 5 5 0 4

AVG 5 5 5 0 2

Table 6. Objective function value for the random instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Rand_100_02 0 0 0 3634 1435
Rand_100_03 0 0 0 3040 6005
Rand_100_04 0 0 0 3358 434
Rand_100_05 0 0 0 2343 2982
Rand_100_10 0 0 0 3330 1888
Rand_100_20 0 0 0 2107 1762

AVG 0 0 0 2969 2418

Rand_200_02 0 0 0 2959 2835
Rand_200_03 0 0 0 4109 2559
Rand_200_04 0 0 0 4240 1545
Rand_200_05 0 0 0 2550 1762
Rand_200_10 0 0 0 2512 1676
Rand_200_20 0 0 0 2721 74

AVG 0 0 0 3182 1742

4.3. Results for the Extended Model

In this section, some results related to the extended model are presented. In particular,
these tests are based on the 50 instances named Grid_100_10 and Grid_225_15. In all
experiments, amax is equals to −amin. Looking at Table 7, it is possible to note that by
decreasing the value of alpha, the computational time decreases, according to the decrease
in the dimension of the admissible region. On the other hand, by introducing in the
model the constraints associated with the parameter amax, the computational time increases,
according to the increase in the number of decision variables and constraints associated
with the problem. As in Table 8, we can see that obviously, as the number of constraints
increases, it becomes increasingly challenging to identify zero-sum solutions. Table 9 shows
that as the number of constraints increases, it becomes even more difficult to identify
feasible solutions: the values reported in round brackets indicate the number of unfeasible
solutions. Analyzing Tables 8 and 9, it is possible to state that as the size of the graph
increases, the quality of the solutions worsens less by adding further constraints. This is
probably due to the increase in alternative paths between source and destination nodes.
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Table 7. Running times in seconds.

|N| α amax [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

100

∞ ∞ 0.27 0.79 1.71 0.02 38.23
0.2 ∞ 0.14 0.54 1.43 0.03 0.04
0.1 ∞ 0.13 0.27 0.29 0.03 0.04
0.1 4C 0.27 0.77 1.12 0.15 0.16
0.1 3C 0.39 0.60 0.88 0.14 0.16
0.2 3C 0.73 0.86 2.38 0.22 0.20

225

∞ ∞ 0.43 0.95 3.60 0.07 1502.42
0.2 ∞ 0.99 10.15 113.64 0.13 0.50
0.1 ∞ 1.47 5.09 11.57 0.16 0.24
0.1 4C 4.94 30.00 30.21 0.75 0.49
0.1 3C 5.81 9.16 12.77 0.90 0.79
0.2 3C 13.15 19.65 144.18 0.85 0.60

Table 8. Number of solutions with an objective function value equal to zero.

|N| α amax [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

100

∞ ∞ 5 5 5 0 0
0.2 ∞ 3 2 1 0 0
0.1 ∞ 2 0 1 0 0
0.1 4C 2 0 0 0 0
0.1 3C 2 0 0 0 0
0.2 3C 2 2 0 0 0

225

∞ ∞ 5 5 5 0 0
0.2 ∞ 5 4 2 0 0
0.1 ∞ 4 2 0 0 0
0.1 4C 2 1 0 0 0
0.1 3C 1 0 0 0 0
0.2 3C 4 2 1 0 0

Table 9. Objective function value—values in round brackets indicate the number of unfeasible
solutions.

|N| α amax [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

100

∞ ∞ 0 0 0 4467 3806
0.2 ∞ 6 15 13 4467 4379
0.1 ∞ 12 95 233 4467 4402
0.1 4C 3 (2) 15 (2) 260 4467 4402
0.1 3C 3 (2) 15 (2) 179 (1) 4467 (1) 5003 (1)
0.2 3C 3 (1) 4 (2) 100 4467 4379

225

∞ ∞ 0 0 0 4809 3405
0.2 ∞ 0 1 10 4809 4870
0.1 ∞ 1 4 175 4809 4900
0.1 4C 3 5 (1) 5 (2) 4809 4900
0.1 3C 1 (2) 17 (2) 18 (3) 4809 4900
0.2 3C 1 (1) 26 35 4809 4870

5. Conclusions

This paper deals with the Cost-Balanced Path Problem (CBPP), a variant of the classic
Shortest Path Problem introduced in this paper for the first time. The characteristic of
this problem is that it can be used as a sub-problem to model many real scenarios. Using
the mixed-integer linear programming model introduced in Section 3.2, we computed the
optimal solution for many test instances. It is interesting to note that analyzing the results
shown in Section 4, in the case of uniform distribution of the costs of the arcs, there is
always an optimal solution with an objective function value equal to zero. To prevent or
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make the presence of solutions with an objective function value equal to zero rarer, smart
methods for defining the cost of the edges (EL, P − EL) have been used. Note that when
the model reaches an objective function value equal to zero, it stops instantaneously having
reached its lower bound; this implies that the computational time for instances that do not
have zero as an optimal solution is significantly higher. Considering these observations,
the future developments for this work are manifold. First of all, it would be interesting
to develop instance generators capable of preventing or minimizing the presence of zero
solutions in order to create computationally complex instances. Using more complex
instances, realizing heuristic or meta-heuristic approaches for this problem would become
necessary. A constructive approach based on the Dijkstra algorithm [25] improved through
the Carousel Greedy, an enhanced Greedy algorithm proposed in [26,27], might identify a
feasible solution to the problem. According to the authors’ experience, the tabu search, a
technique introduced by Glover [28] and widely used in the literature, also by the authors
of this work, for example, in [29], might be used to improve the Greedy solution.
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Abstract: One of the major limitations of evolutionary algorithms based on the Lebesgue measure
for multi-objective optimization is the computational cost required to approximate the Pareto front of
a problem. Nonetheless, the Pareto compliance property of the Lebesgue measure makes it one of
the most investigated indicators in the design of indicator-based evolutionary algorithms (IBEAs).
The main deficiency of IBEAs that use the Lebesgue measure is their computational cost which
increases with the number of objectives of the problem. On this matter, the investigation presented in
this paper introduces an evolutionary algorithm based on the Lebesgue measure to deal with box-
constrained continuous multi-objective optimization problems. The proposed algorithm implicitly
uses the regularity property of continuous multi-objective optimization problems that has suggested
effectiveness when solving continuous problems with rough Pareto sets. On the other hand, the
survival selection mechanism considers the local property of the Lebesgue measure, thus reducing
the computational time in our algorithmic approach. The emerging indicator-based evolutionary
algorithm is examined and compared versus three state-of-the-art multi-objective evolutionary
algorithms based on the Lebesgue measure. In addition, we validate its performance on a set of
artificial test problems with various characteristics, including multimodality, separability, and various
Pareto front forms, incorporating concavity, convexity, and discontinuity. For a more exhaustive
study, the proposed algorithm is evaluated in three real-world applications having four, five, and
seven objective functions whose properties are unknown. We show the high competitiveness of our
proposed approach, which, in many cases, improved the state-of-the-art indicator-based evolutionary
algorithms on the multi-objective problems adopted in our investigation.

Keywords: multi-objective optimization; Lebesgue measure; indicator-based evolutionary algorithms

1. Introduction

In several engineering and sciences applications, some problems require the simulta-
neous optimization of a number of objective functions. In the specialized literature, such
problems are referred to as multi-objective optimization problems (MOPs). The optimiza-
tion of a multi-objective problem involves determining the best compensation alternatives
considered in a set of conflicting objective functions. Therefore, instead of an optimal solu-
tion, as in single-objective optimization, a set of solutions manifesting the best trade-offs
among objectives is reached. The population on which evolutionary algorithms are based
makes these algorithms a practical tool to solve these types of problems. For this reason,
evolutionary multi-objective algorithms (EMOAs) have become a flexible and popular
instrument to deal with MOPs. In the specialized literature, a variety of investigations
concerning the development of evolutionary approaches for multi-objective optimization
can be found. See the extensive review of such approaches presented in [1,2]. According to
their conceptual foundations, EMOAs are categorized into three main groups: Pareto-based,
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decomposition-based, and indicator-based approaches. These approaches incorporate dif-
ferent search strategies that define by themself the performance of a particular EMOA.
Distinctly, EMOAs based on indicators—the topic investigated in this work—explicitly
optimize a quality indicator (e.g., R2 [3], Lebesgue measure [4], ε indicator [5], IGD [6],
among others) to approximate the Pareto front of a MOP. In this manner, since its origin in
the early 2000s, the indicator-based evolutionary algorithm (IBEA) [7] traced a new research
line investigated to date.

IBEAs adopting indicators that use reference sets (e.g., R2, ε indicator, IGD, etc.) are
a design challenge since the optimal solutions are unknown. Consequently, reference
sets cannot be adequately pre-established. Despite this, some researchers have studied
diverse techniques to predict the reference set for these IBEAs [8,9]. In the evolutionary
multi-objective optimization (EMOO) literature, the Lebesgue measure, also referred to as
hypervolume indicator or S-metric, was introduced by Zitzler and Thiele [4] to evaluate the
performance of EMOAs. This quality indicator possesses an attractive property—it is Pareto
compliant [5]—that has called the attention of several researchers working on IBEAs. In
particular, IBEAs adopting the Lebesgue measure benefit from not requiring reference sets
because they exclusively employ reference vectors that are much simpler to state. Therefore,
these IBEAs have been a practical approach to solving real-life applications where the
characteristics of the problems are not known. Although IBEAs based on the Lebesgue
measure are highly docile solving MOPs, their application is restricted by the computational
cost of the Lebesgue measure, which grows with the number of objective functions. As
pointed out in [10], this indicator cannot be calculated in polynomial time concerning
the number of objectives except that P = NP. In addition, the complex characteristics of
multi-objective problems (for example, multimodality, bias, non-separability, etc.) faced by
an IBEA, further increase the computational cost in the search process for such algorithms.
In other words, IBEAs use many more iterations (computational efforts) to approximate the
real Pareto front of a problem. As a consequence, extensive investigations concerning the
design of IBEAs using the Lebesgue measure as a quality indicator have been studied in
the last few years [11–15]. To date, the development of EMOAs based on the hypervolume
indicator is recognized as an actual area of investigation within the EMOO community, and
this is precisely the topic of the investigation presented in this work.

This paper introduces an improved Lebesgue indicator-based evolutionary algorithm
for multi-objective optimization. The introduced approach can be seen as an improve-
ment of the Lebesgue indicator-based evolutionary algorithm (LIBEA) [15]. Analogous to
LIBEA, the proposed algorithm addresses the notion of IBEA [7] in the sense of optimizing
a quality indicator. Nevertheless, it is directed at maximizing the Lebesgue measure of
non-dominated solutions obtained through the search. In contrast to several Lebesgue
indicator-based EMOAs, the introduced algorithm implicitly applies the regularity prop-
erty of continuous MOPs advised to approximate continuous MOPs with complicated
characteristics [16–18]. Additionally, in order to reduce the computational time, the local
property of the Lebesgue measure is considered in the survival mechanism of the proposed
algorithm [19]. We hypothesize that an algorithm considering the Lebesgue measure, the
regularity property of continuous MOPs, and the local property of the Lebesgue measure
can solve problems with difficult features more efficiently than traditional EMOAs based
on the Lebesgue measure.

The proposed IBEA is tested by solving a set of artificial test problems known to be
challenging in the EMOO literature. As discussed by some researchers [20], algorithms able
to solve test problems having different difficulties can be candidates to deal properly with
real-life problems. Consequently, we present an analysis of the proposed algorithm solving
three real-life applications where the fitness landscapes and Pareto fronts are unknown.
A comparison is carried out to analyze the performance of the suggested IBEA versus
three state-of-the-art IBEAs based on the Lebesgue measure. We show that the algorithmic
proposal outperforms the state-of-the-art IBEAs in most test problems, including the three
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real-life problems considered in our study. The obtained results are statistically validated
over a number of experiments performed as part of our experimental research.

The rest of the manuscript is organized as follows. Section 2 introduces the fundamen-
tal concepts to understand the content of this work. Section 3 introduces an overview of
the related work to this investigation. Section 4 introduces the proposed algorithm and
details its components. Section 5 presents an experimental study of performance on a set of
test problems with complicated features. Section 6 introduces three real-life applications
from practice in which the suggested algorithm is tested and analyzed with other IBEAs.
Lastly, Section 7 presents our outcomes and describes some paths for future investigation.

2. General Background

This section provides the foundations of multi-objective optimization, introduces
the indicator-based multi-objective evolutionary algorithms, and presents some concepts
related to performance quality indicators.

2.1. Multi-Objective Optimization

Using standard notation and terminology, a multi-objective optimization problem
(MOP) can be defined as follows.

Definition 1 (Multi-objective optimization problem). Without loss of generality, assuming
minimization in all the objective functions, a multi-objective optimization problem can be defined as:

minimize:
x ∈ X

F(x) = ( f1(x), . . . , fm(x))
T

subject to gi(x) ≤ 0 , ∀ i ∈ {1, . . . , p} ,

hj(x) = 0 , ∀ j ∈ {1, . . . , q}.

(1)

where x ∈ X ⊂ Rn is a solution to the problem, X is the solution space, and fi : X → R, for all
i ∈ {1, . . . , m}, are m objective functions. The constraint functions gi, hj : X → R restrict x to a
feasible region X ′ ⊆ X .

In multi-objective optimization, a set of trade-off solutions are normally aimed for,
because the minimization of one objective function could lead to the deterioration of the
others. To describe the concept of optimality in which we are interested in, the following
definitions are presented.

Definition 2 (Pareto dominance). Let x, y ∈ X ′. We say that x weakly dominates y (x � y)
if fi(x) ≤ fi(y) for all i ∈ {1, . . . , m}. If, in addition y � x, we say that x strictly dom-
inates y (x ≺ y). If fi(x) < fi(x) for all i ∈ {1, . . . , m}, we say that x strongly domi-
nates y (x ≺≺ y).

Definition 3 (Pareto optimality). Let x� ∈ X ′. We say that x� is a Pareto optimal solution if
there is no other solution y ∈ X such that y � x�.

Definition 4 (Pareto optimal set). The Pareto optimal set PS of a multi-objective problem is
defined by PS = {x ∈ X ′ | x is Pareto optimal solution}.

Definition 5 (Pareto optimal front). The Pareto optimal front PF of a multi-objective problem
is stated by the image of the Pareto optimal set, that is, PF = {F(x) | x ∈ PS}.

An interesting property observed in continuous multi-objective problems that has
been considered when designing multi-objective algorithms is presented below.

Property 1 (Regularity property of continuous MOPs). From the Karush–Kuhn–Tucker condi-
tions, it can be induced that under certain assumptions, the PS (PF ) of a continuous MOP with
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m objectives defines an (m − 1)-dimensional piecewise continuous manifold in the decision space
(objective space) [21,22].

The regularity property of continuous MOPs defined above was firstly employed
by Hillermeier [22] in the well-known continuation methods for multi-objective optimiza-
tion. As identified by some authors [18], multi-objective solvers should take into account
this property explicitly or implicitly.

A critical condition of a multi-objective optimization problem is the conflict among its
objectives. If there is no conflict among the objectives, then the problem could be solved
by the optimization of each objective function independently. Although several authors
have given distinct definitions for the relation between pairs of objectives, the following
definition will be used in this paper.

Definition 6 (Conflict relation). Let S ⊂ X ′. According to Carlsson and Fullér [23], two
objective functions fi and fj can be related in the following three ways (assuming minimization):

1. fi is in conflict with fj on S if fi(x) ≤ fi(y) =⇒ f j(x) ≥ f j(y) ∀ x, y ∈ S ;
2. fi supports fj on S if fi(x) ≥ fi(y) =⇒ f j(x) ≥ f j(y) ∀ x, y ∈ S ;
3. fi and fj are independent on S , otherwise.

2.2. Indicator-Based Evolutionary Algorithms for Multi-Objective Optimization

Quality indicators have been introduced to compare the outcomes of multi-objective
algorithms in a quantitative manner. They map a Pareto front approximation to a scalar
number that quantifies the performance of a multi-objective approach.

Definition 7 (Quality indicator). An n-ary quality indicator I is a function I : Fn → R, which
assigns each vector (A1, . . . ,An) of n approximation sets (which can be singletons) a real value
I(A1, . . . ,An).

Currently, we can find a large number of quality indicators for multi-objective op-
timization. A comprehensive compilation of them can be found in [5,24–26]. Quality
indicators can assess convergence and diversity of solutions along the Pareto front of a
given MOP. However, some indicators require certain knowledge of the problem which, in
many cases, is not available. For example, quality indicators based on reference sets (e.g.,
R2, ε indicator, IGD, etc.) require a discretization of the entire Pareto front.

Although quality indicators were initially employed for comparison purposes of
multi-objective solvers, their use has been extended to guide the optimization process in
EMOAs. In this way, with its emergence in the early 2000s, the indicator-based evolutionary
algorithm (IBEA) [7] posed the possibility to optimize a quality indicator to approximate
the Pareto front of a MOP.

Let us consider the (μ + λ)-selection scheme of an EMOA and the combined popula-
tion Qt of μ parents and λ offspring. In order to choose the best μ solutions for the next
population (i.e., the updated set of parents), the fitness assignment to each individual is
necessary. Traditionally, EMOAs employ the Pareto ranking and a diversity indicator to
update the parents set. The selection mechanism in IBEAs consists of finding the solution
that contributes the least to the indicator under consideration. Making allowance for the
fitness value ϕ(qi) of an individual qi ∈ Qt, Algorithm 1 shows the survival selection
mechanism in IBEAs.
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Algorithm 1: IBEAs survival selection mechanism.
Input:

Qt: Combined population of μ parents and λ offspring.
Output:

Pt+1: Updated population of μ parents.
1 while |Qt| > μ do

2 Compute ϕ(q1), . . . , ϕ(q|Qt |) where qi ∈ Qt for all i ∈ {1, . . . , |Qt|};
3 qworst ← arg minqi∈Qt

max{ϕ(qi)};
4 Qt ← Qt \ {qworst};

5 return Qt;

In the sense of evolutionary algorithms, the higher the fitness value ϕ(qi), the better
the individual qi. Note, however, that according to their conceptual foundations, quality
indicators can be either maximized or minimized. Therefore, the adequate fitness values
assignment depends directly on the concerned quality indicator. Note that besides the
computational time required to estimate the worst solution in IBEAs could be considerably
costly (line 2 in Algorithm 1). To date, in the EMOO literature, we can find several
evolutionary algorithms based on various quality indicators. A comprehensive review of
these types of algorithms can be found in [27].

2.3. Performance Quality Indicators

As pointed out, performance indicators are employed in IBEAs and are also employed
to compare performance between algorithms. In the follows, we present some relevant
performance indicators in this study.

2.3.1. Hypervolume Performance Indicator

The hypervolume performance indicator, as well known as Lebesgue measure or
S metric, has been employed to guide the search in evolutionary algorithms for multi-
objective optimization. The follow definitions are relevant in this work [28,29].

Definition 8 (Hypervolume indicator). Let S ⊂ Rm and r ∈ Rm be a point set and a reference
point, respectively. The hypervolume indicator of S is the measure of the region weakly dominated
by S and bounded by vector r. Formally:

H(S, r) = L({q ∈ Rm | ∃ p ∈ S : p � q and q � r}) (2)

where L(·) refers to the Lebesgue measure.

Definition 9 (Hypervolume Contribution). The exclusive hypervolume contribution of a solu-
tion q ∈ Rm to a set S ∈ Rm respect to the reference vector r, is defined as:

Hc(S, q, r) = H(S ∪ {q}, r)−H(S \ {q}, r) (3)

The hypervolume contribution of a point is sometimes referred to as Lebesgue contri-
bution, incremental, or exclusive hypervolume contribution. In this regard, some contribu-
tions to the state of the art on this topic can be found in [30–32].

In the specialized literature, we can find several issues addressed by investigators
in relation to the hypervolume indicator, see the comprehensive review on this topic
presented in [33]. However, one of the most important challenges in this research area is
the exact computation of the hypervolume indicator on a point set S. In this regard, some
researchers have designed algorithms that are efficient in a few dimensions, see the works
reported in [31,34,35]. The computational complexity of the hypervolume computation is
exponential to the number of points in S [19]. An interesting property observed in the two-
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dimensional objective space that has been exploited for a fast hypervolume computation is
presented below.

Property 2 (Locality property of the hypervolume indicator). Given three consecutive points
on the Pareto front, moving the middle point will only affect the hypervolume contribution that is
solely dedicated to this point, but the joint hypervolume contribution of the other points remains
fixed [19].

Nonetheless, the challenges presented in high-dimensional objective spaces have moti-
vated a vast research in the design of algorithms for the efficient hypervolume computation.
As a flavor of approaches devoted to the exact hypervolume calculation generalized in the
number of dimension, Table 1 presents some algorithms known by the EMOO community
and their complexities for an m-dimensional set of n points.

Table 1. Algorithms for the exact hypervolume computation on an m-dimensional set of n points.

Algorithm Dimension Computational Complexity

HSO [36] m ≥ 2 O(nm−1)
LebMeasure [37] m ≥ 2 O(nm)

FPL [38] m ≥ 2 O(nm−2 log n)
HOY [39] m ≥ 2 O(nd/2 log n)
WFG [40] m ≥ 2 Ω(nm/2 log n)
QHV [41] m ≥ 2 O(2m(n−1))

2.3.2. Normalized Hypervolume Indicator

The H indicator (stated in Definition 8) can quantify convergence and distribution
of solutions on the PF of a given problem. The normalized hypervolume can be defined
as follows.

Definition 10 (Normalized hypervolume indicator). Let S ⊂ Rm, u ∈ Rm and r ∈ Rm be a
point set, an ideal point, and a reference point, respectively, such that u � s � r (for all s ∈ S).
The normalized hypervolume indicator of S is the measure of the region weakly dominated by S and
bounded by vector u and r. Mathematical it can be stated as:

Hn(S, u, r) =
H(S, r)

Πm
i=1|ri − ui|

(4)

where H(S, r) denotes the hypervolume indicator of S with reference vector r.

The Hn indicator value is in the range [0, 1]. In this way, a large Hn value indicates
that the set of solutions S has a suitable approximation and spread on the real PF .

2.3.3. IGD+ Indicator

The inverted generational distance plus (IGD+) [42] is an extension of the IGD indi-
cator [6]. This quality indicator is weakly Pareto compliant and it can quantify how far
a given approximation set is from the real Pareto front. Formally, the IGD+ indicator is
stated as follows.

Definition 11 (Inverted Generational Distances plus). Let F ∈ Rm and S ∈ Rm be a discretiza-
tion of the real Pareto front of a given MOP and a set of objective vectors given by an algorithm,
respectively. The IGD+ quality indicator is stated as:

IGD+(F, S) =

(
1
|F| ∑

r∈F
min
s∈S

d+(r, s)

)1/p

(5)
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where p = 2 and d+ is defined by,

d+(r, s) =

√
m

∑
i=1

(max{si − ri, 0})2 (6)

where m is the number of objective functions of a given MOP.

A value of zero of the IGD+ indicator notices that all the objective vectors obtained by
an algorithm are on the true PF .

3. Previous Related Work

The hypervolume indicator (H), as well known as Lebesgue or S metric, is a quality
indicator widely used to assess the performance of evolutionary multi-objective algo-
rithms [26]. Its peculiar property—it is strictly Pareto compliant [5]—has motivated several
investigators working on the design of IBEAs. It has been proved that given a finite search
space and a reference point, maximizing the hypervolume indicator is equivalent to finding
the Pareto optimal set of a given problem [37]. For this reason, several IBEAs have incorpo-
rated this indicator in their survival selection mechanism (see the comprehensive survey
of approaches presented in [43]). Lebesgue indicator-based EMOAs need to compute
the hypervolume contribution (Hc) of non-dominated objective vectors to estimate the
worst solution in the current population. As pointed out before, the main disadvantage
of the hypervolume indicator is its computation cost which increases exponentially with
the number of objectives of the problem. Traditionally, EMOAs based on the H indicator
need to compute the Hc of each individual in the population per iteration. Examples
of these algorithms are SIBEA [44], SMS-EMOA [11], MO-CMA-ES [45], HMOPSO [46],
FV-MOEA [14], LIBEA [15], among others. These approaches become impractical when
dealing with many objective functions (more than three), employing large populations, or
requiring a significant number of generations. Consequently, some authors have focused
their investigation on reducing the computational complexity of methods to compute either
the H or Hc [33,43]. Other alternatives studied by some researchers are the approximation
methods to estimate the H or Hc [33,43]. In this regard, some authors have incorporated
into their IBEAs, approximation methods to calculate Hc. A pioneering study adopting
this idea is the HypE algorithm introduced in [47]. Another example of these types of
approaches is the R2HCA-EMOA [48], which works similar to SMS-EMOA, but it uses
the R2-based hypervolume contribution approximation method [49]. Experimental results
presented by the authors show that it outperforms the HypE algorithm in terms of H. Al-
though the approximation methods have decreased the computational cost of IBEAs based
on the Lebesgue measure, the performance quality in these algorithms is compromised.
This is, in effect, the price to compensate for efficiency in these types of IBEAs.

In this paper, we are interested in designing IBEAs based on the exact hypervolume
computation. In this regard, Menchaca-Mendéz and Coello [50] presented an improved ver-
sion of SMS-EMOA called iSMS-EMOA. iSMS-EMOA generates an offspring per iteration.
After that, the nearest individual to the offspring (measured by the Euclidean distance in
the objective space) and another randomly selected individual compete with the offspring
to survive (comparing their Hc). Therefore, iSMS-EMOA only needs to compute three
hypervolume contributions per iteration, unlike SMS-EMOA that calculates n contributions,
where n is the population size. The core idea of iSMS-EMOA is to move a solution within
its neighborhood to improve its Hc. This idea is based on the locality property stated in [19]
(see Property 2). iSMS-EMOA significantly improves the efficiency of SMS-EMOA, and it
achieves comparable performance to SMS-EMOA. In [51], the authors studied the behavior
of iSMS-EMOA using the approximation method to calculate Hc proposed by Bringmann
and Friedrich [52]. The experimental results show that this version of iSMS-EMOA outper-
forms HypE. In [53], the authors studied the behavior of iSMS-EMOA if it does not use the
randomly selected individual in the competition always. Rostami and Neri [54] proposed
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the algorithm CMA-PAES-HAGA, which incorporates a fast hypervolume-driven selection
mechanism for many-objective optimization called HAGA to CMA-ES. HAGA divides the
objective space into grids. Then, it separates the population into subpopulations (each grid
contains one subpopulation). When a new individual is created, it only competes with the
individuals in its grid. Experimental results show that CMA-PAES-HAGA is able to solve
problems with more than three objective functions. Recently, Zapotecas-Martínez et al. [15]
introduced a novel Lebesgue-based IBEA (LIBEA) adopting the regularity property of con-
tinuous MOPs (see Property 1). The introduced LIBEA employs different neighborhoods for
the mating selection mechanism. In this way, if a solution is close to the PS of a problem, it
is possible to create new solutions close to the PS recombining with neighboring solutions.
The authors show the effectiveness of LIBEA when solving continuous MOPs with roughed
Pareto optimal sets.

In contrast to the related work, we introduce an improved multi-objective solver
considering the Lebesgue measure, the regularity property of continuous MOPs, and the
local property of the Lebesgue measure. We investigate a new framework to solve problems
with difficult features and unknown fitness landscapes more efficiently than traditional
IBEAs based on the Lebesgue measure. In the next section, we describe the components of
the proposed algorithm thoroughly.

4. Improved Evolutionary Multi-Objective Algorithm Based on the Lebesgue Indicator

The proposed algorithm presented in this paper is an improvement of the Lebesgue
indicator-based evolutionary algorithm (LIBEA) [15] for multi-objective optimization. In
analogy to LIBEA, the suggested algorithm addresses the notion of IBEA [7] regarding the
optimization of a quality indicator. Nevertheless, it is directed at maximizing the Lebesgue
indicator of non-dominated solutions obtained through the search. The differences are
clearly observed between our algorithmic proposal and IBEAs adopting the Lebesgue
measure. This section introduces details of the new algorithm and its components to be
compared against state-of-the-art IBEAs.

4.1. Framework of the Improved Lebesgue Indicator-Based Evolutionary Algorithm

Analogous to its predecessor (LIBEA [15]), the proposed algorithm implicitly adopts
the regular property of continuous MOPs to approximate solutions towards the Pareto
front of a given problem. The framework of the improved LIBEA (namely here LIBEA-II) is
presented in Algorithm 2. Initially, a set Pt = {x1, . . . , xN} (t = 0) of N candidate solutions
is generated randomly (Algorithm 2, line 2). A matrix D allocating the distances between
pairs of objective vectors is calculated and used in the parent selection mechanism of LIBEA-
II (Algorithm 2, line 3). At each iteration, for each candidate solution xi ∈ P, a parent
solution y is selected according to the mating selection mechanism (Algorithm 2, line 5).
Thus, the recombination procedure is performed by employing the current solution xi and
the parent solution y (Algorithm 2, line 6). Section 4.3 illustrates different recombination
models that could be adopted into LIBEA-II. Finally, in line 8 of Algorithm 2, a the new
population Pt+1 is updated employing the current population Pt and the offspring solution
y′ according to the survival selection mechanism described in Section 4.4. In the following,
the rest of the components of LIBEA-II are described.
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Algorithm 2: LIBEA-II Framework.
Input:

A stopping criterion;
N: Population size;

Output:
Pt: PF approximation of a given MOP.

1 t ← 0;
2 Pt ← InitializePopulation();
3 Dij ← ComputeEuclideanDistances(F(xi), F(xj)), ∀i, j ∈ {1, . . . , N};
4 while stopping criterion is not satisfied do
5 for i ∈ {1, . . . , N} do
6 y ← MatingSelection(Pt, Dij);
7 y′ ← Recombination(xi, y);
8 Pt+1 ← SurvivalSelection(Pt ∪ {y′});
9 t ← t + 1;

4.2. Mating Selection Mechanism

The regularity property of continuous MOPs, establish that, under certain conditions,
the PS (PF ) of a continuous MOP with m objectives defines an (m − 1)-dimensional
piecewise continuous manifold in the decision space (objective space) [21,22]. Although
this property was firstly introduced by Hillermeier [22] to solve multi-objective problems,
its use has been adopted by several EMOAs based on different natures (see for example,
the approaches reported in [15–17,55,56]). LIBEA-II adopts the regularity property of
continuous MOPs in an implicit form by promoting the recombination between neighboring
solutions. In this way, if a solution xi and its neighbors are close to the PS (PF ), the new
offspring solution should also be close to the PS (PF ). In other words, the local manifold
approximated by solution xi and its neighbors should generate a new solution also close to
the PS (PF ). In the following, the mating selection mechanism of LIBEA-II is described.

Let Ci ⊂ Pt be the solutions set of the closest solutions to xi (in the space of the
objective functions). LIBEA-II uses a probability δ to select the solutions set (β) to be taken
into account in the recombination procedure. In the proposed approach, the solutions set
β is stated by either the neighboring solutions to xi or the solutions in Pt according to a
probability δ. More precisely:

β =

{
Ci, rand(0, 1) < δ ,
Pt, otherwise.

(7)

In this way, the parameter δ denotes the probability of picking a neighboring solution
to be recombined with solution xi. Otherwise, with probability 1 − δ, any other solution
taken from the whole population Pt can be chosen for recombination.

Once the solutions set β is stated, a parent solution y �= xi is chosen randomly from
β. It is worth noticing that LIBEA-II keeps a distance matrix D updated during the search
process (we refer to Section 4.4 for more details). Therefore, the solutions set Ci can be
computed by employing the partial sorting algorithm [57] with a computational complexity
of O(N + T log N), such that T denotes the number of desirable solutions in Ci and N
represents the number of solutions in Pt.

4.3. Recombination Mechanism

LIBEA-II can be seen as a framework that allows incorporating any recombination
mechanism available in the evolutionary computation research area. Nonetheless, it
is worth mentioning that for certain recombination operators coming from some meta-
heuristics (e.g., PSO [58], DE [59], etc.), consider more than one solution. In such cases, the
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mating selection mechanism should produce more than one solution for the concerned
recombination operator. That is, instead of picking one solution y from β, various solutions
y1, y2, . . . ∈ β, such that y1 �= y2 �= . . . �= xi have to be selected. In order to exemplify the
mating selection and recombination procedures in the LIBEA-II framework, two popular
operators coming from the evolutionary computing field are illustrated below.

Operators from Genetic Algorithms.

Genetic algorithms employ crossover and mutation operators to create offspring
solutions throughout the search process. In LIBEA-II, an offspring solution y′ can be
created employing such operators according to following equation

y′ = MUT(CX(xi, y)) (8)

where y is a solution randomly chosen from β, CX, and MUT are the crossover and muta-
tion operators, respectively. Therefore, LIBEA-II could adopt operators for combinatorial,
integer, or mixed optimization.

Operators from Differential Evolution.

A recombination method employed for solving MOPs with difficult PS [17] exhibiting
good results, is the differential evolution (DE) operator [58]. In LIBEA-II, an offspring
solution y′ can be created employing DE operator according to the following equation:

y′ = CX(xi, u) (9)

such that CX is the DE crossover, u = y1 + F(y2 − y3) is the perturbed vector, where
y1, y2 and y3 are solutions chosen randomly from β with, y1 �= y2 �= y3 �= xi, and F
denotes the differential factor, respectively. After performing the DE crossover, a mutation
mechanism can be applied to improve the search capabilities, as has been employed by a
few researchers [17,18].

4.4. Survival Selection Mechanism

The survival selection mechanism in LIBEA-II (line 8 in Algorithm 2) chooses the
best solutions from Q = Pt ∪ {y} considering either the Pareto dominance relation or the
Lebesgue measure. Since the number of solutions in Q is N + 1, it is necessary to remove
one solution from Q to make way for the next iteration.

Let d(q, Q) and P� be the number of solutions from Q that dominate solution q ∈ Q,
and the set of non-dominated solutions in Q, respectively. That is,

d(q, Q) = |{p ∈ Q | F(p) ≺ F(q), F(p) �= F(q)}| (10)

P� = {q ∈ Q | � p ∈ Q : F(p) ≺ F(q)} (11)

Traditionally, IBEAs based on the Lebesgue indicator employ Pareto ranking [60]
followed by computing the exclusive Lebesgue contribution (see Definition 2) of each
solution allocated in the last rank (see for example the algorithmic proposals introduced
in [11,15,61,62]). Therefore, if the last rank contains a large number of solutions, the
computational complexity to estimate the solution to be removed becomes extremely
high. In evolutionary many-objective optimization, it can be observed that a population
constituted by non-dominated solutions can be preserved for several iterations of an
algorithm. Therefore, a high computational time is required to decide which solution
should be removed from the population. LIBEA-II considers the following two scenarios in
the survival selection mechanism.

• If P� �= Q, there are solutions in Q dominated by some solution in P�. In such a case,
we shall remove the solution with the largest d(q, Q) value avoiding the Lebesgue
measure computation and reducing the computational cost of LIBEA-II;

76



Mathematics 2022, 10, 19

• If P� = Q, all solutions in Q are non-dominated, and all of them are equally acceptable
in terms of the Pareto dominance relation. In such a case, we shall remove the solution
xj ∈ S ⊆ Q that maximizes the contribution to the Lebesgue measure. In other words,
the solution to be removed is the one such that:

xj = arg mins∈S Hc(S, s, r) (12)

Therefore, a total of |S| Lebesgue measures are required to identify the worst solution
(i.e., the solution that contributes the least to the Lebesgue measure) in the population.

Note that in the case of S = Q, the worst solution is found after N + 1 Lebesgue
measures. This is, in fact, computationally expensive and impractical in many-objective
optimization problems. LIBEA-II saves Lebesgue measures by reducing the number of
candidate solutions in the set S.

A problem observed in IBEAs based on the Lebesgue indicator is the overestimation
of the reference vector, which could divert the search. Although the correct estimation of
the reference vector for certain types of PF has been discussed [63], there is no strategy to
correctly define this vector for all PF forms. In such a case, a reference vector close to the
nadir vector (the vector opposite the ideal vector) should properly measure the coverage
and distribution of solutions along the PF , including the extreme portions of it. Therefore,
the solutions that provide information on the nadir vector should be considered in the
survival selection mechanism. In other words, the solutions whose objectives vectors are
the farthest to the ideal vector should be considered.

The following criteria to define the set S (line 5 in Algorithm 3) are based on the
locality property of the hypervolume indicator studied in [19] (the first three criteria)
and the problem to estimate the reference vector for computing the Lebesgue indicator
discussed in [63] (the last criterion). The set of candidate solutions S is composed by:

1. The offspring solution y;
2. The solution q ∈ Q such that the objective vector F(q) is the closest to the objective

vector F(y);
3. A percentage (ρc) of solutions q ∈ Q which objective vectors are the closest;
4. A percentage (ρn) of solutions q ∈ Q which objective vectors are the farthest to the

ideal vector z, where the ideal vector z = (z1, . . . , zm)T is estimated by
zj = minx∈Q fj(x) for all j ∈ {1, . . . , m}.

In the case that the offspring solution y is accepted, it shall replace solution
xj ∈ Q (xj ← y) and the distance matrix D has to be updated calculating the Euclidean
distances between the objective vector F(xj) and each objective vector F(xi), that is:

Dij ← ||F(xi)− F(xj)||2, ∀xi ∈ Pt+1

In order to deal with different scales (in the objective space), LIBEA-II considers objec-
tive vectors normalized in the hypercube bounded by the ideal (z) and the nadir (n) vectors.
In such cases, the ideal and nadir vectors are defined by the smallest and the largest values
of each objective function found in the set of solutions Q ∪ {y}. Therefore, the Lebesgue
measure is computed employing the normalized objective vectors and considering the ref-
erence vector r = (1.1, . . . , 1.1)T . In Algorithm 3, we show the complete survival selection
mechanism of LIBEA-II.
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Algorithm 3: EnvironmentalSelection(Q).
Input:

Q: the population to be truncated;
Output:

Q�: the population updated;
1 P� ← NondominatedSolutions(Q);
2 if P� �= Q then

3 xj ← arg minq∈Q d(q, Q);

4 else
5 S ← CandidateSolutions(Q); // Defining the set S
6 ; xj ← arg mins∈S Hc(S, s, r);

7 Q� ← Q \ {xj};
8 return Q�;

5. Experimental Study

This section presents the experimental setup and the analysis of results. Firstly, the
IBEAs and the benchmark problems adopted for comparison are introduced. Then, the ex-
perimental settings are given. Finally, the results on the benchmark problems are analyzed.

5.1. IBEAs Considered for Comparison of Performance

The performance of the proposed LIBEA-II is compared with respect to state-of-the-art
IBEAs based on the hypervolume quality indicator. In the first instance, we adopt the
S-metric selection EMOA (SMS-EMOA) [11] for performance comparison. SMS-EMO em-
ploys a survival mechanism based on Pareto ranking joined by the exclusive Lebesgue
contribution of each solution located in the last rank. This evolutionary algorithm has
shown its effectiveness and has become popular among state-of-the-art IBEAs. Another
algorithm contemplated in this investigation is the improved version of the SMS-EMOA
(iSMS-EMOA) [50], which adopts ideas coming from the local property of the hypervolume
indicator. Finally, the Lebesgue indicator-based algorithm (LIBEA) [15] for multi-objective
optimization is selected. As noticed before, LIBEA adopts the regularity property of contin-
uous MOPs in the mating selection mechanism. Since the proposed LIBEA-II also employs
this regularity property, its predecessor, LIBEA, is an obvious competing algorithm.

5.2. Adopted Test Problems

The study presented in this investigation considers the continuous box-constrained
MOPs with difficult Pareto sets introduced in [64]. These problems are part of the CEC’2009
competition related to the performance of evolutionary multi-objective algorithms. The
adopted test problems have been formulated to assess the performance of EMOAs solving
continuous MOPs that exhibit the property of complicated PS topologies. Since this
property has been seen in real-life problems [17], this test suite is a challenge to evaluate the
performance of our algorithmic proposal. The adopted test problems (as well known as UFs)
offer diverse characteristics regarding separability, multi-modality, and include different
PF shapes, incorporating discontinuities, concavity, convexity, etc. More precisely, we
consider the two-objective problems UF1–UF7 and the three-objective problems UF8–UF10.

5.3. Experimental Settings

As pointed out, the results achieved by our proposed algorithm (i.e., LIBEA-II) are
analyzed versus those obtained by SMS-EMOA, iSMS-EMOA, and LIBEA on the test prob-
lems with roughed PF (UF1–UF10). As discussed by some authors, MOPs exhibiting
complicated PF shapes shall test specific components of EMOAs, such as the parent se-
lection mechanism and the recombination operators [15,17]. In this work, we use the DE
operator whose effectivity has been proved in MOPs with this singular characteristic (see
the studies reported in [17]). Therefore, all the IBEAs adopted for performance compar-
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ison employ DE operator as their main recombination procedure, such as described in
Section 4.3. In order to improve the search capabilities after performing the DE operator,
the Polynomial-based mutation [65] is implemented. However, note that for other test
problems such as ZDT [66] and DTLZ [67], the performance of IBEAs could be improved
by using recombination operators from genetic algorithms, for example, Simulated Binary
Crossover (SBX) and Polynomial-based mutation (PBM) [65]. The parameters used by the
IBEAs are presented in Table 2, where N denotes the population size. Gmax represents
the maximum number of generations, in our study Gmax = 2000. Therefore, the search
process was limited to performing 200,000 fitness function evaluations. In the case of the
DE operator, F and CR denote the differential amplitude factor and the crossover rate,
which were set as guested in [17] to solve MOPs with complicated PS . Pm and ηm are
the mutation probability and the mutation index used by PBM, respectively. For LIBEA
and LIBEA-II, T and δ are the neighborhood size and the probability of picking solutions
from a determined neighborhood (see Section 4.2), respectively. Note that the smaller the
δ value, the effect of the regular property of continuous MOPs is diluted. For LIBEA-II,
ρc and ρn are parameters that define the percentage of solutions to be considered in the
survival selection mechanism (see Section 4.4). It is worth emphasizing that the smaller
these parameters values (ρc and ρn), the more efficient LIBEA-II is.

Table 2. Parameter settings for SMS-EMOA, iSMS-EMOA, LIBEA, and LIBEA-II.

Parameter SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

N 100 100 100 100
Gmax 2000 2000 2000 2000

F 0.5 0.5 0.5 0.5
CR 1 1 1 1
Pm 1/n 1/n 1/n 1/n
ηm 20 20 20 20
T — — 20 20
δ — — 0.9 0.9
ρc — — — 0.1
ρn — — — 0.1

For each IBEA, 30 executions were independently performed on each MOP. The IBEAs
were assessed employing the Hn and IGD+ quality indicators presented in Section 2.3.
For each test problem, a statistical analysis was performed over the final approximation
produced by the IBEAs in all the experiments using the concerned quality indicator. Since
the properties of the UF test functions are known, the Hn quality indicator was calculated
by employing the reference vector r = (1.1, . . . , 1.1)T and the ideal vector u = (0, . . . , 0)T .
Therefore, a reliable measure of approximation and distribution of solutions obtained by
the algorithms along the Pareto front is reported. The IGD+ indicator was calculated by
employing the reference sets provided by the authors of the UF test functions.

5.4. Analysis of Results on the UF Test Problems

The non-dominated solutions found by LIBEA-II, and those from SMS-EMOA, iSMS-
EMOA, and LIBEA, to each UF test function, were subjected to the Hn and IGD+.
Tables 3 and 4 show the average Hn and IGD+ values, respectively, over 30 repetitions for
each UF problem. These tables have five columns: the first identifies the UF test function,
and the remaining four correspond to each of the four algorithms under comparison. The
best average Hn and IGD+ values for each UF problem are in boldface. Moreover, in
order to distinguish if there is a statistically significant difference among the average Hn
and IGD+ values for each test function, the Mann–Whitney–Wilcoxon [68] non-parametric
statistical test, employing a p-value of 0.05, and Bonferroni correction [69] were applied on
them. In this manner, an algorithm can be considered the best regarding the test function
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and quality indicator if it statistically surpasses the other three. If this is the case, the value
presented in the Table is underlined.

Table 3. Average Hn values for the non-dominated solutions found by the IBEAs to each UF
test problem.

MOP SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

UF1 0.6674 ± 0.010 0.6654 ± 0.010 0.6654 ± 0.009 0.6669 ± 0.008
UF2 0.7048 ± 0.001 0.7039 ± 0.002 0.7051 ± 0.001 0.7054 ± 0.002
UF3 0.6057 ± 0.028 0.6050 ± 0.029 0.6117 ± 0.023 0.6108 ± 0.025
UF4 0.2779 ± 0.007 0.2792 ± 0.006 0.2781 ± 0.006 0.2761 ± 0.006
UF5 0.0087 ± 0.015 0.0143 ± 0.034 0.0154 ± 0.024 0.0175 ± 0.021
UF6 0.3137 ± 0.054 0.3001 ± 0.047 0.3329 ± 0.037 0.3319 ± 0.043
UF7 0.5595 ± 0.004 0.5511 ± 0.039 0.5608 ± 0.004 0.5489 ± 0.039
UF8 0.3539 ± 0.041 0.3563 ± 0.038 0.3641 ± 0.054 0.3667 ± 0.052
UF9 0.7582 ± 0.012 0.7464 ± 0.011 0.7550± 0.015 0.7366 ± 0.025

UF10 0.0000 ± 0.000 0.0000 ± 0.000 0.0000 ± 0.000 0.0000 ± 0.000

Table 4. Average IGD+ values for the non-dominated solutions found by the IBEAs to each UF
test problem.

MOP SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

UF1 0.0341 ± 0.006 0.0354 ± 0.005 0.0350 ± 0.005 0.0340 ± 0.005
UF2 0.0142 ± 0.001 0.0148 ± 0.001 0.0141 ± 0.001 0.0140 ± 0.001
UF3 0.0709 ± 0.025 0.0696 ± 0.021 0.0666 ± 0.018 0.0665 ± 0.019
UF4 0.1232 ± 0.006 0.1223 ± 0.005 0.1230 ± 0.005 0.1252 ± 0.005
UF5 0.7429 ± 0.101 0.7470 ± 0.133 0.7232 ± 0.109 0.7106 ± 0.098
UF6 0.2163 ± 0.048 0.2221 ± 0.061 0.2005 ± 0.036 0.2028 ± 0.045
UF7 0.0149 ± 0.002 0.0229 ± 0.035 0.0142 ± 0.002 0.0241 ± 0.036
UF8 0.1542 ± 0.029 0.1528 ± 0.027 0.1468 ± 0.038 0.1454 ± 0.037
UF9 0.0518 ± 0.007 0.0563 ± 0.008 0.0517 ± 0.007 0.0642 ± 0.017

UF10 1.3045 ± 0.222 1.2999 ± 0.227 1.2335 ± 0.203 1.3563 ± 0.207

In Table 3, we can see the average results for the Hn indicator. As we can see, the
performance of the four algorithms was very similar: SMS-EMOA obtained the best average
results for two test problems, solutions from iSMS-EMOA were the best for one test problem,
LIBEA found solutions that were the best to three test problems, and the solutions found
by LIBEA-II were the best for three test problems. Actually, these results were expected
since all four algorithms are based on the H indicator. However, something remarkable is
that LIBEA-II was able to find statistically better solutions than those from the other three
algorithms for test instance UF8.

Hn quality indicator assesses, to some extent, the closeness and spreading of the
non-dominated solutions obtained by an EMOA. Nevertheless, quality indicators based
on reference sets could provide more information regarding how distant a set of solutions
is from the real PF . To this end, the IGD+ indicator was selected to further evaluate the
performance of the IBEAs. Table 4 presents the obtained results of the proposed LIBEA-
II and those reached by the adopted IBEAs in terms of the IGD+ indicator. It can be
observed that the results achieved by LIBEA-II exceeded those obtained by SMS-EMOA,
iSMS-EMOA, and LIBEA in five out of the ten test problems in terms of Hn indicator.
LIBEA obtained the best average results in four test problems, while iSMS-EMOA was the
best in only one. More importantly, LIBEA-II obtained results that are statistically better
than the results from the other three algorithms in problem UF8.

Additionally to the quality indicators, Figure 1 shows the average convergence of the
four algorithms under comparison. This figure contains ten plots, one for each UF test
function, that show the convergence of the IGD+ indicator for each algorithm. We can see
that the convergence of the IGD+ indicator is very similar for all four algorithms in each
test problem, except for test problem UF7.
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After these results, regarding the Hn and IGD+ quality indicators, we can say that
LIBEA-II performs slightly better on the UF test problems than SMS-EMOA, iSMS-EMOA,
and LIBEA, since, despite solutions from LIBEA-II, have comparable hypervolumes, they
are closer to the PF in more benchmark functions. Moreover, for the ρc and ρn parameters
adopted in this study, LIBEA-II reduces up to approximately 80% the hypervolume indica-
tor calculations, as shown in Figure 2. This means that LIBEA-II is more efficient than the
other three algorithms since, with fewer computational resources, it can find solutions with
as high quality as those found by SMS-EMOA, iSMS-EMOA, and LIBEA.
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Figure 1. Convergence plots of the IGD+ quality indicator on the UF test problems.
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Figure 2. Reduction of Hc computations in LIBEA-II adopting ρc = 0.1 and ρn = 0.1.

In order to illustrate the Pareto approximations obtained by the algorithms, Figure 3
presents the non-dominated solutions found by the four algorithms under consideration
to the test problems UF1, UF3, and UF7. It is clear that no algorithm could find a proper
approximation set to any of the three test problems. However, solutions from SMS-EMOA
and LIBEA-II show the best approximations to the Pareto front.
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Figure 3. Non-dominated solutions found by the four algorithms under study to the test problems
UF1, UF3, and UF7.

6. Three Real-World Applications from Practice

After testing LIBEA-II on the UF benchmark test problems, it is now tested on three
real-world applications. This section introduces, firstly, the three real-world applications
under consideration. Secondly, the experimental setup is presented. Thirdly, the results are
analyzed. Finally, the correlation between pairs of objectives are analyzed.

6.1. Description of the Real-World Applications

The three real-world applications considered in this study are introduced next.

6.1.1. RWA1: Liquid-rocket single element injector design

The design of a liquid-rocket single element injector aims at improving its perfor-
mance and enlarging its life [70]. Vaidyanathan et al. [71] states that, in order to optimally
design such an injector, four objectives should be considered: the maximum injector face
temperature (TFmax), the wall temperature at a distance of three inches from the injector
face (TW4), the maximum oxidizer post tip temperature (TTmax), and the centerline axial
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location where the combustion is 99% complete (Xcc). Specifically, this multi-objective
optimization problem can be written as:

minimize: f1(x) = Xcc (13)

minimize: f2(x) = TFmax

minimize: f3(x) = TW4

minimize: f4(x) = TTmax

where x = (α, ΔHA, ΔOA, OPTT)T , such that 0◦ ≤ α ≤ 20◦ is the hydrogen flow angle,
0% ≤ ΔHA ≤ 25% is the hydrogen area increment with respect to the baseline cross-section
area (0.0186 in2), −40% ≤ ΔOA ≤ 0% is the oxygen area decrement with respect to the
baseline cross-section area (0.0423 in2) of the tube carrying oxygen, and X′′ ≤ OPTT ≤ 2X′′

is the oxidizer post tip thickness, where X′′ denotes the tip thickness with a baseline value
0.01 in. The mathematical definition of this problem can be seen in [71].

6.1.2. RWA2: Ultra-wideband antenna design

In order to design an ultra-wideband antenna with two stopbands within the WiMAX
and WLAN bands, besides achieving the expected impedance features, gain uniformity
and high fidelity are also required [72]. Such antenna comprises a planar rectangular patch
and a pair of notches at the two lower corners. Two U-shaped thin slots are carved in the
monopole patch for the two stopbands. In order to design this antenna, ten parameters
have to be considered and five objective functions, which are the voltage standing wave
ratio (VSWR) over the passband ( f1), the VSWR among the WiMAX ( f2) and WLAN ( f3)
bands, respectively, the fidelity factors in the E-plane and H-plane ( f4), and the relatively
uniform peak gains over the passband ( f5) [73]. Hence, the multi-objective optimization
problem is stated as:

minimize: f1(x) (14)

maximize: f2(x)

maximize: f3(x)

maximize: f4(x)

minimize: f5(x)

where x = (a1, a2, b1, b2, d1, d2, l1, l2, w1, w2)
T , such that 5 ≤ a1 ≤ 7, 10 ≤ a2 ≤ 12,

5 ≤ b1 ≤ 6, 6 ≤ b2 ≤ 7, 3 ≤ d1 ≤ 4, 11.5 ≤ d2 ≤ 12.5, 17.5 ≤ l1 ≤ 22.5, 2 ≤ l2 ≤ 3,
17.5 ≤ w1 ≤ 22.5, and 2 ≤ w2 ≤ 3. The mathematical formulation of this problem is
presented in [73].

6.1.3. RWA3: Development of oil and water repellent fabric

In the textile industry, one aim is to produce fabrics with added high value. Par-
ticularly, the hydrophobicity effect, that is, water, oil, and stain repellence, is one of the
most widely used textile surface modification [74]. Hydrophobicity depends on several
process parameters, such as the concentration of oil and water repellent (O-CPC) finish, the
concentration of the crosslinking agent (K-FEL), and the curing temperature (C-Temp) [75].
The hydrophobicity effect can be measured by means of the following seven responses [76]:
the contact angle of a water (WCA) and oil (OCA) droplet touching a surface; the air
permeability (AP), which is the comfort property of a woven fabric used to measure the
flow of air through it; the crease recovery angle (CRA), which measures the textiles ability
to recover from creasing; the sti f f ness, which is a comfort property of cotton fabric; the
tear strength of the finished fabric, which depends on the chemical finishing treatment
applied to the fabric; and the tensile strength, which describes the behavior of the fabric
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under axial stretching load. These seven responses can be considered as objective functions
as follows:

maximize: f1(x) = WCA (15)

maximize: f2(x) = OCA

maximize: f3(x) = AP

maximize: f4(x) = CRA

minimize: f5(x) = Sti f f ness

maximize: f6(x) = Tear strength

maximize: f7(x) = Tesile strength

where x = (O-CPC, K-FEL, C-Temp)T , such that 10 g/L ≤ O-CPC ≤ 50 g/L, 10 g/L
≤ K-FEL ≤ 50 g/L, and 150 ◦C ≤ C-Temp ≤ 170 ◦C. The mathematical description of the
problem is presented in [76].

6.2. Experimental Setup

In order to analyze the results achieved by LIBEA-II versus those achieved by SMS-
EMOA, iSMS-EMOA, and LIBEA, the following experimental setup was carried out. Since
the characteristics of the real-world applications(RWA) described above are not known, the
reference PF had to be constructed to compute the quality indicator IGD+.

1. The non-dominated solutions obtained by all four IBEAs from the 30 executions
were recorded;

2. The maximin fitness function [77] was applied to choose 5000 from these non-dominated
solutions and they were considered as the reference set for the IDG+ quality indicator.

Regarding the Hn quality indicator, for each RWA problem, the ideal point
u = (u1, . . . , um)T was calculated by finding the minimum value for each objective function
in the reference PF . On the other hand, the reference vector r = (r1, . . . , rm)T was stated
by finding the maximum value for each objective function in the reference PF and scaling
its magnitude (with respect to the ideal point) by 10% for each dimension. More precisely,
rj = 1.1 × | f max

j − uj|, such that f max
j is the maximum value of each objective function in

the reference PF , for all j ∈ {1, . . . , m}. Hence, the Hn indicator will consider, in a more
appropriate scope, the boundaries of the PF approximation found by each IBEA. Due to
the computational cost of the original SMS-EMOA and LIBEA when dealing with more
than four objectives, the exact calculation of the Hc was replaced by the HypE indicator [13]
employing 1000 × m samples for the Hc approximation, where m denotes the number of
objectives in the problem. It is worth noticing that the computational cost of LIBEA-II and
the other IBEAs depends directly on the population size and on the number of objectives.
Our experimental study adopts N = 100 solutions to solve the three real-world applica-
tions. With this number of solutions, LIBEA-II could deal with problems with up to seven
objectives in approximately five days. However, LIBEA-II spent less than 24 h performing
a single run for problems having four and five objective functions. The experimental study
presented in this work was carried out on a desktop PC with a 32-core 2.6 GHz processor
and 64GB of RAM.

6.3. Analysis of Results

The results achieved by LIBEA-II were examined versus those obtained by SMS-
EMOA, iSMS-EMOA, and LIBEA. Tables 5 and 6 show the results achieved by the algo-
rithms in the three real-world applications described above, for the Hn and IGD+ quality
indicators, respectively. The structure of these tables is similar to that of Tables 3 and 4.
That is, the best average Hn and IGD+ values for each real-world application are in bold-
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face, while the best algorithm regarding the concerned real-world application and quality
indicator is underlined.

Regarding the Hn indicator, we can see from Table 5 that LIBEA-II found solutions
that cover a larger hypervolume for the three real-world problems and, remarkably, for
problem RWA3, the difference is statistically significant. Concerning the IGD+ indicator,
Table 6 shows that solutions from LIBEA-II obtained, on average, the smallest values for all
three real-world problems. In this case, there is a tie between LIBEA-II and iSMS-EMOA
for problem RWA1.

Table 5. Average Hn values for the non-dominated solutions found by the IBEAs to each real-
world application.

MOP SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

RWA1 0.5495 ± 0.001 0.5550±0.001 0.5487 ± 0.001 0.5557 ± 0.001
RWA2 0.6883 ± 0.005 0.6947±0.007 0.6906 ± 0.005 0.6969 ± 0.005
RWA3 0.1982 ± 0.007 0.1951 ± 0.012 0.1963 ± 0.009 0.2052 ± 0.007

Table 6. Average IGD+ values for the non-dominated solutions found by the IBEAs to each real-
world application.

MOP SMS-EMOA iSMS-EMOA LIBEA LIBEA-II

RWA1 0.0157 ± 0.001 0.0126 ± 0.000 0.0160 ± 0.001 0.0126 ± 0.000

RWA2 4318.4205 ± 952.777 4163.9243 ±
1770.699 3939.6710 ± 539.990 3829.6227 ±

1063.089
RWA3 3.3550 ± 0.871 3.9980 ± 1.691 3.5676 ± 1.213 3.0701 ± 0.797

Figure 4 shows the average convergence for the IGD+ indicator. This Figure contains
three plots, one for each real-world application. It is evident that the convergence of LIBEA-
II is faster than those of the other three algorithms for the two real-world applications
RWA1 and RWA3. The convergence for problem RWA2 is similar for all three algorithms.
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Figure 4. Convergence of the IGD+ quality indicator on the three real-world applications.

After these results, it is clear that the performance of LIBEA-II on the three real-world
applications is higher than that of SMS-EMOA, iSMS-EMOA, and LIBEA.

6.4. Analysis of the Conflict Relation Between Pairs of Objectives

In addition to studying the performance of the four IBEAs on real-world applications,
it is also of interest to know the conflict relation (see Definition 5) between the objective
functions for each RWA. To this end, Figure 5 presents the parallel coordinates plots for the
three real-world applications considered in this study.

Parallel coordinates are a handy tool for identifying conflict, support, or independence
between pairs of objectives. Even though they do not specify information regarding
the characteristics of the approximation sets, they are generally utilized for realizing the
correlation, whether positive, negative, or neutral, between pairs of objectives [78]. As
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mentioned earlier, the reference PF was obtained, for each RWA, by recording all non-
dominated solutions found by all four algorithms. For each of these solutions, the values
for each objective function were plotted. In Figure 5, the conflict between pairs of objectives
is illustrated. This Figure shows three boxes, one for each RWA. For each problem, the
objective values are normalized in the vertical axis in the range [0, 1] for a straightforward
interpretation, while the objective functions are on the horizontal axis. Lines are plotted
from one objective function fi to the next adjacent fi+1 to reflect the correlation between the
pair of objectives ( fi, fi+1). If a line depicts a significant slope (whether negative or positive)
from one objective to the next, it can be interpreted that those objectives are in conflict, and
the longer the slope, the greater the conflict. On the contrary, if a line is horizontal, i.e., it
has no slope at all, the objectives support each other.

(a) (b) (c)

Figure 5. Parallel coordinate plots for the three real-world applications. (a) RWA1; (b) RWA2;
(c) RWA3.

In the case of RWA1, we can see that most of the lines between objectives ( f1, f2)
are nearly horizontal or with a slight slope, which indicates that those objectives support
each other. For the pair of objectives ( f2, f3), a considerable number of lines have a more
significant slope, whether positive or negative, from which we can infer that those objective
functions are in conflict. For the last pair ( f3, f4), we see that some lines have a slope while
others are almost horizontal. Hence, there is no clear conclusion for this pair of objectives.

Following the same analysis as in RWA1, in the case of RWA2, we see that objectives
( f1, f2) and ( f4, f5) are clearly in conflict since nearly all the lines present a significant slope
and only a few are horizontal or with a slight slope. For the pair of objectives ( f2, f3) and
( f3, f4), on the contrary, most of the lines have a slight slope or are horizontal, while the rest
of the lines present a significant slope. For these cases, nothing can be said from these plots.

Finally, for problem RWA3, it is evident that there is conflict for the pairs of objec-
tives ( f1, f2), ( f2, f3), ( f3, f4), and ( f5, f6), since the vast majority of the lines presents a
significantly large slope, whether positive or negative. For the other two pairs of objec-
tives, ( f4, f5) and ( f6, f7), there is no clear indication whether the objectives are in conflict,
support each other, or are independent.

In order to complete the conflict relation analysis between objectives, a numerical
analysis of the reference PFs is presented next. Figure 6 contains three matrices, one
for each RWA problem. Each matrix shows: in the upper triangular matrix, the Pearson
correlation coefficients [79] between pairs of objectives; in the lower triangular matrix, the
projection of the objective function values of the non-dominated solutions between pairs of
objectives; and in the diagonal, the densities of each objective function.

For problem RWA1, we can see that the pairs of objectives ( f1, f2) and ( f3, f4) are
positively correlated. Remarkably, the correlation for ( f1, f2) is approximately 1.0, which
means that optimizing one of them, whether f1 or f2, will lead to the optimization of the
other and vice versa. These results are in accordance with the analysis of the parallel
coordinates plots. The remaining four pairs of objectives, i.e., ( f1, f3), ( f1, f4), ( f2, f3), and
( f2, f4), present a negative correlation. This means that there is a conflict between the
objectives in each pair. That is, the optimization of one objective function deteriorates the
other and vice versa.
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In the case of problem RWA2, we see a positive correlation for pairs of objectives
( f1, f5), ( f2, f3), ( f2, f4), and ( f3, f4), which means that, to some extent, the objectives in
each pair support each other. Particularly for the pair ( f1, f5), we can observe that the
correlation is nearly 1.0. The other six pairs of objective functions, that is ( f1, f2), ( f1, f3),
( f1, f4), ( f2, f5), ( f3, f5), and ( f4, f5), present a negative correlation. From these last pairs of
objectives, the conflict that exists in ( f1, f2) and ( f4, f5) is in agreement with the observed
in the parallel coordinates plots.

Finally, for the RWA3 problem, we can confirm what was noticed from the parallel
coordinates plots, that is, the pairs of objective functions ( f1, f2), ( f2, f3), ( f3, f4), and ( f5, f6)
presents a negative correlations, which means the objectives in each pair are in conflict
with each other. Other pairs of objectives that present a negative correlation are ( f1, f6),
( f1, f7), ( f2, f4), ( f2, f5), ( f3, f6), ( f3, f7), ( f4, f6), ( f4, f7), and ( f5, f7). The remaining eight
pairs of objectives show a positive correlation, however, this does not mean that they can
be removed from the problem since they show conflict with other objective functions.

(a) (b)

(c)

Figure 6. Pearson correlation coefficients between pairs of objectives for the three RWA problems.
(a) RWA1; (b) RWA2; (c) RWA3.

7. Conclusions

This paper introduced an improved Lebesgue indicator-based evolutionary algorithm
(LIBEA-II) for solving multi-objective optimization problems. The hypothesis put forward
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in this paper about the efficiency of IBEAs considering the Lebesgue measure, the regularity
property of continuous MOPs, and the local property was held. In terms of results, the
proposed LIBEA-II and the other three IBEAs, namely SMS-EMOA, iSMS-EMOA, and
LIBEA, were tested on the well-known UF benchmark set. These test functions have
properties that have been seen in real-life optimization problems in terms of separability,
multi-modality, and different PF shapes, including convexity, concavity, discontinuities,
etc. The non-dominated solutions achieved by LIBEA-II and by the other three algorithms,
for each test function, were applied the two quality indicators: normalized hypervolume
(Hn) and inverted generational distance plus (IGD+). Results from the Hn indicator
showed that the performance of the four algorithms is similar. Given that all four algorithms
are based on the Hn quality indicator, this result was rather expected. Regarding the IGD+

indicator, the performance of LIBEA-II was slightly better than the other three algorithms
since it obtained the best average results for five out of the ten test functions, and the
difference was statistically significant for one of them. In general, LIBEA-II is an efficient
algorithm since it can find solutions with the same quality as those found by the other three
algorithms but using only 20% of the computing resources.

LIBEA-II was also tested on three real-world applications, precisely: the liquid-rocket
single element injector design (RWA1), which has four objective functions and four vari-
ables, the ultra-wideband antenna design (RWA2), which considers five objective functions
and ten variables, and the development of oil and water repellent fabric (RWA3), which
optimizes seven objective functions with three variables. In this case, LIBEA-II was also
compared with the same IBEAs used for the UF test instances. Remarkably, LIBEA-II was
able to obtain non-dominated solutions with higher quality than those found by the other
three IBEAs, since the average value from both quality indicators, i.e., Hn and IGD+, was
the best. The superiority of LIBEA-II was demonstrated in real-world applications since it
obtained higher-quality non-dominated solutions and saved up to approximately 80% of
the hypervolume calculations.

As part of our future research, we are interested in extending the applicability of
LIBEA-II to deal with constrained MOPs. This line of research has been slightly explored,
and it is the course of our outcoming investigations. On the other hand, we would like to
test the performance of the proposed LIBEA-II in other real-life applications in order to
identify insights that allow us to understand the main weaknesses of IBEAs based on the
Lebesgue measure. On the other hand, the hybridization of these types of approaches with
mathematical programming is certainly a good path that deserves to be investigated. These
are, in fact, part of our future program of investigations.
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Abstract: The sine cosine algorithm’s main idea is the sine and cosine-based vacillation outwards or
towards the best solution. The first main contribution of this paper proposes an enhanced version of
the SCA algorithm called as ESCA algorithm. The supremacy of the proposed algorithm over a set of
state-of-the-art algorithms in terms of solution accuracy and convergence speed will be demonstrated
by experimental tests. When these algorithms are transferred to the business sector, they must
meet time requirements dependent on the industrial process. If these temporal requirements are
not met, an efficient solution is to speed them up by designing parallel algorithms. The second
major contribution of this work is the design of several parallel algorithms for efficiently exploiting
current multicore processor architectures. First, one-level synchronous and asynchronous parallel
ESCA algorithms are designed. They have two favors; retain the proposed algorithm’s behavior and
provide excellent parallel performance by combining coarse-grained parallelism with fine-grained
parallelism. Moreover, the parallel scalability of the proposed algorithms is further improved by
employing a two-level parallel strategy. Indeed, the experimental results suggest that the one-level
parallel ESCA algorithms reduce the computing time, on average, by 87.4% and 90.8%, respectively,
using 12 physical processing cores. The two-level parallel algorithms provide extra reductions of the
computing time by 91.4%, 93.1%, and 94.5% with 16, 20, and 24 processing cores, including physical
and logical cores. Comparison analysis is carried out on 30 unconstrained benchmark functions and
three challenging engineering design problems. The experimental outcomes show that the proposed
ESCA algorithm behaves outstandingly well in terms of exploration and exploitation behaviors,
local optima avoidance, and convergence speed toward the optimum. The overall performance of
the proposed algorithm is statistically validated using three non-parametric statistical tests, namely
Friedman, Friedman aligned, and Quade tests.

Keywords: constrained optimization; metaheuristic; heuristic algorithm; OpenMP; parallel
algorithms; SCA algorithm; unconstrained optimization

MSC: 49M99; 68Q10

1. Introduction

Metaheuristic optimization methods are widely used. Many of these algorithms are
based on populations that evolve towards the optimal through an iterative process. In many
cases, this iterative process is governed by rules based on natural phenomena, physical
processes, or mathematical functions. Depending on both the evolutionary process of the
populations (i.e., the algorithm used) and the characteristics of the function to be optimized
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(single-objective or multi-objective), the use of these methods may not be feasible, either
because of the high computing cost or because of the poor quality of the result.

Some of the well-known metaheuristic optimization algorithms are based on natu-
ral phenomena. The most common algorithms are the ant colony optimization (ACO)
algorithm [1], which imitates the foraging behavior of ant colonies; the evolutionary
strategy (ES) algorithm [2], which is based on the processes of mutation and selection
seen in evolution; the evolutionary programming [3] uses techniques for evolving pro-
grams based on the selection of individuals for reproduction (crossover) and mutation, as
well the genetic programming [4]; the particle swarm optimization (PSO) algorithm [5],
which is based on the social behavior of fish schooling or bird flocking; the shuffled
frog leaping [6] algorithm, which imitates the collaborative behavior of frogs; and the
artificial bee colony (ABC) algorithm [7], which was inspired by the foraging behavior
of honey bees. Some algorithms are based on physical phenomena, for instance, the
simulated annealing (SA) algorithm [8], which is based on the annealing process in met-
allurgy. Some algorithms based on human or non-human physiological processes have
been proposed, such as genetic algorithms (GA) [9], which reflects the process of natural
selection; the differential evolution (DE) [10–12] optimizes a problem by iteratively work-
ing to promote an agent concerning a given measure of quality; and the artificial immune
algorithm (AIA) [13], which is based on the behavior of the human immune system. Some
algorithms based on human social processes have also been proposed, such as the harmony
search algorithm (HSA) [14] inspired by the process of musical performance. Finally, there
are proposed algorithms based on mathematical processing, such as the SCA algorithm [15],
which is based on the sine and cosine trigonometric functions.

Almost all of the algorithms mentioned require configuration parameters for an opti-
mal optimization process. An incorrect setting of these parameters can cause either a poor
quality solution or that the computational cost drastically increases as more generations are
required to be processed. For example, ABC needs the number of bees and limits to be de-
fined, HSA needs the harmony memory consideration rate, the number of improvisations,
etc., to be adjusted. However, some of these algorithms do not require parameter tunings,
such as teaching-learning based optimization algorithm (TLBO), Jaya, and SCA algorithms.
The latter is employed in this paper.

The SCA algorithm has been proven to be efficient in various applications. In [16],
SCA is used to train feed foreword neural network to breast cancer classification. Authors
in [17] employ SCA algorithm to improve an adaptive fuzzy logic PID (proportional
integral derivative) controller for the load frequency control of an autonomous power
generation system. In addition, it is used to optimize the parameters of a fractional-order
proportional integral differential controller for coordinated control of power consumption
in heat pumps [18]. In [19], the unified power quality conditioner is formulated as a
single objective problem optimized using SCA. The application spectrum of the SCA
algorithm is too large, see for example [20–27]. However, its convergence speed is a bit
slow, especially when considered multimodal objectives functions. Indeed, it maintains
high global searchability even at the end of iterations. This paper aims to improve the SCA
algorithm optimization behavior by intensifying the current solution’s refinement with a
promising diversification level during the course of the algorithm, speeding it up both in
terms of optimization and computational cost.

The major findings of the work are:

• A new optimization algorithm is proposed, dubbed the Enhanced Sine Cosine Algo-
rithm (ESCA), which improves the SCA algorithm and offers better performance than
a set of state-of-the-art algorithms. The outstanding optimization performance of the
ESCA algorithm is based on the embedding of a best-guided approach along with the
local search capability already existing in the SCA algorithm, leading to a decrease in
the diversification behavior at the end of the iterations.

• To improve the computational performance of the proposed algorithm, synchronous
and asynchronous parallel algorithms have been designed based on parallelization,
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initially at an outer, i.e., at a coarse-grained level. Since this level of parallelization is
related to subpopulations, the number of subpopulations cannot increase indefinitely.
These synchronous and asynchronous one-level parallel ESCA algorithms decrease
the computing time by 87.4% and 90.8%, respectively, using 12 processing cores.

• To improve parallel scalability without harming the optimization performance and
increasing the number of processes, two-level parallel algorithms have been designed.
The parallel strategy includes two levels, namely the outer level and the internal
level. The outer level corresponds to coarse-grained parallelization, while the internal
level corresponds to fine-grained parallelization. Accordingly, the parallel scalability
of the proposed algorithms is extremely improved. The experimental results show
significant reductions in the computing time of 91.4%, 93.1%, and 94.5% with 16, 20,
and 24 processes mapped on 12 physical cores. These time reductions correspond to
speed-ups of x12.5, x15.9, and x19.0 with 16, 20, and 24 processes correctly mapped
on 12 physical cores, i.e., using hyperthreading.

The rest of the paper is organized as follows. The preliminaries, including the sine
cosine algorithm (SCA) and the related works, are provided in Section 2. The proposed
enhanced SCA algorithm (ESCA) along with the proposed parallel algorithms based on
multi-population are described in Section 3. Section 4 lists the benchmark functions and
the engineering problems employed for testing the performance of the proposed algorithm.
The experimental results of these algorithms are discussed in Section 5. Finally, Section 6
concludes the paper.

2. Related Work

The SCA algorithm, on which our ESCA proposal is based, is described in Section 2.1.
Other proposals based on the SCA algorithm are listed and briefly described in Section 2.2.

2.1. Sine Cosine Algorithm

The SCA algorithm is an optimization algorithm based on an initial population that
evolves in search of a function’s optimum, called a cost function. This evolution, i.e., the
generation of consecutive new populations (the typical procedure of population-based
algorithms), is mainly based on (1) and (2).

Popk
m = Popk

m + (r1 ∗ sin(rk
2)
∣∣∣rk

3 ∗ BestPopk − Popk
m

∣∣∣) (1)

Popk
m = Popk

m + (r1 ∗ cos(rk
2)
∣∣∣rk

3 ∗ BestPopk − Popk
m

∣∣∣) (2)

As can be seen, (1) and (2) differ only in the use of the mathematical functions sine
or cosine. In these equations, it has been adopted that each population is composed of m
individuals, each individual consists of k variables (this parameter depends on the cost
function), and finally, the best current individual is denoted by BestPop. Each individual
is generated based on both the current individual (Popm) and the current best individual
(BestPop). However, the generation of each variable of each new individual is tuned by
using three random values that define the magnitude of the sine or cosine range (r1), the
sine or cosine domain (rk

2), and the magnitude of the contribution of the target (BestPop) in
defining the new position of the solution (rk

3).
In practice, the random numbers r1 divide the search space into two sub-spaces based

on the current individual and the best individual in the current population. Thus, if r1 is
greater than 1, the candidate solutions vacillate outwards the destination, else they fluctuate
inwards the destination (see Figure 1).

Both exploration and exploitation phases of the SCA optimization algorithm depend
on the capabilities provided by (1) and (2). This selection is decided at random with the
same probability.
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Figure 1. Searching spaces of SCA depending on r1.

In heuristic optimization algorithms, which are iterative, the exploration phase is
usually more decisive in the iterative procedure’s final phase. The SCA algorithm prioritizes
the exploration phase as more iterations are performed through r1 (see Equation (3)).

r1 = iniValuer1 − currentIT
iniValuer1

maxITs
(3)

From an initial value (iniValue_r1), the value of r1 decreases as the number of iterations
performed increases, towards the r1 minimum value when the last iteration is performed
(max_ITs). The initial value of r1 is set to 2. The number of iterations to be performed
(max_ITs) is necessary for all population-based heuristic optimization algorithms. In
practice, the value of r1 modifies the range of values of the terms associated with the sine
and cosine, from the original range [−1, 1] to the decreasing variable range, this variables
range starts at [−iniValue_r1, iniValue_r1]. These variables’ contribution can be seen in
Algorithm 1, which shows the steps of the SCA algorithm. The computed new individual
is newPopm, the number of individuals in the population is popSize and the number of cost
function design variables is numDesignVars.

Algorithm 1 The SCA optimization algorithm.
1: Set iniValuer1 = 2
2: Set maxITs variable
3: Set population size (m - iterator for individuals)
4: Define function cost (k - iterator for design variables)
5: Generate initial population Pop0
6: for iterator = 1 to maxITs do
7: Search for the current BestPop

8: r1 = iniValuer1 − iterator
iniValuer1

maxITs
9: for m = 0 to popSize do

10: for k = 1 to numDesignVars do
11: r2 = 2 ∗ π ∗ rand0..1
12: r3 = 2 ∗ rand0..1
13: r4 = rand0..1
14: if r4 < 0.5 then

15: newPopk
m = Popk

m +
(

r1 ∗ sin(r2)
∣∣∣r3 ∗ BestPopk − Popk

m

∣∣∣)
16: else
17: newPopk

m = Popk
m +

(
r1 ∗ cos(r2)

∣∣∣r3 ∗ BestPopk − Popk
m

∣∣∣)
18: end if
19: end for
20: Popm = newPopm
21: end for
22: end for
23: Search for the current BestPop
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2.2. SCA-Based Proposals

Thanks to its simplicity, the SCA algorithm was widely adopted and refined in many
research proposals. In [28], the authors proposed a modified SCA algorithm in which
the linear transition rule was substituted by a non-linear transition to guarantee a better
transition from exploration to exploitation. Second, the best guidance based on the elite
candidate solution was entered in the SCA’s search equations. Third, to escape from local
optimums, a mutation operator is utilized to produce a new position during the course
of the algorithm. An improved alternative of SCA named HSCA for train multilayer
perceptrons was reported in [29]. The HSCA adjusted the search mechanism of SCA
by combining the leading guidance and the simulated quenching algorithm. In [30], a
novel SCA based on orthogonal parallel information was presented. It is based on two
approaches; multiple-orthogonal parallel information and experience-based opposition
direction strategy. The former enabled the algorithm to save the solution diversification
and search around promising regions simultaneously. The latter serves to guard the
exploration ability of the SCA algorithm. Authors in [31] proposed an improved sine
cosine algorithm (ISCA) for feature selection of text categorization. In addition to the
position of the leading solution, the ISCA worked with random positions from the search
space. That alteration of the solution’s position mitigated premature convergence and
submitted adequate performance. Ref. [32] suggested an improved sine cosine algorithm
in which a couple of new mechanisms are provided. One is the mixing of the exploitation
abilities of crossover with the personal lead position of individual solutions. The other
is the combination of self-learning and global search tools. Zhiliu et al. proposed a
modified SCA algorithm based on vicinity search and greedy levy mutation [33]. It suggests
three optimization tactics. Firstly, it mixed the exponential decreasing of conversion
parameter and the linear decreasing of inertia weight, which yielded an equilibrium
between the algorithm’s global and local search abilities. Secondly, to escape from local
optimums, a random strategy for search agents around the best one is performed. Thirdly,
the greedy Levy mutation strategy is adopted for the best individuals to intensify the
algorithm’s local searchability. A hybrid modified SCA algorithm was studied in [34].
It was benefited from the ability of random populations through the Latin hypercube
sampling method. Next, it was used for hybridization with the cuckoo search algorithm.
The algorithm showed sufficient local and global search skills. Mohamed et al. presented
an improved SCA algorithm based on opposition-based learning (OBL) [35]. Indeed, OBL
is a machine learning approach usually utilized to boost the performance of metaheuristic
optimization algorithms. It allowed better accuracy of the obtained solutions by promoting
the exploration skills of the algorithm. Since OBL elected the leading element falling
between a given solution and its opposite, better solutions are afforded accordingly. An
enhanced SCA algorithm for feature selection was described in [36]. It embedded an
elitism strategy and a new strategy of best solution updating, yielding better accuracy for
pattern classification. In [37], the authors proposed an improved SCA algorithm for solving
high-dimensional global optimization problems. The equation for renovating the position
of the current solution and the linearly decreasing parameter were modified. In the former,
inertia weight was introduced to speed up the convergence rate and avoid local optimums.
The latter was replaced by a Gaussian function-based strategy that enabled a non-linear
decrease of the parameter. Therefore, a promising exploration-exploitation balance was
yielded. Other good attempts for improving the SCA algorithm can be found in [38–42]. In
this subsection, some SCA-based algorithms have been reviewed. The motivation for the
improvements in each of them is briefly described.

3. Proposed Work

In Section 3.1 our proposed optimization algorithm based on the SCA algorithm,
called ESCA, is presented. Then in Section 3.2, the parallel algorithms developed to
computationally accelerate the ESCA algorithm are presented.
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3.1. Enhanced Sine Cosine Algorithm

The proposed enhanced sine cosine algorithm (ESCA) aims to improve the optimiza-
tion behavior of the original SCA algorithm. For this purpose, we enhance the exploration
and exploitation phases of the SCA optimization algorithm. Indeed, they depend on the
capabilities provided by (1) and (2). These capacities are boosted by introducing a new
alternative, defined by (4), to generate each new individual.

Popk
m = BestPopk + r2

5(Popk
m − r6 ∗ BestPopk) (4)

When using (4), the new individual is generated based on the current individual and
the distance between that individual and the best individual in the current population.
Both the magnitude of the best individual and the magnitude of the distance are tuned
using two random numbers, r5 (which is squared) and r6 respectively, as shown in (4).

The probability of using the sine-based equation, i.e., (1), remains at 50%. While the
probability of using the cosine-based equation, i.e., (2), decreases to only 20%. The new
equation uses neither sine nor cosine, and it has a 30% chance of being used. The proposed
enhanced sine cosine algorithm (ESCA) is described in Algorithm 2.

Algorithm 2 Enhanced SCA (ESCA) optimization algorithm
1: Set iniValuer1 = 2
2: Set maxITs variable
3: Set population size (m - iterator for individuals)
4: Define function cost (k - iterator for design variables)
5: Generate initial population Pop0
6: for iterator = 1 to maxITs do
7: Search for the current BestPop

8: r1 = iniValuer1 − iterator
iniValuer1

maxITs
9: for m = 0 to popSize do

10: for k = 1 to numDesignVars do
11: r2 = 2 ∗ π ∗ rand0..1
12: r3 = 2 ∗ rand0..1
13: r4 = rand0..1
14: if r4 < 0.5 then

15: newPopk
m = Popk

m +
(

r1 ∗ sin(r2)
∣∣∣r3 ∗ BestPopk − Popk

m

∣∣∣)
16: else if r4 < 0.7 then

17: newPopk
m = Popk

m +
(

r1 ∗ cos(r2)
∣∣∣r3 ∗ BestPopk − Popk

m

∣∣∣)
18: else
19: r5 = rand0..1
20: r6 = round(1 + rand0..1)
21: newPopk

m = BestPopk + r2
5(Popk

m − r6 ∗ BestPopk)
22: end if
23: end for
24: Popm = newPopm
25: end for
26: end for
27: Search for the current BestPop

In more detail, in the SCA algorithm two equations can be used to obtain a new individual,
as can be seen in Algorithm 1 (lines 14–18), the first based on the sine function and the second
based on the cosine function. Both equations have the same probability of being used, as
can be seen in line 14 of Algorithm 1. In contrast, in our proposal up to three equations
can be used, the first two coincide with the functions of the SCA algorithm, and the third is
shown in Equation (4). The probability of using the equation based on the sine of the SCA
algorithm remains unchanged.The probability of using the cosine-based equation of the SCA
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algorithm is reduced to 20%, while the new equation proposed in the ESCA algorithm has a
30% probability of being used, as can be seen in Algorithm 1 (lines 18–22).

To compare search agents’ behavior of the SCA and ESCA algorithms, the two-
dimensional versions of the benchmark functions are solved by 30 search agents. The search
maps of the search agents under 300 function evaluation times are shown in Figures 2–4.
Similarly, the distributions of all possible solutions over the entire search space are depicted
in Figures 5–7. These figures reveal that the ESCA algorithm searches around thoroughly
narrow regions from the promising regions of the search space, which means reaching the
optimum faster. In contrast, the SCA algorithm searches in dispersed areas of the entire
space, so more time is required to attain the promising regions. In addition, the obtained
solutions by the ESCA algorithm are almost distributed around the global optimum. This
proves that it efficiently exploits the previous solutions to improve the current one and
bypass significant jumps in the search space. The SCA algorithm’s weakness is that it
favors exploration even at the end of iterations. An efficient optimization algorithm should
hit an equilibrium of exploitation and exploration. Indeed, it should maintain a high level
of diversification at the beginning and a lower one at its end to avoid falling on local
optimums. Simultaneously, the algorithm refines the current solution progressively. Briefly,
the algorithm should promote exploration in the beginning and exploitation at the end. In
this context, the ESCA algorithm is guided by the current best solution (see Equation (4))
to converge toward the optimum and sustain a high level of intensification at the end of
the algorithm. Accordingly, a better balance between local search and global search is
guaranteed over the course of iterations.

Figure 2. Search maps of search agents when solving functions f1, f3, and f4; by the ESCA algorithm
(first row); and the SCA algorithm (second row).
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Figure 3. Search maps of search agents when solving functions f9, f10, and f12; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

Figure 4. Search maps of search agents when solving functions f21, f24, and f25; by the ESCA
algorithm (first row); and the SCA algorithm (second row).

Figure 5. Obtained solutions in the search space of functions f1, f3, and f4; by the ESCA algorithm
(first row); and the SCA algorithm (second row).
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Figure 6. Obtained solutions in the search space of functions f9, f10, and f12; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

Figure 7. Obtained solutions in the search space of functions f21, f24, and f25; by the ESCA algorithm
(first row); and the SCA algorithm (second row).

3.2. Proposed Parallel Algorithms

Almost all newer computing platforms, regardless of their computing power, are
parallel. The main trends to increase the platforms’ computing power are (i) increasing
the number of processing units (physical cores and/or logical threads) and (ii) including
hardware accelerators (GPUs, FPGAs, etc.). We propose parallel algorithms based on
multicore platforms to efficiently use the computational resources available on shared
memory parallel platforms.

