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Among the most important implementations of the principles of enterprise risk man-
agement (ERM), the risk management process (RMP) involves various quantitative phases,
usually encompassed under the label of quantitative risk management (QRM).

The RMP starts with defining the objectives (of an organization or a line of business)
and then proceeding through the phases of risk identification, risk assessment, impact
assessment, analysis of actions, choice of actions, and monitoring.

The whole RMP can benefit from the adoption of appropriate quantitative tools. In
particular, the risk and impact assessments necessarily involve either stochastic evalua-
tions (frequently implemented via Monte Carlo simulation procedures) or deterministic
evaluations, such as sensitivity analysis and stress testing. The costs and efficiency of
the alternative actions can be better understood in a quantitative framework. Statistical
procedures are required for the monitoring phase, when observations must be elaborated
and merged with initial assumptions, yielding updated input for a new cycle of the RMP.

Actuarial mathematics principles and tools can provide substantial support when
implementing QRM phases, in particular when facing new risks or risks with changing
features. Examples are provided by the development of products suitable for protecting
individuals or organizations from emerging risks, the assessment of insurance product and
portfolio risk profiles, the modeling of new risks or the revised modeling of traditional
risks, and the study of effective risk measures. This background suggests that many
areas of modeling and managing risks can benefit from novel research, aiming at both
methodological and application innovation, in the insurance (life and non-life) context as
well as in other economic sectors.

This Special Issue contributes in this regard with ten high-quality research papers
addressing the following specific topics:

1. The design of post-retirement benefits (Chen et al. 2022; Pitacco and Tabakova 2022);
2. Designs of life and health insurance policies against new risks (Jędrzyckowska 2022;

Marciniuk and Zmyślona 2022);
3. Advancements in mortality modeling (Awad et al. 2022; Spreeuw 2022);
4. Advancements in risk measures (Faroni et al. 2022) and risk models (Pesenti 2022);
5. Reserving disclosure tools (Breuer and Staudt 2022);
6. Innovative approximation formulae for the mean duration (Orfanos 2022).

In detail, Awad et al. (2022) discuss an extension of the Lee–Carter model. In partic-
ular, they propose a generalization of the Poisson log-bilinear Lee–Carter-type model by
introducing a new class of families of counting distributions, namely, the ABM class, which
belongs to a wider class of natural exponential families. This class is characterized by its
variance functions and contains the Poisson and negative binomial distributions as special
cases, offering an infinite class of additional counting distributions to be considered within
the Lee–Carter framework. The results of a numerical study demonstrate that when fitting
mortality data using this new class of distribution, superior results with respect to more
traditional assumptions can be obtained in a number of situations.

Breuer and Staudt (2022) focus on equalization reserves, an insurance liability with
features of own capital, with particular regard to the Swiss regulation. Although, according
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to the local GAAP, Swiss reinsurers and non-life insurers must report equalization reserves
in their statutory accounts, the solvency regulation does not admit them. As a result, the
information about the equalization reserve is not fully disclosed. The purpose of the study
is to recover that information and investigate the relationship between the equalization
reserves and the publicly available technical account items. A generalized additive model
(GAM) and a generalized linear model (GLM) were applied; based on publicly available
data, the former proved to work better for reinsurers, whereas the latter worked better
for nonlife insurers. The authors obtained encouraging results but also identified areas
to be further investigated, such as the opportunity to link the equalization reserves to the
insurance/reserving risk assessed from capital modeling.

Chen et al. (2022) address tontines as an alternative retirement product to conventional
annuities. In particular, the authors introduce unit-linked tontines, which provide payments
linked to an underlying financial asset. Two alternative designs are considered, differing
with respect to the guarantee provided. First, the price is obtained using the risk-neutral
approach; second, the attractiveness of the products is studied for a utility-maximizing
individual. The findings of the numerical assessments stress the main difficulties of imple-
menting retirement products.

Faroni et al. (2022) address the equivalence between VaR and TCE. The authors
introduce a new risk indicator that extends TCE to consider higher-order risks. The
quantiles of this indicator are compared with the quantiles of VaR in a simple Pareto
framework and then in a generalized Pareto framework. The equivalence results between
the quantiles of high-order TCEs are also examined.

The purpose of the study by Jędrzyckowska (2022) is to describe the initial concept of
household bridging insurance. After discussing the research gap regarding the insufficient
protection of households against destabilization resulting from the lost personal contribu-
tion, the authors discuss the possibility of creating a new product, describing the desired
features of its benefit structure.

Marciniuk and Zmyślona (2022) discuss products combining an equity release with a
critical illness insurance; this is meant as a solution for protecting the living standards of
individuals exposed to longevity risk. Two variants of the policy design are introduced:
one addressed to couples and one to single individuals. The possible stream of benefits is
analyzed for the two variants. The results suggest that the amount of cash flow related to
reverse equity and critical illness insurance benefits depends on several factors, such as the
spouse’s economic status, age, and health condition.

Orfanos (2022) discusses issues related to the net present value of the cash flows
exposed to interest rate risk. In particular, a new approximation formula for the Macaulay
duration and convexity is described, which involves hyperbolic functions. The specific
purpose of the study is to assess the reliability of each approximation formula under
different scenarios. The results may be helpful in a number of actuarial implementations.

Pesenti (2022) proposes a reverse sensitivity analysis framework, which is model-free
and allows for stresses on the output such as (a) the mean and variance, (b) any distortion
risk measure including the value-at-risk and expected shortfall, and (c) expected utility
type constraints. This framework is suitable for risk models. In particular, the author
discusses a problem where a modeller needs to understand how a model consisting of
random input factors, a corresponding random output of interest, and a baseline probability
measure changes under a stress on the output’s distribution. The findings not only provide
a theoretical description of the stressed distribution but also show how to numerically
efficiently calculate it.

Pitacco and Tabakova (2022) analyse special-rate life annuities, i.e., life annuity prod-
ucts rated considering the health status of the applicant. Better annuity rates are applied
in the presence of poor health conditions, i.e., when an assumption of a shorter lifetime is
acceptable. As the portfolio size should increase and as more potential annuitants can be
attracted by more favorable annuity rates, a higher degree of heterogeneity of the portfolio
follows as a result of including several risk classes. The pooling effect benefits from the
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larger size but not from the increased heterogeneity. The purpose of the study is to analyze
the impact on the variability of the total portfolio payout of extending the life annuity
portfolio by selling special-rate life annuities. Numerical evaluations are performed by
adopting deterministic and stochastic approaches, according to diverse assumptions con-
cerning both lifetime distributions and the portfolio structure and size. The authors suggest
that extending the annuity business by issuing special-rate annuities without significantly
worsening the portfolio risk profile is possible.

Spreeuw (2022) introduces a new Archimedean copula family that is based on a
link between Archimedean generators and utility functions. The family can well fit the
mortality data of coupled lives. The parameter estimates suggest the possible existence of
short-term dependence, i.e., the mortality of bereaved lives increases on bereavement but
diminishes later.

All the papers part of this Special Issue underwent a refereeing process subject to
the usual high standards of Risks. I would like to thank all the authors for their excellent
contributions and all the referees for their thorough and timely reviews. I would also like
to thank the MDPI Editorial Team for their active and timely support.

I have edited this Special Issue with Prof. Ermanno Pitacco. Our professional collab-
oration and our friendship have been lengthy and deep. The promotion of this Special
Issue together is only one of the many projects that we had shared. Sadly and unexpectedly,
Prof. Pitacco left us last September, when this Special Issue was still open. This was not the
only project in which he was involved at that time. Although he was already retired, he was
still very active in the field. During his whole professional life, he has deeply contributed
to the development and dissemination of the actuarial culture, not only in Italy, but all
over the world. He is greatly missed not only by his friends and family but also by the
international actuarial community. He would have been proud to see how inspiring this
Special Issue is.

Conflicts of Interest: The author declares no conflict of interest.
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A New Class of Counting Distributions Embedded
in the Lee–Carter Model for Mortality Projections:
A Bayesian Approach
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* Correspondence: udimakov@gmail.com

Abstract: The Lee–Carter model, the dominant mortality projection modeling in the literature, was
criticized for its homoscedastic error assumption. This was corrected in extensions to the model based
on the assumption that the number of deaths follows Poisson or negative binomial distributions. We
propose a new class of families of counting distributions, namely, the ABM class, which belongs to a
wider class of natural exponential families. This class is characterized by its variance functions and
contains the Poisson and the negative binomial distributions as special cases, offering an infinite class
of additional counting distributions to be considered. We are guided by the principle that the choice
of distribution should be made from a pool of distributions as large as possible. To this end, and
following a data mining approach, a training set of historical mortality data of the population could
be modeled using the ABM’s rich choice of distributions, and the chosen distribution should be the
one that proved to offer superior projection results on a test set of mortality data. As an alternative
to parameter estimation via the singular value decomposition used in the classical Lee–Carter
model, we adopted Bayesian estimation, harnessing the Markov Chain Monte Carlo methodology. A
numerical study demonstrates that when fitting mortality data using this new class of distributions,
while traditional distributions may provide desirable projections for some populations, for others,
alternative distributions within the ABM class can potentially produce superior results for the entire
population or particular age groups, such as the oldest-old.

Keywords: Lee–Carter; counting distributions; mortality projections; natural exponential family

1. Introduction

The seminal paper by Lee and Carter (1992) (LC) introduced a model which is one of
the most well-known and widely applied models for forecasting mortality rates. Within
this model, the time series of the log mortality rates, ln mxt, of each age is described by
an age-specific intercept αx plus a common trend kt for all age groups multiplied by an
age-specific coefficient βx,

ln mxt = αx + βxkt + εxt.

The error term εxt is assumed to be distributed with a mean 0 and variance σ2
ε , re-

flecting influences missed by the model. The age and time-specific mortality rate mxt is
calculated as (Dxt/Ext), where Dxt denotes the number of deaths in a population at age x,
x = 1, 2, · · · , P, and at time t, t = 1, 2, · · · , T, and Ext is the exposure to the risk of death. To
ensure the identifiably of model parameters, constraints are imposed such that the sum of
βx over age is 1 and the sum of kt over time is 0. To forecast mortality rates into the future,
a simple random walk with drift is proposed for kt:

kt = kt−1 + θ + wt.