First, two parallel coarse-grained algorithms based on multi-population are developed.
Similar strategies applied to different heuristic optimization are presented in [43,44] and
some other well-known algorithms. In both, the SCA and the proposed ESCA algorithms,
only the population size and the stop criterion need to be established. Since the proposed
parallel algorithms are based on multi-populations, the selected population size is that of
the initial population, i.e., before it is partitioned. The stop criterion is the number of new
generations to be computed. Note that the number of generations and the population’s
size implicitly determine the number of cost function evaluations to be performed.

The initial population is divided into subpopulations of equal or similar size. The
size of the subpopulations depends on the number of used processing units as shown in
Algorithm 3 (line 4). If the size of the initial population is not divisible by the number of
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processing units, the sizes of some subpopulations are increased by one as exhibited in
lines 5–9 of Algorithm 3.

Algorithm 3 Multi-population sizes computing
1: Initial population size: popInitSize
2: Number of cores (or processes): NoCs
3: Process ID: idPr ∈ [0, NoCs − 1]
4: subpopSize = popInitSize

NoCs
5: if (subpopSize%NoCs)! = 0 then
6: if idPr < (PopulationSize%NoCs) then
7: subpopSize = subpopSize + 1
8: end if
9: end if

Once the size of the subpopulations is determined according to the size of the initial
population and the number of processes, as can be seen in Algorithm 3, each subpopulation
is processed by a single process. The required communications between these concurrent
processes depend on the operating algorithm. The asynchronous approach reduces these
communications with respect to the synchronous algorithm. Note that when hyperthread-
ing is not used, each core runs only one process. In our case, hyperthreading is used when
more than 12 processes are required.

As stated, the proposed parallel algorithms are suitable for shared memory platforms.
In both algorithms, to efficiently exploit shared-memory platforms, private memory has
been used preferably. The first proposed parallel algorithm, shown in Algorithm 4, is asyn-
chronous, i.e., communications between processes are not needed. Algorithm 4 shows the
parallel processing implemented in the asynchronous parallel method, i.e., the processing
performed once each sequential thread has spawned the parallel region. A new subpop-
ulation individual (newSPm) is computed based on the current subpopulation individual
(SPm) and the best subpopulation individual (subpopBest).

It is worth mentioning that the concurrent processing shown in Algorithm 4 lacks syn-
chronization points. This strategy allows having populations of significantly different sizes
and leads to balancing the computing load through the number of generations processed
by each thread and thus not degrading parallel efficiency.

Algorithm 5 presents the second parallel strategy in which the concurrent processes
share data to obtain the best individual from the whole population, i.e., the best of all
subpopulations. This process is done both at the beginning (line 7) and after computing
each new generation by each parallel process (line 29). To ensure that all concurrent
processes use the best individual from the whole population (wholepopBest) in each new
generation, a synchronization point is needed after the critical section (line 35).

As shown in Algorithms 4 and 5, the population size assigned to each process depends
on the size of the whole population (popInitSize) and the number of computing processes
NoCs (see Algorithm 3). That is, as the number of processes increases, the size of the
subpopulations decreases. When tiny populations are used in population-based heuristic
optimization algorithms, the optimization behavior can be significantly degraded. To fur-
ther increase the number of processes and thus further reduce the computing time without
drastically reducing the subpopulation sizes, we propose a two-level parallel algorithm.
The parallel second level (fine-grained level) is applied to obtain a new generation of each
subpopulation (see lines 10 and 26 of Algorithm 4).
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Algorithm 4 Asynchronous parallel algorithm.
1: Allocate private memory for subpopulation: SP[0,subpopSize]
2: Allocate private memory for best individual: subpopBest
3: Set iniValuer1 = 2
4: Generation counter: genIt = 0
5: Generate initial subpopulation SP0
6: while genIt < numGenerations do
7: Search for the current subpop best subpopBest
8: genIt = genIt + 1

9: r1 = iniValuer1 − genIt
iniValuer1

numGenerations
10: for m = 1 to subpopSize do
11: for k = 1 to numDesignvars do
12: r2 = 2 ∗ π ∗ rand0..1
13: r3 = 2 ∗ rand0..1
14: r4 = rand0..1
15: if r4 < 0.5 then

16: newSPk
m = SPk

m +
(

r1 ∗ sin(r2)
∣∣∣r3 ∗ subpopBestk − SPk

m

∣∣∣)
17: else if r4 < 0.7 then

18: newSPk
m = SPk

m +
(

r1 ∗ cos(r2)
∣∣∣r3 ∗ subpopBestk − SPk

m

∣∣∣)
19: else
20: r5 = rand0..1
21: r6 = round(1 + rand0..1)
22: newSPk

m = subpopBestk + r2
5(SPk

m − r6 ∗ subpopBestk)
23: end if
24: end for
25: SPm = newSPm
26: end for
27: end while

In the two-level algorithm the subpopulations are not calculated as a function of the
total number of processes, since a single process will not process each subpopulation. The
total number of processes in the two-level algorithm is equal to the number of subpopu-
lations multiplied by the number of processes that will process each subpopulation. The
number of subpopulations will be equal to the number of external processes (NoCs), while
the number of processes that will process each subpopulation will be denoted by inCs.
Therefore, the total number of processes equals to NoCs × inCs.

Important modifications in Algorithm 4 are required that could degrade the parallel
performance of the two-level parallel algorithm given in Algorithm 6. Since several threads
will process each subpopulation, it must be stored in shared memory (line 1 of Algorithm 6),
instead of being stored in private memory as in Algorithm 4. Moreover, before processing
each subpopulation, the best individual must be available for all the processes involved in
processing each subpopulation. This implies a synchronization point (line 9 of Algorithm 6)
that determine the best individual. Thereafter each process checks if the current best
individual stored in its private memory (subpopBest) should be updated.
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Algorithm 5 Parallel algorithm with data sharing.
1: Shared memory: wholepopBest
2: Allocate private memory for: SP[0,subpopSize] and subpopBest
3: Set iniValuer1 = 2
4: Generation counter: genIt = 1
5: Generate initial subpopulation SP0
6: Search for the current subpopulation best subpopBest
7: wholepopBest = Besto f (subpopBestNoCs)
8: while genIt < numGenerations do
9: genIt = genIt + 1

10: r1 = iniValuer1 − genIt
iniValuer1

numGenerations
11: for m = 1 to subpopSize do
12: for k = 1 to numDesignvars do
13: r2 = 2 ∗ π ∗ rand0..1
14: r3 = 2 ∗ rand0..1
15: r4 = rand0..1
16: if r4 < 0.5 then

17: newSPk
m = SPk

m +
(

r1 ∗ sin(r2)
∣∣∣r3 ∗ subpopBestk − SPk

m

∣∣∣)
18: else if r4 < 0.7 then

19: newSPk
m = SPk

m +
(

r1 ∗ cos(r2)
∣∣∣r3 ∗ subpopBestk − SPk

m

∣∣∣)
20: else
21: r5 = rand0..1
22: r6 = round(1 + rand0..1)
23: newSPk

m = subpopBestk + r2
5(SPk

m − r6 ∗ subpopBestk)
24: end if
25: end for
26: SPm = newSPm
27: end for
28: Search for the current subpopulation best subpopBest
29: CRITICAL parallel section:
30: if Feval(subpopBest) < Feval(wholepopBest) then
31: wholepopBest = subpopBest
32: else
33: subpopBest = wholepopBest
34: end if
35: end CRITICAL
36: end while

Note that, in Algorithm 6 the total number of processes is increased from NoCs to
NoCs × inCs, using the same subpopulation size. There are several options to implement
the second level of parallelism (lines 13–29 of Algorithm 6), which will be discussed in
Section 5.

104



Mathematics 2022, 10, 1166

Algorithm 6 Two-level parallel algorithm.
1: Allocate shared memory for NoCs subpopulations: SP[0,subpopSize]
2: Total number of processes: NoCs × inCs processes.
3: Allocate private memory for best individual: subpopBest
4: Set iniValuer1 = 2
5: Generation counter: genIt = 0
6: Generate initial subpopulation SP0
7: while genIt < numGenerations do
8: Search for the current subpopulation best subpopBest
9: {Synchronization point}

10: genIt = genIt + 1

11: r1 = iniValuer1 − genIt
iniValuer1

numGenerations
12: {FOR processed in PARALLEL using inCs processes}
13: for m = 1 to subpopSize do
14: for k = 1 to numDesignvars do
15: r2 = 2 ∗ π ∗ rand0..1
16: r3 = 2 ∗ rand0..1
17: r4 = rand0..1
18: if r4 < 0.5 then

19: newSPk
m = SPk

m +
(

r1 ∗ sin(r2)
∣∣∣r3 ∗ subpopBestk − SPk

m

∣∣∣)
20: else if r4 < 0.7 then

21: newSPk
m = SPk

m +
(

r1 ∗ cos(r2)
∣∣∣r3 ∗ subpopBestk − SPk

m

∣∣∣)
22: else
23: r5 = rand0..1
24: r6 = round(1 + rand0..1)
25: newSPk

m = subpopBestk + r2
5(SPk

m − r6 ∗ subpopBestk)
26: end if
27: end for
28: SPm = newSPm
29: end for
30: end while

4. Benchmark Test

The benchamark test used in this work is composed of 30 well-known unconstrained
functions shown in Section 4.1, and three constrained engineering design problems shown
in Section 4.2.

4.1. Benchmark Functions

A total of 30 well-known unconstrained functions used for the performance analysis
are listed and described in Tables 1 and 2.

4.2. Engineering Optimization Problems

The proposed algorithms’ optimization performance will be further examined through
three constrained engineering design problems.

4.2.1. Pressure Vessel Design Problem

The structural design problem of pressure vessels is shown in Figure 8. In this design
problem, four variables have to be computed: the thickness of the shell (ds), the thickness
of the heads (dh), the internal radius (R), and the length (L) of the cylindrical section. These
variables should minimize the financial cost by meeting the non-linear stress constraints and
yield criteria. Note that ds and dh are not continuous variables. Indeed, from 0.0625 inches,
the possible values are calculated in steps of 0.0625 inches. The pressure vessel design
problem is formulated as in (5).
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Pressure vessel design problem:

f =0.6224x1x3x4 + 1.7781x2x2
3+

3.1661x2
1x4 + 19.84x2

1x3

x1 = ds, x2 = dh, x3 = R, x4 = L

Constraints:

g1 = −x1 + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = −πx2
3x4 − (4/3)πx3

3 + 1296000 ≤ 0

g4 = x4 − 240 ≤ 0

0.0625 ≤ x1, x2 ≤ 99 ∗ 0.0625

10 ≤ x3, x4 ≤ 240 (5)

Figure 8. Pressure vessel design problem.

Table 1. Benchmark functions: dimensions and domain.

Id. Name Dim. (V) Domain (Min, Max)

f1 Sphere 30 −100, 100
f2 SumSquares 30 −10, 10
f3 Beale 2 −4.5, 4.5
f4 Easom 2 −100, 100
f5 Matyas 2 −10, 10
f6 Colville 4 −10, 10
f7 Trid 6 6 −V2, V2

f8 Trid 10 10 −V2, V2

f9 Zakharov 10 −5, 10
f10 Schwefel_1.2 30 −100, 100
f11 Rosenbrock 30 −30, 30
f12 Dixon-Price 5 −10, 10
f13 Foxholes 2 −216, 216

f14 Branin 2 x1 : −5, 10
x2 : 0, 15

f15 Bohachevsky_1 2 −100, 100
f16 Booth 2 −10, 10
f17 Michalewicz_2 2 0, π
f18 Michalewicz_5 5 0, π
f19 Bohachevsky_2 2 −100, 100
f20 Bohachevsky_3 2 −100, 100
f21 GoldStein-Price 2 −2, 2
f22 Perm 4 −V, V
f23 Hartman_3 3 0, 1
f24 Ackley 30 −32, 32
f25 Penalized_2 30 −50, 50
f26 Langermann_2 2 0, 10
f27 Langermann_5 5 0, 10
f28 Langermann_10 10 0, 10

f29 Fletcher-Powell_5 5 xi , αi : −π, π
aij, bij : −100, 100

f30 Fletcher-Powell_10 10 xi , αi : −π, π
aij, bij : −100, 100
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Table 2. Benchmark functions: Definitions.

Id. Function

f1
f =

V

∑
i=1

x2
i

f2
f =

V

∑
i=1

ix2
i

f3
f = (1.5 − x1 + x1x2)

2 + (2.25 − x1 + x1x2
2)

2

+(2.625 − x1 + x1x3
2)

2

f4
f = − cos(x1) cos(x2) exp

(
−(x1 − π)2 − (x2 − π)2)

f5
f = 0.26(x2

1 + x2
2)− 0.48x1x2

f6
f = 100(x2

1 − x2)
2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)
2

+10.1
(
(x2 − 1)2 + (x4 − 1)2)+ 19.8(x2 − 1)(x4 − 1)

f7 f =
V

∑
i=1

(xi − 1)2 −
V

∑
i=2

xixi−1
f8

f9 f =
V

∑
i=1

x2
i +

(
V

∑
i=1

0.5ixi

)2

+

(
V

∑
i=1

0.5ixi

)4

f10
f =

V

∑
i=1

(
i

∑
j=1

xj

)2

f11
f =

V−1

∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)

f12
f = (x1 − 1)2 +

V

∑
i=2

i
(

2x2
i − xi−1

)2

f13 f =

⎡⎢⎢⎢⎢⎣ 1
500 +

25

∑
j=1

1

j +
2

∑
i=1

(xi − aij)
6

⎤⎥⎥⎥⎥⎦
−1

f14 f =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10

f15
f = x2

1 + 2x2
2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

f16
f = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2

f17 f = −
V

∑
i=1

sin xi

(
sin

(
ix2

i
π

))20

f18

f19
f = x2

1 + 2x2
2 − 0.3 cos(3πx1) cos(4πx2) + 0.3

f20
f = x2

1 + 2x2
2 − 0.3 cos(3πx1 + 4πx2) + 0.3

f21
f =

[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
][

30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
]

f22
f =

V

∑
j=1

[
i

∑
i=1

(ij + β)

(( xi

i

)j
− 1
)]2

f23
f = −

4

∑
i=1

ci exp

[
−

3

∑
j=1

aij(xj − pij)
2

]
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Table 2. Cont.

Id. Function

f24
f = −20 exp

(
−0.2

√
1
V

V

∑
i=1

x2
i

)
− exp

(
1
V

V

∑
i=1

cos(2πxi)

)
+ 20 + e

f25

f = 0.1{sin2(3πx1) +
V−1

∑
i=1

(xi − 1)2
[
1 + sin2(3πxi+1)

]
+ (xV − 1)2

[
1 + sin2(2πxV)

]
}

+
V

∑
i=1

u(xi , 5, 100, 4),

u(xi , a, k, m) = k(xi − a)m, xi > a; 0,−a ≤ xi ≤ a; k(−xi − a)m, xi < −a.

f26 f = −
5

∑
i=1

ci

[
exp

(
− 1

π

V

∑
j=1

(xj − aij)
2

)
cos

(
π

V

∑
j=1

(xj − aij)
2

)]
f27
f28

f29 f =
V

∑
i=1

(Ai − Bi)
2; Ai =

V

∑
j=1

(
aij sin αj + bij cos αj

)
, Bi =

V

∑
j=1

(
aij sin xj + bij cos xj

)
f30

4.2.2. Welded Beam Design Problem

The welded beam design problem is depicted in Figure 9. The cost of manufacturing
and assembling the welded beams must be minimized by considering the welding work,
material, and labor cost. The variables to be computed are the thickness of the weld (h), the
length of the welded joint (l), the width of the beam (t), and the thickness of the beam (b).
The optimization problem is formulated as in (6), where τ(x) is the shear stress in the weld,
τmax is the allowable shear stress of the weld, σ(x) is the normal stress in the beam, σmax is
the allowable normal stress for the beam material, Pc(x) is the bar buckling load, P is the
load, δ(x) is the beam end deflection, and δmax is the allowable beam end deflection. Some
auxiliary functions and constant values used to solve the welded beam design problem are
given in (7).

Figure 9. Welded beam design problem.
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Welded beam design problem:

F = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

x1 = h, x2 = l, x3 = t, x4 = b

Constraints:

g1 = τ(x)− τmax ≤ 0

g2 = σ(x)− σmax ≤ 0

g3 = x1 − x4 ≤ 0

g4 = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5 = 0.125 − x1 ≤ 0

g6 = δ(x)− δmax ≤ 0

g7 = P(x)− Pc(x) ≤ 0

0.1 ≤ x1, x4 ≤ 2.0

0.1 ≤ x2, x3 ≤ 10.0 (6)

Functions and constants of welded beam problem:

τ(x) =
√
(τ′)2 + 2τ′τ′′ x2

2R
+ (τ′′)2;

τ′ =
P√

2x1x2
; τ′′ =

MR
J

M = P
(

L +
x2
2

)
; R =

√
x2

2
4

+

(
x1 + x3

2

)2

J = 2

{
√

2x1x2

[
x2

2
12

+

(
x1 + x3

2

)2
]}

σ(x) =
6PL
x4x2

3

δ(x) =
4PL3

Ex3
3x4

Pc(x) =
4.013E

√
x2

3 x6
4

36
L2

(
1 − x3

2L

√
E

4G

)
P = 6000lb; L = 14in; δmax = 0.25in

E = 30e+6 psi; G = 12e+6 psi

τmax = 13, 600psi; σmax = 30, 000psi (7)

4.2.3. Rolling Element Bearing Design Problem

The rolling element bearing design problem is a maximization problem aimed to
maximize the dynamic load capacity of a rolling element bearing. This problem, depicted
in Figure 10, has five decision variables, namely pitch diameter (Dm), ball diameter (Db),
number of balls (Z), curvature radius coefficient of inner raceway groove ( fi = ri/Db),
curvature radius coefficient of outer raceway groove ( fo = ro/Db), and the inner and
outer ring groove curvature ratio ri and ro, respectively. In addition, it has five constraints
constants, KDmin, KDmax, ε, e and ψ. This problem can be formulated as in (8).
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Rolling element bearing design problem:

f = fcx2/3
3 x1.8

2 ; if x2 ≤ 25.4

f = 3.647 fcx2/3
3 x1.4

2 ; if x2 > 25.4

x1 = Dm, x2 = Db, x3 = Z, x4 = fi, x5 = fo

Constraints:

g1 =
φ0

2 sin−1 x2
x1

− x3 + 1 ≥ 0

g2 = 2.0x2 − x6(D − d) ≥ 0

g3 = x7(D − d)− 2.0x2 ≥ 0

g4 = x10Bw − x2 ≥ 0

g5 = x1 − 0.5(D + d) ≥ 0

g6 = (0.5 + x9)(D + d)− x1 ≥ 0

g7 = 0.5(D − x1 − x2)− x8x2 ≥ 0

g8 = x4 − 0.515 ≥ 0

g9 = x5 − 0.515 ≥ 0

x6 = KDmin, x7 = KDmax, x8 = ε, x9 = e, x5 = ψ (8)

Auxiliary functions and constant values of rolling problem:

γ =
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D = 160; d = 90; Bw = 30; α = 0

90.0 ≤ x1 ≤ 150.0

10.5 ≤ x2 ≤ 31.5

4 ≤ x3 ≤ 50

0.515 ≤ x4, x5 ≤ 0.6

0.4 ≤ x6 ≤ 0.5

0.6 ≤ x7 ≤ 0.7

0.3 ≤ x8 ≤ 0.4

0.02 ≤ x9 ≤ 1.0

0.6 ≤ x10 ≤ 0.85 (9)
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Figure 10. Rolling element bearing design problem.

5. Numerical Experiments

All the numerical experiments have been obtained in Fujitsu Server PRIMERGY
TX300 S8 Tower Server. This platform is a multicore platform equipped with a D2949-B1
motherboard with two CPU sockets. In each CPU the processor installed is an Intel(R)
Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, with 15 MB Intel Smart Cache. Each processor is
composed of 6 physical cores, resulting in a total number of 12 physical cores in the system.
The Intel Hyper-Threading Technology is enabled, the number of threads per physical core
is 2, therefore the maximum number of processes (or threads) should not exceed 24, in order
to obtain the best possible computational performance. The main memory size is 32 GB
of DDR3. All the developments, both sequential and parallel, were implemented in the C
programming language, using the GCC v.4.4.7 [45]. The OpenMP API v3.1 [46] has been
used to develop parallel algorithms. Therefore, all the data in tables and figures included
in this section have been obtained running simulations in this platform. In addition, for the
computational results to be reliable, the Sun Grid Engine queuing system has been used.

5.1. Comparative Analysis ESCA vs. SCA

First, the computational costs of the SCA algorithm and the proposed ESCA algorithm
are examined in Table 3. This table shows the computing time cost when optimizing the
benchmark test reported in Section 4 with population sizes of 240, 120, and 60. The number
of generations was 50,000, and the number of independent runs was 30. The results in Table
3 point that the proposed ESCA algorithm does not increase the computing cost compared
to the SCA algorithm. On the contrary, in more than 80% of the experiments conducted, the
computational cost decreases.

Table 3. Computational times (s.) for sequential SCA and ESCA algorithms.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA

f1 349.3 308.8 683.5 711.5 1432.5 1325.7

f2 388.5 312.9 739.0 668.4 1474.9 1405.0

f3 25.2 23.4 50.4 46.8 100.6 93.6

f4 27.8 26.4 55.6 52.8 111.2 105.6

f5 33.9 31.4 68.8 70.2 131.7 138.5

f6 31.3 28.6 62.4 57.1 124.7 114.1

f7 48.6 44.1 96.9 87.9 193.7 179.3

f8 80.5 69.8 160.0 140.8 321.4 279.2

f9 144.7 132.7 280.6 268.0 558.3 530.3
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Table 3. Cont.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA

f10 374.5 413.7 773.6 815.8 1562.5 1657.5

f11 223.1 208.3 442.6 416.4 884.5 833.1

f12 38.4 36.4 77.9 72.5 154.9 145.5

f13 461.7 466.7 923.8 933.9 1845.8 1867.0

f14 19.7 18.9 39.5 37.8 79.1 75.6

f15 17.8 17.1 33.9 33.9 70.7 68.0

f16 15.5 14.6 31.2 29.1 62.0 58.1

f17 72.3 55.6 144.7 111.0 291.4 221.9

f18 174.7 125.1 309.0 280.3 620.4 493.1

f19 18.7 16.5 36.1 32.2 72.2 70.2

f20 17.6 16.8 35.2 31.2 69.9 59.7

f21 16.3 15.3 32.6 30.6 65.1 61.0

f22 105.5 101.8 212.0 205.5 419.7 409.7

f23 36.3 36.5 72.0 73.2 146.1 146.3

f24 125.6 123.2 251.6 246.3 501.5 493.8

f25 406.4 321.7 812.3 674.4 1707.8 1321.8

f26 56.4 57.1 113.3 113.5 225.6 227.2

f27 82.0 82.0 164.3 164.1 331.8 328.8

f28 130.6 118.5 262.2 236.1 523.4 473.2

f29 174.0 168.7 346.9 339.4 700.0 675.1

f30 583.4 568.9 1165.5 1134.6 2334.1 2290.9

Once it has been proven that the proposed method decreases the computational cost of
the SCA algorithm, the optimization behavior is investigated by comparing both methods
in Table 4. This table shows the number of function evaluations for an error of less than
<1 ×10−3(for functions marked with * an error less than <1 ×102), with population sizes
of 240, 120, and 60. Fewer function evaluations are required when the ESCA method is
used instead of the SCA method. The dramatic decrease, particularly for the functions that
require more evaluations, is higher than 100×, demonstrating the significant improvement
of the SCA’s optimization behavior.

To perform a parallel efficiency analysis of both parallel proposals, experimental
tests are conducted using the same parameters as those used so far, i.e., population sizes
of 240, 120, and 60. The number of generations is equal to 50,000, and the number of
independent runs is 30. The parallel speed-up values for the data sharing parallel algorithm,
depending on the total population size (popInitSize) and the number of processes (NoCs),
are exhibited in Table 5. The obtained speed-up values are close to ideal ones for the
largest population size. These values slightly decrease, in most cases, as the population
size decreases. However, the values significantly degrade when 12 parallel processes are
used for the smaller population size and lower computing cost functions.

The parallel asynchronous algorithm’s speed-up values, shown in Table 6, remain close to
the ideal values when the number of concurrent processes is increased or when the population
size is decreased. Note that this behavior implies outstanding parallel scalability.

Considering the outstanding parallel performance results obtained for the parallel
asynchronous algorithm using the 12 available physical cores (see Table 6), it can be
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concluded that the parallel scalability of the asynchronous algorithm allows increasing the
number of processes efficiently. However, the results shown in Table 4 confirm that the size
of the subpopulations requires a minimum dimension, which depends on the optimization
algorithm and the problem under consideration. Algorithm 6 has been proposed to increase
the number of processes without reducing the size of the subpopulations. To implement the
inner level of parallelism of Algorithm 6, nested parallelism can be applied using OpenMP
features. This strategy has been discarded due to poor experimental results that excessively
degrade parallel scalability. When using nested parallelism the generation of each nested
parallel region involves computational overhead [47]. The poor experimental results are
due to many nested regions (numGenerations × NoCs) and the insufficient computational
cost of each nested parallel region. Note that this computational cost depends on the
considered algorithm (quasi-non-variable cost) and the objective function.

Table 4. Number of function evaluations for an error < 1 ×10−3 (* < 1 ×102).

Population Size

240 120 60

SCA ESCA SCA ESCA SCA ESCA

f1 3,639,144 75,384 1,842,864 48,504 971,802 28,074

f2 3,596,880 73,464 1,808,004 43,500 988,380 24,888

f3 24,000 2136 24,888 3072 13,878 2082

f4 306,912 4152 218,220 3432 239,166 2088

f5 1584 840 756 564 540 312

f6 – 9,627,227 – 4,450,577 – 2,654,280

f7 * 3888 960 5724 612 3222 354

f8 * 5,031,792 317,376 2,684,760 190,053 1,565,184 196,337

f9 1,528,656 16,848 848,544 9708 490,854 6420

f10 5,048,616 739,296 2,623,800 462,456 1,400,712 311,640

f11 * 3,677,160 78,720 1,906,380 45,828 – 32,424

f12 – 6,186,240 – 4,982,240 – 2,624,640

f13 571,008 14,088 547,320 6288 236,148 36,126

f14 70,392 1920 118,296 2256 52,782 1998

f15 5928 2352 2964 1380 2262 762

f16 187,560 3120 236,952 2508 131,712 2400

f17 401,688 3888 419,220 1812 236,400 2910

f18 * 480 480 240 240 120 120

f19 6120 2448 3624 1392 1896 882

f20 5160 2112 4560 1296 2340 834

f21 26,856 2040 28,596 1080 15,924 912

f22 – 3,966,264 – 3,528,912 – 1,907,900

f23 7920 57,090 3,739,200 81,345 123,720 27,760

f24 2,290,464 30,408 1,207,956 17,940 668,790 8304

f25 * 3,591,960 46,032 1,952,616 33,756 951,708 17,022

f26 20,400 9672 21,744 4848 10,193 2208

f27 – 6,840,528 – 5,366,040 – 2,930,112

f28 480 480 252 252 120 120

f29 * 1,127,832 24,168 1,148,604 27,672 840,288 26,940

f30 * – 9,787,467 – 5,338,960 – 2,939,910
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Table 5. Parallel speed-up for parallel data sharing algorithm.

Population Size

240 120 60

NoCs

2 6 12 2 6 12 2 6 12

f1 2.0 5.7 10.4 2.0 5.7 11.4 1.8 5.0 9.7

f2 2.0 5.8 10.9 1.8 5.5 10.5 2.0 4.9 9.3

f3 1.9 4.9 6.9 1.9 4.6 4.5 1.9 3.7 2.5

f4 2.0 5.5 10.9 1.9 5.5 10.3 1.6 5.3 3.8

f5 1.9 5.0 9.0 1.8 4.9 7.4 1.6 4.2 3.7

f6 2.0 5.5 10.9 1.9 5.4 10.4 1.9 5.4 3.6

f7 1.3 3.3 4.5 1.9 4.7 5.1 1.9 4.1 3.4

f8 2.0 5.4 9.9 2.0 5.3 9.0 1.9 5.1 6.8

f9 1.9 5.2 10.2 1.8 5.3 10.1 1.9 5.1 9.2

f10 2.0 5.5 11.0 1.9 5.4 10.6 2.0 5.5 10.4

f11 2.0 5.5 11.0 2.0 5.5 10.9 2.0 5.5 10.9

f12 2.0 5.3 9.1 1.9 5.1 7.2 1.9 4.6 4.0

f13 2.0 5.5 11.1 2.0 5.5 11.0 2.0 5.5 10.8

f14 2.0 5.5 10.7 2.0 5.4 8.8 1.9 5.2 2.4

f15 1.9 5.4 10.2 2.0 5.7 6.3 2.0 5.2 2.2

f16 1.9 5.5 10.4 1.9 5.3 5.2 1.9 5.1 1.8

f17 2.0 5.4 9.5 2.0 5.2 8.2 1.9 4.8 5.8

f18 1.9 5.4 9.3 1.9 6.0 8.7 1.7 4.8 6.0

f19 2.0 5.1 7.1 1.7 4.3 3.8 1.5 3.7 1.9

f20 1.7 4.8 6.4 1.8 4.5 3.8 1.6 4.1 1.9

f21 1.9 5.1 6.4 1.9 4.6 3.5 1.9 3.6 1.7

f22 1.9 5.2 10.2 1.9 5.3 9.9 1.9 5.1 8.8

f23 2.0 5.5 10.6 2.0 5.4 10.2 1.9 5.4 8.9

f24 2.0 5.5 10.4 1.9 5.4 9.6 2.0 5.2 8.5

f25 2.0 5.6 10.4 2.0 5.5 10.0 2.0 5.2 9.1

f26 2.0 5.2 8.4 1.9 5.0 7.2 1.9 4.8 5.6

f27 2.0 5.4 9.8 2.0 5.1 8.7 2.0 5.0 6.9

f28 2.0 5.5 10.9 1.9 5.5 10.9 1.9 5.4 10.8

f29 2.0 5.5 11.0 2.0 5.5 10.6 2.0 5.4 10.4

f30 2.0 5.6 11.1 2.0 5.5 11.0 2.0 5.5 10.9
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Table 6. Parallel speed-up for asynchronous parallel algorithm.

Population Size

240 120 60

NoCs

2 6 12 2 6 12 2 6 12

f1 2.0 5.7 11.6 2.0 5.8 11.6 1.9 5.7 11.2

f2 1.9 5.5 11.4 1.9 5.6 11.2 1.9 5.2 10.5

f3 1.9 5.5 11.0 1.9 5.5 11.0 1.9 5.5 8.2

f4 1.9 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.0

f5 1.9 5.5 11.0 2.0 5.5 11.1 1.8 5.5 11.0

f6 1.9 5.5 11.0 2.0 5.5 11.1 2.0 5.5 11.0

f7 1.3 3.6 7.3 2.0 5.5 11.0 1.9 5.5 11.0

f8 1.9 5.5 11.0 2.0 5.5 11.1 2.0 5.5 11.1

f9 1.9 5.6 11.1 2.1 5.3 10.6 1.9 5.2 10.7

f10 1.9 5.4 10.9 2.0 5.6 11.1 2.0 5.5 10.9

f11 1.9 5.5 10.9 2.0 5.5 11.1 1.9 5.5 11.1

f12 1.9 5.5 10.7 2.0 5.5 11.0 2.0 5.5 10.9

f13 1.9 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.1

f14 1.9 5.5 10.9 2.0 5.5 11.0 1.9 5.5 10.9

f15 1.9 5.4 10.9 1.8 5.2 10.3 1.8 5.4 10.9

f16 1.9 5.5 11.0 1.9 5.5 10.9 1.9 5.5 10.8

f17 1.9 5.5 11.1 2.0 5.5 10.7 2.0 5.5 10.9

f18 1.9 5.6 11.3 2.0 5.6 11.1 2.0 5.6 11.3

f19 1.8 5.1 9.9 1.9 5.4 10.5 1.9 5.0 9.9

f20 1.9 5.3 10.4 2.0 5.5 11.0 1.9 5.5 10.9

f21 1.9 5.5 11.0 2.0 5.5 10.2 1.9 5.5 10.9

f22 1.9 5.2 10.4 1.9 5.2 10.5 1.9 5.3 10.3

f23 1.9 5.4 10.7 2.0 5.5 10.9 2.0 5.5 10.8

f24 1.9 5.5 11.0 2.0 5.6 11.2 2.0 5.5 11.0

f25 1.9 5.4 10.9 2.0 5.5 11.1 1.9 5.6 11.0

f26 1.9 5.5 11.0 2.0 5.5 11.0 1.9 5.5 11.0

f27 1.9 5.5 10.9 2.0 5.4 11.0 2.0 5.5 11.0

f28 1.9 5.5 11.0 2.0 5.5 11.1 1.9 5.6 11.1

f29 1.9 5.5 11.0 2.0 5.5 11.0 2.0 5.5 11.0

f30 1.9 5.5 10.9 2.0 5.6 11.0 2.0 5.6 11.1

The two-level parallel algorithm generates a parallel region of NoCs × inCs processes,
organized into NoCs groups of inCs processes each. In each group, only one process works
outside the inner parallel region, while all the processes in the group cooperate in the
processing associated with the inner level of parallelism (lines 13–29 of Algorithm 6).

As mentioned above, the used parallel platform has two processors with six physical
cores each. Hyperthreading can be enabled, allowing to run two processes (or threads)
per core efficiently. Thus, it can be run up to 24 concurrent processes without excessively
degrading the computer platform’s efficiency. Using hyperthreading and fine-grained
parallelism, such as the proposed two-level algorithm, the strategy of thread placement
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on the cores may be relevant. To control the strategy of process placement in the cores,
OpenMP affinity features are used. Figure 11a shows that the platform’s architecture is
equipped with two processors of six physical cores and twelve logical cores each. An
example of thread placement of 5 processes when no affinity is used is shown in Figure 11b,
in which the operating system decides the process placement. There is no problem in this
thread placement if neither hyperthreading nor fine-grained parallelism are used.

(a) (b)

Figure 11. Thread placement when no affinity is used. (a) Platform’s architecture. (b) Example of
thread placement without control

For instance, using 20 processes organized into 5 groups of 4 processes, a thread
placement option without using affinity features is displayed in Figure 12a. To optimize
parallel performance, the optimal thread placement can be forced using OpenMP affinity
features as shown in Figure 12b.

(a) (b)

Figure 12. Optimal thread placement. (a) Example of thread group placement without control.
(b) Example of thread group placement with affinity control.

Table 7 shows the parallel speed-up when more than 12 processes are used, i.e., using
hyperthreading for the highest computational cost functions. Results manifested in Table 7
have been obtained using 16 and 20 processes by varying the number of groups (NoCs) and
consequently varying the number of processes per group (inCs). Important conclusions
can be drawn by analyzing the results of this table: remarkable scalability is obtained
through the two-level parallel algorithm, even using logical cores (hyperthreading); al-
though the parallel performance allows setting the NoCs value (i.e., number of groups)
according to the desired size of the subpopulations, i.e., according to the optimization
performance rather than parallel behavior. All efficiency values are above 72%, except
for the Foxholes function ( f13), characterized by having only two design variables (see
Table 1), which penalizes fine-grained parallelism. Although both fine-grained parallelism
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and hyperthreading slightly penalize parallel efficiency, a remarkable average greater than
75% parallel efficiency is obtained. The average efficiency barely decreases as the number
of processes increases from 16 to 20, resulting in a slight fall of the average efficiency from
75.6% to 74.9%, i.e., the outstanding parallel scalability is maintained.

This outstanding behavior is confirmed by the results shown in Table 8, which are the
results conducted on all the available threads (24) when hyperthreading is activated. It
is found that the two-level parallel algorithm has remarkable parallel scalability with an
average parallel efficiency of 74.4%.

Table 7. Parallel speed-up for the two-level parallel algorithm using groups of processes. Population
size = 240.

16 Processes 20 Processes

NoCs; inCs 8;2 4;4 2;8 10;2 5;4 4;5 2;10

f1 12.5 12.5 12.1 15.9 15.0 15.2 15.2

f2 12.5 12.1 11.6 14.4 14.8 15.0 14.7

f10 11.9 11.8 11.8 14.7 14.7 14.7 14.7

f13 10.1 10.0 9.7 12.7 12.4 12.3 11.7

f30 12.2 12.1 12.2 15.3 15.2 15.1 15.1

Table 8. Parallel speed-up for the two-level parallel algorithm using groups of processes. Population
size = 240. Number of processes = 24.

24 Processes

NoCs; inCs 12;2 6;4 4;6 2;12

f1 19.0 18.3 18.7 17.4

f2 18.0 17.4 16.9 18.0

f10 17.6 17.6 17.4 17.4

f30 18.2 18.0 18.1 17.8

Tables 9 and 10 show the number of functions evaluations required by the data
sharing parallel algorithm to obtain an error of less than 1 × 10−3 (1 × 102 for functions
marked with an asterisk), when the total population size is 240 (popInitSize = 240) and
60 (popInitSize = 60), respectively. These results show that the number of concurrent
processes does not modify the optimization behavior. The heuristic nature of the proposed
optimization algorithm results in different evaluations for the same function depending on
the concurrent processes.

Tables 11 and 12 listed the number of functions evaluations required by the asynchronous
parallel algorithm for population sizes 240 (popInitSize = 240) and 60 (popInitSize = 60),
respectively. It is clear that, unlike the sharing data-parallel algorithm, the ratio of convergence
depends on the number of concurrent processes used for the asynchronous parallel algorithm.
In addition, the convergence ratio slightly worsens as the number of concurrent processes
increases, but the outstanding parallel scalability offsets this behavior. Note that this behavior
depends on the subpopulation sizes, which depend on the population size.
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Table 9. Sharing data parallel algorithm: number of function evaluations for error <1 ×10−3 (* < 1 ×102).
popInitSize = 240.

NoCs

1 2 6 12

f1 75,384 80,657 83,776 76,385

f2 73,464 70,135 73,034 60,717

f3 2136 2120 2128 2200

f4 4152 4889 4005 3507

f5 840 842 687 312

f6 9,627,227 9,966,401 9,430,103 9,876,351

f7 * 960 762 722 583

f8 * 317,376 374,307 255,284 324,357

f9 16,848 16,516 17,853 17,829

f10 739,296 854,471 780,928 743,569

f11 * 78,720 65,643 75,129 76,902

f12 6,186,240 7,359,497 8,535,793 5,457,901

f13 14,088 9603 7294 11,392

f14 1920 2042 3831 2259

f15 2352 2144 2453 1722

f16 3120 3342 3328 4471

f17 3888 3517 3275 2470

f18 * 480 456 453 373

f19 2448 2259 2192 1990

f20 2112 2262 2031 1892

f21 2040 1732 1601 974

f22 3,966,264 3,298,233 5,086,208 7,588,192

f23 57,090 3134 4069 3396

f24 30,408 28,982 30,281 30,248

f25 * 46,032 56,975 35,157 41,468

f26 9672 15,605 13,573 10,713

f27 6,840,528 10,618,500 3,333,940 8,731,516

f28 480 440 462 164

f29 * 24,168 30,604 25,408 26,676

f30 * 9,787,467 8,810,661 8,232,263 10,546,564
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Table 10. Sharing data parallel algorithm: number of function evaluations for error <1 ×10−3 (* < 1 ×102).
popInitSize = 60.

NoCs

1 2 6 12

f1 28,074 32,624 28,419 28,128

f2 24,888 24,323 25,030 22,209

f3 2082 2361 1867 1670

f4 2088 2319 1762 2220

f5 312 314 250 173

f6 2,654,280 1,896,252 2,914,210 1,951,487

f7 * 354 325 430 262

f8 * 196,337 279,480 347,191 238,579

f9 6420 7143 6844 7113

f10 311,640 262,261 308,376 310,209

f11 * 32,424 28,081 28,738 32,903

f12 2,624,640 2,353,703 2,680,174 2,202,838

f13 36,126 18,554 6345 34,818

f14 1998 1944 1917 2689

f15 762 820 753 520

f16 2400 2503 3393 2781

f17 2910 1271 2745 2865

f18 * 120 114 105 63

f19 882 762 879 604

f20 834 807 812 629

f21 912 691 743 543

f22 1,907,900 1,110,490 1,874,520 2,209,849

f23 27,760 3956 2633 3782

f24 8304 9840 10,120 9041

f25 * 17,022 21,353 28,550 17,609

f26 2208 2626 9685 1920

f27 2,930,112 2,842,249 2,925,193 2,806,709

f28 120 113 113 37

f29 * 26,940 12,415 17,103 17,228

f30 * 2,939,910 2,650,149 2,863,317 2,815,149
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Table 11. Asynchronous parallel algorithm: number of function evaluations for error <1 ×10−3

(* < 1 ×102). popInitSize = 240.

NoCs

1 2 6 12

f1 80,136 83,277 90,626 84,218

f2 73,824 72,792 73,927 74,209

f3 2568 2578 2989 3313

f4 3264 5795 5436 5963

f5 816 633 750 410

f6 8,974,650 10,097,595 10,025,662 11,314,284

f7 * 1032 759 897 481

f8 * 253,920 34,7465 61,2221 86,7391

f9 17,184 16,644 23,193 25,164

f10 71,4336 85,8736 1,078,127 1,252,559

f11 * 64,656 77,582 88,175 10,3109

f12 8,937,680 7,699,045 10,565,357 11,289,390

f13 46,872 10,347 17,452 20,750

f14 1992 3554 4702 5277

f15 2256 2277 2656 1922

f16 4896 4869 6881 6861

f17 3264 3640 4408 5952

f18 * 480 411 413 306

f19 2256 2204 2452 2353

f20 2304 2441 2661 1826

f21 1896 1590 2347 2041

f22 4,256,610 7,094,932 7,742,422 6,726,769

f23 10,1640 49,884 14,750 30,406

f24 31,152 32,214 32,039 33,949

f25 * 37,752 47,883 46,427 41,350

f26 8592 3266 2386 3399

f27 8,689,680 9,215,379 10,203,567 10,787,817

f28 528 456 444 199

f29 * 21,624 29,572 58,600 46,029

f30 * 10,729,470 10,103,632 10,519,594 9,802,382

As earlier recorded, the parallel asynchronous algorithm allows each thread to have
its population size without sacrificing parallel performance and thus exploring populations
of different characteristics, which could improve the optimization’s performance. Table 13
compares the number of function evaluations (# FEs) for functions f6, f22, and f27 when
using homogeneous and heterogeneous subpopulation sizes. The latter improving the
optimization performance. Moreover, not reaching a good solution due to small populations
can be avoided by increasing the number of processes. For instance, 12 processes are used
for f6 and f27 (see Table 12).
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Table 12. Asynchronous parallel algorithm: number of function evaluations for error <1 ×10−3

(* < 1 ×102). popInitSize = 60.

NoCs

1 2 6 12

f1 28,308 25,754 37,605 33,407

f2 24,684 25,346 26,985 26,891

f3 1644 1163 1876 3188

f4 2778 2239 4294 4816

f5 378 307 228 308

f6 2,742,830 2,918,138 2,936,681

f7 * 402 415 376 156

f8 * 216,387 314,711 495,643 602,778

f9 6822 6827 9873 11,370

f10 314,562 316,765 415,446 413,730

f11 * 28,338 26,143 29,280 35,931

f12 2,444,835 2,056,447 2,802,878 2,993,886

f13 52,848 35,565 30,404 63,877

f14 1680 2625 7972 5786

f15 732 926 851 583

f16 2736 6429 4814 8359

f17 2790 3023 5588 9495

f18 * 120 101 105 46

f19 630 846 877 563

f20 792 736 878 732

f21 858 914 930 1437

f22 1,089,000 1,850,238 2,757,559

f23 1980 11,291 20,030 21,210

f24 8940 9557 8676 11,540

f25 * 17,652 21,631 17,447 17,945

f26 3342 1151 2377 3869

f27 2,918,580 2,865,679 2,970,869 2,779,579

f28 120 116 105 30

f29 * 23,586 22,921 42,961 59,068

f30 * 2,782,130 2,885,935 2,631,535 2,801,275

It is settled that the proposed parallel algorithms achieve a remarkable parallel per-
formance without disordering the optimization behavior. Figures 13 and 14 point the
significant improvement in the convergence speed of the proposed ESCA algorithm com-
pared to the SCA algorithm.
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Table 13. Asynchronous parallel algorithm: number of function evaluations for error <1 ×10−3,
6 processes and homogeneous and heterogeneous subpopulation sizes. popInitSize = 240.

Thread Id.

0 1 2 3 4 5

Subpopulation Sizes # FEs

f6
40 40 40 40 40 40 10,025,662
80 60 40 30 20 10 8,365,248

f22
40 40 40 40 40 40 7,742,422
80 60 40 30 20 10 6,341,866

f27
40 40 40 40 40 40 10,203,567
80 60 40 30 20 10 9,941,450

Figure 13. Cont.
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Figure 13. Convergence curves for the benchmark functions f1 − f15 in row-major order. Optimization
algorithms are SCA [◦], ESCA [∗].

Figure 14. Convergence curves for the benchmark functions f16 − f30 in row-major order. Optimiza-
tion algorithms are SCA [◦], ESCA [∗].
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The last analysis discusses the optimization’s behavior when solving the engineering
design problems described in Section 4.2. Table 14 compares the convergence ratio of the
SCA and ESCA methods when only 10,000 and 20,000 generations are processed. As can be
observed from this table, the ESCA outperforms the SCA algorithm in terms of convergence
ratio. Similar results are obtained when optimizing the 30 benchmark functions. This
behavior confirms that our proposal significantly boosts the SCA algorithm.

Table 14. Convergence ratio for ESCA and SCA algorithms with different population sizes.

Population Size

60 120 240

Pressure Vessel Problem

ESCA-10000 6060.2070 6060.7420 6059.9340
SCA-10000 6079.0610 6091.4340 6068.5540

ESCA-20000 6060.0950 6059.8290 6059.8000
SCA-20000 6065.7460 6066.9530 6069.2260

Welded beam problem

ESCA-10000 1.728844 1.726625 1.726300
SCA-10000 1.748143 1.749394 1.747236

ESCA-20000 1.726585 1.726704 1.725514
SCA-20000 1.751480 1.747207 1.738482

Rolling element bearing problem

ESCA-10000 81,706.17 81,798.38 81,832.05
SCA-10000 80,673.58 81,333.65 80,318.50

ESCA-20000 81,803.87 81,774.60 81,836.77
SCA-20000 80,224.49 80,335.60 81,086.44

As for solution accuracy, the results on benchmark functions and challenging engi-
neering problems are listed in Table 15. These results are acquired from 30 independent
runs on each function, 10,000 iterations, and three population sizes, i.e., 60, 120, and 240. As
can be observed from this table, the ESCA algorithm performs better than SCA in almost
all functions. These outcomes are statistically compared in Table 16. Indeed, to measure
the overall performance of the ESCA algorithm respect to its original counterpart SCA,
the non-parametric statistical tests of Friedman, Friedman aligned, and Quade test are
employed. The Friedman test or Friedman rank test is a non-parametric test developed by
Milton Friedman [48] consisting of arranging the data by blocks, replacing them by their
respective order, considering the existence of identical data. Therefore, in the Friedman
test the performance of the analyzed algorithms are ranked separately for each data set.
This ranking scheme only allows comparisons between sets, since comparisons between
sets are meaningless. When the number of algorithms to be compared is small, this can
be a disadvantage, in this case inter-dataset comparison may be desirable and we can
employ the Friedman aligned or Friedman aligned rank method [49]. The Quade or Quade
rank test [50] is also a non-parametric test, which shows its robustness for small data sets.
Regardless of the population size, the ESCA is ranked first under all tests.
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Table 15. Average values for unconstrained and constrained problems obtained by ESCA and SCA.

Population Size

60 120 240

SCA ESCA SCA ESCA SCA ESCA

f1 2.757179 × 10−64 0.000000 1.712496 × 10−79 0.000000 4.457065 × 10−94 0.000000

f2 8.616185 × 10−65 0.000000 1.046044 × 10−80 0.000000 1.112510 × 10−92 0.000000

f3 6.811942 × 10−6 5.491076 × 10−9 4.783583 × 10−6 3.114413 × 10−9 1.401307 × 10−6 7.104723 × 10−10

f4 −9.999516 × 10−1 −1.000000 −9.999736 × 10−1 −1.000000 −9.999892 × 10−1 −1.000000

f5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f6 9.900274 × 10−2 8.185273 × 10−3 9.765063 × 10−2 2.929811 × 10−3 6.404594 × 10−2 2.334942 × 10−3

f7 −4.845251 × 101 −4.990339 × 101 −4.877389 × 101 −4.995156 × 101 −4.896195 × 101 −4.996917 × 101

f8 −1.262160 × 102 −1.539732 × 102 −1.339290 × 102 −1.787089 × 102 −1.501428 × 102 −1.862011 × 102

f9 8.721680 × 10−202 0.000000 3.156447 × 10−257 0.000000 2.251127 × 10−315 0.000000

f10 8.175285 × 10−1 0.000000 1.361425 × 10−3 0.000000 2.200964 × 10−8 0.000000

f11 2.701419 × 101 2.643757 × 101 2.699064 × 101 2.614943 × 101 2.663097 × 101 2.585579 × 101

f12 3.584155 × 10−1 5.114134 × 10−1 3.100522 × 10−1 4.890716 × 10−1 2.815470 × 10−1 4.889729 × 10−1

f13 1.064141 1.196414 9.980039 × 10−1 1.064141 9.980038 × 10−1 9.980038 × 10−1

f14 3.979373 × 10−1 3.978874 × 10−1 3.979186 × 10−1 3.978874 × 10−1 3.979079 × 10−1 3.978874 × 10−1

f15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f16 2.880073 × 10−5 3.813791 × 10−9 1.142770 × 10−5 7.944414 × 10−10 6.238591 × 10−6 1.858303 × 10−10

f17 −1.774460 −1.801303 −1.801248 −1.801303 −1.801272 −1.801303

f18 −3.187932 −3.700737 −3.375650 −4.044260 −3.610325 −4.071782

f19 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f21 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000

f22 3.214731 × 10−2 6.673788 × 10−3 1.718025 × 10−2 3.599778 × 10−3 1.316666 × 10−2 2.510527 × 10−3

f23 −3.855633 −3.858840 −3.855658 −3.859628 −3.857749 −3.860941

f24 4.588922 × 10−15 3.996803 × 10−15 4.233650 × 10−15 3.878379 × 10−15 4.115227 × 10−15 3.996803 × 10−15

f25 1.888945 1.585867 1.787761 1.515388 1.698389 1.389630

f26 −1.069455 −1.080938 −1.080930 −1.080938 −1.080936 −1.080938

f27 −5.685987 × 10−1 −6.957021 × 10−1 −6.135416 × 10−1 −8.465688 × 10−1 −7.018316 × 10−1 −8.571367 × 10−1

f28 −3.945496 × 10−2 −1.893884 × 10−1 −8.203238 × 10−2 −2.315995 × 10−1 −1.025653 × 10−1 −2.631384 × 10−1

f29 3.258800 × 101 3.224237 1.912760 × 101 1.364237 1.720010 × 101 7.855821 × 10−1

f30 3.745441 × 101 2.581768 2.071528 × 101 1.359673 1.765572 × 101 9.444320 × 10−1

Vessel 6.213857 × 103 6.097895 × 103 6.176765 × 103 6.067191 × 103 6.150466 × 103 6.062122 × 103

Beam 1.792532 1.733833 1.783172 1.731625 1.770235 1.729274

Bearing 7.303758 × 104 8.116530 × 104 7.449770 × 104 8.147987 × 104 7.689757 × 104 8.162418 × 104

125



Mathematics 2022, 10, 1166

Table 16. Comparison of solution accuracy for ESCA and SCA algorithms. The average ranking
results by Friedman, Friedman aligned, and Quade tests.

Population Size

60 120 240

Ranking

Friedman F. aligned Quad Friedman F. aligned Quad Friedman F. aligned Quad

ESCA 1.1970 22.7121 1.1738 1.2273 23.3485 1.1934 1.2273 22.8333 1.1783

SCA 1.8030 44.2879 1.8262 1.7727 43.6515 1.8066 1.7727 44.1667 1.8217

5.2. Further Comparison with Numerous State-of-the-Art Algorithms

In this section, we compare the sequential version of the ESCA algorithms to several
well-known algorithms. Firstly, the comparison algorithms are benchmarked on a set of
30 unconstrained problems. Then, we test these algorithms in solving three challenging
engineering problems with constrained and unknown search spaces.

5.2.1. Benchmarking of the Comparison Algorithms

The ESCA algorithm is benchmarked on 30 unconstrained functions that are listed
in Tables 1 and 2. The ESCA algorithm runs on each benchmark function 30 times. A
comparison to grey wolf algorithm (GWO) [51], whale optimization algorithm (WOA) [52]
and Harris hawk optimization algorithm (HHO) [53] is provided as well. To ensure a fair
comparison, the individuals are replaced only if there is an improvement of the objective
function over the course of iterations of each algorithm, i.e the selection operator used in
ESCA was “rank selection” also used by GWO, WOA and HHO. Table 17, compares the
convergence speed in terms of the number of functions evaluations (# FEs) required to
obtain an error of less than 1 ×10−3 and (1 ×102 for functions marked with an asterisk), for
a population size of 120. As can be observed from this table, the ESCA algorithm exhibits
the lowest # FEs values for almost all functions. Accordingly, the ESCA algorithm can early
converge to a feasible solution for almost all benchmark functions.

Table 17. Number of function evaluations for error <1 ×10−3 (* <1 ×102).

ESCA GWO HHO WOA

f1 14,502 6920 2635 7567

f2 12,399 6261 2024 5877

f3 1051 1461 535 829

f4 1582 6352 3020 2123

f5 282 400 307 346

f6 1,121,028 1,019,746 1,404,298 1,173,481

f7 * 307 281 214 268

f8 * 17,545 3946 1329 1165

f9 7543 3501 2219 149,835

f10 77,362 22,158 6625 1,058,019

f11 * 10,727 4732 1054 4077

f12 853,399 1,088,983 11,311 7280

f13 204,227 563,262 46,084 22,772

f14 2043 7718 4079 2882

f15 856 1012 1286 1701
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Table 17. Cont.

ESCA GWO HHO WOA

f16 1330 2758 5191 6688

f17 1142 28,240 3073 1279

f18 799,483 1,198,708 1,385,561 1,015,650

f19 880 1046 1227 3460

f20 866 1029 1606 8337

f21 1214 1961 1597 1634

f22 1,058,023 1,142,825 1,481,119 228

f23 1415 96,594 20,375 83,281

f24 15,322 8510 4928 11,575

f25 * 7537 2275 674 1708

f26 10,031 11,503 421,650 321,426

f27 822,131 1,128,604 583,872 927,182

f28 962,612 968,637 1,171,682 942,952

f29 * 6955 11,138 131,846 33,285

f30 * 7654 55,073 158,831 59,033

The statistical data (best cost function, and corresponding average, worst, and standard
deviation) are summarized in Table 18. These results are derived from 30 independent
runs on each function, a population size of 120 individuals, and 10,000 iterations. It can be
seen from this table that the ESCA algorithm holds a competitive performance in terms of
solution accuracy as opposed to the comparison algorithms.

Table 18. Statistical data for 30 runs with a population of 120 and 10,000 iterations for f1 to f30.

ESCA GWO HHO WOA

f1

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f2

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f3

Best 3.262152 × 10−18 5.547644 × 10−13 0.000000 1.203238 × 10−19

Avg. 8.895248 × 10−11 1.170037 × 10−10 0.000000 6.586553 × 10−16

Worst 6.298503 × 10−10 3.953307 × 10−10 0.000000 1.233480 × 10−14

SD 1.412547 × 10−10 9.315382 × 10−11 0.000000 2.205548 × 10−15

f4

Best −1.000000 −1.000000 −1.000000 −1.000000
Avg. −1.000000 −1.000000 −1.000000 −1.000000

Worst −1.000000 −1.000000 −1.000000 −1.000000
SD 6.943355 × 10−13 4.337546 × 10−10 8.599751 × 10−17 9.634141 × 10−13

f5

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000
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Table 18. Cont.

ESCA GWO HHO WOA

f6

Best 1.807347 × 10−6 4.686073 × 10−8 4.023087 × 10−5 8.462644 × 10−4

Avg. 6.913877 × 10−4 4.435400 × 10−2 3.457026 × 10−3 1.179321 × 10−2

Worst 2.241546 × 10−3 1.330605 6.863861 × 10−3 2.110537 × 10−2

SD 6.032768 × 10−4 2.388509 × 10−1 1.911670 × 10−3 5.070219 × 10−3

f7

Best −5.000000 × 101 −5.000000 × 101 −5.000000 × 101 −5.000000 × 101

Avg. −4.999999 × 101 −5.000000 × 101 −5.000000 × 101 −5.000000 × 101

Worst −4.999997 × 101 −5.000000 × 101 −5.000000 × 101 −5.000000 × 101

SD 7.486059 × 10−6 9.662948 × 10−8 5.492594 × 10−11 2.403252 × 10−10

f8

Best −2.099980 × 102 −2.100000 × 102 −2.100000 × 102 −2.100000 × 102

Avg. −2.099872 × 102 −2.063305 × 102 −2.100000 × 102 −2.100000 × 102

Worst −2.099745 × 102 −1.549028 × 102 −2.100000 × 102 −2.100000 × 102

SD 7.246266 × 10−3 1.372988 × 101 5.265073 × 10−8 2.197536 × 10−7

f9

Best 0.000000 0.000000 0.000000 5.909506 × 10−178

Avg. 0.000000 0.000000 0.000000 4.294324 × 10−82

Worst 0.000000 0.000000 0.000000 6.977677 × 10−81

SD 0.000000 0.000000 0.000000 1.580556 × 10−81

f10

Best 0.000000 2.470328 × 10−323 0.000000 3.725891 × 10−8

Avg. 0.000000 7.905050 × 10−323 0.000000 1.000874 × 10−2

Worst 0.000000 1.729230 × 10−322 0.000000 2.032146 × 10−1

SD 0.000000 0.000000 0.000000 3.734209 × 10−2

f11

Best 2.481895 × 101 2.522460 × 101 2.489752 × 101 2.486321 × 101

Avg. 4.935104 × 103 2.685818 × 101 4.932600 × 103 2.612374 × 104

Worst 1.003584 × 104 2.889938 × 101 1.002894 × 104 9.002408 × 104

SD 4.931226 × 103 7.683004 × 10−1 4.928556 × 103 3.000263 × 104

f12

Best 1.019230 × 10−8 4.395919 × 10−9 4.827285 × 10−17 6.442491 × 10−13

Avg. 3.333334 × 10−1 4.000000 × 10−1 2.551869 × 10−12 3.430491 × 10−10

Worst 6.666667 × 10−1 6.666667 × 10−1 2.321049 × 10−11 2.552220 × 10−9

SD 3.333332 × 10−1 3.265986 × 10−1 5.095444 × 10−12 7.470906 × 10−10

f13

Best 9.980038 × 10−1 9.980038 × 10−1 9.980038 × 10−1 9.980038 × 10−1

Avg. 1.588057 1.923918 9.980038 × 10−1 9.980038 × 10−1

Worst 1.076318 × 101 2.982105 9.980038 × 10−1 9.980038 × 10−1

SD 1.831761 9.898436 × 10−1 4.309420 × 10−16 6.214605 × 10−16

f14

Best 3.978874 × 10−1 3.978874 × 10−1 3.978874 × 10−1 3.978874 × 10−1

Avg. 3.978874 × 10−1 3.978878 × 10−1 3.978874 × 10−1 3.978874 × 10−1

Worst 3.978874 × 10−1 3.978987 × 10−1 3.978874 × 10−1 3.978874 × 10−1

SD 2.664066 × 10−10 2.044411 × 10−6 3.707297 × 10−15 7.625589 × 10−12

f15

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f16

Best 7.032691 × 10−16 4.176314 × 10−12 1.053336 × 10−17 1.518097 × 10−10

Avg. 8.501715 × 10−11 2.991300 × 10−10 9.229996 × 10−16 1.061443 × 10−9

Worst 6.188203 × 10−10 1.038909 × 10−9 1.010500 × 10−14 4.095840 × 10−9

SD 1.224357 × 10−10 2.805821 × 10−10 2.016184 × 10−15 7.755945 × 10−10

f17

Best −1.801303 −1.801303 −1.801303 −1.801303
Avg. −1.801303 −1.801303 −1.801303 −1.801303

Worst −1.801303 −1.801303 −1.801303 −1.801303
SD 3.984603 × 10−12 3.073081 × 10−9 1.314259 × 10−15 1.115984 × 10−12
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Table 18. Cont.

ESCA GWO HHO WOA

f18

Best −4.687657 −4.687658 −4.687658 −4.687658
Avg. −4.687651 −4.567539 −4.599323 −4.359473

Worst −4.687640 −3.749195 −4.332021 −3.573593
SD 3.945663 × 10−6 1.662246 × 10−1 7.870435 × 10−2 3.986633 × 10−1

f19

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f20

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f21

Best 3.000000 3.000000 3.000000 3.000000
Avg. 3.000000 3.000000 3.000000 3.000000

Worst 3.000000 3.000000 3.000000 3.000000
SD 3.827852 × 10−13 5.764236 × 10−9 1.924979 × 10−14 9.407358 × 10−11

f22

Best 2.100529 × 10−5 6.233180 × 10−7 2.762363 × 10−4 2.471215 × 10−3

Avg. 1.123810 × 10−3 1.300996 × 10−1 6.401639 × 10−3 6.126825 × 10−2

Worst 2.974472 × 10−3 1.035930 3.782117 × 10−2 3.768746 × 10−1

SD 1.050413 × 10−3 3.277276 × 10−1 9.226831 × 10−3 7.362338 × 10−2

f23

Best −3.862780 −3.862780 −3.862780 −3.862780
Avg. −3.862780 −3.862255 −3.862780 −3.862254

Worst −3.862780 −3.854902 −3.862780 −3.854902
SD 1.061189 × 10−10 1.965115 × 10−3 5.382464 × 10−15 1.965074 × 10−3

f24

Best 3.996803 × 10−15 3.996803 × 10−15 4.440892 × 10−16 4.440892 × 10−16

Avg. 3.996803 × 10−15 7.312669 × 10−15 4.440892 × 10−16 2.575717 × 10−15

Worst 3.996803 × 10−15 7.549517 × 10−15 4.440892 × 10−16 7.549517 × 10−15

SD 0.000000 8.862025 × 10−16 0.000000 1.967404 × 10−15

f25

Best 1.099003 × 10−3 4.167573 × 10−8 2.110681 × 10−7 1.097794 × 10−7

Avg. 9.811139 × 10−2 9.347600 × 10−2 4.397173 × 10−3 3.273148 × 10−7

Worst 3.014981 × 10−1 3.999622 × 10−1 1.098999 × 10−2 1.083257 × 10−6

SD 1.046370 × 10−1 9.982078 × 10−2 5.381619 × 10−3 2.209943 × 10−7

f26

Best −1.080938 −1.080938 −1.080938 −1.080938
Avg. −1.080938 −1.080938 −1.075192 −1.075192

Worst −1.080938 −1.080938 −1.056311 −1.056311
SD 1.216749 × 10−10 4.717320 × 10−10 1.041639 × 10−2 1.041639 × 10−2

f27

Best −9.649998 × 10−1 −9.649999 × 10−1 −9.649999 × 10−1 −9.649999 × 10−1

Avg. −9.426906 × 10−1 −9.350842 × 10−1 −9.355537 × 10−1 −7.696397 × 10−1

Worst −9.079998 × 10−1 −7.367849 × 10−1 −7.035660 × 10−1 −4.828707 × 10−1

SD 2.065763 × 10−2 4.201816 × 10−2 6.553091 × 10−2 1.953920 × 10−1

f28

Best −9.649623 × 10−1 −9.649673 × 10−1 −5.170000 × 10−1 −9.079987 × 10−1

Avg. −5.700238 × 10−1 −4.854299 × 10−1 −3.504035 × 10−1 −3.186518 × 10−1

Worst −5.317959 × 10−2 −5.317959 × 10−2 −5.317959 × 10−2 −2.813614 × 10−2

SD 2.867891 × 10−1 2.743351 × 10−1 1.736198 × 10−1 2.090066 × 10−1

f29

Best 2.498726 × 10−4 1.093726 × 10−5 9.178611 × 10−13 4.883815 × 10−8

Avg. 5.554048 × 10−3 1.419868 × 10−1 2.459967 × 101 1.769584 × 10−1

Worst 5.564318 × 10−2 3.434501 3.684844 × 102 3.925457
SD 9.949693 × 10−3 6.288349 × 10−1 9.190723 × 101 7.128277 × 10−1

f30

Best 1.696582 × 10−4 9.049588 × 10−6 5.440372 × 10−11 4.601300 × 10−8

Avg. 4.315053 × 10−3 1.263696 × 101 3.685149 × 101 2.656585 × 101

Worst 2.657023 × 10−2 3.684844 × 102 3.684844 × 102 7.966935 × 102

SD 5.023689 × 10−3 6.609445 × 101 1.105443 × 102 1.430091 × 102
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Inferential statistics prove how well a sample of data sustains a particular hypothesis
and whether the outcomes can be generalized for other data samples. To evaluate the overall
performance of the ESCA algorithm and determine the significance of data in Table 17 (average)
and Table 18, non-parametric statistical tests dubbed Friedman, Friedman aligned, and Quade
test are employed [54]. Tables 19 and 20 statistically compare the assessed algorithms in
terms of convergence speed and solution accuracy, respectively. Tables 21 and 22 estimate
the contrast between medians of data in Table 17 (average) and Table 18, respectively, while
considering all pairwise comparisons [54]. As can be observed from Table 19, the ESCA
algorithm is ranked first under all statistical tests in terms of convergence speed. Similar
results are obtained in Table 21 in which the ESCA algorithm always obtain a positive
difference value with respect to the comparison algorithms. That is, the ESCA algorithm
performs better than others. As for the solution accuracy, the ESCA and HHO algorithms are
ranked first with a competitive performance, as shown in Table 20. However, according to
the outcomes in Table 22, the proposed algorithm is slightly better than the HHO algorithm.
Unlike this latter, the ESCA algorithm always has a positive contrast compared to the other
tested algorithms.

The effectiveness of the proposed ESCA algorithm in solving high-dimensional prob-
lems is validated in Table 23. The outcomes show that the proposed algorithm exhibits
promising and competitive performance compared to the state-of-the-art algorithms.

Table 19. Comparison of convergence speed for the assessed algorithms. The average ranking
outcomes through Friedman, Friedman aligned, and Quade tests.

Ranking

Algorithm Friedman Friedman Aligned Quade

ESCA 2.1667 54.4667 2.2000

GWO 2.9000 65.8000 2.8387

HHO 2.3667 60.7667 2.5376

WOA 2.5667 60.9667 2.4237

Table 20. Comparison of solution accuracy for the assessed algorithms. The average ranking outcomes
through Friedman, Friedman aligned, and Quade tests.

Ranking

Algorithm Friedman Friedman Aligned Quade

ESCA 2.2000 53.7000 2.0613

GWO 2.8333 66.2000 2.8828

HHO 2.2000 53.0000 2.2065

WOA 2.7667 69.1000 2.8495

Table 21. Comparison of convergence speed for the assessed algorithms. Contrast Estimation based
on medians.

ESCA GWO HHO WOA

ESCA 0 865.5 159.6 398.9

GWO −865.5 0 −705.9 −466.6

HHO −159.6 705.9 0 239.3

WOA −398.9 466.6 −239.3 0
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Table 22. Comparison of solution accuracy for the assessed algorithms. Contrast Estimation based
on medians.

ESCA GWO HHO WOA

ESCA 0 8.290 × 10−16 4.145 × 10−16 4.145 × 10−16

GWO −8.290 × 10−16 0 −4.145 × 10−16 −4.145 × 10−16

HHO −4.145 × 10−16 4.145 × 10−16 0 0

WOA −4.145 × 10−16 4.145 × 10−16 0 0

Table 23. Statistical data for 30 runs with a population of 120 and 10,000 iterations for high-dimensional
functions.

# N. var. ESCA GWO HHO WOA

f1

100

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

300

Best 0.000000 1.472678 × 10−269 0.000000 0.000000
Avg. 0.000000 1.195492 × 10−267 0.000000 0.000000

Worst 0.000000 9.890031 × 10−267 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

500

Best 0.000000 6.492796 × 10−216 0.000000 0.000000
Avg. 0.000000 2.937464 × 10−214 0.000000 0.000000

Worst 0.000000 5.611286 × 10−213 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f2

100

Best 0.000000 0.000000 0.000000 0.000000
Avg. 0.000000 0.000000 0.000000 0.000000

Worst 0.000000 0.000000 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

300

Best 0.000000 2.664037 × 10−269 0.000000 0.000000
Avg. 0.000000 1.078682 × 10−267 0.000000 0.000000

Worst 0.000000 1.117063 × 10−266 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

500

Best 0.000000 4.427418 × 10−216 0.000000 0.000000
Avg. 0.000000 3.940111 × 10−214 0.000000 0.000000

Worst 0.000000 2.032876 × 10−213 0.000000 0.000000
SD 0.000000 0.000000 0.000000 0.000000

f10

100

Best 8.324341 × 10−149 1.977371 × 10−107 0.000000 2.360440 × 102

Avg. 7.974122 × 10−116 5.051906 × 10−92 0.000000 7.941213 × 103

Worst 2.391764 × 10−114 1.513262 × 10−90 0.000000 3.263596 × 104

SD 4.293318 × 10−115 2.716247 × 10−91 0.000000 7.423773 × 103

300

Best 1.527654 × 10−82 9.975385 × 10−35 0.000000 5.113928 × 105

Avg. 1.566300 × 10−55 4.698595 × 10−7 0.000000 2.324814 × 106

Worst 4.212831 × 10−54 1.409572 × 10−5 0.000000 3.178554 × 106

SD 7.582484 × 10−55 2.530258 × 10−6 0.000000 5.939182 × 105

500

Best 1.617417 × 10−70 4.140184 × 10−14 0.000000 8.236708 × 106

Avg. 2.137194 × 10−27 1.223006 × 10−2 0.000000 1.223004 × 107

Worst 6.411583 × 10−26 3.383713 × 10−1 0.000000 1.470168 × 107

SD 1.150914 × 10−26 6.061667 × 10−2 0.000000 1.446876 × 106
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Table 23. Cont.

# N. var. ESCA GWO HHO WOA

f11

100

Best 9.417182 × 101 9.409247 × 101 9.460401 × 101 9.267136 × 101

Avg. 9.690864 × 101 9.618143 × 101 9.501840 × 101 9.309575 × 101

Worst 9.839476 × 101 9.827330 × 101 9.538590 × 101 9.337289 × 101

SD 1.214620 8.735442 × 10−1 1.739057 × 10−1 1.907979 × 10−1

300

Best 2.958073 × 102 2.957236 × 102 2.951796 × 102 5.714967
Avg. 2.976425 × 102 2.970865 × 102 2.957244 × 102 2.828332 × 102

Worst 2.981833 × 102 2.978485 × 102 2.959295 × 102 2.928548 × 102

SD 6.213829 × 10−1 7.024913 × 10−1 1.326191 × 10−1 5.145973 × 101

500

Best 4.973285 × 102 4.950355 × 102 4.935614 × 102 4.904825 × 102

Avg. 4.978877 × 102 4.969489 × 102 4.939061 × 102 4.910578 × 102

Worst 4.981244 × 102 4.976162 × 102 4.939489 × 102 4.913822 × 102

SD 2.206418 × 10−1 6.608382 × 10−1 9.846602 × 10−2 2.614029 × 10−1

f24

100

Best 3.996803 × 10−15 1.110223 × 10−14 4.440892 × 10−16 4.440892 × 10−16

Avg. 3.996803 × 10−15 1.453652 × 10−14 4.440892 × 10−16 2.338870 × 10−15

Worst 3.996803 × 10−15 1.820766 × 10−14 4.440892 × 10−16 7.549517 × 10−15

SD 0.000000 1.117208 × 10−15 0.000000 1.995713 × 10−15

300

Best 3.996803 × 10−15 2.176037 × 10−14 4.440892 × 10−16 4.440892 × 10−16

Avg. 3.996803 × 10−15 2.614205 × 10−14 4.440892 × 10−16 2.457294 × 10−15

Worst 3.996803 × 10−15 2.886580 × 10−14 4.440892 × 10−16 7.549517 × 10−15

SD 0.000000 3.135436 × 10−15 0.000000 2.186836 × 10−15

500

Best 3.996803 × 10−15 2.886580 × 10−14 4.440892 × 10−16 4.440892 × 10−16

Avg. 4.825769 × 10−15 3.158955 × 10−14 4.440892 × 10−16 2.457294 × 10−15

Worst 7.549517 × 10−15 3.597123 × 10−14 4.440892 × 10−16 7.549517 × 10−15

SD 1.502629 × 10−15 1.985144 × 10−15 0.000000 2.371435 × 10−15

f25

100

Best 4.955085 2.624674 4.766665 × 10−5 3.631265 × 10−5

Avg. 6.169643 4.123167 4.122016 × 10−3 1.910465 × 10−3

Worst 7.315961 5.184571 2.124806 × 10−2 1.105270 × 10−2

SD 5.111456 × 10−1 5.124575 × 10−1 5.953081 × 10−3 4.083615 × 10−3

300

Best 2.643887 × 101 2.282209 × 101 2.212745 × 10−3 3.726640 × 10−3

Avg. 2.697167 × 101 2.376806 × 101 8.795785 × 10−3 8.291253 × 10−3

Worst 2.757999 × 101 2.474629 × 101 1.782640 × 10−2 2.452580 × 10−2

SD 3.359007 × 10−1 4.596044 × 10−1 4.937780 × 10−3 5.300295 × 10−3

500

Best 4.658280 × 101 4.243303 × 101 8.669046 × 10−3 2.174499 × 10−2

Avg. 4.724426 × 101 4.391827 × 101 2.089506 × 10−2 3.314949 × 10−2

Worst 4.807043 × 101 4.471744 × 101 2.799315 × 10−2 5.016311 × 10−2

SD 3.648753 × 10−1 5.330605 × 10−1 4.269011 × 10−3 7.169631 × 10−3

5.2.2. Optimization Outcomes for Classical Engineering Problems

The results for the pressure vessel design problem are compared in Tables 24 and 25.
The multi-strategy enhanced SCA (MSCA) was presented in [55], which also provides numer-
ical results. The numerical results for the improved harmony search algorithm (IHS) [56],
gravitational search algorithm (GSA) [57], DE [10], and HSA [14] were provided in [55].
Moreover, results for PSO [5] were taken from [58]. Results for GA [9] are provided in [59–61]
for GA_1, GA_2 and GA_3 respectively. In [62], results for evolutionary strategy ES were
provided, while those of the ACO algorithm were reported in [63]. GWO, WOA, WOA [52],
and HHO [53] algorithms are included in the comparative study of classical engineering
problems, i.e., pressure vessel problem, welded beam design problem, and rolling element
bearing design.

The comparison for the pressure vessel problem is exhibited in Tables 24 and 25. The
former shows both the variables and the cost function’s optimal value, while the latter
provides the constraints’ value. The proposed ESCA algorithm and the DE algorithm achieve
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the best feasible results. It should be noted that the solution provided by MSCA and HHO
methods are not feasible since both variables ds and dh have been considered as continuous
variables, which is not correct as they are actually discrete variables. In particular, they must
be multiples of 0.0625 inches. The IHS and ACO methods are not feasible because they do
not meet the g3 and g1 constraints, respectively, as shown in Table 25.

The results of the welded beam design problem are reported in Tables 26 and 27.
Table 26 exhibits the optimal cost of the function and its variables for several state-of-the-art
algorithms, including; GSA algorithm [57], the ray optimization (RO) algorithm [64], IHS
algorithm [56], genetic algorithm (GA_3) [61], the GWO algorithm, the WOA algorithm,
and the HHO algorithm. Outcomes reveal that the ESCA algorithm outperforms the state-
of-the-art algorithms in solving the welded beam design problem. The constraints of the
leading solutions are listed in Table 27. It worth mentioning that the solution provided by
HHO algorithm is not feasible as it does not meet the g2 constraint.

Table 24. Design variables and comparison of the best solutions obtained for pressure vessel problem.

Variables

Algorithm ds dh R L
Function

Cost

ESCA 0.8125 0.4375 42.0983 176.6385 6059.7344

SCA 0.8125 0.4375 42.0799 177.0465 6066.1710

MSCA 0.7793 0.3996 40.3255 199.9213 5935.7161

IHS 1.1250 0.6250 58.2902 43.6927 7197.7300

GSA 1.1250 0.6250 55.9887 84.4542 8538.8359

PSO 0.8125 0.4375 42.0913 176.7465 6061.0777

GA_1 0.8125 0.4345 40.3239 200.0000 6288.7445

GA_2 0.8125 0.4375 42.0974 176.6541 6059.9463

GA_3 0.9375 0.5000 48.3290 112.6790 6410.3811

ES 0.8125 0.4375 42.0981 176.6405 6059.7456

DE 0.8125 0.4375 42.0984 176.6377 6059.7340

ACO 0.8125 0.4375 42.1036 176.5727 6059.0888

GWO 0.8125 0.4375 42.0892 176.7587 6061.0135

HHO 0.8176 0.4073 42.0917 176.7196 6000.4626

WOA 0.8125 0.4375 42.0983 176.6390 6059.7410

The results for the rolling element bearing design problem are compared in Table 28.
In addition to the SCA algorithm, the proposed ESCA algorithm is compared to the genetic
algorithm (GA_4) [65], the TLBO algorithm [66], the mine blasting algorithm (MBA) [67],
the supply demand-based optimization algorithm (SDO) [68], and the HHO algorithm.
Note that, as shown in Table 29, neither TLBO nor MBA, nor SDO, nor HHO obtain feasible
solutions. Indeed, the TLBO violates the g7 constraint, while MBA, SDO and HHO violate
the g4 constraint. As shown in these tables, ESCA also carries the best feasible result on
this constrained maximization problem.

Concisely, the outcomes on the assessed engineering problems prove that ESCA is
high-performing in solving challenging problems as opposed to the comparison algorithms.
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Table 25. Constraints of the best solutions obtained for the pressure vessel problem.

Constraints

Algorithm g1 g2 g3 g4

ESCA −2.81 × 10−6 −3.59 × 10−2 −5.57 × 10−1 −6.34 × 101

SCA −3.59 × 10−4 −3.61 × 10−2 −9.97 × 102 −6.30 × 101

MSCA −9.75 × 10−4 −1.49 × 10−2 −1.26 × 101 −4.01 × 101

IHS −1.05 × 10−7 −6.89 × 10−2 6.57 × 10−2 −1.96 × 102

GSA −4.44 × 10−2 −9.09 × 10−2 −2.71 × 105 −1.56 × 102

PSO −1.39 × 10−4 −3.59 × 10−2 −1.16 × 102 −6.33 × 101

GA_1 −3.42 × 10−2 −4.98 × 10−2 −3.04 × 102 −4.00 × 101

GA_2 −2.02 × 10−5 −3.59 × 10−2 −2.49 × 101 −6.33 × 101

GA_3 −4.75 × 10−3 −3.89 × 10−2 −3.65 × 103 −1.27 × 102

ES −6.92 × 10−6 −3.59 × 10−2 2.90 −6.34 × 101

DE −6.68 × 10−7 −3.59 × 10−2 −3.71 −6.34 × 101

ACO 9.99 × 10−5 −3.58 × 10−2 −1.22 −6.34 × 101

GWO −1.79 × 10−4 −3.60 × 10−2 −4.06 × 101 −6.32 × 101

HHO −5.21 × 10−3 −5.74 × 10−3 −6.57 × 10−6 −6.33 × 101

WOA −3.39 × 10−6 −3.59 × 10−2 −1.25 −6.34 × 101

Table 26. Welded beam problem. Function cost and variables.

Variables

Algorithm h l t b
Function

Cost

ESCA 0.205727 3.470570 9.036625 0.205730 1.724862

SCA 0.205661 3.471731 9.037817 0.205742 1.725213

GSA 0.182129 3.856979 10.000000 0.202376 1.879952

RO 0.203687 3.528467 9.004233 0.207241 1.735344

IHS 0.203687 3.528467 9.004233 0.207241 1.735344

GA_3 0.248900 6.173000 8.178900 0.253300 2.433100

GWO 0.205676 3.478377 9.03681 0.205778 1.726240

HHO 0.204039 3.531061 9.027463 0.206147 1.731990

WOA 0.205396 3.484293 9.037426 0.206276 1.730499
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Table 27. Welded Beam problem. Constraints.

Constraints

Algorithm g1 g2 g3 g4 g5 g6 g7

ESCA −7.80 × 10−2 −5.98 × 10−2 −3.00 × 10−6 −3.43 −8.07 × 10−2 −2.36 × 10−1 −3.20 × 10−2

SCA −0.699753 −9.721939 −0.000081 −3.432575 −0.080661 −0.235547 −1.602377

GSA −5.35 × 102 −5.10 × 103 −2.02 × 10−2 −3.26 −5.71 × 10−2 −2.39 × 10−1 −1.33 × 104

RO −2.24 −4.13 −3.55 × 10−3 −3.42 −7.87 × 10−2 −2.35 × 10−1 −1.24 × 104

IHS −2.24 −4.13 −3.55 × 10−3 −3.42 −7.87 × 10−2 −2.35 × 10−1 −1.24 × 104

GA_3 −5.76 × 103 −2.56 × 102 −4.40 × 10−3 −2.98 −1.24 × 10−1 −2.34 × 10−1 −2.39 × 104

GWO −2.12 × 101 −8.29 −1.02 × 10−4 −3.43 −8.07 × 10−2 −2.36 × 10−1 −4.31

HHO −6.21 × 101 5.72 × 10−2 −2.11 × 10−3 −3.43 −7.90 × 10−2 −2.36 × 10−1 −3.26 × 101

WOA −2.15 × 101 −8.48 × 101 −8.80 × 10−4 −3.43 −8.04 × 10−2 −2.36 × 10−1 −4.83 × 101

Table 28. Design variables and comparison of the best solutions obtained for the rolling element
bearing design problem.

Algorithm

Design
Variables

SCA GA_4 TLBO MBA SDO HHO ESCA

Dm 125.719015 125.717100 125.719100 125.715300 125.700000 125.000000 125.718960

Db 21.425557 21.423000 21.425590 21.423300 21.424905 21.000000 21.425563

Z 11.000000 11.000000 11.000000 11.000000 11.000000 11.090000 11.000000

fi 0.515000 0.515000 0.515000 0.515000 0.515002 0.515000 0.515000

fo 0.515000 0.515000 0.515000 0.515000 0.515930 0.515000 0.515000

KDmin 0.490213 0.415900 0.424266 0.488805 0.487755 0.400000 0.465124

KDmax 0.672451 0.651000 0.633948 0.627829 0.629992 0.600000 0.653542

ε 0.300000 0.300043 0.300000 0.300149 0.300039 0.300000 0.300000

e 0.070763 0.022300 0.068858 0.097305 0.053510 0.050474 0.020149

ψ 0.760058 0.751000 0.799498 0.646095 0.665982 0.600000 0.736634

Function cost 81,859.508 81,841.511 81,859.738 81,843.686 81,575.185 83,011.883 81,859.552

Table 29. Constraints of the best solutions obtained for the rolling element bearing design problem.

Algorithm

Constraints SCA GA_4 TLBO MBA SDO HHO ESCA

g1 0.000009 0.000822 0.000004 0.000564 −0.001272 0.013477 0.000003

g2 8.536204 13.733000 13.152560 8.630250 8.706960 14.000000 10.292446

g3 4.220456 2.724000 1.525180 1.101430 1.249630 0.000000 2.896814

g4 1.376183 1.107000 2.559350 −2.040450 −1.445445 −3.000000 0.673457

g5 0.719015 0.717100 0.719100 0.715300 0.700000 0.000000 0.718960

g6 16.971735 4.857900 16.495400 23.610950 12.677500 12.618500 4.318290

g7 0.000047 0.002129 −0.000022 0.000518 0.009240 0.700000 0.000070

g8 0.000000 0.000000 0.000000 0.000000 0.000002 0.000000 0.000000

g9 0.000000 0.000000 0.000000 0.000000 0.000930 0.000000 0.000000
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6. Conclusions

This paper proposed an enhanced SCA algorithm dubbed the ESCA algorithm in
which the diversification behavior of the SCA algorithm is reduced at the end of the opti-
mization course. Indeed, the SCA algorithm’s exploitation abilities are strengthened with a
best-guided strategy that refines the current solution and leads the algorithm to converge
swiftly toward the optimum. Experimental tests on benchmark functions and challenging
engineering problems prove the supremacy of the proposed algorithm in overall perfor-
mance, i.e., solution accuracy and convergence speed, compared to a set of state-of-the-art
algorithms. This domination is confirmed through statistical tests. The proposed ESCA
algorithms are ranked first according to Friedman, Friedman aligned, and Quade tests
in terms of convergence speed and solution accuracy. Furthermore, one-level parallel
ESCA algorithms that work synchronously and asynchronously are designed as well. They
efficiently utilize multicore architectures by joining coarse-grained and fine-grained parallel
techniques. The parallel scalability of these algorithms yields an efficient use of the physical
and logical cores when hyperthreading is enabled, which increases the total number of
threads that are efficiently used when the two-level parallel algorithm is executed. It was
identified that the one-level parallel ESCA algorithms diminish the computing time, on
average, by 87.4% and 90.8%, respectively, using 12 processing cores. Moreover, it has
been shown that parallel performance can be improved by affinity techniques that permit
mapping processes over the cores of multicore processors. In fact, the two-level parallel
algorithms provide extra reductions of the computing time by 91.4%, 93.1%, and 94.5%
with 16, 20, and 24 processing cores. Considering its outstanding optimization performance
and computational behavior capability of extracting the maximum performance from the
available computational resources, the proposed algorithm is particularly fitting for high
computational complexity problems.
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Abstract: Existing studies have made a great endeavor in predicting users’ potential interests in items
by modeling user preferences and item characteristics. As an important indicator of users’ satisfaction
and loyalty, repeat purchase behavior is a promising perspective to extract insightful information
for community e-commerce. However, the repeated purchase behaviors of users have not yet been
thoroughly studied. To fill in this research gap from the perspective of repeated purchase behavior
and improve the process of generation of candidate recommended items this research proposed a
novel approach called ReRec (Repeat purchase Recommender) for real-life applications. Specifically,
the proposed ReRec approach comprises two components: the first is to model the repeat purchase
behaviors of different types of users and the second is to recommend items to users based on their
repeat purchase behaviors of different types. The extensive experiments are conducted on a real
dataset collected from a community e-commerce platform, and the performance of our model has
improved at least about 13.6% compared with the state-of-the-art techniques in recommending online
items (measured by F-measure). Specifically, for active users, with w = 1 and N(UA) ∈ [5, 25], the
results of ReRec show a significant improvement (at least 50%) in recommendation. With α and σ as
0.75 and 0.2284, respectively, the proposed ReRec for unactive users is also superior to (at least 13.6%)
the evaluation indicators of traditional Item CF when N(UB) ∈ [6, 25]. To the best of our knowledge,
this paper is the first to study recommendations in community e-commerce.

Keywords: ReRec; community e-commerce; repeat purchase; user behavior modeling; recommendation
system

1. Introduction

Community e-commerce, which combines the features of traditional e-commerce and
mobile commerce, is a representative of community economy [1] and marks the rise of a
new commercial ideology. Generally speaking, community e-commerce refers to a novel
business model that takes communities as service units and provides a more convenient
manner in online shopping than traditional e-commerce for community residents [2,3].
On the one hand, unlike traditional e-commerce that provides products and services all
over the world or a country, community e-commerce focuses on a relatively stable group
of consumers in a local area as a compatible complement for B2B, B2C and C2C models.
On the other hand, like traditional e-commerce, the huge amount of online information
and items brings about a heavy burden for online consumers, the users of community
e-commerce also suffer from the endless choices and decisions in online shopping and the
merchants in community e-commerce are still struggling to predict the interests of users in
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online items beforehand, in order to manage their inventories. For this reason, it is urgent
to develop a recommendation system for community e-commerce platforms to predict the
items that a user may possibly purchase in the near future based on the user’s purchase
history [4].

In community e-commerce, it is a usual case that a user would purchase the same
item repeatedly and periodically. In the scenario of traditional e-commerce, these items
will not be recommended to the user repeatedly in the future. However, with the focus on
limited number of users in a local area, the recommendation for repeat purchase is crucial
for the success of community e-commerce. For instance, by observing user behaviors on the
community e-commerce platform T-app (see Section 5.1), we find that from 1 January 2018
to 1 April 2019, among 955 users who have made purchases on T-app, 58.74% have repeat
purchases. For these users with repeat purchase, their average repurchase is 3.61 times,
and 10.33% of them repurchase the same item six times. In an extreme case, we find
that one user has repurchased the same item up to 43 times during the investigated time
duration. Among all the 105 types of items, 82 (78.10%) have been repurchased by users.
Therefore, it can be seen that repeated purchase behavior is an essential user characteristic
that should be paid enough attention to when community e-commerce platforms make
recommendation plans.

Existing studies have proposed many recommendation algorithms to predict users’
potential interests in items by characterizing user preferences and item characteristics,
e.g., the nearest neighborhood based recommendation algorithm [5–7], the matrix factor-
ization based recommendation algorithm [8,9] and the context aware recommendation
algorithm [10,11]. Clearly, the basic idea of these algorithms is straightforward—that if
a user purchased an item in the past, he or she will also purchase similar items, or items
purchased similar users at that time, in the future. However, if an item has already been
purchased by a user, then the item will not be recommended by theses algorithms to the
user. That is to say, the repeated purchase behavior of users has not yet been thoroughly
studied. To fill in this research gap, this paper proposes a novel approach called ReRec (Re-
peat purchase Recommender) for recommending items to users in community e-commerce.
To the best of our knowledge, this paper is the first to conduct item recommendation
in community e-commerce. For industrial applications, the proposed method can help
manage and identify loyal users and segment users and to improve customer relation-
ship management (CRM) processes. In addition, for managers, this method can also help
them formulate precision marketing strategies, recognize the market, and advance the
sustainable development of products.

Specifically, ReRec comprises two components. The first component is to model the re-
peat purchase behaviors of different types of user. This research models the repeat purchase
behaviors of the users in community e-commerce. based on their activity in the community
and the stability of their interests in items, in a divide-and-conquer manner, using these
categories: active users with stable interest (ASI), active users with unstable interest (AUSI),
inactive users with stable interest (IASI) and inactive users with unstable interest (IAUSI).
The second component is to recommend items to users based on repeat purchase behaviors.
This research proposes the ReRec approach in four variants to deal with different types of
users and interests, i.e., recommendation for active users with stable interest (ReRec-ASI),
recommendation for active users with unstable interest (ReRec-AUSI), recommendation for
inactive users with stable interest (ReRec-IASI) and recommendation for inactive users with
unstable interest (ReRec-IAUSI). Finally, extensive experiments based on a real community
e-commerce platform are conducted and the experimental results demonstrate that the
proposed ReRec approach outperforms state-of-the-art techniques significantly.

The rest of this paper is organized as follows. Section 2 states the problem. Section 3
presents related works. Section 4 proposes the ReRec approach. Section 5 conducts the
experiments. Section 6 concludes the paper and indicates future work.
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2. Problem Statement

The problem studied in this paper is one of recommendation for repeat purchase in
community e-commerce, which is different from that of traditional recommendation, such
as collaborative filtering [5,6,12]. Essentially, this research can formulate the problem as
follows. Assume that there are a set of users as U = {uk|1 ≤ k ≤ m}, and a set of items
as I = {is|1 ≤ s ≤ n} in community e-commerce. The historical sales data until time t
is recorded as a matrix Rt

UI =
{

rt
ukis

∣∣∣1 ≤ k ≤ m, 1 ≤ s ≤ n
}

, where rt
ukis is the number of

cumulative purchases of the user uk of the item is at t. Note that the user uk has purchased
the item is repeatedly and periodically. Let R̃t+1

ukis be the possibility that the user uk purchases
the item is on t + 1. We need to speculate the possibilities of user uk purchasing all the
possible items is (1 ≤ s ≤ n) on t + 1, i.e., R̃t+1

ukis for all the items is on t + 1. After deriving

the R̃t+1
ukis , it sorts all the possibilities in descending order for user uk, and uses the top N

items as the recommendation list to him or her.

3. Related Works

3.1. Nearest Neighborhood Based Recommendation

On the aspect of nearest neighborhood recommendation, the user-based nearest neigh-
bor method and item-based nearest neighbor method are usually adopted. Resnick et al. [13]
propose user-based collaborative filtering to recommend internet news to readers according
to readers’ rating scores of the internet news. This algorithm firstly calculates the simi-
larity between users, and then for a given user it recommends items that are of interest
to similar users to him or her. Considering the large number of items in a recommender
system, Sarwar et al. [14] propose item-based recommendation to compute and store items’
similarities beforehand in the system and use these similarities in real time when needed to
produce a recommendation list for a user. The basic idea of the item-based algorithm is
to assume that people will like items that are similar to those items they have purchased
before. Since a user has purchased an item in history, he or she would also purchase similar
items in the future. The item-based algorithm is very similar to the user-based algorithm.
More details about user-based collaborative filtering and item-based collaborative filtering
approaches can be found in the available literature [5–7,12,15]. The advantage of the nearest
neighborhood algorithms is that they are easy to implement in real practice because of
their simple mathematical form and consolidated intuitiveness. However, due to the sparse
nature of the historical purchasing data, it is difficult to measure similarities between users
and items [8]. Moreover, because the users’ interests in items can change very frequently, it
makes the computation complexity of real-time recommendation intractable [4].

3.2. Matrix Factorization Based Recommendation

On the aspect of matrix factorization based recommendation, SVD (Single Value De-
composition), SVD++ and NMF (non-negative Matrix Factorization) are the most represen-
tative techniques. SVD is a basic matrix decomposition method used in the recommender
systems proposed by Chen et al. [9] and Brand [16]. It decomposes the original matrix
R with higher dimensions into three matrix multiplication forms with lower dimensions,
which brings convenience to matrix calculation and storage. Specifically, SVD decomposes
the rating matrix Rm×n into three matrices: left singular vector Pm×n, right singular vector
Qm×n and singular value diagonal matrix Sm×n as in Equation (1). Both P and Q matrices
are orthogonal and matrix S is a diagonal matrix composed of singular values where all the
singular values are aligned in descending order from the largest to the smallest. For all the
singular values Sii ≥ 0, the rank of the rating matrix R is a, and the number of ranks that
can be taken is {ah|1 ≤ h ≤ min(m, n)}.

R = PSQT (1)

SVD++ is an extension of traditional SVD that takes into account both explicit and
implicit information for recommendation [17]. Here, explicit information refers to the users’
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rating of an item, and implicit information refers to the users’ implicit feedback, such as
browsing, buying, and clicking history [8]. The prediction rating γ̂ui of SVD++ is defined
in Equation (2).

γ̂ui = bui + qT
i (pu) = μ + bu + bi + qT

i (pu) (2)

The prediction rating γ̂ui is composed of two parts: one is the deviation of different
users to different products bui, the other is the product of the user preference vector pu
and the product feature vector qi, where μ denotes the benchmark value in the score, bu
is the deviation value of user rating, and bi is the score deviation of the product. These
parameters need to be trained to obtain specific values.

As for NMF, the rating matrix R is approximated by the product of two low-dimensional
matrices P and Q, as shown in Equation (3). The NMF problem is non-convex and is usually
solved by the gradient descent method [18].

R = PTQ (3)

The advantage of the matrix decomposition method is that the users’ preference in the
item is regarded as the product of two components, i.e., as the users’ latent vector represent-
ing the user preference and the item’s latent vector representing the item’s characteristics.
Both the user’s latent vector and the item’s latent vector can be stored in the memory of
the recommender system in advance, so it is convenient to compute and predict the user’s
preference in the item in real time. However, the matrix factorization method also has
some defects. Because most view the user item rating matrix from a global perspective and
perform matrix decomposition, their performance will be affected due to the large scale of
the original user project scoring matrix and the sparse data.

3.3. Context-Aware Recommendation

The collaborative filtering algorithm for recommendation only considers the inter-
active information between users and items, such as the users’ rating matrix for items.
Meanwhile, other information, such as contextual situation information during interactive
behavior, is generally not considered. A context-aware recommender system (CARS) is
used to recommend items to users based on relevant contextual information such as time,
weather and location. Contextual information can improve the performance of recom-
mendation and user satisfaction when it is combined with the recommendation algorithm.
Gorgoglione et al. [19] report that the context-aware recommendation system can achieve
more accurate recommendation by adding contextual information in the experiments, and
this recommendation system can significantly increase the platform profit and users’ stick-
ability. Time information can consist of the time when users purchase, comment, search
or perform other behaviors, or the time of the season or holiday. For instance, around the
time of the Dragon Boat Festival in China, users may have a higher preference for rice
dumplings than usual.

There are also some studies showing that reasonable use of time information can
improve the performance of the recommendation algorithm. Zimdars et al. [20] make use
of time series forecasting in collaborative filtering for recommendation. Campos et al. [21]
find that there is a time-dependent characteristic of user behaviors in online shopping. For
instance, the same user may have different preference patterns on different dates, months
and seasons. Liang et al. [22] propose the Time SVD algorithm to integrate four kinds of
time-affected factors into time functions and they find that the performance of the Time SVD
algorithm is significantly better than that of the traditional SVD algorithm. Qin et al. [23]
claim that users of different professions have obvious differences in understanding items,
and there is an important relationship between user hierarchy classification and user
interest. Traditional collaborative filtering algorithms do not consider change in users’
interests. However, in real practice, users’ interests are constantly changing with time
and the influence of the environment. Therefore, some studies introduce the concept of
user interest drift [24,25]. Chen et al. [26] provide a matrix decomposition optimization
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model that is constructed to think about the score matrix and combines time information
and the original score matrix to improve the recommendation efficiency. Wu et al. [27]
include the time factor in order optimize the weights of users’ ratings based on time and
user similarities.

4. The Proposed Approach

4.1. The Overview of the ReRec Approach

The overall structure of the proposed ReRec approach is shown in Figure 1. As can be
seen, the proposed ReRec approach is composed of two components, i.e., repeat purchase
behavior analysis and item recommendation. Before the analysis, this research collects the
user-item purchase records as a basic data matrix, i.e., the original user-item interaction
matrix. In the original user-item interaction matrix, the row label is user ID, the column
label is item ID and the element is the cumulative purchase quantity of an item by the
corresponding user at time t. Then, users are classified according to activeness and user-
items are classified according to stableness. As shown in the yellow area of Figure 1, users
are partitioned by mathematical modeling as the active and inactive users, and the items
are partitioned as stable and unstable interest. The nodes with black circles denote the users.
The nodes with blue circles denote the items. The nodes with red circles denote user–item
interaction. The nodes with dotted circles denote the immediate process. In addition, the
partition process can be visualized as the user partition matrix and the item partition matrix
derived from the original user–item interaction. As for the user partition matrix, a user ID
with yellow indicates an active user and a user ID with green indicates an inactive user. As
for the item partition matrix, an item ID with red indicates the stable interest of its user and
an item ID with blue indicates the unstable interest of its user. Results of the combined user
and item classification can be seen in the joint user-item partition matrix.

Figure 1. The overall structure of the proposed ReRec approach.
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With the above joint user-item partition matrix at hand, this research conducts the
item recommendation by using a divide-and-conquer approach. That is, it partitions the
repeat purchase behaviors of users into four types: active users with stable interest (ASI),
inactive users with stable interest (IASI), active users with unstable interest (AUSI), and
inactive users with unstable interest (IAUSI). Furthermore, this research proposes the
ReRec recommendation algorithm with its four variants to deal with the repeat purchase
behaviors of the four types one by one: the ReRec-ASI approach, the ReRec-IASI approach,
the ReRec-AUSI approach and the ReRec-IAUSI approach, which are shown in the blue
area of Figure 1.

4.2. Repeat Purchase Behavior Modeling

As community e-commerce focuses on the residents in the local community, the
characteristics of user purchase data are different from that of the large-scale e-commerce
platform, such as Alibaba, JD and Amazon. Firstly, the consumer group for community
e-commerce is relatively stable. That is, the users of community e-commerce are local
residents in a limited area such as a residential area, an office area or a campus. Secondly,
the number of item types in a community e-commerce is relatively small. Therefore,
it can study the characteristics of user-item interactions in a finer granularity than that
of the traditional recommendation algorithms and this research holds that the study of
fine-grained interactions between users and items is beneficial for improvement of the
recommendation algorithm. For this purpose, this research classifies and studies the repeat
purchase behaviors of users based on their historical purchase data.

4.2.1. The Classification Models

As the activeness of users is related to the transaction volume of the users’ base over
time [28], this research adopts a mathematical modeling method to model the behav-
iors of users along with user-item by purchase volume and the length of time in using
community e-commerce.

The mathematical models of user classification are shown in Equations (4)–(6), where
ht(uk) is the user activeness. ht(uk) is positively related to the number of item types
purchased by users uk at time t and the number of days of user uk when using community
e-commerce. This research standardizes these factors to eliminate inconsistent dimensions.
Equations (4)–(6) can divide all the users of the e-commerce platform into two types, as
active users and inactive users.

ht(uk) =
h′

t(uk)− min
{

h′
t(uk)

}
max

{
h′

t(uk)
}
− min

{
h′

t(uk)
} , uk ∈ U (4)

h′
t(uk) =

Nt
type(uk)− min

{
Nt

type(uk)
}

max
{

Nt
type(uk)

}
− min

{
Nt

type(uk)
} ∗ Δt(uk)− min{Δt(uk)}

max{Δt(uk)} − min{Δt(uk)}
(5)

Δt(uk) = tuk
last − tuk

start (6)

Meanwhile, the mathematical models of item classification are shown in Equations (7)–(9),
where gt(is|uk) is the interest stableness. gt(is|uk) is positively related to the total number
of item is purchased by user uk before time t and the time interval between the last purchase
of user uk as well as the earliest purchase of item is. This research also standardized these
factors to eliminate inconsistent dimensions. Equations (7)–(9) can divide users’ interests in
items into stable interest and unstable interest.

The symbolic definitions of the classification models are shown in Table 1. This
research defines the four types of user repeat purchase behaviors based on user activeness
and item stableness.

gt(is|uk) =
g′

t(is|uk)− min
{

g′
t(is|uk)

}
max

{
g′

t(is|uk)
}
− min

{
g′

t(is|uk)
} , uk ∈ U, is ∈ I (7)
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g′
t(is|uk) =

Nt
num(is

∣∣uk)− min
{

Nt
num(is

∣∣uk)
}

max{Nt
num(is|uk)} − min{Nt

num(is|uk)}
∗ Δt(is|uk)− min{Δt(is|uk)}

max{Δt(is|uk)} − min{Δt(is|uk)}
(8)

Δt(is
∣∣∣uk) = tukis

last − tukis
start (9)

Table 1. Symbolic definition.

Index Symbols Definition Description

1 uk User uk , uk ∈ U , U = {u1, u2, · · · , uk, · · · , um}
2 is Item is , is ∈ I , I = {i1, i2, · · · , is, · · · , in}

3 h′
t(uk)

The activeness of user uk (in using community
e-commerce) at time t

4 ht(uk) The activeness of user uk at time t after standardization

5 Nt
type(uk) The number of item types purchased by users uk at time t

6 Δt(uk)
The number of days of user uk in using community

e-commerce

7 tuk
last

The last time that user uk purchased an item in using
community e-commerce

8 tuk
strat

The first time that user uk purchased an item in using
community e-commerce

9 g′
t(is
∣∣uk)

The stability of user uk purchasing item is after
standardization

10 gt(is|uk) The stability of user uk purchasing item is

11 Nt
num(is

∣∣uk)
The total number of item is purchased by user uk before

time t

12 Δt(is|uk)
The time interval between the last purchase of user uk and

the earliest purchase of item is

13 tukis
last The last time user uk purchasing item is

14 tukis
start The first time user uk purchasing item is

15 nUA The number of users in UA

16 nUB The number of users in UB

4.2.2. User–Item Interaction

The user interacts with the item when a purchase record occurs. This section defines
the user–item interactions theoretically by using mathematical modelling. It calculates
the activeness of a user by mathematical model ht(uk), and the stableness of user-item by
gt(is|uk). The following shows the definitions of active user and inactive user, and the
definitions of stableness interest and unstableness interest.

Definition 1. Assume that UA denotes a set of active users. If a user uk from UA uses the
community e-commence software for a relatively long time and purchases a variety of items, the
user is an active user, where if ht(uk) ≥ δ, user uk ∈ UA; δ is the threshold of user activeness,
δ ∈ (0, 1), and δ is decided by the cumulative distribution of ht(uk) of all users.

Definition 2. Assume that UB denotes a set of inactive users. If a user uk uses the threshold of
user activeness for a relatively short time or purchases fewer types of item, the user is an inactive
user, where if ht(uk) < δ, user uk ∈ UB. So the set of all users U consists of UA and UB, i.e.,
U = UA ∪ UB.
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Definition 3. Let IA(uk) be a set of stable interests of user uk. If the number of item is purchased
by user uk is relatively large and the time span of the purchase behavior is long, item is is users with
stable interest, where gt(is|uk) ≥ θ , is(uk) ∈ IA(uk). θ is the threshold of user-item stableness, θ ∈
(0, 1), and the value of θ is decided by the cumulative distribution of gt(is|uk) of all items.

Definition 4. Let IB(uk) be a set of unstable interests of user uk. If the number of items is purchased
by user uk is relatively small or the time span of the purchase behavior is short, item is is users with
unstable interest, where gt(is|uk) < θ and is(uk) ∈ IB(uk). Thus, the set of all items for user uk
i.e., I(uk) consists of IA(uk) and IB(uk), I(uk) = IA(uk) ∪ IB(uk).

With the above definitions, the user–item interactions can be divided into four cat-
egories. The notation (IA|UA) denotes the active users with stable interest (ASI). The
notation (IB|UA) denotes the active users with unstable interest (AUSI). The notation
(IA|UB) denotes the inactive users with stable interest (IASI). The notation (IB|UB) de-
notes the inactive users with unstable interest (IAUSI). Figure 2 shows the classification
process as a whole. Mathematical functions of the classification are shown as Equation (10).

is(uk) ∈

⎧⎪⎪⎨⎪⎪⎩
IA|UA
IB|UA
IA|UB
IB|UB

, i f ht(uk) ≥ δ and gt(is|uk) ≥ θ

, i f ht(uk) ≥ δ and gt(is|uk) < θ
, i f ht(uk) < δ and gt(is|uk) ≥ θ
, i f ht(uk) < δ and gt(is|uk) < θ

(10)

Figure 2. The classification structure of user–item interactions.

4.3. Item Recommendation
4.3.1. Model of ReRec-ASI

The overall interests of ASI users remain active and they have stable interests in items
in IA|UA . This improves the algorithm upon the repurchase cycle of items. Generally,
when a user has just purchased an item, the possibility of repeating the purchase immedi-
ately is very low. However, as time goes on, with the user running out of the item, he/she
is more likely to make repeated purchase. For this reason, this research could prioritize
the recommendation of the item to the user. This research develops a time incentive fac-
tor wα

(
tukis

)
based on relationship of the last purchase time and the repurchase cycle to

improve the user–KNN recommendation algorithm. Due to users in ASI having stable
purchase interests, it assumes that their stable interests do not change over time, and the
time incentive factor wα

(
tukis

)
is a periodic piecewise constant function. The model of the

time incentive function is as shown in Equation (11).

wα

(
tukis

)
=

{
−w,

w,
tukis
last ≤ tukis < tukis

last + αTis

tukis
last + αTis ≤ tukis < tukis

last+1
(11)

Here, tukis
last+1 = tukis

last + Tis , Tis is the repurchase cycle of item is, αTis is the best time to

recommend from time tukis
last to the next purchase time tukis

last+1, and α is a lead-time factor and
α ∈ (0, 1).
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To be specific, as users in ASI have stable purchasing interest and obvious repeat
purchase behavior, it considers a periodic time incentive factor for item recommendation in
ASI. That is, the time incentive factor changes with the repurchase cycle. In particular, if
the last time user uk purchases item is is time tukis

last , he/she will purchase item is repeatedly

at time tukis
last + Tis , i.e., tukis

last+1. When the recommendation time tukis ∈
[
tukis
last , tukis

last + αTis
)

,
it is very unlikely for user uk to make a repeat purchase. Thus, a negative time incentive
factor −w should be combined with the recommendation algorithm. However, when
the recommendation time tukis is close to the next time of repeat purchase tukis

last+1, and

tukis ∈
[

tukis
last + αTis , tukis

last+1

)
, it is very likely for user uk to repeat purchase item is. Thus, a

positive time incentive factor w should be combined with the recommendation algorithm.
This time incentive process is carried out periodically with repeated purchase.

Next, this research employs cosine similarity to calculate the similarity between users.
The similarity between user uk and user uk′ at time t is shown in Equation (12):

sim(uk, uk′)t =
uk ∗ uk′

‖uk‖ ∗ ‖uk′ ‖
(12)

where uk, uk′ are the vectors of historical purchase records of user uk and user uk′ before
time t, respectively. The R̃t+1

ukis function of this kind of items is established as Equation (13).

R̃t+1
ukis = ∑ uk′ ∈ UA

is ∈ IA|UA

qt
uk′ is

∗ sim(uk, uk′)t + xukis wα

(
tukis

)
+
(
1 − xukis

)
wα

(
tuk′ is

)
(13)

Here, qt
uk′ is

is the cumulative purchase of item is by user uk′ at time t. sim(uk, uk′)t is

the similarity between user uk and user uk′ at time t. wα

(
tukis

)
is the time incentive factor if

user uk purchased item is at time t. If user uk did not purchase item is before time t, it uses
wα

(
tuk′ is

)
to incentive the recommendation process, where wα

(
tuk′ is

)
is the time incentive

factor by users uk′ in UA except user uk and wα

(
tuk′ is

)
is the average time incentive factor

by all other users uk′ . wα

(
tuk′ is

)
is established as Equation (14). xukis is a 0–1 variable.

wα

(
tuk′ is

)
=

∑ k′ �= k
uk′ ∈ UA

xuk′ is wα

(
tuk′ is

)
∑ k′ �= k

uk′ ∈ UA

xuk′ is
(14)

Here, it regulates xukis =

{
1
0

i f user uk ever purchased item is,
else

.

4.3.2. Model of ReRec-AUSI

The overall interests of the AUSI users remain active, but they purchase items in
IB|UA of their random interest, where the activeness of users is more than threshold δ but
the stableness of user-item interest is less than threshold θ. The repeat purchase behavior of
users is not significant. Hence, the proposed ReRec-ASI based on the repeat purchase cycle
of items will be invalid for item recommendation in AUSI. For this reason, this research
considers the recommendation algorithm for the AUSI users by combining the user-KNN
algorithm and the one-time hot-sale index, assuming that items with higher one-time
hot-sale index in AUSI may be preferred by users. In particular, one-time hot-sale index of
item is, denoted by τt

is , refers to an index that is the largest single sales quantity before time t
of item is, after the range standardized calculation. The calculation of τt

is is as Equation (15),

where cist
max is the largest one-time sales at time t of item is, max ∑is′ ∈IB |UA

cis′ t
max is the largest
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cis′ t
max among all the cis′ t

max of items in IB|UA , and min ∑is′ ∈IB |UA
cis′ t

max is the smallest cis′ t
max

among all the cis′ t
max of items in IB|UA . The bigger the largest single sales quantity, the

greater the one-time hot-sale index. τt
is is a decimal between 0 and 1.

τt
is =

cist
max − min ∑is′ ∈IB |UA

cis′ t
max

max ∑is′ ∈IB |UA
cis′ t

max − min ∑is′ ∈IB |UA
cis′ t

max

(15)

It is similar to the ReRec-ASI approach that this research considers the ReRec-AUSI
method by adding one-time hot-sale index to the user-KNN recommendation algorithm.
However, as users in AUSI have unstable interest, this research recognizes the similarity
by reversing it from 1, and then multiplying by the cumulative purchase amount of other
users for item is. The improved similarity can pledge that not only the recommended items
were purchased by similar users, but also are not always recommended. This is in line
with the characteristics of unstable purchase interest of users in AUSI. Moreover, combined
with the one-time hot-sale index, the improved similarity will further better the hit rate
of recommended items. The R̃t+1

ukis function of ReRec-AUSI is established as Equation (16),
where qt

uk′ is
is the cumulative purchase quantity of item is by user uk′ at time t. sim(uk, uk′)t

is the similarity between user uk and user uk′ at time t based on KNN algorithm. τt
is is the

one-time hot-sale index at time t of item is.

R̃t
ukis = ∑ uk′ ∈ UA

is ∈ IB|UA

qt
uk′ is

∗ (1 − sim(uk, uk′)t) + τt
is (16)

4.3.3. Model of ReRec-IASI

The overall interests of users in IASI remain inactive, but they purchase items in IA|UB
of their stable interest. This research improves the algorithm upon repurchase cycle of
items. Especially, it is similar to the behavior of users in ASI in that when a user has just
purchased an item the possibility of repeating the purchase immediately is very low, but, as
time goes on, with the user running out of the item, he/she is more likely to make repeated
purchase. However, as the users in IASI remain inactive, the proposed ReRec-ASI for active
users will be invalid for item recommendation in IASI, and the similarity based on users
is unreliable. For this reason, this research prioritizes the item-KNN recommendation
algorithm by adding a time incentive factor. Considering the characteristic of users in
IASI, it assumes that the trajectory of their purchasing interest conforms to the Eibinghaus
forgetting curve [29] and the interest declines over time. So, similar but different from the
time incentive function in ReRec-ASI is that the principal of function segmentation of time
incentive factor wb

(
tukis

)
of ReRec-IASI is the same, but is improved by the Eibinghaus

forgetting curve, and is a periodic piecewise exponential function. The model of the time
incentive function is as shown in Equation (17).

wb

(
tukis

)
=

⎧⎪⎨⎪⎩ −e−
tukis−t

ukis
last

σ

1 − e−
tukis−t

ukis
last

σ

, tukis
last ≤ tukis < tukis

last + αTis

, tukis
last + αTis ≤ tukis < tukis

last+1
(17)

Here, tukis
last+1 = tukis

last + Tis , Tis is the repurchase cycle of item is. αTis is the best time to

recommend from time tukis
last to the next purchase time tukis

last+1, where α is a lead-time factor
and α ∈ (0, 1). σ is the forgetting rate, and σ ∈ (0, 1).

To be specific, as users in IASI have stable purchasing interest in items and obvious
repeat purchase behavior, this research considers a periodic time incentive factor to item
recommendation in IASI, i.e., the time incentive factor according to improved Eibinghaus
forgetting curve changes with the repurchase cycle. In particular, if the last time user
uk purchases item is is time tukis

last , generally he/she will purchase item is repeatedly at
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time tukis
last + Tis , i.e., tukis

last+1. When the recommendation time is tukis ∈
[
tukis
last , tukis

last + αTis
)

,
it is very unlikely for user uk to make a repeat purchase. For this reason, a negative

time incentive factor −e−
tukis−t

ukis
last

σ should be considered in the recommendation algorithm.
However, when the recommendation time tukis is close to the next time of repeat purchase
tukis
last+1, where tukis ∈

[
tukis
last + αTis , tukis

last+1

)
, it is very likely for user uk to repeat purchase

item is, so a positive time incentive factor 1 − e−
tukis−t

ukis
last

σ should be considered in the
recommendation algorithm. This time incentive process is also carried out periodically
with repeated purchase.

Next, it uses cosine similarity to calculate the similarity between items. The similarity
between item is and item is′ at time t is shown in Equation (18).

sim(is, is′)t =
is ∗ is′

‖ is ‖ ∗ ‖ is′ ‖
(18)

where is, is′ are the vectors of historical purchase records of item is and item is′ before time
t, respectively. So, the R̃t+1

ukis function of this kind of items is established as Equation (19).

R̃t+1
ukis = ∑is′ ∈IA |UB

qt
ukis′

∗ sim(is, is′)t + xukis wb

(
tukis

)
+
(
1 − xukis

)
wb
(
tuk′ is

)
(19)

Here, qt
ukis′

is the cumulative purchase of item is′ by user uk at time t. sim(is, is′)t is the

similarity between item is and item is′ at time t. wb
(
tukis

)
is the time incentive factor when

user uk purchases item is at time t. If user uk did not purchase item is before time t, this
research uses wb

(
tuk′ is

)
to incentivize the recommendation process, where wb

(
tuk′ is

)
is the

time incentive factor by users uk′ in UB except user uk. wb
(
tuk′ is

)
is the average value of the

time incentive factor when user uk′ who is not user uk, purchases item is at time t. xukis is a
0–1 variable and it is modeled as Equation (20).

xukis =

{
1
0

i f user uk ever purchased item is,
else

(20)

4.3.4. Model of ReRec-IAUSI

The overall interests of the IAUSI users remain inactive and they usually purchase
items in IB|UB of their random interests, where the activeness of users is less than threshold
δ and the stableness of user–item interest is also less than threshold θ. Users do not have
declining repeat purchase behavior. Hence, the proposed ReRec-IASI based on declining
repeat purchase cycle of items will be invalid for item recommendation in IAUSI. For
this reason, this research considers the recommendation algorithm for the IAUSI users by
combining the item–KNN algorithm and total hot-sale index, where it assumes that items
with higher total hot-sale index in IAUSI may be preferred by users. In particular, the total
hot-sale index of item is, denoted by ϕt

is , refers to an index that is the largest total sales
quantity before time t of item is, after the range standardized calculation. The calculation
of ϕt

is is as in Equation (21), where Cist is the largest total sales before time t of item is,
max ∑is′ ∈I Cis′ t is the largest Cis′ t among all the Cist of items in IB|UB , and min ∑is′ ∈I Cis′ t

is the smallest Cis′ t among all the Cist of items in IB|UB . The bigger the largest total sales
quantity, the greater the total hot-sale index. ϕt

is is a decimal between 0 and 1.

ϕt
is =

Cist − min ∑is′ ∈IB |UB
Cis′ t

max ∑is′ ∈IB |UB
Cis′ t − min ∑is′ ∈IB |UB

Cis′ t
(21)

Similar to the ReRec-IASI approach, this research considers the ReRec-IASUI method
by adding an incentive factor which is a hot-sale index to the item–KNN recommendation
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algorithm. However, as users in IAUSI have unstable interest, the research recognizes
the similarity by reversing it from 1, and then multiplying by the cumulative purchase
amount of other users for item is. The improved similarity can show not only that the
recommended items were purchased by similar users, but also that the recommended items
are diverse. This is in line with the characteristics of unstable purchase interest of users
in IAUSI. Moreover, combined with the total hot-sale index, the improved similarity will
further increase the hit rate of recommended items. The R̃t+1

ukis function of ReRec-IAUSI can
be formed as Equation (22).

R̃t+1
ukis = ∑is′ ∈IB |UB

qt
ukis′

∗ (1 − sim(is, is′)t) + ϕt
is (22)

where qt
ukis′

is the cumulative purchase of item is′ by user uk at time t. sim(is, is′)t is the

similarity between item is and item is′ at time t. ϕt
is is the hot-sale index at time t of item is.

5. Experiments

5.1. The Dataset

The dataset used in this paper comes from a community e-commerce platform T-app,
with 11,350 purchase records from June 2017 to August 2019. It contains 1064 users and
137 kinds of items. The characteristics of each record include user ID, item ID, purchase
time, purchase quantity, price, payment method and other attributes. Specifically, the data
from June 2017 to April 2019 (10,343 records) are used as the training set, and the data
from April 2019 to August 2019 (1007 records) are used as the test set. The user–item
recommendation models are trained on the training set, and are tested on the test set.

The purchase behavior of users on the T-app platform has obvious characteristics of
repurchase. For instance, by analyzing the data of a time phase, it is found that among
955 users who have made purchases, 58.74% have repeat purchases. In Figure 3, it can be
seen that the total repurchases of 23% of repurchase users is larger than 15. The average
repurchase time of repurchase users is 3.61. Among the repurchase users, 10.33% repurchase
the same item more than six times. In an extreme case, it is found that one user has
repurchased the same item up to 43 times under the investigated time duration. In Figure 4,
it can be seen that, among all the types of item (105 types), 78.10% (82 types) have been
repurchased by users, and in 17% of the repurchased items, the total number of times
repurchased by users is more than 120.

Figure 3. Proportions of repurchase users.
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Figure 4. Proportions of repurchased items.

5.2. Experimental Setup

In the traditional collaborative filtering recommendation, the user–item score matrix
is usually used as the original data for the recommendation calculation. This paper adopts
offline experiments for verification, and the user’s cumulative purchase is used as the score.
First, according to the user classification model, the user-item is classified into four cate-
gories: active users with stable interest, active users with unstable interest, inactive users
with stable interest and inactive users with unstable interest. Then, the recommendation
calculation is carried out for each category, and the improved recommendation algorithms
for active users and inactive users are evaluated respectively. The results are then compared
with that of the traditional CF, SVD, SVD++, and NMF algorithms.

The repurchase cycle refers to the time interval between the nth and the (n + 1)th
purchase of item is by user uk. For an item, the repurchase cycle of different users at the
same time period is different, and that of the same user at different time periods is also
different. So, if the items’ repurchase cycle is calculated by each user by time, it could be
highly random and prone to overfitting. Therefore, for the active users’ stable purchase
behavior, the average repurchase cycle of the top three users in purchase quantity of a
certain item is used as the repurchase cycle. For the items included in IA|UB , as the overall
interest of users is inactive, the repurchase cycle of the user who purchases the largest
quantity of an item is regarded as the repurchase cycle of this item. Examples of repurchase
cycle for some items included in IA|UA are shown in Table 2 and for some items included
in IA|UB in Table 3.

Table 2. Repurchase cycle of typical items included in IA|UA .

Item ID Repurchase Cycle (Days) Name

2 14.07 ZY
38 24.65 TB-Mo
61 21.25 TB-Th
68 14.84 ZQB-F
69 20.37 ZYB-We
73 15.51 HB-We
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Table 3. Repurchase cycle of typical items included in IA|UB .

Item ID Repurchase Cycle (Days) Name

2 10 ZY
38 16 TB-Mo
61 24 TB-Th
68 12 ZQB-Fr
69 14 ZYB-We
73 11 HB-We

In the experiments, each type of user behavior model can produce a corresponding
item recommendation list. After sorting in descending order according to the purchase
possibility, the recommended items can be selected according to the top N method. N(UA)

is the number of active users and N(UB)
is the number of inactive users, and they can be

expressed as Equations (23) and (24), respectively.

N(UA)
= N(IA |UA)

+N(IB |UA)
(23)

N(UB)
= N(IA |UB)

+N(IB |UB)
(24)

Here, N(IA |UA)
is the recommended item quantity from items included in IA|UA .

N(IB |UA)
, N(IA |UB)

, N(IB |UB)
are similar in meaning to N(IA |UA)

. So, it is easy to discover
that the recommendation list of active users is composed of N(IA |UA)

stable interests and
N(IB |UA)

unstable interests. Similarly, the recommendation list of inactive users is composed
of N(IA |UB)

stable interests and N(IB |UB)
unstable interests.

Considering the actual situation of T-app, its operators should select the best combina-
tion of items in different user–item classifications for recommendation. Hence, here this
research uses the grid search method to test the models. Firstly, let the total number of
recommendation items be less than the number of all items, Nmax, for each type of user.
Both the number of stable items and unstable items should be less than Nmax. That is to
say, it has constraints (25) and (26). In the test experiment, Nmax is set as 25. Secondly,
with constraints (25), N(UA)

has multiple combinations of N(IA |UA)
and N(IB |UA)

, and it
is the same as N(UB)

. For instance, when the total number of recommended items Nmax
is 5, (N(IA |UA)

, N(IB |UA)
) can be able to (0,5), (1,4), (2,3), (3,2), (4,1), (5,0). It can select the

optimal combination among the six combinations as the recommended combination when
N(UA)

= 5. ⎧⎨⎩
0 ≤ N(IA |UA)

≤ Nmax
0 ≤ N(IB |UA)

≤ Nmax
0 ≤ N(IA |UA)

+ N(IB |UA)
≤ Nmax

(25)

⎧⎨⎩
0 ≤ N(IA |UB)

≤ Nmax
0 ≤ N(IB |UB)

≤ Nmax
0 ≤ N(IA |UB)

+ N(IB |UB)
≤ Nmax

(26)

5.3. Evaluation Metrics

Three evaluating indicators are used to gauge the algorithm performance, precision
(Pre), recall (Rec) and F-measure, defined in Equations (27)–(29). Precision is defined as the
ratio of items that users like to all recommended items in the recommended list. Recall is
defined as the ratio of the items that users like in the recommended list to all the items that
users like in the system. Generally, precision and recall must be used at the same time to
fully evaluate the quality of the algorithm. Some researchers have proposed an indicator
called F-measure that comprehensively integrates the precision and the recall. Therefore,
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the evaluation indicators used in this paper are precision, recall, and F-measure to measure
the precision of item recommendation. The three expressions are shown as (27)–(29).

Pre =
TP

TP + FP
(27)

Rec =
TP

TP + FN
(28)

F − measure =
2 × Pre × Rec

Pre + Rec
(29)

Here, TP is the number of items that have been recommended and purchased; FP is
the number of items that are recommended but not purchased; and FN is the number of
items that have not been recommended but purchased.

5.4. Experimental Results

Figure 5 shows the comparison results of the proposed ReRec algorithm on active users
(i.e., the combination of ReRec-ASI and ReRec-AUSI) compared with four baseline methods,
traditional User CF, SVD, SVD++ and NMF algorithms. It sets w = 1, and N(UA)

∈ [5, 25].
It can be seen from Figure 5 that, on the purchase prediction of active users, the proposed
ReRec algorithm performs better than the traditional User CF, SVD, SVD++ and NMF
algorithms in terms of the three evaluation indicators, precision, recall and F-measure. This
indicates that the proposed ReRec algorithm for active users in this paper improves the hit
rate of item recommendation and ensures the precision of recommendation results.

Figure 5. The comparison results of the proposed ReRec algorithm (the combination of ReRec-ASI
and ReRec-AUSI) and four baselines on active users.

Figure 6 shows the comparison results of the proposed ReRec approach with the
baselines on inactive users (the combination of ReRec-IASI and ReRec-IAUSI). It sets the
parameters α and σ as 0.75 and 0.2284, respectively. The total number of recommendation
items of N(UB)

is the same as N(UA)
. It can be seen that, in the purchase prediction of

inactive users, when N(UB)
∈ [6, 25], the improved Item CF algorithm proposed in this

paper is superior to the evaluation indicators of traditional Item CF, SVD, SVD++ and
NMF algorithms in terms of precision, recall and F-measure. Because the number of item
type in the test data is relatively smaller than the number of users, the purchase prediction
performance for inactive users is not as good as that for active users. However, the purchase
prediction of inactive users based on the improved Item CF algorithm still improves the hit
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rate of item recommendation within a certain range, and also ensures a higher precision of
recommendation results.

Figure 6. The comparison results of the proposed ReRec approach (the combination of ReRec-IASI
and ReRec-IAUSI) and four baselines on inactive users.

The poor performance of the baselines can be explained because all ratings in the user
item rating matrix are regarded as equal, ignoring the heterogeneity of users’ interests,
i.e., user’s personalized interest and users’ public interest. The SVD method, which is
derived from linear algebra, has a solid mathematical foundation in matrix approximation.
However, it lacks a user’s preference model and an item’s preference model of the user’s
interest in the item. In the SVD++ method, a bias model and the latent vectors of the user
and the item are used to model the user’s interest in the item. Using stochastic gradient
descent to update the bias vector and latent vector of each observed rating in the user item
rating matrix can result in a large amount of computation. The advantage of the NFM
model is that the elements of latent users and item vectors can be non-negative, while its
disadvantage is that the precision of rating prediction is reduced.

In summary, none of the baselines improve the recommendation algorithms according
to different types of user behavior on the temporal horizon. Although some scholars have
added the user’s personalized behavior into the item recommendation algorithm, they
more often than not ignore user loyalty in recommendations that may drive the users’
repeat purchase. It holds that the users’ loyalty to the shopping platform and items has a
non-negligible impact on the successful recommendation of items. Following this line of
thought, this research proposes the ReRec algorithm based on user behavior classification
and item repurchase cycle. The proposed ReRec algorithm can predict the possibility of
repeat purchase in order to recommend the top N items to users and improve the user
experience of the recommendation system.

5.5. Sensitivity Analysis of Parameter w

In the proposed ReRec approach for active users, incentive factor w is an important
parameter. In order to analyze the influence of w on the recommendation process, it con-
ducts sensitivity analysis on the parameter w. Figure 7 illustrates the F-measures with
N(IA |UA)

and N(IB |UA)
, when other conditions are fixed and w varies. The following conclu-

sions can be drawn from Figure 7. When w ∈ [0, 5], for N(IA |UA)
≤ 10 and N(IB |UA)

≤ 15,
the F-measures with various combination of N(IA |UA)

and N(IB |UA)
are better than that of

other conditions.
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Figure 7. The F-measures of different values of w.

Figure 8 illustrates the F-measures with incentive factor w given N(UA)
= 3. It can

be seen that, with the value of w increasing in [0,5], the value of F-measure first increases
and then decreases. When w > 5, the values of F-measure are kept stable. Therefore, the
research further analyzes the evaluation indicators with w ∈ [0, 5].

Figure 8. The F-measures for incentive factor w.

Figure 9 illustrates the evaluating indicators (precision, recall and F-measure) with
the total recommended quantity N(UA)

when w ∈ [0, 5]. It can be seen that when N(UA)

increases in the range [0, 5], the variation trend of precision is relatively unstable. In
comparison, the recall and F-measure go up firstly and then go down. While N(UA)

increases
in the range [5, 25], the precisions gradually decrease, while the recall increases. As a result,
the F-measures decrease. It is evident that when N(UA)

> 7, the performances of three
evaluating indicators at w = 1 are better than that at other values of w. Therefore, the
ReRec algorithm should be used with the setting as w = 1.
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Figure 9. The change of three evaluating indicators at given w.

In the proposed ReRec approach for inactive users, the grid search method is adopted
to carry out ReRec-IASI and ReRec-IAUSI. The precision, recall and F-measures with
N(IA |UB)

and N(IB |UB)
are shown in Figure 10. It can be seen that when N(IA |UB)

is fixed,
the precisions of the recommendation results are decreasing along with the increase of
N(IB |UB)

. When N(UB)
is small, the precisions and F-measures are large. The recalls of

recommendation results are large when N(IA |UB)
and N(IB |UB)

and are approximately equal
to each other.

Figure 10. The changes of three evaluation indicators with the combination of inactive users.

5.6. Discussion of Important Results

The proposed methods are trained in the training set and evaluated in the test set.
Three evaluating indicators are used to gauge the algorithm performance as precision, recall
and F-measure (Equations (27)–(29)). We conduct our experiments on a real-life community
e-commerce platform. Results show that the proposed ReRec method provides better
performance compared to the existing methods (namely traditional CF, SVD, SVD++, NMF).
The discussion of the important results of the proposed methods is analyzed as follows.

Four types of user-item interactions are obtained before applying ReRec: active users
with stable interest (ASI), inactive users with stable interest (IASI), active users with unstable
interest (AUSI), and inactive users with unstable interest (IAUSI). For active users, the hit
rate of item recommendation shows a marked improvement, while for inactive users, the hit
ratio increased slightly. Compared with inactive users, active users use the platform more
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frequently, so it is easier to detect their buying interest. The reason for the poor performance
of the baselines may be that none of the baselines improves the recommendation algorithms
according to different types of user behavior on the temporal horizon.

The performance of ReRec is analyzed based on varying the values of incentive factor
w. With the value of w increasing in [0,5], the value of F-measure first increases and then
decreases. When w > 5, the values of the F-measure are kept stable and low. When w = 1,
the ReRec algorithm shows the highest precision. It is evident that when N(UA)

> 7, the
performances of three evaluating indicators at w = 1 are better than that at other values of
w. Therefore, the ReRec algorithm should be used with the setting as w = 1.

Finally, the practical contribution is summarized. The result of recommendation is
stable, which can provide support for business management decision-making in enterprises,
and the effectiveness of the algorithm is verified. For instance, precise marketing strategies
based on customer heterogeneity can be implemented, thus reducing the operating costs of
community e-commerce platforms.

6. Concluding Remarks

To fill in the research gap from the perspective of repeated purchase behavior and
improve the process of the generation of a recommendation list, this research proposed a
novel approach called ReRec (Repeat purchase Recommender) to recommending items
to users in a divide and conquer manner. The proposed method includes ReRec-ASI,
ReRec-AUSI, ReRec-IASI and ReRec-IAUSI. Experiments are conducted on a real dataset
collected from a community e-commerce platform. Compared with well-known existing
methods (e.g., SVD, SVD++) the ReRec method improves the recommend performance
by at least 13.6% (measured by F-measure). Specifically, for active users, with w = 1 and
N(UA)

∈ [5, 25], the ReRec-ASI, ReRec-AUSI shows a significant improvement (at least 50%)
in recommendation. With α and σ as 0.75 and 0.2284, respectively, the proposed ReRec-
IASI and ReRec-IAUSI are also superior to (by at least 13.6%) the evaluation indicators of
traditional Item CF when N(UB)

∈ [6, 25].
Although the proposed ReRec approach performs well in this study, there are still

some gaps to be explored in the future:
Firstly, the size of test set needs to be expanded, because this paper only uses four

months of consumption data to test the algorithm at present. The amount of data that
can be used now on T-app is limited. In the future, there will be more consumption data
available this large-scale data can be used to verify the algorithm.

Secondly, when it has consumption data over a long time, such as consumption data for
several years, it would attempt to improve the recommendation algorithms with centralized
consumption behaviors such as seasonal consumption and holiday consumption, which is
an interesting problem in recommendation.

Author Contributions: Conceptualization, J.W. and W.Z.; methodology, J.W., Y.L. and W.Z.; software,
Y.L. and L.Y.; validation, Y.L., L.Y. and X.N.; formal analysis, J.W., Y.L., L.S. and W.Z.; investigation,
Y.L. and L.S.; resources, J.W. and L.S.; data curation, Y.L., L.Y. and X.N.; writing—original draft
preparation, Y.L., L.Y. and X.N.; writing—review and editing, J.W. and W.Z.; visualization, Y.L. and
L.Y.; supervision, J.W. and W.Z.; project administration, J.W., L.S. and W.Z.; funding acquisition, J.W.
and W.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by National Natural Science Foundation of China under Grant Nos.
72174018 and 71932002; Beijing Youth Talent Fund under Grant No. Q0011019202001; Beijing Natural
Science Fund under Grant No. 9222001; Beijing University of Chemical Technology First-Class
Discipline Construction (XK1802-5), and Beijing University of Chemical Technology (GJD202002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

159



Mathematics 2022, 10, 208

References

1. Zsolnai, L. Green business or community economy? Int. J. Soc. Econ. 2002, 29, 652–662. [CrossRef]
2. Lao, J.; Zhong, Y.; Tan, Z. Study of community E-commerce model based on intelligent building. J. Intell. 2007, 26, 39–41.
3. Kim, H.K.; Oh, H.Y.; Gu, J.C.; Kim, J.K. Commenders: A recommendation procedure for online book communities. Electron.

Commer. Res. Appl. 2011, 10, 501–509. [CrossRef]
4. Zhang, W.; Du, Y.; Yang, Y.; Yoshida, T. DeRec: A data-driven approach to accurate recommendation with deep learning and

weighted loss function. Electron. Commer. Res. Appl. 2018, 31, 12–23. [CrossRef]
5. Iwanaga, J.; Nishimura, N.; Sukegawa, N.; Takano, Y. Improving collaborative filtering recommendations by estimating user

preferences from clickstream data. Electron. Commer. Res. Appl. 2019, 37, 100877. [CrossRef]
6. Ghasemi, N.; Momtazi, S. Neural text similarity of user reviews for improving collaborative filtering recommender systems.

Electron. Commer. Res. Appl. 2020, 45, 101019. [CrossRef]
7. Riyahi, M.; Sohrabi, M.K. Providing effective recommendations in discussion groups using a new hybrid recommender system

based on implicit ratings and semantic similarity. Electron. Commer. Res. Appl. 2020, 40, 100938. [CrossRef]
8. Verstrepen, K.; Bhaduriy, K.; Cule, B.; Goethals, B. Collaborative filtering for binary, positive-only data. In Proceedings of the 23rd

ACM SIGKDD Conference, Halifax, NS, Canada, 13–17 August 2017; pp. 1–21.
9. Chen, J.; Wei, L.; Zhang, L. Dynamic evolutionary clustering approach based on time weight and latent attributes for collaborative

filtering recommendation. Chaos Solitons Fractals 2018, 114, 8–18. [CrossRef]
10. Verbert, K.; Manouselis, N.; Ochoa, X.; Wolpers, M.; Drachsler, H.; Bosnic, I.; Duval, E. Context-aware recommender sys-tems for

learning: A survey and future challenges. IEEE Trans. Learn. Technol. 2012, 5, 318–335. [CrossRef]
11. Mezni, H.; Benslimane, D.; Bellatreche, L. Context-aware service recommendation based on knowledge graph em-bedding. IEEE

Trans. Knowl. Data Eng. 2021, 99, 1–14. [CrossRef]
12. Nguyen, V.-D.; Sriboonchitta, S.; Huynh, V.-N. Using community preference for overcoming sparsity and cold-start problems in

collaborative filtering system offering soft ratings. Electron. Commer. Res. Appl. 2017, 26, 101–108. [CrossRef]
13. Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P. Group Lens: An open architecture for collaborative filtering of net news. In

Proceedings of the ACM 1994Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA, 22–26 October 1994;
pp. 175–186.

14. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the
10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295.

15. Wang, C.; Zheng, Y.; Jiang, J.; Ren, K. Toward Privacy-Preserving Personalized Recommendation Services. Engineering 2018, 4,
21–28. [CrossRef]

16. Brand, M. Fast online SVD revisions for lightweight recommender systems. In Proceedings of the Third SIAM International
Conference on Data Mining, San Francisco, CA, USA, 1–3 May 2003; pp. 37–46.

17. Koren, Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008;
pp. 426–434.

18. Kim, J.; Park, H. Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons. In Proceedings of the
2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 353–362. [CrossRef]

19. Gorgoglione, M.; Panniello, U.; Tuzhilin, A. The effect of context-aware recommendations on customer purchasing behavior and
trust. In Proceedings of the Fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011; pp. 85–92.
[CrossRef]

20. Zimdars, A.; Chickering, D.M.; Meek, C. Using temporal data for making recommendations. In Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence, Seattle, WA, USA, 2–5 August 2001; pp. 580–588.

21. Campos, P.G.; Díez, F.; Bellogín, A. Temporal rating habits: A valuable tool for rating discrimination. In Proceedings of the 2nd
Challenge on Context-Aware Movie Recommendation, Chicago, IL, USA, 27 October 2011; pp. 29–35.

22. Liang, X.; Yang, Q. Time-dependent models in collaborative filtering based recommender system. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milano, Italy, 15–18
September 2009; pp. 450–457.

23. Qin, G.; Du, X. An efficient collaborative filtering algorithm with user hierarchy. Comput. Sci. 2004, 10, 138–140.
24. Xing, C.; Gao, F.; Zhan, S.; Zhou, L. A collaborative filtering recommendation algorithm incorporated with user interest change. J.

Comput. Res. Dev. 2007, 02, 296–301. [CrossRef]
25. Zhang, Y.; Liu, Y. A Collaborative Filtering Algorithm Based on Time Period Partition. In Proceedings of the Third International

Symposium on Intelligent Information Technology & Security Informatics, Washington, DC, USA, 2–4 April 2010; pp. 777–780.
26. Chen, J.; Lu, Y.; Shang, F.; Zhu, T. A novel recommendation scheme with multifactorial weighted matrix decomposition strategies

via forgetting rule. Eng. Appl. Artif. Intell. 2021, 101, 104191. [CrossRef]
27. Wu, F.; Yu, L.; Feng, M. A collaborative filtering algorithm based on time effect. Comput. Eng. Sci. 2017, 39, 2095–2101.
28. Fader, P.S.; Hardie, B.G.; Lee, K.L. RFM and CLV: Using iso-value curves for customer base analysis. J. Mark. Res. 2005, 42,

415–430. [CrossRef]
29. Hermann, E. Memory: A Contribution to Experimental Psychology. Ann. Neurosci. 2013, 20, 155–156.

160



Citation: Qin, J.; Li, X.; Yang, K.; Xu,

G. Joint Optimization of Ticket

Pricing Strategy and Train Stop Plan

for High-Speed Railway: A Case

Study. Mathematics 2022, 10, 1679.

https://doi.org/10.3390/

math10101679

Academic Editors: Antonin Ponsich,

Mariona Vila Bonilla and Bruno

Domenech

Received: 31 March 2022

Accepted: 11 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Joint Optimization of Ticket Pricing Strategy and Train Stop
Plan for High-Speed Railway: A Case Study

Jin Qin 1,2,*, Xiqiong Li 1, Kang Yang 1 and Guangming Xu 1

1 School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China;
194211018@csu.edu.cn (X.L.); 194211007@csu.edu.cn (K.Y.); 203070@csu.edu.cn (G.X.)

2 Rail Data Research and Application Key Laboratory of Hunan Province, Changsha 410075, China
* Correspondence: qinjin@csu.edu.cn

Abstract: In this study, we examined ticket pricing and train stop planning for the high-speed railway
(HSR), which integrates two key aspects of railway operation and organization. We considered that
passenger demand is sensitive to the generalized travel cost (depending on the ticket price and the
travel time) and that the train stop plan can affect the travel time and passenger distribution. Then, a
mixed-integer non-linear optimization model was proposed for the joint problem of ticket pricing
and train stop planning to maximize HSR’s transport revenue and minimize passengers’ travel time.
Based on the high similarity between combinatorial optimization problems and the solid annealing
principle, we designed a combined simulated annealing (CSA) algorithm to solve practical problems.
The results of a numerical example in the real HSR network showed that the proposed method
can improve transport revenue by 5.1% and reduce passengers’ travel time loss by 11.15% without
increasing transport capacity.

Keywords: high-speed railway; ticket pricing; train stop plan; seat allocation; joint optimization;
combined simulated annealing algorithm

MSC: 90B10

1. Introduction

High-speed railway (HSR) is the preferred transport mode for medium-to-long-
distance passengers across the world, especially in China. Up to now, China has constructed
an HSR network with an operational mileage of 40,000 km, which has successfully trans-
ported more than 18 billion passengers. HSR has enabled most of the railway passenger
transport in China, and is playing an increasingly important role in the entire passenger
transport market.

However, compared with other competitive transport modes, such as air and highway
transportation, the market-oriented operation of the HSR is relatively backward in China.
This is mainly manifested in its fixed pricing strategy. The ticket price of HSR in China
is calculated by multiplying the transport mileage by the price rate depending on seat
class and has been strictly controlled by the government for the past few years. This price
mechanism ignores the effect of passenger demand on price adjustment, which is not
conducive to the sustainable development of the HSR.

Realizing the drawbacks of the existing pricing strategy, the National Development and
Reform Commission has allowed railway enterprises to set HSR ticket prices independently
since 2016. Several railway enterprises have implemented price reforms for some high-
speed trains, and the practical results have demonstrated that dynamic pricing for HSR
can indeed help railway operators improve ticket revenue, which means realizing revenue
management (RM) for HSR.

Since originating in the 1970s, RM has been a long-standing issue in many service
industries, such as airlines and hospitality [1–7]. The successful application of RM in airlines
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has encouraged many researchers to conduct RM studies for railways [8–12]. Compared
with conventional railways, the policies in pricing and operation modes for HSR are more
flexible, which provides more RM applicability for HSR. In Japan and some European
countries, railway enterprises implemented RM for HSR earlier than for conventional
railways [9]. China Railway has obtained pricing rights for HSR, and has an opportunity to
further realize RM.

Ticket pricing and seat control are two significant strategies used by railway enterprises
to realize RM. They are interrelated and complementary to each other, and thus should be
comprehensively considered in an RM system. Since the train stop plan has a significant
impact on seat allocation, it is also mutually interrelated with ticket pricing. The ticket
pricing and seat allocation problem has generated numerous studies, but often the two
issues have been treated separately. Moreover, such papers have assumed that the train
stop plan is fixed to compute the optimal allocation of resources.

This paper aims at filling this gap by establishing a mathematical model for the
joint problem of ticket pricing, seat allocation, and train stop planning for HSR. The goal
is to balance transport supply and passenger demand, improve the revenue of railway
enterprises, and reduce the total travel time of passengers.

Our contributions can be summarized as follows:

(1) Few studies consider the joint problem of HSR pricing, seat allocation, and train stop
planning. This is one of the limited number of papers that jointly optimize pricing,
seat allocation, and stop planning for HSR.

(2) Considering the impact of the stop plan on the travel time, an elastic passenger
demand function related to the ticket price and travel time is constructed.

(3) Based on the simulated annealing theory, an efficient solution algorithm is designed
for the combinatorial optimization problem of ticket pricing, seat allocation, and train
stop planning for HSR.

The remainder of this paper is organized as follows. Section 2 presents the research
on ticket pricing, seat allocation, and train stop planning. Section 3 describes the elastic
passenger demand and choice behaviors in a mathematical way, and formulates a collab-
orative ticket pricing and stop planning model. Section 4 elaborates on the design of the
solution algorithm and the specific implementation steps. Section 5 provides an empirical
analysis. Section 6 concludes the research and gives future research directions.

2. Literature Review

Dynamic pricing is a classic strategy used by enterprises to improve revenue. It
involves selling the same product to different consumers at the right time at different
prices. The basics of dynamic pricing comprise the supply capacity of enterprises and
the market demand. A suitable dynamic pricing strategy can also regulate and guide the
market demand, which is beneficial to the operation of enterprises. Many papers have
examined dynamic pricing problems for railways. Vuuren [13] and Jarocka and Ryciuk [14]
focused on dynamic pricing for the peak and off-peak periods. In their studies, social
welfare and enterprise profits were the main considerations for peak and off-peak pricing,
respectively. In a number of studies, division of the ticket pre-sale horizon was the first stage
of the dynamic pricing process. Mutations in passenger ticketing demand were usually
regarded as signals from which to adjust ticket prices [15]. Based on the number of research
efforts on passenger choice behavior [16,17], railway RM models for dynamic pricing of
competing routes have been proposed [18,19]. They assumed that passengers can choose
other transport modes providing different alternative timetables. In this context, Chen
and Gao [19] developed a new method to compute the generalized travel cost, and then
use the logit model to allocate passenger flows to different routes. Numerical experiments
suggested that their RM models can lead to significant revenue gains.

In terms of seat allocation, most existing research has assumed that passenger de-
mand is fixed [20]. Nevertheless, railway passenger demand varies dynamically. Thus,
Jiang et al. [21] studied an approach for HSR seat allocation with dynamic adjustments.
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They integrated dynamic seat allocation and short-term demand forecasting to improve
the utilization of seats. Yan et al. [22] developed a seat allocation model for multiple HSR
trains with flexible train formation. The authors allowed changes in the formation of each
train to gain flexible capability. The study provided decision support for seat allocation
and train formation simultaneously.

In recent years, the integration of pricing and seat allocation decisions has received
more attention. The joint study was first conducted on a single train. Hetrakul et al. [23]
supposed that the daily passenger demand was fixed, and used the multinomial logit and
latent class models to obtain the ticket reservation time of passengers. Finally, they proposed
a collaborative optimization model for railway dynamic pricing and seat allocation. Later,
a limited number of studies focused on the joint pricing and seat allocation problem for
multiple HSR trains with different stop patterns [24–27]. However, little research has
included flexible train stop planning in the joint pricing and seat allocation problem.

The train stop plan is the most important part of the operation scheme for HSR. It
determines whether a train can allocate tickets to an origin-destination pair (OD) and affects
the total stopping time of each train. The stop plan is usually formulated according to
passenger demand. Trains are generally scheduled to stop at large stations and partial
small stations to form a good stop plan. On the one hand, this can improve the service
quality of each station; on the other hand, it helps railway enterprises save the stopping
cost by arranging resources rationally [28]. The stop plan formulation problem has been
traditionally modeled and solved considering fixed train formation and fixed stopping
time in order to minimize the total cost or the total travel time of passengers [29–31].
Jin et.al. [32] argued that a fixed stopping time may be insufficient for passengers to get
on or off the train. Thus, their optimization model considered flexible train formation and
flexible stopping time. In addition, many studies have incorporated timetabling in the stop
plan optimization problem [33,34], and Qi et al. [35] further ameliorated the seat allocation
during the joint optimization process.

In Table 1, we summarize the studies reviewed in this section and compare them with
the study we propose. Comparisons are carried from the presence of a competitor and
optimization aspects.

Table 1. Summary of literature review.

Reference Competitor
Optimization Aspects

Pricing Seat Allocation Stop Plan Timetable

[13–15] × √ × × ×
[18,19]

√
[20–22] × × √ × ×

[23–27,35] × √ √ × ×
[28–32] × × × √ ×
[33,34] × × × √ √

This research × √ √ √ ×

3. Mathematical Formulation

3.1. Problem Analysis

The ticket price of HSR comprises the fees paid by passengers to purchase the HSR
transport service, and should be determined considering national policies, transport costs,
capacity supply, and passenger demand. In recent years, China Railway has tried to
independently set prices for high-speed trains under flexible supply and demand. Figure 1
depicts the price variation with supply and demand, where Q and G denote passenger
demand and capacity supply, respectively; D and S represent the demand curve and supply
curve, respectively; and the intersection (B) of the two curves is the equilibrium point of
supply and demand.
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Figure 1. The impact of supply and demand on ticket price. (a) The demand curve; (b) The sup-
ply curve.

The HSR train stop plan refers to the composition of trains’ stopping patterns under
the given train operating section, class, and number of trains. It determines the stopping
sequence of each train on the running path, and plays a crucial role in capacity supply. The
stop plan determines the ODs for which each train can provide capacity, which in turn
affects the number of tickets that each train allocates to each OD. As shown in Figure 2,
Train 1 stops at Station 2 and Station 4 while Train 2 stops at Station 3. Assuming that the
train capacity is 1000, the transport supply provided by the stop plan is shown in Table 2.

Figure 2. An example of a train stop plan.

Table 2. Transportation supply provided by the sample stop plan.

OD
Availability of Transportation OD Service

Frequency
Possible Maximum
Number of TicketsTrain 1 Train 2

(1,2)
√ × 1 1000

(1,3) × √
1 1000

(1,4)
√ × 1 1000

(1,5)
√ √

2 2000
(2,3) × × 0 0
(2,4)

√ × 1 1000
(2,5)

√ × 1 1000
(3,4) × × 0 0
(3,5) × √

1 1000
(4,5)

√ × 1 1000

From Table 2, we can see that the train stop plan cannot serve OD (2,3) and (3,4).
Thus, the corresponding number of tickets is 0. OD (1,5) can be served by two trains, so
the number of tickets allocated to it can be up to 2000. This simple example can reflect
the impact of the stop plan on the transport supply. By affecting the market supply and
demand, the stop plan has an indirect impact on ticket prices.
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For HSR trains, “stop depending on passenger demand” is an important principle.
HSR is an alternative transportation mode whose passenger demand is affected by the
ticket price; that is, the stop plan is indirectly affected by the ticket price.

On an HSR line consisting of N stations and N − 1 sections, there are L trains that run
with different stop modes. According to the ticket-buying behavior of HSR passengers, the
ticket pre-sale period is divided into multiple periods. Then, based on the price elasticity of
passenger demand and the impact of the stop plan on passenger demand, the ticket pricing
strategy, seat allocation scheme, and train stop plan should be decided simultaneously.

The variables and parameters used to model the problem are defined in Table 3.

Table 3. Notation.

Notation Definition Unit

W Set of all OD in a certain direction on an HSR line, any OD (r, s) ∈ W and
1 ≤ r ≤ s ≤ N.

-

L Set of all trains that depart on a certain day on the line, any train l ∈ L. -
β Set of predetermined price discounts, β = {β1, β2, · · · , βM} and

β1 < β2 < · · · < βM.
-

Cl The carrying capacity of train l. passengers
K The number of ticket pre-sale periods, k = 1, 2, . . . , K. -

plrs The published ticket price (ceiling price) of train l on (r, s).
pk

lrs The ticket price of train l on (r, s) in pre-sale period k. yuan
ck

lrs The generalized travel cost of the train l on (r, s) in pre-sale period k. yuan
tlrs The travel time of train l on (r, s). tlrs = +∞ when train l cannot provide transport

service for (r, s).
minutes

ϕk
lrs The sharing rate of train l for the passenger flow on (r, s) in pre-sale period k. %

qk
lrs The elastic passenger flow demand of train l on (r, s) in pre-sale period k. passengers

πn
l The stopping cost of train l at station n. yuan

un
l The stopping time of train l at station n. minutes

r→k
lrs The passenger flow that is rejected in pre-sale period k − 1 and continues to choose

train l in period k.
passengers

Parameters
ηk The elastic demand function coefficient in pre-sale period k. -
ν The time value conversion coefficient. yuan/min
θ The utility conversion coefficient. -

Decision variables

yk
lrs

The price discount of train l on (r, s) in pre-sale period k. yk
lrs ∈ β and yk

lrs is a
discrete variable.

-

xn
l xn

l = 1 when train l stops at station n; otherwise xn
l = 0. xn

l is a binary variable. -

zk
lrs

The number of seats that train l allocates to (r, s) in pre-sale period k. zk
lrs is an integer

variable.
tickets

From Table 3, the price discount β gives the lowest and highest fare levels β1 and
βM. βM is the published ticket price set by the government to ensure HSR’s social welfare,
while β1 is determined based on the operational cost of HSR. Then, the ticket price can be
represented by

pk
lrs = yk

lrs·plrs (1)

where pk
lrs is the ticket price of train l on (r, s) in pre-sale period k, yk

lrs is the corresponding
price discount, and plrs is the published ticket price of train l on (r, s).

To simplify the research and formulation of the problem, some assumptions used in
our model are as follows:

(1) All ODs have the same demand elasticity in the same ticket pre-sale period.
(2) For the same OD and same train, the ticket price will not be reduced as the train

departure time approaches.
(3) Passengers who fail to obtain tickets in a certain period will continue to buy the tickets

in the next period.
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(4) Different seat classes, ticket overbooking, and cancellations are not considered.

3.2. Elastic Passenger Demand and Choice Behavior

Generalized travel cost is the most critical influencer of passenger demand. It is
described by the ticket price and the travel time (Deng et al. [27]):

ck
lrs = pk

lrs + ν·tlrs (2)

where tlrs is the travel time of train l on OD (r, s) in pre-sale period k, and ν is the time
value conversion coefficient.

Then, the average generalized travel cost of (r, s) is

ck
rs =

1
∑l∈L xr

l ·xs
l

∑
l∈L

K

∑
k=1

ck
lrs·xr

l ·xs
l (3)

The passenger flow demand will vary flexibly with the generalized travel cost. Here,
the log-linear function is used (Qi et al. [35]) to describe the elastic demand of (r, s) in
period k.

qk
rs

(
ck

rs

)
= qk0

rs

(
ck0

rs

)
· exp

[
−ηk

(
ck

rs

ck0
rs

− 1

)]
(4)

where ck0
rs is the average generalized travel cost of (r, s) under the fixed pricing strategy,

qk0
rs

(
ck0

rs

)
is the corresponding passenger demand, and ηk is the elastic demand function

coefficient in pre-sale period k.
For all trains that can serve (r, s), we use the logit model to describe passengers’ choice

behavior among them (Qin et al. [26]):

ϕk
lrs =

exp
(
−θck

lrs

)
∑l′∈L exp

(
−θck

l′rs

) (5)

where θ is the utility conversion coefficient.
Then, the elastic passenger demand of train l on (r, s) in pre-sale period k can be

obtained by

qk
lrs = qk

rs

(
ck

rs

)
· ϕk

lrs= qk0
rs

(
ck0

rs

)
· exp

[
−ηk

(
ck

rs

ck0
rs

− 1

)]
·

exp
(
−θck

lrs

)
∑l′∈L exp

(
−θck

l′rs

) (6)

3.3. Integrated Optimization Model of Ticket Pricing and Stop Planning
3.3.1. Objective Function

In order to improve the revenue of the enterprise, the objective function is constructed
based on two aspects: maximizing the transport revenue for HSR and minimizing the total
time loss for passengers.

(1) Transport revenue

The revenue is the difference between the ticket income and the stopping cost of
all trains.

R =
K

∑
k=1

∑
(r,s)∈W

∑
l∈L

yk
lrs·plrs·zk

lrs − ∑
l∈L

N−1

∑
n=2

xn
l ·πn

l (7)

where zk
lrs is the number of seats that train l allocates to (r, s) in pre-sale period k, xn

l is the
stopping variable, and πn

l is the stopping cost of train l at station n.

(2) Time loss of passengers
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The time loss of passengers is determined by trains’ stopping time at each intermediate
station. We introduce passengers’ average unit time value ∂ to describe it.

V = ν· ∑
(r,s)∈W

∑
l∈L

[
K

∑
k=1

zk
lrs·

s−1

∑
n=r+1

xn
l un

l

]
(8)

where un
l is the stopping time of train l at station n.

Finally, use weighting coefficients ω1 and ω2 to unify the sub-objective functions as a
single objective function

maxZ = ω1·R − ω2·V (9)

where ω1 and ω2 should be determined according to the importance of each sub-objective
function. Here, the values of ω1 and ω2 are, respectively, taken as 0.6 and 0.4.

3.3.2. Constraints

(1) Price constraints

At first, the ticket price must be positive.

yk
lrs > 0 (r, s) ∈ W, l ∈ L, 1 ≤ k ≤ K (10)

For the railway enterprises to better organize passenger transport, it is necessary to
prevent passengers from buying tickets near the departure time. Thus, the closer to the
departure time, the higher the ticket price should be.

yk−1
lrs ≤ yk

lrs (r, s) ∈ W, l ∈ L, 2 ≤ k ≤ K (11)

(2) Ticket (seat) constraints

Firstly, the number of tickets that any train l allocates to (r, s) in period k should be
an integer.

zk
lrs ∈ N (r, s) ∈ W, l ∈ L, 1 ≤ k ≤ K (12)

Secondly, a train may allocate tickets to OD (r, s) only when it can serve the OD.

(xr
l ·xs

l − 1)·zk
lrs = 0 (r, s) ∈ W, l ∈ L, 1 ≤ k ≤ K (13)

Finally, the number of tickets (seats) that train l allocates to (r, s) in period k should
not exceed the passenger demand (Deng et al. [27]).

zk
lrs ≤ qk

lrs + r→k
lrs (r, s) ∈ W, l ∈ L, 1 ≤ k ≤ K (14)

where r→k
lrs refers to the passenger demand that is rejected in pre-sale period k − 1 and

continues to choose train l in period k. The setting of this variable makes it possible for
the passenger demand rejected in early periods to be satisfied in subsequent periods, so
that more passenger demand can be satisfied. According to the assumption (3), passengers
who fail to obtain tickets in a certain period will continue to buy tickets in the next period.
The transfer passenger demand can be regarded as part of the initial passenger flow in the
next period. Therefore, if the rejected passenger demand is denoted as f k−1

rs , r→k
lrs can be

obtained according to:

r→k
lrs = f k−1

rs · ϕk
lrs = f k−1

rs · exp

[
−ηk

(
ck

rs

ck0
rs

− 1

)]
·

exp
(
−θck

lrs

)
∑l′∈L exp

(
−θck

l′rs

) (15)

(3) Capacity constraints

The number of tickets allocated by a train to any section cannot exceed the train’s
capacity.
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K

∑
k=1

j

∑
r=1

N

∑
s=j+1

zk
lrs ≤ Cl l ∈ L, ∀j ∈ [1, N − 1] (16)

where Cl is the carrying capacity of train l.

(4) Reachability constraints

For each OD pair, there must be trains that can serve it.

∑
l∈L

xr
l ·xs

l ≥ 1 (r, s) ∈ W (17)

To sum up the above expressions (1)–(17), Equations (2), (4), (5), and constraint (14)
refer to existing studies, while others are newly proposed here.

The objective function (9), Constraint (13), Constraint (15), and Constraint (17) are
nonlinear, while other constraints are linear. Constraint (13) can be linearized by introducing
a large enough positive number M:

zk
lrs ≤ M·xr

l (r, s) ∈ W, l ∈ L, 1 ≤ k ≤ K (18)

zk
lrs ≤ M·xs

l (r, s) ∈ W, l ∈ L, 1 ≤ k ≤ K (19)

Constraint (17) can be linearized by introducing a new binary variable glrs:

∑
l∈L

glrs ≥ 1 (r, s) ∈ W (20)

glrs ≤ xr
l (r, s) ∈ W, l ∈ L (21)

glrs ≤ xs
l (r, s) ∈ W, l ∈ L (22)

Finally, the joint optimization model for HSR ticket pricing and train stop planning
can be formulated as follows s.t.

maxZ = ω1·R − ω2·V (23)

Constraints (10)–(12), (14)–(16), and (18)–(22)
Table 4 details the variables and constraints in the formulated model.

Table 4. Characteristics of the formulated model.

Item Type Size Characteristic

yk
lrs Variable (|L|·N(N − 1)·)2 Discrete

xn
l Variable |L|·(N − 2) Binary

zk
lrs Variable (|L|·N(N − 1)·K)2 Integer

glrs Variable (|L|·N(N − 1))2 Binary
Constraint (10) Constraint (|L|·N(N − 1)·K)2 Linear
Constraint (11) Constraint (|L|·N(N − 1)·(K − 1))2 Linear
Constraint (12) Constraint (|L|·N(N − 1)·K)2 Linear
Constraint (14) Constraint (|L|·N(N − 1)·K)2 Linear
Constraint (15) Constraint (|L|·N(N − 1)·(K − 1))2 Nonlinear
Constraint (16) Constraint |L|·(N − 1) Linear
Constraint (18) Constraint (|L|·N(N − 1)·K)2 Linear
Constraint (19) Constraint (|L|·N(N − 1)·K)2 Linear
Constraint (20) Constraint (N(N − 1))2 Linear
Constraint (21) Constraint (|L|·N(N − 1))2 Linear
Constraint (22) Constraint (|L|·N(N − 1))2 Linear

4. Solution Method

As an HSR line usually has many intermediate stations and an HSR train has many
seats, the model proposed above is a super-large-scale mixed-integer nonlinear program-
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ming model. Numerous variables and constraints make it difficult to solve the model
with efficient and accurate algorithms. Thus, a heuristic algorithm is chosen for solving
and computational analysis. Moreover, the joint problem is a combinatorial optimization
problem, which has a strong similarity with the solid annealing principle of SA (as shown
in Table 5). Thus, we will design an efficient method based on SA to solve the joint model.

Table 5. Solid annealing vs. combinatorial optimization.

Solid Annealing Combinatorial Optimization

State Solution
System energy The objective function

The lowest energy state The optimal solution
Heating to melt Setting the initial temperature

Isothermal process Generating and accepting (or rejecting) new
solutions

Cooling process Changing the current temperature

The simulated annealing (SA) algorithm is a stochastic algorithm based on Monte-
Carlo iteration, which involves asymptotic convergence and allows random movements
in the searched neighborhood to escape local minima. It randomly searches for the global
optimal solution in the solution collection, and can jump out with a certain probability
when falling into the local optimum. In addition, it is easy to implement and less lim-
ited by the initial solution. Although proposed more than 40 years ago, it still attracts
some attention and is broadly used in many existing solutions for different variants of
optimization problems.

HSR’s dynamic pricing, seat allocation scheme, and stop plan are mutually influential
and restrictive. Once obtained, the optimal stop plan remains unchanged in the pre-sale
period. However, the ticket price and seats allocated for the same OD pair are different
for each period. Thus, the optimization process can be divided into two layers. The stop
plan is first optimized in the outer layer, and then the ticket price and seat allocation
scheme under the determined stop plan are optimized in the inner layer level. Thus,
the CSA algorithm is proposed for solving the problem. In this way, the algorithm only
needs to search for the optimal solution in a smaller solution space in each iteration, so
that improves the possibility of searching for the global optimum in the same computing
time. If an appropriate termination strategy is adopted, the algorithm can effectively save
computing time.

The CSA algorithm needs to start the iterative process based on the initial solution. For
our problem, the initial solution includes three aspects: the initial stop plan, ticket prices,
and seat allocation scheme. We set them according to the current operational mode of HSR.

4.1. Neighborhood Structure

The neighborhood of the CSA algorithm is divided into inner and outer layers to be
constructed separately.

4.1.1. Outer Neighborhood

The outer layer optimizes the stop plan. The stop mode of a train is described by
a vector composed of the 0–1 variable, in which 1 indicates stopping at the station and
0 indicates no stopping.

As shown in Figure 3, the neighborhood structure of the outer layer can be constructed
in two ways. One involves randomly selecting two intermediate stopping variables of
one train for inversion. Another involves randomly selecting two trains, and inverting
one intermediate stopping variable of each train. If the newly obtained stop plan does not
satisfy the OD pair reachability constraint, we return to the reconstruction.
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Figure 3. Neighborhood structure of train stop plan.

4.1.2. Inner Neighborhood

The inner layer determines the ticket price and seat allocation. We randomly select
a coefficient yk

lrs from the current price discount solution and β′ from the set{
βi ∈ β

∣∣∣yk−1
lrs ≤ βi ≤ yk+1

lrs

}
. Then let yk

lrs ← β′ to construct the neighborhood ticket price
solution.

Under the new stop plan and ticket prices, we obtain the passenger demand by
Formulas (1)–(6) and round it as the pre-seat allocation scheme. If it satisfies all constraints,
the scheme is regarded as a new feasible seat allocation scheme. If any constraints are
not satisfied, corresponding adjustments are required. For any train l′ and any section
(j′, j′ + 1) that exceed the train capacity limit (constraints (16)), we adjust the pre-seat
allocation scheme to obtain a feasible scheme.

zk
l′rs =

qk
l′rs

∑K
k=1 ∑

j′
r=1 ∑N

s=j′+1 qk
l′rs

× Cl′ l′ ∈ L, r ≤ j′ < j′ + 1 ≤ s, 1 ≤ k ≤ K (24)

4.2. Implementation Process

In the CSA, the initial temperature is given by the objective function value of the initial
feasible solution, the temperature drops proportionally with a given cooling parameter,
and the number of iterations under the same temperature is controlled by an upper limit.
When the current temperature is lower than the given end temperature or the current best
solution remains unchanged within the specified number of iterations, the algorithm is
terminated.

The steps of the CSA algorithm are as follows.
Step 1: Initialization. Set the initial temperature T0, the cooling parameter α, the end

temperature Tmin, and the maximum iteration numbers I1 and I2 for the inner and outer
layer algorithms under the same temperature. Determine the initial feasible solution S and
calculate the objective function value Z(S). Let the current temperature t = T0, and the
current iteration number i = i′ = 1. The best solution S = S.

Step 2: Construction of the outer neighborhood solution. Implement the outer
neighborhood structure method to obtain a new train stop plan.

Step 3: Perform the inner algorithm.

Step 3.1: Obtain the initial solution of the inner layer. Under the new stop plan, use
the inner neighborhood construction method to obtain a new pricing strategy and seat
allocation scheme; that is, a new feasible solution S′. Then, calculate the objective function
value Z

(
S′).

Step 3.2: Construction of the inner neighborhood solution. Based on the feasible
solution S′, implement the inner neighborhood method to obtain a new pricing strategy
and seat allocation scheme, which constitutes a new feasible solution S′′ . Then, calculate
the objective function value Z(S′′ ).
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Step 3.3: Metropolis criterion test for the inner layer. If Z(S′′ ) ≥ Z
(
S′), let S′ = S′′ .

Otherwise, randomly generate a number ρ from the interval (0,1), and if

ρ ≤ exp
(
− (Z(S′)−Z(S′′ ))

t

)
, let S′ = S′′ , otherwise, refuse the inferior solution and keep the

current solution S′ unchanged.
Step 3.4: Iteration times test for the inner layer. Let i′ ← i′ + 1 . If i′ ≥ I1, set i′ = 1,

output the solution S′, and go to step 4; otherwise go to step 3.2.
Step 4: Metropolis criterion test for the outer layer. If Z

(
S′) ≥ Z(S), let S = S′,

S = S′. Otherwise, randomly generate a number ρ from the interval (0,1), and if

ρ ≤ exp
(
− (Z(S)−Z(S′))

t

)
, let S = S

′
, otherwise, refuse the inferior solution and keep

the current solution unchanged.
Step 5: Iteration number test for the outer layer. Update the iteration times: i ← i + 1 .

If i ≥ I2, let t ← t·α , i = 1, and go to step 6; otherwise go to step 2.
Step 6: Termination check. If t < Tmin or the current optimal solution S remains

unchanged in τ iterations, terminate the algorithm and output the optimal solution S;
otherwise, reset i = 1 and go to step 2.

It should be noted that the CSA algorithm records the best solution S. Once a bet-
ter solution is found, the algorithm will replace S with the better one regardless of the
Metropolis criterion. Thus, the utilization efficiency of the searched optimal solution can be
improved significantly.

5. Empirical Analysis

5.1. Basic Data

The Beijing–Shanghai HSR line is taken as an example to verify the feasibility of the
model and algorithm. Among the trains that depart from Beijing South Station and arrive
at Shanghai Hongqiao station, four trains G11, G19, G21, and G113 with different stopping
patterns are selected for analysis. As Figure 4 shows, these four trains involve 12 stations:
Beijing South, Tianjin South, Dezhou East, Jinan West, Taian, Qufu East, Tengzhou East,
Xuzhou West, Nanjing South, Zhenjiang South, Suzhou North, and Shanghai Hongqiao.
We number them 1–12 sequentially, where 1 and 12 represent Beijing South and Shanghai
Hongqiao, respectively. To simplify the problem, we suppose that all HSR transport services
adopt the same price discount in the same pre-sale period.

Figure 4. The current train stop plan.

Each train is formed of 16 cars, and its stopping cost and stopping time at each station
are 3200 yuan and 7 min, respectively. The seat number of G11, G21, and G113 is 1043,
while that of G19 is 1015.

According to the ticket data from 1 August 2016 to 31 July 2017, we can depict
passengers’ booking rules in Figure 5 and further divide the ticket pre-sale period into four
periods: pre-sale days 1–19, 20–25, 26–28, and 29–30. The elastic demand function coefficient
ηk reflects the sensitivity of passenger demand to ticket prices, which intensifies as the
departure date approaches. We take ηk as 1.8, 1.4, 1.2, and 0.8 for periods 1–4, respectively.
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Figure 5. Average demand density proportion of several OD pairs.

The highest (corresponding to the published price) and lowest price discounts are 1
and 0.56, respectively, and we take the interval of 0.04 to define the price discount coefficient
set β = {0.56, 0.60, . . . , 0.96, 1}. According to Qi et al. [35], we have ν = 0.6 yuan/minute
and θ = 0.012. For the CSA algorithm, I1 = 7920, I2 = 400, α = 0.95, Tmin = 0.001, and
τ = 100.

5.2. Results and Analysis

We used the Python programming language to implement the algorithm and solve the
model. Figure 6 presents the iteration process of the CSA algorithm. The objective value
starts to converge around 130 iterations and remains unchanged thereafter.

Figure 6. The iteration process.

The results show that the transportation revenue and the total passenger time loss are
1,717,166 yuan and 85,829 min, respectively. Compared with 1,633,840 yuan and 96,600 min
under the current fixed operational mode, the revenue increased by 5.10% and the time
loss decreased by 11.15%.