5
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The homoscedastic error assumption of the Lee–Carter model was criticized for its
limiting impact on predictions (Brouhns et al. 2002; Danesi et al. 2015; Idrizi 2018). This led
to the introduction of the Poisson log-bilinear LC-type model (Brouhns et al. 2002), which,
in contrast, is intrinsically heteroscedastic, namely:

Dxt ∼ Poisson(µxt), µxt = Extmxt.

Here, the number of dead is directly modelled by a Poisson distribution, whose pa-
rameter is estimated by maximum likelihood estimation (MLE). This alternative approach
gained momentum and alternative discrete distributions were proposed. In particular,
a binomial distribution was proposed by Wang and Lu (2005) and a negative binomial
distribution was suggested by Delwarde et al. (2007) and Renshaw and Haberman (2008).
See Azman and Pathmanathan (2022) for further discussion of these distributions within
the GLM framework.

The Lee–Carter model has been widely used for many purposes (Shair et al. 2018), such
as forecasting mortality reduction factors, assessing the adequacy of retirement income,
population projections and the projection of mortality trends for the oldest-old (older than
80, and in some sources 85). This age group is of considerable interest for policymakers
as it is destined to grow as a proportion of the entire population and can outstrip existing
infrastructures’ capacity (Buettner 2002). This is a fairly recent phenomenon. In Canada,
for instance (Legare et al. 2015), the 21st century brought about the most significant gain
in life expectancy at age 85 (7.79% for women and 9.93% for men). Clearly, policies
need to be devised that can meet people’s special needs in what is called the fourth age
Baltes and Smith (2003), and accurate mortality projection for this age group is a must.
We shall, therefore, focus on the adequacy of potential underlying discrete distribution
functions to produce accurate mortality projections using the Lee–Carter model for this age
group. This will be discussed in Section 4.

In essence, while the above-cited papers relied on popular and commonly used dis-
crete distributions, one cannot say that one particular distribution is universally superior.
Indeed, it is entirely plausible to assume that there is a winning distribution for any given
population or even for a specific population at a certain age range. Ideally, one should
consider a rich class of family of counting distributions, much richer than the two already
suggested, and use the data to pick the most suitable distribution for the population under
study. This paper proposes an infinitely countable set of families of counting distributions,
where the Poisson, negative binomial and Abel families of distributions are special cases.
Our aim is to study this family, incorporate it into the framework of the LC model and use
real data to seek the most suitable distribution for mortality projection. While there is little
doubt that the distributions discussed above could prove adequate for specific populations
or age groups, other distributions within the suggested family could have the upper hand.

The paper is organized as follows. Section 2 presents the new class of counting
distributions. Section 3 is devoted to the new class and its Bayesian framework. Section 4
(divided into Section 4.1: Methods and Section 4.2: Results) reports a numerical study in
which superior members of this class are chosen for mortality projections of the oldest-old
in three populations. Finally, Section 5 offers a discussion.

2. A New Class of Counting Distributions on the Set of Nonnegative Integers N0

The new class of families of counting distributions on the non-negative integers be-
longs to a wider class of natural exponential families (NEFs), characterized by their variance
functions (VFs). In order to comprehend this class we decompose this section into subsec-
tions. We first present some preliminaries on NEFs and their associated VFs. We then intro-
duce a class of NEFs having polynomial structure and then suggest the new class of families
of counting distributions, named ABM, first introduced by Awad et al. (2016), where the
class was defined and its usefulness for mortality projections was preliminary sketched.
Furthermore, such a class has been investigated by Bar-Lev and Ridder (2021a, 2021b) from
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a classical frequency approach and has shown superiority with respect to various metrics or
goodness-of-fit tests for different count datasets (for further details see item 6 in Section 2.3).

2.1. NEFs—Some Preliminaries

The following preliminaries are mainly taken from Letac and Mora (1990) and are
briefly presented here for completeness.

Let ν be a non-Dirac positive Radon measure on R, and L(θ) =
∫

eθx ν(dx) its Laplace
transform. Assuming that Θ = int{θ ∈ R : L(θ) < ∞} 6= φ, then the NEF generated by ν
is defined by the probability distributions

F =
{

Fθ : Fθ(ν(dx)) = eθx−κ(θ) ν(dx), θ ∈ Θ
}

, (1)

where κ(θ) = log L(θ), the cumulant transform of ν, is strictly convex and real analytic on
Θ. If Xθ represents a r.v. having distribution Fθ of the form given in (1) then the expectation
and variance of Xθ are given, respectively, by E(Xθ)

.
= m = κ′(θ) and V(Xθ) = κ′′(θ) where

m = κ′(θ) is strictly monotone and thus its inverse, say, θ = ψ(m), m ∈ M = κ′(Θ) is well
defined. The set M of all means of (1) is called the mean parameter space of F . The
variance of Fθ can be expressed in terms of m by V(m) = κ′′(θ) = κ′′(ψ(m)). The pair
(V, M) is called the VF of F and it uniquely determines F within the class of NEFs. For
example, (m,R+) and (m2,R+) are, respectively, the VFs of the Poisson and exponential
NEFs and are uniquely determined by them.

2.2. The Mean Value Parametrization of NEFs

As indicated above, the VF of an NEF F uniquely determines F within the class of
NEFs. Let (V, M) be a given VF of an NEF F generated by ν. Then, simple calculations
show both θ = ψ(m) and the cumulant transform κ(θ) = κ(ψ(m)) of ν can be expressed in
terms of m as:

θ = ψ(m) =
∫ dm

V(m)
+ c1, k(θ) = k(ψ(m)) =

∫ m
V(m)

dm + c2, (2)

where one needs to determine the constants c1 and c2 so that Fθ , θ ∈ Θ, constitutes a
probability distribution (not an easy task). Accordingly, a mean value parametrization of
an NEF F generated by a measure ν is given by:

F = {exp{ψ(m)x− k(ψ(m))}ν(dx), m ∈ M}. (3)

Such a representation of F is more natural as it is expressed in terms of the mean m
rather than a somewhat artificial parameter θ. A comprehensive description of NEFs in
terms of their mean value representation is reviewed in Bar-Lev and Kokonendji (2017).

Remark 1. The task of computing the constants c1 and c2 is not simple and might be rather
cumbersome. However, from a Bayesian perspective, when (3) is used as a prior distribution on m,
then in the calculation of the respective posterior distribution, such constants are cancelled out (as
the likelihood function is the only relevant component). As this paper is concerned with a Bayesian
framework, one can assume without any loss of generality that c1 = c2 = 0. Henceforth, we indeed
assume so.

2.3. Polynomial VFs of Counting NEFs Supported on the Set of Nonnegative Integers N0

The innovative and breakthrough Proposition 4.4 of Letac and Mora (1990, p. 13)
provided conditions under which a given VF (V, M) is associated with a counting NEF
F supported on the set of non-negative integers N0, i.e., where all members of F are
composed of counting distributions on N0. They provided general examples of two classes
of VFs which fulfill the premises of their Proposition 4.4 and thus their associated NEFs’
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distributions are supported on the non-negative integers. One of these two classes has
the form:

V(m) = m
k

∏
i=1

(
1 +

m
pi

)
, pi > 0, i = 1, . . . , k, k ∈ N0, M = R+, where

0

∏
i=1

.
= 1. (4)

They proved that such VFs constitute counting NEFs supported on N0, namely, count-
ing distributions with non-negative integer support. Moreover, their Proposition 4.4
enables to compute (at least theoretically and numerically) the corresponding measure ν
(we skip details as they are irrelevant for our Bayesian framework analysis). Note that
the two special cases of (4) with k = 0 and k = 1 correspond, respectively, to the Poisson
and negative binomial NEFs. However, the general setting (4) for k ≥ 3 does not allow an
explicit calculation of θ = ψ(m) and k(θ) = k(ψ(m)) in (2), implying that the mean value
parametrization of the corresponding NEFs in the form (3) is not explicitly expressible in
terms of m and thus becomes useless for any practical consideration.

2.4. A New Class of Polynomial VFs—The ABM NEFs

As we already noted, the fact that a given pair (V, M) is known to be a VF of some
NEF does not necessarily enable the construction of the corresponding mean value parame-
terization (3), as in most cases the integrals for ψ(m) and k(ψ(m)) in (2) are not explicitly
expressible analytically in closed forms, and indeed, this is the situation for the class (4)
in its general form. Consequently, one needs to search for subclasses of (4) for which the
integrals in (2) can be computed explicitly. One such special subclass takes the above point
into consideration. Indeed, by taking in (4) the special case where

p1 = p2 = · · · = pk,

and denoting
p2

.
= k ∈ N0,

we obtain a subclass of (4) with VFs with the form:

(V, M) = m
(

1 +
m
p1

)p2

,R+), p1 > 0, p2 ∈ N0. (5)

As (5) is a subclass of (4) and (4) satisfies the premises of Proposition 4.4 of Letac and Mora
(1990) it follows that the subclass (5) are VFs associated with counting NEFs supported on the
non-negative integers.

The subclass of VFs in (5) (hereafter called the ABM class) was first introduced by
Awad et al. (2016) who showed that the corresponding ψ(m) and k(ψ(m)) (calculated
from (2)) have, as opposed to the general form in (4), the following closed forms (the exact
proof details appear in Bar-Lev and Kokonendji 2017):

θ = ψ(m) = ln
m

p1 + m
+

p2−1

∑
i=1

1
i

pi
1

(p1 + m)i + c1, where
0

∑
i=1

= 0,

and

κ(ψ(m)) = − pp2
1

(p2 − 1)(m + p1)p2−1 + c2.

Thus, its mean value parametrization is given by the probability distribution:

F(m, ν(dx)) = exp
{

x
[

ln m
p1+m + ∑

p2−1
i=1

1
i

pi
1

(p1+m)i + c1

]

+
pp2

1
(p2−1)(m+p1)

p2−1 + c2

}
, m ∈ R+, p1 > 0, p2 ∈ N

, (6)

8
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where hereafter we denote this probability distribution by ABM(p1, p2), where p1 is a
positive real number and p2 is a non-negative integer. (For a classical frequency approach,
the constants c1 and c2 have been computed by Bar-Lev and Ridder 2021b). However, as
noted above, for a Bayesian framework they are cancelled out when computing the posterior
distribution and thus can be taken to be c1 = c2 = 0 without any loss of generality).