Figure 7 shows the optimal stop plan. Compared to the current stop plan shown
in Figure 4, the stop frequency is reduced from 22 to 17, and the total stopping cost is
reduced by 16,000 yuan (a decrease of 22.73%). G19 and G113 reduced by three and four
stops, while G11 and G21 added stops at Station 2 and Station 3, respectively. For some
ODs, it indicated that their passenger demand does not necessitate so many trains to serve
them. One additional stop for G11 and G21 trains can help meet the demands of these
ODs. Moreover, for passengers taking G11 and G21 trains, their stopping time loss only
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increased by one-stop time, which is less than the reductions in the stopping time loss for
passengers on G19 and G113.

 
Figure 7. The optimized train stop plan.

Under the fixed operational mode, the passenger flows of G11, G19, G21, and G113
are 1157, 1002, 1113, and 1239, respectively. After optimization, the passenger flows of G11
and G21 increase to 1334 and 1441, while those of G19 and G113 decrease to 705 and 780,
respectively. The reason is that G11 and G21 can serve more OD pairs. Conversely, as G19
and G113 reduce stops at several intermediate stations, they no longer serve part of the OD
pairs. As a result, the passenger flow of these OD pairs transfers to G11 and G21.

Table 6 gives the optimal dynamic pricing strategy for some ODs (the ticket price is
accurate to 0.5 yuan). For any OD, the closer the period is to the departure date, the higher
the ticket price. The dynamic price is lower than the fixed price for the first two periods,
while it is higher for the last two periods. This is because passengers are generally more
sensitive to the ticket price during early ticket pre-sale time, so the passenger demand is
rich in elasticity. Discounts on ticket prices in early periods can attract more passengers to
buy tickets.

Table 6. Ticket prices for different ticket pre-sale periods.

OD Pairs
Dynamic Prices (Yuan) Public Prices

(Yuan)
Current Prices

(Yuan)k = 1 k = 2 k = 3 k = 4

1–4 129 175.5 203 221.5 230.5 184.5
1–9 310.5 421.5 488 532 554.5 443.5

1–11 366.5 497.5 576 628 654.5 523.5
1–12 387 525.5 608.5 663.5 691 553.0
8–12 195.5 265 307 335 349 279.0
9–12 94 128 148 161.5 168 134.5

As shown in Figure 8, the passenger flow of most ODs has increased significantly
in the first period. By exchanging low ticket prices for more passengers, the revenue can
be enhanced. However, passengers booking tickets in the last two periods usually make
their travel plans temporarily. Most of them are less sensitive to price and more willing to
accept higher ticket prices. Thus, raising ticket prices hardly affects their demand. It can
be seen from Figure 8 that the passenger flow of most ODs falls by less than 15% for the
last two periods. The contribution of raising the price is more significant than the loss of
passenger flow, which can also expand the revenue.
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Figure 8. Passenger flow growth of each OD pair.

Figure 9 compares the ticket sales under the fixed price (initial case) and dynamic
price (optimal case). The closer the period is to the departure date, the higher the ticket
sale volume. For all ODs, the tickets are sold in the latter two periods, which matches the
distribution of passenger demand and thus is conducive to obtaining more ticket revenue.

Figure 9. Comparison of ticket sales volume for different ODs in different periods.

Compared to the fixed price, the ticket sales volume of most ODs in the first two peri-
ods increased significantly, which indicates that the dynamic pricing strategy can effectively
guide passengers to purchase tickets earlier, which is beneficial for railway enterprises to
organize passenger transport.

Table 7 gives the passenger flow comparison of each OD before and after optimization.
The optimized passenger flow of some ODs increased, but that of more ODs decreased
slightly. For most ODs, passengers prefer to buy tickets in the last two periods. The rise in
ticket prices will cause some passengers to give up HSR and choose another transport mode.
In addition, the passenger demand for the first two periods is relatively weak. Although
the ticket price is discounted, only a small number of passengers were attracted. Thus, the
passenger flow of most ODs decreased overall.
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Table 7. Passenger flow of each OD pair (before/after optimization).

1 2 3 4 5 6 7 8 9 10 11 12

1 57/63 10/9 189/174 79/74 53/55 9/11 58/53 550/521 33/29 359/345 1422/1334

2 5/5 22/20 13/15 - 3/3 12/12 50/46 7/7 86/87 140/137

3 5/5 - - - 3/3 0/0 - 10/10 12/11

4 43/38 21/23 16/14 22/19 53/48 11/12 30/28 110/97

5 - 9/10 0/0 5/5 0/0 0/0 11/14
6 - - 15/10 0/0 16/19 42/45
7 1/1 /0 /0 9/8 /0

8 83/74 14/17 49/45 81/75

9 59/65 139/126 329/299
10 2/2 9/8
11 145/129

Although the total stopping frequency of all trains decreased, the passenger flow
of each OD hardly fluctuates. The underlined data in Table 7 denotes the OD whose
service frequency is reduced. We can see that the passenger flow fluctuation of these ODs
(13.64~1.16%) is not greater than that of other ODs (−33.33~27.27%). This indicates that our
model can reasonably adjust the stop plan according to the dynamic passenger demand,
which can reduce the stopping cost while maintaining passenger flows and ensuring
service quality.

Figure 10 shows the improvement of the objective function value (OFV) under different
passenger demands, which indicates that our method can always effectively improve
the quality of the optimal combinatorial scheme. The OFV is growing with increases in
passenger demand. But after the demand reaches a certain level, the growth rate of the
OFV gradually slows as the demand continuously increases. This is because after the total
demand has exceeded the transport capacity of the HSR system, the ticket prices for later
pre-sale periods will reach the ceiling price. Then, when the demand continues to increase,
the highest prices should remain unchanged, which results in the reduction of the OFV’s
growth rate.

Figure 10. Optimization effect under different initial passenger demand.

6. Conclusions

In this paper, we introduced a mixed-integer non-linear model for jointly optimizing
HSR ticket pricing and train stop planning considering multiple trains with multiple
stopping patterns, and proposed a CSA algorithm combining the characteristics of the
problem. The objective was to maximize the revenue of railway enterprises and minimize
the total travel time of passengers. An empirical study based on ticket reservation data was
conducted to present the performance of the proposed model and algorithm.
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The results obtained illustrate the impacts that the strategy derived from the optimiza-
tion model has on passenger demand, capacity allocation, and revenue. The solution from
the proposed method provides a significant improvement in revenue from the initial 5.1%
and causes a marked decline in the total travel time loss of passengers from the initial
11.5%. The dynamic pricing strategy encourages more passengers to buy tickets in earlier
pre-sale periods. The optimized train stop plan decreases the total stopping cost of railway
enterprises and the total time loss of passengers. In conclusion, this paper has illustrated
how railway operators can exploit existing data sources to further realize RM.

The following areas indicate possible directions for future research. Other factors
should be considered in the railway RM problem, such as seat classes and ticket cancella-
tions. It would also be interesting to develop a more efficient algorithm that combines exact
and metaheuristic methods to solve the proposed model.
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Abstract: The design of pumping stations in a water distribution network determines the investment
costs and affects a large part of the operating costs of the network. In recent years, it was shown that
it is possible to use flow distribution to optimize both costs concurrently; however, the methodologies
proposed in the literature are not applicable to real-sized networks. In these cases, the space of
solutions is huge, a small number of feasible solutions exists, and each evaluation of the objective
function implies significant computational effort. To avoid this gap, a new method was proposed
to reduce the search space in the problem of pumping station design. This method was based on
network preprocessing to determine in advance the maximum and minimum flow that each pump
station could provide. According to this purpose, the area of infeasibility is limited by ranges of the
decision variable where it is impossible to meet the hydraulic constraints of the model. This area of
infeasibility is removed from the search space with which the algorithm works. To demonstrate the
benefits of using the new technique, a new real-sized case study was presented, and a pseudo-genetic
algorithm (PGA) was implemented to resolve the optimization model. Finally, the results show
great improvement in PGA performance, both in terms of the speed of convergence and quality of
the solution.

Keywords: pump stations; optimization; energy efficiency; water networks; search space reduction
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1. Introduction

Unquestionably, the water distribution service directly affects the quality of life of
people around the world [1,2]. However, this process constitutes one of the most significant
expenses in the budget of any city [3,4]. The main reason is the high energy consumption
of the water distribution network (WDN). Specifically, pumping stations (PSs) require a
significant amount of energy to transport water to consumers [4]. Therefore, improving
the efficiency of these systems allows for significant energy and economic savings [2,5].
Furthermore, the price of electricity has been increasing globally. Consequently, optimizing
PS design and operations is crucial for achieving a cost-effective WDN.

The design of PSs has short- and long-term consequences [6]. In the immediate
term, determining the investment cost for constructing physical structures and acquiring
equipment can be done. In the long term, establishing most of the operating conditions
throughout the life of the project is performed. Thus, the design of PSs must be optimized
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after considering the operational variables in the network [7,8]. The design of a PS includes
selecting the number, model, type of pump, accessories, and control system [6]. This set
of decisions involves many possible combinations and, therefore, can be expressed as a
mathematical optimization problem to minimize the investment and operating costs [7].

Different optimization problems were proposed to achieve a minimal amount of
energy consumed by PSs from different perspectives [1,2,7]. These models differ in the
decision variables used to build their objective functions and constraints. For this purpose,
the authors used different approaches, such as the trade-off method between reliability and
energy efficiency [9], maximizing energy production [10], minimizing maintenance and
energy costs [11,12], location and minimization of the leakage [13], multi-criteria-based
approach to minimize the operational costs and operational lack of service and maximize
the pressure uniformity and network resilience [14], individual analysis for each design and
operation option available by using binary variables [15], and/or calculating the equivalent
flow and equivalent volume to approximate the annual costs [8], among other techniques.
However, despite all efforts, this problem has not been fully resolved due to its complexity,
high level of non-linearity, and the vast space of solutions restricted by hydraulic conditions
that ensure a minimum quality of service (minimum pressure) [1,2,16]. Consequently, the
development of effective operational strategies in addition to appropriate mathematical
models based on comprehensive knowledge about the system and efficient computationally
guided search methods are essential for the application of these techniques to real-world
WDN problems.

More recently, interest in the determination of the optimal flow distribution as an
effective tool in the design of PSs has been growing [5,7,17], mainly when this calculation
is driven through the setpoint curve (SC) [18]. The setpoint curve represents the required
dynamic head (Hc) for every flow rate (Q) in the PS to satisfy the minimum pressure service
in the nodes of the network. The main characteristic of this curve is that the resistance
produced by consumption nodes is replaced by a constant value that is the minimum service
pressure for consumption nodes at any time instant. More details about its mathematical
construction can be found in [19].

In particular, Gutiérrez et al. [7] implemented a novel methodology based on the
concurrent minimization of capital expenditures (CAPEX) and operating expenses (OPEX)
using the optimization of flow distribution. They proposed a mathematical optimization
model with three types of decision variables: (1) the fractions of flow provided by each
PS, (2) the model of the pumps, and (3) the number of fixed and variable speed pumps.
To solve the model, a pseudo-genetic algorithm proposed by [20] was used. The authors
presented a case study to demonstrate the advantages of the method. The results indicate
that despite the large number of combinations presented in the network, it appears to
be possible to find feasible solutions, avoid oversizing the pumps, and adjust the flows
contributed by the PSs to the changes in the consumption pattern of the network for 24 h.
However, this methodology still has room for improvement. First, using the SC in each
objective function evaluation ensures that the solution fulfills the minimum head by using
the minimum energy expenditure. Nevertheless, each evaluation of a solution involves
examining all nodes in an iterative way. Thus, the computational cost is high, and the
optimization algorithm loses search capacity as the network grows. Second, each solution
to the problem includes a decision variable that determines the flow contribution of each
pumping station. This variable can take values between 0% and 100% of the total flow
demanded by the network in each period, but depending on the topology of the network,
many of these solutions are a priori infeasible.

In general terms, real water distribution networks contain many nodes, pipes, and
accessories. One of the significant challenges faced by state-of-the-art methods used to
optimize the design of pumping stations is the application of the methods described above
in networks of real size [1,2,16]. Traditionally, the pumps are selected based on an operation
point and, later, their operation is optimized once the equipment is selected. In contrast,
this work proposed an approximation to the operation mode of the pump in the planning
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phase based on optimizing the energy and cost in the WDN. This new approach can help
to better select the pumping equipment. In this context, the method proposed by Gutiérrez-
Bahamondes et al. [7] is limited by the size of the network. To avoid this problem, this
study proposed an automatic pre-processing strategy to accelerate the heuristic search
processes of evolutionary algorithms applied to the problem posed in [7]. Several main
advantages of this strategy can be described: (1) it reduces the computational burden,
(2) it rules out infeasible solutions during the evaluation process in any period, and (3) it
finds a set of solutions close to the optimal design of the pumping station. The newly
proposed method was validated using a real-world case study, and its performance was
evaluated and compared with the original method. EPANET [21] was used to evaluate the
hydraulic behavior of the hydraulic network, while the optimization model was solved
using a pseudo-genetic algorithm (PGA).

The remainder of the paper is organized into several sections: (1) Section 2 describes
the mathematical model of the original method and the infeasibility problem, followed
by an explanation of the pre-processing strategy. The developed methodology was then
applied to a case study, and an optimization method was implemented. (2) Section 3
provides the results in which 100 experiments were executed and analyzed. The use of the
preprocessing strategy improved the quality of solutions and speed of convergence. (3) The
conclusions of the research can be found in Section 4.

2. Materials and Methods

This work proposed a new method to accelerate the process of searching for solutions
to the problem posed by [7] and includes several improvements:

− A new constraint was added to the mathematical optimization model. For each PS,
this equation allows us to discard all pump models that, due to their specifications,
did not manage to supply at least the maximum flow rate during the analysis period.

− The method used network preprocessing to determine in advance the maximum
and minimum flow that each PS could provide. This procedure made it possible to
limit the search space for solutions to the problem, thus eliminating areas of total
infeasibility. An area of infeasibility is limited by ranges of the decision variable
where it is impossible to meet the hydraulic constraints of the model. Our proposed
method maps these ranges before starting the optimization process, accelerating the
convergence of the algorithm using infeasibility maps (IMs).

− This study combined the use of the SC with the mapping of infeasibility zones to rule
out unfeasible solutions during the evaluation process in any period, thus avoiding
unnecessary hydraulic simulations when it was detected that part of the solution was
not viable. Consequently, the IMs reduce the search space of the optimization algo-
rithm. Reducing the search space to increase computational efficiency is a significant
challenge faced when optimizing water networks

2.1. Mathematical Model

First, for a better understanding, the mathematical optimization model proposed
by [7] is briefly presented in this section. This model was based on the optimization of
flow rate injection, which was based on the use of the SC concept. The SC curve can be
defined as a theoretical curve that indicates the minimum energy (in terms of pressure
head) required for pumping stations to meet the minimum pressure required for each
demand in the network, namely, it is a representation of the pressure head versus the flow
at a given point in the system.

Next, the main assumptions, simplifications, and limitations of the model are detailed.
First, it should be understood that the SC concept does not deal explicitly with pumps as
hydraulic machines; therefore, we started with the assumption that all the related curves
(such as flow rate versus pumping head, efficiency, and power) were not known. The use
of the SC allowed us to determine the energy required at the source without considering
specific pump head-flow curves. That is, we were only dealing with the energy supplied
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by the pumping station. One SC curve was available for each supply source. Second, this
work assumed that a direct injection network was optimized. That is, the network was fed
directly from groundwater or did not have a high enough elevation for tanks to be installed.
Third, the location of each possible pumping station was defined previously and was not
part of the problem. Fourth, the method required a pump model database containing all
the characteristic coefficients of each pump and the purchase costs of all accessories and
control systems necessary to build the physical structure. Finally, it is important to note that
to simplify the calculation of the total costs, the design of the stations was parameterized
according to the established modular design. The mathematical notation, decision variables,
objective function, and constraints are presented below.

2.1.1. Mathematical Notation

− Nt: total number of time steps in the optimization process.
− Nps: total number of PSs in the network.
− Nb: total number of pump models available in the data set.
− Fa: amortization factor.
− r: interest rate.
− Np: total number of project life periods.
− H0,i, Ai: characteristic coefficients of the pump head installed in PSi.
− Ei, Fi: characteristic coefficients of the performance curve of the pump installed in PSi.
− Qi,j,k: represents the discharge of pump k during time step j in PSi.
− pi,j: energy cost in PSi during the time step j.
− Υ: specific gravity of water.
− Δtj: discretization interval of the optimization period.
− mi,j: the number of FSPs running in PSi at time step j.
− ni,j: the number of VSPs running in PSi at time step j. These values depend on the

selected pump model and the system selected to control the operation point.
− NB,i: total number of total pumps.
− HBmax: maximum head of the largest pump available in the data set.
− Hmax,i: maximum head supplied by PSi during time analysis.
− Cpump, i: purchase cost of a pump installed in PSi.
− ni: number of frequency inverters in PSi.
− Cfacility,i: cost of accessories including pipes in PSi.
− Ccontrol,i: sum of a pressure transducer, flowmeter, and programmable logic controller

cost for PSi.

2.1.2. Decision Variables

− Xij: percentage of the flow supplied from PSi at each time step j.
− mi: number of fixed speed pumps in PSi.
− bi: ID of the pump model to be installed in PSi in the range [1,Nb].

2.1.3. Objective Function

The optimization model minimizes the sum of the capital (CAPEX) and operational
(OPEX) costs at the same time. Equation (1) presents the total annualized cost of the project
in which Fa is the amortization factor, which applies an interest rate r during Np periods.

F = Fa·CAPEX + OPEX (1)

Fa =
r·(1 + r)Np

(1 + r)Np−1 (2)
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The CAPEX and OPEX are calculated according to Equations (3) and (4), respectively.

CAPEX =
Nps

∑
i=1

(
NB,i·Cpump,i + ni·Cinv,i + Cfacility,i + Ccontrol,i

)
(3)

OPEX =
Nt

∑
j=1

⎧⎪⎪⎨⎪⎪⎩
Nps

∑
i=1

⎡⎢⎢⎣
⎛⎜⎜⎝mi,j

∑
k=1

γ·
(

Ho,i − Ai·Q2
i,jk

)
(

Ei − Fi·Qi,j,k

) +

nj,i

∑
k=1

γ·
(

Ho,i·αi,j,k − Ai·Q2
i,jk

)
(

Ei
αi,j,k

− Fi
α2

i,j,k
·Qi,j,k

)
⎞⎟⎟⎠·pi,j

⎤⎥⎥⎦Δtj

⎫⎪⎪⎬⎪⎪⎭ (4)

2.1.4. Constraints

The optimization model is restricted by continuity and momentum equations and by
minimum head requirements in the demand nodes. Equations (5) and (6) guarantee that
the total flow supplied by the PS will be equal to the flow demand.

xi,j ≥ 0∀i, j (5)

Nps

∑
i=1

xi,j = 1∀j (6)

H0,i ≥ Hmax,i∀PSi (7)

Equation (7) was incorporated into this work. The new method determines a subset
made up only of the pump models capable of delivering the minimum head and flow to
reach the service levels required by the network. The search range of the decision variable
associated with the pump model, i.e., bi, is then limited to the previously defined set.

All intermediate details about the hydraulic calculations of the objective function can
be found in reference [7].

2.2. Infeasibility Maps

The decision variable xij determines the fraction of flow that PSi contributes during
period j. This variable can have a range from 0 to 100 (expressed as a percentage) for which
0 indicates that the PS did not supply water in that period; in contrast, a value of 100
indicated that all the flow was supplied by a single PS in the period. Therefore, a huge
number of possible combinations exist, and many of them are infeasible solutions.

The main causes of infeasibility are listed below:

1. The distribution of flow generates sectors of the network where it is not possible to
reach the minimum required pressures.

2. Some of the PSs must provide a pressure greater than the maximum head of the
largest pump that exists in the available catalog.

3. The sum of the flows supplied is greater than the demand.

Each additional evaluation of the objective function supposes an increase in the com-
putational effort made by the optimization algorithm. For this reason, this study proposed
to analyze the network previously used to establish minimum and maximum limits for the
variable xi,j. Thus, it was possible to avoid the evaluation of infeasible solutions, which
could be ruled out using hydraulic criteria before starting the optimization process. Unfor-
tunately, the non-linearity of the relationships between the hydraulic variables did not allow
these values to be fixed, but this value could be expressed as a function of the piezometric
head of a reference PS (PSref). This reference pumping station could be any of the pumping
stations in the network. Furthermore, PSref supplied all the water that was not provided by
the rest of the PSs.

Before executing the optimization algorithm, for each PSi different from PSref, it was
possible to build a graph called the “Infeasibility Map” (IM), such as the one presented in
Figure 1.
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Figure 1. Infeasibility map for PSi.

The horizontal axis represents the flow provided by PSi (QPSi). It could have values
between zero and the total flow demanded by the network.

The vertical axis represents the head of PSref (Href). For any Href, all points to the left
of the minima curve (red color) are infeasible. This infeasibility was due to the fact that
it was not possible to reach the minimum height required in all the nodes of the network.
Similarly, at any point to the right of the maximum curve (green color), the head required
by PSi always exceeded the maximum head of the largest pump available in the catalog
(HBmax), and therefore, it would also be infeasible.

The green area of the graph is the bounded search region (BSR), which represents a set
of combinations for which it was not possible to previously check infeasibility. That is, the
BSR contained both feasible and infeasible points. Therefore, the optimization algorithm
was in charge of traversing this space. Consequently, it was possible to use an IM to rule
out a large number of combinations by previously limiting the range of the variable xij.

Finding these curves for all possible combinations can generate a high computational
cost. Specifically, the number of hydraulic simulations increases significantly as the number
of pumping stations grows. However, it is possible to estimate the maximum and minimum
curves via randomly sampling combinations of pumping station flows using the Monte
Carlo method [22]. Using this method greatly simplifies the proposed method.

The curves are used by the optimization algorithm in each evaluation of the objective
function. In this new method, the value of xij represents a fraction of the difference between
the highest value of the maximum flow curve and the lowest value of the minimum flow
curve. It is important to note that this range is always less than the total demand. Therefore,
it represents a search space reduction for any network, regardless of the topology.

Figure 2 shows the use of the IM with two PSs. The red line represents the SC calculated
for a PSi different from PSref [18]. From the solution, the intersection of the input flow xij
and the respective SC could be obtained. If the resulting point was within the blue region,
the solution could not be discarded. Otherwise, the solution was irrefutably infeasible.
Outside this range, it would have been impossible to achieve a technically feasible solution.

The method presented in this work does not depend on the number of pumping
stations. It could be applied to any problem with at least two PSs. For example, Figure 3
shows the decoding process in a network with three PSs: (1) PS1, (2) PS2, and (3) PS3.

Analogous to the case of Figure 2, it was necessary to select a PSref. PS1 was selected as
the reference station after which the minimum and maximum curves for PS2 and PS3 were
calculated. The limits defined by the curves allowed for generating the BSR for each PSi. In
Figure 3, blue and green areas represent the BSRs for PS3 and PS2, respectively. Regarding
the flow supplied by each PSi, x3j, and x2j represent the total percentage of flow supplied
by PS3 and PS2, respectively. Consequently, PS1 must supply the remaining flow with the
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head Hps1. Note that each supply source had its own SC. Consequently, the SC was found
for both pumping stations.

 

Figure 2. Decoding a solution for a 2-PS problem.

 

Figure 3. Decoding a solution for a 3-PS problem.

The use of IMs allows for reducing the number of hydraulic simulations carried out
during the optimization process. The newly proposed method involves using IMs to rule
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out solutions during the evaluation of a solution when at least one period is infeasible. In
this way, the hydraulic calculation stops, and the solution is penalized depending on the
number of periods elapsed until finding the infeasibility.

The number of nodes and pipes in the network is the main cause of computational
slowdown because the hydraulic motor calculates each node and each pipe in each iteration
of the algorithm. This new procedure saves a large number of hydraulic simulations. This
is important in the case of large networks because the computing time can be extremely
high. Consequently, the application of the presented method is aimed at optimizing large
networks. However, it could also be used in small networks without the need for changes.

2.3. Case Study

To apply the methodology described above, one case study was conducted. Figure 4a
shows the topology of a WDN located in the city of Curicó (Chile). The network model
was proposed by [23]. The network contained 7630 nodes and 8359 pipes. The network
had 2 pumping stations working, PS1 and PS2. However, due to the growth of the city,
the pumping equipment was old and susceptible to replacement. There is the possibility
of putting a third water source into operation, located at PS3. The node with the lowest
elevation was 190 m, and the elevation of the largest node was approximately 295 m. The
minimum operating pressure was 15 m for all network nodes. Information about the nodes
and pipelines can be found in the Supplementary Materials.

 
Figure 4. Case study. (a) Curicó water distribution network; (b) modular design for PSi.

The total demand of the network was provided by the three pumping stations, where
Q1 was the flow provided by PS1, Q2 was the flow provided by PS2, and Q3 was the flow
provided by PS3. Figure 4b shows the modular design proposed by [7]. This scheme was
used later to carry out the CAPEX calculations.

The hydraulic analysis was conducted for one day, and the time was divided into
periods of one hour. A time pattern was used to characterize the time variation in demand,
providing multipliers that were applied to the base demand to determine the actual demand
in a given period. Figure 5 shows the 24 h use pattern.

To calculate the OPEX, Table 1 shows the hourly electricity rate used for each PS in
the network. On the other hand, all the necessary coefficients to estimate the CAPEX were
obtained from [7].
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Figure 5. Demand pattern for the Curicó network.

Table 1. Electricity for the case study (EUR/kWh).

Time (h) PS1 PS2 PS3

1–8 0.094 0.092 0.09
9–18 0.133 0.131 0.129
19–22 0.166 0.164 0.162
23–24 0.133 0.131 0.129

To perform the optimization process, a database with 67 pump models was used. The
maximum flow rate of the pumps in the database varied between 9 L/s and 50.7 L/s. The
annualized costs of these models were calculated using an interest rate of 5% per year and
a projection time of 20 years. This led to an amortization factor of Fa = 7.92%.

2.4. Optimization Method

The solution space of the case study was 10104. Consequently, the use of a computa-
tional method was required to solve the optimization model. Specifically, this work used a
pseudo-genetic algorithm (PGA) developed by the authors of [20] to solve problems of an
integer nature. Unlike a traditional genetic algorithm (GA), the PGA is based on an integer
coding of the solution, and each decision variable can store different values represented by
alphanumeric variables.

The objective of the work was to demonstrate that the use of IMs improves the
performance of the optimization algorithm. For this comparison to be fair, the resolution
of the proposed model was carried out using the same algorithm used by [7]. In this way,
it was possible to directly compare the proposed methodologies and avoid unnecessary
biases. In addition, the same parameters of population size (P), crossover frequency (Pc),
and mutation frequency (Pm) recommended by the authors in previous works [24] were
considered, specifically, population size (P = 100), crossover frequency (Pc = 90%), and
mutation frequency (Pm = 5%).

The PGA was implemented using JMetalPy, which is an open-source Python library
for solving single-objective and multi-objective optimization problems. It was inspired by
the JMetal library, written in Java, and it implements evolutionary, local-search-based, and
hybrid algorithms to solve various optimization problems [25]. Specifically, the Python 3.8
programming language was used. The objective function call was implemented according
to the guidelines described in [12]. The hydraulic simulations were carried out using the
programmer’s toolkit of EPANET [21]. This system can conduct massive simulations and
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is integrated with the hydraulic network solver. To ensure a minimum level of statistical
confidence in the results, 100 experiments were performed and analyzed.

Finally, to carry out the experiments, a computer with an Intel(R) Xeon(R) Gold 5218
CPU @ 2.30 GHz, 2300 Mhz, 16 main processors, and 32 logical processors equipped with
the Windows 10 Pro operating system was used. The average time per execution was 21 h.

3. Results

The results compared the performance of the PS design method with and without
IMs. First, PS1 was selected as PSref and the IMs for the 24 periods were calculated
for each PSi. For example, Figure 6 shows the resulting IM for PS2 in the period of
greatest water demand (hour = 12). The orange zone represents the BSR and the remaining
area represents hydraulically infeasible solutions that were not used by the PGA in the
optimization process.

Figure 6. Calculated IM of PS2.

Once the IMs were constructed, the algorithm searched only within the BSR. In
this space, it was not possible to determine in advance whether the solutions were feasi-
ble/infeasible. This choice depended exclusively on the characteristics of the network and
the hydraulic simulation to be executed. Both methods were compared. To increase the
statistical reliability of the results, 100 experiments were performed. Each experiment ran
100,000 objective function evaluations, and the final values obtained for each method were
compared. Note that the method presented in [7] performed one hydraulic simulation for
each period analyzed. Consequently, each full day (24 h) led to 24 hydraulic simulations.
However, the number of hydraulic simulations of the novel method presented in this work
depended on the number of feasible periods of the analyzed solution. Figure 7 shows
the results.

The blue dots represent the best solution obtained using the PGA with a search
space limited by the IMs. The green dots show the best solution obtained using the
PGA with the original method presented by [7], which utilized the complete search space.
Additionally, the shaded area represents the complete distribution of all experiments
simulated using IMs.

Note that the optimization algorithm converged to feasible solutions much faster when
IMs were used, and the value of the objective function in all experiments when using IMs
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was less than the best solution using the complete search space. Consequently, the results
demonstrate great improvement in the PGA performance when it was guided by IMs.

 

Figure 7. Comparison of the results with and without IMs.

It is important to highlight that the construction of the IMs also requires computational
effort prior to the optimization process. The number of hydraulic simulations of this
pre-processing will depend mainly on the number of pumping stations in the network.
Specifically, in the case study, 4.0 × 105 hydraulic simulations were needed. However,
this preprocessing was only executed once for the entire experiment and represented
a small percentage of the total simulations. For example, for the case study in which
100 experiments were executed, the generation of IMs represented approximately 2% of the
total number of simulations (2.0 × 108) and decreased in an inversely proportional manner
with the number of experiments executed.

Previously, the monetary difference in the solutions obtained by each method was high-
lighted. Next, we focused on the hydraulic difference between both solutions. Figures 8 and 9
show the 24 h analysis of the pumping scheme of each PSi for the best solution obtained by
the PGA with and without IMs, respectively.

In both figures, the bars represent the number of active pumps during each period,
and the dotted lines represent the total flow required by the network according to the
consumption pattern in Figure 5.

The best solution obtained using the PGA without IMs (Figure 7) would have re-
quired the operation of the third pumping station to meet the operating conditions of
the network. Notably, PS1, PS2, and PS3 would have had to be at least ten, two, and two
pumps, respectively. In contrast, when using the IMs, the PGA found many solutions in
which only PS1 and PS2 were needed. Both solutions were hydraulically feasible, but the
solution found using IMs was found to be more efficient, cheaper, and perfectly fit the
network requirements. This feature is important for decision-making because if the search
space is not correctly explored, unnecessary energy and building costs can be incurred.
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Table 2details the total yearly costs for the best solutions achieved by the PGA without and
with IMs (Figures 8 and 9, respectively).

Figure 8. Best solution without IMs.

Figure 9. Best solution using IMs.

The use of IMs led to a reduction in the cost of the solution by 71% relative to previous
solutions found without using a reduced search space. When analyzing the objective
function in detail, the main difference occurred in the CAPEX term. First, pumping stations
are expensive structures. Consequently, it is not profitable to activate the operation of
PS3 because it requires a high level of investment. Second, the optimized design without
IMs required 10 pumps running on PS1. This feature implies a high cost of purchasing
this equipment.
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Table 2. Cost comparison between the best solutions with and without IMs.

OPEX CAPEX Fa • CAPEX + OPEX

PGA without IMs PGA with IMs PGA without IMs PGA with IMs PGA without IMs PGA with IMs

PS1 EUR 121 EUR 80.7 EUR 190,756 EUR 94,470 EUR 54,710 EUR 34,002

PS2 EUR 34 EUR 31 EUR 34,544 EUR 37,077 EUR 13,754 EUR 13,054

PS3 EUR 16 - EUR 85,618 - EUR 12,107 -

Total EUR 80,571 EUR 47,056

Consequently, the best solution would supply all water demands from stations PS1
and PS2, and it would not be necessary to activate a third pumping station. According
to the scheme in Figure 4, Table 3 shows the design specifications for pumping stations
1 and 2.

Table 3. Pump station designs for the case study.

PS1 PS2

ND1 350 250
(mm) ND2 125 125

ND3 350 250

L1 1.75 1.25
(m) L2 3.75 3.75

L3 3.50 2.50

mi 0 0
ni 6 3

H0 27.2632 27.2632
A −0.01416 −0.01416
E 0.06929 0.06929
F 0.00158 0.00158

Model ID GNI 50-13/7.5 GNI 50-13/7.5

ND1, ND2, and ND3 are the nominal diameters of the corresponding pipe p, which
is used for defining the diameters of elements such as isolation valves or check valves
according to the modular design presented in Figure 4b. Similarly, L1, L2, and L3 are the
lengths of pipes. Furthermore, Table 3 shows the number of fixed-speed pumps (mi) and
the number of variable-speed pumps (ni). H0, A, E, and F represent the characteristic and
efficiency curve coefficients. Finally, the last row displays the selected model pump from
the database. It is important to note that the final solution only considered variable-speed
pumps and ruled out fixed-speed pumps. The higher cost of this equipment could be offset
by the reduction in energy consumption during the years of the project’s life.

4. Conclusions

In the current context, improving the energy efficiency of pumping systems is a
priority since these pumping systems represent a considerable percentage of the operating
costs of any water supply company. Several approaches are described in the literature for
optimizing the energy consumption of a PS. One possibility is approximating the operation
mode of the pump(s) in the planning phase and optimizing the energy and cost in the
WDN. This approach can help to make a better selection of pumping equipment. However,
the computational cost is high, and the optimization algorithm loses search capacity as the
network grows.

This work presents a new pumping station design method that considers the use of
IMs for a better exploration of the search space. The method was applied to a real case
study and was compared with the same design method without considering the use of IMs.
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The use of IMs eliminates infeasible areas in the optimization process and improves the
performance of the algorithm, both in terms of convergence speed and in the quality of
the solutions. It is possible to highlight several findings after comparing the optimization
methods with and without IMs:

− The exhaustive construction of the IMs required a significant number of hydraulic
simulations. However, this procedure only needed to be done once, representing only
2% of the total number of simulations.

− When IMs were not used, the search space was too large, and the algorithm took
a long time to find feasible regions, which were usually local minima. The use of
IMs allowed for accelerating the convergence of the optimization algorithms, rapidly
evolving toward better solutions. Specifically, the number of simulations required by
the IM-guided algorithm managed to reduce the number of hydraulic simulations
necessary to achieve convergence in the case study by 60%.

− The use of IMs in the case study achieved savings of 71% compared with the solutions
obtained by the optimization algorithm when considering the complete search space.
Additionally, the 100 experiments ran using IMs had better solutions than the best
solution obtained using the PGA when no IMs were used. An inadequate exploration
of the solution space implies unnecessary cost overruns and non-optimal solutions for
a given problem.

Additionally, a new constraint was added to the model. In each evaluation of the
objective function, the variable that determines the pump model in each PS only allows for
selecting models from the catalog that have the maximum head required according to the
flow distribution established by the solution. This mechanism allows the changes made by
the PGA operators in these genes to always give rise to a new feasible solution.

The use of IMs guarantees that outside the bounded search region (BSR), there are no
feasible solutions. However, it is not possible to determine the feasibility or infeasibility of
solutions within this zone. In general terms, the search for global optima within the BSR
continues to be a complex problem.

Finally, in small networks in which hydraulic simulation is not very computationally
expensive, it could be possible to obtain solutions close to the global optimum by running
a considerable number of evaluations of the objective function in a very short time. The
construction of the IMs requires preprocessing of the network. Consequently, a limitation
of the method could be a decrease in efficiency in small networks. Therefore, the use of
IMs is only highly recommended when the analyzed network has a high number of nodes,
pipes, and components.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/math11071582/s1, Case Study S1.
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Abstract: Access to electricity for the rural and indigenous population of Ecuador’s Amazon Region
(RAE) is considered a critical issue by the national authorities. The RAE is an isolated zone with
communities scattered throughout the rainforest, where the expansion of the national grid is not a
viable option. Therefore, autonomous electrification systems based on solar energy constitute an
important solution, allowing the development of indigenous populations. This work proposes a
tool for the design of stand-alone rural electrification systems based on photovoltaic technologies,
including both microgrid or individual supply configurations. This tool is formulated as a Mixed
Integer Linear Programming model including economic, technical and social aspects. This approach
is used to design electrification systems (equipment location and sizing, microgrid configurations)
in three real communities of the RAE. The results highlight the benefits of the developed tool and
provide guidelines regarding RAE’s electrification.

Keywords: rural electrification; mathematical programming; Ecuador’s Amazon region; photovoltaic
energy; microgrid

1. Introduction

Currently, access to electricity remains a critical issue for around 1.1 billion people
worldwide, generally affecting those living in rural contexts, where poverty levels are high.
Indeed, both aspects (energy access and poverty) are closely connected, as proved by the
Seventh Sustainable Development Goal stated by the United Nations (“ensure access to
affordable, reliable sustainable and modern energy for all”) [1]. This goal explicitly views
access to energy as key to improving the living conditions of the most underprivileged
populations, “a backbone of any modern economy” [2]. In this sense, several recent studies
highlight the fact that electricity access is linked to increased incomes and productivity
(different to agricultural activities [3]), as well as benefits in education (increased study
time) and health (decrease in respiratory diseases due to lower kerosene usage) [4]. In
order to improve electricity coverage, the extension of the national grid has been the main
strategy for providing access to electricity. However, in areas with rough topography or
remote population centers, the expansion of the national distribution grid may become
infeasible [5]. In those cases, the development of off-grid electrification systems and
microgrids is among the most economical solutions and has been successfully adopted
in many practical frameworks [6]. Besides this, for such stand-alone generation systems,
the current concern about global warming and the resulting interest in alternative energy
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sources have led to the intensive use of renewable resources. In particular, solar energy
remains one of the most widely employed sources [7].

In this framework, different kinds of electrification systems have been tackled in the
devoted literature, in many distinct worldwide contexts. For instance, regarding large-scale
electrification (national or regional), Ehsan and Yang [8] highlight the tendency to formulate
the integration and planning of generation systems based on renewable energy as an
optimization problem. The model proposed in [9] for renewable allocation planning in large-
scale power systems considers a dynamic environment leading to the expansion/reduction
of the current network. Hassan [10] uses simulation to optimize solar photovoltaic-based
generation systems in Iraq, considering two configurations, namely off-grid and on-grid
versions (when possible). Taye et al. [11] use Geographical Information Systems (GIS) and
a multi-criteria decision-making technique for rural electrification planning, allowing for
an evaluation of the adequacy of renewable energy in Ethiopia. Through the application of
the Analytic Hierarchy Process, they conclude that wind and particularly solar energies
should be preferred rather than grid extension. In addition, several computational tools
were recently developed, in particular for rural electrification planning. For instance,
the REM (Reference Electrification Model [12]) focuses on the use of off-grid generation
systems in order to plan electricity networks and has been used in several countries
(India, Colombia, Kenya, Rwanda, etc.). Furthermore, OnSSET [13] is an open-source
tool using GIS that is designed to complement energy planning models not supported
by geographical analysis and that quantifies the investment, technology type and geo-
referencing of national electrification projects based either on conventional or renewable
energy technologies. Also obeying an open-source philosophy, recently developed Python-
based tools represent free access alternatives. For instance, PyPSA (Python for Power
System Analysis [14]) is a free toolbox for simulating and optimizing modern power
systems, accounting for alternative working modes (conventional generators, variable wind
and solar generation, storage units, mixed alternating and direct current networks, etc.) and
with an improved scalability for dealing with large networks and long time series. Another
recent computational tool for microgrid design, Sandia’s Microgrid Design Toolkit [15],
allows for the generation of design optimizations according to several criteria (investment
and operation costs, reliability, performance levels) in order to produce a Pareto frontier of
efficient configurations promoting the microgrid over individual supply systems. Based on
advanced optimization and modeling approaches, it has been used to provide electricity in
several military and public infrastructures worldwide.

At a local level, Bahramara et al. [16] review works using the well-established com-
mercial tool HOMER [17], particularly focusing on the design of hybrid renewable energy
systems. For instance, in [18], such a tool is used to design and analyze the robustness of
environmental-friendly systems to be installed in Malaysian islands. In addition, interest is
increasingly devoted to the design of microgrids, which are reduced-size grids connecting
several users isolated from the national grid. Several applications have demonstrated
that the design of self-sufficient microgrids produces higher benefits than those obtained
by individual systems [19] and also reduces the life cycle environmental impact of the
electrification systems [20]. Despite the additional complexity associated with the design of
microgrid topologies, this strategy allows the energy supply to be independent from the
resources available at demand points, cost savings thanks to economies of scale for shared
equipment and supply flexibility in case of an increase in demand [21]. Accordingly, many
studies have tackled the design of microgrid distribution structures around the world. The
reader is referred to the recent surveys of Peters et al. [22] as well as Castilla et al. [23] for
a perspective on the use of microgrids in Latin America, Mahomed et al. [24] in Uganda,
Tenenbaum et al. [25] in sub-Saharan Africa or Lukuyu et al. [26] in East Africa. These
studies insist on the need for adequate design and planning tools for microgrid-based electri-
fication projects, supported by objective demand projection methodologies and developed
in collaboration with local actors to account for the population’s specific requirements.
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Regarding the solving procedures, mathematical models have been developed with
the aim of providing effective configurations (in terms of cost or any other performance
criterion). Indeed, these models are adapted to the particular application addressed and
may involve distinct configurations (individual/microgrid), energy sources or other fea-
tures specific to each case study and to the communities to be electrified [27]. For instance,
Leithon et al. [28] develop a model for energy allocation policy that minimizes energy
usage. In [29], an optimization approach is developed for the electrification of highland
communities in Peru through a model integrating social constraints associated with system
management and community benefits. Ranaboldo et al. [30] develop optimization models
including the particular considerations of electrification systems in Cabo Verde. Heuristic
procedures have also been used. For instance, several matheuristics are introduced in [31],
representing computationally efficient tools to optimize rural electrification systems involv-
ing both microgrids and individual supply. Moreover, different multi-criteria approaches
(VIKOR and AHP) are compared in [32] for microgrid design in Venezuela, including
economic (investment, maintenance and operation costs), social and environmental criteria.
Finally, Python-based free access libraries have also been developed in this context, such as
MicrogridsPy [33]. This tool tackles the problem of generation equipment sizing (Li-ion
batteries, diesel generators and PV panels) and energy dispatching in remote and isolated
contexts by minimizing the Levelized Cost of Energy (LCOE).

The above-mentioned studies emphasize the possibility of designing economically
efficient and environmentally resilient off-grid generation systems based on renewable
energies. This is particularly relevant for the so-called “last-mile” electrification (as opposed
to mass electrification, for which different strategies such as grid expansion may provide
better results). “Last-mile” electrification projects are not only useful in the context of, for
example, small islands [34], where diesel generators might be replaced by photovoltaic and
wind energies, as they have a great impact on greenhouse gas emissions while producing
significant economic benefits. In several Latin American countries, both the Amazon
(rainforest) and Andean (highlands) regions typically show rough terrains and represent
massive challenges, such as reported for Brazil [35], Colombia [36] or Bolivia, Peru and
Argentina [37]. In this framework, Ecuador is a country with a wide-spread national
grid and high global access to electricity, but the indigenous populations of the Amazon
basin are scattered over large areas covered by rainforest, leading to prohibitive costs
for expanding the national grid. Furthermore, the difficulty in reaching these isolated
communities and their fragile economic resources make electrification projects neither
profitable for private distributors nor sustainable for governments. So, the aforementioned
stand-alone, renewable-based systems appear as a viable electrification strategy. To the
best of our knowledge, only one study has reported on the design of such systems in
Ecuador [38]. Carried out in the Santa Elena province, this work reports the design of
hybrid wind–photovoltaic systems through HOMER, concluding that most of the energy
is supplied by PV cells. However, the paper does not account for microgrid formation,
although such configurations are promoted among the guidelines stated by Ecuador’s
Ministry of Electricity and Renewable Energies (MEER) [39].

Thus, the present work addresses the development of autonomous electrification
systems for isolated communities in the Amazon Region of Ecuador (RAE) by optimizing
the design of PV-based systems involving microgrids. Thanks to a detailed analysis of
the relevant local factors to be accounted for, a Mixed Integer Linear Program (MILP) is
introduced as a computational tool for the automatic design of such electrification systems.
This model extends several state-of-the-art approaches. In particular, Ferrer-Martí et al. [40]
set out the basis of rural electrification system modeling involving hybrid generation and
microgrids. Domenech et al. [29], in addition, include management and social constraints
in the design phase. Despite considering some elements of these previous studies, our
model accounts for characteristics that are specific to the RAE and therefore represents
a novel design tool, which could yet be extrapolated to other contexts. In particular, the
contribution in terms of new modeling features is threefold:
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i. A set of potential connections is established, indicating impossible wiring between
different geographical points. This new constraint, motivated by local factors
(explained in the following sections), is addressed through a decomposition strategy
of the original problems that allows a more efficient solution process.

ii. A new objective function now incorporates the parametrized ponderation of the
costs of microgrids versus individual systems. This novel feature is motivated by
the electrification policies dictated by Ecuador’s national government, promoting
microgrid configurations. However, the versatility of the formulation proposed
here allows either one or the other configuration to be favored according to any
policy makers’ decisions.

iii. For cultural reasons in the RAE, items shared by the members of a community
cannot be stored on private ground. This requirement is reflected in the model by
new constraints, which prevent microgrid generation units from being located at
demand points.

Thus, this model constitutes a tool adapted to RAE conditions for assisting project
promoters in the design of electrification systems. Three case studies addressing the
electrification of indigenous communities in the RAE are subsequently solved in order to
validate the proposed tool.

The remainder of this work is organized as follows. Section 2 presents a context
analysis regarding electrification processes in Ecuador, a description of the electrification
systems accounted for and their specific conditioning features in the RAE. The proposed
mathematical model is described in Section 3, while Section 4 presents the case studies
addressed and the numerical results obtained. Finally, some conclusions and prospects for
future works are provided in Section 5.

2. Context Analysis for the Design of Stand-Alone Electrification Systems in the RAE

2.1. Overview of the Electrification Process in Ecuador

The Republic of Ecuador is a Latin American country with an area of 283,561 km2 and
about 17 million inhabitants. Despite the growth of its Gross Domestic Product, strong
inequalities mean that more than 20% of Ecuadorians suffer from poverty, particularly in
rural and indigenous communities. Besides, Ecuador has some of the greatest biodiversity
in the world, meaning that environmental protection is a prominent feature of the coun-
try’s landscape. In this context, government policies for the development of the national
electricity system must find a trade-off between socio-economic development and envi-
ronmental conservation [41]. Accordingly, efforts have been made by national authorities
to guarantee a reliable and competitive electricity supply, supervised by the Regulatory
Agency and Electricity Control. These measures have led to a significant increase in the
total electricity generated [42] and the expansion of the national grid, reaching one of the
best coverages in the sub-continent: 97.33% national access and 94% of the rural population
in 2017 [43]. However, the development of Ecuador’s electrification process still faces two
important challenges.

First, some diversification is needed regarding the generation matrix. As stressed
in [44], the only consistent trend in Ecuadorian energy policies has been the development
of hydroelectricity, which represented more than 73% of the generation matrix in 2017 [42].
However, this strategy is criticized by indigenous communities and environmentalist asso-
ciations due to its environmental impact [45]. Several studies have also emphasized the
great potential of solar and wind energies and their advantages regarding socio-economic
development and environmental conservation [41]. Adopting photovoltaic technologies
may yield long-term benefits in terms of pollution abatement and climate change mit-
igation [39]. Accordingly, the Fund for Electrification of Rural and of Marginal Urban
Areas (created in 2004, in order to improve electricity coverage in disadvantaged areas)
initiated rural electrification programs relying on PV generation in the Amazonian and
highland regions or hybrid systems in the Galapagos islands [46]. More recently, the current
administration is promoting PV-powered microgrid designs for remote areas rather than
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individual systems [39]. Despite these efforts, solar and wind energies did not represent
more than 0.5% of the primary sources used for electricity generation in 2017.

On the other hand, there are still some glaring inequalities in electricity access in
the RAE. In spite of the efforts made to increase coverage in the corresponding provinces
(Pastaza, Sucumbíos, Orellana, Napo, Morona and Zamora), their impact was undermined
by the limited amount of economic resources. Indeed, the RAE (40% of Ecuador’s total area)
is characterized by the highest poverty levels in Ecuador and has the lowest electrification
rates, particularly in rural areas, since the grid expansion strategy has left a great part
of this territory uncovered [43]. Renewable energy technologies have been promoted,
but several electrification programs were not considered profitable by the distribution
operators and were thus interrupted. Indeed, the maintenance operations of stand-alone
systems in rough terrain (rainforest) would either be too costly or require training programs
for community members. In addition, the scarce economic resources of these mainly
indigenous communities mean that users often cannot afford the electricity service costs,
making these projects unsustainable for governments.

Thus, the six RAE provinces produce electricity almost entirely by thermal generation.
In the Pastaza province, where the present study was carried out, the electricity coverage
currently equals 89.3% (compared to 97.33% at national level), but the rural electrification
rate is much lower (65.9% in 2010 [42]). This situation is particularly unsustainable in one
of the most prolific zones for solar energy, where the transportation, firewood consumption
and electricity needs (more than 1000 GWh/year) could be entirely covered by PV technolo-
gies [47]. Accounting for these general considerations, the systemic approach introduced in
this work aims to provide an automatic tool for the design of electrification systems in rural
and disadvantaged areas of the RAE, taking advantage of the high PV potential available
and promoting the formation of microgrid-based systems.

2.2. Technical Description of Stand-Alone Systems

In [47], the authors demonstrate that while the RAE benefits from high solar resources,
on the contrary, wind does not constitute a promising energy source. Furthermore, due
to the prevailing dense rainforest vegetation, the construction and installation of wind
turbines raises practical issues. Therefore, the electrification systems represented here are
only based on photovoltaic technology, as illustrated in Figure 1 (with microgrid-based
distribution). The electricity is produced by the PV panels, while the controllers protect
batteries from overloads and deep discharges. The electricity is then stored in batteries
to bridge the gap between generation and consumption. Next, the inverters transform
the direct current from batteries into alternating current, which is more suitable for most
electrical appliances. Finally, the electricity is distributed to demand points (households,
schools, health centers, etc.) via microgrids or individual systems (individual systems are
devoted to supplying single-user consumption).

Figure 1. Scheme of a PV system with microgrid distribution.

199



Mathematics 2022, 10, 1226

Regarding the microgrid topology, a structure ensuring minimal costs is chosen,
respecting the following conditions [48]: (i) power generation is centralized at a single
point and (ii) the microgrid has a radial structure (each user can receive electricity from
only one point). This structure is illustrated in Figure 1, where the generation units deliver
power to four users connected according to a tree-like configuration.

2.3. Conditioning Factors for Stand-Alone Electrification Systems in the RAE

This section analyzes the main features conditioning the design of rural electrification
projects with PV technology for indigenous communities in the RAE. This analysis involved
studying and understanding the concrete reality of the targeted communities through three
main action lines. First, the information obtained from the literature was enhanced with
technical documents [49,50] produced by Ecuador’s MEER in coordination with the NGO
“Engineers Without Borders” (EWB). Second, information on the local context and needs
was comprehensively collected through a 5-month field survey performed by some of
the authors of this work. This stay allowed the indigenous population’s lifestyle to be
observed as well as the economic, social, environmental or cultural features relevant to
the installation of autonomous systems for these communities to be identified. It also
made possible an evaluation of the logistics needed for equipment transportation within
rainforest conditions. Third, several key actors of rural electrification in Ecuador were
interviewed to identify and validate the conditioning features adapted to the RAE’s reality.
This phase involved three technicians from the MEER, the leader of the renewable energies
area in the power company Empresa Eléctrica Ambato S.A. (Pastaza province) and three
coordinators, technicians and volunteers from the energy line of EWB.

The resulting list of conditioning factors encompasses all the features to be accounted
for within the design process of electrification systems in the RAE. These considerations are
captured in the mathematical model developed for the solution of the addressed problem
(see next section).

(a) National and regional policies contemplate social aspects, such as opting for electri-
fication designs including microgrids rather than individual systems. Indeed, the
community-based management of joint installations provides social benefits, such as
the coordination and cooperation of families sharing the same objectives. In order to
encourage microgrid formation, priority is given to designs including such configura-
tions, even though they entail a higher cost than individual supply systems (up to
20% higher, as proposed by MEER).

(b) The institutional framework of electrification projects may ensure economies of scale
(for instance, when equipment is purchased for district or regional projects) but may
also restrict the technical characteristics of power generation and distribution items. In
the case study presented here, the limiter boxes allow only two output cables, which
may have an impact on the microgrid structure.

(c) The communication paths available (rivers, airways) and the transportation means
to get to the community in question have an impact on the technical equipment
employed. Moreover, the current state of these paths may also involve space and
weight limitations for the equipment units to be shipped. For instance, the varying
water depth in a river (or landing strip dimensions) can limit the size of canoes (or
aircraft) that can be used.

(d) The property concept in some indigenous communities means that the equipment
shared by the community cannot be physically installed at a demand point, which is
private ground. So, non-demand points should be identified for potential microgrid
generation. Furthermore, this means the construction of sheds for electric equipment
storage within the area where PV panels are to be located in order to protect batter-
ies, inverters and regulators from weather or animals. This incurs additional costs
associated with the purchase and installation of these buildings.

(e) In the Low Amazon region, the increased concern for environmental aspects leads to
the development of underground connections rather than air connections. Indeed,
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despite the advantages of air microgrids in both practical (avoiding obstacles such
as rivers, small buildings, etc.) and economic (cheaper installation and maintenance)
terms, they have a negative environmental impact due to tree clearing around the
microgrid installations. Underground wiring is also better protected from external
agents (rain, animals) and presents technical advantages [51]. However, this policy
involves constraints due to physical obstacles (river, ravine, floodable area, landing
strip, etc.) that may prevent cable installation.

It should be noted that, in the above-mentioned factors, the estimation of end-users’
demand is not mentioned. Evaluating the demand constitutes a critical phase in the
design of electrification systems, since this parameter strongly influences the final system
configuration [52]. An overestimated demand would lead to oversized systems, both
wasting generation capacity and increasing electricity prices [53]. Several studies have
highlighted the complexity of this estimation task, involving qualitative and quantitative
assessments of the target community and its surroundings, an analysis of the energy sources
used prior to electrification, the planned electricity usage and the projection of the demand
growth [22,54,55]. In the RAE, the MEER performed such a study, as verified by the field
survey carried out in Ecuador by some of the authors of this work. In order to guarantee
equal opportunities to every family, the MEER decided to set standardized consumption
levels for energy and peak power for all users. In this context, the demand values accounted
for in the present study are those determined and imposed by the MEER (see Section 4.2).
Note that these demands were conceived as a constant value, so projects may initially be
slightly oversized but will be adequate in the medium term, when demand growth occurs
during the first years of implementation.

Hence, this analysis identified the key elements ensuring the sustainability of electri-
fication projects in the RAE. This phase sets the conceptual framework necessary for the
development of a solution procedure for the design of stand-alone electrification systems
in this region.

3. A Mathematical Model for the Design of Autonomous Rural Electrification Systems
in the RAE

Since optimization approaches have proven their effectiveness in the framework of
electrification system design [56], a mathematical model for stand-alone electrification
systems, including the considerations analyzed above, is introduced in this section. The
mathematical formulation proposed in this work includes parts of the procedure presented
in [57] and further accounts for all the conditioning factors described in the previous section.
The proposed method for the development of the mathematical tool introduced here is
shown in Figure 2.

This new MILP aims to determine the details of the electrification design (individ-
ual and/or microgrid configurations, equipment location and selection, etc.) in order to
minimize the project cost. To further highlight the original features of the tackled problem
and the novelty of the model developed accordingly, their main characteristics are listed in
Table 1, and the comparison with similar works emphasizes that no other approach consid-
ers all of them. In particular, the versatility in promoting either microgrid or individual
supply configurations and the restriction on microgrid generation equipment being located
at demand points are introduced for the first time in this work. Therefore, the electrification
solutions obtained with the model proposed here, which responds to RAE’s social, cultural
and environmental requirements, could not be obtained with other tools, thus confirming
the contribution of the present work. At the same time, since these requirements may
be found in plenty of contexts different from RAE’s, such as many isolated regions in
Latin America [58] and Africa [24,26], and since the model proposed here also includes the
classical features needed for the design of electrification systems based on renewables, it
can be re-used for other applications in distinct contexts.
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Figure 2. Flowchart of the proposed method.

Table 1. Comparison of main problem features addressed in this study and in previous related works.

Feature a.* b.* c.* d.* e.* f.* g.* h.*

PV generation X X X X X X X
Battery storage X X X X X X X
Microgrid distribution X X X X X X X
Several microgrids X X X X X X
Individual supply X X X X X X
Versatile (microgrids vs. individual) X
Forbidden connections X X
Restriction on microgrid generation points X
Demand/non-demand points X X X X X
Economic assessment X X X X X X X X
Additional installation costs X X X X

* where a. HOMER [17]; b. ViPOR [59]; c. Ferrer-Martí et al. [40]; d. REM [12]; e. Domenech et al. [57];
f. MicrogridsPy [33]; g. Sandia’s Microgrid Design Toolkit [15]; h. The approach proposed in this work.

The numerical parameters of the model include information regarding demand point
locations and requirements, the characteristics of the power generation and distribution
equipment, as well as the data associated with the specific RAE features. These parameters
are comprehensively defined in Table 2, but further explanations are provided here on the
Matrix of Potential Connections.

As stated previously, only underground-wired microgrids are considered. However,
the rainforest environment in which the indigenous communities live is normally char-
acterized by floodable terrain. Besides this, obstacles such as rivers or landing strips can
prevent underground wiring, thus impeding some direct connections between two points.
Thus, all the allowed connections are concatenated in a binary matrix called the Matrix of
Potential Connections (MPC), defined for each case study. This matrix of size |P| × |D|
has elements equal to 1 if a connection is possible between the two points and 0 otherwise.
It is worth mentioning that this matrix may highlight clusters of points completely isolated
from the others (i.e., neither direct nor indirect connections can be established between any
points of two different clusters).

This information offers two options: treating each community as a whole or breaking
it down into several independently solved sub-problems. Indeed, there is no reason to
simultaneously solve several physically separated zones, since they cannot be included
in the same microgrid anyway. Additionally, due to the combinatorial nature of the
MILP model presented hereafter, treating each sub-problem independently might allow
significant CPU time savings when compared with solving the global problem. Thus, before
using the optimization tool proposed here, a pre-processing step must be performed for
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each particular case in order to decide if the tackled community should be treated entirely
or divided into isolated clusters to be solved independently one from another.

In addition, the decision variables have to account for the system configuration with
its associated energy/power flows, as well as the number and type of equipment units to be
used for power generation and distribution (see Table 3). The objective function consists in
minimizing the total investment cost for wind turbines, PV panels, PV controllers, batteries,
inverters, meters (to be installed at all the demand points in a microgrid, to grant equality
of the provided services for all users) and wires. In addition, as stated in point d) of the
conditioning factors (Section 2.3), a cultural requirement is that the generation equipment
of (community-shared) microgrid systems cannot be set at demand points (private ground),
meaning that additional costs corresponding to the installation of a shed for equipment
storage have to be included.

Moreover, as explained in point (a) of Section 2.3, MEER’s policy prioritizes microgrid-
based designs over individual systems. Therefore, configurations including microgrids
will be preferred even if their cost is up to α% higher than individual supply systems.
Practically, the cost associated with all the items belonging to a microgrid will be multiplied
by 1/(1 + α/100), which is equivalent to reducing the corresponding cost by a factor
α/(α + 100)%. The generation costs of individual systems (at demand points) can easily
be distinguished from those of microgrid configurations by defining microgrid generation
points as no-demand points. With regard to α, the MEER proposes 20%, but the influence
of this value is also studied through a sensitivity analysis (see next section).

Table 2. Parameters of the mathematical model.

Parameter Description Unit

Demand points

P Set of potential generation points, including the demand points. -
D Set of demand points, D ∈ P. -

Lpd Distance between two points p and d (p ∈ P, d ∈ D). [m]
Lmax Maximum length of a wire segment of the microgrid. [m]

MPCpd
(p,d)-element of the matrix of potential connections (p ∈ P, d ∈ D). ∀p ∈ P,
∀d ∈ D, MPCpd ∈ {0,1}. -

Qp
Subset of points to which point p can be directly connected with a wire segment (p ∈ P,
d ∈ D: p �= d, MPCpd = 1, Lpd ≤ Lmax). -

EDp Energy demand at p (p ∈ D). [Wh/day]
PDp Power demand at p, considering the simultaneity factor (p ∈ D). [W]

PV generation

S, NS Set of PV panel types and maximum number of PV panels that can be placed at a point,
respectively. -

ESs Energy generated by a PV panel of type s (s ∈ S). [Wh/day]
PSs Maximum power of a PV panel of type s (s ∈ S). [W]
CSs Cost of a PV panel of type s (s ∈ S). [US$]
Z Set of PV controller types. -

PZz Maximum power of a PV controller of type z (z ∈ Z). [W]
CZz Cost of a PV controller of type z (z ∈ Z). [US$]

Electric equipment

B Set of battery types. -
EBb Capacity of a battery of type b (b ∈ B). [Wh]
CBb Cost of a battery of type b (b ∈ B). [US$]
ηb Battery efficiency. [%]
DB Maximum discharge proportion admitted for the batteries. [%]
DA Required autonomy of the batteries. [days]

I Set of inverter types. -
PIi Maximum power of an inverter of type i (i ∈ I). [W]
CIi Cost of an inverter of type i (i ∈ I). [US$]
ηi Inverter efficiency. [%]
CL Cost of an electric meter device. [US$]
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Table 2. Cont.

Parameter Description Unit

Electricity distribution

C Set of wire types. -
RCc Electric resistance (feed and return) of a wire of type c (c ∈ C). [Ω/m]
ICc Maximum intensity of a wire of type c (c ∈ C). [A]
CCc Cost of a wire of type c (feed and return), including the infrastructure (c ∈ C). [US$/m]
Vn Nominal voltage. [V]

Vmin Minimum voltage. [V]
Vmax Maximum voltage. [V]

ηc Wire efficiency. [%]

Specific features for RAE electrification

CA Cost of a shed for equipment storage. [$US]
α Accepted percentage of cost overhead of microgrids w.r.t. individual systems. [%]

Cmax Maximum number of output connections from a microgrid point. -

Table 3. Decision variables of the MILP formulation.

Variable Description Unit

Integer non-negative variables

xsps Number of PV panels of type s placed at point p (p ∈ P, s ∈ S). -
xzpz Number of PV controllers of type z placed at point p (p ∈ P, z ∈ Z). -
xbpb Number of batteries of type b placed at point p (p ∈ P, b ∈ B). -
xipi Number of inverters of type i placed at point p (p ∈ P, i ∈ I). -

Float non-negative variables

fepd Energy flow between points p and d (p ∈ P, d ∈ Qp). [Wh/day]
fppd Power flow between points p and d (p ∈ P, d ∈ Qp). [W]
vp Voltage at point p (vp ∈ [Vmin, Vmax], p ∈ P). [V]

Binary variables

xgp =1, if at least a wind turbine or PV panel is placed at point p (p ∈ P). -
xcpdc =1, if there is a wire of type c between the points p and d (p ∈ P, d ∈ Qp, c ∈ C). -
xlp =1, if point p (p ∈ D) belongs to a microgrid (involving a meter device). -

Taking into account these considerations, the objective function is formulated as
indicated in Equation (1):

[MIN]Z = ∑
p∈D

S
∑

s=1
CSs · xsps + ∑

p∈D

Z
∑

z=1
CZz · xzpz + ∑

p∈D

B
∑

b=1
CBb · xbpb + ∑

p∈D

I
∑

i=1
CIi · xipi

+ 1
1+ α

100

⎡⎢⎢⎢⎣
∑

p∈P|p/∈D

S
∑

s=1
CSs · xsps + ∑

p∈P|p/∈D

Z
∑

z=1
CZz · xzpz + ∑

p∈P|p/∈D

B
∑

b=1
CBb · xbpb

+ ∑
p∈P|p/∈D

I
∑

i=1
CIi · xipi + ∑

p∈P|p/∈D
CA · xgp + ∑

p∈D
CL · xlp + ∑

p∈P
∑

d∈Qp

C
∑

c=1
Lpd · CCc · xcpdc

⎤⎥⎥⎥⎦
(1)

Constraints (2) and (3) define the generation points (xgp = 1) and bound the number of
PV panels (Equation (2)) that can be installed at the same point.

S

∑
s=1

xsps ≤ NS · xgp p ∈ P (2)

S

∑
s=1

xsps ≥ xgp p ∈ P (3)

Constraints (4) to (7) aim to cover the daily electricity needs of consumption points and
capture the relationship between energy and power. Since the energy demanded by users is
not constantly consumed at the same power level, both aspects are modeled with different
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constraints, as shown in the literature [29,40,57,60]. Hence, constraints (4) and (5) define the
daily energy available at each consumption point, bounded by the energy produced by the
installed PV panels (either individually or through a microgrid). In particular, constraint (4)
enforces the conditions of energy conservation and demand satisfaction (demand points
only): the energy arriving at point p plus the energy generated at p itself must be greater than
(or equal to) the energy consumed by p plus the energy dispatched. The constraint includes
the battery, inverter and wire efficiencies. Constraint (5) is equivalent to constraint (4) for
no-demand points.

∑
q∈P|p∈Qq

f eqp +
S

∑
s=1

ESs · xsps ≥
EDp

ηb · ηi

(
1
ηc

+

(
1 − 1

ηc

)
xgp

)
+ ∑

d∈Qp

f epd p ∈ D (4)

S

∑
s=1

ESs · xsps ≥ ∑
d∈Qp

f epd p ∈ P; p /∈ D (5)

Constraints (6) and (7) are analogous to constraints (4) and (5), but for power demand.
The location, type and quantity of inverters are determined according to user’s demand
and only consider the wires’ efficiency.

∑
q∈P|p∈Qq

f pqp +
I

∑
i=1

PIi · xipi ≥ PDp

(
1
ηc

+

(
1 − 1

ηc

)
xgp

)
+ ∑

d∈Qp

f ppd p ∈ D (6)

I

∑
i=1

PIi · xipi ≥ ∑
d∈Qp

f ppd p ∈ P; p /∈ D (7)

Constraint (8) and (9), associated with demand and no-demand points, respectively,
force batteries to store enough energy to cover user demands, considering the required
days of autonomy and the discharge factor.

B

∑
b=1

EBb · xbpb +

(
DA
DB

D

∑
j=1

EDj

ηb · ηi · ηc

) (
1 − xgp

)
≥ DA

DB

⎛⎝ ∑
d∈Qp

f epd +
EDp

ηb · ηi

⎞⎠ p ∈ D (8)

B

∑
b=1

EBb · xbpb +

(
DA
DB

D

∑
j=1

EDj

ηb · ηi · ηc

) (
1 − xgp

)
≥ DA

DB ∑
d∈Qp

f epd p ∈ P; p /∈ D (9)

Constraints (10) and (11), respectively, relate the energy and power flows with the
existence of wires. If there is no wire between two points, the energy and power flows
are zero; otherwise, they can take some value defined through constraints (4) to (7). The
microgrid radial scheme is imposed in constraint (12): each non-generation point can have
at most one input wire. Constraint (13) establishes the voltage drop between two points,
according to the type of wires. In constraint (14), the flow intensity between two points
connected by a wire is bounded by a maximum admissible intensity depending on the
wire type.

f epd ≤
(

∑
j∈D

EDj

ηb · ηi · ηc

)
C

∑
c=1

xcpdc p ∈ P; d ∈ Qp (10)

f ppd ≤
(

∑
j∈D

PDj

ηc

)
C

∑
c=1

xcpdc p ∈ P; d ∈ Qp (11)

∑
q∈P|p∈Qq

C

∑
c=1

xcqpc + xgp ≤ 1 p ∈ P (12)
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vp − vd ≥
Lpd · RCc · f ppd

Vn
− (Vmax − Vmin)(1 − xcpdc) p ∈ P; d ∈ Qp; c ∈ C (13)

f ppd

Vn
−
(

∑
j∈D

PDj

Vmin · ηc

)
(1 − xcpdc) ≤ ICc p ∈ P; d ∈ Qp; c ∈ C (14)

The PV controllers must have an appropriate power determined by the maximum
power of the PV panels installed at a certain point (15). Constraint (16) enforces the
installation of inverters at generation points, while constraint (17) sets xlp = 1 for the
demand points belonging to a microgrid with an input connection (due to the radial
configuration and microgrid power generation performed at no-demand points).

Z

∑
z=1

PZz · xzpz ≥
S

∑
s=1

PSs · xsps p ∈ P (15)

I

∑
i=1

xipi ≤ ∑
j∈D

PDj

ηc
· xgp p ∈ P (16)

∑
q∈P|p∈Qq

C

∑
c=1

xcqpc ≤ xlp p ∈ D (17)

Finally, as mentioned in point (b) of Section 2.3, the characteristics of the equipment to
be considered may depend either on the institutional framework of the electrification project
or on local availability. Here, the limiter boxes only admit two output cables, meaning that
the number of wires from any point p to any demand point of the microgrid is bounded by
Cmax = 2 in constraint (18), therefore restricting the topology of potential microgrids.

∑
d∈Qp

C

∑
c=1

xcpdc ≤ Cmax p ∈ P (18)

4. Case Study: Three Communities in the RAE

The mathematical tool developed in this work is used for the design of rural electrifica-
tion projects in three communities of the RAE: Conambo, Suraka and Santa Rosa. First, the
communities are described in socioeconomic terms, and their main features are determined
according to the analysis presented in Section 2. Once all the relevant data and numerical
parameters are comprehensively collected, the designed tool (based on the solution of a
MILP) is employed to propose a specific electrification design for each case.

4.1. General Description of the Communities

The three communities studied have populations from the Sápara ethnicity and are
located in the basin of the Conambo river. Figure 3 shows a map of Pastaza province, as
well as the air/river routes available (in yellow) to reach the three communities from the
district capital, Puyo. The straight red line indicates the linear distance (130 km) to the
closest point reached by the national electric grid. Due to this geographical location and the
rainforest vegetation predominant in this region, grid expansion has never been considered
a viable option by the MEER, since it would predictably involve huge installation costs,
severe technical issues and a negative environmental impact.
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Figure 3. Map of the Pastaza district.

This map illustrates how Conambo, Suraka and Santa Rosa share comparable living
standards and access to basic services, as well as very similar cultural features. With
regards to basic services, none of the communities is provided with access to drinking
water, drainage systems or electric energy. Santa Rosa is the only community with a small
panel that feeds an internet-based communication system—the result of a recent national
development program. On the other hand, Conambo and Suraka have radio stations to
communicate with urban centers, in cases of medical emergency.

4.2. Problem Data, Point Distribution and Pre-Processing

The electrification of Conambo, Suraka and Santa Rosa is part of a global framework
developed as a collaboration of different actors (EWB and MEER). As a consequence, all
three communities share several conditioning features and numerical data. First, some
guidelines set by Ecuador’s national government mean that several parameters are deter-
mined. For instance, as mentioned in Section 2.3, standardized consumption levels are
imposed by the MEER for all users in the RAE in order to guarantee equal opportunities to
every family. Thus, energy (1000 Wh/day) and power (600 W) demands are considered
equal for all demand points (either housing or community centers). These values were
established from surveys of the local populations, taking into account their needs for light-
ing, telecommunications and small household appliances. Besides, as explained in point c)
of Section 2.3, the type of generation and distribution items is restricted by the size of the
transportation means available for shipping equipment to the targeted communities. In par-
ticular, the aircraft only allows one wire type (thicker cables do not fit in the aircraft), which
may have an impact on microgrid structures (as observed next), because the voltage drop
depends on wiring characteristics and could make some points unreachable. The values
for the remaining parameters common to all three communities are synthesized in Table 4.
Note that, in this table, all the techno-economic parameters (generation and distribution
equipment) were gathered from commercial catalogs locally available in Ecuador.

Then, the geographic coordinates of demand points and potential generation locations
at each community are defined, implicitly determining the distances Lpd between points
p, d ∈ P. Additionally, the specific obstacles at each community allow MPC to be deduced,
and thus the set of neighboring points (p, d ∈ P). Suraka consists of 12 demand points
(9 houses, 2 communal centers and 1 school) and 3 potential generation locations for mi-
crogrids (points 13, 14 and 15, see Figure 4). Santa Rosa has 15 demand points (12 houses,
1 communal center, 1 school and 1 waiting room for air passengers) and 4 potential genera-
tion points (points 16–9, see Figure 5). Finally, Conambo is a wider community, having 60 de-
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mand points (48 houses, 1 communal center, 8 school classrooms, 2 community canteens and
1 waiting room close to the landing strip) and 6 potential generation points (points 61–66,
see Figure 6). Note that in Figures 4–6, red points represent potential generation points,
non-red points are for demand points, and the brown lines stand for landing strips.

Table 4. Numerical values of the parameters shared by the three communities.

Description Parameter Value Unit

Electric equipment

Batteries: types |B| 2 -
Batteries: capacity EBb (b ∈ B) 1800; 3600 [Wh]

Batteries: cost CBb (b ∈ B) 300; 850 [US$]
Batteries: efficiency ηb 85 [%]

Batteries: maximum discharge DB 60 [%]
Batteries: required autonomy DA 3 [days]

Inverters: types |I| 2 -
Inverters: maximum power PIi (i ∈ I) 600; 3600 [W]

Inverters: cost CIi (i ∈ I) 400; 2000 [US$]
Inverters: efficiency ηi 85 [%]
Meter devices: cost CL 50 [US$]

Demand points

Maximum length of wire segments Lmax 300 [m]
Energy demand EDp (p ∈ D) 1000 [Wh/day]
Power demand PDp (p ∈ D) 600 [W]

PV generation

PV panel: types |S| 1 -
PV panel: maximum number NS 40 -
PV panel: energy generated ESs (s ∈ S) 1178.8 [Wh/day]
PV panel: maximum power PSs (s ∈ S) 330 [W]

PV panel: cost CSs (s ∈ S) 350 [US$]
PV controllers: types |Z| 2 -

PV controllers: maximum power PZz (z ∈ Z) 80; 2880 [W]
PV controllers: cost CZz (z ∈ Z) 300; 700 [US$]

Distribution equipment

Wires: types |C| 1 -
Wires: electric resistance RCc (c ∈ C) 0.0016 [Ω/m]

Wires: maximum intensity ICc (c ∈ C) 60 [A]
Wires: cost CCc (c ∈ C) 3.94 [US$/m]

Nominal voltage Vn 110 [V]
Minimum voltage Vmin 105 [V]
Maximum voltage Vmax 116 [V]
Wires: efficiency ηc 90 [%]

RAE’s specific features

Shed cost CA 1500 [$US]
Cost overhead (microgrids vs. individual systems) α −20, 0, 20 [%]

Maximum output connections in microgrids Cmax 2 -

It is now possible to set the elements of the matrix of potential connections (MPC).
Due to the previously explained reasons, obstacles may hinder some connections, which
necessitates a pre-processing stage to determine if each community should be treated as a
whole or divided into several sub-problems to be solved independently. For Suraka, the
landing strip blocks some direct connections, but any point may be indirectly connected
to any other, so it can be considered as a single problem. On the other hand, Santa
Rosa is settled on both sides of the river. Hence, two sub-problems can be naturally
defined (see Figure 5):

• Right side (SR-R), with 4 demand points and 1 potential generation point.
• Left side (SR-L), with 11 demand points and 3 potential generation points.
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Figure 4. Demand and potential generation points in Suraka. Numbers refer to the households (blue)
and potential generation points (red).

 
Figure 5. Demand and potential generation points in Santa Rosa. Numbers refer to the households
(blue) and potential generation points (red).

Finally, Conambo is divided by the meanders formed by the Conambo river (Figure 6),
and the landing strip also represents an obstacle, making some connections impossible
through underground wiring. Consequently, the community is divided into five sub-
problems (identified by different colors in Figure 6):

• Left side (C-L: orange points), 9 demand points and 1 potential generation point.
• Right side A (C-RA: green points), 10 demand points and 2 potential generation points.
• Right side B (C-RB: grey points), 15 demand points and 1 potential generation point.
• Right side C (C-RC: blue points), 20 demand points and 1 potential generation point.
• Right side D (C-RD: lilac points), 6 demand points and 1 potential generation point.
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Figure 6. Demand and potential generation points in Conambo. Numbers refer to the households
(blue) and potential generation points (red).

4.3. Experimental Results

As indicated previously, one contribution of the mathematical tool developed in
Section 3 is the parameter α which, in the objective function, denotes the percentage of cost
overhead accepted per microgrid with regard to individual systems. The introduction of
this parameter was due to MEER’s desire to promote grid formation, concretely proposing
a value α of 20% (a microgrid configuration is preferred if its cost is up to 20% higher
than the cost of individual systems). However, the aim is to design a versatile tool that
may be used in both ways—i.e., either to promote or penalize microgrid formation over
individual systems, depending on the policy makers’ decisions. In order to perform
a sensitivity analysis using this parameter and compare the configurations obtained in
different cases, three executions were performed for each community, with different α
values: 20% (microgrid formation is promoted as proposed by the MEER), 0% (microgrids
are neither penalized nor promoted) and −20% (microgrid formation is penalized, with an
inverse amount compared to that proposed by the MEER). Note that other values could be
chosen for α in order to further promote/penalize grid formation, but the three selected
values (−20%, 0%, 20%) seem to be enough to demonstrate the ability of the proposed tool
to produce different kinds of configurations.

The computational experiments presented here were carried out solving the previ-
ously described MILP problem, using IBM ILOG CPLEX 12.2, run on an IntelCore i7-6700
3.40 GHz processor (16 Gb RAM). The MILP solver employed in CPLEX is based on a
Branch and Cut algorithm. The corresponding OPL code of our model, as well as complete
input data (already available in Section 4.2) and the detailed solutions obtained in every op-
timization process (decision variables and objective function), are available from the follow-
ing website (free public access): https://gitioc.upc.edu/ioc/2022_mathematics_equador
(accessed on 6 April 2022). In this way, the validity of the solutions obtained can be checked
by the reader, and this study is completely reproducible. All the executions are performed
using a relative optimality gap of 10–6 with a 1 h time limit, which proved to be enough
to solve all the tackled instances optimally except the C-RC sub-problem (independently
from the value of α). Note that, for the Santa Rosa and Conambo communities, optimality
could be obtained for the corresponding sub-problems thanks to the “divide-and-conquer”
strategy proposed here, which decomposes communities into sub-problems solved inde-
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pendently and allows for a reduction of instance sizes. This is why a classical solution
tool such as CPLEX could be applied here, despite the complexity of the MILP model,
without the need to develop a new ad-hoc solution technique. In the case of sub-problem
C-RC, the remoteness of certain demand points with regard to the potential generation
location allowed the problem to be further divided. The partial solutions obtained were
reused within the complete model to obtain good quality, feasible solutions whose opti-
mality could be subsequently demonstrated. Specific comments regarding the microgrid
structures obtained for this instance are provided next.

The results are presented in Table 5, which shows, in addition to the size of each
sub-problem, the objective function value and the real cost of the solution obtained (which
may be different from the objective function according to α value) as well a description of
the proposed configuration. In addition, the microgrid topologies produced (for a value
α = 20%, such as that proposed by the MEER) are presented in Figures 7–9 for Suraka, Santa
Rosa and Conambo, respectively. Please note that, in these three figures, yellow/white
dots stand for demand points with/without individual generation systems. In addition,
yellow squares represent the locations used as generation points for microgrids while
gray-outlined white squares are for non-used potential generation points.

 

Figure 7. Microgrid obtained for Suraka.

First, for every sub-problem, different configurations are determined depending on
the value of α (see Table 5), proving the versatility of the formulation developed, which
is capable of adapting to user’s preferences regarding microgrid or individual systems.
However, apart from this global conclusion, different behaviors emerge from a closer
analysis. For the Suraka and C-RA sub-problems, a microgrid involving all demand points
is determined when α = 0 or 20%, while all users are supplied by individual systems when
α = −20%. A comparable trend is observed in SR-L and C L (one-microgrid configuration
when α = 0 or 20%), but, in these cases, some demand points located far away or isolated
by obstacles are supplied by individual systems. In contrast, a different trend is observed
in the remaining instances. For SR-R and C-RD, the minimum cost configurations only
involve individual supplies when α = 0 or −20%, while microgrids are proposed for
α = 20%. These microgrids may include all users (SR-R) or exclude users isolated by
river meanders (C-RD). Finally, C-RB and C-RC further demonstrate the versatility of the
computational tool developed, which proposes three different configurations according
to the α value. When α = −20%, all users are supplied through individual systems; when
α = 0, a combination of individual supplies and one microgrid is designed. The previous
microgrid is expanded when α increases to 20%, including all users for C-RB and part of
them for C-RC.
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Table 5. Solutions obtained for the three communities.

Community Sub-Problem Demand Points α (%)
Obj. Func.

(USD)
Real Cost

(USD)
Configuration

Suraka 12

−20 34,800 34,800 12 individual systems

0 31,110 31,110 One microgrid (all 12 users)
20 25,925

Santa
Rosa

SR-R 4

−20 11,600 11,600 4 individual systems
0

20 10,231 12,277 One microgrid (all 4 users)

SR-L 11

−20 31,900 31,900 11 individual systems

0 29,848 29,848
One microgrid (9 users) and

2 individual systems20 25,840

Conambo

C-L 9

−20 26,100 26,100 9 individual systems

0 25,925 25,925
One microgrid (5 users) and

4 individual systems20 23,538

C-RA 10

−20 29,000 29,000 10 individual systems

0 27,463 27,463 One microgrid (all 10 users)
20 22,886

C-RB 15

−20 43,500 43,500 15 individual systems

0 39,353 39,353 One microgrid (13 users)
and 2 individual systems

20 32,897 39,477 One microgrid (all 15 users)

C-RC 20

−20 58,000 58,000 20 individual systems

0 53,649 53,649 One microgrid (15 users)
and 5 individual systems

20 46,789 53,827 One microgrid (16 users)
and 4 individual systems

C-RD 6

−20 17,400 17,400 6 individual systems
0

20 17,252 19,543 One microgrid (4 users) and
2 individual systems

With respect to the microgrid topologies shown in Figures 7–9, they illustrate behaviors
clearly influenced by the conditions defined in Section 2.3. For instance, only one microgrid
is formed in the solution obtained for Suraka, SR-L and C-RA, while another option would
have been to create more independent microgrids (several potential generation points
are available). Such two-grid configurations are discarded due to the shed required for
equipment storage, which is more expensive than the additional wiring necessary to expand
the microgrid. Besides, regarding C-RC, the configuration of the microgrid obtained with
α = 20% (Figure 9) is restricted by the maximum number of output connections from
limiter boxes, Cmax = 2 (using Cmax = 3 allows cheaper configurations). In addition, some
connections are limited by the type of wires available (due to the space limitations in the
aircraft transporting the equipment), which prevents further expansion of the microgrid
while respecting the allowed voltage drop.

In short, the results highlight that, in four cases, using α > 0 allows microgrids to be
created or expanded to replace the individual systems obtained when α = 0, which confirms
the soundness of the incentive proposed by the MEER (in the four other cases, microgrids
are already found for α = 0). Besides, the difference between the “real” cost of microgrid
configurations obtained with α = 20% and the cost of individual systems (designed when
α = 0) is on average lower than 5%. Therefore, the value proposed by the MEER (20%)
seems high enough to promote the formation of microgrid-based systems. It might even be
decreased in order to appear more attractive from an economic viewpoint without affecting
the final results.
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SR-R 

 

SR-L 

Figure 8. Microgrid obtained for Santa Rosa.

The comparison with classical processes for electrification systems such as those de-
scribed in Section 1 further highlights the scientific contribution of the approach introduced
here and the benefits obtained accordingly. Indeed, the particular features included in
the mathematical model and derived from the conditioning factors proper to the RAE
allowed the design of specific configurations. For example, in some instances for which
several microgrids may have been installed, the requirement of building a shed for gen-
eration equipment led to a single microgrid. In addition, as mentioned before, thanks
to the versatility of the design tool allowed by the α parameter, the systems proposed
show more or larger microgrids than those that would have been obtained by generic tools.
Therefore, the solution strategy developed here is justified by its contribution and, in turn,
the new features introduced here may be included in standard tools in order to expand
their application scope.
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C-L 

 

C-RA 

 

C-RB 

 

C-RC 

C-RD 

Figure 9. Microgrid/individual supply obtained for Conambo.
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5. Conclusions

Despite global electrification rates roughly comparable to those of developed coun-
tries, Ecuador shows enormous disparities regarding access to this service, particularly
in the rural areas of its Amazon basin. As a proposal to overcome these inequalities, this
study presents a tool for the design of stand-alone electrification systems based on solar
energy specially adapted to the case of the RAE. Developing this tool required a deep
understanding of the considered community’s way-of-life, as well as close collaboration
with national institutions and local actors involved in the rural electrification process. This
first step led to the formulation of an MILP model to design systems adapted to the specific
conditioning factors in the RAE, accounting for either individual systems, microgrids or a
combination of both, as well as the location, type and size of the equipment employed.

This mathematical tool was used to determine minimal cost designs for three commu-
nities in the RAE, leading to several conclusions. First, a matrix of potential connections
was introduced to allow the possible breaking-down of large problems into sub-problems,
whose size is tractable through mathematical programming. Besides, the introduction of
RAE-specific features had important consequences on the configurations proposed. In
the first place, microgrid generation equipment cannot be located at demand points, and
the number of output connections from limiter boxes is bounded, influencing the final
microgrid structures. More significantly, the inclusion of preferences regarding microgrid or
individual systems highlighted the versatility of the solution tool, which proposes different
configurations when varying the corresponding parameter α. Numerical experiments pro-
vided general guidelines to support electrification policy making, in particular regarding
the adequacy of microgrid promotion and the setting of α, which may be decreased with
regard to MEER’s proposal (20%) to appear more attractive. In any case, the tool introduced
here can be used to provide efficient solutions independent of the α value established by
policy makers, with obvious benefits for the RAE’s isolated communities.