Note that the ABM class of VFs
{

m
(

1 + m
p1

)p2
, p1 > 0

}
p2∈N0

, or alternatively, the

corresponding class {ABM(p1, p2)}p2∈N0
of NEFs is composed of an infinitely countable

set of families of counting NEFs supported on the non-negative integers. As special cases,
this class contains the Poisson NEF (p2 = 0), the negative binomial NEF (p2 = 1) and
the Abel NEF (p2 = 2), (c.f., Letac and Mora 1990, p. 31; Bar-Lev and Ridder 2019, for
applications to car accident claims of a Swedish insurance company dataset).

Summarizing, this ABM NEF has the following features:

1. It is a class of counting distributions supported on the non-negative integers;
2. It is overdispersed as V(m)/m > 1;
3. It allows a mean value parameterization in a closed form;
4. It is infinitely divisible, which allows the construction of an exponential dispersion

model (EDM) with dispersion parameter space equal to R+. EDMs are used to
describe the error distribution in generalized linear models (see Jorgensen 1987, 1997);

5. p1 is an unknown parameter to be estimated (see next section). p2 ∈ N0 is a parameter
governing the particular model within the ABM class and is considered to be a
decision variable (note that different values of p2 determine different ABM NEFs).
Accordingly, for given national datasets (i.e., those of US, Ireland and Ukraine), the
goal will be to locate that value of p2, which minimizes a respective RMSE (see in
the sequel). However, due to the rather cumbersome and intractable structure of the
ABM probabilities (or likelihood) in (6) and the fact that the larger the p2, the larger
the number of elements in the summands appearing in (6), no analytic solution for an
optimal p2 is feasible at all for achieving such a goal. Consequently, only numerical
search algorithms are plausible. The search starts with p2 = 0 (the Poisson NEF),
p2 = 1 (the negative binomial NEF), p2 = 2 (the Abel NEF) and so on;

6. As already noted, the ABM class {ABM(p1, p2)}p2∈N0
is composed of infinitely count-

able set of families of counting NEFs supported on the non-negative integers and
thus can also be used to model real datasets by employing the classical frequency
approach (and not only Bayesian). Indeed, the ABM class has been compared in
Bar-Lev and Ridder (2021a, 2021b) with other common counting probability models
(such as Poisson-inverse Gaussian distribution, new logarithmic distribution, an ex-
ponentiated discrete Lindley distribution) for various real count datasets stemming
from automobile insurance claims, marketing, biometry, health, and social sciences
(none of which is related to mortality projections). Members of the ABM counting
class have shown superiority with respect to various metrics for goodness-of-fit tests
(chi-squared test , Akaike information criterion (AIC), root-mean-square error (RMSE)
and Kullback–Leibler divergence (KL)), and provided a much better fit for each of the
datasets considered (more details can be found in Bar-Lev and Ridder 2021b).

3. ABM Based LC Model and its Bayesian Framework

As an alternative to parameter estimation via the singular value decomposition used
in the classical LC model or the MLE in the cases discussed above, we adopt the Bayesian
approach which offers advantages succinctly expressed in Antonio et al. (2015): a. The
calibration and forecast steps are combined, which leads to more consistent estimates of the
period effects; b. The Bayesian approach provides a natural framework for incorporating
parameter uncertainty in mortality forecasts, which is relevant—for example—in the new
insurance regulatory framework of Solvency II. The Bayesian approach allows adequate
handling of small populations and missing data. Like Czado et al. (2005) and Pedroza
(2006), we harness the power of the Markov Chain Monte Carlo (MCMC) methodology to

9
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estimate the model parameters and execute mortality projection. We note that the interest
in Bayesian solutions in the context of mortality projections has recently gained momentum
(Ellison et al. 2020; Graziani 2020; Hilton et al. 2019; Hunt and Blake 2020; Kogure et al.
2019; Liu et al. 2020; Njenga and Sherris 2020; Wong et al. 2018).

Suppose the number of deaths Dxt in a population at age x and time t is distributed
as follow:

Dxt ∼ ABM(p1, p2)(µxt), µxt = Extmxt, mxt = exp(αx + βxkt),

where

α = (αxmin , · · · , αxmax)
′, β = (βxmin , · · · , βxmax)

′, k = (ktmin , · · · , ktmax).

Bayesian estimation of the unknown parameters α, β, k and p1 are based on the joint
posterior distribution function of α, β, k and p1 given (Ext, Dxt), when x = xmin, xmin +
1, · · · , xmax, t = tmin, tmin + 1, · · · , tmax. The first step in the Bayesian estimation is to
determine the prior probability functions for these parameters.

The prior distribution for kt and θ

Let kt = kt−1 + θ + wt, and let wt ∼ N(0, σ2
w) and hence kt ∼ N(θ, tσ2

w). we as-
sume σ−2

w ∼ gamma(ak, bk) and θ ∼ N(θ0, σ2
θ ). The hyper-parameters θ0, ak, bk and σ2

θ are
arbitrary initial values.

The prior distribution for βx

We assume βx ∼ N(0, σ2
β) ∀ x, where σ−2

β ∼ gamma(aβ, bβ). The hyper-parameters
aβ, bβ are arbitrary initial values.

The prior distribution for αx

We suppose that the prior distribution of αx ∼ N(α0x, σ2
α) ∀ x, where σ−2

α ∼ gamma(aα, bα).
The hyper-parameters α0x, aα and bα are arbitrary initial values.

The prior distribution for p1

We let p1 ∼ gamma(ap1 , bp1). The hyper-parameters ap1 , bp1 are arbitrary initial values.

MH (Metropolis–Hastings) Algorithm for Estimating the Parameters α, β, k and p1

Suppose the Dxt
′s are independent random variables, which are distributed as (6) and

g(Ξ) is the joint prior distribution of the unknown parameters Ξ = (α, β, k,p1)
′. Then, the

posterior distribution of Ξ, given all available data D = {dxt} and p2, can be represented
as follows:

f (Ξ | D, p2) ∝

∏x ∏t exp
[

dxt

(
ln Exrmxt

p1+Extmxt
+ ∑

p2−1
i=1

1
i

pi
1

(p1+Extmxt)

)
+

pp2
1

(p2−1)(p1+Extmxt)
p2−1

]
× g(Ξ).

See Appendix A for the marginal posterior distributions of α, β, k and p1. We now
describe the estimation of α, β, k and p1 using the MH, conditioned on the data and all other
parameters at their respective iterations. The superscript denotes the iteration number of
the parameter of interest.

Estimation of kt using the MH algorithm

Let the marginal posterior distribution of kt be f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1). The

estimation of kt, is achieved by the following steps, where.

10
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1. Draw k∗t from the proposal density function N(k(i)t , σ2
t ), such that σ2

t is assumed known;
2. Calculate the following probability:

Ψ
(

k(i)t , k∗t
)
= min


1,

f (k∗t | D, α, β, k(i)−t, θ, σ2
α , σ2

β, σ2
w, p1)

f (k(i)t | D, α, β, k(i)−t, θ, σ2
α , σ2

β, σ2
w, p1)


,

where k−t = (kt min, . . . , kt−1, kt+1, . . . .kt max)′;
3. Draw a value u from uniform probability function in range U(0, 1) and decide in

accordance with the following formula:




i f u ≤ Ψ
(

k(i)t , k∗t
)

then k(i+1)
t = k∗t

i f u > Ψ
(

k(i)t , k∗t
)

then k(i+1)
t = k(i)t ;



.

4. Going over all values of t, we have:

k(i+1) =
(

k(i+1)
tmin

, · · · , k(i+1)
t , k(i)t+1, · · · , k(i)tmax

)′
;

5. Transforming k(i+1) and α(i) to assure identifiably:

k(i+1) − k→ k(i+1), α(i) + β(i)k→ α(i),

where

k =
1
T

(
∑
j≤t

k(i+1)
j + ∑

j>t
k(i)j

)
;

6. Repeat steps 1 to 5.

Estimation of βx using MH algorithm

Let the marginal posterior distribution of βx be f (βx | D, α, β−x, k, θ, σ2
α , σ2

β, σ2
w, p1).

The estimation of βx is achieved by the following steps.

1. Draw β∗x from the proposal density function N(β
(i)
x , σ2

β), such that σ2
β is assumed to

be known;
2. Calculate the following probability:

Ψ
(

β
(i)
x , β∗x

)
= min


1,

f (β∗x | D, α, β
(i)
−x, k, θ, σ2

α , σ2
β, σ2

w, p1)

f (β
(i)
x | D, α, β

(i)
−x, k, θ, σ2

α , σ2
β, σ2

w, p1)


,

where
β−x = (βx min, . . . , βx−1, βx+1, . . . .βx max)

′.

3. Draw a value u from uniform probability function in range U(0, 1) and decide in
accordance with the following formula:





i f u ≤ Ψ
(

β
(i)
x , β∗x

)
then β

(i+1)
x = β∗x

i f u > Ψ
(

β
(i)
x , β∗x

)
then β

(i+1)
x = β

(i)
x ;



.

4. Going over all values of x, we have:

β(i+1) =
(

β
(i+1)
xmin , · · · , β

(i+1)
x , β

(i)
x+1, · · · , β

(i)
xmax

)
;′ .

11
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5. Transforming k(i+1) and β(i+1) to assure identifiably:

β(i+1)

βsum
→ β(i+1), k(i+1) × βsum → k(i+1),

where

βsum =

(
∑
j≤x

β
(i+1)
j + ∑

j>x
β
(i)
j

)
;

6. Repeat steps 1 to 5.

Estimation of αx using MH algorithm

Let the marginal posterior distribution of αx be f (αx | D, α−x, β, k, θ, σ2
α , σ2

β, σ2
w, p1).

The estimation of αx, is achieved by the following steps;

1. Draw α∗x from the proposal density function N(α
(i)
x , σ2

α), such that σ2
α is assumed known;

2. Calculate the following probability:

Ψ
(

α
(i)
x , α∗x

)
= min


1,

f (α∗x | D, α
(i)
−x, β, k, θ, σ2

α , σ2
β, σ2

w, p1)

f (α(i)x | D, α
(i)
−x, β, k, θ, σ2

α , σ2
β, σ2

w, p1)


,

where
α−t = (αx min, . . . , αx−1, αx+1, . . . .αx max)

′;

3. Draw a value u from uniform probability function in range U(0, 1) and decide in
accordance with the following formula:





i f u ≤ Ψ
(

α
(i)
x , α∗x

)
then α

(i+1)
x = α∗x

i f u > Ψ
(

α
(i)
x , α∗x

)
then α

(i+1)
x = α

(i)
x ;



.