More generally, this work shows that electrification of the RAE is technically feasible,
provides higher supplies than the benchmark references (1000 Wh/day instead of the
International Energy Agency threshold of 685 kWh/day [5]) and is economically com-
petitive, with costs ranging from 2500 to 3000 USD per consumer. Therefore, the tool
introduced here for electrification systems design has a significant impact on the lifestyle of
the target populations, improving their life quality through access to electricity services,
while respecting their customs and social traditions since the proposed model accounts
for these latter issues. In addition, the electrification systems designed here are based on
environmentally friendly technologies based on renewable energies, thus representing a
movement towards the Sustainable Development Goals stated by the United Nations [1].
Finally, even though the mathematical tool proposed for electrification systems design is
developed according to RAE’s features, it is not limited to the case studies treated here.
Rather, accounting for IEA’s projections that microgrid-based systems using renewables
should account for 30% of the connections to be installed in the next years [61], the model
is formulated and implemented in a generic manner to improve its versatility and allow its
adaptation to distinct geographic contexts (in particular, rural areas of Latin America or
Africa) and policy makers’ priorities.

Regarding perspectives for future work, a first guideline may be a study of the robust-
ness of the configurations designed—sxin particular, accounting for possible variations of
the energy and power demands. On the other hand, the environmental impacts should also
be included in the evaluation of such small-scale electrification projects. Besides, it is worth
recalling that, typically, different factors that play a role in the design of electrification
systems are not always known with certainty. In particular, the amount of PV energy
collected (which depends on meteorological factors) and user’s energy/power demands
(which are often difficult to estimate) are the parameters most frequently considered as
uncertain in the specialized literature. Therefore, accounting for this uncertainty (either
through stochastic programming or fuzzy set theory) might allow the design of more robust
systems and constitutes a promising perspective.
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Abstract: Rural areas in developing countries have the highest concentrations of unelectrified com-
munities. There is a clear link between electricity consumption and the Human Development Index,
as highlighted by the 7th Development Goal of the United Nations. Estimating the energy needs of
the previously nonelectrified population is imprecise when designing rural electrification projects.
Indeed, daily energy demand and peak power assessments are complex, since these values must be
valid over the project’s lifetime, while tight budgets do not allow for the systems to be oversized.
In order to assist project promoters, this study proposes a fuzzy mixed integer linear program-
ming model (FMILP) for the design of wind–PV rural electrification systems including uncertainty
in the demand requirements. Two different FMILP approaches were developed that maximized
the minimum or the average satisfaction of the users. Next, the FMILP approaches were applied
to six Latin American communities from three countries. Compared with the deterministic MILP
(where the energy and peak power needs are considered as specific values), the FMILP results
achieved a better balance between the project cost and the users’ satisfaction regarding the energy and
peak power supplied. Regarding the two approaches, maximizing the users’ minimum satisfaction
obtained globally better solutions.

Keywords: microgrids; rural electrification; fuzzy optimization; developing countries; case studies

MSC: 90C90

1. Introduction

“Ensuring access to affordable, reliable, sustainable and modern energy for all” has
been recognized as the 7th Sustainable Development Goal of the United Nations [1]. Indeed,
a connection exists between the Human Development Index (HDI) and energy access [2]:
for less developed regions, slight increases in electricity consumption lead to huge socioe-
conomic growth, significantly improving the population’s living standards. However, a
significant proportion of the population in rural areas of developing countries still lack
such a service [3].

Extending electricity access through the national grid can have important techno-
economic limitations in rural and remote areas because of the dispersion of demand and
low end-user consumption. In contrast, standalone systems based on renewable energy
are appropriate for isolated communities [4]. In particular, hybrid wind–photovoltaic
(PV) systems can reduce costs and improve supply quality in comparison with single-
technology projects [5]. Hybrid systems have proven to be suitable to address the electricity
needs of residential clusters [6]. Additionally, the combination of individual supplies and
microgrids can help medium-dispersed communities achieve a proper balance between
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extension lines and cost increases [7]. However, the whole design is complex, having to
study many locations and sizes for generators, along with all possible connections among
demand points to form the corresponding microgrids [8]. Hence, decision support tools
are recommended for designing electrification systems correctly [8,9].

There is ample literature dealing with design tools for rural electrification systems
including mathematical models and heuristic algorithms [10–12]. Many works focus on
dimensioning a combination of generation technologies to cover the demand at minimum
cost. The most used software is HOMER [13], which includes a detailed analysis of
the demand, the energy resources and the equipment. For instance, Raji and Luta [14]
used HOMER to design a community microgrid in South Africa, obtaining a technically
and economically viable solution. Other optimization methods, such as integer linear
programming, have also been used to evaluate wind–PV systems [15]. On the other hand,
the distribution of electricity from generators to end users has been less studied [16], with
the particular context of medium-dispersed communities receiving even less attention.
ViPOR [17] considers, through simulated annealing, the location and electricity needs of
each demand point to evaluate whether microgrid extension or individual supply is less
expensive. García-Villoria et al. [18] developed a heuristic process to find the minimum cost
combination of wind and PV technologies as well as microgrids and individual systems to
distribute electricity in remote and medium-dispersed communities.

In the above works, demand was considered as a deterministic value, and the results
are, therefore, subject to the quality of its estimation [19]. Consequently, the estimation of
demand becomes critical, since an underestimation can leave the inhabitants dissatisfied,
while an overestimation can unnecessarily increase the project costs. Inexact predictions will
negatively impact the socioeconomic development of the area and/or produce economically
unsustainable solutions. However, the real demand can be influenced by several factors
such as [11] the local climate and geographic characteristics, the economy and culture,
or the typology of consumers and their lifestyle. Therefore, the estimation of demand is
inevitably subject to uncertainty [20,21].

In order to obtain robust designs regarding demand uncertainty, different approaches
have been developed [22]. A relevant research area has focused on developing predictive
algorithms for future demand estimation. For instance, genetic algorithms have been used
to forecast the electricity requirements of populations in Turkey [23], Iran [24] and Mau-
ritius [25]. For this purpose, social, economic and environmental indicators are gathered,
and optimization algorithms aim to minimize deviation indicators. These algorithms have
also been combined with artificial neural networks to improve the prediction results [26].
Under a different approach, Domenech et al. [27] developed an optimization–multicriteria
methodology to design wind–PV electrification projects, which, first, generates a set of solu-
tions for different demand scenarios and then selects the best one in terms of several criteria.
Nevertheless, the project promoter still has to quantify the demand scenarios as unique
values. From a different perspective, fuzzy logic can help solve complex problems with
data uncertainty in the energy sector [28]. For instance, Onar et al. [29] developed a decision
model with multiple fuzzy criteria for different experts to aid investors in selecting the
most appropriate energy technology. Li et al. [30] proposed a fuzzy programming approach
for planning an electrical energy generating system. Mohammadi et al. [31] introduced
fuzzy elements in an MILP model to help in planning energy systems managing demand
uncertainty. The results can help to achieve a balance between the guaranteed energy,
the system cost and environmental problems. Vahedipour-Dahraie et al. [32] proposed a
risk-averse probabilistic framework to schedule virtual power plants, taking into account
demand response and uncertainty. The model helps to mitigate the negative impacts of
uncertainty on the plant’s performance. Wang et al. [33] developed a stochastic multiob-
jective model to design hybrid energy systems, considering demand and solar radiation
uncertainty through probability distributions.

The reviewed works focused mainly on large- or medium-sized energy systems,
while the analysis of demand uncertainty in the context of small-scale systems for newly
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electrified populations is scarce (Hossain et al.) [34]. As indicated by Domenech et al. [8], ad
hoc tools considering the specific details of end users are required in order to improve the
medium- and long-term sustainability of energy systems for these populations. Galleguillos-
Pozo et al. [35] developed and compared five fuzzy MILP (FMILP) models, considering
different assumptions, to design PV systems that balance the project cost and the demand
satisfaction. This paper combined wind energy, controllers and batteries as well as detailed
novel electrical features to make the most efficient FMILP model for exploring a wider
range of solutions and obtaining better and more detailed electrification options. Hence,
two FMILP models are proposed for designing wind–PV rural electrification projects,
defining the best location and size of equipment for distribution through microgrids and
individual supplies.

Consequently, the project promoters obtained a very powerful tool to assist in decision
making when implementing projects in developing countries as well as robust solutions
that are not dependent on the exact estimation of demand. Two modeling assumptions
were considered and compared for the FMILP model: (a) to ensure that the least satisfied
user was as satisfied as possible; (b) to ensure that the global satisfaction of all users was
as high as possible. To validate the proposed solution procedure, six case studies were
solved: six real communities from three Latin American countries (i.e., Ecuador, Mexico
and Peru). The characteristics of the regions studied vary significantly (i.e., forest, semi-arid
and highland), which tested the model’s performance in different contexts. The solutions
obtained (with FMILP) were compared with those that would have been obtained without
considering demand uncertainty (with MILP). Compared to MILP, the FMILP results
achieved a better balance between the project cost and the users’ satisfaction in terms of the
energy and peak power supplied. Regarding the modeling approaches, maximizing the
minimum satisfaction obtained globally better solutions.

The remainder of the paper is organized as follows: Section 2 describes the specific
problem including the design of wind–PV systems and uncertainty in users’ demand
estimation; Section 3 details the FMILP models for balancing the cost and the demand sup-
plied; Section 4 presents the six case studies and the input data for the validation; Section 5
discusses the results of the case studies; finally, Section 6 highlights the main conclusions.

2. Problem Description

This section first describes the technical considerations of PV–wind electrification
systems (Section 2.1); then, the complexity of estimating the electricity demand of end users
is highlighted (Section 2.2).

2.1. Systems Design

Figure 1 shows the elements of the electrification systems dealt with in this paper
(adapted from [36]). The population was dispersed among the demand points (houses,
schools, health centers, etc.), each at a different location and having its own energy and
peak power requirements. PV panels and wind turbines were used in order to supply
the demand. Controllers protected the charge and discharge of the batteries, where the
energy was stored for supply during non-generation periods. Next, inverters transformed
the DC from the batteries into AC, which is better suited for most appliances. All this
equipment was placed at a generation point, which was the only demand point in the
case of individual systems or one of the demand points in the case of microgrids. The
electricity was distributed at low voltage (LV) among microgrid demand points, using a
radial structure suitable for rural areas in developing countries [17]. In addition, meters
were installed at microgrid points to track users’ consumption.
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Figure 1. Scheme of the rural electrification systems (adapted from [36]).

2.2. Demand Estimation

Determining the energy and peak power demand of end users is complex and involves
quantitative and qualitative information regarding the population as well as the energy
sources prior to electrification [20]. In order to gather such information, local and regional
databases can be consulted, end-users surveyed and interviewed and meetings held with
specific categories of the population (women, children, elders, etc.). In addition, the
surroundings of the community must be examined to identify any other characteristics,
such as climatology or nearby villages, that can influence consumption [37]. Finally, the
future expectations and productive activities to be developed during the project’s lifetime
must also be evaluated [38].

With the above information, the energy and peak power consumption of each demand
point must be assessed; this is a complex task that is, logically, subject to uncertainty.
Moreover, economies of scale and the staggered nature of equipment can lead to small
variations in the demand having a significant impact on the project cost (and vice versa).
Consequently, rather than defining unique values, it is easier for project promoters to deter-
mine both an essential demand, below which the project would not satisfy users’ essential
needs and an improved demand, above which the project would be too expensive [35]. A
balance has to be sought between these two scenarios, maximizing the energy and peak
power supplied on the one hand, while minimizing the project cost on the other.

2.3. Problem Formulation

Considering the above, the model developed to address the problem described must
consider the following elements:

• As input data: The location and electricity requirements of demand points as well as
the cost and technical characteristics of the equipment;

• As variables: The detailed solution including the equipment to be installed at each
point and the microgrid connections between points;

• As an objective function: The maximization of end-users’ satisfaction, considering the
project cost as well as the energy and peak power supplied;

• As constraints: The satisfaction of users’ electricity requirements taking into account
uncertainty and the technical relationships between the equipment installed and the
structure of the distribution microgrids.

3. Mathematical Modeling

In this work, two FMILP models are proposed for designing rural electrification
projects, defining the best location and size of equipment as well as the distribution through
microgrids and individual supplies. The models balance the project cost and the energy
and peak power within the limits defined by the essential and improved demands. In
order to introduce this balance into the models, the end-users’ satisfaction regarding the
energy, peak power and cost are included by means of several variables, normalized on a

222



Mathematics 2022, 10, 1995

0–1 scale. Hence, the solutions defined the satisfaction values for each of the three issues
examined. For the essential demand (or lower values), the minimum energy and peak
power were supplied to end users; thus, satisfaction was 0. In contrast, the project entailed
the minimum cost; thus, satisfaction was 1. For the improved demand (or higher values),
the maximum energy and peak power were supplied to end users; therefore, satisfaction
was 1. In contrast, the project incurred the maximum cost; thus, satisfaction was 1. Finally,
a linear progression from 0 to 1 was assumed for intermediate scenarios. This behavior was
modeled as in the literature [39,40] and was validated by electrification experts [35].

Next, two FMILP models were developed to optimally design standalone wind–PV
electrification systems for rural communities in developing countries, balancing the project
cost and the demand supplied. The deterministic (nonfuzzy) model can be found in Ferrer-
Martí et al. [36], although slight changes were made to better represent solutions: a wind
controller was added to each wind turbine for the proper tracking of these devices, and the
efficiency of the batteries and inverters was adjusted.

As explained before, the balance between the project cost and the demand supplied
was introduced through several satisfaction variables: λ_C for the cost; λ_E for the energy;
λ_P for the peak power. However, balancing these three issues can be conceived under
different approaches, depending on the relative importance given to each one. Galleguillos-
Pozo et al. [35] compared diverse approaches for a simpler problem (neither considering
wind energy, controllers and batteries nor technical aspects such as voltage drops or
equipment efficiencies, as done here), concluding that the best option is to directly compare
the cost satisfaction (which tends toward cheap and low-demand solutions) with the
average energy and peak power satisfaction (which tends toward expensive and high-
demand solutions), without calibration parameters (which simplifies decision making for
project promoters).

It must be noted that two modeling approaches were proposed regarding energy
and peak power satisfaction. First (Section 3.1) was the maximization of the minimum
satisfaction: the least satisfied demand point was focused on, assuming that if this point was
satisfied, the remaining ones would also be more or equally satisfied. Second (Section 3.2)
was the maximization of the average satisfaction: the focus was on satisfying all of the
demand points as much as possible. The results were then be compared to identify those
better representing the end-users’ preferences.

3.1. Minimum Satisfaction Fuzzy Model

The approach modeled in this section assumed the maximization of the minimum
satisfaction, i.e., the satisfaction of the least satisfied demand point of the community.
The input data, variables, objective function and constraints are described below. In each
subsection, the data and the constraints that introduce fuzziness are highlighted.

3.1.1. Input Data

• Indices:

a Used to go through wind turbine options;
b Used to go through battery options;
c Used to go through LV line options;
d Used to go through demand points (when referring to downstream points);
i Used to go through inverter options;
p Used to go through demand points;
q Used to go through demand points (when referring to upstream points);
s Used to go through PV panel options;
z Used to go through PV controller options.

• General parameters:

A Number of wind turbine options (a = 1, . . . , A);
B Number of battery options (b = 1, . . . , B);
C Number of LV line options (c = 1, . . . , C);
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CAa Cost (USD) of wind turbine a, including the support structure and a controller
(a = 1, . . . , A);

CBb Cost (USD) of battery b (b = 1, . . . , B);
CCc Cost (USD/m) of line c, including the support structure (c = 1, . . . , C);
CIi Cost (USD) of inverter i (i = 1, . . . , I);
CM Cost (USD) of a meter;
CSs Cost (USD) of panel s, including the support structure (s = 1, . . . , S);
CZz Cost (USD) of controller z (z = 1, . . . , Z);
DB Maximum depth of discharge (unit fraction) allowed for the batteries;
EAp,a Energy (Wh/day) provided by wind turbine a located at point p (p = 1, . . . , N;

a = 1, . . . , A);
EBb Capacity (Wh) of battery b (b = 1, . . . , B);
ESs Energy (Wh/day) provided by panel s (s = 1, . . . , S);
I Number of inverter options (i = 1, . . . , I);
ICc Maximum admissible intensity (A) of line c (c = 1, . . . , C);
LMAX Maximum distance [m] at which 2 microgrid points can be directly connected;
Lp,d Distance (m) between points p and d (p = 1, . . . , N; d = 1, . . . , N);
N Number of demand points (houses, schools, health centers, etc.);
NA Maximum number that can be installed at the same point;
NS Maximum number that can be installed at the same point;
PIi Peak power (W) of inverter i (i = 1, . . . , I);
PSs Nominal power (W) of panel s (s = 1, . . . , S);
PZz Peak power (W)of controller z (z = 1, . . . , Z);
Qp Set of points d that can be the destination of a microgrid line from point p

(p = 1, . . . , N; d = 1, . . . , N: p �= d and Lp,d ≤ LMAX);
RCc Electrical resistance (Ω/m) of line c (c = 1, . . . , C);
S Number of PV panel options (s = 1, . . . , S);
VB Requested self-sufficiency (days) of the batteries;
VMAX Maximum voltage (V) above which demand points cannot be supplied;
VMIN Minimum voltage (V) below which demand points cannot be supplied;
VN Nominal voltage (V);
Z Number of PV controller options (z = 1, . . . , Z);
α Calibration parameter for the objective function;
ηB Efficiency (unit fraction) of the batteries;
ηC Efficiency (unit fraction) of the lines;
ηI Efficiency (unit fraction) of the inverters.

• Parameters that model fuzziness:

CMAX Maximum project cost. This value can be determined solving the deterministic
model for the improved demand (Ep

MAX and Pp
MAX) [36];

CMIN Minimum project cost. This value can be determined solving the deterministic
model for the essential demand (Ep

MIN and Pp
MIN) [36];

Ep
MAX Improved energy demand (Wh/day) requested by demand point p (p = 1, . . . , N);

Ep
MIN Essential energy demand (Wh/day) requested by demand point p (p = 1, . . . , N);

Pp
MAX Improved peak power demand (W) requested by demand point p (p = 1, . . . , N);

Pp
MIN Essential peak power demand (W) requested by demand point p (p = 1, . . . , N);

ΔC Project cost range. ΔC = CMAX − CMIN;
ΔEp Energy demand (Wh/day) range of point p (p = 1, . . . , N). ΔEp = Ep

MAX − Ep
MIN;

ΔPp Peak power demand (W) range of point p (p = 1, . . . , N). ΔPp = Pp
MAX − Pp

MIN.

3.1.2. Variables

• Integer non-negative:

xap,a Number of wind turbines type a installed at point p (p = 1, . . . , N; a = 1, . . . , A);
xbp,b Number of batteries type b installed at demand point p (p = 1, . . . , N; b = 1, . . . , B);
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xip,i Number of inverters type i installed at demand point p (p = 1, . . . , N; i = 1, . . . , I);
xsp,s Number of PV panels type s installed at demand point p (p = 1, . . . , N; s = 1, . . . , S);
xzp,z Number of controllers type z installed at demand point p (p = 1, . . . , N; z = 1, . . . , Z).

• Real non-negative:

edp Energy (Wh/day) supplied to demand point p (p = 1, . . . , N);
fep,d Energy flow (Wh/day) between demand points p and d (p = 1, . . . , N; d ∈ Qp);
fpp,d Power flow (W) between demand points p and d (p = 1, . . . , N; d ∈ Qp);
pdp Peak power (W) supplied to demand point p (p = 1, . . . , N);
vp Voltage at demand point p (p = 1, . . . , N|vp ∈ (VMIN; VMAX)).

• Binary:

xcp,d,c ∈ {0; 1} One if a line type c directly connects demand points p and d; 0 other-
wise (p = 1, . . . , N; d ∈ Qp; c = 1, . . . , C);

xgp ∈ {0; 1} One if at least one generator (wind turbine and/or PV panel) is in-
stalled at demand point p; 0 otherwise (p = 1, . . . , N);

xmp ∈ {0, 1} One if demand point p belongs to a microgrid (p = 1, . . . , N).

• Dimensionless real non-negative that model fuzziness:

λ_C Satisfaction with regards to the project cost;
λ_E Satisfaction of the least satisfied point regarding the energy supplied;
λ_P Satisfaction of the least satisfied point regarding the peak power supplied.

3.1.3. Objective Function

The objective function (1) aims to maximize the global satisfaction of end users with
the solution obtained. This function includes, on the one hand, the project cost satisfaction
(which tends toward cheap and low-demand solutions) and, on the other, the average
between the energy and peak power satisfactions (which tend toward expensive and high-
demand solutions). In addition, the objective function is calibrated through the α parameter,
which allows for assigning more or less importance to one or another element, depending
on the case study examined. This parameter also enables carrying out sensitivity analyses to
examine the importance of the cost satisfaction vs. the energy and peak power satisfactions.
In this paper, a value of α = 0.5 was considered, according to previous works [35]. Finally,
note that λ_C, λ_E and λ_P are dimensionless variables that represent the satisfaction of
end users in regard to the solution on a 0–1 scale, as in the literature [33]. Their values are
determined after solving the model (Section 5).

[MAX]α · λ_C +
1
2
(1 − α)(λ_E + λ_P) (1)

3.1.4. Constraints

• General constraints

This is example two of an equation: Constraints (2), (3) and (4) define the generation
points (xgp = 1), as those are where the wind turbines and/or PV panels are located.
Constraints (2) and (3) also limit the number of generators that can be installed at the
same point. Constraint (5) sizes the batteries installed at each generation point so that
they cover the demand of the point (edp, defined later in the fuzzy constraints) plus the
dependent points through the output LV lines, taking the self-sufficiency requested, the
depth of discharge and the efficiencies into account. Constraints (6) and (7) link the energy
and power flows with the existence of an LV line between any two demand points, p
and d. Constraint (8) establishes the radial structure of the microgrids: demand points
can only have an input LV line, except for generation points, which cannot have any.
Constraints (9) and (10), respectively, define the voltage drop between any two connected
demand points and the maximum intensity that can flow. Constraint (11) sizes solar
controllers according to the nominal power of the PV panels installed at each generation
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point. Constraint (12) means that inverters can only be installed at generation points.
Finally, constraints (13) and (14) force meters to be installed at microgrid-connected points.

A
∑

a=1
xap,a ≤ NA · xgp p = 1, . . . , N (2)

S
∑

s=1
xsp,s ≤ NS · xgp p = 1, . . . , N (3)

A
∑

a=1
xap,a +

S
∑

s=1
xsp,s ≥ xgp p = 1, . . . , N (4)

B
∑

b=1
EBb · xbp,b

DB·ηB·η I
VB +

N
∑

j=1

EMAX
j
ηC

(
1 − xgp

)
≥ edp + ∑

d∈Qp

f ep,d
p = 1, . . . , N (5)

f ep,d ≤
(

N
∑

j=1

EMAX
j
ηC

)
C
∑

c=1
xcp,d,c

p = 1, . . . , N; d ∈ Qp (6)

f pp,d ≤
(

N
∑

j=1

PMAX
j
ηC

)
C
∑

c=1
xcp,d,c

p = 1, . . . , N; d ∈ Qp (7)

N
∑

q=1|p∈Qq

C
∑

c=1
xcq,p,c + xgp ≤ 1 p = 1, . . . , N (8)

vp − vd ≥ Lp,d ·RCc · f pp,d

VN −
(
VMAX − VMIN)(1 − xcp,d,c

)
p = 1, . . . , N; d ∈ Qp; c = 1, . . . , C (9)

f pp,d

VN −
(

N
∑

j=1

PMAX
j

VMIN ·ηC

)(
1 − xcp,d,c

)
≤ ICc

p = 1, . . . , N; d ∈ Qp; c = 1, . . . , C (10)

Z
∑

z=1
PZz · xzp,z ≥

S
∑

s=1
PSs · xsp,s p = 1, . . . , N (11)

xip,i ≤
(

N
∑

j=1

PMAX
p
PIi

)
xgp

p = 1, . . . , N; i = 1, . . . , I (12)

∑
d∈Qq

C
∑

c=1
xcp,d,c ≤

(
PMAX

p − 1
)

xmp p = 1, . . . , N (13)

N
∑

q=1|p∈Qq

C
∑

c=1
xcq,p,c ≤ xmp p = 1, . . . , N (14)

• Constraints that model fuzziness

Constraint (15) defines the cost satisfaction variable (λ_C). The cost of the equip-
ment installed (left side of the inequality: wind turbines, PV panels, controllers, batteries,
inverters, meters and LV lines) ranges between the minimum cost (CMIN, for full satisfac-
tion λ_C = 1) and the maximum cost (CMAX = CMIN + ΔC, for null satisfaction λ_C = 0).
Constraint (16) carries out an energy balance at each demand point. The energy supplied
to a point through the input lines or the generators installed at that point (left side of
the inequality) must be higher than or equal to the energy consumed by the point (edp)
plus the energy supplied to the dependent points through the output lines (last element).
Constraints (17) and (18) define the energy consumption of each demand point. The con-
sumption of a point ranges between the essential demand (Ep

MIN, for null satisfaction
λ_E = 0) to the improved demand (Ep

MAX = Ep
MIN + ΔEp, for full satisfaction λ_E = 1). In

addition, the efficiency of the LV lines must be considered (or not) depending on whether
it is a point supplied by a microgrid (or a generation point). Considering this, the sum
in brackets is included in both constraints as an upper bound to activate/disable one or
another. Hence, in the case of generation points (xgp = 1), constraint (17) is activated and
(18) disabled. Therefore, the consumption of the point (edp) will be directly a value between
Ep

MIN and Ep
MIN + ΔEp, depending on the value taken by λ_E. In contrast, for points

supplied through a microgrid, constraint (17) is disabled and (18) activated; therefore, the
consumption (edp) still ranges between Ep

MIN and Ep
MIN + ΔEp but also considers the LV

lines’ efficiency (ηC). Additionally, note that the inequalities are defined in such a way that
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λ_E takes the satisfaction value of the least satisfied demand point among the N points.
Constraints (19), (20) and (21) are analogous to (16), (17) and (18), respectively, except for
the peak power demand.

N
∑

p=1

A
∑

a=1
CAa · xap,a +

N
∑

p=1

S
∑

s=1
CSs · xsp,s +

N
∑

p=1

Z
∑

z=1
CZz · xzp,z +

N
∑

p=1

B
∑

b=1
CBb · xbp,b+

+
N
∑

p=1

I
∑

i=1
CIi · xip,i +

P
∑

p=1
CM · xmp +

N
∑

p=1
∑

d∈Qp

C
∑

c=1
Lp,d · CCc · xcp,d,c ≤ CMIN + ΔC(1 − λ_C)

(15)

N
∑

q=1|p∈Qq

f eq,p + ηB · η I
(

A
∑

a=1
EAp,a · xap,a +

S
∑

s=1
ESs · xsp,s

)
≥ edp + ∑

d∈Qp

f ep,d
p = 1, . . . , N (16)

edp ≥ EMIN
p + ΔEp · λ_E −

(
N
∑

j=1

EMAX
j
ηC

)(
1 − xgp

) p = 1, . . . , N (17)

edp ≥ EMIN
p +ΔEp ·λ_E

ηC −
(

N
∑

j=1

EMAX
j
ηC

)
xgp

p = 1, . . . , N (18)

N
∑

q=1p∈Qq

f pq,p +
I

∑
i=1

PIi · xip,i ≥ pdp + ∑
d∈Qp

f pp,d
p = 1, . . . , N (19)

pdp ≥ PMIN
p + ΔPp · λ_P −

(
N
∑

j=1

PMAX
j
ηC

)(
1 − xgp

) p = 1, . . . , N (20)

pdp ≥ PMIN
p +ΔPp ·λ_P

ηC −
(

N
∑

j=1

PMAX
j
ηC

)
xgp

p = 1, . . . , N (21)

3.2. Average Satisfaction Fuzzy Model

Unlike the above model, which considered the maximization of the least satisfied
demand point, now the maximization of satisfaction of all points is taken into account.
Consequently, a specific satisfaction variable is considered for each point, and the objective
function and some constraints are modified as described below.

• Dimensionless real non-negative variables that model fuzziness:

λ_Ep Satisfaction of demand point p regarding the energy supplied (p = 1, . . . , N);
λ_Pp Satisfaction of demand point p regarding the peak power supplied (p = 1, . . . , N).

• Objective function

The objective function (1’) substitutes (1) in order to maximize the global satisfaction
of end users. This function includes, on the one hand, the project cost satisfaction and, on
the other, the average between the energy and peak power satisfactions for all the demand
points. In addition, a calibration parameter α is included and, in this paper, a 0.5 value was
considered [35].

[MAX]α · λ_C +
1

2N
(1 − α)

(
N

∑
p=1

λ_Ep +
N

∑
p=1

λ_Pp

)
(1’)

• Constraints

Constraints (17’), (18’), (20’) and (21’), respectively, substitute (17), (18), (20) and (21).
Note that instead of λ_E and λ_P, now λ_Ep and λ_Pp are used.

edp ≥ EMIN
p + ΔEp · λ_Ep −

(
N
∑

j=1

EMAX
j
ηC

)(
1 − xgp

) p = 1, . . . , N (17’)

edp ≥ EMIN
p +ΔEp ·λ_Ep

ηC −
(

N
∑

j=1

EMAX
j
ηC

)
xgp

p = 1, . . . , N (18’)
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pdp ≥ PMIN
p + ΔPp · λ_Pp −

(
N
∑

j=1

PMAX
j
ηC

)(
1 − xgp

) p = 1, . . . , N (20’)

pdp ≥ PMIN
p +ΔPp ·λ_Pp

ηC −
(

N
∑

j=1

PMAX
j
ηC

)
xgp

p = 1, . . . , N (21’)

4. Case Studies

Six case studies from three different Latin American countries were examined in order
to evaluate the above FMILP models. The main characteristics of the communities and
their population are described as follows: two from the Ecuadorian Amazon (Section 4.1),
two from a semi-arid Mexican area (Section 4.2) and two from the Peruvian highlands
(Section 4.3). Note that the characteristics of the communities varied significantly in order
to test the performance of the proposed solving procedure in different contexts. Finally,
the techno-economic parameters of the equipment considered for the analysis are detailed
(Section 4.4).

4.1. Ecuadorian Communities

The two communities studied were Suraka (2◦02′21′′ S–76◦21′29′′ W) and Conambo
(2◦00′22′′ S–76◦27′08′′ W) (Figure 2). Both have similar standards of living, access to basic
services and cultural characteristics. Regarding basic services, neither of them has access
to drinking water, sewage systems or electricity. Suraka had 12 demand points: nine
houses, two community centers and one school. In contrast, Conambo is a particularly
large community, with 61 demand points: 49 houses, 8 school classrooms and 4 community
centers (i.e., one meeting room, two dining rooms and one waiting room). Finally, according
to the project promoters, wind turbines were not considered for the Amazon communities
because of this technology’s negative environmental impact (mainly, tree felling).

Figure 2. Layout of the Ecuadorian communities.

4.2. Mexican Communities

The communities studied were Tuzal (16◦42′11′′ N–93◦55′02′′ W) and Villa del Rio
(16◦44′42′′ N–93◦55′13′′ W) (Figure 3), located in the state of Chiapas. This state is
in the south of the country and has the lowest HDI: 0.667; there are approximately
6000 communities without access to electricity [41]. Tuzal is 90 km from the regional
capital and had 14 houses, 1 school, 1 community center, 1 store and 1 church. None of the
houses have drinking water; therefore, it must be carried from a nearby well. Access to this
community is difficult because of the mountainous relief. Villa del Rio is 100 km from the
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regional capital and had 20 houses, 1 school, 1 community center, 2 stores and 2 churches.
Access to the community is also difficult because of the mountainous relief and dirt roads.

Figure 3. Layout of the Mexican communities.

4.3. Peruvian Communities

The two studied communities were El Alumbre (6◦52′57′′ S–78◦26′23′′ W) and Alto
Peru (6◦54′25′′ S–78◦37′24′′ W) (Figure 4). The former had 33 houses, 1 school and
1 health center, widely dispersed. Alto Peru had 26 houses, 50% of them concentrated
in 30% of the territory. The wind resource in both communities was variable; in some
parts of the community, the wind resource was high, while other parts had low to mod-
erate wind resource. The solar resource was highly significant, constant and the same for
both communities.

Figure 4. Layout of the Peruvian communities.

4.4. Input Data

Table 1 summarizes the data used for evaluating the proposed solving procedure. The
data are different for the three countries studied. Regarding the essential and improved
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demands, values were defined together with experts from each country, according to the
specific needs of each region’s population. Based on these scenarios, the maximum (CMAX)
and minimum (CMIN) costs for each community are calculated using the deterministic
MILP model [36]. The other data were gathered from commercial catalogues, the literature
review and consultations with project promoters. The models were solved with the ILOG
CPLEX 12.6 on a 2.40 GHz, CPU Intel Core 15-1135G7 computer with 12 GB of RAM.

Table 1. Input data for each community and country.

Community
Ecuador Mexico Peru

Suraka Conambo Tuzal Villa del Rio El Alumbre Alto Peru

Demand
Points

Demand points N 12 61 18 26 35 26

Maximum distance LMAX (m) 500 500 500

Energy
Demand

Essential
Ep

MIN (Wh/day) 1000 (all)
100 (other)

750 (houses)
1500 (churches)

280 (houses)
975 (other) 280 (houses)

Improved
Ep

MAX (Wh/day)
1500 (all)

150 (other)
1125 (houses)

2250 (churches)
420 (houses)
1463 (other) 420 (houses)

Peak
Power

Demand

Essential
Pp

MIN (W) 600 (all)
50 (other)

300 (houses)
750(churches)

200 (houses)
600 (school)

1000 (health c.)
200 (houses)

Improved
Pp

MAX (W)
900 (all)

75 (other)
450 (houses)

1125 (churches)

300 (houses)
900 (school)

1500 (health c.)
300 (houses)

Wind
Turbines

Options A n.a. 6 4

Maximum number NA n.a. 28 28

Energy EApa (Wh/day) n.a. 180 to 121,487 61 to 16,464

Cost CAa (USD) n.a. 1565 to 40,242 974 to 5132

PV
Panels

Options S 1 5 4

Maximum number NS 40 52 52

Energy ESs (Wh/day) 1179 403 to 1048 217 to 652

Nominal power PSs (W) 330 100 to 260 50 to 150

Cost CSs (USD) 350 197 to 245 451 to 800

PV
Controller

Options Z 2 4 4

Peak power PZz (W) 480 to 2880 50 to 200 50 to 200

Cost CZz (USD) 300 to 700 67 to 125 67 to 125

Batteries

Options B 2 4 4

Capacity EBb (Wh) 1800 to 3600 24,422 to 63,360 1500 to 3000

Cost CBb (USD) 300 to 850 132 to 387 225 to 325

Discharge DB (u.f.) 0.60 0.60 0.60

Self-sufficiency VB (days) 3 2 2

Efficiency ηB (u.f.) 0.85 0.85 0.85

Inverters

Options I 2 5 4

Peak power PIi (W) 600 to 3600 450 to 3000 300 to 3000

Cost CIi (USD) 400 to 2000 60 to 582 377 to 2300

Efficiency ηI 0.85 0.85 0.85

Meters Cost CM (USD) 50 50 50

LV Lines

Options C 2 3 2

Resistance RCc (Ω/m) 0.0016 to 0.0030 0.0017 to 0.0027 0.0017 to 0.0027

Intensity ICc (A) 60 to 96 89 to 101 89 to 101

Cost CCc (USD/m) 3.94 to 6.03 4.90 to 5.25 4.90 to 5.00

Nominal voltage VN (V) 220 220 220

Minimum voltage VMIN (V) 210 210 210

Maximum voltage VMAX (V) 230 230 230

Efficiency ηC (u.f.) 0.90 0.90 0.90
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5. Results and Discussion

This section, first of all, discusses the results obtained for the six studied communities
in regard to how balanced solutions were obtained with the proposed FMILP models
(Section 5.1). Then, the two modeling assumptions (i.e., minimum satisfaction and average
satisfaction) are compared to identify the most suitable one (Section 5.2).

5.1. Results for the Six Case Studies

Figure 5 shows the results of satisfaction regarding the cost λ_C (blue), energy λ_E
(green) and peak power λ_P (red) for the six studied communities. The results are organized
in three images per country, using dashed (i.e., Suraka, Tuzal and El Alumbre) or dotted
lines (i.e., Conambo, Villa del Rio and Alto Peru). The results are shown for the four
solutions obtained in each community. The results of the deterministic MILP model are
presented at the extremes of the figure: essential demand (top left) and improved demand
(top right). The results of the FMILP models are presented in the middle: minimum
satisfaction (mid-left) and average satisfaction (mid-right). Hence, for instance, in Suraka
(Ecuador), Figure 5 shows the values of λ_C = 1.00, λ_E = 0.22 and λ_P = 0.16 obtained for
the essential demand with the deterministic MILP model and λ_C = 0.84, λ_E = 0.13 and
λ_P = 1.00 obtained with the minimum satisfaction FMILP model.

Regarding the MILP results, the essential demand solutions have full cost satisfaction
and very low energy satisfaction with, occasionally, high power satisfaction. Indeed, the
essential demand solutions were not limited to null energy and power satisfaction (equal
to 0.0). The reason for this is the staggered nature of the equipment and economies of
scale, which means that, in some cases, a higher energy and/or peak power demand than
needed is supplied without increasing the cost. This varies depending on the community;
for instance, in Tuzal the essential demand MILP model obtained an energy satisfaction of
0.14 and a power satisfaction of 0.90. In contrast, the energy satisfaction in Suraka was 0.22
and the peak power was 0.16. However, improved demand solutions always obtain full
satisfaction for the energy and peak power and null satisfaction when it came to the cost.

Figure 5. Cont.
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Figure 5. Results for the 6 case studies.

Regarding the FMILP solutions, when compared to the essential demand solutions,
they provided similar energy satisfaction (slightly lower or higher, depending on the
community) but with significantly higher peak power satisfaction in exchange for slightly
more expensive solutions. For instance, in Alto Peru energy satisfaction increased from 0.10
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(essential) to 0.26 (minimum) or 0.28 (average) and the peak power from 0.43 (essential) to
0.98 (minimum) or 0.97 (average). These improvements were accomplished with a small
reduction in the cost satisfaction from 1.00 (essential) to 0.77 (minimum) or 0.81 (average).
When compared to the improved demand solutions, the FMILP solutions provided similar
peak power satisfaction but less energy satisfaction to obtain a much higher cost satisfaction.

Thus, the results confirm that the solutions obtained with the FMILP were more bal-
anced than those from the deterministic MILP. In general, the FMILP solutions compensate
for a reduction in one of the satisfaction variables with an increase in one of the other two
satisfaction indicators. Therefore, the use of the FMILP models reduces the negative effects
of uncertainty and obtains robust and globally better solutions in terms of satisfaction.

It is also worth noting that, in all of the Ecuadorian and Mexican communities, the
average satisfaction assumption showed results with an energy satisfaction and equal
peak power satisfaction similar to the minimum satisfaction assumption, but the average
assumption solutions had a higher cost. In contrast, the Peruvian communities showed the
opposite situation. Therefore, the comparison between these two modeling assumptions is
not straightforward and is further examined in Section 5.2.

5.2. Comparison of Assumptions

The above section showed the most balanced solutions obtained with the FMILP
models rather than with the deterministic model. However, the discussion regarding the
minimum satisfaction and the average satisfaction assumptions needs to be examined
in more detail. In this regard, note that the objective functions of the FMILP models
(see Equations (1) and (1’)) balance the cost satisfaction with the average of the energy
and peak power satisfactions. Therefore, the comparison of assumptions in Figure 5 is
not straightforward, since variations in cost satisfaction are not directly proportional to
variations in energy or peak power satisfaction.

In order to deal with this, both assumptions were compared. Figure 6 shows the
12 solutions examined (i.e., six communities with two assumptions per community). For
each solution, two values were calculated: the minimum satisfaction objective function (1),
top image; the average satisfaction objective function (1’), bottom image. For instance, in
Suraka, the minimum satisfaction FMILP was solved, and the obtained value of the objective
function (1) was 1.40 (top). For this solution, the value of the other objective function (1’)
was calculated manually, obtaining 1.41 (bottom). Additionally, also for Suraka, the average
satisfaction FMILP was solved, and the obtained value of the objective function (1’) was
1.49 (bottom). For this solution, the value of the other objective function (1) was calculated
manually, obtaining 1.25 (top).

As shown in Figure 6, logically, the minimum satisfaction solutions (red bars) in the
top image are higher than the average satisfaction solutions (green bars) for all of the
communities; the opposite occurs in the bottom image. However, the differences between
bar sizes were significantly higher for the minimum satisfaction objective function (top)
than for the average satisfaction objective function (bottom). For instance, in Conambo
the difference was 0.19 for the minimum satisfaction objective function (1.33 vs. 1.14),
while it was only 0.05 for the average satisfaction objective function (1.46 vs. 1.51). In El
Alumbre, the differences were even higher: 0.54 (1.44 vs. 0.90) and 0.07 (1.44 vs. 1.51),
respectively. Consequently, the average satisfaction solutions logically obtained top val-
ues for their objective function (1’), but their performance on the minimum satisfaction
objective function (1) was limited. In contrast, the minimum satisfaction solutions are more
recommendable, since they logically obtained the top values in their objective function (1)
and, in addition, they achieved close-to-top values in terms of the average satisfaction
objective function (1’).
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Figure 6. Comparison of the objective function values between assumptions.

In short, as a recommendation for project promoters willing to design an electrification
project for a community without electricity, where demand is difficult to estimate, the
authors suggest solving the two proposed FMILP models; the obtained solutions would
balance, in a different way, the satisfaction regarding the cost, energy and peak power.
Then, a choice can be made between these two solutions based on the very specific details
of each one, taking into account the opinion of experts and the community. However, the
general recommendation is that the minimum satisfaction FMILP model obtains globally
better solutions.

6. Conclusions

Estimating demand in settlements accessing electricity for the first time is complex
and subject to uncertainty. With the current tools, project developers must obtain a unique
electrification solution (the quality of which logically depends on the estimated demand) or
examine different demand values (each one leading to a different solution with a different
cost) and then manually analyze the best one. In both cases, the decision-making process
has limitations that might impact on the performance of the finally implemented solution.
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To overcome this situation, this work developed a tool that enables satisfaction with regard
to the project cost and the energy and peak power supplied to end users to be balanced.

In order to do so, a novel FMILP model was proposed, based on a modeling approach
tested in the literature as efficient, to balance the cost satisfaction and the energy and peak
power satisfaction. Hence, project promoters have a powerful tool for designing rural
electrification projects in developing countries, combining wind and PV technologies as
well as microgrids and individual systems, while taking into account the uncertainty in
demand estimation. Rather than being subject to a specific demand value, the novel FMILP
model enables a range of values to be specified and the most balanced solution is returned.
In addition, two assumptions were modeled: maximizing the minimum satisfaction (focus
on the least satisfied demand point) and maximizing the average satisfaction (global
satisfaction of all points).

The validation of the proposed solving procedure was performed using six case
studies from three Latin American countries (i.e., Ecuador, Mexico and Peru). In particular,
two demand scenarios were defined: an essential demand, to cover basic end-user needs,
and an improved demand, above which solutions would be considered too expensive.
The FMILP solutions (one for each assumption) were compared with those obtained
with a deterministic MILP model. The results show that the MILP models led to low-
supply or expensive solutions, while the FMILP models allowed for a balance between
the cost, energy and peak power to be achieved. Finally, the results for the FMILP models
under the two assumptions were compared. Although the two models can be easily
solved and the best option can then be selected based on specific details, the minimum
satisfaction FMILP model is recommended in the case of promoters wanting a unique
solution, since it obtains the top values for minimum satisfaction as well as close-to-top
values for average satisfaction.

Prior to this work, project promoters could obtain a unique electrification solution,
subject to the quality of the estimation of end-users’ demand. In the case of wanting
to test different demand scenarios, they had to solve each one manually through the
deterministic MILP model and then select the best one after a discussion that might not be
straightforward. In contrast, with the proposed FMILP models, this process is simplified.
Now, project promoters only have to delimit the range of demand values, and the most
balanced solution is directly obtained with each of the two FMILP models developed.
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Abstract: This paper proposes an adaptive protection scheme (APS) based on the original heap-
based optimization (HBO) and a modified HBO (MHBO). APS is used to solve protection relays
coordination problems that include directional overcurrent relays (DOCRs) as well as the distance
relay’s second zone times. The complexity of the coordination problem increases with the impact
of distributed generators (DGs) switching (ON/OFF). Topological changes in grid configuration
frequently occur in distributing networks, equipped with DGs, causing changes in the values and
direction of short circuit currents. This issue becomes a challenge for protection systems to avoid
relays miscoordination and save a network’s reliability. In the proposed MHBO, the Original HBO
is modified by three points, population are divided into subgroups, then they are unified into one
group gradually, those subgroups are exchanging some search agents between themselves, these
search agents are called travelling agents, and the last one is about, upgrading an internal equation in
the original algorithm. For validating the proposed relays coordination, the IEEE 8-bus test system,
and the IEEE 14-bus distribution network are selected as case studies. The obtained simulated
results of the proposed algorithm show better performance compared with those obtained by the
previous algorithms.

Keywords: adaptive protection scheme; direction overcurrent relays; distance relays; distribution
generators; heap-based optimizer; united sub-groups

1. Introduction

The area of protection is currently one of the most important fields in power systems.
To protect transmission lines, both directional overcurrent relays (DOCRs) and distance
relays are generally used. Transmission lines are monitored by these protection relays from
both ends. The occurrence of faults causes relays to activate trip scenarios [1].

Overcurrent relays (OCRs) generally operate based on the magnitude of the fault
current, which is selected within parameters of the relay, whereas DOCRs incorporate the
direction of the current flowing through the transmission line. A potential transformer is
used to determine the direction of the voltage phasor. DOCRs are thus more costly than
traditional OCRs. However, they are more advantageous than OCRs. Those kinds of relays
must be set to operate as the backup, with a time delay greater than that of the primary
relay [2].

Distance relay has two main zones. After detecting a fault, the first one begins working
immediately. To avoid calculation errors, 80 percent of the transmission line is covered by
this zone. The second zone then covers up to 120 percent of the transmission line by delay
time. This large area also includes a portion of another transmission line [3].
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The main issue in this paper is about the reduction of the operating time of the
protection relay in order to provide the protection devices with the ability to isolate the
fault area. This extends the lifespan of the components of the power system, making the
system more reliable and healthier. However, because of constraints between DOCRs pairs
and DOCRs and distance relay pairs, DOCRs and distance relays have more constraints and
complex coordination problems. The miscoordination of these protection relays overlaps
protection operations and fails to take advantage of the benefits of both distance and DOCR
relays [4,5].

The contribution of RES-based distributed generators (DGs) to a distribution system
is important. RES such as solar and wind energy are integrated into power systems. Many
challenges are presented by DGs and problems with coordination, some of which include
the change in the flow of the direction of fault currents and their magnitude [6].

Due to the impact of DGs on distribution networks, the protection system necessitates
a flexible structure. In order to solve the problem of protection relays coordination, this
research presents the adaptive protection scheme (APS) as a solution for this challenge. APS
enables the changing of relay settings for both DOCRs and distance relays in response to any
changes in the state of a network, based on the DG’s ON/OFF states, using predetermined
settings. APS, as a component of information and communication technologies (ICT), is
primarily dependent on the communication network between smart grid components, or
on SCADA. These communication networks enable APS to remotely set relay settings. APS
is tested with a variety of scenarios that are most likely to trip in-network, and the best
protection relay setting in each scenario is determined. This enables the protection system
to reduce miscoordination and malfunction. The primary benefit of APS is to improve the
selectivity and reliability of the protection system over traditional or fixed systems. The
APS configures a group of protection relays that are determined by calculating optimal
settings for each scenario using an optimization algorithm based on the DG’s states [7,8].

Adaptive systems are designed to work on real-time systems. They need fast methods
to rearrange their system’s items. Hence, the APS uses the optimization algorithm due to
its fast performance. APS is addressed in many research papers, which were developed
based on optimization algorithms such as particle swarm optimization (PSO) in [9], ge-
netic algorithm (GA) in [10], differential evolution algorithm (DEA) in [11], ant colony
optimization (ACO) in [12], firefly algorithm (FA) in [13], gravitational search algorithm
(GSA) in [14], manta ray foraging optimization (MRFO) in [7], and hybrid Harris hawks
optimization (HHO) in [15] in order to coordinate the process of DOCRs.

In [1], APS was used to coordinate DOCRs and distance relays using school-based
optimization algorithm (SBO) and its modified algorithm (MSBO). In this paper a new APS
is suggested to solve the same coordination problem between DOCRs and distance relays
but with a better optimal solution.

Usually, Metaheuristic optimization algorithms start with initial values, which are
generated randomly to form their population, but this population between search space
is limited. The optimization algorithm is used to improve the fitness of that population.
Always metaheuristic optimization algorithms are formed by intrapopulation collaboration
as the standard form.

Collaborative multi-population is a term that aims to introduce the SBO. This term
is based on dividing the population into subgroups. This step is useful to increase its
exploration performance.

As presented in SBO, which is a collaborative multi-population framework utilized by
TLBO, the proposed modified algorithm is based on its original idea, which gives it the
capability to increase its exploration performance [16].

This research work suggests a novel idea, which is about the collection of sub-groups
into one main group after exploration is exploited. This idea improved the exploitation
part by the search for an optimal solution with all populations of sub-groups. This idea
balances both optimization algorithms performances exploration and exploitation. This
balance is conducted with a new factor called Mf actor.
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There are many challenges for this idea; one of them is determining of the Mf actor,
which depends on the user’s experience to face the problem of balance between exploitation
and exploration, and the other one is about how to determine the subgroups’ number.
These challenges are faced with the experience of users or trial and error to have a good
performance of the optimization algorithm.

HBO is presented in [17] and applied in many other engineering optimization prob-
lems, such as solar cell estimation [18], reactive power dispatch [19], Micro-grid design and
sizing [20], and Proton exchange membrane fuel cell [21]. HBO solves these optimization
problems with effectiveness.

There are other methods that are used to build APS, such as an environment APS
based on Q-learning as in [22] and multi-agents as in [23,24].

Contributions of this paper are as follows:

• The proposed algorithm’s response and convergence characteristics are improved by
modifying the original HBO algorithm. There are three main points that were modi-
fied: subgroups were divided and then united, traveler agents were placed between
subgroups, and an equation in the original HBO was modified. This algorithm would
be useful in addressing other critical issues in other branches of the power system, such
as microgrid, DG sizing, load frequency control, and solar cell parameter estimation.

• As a solution to the DG impact, an adaptive protection scheme was designed based
on HBO and MHBO. That APS was used to coordinate both DOCRs and distance
relays. In addition to the impact of DGs, the effect of distance relays complicates this
co-ordination problem in the DOCR’s coordination process.

• To verify the effectiveness of the proposed protection system, it was tested on IEEE
8-bus and IEEE 14-bus distribution networks, taking into account the effect of DG
on/off states.

The following is the rest of the paper: the coordination problem and its mathematical
modeling are presented in Section 2. The proposed protection scheme is presented in
Section 3. The performance of HBO and MHBO with IEEE 8-bus and IEEE 14-bus distri-
bution networks to solve the coordination problem is then presented in Section 4. Finally,
Section 5 has the conclusions.

2. The Mathematical Modelling of Coordination Problem

The primary goal of this paper is to achieve the best possible coordination of DOCRs
and distance relays. The objective function (OF) is the total operation times of the DOCRs
at both near (TNear) and far (TFar) ends, as well as the second time zone of the distance
relays (TZ2). That OF is the shortest total operation times as described in [1]:

OF = min

(
n

∑
i=1

TNeari +
n

∑
i=1

TFari +
n

∑
i=1

TZ2i + FPen

)
(1)

The international electro-technical commission (IEC) standard presents the standard
time inverse of DOCRs characteristics by the following equation [2]:

Ti =
∝ ∗TDSi( I f
Ipi

)β
− γ

(2)

where Ti is the relay’s operation time of DOCRs for ith relay, TDS is the relay’s time dial
setting, and Ip is the relay’s pickup current. The other constants α, β, and γ have values of
0.14, 0.02, and 1, respectively [25].

2.1. Problem’s Limiters

The maximum operation time (Tmax) is the primary limitation of any protection relay.
In order to save the components of the power system from damage, this time should not
exceed 2 s [26].
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Relay’s settings are limited with minimum and maximum values for each setting, as
shown in the following equations [27]:

TDSmin ≤ TDS ≤ TDSmax, (3)

Ipmin ≤ Ip ≤ Ipmax (4)

TZ2min ≤ TZ2 ≤ TZ2max (5)

2.2. The Problem’s Constraints

Through the constraints between the primary and backup pair of DOCRs, as well as
between the pair of DOCRs and distance relays at both ends, the proposed optimization
problem becomes a higher constraint problem. These constraints are used to prevent
miscoordination, which can occur when protection relays fail.

As shown in Figure 1, the relationship between DOCRs pair relays must deal with
the backup relay (tb), which operates with a delay time on the primary relay (tp). This
period of delay time is referred to as the coordination time interval (CTI). The CTI value is
determined by the type of protection relays. The CTI value for electromagnetic relays must
be greater than 0.3 s, while digital relays must be greater than 0.2 s [1]. In this research,
digital relays are used. These constraints are depicted in the following equations [27,28]:

tb
F1 − tp

F1 > CTI (6)

tb
F2 − tp

F2 > CTI (7)

Figure 1. The relationship between DOCRs pair relays.

Figure 2 depicts the relationship between DOCRs and distance pair relays. At the near
end, the backup distance relay liaises with the primary DOCRs relay, and TZ2b must delay
tp

F1 with the CTI as described in Equation (8). While Equation (9) describes the distance
and DOCRs relationship at the far end. The second zone of the primary distance relay
(TZ2p) must delay the primary DOCRs operation time (tp

F1) with CTI at the far end [27].

TZ2b − tp
F1 > CTI (8)

TZ2p − tp
F2 > CTI (9)
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Figure 2. The relationship between Distance and DOCRs pair relays.

Based on the operation time of the primary relay at near and far ends. The relationship
is developed to specify the minimum value of the distance relay’s second zone. As shown
in Equation (10), the maximum value of these equations is used as the time for the specific
second zone of distance relay. This point contributes to the reduction of the penalty and
constraints [1].

TZ2 = max
(
TZ2b, TZ2p

)
(10)

For eliminating miscoordination between pairs relays, as recommended, the penalty
function is developed as in the following equation [29]:

Fpen = μ ∗
{

1 i f Tbackup − Tprimary < CTI
0 i f Tbackup − Tprimary ≥ CTI

(11)

where μ is the penalty function‘s weighting factor.
When there is a miscoordination between relays pair, Fpen extends the total time of OF.

As a result, the optimization algorithm tunes the relays setting parameters to reduce the
size of OF to eliminate the miscoordination.

3. The Proposed Protection Scheme

3.1. Adaptive Protection Scheme (APS)

The proposed scheme in this paper is developed based on the optimal solutions
obtained through the use of optimization algorithms. In addition, the HBO algorithm was
used to evaluate the optimal solutions. Moreover, it is modified to improve its convergence
characteristics and its ability to find better optimization solutions.

Figure 3 depicts the flow diagram of APS while taking into account the impact of DG.
The obtained data from supervisory control and data acquisition (SCADA) was optimized
using the centralized processing server. These data will be generated by the proposed
algorithms in the APS to reset the DOCRs and distance relays. The main points of the
proposed APS flow chart can be described as follows:

• The first point defines the actual topology of the distribution network, specifically the
location, state, and size of DGs. Examine the distribution network topology for any
changes. If nothing changes, the APS keeps with current protection relays settings. If
the topology changes, the APS proceeds to the next point.

• In the second point, the APS calculates short circuit currents through CBs. For this
mission, ETAP is used. Then, APS test the current relay settings’ ability to save the
protection system without losing the coordination of protection relays. If the current
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settings of the relays are not able to protect the distribution network, the APS moves
to the next point. Otherwise, APS returns to the previous step.

• In the third point, APS calls up the proposed optimization algorithm. The algorithm
will seek the optimal solution that is suitable for covering changes in the distribution
network while avoiding miscoordination. Finally, the APS reports the best solution for
protection relay settings and sends it via ICT to the network operator or the intelligent
electronic devices (IEDs) [30].

Figure 3. The Flow diagram of the proposed APS.

3.2. Original Heap-Based Optimization Algorithm

HBO is a novel metaheuristic algorithm, which is categorized as a human-based algo-
rithm. HBO simulates the corporate rank hierarchy (CRH) in a very distinctive style. HBO
is presented mathematically based on modeling three states of employee’s relationships:

• Between the subordinates and their immediate supervisor.
• Between colleagues
• Self-contribution of employees

The use of the heap data structure in the CRH mapping allows for organizing the
solutions in a hierarchical manner based on their fitness and the use of the arrangement in
the algorithm’s position-updating process in a very specific way. The mapping of the entire
concept is modeled into the following steps:

• Modeling CRH
• Modeling the relationship between subordinates and the immediate supervisor
• Modeling the interaction between colleagues
• Modeling an employee’s self-contribution to task execution.
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• Overall update of the position of search agent uses the following equation:

xk
i (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xk
i (t), p ≤ p1

Bk + γλk
∣∣∣Bk − xk

i (t)
∣∣∣, p1 < p ≤ p2

Sk
r + γλk

∣∣∣Sk
r − xk

i (t)
∣∣∣, p2 < p ≤ p3 & f

(
⇀
S r

)
< f

(
⇀
x i(t)

)
xk

i + γλk
∣∣∣Sk

r − xk
i (t)

∣∣∣, p2 < p ≤ p3 & f
(
⇀
S r

)
≥ f

(
⇀
x i(t)

) (12)

where xk
i (t + 1) is the updated position, xk

i (t) is the current position, Bk is the parent

position, Sk
r is the colleague position, p is a random value with in [0,1], f

(
⇀
x i(t)

)
is the

fitness value of the current position, f
(
⇀
S r

)
is the fitness value of the colleague position, γ,

λ, p1, p2, and p3 as the following equations:

γ =

∣∣∣∣∣2 − t mod T
c

T
4c

∣∣∣∣∣ (13)

λk = 2r − 1 (14)

p1 = 1 − t
T

(15)

p2 = p1 −
1 − p1

2
(16)

p3 = p2 −
1 − p1

2
= 1 (17)

where t is the current iteration value, T is the total iteration number, r is a random value
with in [0,1], and C as the following equation:

C = T/25 (18)

3.3. Modified HBO Algorithm

The modified part suggests three main points to improve the exploration and exploita-
tion performance of the original algorithm. These points are: update Equation (14), which
describes λ, establishing many small companies then united in one big company, and
traveling agents between companies.

3.3.1. The First Point: Developing λ Factor

This point is about developing the exploitation performance of the original algorithm.
This point deals with the λ factor to modified by adding a term to connect λ with the
iteration number as indicated in the following equation:

λk = 0.5 ∗
(

1 − t
T

)
∗ (2r − 1) (19)

This term gives the original HBO a chance to have more exploitation without effect on
the exploration performance.

3.3.2. The Second Point: Sub-Group and Mf actor

This point is about establishing small groups from search agents, these groups use
HBO as an individual unit, then they are united in bigger groups until united in one group.
As shown in Figure 4. The number of subgroups (Nsubgroup) are determined by the user.
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Figure 4. The diagram of united subgroups idea.

Mf actor is a factor used to determine the number of iterations that are necessary to
begin the unity (tunited). As described in the following equation:

tunited = round

(
Mf actor ∗

T
Nsubgroup

)
(20)

In addition, Mf actor is determined by the user with a percentage value depending on
the optimization problem in this coordination problem determined by 10% to increase the
exploration performance of the HBO algorithm.

This point is very important to discover the search area adding to lose constraints,
which is an important goal in an optimal problem. That point gives the algorithm all
the search agents for exploitation along with other algorithm’s iterations after uniting in
one company.

3.3.3. The Third Point: Travelers

In the final point, in any company there are Travelers, they move between companies,
those travelers give a chance to exchange skills between sub-groups. Travelers are unpre-
dictable, thus, they are chosen randomly. The number of travelers can be limited by the
user as a percentage value from the sub-group members.

4. Results and Discussion

In this research work, APS used both HBO and MHBO to tune optimal relay coor-
dination problem in all cases of test systems. These relay’s settings were TDS, Ip, and
TZ2. DOCRs have normal characteristic values such as 0.14, 0.02, and 1.0 for α, β, and γ
constants, respectively. In addition to the maximum and minimum values of TDS and PS
as 1.1 s and 0.1 s for TDS and 4 and 0.5 for PS. Moreover, the maximum operating time for
the primary DOCRs or distance relays was 1.5 s [27].

The test systems were IEEE 8-bus test system and IEEE 14-bus distribution network.
The test system’s cases were the normal grid topological, and the other was a switch on the
DGs on the grid. Optimal settings were used to reduce the operation time of relays and
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also for passing the system’s constraints in both the near end and far end. These constraints
were between DOCRs and Distance relays. These protection devices were assumed as
digital relays with CTI equal to 0.2 s [1].

The proposed algorithms that were used in this paper have a population, max iteration,
maximum travel percentage, society, and Mf actor with values 840, 1000, 10%, 8, and 10%,
respectively. MATLAB R2016a was used to run these algorithms. While ETAP 12.6.0
was used for the validation of the relay’s operation times and the calculated 3 phase
fault currents.

4.1. Test System I: IEEE 8-Bus Test System

The IEEE 8-bus test system, shown in Figure 5, consists of 7 transmission lines con-
nected between 8 buses and feeds 4 loads from two synchronous generators. These gen-
erators feed the network by power transforms T1, and T2. This configuration will be
considered as the normal topology. In order to investigate the performance of the proposed
APS for relays coordination, an external 400 MW microgrid (EG) will be integrated into the
system at the fourth bus (B4). The test system has 14 CB, each transmission line has two
circuit breakers (CBs), that are activated by the APS. Furthermore, the protection settings
are allowed to be changed according to the change of the grid topology [31].

Figure 5. The single line diagram of IEEE8-bus test system.

The optimization problem aims at tuning 42 design variables. In addition to 40
constraints between DOCRs and distance relays, and 32 constraints between DOCRs in
normal grid topology, while in the other case is 34 constraints. This makes that optimization
problem a highly constrained problem adding to it is a non-linear problem. Each variable
design is limited with maximum and minimum limiters.

Three-phase fault currents and CT values are extracted from [1].
The optimal values of variables designed for protective relays on the normal grid

topology using MHBO and HBO are listed in Table 1. Additional to the other case about
the external grid is the switching on of the optimal solution. Then Table 2 shows that
the proposed algorithm’s optimal solution passed the constraints between DOCRs, and
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between DOCRs and Distance. Whiles constraints pass in both between DOCRs, and
between DOCRs and Distance, as shown in Table 3.

Table 1. IEEE 8-bus test system’s relays setting.

Relay
Traditional Topological Grid DG Switching ON

Original HBO Modified HBO Original HBO Modified HBO

TDS Ip TZ2 TDS Ip TZ2 TDS Ip TZ2 TDS Ip TZ2

1 0.207 120.000 0.942 0.132 227.671 0.915 0.178 229.478 1.037 0.128 308.392 0.957
2 0.161 697.206 0.906 0.159 638.955 0.861 0.216 585.949 1.023 0.187 592.934 0.918
3 0.168 318.967 0.793 0.137 436.578 0.775 0.329 80.000 0.868 0.161 411.669 0.854
4 0.108 338.315 0.734 0.114 279.030 0.696 0.124 611.776 0.826 0.112 692.277 0.822
5 0.100 169.630 0.973 0.100 134.289 0.812 0.100 473.748 0.946 0.113 380.271 0.880
6 0.192 423.086 0.911 0.133 533.546 0.764 0.149 773.098 0.917 0.143 582.907 0.774
7 0.196 249.312 0.941 0.132 426.497 0.911 0.240 263.656 1.036 0.198 311.138 0.956
8 0.174 456.754 0.903 0.154 462.292 0.828 0.188 366.357 0.814 0.163 427.398 0.775
9 0.100 163.739 0.944 0.100 142.484 0.846 0.134 300.808 0.887 0.106 378.627 0.858

10 0.157 182.776 0.718 0.114 295.219 0.695 0.132 591.540 0.836 0.109 699.363 0.795
11 0.154 425.250 0.821 0.100 712.703 0.781 0.128 676.078 0.914 0.106 750.863 0.842
12 0.182 592.216 0.905 0.175 524.187 0.834 0.205 522.155 0.919 0.200 465.759 0.863
13 0.221 120.000 0.993 0.176 149.631 0.916 0.141 290.036 0.997 0.118 328.308 0.942
14 0.175 335.151 0.992 0.124 468.610 0.920 0.195 338.603 0.985 0.155 443.496 0.942

OF 28.609 25.983 30.192 27.799

Table 2. IEEE 8-bus test system’s operation times of Relay’s pairs in Traditional grid by MHBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI Tp Tb CTI Tp TZ2P CTI

1 0.363 0.564 0.201 0.363 0.764 0.401 0.715 2.207 1.491 0.715 0.915 0.2
2 0.510 0.715 0.205 0.510 0.915 0.405 0.661 3.007 2.347 0.661 0.861 0.2
3 0.510 0.711 0.200 0.510 0.911 0.400 0.661 2.899 2.239 0.661 0.861 0.2
4 0.460 0.661 0.200 0.460 0.861 0.400 0.575 0.875 0.299 0.575 0.775 0.2
5 0.375 0.575 0.200 0.375 0.775 0.400 0.496 0.832 0.336 0.496 0.696 0.2
6 0.295 0.496 0.201 0.295 0.696 0.401 0.612 1.992 1.380 0.612 0.812 0.2
7 0.407 0.612 0.205 0.407 0.812 0.405 0.564 ������� ������� 0.564 0.764 0.2

8 0.407 0.720 0.313 0.407 0.920 0.513 0.564 ������� ������� 0.564 0.764 0.2

9 0.392 0.612 0.220 0.392 0.812 0.420 0.711 ������� ������� 0.711 0.911 0.2

10 0.392 0.716 0.324 0.392 0.916 0.524 0.711 ������� ������� 0.711 0.911 0.2

11 0.443 0.711 0.268 0.443 0.911 0.468 0.628 ������� ������� 0.628 0.828 0.2

12 0.443 0.646 0.204 0.443 0.846 0.404 0.628 ������� ������� 0.628 0.828 0.2

13 0.294 0.495 0.200 0.294 0.695 0.400 0.646 2.327 1.681 0.646 0.846 0.2
14 0.379 0.581 0.202 0.379 0.781 0.402 0.495 0.976 0.481 0.495 0.695 0.2
15 0.433 0.634 0.201 0.433 0.834 0.401 0.581 0.807 0.226 0.581 0.781 0.2
16 0.514 0.716 0.202 0.514 0.916 0.402 0.634 1.447 0.813 0.634 0.834 0.2
17 0.514 0.720 0.206 0.514 0.920 0.406 0.634 2.510 1.876 0.634 0.834 0.2
18 0.425 0.628 0.203 0.425 0.828 0.403 0.716 1.905 1.189 0.716 0.916 0.2
19 0.384 0.715 0.332 0.384 0.915 0.532 0.720 ������� ������� 0.720 0.920 0.2

20 0.384 0.646 0.263 0.384 0.846 0.463 0.720 ������� ������� 0.720 0.920 0.2

Figure 6 shows the convergence characteristics curves of HBO and MHBO in the case
of the original case of the grid, whiles Figure 7 deals with the other case. The penalty is
shown in Figure 8. This is for HBO and MHBO in the original case of the grid, while in the
other case, the penalty is shown in Figure 9.
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Table 3. IEEE 8-bus test system’s operation times of relay’s pairs in case external grid switching on
by MHBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI Tp Tb CTI Tp TZ2P CTI

1 0.373 0.574 0.201 0.373 0.774 0.401 0.757 1.860 1.103 0.757 0.957 0.2
2 0.556 0.759 0.203 0.556 0.957 0.402 0.718 3.693 2.975 0.718 0.918 0.2
3 0.556 0.758 0.203 0.556 0.956 0.400 0.718 1.574 0.857 0.718 0.918 0.2
4 0.512 0.718 0.206 0.512 0.918 0.406 0.654 0.971 0.317 0.654 0.854 0.2
5 0.453 0.654 0.201 0.453 0.854 0.401 0.622 1.192 0.570 0.622 0.822 0.2
6 0.421 0.622 0.201 0.421 0.822 0.401 0.680 1.415 0.735 0.680 0.880 0.2
7 0.416 0.680 0.264 0.416 0.880 0.464 0.574 1.577 1.003 0.574 0.774 0.2
8 0.416 0.742 0.325 0.416 0.942 0.525 0.574 ������� ������� 0.574 0.774 0.2

9 0.479 0.680 0.201 0.479 0.880 0.401 0.756 ������� ������� 0.756 0.956 0.2

10 0.479 0.743 0.264 0.479 0.942 0.463 0.756 ������� ������� 0.756 0.956 0.2

11 0.418 0.758 0.340 0.418 0.956 0.538 0.575 ������� ������� 0.575 0.775 0.2

12 0.418 0.658 0.240 0.418 0.858 0.440 0.575 1.960 1.385 0.575 0.775 0.2
13 0.389 0.595 0.206 0.389 0.795 0.406 0.658 1.500 0.841 0.658 0.858 0.2
14 0.437 0.642 0.205 0.437 0.842 0.405 0.595 1.761 1.167 0.595 0.795 0.2
15 0.456 0.663 0.207 0.456 0.863 0.407 0.642 0.855 0.213 0.642 0.842 0.2
16 0.539 0.743 0.204 0.539 0.942 0.403 0.663 2.973 2.310 0.663 0.863 0.2
17 0.539 0.742 0.202 0.539 0.942 0.402 0.663 1.747 1.084 0.663 0.863 0.2
18 0.366 0.576 0.210 0.366 0.775 0.409 0.742 1.353 0.610 0.742 0.942 0.2
19 0.429 0.759 0.329 0.429 0.957 0.528 0.742 ������� ������� 0.742 0.942 0.2

20 0.429 0.658 0.229 0.429 0.858 0.429 0.742 ������� ������� 0.742 0.942 0.2

Figure 6. HBO and MHBO convergence characteristics in the traditional case of IEEE 8-bus.

Previous results proved the ability of the proposed APS to coordinate protection relays
at IEEE 8-bus with reliability and suitable settings. In addition to avoiding miscoordination
within limiters. APS has a more effective performance based on the MHBO than based on
HBO. That is shown by the convergence characteristics. The convergence of MHBO is faster
and better than the original HBO. In addition, the modified algorithm avoids constraints
faster, as presented by the penalty meter. That proved the ability of the modified algorithm
to increase its exploitation and exploration performances.
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Figure 7. HBO and MHBO convergence characteristics in case the external grid switching on of
IEEE 8-bus.

Figure 8. HBO and MHBO’s penalty of the traditional IEEE 8-bus test system’s grid.

Figure 9. HBO and MHBO’s Penalty of the IEEE 8-bus test system with external grid switching on.
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4.2. Test System II: IEEE 14-Bus Distribution Network

The IEEE 14-bus distribution network is a downstream section of the IEEE 14-bus
test system, as shown in Figure 10 [32]. This distribution network has 16 CBs to save its
transmission lines, adding it is developed by adding 2 DGs, which are connected at the
fifth bus and seventh bus. These DGs are synchronous generators with 5 MVA power rated
and power factor of 0.9 lagging. That developed network is discussed in [33].

Figure 10. The single line diagram of 14-bus distribution network.

Three phases short circuit values and CT values are shown as in [28,32].
In this distribution network, protective relays have 48 variables design, which is

required to be tuned by APS in both cases. The normal grid topology and the 2 DGs are
switched on. Those variables design limited the minimum and maximum limiters. In
addition to that, the coordination problem is constrained by 41 between DOCRs and 44
between DOCRs, and Distance relays. These constraints formed in the near end and the
far end.

Optimal values tuned using HBO and MHBO are tabulated in Table 4. They are in
cases of the original topology of the grid and after the DGs are switched on. Table 5 shows
that the APS passed the constraints between DOCRs and between DOCRs and Distance
relays, respectively. The APS passed constraints between DOCRs, and between DOCRs,
and distance relays, as shown in Table 6.

The convergence characteristics curves of HBO and MHBO are shown in Figures 11 and 12,
which occurred in the traditional grid and after switching DGs on, respectively. The penalty
of HBO and MHBO are shown in Figures 13 and 14 to present the penalty in the traditional
grid and the other case, respectively.

As demonstrated through the results and performance of the proposed APS in the
coordination process of protection relays at the IEEE 14-bus distribution network, the fol-
lowing can be stated: APS tuned settings of distance and DOCRs with suitable settings, the
protection system has reliability, effectiveness, and fast performance. APS based on MHBO
has better convergence characteristics and better solutions than APS based on HBO. MHBO
has better convergence and needs less iteration to avoid miscoordination based on penalty
than HBO. This proves that MHBO improved its exploitation and exploration performance.
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Table 4. The IEEE 14-bus distribution network’s relays setting.

Relay

Traditional Topological DGs Switching ON

Original HBO Modified HBO Original HBO Modified HBO

TDS Ip TZ2 TDS Ip TZ2 TDS Ip TZ2 TDS Ip TZ2

1 0.162 220.260 0.924 0.103 331.824 0.831 0.396 425.225 1.642 0.334 400.742 1.377
2 0.100 231.140 0.981 0.109 157.897 0.794 0.229 388.320 1.419 0.207 345.712 1.207
3 0.169 136.227 0.840 0.140 135.702 0.729 0.272 447.128 1.352 0.253 322.388 1.086
4 0.126 48.240 0.887 0.100 53.731 0.795 0.341 73.162 1.567 0.242 99.886 1.389
5 0.185 183.177 0.896 0.148 187.170 0.765 0.554 131.937 1.403 0.353 260.312 1.187
6 0.190 68.554 0.865 0.151 76.625 0.759 0.446 99.856 1.572 0.376 97.299 1.344
7 0.309 86.289 0.909 0.154 300.674 0.817 0.520 249.499 1.516 0.401 283.478 1.267
8 0.142 91.804 0.706 0.173 60.000 0.704 0.397 179.927 1.501 0.218 354.279 1.265
9 0.100 270.557 0.765 0.117 204.846 0.738 0.371 441.540 1.683 0.470 99.719 1.194

10 0.100 192.886 1.021 0.100 164.198 0.889 0.278 296.324 1.614 0.170 428.783 1.395
11 0.189 147.967 0.906 0.137 195.115 0.808 0.393 215.055 1.330 0.390 159.422 1.193
12 0.206 74.439 0.858 0.100 220.970 0.852 0.372 287.695 1.619 0.354 229.531 1.399
13 0.140 78.984 0.870 0.115 86.699 0.787 0.461 90.888 1.560 0.318 107.955 1.216
14 0.304 20.000 0.783 0.184 42.912 0.655 0.595 20.000 1.084 0.588 20.378 1.078
15 0.184 92.008 0.860 0.138 131.920 0.809 0.367 261.465 1.512 0.315 200.627 1.188
16 0.100 180.535 0.868 0.100 156.605 0.787 0.454 173.132 1.709 0.287 230.759 1.309

OF 31.709 27.809 60.429 49.483

Table 5. IEEE 14-bus distribution network’s operation times of Relay’s pairs in traditional grid
by MHBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI Tp Tb CTI Tp TZ2P CTI

1 0.359 0.595 0.236 0.359 0.795 0.436 0.631 1.481 0.850 0.631 0.831 0.2
2 0.359 0.559 0.200 0.359 0.759 0.400 0.631 1.037 0.406 0.631 0.831 0.2
3 0.407 0.608 0.200 0.407 0.808 0.400 0.594 0.906 0.312 0.594 0.794 0.2
4 0.315 0.594 0.279 0.315 0.794 0.479 0.529 1.524 0.995 0.529 0.729 0.2
5 0.315 0.559 0.245 0.315 0.759 0.445 0.529 ������������ ������������ 0.529 0.729 0.2

6 0.255 0.455 0.200 0.255 0.655 0.400 0.595 1.874 1.280 0.595 0.795 0.2
7 0.394 0.594 0.200 0.394 0.794 0.400 0.565 0.996 0.431 0.565 0.765 0.2
8 0.394 0.595 0.201 0.394 0.795 0.401 0.565 ������������ ������������ 0.565 0.765 0.2

9 0.387 0.587 0.200 0.387 0.787 0.400 0.559 0.886 0.886 0.559 0.759 0.2
10 0.387 0.587 0.200 0.387 0.787 0.400 0.559 0.773 0.214 0.559 0.759 0.2
11 0.484 0.689 0.205 0.484 0.889 0.405 0.617 1.287 0.670 0.617 0.817 0.2
12 0.451 0.652 0.201 0.451 0.852 0.401 0.504 0.832 0.328 0.504 0.704 0.2
13 0.304 0.504 0.200 0.304 0.704 0.400 0.538 1.484 0.946 0.538 0.738 0.2
14 0.406 0.607 0.201 0.406 0.809 0.403 0.689 1.342 0.653 0.689 0.889 0.2
15 0.417 0.617 0.200 0.417 0.817 0.400 0.608 1.010 0.402 0.608 0.808 0.2
16 0.430 0.631 0.201 0.430 0.831 0.401 0.652 1.119 0.466 0.652 0.852 0.2
17 0.329 0.529 0.200 0.329 0.729 0.400 0.587 1.580 0.993 0.587 0.787 0.2
18 0.328 0.565 0.238 0.328 0.765 0.438 0.455 3.532 3.077 0.455 0.655 0.2
19 0.328 0.587 0.259 0.328 0.787 0.459 0.455 1.169 0.714 0.455 0.655 0.2
20 0.365 0.565 0.200 0.365 0.765 0.400 0.609 1.400 0.791 0.609 0.809 0.2
21 0.365 0.587 0.221 0.365 0.787 0.421 0.609 2.098 1.489 0.609 0.809 0.2
22 0.338 0.538 0.200 0.338 0.738 0.400 0.587 1.463 0.876 0.587 0.787 0.2
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Table 6. The IEEE 14-bus distribution network’s operation times of relays pairs with DGs switching
on by MHBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI Tp Tb CTI Tp TZ2P CTI

1 0.906 1.195 0.289 0.906 1.389 0.483 1.177 3.066 1.889 1.177 1.377 0.2
2 0.906 1.142 0.236 0.906 1.344 0.439 1.177 3.185 2.008 1.177 1.377 0.2
3 0.747 0.993 0.246 0.747 1.193 0.446 1.007 1.219 0.211 1.007 1.207 0.2
4 0.588 1.010 0.422 0.588 1.207 0.619 0.886 1.657 0.771 0.886 1.086 0.2
5 0.588 1.142 0.554 0.588 1.344 0.756 0.886 ������������ ������������ 0.886 1.086 0.2

6 0.536 0.880 0.344 0.536 1.078 0.542 1.189 3.459 2.271 1.189 1.389 0.2
7 0.788 1.010 0.223 0.788 1.207 0.420 0.987 1.655 0.668 0.987 1.187 0.2
8 0.788 1.195 0.407 0.788 1.389 0.601 0.987 ������������ ������������ 0.987 1.187 0.2

9 0.808 1.016 0.209 0.808 1.216 0.409 1.144 ������������ ������������ 1.144 1.344 0.2

10 0.808 1.106 0.299 0.808 1.309 0.501 1.144 1.354 0.209 1.144 1.344 0.2
11 0.967 1.196 0.229 0.967 1.395 0.428 1.067 2.233 1.166 1.067 1.267 0.2
12 0.917 1.172 0.255 0.917 1.399 0.482 1.065 1.318 0.253 1.065 1.265 0.2
13 0.805 1.057 0.252 0.805 1.265 0.460 0.994 14.694 13.700 0.994 1.194 0.2
14 0.728 0.988 0.260 0.728 1.188 0.460 1.195 1.498 0.303 1.195 1.395 0.2
15 0.842 1.067 0.225 0.842 1.267 0.425 0.993 1.308 0.316 0.993 1.193 0.2
16 0.966 1.177 0.211 0.966 1.377 0.411 1.199 1.567 0.368 1.199 1.399 0.2
17 0.672 0.878 0.206 0.672 1.086 0.414 1.016 2.726 1.710 1.016 1.216 0.2
18 0.726 0.987 0.261 0.726 1.187 0.461 0.878 1.962 1.085 0.878 1.078 0.2
19 0.726 1.106 0.380 0.726 1.309 0.583 0.878 1.458 0.580 0.878 1.078 0.2
20 0.721 0.987 0.266 0.721 1.187 0.466 0.988 1.483 0.495 0.988 1.188 0.2
21 0.721 1.016 0.295 0.721 1.216 0.495 0.988 1.554 0.566 0.988 1.188 0.2
22 0.781 0.994 0.213 0.781 1.194 0.413 1.109 1.335 0.226 1.109 1.309 0.2

Figure 11. HBO and MHBO’s convergence characteristics in traditional grid of IEEE 14-bus distribu-
tion network.
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Figure 12. HBO and MHBO’s convergence characteristics with DGs switching on case of IEEE 14-bus
distribution network.

Figure 13. HBO and MHBO’s Penalty of IEEE 14-bus distribution network’s traditional grid.

Figure 14. HBO and MHBO’s penalty of IEEE 14-bus distribution network with DGs switching on.
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4.3. Verification of MHBO Using ETAP 12.6.0

Results tuned by the MHBO algorithm are verified using the ETAP. All cases developed
based on three-phase faults happened in both the near end and the far end of the following
transmission lines:

The first case is at the transmission line between the 3rd and 4th bus-bars. As shown
in Figure 15, ETAP’s simulation is shown at the near end, operation times of pair relays 3
and 2 operate at 0.662 s, and 0.462 s, respectively, while at the far end, operating times are
0.875 s and 0.578, respectively.

Figure 15. ETAP’s simulation test of pair relays (3,2).

ETAP’s simulation is also conducted, however, in this case, at the transmission line
between 5th and 6th bus-bars. As shown in Figure 16, in this case, the operations time of
pair relays 5 and 4 at the near end are 0.295 s and 0.496 s, respectively, while at the far end
are 0.611 s and 1.98 s, respectively.

For the last case, the simulation is as shown in Figure 17, which is conducted at the
transmission line between the 1st and 3rd bus-bars. That figure shows the operation times
of pair relays 9 and 10 at the near end, which is 0.295 s and 0.494 s, respectively, whereas at
the far end, they are 2.32 s and 0.611 s, respectively.

Simulations confirm that APS based on MHBO has the ability to coordinate protection
relays without miscoordination between DOCRs since all CTI is equal or more than 0.2 s,
and the operation times are within limits.

4.4. Statistical Results

Table 7 provides the statistical analysis of the proposed algorithms for HBO and
MHBO. Each algorithm has a maximum value (Max), minimum value (Min), Mean of
runs, and standard deviation (STD) of runs. The number of runs was 15 for each algorithm
at each test case. These results proved that MHBO had better statistic parameters than
HBO. Moreover, STD shows MHBO was more stable than HBO in all test cases. Therefore,
MHBO has the ability to keep stable performance with more complex distribution networks.
However, HBO has more variance with more complex distribution networks.
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Figure 16. ETAP’s simulation test of pair relays (5,4).

Figure 17. ETAP’s simulation test of pair relays (9,10).

Table 7. Statistical parameters for proposed algorithms at all test cases.

Statistic

IEEE 8-Bus Test System IEEE 14-Bus Distribution Network

Normal DG Normal DG

MHBO HBO MHBO HBO MHBO HBO MHBO HBO

Max 27.776 29.804 29.329 32.713 29.946 33.409 52.313 88.232
Min 25.983 28.608 27.798 30.191 27.809 31.708 49.483 60.429

Mean 26.894 29.142 28.483 31.183 28.996 32.367 50.715 69.651
STD 0.495 0.497 0.375 0.644 0.506 0.509 0.766 8.220
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4.5. Comparison Study

In this paper, APS is designed to coordinate DOCRs and distance relays. That novel
issue was discussed in [1] and presented APS based on the SBO algorithm and its modifica-
tion. Those techniques are recent techniques and have effective performances to design
APS. Table 8 presents the APS’s results based on different optimization algorithms.

Table 8. Comparison between APS’s based on optimization techniques at all test cases.

Optimization Technique
IEEE 8-Bus Test System IEEE 14-Bus Distribution Network

Normal DG Normal DG

MHBO 25.983 27.798 27.809 49.483
HBO 28.608 30.191 31.708 60.429

MSBO 28.072 32.601 34.806 51.068
SBO 33.705 35.388 36.86 57.268

From this table, MHBO has the best results in all test cases. At the same time, HBO
has better solutions than MSBO and SBO in two cases. These cases are the IEEE 8-bus test
system with EG switched ON case, and the normal IEEE 14-bus distribution network case
and the other test cases HBO does not present an impact to the design of APS.

4.6. Applying APS in Real Power System

APS requires many hardware components to be applied in the real power system [34].
Those hardware components are the following:

• Protection relays include microprocessors.
• A central computer system to collect data from sensors, estimate DGs states, and apply

algorithm to tune relay’s setting.
• A communication infrastructure to connect protection relays with the central com-

puter system.

5. Conclusions

In this research work, APS is proposed based on MHBO. The developed algorithm
succeeded to overcome challenges in the area of coordination problem between protection
relays. The simulated results show that APS has the ability to coordinate DOCRs and dis-
tance relays with suitable settings to solve the problem of distribution networks equipped
with DGs. APS allows the power system to investigate both distance and DOCRs benefits
with increased reliability. The modified algorithm (MHBO) makes APS more effective in
resolving the coordination, as it has better convergence characteristics curves and optimal
values than other previously suggested algorithms. The proposed algorithm reduces the
relays time settings below the maximum operation times and within allowed limits. Finally,
primary and backup relays are set without miscoordination at any end.

MHBO is an effective optimization algorithm but limited with the experience of users
to identify its special parameters such as M factor, tunited, and Nsubgroup. They are depended
on the optimization problem.