4. Receiving α(i+1) in (i + 1)th iteration as follows:

α
(i+1)
x =

(
α
(i+1)
xmin , · · · , α

(i+1)
x , α

(i)
x+1, · · · , α

(i)
xmax

)
;

5. Repeat steps 1 to 4.

Estimation of p1 using MH algorithm

Let the marginal posterior distribution of p1 be f (p1 | D, α, β, k, θ, σ2
α , σ2

β, σ2
w), propor-

tional to the product of the likelihood (6) and the gamma prior distribution of p1. The
estimation of p1 is achieved by the following steps;

1. Draw p∗1 from the probability function gamma(αp1 , bp1), such that αp1and bp1 are
hyperparameters and are assumed known;

2. Calculate the following probability:

Ψ
(

p(i)1 , p∗1
)
= min


1,

f (p∗1 | D, α, β, k, θ, σ2
α , σ2

β, σ2
w)

f (p(i)1 | D, α, β, k, θ, σ2
α , σ2

β, σ2
w)


;

12
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3. Draw a value u from uniform probability function in range U(0, 1) and decide in
accordance with the following formula:





i f u ≤ Ψ
(

p(i)1 , p∗1
)

then p(i+1)
1 = p∗1

i f u > Ψ
(

p(i)1 , p∗1
)

then p(i+1)
1 = p(i)1 ;



.

4. Then receiving p(i+1) in (i + 1)th iteration;
5. Repeat steps 1 to 4.

Estimation of θ, σ2
α, σ2

βand σ2
w using the Gibbs sampler

The Gibbs sampler can be used for estimating θ, σ2
α , σ2

β and σ2
w since the marginal

posterior distribution of these parameters can be written explicitly (See: Czado et al. 2005).
The following are the marginal posterior sampling distributions of each of these parameters,
conditioned on the data and all other parameters at their respective iterations.

1. Sampling θ:

The posterior probability function of the parameter θ, is presented as follows:

f (θ | D, α, β, k, σ2
α , σ2

β, σ2
w, p1) = f (θ | k, σ2

α , σ2
β, σ2

w, p1) ∝ f (k | θ, σ2
w) f (θ).

The prior probability function of the parameter θ is N(θ0, σ2
θ ), and the hyper-parameters

θ0 and σ2
θ are set by the user, hence the posterior probability function of the parameter is:

(θ | k, σ2
α , σ2

β, σ2
w) ∼ N

(
θ0σ2

w

Tσ2
θ + σ2

w
,
(

Tσ2
θ + σ2

w

)−1
)

.

2. Sampling σ2
α :

The posterior probability function of the parameter σ2
α is presented as follows:

f (σ2
α | D, α, β, k, θ, σ2

β, σ2
w, p1) ∝ f (α | σ2

α) f (σ2
α).

The prior probability function of the parameter σ2
α such that σ−2

α ∼ gamma(aα, bα),
and the hyper-parameters aα and bα are set by the user, so the posterior probability function
of the parameter is:

(σ−2
α | D, α, β, k, θ, σ2

β, σ2
w, p1) ∼ gamma

(
aα +

xmax

2
, bα +

1
2

xmax

∑
x=xmin

(αx − α)2

)
,

where

α =
1

xmax

xmax

∑
x=xmin

αx.

3. Sampling σ2
β:

The posterior probability function of the parameter σ2
β is presented as follows:

f (σ2
β | D, α, β, k, θ, σ2

α , σ2
w, p1) ∝ f (β | σ2

β) f (σ2
β).

The prior probability function of the parameter σ2
β such that σ−2

β ∼ gamma(aβ, bβ),
and the hyper-parameters aβ and bβ are set by the user, so the posterior probability function
of the parameter is:

(σ−2
β | D, α, β, k, θ, σ2

α , σ2
w, p1) ∼ gamma

(
aβ +

xmax

2
, bβ +

1
2

xmax

∑
x=xmin

(βx)
2

)
.
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4. Sampling σ2
w:

The posterior probability function of the parameter σ2
w, is presented as follows:

f (σ2
w | D, α, β, k, θ, σ2

α , σ2
β, p1) ∝ f (k | σ2

w) f (σ2
w).

The prior probability function of the parameter σ2
w such that σ−2

w ∼ gamma(ak, bk),
and the hyper-parameters ak and bk are set by the user, so the posterior probability function
of the parameter is:

(σ−2
w | D, α, β, k, θ, σ2

α , σ2
β, p1) ∼ gamma

(
ak +

T
2

, bk +
1
2

tmax

∑
t=tmin

(kt − kt−1 − θ)2

)
.

4. Numerical Experiment
4.1. Methods

To test the adequacy of the ABM class, we analyzed mortality data of men in Ireland,
Ukraine and the USA, downloaded from the database of Human Mortality Database
(https://www.mortality.org accessed on 8 March 2013). The data contain the number of
dead and the size of the population exposed to risk by age and year; Ireland’s and the
USA’s data are for 1950–2007, and Ukraine’s data are for 1959–2009. This analysis aims to
examine sixteen models within the ABM class, p2 = 0, . . . , 15, with a particular emphasis on
forecasting the mortality of the oldest-old (see below an argumentation for the restriction
of the values of p2 to {0, . . . , 15}). These models also include the Poisson and negative
binomial models which feature widely in the literature, for which p1 = 0 and p2 = 1,
respectively. Adopting a data mining approach, the models were fitted using training
sets and were examined using test sets. The training sets contained data up to 2000 and
the test sets, aimed at monitoring the quality of predictions, contained data from 2001 to
2007 for Ireland and the USA, and from 2001 to 2009 for Ukraine. Predictions are carried

out with the estimated parameters, ln[mx,t+s] =
∧
αx +

∧
β ∗
∧
kt+s, s = 1, 2, . . . , where model

performance (using the test sets) was checked using the root of the mean squared errors
(RMSE), which was calculated in two ways:

1. Predicting mortality rates (µ) by age. In other words, after model parameters were
estimated, mortality rates were predicted for a given age across years. For instance,
predicting mortality rates for those age 70 was carried out over the years beyond 2000;

2. Predicting mortality rates (µ) by cohort. In other words, after model parameters were
estimated, mortality rates were predicted for a cohort that was at a particular age at
the beginning of the test period. For example, predicted mortality rates in 2001–2007
for a cohort aged 70 in 2001.

For every member of the ABM class (controlled by p2), the Markov chains used to
obtain posterior distributions/parameter estimates comprised 4000 iterations with the first
1000 considered a burn-in period. Convergence was established using graphical means
and a sensitivity analysis ascertained that the choice of arbitrary initial hyper-parameters
did not affect the final outcomes. We report the outcomes for the Poisson distribution
(p2 = 0) and the negative binomial distribution (p2 = 1). In addition, we examined the
ABM members for which p2 ∈ {2, . . . , 15}. We limited our reporting to p2 ∈ {2, . . . , 15}
since, for the data under study, increasing p2 beyond 15 (our study explored all models up
to p2 = 50) did not alter our findings of the optimal p2 for varying ages and resulted in
much larger RMSE than those found up to p2 = 15. In practice, we analyzed all 16 models
within the p2 range and, for each, we estimated p1 as well as all other unknown parameters.
Finally, we reported graphically the RMSE for the Poisson, negative binomial and for the
ABM member which produced the minimal RMSE for various ages.
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4.2. Results

Figure 1a,b shows Ireland’s mortality projections by age and cohort, respectively.
A superior model for an age range is the one which produced the smallest RMSE. It is
evident that the Poisson performs best for most ages above 70, with the negative binomial
lagging behind. However, at a very old age, the Poisson diverges and the best ABM
member to be chosen instead is ABM(·, p2 = 3). A similar result is shown for the USA
(Figure 2a,b), except that the best ABM for the very old is ABM(·, p2 = 4). A different
picture emerges when we focus on Ukraine’s mortality projections by age and cohort
(Figure 3a,b, respectively). While the Poisson and negative binomial perform well (with
Poisson being better), for ages above 96 (by cohort) or 104 (by age), the negative binomial
drifts away, leaving ABM(·, p2 = 10) to be the winner of the ABM class. Clearly, the
recommended projection policy for Ukraine is to use the Poisson for most ages but to rely
on ABM(·, p2 = 10) for very old ages. Naturally, other countries with their specific national
datasets may yield different ABM models (i.e., different p2’s) for mortality projections.
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Figure 1. RMSE for projecting mortality rate, Ireland, 2001–2007. (a) by age; (b) by cohort.
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Figure 2. RMSE for projecting mortality rate, USA, 2001–2007. (a) by age; (b) by cohort.
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Figure 3. RMSE for projecting mortality rate, Ukraine, 2001–2009. (a) by age; (b) by cohort.

5. Discussion

Several extensions to the LC model assume that the number of deaths is distributed
Poisson or negative binomial. These distributions have offered adequate mortality projec-
tions in several populations reported in the literature. It is not implausible that cases where
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these two failed were not reported. Rather than deciding a priori to choose a particular
distribution, we aimed to enrich the LC model by allowing a richer pool of candidate
distributions. The chosen distribution would be the one providing the best projection for
the population and age range under study. To achieve this goal, we proposed a new class
of counting distributions on the non-negative integers, the ABM class, which belongs to
a wider class of natural exponential families characterized by their variance functions.
This class includes the Poisson and negative binomial distributions which are included in
an infinitely countable set of additional members. A data mining approach was adopted
whereby the model is fitted using a training set and tested using a test set with the RMSE
used to pick the winning model. As an alternative to parameter estimation via the singular
value decomposition (SVD) used in the classical LC model, we adopted Bayesian estima-
tion, harnessing the Markov Chain Monte Carlo (MCMC) methodology. While we do not
suggest that MCMC is superior to SVD (for a comparison of the two, see Ichikawa et al.
2021), we still promote the former since the Bayesian framework frees us from the burden of
calculating the normalizing constant of the ABM. This is indeed a great plus, even though
running the MCMC requires more computer time for the mid-size databases of the kind
used for national mortality projections. We note, however, that the use of MCMC is rather
costly and might fail if the dataset is huge. So, perhaps other Bayesian techniques such as
Variational Bayes can be more helpful. However, employing such a suggestion is beyond
the scope of this paper. We examined ABM models for three countries and established that,
for the countries examined, the commonly adopted Poisson distribution is justified except
for a very old age for which an alternative member of the ABM class offers better projection.
We do not claim that to suggest a superior model. When deciding on an underlying model,
one can adopt as an example the Poisson model or the negative binomial model. Rather
than adopting a model, we suggest adopting a class of models (the ABM) comprising the
Poisson, negative binomial, and numerous other counting distributions. The superiority of
this approach lies in the ability to choose a model amongst candidate models. Since no one
single model necessarily fits every population and every age group well, the ABM class
could allow picking, as an example, the Poisson for members of the population aged under
50, the negative binomial for those aged 50 to 80, and another member of the class to the
oldest-old. The suggested criteria for preferring one member of the class over another is the
mean squared projection errors (RMSE). This advantage is gained at the cost of additional
complexity, which is justified given the financial benefits associated with more accurate
modeling. We conclude that it is no longer appropriate to assume a single distribution for
the whole process of mortality projection. Instead, for every country and every relevant
range of ages, a desirable approach is to pick a member of the ABM class that provides
the best mortality projection. In the numerical study reported here, neither the Poisson
nor the negative binomial distributions adequately serve the very oldest-old and superior
alternatives are within reach in the suggested novel ABM class of distributions.
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Appendix A