For future works, those parameters will be used to modify other optimization algo-
rithms. In Addition, MHBO will be used with other optimization problems. Moreover, we
will try to design APS with better performance and characteristics to deal with the impact
of DG, and tested in real large-scales networks.
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Abbreviations

Acronym Name

APS adaptive protection scheme
HBO heap- based optimization
MHBO modified heap- based optimization
DOCRs directional overcurrent relays
DGs distributed generators
OCRs Overcurent relays
ICT information and communication technologies
PSO particle swarm optimization
GA genetic algorithm
DEA differential evolution algorithm
ACO ant colony optimization
FA firefly algorithm
GSA gravitational search algorithm
MRFO manta ray foraging optimization
HHO hybrid Harris hawks optimization
SBO school-based optimization algorithm
MSBO modified school-based optimization algorithm
IEC The international electro-technical commission
SCADA supervisory control and data acquisition
IEDs intelligent electronic devices
CRH the corporate rank hierarchy
EG External grid
Notation Name

OF The objective function
TNear total operation times of the DOCRs at near end
TFar total operation times of the DOCRs at far end
TZ2 the second time zone of the distance relays
Ti the relay’s operation time of DOCRs for ith relay
TDS the relay’s time dial setting
Ip the relay’s pickup current
α, β, and γ Constant values
Tmax The maximum operation time
tb the backup relay’s time
tp the primary relay’s time
CTI the coordination time interval
Fpen the penalty function
μ the penalty function‘s weighting factor.
xk

i (t + 1) the updated position
xk

i (t) the current position
Bk the parent position
Sk

r the colleague position
p a random value with in [0,1]

f
(
⇀
x i(t)

)
the fitness value of current position

f
(
⇀
S r

)
the fitness value of the colleague position
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γ, λ, C, T, p1, p2, and p3 Are special parameters of HBO algorithm
Nsubgroup The number of subgroups
tunited the number of iterations that are necessary to begin

the unity
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Abstract: This paper presents an optimization modeling approach to support strategic planning for
designing hydrogen supply chain (HSC) networks. The energy source for hydrogen production is
proposed to be electricity generated at Mexican sugar factories. This study considers the utilization
of existing infrastructure in strategic areas of the country, which brings several advantages in terms
of possible solutions. This study aims to evaluate the economic and environmental implications of
using biomass wastes for energy generation, and its integration to the national energy grid, where
the problem is addressed as a mixed-integer linear program (MILP), adopting maximization of
annual profit, and minimization of greenhouse gas emissions as optimization criteria. Input data
is provided by sugar companies and the national transport and energy information platform, and
were represented by probability distributions to consider variability in key parameters. Independent
solutions show similarities in terms of resource utilization, while also significant differences regarding
economic and environmental indicators. Multi-objective optimization was performed by a genetic
algorithm (GA). The optimal HSC network configuration is selected using a multi-criteria decision
technique, i.e., TOPSIS. An uncertainty analysis is performed, and main economic indicators are
estimated by investment assessment. Main results show the trade-off interactions between the HSC
elements and optimization criteria. The average internal rate of return (IRR) is estimated to be 21.5%
and average payback period is 5.02 years.

Keywords: sugarcane bagasse; hydrogen energy; electrolysis; MILP; multi-criteria optimization;
genetic algorithm; uncertainty; Monte Carlo simulation; TOPSIS

1. Introduction

In recent years, the popularity of hydrogen as a promising sustainable energy carrier
has increased significantly to contribute to clean energy transition [1]. In particular, hydro-
gen has a noticeable role to play in the transport sector which requires large amounts of
clean energy as an enabler of deep decarbonization of this difficult to abate sector. One of
the advantages of using hydrogen is the availability of different production processes [2].
The biomass contained in some agro-industrial wastes can provide enough energy to be
used for hydrogen production in a variety of processes [3]. Several paths can be followed in
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biomass resource exploitation, among which the selection of the most appropriate conver-
sion technology is challenging. Agro-industrial wastes are commonly known as residues
that offer little benefit to their producers, so their recovery can be an option to investigate.
The use of agro-industrial waste for energy production can be an alternative end-of-life
for these resources by creating sustainable and renewable systems that minimize pollutant
emissions. The cogeneration of electricity and thermal power could provide energy auton-
omy for these companies and additional income from the sale of their energy overflows,
while their waste gets a second use. Applying the necessary technologies for efficient use
of the energy generated from renewable resources requires a comprehensive vision that
includes the assessment of several factors for decision support at different levels [4]. The
objective of this work is thus to include these options in the planning and design of a
hydrogen supply chain network.

The electrical energy used for hydrogen production is generated with agro-industrial
wastes in 50 sugar factories located in Mexico, where steam generators are powered by
burning sugar cane bagasse. The electricity generated is used for self-consumption for the
sugar companies and the excess is often sold to the national grid, but is commonly wasted
because of low demand; thus, an HSC network where the excess energy can be exploited
may turn out to be convenient. In the proposed model, the behavior of the electricity pro-
duction systems is modeled using probability distributions, among other model parameters.
The major contribution of this study is the integration of a multi-objective optimization
model using a genetic algorithm (GA) with a hydrogen production system generated from
agro-industrial waste for mobility purposes, integrating the proposed network with already
existing infrastructure from the national energy industry. The model is evaluated with
energy prices and geographic information from different regions across the country. (GA).
The obtained solutions offer a variety of options for setting the HSC since a multi-criteria
approach is adopted to optimize economic and environmental objectives simultaneously.

The presented mathematical model is inspired on three previously built formulations,
whereby Parker [5] adopts the profit maximization approach for its flexibility in terms of
resource utilization, and de León Almaráz [4] considers global warming criteria, and its
mathematical formulation for transport and storage in an HSC is adopted by this study.
Finally, Rico Contreras [6] presents the mathematical model for generation of electricity at
sugar mills available for hydrogen production; integrating these approaches contributes to
the formulation of the mixed integer linear program (MILP), and significant changes were
made to adapt the mathematical formulation to the case examined in this study.

The optimal HSC network configuration is selected using a multi-criteria decision-
making technique (MCDM). Due to the type of problem (input data), a multi-attribute
decision-making (MADM) method is adopted. This type of technique calculates the distance
between each alternative and a central point. VIKOR and TOPSIS methods were considered
(differing by criteria normalization procedure). Both techniques use the CP method that
seeks to obtain the closest alternative from the hypothetical optimal solution. The TOPSIS
method was selected since it considers the distance to the ideal solution and the distance to
the non-ideal solution, while VIKOR only considers the distance to the ideal solution.

2. Literature Review

The literature review identifies the tools, technologies, resources, and other important
factors to consider when designing the hydrogen supply chain (HSC) for mobility purposes.
The reviewed works were selected based on similar studies with MILP models and the main
scientific objective regarding the design of HSC networks. A variety of case studies were
analyzed to determine the most appropriate research path given the actual conditions of the
field of study. The classification of the relevant studies is based on the objective functions,
agro-industrial waste, raw materials, production technologies (alkaline/ Proton Exchange
Membrane (PEM) electrolysis) and the region where the methodology is implemented.

A review of the different decision levels for HSC is presented in Azzaro C. et al. [7] on
the different components related to hydrogen production, transportation, and distribution.
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More than 40 authors contribute to a compilation of multiple case studies, where the most
recent methodologies used for modeling the HSC supply chain are presented for design,
planning and operation strategies, providing diverse tools that allow the design of complex
systems using mathematical models involving economic, environmental and risk criteria.

Jiyong K. et al. [8] proposed a methodology for HSC infrastructure design including
production, storage, and transportation with a generic optimization-based model. The
network design is formulated as a MILP to identify the optimal configuration of the supply
chain from various alternatives. The goal was to consider not only cost efficiency, but safety
criteria as well. Since these two aspects are contradictory, multi-objective optimization
techniques were required to find practical solutions. With this approach, the effects of
uncertainty in demand can also be analyzed, and deterministic and stochastic analysis
methods were compared.

The pioneering work presented in A. Almansoori and N. Shah [9] emphasizes the
challenges of HSC design focused on three main factors: the presence of various links in the
supply chain (including local hydrogen distribution and refueling stations), the high level
of interaction between the components of the supply chain and their subsystems, and the
uncertainty in hydrogen demand. In this work, the growing uncertainty in the variation of
hydrogen demand in the long term was integrated into an existing generic optimization
model, using a scenario-based approach. For both cases, the most feasible solution involves
a centralized production with small or medium-sized storage facilities and distribution
through tanker trucks. The performance of the model was evaluated using sensitivity and
risk analysis.

In their latest work, Güler MG et al., 2020 [10] presented a design for an HSC in Turkey
for 2021–2050 using a MILP modeling approach. A mathematical optimization model
was adopted to evaluate the objective functions in Turkey. The results show decentralized
production as one feasible alternative to fulfill the demand, and the local production rate
exhibited a significant increase from 12% to 48% by the end of the planning horizon,
revealing future considerations that must be considered. The analysis revealed that almost
all regions either produce or import hydrogen, but do not do both.

The work by P. Gabrielli et al., 2020 [11] concerns the optimal design of a low-carbon
Swiss HSC. The infrastructure design is performed by solving an optimization problem
that determines the hydrogen, biomass, and CO2 network configuration with a focus
on production technologies. A national scale case study was analyzed to derive specific
guidelines concerning the design of the HSC deploying carbon capture and storage. The
impact of relevant design parameters was assessed, such as the location of CO2 storage
facilities, the techno-economic characteristics of CO2 capture technologies and network
losses. The study highlights the benefits of biomass and carbon capture and storage for
decarbonizing HSC networks compared to the use of electrolysis for hydrogen production
due to the high carbon intensity of the electricity mix.

C. Quarton and S. Samsatli, 2020 [12] present an optimization framework to determine
how carbon dioxide and hydrogen technologies could fit into existing value chains in the
energy and chemicals sector, analyzing how effectively these technologies can contribute to
meet the climate change goals. The first study concerning the modeling and optimization
of an integrated value chain for carbon dioxide and hydrogen is performed, providing
assessment of the role of carbon capture, utilization and storage (CCUS), and hydrogen
technologies. The results showed opportunities for CCUS to decarbonize existing power
generation capacity and emphasize the need of renewable energy and hydrogen to achieve
lower cost decarbonization and flexibility in the long term. The importance of negative
emissions policies to encourage investors was also discussed.

An optimization-oriented review regarding HSC design is presented by Lei Li et al.,
2019 [13]. Some drawbacks and missing aspects in the literature are identified, and key
components of the HSC are presented. Models are classified based on several model
features. It is highlighted that profit maximization has received less attention compared
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to other optimization criteria, and only two of the references reported profit as the HSC
performance measure.

A social cost–benefit assessment is performed by Ochoa R. et al., 2020 as post-optimal
analysis for HSC design and deployment [14]. The sequential application of an optimization
strategy employing genetic algorithms and a multi-criteria decision-making tool at first
determine the optimal solution for the HSC network design problem. The evaluation is
then performed by a social cost–benefit analysis (SCBA) to estimate the impact of hydrogen
mobility deployment on social welfare. A subsidy policy scenario was implemented where
results showed that CO2 abatement dominates the externalities, while platinum was the
second largest externality.

Husna I. et al., 2016 [15] present a comparative study between biomass burning and
gasification techniques. It is highlighted that direct burning of biomass and co-firing with
coal is most used since it is the most economic convenient decision for the biomass power
plant, while little plant modifications are required. On the gasification of biomass field,
some points are made highlighting the benefits of chemical recovery to produce higher
process steam and electricity efficiencies, reducing capital cost compared to conventional
technologies.

Loong Lam H. et al., 2013 [16] proposed a methodological framework for designing
waste-to-energy supply chains that considers efficient resources management and reduction
of greenhouse gas emissions. A two-stage optimization model was developed, with
MILP being used in both stages. Different technologies were considered for the whole
exploitation of the resources in alternative forms. It was concluded that the green strategy
adopted contributes significantly to the amount of power generated in existing power
plants. Further studies concerning the integration of the available infrastructure and
alternative energy technologies are required to determine opportunities for a more efficient
resource exploitation.

The study by Gumte K. et al., 2021 [17], presents a nationwide analysis of a supply
chain network fed with bioenergy; the study looks forward to integrating a fraction of
the obtained biofuels with traditional fuels during the 2018–2026 horizon. A MILP is
built to handle multiple types of raw materials, products and transport alternatives, while
performing the techno, economic and environmental analysis, looking forward to making
optimal operational and design decisions. The main findings remark that 43% and above
biomass feed is needed for the supply chain network to survive.

Goodarzian F. et al., 2021 [18] propose the design of a three-echelon green medicine
supply chain network through a fuzzy bi-objective MILP model, considering multiple
periods, products, and transportation modes. The study measures the environmental
impacts derived from establishing pharmacies and hospitals, aiming to reduce greenhouse
gas emissions and to control environmental pollutants. Meta-heuristic algorithms are
used to solve the model, including two novel hybrid algorithms known as Hybrid Firefly
Algorithm and Simulated Annealing (HFFA-SA) and Hybrid Firefly Algorithm and Social
Engineering Optimization (HFFA-SEO).

A bi-objective optimization model approach is proposed by Abdolazimi O. et al.,
2020 [19], where a comparison of exact and meta-heuristic methods is performed. The
main objective of this study is to improve the inventory grouping based on ABC analysis.
The objective functions seek to maximize the total net profit of the items in the central
stock, and in different locations. The aim is to simultaneously optimize the number of
inventory groups, the number of items to be assigned and the service level. Statistical
analysis besides the AHP and VIKOR techniques is implemented to compare the applied
optimization techniques in terms of efficiency. To solve the model in different dimensions,
two exact methods (LP-metric and ε-constraint) and two meta-heuristic methods (NSGA-II
and MOPSO) are applied.

A systematic literature review on multi-criteria decision making methods applied in
different areas of supply chain management is conducted by Paul A. et al., 2021 [20]. A total
of 106 published journal articles were analyzed. It is highlighted that MCDM methods are
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commonly used for analyzing several factors of sustainable supply chain management. In
this review, it is highlighted that most of the published articles combine only two MCDM
methods, and integration with other techniques, such as simultaneous optimization and
simulation, are missing in the literature.

A literature review presented by Tordecilla R. et al., 2021 [21], refers to existing litera-
ture on the use of simulation techniques in the formation of resilient supply chain networks
(SCNs). Research opportunities have been identified for the inclusion of three criteria (such
as financial, environmental, and social) during the process of marking and the application
of a multidisciplinary approach to integrating metaheuristic algorithms, simulation, and
machine learning methods to integrate uncertainty and dynamic conditions.

A multi-objective novel model was developed by Hosseini S. et al., 2020 [22]. The
model deals with the design/reorganization of the wheat supply network, which includes
different suppliers, existing warehouses, warehouse candidate locations, flour mills, and
warehouses in an uncertain environment. The purpose of the proposed model is to reduce
costs, non-resiliency, and the negative effects of social responsibility. The results show that
considering the cost, durability, and social impact simultaneously can greatly help improve
the performance of the wheat supply chain model.

The paper presented by Gital Y. et al., 2020 [23] discusses the appropriate design and
planning of a biomass supply chain network that incorporates flows from poultry farms
to biogas facilities. A multi-stage novel solution methodology is designed to solve the
problem of designing a biomass supply chain network. Spatial information systems, as
well as hierarchy processing techniques, are used to determine the candidate location of
biogas infrastructure. The aim is to determine the total amount, location, and size of biogas
facilities, alongside network flow, and the electricity generated. The sensitivity analysis
shows both maximum distance parameters, and purchase prices have a significant impact
on decisions, as well as financial benefit.

The aim of the research conducted by Rasi R. et al., 2021 [24] is to optimize economic
and environmental dimensions in a sustainable supply chain (SSC) using a MILP model to
incorporate both criteria simultaneously. According to the authors, the value of the work
relies on the limited alternatives regarding the design and optimization of SSC networks.
The research is among the first to integrate the selection of sustainable suppliers and the
optimization of performance indicators. The differences between the genetic algorithms
and the MILP methods can be explained by managing the issues and their various logic
alternatives.

A review regarding the development of biomass-based cogeneration energy systems in
Malasia is presented by Zailan R. et al., 2021 [25]. The aim of the analysis is to report recent
improvements in co-firing technology using biomass in Malaysia with the optimization
modeling role. The authors address technical issues concerning the key players of the
technologies and the biomass supply chain, remarking the importance of biomass utilization
for energy generation in regions where agro-industrial wastes are abundant.

The study presented by Nunes L. et al., 2020 [26] reviews the status of research on
biomass supply chain modelling and highlights the growing importance of biomass as a
renewable alternative energy source. The review identifies modeling as a critical step in
improving comprehension leading to improved supply chain performance. It is said that
research using supply chain models focuses on examining specific supply chain conditions,
often with the aim of reducing costs.

Seung S. et al., 2020 [27] presented a study involving the development of a hydrogen
supply chain optimization model using a centralized storage approach that integrates
and combines the flow of different production facilities into integrated bulk storage. The
results show that a hydrogen supply chain with a central storage approach improves the
phase transition of the hydrogen-producing plants, while reducing the total annual cost of
the network.

A techno-economic analysis review of biomass supply chain was conducted by Yuen
S. et al., 2021 [28]. The study emphasizes the growing needs of biomass caused by the
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increased risk of climate change. The study aims to provide an overview of the different
types of methods or techniques used to assess the feasibility of biomass-based industries
from a technical point of view. The study also looks forward to describing the uncertainty
of the supply chain that should be included in the model test using the Malaysian case
study to show the impact of this uncertainty. In total, 78% of reviewed articles chose the
method of testing the mathematical model with optimization. A minority have undergone
stochastic tests that include systemic uncertainty.

Rafique R. et al., 2021 [29] introduces and develops a model to design a bioenergy
supply chain with the aim of minimizing the energy gap under budget and the challenges
of biomass availability. The dynamic features of the model capture interactions between
people, size, energy demand, biomass availability, energy consumption and the overall
domestic product. The analysis highlights that the cost of further development of the
bioenergy system can vary greatly during the planning horizon. Complete configuration
starts as a very central system and shifts to a decentralized system divided into areas where
power plants emit biofuel and provide energy locally.

Li L. et al., 2019 [30] conducted a study focusing on developing a mathematical model
that encompasses the entire hydrogen supply network. The model is integrated with a
hydrogen fueling station planning approach to produce a new configuration. The proposed
model looks at the supply of feedstock, installation and operation facilities, the operation of
transportation modes, and a system for carbon capture and storage. The proposed model
can study the interactions that exist between different parts of a hydrogen supply network.
Therefore, many HSC building plans are guaranteed.

From the reviewed literature, it can be concluded that further research in terms of
evaluating the economic and environmental benefits of utilizing alternative energy sources
and technologies in the existing energy industry infrastructure might provide the sufficient
arguments to determine whether it is convenient or not to look forward to the exploitation of
agricultural wastes for these means in specific regions. A summary of the literature review
is presented in Table 1. We classified the relevant studies based on the adopted objective
function, feedstock types (energy sources), considered hydrogen production technologies,
and analyzed case studies. This study assesses the economic and environmental behavior
of a power-to-hydrogen supply chain through a stochastic modelling approach, where the
existing energy and biomass infrastructure is integrated on a national scale. Electricity
produced by biomass combustion is already available as an energy source across the country
due to the large quantities of sugarcane bagasse generated annually by agro-industrial
activities and the ready-to-use infrastructure located at biomass producer facilities for
energy generation and self-consumption, although a considerable part of this energy may
be wasted due to the lack of synchronization of supply and demand. The results can help
provide alternatives for countries that rely heavily on primary and secondary activities
where biomass is widely available and where national energy autonomy is a concern.

Table 1. Summary of the reviewed literature with a supply chain optimization approach.

Reference Objective Function
Feedstock

(Energy Source)
Hydrogen Production

Technology
Case Study

[8]
Total cost minimization

Total relative risk
minimization

NG, renewable electricity SMR, electrolysis South Korea

[9] Total cost minimization NG, oil, coal, biomass, solar
power

SMR, biomass and coal
gasification, electrolysis Great Britain

[10] Total cost minimization
NG, coal, biomass, solar,

wind, hydroelectric,
geothermal

SMR, coal and biomass
gasification, electrolysis Turkey

[11] Total cost minimization
GWP minimization NG, biomass, electricity SMR, gasification,

electrolysis Swiss
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Table 1. Cont.

Reference Objective Function
Feedstock

(Energy Source)
Hydrogen Production

Technology
Case Study

[12] NPV maximization
Emissions minimization NG, wind power Electrolysis Great Britain

[14] Total Cost minimization
GWP minimization

NG, renewable electricity,
nuclear power SMR, electrolysis France

(Midi-Pyrénées)

[15] - Coal, biomass Electrolysis, gasification Malaysia

[16] NPV maximization
Transport cost minimization Biomass - Malaysia

NG = Natural Gas, SMR = Steam Methane Reforming, GWP = Global Warming Potential, NPV = Net
Present Value.

The objective of this study is to evaluate the economic and environmental implications
of using biomass wastes from sugar factories for energy generation, opening the scope to a
non-conventional application according to the state of the art, which implies the utilization
of already existing infrastructure, at the time that a resource commonly considered as waste
is exploited. The innovation value of this contribution relies on the proposal of a wastes
exploitation scheme that can be escalated in a variety of ranges, and can be applied to other
energy sources, like biomass wastes originated from other agro-industrial sectors.

3. Materials and Methods

3.1. Methodological Framework

The methodological framework applied in this study is presented in three general
frames; the first one concerns the input data used in the modelThe second aspect refers
to the tools used to find the optimal solution for the proposed model, which implies the
mathematical formulation, solving methods and solution selection technique. The last
segment shows the outputs obtained from the applied methodology and its representation
form, which implies a pareto front and graphic representations of the optimal supply chain
configuration (Figure 1).

 

Inputs 
Geographical breakdown 

 
Technological option 

availability 

            

     

Technical, financial and 

environmental data 

Optimization 
Mathematical model 

Solution methods 

 

      

Outputs 
Trade-off solutions 

Supply chain configuration

MULTIGEN 

TOPSIS 

Figure 1. Methodological framework applied.
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3.2. Modelling Assumptions

The actual model describes the optimal behavior of a hydrogen production system
in the steady state, considering many aspects, such as the production, distribution, and
storage operating and investment costs, the accessibility of the raw material, the selling
price for hydrogen at distribution points, and the greenhouse gas emissions. The approach
applied focuses on developing an optimization model that maximizes profit and minimizes
greenhouse gas (GHG) emissions in a system where hydrogen is obtained using agro-
industrial wastes from sugar factories in Mexico.

The model arrangement integrates several assumptions that serve as a starting point
for the estimation of the economic and environmental indicators that support the decision-
making process in the strategic planning of the HSC. These assumptions are as follows:

• The operating time of the system is divided into harvest and non-harvest periods, in
which the behavior during the generation of electrical energy differs from one another.

• It is assumed that investments in land and construction have already been paid off.
Therefore, these aspects are not considered in the required capital investment.

• Given amounts of available electric energy and storage capacities are considered as
model constraints.

3.3. Optimization Model Structure

The proposed model structure is integrated through several calculation modules,
which are mainly divided into the following areas: production, transport, and storage.
Figure 2 shows the general structure of the model. A description of each module is
presented later.

ALK = Alkaline electrolysis, PEM = Proton Exchange Membrane electrolysis 

Figure 2. Hydrogen supply chain superstructure.

3.3.1. Hydrogen Production Module

The production module estimates the amount of hydrogen that is convenient to
produce based on the availability of electrical energy generated in each of the sugar cane
mills by burning bagasse, which is an uncertain parameter for every mill whose behavior
responds through probability distributions. The major objective of these calculations
is to estimate the operating and investment costs that will result from the production
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infrastructure. In this section of the model, the selection of the best production technology
and the estimate of the amount of hydrogen to be produced by each sugar factory is
evaluated (Figure 3).

 

Figure 3. Hydrogen production scheme.

Hydrogen production is divided into two periods: the harvest season, when the
greatest amount of H2 is produced due to the enormous amount of electricity generated
from the intensive operation of the sugar factories during this time of year; and the non-
harvest season, during which mill operations are reduced due to the lack of raw sugarcane
to be processed, thereby lowering the rate of electricity generation and the amount of
energy available for hydrogen production. The length of each period is considered as an
uncertain parameter according to probability distribution given in days per year [6].

Production cost estimations start by calculating the tons of raw sugar cane that will be
processed by each mill during harvest times. The amount of bagasse obtained from sugar
cane processing and the amount of moisture it contains are also measured. These values are
unique for every sugar cane mill and are represented by probability distributions obtained
from historical production records. Humidity measurement is used to determine bagasse
energy potential [17]. The amount of bagasse that is used in each mill to generate steam in
the boiler rooms during each period depends on the energy consumption behavior of the
mill. The steam production dedicated to power generation in each period is estimated using
the theoretical efficiencies of the boiler and the bagasse energy potential, also considering
the fraction of the dead time operation. Using the amount of steam used to generate
electricity, the amount of MWh generated in each period is calculated. Some of this
electricity is used by the sugar factories for their daily activities, whereas the overflows
are usually fed into the national electricity grid and sold to other organizations. In the
proposed model, the energy overflows are used for hydrogen production, whereas their
availability is different for the harvest and non-harvest periods.
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Once the amount of electrical energy available for hydrogen production in each mill
during each period is determined, the optimization model evaluates the most convenient
means of production to convert the energy to hydrogen; the proposed technologies are
alkaline water electrolysis and proton membrane exchange electrolysis, considering effi-
ciency, investment capital and annual operating costs for each type of production facility.
In addition, the variable production costs are calculated, considering the electricity and
water prices for each region in which the hydrogen is produced.

3.3.2. Hydrogen Transportation Module

The hydrogen transport module focuses on estimating the capital and operating
costs arising from hydrogen distribution activities throughout the supply chain, from the
production facilities to the delivery of the hydrogen to the storage and dispatch stations
(SDSs)—these are the endpoints where the hydrogen would be stored before they are
delivered to the refueling stations (refueling stations are not considered in the actual
model). In the analysis, the SDSs are considered as the final stage of the proposed supply
chain design (as presented in Figure 4). The amount of greenhouse gas emissions caused by
transport activities is also estimated. To achieve this, the optimization model determines the
hydrogen flow in tons per year, considering the hydrogen that is generated in both harvest
and non-harvest seasons. The model then evaluates the convenience of transporting the
hydrogen generated in each electrolysis plant to each storage location; the most favorable
network configuration relies on the active objective function. When optimizing with
multiple destinations, two main factors influence this decision: the shipping distance (an
aspect that has a direct impact on transport costs and equivalent CO2 kg production),
and the selling price of hydrogen at the storage locations, a value that relies on the SDSs’
location selected to receive the determined amount of H2, which has a direct impact on the
income generated.

 

Figure 4. Hydrogen distribution scheme.
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Once the annual hydrogen flow is estimated, the number of trips to be made by the
transport trucks is calculated based on the vehicle’s loading capacity. The time available
for each transport vehicle is considered in the calculation, and the number of vehicles
required for all distribution operations during the year is determined, thereby obtaining
the transport investment cost. The transport operating costs are estimated considering the
fuel consumption, the maintenance cost factors (whereby both costs depend directly on
the travelling distance from the electrolysis plant to the SDS), the driver’s wages, and the
toll costs of the selected route. The distance and the toll costs of 50 sugar cane mills for
each of the 73 SDSs are shown as two data fields that can be called up via the information
system of the national communications and transport department. Finally, the amount of
equivalent CO2 emitted by the network is calculated.

3.3.3. Hydrogen Storage Module

Liquid hydrogen is stored at the SDS, these being the storage points selected by the
model in the multiple solutions found. This module calculates the investment capital and
operating costs required for the storage units. The number of storage units is determined
by the model according to the maximum hydrogen inventory received at a given station
during the year of operation. Within these costs, the conditioning energy required for
hydrogen compression is calculated and its price depends on the region where the SDSs
that have been selected for storing the hydrogen are located. Additionally, the storage
costs per unit are considered, including the operating and maintenance costs of the storage
unit. The above factors determine the total cost of storage, a value that is added to the
cost of production and transportation to determine the final cost of hydrogen on each SDS.
Moreover, the revenue generated at each station depends on the gasoline sales price at
such SDS, as this price is used as a reference for establishing a competitive sales price for
hydrogen, as both serve as mobility fuel for medium-sized vehicles.

3.4. Optimization Model Formulation
3.4.1. Model Notation and Decision Variables

Multiple acronyms definitions, as well as model variables and parameters are pre-
sented in Table 2.

Table 2. Glossary.

Nomenclature Description

Alk Alkaline electrolysis
CCUS Carbon capture, utilization and storage
CONACYT Consejo Nacional de Ciencia y Tecnología
CONADESUCA Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar
FCEV Fuel cell electric vehicle
GA Genetic algorithm
GHG Greenhouse gas
GWP Global warming potential
HSC Hydrogen supply chain
HSCN Hydrogen supply chain network
MILP Mixed integer linear programming
Min Minimize
MW Mega watt
MWh Mega watt hour
NG Natural gas
NPV Net present value
O&M Operation and maintenance
OF Objective function
PEM Proton exchange membrane electrolysis
SCBA Social cost–benefit analysis
SDS Storage and dispatch station
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Table 2. Cont.

Nomenclature Description

SMR Steam methane reforming
TOPSIS Technique for order of preference by similarity to ideal solution
Indices

i Sugar mills
p Hydrogen production technology
r Identification number for regions
t Identification number for storage and dispatch stations
z Production period
Decision Variables
Fit Hydrogen flow rate between sugar mill i and station t (ton/year)
PEip Electrolysis plant type p at sugar mill i logic variable with values of 0 or 1
PH2ipz Hydrogen production rate during period z from plant type p at sugar mill i (ton/year)
Parameters

ADt Available storage capacity at station t (m3)
AExpt Total annual expenses of hydrogen stored at station t ($/year)
AProft Annual profit generated at station t ($/year)
ATollCit Annual toll costs between sugar mill i and storage station t ($/year)
CAlm

t Annual storage cost at station t ($/year)
Capexp Capital expenditures for electrolysis plant type p ($/MW)
CapInst

ip Installed capacity of plant type p at sugar mill i (MW)
CapTrans Transportation mode capacity (ton)
CComb

it Fuel transportation costs between sugar mill i and storage station t ($/year)
CCond

t Conditioning cost per ton of hydrogen at station t ($/ton)
CFPip Annual fixed production cost for plant type p at sugar mill i ($/year)
CFUPip Fixed production costs per ton of hydrogen for plant type p at sugar mill i ($/ton)
CIPip Production investment capital ($)
CMant

it Maintenance expenses for transportation mode between sugar mill i and storage station t ($/year)
CMOit Annual transportation labor costs between sugar mill i and station t ($/year)
CProd

t Annual hydrogen production costs stored at station t ($/year)
CTrans

it Transportation cost between sugar mill i and storage station t ($/year)
CUAlm Storage cost per ton of hydrogen at station t ($/ton)
CUP

ip Production cost per ton of hydrogen for plant type p at sugar mill i ($/ton)
CVUP

ip Variable production cost per ton of hydrogen for plant type p at sugar mill i ($/ton)
dit Distance between sugar mill i and storage station t (km)
DMT Availability of transportation mode (days/year)
DOpz Operational days during period z (days)
EC Fuel economy of transportation mode (km/L)
ECons

p Electricity consumption per ton of hydrogen p (MW/ton)
EnAc Conditioning energy required per ton of hydrogen (MW/ton)
FCEVPerf FCEV performance (km/ton of hydrogen)
FPt Fuel price per liter at station t ($/L)
GasPerf Medium size combustion vehicle performance (km/L of gasoline)
GM Maintenance expenses of transportation mode ($/km)
GWPTotal System’s annual total GWP (eq kg CO2/year)
NUTit Number of transport units between sugar mill i and station t
Opexp Annual operating expense ratio to CAPEX of plant type p (%)
PCGAlm Storage GWP per ton of hydrogen (kg CO2 eq/ton)
PCGP Production GWP per ton of hydrogen (kg CO2 eq/ton)
PCGTrans Transportation GWP per ton of hydrogen (kg CO2 eq/ton)
PEEr Electric power price at station t ($/MW)
PGWP Production GWP (eq. kg CO2/year)
PHMaxipz Maximum hydrogen production during period z from plant type p at sugar mill i (ton)
PVAr Water cubic meter price at region r ($/m3)
PVGast Reference fuel price per liter at station t ($/L)
PVH2t Hydrogen selling price at station t ($/ton)
SC Monthly driver wage ($/month)
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Table 2. Cont.

Nomenclature Description

SGWP Storage GWP (eq kg CO2/year)
TCD Charge and discharge time of transportation mode (h/trip)
TGWP Transportation GWP (eq. kg CO2/year)
TollCit Toll cost for hydrogen transportation units per trip ($)
TotalUtt Annual total utilities at station t ($/year)
Tripsit Annual trips amount required between sugar mill i and station t (trips/year)
TUW Transport unit weight (ton)
Vm Average speed for transportation Unit (km/h)
WCons

p Water consumption per ton of hydrogen at plant type p (m3/ton)

3.4.2. Production Constraints

Hydrogen production is limited by the amount of electrical energy available from
sugar mills during the periods of harvesting and non-harvesting. The optimization model
determines the most suitable amount of hydrogen to be produced annually. The annual
amount of hydrogen that is generated in the type p electrolysis plant in the sugar mill
i (PH2ip) must be less than or equal to the sum of the maximum amount of produced
hydrogen in both z periods, as described in Equation (1).

PH2ip ≤ ∑
z

PHMaxipz , ∀ i = 1, 2, 3 . . . 50 ; z = 1, 2 (1)

The electrolysis technology is selected by binary variable PEip, which takes on the
zero value if no technology is selected at all, or takes the value 1 if it is selected to generate
hydrogen in the sugar mill i. Since it is not possible to select both technologies for the same
point of production, a constraint must be set to limit these events from being mutually
exclusive. Equation (2) describes this limitation.

PEip + PEip′ ≤ 1 , ∀ p = 1, 2 ; i = 1, 2, 3 . . . 50; p �= p′ (2)

The selection of one or the other electrolysis technology implies a difference in the
conversion efficiency of electrical energy into hydrogen, both have different investment
costs, annual operating, and maintenance costs.

3.4.3. Transportation Constraints

Produced hydrogen at each location should be distributed to the stations where it
offers the highest economic and environmental benefits, considering the potential income,
transportation costs, and CO2 generation to make this decision. To achieve this, Equation (3)
limits the flow rate of hydrogen per year distributed from sugar mill i to station t (Fit) to meet
the amount of hydrogen transported to one or more stations with the amount produced at
the supplier electrolysis plants (PH2i).

∑
t

Fit = PH2i , ∀ i = 1, 2, 3 . . . 50; t = 1, 2, 3 . . . 73 (3)

3.4.4. Storage Constraints

Each SDS has a limited storage capacity, so the sum of the hydrogen flows (Fit) resulting
from the production points i and which are to be stored in each terminal t must be limited
by the available storage volume (ADt) at this station. To achieve this, Equation (4) limits
the amount of hydrogen a station can receive from one or more electrolysis plants.

∑
i

Fit ≤ ADt, ∀ i = 1, 2, 3 . . . 50; t = 1, 2, 3 . . . 73 (4)
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3.4.5. Non-Negativity Constraints

All continuous, integer and binary variables must be non-negative.

PH2ip ≥ 0 , ∀ i = 1, 2, 3 . . . 50 (5)

PEip ≥ 0, ∀ i = 1, 2, 3 . . . 50 (6)

Fit ≥ 0, ∀ i = 1, 2, 3 . . . 50; t = 1, 2, 3 . . . 73 (7)

3.5. Profit Maximization Objective Function

The total profit of the system is calculated as the difference between the revenue
obtained in the storage station and the increase in production (CProd

t), transport (CTrans
it),

and storage costs (CAlm
t) achieved in one year of operation. Equation (8) describes the

calculation for this statement.

MAX : TotalPro f it = ∑
t
(Pro f itt = incomest − outcomest), ∀ t = 1, 2, 3, . . . 73 (8)

The income parameter results from the multiplication of the tons of hydrogen that are
intended for storage in station t by the hydrogen sales price (PVH2t) determined for the
respective station, as shown in Equation (9).

Incomest = ∑
i

Fit ∗ PVH2t, ∀ i = 1, 2, 3 . . . 50; t = 1, 2, 3 . . . 73 (9)

Hydrogen sales prices (PVH2t) are determined based on the sales price for gasoline
at each station t considering the power offered by each type of vehicle. This is achieved
by Equation (10), which estimates the cost per kilometer (US$/km) it would cost to the
end-user. The sales price of gasoline is divided by the average theoretical power that a
gasoline engine (GasPerf

t) offers for the car used as a reference in this analysis, resulting in a
cost in US$/km. This value is then multiplied by the average power of a hydrogen fuel cell
engine (FCEVPerf), measured in km/kg H2, which determines the hydrogen sales price in
US$/kg at each SDS.

PVH2t =
PVGast

GasPer f ∗ FCEVPer f , ∀ t = 1, 2, 3 . . . 73 (10)

when calculating the total annual costs (AExpt), the operating costs for the production,
transport, and storage of hydrogen from generation in the electrolysis systems to storage at
the SDSs are considered. This is represented by Equation (11).

AExpt = CProd
t + CTrans

it + CAlm
t (11)

3.5.1. Production Costs

The production cost (CProd
t) is calculated using Equation (12), where the hydrogen

flows (Fit) from point i to endpoint t is multiplied by the production cost per unit (CUP
ip)

produced in sugar mill i.
CProd

t = ∑
i
(Fit ∗ CUP

ip) ; ∀ i; t (12)

The estimate of the production costs in each electrolysis plant is determined by the
sum of the variable production costs per unit (CVUP

ip), which relates to the consumption of
water and electricity in the process, and the fixed unit production costs (CFUPip), including
the cost of operating and maintaining the production facilities as expressed in Equation (13).

CUP
ip = CVUP

IP + CFUPip, ∀ i (13)
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CVUP
ip (Equation (14)) results from costs of electricity and water volume required

hydrogen production per ton. These costs vary depending on the prices of these resources
(PEEr and PVAr) in each region r. The power consumption depends on the electrolysis
technology selected at each point i, since each type of plant has a different transformation
performance (Equation (14)).

CVUP
pr = (PEEr ∗ ECons

p ) +
(

PVAr ∗ WCons
p

)
, ∀ r, p (14)

The fixed production costs (CFPip) comprise the operating and maintenance costs
(Opexp) in the production facilities, which are expressed as a percentage (%) of the invest-
ment capital and refer to an annual cost. Both the production investment capital (CIPip)
and the operating and maintenance costs depend on the hydrolysis technology selected.
The cost of capital estimate is based on the installed capacity (CapInst

ip) of energy process-
ing converted into hydrogen at point i (where an additional gap of 20% is considered to
compensate for possible fluctuations in the electricity supply) multiplied by the cost of
the capital per installed MW (Capexp). The maximum electricity conversion capacity is
estimated using the maximum amount of electricity per hour that will be achieved during
the harvest season. This is shown in Equations (15)–(17).

CapInst
ip =

PH2ipz

OpDz ∗ 24
∗ ECons

P ∗ 1.2; z = 1, ∀ i, p (15)

CIPip = Capexp ∗ CapInstip, ∀ i, p (16)

CFPip = CIPip ∗ Opexp, ∀ i, p (17)

The fixed unit production cost (CFUPip) is estimated by dividing the annual cost by
the annual production (Equation (18)) during harvest and non-harvest periods.

CFUPip =
CFPip

PH2ipz + PH2ipz′
, ∀ i, p, z (18)

3.5.2. Transportation Costs

The transportation costs (CTrans
it) consider the fuel consumption (CComb

it), the labor
costs (CMOit), and the maintenance costs (CMant

it) of the transport units, as well as the toll
costs (TollCit), the values of which are specific for the transport of the hydrogen produced
in each plant location i and delivered to the stations t during the entire operating days.
Equation (19) is used to illustrate these calculations.

CTrans
it = ∑

i
(Ccomb

it + CMOit + CMant
it + TollCit); ∀ i, t (19)

First, the estimate of the number of trips required to distribute the hydrogen flow
allocated from facilities i to stations t is obtained, dividing the annual hydrogen flow by the
capacity of the transport units (CapTrans), as shown in Equation (20).

Tripsit =
Fit

CapTrans ; ∀ i, t (20)

The fuel cost (CComb
it) used by the transport units to distribute the hydrogen is obtained

by multiplying the estimated number of trips by twice the distance from point i to point
t (dit). This value is then multiplied by the fuel price (PCombt) and divided by the fuel
consumption (EC) in km/L. This concept is illustrated in Equation (21).

Ccomb
it =

PCombt

EC
∗ (2 ∗ dit) ∗ Tripsit; ∀ i, t (21)
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The labor cost is calculated using the number of transport units required for hydrogen
distribution for all the days of operation. The number of transport units is estimated using
Equation (22), where Vm relates to the average speed of the unit, TCD to the loading and
unloading time, and DMT to the available time that the transport units consider disposed
of. Both values are expressed in hours/year.

NUTit = Tripsit ∗
(

2dit
Vm

+ TCD
)
∗ 1

DMT
; ∀ i, t (22)

The NUTit parameter is multiplied by the driver’s monthly salary (SC) and multi-
plied by 12 (months per year) to calculate the annual labor cost (CMOit), as shown in
Equation (23).

CMOit = NUTit ∗ SC ∗ 12; ∀ i, t (23)

The maintenance cost of the transport unit is calculated by multiplying the mainte-
nance cost (GM) by the total distance in all working days. This is expressed in Equation (24).

CMantit = GM ∗ (2dit) ∗ Tripsit; ∀ i, t (24)

Finally, the annual toll costs (ATollCit) that must be covered to use the routes selected
by the model for hydrogen distribution are calculated. This is achieved by considering
the number of trips multiplied by the toll price (TollPit), which is specific to each route, as
shown in Equation (25).

ATollC
it = Tripsit ∗ TollPit; ∀ i, t (25)

3.5.3. Storage Costs

The total storage costs comprise the storage costs per unit (CUAlm), considering the
O&M costs of the storage units and hydrogen conditioning cost per unit (CCond

t), a value
that is a function of the electrical power required to liquefy the hydrogen (EnAc) to the de-
sired conditions prevailing in the region in which the SDS is located. With this assumption,
the conditioning cost per unit is calculated using Equation (26), while the total storage cost
is calculated using Equation (27).

CCond
t = EnAc ∗ PEEr; ∀ r, t (26)

CAlm
t = ∑

i
Fit ∗

(
CUAlm + CCond

t

)
; ∀ i, t (27)

3.6. GWP Objective Function

The GWP parameter considered in this model includes the greenhouse gas emissions
from hydrogen storage (SGWP), and transport (TGWP), which are generated during an entire
year of system operation. Equation (28) is used to calculate the total amount of equivalent
CO2 kilograms for the entire operation.

Min GWPTotal = PGWP + SGWP + TGWP (28)

3.6.1. Production GWP

The greenhouse gas emissions from hydrogen production are determined by multiply-
ing the total hydrogen produced in the year of operation by the amount of CO2 produced
per kilogram of hydrogen (PCGP), as shown in Equation (29).

PGWP = ∑
i

PH2i ∗ PCGP; ∀ i (29)
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3.6.2. Transportation GWP

Hydrogen transport is a major contributor to emissions from the CO2 and heavily
depends on the distances between the production points and the storage stations selected
by the model to store hydrogen. Equation (30) is used to estimate the calculation of the
kilograms of equivalent CO2 produced by transportation. These calculations start with the
distances traveled in the year of operation of the system, with the number of trips made
multiplied by twice the distance from the production site to the SDS. The resulting value is
multiplied by the eq- CO2 kg (PCGTrans), and the weight of the transport unit (WeightUT) is
also considered when estimating this parameter.

TGWP = ∑
it
(2 ∗ dit ∗ Tripsit) ∗ PCGTrans ∗ WeightUT ; ∀ i, t (30)

3.6.3. Storage GWP

The storage of hydrogen also generates a significant amount of equivalent CO2, mainly
related to energy conditioning and the operation of storage units. The estimate of the carbon
dioxide emissions generated by the storage of hydrogen is determined using Equation (31),
which uses the variable PCGAlm, which refers to the equivalent CO2 kg/ton of hydrogen,
and which is multiplied by the total hydrogen tons accumulated in each terminal for the
entire year of operation.

SGWP = ∑
it

Fit ∗ PCGAlm ; ∀ i, t (31)

3.7. Solution Methods

For solving MILP problems, the use of genetic algorithms appears to be one of the
most effective methods to find a wide range of feasible solutions when solving similar math-
ematical problems according to the literature. For selecting the multi-objective optimization
method, several alternatives were considered. The selected approach was a meta-heuristic
technique, using MULTIGEN software which is a GA used by the research team in previous
studies. In addition, multi-objective simulated annealing and multi-objective tabu search
techniques were evaluated. At first, a mono-objective optimization method was applied
to identify the behavior of the model concerning the optimal solutions for each objective
function (to identify antagonism), then multi-criteria optimization was performed. MULTI-
GEN turned out to be convenient in terms of efficiency and convergence time. MULTIGEN
has been applied by the research team in previous studies concerning multi-objective
optimization of the HSC [14,31]. The optimization approach was performed in two stages.
The first one focuses on the single optimization of each objective function. The second
one is aimed to obtain a range of feasible solutions when both optimization criteria are
considered simultaneously. For selecting the mid-point solution from the obtained pareto
front, the multi-criteria decision-making technique TOPSIS was applied. The assignment of
weights for each criterion was performed along the organization interested in the study,
assigning equivalent weights for both criteria, since the company decided that both aspects
were equally relevant in the decision making.

The GA applied for solving the mathematical model was built using the user interface,
generated by the optimization software. The GA parameters were defined based on an
iterative procedure, where different combinations were evaluated, selecting those with the
smallest solving times. The TOPSIS method was applied using a spreadsheet that allows
evaluation of the 1000 possible solutions.

3.8. Mathematical Model Optimization Framework

The mathematical model optimization was carried out with two GA’s, the first regard-
ing the independent optimization of each target using the Evolver optimization software in
version 7.6 developed by PALISADE, obtaining the best value for each objective function.
The second GA is a multi-objective optimization tool that implements a variant of NSGA II
developed in the Chemical Engineering Laboratory at the Institut National Polytechnique
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de Toulouse (INPT). The MULTIGEN algorithm was set to optimize the optimization crite-
ria at the same time. The optimization algorithms were calculated using an 8-core AMD
Ryzen 7 2700X processor at 3.7 GHz.

3.8.1. Mono-Objective Optimization

The individual criteria optimization is carried out using the GA interface, which is
integrated into the Evolver optimization software. With this software, the user can easily
define an optimization model, prioritizing that the logic of the decision variables and the
constraints correspond to the mathematical formulation.

The performance of a GA for finding optimal solutions can be influenced by its
parameter configuration. Therefore, a sensitivity analysis was performed to define these
elements and look for those that would give the best results in finding the optimal solution.
These parameters are listed in Table 3 along with the stopping conditions considered for
the mono-objective optimization, which were defined to obtain workable solutions until a
significant improvement is found over a certain number of iterations.

Table 3. Genetic algorithm parameters and stopping conditions for mono-objective optimization.

Parameter Value

Population 30,000
Crossing rate 0.5
Mutation rate 0.1

Solution method Order
Stopping conditions

Max. Change 0.005%
Max. Iterations without improvement 20,000

3.8.2. Multi-Objective Optimization

The multi-criteria optimization phase is carried out by MULTIGEN optimization
software. The model formulation is introduced by generating the optimization interface
in which the GA parameters, such as population size or the number of generations, can
be defined. The selected configuration of the GA is shown in Table 4. These values are
determined by a sensitivity analysis, from which the best configuration for the selected
algorithm could be determined.

Table 4. Multi-objective genetic algorithm configuration.

Parameter Value

Population 36,500
Number of generations 73,000

Crossing rate 0.9
Mutation rate 0.5

Different parameters were used in both algorithms since each of them responds
differently to the parameter values. Several values were tried before finding the optimal
configuration for each GA. When optimizing multiple objectives simultaneously, a Pareto
front is generated with a set of different feasible solutions; then, the alternative that better
meets both optimization criteria is selected using a decision-making technique (TOPSIS).

4. Case Study

4.1. Mexican Sugarcane Industry

Sugar cane is mainly used in Mexico to make refined sugar by extracting syrups from
its stems. In the 2018/2019 harvest season, the National Committee for the Sustainable
Development of Sugar Cane (CONADESUCA) reported a harvested area of 805.5 thousand
hectares, around 57,036,700 tons of gross base cane and 6.4 million tons of sugar. The
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average yield per hectare at the national level is estimated at 70.81 tons in the industrialized
acreage dedicated to grinding in the sugar mills [32,33].

The main activities of the sugar mills are divided into two periods: harvest or grinding
period. This is when the harvested cane is processed for sugar production and the mainte-
nance period, which coincides with the rainy season when farmers devote themselves to
growing sugar cane. In the second phase, production in the mill is stopped to take over
the dismantling, repair, and improvement of the factory to prepare for the next grinding
period. The 2018/2019 harvest took place over 179 days with 50 sugar mills operating,
mainly located in the west, the Gulf, and the south of the country.

Sugarcane Bagasse Generation and Characteristics

In this study, information of 50 sugar mills is taken from the sixth statistical report of
the agro-industrial sugar cane sector in Mexico [34] by CONADESUCA, which provides
data from the harvest period 2006/2007 to 2018/2019. The amount of bagasse available is
modeled as a percentage of the tons of raw cane milled annually. Acting as model inputs, the
amount of ground raw cane, the remaining bagasse fraction, and the moisture contained
in the bagasse are considered as uncertain parameters and modeled using probability
distribution. The mathematic formulation for calculating the fraction of bagasse that is
available in the HSC for power generation is extracted from the work previously carried
out by Rico Contreras, among the calculations for converting the bagasse into electricity [6].
This information is presented in Appendixes A and B.

4.2. Hydrogen in Mexico
4.2.1. Hydrogen Demand

The estimated hydrogen demand for mobility purposes has been determined based
on the available capacity of each of the 76 SDSs, which are spread across Mexican territory
and are currently used for fossil fuel storage and subsequent distribution at petrol stations
for sale to the public [35].

4.2.2. Hydrogen Production

The proposed model considers two primary means of hydrogen production: alkaline
electrolysis and the proton exchange membrane [36]. They are mainly considered due to
their technological maturity and their availability in the international market. Each tech-
nology has different properties that can have a significant impact on the cost of hydrogen
production [37]. These are shown in Table 5. Electricity and water prices were modeled
using probability distributions, as listed in Appendix C.

Table 5. Production parameters.

Parameter Alkaline PEM Reference

ECons (kWh/kgH2) 49 52

[36]

Performance (HHV) (%) 71 64
CAPEX ($/kW) 507.8 740.5

Opex (%CAPEX/year) 3 2
Lifetime (years) 20 20

WCons (m3/ton H2) 9

The variable cost of hydrogen produced by electrolysis is heavily influenced by the
electricity and water prices of the region in which it is produced. Information on these
prices has been compiled for each region considered in the study.

4.2.3. Hydrogen Storage

Capital costs of the storage units, the storage unit costs, and the parameters to produce
greenhouse gases are presented in Table 6. Information concerning the storage capacity
and availability for each SDS is presented in Appendix D.
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Table 6. Hydrogen storage parameters.

Parameter Storage Unit

Minimum Capacity (kg) 500

[7,9]

Maximum capacity (kg) 10,000
Investment capital ($) 5,542,595

CAlm ($/kg H2) 0.722
Lifetime (years) 20

SGWP (kg CO2 per ton H2) 704
Maximum storage time (days) 10 Assumption

4.2.4. Hydrogen Transportation

This study uses real geographic information from the communications and transporta-
tion department to determine the shipping distances and toll costs of the selected routes
and to find the optimal route configuration. The proposed transportation mode to be used
in the hydrogen shipment are tanker trucks, as this is the transportation mode of fossil
fuels currently used in Mexico [35]. The toll costs of the selected routes for the hydrogen
distribution considers the type of truck used, which are 6-axis vehicles. The distances
between each mill and the SDSs considered are collected as well [38]. To calculate the
transport costs, these values must be multiplied by two to get the round-trip flight costs.
The hydrogen transport parameters are listed in Table 7. Data sets used for distance and
transportation costs calculations are listed in Appendix E.

Table 7. Hydrogen transportation parameters.

Parameter Value Scale Reference

TUW 40 Ton [9]
SC 736 $/month [35]
EC 2.3 km/L [7]
FP - - Appendix D

TCD 2 Hours per trip [7]
CMant 2.42 $/km

[7]
Vm 67 km/h

DMT 18 Hours/day Assumption
TGWP 62 g CO2 per ton-km

[4]
CapTrans 3.5 Ton

TransCapex 293,756 $ [7]

4.2.5. Hydrogen Selling Price

The information for estimating the hydrogen sales price is given in Table 8. The annual
distance traveled by a medium-sized private vehicle is also established to be used in the
calculation of the hydrogen selling price.

Table 8. Hydrogen selling price parameters.

Parameter Value

FCEVPerf 0.98 kg H2/100 km
Annual average distance traveled for medium size vehicles 15,000 km/year

5. Results and Discussion

5.1. Mono-Objective Optimization Results

Both objective functions were initially optimized independently of one another. With
these results, it is possible to create a comparison table showing the resulting values from
both selected criteria optimizations, as shown in Table 9.
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Table 9. Mono-objective optimization results.

Parameter Profit O.F. GWP O.F.

Number of production units 50 ALK 50 ALK
Number of transport units 73 55
Number of storage units 275 286

Investment capital costs
Production capital cost $373,654,974 $373,654,974
Transport capital cost $5,402,025 $4,070,019
Storage capital cost $1,524,213,622 $1,585,182,167

Total capital cost $1,903,270,621 $1,962,907,160
Operating costs

Production $188,692,213 $188,692,213
Transport $5,682,987 $2,242,429
Storage $27,354,603 $28,880,026

Total Outcome $221,729,804 $219,815,777
Average cost per unit ($/kg H2) $3962 $3928

Profit estimation
Total hydrogen production (ton/year) 55,965 55,965

Average selling price ($/ton) $8938 $8782
Total income $500,220,813 $491,490,525
Annual profit $278,491,009 $271,675,857

Net profit margin 55.67% 44.72%
GWP (kg eq. CO2)

Production - -
Transport 39,399,360 39,399,360
Storage 19,783,361 7,015,414

Total GWP (kg eq.CO2) 59,182,721 46,414,774
GWP per unit (kg eq. CO2/ton H2) 1057 829

Optimization time (s) 17,388 21,728

Based on the resulting values, it is determined that it is possible to produce hydrogen
at the 50 locations of the sugar mill, which allows the system to produce 55,965 tons of
hydrogen per year.

From the profit maximization O.F. obtained solution, 73 transportation units and
275 storage units are required to ensure the logistics demand of hydrogen. In contrast,
in the GWP O.F. solution, only 55 transport units and 286 storage units are needed. Ad-
ditionally, the capital expenditures for each element of the supply chain were estimated,
resulting in US$1,903,270,621 for the first O.F., and US$1,962,907,160 for the second one.
The obtained solutions put the annual operating cost of the entire system at US$221,729,804
and US$219,815,777 for each O.F., respectively. The production cost obtained in the first O.F.
optimization contributes 85% to the final cost of hydrogen (Figure 5), while transportation
and storage give 3% and 12%, respectively.

Figure 5. Pie chart of the hydrogen total cost composition obtained from Profit O.F.
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In Figure 6, a pie chart shows the composition of the total cost of hydrogen obtained
from the GWP O.F. optimization. It can be observed that the transportation costs reduced
their participation on the total cost of hydrogen in the optimization of the second O.F.
from 3% to 1%. This is expected since the GWP optimization looks mainly to deliver the
hydrogen to the closet SDS to reduce the gases emitted by the network. The production
and storage cost participation increased due to the previous statement.

Figure 6. Pie chart of the hydrogen total cost composition obtained from GWP O.F.

Another clear difference is the average selling price of hydrogen which goes from
US$8938/ton in the profit optimization to US$8782/ton in the GWP optimization, which
was expected since the selling price of hydrogen is a critical factor for a SDS to be selected
in the profit O.F. The annual profit of the system is estimated at US$278,491,009, which
equates to a net profit margin of 55.67% for the first objective function and US$271,675,857
with a profit margin of 44.72% for the second O.F. Occupancy in the SDS’s refers to the
percentage of storage volume at the selected station in which hydrogen is stored, whereby
a ratio of 4.49% is achieved.

A detailed economic report is shown in Table 10. In the first column are the names of
the sugar factories where the electrolysis plants were located. The second column shows
the names of the storage and dispatch stations where the hydrogen is stored, which are the
locations for the storage units. In the rest of the columns, the information of the hydrogen
flow from the PE to the storage location, the costs of production, transportation, and storage
per unit are shown separately at first, then the total cost of hydrogen and the selling price
per unit at each SDS. A profit estimation calculated from the difference of selling revenues
and total cost is displayed.

Table 10. Profit O.F. detailed economic report.

E.P. Location SDS
Hydrogen

Flow
(Ton/Year)

Production
Cost ($/Ton)

Transportation
Cost ($/Ton)

Storage Cost
($/Ton)

Total Cost
per Unit
($/Ton)

Selling Price
($/Ton)

Profit
($/Year)

El Molino
Guamúchil

880 1984.82 265.82 290.91 2541.55 9198.38 5,858,008
Puga 1414 1984.82 266.11 290.91 2541.85 9198.38 9,412,337

El Dorado
Culiacán

479 1984.82 35.71 290.91 2311.44 9163.75 3,282,257
Quesería 1292 3269.16 367.73 290.91 3927.80 9163.75 6,764,828

Ameca

Tepic

1050 3269.16 81.73 290.91 3641.80 9085.17 5,715,544
Bellavista 641 3269.16 97.94 290.91 3658.01 9085.17 3,478,795

José Ma Morelos 648 3269.16 151.03 290.91 3711.10 9085.17 3,482,392
Melchor
Ocampo 1162 3269.16 138.41 290.91 3698.48 9085.17 6,259,316

Tala 1714 3269.16 82.71 290.91 3642.83 9085.17 9,328,207

Aarón Sáenz
Zacatecas

1104 3456.53 171.07 500.74 4128.34 9030.35 5,411,801
El Mante 976 3456.53 172.05 500.74 4129.32 9030.35 4,783,390

San Miguel del
Naranjo 1980 3456.53 163.51 500.74 4120.78 9030.35 9,720,987

Alianza Popular Aguascalientes 1216 3456.53 161.64 500.79 4118.96 9032.66 5,975,092
Plan de Sal Luis 1400 3456.53 225.29 500.79 4182.61 9032.66 6,790,102
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Table 10. Cont.

E.P. Location SDS
Hydrogen

Flow
(Ton/Year)

Production
Cost ($/Ton)

Transportation
Cost ($/Ton)

Storage Cost
($/Ton)

Total Cost
per Unit
($/Ton)

Selling Price
($/Ton)

Profit
($/Year)

Lázaro Cárdenas

Zamora

273 3269.16 81.68 500.79 3851.62 9078.54 1,426,943
Pedernales 436 3269.16 106.04 500.79 3875.98 9078.54 2,268,306
Santa Clara 655 3269.16 38.51 500.79 3808.45 9078.54 3,451,896
Tamazula 1566 3269.16 59.58 500.79 3829.52 9078.54 8,219,934

Plan de Ayala
Celaya

1325 3456.53 201.18 500.79 4158.50 9013.80 6,433,280
El Higo 1957 3436.98 182.47 500.79 4120.24 9013.80 9,576,710
Pánuco 1918 3436.98 254.86 500.79 4192.63 9013.80 9,247,004

Atencingo
Cuautla

1827 3617.09 25.44 557.81 4200.34 8944.01 8,666,645
Casasano 645 3617.09 19.30 557.81 4194.20 8944.01 3,063,613

Calipam

Tehuacán

233 3617.14 53.49 557.81 4228.44 8872.10 1,081,978
El refugio 475 3616.80 76.18 557.81 4250.79 8872.10 2,195,132

Constancia 886 3436.98 64.24 557.81 4059.04 8872.10 4,264,358
Motzorongo 1341 3436.98 58.99 557.81 4053.78 8872.10 6,461,356

Emiliano Zapata Iguala 1187 3617.09 50.39 557.81 4225.29 8998.92 5,666,304

López Mateos
Oaxaca

1607 3616.80 76.47 557.81 4251.08 8933.10 7,523,971

Tres Valles 2396 3436.98 86.00 557.81 4080.80 8933.10 11,626,096

Huixtla Tapachula 1202 3616.80 25.98 557.81 4200.59 8927.95 5,682,255

El Modelo
Perote

1079 3436.98 44.20 528.29 4009.48 8845.38 5,217,947
Mahuixtlán 436 3436.98 48.72 528.29 4014.00 8845.38 2,106,469

La Gloria Xalapa 1581 3436.98 29.91 528.29 3995.19 8816.01 7,621,740
San Pedro 1273 3436.98 82.86 528.29 4048.13 8816.01 6,069,513

El Carmen

Escamela

577 3436.98 19.79 528.29 3985.07 8797.40 2,776,722
El Potrero 1707 3436.98 21.91 528.29 3987.18 8797.40 8,211,057

La providencia 811 3436.98 30.11 528.29 3995.38 8797.40 3,894,444
Progreso 913 3436.98 48.23 528.29 4013.51 8797.40 4,367,711

San Cristobal 560 3436.98 18.81 528.29 3984.09 8797.40 2,695,459
San Miguelito 525 3436.98 55.60 528.29 4020.87 8797.40 2,507,675

San Nicolas 1103 3436.98 23.48 528.29 3988.75 8797.40 5,303,941

La margarita
Tierra Blanca

1226 3616.80 17.04 528.29 4162.13 8773.28 5,653,241
Cuatotolapan 835 3436.98 60.31 528.29 4025.59 8773.28 3,964,315
San Cristobal 2584 3436.98 28.68 528.29 3993.96 8773.28 12,349,672

Benito Juárez
Villahermosa

1438 3436.98 26.18 528.29 3991.45 8733.89 6,819,600
Santa Rosalia 781 3436.98 27.31 528.29 3992.58 8733.89 3,702,945

Azsuremex
Campeche

223 3436.98 166.31 547.35 4150.69 8760.07 1,027,891
La Joya 826 3553.49 32.12 547.35 4132.96 8760.07 3,821,972
Pucte 1602 3553.49 103.05 547.35 4203.88 8760.07 7,298,984

- Total 55,965 - - - - - 278,491,009

- Average 1119 3352.11 94.50 486.00 3961.94 8938.11 5,569,820

It is possible to see significant differences in the contribution of the various elements of
the supply chain to costs. For example, hydrogen from the El Molino and Puga generation
points makes a higher contribution to the transport costs than the rest, as the reported
production costs in these facilities are exceptionally low (US$1984.82/ton of H2) compared
with other facilities. It is possible to distribute hydrogen over greater distances to stations
with higher sales prices.

The hydrogen distribution for this solution is a decision that is heavily influenced by
the selling price at the SDS for which it is intended. However, a SDS an extremely large
distance from the electrolysis plant that supplies it would cause higher transport costs.
Therefore, the model carries out an assessment and determines to which of the storage
stations the hydrogen produced should be distributed.

The GWP for supply chain operations was then calculated. The electrical energy from
the emissions balance of bagasse production is regarded as neutral due to its agricultural
origin, so that the estimate of greenhouse gas emissions is limited to the transport and
storage factors, the second one contributes majorly with a share of 67% of greenhouse
gas emissions. On this basis, it is estimated that this configuration of the HCS generates
59,182,721 kg of equivalent CO2, or 1057 kg of CO2/ton of distributed and stored hydrogen.

The HSC configuration obtained from the profit objective function optimization is
presented in Figure 7.
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Figure 7. HSC configuration obtained by profit O.F. optimization.

Concerning the optimization of the GWP objective function, considerable differences
can be observed compared to the profit optimization function. First, the number of trans-
port units has been significantly reduced to 55, so the investment capital is also reduced.
However, this configuration requires 286 storage units, a higher number than previous
results, and while this is the factor that has the greatest impact on the capital cost. Thanks
to this, the investment required to deploy the supply chain increases to US$1,962,907,160.

The production makes the largest contribution to operating costs but remained con-
stant for both OFs. Besides, the operating costs for the transport are reduced by 60%, which
is a consequence of the fact that the algorithm in this OF mainly focuses on the selection of
the shortest distances from the hydrogen production points to the SDS and requires fewer
transport units to carry out the distribution. As a result, the unit cost of hydrogen will be
significantly reduced to an average of US$3928 per ton.

With respect to profit, the average selling price is US$8782/ton of hydrogen. Because
of this, there are fewer economic benefits compared to the solution shown above, which in
this case is US$271,675,857, resulting in a profit margin of 44.72%.

Table 11 shows the key results of the economic indicators for each station selected by
the model for hydrogen storage and shows the unit cost of supply chain operations and
the selling price at each SDS. In this case, the average final cost of hydrogen is reduced
compared to the previous solution, assuming a value of US$3908/ton and an average sales
price of US$8804/ton.
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Table 11. GWP O.F. detailed economic report.

E.P. Location SDS
Hydrogen

Flow
(Ton/Year)

Production
Cost ($/Ton)

Transportation
Cost ($/Ton)

Storage Cost
($/Ton)

Total Cost
per Unit
($/Ton)

Selling Price
($/Ton)

Profit
($/Year)

El Dorado Culiacán 479 1984.82 35.71 290.91 2311.44 9163.75 3,282,247

El Molino Tepic 880 1984.82 12.03 290.91 2287.82 9085.17 5,981,676
Puga 1414 1984.82 12.18 290.91 2287.92 9085.17 9,611,305

Aarón Sáenz

Cd. Victoria

1104 3456.58 41.85 531.24 4029.67 8841.90 5,312,714
Alianza Popular 1216 3456.58 102.55 531.24 4090.37 8841.90 5,777,865
San Miguel del

Naranjo 1562 3456.58 63.65 531.24 4051.47 8841.90 7,482,657

Pánuco 1918 3436.98 94.70 531.24 4062.92 8841.90 9,166,055

El Mante
Cd. Mante

976 3456.58 10.36 531.24 3998.18 8783.10 4,670,094
San Miguel del

Naranjo 418 3456.58 39.24 531.24 4027.06 8783.10 1,988,030

Plan de Ayala
Cd. Valles

1325 3456.58 7.66 531.24 3995.48 8809.97 6,379,213
Plan de SL 1400 3456.58 19.55 531.24 4007.37 8809.97 6,723,660

El Higo 1957 3436.98 37.03 531.24 4005.26 8809.97 9,402,801

Ameca
Zapopan

1050 3269.16 30.40 500.79 3800.34 8990.47 5,449,620
Bellavista 641 3269.16 28.83 500.79 3798.77 8990.47 3,327,871

Tala 1714 3269.16 15.08 500.79 3785.02 8990.47 8,922,122

Santa Clara Zamora 655 3269.16 38.56 500.79 3808.50 9078.54 3,451,876

Lázaro Cárdenas Uruapan 273 3269.16 39.15 500.79 3809.09 9000.49 1,417,253
Pedernales 436 3269.16 69.30 500.79 3839.24 9000.49 2,250,304

Quesería
Colima

1292 3269.16 17.34 500.79 3787.28 8927.31 6,640,918
Tamazula 1566 3269.16 43.32 500.79 3813.26 8927.31 8,008,598

José María
Morelos Manzanillo

648 3269.16 90.77 500.79 3860.71 8667.29 3,114,665

Melchor
Ocampo 1162 3269.16 98.62 500.79 3868.57 8667.29 5,576,116

Atencingo
Cuautla

1827 3617.14 25.44 557.81 4200.39 8944.01 8,666,588
Casasano 645 3617.14 19.30 557.81 4194.25 8944.01 3,063,593

Calipam Tehuacán 233 3617.14 53.44 557.81 4228.39 8872.10 1,081,986

Emiliano Zapata Cuernavaca 1187 3617.14 22.74 557.81 4197.69 8915.18 5,599,657

Huixtla Tapachula 1202 3616.80 25.98 557.81 4200.59 8927.90 5,682,213

Mahuixtlán Xalapa 436 3436.98 27.31 528.29 3992.58 8816.01 2,103,009

El Carmen

Escamela

577 3436.98 19.74 528.29 3985.02 8797.40 2,776,734
El Potrero 1707 3436.98 21.91 528.29 3987.18 8797.40 8,211,016

La Providencia 811 3436.98 31.58 528.29 3996.86 8797.40 3,893,227
Progreso 913 3436.98 48.23 528.29 4013.51 8797.40 4,367,679

San José de
Abajo 560 3436.98 33.79 528.29 3999.07 8797.40 2,687,057

San Miguelito 525 3436.98 55.60 528.29 4020.87 8797.40 2,507,667

Adolfo López
Mateos

Veracruz

1607 3616.80 62.97 528.29 4208.06 8522.45 6,933,222

El Modelo 1079 3436.98 28.44 528.29 3993.71 8522.45 4,886,503
La Gloria 1581 3436.98 29.32 528.29 3994.60 8522.45 7,158,529

Motzorongo 1341 3436.98 50.34 528.29 4015.62 8522.45 6,043,655
San Cristobal 2584 3436.98 68.22 528.29 4033.50 8522.45 11,599,444
San Nicolás 1103 3436.98 55.80 528.29 4021.07 8522.45 4,965,017
San Pedro 1273 3436.98 44.25 528.29 4009.53 8522.45 5,744,944

El Refugio

Tierra Blanca

475 3616.80 33.74 528.29 4178.83 8773.23 2,182,339
La Margarita 1226 3616.80 17.04 528.29 4162.13 8773.23 5,653,206
Constancia 886 3436.98 26.62 528.29 3991.90 8773.23 4,236,264
Tres Valles 2396 3436.98 12.13 528.29 3977.41 8773.23 11,490,797

Cuatotolapam Minatitlán 835 3436.98 44.94 528.29 4010.22 8623.23 3,851,868

Azsuremex
Villahermosa

223 3436.98 109.48 528.29 4074.75 8733.89 1,038,987
Benito Juárez 1438 3436.98 26.18 528.29 3991.45 8733.89 6,819,623
Santa Rosalía 781 3436.98 27.31 528.29 3992.58 8733.89 3,702,960

La Joya Campeche 826 3553.49 32.12 547.35 4132.96 8760.07 3,822,004

San Rafel Pucté Yucatán 1602 3553.49 74.71 547.35 4175.54 8524.36 6,966,830

- Total 55,965 - - - - - 271,675,857

- Average 1097 3354 40.72 513.11 3907.96 8803.93 5,433,517

Finally, a significant decrease in the equivalent CO2 tons emitted by the system can be
observed, which corresponds to a reduced travel distance for the hydrogen distribution. As
a result, the amount of CO2 emitted per ton of hydrogen is significantly reduced, assuming
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values of 829 kg equivalent CO2/ton of H2, which corresponds to 78.42% of the value
obtained in the previous solution. For this configuration, it was found that the contribution
from transport to CO2 emissions decreased from 33% to 15%.

The HSC configuration obtained from the optimization of the GWP objective function
is shown in Figure 8. The model in this case is mainly committed to storing the hydrogen in
the nearest SDSs from the production facilities, the major reason for the significant decrease
in CO2 emissions generated by the system.

 

Figure 8. HSC configuration obtained by GWP O.F. optimization.

5.2. Multi-Objective Optimization Results

The simultaneous optimization of both objective functions carried out with the MULTI-
GEN optimization software, through which it is possible to obtain a Pareto front with a
set of 1000 possible solutions, the one that fulfills both criteria most satisfactorily. Figure 9
shows a Pareto front diagram and the solution chosen by the TOPSIS.

In most cases, the hydrogen storage terminals where higher profits would be made
are not close to the points where hydrogen production takes place. However, at some point,
the increase in profit is no longer proportional to the increase in emissions, which indicates
that there are solutions whose emissions are considerably high (<5.70 × 107) and whose
contribution to profit is not as significant compared to other solutions found for the model.

The solution selected using the TOPSIS method that best meets both optimization cri-
teria is highlighted in the diagram. With this configuration, a profit of US$275,197,557/year
is achieved, and 51,443,692 kg of equivalent CO2 is emitted annually. Next, the HSC design
based on this configuration is presented, in which important performance indicators were
estimated.
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Figure 9. Pareto front chart and TOPSIS selected solution.

5.3. Optimal Hydrogen Supply Chain Configuration

Table 12 shows the results of the general economic and environmental system indica-
tors for the optimal solution that TOPSIS selected from the Pareto front.

Table 12. Multi-objective optimization results.

Parameter Values

Number of production units 50 ALK
Number of transport units 59
Number of storage units 279

Investment capital costs
Production capital cost $373,654,974
Transport capital cost $4,366,020
Storage capital cost $1,546,384,002

Total capital cost $1,924,404,997
Operating costs

Production $188,692,213
Transport $3,550,495
Storage $29,250,926

Total outcome $275,197,558
Average cost per unit ($/kg H2) $3958

Profit estimation
Total hydrogen production (ton/year) 55,965

Average selling price ($/ton) $8875
Total income $496,691,192
Annual profit $275,226,444

Net profit margin 55.40%
GWP (kg CO2 eq.)

Production 0
Transport 39,399,360
Storage 12,044,332

Total GWP (kg CO2 eq.) 51,443,692
GWP per unit (kg CO2/ton H2) 919

Optimization time (s) 19,879

The average contribution of each element in the supply chain to the final cost of
hydrogen in the storage station can be determined. The cost of hydrogen production
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adds an average of 85% to the total cost of the product in the supply chain. In this case,
the transport costs add (on average) 2% to the total costs of hydrogen. Table 13 lists the
economic details within the HSC, listing the SDSs selected for hydrogen storage and their
supplier production points.

Table 13. Multi-objective optimal solution detailed economic report.

E.P. Location SDS
Hydrogen

Flow
(Ton/Year)

Production
Cost ($/Ton)

Transportation
Cost ($/Ton)

Storage Cost
($/Ton)

Total Cost
Per Unit
($/Ton)

Selling Price
($/Ton)

Profit
($/Year)

El Dorado Culiacán 479 1984.82 35.71 290.91 2311.44 9163.75 3,282,247

El Molino Tepic 880 1984.82 12.03 290.91 2287.82 9085.17 5,981,676
Puga 1414 1984.82 12.18 290.91 2287.92 9085.17 9,611,305

San Miguel del
Naranjo Matehuala 1980 3456.58 86.84 531.24 4074.66 8982.42 9,717,387

Aarón Sáenz
Cd. Victoria

1104 3456.58 41.85 531.24 4029.67 8841.90 5,312,714
Pánuco 1918 3436.98 94.70 531.24 4062.92 8841.90 9,166,055

El Mante Cd. Mante 976 3456.58 10.36 531.24 3998.18 8783.10 4,670,094

Plan de Ayala
Cd. Valles

1325 3456.58 7.17 531.24 3994.99 8809.97 6,379,864
Alianza Popular 1216 3456.58 26.96 531.24 4014.78 8809.97 5,830,960

El Higo 1957 3436.98 37.03 531.24 4005.26 8809.97 9,402,801

Plan de SL S.L.P. 1400 3456.58 126.67 531.24 4114.49 8835.66 6,609,652

Ameca

Zapopan

1050 3269.16 30.40 500.79 3800.34 8990.47 5,449,620
Bellavista 641 3269.16 28.83 500.79 3798.77 8990.47 3,327,871

José María Morelos 648 3269.16 84.53 500.79 3854.47 8990.47 3,328,129
Melchor Ocampo 1162 3269.16 64.73 500.79 3834.68 8990.47 5,991,035

Tala 1714 3269.16 15.08 500.79 3785.02 8990.47 8,922,122

Quesería
Zamora

1292 3269.16 124.41 500.79 3894.35 9078.54 6,697,967
Santa Clara 655 3269.16 38.56 500.79 3808.50 9078.54 3,451,876
Tamazula 1566 3269.16 59.58 500.79 3829.52 9078.54 8,219,962

Pedernales Irapuato 436 3269.16 122.64 500.79 3892.58 9016.65 2,234,093

Lázaro Cárdenas Uruapan 273 3269.16 39.15 500.79 3809.09 9000.49 1,417,253

Calipam
Tehuacán

233 3617.14 53.44 557.81 4228.39 8872.10 1,081,986
Constancia 886 3436.98 64.24 557.81 4059.04 8872.10 4,264,375

Motzorongo 1341 3436.98 58.99 557.81 4053.78 8872.10 6,461,367

Atencingo
Cuernavaca

1827 3617.14 44.01 557.81 4218.96 8915.23 8,580,084
Casasano 645 3617.14 24.66 557.81 4199.61 8915.23 3,041,575

Emiliano Zapata 1187 3617.14 22.74 557.81 4197.69 8915.23 5,599,716

Mahuixtlán Toluca 436 3436.98 188.75 557.81 4183.55 8927.21 2,068,232

El Refugio Azcapotzalco 475 3616.80 194.60 557.81 4369.20 8856.19 2,131,316
La Margarita 1226 3616.80 195.83 557.81 4370.43 8856.19 5,499,534

El Potrero
Añil

1707 3436.98 167.39 557.81 4162.18 8904.42 8,094,980
Progreso 913 3436.98 188.65 557.81 4183.45 8904.42 4,310,236

Adolfo López
Mateos Oaxaca

1607 3616.80 76.47 557.81 4251.08 8933.10 7,524,008

Tres Valles 2396 3436.98 86.00 557.81 4080.80 8933.10 11,626,131

Benito Juárez Tuxtla
Gutiérrez 1438 3436.98 79.47 557.81 4074.26 8781.48 6,768,982

Huixtla Tapachula 1202 3616.80 25.98 557.81 4200.59 8927.95 5,682,272

El Modelo Xalapa 1079 3436.98 29.96 528.29 3995.24 8816.01 5,201,617
La Gloria 1581 3436.98 29.91 528.29 3995.19 8816.01 7,621,725

El Carmen

Escamela

577 3436.98 19.79 528.29 3985.07 8797.40 2,776,706
La Providencia 811 3436.98 30.11 528.29 3995.38 8797.40 3,894,422

San José de Abajo 560 3436.98 33.79 528.29 3999.07 8797.40 2,687,057
San Miguelito 525 3436.98 55.60 528.29 4020.87 8797.40 2,507,667

San Nicolás 1103 3436.98 23.48 528.29 3988.75 8797.40 5,303,935

San Cristobal
Tierra Blanca

2584 3436.98 28.68 528.29 3993.96 8773.28 12,349,769
San Pedro 1273 3436.98 63.21 528.29 4028.49 8773.28 6,040,122

Cuatotolapam Minatitlán 835 3436.98 44.94 528.29 4010.22 8623.23 3,851,868

Santa Rosalía Villahermosa 781 3436.98 27.31 528.29 3992.58 8733.89 3,702,960

Azsuremex
Mérida

223 3436.98 208.10 547.35 4192.44 8524.41 966,030
La Joya 826 3553.49 79.57 547.35 4180.40 8524.41 3,588,160

San Rafel Pucté 1602 3553.49 74.71 547.35 4175.54 8524.41 6,966,908

- Total 55,965 - - - - - 275,198,425

- Average 1119 3352.11 66.40 519.01 3937.52 8874.71 5,503,968
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The CO2 emissions from transport and storage were estimated at 51,443,692 kg equiv-
alent carbon dioxide per year, with transport processes contributing 23%. The optimal
design of the HSC network is shown in Figure 10. The hydrogen produced is distributed
across a larger number of storage terminals compared with the solution that minimized the
GWP. On the other hand, it can also be observed that the distribution distances are usually
shorter compared to the solution found, which maximizes the benefits of the system and
reaches a central point from both limits.

 

Figure 10. Optimal design for hydrogen supply chain network.

Investment Assessment and Uncertainty Analysis

An investment assessment within a horizon of 10 years was performed to estimate
the internal rate of return (IRR) and payback period, using probability distributions for
modeling the uncertain behavior within model inputs. The uncertainty analysis was
performed using the Monte Carlo simulation methodology. In Figure 11, IRR ranges are
estimated for each hydrogen receiving SDS, where it can be observed that Tepic’s HSC is
the most profitable case with an average of 28.90%, with minimum and maximum values
oof about 15.10% and 34.20%, respectively, while Toluca’s HSC is the least profitable one,
with an average IRR of 15.80%, and minimum and maximum values of about 7.10% and
21%, respectively. The average IRR for all SDS is 21.50%, which is considered an acceptable
value in terms of this study.

In terms of payback period, the average value for all SDS is 5.02 years. As expected,
and according to the IRR, the case with the shortest payback period is Tepic, with an average
value of 3.94 years, and minimum/maximum values about 3.45 and 6.11 years, respectively.
In the case of the largest payback period, Toluca presented 6.12 years on average, and
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minimum/maximum values of 4.97 and 9.01 years, respectively. This information is
presented in Figure 12.

 

Figure 11. IRR for each SDS case.

 
Figure 12. Payback period for each SDS Case.

From the uncertainty analysis it can be concluded that, in most cases, the HSC’s
deployment might turn out convenient in economic term, due to their acceptable IRR
and short payback periods. There are some cases like Tepic’s where the case is extremely
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convenient and others like Toluca’s where economic indicators are not that favorable.
The main reason why there are big differences between cases is the wide range of water,
electricity, and fuel prices across the country, along with differences in raw sugar cane
availability and quality.

6. Conclusions

The information gathered was used to develop a mathematical optimization model that
estimates the main economic and environmental indicators of the HSC network operation;
the optimization criteria are defined as the annual profits and GWP. The latter refers to the
generation of equivalent carbon dioxide that comes from the HSC activities.

Once the optimization criteria were established, it was possible to find the optimal
values of the mathematical model using the artificial intelligence tool known as GA, which
was used as a first approximation under a single criteria approach to know the limits
of the model and obtain the maximum and minimum values of the relevant parameters.
Subsequently, both optimization criteria were optimized at the same time, so that many
feasible solutions could be generated, from which the one that best met the specified criteria
was selected. This optimal configuration selection was made using the TOPSIS multi-
criteria decision technique. Based on these results, it was possible to observe the different
configurations that the hydrogen supply chain can take, as well as the advantages and
disadvantages associated with each solution. In addition, the proportion of the contribution
of the many elements of the system to investment capital and operating costs, as well as
their contribution to the equivalent CO2 emissions, could be defined. The obtained results
show that it turns out to be economically convenient to produce hydrogen in each of
the 50 proposed production points for all the scenarios, the storage infrastructure layout
distributed across strategic parts of the country exposes several advantages in terms of
resource utilization, since the closeness of multiple storage points from each production
plant location brings a wide scope of possible solution alternatives. Several differences
can be observed between the solutions: in the profit maximization function the profit
ratio of 55.67% and 1057 kg of CO2 per ton of hydrogen is achieved, while the GWP
minimization function offers an average profit ratio of 44.72% and 829 kg of CO2 emitted
due to direct hydrogen transportation and storage activities. An evaluation to quantify
the economic benefits of using the available electric energy and the utilization of already
existing infrastructure for hydrogen production, storage and transportation can be exposed
as a starting point for considering the integration of hydrogen as an energy carrier in
developing countries, with the infrastructure deployment being the most capital-intensive
phase of the energy transition to a hydrogen economy.

The impact of the study relies on putting into perspective the economic and envi-
ronmental benefits obtained from non-conventional energy sources, and its integration
to the national energy grid, directing such energy to sectors with higher demand, like
the transportation sector. The knowledge acquired supports the decision-making process
during the exploration of new alternatives in the search for supplying the energy deficit in
a specific region—Mexico, in this case. This paradigm opens the scope of research to new
possibilities for considering economically and environmentally convenient solutions, under
resource constraints and the uncertainty contained in the system. The proposed model was
validated in a case study of the Mexican sugarcane industry.

Further research is recommended by adding refueling station location capabilities to
the model to complete the final HSC echelon. It is also recommended to evaluate social risk
by quantifying possible hazards and optimizing the risk criteria along the economic and
environmental objective functions. It can be highlighted from the reviewed literature that
there are few studies that integrate biomass waste utilization and hydrogen production,
and even less studies using electrolysis in a biomass to power to hydrogen configuration
using existing infrastructure in all the HSC echelons. As far as we know, this is the only
study that considers this type of hydrogen production scheme applied to Mexican territory.
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Some model limitations include that it was designed for evaluating an operation year
that is divided in two periods. Moreover, the model was built for considering only the
electrolysis process for hydrogen production, and existing storage infrastructure, which
restricts the possibilities of the model in terms of specific location of such facilities.

Author Contributions: Conceptualization, L.M.R.-B. and A.A.A.-L.; Data curation, L.M.R.-B.; For-
mal analysis, L.M.R.-B.; Investigation, L.M.R.-B., J.O.R.-C. and D.V.-V.; Methodology, L.M.R.-B.
and A.A.A.-L.; Project administration, J.O.R.-C. and A.A.A.-L.; Resources, J.O.R.-C. and D.V.-V.;
Software, C.A.-P.; Supervision, C.G.M.-S., M.A.G.-H. and A.A.A.-L.; Validation, C.G.M.-S. and
M.A.G.-H.; Writing—original draft, L.M.R.-B.; Writing—review and editing, L.M.R.-B., J.O.R.-C.,
C.A.-P., C.G.M.-S., D.V.-V. and A.A.A.-L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Tecnológico Nacional de México grant number 7737.20P, and
by Consejo Nacional de Ciencia y Tecnología through a scholarship given to Luis Miguel Reyes
Barquet (Main author) with CVU: 920654. The APC was funded by Daniel Villanueva Vásquez.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Public data sets available at SAGARPA, “Planeación Agrícola Nacional
2017–2030,” 2016 (https://www.gob.mx/agricultura/acciones-y-programas/planeacion-agricola-
nacional-2017--2030-126813 accessed on 22 March 2020); CONADESUCA, 6to. Informe Estadístico
del Sector Agroindustrial de la Caña de Azúcar en México, zafras 2009–2010/2018–2019, Comité Na-
cional para el Desarrollo Sustentable de la Caña de Azúcar, 2019 (https://siiba.conadesuca.gob.mx/
Archivos_Externos/6to_informe_estad%C3%ADstico.pdf accessed on 17 February 2020); Comisión
Nacional de hidrocarburos, “Reservas de hidrocarburos en México conceptos fundamentales y
análisis 2018” (https://www.gob.mx/cnh/documentos/analisis-de-informacion-de-las-reservas-de-
hidrocarburos-de-mexico-al-1-de-enero-del-2018?idiom=es accessed on 25 February 2020); Mendoza
A., Cadena A. and de Buen O., Estudio de pesos y transportes, Secretaría de comunicaciones y
transporte, 2010.