Appendix A.1

The marginal posterior probability function of the time index kt is

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dtmin | ktmin , α, β, p1)× f (ktmin | θ, σ2
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w),
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For the remaining expressions we distinguish between three cases:

1. For t = tmin, the marginal posterior probability function of the time index kt is:

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dt | α, β, kt, p1)× f (kt | θ, σ2

w)× f (kt+1 | kt, θ, σ2
w),
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)
and

f (kt+1 | kt, θ, σ2
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)
.

2. For tmin < t < tmax, the marginal posterior probability function of the time index kt is:

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dt | α, β, kt, p1)

× f (kt | kt−1, θ, σ2
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w),

where
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)
and

f (kt+1 | kt, θ, σ2
w) = exp
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)
.

3. For t = tmax, the marginal posterior probability function of the time index kt is:

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dt | α, β, kt, p1)× f (kt | kt−1, θ, σ2
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.

Appendix A.2

The marginal posterior probability function of βx is

f (βx | D, α, β−x, k, θ, σ2
α , σ2

β, σ2
w, p1)

∝ ∏xmax
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f (Dj | α, β j, k, p1)× f (β j) ∝ f (Dx | α, βx, k, p1)× f (βx),
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and

f (βx) = exp

(
− 1

2σ2
β

(βx)
2

)
.

Appendix A.3

The marginal posterior probability function of αx is

f (αx | D, α−x, β, k, θ, σ2
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.
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Abstract: Equalization reserves is an insurance liability with features of own capital. By law, Swiss
reinsurance and non-life undertakings must hold equalization reserves within their statutory accounts.
Regarding Swiss solvency modeling, the equalization reserves are set to zero. Swiss reinsurance and
non-life undertakings define the upper limit and the corresponding transfer rule to the equalization
reserves; however, this information is not disclosed. The goal of the study is to find a relationship
between the equalization reserves and the publicly available technical account items, applying a
generalized additive model (GAM). Thereafter, we transform the continuous variables into discrete
ones, and we apply a generalized linear model (GLM). The study is based on published data from
1997 to 2018, whereby we restate the implicitly published equalization reserves. For reinsurance
undertakings, the GAM model captures the relationship better than the GLM one; for non-life
undertakings, the GLM model performs better. For reinsurance undertakings, the equalization
reserves depend on the equalization reserves of the previous year, on the calendar year, on the legal
form, on the technical result, on the administration and commission costs and on other costs. For non-
life undertakings, the equalization reserves depend on the net claims payments, on the equalization
reserves of the previous year, on the net change in claims reserves without change in equalization
reserves, on the calendar year and on the net earned premium. Furthermore, we look at the need
for equalization reserves: do the undertakings accumulate and release the equalization reserves?
Further, the impact of taxes on the equalization reserves is looked at. The concept of equalization
reserves avoids the misuse of tax optimization. We conclude that the discussion about disclosure of
equalization reserves will restart. In addition, the definition of the upper limit of the equalization
reserves could be widened by linking the equalization reserves to the insurance/reserving risk from
the capital modeling.

Keywords: equalization reserves; GAM; GLM; reinsurance; non-life; Switzerland; tax

1. Introduction

Within the nature of the insurance business, and well-documented, for instance, by
Wüthrich and Merz (2008) or by Farny (2011), the determination of claims reserves is
related to uncertainty. Models are used to reflect complex circumstances. Parameters are
estimated, resulting in parameter risks. Unpredictable loss occurrence is observed and
caused, for instance, by random fluctuations. Changes in the claims handling process or
legislative amendments bear further unexpected uncertainties. Safety considerations finally
join the reason to build up equalization reserves for reinsurance and non-life undertakings,
requested by the Swiss Financial Market Supervisory Authority—(FINMA 2008a, rank
no. 8; 2011, rank no. 37). For example, a natural catastrophe (CAT) has a low probability
of occurrence, and by occurring, CAT causes a high loss. In good financial times, the
insurance undertaking put aside the equalization reserve to dampen the future loss burden,
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see Dacorogna et al. (2013). These authors explain how even shareholders benefit from the
equalization reserves.

1.1. Equalization Reserves in Other Countries

Hindley (2017) defines “equalization reserve” in the UK as an amount to smooth
the reserves over time, typically considering low frequency/high severity events.
Akhurst et al. (1992) point out the philosophical viewpoint of holding either a specific
reserve or a surplus solvency fund after tax to finance a future large claim. Furthermore,
non-technical elements such as investment and management costs could require a kind of
equalization reserve in some countries, see Akhurst et al. (1992). These authors present the
calculation and the handling of the equalization reserves for the UK, Denmark, Finland,
France, Germany, Italy, The Netherlands, Norway, Spain and Sweden.

1.2. Swiss Insurance Supervision

In order to protect creditors, investors and policyholders, FINMA supervises, among
others, private insurance companies, complying with the Insurance Supervision Act (ISA)1

and with the Ordinance on the Supervision of Private Insurance Companies (ISO)2. FINMA
has regulatory power and regulates using ordinances and circulars as stated in the core
tasks, see FINMA (2019b). FINMA’s predecessor was the Federal Office of Private Insurance
(FOPI), being responsible until 2008. In Switzerland, reinsurance and non-life undertakings
are obliged to hold equalization reserves within their statutory accounts, regardless of
whether these entities cover low frequency/high severity events. The handling of the
equalization reserves has to be described in the technical part of the business plan of an
undertaking. Appendix C of ISO-FINMA (2015) does not explicitly list the equalization
reserves to be disclosed.

The reserves of the Swiss capital model (SST) are based on the best estimate principle,
as stated by FINMA (2017): the insurance liability includes all future financial expenditures
to fulfill those liabilities, excluding the capital costs. As a consequence, the equalization
reserves are set to zero. Target capital is the calculated capital to meet the quantitative
requirements under the SST, see FINMA (2018a). The target capital has to be covered by
own funds. Insurance/reserving risk is part of this target capital. In the case in which the
actual case reserves would not be sufficient, the shareholder’s own fund would fill this gap.
Due to safety considerations, the SST requests for insurance/reserving risk and the statutory
accounts request for equalization reserves. However, within SST, the insurance/reserving
risk is covered by own funds, and within the statutory accounts, the equalization reserves
are insurance liabilities.

Due to solvency requirements, the focus of the recent actuarial studies lay on market-
consistent valuation of the balance sheet. Wüthrich (2016) presents market-consistent
actuarial valuation of the insurance reserves. In the literature the classical claims reserving
methods are well studied, see Wüthrich and Merz (2008). On the other hand, the calculation
or the handling of the statutory required equalization reserves are not explicitly covered.
FINMA’s circulars clarify the legal requirements.

1.3. Literature Review

The Swiss Association of Actuaries, SAV (2006), publishes guidelines for loss reserves
in non-life insurance, focusing on required reserves for claims handling costs. However, the
equalization reserves are not mentioned. FINMA’s circulars define the legal scope to handle
this kind of reserve for reinsurance and for non-life undertakings. Hindley (2017) discusses
the equalization reserves in the UK. Akhurst et al. (1992) present equalization reserves
modeling in UK, Denmark, Finland, France, Germany, Italy, The Netherlands, Norway,
Spain and Sweden. De Vylder and Goovaerts (1999) present a theoretical evaluation of the
equalization reserves. A broad literature regarding Swiss equalization reserves does not
exist. This article steps forward to fill the gap.
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1.4. Present Research

We start defining “equalization reserves” separately for reinsurance and for non-life
undertakings. Thereafter, we look at the handling of the equalization reserves within
International Financial Reporting Standards 17 (IFRS 17) and within the capital modeling.
As tax consideration impacts the insurance undertakings, we look closer at the mechanism
from an actuarial point of view. We do not know how the undertakings calculate the equal-
ization reserve. FOPI and FINMA implicitly disclose the equalization reserves. Therefore,
we describe our method to estimate the equalization reserves from the reported statutory
accounts and we apply a model to detect the relationship between the equalization reserves
and the statutory accounts items.

This paper is structured as follows: in Section 2, we define equalization reserves
and we look closer at accounting and capital model aspects. Hereafter, in Section 3, we
formalize the model and based on this, we consider taxes. Further, in Section 4, we
concretize the formalism on the publicly available data, we present the general approach of
the generalized additive model (GAM), the generalized linear model (GLM) and the model
results. Finally, in Section 5, we discuss the results and in Section 6 we conclude.

2. Definition, Accounting and Capital Model Aspects

In Switzerland, equalization reserves are defined separately for reinsurance and for
non-life undertakings. In principle, these definitions are the same for both types of un-
dertakings. However, there are small differences, which we point out in the following. In
Section 2.1, we define equalization reserves for reinsurance and for non-life undertakings in
Switzerland. Thereafter in Section 2.2, we look at the handling of the equalization reserves
within statutory accounting, within IFRS and within the Swiss capital modeling.

2.1. Definition

In Switzerland, the ISA distinguishes between legal entities, writing direct business,
for instance, non-life undertakings, and legal entities only writing indirect business for
reinsurance undertakings. Non-life undertakings control each single risk, by selecting the
risk and by complying with the underwriting policy. In general, reinsurance undertakings
protect the portfolio of undertakings, whereby the single risks could not be controlled. In
consequence, the risk profiles of non-life undertakings and reinsurance undertakings are
different and a separate analysis is appropriate. In this section, we define equalization
reserves for reinsurance and for non-life undertakings in Switzerland.

2.1.1. Equalization Reserves for Reinsurance Undertakings

In Switzerland, the equalization reserves3 for reinsurance undertakings are defined
as the technical reserve, balancing unfavorable development and fluctuations of incurred
claims, see FINMA (2011, rank no. 37). According to FINMA (2011, rank no. 8*) rein-
surance undertaking could keep equalization reserves within the statutory accounts and
are requested to specify methods and principles to establish and to dissolve equalization
reserves within the business plan in accordance with Art. 4, section 2, letter d of ISA.

2.1.2. Equalization Reserves for Non-Life Undertakings

In Switzerland, the equalization reserves4 for non-life undertakings are defined as the
technical reserves, wholly or partially balancing unfavorable development and fluctuation
of incurred claims, see FINMA (2008a, rank no. 8). In particular, the equalization reserves
comprise:

• The reserves covering parameter risk, safety considerations and unpredictable loss
fluctuation according to FINMA (2008a, rank no. 16);

• Equalization reserves for the credit insurance business, see FINMA (2008a, rank
no. 18).

There is no general standard formula for the non-life undertakings to calculate the
equalization reserves5. Thus, each company determines its own method. According to
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Art. 69 of ISO, the equalization reserves are part of the total technical reserves of a non-life
insurance undertaking. FINMA (2008a, rank no. 14 ff) requests the non-life undertaking to
specify methods and principles to establish and to dissolve equalization reserves within
the business plan in accordance with Art. 4, section 2, letter d of ISA.

2.2. Accounting and Capital Model Aspects

In this section, we look at the handling of the equalization reserves within statutory
accounting, within IFRS and within the Swiss capital modeling.

2.2.1. Statutory Accounting

The required equalization reserves are technical reserves reported as a liability in the
statutory balance sheet, see ISO-FINMA (2015). For non-life undertakings, according to
Art. 71 of ISO, the equalization reserves are part of the amount covered by the tied assets.
From the Swiss statutory accounting point of view, the equalization reserves belong to
the policyholders. However, the equalization reserves cannot be uniquely assigned to a
single customer. In the case of discontinuation of a company, the release of the equalization
reserves could strengthen either the case reserves or the own capital, taking into account
the tax requirements.

2.2.2. IFRS

Regarding IFRS 17, the best estimate of liabilities should be among others “current”,
reflecting the most recent existing information, for instance, see Dunne et al. (2017). As
a consequence, within IFRS 17, future catastrophe losses occurring outside the contract
boundaries are not considered within the insurance liabilities. Nevertheless, within the
Swiss statutory accounting, these catastrophe losses could be covered by the equaliza-
tion reserves.

2.2.3. Capital Modeling

The SST assesses the capital solvency situation of an insurance undertaking, see
FINMA (2018b). The valuation of the liability as “best estimate” for claims, incurring prior
to the reference date of the balance sheet, is the basis for the risk-bearing capital-calculation
according to FINMA (2017). As a consequence, equalization reserves are not considered
in the SST balance sheet. The European Solvency II framework uses a similar approach to
define the insurance liabilities: equalization reserves are excluded from the best estimate
of liabilities, see EIOPA (2015). Thus, the handling of the equalization reserves within
Solvency II and IFRS 17 is the same.

According to Art. 41 para. 3 of ISO, the market value margin (MVM) corresponds to
the capital costs of the risk bearing capital. MVM has to be kept as an insurance liability
in the SST balance sheet, see FINMA (2017, rank no. 51) and MVM intends to fulfill
the insurance liabilities, see FINMA (2017, rank no. 52). Similar to MVM, Solvency II
requires a risk margin, based on the one-year view. In IFRS 17, a margin is requested for
risk adjustment, based on a lifetime view, to be taken into account within the technical
provisions, see England et al. (2019). However, this discounted capital cost does not have
the same purpose as the statutory equalization reserves: MVM’s purpose is to cover capital
costs and the equalization reserves’ purpose is to balance unfavorable development and
the fluctuation of incurred claims. Similarly, MVM and the equalization reserves intend to
provide an additional safety cushion to develop incurred claims.

Within the SST standard-model for non-life undertakings, target capital consists,
among others, of the insurance risk comprising reserving risk, normal, large and NatCat
claims according to FINMA (2018a). The definitions are as follows:

• Reserve risk: risk out of claims being greater than expected;
• Normal claims: risk out of claims below a threshold—high frequencies/low severities;
• Large claims: risk out of claims above a threshold—low frequencies/high severities;
• Nat Cat: risk out of claims occurred due to natural catastrophe event.
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SST’s insurance risk and the statutory equalization reserves have some features in
common. However, SST’s insurance risk is part of the target capital, and the equalization
reserves are statutory balance sheet liabilities.

Similar to SST’s insurance risk, Solvency II handles reserves risk, for which
England et al. (2019) present analytic and simulation-based approaches. In the classical
sense, the prediction error to quantify reserve risk consists, in general, of the uncertainty
within the estimation of parameters and within the underlying claims generating pro-
cess. This reserve risk heads in the same direction as the equalization reserves, balancing
unfavorable development and fluctuation of incurred claims.

3. Preparation for the Model and Tax Considerations

This section starts with basic ideas to model equalization reserves. Thereafter, in
Section 3.2, we use the introduced formalism to develop tax considerations linked to
these equalization reserves. While FOPI and FINMA implicitly published the equalization
reserves as part of the technical reserves, we restate these equalization reserves by using
FOPI’s and FINMA’s published figures. In Section 3.3.1, we present the restatement for
reinsurance undertakings, and in Section 3.3.2, for non-life undertakings.

3.1. Basic Idea of the Model

We present a model to study the factors influencing the equalization reserves. We start
looking at the modeling in Europe and thereafter, we develop our conceptual approach.

3.1.1. Modelling in Europe

Akhurst et al. (1992) list two features to build up the equalization reserves: the upper
limit of the equalization reserves and the transfer rule to build and to release reserves. They
present four formulas to define the upper limit:

• Short-term fluctuation, cycles, trends and potential risk cumulation;
• Standard deviation of the claims;
• A coefficient, depending on the line of business, multiplied by the premium income;
• A combination out of premium income, variance and oversea risks.

Within Europe Sandström (2005) promotes further harmonization of the equalization
reserves by linking the equalization reserves to the volatility of business. As transfer rules
Akhurst et al. (1992) present:

• Recognition of the underwriting result;
• Deviation of the incurred claims ratio from the average level;
• Deviation of the incurred claims ratio from a fixed constant level;
• An asymmetric formula depending on the underwriting result;
• An open and half-open transfer (not only depending on the underwriting results);
• Other specific rules.

3.1.2. Conceptual Approach

In its business plan, each Swiss insurance undertaking defines the upper limit and
the corresponding transfer rule to the equalization reserves. Both are unknown to us
since they are not disclosed. Nevertheless, we propose to approximate a transfer rule
to the equalization reserves with the help of the profit and loss items. We analyze the
transfer rule based on the underwriting result: premium income, other income, insur-
ance costs (payments and change in technical reserves) and administration costs. The
classical approach to calculate the technical result (TRe) of an undertaking is, according to
Farny (2011), the sum of the income, premium (Pre) and other income (OIn), minus the
costs, insurance cost (ICo) and operation cost (OCo):

TRe = Pre + OIn− ICo−OCo. (1)
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Insurance cost (OIn) consists of claims payments and changes (“∆”) in total technical
reserves. The equalization reserves (ER) are part of the total technical reserves. There-
fore, insurance cost is the sum of insurance cost without change in equalization reserves
(ICo_wo∆ER) plus change in equalization reserves (∆ER). Accordingly, we transform the
insurance costs:

ICo = ICo_wo∆ER + ∆ER. (2)

The actual equalization reserves (ER) are the sum out of the change in equalization
reserves (∆ER) and the equalization reserves of the prior year (ER_PY):

ER = ∆ER + ER_PY. (3)

Using (2) we transform (1) into:

∆ER = Pre + OIn− ICo_wo∆ER−OCo− TRe, (4)

which yields for (3):

ER = Pre + OIn− ICo_wo∆ER−OCo− TRe + ER_PY. (5)

The size of the equalization reserves depends on the profit and loss items and on their
previous year’s amount.

In addition to the above, we are interested in the potential influence of the accounting
year, of the company age and of the legal form. In Section 4, we use FOPI’s and FINMA’s
published net data to analyze the impact of these items.

Equation (5) could take outward reinsurance into account. The equalization reserves
have to cover the whole gross business on the one hand. On the other hand, the net business
reflects the remaining risk exposure to be covered. An undertaking does not transfer parts
of the equalization reserves to the reinsurer and independently, the reinsurer estimates
the equalization reserves on its own portfolio. As net data are available, we analyze the
numbers net of reinsurance.

3.2. Tax Considerations

To quote the words from Benjamin Franklin, “Nothing is certain but death and taxes”.
Therefore, we consider tax in connection with equalization reserves.

In Switzerland, the net profits of corporations are taxed and corporations pay tax on
their own share capital, see Swiss Confederation (2018b). Thereby, a net loss at the end of
the fiscal year can be fiscally offset by future profits for seven years, see Swiss Confederation
(2018a). Swiss GAAP FER 40 provides accounting principles for insurance companies, see
Foundation for Accounting and Reporting Recommendations (2018): equalization reserves6

from the insurance techniques are considered as part of the liability “technical reserves”.
The company has to define the valuation of the equalization reserves in alignment with
Swiss GAAP FER 40 (Foundation for Accounting and Reporting Recommendations 2018);
in the business plan of the insurance company, this assessment is fixed and supervised
by FINMA.