Acknowledgments: We thank CONACYT, the Corporate Porres Group, Orizaba Institute of Tech-
nology, and all professor-researchers for their support, and the National Technology of Mexico
for funding the project with reference number 7737.20-P, entitled “Multi-criteria Optimization of a
Hydrogen Supply Chain Generated from Agro-industrial Waste”.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Calculations for Estimating Model Inputs

In Equation (A1), the bagasse availability is calculated in tons for each sugar mill i
using the quantity of raw sugarcane and the mass fraction of bagasse, both represented by
probability distributions.

AvBagi = tCanei ∗ %BagInCanei, ∀ i = 1 . . . 50 (A1)

In Equation (A2) Operation hours parameter for each period z is calculated considering
the number of operation days in each period z (modeled using probability distributions)
and the downtime during operation.

OpHrsz = (DOpz ∗ 24) ∗ (100% − %Downtime) , ∀ 1, 2 (A2)

The quantity of bagasse per hour combusted in the boilers of each sugar mill i is
calculated using Equation (A3).

BagBrniz =
AvBagi
OpHrsz

, ∀ z = 1, 2 ; i = 1 . . . 50 (A3)
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The lower bagasse energy content in cal/ton is estimated using Equation (A4) extracted
from [32], where bagasse humidity (BagHumi) is an uncertain parameter, modeled by
probability distributions for each mill i.

BagEConti = 17,799.3 − 20,305.98 ∗ BagHumi ∀ i = 1 . . . 50 (A4)

Equation (A5) calculates the bagasse energy flow per hour.

BagEFlowiz = BagBrniz ∗ BagEConti , ∀ i = 1 . . . 50 (A5)

Steam production in tons at each sugar mill i is calculated using Equation (A6).

Steamiz =
BagEFlowi

(
BoilerE f

DEnthalpy

)
1000

, ∀ i = 1 . . . 50 (A6)

Electric power generation in MWh at each mill i is estimated using Equation (A7).

ElecPwriz =
Steami − (%Sel f Cons ∗ Steami)

GenPer f
, ∀ i = 1 . . . 50 (A7)

Table A1. Complementary calculations glossary.

Variable Description

%Downtime Fraction of inactivity time (%)
%SteamSelfCons Percentage of steam consumption (%)
AvBagi Available bagasse at each sugar mill i (tons)
BagBrniz Bagasse burning flow at mill i during period z (tons/hour)
BagEConti Bagasse energy content at mill i (kcal/ton)
BagEFlowiz Bagasse energy content flow at mill i (kcal/hour)
BagHumi Mass fraction of humidity content at mill i (%)

BagInCanei
Mass fraction of bagasse in sugar cane at each sugar mill i
(bagasse tons/sugarcane tons)

BoilerEf Boiler efficiency (%)
DEnthalpy Steam delta enthalpy (kcal/cm2)
ElecPwriz Electric power generation at mill i during period z (MWh)
GenPerf Electric generator turbine performance (steam tons/MWh)
DOpz Operation days during period z (days)
OpHrsz Operation hours during period z (hours)
Steamiz Steam production at mill i during period z (tons/hour)
tCanei Sugar cane available at each sugar mill i (tons)

Appendix B

Table A2. Probability distributions for bagasse availability modelling.

Sugar Mill tCane (Tons) BagInCane BagHum (%)

Aaron Sáenz RiskLaplace (1,062,951, 162,684.8) RiskExtvalueMin (0.28208,
0.0052635) RiskPareto (45.277, 50.01)

Alianza popular RiskPareto (15.534, 1,091,755) RiskPareto (17.647, 0.24674) RiskUniform (42.853, 54.287)

Ameca RiskUniform (1,032,772, 1,314,071) RiskExtvalueMin (0.24318,
0.007397) RiskPareto (47.183, 49.841)

Atencingo RiskUniform (1,539,709, 1,931,089) RiskExtvalueMin (0.28181,
0.0017849) RiskPareto (227.42, 50.64)

Azsuremex RiskUniform (111,320, 236,294) RiskExtvalueMin (0.35416,
0.024192)

RiskExtvalueMin (51.1982,
0.88002)
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Table A2. Cont.

Sugar Mill tCane (Tons) BagInCane BagHum (%)

Bellavista RiskUniform (544,556, 767,230) RiskLaplace (0.26549, 0.0042446) RiskExtvalueMin (51.7613,
0.39862)

Benito Juárez RiskUniform (915,567, 1,669,420) RiskExtvalueMin (0.29877,
0.0024705)

RiskExtvalueMin (51.2247,
0.46764)

Calipam RiskLaplace (185,777.6667,
24,246.0872) RiskPareto (17.107, 0.31175) RiskExtvalueMin (50.8465,

0.70592)

Casasano La abeja RiskPareto (17.203, 581,923) RiskPareto (34.074, 0.25738) RiskKumaraswamy
(0.075606,0.18032, 46.1,51.18)

Constancia RiskPareto (10.619, 751,826) RiskLaplace (0.27543, 0.010389) RiskPareto (98.361, 49.106)

Cuatolapam RiskPareto (8.3168, 669,112) RiskExtvalue (0.283955, 0.016257) RiskUniform (49.9225, 51.9875)

El Carmen RiskExtvalueMin (565,173.2923,
110,856.4894) RiskExtvalueMin (0.323, 0.010938) RiskKumaraswamy (0.078411,

0.19166, 50.629, 53.053)

El Higo RiskNormal (1,758,914, 89,388) RiskNormal (0.3233037,
0.0076643) RiskUniform (51.7425, 56.0475)

El Mante RiskUniform (606,942, 1,101,350) RiskKumaraswamy (0.076156,
0.18217, 0.296446, 0.314114) RiskLaplace (51.1, 0.44173)

El Modelo RiskExtvalueMin (1,059,250.2819,
96,686.0013) RiskPareto (25.15, 0.26806) RiskTriang (48.7756, 50.41, 50.41)

El Molino RiskPareto (5.0488, 681,227) RiskPareto (77.099, 0.27102) RiskPareto (135.6, 50.25)

El Potrero RiskNormal (1,629,870, 78,703) RiskPareto (66.285, 0.2666) RiskTriang (47.8444, 50.61, 50.61)

El Refugio RiskExtvalueMin (460,201.2784,
48,913.5247) RiskPareto (145.56, 0.28926) RiskPareto (63.715, 49.85)

El Dorado RiskNormal (451,622, 124,580) RiskPareto (20.357, 0.26842) RiskTriang (48.5712, 51.865,
51.865)

Emiliano Zapata RiskUniform (1,001,194, 1,241,654) RiskPareto (12.091, 0.26608) RiskKumaraswamy (0.079838,
0.18665, 48.426, 54.43)

Huixtla RiskUniform (865,578, 1,386,963) RiskLaplace (0.27892, 0.016637) RiskLaplace (50.12, 0.52322)

José Ma Morelos RiskLaplace (573,662, 97,203.5759) RiskLaplace (0.30045, 0.0091253) RiskTriang (48.274, 52.01, 52.01)

La Gloria RiskExtvalue (1,387,788, 128,254) RiskLaplace (0.27426, 0.0057259) RiskKumaraswamy (0.073444,
0.19034, 47.59, 50.08)

La Joya RiskPareto (6.2914, 662,566) RiskUniform (0.260448, 0.28558) RiskPareto (25.533, 48.01)

La Margarita RiskExtvalueMin (1,114,659.5247,
65,442.6361) RiskPareto (69.982, 0.29615) RiskKumaraswamy (0.081137,

0.18753, 48.63, 51.85)

La providencia RiskUniform (622,858, 921,585) RiskPareto (20.115, 0.25945) RiskKumaraswamy (0.074596,
0.18167, 47.5, 51.71)

Lázaro Cárdenas RiskUniform (220,651, 420,987) RiskPareto (25.779, 0.21863) RiskKumaraswamy (0.074316,
0.18577, 49.732, 51.932)

López Mateos RiskLaplace (1,552,596,
164,296.2606)

RiskExtvalue (0.2769587,
0.004824) RiskPareto (51.682, 50.35)

Mahuixtlan RiskUniform (345,480, 488,480) RiskExtvalueMin (0.27271,
0.0014487) RiskLaplace (49.9522, 0.10657)

Melchor Ocampo RiskLaplace (1,110,585,
54,862.1928) RiskLaplace (0.28742, 0.0042788) RiskKumaraswamy (0.075628,

0.18143, 50.36, 53.11)

Motzorongo RiskLaplace (1,301,433,
203,462.3613) RiskPareto (24.532, 0.25684) RiskLaplace (49.89, 0.33796)

Panuco RiskUniform (1,299,749, 1,906,185) RiskPareto (48.802, 0.31117) RiskExtvalue (50.1014, 1.0208)
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Table A3. Probability distributions for operation days and bagasse utilization.

Variable Probability Distribution Unit

OpDays during harvesting period (z = 1) Pert (155,160,179) Days
OpDays during non-harvesting season (z = 2) Pert (30,32.82,35.65) Days

AvBag for energy production (z = 1) Pert (52%,52.42%,52.848%) % de Bagazo
AvBag for energy production (z = 2) Pert (7%,7.33%,7.68%) % de Bagazo

Appendix C

Table A4. Probability distributions for electricity and water prices modelling.

Region (r) Electricity Price ($/MW) Water Price ($/m3)

Northwest Pert (26.23, 35.23, 44.19) Pert (0.18, 0.40, 0.56)
North Pert (26.23, 35.23, 44.19) Pert (0.18, 0.40, 0.56)

Northeast Pert (41.06, 64.33, 79.26) Pert (0.07, 0.24, 0.73)
West Pert (37.21, 60.66, 76.98) Pert (0.13, 0.23, 0.44)

Center Pert (42.99, 67.58, 86.21) Pert (0.038, 0.11, 0.238)
South Pert (42.99, 67.58, 86.21) Pert (0.025, 0.093, 0.159)
Gulf Pert (41.23, 64, 81.47) Pert (0.105, 0.236, 0.236)

Southeast Pert (42.42, 66.28, 81) Pert (0.0951, 0.190, 0.190)

Appendix D

Table A5. Storage availability and probability distributions for fuel prices modelling.

Region State ID (t) Name
Design Capacity

(Barrels)
Utilization

Rate
Fuel Price (MX$)

Northwest

B.C. Norte 1 ROSARITO 1,393,000 0.73 RiskLogistic (19.20514, 0.18998)
B.C. Norte 2 ENSENADA 135,000 0.74 RiskLogistic (19.39158, 0.18992)
B.C. Norte 3 MEXICALI 155,000 0.76 RiskLogistic (19.45041, 0.19028)

Sonora 4 NOGALES 45,000 0.77 RiskLaplace (19.6776, 0.30941)
Sonora 5 MAGDALENA 40,000 0.67 RiskLaplace (19.6675, 0.32126)
Sonora 6 HERMOSILLO 125,000 0.69 RiskLaplace (19.3266, 0.32346)
Sonora 7 GUAYMAS 750,000 0.71 RiskLaplace (19.1096, 0.32513)
Sonora 8 CIUDAD OBREGÓN 170,000 0.66 RiskLaplace (19.3257, 0.32251)
Sonora 9 NAVOJOA 35,000 0.72 RiskLoglogistic (15.3836, 4.3047, 24.893)
B.C. Sur 10 LA PAZ 230,000 0.7 RiskExtvalueMin (19.6679, 0.37766)
Sinaloa 11 TOPOLOBAMPO 760,000 0.71 RiskTriang (17.9917, 19.7924, 20.1903)
Sinaloa 12 GUAMÚCHIL 105,000 0.71 RiskTriang (18.7036, 20.2588, 20.8076)
Sinaloa 13 CULIACÁN 115,000 0.74 RiskTriang (18.8595, 20.0375, 20.6478)
Sinaloa 14 MAZATLÁN 620,000 0.75 RiskWeibull (5.175, 1.5556)
Nayarit 15 TEPIC 95,000 0.7 RiskLaplace (19.6781, 0.27458)

North

Chihuahua 16 CIUDAD JUÁREZ 245,000 0.75 RiskLaplace (18.6858, 0.32223)
Chihuahua 17 CHIHUAHUA 420,000 0.8 RiskLaplace (19.1491, 0.30599)
Durango 18 DURANGO 75,000 0.69 RiskLaplace (19.6863, 0.27829)

Chihuahua 19 PARRAL 55,000 0.73 RiskLaplace (19.6639, 0.3026)
Durango 20 GÓMEZ PALACIO 475,000 0.72 RiskLaplace (19.5364, 0.30492)

Northeast

Coahuila 21 SABINAS 100,000 0.73 RiskLaplace (19.5153, 0.319)
Coahuila 22 MONCLOVA 235,000 0.77 RiskLaplace (19.4711, 0.33153)

Tamaulipas 23 NUEVO LAREDO 75,000 0.78 RiskLaplace (19.34, 0.3101)
Tamaulipas 24 REYNOSA 23,500 0.62 RiskLaplace (19.3046, 0.33903)
Nuevo León 25 SANTA CATARINA 850,000 0.69 RiskLoglogistic (18.23, 1.0127, 6.1548)
Nuevo León 26 SALTILLO 151,000 0.78 RiskLaplace (19.4162, 0.33261)
Nuevo León 27 CADEREYTA 100,000 0.75 RiskLoglogistic (17.4049, 1.7244, 10.6)

SLP 28 MATEHUALA 33,000 0.74 RiskLoglogistic (18.1427, 1.272, 7.2404)
Tamaulipas 29 CIUDAD VICTORIA 195,000 0.75 RiskLoglogistic (17.8593, 1.2518, 7.2491)
Tamaulipas 30 CIUDAD MANTE 21,000 0.71 RiskLaplace (19.0238, 0.35456)

SLP 31 CIUDAD VALLES 75,000 0.74 RiskLoglogistic (17.792, 1.2502, 7.2677)
SLP 32 SAN LUIS POTOSÍ 100,000 0.69 RiskLaplace (19.1377, 0.34971)
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Table A5. Cont.

Region State ID (t) Name
Design Capacity

(Barrels)
Utilization

Rate
Fuel Price (MX$)

West

Zacatecas 33 ZACATECAS 85,000 0.68 RiskLaplace (19.5594, 0.3408)
Aguascalientes 34 AGUASCALIENTES 105,000 0.65 RiskLaplace (19.5644, 0.33496)

Guanajuato 35 LEÓN 110,000 0.73 RiskLaplace (19.5183, 0.32495)
Jalisco 36 ZAPOPAN 390,000 0.72 RiskLoglogistic (18.47193, 0.94869, 5.5621)

Michoacán 37 ZAMORA 90,000 0.71 RiskLaplace (19.6637, 0.32359)
Guanajuato 38 IRAPUATO 430,000 0.73 RiskLaplace (19.5297, 0.31447)
Guanajuato 39 CELAYA 180,000 0.72 RiskLaplace (19.5235, 0.32444)
Michoacán 40 URUAPAN 130,000 0.79 RiskLoglogistic (18.1592, 1.2971, 7.5307)

Colima 41 COLIMA 55,000 0.79 RiskLoglogistic (18.1186, 1.1784, 7.112)
Michoacán 43 MORELIA 135,000 0.73 RiskLaplace (19.5371, 0.30931)

Jalisco 44 EL CASTILLO 345,000 0.64 RiskLoglogistic (18.52751, 0.91876, 5.1437)
Michoacán 45 LÁZARO CÁRDENAS 830,000 0.73 RiskLaplace (18.7947, 0.33233)

Colima 46 MANZANILLO 465,000 0.71 RiskLaplace (18.773, 0.31928)

Center

Morelos 47 CUAUTLA 60,000 0.75 RiskLaplace (19.3723, 0.31474)
Puebla 48 PUEBLA 425,000 0.71 RiskLaplace (19.2147, 0.31217)
Puebla 49 TEHUACÁN 45,000 0.72 RiskLaplace (19.2166, 0.32322)

Querétaro 50 QUERÉTARO 230,000 0.72 RiskLaplace (19.4604, 0.31185)
Edo. De
México 51 SAN JUAN IXHUATEPEC 225,000 0.62 RiskLoglogistic (18.26004, 0.9894, 5.5995)

Morelos 52 CUERNAVACA 135,000 0.76 RiskLoglogistic (18.0638, 1.2074, 7.239)
Edo. De
México 53 TOLUCA 195,000 0.69 RiskLoglogistic (17.5463, 1.7658, 11.077)

CDMX 54 AZCAPOTZALCO 1,500,000 0.74 RiskLoglogistic (18.0401, 1.1, 6.6497)
Hidalgo 55 PACHUCA 170,000 0.71 RiskLoglogistic (18.0877, 1.0409, 6.3148)
CDMX 56 BARRANCA DEL MUERTO 125,000 0.73 RiskLoglogistic (18.26353, 0.99106, 5.6165)
CDMX 57 AÑIL 235,000 0.67 RiskLoglogistic (18.24477, 0.99028, 5.7233)

South

Guerrero 58 IGUALA 60,000 0.7 RiskLaplace (19.4913, 0.30988)
Guerrero 59 ACAPULCO 235,000 0.62 RiskLaplace (19.1366, 0.31701)
Oaxaca 60 OAXACA 110,000 0.76 RiskLaplace (19.3487, 0.31066)
Oaxaca 61 SALINA CRUZ* 1,479,000 0.76 RiskLogistic (18.86307, 0.18242)
Oaxaca 62 SALINA CRUZ 205,000 0.75 RiskLogistic (18.86307, 0.18242)
Chiapas 63 TUXTLA GUTIÉRREZ 105,000 0.71 RiskLogistic (19.02036, 0.17406)
Chiapas 64 TAPACHULA* 24,500 0.62 RiskLaplace (19.3375, 0.30994)
Chiapas 65 TAPACHULA II 65,000 0.78 RiskLaplace (19.3375, 0.30994)

Gulf

Veracruz 66 POZA RICA 55,000 0.7 RiskLaplace (18.8571, 0.31891)
Veracruz 67 PEROTE 25,000 0.74 RiskLoglogistic (17.8551, 1.265, 7.42)
Veracruz 68 XALAPA 45,000 0.6 RiskLoglogistic (17.8126, 1.2419, 7.1738)
Veracruz 69 ESCAMELA 98,000 0.72 RiskLaplace (19.0548, 0.32629)
Veracruz 70 VERACRUZ 536,000 0.66 RiskLaplace (18.4593, 0.32756)
Veracruz 71 TIERRA BLANCA 71,000 0.69 RiskLaplace (19.0025, 0.31694)
Veracruz 72 MINATITLÁN 10,000 0.59 RiskLogistic (18.67753, 0.18353)
Tabasco 73 VILLAHERMOSA 328,500 0.72 RiskLaplace (18.9172, 0.31921)

Southeast
Yucatán 74 PROGRESO 280,500 0.71 RiskLaplace (18.4223, 0.32023)

Campeche 75 CAMPECHE 265,000 0.79 RiskLaplace (18.9739, 0.31608)
Yucatán 76 MÉRIDA 148,000 0.77 RiskLaplace (18.4635, 0.31978)
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Figure A1. Cont.
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Figure A1. Distance matrix for hydrogen transportation.
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Figure A2. Cont.
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Figure A2. Toll cost matrix for hydrogen transportation.

300



Mathematics 2022, 10, 437

References

1. Morales, A.; Pérez, M.; Pérez, J.; De León, S. Energías renovables y el hidrógeno: Un par prometedor en la transición energética
de México. Investig. Cienc. 2017, 25, 92–101. [CrossRef]

2. Ehsan, S.; Abdul, M. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for
clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [CrossRef]

3. Orecchini, F.; Bocci, E. Biomass to hydrogen for the realization of closed cycles of energy resources. Energy 2007, 32, 1006–1011.
[CrossRef]

4. De León Almaráz, S. Multi-Objective Optimization of a Hydrogen Supply Chain. Ph.D. Thesis, Toulouse Institute of Technology,
Toulouse, France, 2014.

5. Parker, N. Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-Word Spatial Distributions: A Case of Study
Using California Rice Straw. Master’s Thesis, University of California, Berkeley, CA, USA, 2007.

6. Rico, J. Desarrollo de una Red de Valor Con Base a la Gestión de Bioenergía, Para Determinar Estrategias de Negocios. Ph.D.
Thesis, Instituto Tecnológico de Orizaba, Orizaba, Mexico, 2015.

7. Azzaro-Pantel, C. Hydrogen Supply Chain Design, Deployment and Operation; Elsevier: Amsterdam, The Netherlands, 2018;
ISBN 9780128111987.

8. Kim, J.; Moon, I. Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization. Int. J.
Hydrogen Energy 2008, 33, 5887–5896. [CrossRef]

9. Almansoori, A.; Shah, N. Design and operation of a stochastic hydrogen supply chain network under demand uncertainty. Int. J.
Hydrogen Energy 2012, 37, 3965–3977. [CrossRef]
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Abstract: This paper presents an efficient master–slave methodology to solve the problem of inte-
grating photovoltaic (PV) generators into DC grids for a planning period of 20 years. The problem is
mathematically formulated as Mixed-Integer Nonlinear Programming (MINLP) with the objective
of minimizing the total annual operating cost. The main stage, consisting of a discrete-continuous
version of the Crow search algorithm (DCCSA), is in charge of determining the installation positions
of the PV generators and their corresponding power ratings. On the other hand, at the slave level,
the successive approximation power flow method is used to determine the objective function value.
Numerical results on 33- and 69-bus test systems demonstrate the applicability, efficiency and ro-
bustness of the developed approach with respect to different methodologies previously discussed
in the scientific literature, such as the vortex search algorithm, the generalized normal distribution
optimizer and the particle swarm optimization algorithm. Numerical tests are performed in the
MATLAB programming environment using proprietary scripts.

Keywords: DC networks; PV generators; crow search algorithm; discrete-continuous codification;
master–slave optimization; successive approximation power flow method; electrical systems planning

MSC: 65K05; 65K10; 68N99; 90C26; 90C59

1. Introduction

1.1. General Background

Due to technological advances in the field of power electronics, the implementation
and use of DC networks have been growing in recent years, with which it is expected to
bring electricity to end-users at medium and low voltage levels through DC transmission
and sub-transmission systems [1,2]. In comparison with traditional AC systems, DC
systems have the following advantages [3–5]: (i) higher efficiency, since the absence of
reactive elements (i.e., inductive reactances and reactive power flows) reduces power losses
and improves voltage profiles; (ii) reduced operating and investment costs associated
with network maintenance; and (iii) simpler integration of distributed energy resources,
such as distributed generation based on renewable resources and energy storage systems,
since most of these devices operate in DC. This last advantage has enabled researchers
around the world to develop strategies that allow the transition from classical, fossil fuel-
based centralized generation systems to decentralized power generation systems based on
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renewable resources such as photovoltaic (PV) or wind energy [6,7]. This will not only help
to meet the energy demands of end-users; it will also reduce dependence on fossil fuels
and, at the same time, the environmental impact of their use.

The integration of distributed energy resources such as PV generation poses challenges
for engineers in charge of the planning, design, and operation of electrical systems since
an inadequate integration of these resources leads to the following problems [8]: (i) the
degradation of voltage profiles, (ii) the overloading of distribution lines, (iii) increased
energy losses, and (iv) the deterioration of power quality, among others. However, it is
evident that appropriate integration of photovoltaic generators into power grids consider-
ably improves the technical-operational conditions of the system and makes it possible to
reduce the greenhouse gas emissions caused by fossil sources [9].

1.2. Motivation

Being a country located between the tropics of Cancer and Capricorn, Colombia has an
abundant solar resource, which is the reason why, through legislation, as is the case of Law
1715 of 2014, the number of projects for the integration of PV generators into conventional
electricity grids has increased in recent years [10,11]. However, the currently installed
capacity of PV generation is far from the maximum usable capacity, representing 0.76%
of the total energy generated in the country (these data come from the observation of the
energy matrix reported by XM during 2019, before the pandemic). For this reason, the main
motivation of this research study is to propose alternatives that allow taking advantage
of the country’s abundant solar resource, thus allowing an energy transition that reduces
the emissions of polluting gases while providing a high-quality service to the end-users
to be achieved that is as economical as possible. Note that the optimal integration of PV
generators in DC networks is a complex problem from the point of view of mathematical
modeling, as it is represented by a mixed-integer nonlinear programming (MINLP) model
that combines discrete and continuous variables. As a result of the above, it is necessary to
develop efficient solution strategies that address the problem with high-quality results and
reduced computation times. Therefore, this research also aims to propose an optimization
methodology to solve the problem under study by finding the best possible solution with
low computational costs.

1.3. State of the Art

To address the problem of integrating generators based on renewable energy resources
into DC networks, different methodologies have been recently reported in the specialized
literature. Some of these research works are presented below.

In [12], a methodology is presented to assess the technical-economic feasibility of inte-
grating and operating large-scale photovoltaic generators in AC/DC distribution networks.
The objective functions considered are the minimization of operating costs and energy
losses of the grid. To solve this problem, the non-dominant sorting genetic algorithm-II
is used. Numerical performance achieved on the 33-bus IEEE test feeder demonstrates
the feasibility of the suggested method. In [13], hybridization between the particle swarm
optimization algorithm and the gravitational search algorithm is suggested to address the
integration problem of renewable energy sources based mainly on photovoltaic and wind
generation. The main goal for this work is to reduce energy losses in the grid and increase
profits for renewable energy owners. Numerical performance on the 69-bus IEEE test sys-
tem shows the effectiveness and applicability of the suggested methodology in terms of the
solution compared to other population-based metaheuristic algorithms. In reference [14],
the problem of integrating distributed generators (mainly based on solar and wind power)
into DC grids is represented by a mixed-integer nonlinear linear programming (MINLP)
model. This work aims to minimize the installation costs of distributed generators and
save in power purchasing. The authors used the GAMS software to solve the mathemat-
ical model. Numerical performance on the 21-bus test feeder shows the application and
effectiveness of the suggested approach. In [15], a method on the basis of the equilibrium
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optimization algorithm is proposed for the efficient location and size of PV generators and
batteries in distribution grids. The purposes of this work include minimizing the cost of en-
ergy not supplied, the investment costs associated with the installation of the PV generators
and batteries, their operating costs, the power losses through the distribution lines, and the
CO2 emissions produced in relation to the network and the systems. Numerical results
on 30- and 69-bus feeders demonstrate the efficiency and robustness of the suggested
methodology with respect to other algorithms reported in the specialized bibliography,
such as genetic algorithms, particle swarm optimization, differential evolution and gray
wolf optimization.

The authors of [16] address the problem of integrating of distributed generators in
DC networks through a mixed-integer semi-definite programming model. This model is
solved using the MATLAB CVX tool, with which the authors manage to minimize the
power losses of the system. Numerical performance achieved on 21-bus and 69-bus test
feeders demonstrates the efficiency of the suggested method in terms of solution quality
compared to classical metaheuristic methods. In [17], a mixed-integer convex model is
proposed to solve the problem of integrating generators based on renewable resources and
energy storage systems in DC distribution networks. The aim of this work is to reduce
the costs associated with energy losses. This model is solved using the MATLAB CVX
tool, with excellent numerical results of 21- and 69-bus feeders showing the effectiveness
and implementability of the suggested method. In reference [18], the problem regarding
the integration of distributed generation sources in DC networks is addressed through a
second-order conic programming model. This model seeks to minimize the power losses in
the system lines. Numerical results on 21 and 69 bus feeders demonstrate the effectiveness
and robustness of the suggested method compared to solutions representing the MINLP
model of the problem.

Recently, the problem of integrating PV generators into DC networks has been solved
by considering economic approaches based mainly on master–slave methodologies work-
ing with discrete-continuous coding. This type of codification allows siting and sizing
problems to be solved in a unified manner, improving the exploration and exploitation
of metaheuristic algorithms while reducing their computation times. An example of this
is the work published by [19], which proposes a leader–follower optimization method
consisting of the discrete-continuous version of the vortex search algorithm (DCVSA)
and the successive approximations power flow method. The main idea of this work is
to reduce the total annual operating costs, taking into account the investment, operation
and maintenance costs of the power generation systems. The numerical performance on
the 33-bus and 69-bus test feeders demonstrates the feasibility and effectiveness of the
developed methodology. Finally, as in the previous case, the study by [20] uses the discrete-
continuous version of the generalized normal distribution optimizer (DCGNDO) to solve
the PV-generator integration problem. This work’s main objective is to minimize the total
annual operating costs. The results obtained in the 33- and 69-bus tests demonstrate the
developed methodology’s applicability and efficiency compared with the DCVSA.

1.4. Contributions and Scope

Considering the review literature review presented in the previous subsection, the main
contributions of this document are presented as follows:

• A new optimization approach to solve the mathematical model representing the optimal
integration of PV generators into DC grids. This methodology combines the discrete-
continuous version of the crow search algorithm with the successive approximation power
flow method within the framework of a master–slave optimization strategy.

• A solution strategy that finds the optimal global solution to the problem of integrating
PV generators into DC networks, improving the results reported by the specialized
literature regarding solution quality and repeatability.

• A new optimization approach based on the leader–follower operation scheme that
allows solving a high-complexity optimization problem with reduced processing times
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(less than 1.5 min) and consistent numerical performance in the DC versions of the 33-
and 69-bus test feeders.

It is worth mentioning that this research is in the area of distribution system planning,
which means that all the optimization algorithms (proposed and comparative methodolo-
gies) are evaluated based on simulations (offline validations) with the information provided
by the distribution company regarding the generation and demand profiles being these
data-averaged values obtained from historical information. In addition, once the expected
size and location of the PV plants are determined, the distribution company will implement
the physical stage, i.e., the construction of the PV plants; once these are ready to operate,
then efficient day-ahead economic/technical/environmental dispatch methodologies for
real-time operation must be implemented. This means that more research is required
to plan and operate renewables in monopolar DC networks, which is an opportunity to
continue contributing to the development of sustainable electrical networks in future works.
However, numerical results in the studied test feeders demonstrated that in the case of the
optimal location and sizing of PV plants in DC networks, all the combinatorial methods
reach efficient numerical results, and the difference among them is minimal, which implies
that with this research, the solution of the studied problem can be considered closed.

1.5. Document Organization

The rest of the paper is structured as follows: Section 2 provides a full description of
the MINLP model representing the problem under study, i.e., the optimal integration of
PV generators into DC distribution networks with the objective of reducing total annual
operating costs; Section 3 describes the general implementation of the discrete-continuous
version of the crow search algorithm and the successive approximation power flow method
in order to evaluate the objective function; Section 4 presents the main characteristics of the
DC versions of the 33- and 69-bus test feeders, the typical PV generation and demand curves
for a Colombian region and the parametric information used to calculate the objective
function value; Section 5 shows the numerical results, validations, analysis and discussion
obtained for the optimal integration of PV generators for both test systems; and Section 6
lists the main conclusions of this study and future works.

2. Mathematical Formulation

The problem of the integration of PV generators into DC networks is presented here.
The problem is mathematically formulated as Mixed-Integer Nonlinear Linear Program-
ming (MINLP) where the decision variables are put in relation to the choice of the bus
where the PV generator is placed, and the nonlinearity of the model arises in the power
flow formulation due to the nonlinear nature of its general equation [21]. The objective
function and the set of constraints of the optimization model representing the problem of
integrating PV generators in DC distribution systems are described below.

2.1. Formulation of the Objective Function

The objective function corresponds to the minimization of the total annual operating
cost of the DC network, which consists of three parts: annual power purchase costs for
the substation bus, annual investment costs and maintenance costs for the PV generators.
The components of the objective function are shown in (1) to (4).

min Acost = A1 + A2 + A3, (1)

A1 = CkWhTCaCc

(
∑

h∈H
∑

k∈N
pcg

k,hΔh

)
, (2)

A2 = CpvCa

(
∑

k∈N
ppv

k

)
, (3)
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A3 = CO&MT

(
∑

h∈H
∑

k∈N
ppv

k,hΔh

)
, (4)

with

Ca =

(
ta

1 − (1 + ta)−Nt

)
,

Cc =

(
∑
t∈T

(
1 + te

1 + ta

)t
)

.

Here, the value of the objective function is given by Acost and represents the total
annual operating costs of the system. A1 is the value of the annualized energy purchasing
costs at the substation bus. A2 is the value of the annualized investment costs, while A3
is the value of the operation and maintenance costs of the PV generators. CkWh is the
average energy purchase price of the substation bus. T represents the average number
of days per year. Ca is the annuity factor that allows finding the value of the periodic
payments to be made by the network operator, depending on the expected internal interest
rate ta and the planning period Nt. Cc is a factor related to the increase in electricity
costs during the planning period, which depends on the expected annual energy cost
increase rate specified by the network operator te. pcg

k,h is the active power produced by
each conventional generator connected to bus k during time period h. Δh is the length
of the time period in which the electrical variables are assumed to be constant. Cpv is
the average installation cost of 1 kW of solar power. ppv

k is the nominal power of the
PV generator connected to bus k. CO&M is the maintenance and operation cost of the PV
generator set, and ppv

k,h is the active power generated by each connected PV unit at bus k in
the time interval h. Finally, N , H, and T are the sets containing all the buses in the network,
the time periods in a daily operation scenario and the number of years in the planning
horizon, respectively.

2.2. Set of Constraints

Equations (5) to (11) show the set of constraints representing the problem of integrating
a PV generator into a DC grid.

pcg
k,h + ppv

k,h − Pd
k,h = ∑

j∈N
Gkjvk,hvj,h,

{
∀k ∈ N , ∀h ∈ H

}
, (5)

ppv
k,h = ppv

k Cpv
h ,
{
∀k ∈ N , ∀h ∈ H

}
, (6)

Pcg,min
k ≤ pcg

k,h ≤ Pcg,max
k ,

{
∀k ∈ N , ∀h ∈ H

}
, (7)

ykPpv,min
k ≤ ppv

k ≤ ykPpv,max
k ,

{
∀k ∈ N

}
, (8)

vmin
k ≤ vk,h ≤ vmax

k ,
{
∀k ∈ N , ∀h ∈ H

}
, (9)

∑
k∈N

yk ≤ Nava
pv , (10)

yk ∈ {0, 1},
{
∀k ∈ N

}
. (11)

Here, Pd
k,h is the active power required by the bus k in time period h. vk,h and vj,h denote

the voltages of buses k and j in time period h, respectively, and Gkj is the conductance
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value associated with buses k and j. Cpv
h is the expected PV electricity production curve in

the area of influence of the power system. Pcg,min
k and Pcg,max

k are the active power limits

associated with each conventional generator connected at bus k. Ppv,min
k and Ppv,max

k are
the active power limits associated with the PV generator connected at bus k. On the other
hand, yk is a binary variable responsible for finding the location of a PV generation unit
at bus k. vmin

k and vmax
k are the minimum and maximum voltage regulation limits allowed

by all the buses that make up the electrical system. Finally, Ndisp
pv is a constant parameter

related to the maximum number of PV generators that can be installed in the grid.

2.3. Model Analysis and Interpretation

The mathematical model displayed in (1) to (11) can be interpreted as follows. Equation (1)
defines the objective function of the problem, which is the sum of the annual energy purchasing
costs at the substation bus, as shown in Equation (2), with the annual investment costs of the
PV generators, as proposed in (3), and maintenance and operating costs, as indicated in (4).
Constraint (5) presents the active power balance for each system bus in each time period. This
equation is the most challenging constraint of the problem studied, and since it is non-linear
and non-convex, it must be solved adequately by numerical methods [4]. Equation (6) states
that the active power generation of PV generators varies as a function of their rated power and
the expected generation curve in the grid’s influence zone. Inequality constraint (7) defines
the lower and upper active power injection limits of conventional generators. Inequality (8) is
also a constraint that determines the minimum and maximum active generation boundaries of
the PV generators to be installed throughout the system. Similarly, (9) is a box constraint that
defines the lower and upper bounds of voltage regulation for all busbars and time periods,
while (10) defines the maximum number of PV generators available for installation in the grid.
Finally, (11) shows the binary nature of the decision variable yk.

The main complications of the presented model are (i) the existence of non-linearities
and non-convexities in the active power balance equation and (ii) the mixture of integer
and continuous variables. Therefore, to solve the problem under study, a master–slave
optimization methodology based on the discrete-continuous version of the crow search
algorithm (DCCSA) and the successive approximations method version is proposed, which
has not been previously presented in the specialized literature and constitutes one of the
main achievements of this work.

3. Proposed Methodology

This section presents a master–slave methodology applied to solve the problem of
integrating PV generators into DC networks. In the master stage, the buses where the
PV generators are placed are defined, along with their rated power. In the slave stage,
the power flow constraints defined in the MINLP model are evaluated to determine the
value of the objective function. Each component of the proposed methodology is presented
in the following sections.

3.1. Master Stage: Discrete-Continuous Crow Search Algorithm

The DCCSA is a bio-inspired metaheuristic algorithm that is based on the rational
behavior of crow flocks [22]. Crows are characterized by being ambitious birds, as they
chase each other to stock up on the best food. In addition, crows watch where other birds
hide their food in order to steal it when they are away [23]. Consequently, after having
stolen the food, crows take the necessary measures to avoid becoming another victim,
moving their hiding place or changing their route [24]. This behavior can be mathematically
modeled by following simple rules that allow for a correct exploration and exploitation of
the solution space [22]:

� Crows live in swarms
� Crows can remember where food sources are
� Crows chase each other to commit theft
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� Crows guard their hideouts against robbery using stochastic behavioral factors

3.1.1. Initial Population

DCCSA is a population-based algorithm consisting of crows randomly placed in the
environment, which allows the algorithm to begin the process of exploring and exploiting
the solution space. The starting population of crows adopts the structure displayed in (12):

Xt =

⎡⎢⎢⎢⎢⎣
xt

11 xt
12 · · · xt

1Nv
xt

21 xt
22 · · · xt

2Nv
...

...
. . .

...
xt

Ni1
xt

Ni2
· · · xt

Ni ,Nv

⎤⎥⎥⎥⎥⎦, (12)

where Xt is the population of crows in iteration t, Ni is the number of individuals in the
population and Nv is the number of variables or the size of the solution space. To create the
initial population of crows, (13) is used, which generates an array of random numbers in the
lower and upper bounds that contain possible solutions for the PV generator integration
problem.

X0 = xminones(Ni, Nv) + (xmax − xmin)rand(Ni, Nv), (13)

where ones(Ni, Nv) ∈ RNi×Nv is an array containing ones; rand(Ni, Nv) ∈ RNi×Nv is an
array filled with random numbers between 0 and 1 that are generated by a uniform
distribution; and xmin ∈ RNv×1 and xmax ∈ RNv×1 are vectors representing the lower and
upper boundaries of the solution space, as shown below:

xmin =

[
x1,min
x2,min

]
, ymax =

[
x1,max
x2,max

]
.

Here, x1,min ∈ RNava
pv ×1 and x1,max ∈ RNava

pv ×1 represent the lower and upper limits of
the decision variables associated with the location of the PV generators at the demand
buses. On the other hand, x2,min ∈ RNava

pv ×1 and x2,max ∈ RNava
pv ×1 are the lower and upper

bounds of the decision variables related to the size of the PV generation units.
Each individual generated by (13) must respect the coding shown in (14), which allows

for determining the optimal location and size of PV generation units to be installed in the
DC network.

Xt
i =

[
5, z, ..., 18 |1.6593, ppv

z , ..., 2.210
]
; i = 1, 2, ..., Ni. (14)

Finally, in each iteration t, every crow in the population is able to memorize the
position of the hiding place of its food, as presented in (15), which stores the location of the
best food cache that each crow has found so far.

Mt =

⎡⎢⎢⎢⎢⎣
xt

11 xt
12 · · · xt

1Nv
xt

21 xt
22 · · · xt

2Nv
...

...
. . .

...
xt

Ni1
xt

Ni2
· · · xt

Ni ,Nv

⎤⎥⎥⎥⎥⎦ (15)

3.1.2. Crow Movement

To start the DCSSA, a crow j is supposed to want to visit its hideout, which is located
at position Mt

j . On the other hand, crow i decides to follow j to approach its hiding place.
Two situations may arise in this context: (i) search and (ii) evasion.
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1. Case 1: Search
From this situation, crow j does not know that crow i is chasing it. Therefore, crow
i manages to approach crow j’s hideout, thus switching its position in the solution
space. The new location can be represented mathematically, as shown in (16).

Xt+1
i = Xt

i + rand f l (Mt
j − Xt

i ), (16)

where rand is a random number between 0 and 1 generated by uniform distribution,
and f l is the flight length of the crow i.

2. Case 2: Evasion
In this situation, crow j knows that crow i is chasing it. Consequently, the crow j tries
to trick the crow i by moving to a random position in the solution space in order to
protect its hiding place from being sacked.
The two possible situations that may arise can be summarized as shown in (17).

Xt+1
i =

{
Xt

i + rand f l (Mt
j − Xt

i ) Si rj ≥ Ap

random otherwise
(17)

Here, rj is a random number between 0 and 1 that is generated by a uniform distribu-
tion, and Ap is the probability that crow j notices that crow i is following it.

3.1.3. Memory Updating

From the situations described above, the position of the crows is modified. Therefore,
the new position of the food source must be updated. Therefore, if the new meal location
adaptation function is better than the previously memorized position adaptation function,
the crow updates its memory with the new position, as depicted in (18).

Mt+1
i =

{
Xt+1

i Si FF(Xt+1
i ) < F(Mt

i )
Mt

i otherwise
, (18)

where Ff (·) represents the adaptation function to be minimized.

3.2. Slave Stage: Successive Approximations Power Flow Method

The successive approximation method for solving the power flow in DC power systems
was originally presented in [25]. This method allows iterative solving of the active power
balance equation shown in (5). Therefore, it permits the slave phase to estimate the value of
the adaptation function for each individual that composes the crow population, ensuring
that the constraints presented in the MINLP model are respected, as previously mentioned
in Section 2. The recursive formula that allows the solving of the power flow formulated in
(5) is presented in (19).

Vm+1
d,h = −G−1

dd

[
diag−1(Vm

d,h)(Pd,h − Ppv,h) + GdsVs,h

]
. (19)

Here, m is the iteration counter and Vd,h is the vector containing the voltage at the
demand buses for each period h. Gds is the component of the conductance matrix that asso-
ciates the slack bus with the demand buses, while Gdd is the component of the conductance
matrix that relates the demand buses to each other. Pd,h is the vector containing the active
power consumed at the load buses for each period h. Ppv,h is the vector containing the
active power generated by each PV generator for each period h. Vs,h is the vector containing
the voltage at the substation bus terminals for each period h, which is a known parameter
of the power flow solution. Finally, diag(z) is a diagonal matrix made up of the elements
of vector z.
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To determine the convergence of the iterative process, the criteria specified in (20) is
employed, in which the maximum difference in the magnitudes of the demand voltages
(i.e., Vd,h) for each period h of two consecutive iterations is less than a given tolerance.

max
h

{
|Vm+1

d,h −Vm
d,h|
}
≤ ζ (20)

In (20), ζ is defined as the convergence error, which takes the value 1 × 10−10 for
this study.

Having solved the power flow in all time periods h using the successive approximation
power flow method, the next step is to estimate the power generated at the terminals of the
substation bus, as shown in (21).

Ps,h = diag(Vs,h)(GssVs,h + GsdVd,h). (21)

Here, Ps,h is the vector containing the active power generated at the slack bus for
each period h. Gss is the component of the conductance matrix associated with the slack
bus, while Gsd is the component of the conductance matrix that relates the slack bus to
the demand bus. Note that when solving (21), it is possible to obtain the value of A1.
The solution given by each individual in the master phase that follows the encoding given
by (14) allows us to obtain the values A2 and A3. However, in order to discard potentially
infeasible solutions that do not meet the constraints of the solution space, the objective
function shown in (1) is substituted by the fitness function described in (22) [26,27].

Ff =Acost + β1 max
h

{
0,Vd,h − vmax}− β2 min

h

{
0,Vd,h − vmin

}
− β3 min

h

{
0,Ps,h − Pgc,min

k

} . (22)

In (22), Ff is the value of the adaptation function, and β1, β2 and β3 are penalty factors
applied to the objective function. These penalty factors are activated when the solution
specified in the master stage does not meet the voltage regulation or generation capacity
constraints of the slack bus. For this research article, the value of these penalty factors is
taken as 1 × 106. One of the main advantages of using an adaptation function is that it
allows the optimization approach to explore and exploit the solution space efficiently, given
that if all the constraints specified in the MINLP model are satisfied, the final value of Ff is
equal to the value of the objective function [28].

Figure 1 presents the general implementation of the proposed master–slave methodol-
ogy for the integration of PV generation units into DC grids.
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Start: Proposed
methodologyTest feeder data Load and PV curves

Define parameters
Ni, Nv, Ap, f l,

tmax, ymin y ymax

Create the initial
population using (13)

Calculate the fitness
function for each

individual using (22)

Update the memory
value for each
crow using (18)

t ≥ tmax?

End: Report Mbest
and Ff (Mbest)

Apply evolu-
tion criteria (17)

no

yes

Figure 1. General application of the master–slave approach to address the problem of optimal
integration of PV generating units in DC networks.

4. Test Feeders

To solve the problem under study, the DC versions of the 33- and 69-bus feeders (both
with a radial topology) were used [29]. The main characteristics of each test feeder are
presented below.

4.1. 33-Bus Test Feeder

This test feeder is an adaptation of the 33-bus ac test feeder commonly used to solve
the problem of integrating PV generators into electrical systems. This feeder was originally
proposed in [30]. Initially, it consists of 33 buses and 32 distribution lines, as shown in
Figure 2a. To transform this feeder into a DC network, a voltage base of 12.66 kV and a
power base of 100 kW are used. Additionally, the reactance component of all the distribution
lines is neglected, as well as the reactive power consumption in all the buses that make up
the feeder. In the maximum consumption scenario, the system loads consume 3715 kW.
The parametric information for this system can be consulted in [31].

4.2. 69-Bus Test Feeder

This test feeder is an adaptation of the 69-bus AC test feeder commonly used to solve
the problem of integrating PV generators into distribution systems, which was originally
proposed in [32]. Initially, this feeder consists of 69 bus and 68 distribution lines, as shown
in Figure 2b. To transform this feeder into a DC network, a voltage base of 12.66 kV and a
power base of 100 kW are used. As in the previous feeder, the reactance component of all
the distribution lines and the reactive power consumption in all the buses that make up the
system are neglected. In the maximum consumption scenario, the system loads consume
3890.7 kW. The parametric information of this system can be found in [31].
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Figure 2. Electrical schematic of the test feeders: (a) 33-bus and (b) 69-bus.

Remark 1. In this research work, the equivalent DC system electrical configuration is assumed to
be monopolar, i.e., the voltage difference between the positive pole and the neutral conductor is the
same as that assigned in the AC network [33].

4.3. Calculating the Objective Function

To estimate the value of the adaptation function described in (22), the information
shown in Table 1 was employed [34,35]. The cost of electricity considered for this study
is a real value reported in [36], which corresponds to the average cost of energy reported
by the utility company CODENSA of Bogota, Colombia, in May 2019. We have taken this
value to have a fair comparison between the proposed methodology and the methodologies
previously used to solve the problem under study in DC grids since this electricity price
was used by the different comparison methodologies

Table 1. Information used to calculate the objective function value.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
Δh 1 h te 2 %
Cpv 1036.49 USD/kWp CO&M 0.0019 USD/kWh
Nava

pv 3 - ΔV ±10 %
Ppv,min

k 0 kW Ppv,max
k 2400 kW

β1 1 × 106 USD/V β2 1 × 106 USD/V
β3 1 × 106 USD/W - - -

To determine the effect of integrating PV generators into the test feeders presented
in the previous subsection, the generation and demand curves for the city of Medellín,
Colombia, were used (see Figure 3). These curves were first reported in [37].
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Figure 3. Daily demand and generation curves for Medellín, Colombia.

5. Numerical Results and Discussions

All simulations were implemented in the MATLAB programming environment, ver-
sion 2022a, using proprietary scripts on a desktop computer with an Intel(R) Core(TM)
i9-11900 processor CPU@2.50Ghz, 64.0 GB RAM and a 64-bit Windows 10 pro operat-
ing system. In order to demonstrate the performance of the suggested optimization
approach, the DCCSA has been compared with the next methodologies, which were
previously employed to address the problem under study in both AC and DC networks:
(i) the BONMIN solver of the specialized GAMS software (exact solution of the MINLP
model) [38], (ii) the discrete-continuous version of the Chu & Beasley Genetic Algo-
rithm (DCCBGA) [38], (iii) the discrete-continuous version of the vortex search algorithm
(DCVSA) [19], (iv) the discrete-continuous version of the generalized normal distribution
optimizer (DCGNDO) [20], and (v) the discrete-continuous version of the parallelized
particle swarm particle optimization algorithm (DCPPSO) [39]. Finally, for both test feeders,
the installation of three PV generation units with a maximum size of 2400 kW was proposed.

5.1. DCCSA Parameters

To address the problem of the optimal integration of PV generators into DC networks,
we used the information contained in Table 2.

Table 2. Parameters of the discrete-continuous crow search algorithm used in the master stage.

Parameter DCCSA

Number of individuals (Ni) 62
Maximum iterations (tmax) 622

Flight length ( f l) 1.8468
Awareness probability (Ap) 0.0145

For the choice of the parameters listed in Table 2, the DCCSA was tuned using the
CBGA [40] with an initial population of 50 individuals and a maximum number of iterations
of 350. The tuning stage consists of using a metaheuristic algorithm in a previous stage,
in the case of this study, the CBGA, to find the optimal parameters of the DCCSA to achieve
a balance between thee exploration and exploitation of the algorithm. This is performed in
order to guarantee the convergence of the algorithm and to ensure that the algorithm finds
the global optimal solution (or very close optimal solutions) for the problem of integration
of PV generators into DC networks. Similarly, another advantage of tuning metaheuristic
algorithms is that it increases repeatability, i.e., each time the algorithm is run, it will
always find the same or a very close solution. The parameters for tuning were: (i) the
population size (Ni), with a range of [1–100] individuals; (ii) maximum number of iterations
(tmax), with a range of [1–1000]; (iii) the flight length ( f l), with a range of [0–3.5]; and (iv)
the awareness probability (Ap), with a range of [0–1]. These parameters were selected
due to the influence that each of them has on the performance of the algorithm since the
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modification of each of these parameters directly affects the exploration and exploitation of
the DCCSA [22].

Figure 4 presents a flowchart where the operating principle of the tuning stage can
be observed. In this stage, the CBGA is responsible for generating the optimal DCCSA
parameters (i.e., Ni, tmax, fl and Ap) represented by the red arrow. These parameters
enter the master–slave stage to evaluate the value of the objective function of the problem
under study represented by the green arrow. Once the iterative process is finished, the
tuning stage finds the DCCSA parameters that allow finding the best value of the objective
function. Regarding the parameters of the algorithms used for comparative purposes, they
were taken from the original papers in which they were used for the first time to solve the
problem of the location and sizing of PV generators in DC networks.

START CBGA MASTER - SLAVE
Stopping
criteria

has been
met?  

STOP
Yes

No
TUNING STAGE

Parameters Optimal
solution

Figure 4. Operating principle of the tuning stage.

Likewise, it was also proposed to carry out 100 consecutive evaluations of the de-
veloped method to find the best, average and worst values of the objective function.
In addition, the standard deviation of the two proposed test feeders and the average calcu-
lation time taken by the algorithm to find the optimal location and size of the PV generator
were calculated.

5.2. Results from the First Test Feeder
5.2.1. Numerical Results

Table 3 shows the numerical values found by applying the proposed approach in the
DC version of the 33-bus test feeder. The data in this table are listed from left to right as
follows: the methodology used, the buses where the PV generators were installed and their
rated power and the total annual operating costs.

Table 3. Numerical performance for the DC version of the 33-bus feeder.

Method Site and Size (bus, MW) Acost(USD/Year) Reduction(%)

Bench. Case - 3,644,043.01 0

BONMIN {18(1.4301), 32(2.0611), 33(0.1437)} 2,664,089.12 26.8919
DCCBGA {11(1.1630), 14(0.9435), 31(1.4828)} 2,662,724.82 26.9294
DCVSA {9(0.5803), 15(1.2914), 31(1.7156)} 2,662,425.32 26.9376

DCGNDO {10(0.9743), 16(0.9202), 31(1.6925)} 2,662,371.59 26.9391
DCPPSO {10(0.9680), 16(0.9189), 31(1.6999)} 2,662,371.59 26.9391

DCCSA {10(0.9742), 16(0.9198), 31(1.6930)} 2,662,371.59 26.9391

The numerical results from the 33-bus test feeder show the following:

� All metaheuristic algorithms outperform the solution provided by BONMIN (i.e., the
exact solution of the MINLP model), corroborating that the existence of binary vari-
ables leads the exact solution methods to be trapped in local optima.

� DCCSA, DCGNDO and DCPPSO are the methodologies that reach the best solution,
achieving a reduction of 981,671.42 USD/year with respect to the benchmark case, con-
firming that the global optimal solution for the 33-bus test feeder is 2,662,371.59 USD/year
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and is reached by locating the PV generation units at buses 10, 16 and 31, with a total rated
capacity of 3586.97 kWp.

� The methodologies used to achieve the integration of PV generators allow savings of
more than 26.85% compared to the benchmark case, with DCCSA, DCGNDO and
DCPPSO being the methodologies that achieve the greatest reduction of 26.9391%.
When these methodologies are compared to the other solution methodologies, there
is a reduction in annual operating costs of approximately 0.0472% with respect to
BONMIN, 0.0097% with respect to DCCBGA and 0.0015% with respect to DCVSA.

5.2.2. Statistical Analysis

Table 4 shows the results obtained by performing 100 consecutive evaluations of the
master–slave approach in the 33-bus test feeder. The data in this table are listed from left
to right as follows: the methodology used, the best solution found, the percent standard
deviation and the average computation time.

Table 4. Numerical performance comparison in the 33-bus feeder after 100 consecutive evaluations.

Method Best(USD/Year) SDT(%) Avg. Time(s)

BONMIN 2,664,089.12 0 1.29
DCCBGA 2,662,724.82 0.0557 2.43
DCVSA 2,662,425.32 0.0620 76.86

DCGNDO 2,662,371.59 0.0601 159.99
DCPPSO 2,662,371.59 0.0398 16.81

DCCSA 2,662,371.59 0.0058 20.86

The results in Table 4 show the following:

� DCCSA, DCGNDO and DCPPSO, in comparison with the methodologies reported
in the literature, provide better results in terms of annual operating costs. They
outperform BONMIN by 0.0645%, DCCBGA by 0.0133% and DCVSA by 0.0020%.

� Regarding computation times, BONMIN, DCCBGA and DCPPSO are faster than the
proposed methodology, reducing processing times by 93.8016%, 88.3510% and 19.4160%,
respectively, in comparison with DCCSA. However, as it is a planning problem, 20 s is a
low processing time compared to the planning horizon, and DCCSA can solve the PV
generator integration problem for DC networks while providing quality solutions with
low computation times.

� Regarding the standard deviation, the superiority of the proposed DCCSA can be
understood, achieving a reduction of 867.5515% with respect to DCCBGA, 977.5298%
with respect to DCVSA, 943.9829% with respect to DCNGDO and 591.9624% with
respect to DCPPSO. A comparison with respect to BONMIN was not made because
when the MINLP model is exactly solved, its solution will always be the same.

The aforementioned demonstrates the effectiveness and robustness of DCCSA in
solving the challenges of integrating PV generators into DC grids in order to reduce annual
operating costs. The suggested method provides the best performance in terms of optimal
solution and reproducibility with a short processing time. This makes it the best option to
solve the problem of 33-bus test feeders, achieving an adequate solution not only from an
economic point of view but also from a technical-operational point of view.

5.3. Results from the Second Test Feeder
5.3.1. Numerical Results

The numerical values found by the application of the proposed methodology on the
DC version of the 69-bus test feeder are shown in Table 5. This table shows the same
information as Table 3.
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Table 5. Numerical results for the DC version of the 69-bus feeder.

Method Site and Size (Bus, MVAr) Acost(USD/Year) Reduction(%)

Bench. Case - 3,817,420.38 0

DCCBGA {19(0.7908), 61(1.7891), 64(1.1474)} 2,785,598.86 27.0293
DCVSA {23(0.7720), 62(2.3403)63(0.6185)} 2,785,538.58 27.0309

BONMIN {27(0.4971), 61(2.4000), 65(0.8531)} 2,785,208.63 27.0395
DCGNDO {19(0.4970), 61(2.4000), 64(0.8470)} 2,785,011.53 27.0447
DCPPSO {22(0.5310), 61(2.4000), 64(0.8105)} 2,784,987.68 27.0453

DCCSA {21(0.4855), 61(2.4000), 64(0.8598)} 2,784,979.35 27.0455

The following can be concluded from the information presented in Table 5:

� The developed DCCSA is the methodology that achieves the best solution for the 69-
bus test feeder, i.e., a reduction of approximately 1,032,441.03 USD/year with respect
to the benchmark case, which indicates that the optimal solution to the problem
addressed in this study is 2,784,979.35 USD/year and is reached by locating the PV
generators at buses 21, 61 and 64, with a total rated capacity of 3745.29 kWp.

� The comparison methodologies used to achieve the problem addressed allow savings
of more than 27% with respect to the benchmark case, with DCCSA being the method-
ology that achieves the greatest reduction (i.e., 27.0455%). Similarly, when comparing
the proposed methodology to the other solution methodologies reported in Table 5,
reductions in the objective function value of approximately 0.0060% with respect to
BONMIN, 0.0162% with respect to DCCBGA, 0.0146% with respect to DCVSA, 0.0008%
with respect to DCGNDO and 0.0002% with respect to DCPPSO were obtained.

5.3.2. Statistical Analysis

As in the previous case, the effectiveness and robustness of the DCCSA for solving
the problem under study were determined by performing 100 consecutive evaluations of
the suggested approach in the 69-bus test feeder, whose results can be seen in Table 6. This
table presents the same information as Table 4.

Table 6. Numerical performance comparison of the 69-bus feeder after 100 consecutive evaluations.

Method Best(USD/Year) SDT(%) Avg. Time(s)

DCCBGA 2,785,598.86 0.1289 7.74
DCVSA 2,785,538.58 0.0975 269.22

BONMIN 2,785,208.63 0 2.03
DCGNDO 2,785,011.53 0.2384 376.88
DCPPSO 2,784,987.68 0.0226 28.24

DCCSA 2,784,979.35 0.0178 69.96

These results show the following:

� DCCSA, in comparison with all of the methodologies reported in the literature, pro-
vides better results in terms of the evaluation of the objective function. It outperforms
BONMIN by 0.0082%, DCCBGA by 0.0222%, DCVSA by 0.0201%, DCNGDO by
0.0012% and DCPPSO by 0.0003%.

� As for the processing times, it can be seen that BONMIN, DCCBGA and DCPPSO
are faster than the proposed methodology, reducing processing times by 97.0996%,
88.9359% and 59.6316%. It is also important to note that the DCCSA solves this highly
complex optimization problem with the best results in less than 1.5 min.

� With regard to the standard deviation, the superiority of the proposed DCCSA is
appreciated, achieving a reduction of 624.1573% with respect to DCCBGA, 447.7528%
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with respect to DCVSA, 1239.3258% with respect to DCNGDO and 26.9663% with
respect to DCPPSO. As mentioned in the previous subsection, no comparison was
made with BONMIN.

The results presented above highlight that the developed DCCSA exhibits the best
performance in terms of its solution and repeatability, with low processing times, making it
the best choice to solve the problem of integrating PV generators into the 69-bus test feeder.

6. Conclusions and Future Work

This research document presents a master–slave approach to address the problem
regarding the integration of PV generators into DC grids. In the master phase, the DCCSA
is in charge of determining the bus where the photovoltaic generators will be installed,
along with their rated powers, while the slave phase calculates the value of the adap-
tation function using the successive approximation power flow method. The DCCSA
parameters were tuned using the CBGA. The numerical performance demonstrated the
implementability and effectiveness of the optimization approach developed for the 33-
and 69-bus DC test feeders when compared to different methodologies reported in the
specialized literature, such as the BONMIN solver of GAMS, the Chu & Beasley genetic
algorithm, the vortex search algorithm, the normal distribution optimizer and the particle
swarm optimization algorithm.

In this regard, the following remarks can be made:

� The DCCSA achieves a reduction in the total annual operating costs of approximately
981,671.42 and 1,032,441.03 USD/year for each test feeder. These values represent
reductions of 26.9391% and 27.0455%, respectively.

� The developed DCCSA obtains lower standard deviation values for the DC version of
the 33- and 69-bus test feeders, showing improvements of 591.9624% and 26.9663%
concerning the DCPPSO (i.e., second-best results), respectively. These standard de-
viation results confirm the repeatability and robustness of the proposed DCCSA in
solving the PV generation unit integration problem, ensuring that, in each evalu-
ation, the response is within a radius of 153 USD/year for the 33-bus feeder and
637 USD/year for the 69-bus feeder.

� The computation times taken by the proposed methodology to solve the MINLP model
are 20.86 and 69.96 s for the 33 and 69-bus test feeders, respectively. This demonstrates
that the developed methodology is a robust tool that allows the solving of highly
complex mathematical models, ensuring quality answers when compared to other
methods reported in the literature, as well as with low processing times. This allows
the conclusion that the developed DCCSA is the best solution methodology to solve
the problem herein addressed.

As future work, the following can be proposed: (i) reformulating the mathematical
model of the problem under study while considering freeing the PV generators, i.e., dis-
abling the maximum power point tracking of the PV generators; (ii) reformulating the
mathematical model of the problem under study while considering the integration of
batteries; (iii) including the problem of optimal conductor selection in the planning of DC
networks, taking the investment costs of each conductor into account; and (iv) the reformu-
lation of the studied problem via mixed-integer convex approximations by ensuring the
global optimum finding with gradient-based algorithms combined with branch and cut
optimization techniques.
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Abstract: Recently, optimization-based energy disaggregation (ED) algorithms have been gaining
significance due to their capability to perform disaggregation with minimal information compared
to the pattern-based ED algorithms, which demand large amounts of data for training. However,
the performances of optimization-based ED algorithms depend on the problem formulation that
includes an objective function(s) and/or constraints. In the literature, ED has been formulated as
a constrained single-objective problem or an unconstrained multi-objective problem considering
disaggregation error, sparsity of state switching, on/off switching, etc. In this work, the ED problem
is formulated as a constrained multi-objective problem (CMOP), where the constraints related to
the operational characteristics of the devices are included. In addition, the formulated CMOP is
solved using a constrained multi-objective evolutionary algorithm (CMOEA). The performance of
the proposed formulation is compared with those of three high-performing ED formulations in the
literature based on the appliance-level and overall indicators. The results show that the proposed
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1. Introduction

In the modern world, the residential sector accounts for nearly one-third of global
energy consumption [1]. Unlike traditional indirect feedback, such as monthly bills, the pro-
vision of appliance-based consumption feedback is projected to result in 12% energy savings
per year [2] combined with additional features, such as the identification of faulty and/or
energy-inefficient devices [2]. In order to provide appliance-level consumption feedback,
it is essential to monitor the power consumption of each appliance directly (intrusive) or
indirectly (non-intrusive) referred to as appliance load monitoring (ALM). Therefore, ALM
can be classified as intrusive ALM (IALM) or non-intrusive ALM (NIALM) [1]. In IALM,
one or more sensors are used to measure the consumption of each appliance, resulting in
accurate measurements, but it is costly due to the amount of hardware required. On the
other hand, NIALM, or energy disaggregation (ED), employs a single sensor to measure
the consumption of the whole house, and appliance-level consumption is estimated using
artificial-intelligence-based techniques. In the last few decades, the combined growth of
artificial intelligence and smart meters led to an exponential growth of ALM [2–4] because
of its capability to promote energy awareness with minimal infrastructure.

Given the aggregated measurements, y(t), from the smart meter [1,2] over time,
t = 1, 2, . . . , T, the goal of ED is to estimate the energy consumption, yi(t), of each device,
i ∈ 1, 2, . . . , n, such that

y(t) =
n

∑
i=1

yi(t) + σ(t), (1)
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where y(t) denotes the aggregate active power (P) [5] and σ(t) represents the measure-
ment noise.

From Equation (1), it is evident that ED is an over-parameterized and highly ill-posed
problem. Furthermore, ED gets complicated as the number, types, and similarity between
the devices increases [1], coupled with measurement errors [2]. Frameworks proposed for
ED can be classified as (a) unsupervised or (b) supervised [1,2,6].

Unsupervised ED approaches [7–9] leverage unsupervised and generic learning fea-
tures; however, they often fail when appliances with similar operating characteristics are
featured in the network or when the power rating of one appliance is a linear combination
of two or more appliances [10]. Supervised ED frameworks require representative labeled
datasets to facilitate training of the components of the model. Furthermore, the type and
amount of the training dataset depend on the components present. The challenges associ-
ated with machine-learning-based approaches are summarized in [10–14]. Among them,
the main challenges are the ones associated with the data required for feature extraction
and model training, such as

1. Exponential increase in data requirement as the number of appliances increases.
2. Depending on feature extraction, the sampling rate of data collection needs to be

changed.
3. Data are household-specific due to unique device combinations and their usage

patterns.
4. Class imbalance is inherent due to infrequent operation of some devices.
5. To incorporate new devices, the processes of data collection and training need to be

repeated.

Optimization-based ED approaches alleviate the need for a training process that
demands large amounts of data. Contrary to machine learning approaches, optimization-
based ED approaches employ simple and readily available information corresponding to
electrical devices such as different modes of operation and their associated power ratings.
Additionally, new appliances can be integrated easily into the network by appending the
appliance-specific information (states and ratings). Given the above information, ED can
be formulated as a single-objective or multi-objective optimization problem with/without
constraints [4,15–17]. The performances of optimization-based ED algorithms depend on
various factors [14]. However, the main ones among them are the objective function(s)
and constraints. In other words, the performance strongly depends on how the problem
is formulated. In the literature, the objective and constraint functions are based on en-
ergy disaggregation error, sparsity of switching events, and some constraints regarding
device operation depending on how the problem is formulated. Recently, in [13,18], ED is
formulated as a multi-objective optimization problem. However, these formulations are
unconstrained and do not consider the device’s operation characteristics.

Motivated by the need for more efficient ED problem formulations that take into
account the associated constraints in order to realize good ED results, this work formulates
ED as a constrained multi-objective problem (CMOP), where sparsity and disaggregation
error are considered as the two objectives. In addition, device-specific operational character-
istics are considered as constraints. The formulated CMOP is solved using the constrained
multi-objective evolutionary algorithm (CMOEA), and its performance is compared with
those of state-of-the-art optimization-based ED formulations. The main contributions of
this paper are highlighted as follows:

1. A novel constrained multi-objective formulation of energy disaggregation is proposed.
2. In the formulation, sparsity and disaggregation error are considered as the objectives

to be optimized.
3. The constraints are formulated based on the device-specific operation characteristics

of each appliance.
4. The performance of the proposed CMOP is evaluated using a constraint multi-

objective evolutionary algorithm (CMOEA); it compares favorably with other methods
in the literature.
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The remainder of the paper is organized as follows. In Section 2, a review of the
different formulations of optimization-based ED existing in the literature is presented.
Section 3 presents the formulation proposed in the current work, where ED is formulated
as a constrained multi-objective problem (CMOP). Section 4 presents the simulation results
and a comparison with state-of-the-art optimization-based ED algorithms.

2. Literature Review on Optimization-Based Energy Disaggregation

Electrical devices, generally, operate in one of the predefined modes that are associated
with estimated power-consumption levels, as depicted in Table 1. Given the information
on the number of devices (n) in the network, the operational modes, and the associated
power consumption corresponding to each device, ED can be formulated as an optimiza-
tion problem as a constrained/unconstrained single or multi-objective problem [16]. In
the literature, most of the optimization-based ED algorithms [15,19,20] represent ED as
a binary optimization problem where a device i with li non-off modes is decomposed

into li virtual two-state (on/off (1/0)) devices. For appliance i, let Pi =
[

p1
i , . . . , pli

i

]T

represent a power rating corresponding to li virtual devices. Then, for n devices, the power
rating corresponding to the m = ∑n

i=1 li virtual devices is given by an (m × 1) vector
P = [P1, P2, . . . , Pi, . . . , Pn]T . At time t, the operational status of m virtual on/off devices is
given by the binary vector

S(t) =
[
s(1)1 (t), . . . ; s(l1)

1 (t), . . . , s(1)i (t), . . . , s(li)
i (t), . . . , s(1)n (t), . . . , s(ln)n (t)

]T
, (2)

where s(j)(t) = {0, 1} for j = {l1, l2, . . . , ln}.

Table 1. Details of appliances, their modes of operation with associated power ratings, and their
power deviations [4].

No. of
Appliances

Appliance
Maximum

No of
Modes

Power
Rating

(p)

Power
Deviation

(Θ)

n li p1
i p2

i p3
i Θ1

i Θ2
i Θ3

i

D1 LCD-Dell 1 25 - - 5 - -

D2 LCD-LG 1 22 - - 5 - -

D3 Coffee Maker 3 700 900 1100 100 100 100

D4 iMac 2 35 50 - 5 10 0

D5 Desktop 2 40 50 - 15 20 -

D6 Server 1 130 - - 20 - -

D7 Water Cooler 3 65 380 450 5 10 10

D8 Laptop 3 15 30 70 5 10 10

D9 Microwave 3 1000 1200 1700 100 100 100

D10 Printer 3 400 700 900 50 80 100

D11 Refrigerator 2 115 350 - 15 10 -

The aim of any ED algorithm is to find the operational state of each device in the
network at each time instance given by (S(t)), so that estimated power consumption
ŷ(t) resembles the aggregated measurements, y(t), from the smart meter [1,2], over time
t = 1, 2, . . . , T. In addition, ŷ(t) is a combination of ŷi(t), where i = 1, 2, . . . , n. Therefore,
during the estimation of (S(t)), the estimation of ŷi(t), where i = 1, 2, . . . , n, should match
the true power-consumption levels of the individual appliances.
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In order to approximate (S(t)), the intuitive and the most commonly employed
objective function in optimization-based ED is the least-square error between y(t) and ŷ(t),
as shown below [15,19,20].

minimize f =
T

∑
t=1

(yi(t)− ŷi(t))
2, (3)

where ŷ(t) = S(t) T P.
To handle optimization-based energy disaggregation, as formulated in (3), integer

programming [17], mixed integer programming [19], evolutionary algorithms [4,15,16,21],
etc., have been employed. The search space associated with the binary optimization
problem given by (3) increases drastically with the increase in the number of devices and
their associated operational modes. Furthermore, the energy disaggregation given by (3)
is over-parameterized. Hence, the solutions obtained may fail to represent the practical
operation of an appliance. The different issues associated with optimization-based ED
algorithms are summarized in [14]. In other words, it is essential to improve the problem
formulation considering additional objectives and/or constraints.

Due to the binary representation of the ED problem, where appliance i with li non-
off operating modes is represented as li virtual devices, during the estimation of S, the
appliance i might operate in more than one of the possible modes, which is impractical.
To address this problem, the authors of [19] considered an inequality constraint that forces
the device to operate in only one of the li modes or switches off all the li two state devices.

As shown in Table 1, the power rating of one on/off device can be similar to those
of others, or the power rating of one device can be represented as a linear combination of
multiple devices. This results in a situation where there exist multiple possible solutions
for a given aggregate value. To address this issue, in [19], it has been experimentally
demonstrated that choosing a combination of appliances with the lowest number of devices
being on at a given time would result in better performance.

Currently, the smart meters provide high-frequency data. In other words, consecutive
measurements of y(t) are obtained at significantly shorter intervals (say 10 s). Therefore,
minimizing the least-square error (3) alone may result in frequent appliance switching
(on/off). To enforce temporal sparsity, in [3], ED is expressed as a constrained single-
objective problem. In this framework, Sparse Switching Event Recovering (SSER), the goal
is to minimize the total number of on/off switchings (4) subject to power-limit constraints
given by (5).

minimizeTSE(�S) =
m

∑
j=1

T

∑
t=1

∣∣∣�S(j)(t)
∣∣∣, (4)

subject to
S′(t)(P − Θ) ≤ y(t) ≤ S′(t)(P + Θ). (5)

where S = [S(1), ..., S(i), ..., S(T)] is the (m × T) matrix.
(
Θ = [Θ1, Θ2, . . . , Θm]T

)
is the ap-

proximate power deviation variation corresponding to each power state
(

P = [P1, P2, . . . , Pm]T
)
.

TSE(.) denotes the total switching events in �S given by

�S = S.D,
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where differential matrix (D) of size T × (T − 1) is given by:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1 −1

1
. . .
. . . −1

1 −1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
In other words, corresponding to each operational mode, the deviation from the rated
power (Θ) is assumed to be provided. It is challenging to estimate (Θ) corresponding to
every operational mode resulting in serious degradation in the performance [3].

The over-parameterized formulation in Equation (3) is regularized in [22], which is
referred to as sparse optimization (Sopt), as shown below.

minimize f =
T

∑
t=1

(y(t)− ŷ(t))2+

⇒ λ1

n

∑
i=1

T

∑
t=1

∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎣
w(1)

i (t)
.
.
.

w(li)
i (t)

⎤⎥⎥⎥⎥⎥⎦�

⎡⎢⎢⎢⎢⎢⎣
s(1)i (t)

.

.

.
s(li)i (t)

⎤⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥
1

+

⇒ λ1

n

∑
i=1

T

∑
t=1

∥∥∥∥∥∥∥∥∥∥∥
ki

⎡⎢⎢⎢⎢⎢⎣
s(1)i (t)− s(1)i (t − 1)

.

.

.
s(li)i (t)− s(li)i (t − 1)

⎤⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥
∞

,

(6)

subject to
li

∑
j=1

s(j)
i (t) = 1, i = 1, . . . , n, and t = 1, . . . , T (7)

The equality constraint (7) is to enforce that continuous operating devices operate in
at least one of the li non-off states. In (6), the penalty terms are expected to provide the
temporal sparsity. However, the performance significantly varies based on the non-negative

weight vector [w(1)
i (t), . . . , w(li)

i (t)]T and hyperparameters (λ1, λ2, and ki(i = 1, . . . , n)).
Recently, ED is modeled as a multi-objective optimization problem in [18], where

objectives are

minimize

{
f1 = |y(t)− ŷ(t)|
f2 = φodo(s(t), s(t − 1)) + φsds(s(t), s(t − 1)),

(8)

where function ds(s(t), s(t − 1)) represents the number of mode changes, and function
do(s(t), s(t − 1)) represents the number of on/off changes. Generally, solving a multi-
objective optimization problem leads to a number of trade-off solutions where each solution
is a prospective energy disaggregation. Therefore, it is essential to select a solution from the
set to estimate the power consumption profile of devices. In [18], a decision-maker (DM)
function defined by the following equation is employed to select the optimal ED solution
from the set of trade-off solutions.

DM = f1(s(t)) +
[
(1 + f2(s(t)))

√
| f1(s(t))− f1(s(t − 1))|

]
(9)
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In [13], it was observed that minimization of least-square error ( f1 in (8)) maximizes
the sum of the variations in switching events ( f2 in (8)) and vice versa. This is because of
the featured inherent noise and similarity between the appliances in terms of power ratings.
In other words, minimization of least-square error and total variation of switching events
are conflicting. In [13], the problem is solved as a multi-objective problem. However, instead
of employing the decision function, once the trade-off set is obtained, a solution where the
disaggregated individual device operations match the practical device operation is selected
(using some reference signals). The reference signals are considered to available or given by
the manufacturer. In addition, in [13], the ED is solved as an discrete optimization problem
instead of binary optimization problem where the state matrix (S) is represented as

SP =

⎡⎢⎣sp1(1) · · · sp1(T)
...

. . .
...

spn(1) · · · spn(T)

⎤⎥⎦ (10)

where SP is a state matrix of size n × T and spi(t) is the consumption of device i = 1, 2,. . . ,
n at time instance t = 1, 2, . . . , T. The objective functions considered are

Minimize : E =
T

∑
t=1

(y(t)−
n

∑
i=1

spi(t))2 (11)

Minimize
∑n

i=1 ∑T
t=2[(spi(t) �= spi(t − 1))(spi(t)spi(t − 1) �= 0)]

+

∑n
i=1 ∑T

t=2[(spi(t) �= spi(t − 1))(spi(t)spi(t − 1) = 0)]
(12)

Equation (11) is similar to f1 in (8), and Equation (12) is similar to f2 in (8). In addition,
to effectively solve the multi-objective ED using the multi-objective evolutionary algorithm,
problem-specific mutation and crossover operators were proposed.

Based on the review, it can be concluded that to improve the performance of
optimization-based ED algorithms, novel problem formulations in terms of objectives
and constraints are very crucial. Hence, more efficient formulations and algorithms are
needed to address the ED problem.

3. Energy Disaggregation as a Constrained Multi-Objective Optimization Problem

In [13], the ED problem is formulated as an unconstrained multi-objective optimization
problem given by Equations (11) and (12). In the second objective related to temporal
sparsity (12), the sum of appliance on/off switching is combined with appliance state
switching. It is to be remembered that the appliance on/off switching and appliance
state changing strongly depend on the type of device. For instance, a refrigerator is a
continuous operational device that rarely switches on/off and also switches operational
modes with less frequency. However, a printer is a device that is regularly switched on/off,
and during a certain period of operation, the number of state switches is high compared
to the number in devices such as refrigerators. In other words, it is essential to take
the device-specific operational constraints into account. In this work, appliance-specific
operational constraints are incorporated, and ED is formulated as a constrained multi-
objective optimization problem (CMOP). It is solved using a constrained multi-objective
evolutionary algorithm (CMOEA). The appliance-specific operational constraints include
a number of state switches per unit time of operation. This is specific to devices and
the way in which they are designed to be operated. In addition, this information can be
easily obtained from the manufacturer or through some data collection regarding how the
particular device is operated in a network.
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In the current framework, the objectives considered are same as (11) and (12). However,
the minimization of (11) and (12) is subjected to n constraints, one corresponding to each
device, represented as follows.

∑T
t=2[(spi(t) �= spi(t − 1))(spi(t)spi(t − 1) �= 0)]

∑T
t=1[(spi(t) �= 0)]

≤ bi i = 1, ...., n (13)

In the constraints given by (13), the left-hand side represents the number of state
switching events corresponding to a device per unit time of operation in a prospective
energy disaggregation vector. The right-hand side bi represents the numerical value specific
to the device. In other words, continuously operating devices such as refrigerators have
low values of bi, as the number of state switches is significantly low for a large period
of operation. On the other hand, for devices such as a coffee maker, the number of
state switching events is significantly higher over a shorter period of time. It has to be
remembered that obtaining the values of bi corresponding to device operation is not difficult
to do.

To solve the CMOP defined by (11)–(13), any existing state-of-the-art CMOEA can
be employed. However, in the current work, ISDE+ [23], which is an evolutionary multi-
objective algorithm, is used. ISDE+ is effective at handling multi-objective problems with a
variety of landscapes and is computationally efficient. ISDE+ is combined with superiority
of feasible (SF) to handle the constraints. In addition, to effectively solve the ED problem
formulated as a CMOP, application-specific variation operators (crossover and mutation)
proposed in [13] are employed. The overall framework used to solve the ED, formulated as
a CMOP—CMOEA (ISDE+ with superiority of feasible)—is shown in Algorithm 1.

Algorithm 1: General framework of the CMOEA employed to solve the ED
formulated as a CMOP.
1 Input: N (population size)
2 P ← Initialization
3 ISDE+ ← Evaluation (P)
4 while predefined termination criteria not satisfied do

5 M ← Mating selection (P, N, ISDE+)
6 O ← Variation (M, N)
7 Q ← P ∪ O
8 ISDE+ ← Evaluate (Q)
9 [P, ISDE+] ← Environmental selection (Q, N, ISDE+)

10 end

11 Output: P

In the proposed framework, the CMOEA starts with random initialization of a set of
solutions (N) for the given ED problem, where each prospective solution is represented
as shown in (10). The ISDE+ indicator value that depends on the two objectives given by
((11) and (12)) and constraint violation given by (13) is evaluated for individual solution
candidates in the population (as outlined in line 2 of Algorithm 1). Later, mating selection
is carried out, in which the population members with superior ISDE+ values are prioritized
in a probabilistic manner (line 4 in Algorithm 1). The solutions selected during mating
selection (M) are then used to produce new solutions, namely, the offspring population (O)
(line 5 in Algorithm 1). The process of producing new solutions using the solutions and
their objective values in the population is referred to as variation. In the current work, we
employ the problem-specific variation operators proposed in [13]. The population (P) and
offspring population (O) are combined (Q) (line 6 in Algorithm 1) and evaluated (line 7 in
Algorithm 1). Finally, environmental selection is performed, where the best NP candidates
of Q are chosen to be the population (P) for the next generation (line 8 in Algorithm 1).
The steps mating selection, variation to produce new solutions, evaluation, and environ-
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mental selection (Algorithm 1, lines 4–8) are repeated until a predefined stopping criterion
is met. After the termination, the final population (P) which contains trade-off solutions
that satisfy the objectives and constraints are considered as the output. In other words, each
solution in the trade-off set represents a possible ED. From the set of trade-off solutions,
the solution with the lowest value of disaggregation error is selected as the best possible
energy disaggregation result.

4. Simulation Results and Analysis

To evaluate the performance of the proposed framework, we considered some in-
stances of ED problems from the benchmark suite proposed in [14]. Specifically, we selected
instances I1, I12 and I18, which are problem instances that feature cases where almost
all devices are in operation, the power rating of one appliance is a linear combination
of multiple appliances, and simultaneous switching of appliances with similar states or
multiple devices whose linear combinations are similar to each other. These instances were
chosen because they represent the different challenges posed by optimization problems
formulated as ED.

Furthermore, as shown in [14], the performances of ED algorithms must be evaluated
by a number of metrics, including both appliance-level and overall performance metrics.
Therefore, we employ standard metrics such as per-appliance accuracy (ACi), estimated
energy fraction index (EEFI) (ĥi), and relative squared error (RSEi) at the appliance level;
and overall accuracy (ACC), overall state prediction accuracy (SPA), and fraction of total
energy assigned correctly (FTEAC) at the overall level to compare the performance of the
proposed framework with the baseline results from the literature. A better-performing ED
algorithm is expected to have higher values for overall performance indicators—ACC, SPA,
and FTEAC. Among the appliance-level indicators, ACi is expected to be higher, and RSEi
is expected to be lower. However, (ĥi) is expected to be as close as possible to (hi).

All the simulations were performed in MATLAB 2020a installed on a PC with 64-
bit Windows 10, a 3.30 GHz CPU, and 24 GB of RAM. Based on the aforementioned
problem instances and metrics, we first evaluated the ED performance with and without
the constraints defined by Equation (13). In Tables 2–4, the effects of the appliance-specific
constraints on the energy disaggregation performance are evaluated considering problem
instances I1, I12, and I18. Tables 5–7, present a comparative analysis of the proposed
framework with state-of-the-art energy disaggregation frameworks, such as ALIP [19],
MONILM [18], and SOPT [22].

In Tables 2–4, it can be observed that with respect to most of the devices, the energy
disaggregation performance with constraints is better than that without constraints in
most of the per-appliance metrics. In addition, a similar observation can be made with
respect to overall performance metrics, such as SPA and FTEAC. However, in instance
I12, the ACC of the proposed framework with constraints is less, but the performance
is drastically improved in terms of SPA. This is because the use of constraints helped
the framework perform better on D11, which was in operation for significant amount of
time and consumed significant amount of power (h). Therefore, it justified the use of
appliance-specific constraints defined by (13).
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Table 2. Effect of appliance-specific constraints on the performance of energy disaggregation consid-
ering the I1 problem instance.

No of Appliances ACi h ĥi RSEi

n Without With
Ground

Without With Without With
Truth

D1 1 1 0.05 0.0584 0.0542 0 0

D2 0.94 0.94 0.0328 0.0514 0.0477 0.4669 0.4469

D3 1 1 0 0 0 0 0

D4 0.8570 0.9072 0.0728 0.1074 0.0680 0.1589 0.0994

D5 0.5394 0.8796 0.0734 0.0149 0.0867 1 0.0713

D6 0.9358 0.9358 0.2267 0.3039 0.2816 0.0766 0.0766

D7 0.5809 0.7407 0.3025 0.1359 0.2147 0.6718 0.4313

D8 0.6825 0.7576 0.0489 0.0933 0.0398 0.1001 0.3891

D9 1 1 0 0 0

D10 0.5423 0.5 0.0759 0.0987 0 1 1

D11 0.9823 0.9711 0.1158 0.1359 0.2074 0.3824 2.0084

Overall Metrics

Without With

Overall Energy Disaggregation Accuracy (ACC (%)) 87.6556 90.7188

State Prediction Accuracy (SPA (%)) 56.4899 64.899

Fraction of Total Energy assigned correctly (FTEAC) 0.7749 0.8222

Table 3. Effect of appliance-specific constraints on the performance of energy disaggregation consid-
ering the I12 problem instance.

No of Appliances ACi h ĥi RSEi

n without With
Ground

Without With Without With
Truth

D1 1 1 0.0501 0.0550 0.0650 0.0876 0.0060

D2 1 1 0 0.0523 0

D3 1 1 0 0 0

D4 0.7218 0.8644 0.0706 0.1101 0.0867 0.1256 0.3309

D5 0.8285 0.5618 0.0797 0.1174 0.0259 1 0.1811

D6 0.9167 0.9150 0.2567 0.2896 0.3134 0.0826 0.0777

D7 0.7303 0.5945 0.2779 0.2738 0.1548 0.7184 0.5988

D8 0.5214 0.6224 0.0204 0.1018 0.0552 2.2408 8.0803

D9 1 1 0 0 0

D10 0.5 0.5 0.0061 0 0.0000 1 1

D11 0.5 0.9601 0.2387 0 0.2989 0.1101 1.0000

Overall Metrics

without With

Overall Energy Disaggregation Accuracy (ACC (%)) 89.4814 86.1355

State Prediction Accuracy (SPA (%)) 33.6869 60.2778

Fraction of Total Energy assigned correctly (FTEAC) 0.7512 0.8172
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Table 4. Effect of appliance-specific constraints on the performance of energy disaggregation consid-
ering I18 problem instance.