Change in the equalization reserves impacts the net profit of the fiscal year and
herewith the taxable amount. Therefore, we take a closer look at the taxation and the
net profit of insurance companies. An insurance undertaking’s net profit consists of a
non-technical and technical part. We are only interested in the technical one (TRe). The
taxation rate (Tax) could change over the years. To keep the system simple, we assume a
constant taxation rate over time (t). Adding the time reference (t) to the items we obtain
from (1) in combination with (2):

Tax ∗ TRet =Tax ∗ (Pret + OInt − ICo_wo∆ERt − ∆ERt −OCot)

=Tax ∗ (Pret + OInt − ICo_wo∆ERt −OCot)− Tax ∗ ∆ERt.
(6)
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The change in equalization reserves reduces the taxable amount in the fiscal year t.
Let us assume T̂ is the year in which a significant loss occurs of height LT̂ , triggering the
equalization reserves and assuming LT̂ > ERT̂−1. Thus, the equalization reserves of the
prior year are dissolved completely (ERT̂−1). The taxable amount of (6) is transformed to:

TReT̂ = (PreT̂ + OInT̂ − ICo_wo∆ERT̂ −OCoT̂) + ERT̂−1. (7)

Due to the assumption LT̂ > ERT̂−1 we know that ICo_wo∆ERT̂ > ERT̂−1. Further-
more, we assume that the income does not cover the cost. This results in

TReT̂ < 0. (8)

The release of the equalization reserves reduces the loss of the technical result in the
year T̂. This reduced loss may be offset by future profits over a period of seven years after
the year T̂. Changes in equalization reserves reduce future profits. However, to benefit from
loss-offsetting with future profits, a profit has to be reported. This conflict of interest is born
within the loss-offsetting with future profits over a period of seven years and the conflict is
solved by the written business plan: the rules to establish the equalization reserves define
how much the undertaking has to build up the equalization reserves. Table 1 illustrates
this circumstance:

Table 1. Illustration of the impact of taxes from equalization reserves on the net profit.

Time ∆ERt ERt Tax Saving in t

1 ∆ER1 ER1 = ∆ER1 Tax ∗ ∆ER1
...

...
...

...
T̂ − 1 ∆ERT̂−1 ERT̂−1 = ∑T̂−1

1 ∆ERt Tax ∗ ∆ERT̂−1

T̂ −ERT̂−1 0 0

T̂ + 1 ∆ERT̂+1 ERT̂+1 = ∆ERT̂+1 Tax ∗ (∆ERT̂+1 + min[TReT̂+1; |TReT̂ |])
...

...
...

...
T̂ + 7 ∆ERT̂+7 ERT̂+7 = ∑T̂+7

T̂+1
∆ERt Tax ∗ (∆ERT̂+7 + min[TReT̂+7; max[0; |TReT̂ | −∑T̂+6

T̂+1
TRet]])

The Swiss tax regulation counteracts tax-optimization, using the equalization reserves:
the scope of the business plan limits the establishment and the release of the equalization
reserves. The loss-offsetting with future profit incentivizes an optimization-problem of
profit shifting over time. Going concerns assumed, the equalization reserves belong to
the insured, and some day, they will be taxed. From the pure actuarial point of view, tax-
optimization is not taken into account to define rules to establish or release the equalization
reserves, and by defining an upper bound for the equalization reserves. As equalization
reserves may be easily misused for tax-optimization, governments looked at different
possibilities to handle the valuation of equalization reserves. Akhurst et al. (1992) state
that the taxation legislations “vary widely in different countries”. In some countries, the
established equalization reserves should be released within a duration of, e.g., ten years.

3.3. Restatement of Equalization Reserves

By act of law Art. 25 of ISA, insurance undertakings report to FINMA the financial
statements and the supervisory report, and FINMA publishes the annual financial state-
ments7,8. FOPI (2007) disclosed the financial years 1997 to 2007 and since 2008 FINMA is in
charge, see FINMA (2019a).

FOPI and FINMA have disclosed the figures in a different setup.
In Appendices A and B, further details of the main changes and the source of the variables,
which we use as explanatory ones, are provided. In Section 4, we describe the variables of
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interest. Based on FOPI’s and FINMA’s items, one database was created in order to analyze
the equalization reserves.

Akhurst et al. (1992) remark that disclosure of the equalization reserves is an open
question. The equalization reserves reveal the prosperity of a company. To compare among
insurance companies, Akhurst et al. (1992) use among others the equalization reserves.
Since the reporting year 2019, the Swiss equalization reserves have been officially published.
Nevertheless, the prior amounts are included in the published total of technical reserves
and could be restated.

In the following, we describe the method used to estimate the equalization reserves
for reinsurance and for non-life undertakings, taking into account FOPI’s and FINMA’s
published figures for the years 1997 to 2018. We use FOPI’s and FINMA’s notation referring
to the corresponding documents.

3.3.1. Restatement of Equalization Reserves for Reinsurance Undertakings

Since 2008, FINMA (2008b) has published the key metrics for insurers on its website:
files reporting the balance sheets and profit and loss items, and files reporting statistical
details9. FOPI’s and FINMA’s reported file “AR13A” states the main liability items for rein-
surance undertakings: “net claim reserves” (AR13A_CR) including the equalization reserves
and “net other reserves” (AR13A_oR) excluding the equalization reserves. In file “AR14K”
the reinsurance undertakings report the single component of the technical reserves for the
whole business: “net claim reserves” (AR14K_CR) excluding the equalization reserves and
“net other reserves” (AR14K_oR) including the equalization reserves. Table 2 provides an
overview of the handling of the equalization reserves for reinsurance undertakings.

Table 2. Equalization reserves (ER) within the reinsurers’ files.

Reporting File Net Claim Reserves Net Other Reserves

AR13A ER included ER excluded
AR14K ER excluded ER included

Thus, the equalization reserves (ER) should be the difference of “AR13A” and “AR14K”
by comparing “net claim reserves” and “net other reserves”. These restated equalization
reserves should be the same. However, some reinsurance undertakings stated the ER,
e.g., in file “AR14K” within the “net claim reserves” and not within “net other reserves”,
resulting in correct the sign.

ER = |AR13A_CR− AR14K_CR|
= |AR13A_oR− AR14K_oR|. (9)

Due to data quality or maybe due to non-disclosure of the equalization reserves, for
some undertakings, the calculated amount of the equalization reserves using “net claim
reserves” on the one hand and “net other reserves” on the other hand is not the same.
Therefore, the maximum of both values is taken for the analysis. ER calculated regarding
“net claim reserves” and regarding “net other reserves” is not normally distributed. Their
Spearman’s rank correlation coefficient is 0.99, and both values are monotonically related.

3.3.2. Restatement of Equalization Reserves for Non-Life Undertakings

For non-life undertakings, the method, laid out above, cannot be applied: “AS14K”
captures only the Swiss business, whereas “AS13A” captures the Swiss and the abroad
written business. Nevertheless, FOPI has published the item “general reserves”10 in file
“AS14K”, not being allocated to any line of business. We use the general reserves as an
approximation of the equalization reserves.

In addition, in file “AS14K”, FOPI published the total net technical reserves, including
equalization reserves for the Swiss business (AS14K_TR), in file “AS14A” the net premium
reserves for the Swiss business (AS14A_PR), in file “AS14B” the net claim reserves excluding
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equalization reserves for the Swiss business (AS14B_CR) and in file “AS14D” the net
annuities reserves for the Swiss business (AS14D_AN). Table 3 provides an overview of the
handling of the equalization reserves for non-life undertakings.

Table 3. Equalization reserves (ER) within the non-life’s files.

Reporting Total Premium Claim AnnuitiesFile Reserves Reserves Reserves

AS14K ER included
AS14A ER excluded
AS14B ER excluded
AS14D ER excluded

Thus, the equalization reserves (ER) could be approximated by calculating the differ-
ences of the reported numbers. Nevertheless, we need to keep in mind that herewith “other
reserves” would be a part of the equalization reserves. We have:

ER = AS14K_TR− AS14A_PR− AS14B_CR− AS14D_AN. (10)

FINMA has changed file “AS14D”: the sum out of gross annuities, gross other technical
reserves and gross equalization reserves are reported. Thus, Equation (10) cannot be
evaluated anymore. In consequence, the equalization reserves cannot be restated with the
above-listed files from the year 2008 onward. As a consequence, for non-life undertakings
we study the calendar years 1997 to 2007.

We observe that several insurance undertakings report the general reserves as zero
while reporting the equalization reserves non-zero. Therefore, we use the maximum value
for our analysis. ER is calculated by using either the reported “general reserves” or restated
using Equation (10). ER is not normally distributed. The Spearman’s rank correlation
coefficient is 0.95.

4. Regression Models for Equalization Reserves

In Switzerland, (re-)insurance undertakings accumulate equalization reserves, as
stated in their business plan. Each undertaking defines its own rule to build and to
release the equalization reserves. However, this information is not publicly available and
unknown to us. The objective is to identify the items of the technical result, which could
have influenced the amount of the equalization reserves. In this section, we present two
regression models to study the factors impacting the equalization reserves.

In Section 4.1, we present FOPI’s and FINMA’s items as input data for our models.
Thereafter, in Section 4.2, we explain the approach to set up the GAM and the GLM
model. The models for reinsurance undertaking and the ones for non-life undertakings are
provided in Sections 4.3 and 4.4.

4.1. FOPI and FINMA Data as Explanatory Variables

In this section, we describe FOPI’s and FINMA’s items, used as explanatory variables.
Equation (5) is the formula to evaluate ER, using profit and loss items. FOPI’s and

FINMA’s data offer further granularity in respect of operation and insurance costs. We
change the notation to be used within our R modeling; we abbreviate all, except one,
possible explanatory variables with three capital letters. In Table 4, an overview of all
variables, a short description and the mark, whether we use the item in Equation (5) or
whether the variable could be an explanatory one within our model of ER, are presented.
The operation Cost (OCo) is split into “administration cost and commission” (ACC) and
“other costs” (OCC). “Administration cost and commission” are the costs to administer
and to conclude the insurance contracts, considering the related costs of the inward and
outward reinsurance contracts and the costs out of profit participation. “Other costs”
comprise all further underwriting costs, for example, the costs for preventive measures,
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whereby detailed components of “other cost” are not available. The insurance cost (ICo) is
broken down into claims payments (NPA), change in claims reserves and change in other
technical reserves (NOR). The correction of the change in equalization reserves is taken
into account within the change of claims’ reserves (NCR_woD_ER). The items are net of
reinsurance. Using the new notation, Equation (5) is transformed to:

ER = NEP + OIN − NPA− NCR_woD_ER− NOR− ACC−OCC− TRE + ERP. (11)

In addition to the profit and loss items, FOPI’s and FINMA’s data offer information
about the legal form (LEF), the company age (COA) and the calendar year (YEA), which
we consider as a further additional explanatory variable in our model. As branch offices do
not report profit and loss files within FOPI’s and FINMA’s reporting, the corresponding
cost items are missing. Therefore, we only retain stock companies and mutuals. We analyze
799 data points for reinsurance undertakings, having the legal form “stock company”. For
non-life undertakings, we look at 340 data points, having the legal form “stock companies”,
and at 73 data points, having the legal form “mutuals”.