No of Appliances ACi h ĥi RSEi

n Without With
Ground

Without Proposed Without Proposed
Truth

D1 0.7583 1 0.0652 0.0363 0.0696 0.4833 0.0000

D2 0.6561 0.94 0.0056 0.0349 0.0612 5.4466 8.2330

D3 1 1 0 0 0

D4 0.5 0.8730 0.0848 0.0000 0.1135 1 0.1172

D5 0.6138 0.5354 0.1076 0.0504 0.0142 0.7165 1.0000

D6 0.9408 0.9408 0.2939 0.3658 0.3617 0.0586 0.0586

D7 0.6373 0.6373 0.1684 0.1468 0.1658 0.6727 0.7272

D8 0.6687 0.7534 0.0926 0.0422 0.0497 0.4666 0.3115

D9 1 1 0 0 0

D10 0.5 0.5 0.0277 0.00000 0.0000 1 1

D11 0.9809 0.9744 0 0.32356 0.1644 0.9485 0.1166

Overall Metrics

without With

Overall Energy Disaggregation Accuracy (ACC (%)) 88.4347 88.8737

State Prediction Accuracy (SPA (%)) 53.4091 54.0657

Fraction of Total Energy assigned correctly (FTEAC) 0.7293 0.8333

In Tables 5–7, it can be observed that the performance of the proposed framework,
in terms of SPA and FTEAC, is better than the state-of-the-art methods for instances I1
and I18, but slightly worse for I12. However, in ACC, the performance of the proposed
framework is worse. As mentioned in the literature [13], this is not a concern, because a
high value of ACC does not signify superior performance, as each mode of the device is
represented with a discrete value, and thus achieving an ACC close to 100% is not possible.
In other words, even accurate energy disaggregation does not result in an ACC close to
100%. Therefore, the performance of the proposed framework seems to be superior for
instances I1 and I18. However, for instance I12, the performance of ALIP seems better
than that of the proposed framework. For instance I12, nearly 80% of the total energy is
consumed by continuously operating devices, such as D6, D7, and D11. In ALIP, an equality
constraint is specifically employed to handle continuously operating devices, resulting in
superior performance.
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Table 5. Comparison of the proposed framework with the state-of-the-art methods in terms of energy
disaggregation on the I1 problem instance.

No of Appliances ACi h ĥi RSEi

n ALIP MONILM SOPT Proposed
Ground

ALIP MONILM SOPT Proposed ALIP MONILM SOPT Proposed
Truth

D1 0.6648 0.8722 0.8403 1 0.05 0.0169 0.0381 0.0348 0.0542 0.6704 0.2556 0.3194 0

D2 0.6162 0.841 0.94 0.94 0.0328 0.0144 0.0359 0.045 0.0477 0.9208 0.5983 0.4469 0.4469

D3 1 1 1 1 0 0.0221 0.0131 0.0233 0 - - - -

D4 0.6612 0.8093 0.8073 0.9072 0.0728 0.0387 0.0714 0.1023 0.0680 0.614 0.2651 0.1778 0.0994

D5 0.6663 0.8039 0.8226 0.8796 0.0734 0.0403 0.0842 0.1023 0.0867 0.6019 0.2493 0.2055 0.0713

D6 0.9358 0.8605 0.5012 0.9358 0.2267 0.2663 0.2113 0.0007 0.2816 0.0764 0.2175 0.9972 0.0766

D7 0.7923 0.7633 0.9194 0.7407 0.3025 0.2307 0.1895 0.286 0.2147 0.3687 0.4554 0.1109 0.4313

D8 0.5763 0.4203 0.4363 0.7576 0.0489 0.0398 0.095 0.0898 0.0398 1.0479 2.1133 1.9037 0.3891

D9 1 1 1 1 0 0.0057 0 0 0 - - - -

D10 0.6593 0.7096 0.664 0.5 0.0759 0.055 0.0307 0.0358 0.0000 0.8208 0.4959 0.6601 1

D11 0.9656 0.8919 0.9767 0.9711 0.1158 0.2729 0.232 0.242 0.2074 2.2818 2.5971 1.2418 2.0084

Overall Metrics

ALIP MONILM SOPT Proposed

Overall Energy Disaggregation Accuracy (ACC (%)) 99.8051 99.6126 96.5757 90.7188

State Prediction Accuracy (SPA (%)) 60.0758 49.899 42.2475 64.899

Fraction of Total Energy assigned correctly (FTEAC) 0.7785 0.7769 0.7011 0.8222

Table 6. Comparison of the proposed framework with state-of-the-art methods in terms of energy
disaggregation in the I12 problem instance.

No of Appliances ACi h ĥi RSEi

n ALIP MONILM SOPT Proposed
Ground

ALIP MONILM Proposed SOPT ALIP MONILM SOPT Proposed
Truth

D1 0.6949 0.9018 0.5 1 0.0501 0.0197 0.0434 0.0650 0 0.6133 0.2598 1 0.0060

D2 1 1 1 1 0 0.016 0.0356 0 0.029 - - - -

D3 1 1 1 1 0 0.0042 0 0 0 - - - -

D4 0.6332 0.8008 0.833 0.8644 0.0706 0.0364 0.0861 0.0867 0.0942 0.6694 0.2413 0.1654 0.3309

D5 0.6292 0.8163 0.8243 0.5618 0.0797 0.0347 0.0933 0.0259 0.1087 0.6795 0.2202 0.1911 0.1811

D6 0.9465 0.8697 0.9127 0.9150 0.2567 0.2833 0.2337 0.3134 0.2613 0.0126 0.1836 0.0878 0.0777

D7 0.8121 0.7788 0.5 0.5945 0.2779 0.2571 0.2289 0.1548 0 0.3326 0.3994 1 0.5988

D8 0.5574 0.6015 0.527 0.6224 0.0204 0.0416 0.0849 0.0552 0.0887 2.511 6.8094 6.1865 8.0803

D9 1 1 1 1 0 0 0.0061 0 0.0061 - - - -

D10 0.5 0.5 0.5 0.5 0.0061 0.0218 0.046 0.0000 0 2.44 4.04 1 1

D11 0.8915 0.6184 0.7128 0.9601 0.2387 0.2961 0.1436 0.2989 0.39 0.5494 0.9286 1.2979 1

Overall Metrics

ALIP MONILM SOPT Proposed

Overall Energy Disaggregation Accuracy (ACC (%)) 99.6766 99.5509 97.2710 86.1355

State Prediction Accuracy (SPA (%)) 65.8081 47.0202 54.2929 60.2778

Fraction of Total Energy assigned correctly (FTEAC) 0.8697 0.8561 0.666 0.8172
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Table 7. Comparison of the proposed framework with state-of-the-art methods in terms of energy
disaggregation in the I18 problem instance.

No of Appliances ACi h ĥi RSEi

n ALIP MONILM SOPT Proposed
Ground

ALIP MONILM SOPT Proposed ALIP MONILM SOPT Proposed
Truth

D1 0.6389 0.8139 0.9903 1 0.0652 0.0181 0.0409 0.064 0.0696 0.7222 0.3722 0.0194 0.0000

D2 0.5852 0.7129 0.94 0.94 0.0056 0.0179 0.047 0.0571 0.0612 3.4572 7.5177 8.1831 8.2330

D3 1 1 1 1 0 0.0065 0 0.0065 0 - - - -

D4 0.6079 0.7868 0.7338 0.8730 0.0848 0.033 0.1168 0.1277 0.1135 0.7384 0.2318 0.292 0.1172

D5 0.6226 0.8231 0.8591 0.5354 0.1076 0.0412 0.1046 0.1305 0.0142 0.6951 0.207 0.1219 1.0000

D6 0.9408 0.8385 0.9041 0.9408 0.2939 0.3392 0.2591 0.31 0.3617 0.0586 0.2731 0.1332 0.0586

D7 0.7751 0.8421 0.6236 0.6373 0.1684 0.2041 0.1655 0.024 0.1658 0.521 0.3469 0.7221 0.7272

D8 0.5641 0.7003 0.682 0.7534 0.0926 0.0319 0.0857 0.0501 0.0497 0.8537 0.5692 0.4666 0.3115

D9 1 1 1 1 0 0 0 0 0 - - -

D10 0.7638 0.7491 0.6947 0.5 0.0277 0.0261 0.0232 0.0464 0.0000 0.5213 0.4129 1.2459 1

D11 0.9483 0.8001 0.9369 0.9744 0 0.3222 0.157 0.1995 0.1644 1.401 0.8337 0.535 0.1166

Overall Metrics

ALIP MONILM SOPT Proposed

Overall Energy Disaggregation Accuracy (ACC (%)) 98.8239 99.3654 95.3903 88.8737

State Prediction Accuracy (SPA (%)) 55.2778 50.4545 46.9949 54.0657

Fraction of Total Energy assigned correctly (FTEAC) 0.7723 0.8655 0.8117 0.8333

5. Conclusions and Future Work

In this work, ED was formulated as a constrained multi-objective optimization prob-
lem, where the objectives are minimizing energy disaggregation error and temporal sparsity,
and constraints related to the practical operation of the devices were proposed. Specifically,
in the proposed formulation, the constraints make sure that each device operation during
the ED process adheres to the associated practical operational characteristics. Results from
the experiments conducted in this work show that the incorporation of the constraints
enhanced the ED performance in various metrics (appliance-level and overall) compared
to the case where the constraints were not considered. Furthermore, when compared with
state-of-the-art ED algorithms, the proposed constrained multi-objective framework was
able to demonstrate superior performance.
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Abstract: Studying the optical properties of photosynthetic pigment–protein complexes (PPCs) in the
visible light range, both experimentally and theoretically, is one of the ways of gaining knowledge
about the function of the photosynthetic machinery of living species. To simulate the PPC optical
response, it is necessary to use semiclassical theories describing the effect of external fields–matter
interaction, energy migration in molecular crystals, and electron–phonon coupling. In this paper,
we report the results of photosystem II reaction center (PSIIRC) linear optical response simulations.
Applying the multimode Brownian oscillator model and the theory of molecular excitons, we have
demonstrated that the absorption, circular and linear dichroism, and steady-state fluorescence of
PSIIRC can be accurately fitted with the help of differential evolution (DE), the multiparametric
evolutionary optimization algorithm. To explore the effectiveness of DE, we used the simulated
experimental data as the target functions instead of those actually measured. Only 2 of 10 DE
strategies have shown the best performance of the optimization algorithm. With the best tuning
parameters of DE/rand-to-best/1/exp strategy determined from the strategy tests, we found the
exact solution for the PSIIRC exciton model and fitted the spectra with a reasonable convergence rate.

Keywords: differential evolution; evolutionary computations; chlorophyll; absorption; cumulant
expansion; multimode Brownian oscillator model; inhomogeneous broadening; photosystem II
reaction center

1. Introduction

Among the numerous proteins of living organisms, pigment–protein complexes (PPCs)
are perhaps the most interesting object for numerical simulations of the optical response of
proteins [1,2] simply because they control the light-driven reactions of the photosynthetic
process in organisms that transform light energy into chemical energy. With chlorophylls,
bacteriochlorophylls, and carotenoids as the main pigment molecules, PPCs actively absorb
from 300 to 900 nm, providing effective light harvesting in the visible range and subsequent
energy transport within a complex and between different complexes [3]. The optical
properties of individual pigments usually determine those of the whole PPC; however, in
some cases, the interaction energies between pigments in PPC and the local binding proteins
have much greater effect on the PPC’s optical response [1]. The number of pigments in PPCs
is crucial as well; it varies from a single carotenoid, such as in the orange carotenoid protein
(OCP) complex [4]; dozens of chlorophylls, such as in the trimeric Fenna–Matthews–Olson
complex [5–7]; hundreds of chlorophylls, such as in photosystem I [8,9]; and thousands of
bacteriochlorophylls, such as in chlorosomes [10].

The main feature of the electronic absorption bands of photosynthetic pigments is
a phonon wing, the shape and intensity of which depends on the electron–phonon inter-
action [11]. Chlorophylls and bacteriochlorophylls are characterized by a set of several
dozen vibronic states and a relatively weak electron–phonon interaction, while carotenoids
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have four pronounced vibronic states and strongly interact with the electronic states of a
pigment [12]. All of these features can be taken into account within the framework of a
theory called the multimode Brownian oscillator model (MBOM) [13]. This theory allows
for simulating a realistic absorption lineshape of an electronic transition of any pigment by
introducing the spectral density function [14]. The shape of a pigment absorption spectrum
is modeled by considering that an electronic transition is coupled to a set of effective
vibronic modes. Each mode is described by three parameters: the frequency, the damping
factor, and the Huang–Rhys factor (otherwise the electron–phonon coupling) [15]. The
first two parameters can be estimated experimentally, while the only way to obtain the
Huang–Rhys factor is by modeling the pigment’s optical response. Thus, by combining the
results of experimental analysis and theoretical modeling, we can determine a characteristic
set of microparameters for a pigment molecule and use them in further modeling.

In order to model the linear optical properties in the case of an assembly of interacting
pigment molecules, it is necessary to use the theory of molecular excitons [16] in addition
to MBOM. According to this theory, any system of interacting molecules of an arbitrary
geometry and dimensionally is described by the Frenkel exciton Hamiltonian, which is the
basis for the theory of molecular crystals [17]. Thus, combining the MBOM and the exciton
theory, the system’s optical response can be simulated with a high degree of accuracy. There
are many studies in which the combination of these two theories was used to obtain realistic
simulated spectra and kinetics of various PPCs. Nevertheless, the main disadvantage of
these works is the lack of optimization of the experimental data fitting procedure; evidence
of the uniqueness of the theoretical models are usually not given.

The use of evolution optimization algorithms [18,19], in particular differential evo-
lution (DE) [20,21], has shown that the search for optimal quantum models of primary
photosynthesis processes is possible [22,23]. As opposed to genetic evolutionary algorithms,
DE creates a new generation of model parameters, perturbing the current generation with
the scaled difference of randomly selected population members. The detailed introduction
to DE can be found in different surveys of the topic [24,25]; including descriptions of some
modifications of the classical version of the algorithm designed to improve the convergence
of DE [26–29].

The aim of our study is to explore, for the first time, the potential of DE to be an
effective optimization routine for the fitting of the PPC optical response. We have chosen
the reaction center of photosystem II (PSIIRC) as an example of PPCs (Figure 1), the linear
spectra of which should be simulated and an appropriate exciton model created [30–33]. PSIIRC
is a rather small protein. It contains only eight cofactors embedded in the protein matrix:
six chlorophylls (Chl) and two pheophytins [34]. The eight pigments in PSIIRC give us an
optically active, eight-level excitonic manifold; however, PSIIRC also has three so-called
charge separation states [31], which are optically inactive and will not be considered in our
simulations. For the sake of simplicity and clarity, we will use the pre-calculated linear
spectra of PSIIRC as target functions instead of the actually measured ones. The absence of
noise in the spectra will allow us to estimate the DE convergence with great accuracy.

The statement of the optimization problem is considered in the second section. The DE
algorithm and the references that describe its applications for the modeling of the optical
response of photosynthetic pigments are discussed in the third section. In the fourth section,
we briefly survey some important aspects of quantum theory on the basis of which the
simulation procedures were written. The quantum model of energy transfer in PSIIRC that
was used to generate the target functions is explained in the fifth section. The results of
the strategy test for different settings of DE and full datasets of the fitting procedure for
two different strategies are given in section six. Finally, some features of the strategy test, the
algorithm convergence at different DE settings, and further perspectives of DE application
for the modeling of primary photosynthetic processes are discussed in section seven.
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Figure 1. Scheme of the PPC linear optical response fitting procedure. The crystal structure of
photosystem II and the isolated reaction center are shown at the bottom of the figure. The left
block represents the employed theories in the simulation: the exciton theory (transition energies
Ωn, transition moments dn, distances between the centers of transition moments Rnm, coupling
energies Jnm, the dielectric constant ε, the full width at half maximum of inhomogeneous broadening

FWHMΩ) and the multimode Brownian oscillator model (
{

ωj, Sj, γj

}
are frequencies, the Huang–

Rhys factors, and damping factors of a vibronic mode). The upper blocks symbolize the differential

evolution fitting procedures (I(ωn) is a measured spectrum, σabs

(
ωn, x

g
i

)
is a simulated spectrum).

See more detailed explanations in the text.

2. Statement of the Optimization Problem

Using of the molecular exciton theory in modeling the optical properties of a PPC from
a mathematical point of view is the sequential implementation of computational procedures
such as matrix diagonalization, fast Fourier transform, and numerical integration of time-
and frequency-dependent functions. Depending on the characteristics of the vibronic
modes of the correlation functions, the number of pigments in the complex, and the
interaction energies between them, the speed and quality of the calculated spectra can vary
significantly. In general (Figure 1), a set of parameters xj = {ωk, Sk, γk, Ωn, ε, FWHMΩ}
is fed to the input of the simulation program, which entirely determines the simulated
spectra of the complexes. This set, with which the spectra are calculated, we will hereafter
refer to as a solution of the PSIIRC optical response modeling. Since the exciton theory is
semiclassical and does not assume ab initio calculations, in order to find xj, it is necessary to
compare the calculated spectra with those measured experimentally. Thus, by varying the
values of xj, one can try to find a solution for which the calculated spectra most accurately
describe the measured ones. Ideally, the best solution is the set that corresponds to the
exact coincidence of the calculated and measured spectra.

The dependence of the calculated spectra on xj is very complex and cannot be factor-
ized. Many publications are devoted to the search “manually” for a set of xj for the PSIIRC
exciton model and almost always use the simultaneous simulation of several spectra obtained
by different experimental techniques. For example, in the paper by Novoderezhkin et al. [32],
four exciton models of energy transfer in PSIIRC are considered, which correspond to four
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different sets of xj. It is clear that the process of finding a set of model parameters that
would allow the most accurate fit of the calculated and measured spectra can be optimized.
Evolutionary algorithms are applicable for this purpose if we consider the squared dif-
ference between the calculated and experimental spectra as an objective function to be
minimized. The use of DE in this case is preferable to genetic algorithms, since it allows
for varying the parameters continuously instead of discretely. Moreover, DE allows us
to classify the found solutions xj with respect to the value of the objective function. The
smallest value of the objective function corresponds to the smallest difference between the
calculated and experimental spectra. Of course, the algorithm may become stuck in the
local minimum, when any changes in xj within certain values xlocal

j make the objective
function only worse and convergence stagnates.

Thus, the combined software implementation of the optical response modeling pro-
cedures and the differential evolution algorithm will make it possible to find the exciton
model parameters that will provide the best match between the experimental and compu-
tational data.

3. Differential Evolution

The algorithm of DE has four data processing steps: initialization, mutation, crossover,
and selection. The initialization of DE runs once at the beginning of the fitting, while
three other steps sequentially repeat themselves as many times as required to obtain the
appropriate simulated spectra (Figure 1).

At the initialization of DE, a matrix of model parameters, X, is filled with random
values within specified limits, and then the objective function values are estimated. The size
of the matrix is D × Np, where D is equal to the number of model parameters, and Np is
the size of the population. Assuming that xi are the parameters to find, j = 1, 2, . . . , D and
x = xj, then the matrix of model parameters is written as X = xi, where i = 1, 2, . . . , Np.
The elements of the matrix are chosen taking into account the boundary conditions, which
consider the physical limits of the parameters to find.

After the initialization step, the main cycle of DE starts with the generation of a new
matrix, Xg, where g = 0, 1, . . . , gmax is a generation index. In the classical version of DE, a
mutant vector, v

g
i , is calculated according to one of the following five expressions:

v
g
i = x

g
r0 + F

(
x

g
r1 − x

g
r2

)
, (1)

v
g
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g
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, (5)

where F is the weighting factor and F ∈ [0, 1]; x
g
i , x

g
r0, x

g
r1, and x

g
r2 are randomly chosen

vectors from the current population; and (i �= r0 �= r1 �= r2) ∈ [0, Np]. x
g
best is a vector

corresponding to the best solution (minimum of the objective function).
The diversity of the trial vector population can be increased by applying a crossover

procedure. In this case, a new trial vector, u
g
j , is created by exchanging the elements of

each target vector of the current population with those of a mutant one. The crossover
rate, Cr ∈ [0, 1], determines the number of exchanged values in the trial vector. There are
two types of crossovers: binomial and exponential. The combination of Equations (1)–(5)
and 2 crossovers provides us with 10 different strategies to create a new generation of
model parameters. The names of the strategies are formed as follows: DE/x/y/z, where x
is a base vector (rand, best, rand-to-best), y is the number of differences (1 or 2), and z is the
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crossover type (exp or bin). Thereby, the convergence of the algorithm can be controlled by
choosing the optimal strategy and varying the weighting factor and crossover rate.

Thus, the target vector of a new generation, g + 1, is determined by comparing f
(

u
g
i

)
and f

(
x

g
i

)
. The expression for the objective function f

(
x

g
i

)
is:

f
(

x
g
i

)
=

1
N

N

∑
n=1

(
I(ωn)− σabs

(
ωn, x

g
i

))2
, (6)

where I(ωn), for example, is a measured absorption spectrum of PSIIRC at frequency ωn,
σabs

(
ωn, x

g
i

)
is a simulated absorption spectrum of PSIIRC, and N is the number of points

in the spectra. After the objective functions are evaluated, x
g+1
i vector allocation is made

according to the following conditions:

x
g+1
i =

⎧⎨⎩ u
g
i , f

(
u

g
i

)
≤ f

(
x

g
i

)
x

g
i , f

(
u

g
i

)
> f

(
x

g
i

) , (7)

When a new population is completed, the next cycle of DE starts, and the optimization
runs until the predetermined minimum of the objective function is reached or the number
of generations reaches a specified maximum.

4. Theory

4.1. Multimode Brownian Oscillator Model

According to quantum theory of the radiation interaction with matter, the optical
response of any pigment molecule can be estimated by expanding the expression for the
polarization of a system, P(t), in powers of the radiation field assuming this field as a
perturbation. Consider a system of two electronic states: a ground state |g〉 and an excited
one |e〉 , and let μeg(q) be a transition dipole moment between states. Then, the polarization
can be written as the expectation value of μ(q):

P(r, t) = Tr
[(

μeg(q)|e〉〈 g|+ μge(q)|g〉〈 e|
)
ρ(t)

]
, (8)

where ρ(t) is a density matrix whose time evolution is determined by the Hamiltonian of
the system. The expansion of ρ(t) in powers of the field results in the decomposition of
polarization P(r, t) = P(r, t)(1) + P(r, t)(2) + P(r, t)(3) + · · · . The first term P(r, t)(1) of this
decomposition is responsible for the linear absorption:

P(r, t)(1) = − i
�

∫ ∞

0
dt1E(r, t − t1)S(1)(t1), (9)

where S(1)(t1) =
i
�θ(t1)〈μeg(t1)μeg(0)ρ(−∞)〉+ c.c. is the linear response function in the

Liouville representation, E(r, t) is the radiation field, θ(t1) is the Heaviside step function,
and 〈. . .〉 denotes the averaging over nuclear degrees of freedom, t1 = τ2 − τ1, where τi are
the ordered points on [t0, t] used in the decomposition of polarization. A general expression
for an absorption spectrum can be written in an integral form:

σabs(ω) =
∫ ∞

−∞
dt S(1)(t1)eiωt, (10)

Introducing the effective operator of the electronic energy gap, U(τ) = exp
(

i
� Hgτ

)
U

exp
(
− i

� Hgτ
)

, where U = He(q)− Hg(q)− �ωeg, He(q), and Hg(q) are Hamiltonians of
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the electronic excited and ground states, and ωeg is an arbitrary parameter. Considering
the time evolution of U(τ), the first order response function [13] can be expressed as:

S(1)(t1) =
i
�

θ(t1)e−iωegt1−g(t1) + c.c., (11)

g(t) =
∫ t

0
dτ2

∫ τ2

0
dτ1C(τ1), (12)

C(τ1) =
1
�2 〈U(τ1)U(0)ρg〉, (13)

where g(t) is the lineshape function; C(τ1) is the two-time correlation function of U(τ).
Since the correlation function is complex, it can be expressed in the time domain as
C(t) = C′(t) + C′′(t), and as C(ω) =

∫ ∞
−∞ dt eiωtC(t) = C′(ω) + C′′(ω) in the frequency

domain. Considering the fluctuation dissipation theorem, we obtain the expression for C(t)
in the following form:

C(t) =
∫ ∞

−∞
dω cos(ωt)coth(β�ω/2)C′′(ω) + i

∫ ∞

−∞
dω sin(ωt)C′′(ω), (14)

where C′′(ω) is the imaginary part of C(ω) and can be treated classically. This feature of
C′′(ω) makes it quite suitable for the modeling of the optical response. Thus, the equation
for g(t) in terms of C′′(ω) is written as:

g(t) =
1

2π

∫ ∞

−∞
dω

1 − cos ωt
ω2 coth(β�ω/2)C′′(ω)− i

2π

∫ ∞

−∞
dω

sin(ωt)− ωt
ω2 C′′(ω). (15)

Taking into account Equations (10) and (11), the final expression for numerical simula-
tion of the absorption lineshape is given by:

σabs(ω) =
1
π

Re
∫ ∞

0
dt ei(ω−ωeg)te−g(t). (16)

The combination of Equations (15) and (16) allow for the modeling of the linear optical
response of a single electronic transition interacting with an arbitrary set of vibronic modes.

In order to evaluate C′′(ω), the theory of MBOM must be applied [13]. In terms of
MBOM, a system consisting of an electronic state interacting with a set of vibronic states is
described by the following Hamiltonians:

Hsys = Hg + He + HVB, (17)

Hg =
N

∑
j

(
p2

j

2mj
+

1
2

mjω
2
j q2

j

)
, (18)

He = �ω0
eg +

N

∑
j

(
p2

j

2mj
+

1
2

mjω
2
j
(
qj + dj

)2
)

, (19)

HVB =
M

∑
n

[
p2

n
2mn

+
1
2

mnω2
nx2

n − xn ∑
j

cnjqj +
∑j c2

njq
2
j

2mnω2
n

]
, (20)

where Hg and He are Hamiltonians of the ground |g〉 and the excited |e〉 states. Vibronic
states of the system are modeled by introducing a certain number of effective vibronic
modes. Each mode is characterized by frequency ωj, mass mj, momentum pj, coordinate qj,
and displacement dj of the excited state potential curve. j is the index of a mode, and N is
the number of modes. The influence of the local environment is represented by the HVB part
in the system Hamiltonian, which depends on another set of oscillators, the bath modes,
and their parameters {pn, xn, ωn, mn}. The coupling between electronic and vibronic states
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is set by microparameters cnj. Finally, the MBOM correlation function is calculated using
the path integral method. The imaginary part of C(t) is written in the form:

C′′(ω) = ∑
j

2Sjω
3
j ωγj(

ω2
j − ω2

)2
+ ω2γ2

j

, (21)

where Sj = d2
j /2 are the Huang–Rhys factors, and γj are the damping factors for each ωj

that are determined empirically.
So, to calculate the absorption or the fluorescence spectrum of a monomeric pigment

molecule, such as chlorophyll, bacteriochlorophyll, or carotenoid, both in solvent and in
protein, one has to evaluate the spectral density (Equation (21)) then the lineshape function
(Equation (15)), and the absorption lineshape is simulated according to Equation (16).

4.2. Excitons

In the previous section, it was shown how to model the linear optical response of a
monomeric pigment. The theory of molecular excitons considering electronic transition
and interaction energies between pigment molecules of PSIIRC allows calculating the contri-
butions of each Chl molecule to the resulting spectra and population kinetics [16,30,34,35]. We
consider that PSIIRC consist of eight two-level Chl molecules; each molecule can be either
in a ground |0〉 or in an excited |n〉 state. n runs from 1 to N, where N is the number of
pigments in PSIIRC. Denoting B+

n = |n〉〈0| as the exciton creation operator and Bn = |0〉〈n|
as that of annihilation, the PSIIRC exciton Hamiltonian is then written in the form:

Hext = ∑
n

ΩnB+
n Bn +

1
2 ∑

n �=m
Jmn
(

B+
m Bn + B+

n Bm
)
, (22)

where Ωn is the transition energy between the ground and the excited states of a pigment.
B+

n and Bn obey the commutation rules [Bn, B+
n ] = 1. Jmn is a matrix of coupling energies

calculated employing the extended dipole approximation [36]. This method of calculating
the interaction energies using the values of partial charges is much more accurate than the
classical dipole–dipole approximation.

Diagonalizing the Hamiltonian (Equation (22)), we obtain the eigenstates cα
n and

eigenvalues εα that allow for the transformation of the system parameters from the site
representation to the exciton representation. Thereby, the lineshape function (Equation (15))
in the exciton representation is gμναβ(t) = ∑

mnkl
cμ

mcν
ncα

k cβ
l gmnkl(t), where α, β, . . . = 1 . . . N

are indices of the exciton states. Finally, the expressions for exciton absorption, circular
and linear dichroism, and fluorescence spectra will be presented as a sum over exciton
states [9,36]:

σext
abs(ω) ≈ ω

π

N

∑
α

d2
αRe

∞∫
0

dtei(ω−εα)te−gαααα(t)e−0.5Kααt (23)

σext
CD(ω) ≈ ω

π

N

∑
α

RαRe
∞∫

0

dtei(ω−εα)te−gαααα(t)e−0.5Kααt (24)

σext
LD(ω) ≈ ω

π

N

∑
α

[
dz

α
2 − 1

2

(
dx

α
2 + dy

α
2
)]

Re
∞∫

0

dtei(ω−εα)te−gαααα(t)e−0.5Kααt (25)

σext
f l (ω) ≈ ω3

π

N

∑
α

(ndα)
2eεα β

∑n eεα β
Re
∫ ∞

0
dtei(ω−εα+2λαααα)te−gαααα

∗(t)e−0.5Kααt, (26)
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where λαααα = − lim
τ→∞

Im
[

dgαααα(τ)
dτ

]
is the reorganization energy of an exciton state α;

Kαα = ∑
β

Kαβ are the exciton relaxation rates; dα = ∑
n

cα
ndn is the Qy transition moments of

Chl transformed to the exciton representation; and Rα = ∑
nm

cα
ncα

mrnm(dn × dm) is a matrix

of the rotational strength necessary for CD spectra simulation.

5. Exciton Model of the Photosystem II Reaction Center

PSIIRC is an important PPC of photosystem II of higher plants and cyanobacteria. All
of the light quanta energy absorbed by photosynthetic PPC with minimum losses eventually
transfers to the reaction centers where chemical reactions of charge separation occur. In
addition to being the location of chemical reactions, reaction centers actively serve as a
light-harvesting complex, too. PSIIRC has six Chls, two pheophytins, and two carotenoids,
which absorb at the visible range. In this study, we are going to model the PSIIRC optical
response only in the so-called Qy region of Chl absorption which corresponds to the
650–750 nm range. It means that the excited states of carotenoids will not be taken into
account in the exciton Hamiltonian (Equation (22)). Since our simulations are focused
only on the linear spectroscopy (absorption, steady-state fluorescence, circular and linear
dichroism), the radical pair states are not considered. Thus, the PSIIRC exciton Hamiltonian
in our modeling will include contributions of eight pigments: two Chls of the special pair
(PD1 and PD2), two accessory Chls, two pheophytins, and two peripheral Chls (Figure 2B).

To explore the potential of DE as an effective optimization procedure for fitting the
PSIIRC spectra, we will use the simulated experimental data instead of the measured ones.
The real data are always noisy and may contain some inconspicuous contributions that
can only worsen the convergence of the optimization. The simulated experimental data
as target functions will allow the algorithm, in the case of successful configuration, to
converge almost to machine zero and determine the local minima for parameters of the
PSIIRC quantum model.

To simulate the optical response of Chl, we used the results of our previous studies.
The spectral density, absorption, and fluorescence spectra of monomeric Chl are shown in
Figure 2A. However, to take into account that the surrounding of Chls in PSIIRC is different
from that of it in solution, we used special values of {ωlow, Slow, γlow} determined previously
for the lowest vibronic mode. The total number of vibronic modes in Equation (21) was 39.
The number of points in the time and frequency arrays was defined as n = 211 = 2048. The
time step of integration was 0.0042 ps. The full set of

{
ωj, Sj, γj

}
for Chl can be found in

our previous publications [9,23].
Parameters of the PSIIRC exciton model are shown in Table 1. The energies of the Qy

transition of Chls and pheophytins were chosen in such a way that the simulated linear
spectra, according to Equations (16)–(20), were as close as possible to the measured ones at
room temperature. The interaction energies between PSIIRC cofactors were calculated in
the extended dipole approximation, except for the coupling between Chls in the special
pair; according to the previous studies, it was set as 150 cm−1. It must be stressed that the
inhomogeneous broadening FWHMΩ [9] was not taken into account in the simulations,
since it requires averaging over random perturbations of diagonal elements of the exciton
Hamiltonian (Equation (22)). We deliberately made such a simplification in order to allow
the algorithm of DE to converge to machine zero. The Qy transition moments and the
spectral densities of Chl and pheophytin are slightly different and when modeling the real
experimental data, these distinctions must be accounted for; however, for the purposes
of this study, it is enough to consider them to be equal. As a result, the calculated spectra
of absorption, steady-state fluorescence, and linear and circular dichroism we used for
the strategy tests and for optimization with the maximum number of free parameters are
presented in Figure 2B.
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Figure 2. Optical properties of monomeric Chl, the main pigment of Photosystem II reaction center:
the spectral density (red) of Chl and the simulated absorption (blue) and fluorescence spectra
(magenta) of Chl (A); the mutual orientation of Photosystem II reaction center cofactors (B) is a key
factor in the exciton theory (a scheme (D) of the energy levels of PSIIRC) that was applied to simulate
absorption, circular and linear dichroism, and steady-state fluorescence spectra. These spectra were
used as the target functions (C).

Table 1. Material Hamiltonian of the PSIIRC exciton model used for simulation of target functions.

PD1 PD2 ChlaccD1 ChlaccD2 PheoD1 PheoD2 ChlZD1 ChlZD2 Ωn

PD1 0 150.00 −30.94 −100.96 −3.91 19.01 0.74 0.96 14,960.0
PD2 0 −96.75 −23.53 24.53 −4.22 1.11 1.06 15,070.0

ChlaccD1 0 12.43 60.92 −4.96 2.98 0.03 15,045.0
ChlaccD2 0 −5.80 54.97 −0.02 2.71 15,080.0
PheoD1 0 3.10 −4.06 −0.32 15,100.0
PheoD2 0 −0.29 −4.44 15,120.0
ChlZD1 0 0.24 15,180.0
ChlZD2 0 15,170.0

6. Results

6.1. Strategy Test

According to our previous modeling of the linear absorption of monomeric chloro-
phylls, bacteriochlorophylls, and carotenoids, DE/rand-to-best/1/exp and DE/best/1/bin strate-
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gies have demonstrated the best convergence rates. Preliminary trial runs of the optimiza-
tion algorithm for the PSIIRC complex showed that, in general, the results of convergence
are similar to those we obtained for monomeric pigments. Thus, in the case of PSIIRC, it
was decided to run a strategy test only for the two best DE classical strategies. The strategy
control parameters varied from 0.55 to 0.85 for F and from 0.8 to 1.0 for Cr with a discrete
step of 0.05.

The number of free parameters required to simulate the linear optical response of
PSIIRC without inhomogeneous broadening is 12:8 Qy transition energies Ωn for Chls
and pheophytins, the effective dielectric constant, which is used to calculate the coupling
energies between pigments, and 3 parameters {ωlow, Slow, γlow} for the lowest vibronic
mode in the spectral density. To reduce the calculation time and to more clearly demonstrate
the effect of convergence, only 5 of the 12 PSIIRC model parameters were set as free during
the fitting procedure: 4 transition energies and the dielectric constant. Moreover, fewer free
parameters allow the optimization algorithm to converge in fewer generations. So, we set
gmax = 50 and performed 30 runs of the program for each {F, Cr} pair. The results of the
strategy test are shown in Figure 3A,B.

Figure 3. Strategy test. Distributions of the objective functions values obtained for DE/best/1/bin
(A) and DE/rand-to-best/1/exp (B) strategies after 30 runs of DE for each {F, Cr} pair. Comparison of
the best results for DE/best/1/bin (blue) and DE/rand-to-best/1/exp (red) are shown in plot (C). Latin
letters correspond to {F, Cr} pairs. Red lines indicate the local minima of optimization.

Figure 3C demonstrates the best values of the objective function obtained for two strategies.
The plots show that the optimization becomes stuck in at least in two minima. Thus, it
can be argued that if the value of objective function is less than the lowest local minimum,
which is equal to 4.37472 × 10−7, the algorithm finds the best solution and does not stick
at any local minima. Taking into account this criterion, the number of successful opti-
mizations for all {F, Cr} pairs and two strategies was calculated. These data are shown in
Tables 2 and 3.
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Table 2. The results of the strategy test. The number of successful optimizations of PSIIRC fitting
after 30 runs of DE for each {F; Cr} pair and the DE/rand-to-best/1/exp strategy.

F
Cr

0.8 0.85 0.9 0.95 1

0.55 29 25 27 24 21
0.60 27 27 25 24 23
0.65 29 27 28 26 25
0.70 28 30 28 28 28
0.75 30 28 30 28 25
0.80 27 29 28 26 25
0.85 19 23 25 24 27

Table 3. The results of the strategy test. The number of successful optimizations of PSIIRC fitting
after 30 runs of DE for each {F; Cr} pair and the DE/best/1/bin strategy.

F
Cr

0.8 0.85 0.9 0.95 1

0.55 20 14 9 18 9
0.60 24 24 23 22 17
0.65 21 23 22 17 24
0.70 22 26 23 24 22
0.75 27 29 26 26 23
0.80 25 24 24 24 25
0.85 24 28 26 25 26

To compare the effectiveness of the two strategies, we calculated the percentage of
convergence, taking into account the criterion of the lowest local minimum. The conver-
gence probability for DE/rand-to-best/1/exp strategy is 87.9% (923 of 1050) and 74.9% (786 of
1050) for DE/best/1/bin.

6.2. PSIIRC Linear Optical Response Modeling

To perform the optimization of PSIIRC linear optical response modeling, we tuned
the DE algorithm based on the values of convergence rates and convergence probabilities
obtained in the strategy test. Considering the results of the strategy test, the corresponding
values {F = 0.55, Cr = 0.9} were chosen. Unlike the strategy test, the number of free
parameters was nine. All of the excitation energies Ωn were set free, as well as the dielectric
constant. The initial boundaries for Ωn were from 14,500 cm−1 to 15.300 cm−1 and from 0.5
to 2 for the dielectric constant, ε.

For greater accuracy and more detailed information about the convergence dynamics,
the maximum number of generations gmax chosen was 300. The results of the PSIIRC linear
optical response fitting for the two strategies are shown in Figures 4 and 5. As we can see,
the DE/rand-to-best/1/exp strategy found the best solution as opposed to DE/best/1/bin which
stuck at local minimum.
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Figure 4. Results of the PSIIRC linear optical response fitting. The case when DE is stuck in a local
minimum. DE/best/1/bin strategy. The best simulated spectra (black lines with circular markers) of
absorption (A), steady-state fluorescence (B), circular (C), and linear (D) dichroism are shown. Color
lines are the spectra found by DE after first 7 generations. Black thick lines are the target spectra. Red
ovals indicate those parts of the spectra where there are significant discrepancies between the target

spectra and those found by DE. The objective function f
(

x
g
i

)
dependence on the number of the trial

function (linear response simulation) calls (E).
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Figure 5. Results of the PSIIRC linear optical response fitting. Successful DE run. DE/rand-to-best/1/exp
strategy. The best simulated spectra (black lines with circular markers) of absorption (A), steady-state
fluorescence (B), circular (C), and linear (D) dichroism are shown. Color lines are the spectra found

by DE after first 7 generations. Black thick lines are the target spectra. The objective function f
(

x
g
i

)
dependence on the number of the trial function (linear response simulation) calls (E).

7. Discussion

Some attempts to use the evolutionary multiparametric optimization for modeling
the optical properties of PPC have already been made. The genetic algorithm was used
to estimate the charge and energy transfer rates in photosystem I core complexes [37].
However, this first effort was not really successful: linear spectra and kinetics were not
simulated; only transfer rates were calculated to compare with those measured. Moreover,
the protein crystal structure was not available at that moment, which significantly limited
the proper use of exciton theory. The later attempt employing the same approach was used
for the light-harvesting complex II from higher plants [38]. In this case, some parameters of
the exciton model were estimated, taking into account the existing crystal structure, but the
overall optimization approach based on two-dimensional lattice model appeared to be not
very effective.

PPCs with a large number of pigments are the perfect objects for testing the effective-
ness of optimization algorithms. Simulating PPC optical properties requires considering
the electronic transition energies of all pigments in PPCs [2]. The exciton spectra of pho-
tosystem I from Synechococcus elongatus [39] were simulated with the help of the genetic
algorithm. The monomeric complex of photosystem I is characterized by a large number of
Chls, about 100 per complex. The main drawback of this study is the simulation of linear
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optical response as “stick” spectra, which is a rough approximation of the spectrum widths
for such PPCs. However, transition energies were modeled using a variation of genetic
algorithm. For each pigment, the Qy transition energy could vary discretely within the
interval of 660–715 nm with a step of 0.25 nm. Such a discretization of the parameters to
search is the main disadvantage of the genetic algorithm in comparison with DE.

Another interesting example of the modeling of the exciton dynamic, linear spectra and
time-resolved fluorescence of the monomeric photosystem I, applying a certain mutation
strategy of genetic algorithm, is described in [40]. The spectra of individual excitonic states
were simulated in terms of the Redfield relaxation theory, which already makes it possible
to estimate the width of each exciton state depending on its energy. A different protein
environment around Chls creates variations in the Qy transition energies, which cannot
be estimated theoretically. The use of evolutionary optimization in this case is one of the
ways to solve the problem of finding Qy transition energies without resorting to tedious
quantum mechanical calculations. The authors of [40] proposed several mutation strategies
of the genetic algorithm for searching for transition energies; however, due to the huge
search space, the algorithm did not achieve a correct assignment of most Chl energies.

In our simulations of the linear spectra of PSIIRC, we applied the modified Redfield
theory [35] (actually, a combination of MBOM and the exciton theory) to calculate the
absorption profile for each exciton state (Equations (23)–(26)). This approach allows us
to reproduce very realistic spectra for each exciton state of PSIIRC. Chls and Pheos in
PSIIRC are characterized by a set of 39 vibronic modes, which gives the advantage in
modeling the effect of electron–phonon interaction compared with the standard Redfield
approach. However, in applying this complex approach, we increase the number of free
model parameters, which in turn increases the computational costs of the experimental data
fitting. Our previous studies of the linear optical response of Chl, BChl, and carotenoids in
solutions were modeled considering MBOM theory [4,22,23]. To overcome the complexity
of the fitting procedure with several dozen free parameters, the DE algorithm was used. All
of the classical strategies and their tuning parameters were tested, and the best DE strategy
for fitting of monomeric pigments had been found.

PSIIRC is a system of interacting pigments fixed in the protein skeleton and, in
comparison with monomers, needs additional computational procedures such as matrix
diagonalization (eigenstate problem) and integrations over a time scale to assess the relax-
ation rates. As in the case of monomers, we perform the strategy tests for PSIIRC modeling.
The test results showed that the DE/rand-to-best/1/exp and DE/best/1/bin strategies are the
best choices for the system; however, after thoroughly testing the strategy parameters
{F, Cr}, it was found that each of those two has its own advantages and disadvantages.

For such computational algorithms, sticking at local minima for high-dimensional
multimodal function is a rather serious problem. The global solution to this problem will
sufficiently simplify the calculations because when the algorithm passes through the last
local minimum, the rate of convergence becomes clearly exponential (Figure 5). In fact, with
an increase in the number of free parameters, the convergence probability decreases greatly.
Even with optimal values of the parameters, the percentage of convergence has a certain
limit, which is determined by the initial conditions and the statement of a specific problem.

For example, with the best tuning parameters {F = 0.55, Cr = 0.9}, the convergence
rate for the DE/rand-to-best/1/exp strategy with nine unknown parameters is equal about
27%. DE/best/1/bin cannot find the best solution and is always stuck. It is worth noting that
with an increase in the number of unknowns, the value of the best tuning parameters is
retained. Therefore, the next step in solving the problem will be the creation (development)
of the algorithm, which can determine local minimum and after it can get out of there. A
more flexible selection of tuning parameters [27,28,41] (for example, an adaptation of the
SADE algorithm [29,42]) or a way to get out from the local minima could make a wide step
towards solving this problem.
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8. Conclusions

We have shown that the use of a heuristic evolutionary algorithm such as DE in
modeling the optical properties of PPCs allows us to obtain high-quality calculated spectra
and, at the same time, to assess the uniqueness of the obtained parameters of the exciton
model of the energy transfer in PPCs.

In this study, the DE algorithm was used for simulation of the linear optical response
of a system of interacting chlorophyll and pheophytin pigments. Applying the MBOM and
the theory of molecular excitons, we have demonstrated that the linear optical response
of the PSIIRC (absorption, circular and linear dichroism, and steady-state fluorescence)
can be fitted by DE with high accuracy. To explore the effectiveness of DE, we used the
simulated experimental data as the target functions instead of those of actually measured.
After the strategy test was performed, it appeared that only 2 of the 10 DE strategies have
shown the best performance of the optimization algorithm. The best tuning parameters
were determined to run the full optimization of PSIIRC linear optical response modeling.
Finally, using the DE/rand-to-best/1/exp strategy, we found the exact solution for the PSIIRC
exciton model and fitted the spectra with a reasonable convergence rate.

However, the chosen “optimal” strategies and their settings still do not allow us to find
the desired exciton models of pigment–protein complexes with 100% probability. The main
problem is that the optimization algorithm becomes stuck in the local minima (Figure 4 is a
typical example). Thus, the development of modified DE strategies that can detect local
minima and allow the algorithm to find ways to bypass them in the parameter space that
minimizes the objective function is the immediate goal of our further research in this field.
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Abstract: The use of composite materials has grown exponentially in transport structures due to
their weight reduction advantages, added to their capability to adapt the material properties and
internal micro-structure to the requirements of the application. This flexibility allows the design of
highly efficient composite structures that can reduce the environmental impact of transport, especially
if the used composites are bio-based. In order to design highly efficient structures, the numerical
models and tools used to predict the structural and material performance are of great importance. In
the present paper, the authors propose a multi-objective, multi-scale optimization procedure aimed
to obtain the best possible structure and material design for a given application. The procedure
developed is applied to an aircraft secondary structure, an overhead locker, made with a sandwich
laminate in which both, the skins and the core, are bio-materials. The structural multi-scale numerical
model has been coupled with a Genetic Algorithm to perform the optimization of the structure design.
Two optimization cases are presented. The first one consists of a single-objective optimization problem
of the fibre alignment to improve the structural stiffness of the structure. The second optimization
shows the advantages of using a multi-objective and multi-scale optimization approach. In this last
case, the first objective function corresponds to the shelf stiffness, and the second objective function
consists of minimizing the number of fibres placed in one of the woven directions, looking for a
reduction in the material cost and weight. The obtained results with both optimization cases have
proved the capability of the software developed to obtain an optimal design of composite structures,
and the need to consider both, the macro-structural and the micro-structural configuration of the
composite, in order to obtain the best possible solution. The presented approach allows to perform
the optimisation of both the macro-structural and the micro-structural configurations.

Keywords: multi-objective optimization; multi-scale homogenization; bio-composite materials

MSC: 74P05

1. Introduction

One of the main motivations for the exponential increase in the use of composite
materials, especially in transport structures such as airplanes, ships, and automobiles, is
their excellent ratio between mechanical performance and weight. Any weight reduction in
these structures directly relates to the reduction of energy consumption of the transportation
mode. The other main advantage of composites is that they offer to adapt the material
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properties, and its internal micro-structure, to the strength requirements of the structure in
which they are used. An example of this specific composite customization is found in the
development of 3-Dimensional Laminate (3DL) sails for the yacht industry [1] in which the
different composite fibres are placed individually in the sail to obtain optimal performance.

Several factors allow for having highly efficient composites such as the aforementioned
3DL sails. One of them is the development of manufacturing techniques, such as it is
Automatic Fibre Placement (AFP) [2], that allows allocating, with extreme precision, a
single fibre filament in the structural component. Another factor that has been key for the
development of these new composites is the numerical formulations and tools required
to predict the structural performance that will be obtained with such composites. As
composites have become more complex, these tools have to be improved to account for the
new material configurations. Therefore, in most cases, it is not sufficient to evaluate the
composite as an orthotropic material and to apply a failure threshold criterion such as the
ones reported in [3]. Instead, it is necessary to use more complex formulations that obtain
the composite performance by means of its constituent materials. One of these approaches
is the serial-parallel mixing theory (S/P RoM) [4], which acts as a constitutive equation
manager and is based on the definition of a set of compatibility equations between the
composite components, usually fibre and matrix, relating their stress-strain performance. The
validity of the S/P RoM to accurately characterize the composite stiffness, as well as different
composite failure modes, has already been demonstrated in several references [5–8].

However, when the composite architecture becomes more complex, for instance when
having woven laminates, the serial/parallel mixing theory is not enough to account for
all the micro-structural interactions between the composite constituents, being necessary
the use of more complex formulations. Good candidates for such purposes are numerical
multiscale procedures [9,10], which are based on solving the structural problem at hand
by splitting it into two different scales. Namely, a macro-scale that discretizes the global
problem, and a micro-scale that defines the material micro-structure. With this approach,
the macro-scale deformation gradient tensor is used for the solution of the micro-scale
problem, and then, using the microscopic results, for the obtainment of the macro-scale
stress tensor. The microscopic problem is solved on a Representative Volume Element (RVE)
model, which must be periodic and representative of the material [11]. This approach is of
special relevance for the analysis of woven composites, which micro-structural performance
cannot be properly captured by the serial-parallel mixing theory. Examples of multiscale
analysis on woven composites can be found in [12,13]

The vast number of possibilities that offer composite materials, regarding their internal
configuration and their disposition in the structure, represents also a challenge to obtain
the optimal configuration for a given structural application. One of the most common
solutions used to customize the composite for a given application is by giving a preferred
orientation to the composite laminate, which is done by placing more fibres in a given
direction compared to the other ones. The definition of the optimal direction can be done
based on a deep understanding of the structural performance of the element considered
or, as it is done with more recent technologies, by coupling the structural analysis with an
optimization procedure. In this regard, Nikbakt et al. [14] have made an exhaustive review
of the work that has been conducted by the scientific community regarding composite
optimization. In their review they divide the work into the different types of structures
analysed: beams, plates, shells, and other types; and, for each one of them, they provide
the optimizations made based on the different objective functions considered, i.e., weight
minimization or buckling load maximization. In their work, they realized that most of
the analyses made are based on finding the best stacking sequence to obtain the desired
structure performance. Examples of these types of analyses can be found in the work
conducted by Ehsani and Rezaeepazhand [15], Wei et al. [16], and Zhou et al. [17]. In the
last work mentioned, the authors not only provide the optimal composite orientation, but
they also find the best structural topology to handle the applied loads.
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Optimization procedures are based on the modification of different structural param-
eters to obtain the desired structural performance, which is represented by an objective
function. There are also optimization strategies that seek to obtain the improved perfor-
mance of different objective functions. This is, for instance, maximizing the structure
stiffness while minimizing its weight. Those are the so-called multi-objective optimization
procedures [18]. Several authors have already applied multi-objective optimization strate-
gies to obtain the best composite configuration and, therefore, take maximum advantage of
the multiple configuration capabilities of composite materials. Recent examples of this ap-
proach can be found in [19,20]. In these analyses, since they are based on a multi-objective
optimization, the outcome is a Pareto Front, which provides the solutions showing an
equilibrium of the optimized functions. The points on the Pareto Front are those which
dominates the other solutions, which means that no solution improves the dominant ones
without getting one of the objective function worse. A further step has been done in the
works of Li et al. [21] and Coelho et al. [22,23] in which the optimization method is applied
to a multiscale procedure for the characterization of the composite structures. In the last
one of these works, the parameters that can be modified to obtain the optimized structure
performance are at the macro-level by modifying the fibre orientation, and at the micro-level
by changing the volumetric participation of the different components in the composite.
Other examples of multi-scale optimization can be found on references [24–29], which
focus on topological optimization. In [26–28], the authors propose a two-scale optimization
process using pre-computed microstructure format, while in [27–29] the authors propose a
multi-scale approach for structures and the materials of the components.

Current work enhances the path started by the abovementioned authors by coupling
a multi-objective optimization code with a multi-scale structural code. The proposed
approach focusses on shape optimization, not on topological one. The requirements from
the selected applications better fit with shape optimization. With this approach, it will be
possible to find the optimal micro-structure of the material and the optimal configuration
of the composite in the structure, complying with several objective functions and both the
macro- and the micro-level. This brings the opportunity, at the design stage, of tailoring
the material to obtain the desired structural performance. For instance, the optimization
process can improve the design characteristics at the micro-level (stacking sequence or
composite micro-structural configuration) and at the macro-level (composite orientation
or shape optimization) simultaneously. It will be shown that this new approach brings
different solutions than a simple macro-scale optimization, which can result in a more
efficient and structure with an improved performance.

The first section of this manuscript includes a brief description of the numerical
tools developed to conduct the analysis: the multi-scale procedure used to characterize
composite materials, and the multi-objective optimization code that is coupled to the
structural one. Afterwards, the optimization procedure proposed is defined and validated
by solving a case study. The case considered consists in the optimization made of an
aircraft secondary structure, an overhead locker (or hatrack), designed to be manufactured
using eco-composite materials. The eco-composites considered in this work have been
identified in the context of the ECO-COMPASS project [30,31] (European Union’s Horizon
2020 research and innovation programme under grant agreement No 690638) as being a
renewable and ecologically improved solution compared to traditional ones.

The numerical tools developed in this work, together with the use of eco-composite
materials, are expected to facilitate the incorporation of these new materials in trans-
portation structures. The optimization made will optimize the structure and the material
micro-structure, obtaining the best possible configuration for the application considered.
Finally, the incorporation of eco-composites in an optimal configuration is one of the
important actions that can be taken to minimize the carbon footprint associated with
transportation structures.
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2. Multi-Scale and Multi-Objective Procedures for the Analysis and Optimisation of
Composite Materials

The multi-scale, multi-objective optimization procedure proposed in this work is
obtained by coupling a composite structural solver, PLCd [32], in which the composite
performance is obtained by means of a numerical homogenization, with a multi-objective
optimization software, RMOP [33], capable of interacting with any other software solving
a physical problem. This section describes briefly the formulation used by both codes, as
well as the procedure used to couple them.

2.1. Numerical Multi-Scale Model

Numerical multi-scale models are of special relevance for the analysis of structures
with a complex micro-structural behaviour, such as composites. In these cases, it is very
difficult to define a constitutive law that captures accurately the mechanical performance
of the material. Instead, a multi-scale approach uses a micro-structural model, defined by
means of a Representative Volume Element (RVE), to obtain the material response. The
material performance provided by the micro-model is used afterward by the macro-model
of the structure to be analysed.

Figure 1 presents a schematic representation of a multiscale approach. This figure
shows that the solution of the beam model (macro-structure) produces a set of strain fields
that are converted to displacements in the micro-model in order to analyse its response.
The results provided by the micro-model are a set of forces that are then transformed to
stresses in order to feed the macro-model. In other words, the micro-model works like a
constitutive equation of the material, as it provides the stress field associated with a given
strain. With this approach, it is possible to obtain the elastic performance of composites
with complex micro-structures (such as honeycombs, woven composites, etc.) as well as to
predict the complex failure modes associated to these materials.

Figure 1. Schematic representation of a multiscale analysis.

The mathematical foundations on which the multiscale analysis is based, as well as its
detailed numerical implementation, can be obtained from the reference Otero et al. [9]. In
this work the authors show that the displacement to be applied to the micro-scale (RVE) can
be obtained as the displacement of the macro-scale and the addition of a micro-fluctuation
in the micro-model. This can be written as:

uμ = u + w
(
Xμ

)
(1)

being uμ the displacement of the micro-scale, u the displacements of the macro-scale,
and w

(
Xμ

)
the micro-fluctuations on the micro-model, which vary for each point in the

microscale Xμ.
Besides describing the displacement field of the micro-model, a multiscale method also

need to relate the different scales considered. This is done with the average theorems [34].
These theorems state that a given parameter in the macro-model can be obtained as the
integral over the volume of this same parameter in the micro-model. If the average theorem
is applied to the deformation gradient, the expression obtained is:

F(X0) =
1

Vμ

∫
Vμ

Fμ

(
X0, Xμ

)
dV (2)
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where F(X0) is the deformation gradient, in X0, of the macro-structure, Vμ is the RVE
volume, and Fμ are the deformation gradients in all RVE points. Equation (2) can be used to
obtain the different displacement fields that are kinematically admissible in the micro-scale.
In order to solve the equilibrium of the RVE at the micro-level, it is also necessary to define
a set of boundary conditions. Among the different possible sets of boundary conditions that
can be applied, this work will use periodic boundary conditions, which can be written as:

w
(

X+
μ

)
= w

(
X−

μ

)
∀ Xμ ∈

{
∂V+

μ , ∂V−
μ

}
. (3)

being V+
μ V−

μ the parallel periodic boundaries in the RVE. With these boundary conditions,
the kinematical constraint defines a periodic displacement fluctuation on parallel faces of
the RVE.

Once solved the Boundary Value Problem (BVP) at the Representative Volume Element,
the stresses in the macro-model can be obtained from the stresses computed at the micro-
scale using the average theorem:

σ =
1
V

∫
V

σμ dV (4)

where, σ and σμ are the stresses in the macro-model and in the micro-model respectively,
and V is the volume of the RVE.

The multiscale procedure previously summarized is described in detail in the work of
Otero et al. [9] and implemented in the CIMNE in-house finite element software PLCd [32].
The abovementioned work also describes an enhanced approach that incorporates the
second-order displacements of the macro-model in the displacement field of the RVE. A
full second-order homogenization is proposed by Geers et al. in [35]. Although current
work will be limited to the linear-elastic performance of the structure, multiscale methods
can account for material non-linearities. In this regard, Otero et al. [36], and Zaghi et al. [37]
proposed different strategies to incorporate material-damage at the micro-structural level,
with an affordable computational cost.

2.2. Multi-Objective Optimization Procedures

The multi-objective optimisation tool used in this work is RMOP [33], the Robust
Multi-Objective Optimization platform. It is a CIMNE in-house tool used along with the
optimization analysis. It is an optimization platform that implements Genetic Algorithms,
Particle Swarm Optimization methods and, Gradient Based methods.

RMOP is implemented as a set of libraries to open the possibility to implement new
developments resulting from research. This coupling is done with a script, which can
be defined using any programming or scripting language. The basic concept is that the
solver works as a black box, so the optimizer is sending the request to the solver and this is
answering the requested evaluation for both the objective functions and the constraints.
This coupling can be done through the command line and ASCII files, but also using
directly the RAM memory of the computer.

The Genetic Algorithm implementation in RMOP for the solution of multi-objective
optimisation problems is based on the NSGA-II [38]. It uses a λ + μ strategy and Crowded-
Comparison Operator for the selection operator [38], a Simulated Binary Crossover [39] for
the crossover operator, and a Polynomial Mutation [18] for the mutation operator. These
operators define how the evaluated individuals are selected to become parents and how
the new offspring are created. The results of a multi-objective problem are normally repre-
sented using the Pareto optimality or non-dominated individuals concept [18]. Figure 2
shows this concept for a problem with two conflicting objective functions. For a given
multi-objective problem, the solution is the Pareto optimal set resulting from the used
optimization method. This gives a representation of all compromised designs between
the two conflicting objectives. Real-world problems normally involve different conflicting
objectives without any unique optimum design for all of them. In this case, a set of compro-
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mised solutions known as Pareto optimal (or non-dominated) solutions, can be obtained.
A solution of a multi-objective problem is considered Pareto optimal if there are no other
solutions improving all the objectives simultaneously. This means that an improvement in
any of the objective functions implies a deterioration of any of the rest. The goal of solving
the corresponding optimisation problem is then to provide a set of Pareto optimal solutions
representing a trade-off of information amongst the objectives.

Figure 2. Pareto Optimality.

For a minimisation problem, a vector x1 is said partially less than vector x2 if, and
only if:

∀i : fi(x1) ≤ fi(x2) and ∃i : fi(x1) < fi(x2) (5)

In this case the solution x1 dominates the solution x2.
As Evolutionary Algorithms (EAs) consider multiple points simultaneously, they

are capable of finding a number of different solutions in a Pareto set. A comprehensive
theory, literature review, and implementation of Multi-objective EAs (MOEAs) including
the NSGAII and VEGA algorithms is given by Deb in reference [18].

The RMOP platform is also enabling a pure hybrid approach. Two or more populations
can be defined, assigning exploration and exploitation roles to each of them. The roles can
be defined through the values of the probability of cross-over and mutation, or through
the assignment of different objective functions and constraints to each population [39].
Hybridization through the combination of optimization methods, as well as the mixing
between multiple populations and a combination of methods is an ongoing development
of the platform [40–42].

2.3. Multi-Objective Multi-Scale Optimization Procedure

Once having defined the multi-scale procedure to be used in this work, which is imple-
mented in the finite element code PLCd [32], and the multi-objective optimization software
RMOP [33], this section describes the procedure used to couple both numerical tools, in
order to perform a multi-objective, multi-scale optimization of eco-composite structures.

This coupling is conducted using an interface program that reads the results obtained
from the numerical analysis made by PLCd, and sends them to the optimization code.
Then RMOP takes the results obtained and uses them to generate new populations that
can be analysed in order to obtain the optimal structure configuration. It also draws the
Pareto front (Figure 2) that can be used afterward by the user to select the most convenient
solution for the structural problem solved.

The analysis of the results obtained from the different populations is made based on
the objective functions to be optimized (either minimized or maximized). These objective
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functions are defined in the interface program, and can take data from the input data file of
the structural solver (for instance, minimization of the stiffness required from the material)
or from the output file (i.e., minimization of the deformation or of the maximum stresses).

Once the new populations have been defined, the interface program modifies the input
data files required by the structural solver to run the new analyses. When the mechanical
simulation is conducted using a multiscale analysis, the definition of the new simulation
populations can be made by modifying either the parameters of the macro-model, the
parameters of the micro-model or both.

The whole procedure is described schematically in Figure 3.

Figure 3. Flow diagram describing the process developed and the interaction between the optimizer
and the structural solver.

3. Optimization Example, Application to an Aircraft Overhead Locker (Hatrack)

The structure chosen to validate the optimization procedure is the cabin stowage bin
located above the seats in an airplane, this is also called hatrack. The hatrack is usually
made with a sandwich material in which the core is a honeycomb and the skins are made
of a woven glass-fibre embedded in a phenolic resin. In this work, the honeycomb core is
made of aramid and cellulose, and the skins are made with a ramie woven embedded in an
eco-epoxy matrix.

This section describes, first, the considered hatrack and the numerical model devel-
oped. Afterwards, two different optimization analyses are presented. The first one looks
for the best possible orientation of the woven skins in the hatrack shelf. This optimization
affects only the macro-structural model of the hatrack. The second optimization analysis
conducted affects both, the macro- and the micro-scales of the model, as it looks for the best
woven orientation as well as for the optimal micro-structural configuration of the laminate.
The comparison of both analyses shows that, in order to obtain the best possible solution,
the composite microstructure is as important as its orientation in the structure.

3.1. Aircraft Overhead Locker to Be Optimized
3.1.1. Geometry

A hatrack is the cabin stowage bin located above the seats in an airplane. The hatrack
considered has been obtained from the patent of Welch and Roth [43]. It is subjected to
three fuselage frames, which are at a distance of 20 inches. Therefore, the hatrack has
a length of 40 inches (1016 mm), a width of 583 mm, and a height of 251 mm. Its exact
geometry is shown in Figure 4.
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(a) (b) 

 
(c) 

Figure 4. Hatrack considered for the design optimization. (a) Original geometry obtained from a
patent template [43]. (b) Numerical model developed reproducing the original geometry. (c) Cross
section dimensions.

The main interest of the current analysis is focussed on the performance of the hatrack
shelf (element 76 in Figure 4a), as this is where the largest stresses and strains are found.
To minimize the computational cost of the model, all non-structural parts have not been
included (e.g., the hatrack door and its lock). Another simplification made on the geometry
is in the areas where the hatrack attachments to the fuselage are located. These regions
have large stress concentrations and require of specific reinforcements to sustain the loads.
Usually, in these spots, the core material is filled with resin to create a monolithic region.
For the sake of simplicity, these reinforcements are not defined in the model. Therefore,
stress concentrations in these regions will be ignored.

3.1.2. Boundary Conditions

As it has been already mentioned, the hatrack is attached to the three fuselage frames
that are located along its length in the upper and lower panels. This defines a total of
six supports, as shown in Figure 5. In the model, this boundary condition is applied by
restricting the displacements in the three spatial directions, along a line with a length of
30 mm.

 
Figure 5. Boundary conditions on displacements defined for the numerical model.

As for the loads applied, a hatrack with these dimensions is allowed to support a total
of 50 kg of weight due to the luggage stored in it (live-load). A dead-load of 20 kg has to be
added to the live-load, which accounts for the actual weight of the hatrack, plus the weight
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of different systems attached to it such as the intercommunication elements, the lights, the
oxygen masks, etc. The total load of 70 kg is applied to the shelf of the bin. This is correct
for the luggage and the systems attached to the hatrack, but not for the self-weight, which
is distributed along the whole geometry. Applying the load in such a manner has been
done for the sake of simplicity and provides an extra safety factor.

The structural analysis will consider two different limit states. The Service Limit State
(SLS) will apply the weight of 70 kg multiplied by gravity and divided by the area in which
it is distributed. It defines a pressure of 1.14 × 10−3 MPa to be applied at the shelf. This
load will be used to verify the maximum displacement suffered by the hatrack in service
conditions. The other case corresponds to an Ultimate Limit State (ULS). In this case, the
load is affected by a gravity acceleration of 8 g, as it is defined in Certification Specification
CS-25 provided by EASA [44]. In this case, the applied pressure is 9.15 × 10−3 Mpa and
this load will be used to evaluate the stresses found in the structural elements.

3.1.3. Materials

The hatrack is made with a sandwich laminate in which both, the skins and the core,
contain eco-materials. The skins of the sandwich are made of woven ramie fibres embedded
in a partly rosin-based epoxy matrix (AGMP 3600 [45]). The core is made with a honeycomb
that contains a high percentage of cellulose.

Two different sandwich laminates are used in the hatrack. The shelf, in which the
luggage is placed, has a total thickness of 14 mm, with a core of 10 mm and two skins of
2 mm each. The rest of the hatrack has a thickness of 8 mm, with a core of 6 mm and skins
of 1 mm each. The mechanical performance of the skin and core materials is obtained using
a multiscale strategy, with the definition of a RVE to represent the woven skin and another
RVE to characterize the honeycomb core.

Sandwich skins

This section describes the Representative Volume Element Model developed to char-
acterize the woven ramie laminate used for the sandwich skins. The geometry of the
representative volume element has been generated using a micro-photograph of the com-
posite. Both, the micro-photograph and the geometry of the model developed, are shown
in Figure 6. The mesh of the RVE contains 9547 linear tetrahedral elements and 2287 nodes.

   
(a) (b) (c) 

Figure 6. (a) Micro-photograph of the woven ramie laminate. (b) Representative volume element
developed to simulate the material. (c) Detail of the fibres waviness defined in the RVE.

As it is shown in Figure 6b, the representative volume element has been defined with
three different bulk materials, fibres in X direction (grey), fibres in Y direction (pink) and
matrix (blue). Fibres in X and Y directions have exactly the same mechanical properties
and differentiation has been made in order to have the possibility of changing them in the
optimization process. The mechanical properties of ramie fibres have been obtained from
average values shown in publications [46,47], and the properties of the epoxy resin come
from the manufacturer’s specifications. These properties are described in Table 1. The fibre
volume content in the prepeg is 51.4%.
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Table 1. Mechanical properties of ramie fibres and epoxy resin considered in the simulation.

Material Young Modulus [GPa] Poisson Modulus Shear Modulus [Gpa]

Ramie 24.0 0.2 11.8

Epoxy 3.5 0.25 1.4

Sandwich core

The green-honeycomb core used for the analysis is an aramid paper core with a
high percentage of cellulose. The material has been characterized with a Representative
Volume Element which geometry has been defined from available photographs of the actual
material. The material and the RVE model developed are shown in Figure 7. The mesh
of the RVE has 9600 linear hexahedral elements and 15,666 nodes. A detail of the mesh is
included in Figure 7c, where it is shown that there are two elements along the thickness
of the honeycomb in order to capture the possible (although not probable) bending of the
honeycomb paper.

   
(a) (b) (c) 

Figure 7. (a) Green honeycomb. (b) RVE developed to simulate the material. (c) Detail of the
mesh defined.

The material properties defined for the hybrid cellulose-aramid films that constitute
the honeycomb are described in Table 2.

Table 2. Mechanical properties of ramie fibres and epoxy resin considered in the simulation.

Material
Young Modulus

[GPa]
Poisson Modulus

[Gpa]
Shear Modulus

[Gpa]

Green Honeycomp 18.0 0.3 6.9

3.1.4. Hatrack Finite Element Mesh

The hatrack is discretized with linear hexahedral solid elements. It has 79,173 elements
and 106,276 nodes. Figure 8 shows a detail of the mesh. The laminate has three finite
elements along its thickness, one corresponding to the core (pink elements in Figure 8) and
two, one at each side of the core, corresponding to the woven skins. The mesh defined
corresponds to a compromise between results accuracy and computational cost, as the
structural model has to be analyzed many times during the optimization procedure.
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Figure 8. Detail of the finite element mesh developed to analyse the hatrack.

3.1.5. Laminar Orientation

When working with composite structures, one of the most important aspects is the
orientation of the composite in the structural element, as composites are highly orthotropic
in terms of strength and stiffness. Figure 9 shows the original axis defined for the different
hatrack elements. In this drawing the X, Y, and Z axes are represented in blue, red and
green respectively. This orientation has been applied to the woven ramie prepreg and
to the honeycomb. Figure 9 also shows that the hatrack shelf is divided into 6 × 10
rectangular elements. This division has been made to facilitate the definition of different
woven orientations in the optimization problem.

 

Figure 9. Laminate original orientation.

3.1.6. Hatrack Structural Performance

The hatrack has been analysed with the materials and boundary conditions previ-
ously described. This analysis provides the performance of the hatrack in its original
configuration and will be compared with the improved response after conducting the
optimization analysis.

Deformation under Service Limit State (SLS) loads

The deformation of the hatrack under SLS conditions is depicted in Figure 10. In this
case, the load applied is a pressure load at the shelf surface, with a value of
9.15 × 10−3 Mpa. Under this load, the larger deformations are found at the centre of
the free border of the shelf, and the value of the vertical displacement is 4.22 mm. The
deformations of the hatrack under Ultimate Limit State (ULS) loads is eight times bigger,
as the loads are also eight times bigger and the model is linear. In this case, the maximum
displacement is 33.7 mm.
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Figure 10. Hatrack deformation under SLS loads.

3.1.7. Stresses under Ultimate Limit State (ULS) Loads

The structure validation also requires that the maximum stresses under ULS loads
do not reach the threshold value. The maximum tensile stress for the sandwich skin is
limited to 59 Mpa, and the maximum shear stress allowed in the honeycomb is limited to
0.73 Mpa. Figure 11a shows the maximum tensile stress (first principal stress) in the skins
of the hatrack. These stresses are larger at the back, close to the support area, and on the
sides, close to the opened area. It is possible to see also stress concentrations around the
different support regions. Figure 11b shows these same stresses in the hatrack shelf. These
two figures show that at no point the maximum stress of 50 Mpa is exceeded, except in the
support regions (where the hatrack is fixed to the airplane frames). The stress concentration
in this regions is not plotted to avoid hiding the rest of the results.

  

(a) (b) 

Figure 11. Hatrack maximum normal stresses (principal stress) in the skin, under ULS loads.
(a) Stresses in all hatrack skins. (b) Detail image of the stresses at the shelf.

Figure 12 shows the shear stresses in the honeycomb core at the shelf. In this image
it is shown that they do not exceed the maximum stress value of 0.73 MPa at any point
except, again, at the regions where the hatrack is fixed to the airplane frames.

  
(a) (b) 

Figure 12. Hatrack maximum shear stress in the honeycomb core, under ULS loads. (a) Elements
with stresses in the range of (−0.75, 0.75) MPa. (b) Elements with stresses larger than 0.75 Mpa in
absolute value.
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The stress results shown in previous figures prove the validity of the designed model
to sustain the applied loads under the Ultimate Limit State. The only regions where the
maximum loads are exceeded are those in which the hatrack is fixed. To handle these stress
concentrations, in these regions the honeycomb core is filled with resin, obtaining a stiffer
material that can easily handle the applied loads. The design of this structural detail is not
within the objectives of this work and, for this reason, these larger stresses are disregarded.

3.2. First Optimization Analysis: Optimal Fibre Alignment for an Improvement of Structure Stiffness

The first optimization analysis conducted aims to improve the stiffness of the hatrack
shelf by finding the optimal orientation of the woven skins. With this aim, the numerical
model has divided the shelf into a total of 60 regions, 6 rows by 10 columns (see Figure 9),
in which it is possible to define independent orientations. The stiffness of the shelf is
evaluated with the displacement obtained at the centre of the free edge, where the maximum
displacements are found, as shown in Figure 10. Therefore, the objective function here is
the maximum vertical displacement in a given point (centre of the free edge of the shelf),
which will be minimized. In order to achieve this, the algorithm can modify 60 different
angles, each one corresponding to the skin orientation at each of the rectangular elements
shown in Figure 9.

The initial displacement, under ULS loads and with the orientation following the X
and Y axis shown in Figure 8, is 33.7 mm. With this initial deformation, the coupled PLCd-
RMOP software is run, and the maximum displacement is evaluated after each structural
solver analysis. Table 3 describes the set-up parameters for the RMOP optimizer, applied to
the described application. The evolution of this displacement with the different evaluations
made of the model is shown in Figure 13. This figure shows that the optimization software
has been able to reduce the displacement of the structure with successive iterations, reaching
an asymptotic value of 32.8 mm

Table 3. RMOP parameters configuration for the single objective analysis.

Set-Up Parameter for the RMOP Optimizer Value

Objective functions 1, displacement

Design variables 70, fiber orientations

Range for the design variables [−90, +90]

Population size 200

Probability of crossover 0.9

Mutation probability 0.1

Number of CPU 8

The woven skin orientation that sh”uld ’e defined to obtain the minimum displacement
is shown in Figure 14. This picture shows that centre skins should maintain their original
orientation, which is perpendicular to the shelf lip, while the outer skins must be oriented
looking approximately towards the point of maximum deformation. This analysis validates
the procedure to optimize the design of the hatrack.
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Figure 13. Maximum shelf displacement for the different evaluations of the model made by the
optimization software.

 

(a) (b) 

Figure 14. Optimal woven skin orientation (X direction) required to obtain the minimum shelf
displacement. (a) isometric view. (b) plane view.

The results also show that the improvement obtained in the structure stiffness with
the optimal woven disposition is only 0.9 mm for the ULS loads, which is only 2.7% of the
original deformation. Therefore, it can be concluded that in this case, the orientation of the
woven composite in the shelf does not play a significant role in the hatrack shelf stiffness.

As for the structural performance of the cabin bin, it is very similar to the performance
previously seen. The displacement obtained with the numerical model is shown in Figure 15,
where it is seen that the displacement pattern is identical to the one obtained with the
woven without an optimized alignment. Figure 16a,b shows the maximum tensile stresses
in the sandwich skins and the shear stresses in the core, respectively. In both cases, the stress
threshold is not exceeded except in the support regions. The results shown in these figures
prove that the optimized design is valid and that it is possible to increase the stiffness of
the hatrack shelf with a specific orientation of the woven skins in the sandwich laminate.

 

Figure 15. Hatrack displacements with the optimal woven skin design.

366



Mathematics 2023, 11, 165

  
(a) (b) 

Figure 16. Hatrack shelf stresses with the optimal woven skin design. (a) Tensile stresses at the
woven skins. (b) Shear stresses at the honeycomb.

3.3. Second Optimization Analysis: Multi-Objective, Multi-Scale Optimization

The second analysis made is a multi-objective, multi-scale optimization. Two different
objective functions are defined to obtain the optimal design of the structure. The first one
corresponds to the shelf stiffness, which is measured as the in previous case, by minimizing
the vertical displacement at the centre of the free edge. The second objective function
consists on minimizing number of fibres placed in one of the woven directions, which seeks
a reduction on the material cost and weight (flax fibres density are about 1.5 g/cm3 [48],
while epoxy resins have densities around 1.2 g/cm3 [3]). To obtain the optimal design, the
software will modify the woven skin orientation, as has been done in the previous case,
and will also modify the material configuration by reducing the amount of fibres in one
of the directions of the woven material. Table 4 describes the set-up parameters for this
second and multi-objective test case.

Table 4. RMOP parameters configuration for the multi-objective analysis.

Set-Up Parameter for the RMOP Optimizer Value

Objective functions 2, displacement and amount of fibre layers

Design variables 71, fiber orientations and number of layers

Range for the design variables [0, 180]

Population size 200

Probability of crossover 0.9

Mutation probability 0.1

Number of CPU 4

The fibre reduction is achieved by varying the stiffness of fibres in the Y direction
of the Representative Volume Element defined to characterize the ramie woven prepreg
(7b). This stiffness reduction is defined using the parallel mixing theory [49] to obtain the
fibre yarn stiffness, as it is shown in Equation (6), assuming that the maximum stiffness is
obtained if all the yarn contains ramie fibre, and that stiffness is reduced by adding some
percentage of rosin epoxy resin in the fibre yarn. If this percentage reaches 100% there will
be no fibres in the yarn, which provides a material similar to a unidirectional composite. In
Equation (6), EB, Ef and Em correspond to the stiffness of the bundle, the ramie fibres and
the rosin epoxy matrix, respectively, and kf is the volumetric participation of fibre.

EB = k f ·Ef +
(

1 − k f

)
·Em (6)

In a multi-objective optimization analysis, there is not an optimal case, but a set of
cases that provide an optimal result for one of the objective functions, for a given value of
the other objective function. This set of results are represented in the Pareto front, which
shows the best candidates obtained by combining both variables. Figure 17 shows the
Pareto front after several evaluations. This figure shows that the evolution of this front
from the first analysis (purple line) to the evaluation 30th (green line) is quite visible,
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and that after evaluation 30th the difference is minimal. The final result is obtained after
150 evaluations and it is shown with a red line.

Figure 17. Pareto front evolution showing the performance of the different objective functions defined
for the analysis.

The results shown in Figure 17 for a fibre volume content of 100% are the same
that were obtained in the first optimization analyses conducted, in which the original
displacement is close to 34 mm. This displacement can be reduced to 33 mm with a correct
fibre disposition. On the other hand, if we consider the case in which we remove all fibres
in Y direction, the deformation of the hatrack shelf becomes substantially larger, being
of 47 mm if fibres are oriented in the optimal situation, and 49 mm otherwise. Between
these two limits, there is a wide range of solutions, providing different displacements for
different fibre volume contents.

Figure 17 also shows that the slope of the Pareto front is substantially steeper for the
fibre volume contents between 100% and 60% than for lower fibre volume contents. In
other words, a reduction of 10% in fibre volume for higher fibre volume fractions has a
lower implication in the shelf displacement, than this same reduction is applied in lower
fibre volume fractions. A limit between these two tendencies is found around a fibre
volume content of 60%, in which we have an increase from 33 mm to 35.5 mm (7.5%) in
the maximum vertical deformation of the shelf, with a reduction of a 40% of fibre volume
content. Therefore, from an engineering point of view, this can be an optimal design for
the hatrack.

Considering this case as the optimal design, in the following the results obtained for
this case are described. The first result shown is the orientation of the woven skin in the
hatrack shelf. Figure 18 shows the directions of the stiffer skin yarns that are required to
obtain the best structural performance. Now it is important to bear in mind that the woven
skins are orthotropic, as the yarns in the X direction (the one represented in Figure 18)
contain 40% more fibres than in the perpendicular direction. If the orientation obtained for
this case is compared with the orientation in the case of a regular woven laminate, with the
same amount of fibres in both directions (Figure 14), it can be seen that in the central region
of the hatrack, the yarns with a larger amount of fibres have to be placed perpendicularly to
the direction obtained in the case of having the same yarns in both directions. On the other
hand, in the region close to the edges, the stiffer yarns are perpendicular to the central ones,
stitching them.

The comparison of fibre distribution displayed in Figures 14 and 18 show that the
optimal pattern has a large dependence on the structural configuration of the woven
laminate. Which justifies the convenience of multi-objective, multi-scale optimization
methods to obtain the optimal structural design of eco-composite structures.
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(a) (b) 

Figure 18. (a) Optimal woven skin orientation (X direction) required to obtain the minimum shelf
displacement. In (b) the elements for which the optimizer has not found the optimal orientation are
marked in orange.

With this new fibre distribution, the structural performance of the hatrack is very
similar to the one observed in previous analyses. Deformations follow the same pattern
shown by previous models (Figure 19), although in this case the maximum displacement
obtained is a bit larger, as it has a value of 32 mm under Ultimate Limit State loads. As
for the stresses, they are below the failure threshold (Figure 20a,b). Therefore, the hatrack
is feasible under this configuration, although its stiffness has been reduced due to the
reduction of fibre content.

Figure 19. Hatrack displacements with the optimal woven skin design and 60% of fibres in Y direction.

  
(a) (b) 

Figure 20. Hatrack shelf stresses with the optimal woven skin design and 60% of fibres in Y direction.
(a) Tensile stresses at the woven skins. (b) Shear stresses at the honeycomb.

4. Discussion

The three numerical models analysed in Sections 3.1–3.3 have shown the performance
of an aircraft overhead locker with three different material configurations. The first analysis
shows the performance of the locker when the woven composite of the skins is oriented
following the length and width directions of the structure (as it is shown in Figure 9), while
in the other two simulations these orientations are defined using an optimization procedure.
The first optimization analysis (Section 3.2) been made with a single objective function
and modifying the structural configuration only at a macroscale level. This analysis has
provided the optimal fibre orientation of the laminate skins in order to improve the stiffness
of the hatrack shelf. The second optimization analysis (Section 3.3) has been conducted
with two different objective functions, one consisting in obtaining the larger stiffness of the
hatrack shelf, and the other one that seeks using the minimum amount of fibres in one of
the directions of the woven skins (reducing the cost and the weight of the woven material).
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The modifications made on the structure design to obtain the optimal performance have
been the orientation of the shelf skins and the number of fibres of the woven composite, in
one of its directions. This last modification is made at a micro-structural level, as it modifies
the configuration of the Representative Volume Element.

The results obtained with the solution of both optimization problems have proved
the capability of the software developed to obtain an optimal design of eco-composite
structures. In both analyses, the optimal fibre orientations differ from the orientations
considered in the original hatrack (analysis made in Section 3.1). However, the authors
consider that the most relevant result is obtained from the comparison of the two opti-
mization analyses conducted, as these have shown that a multi-objective optimization
that modifies both, the macrostructure and the micro-structure, can provide solutions not
considered by a regular optimization procedure. This opens a new framework in the design
of composite structures, as now the material can be optimized at different scales, in order
to provide the best possible material configuration, material disposition and structural
configuration, for a given application. This framework is not found in other optimization
analyses, in which either apply an optimization procedure to a multi-scale problem, or they
use a multi-objective optimization to a structural problem, but not both.

Although the results demonstrated the capabilities of the proposed methodology,
it has some limitations and drawback that the authors must further research. The use
of a population-based optimizer requires a large number of simulations, which means
a large computational cost. Parallelization is already in place, but further research is
required to ensure the applicability to larger structural problems. The coupling between the
optimizer and the multi-scale simulator is using a weak form, but hierarchical optimization
or hybridization strategies could be developed to further benefit from all the scales. In this
same line, any strategy aimed to reduce the computational cost of multiscale structural
models will benefit the whole procedure, as multiscale methods are rather expensive and
this limits the complexity of the models that can be considered in the optimization process.

The overhead locker analysed in this work is used mainly as an example of the
capabilities of the proposed formulation. However, looking at the specific application,
additional improvements of the design could be obtained by acting on the detailed geometry
of the micro-structure, e.g., by considering a different weave pattern, or by modifying the
hatrack shape at the macro-level.

5. Conclusions

The introduction of eco-composites in engineering structures and, more specifically
in aeronautic structures, requires improving the existing knowledge about the material
performance, and also to develop analysis tools capable of predicting the response of the
material when it is in service. An optimal design of eco-composite structures needs the
developed numerical tools to evaluate the structural performance and to correct its design,
if necessary, in order to improve it.

Optimization tools provide a systemized solution for design improvement. Instead of
relying on the designer experience to obtain a new structural configuration that provides
better performance, it is possible to rely on an optimization code to do the work. In this
case, the software analyses the variables that define the structure performance and, based
on different procedures (e.g., genetic algorithms), defines new structure configurations that
are expected to improve the structural performance.

Current work has coupled a multi-scale structural finite element software, PLCd, with
a multi-objective optimization software, RMOP, to obtain a multi-objective multi-scale
optimization package that can be used to obtain the optimal design of eco-composite
structures. With this approach, it is possible to optimize the structural performance by
modifying the configuration of the structure at a macro-level, but also having the possibility
of modifying the configuration of the internal micro-structure of the composite material.
The analysis conducted with the developed tools has shown that with the multi-scale multi-
objective approach proposed, it is possible to obtain improved structural configurations,
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not reachable by the optimizer otherwise. These tools are expected to facilitate the use
of these new materials in different structural applications, and especially in aeronautical
structures, in order to reduce the environmental impact of transportation.
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