Table 4. Description of variables in alphabetical order.

Abbreviation Description Variable in Explanatory
Equation (5) Variable

ACC Administration and Xcommission cost
COA Company age X
ER Equalization reserves, used as Xresponse variable in our R model

ERP Equalization reserves of previous year X
= ER_PY X

ER_PY Equalization reserves of previous year X
ICo Insurance cost X

= NCR_woD_ER + NOR + NPA
LEF Legal form X
NCR_woD_ER Net change in claim reserves Xwithout change in ER

NEP Net earned premium X
= Pre X

NPA Net claims payments X
NOR Net change in other technical reserves X
OCC Other costs X
OCo Operation cost X

= ACC + OCC

OIN Other technical income X
= OIn X

Pre Premium X
= NEP X

TRE Technical result X
= TRe X

YEA Calendar year X

For the modeling, the software environment R is used. Profit and loss items are
modeled as continuous variables. In our analysis, undertakings can have either the legal
form (LEF) mutual or stock company (plc). As all reinsurance undertakings have the legal
form stock company, we use the explanatory variable, legal form, to capture (reinsurance)
captives, 470 data points being available, and professional reinsurer11, 329 data points
being available. Thus, the categorial variable legal form contains the items “mutual”, “stock
company”, “captive” and “professional reinsurer”. Calendar years (YEA) are 1997 to 2018.
The company age (COA) is calculated as the difference out of the calendar and foundation
year, being in the range of 0 to 180. To reflect the categorial character of the variables legal
form, calendar year and company age, we enter these variables as factors in our model, see
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Spector (2011). We look at 12 available explanatory variables: 9 continuous and 3 categorial.
In Sections 4.3.1 and 4.4.1, we comment and provide descriptive statistics for the variables.
In Appendix B, the source of the variables is presented.

FOPI and FINMA have published the figures mentioned in Table 4. We used the
data as reported and checked these figures. Statistical outliers are double checked. As the
peculiarity could be explained, we keep these records. Some companies do not follow the
instructions, to implicitly disclose the equalization reserves. Therefore, these companies
report the equalization reserves as zero. Therefore, we study only these data points, having
positive equalization reserves for a given calendar year, resulting in limiting the insurance
market to a subset. Small, medium and large undertakings are reported and we keep all
these records. We intend to have a picture of all available records and not of a smaller subset.

4.2. Model for the Response Variable, Equalization Reserves

In this section, we explain the approach to setting up the GAM and the GLM model.
Our objective is to find a GAM and a GLM model once for the reinsurance and once for
non-life undertakings. We acknowledge that reinsurance undertakings could be seen as
a special line of business and that in consequence we could consider a joint modeling,
see Jeong and Dey (2020); Merz et al. (2012); Shi and Frees (2011). To reflect the two
different types of business, we separately consider reinsurance and non-life undertakings.
Nevertheless, we use the same approach for both. We apply a popular approach, described
in the literature, for example, by Staudt and Wagner (2021). In a first step, we define
the GAM model by selecting the explanatory variables, having the highest impact on the
equalization reserves. In a second step, we transform the selected continuous variables to
discrete ones by defining optimal classifications with the help of evtree. In the third step,
we apply the GLM model by using the discrete and the transformed variables.

This section is structured, as follows: first, we determine the distribution of the
equalization reserves, presented in Section 4.2.1. In Section 4.2.2, we define the GAM
model by selecting the explanatory variables. Thereafter in Section 4.2.3, we present how
we find a GLM model by applying evtree to define classifications for the continuous
explanatory variable.

4.2.1. Identification of the Distribution

In this section, we determine the distribution of the equalization reserves.
De Vylder and Goovaerts (1999) present a theoretical evaluation of the equalization re-
serves. However, the literature does not discuss the class of distribution for the equalization
reserves, and a recommendation is missing. As mentioned, we apply a GAM model, and
one assumption of the GAM is that the response variable has an exponential family, see
Hastie and Tibshirani (1990). We identify the type of distribution of the equalization re-
serves by calculating the AIC value of the exponential, Weibull, Gamma and log-normal
distribution, see Akaike’s Information Criterion in Parzen et al. (1998)12. AIC’s formula
values the performance of the fitted model by taking into account the log-likelihood of this
model and the number of parameters of the model; the smallest AIC defines the best fit, see
R Core Team (2021).

4.2.2. Approach to Set Up the GAM Model

Our objective is to set up a GAM model to analyze the relationship between the
equalization reserves and its explanatory variables, being discrete and continuous.

Selection of Explanatory Variables to Define GAM

Hastie and Tibshirani (1990) explain the generalized linear models (GLM): assumed
is that the predictor effects are linear in the parameters; however, the distribution of the
responses and the link between the predictors and this distribution could be general. As
we assume that the response variable, equalization reserves, has a non-linear dependency
from the prior mentioned discrete and continuous explanatory variables, a GLM model
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is not suitable, and instead, we use its extension, the generalized additive model (GAM).
Hastie and Tibshirani (1990) discuss GAM models and how to replace the linear predictor
with an additive one. As Fridley (2010) illustrates, a GAM model lets “the data to ‘speak
for themselves”’ by using a smoothing function13.

Our goal is to link the response variable, equalization reserves, with the explanatory
variables, presented in Table 4. We utilize a common approach, described for example
by Staudt and Wagner (2021) to obtain the optimal GAM model: the best performance of
variously defined models determines the best GAM model. The start is a GAM model hav-
ing only one explanatory variable: each of the 12 available possible explanatory variables
defines its own GAM model and the corresponding AIC value captures its performance.
The explanatory variable, having the lowest AIC value, is kept as the best suitable ex-
planatory variable for the next iteration. In the next iteration, each of the remaining 11
possible explanatory variables defines its own GAM model, having two explanatory vari-
ables; again, the corresponding AIC value captures the performance. The iteration process
is continued until the AIC value would not change and would increase. This approach
selects the best explanatory variables. Illustrative for the algorithm in iteration i, having the
smoothing function s(.), the best explanatory xi out of the set X of all explanatory variables
is defined by

Illustrative14 for iteration i:

min
AIC(GAMk , k ∈ {1, . . . , i} )

argmin
xi∈X\{x1,...,xi−1}

AIC(GAM(ER ∼
i

∑
j=1

s(xj))) (12)

The selection is needed to construct the GAMSelect. Note that the order of the explana-
tory variables is not relevant for the modeling.

4.2.3. Approach to Set Up GLM

Our objective is to set up a GLM model to analyze the relationship between the
equalization reserves and its explanatory variables, being discrete and transformed to
discrete ones. To transform the continuous variables to discrete ones, we classify these
variables by using evtree, as presented in the paragraph hereafter.

4.2.3.1. evtree to Define Classifications for Explanatory Variable

Having determined the GAMSelect, we look for optimal categorization of the significant
explanatory variables, using evolutionary trees according to Staudt and Wagner (2021).
Grubinger et al. (2014) explain the optimal classification and regression trees in R: a
recursive partitioning by choosing splits that maximize the homogeneity at the next step.
The response variable of the evtree is the fitting effect (Fitxl ) of GAMSelect and the predictor
variable of the evtree is one out of our selection. The split consists out of splitting variables
vl

r ∈ {observation of xl} =: Xl and splitting rules sl
r for the internal nodes, while r ∈

{1, . . . , Ml − 1}, Ml denoting the partition of the input space of the predictor variables.
Among others, the minimum number of observations (b) within an interval [vl

r; vl
r+1] can be

controlled and the complexity of the splitting rule (α)15. Our goal is to find the best splitting
variables vl

r: Xl =
⋃

r∈Ml−1[vl
r; vl

r+1] conditional to minimize the AIC and conditional b ∈ B
and α ∈ A, B being a set of possible minimum number of nodes and A a set of complexity
parameters. Again, we let the selected data speak for themselves. For each variable of the
selection xl we determine the optimal buckets size of the tree and regulate the complexity
of the tree, whereby optimal is in the sense of minimizing the AIC value of the GAMSelect
in which we replace xl by the new classification. The minimal AIC-value determines the
best buckets’ size (b̂) and the complexity parameter (α̂), receiving the best categorization of
the analyzed explanatory variables of the selection (xl ∈ Selection). Illustration of the R
algorithm is as follows:
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Illustrative ∀xl ∈ Selection :

argmin
α∈A,b∈B

AIC(GAM(ER ∼ ∑
xj∈Selection\{xl}

s(xj) +
⋃

r∈Ml−1

[vl
r; vl

r+1] | evtree(b, α))) (13)

4.2.3.2. Defining GLM

The result of the previous paragraph is the transformation of the continuous variables
to discrete ones. Thus, we can apply a GLM model on the previously selected explanatory
variables, according to Hastie and Tibshirani (1990).

4.2.3.3. General Remark

We are aware that we base our model on 799 observations for reinsurance undertak-
ings and on 413 observations for non-life undertakings, not reflecting the whole Swiss
insurance market. Furthermore, we are aware that the 12 explanatory variables are cor-
related, which we looked at. Due to the fact that our model can only provide a first
indication of the real circumstances, we refrain from modeling the correlations between the
explanatory variables.

4.3. Model of the Equalization Reserves for Reinsurance Undertakings

To explore the equalization reserves for reinsurance undertakings, we base the analysis
on FOPI and on FINMA data. In Section 4.3.1, we look at the data, and thereafter, in
Section 4.3.2, we present the model result, using the approach described in Section 4.2.

4.3.1. Data for Reinsurance Undertakings

FOPI and FINMA have published equalization reserves of reinsurance undertakings
for the calendar years 1997 to 2020. As FINMA changed the reporting system in the
year 2020 and presents the data for the reporting years 2019 onward in a different setup,
we focus on the calendar years 1997 to 2018. For our analysis, we filter the data points,
having positive equalization reserves, and 799 data points are available for our study.
Table 5 captures the summary of the equalization reserves and of the explanatory variables,
covering the years 1997 to 2018. The currency is CHF. Minimum (Min.), first quantile
(1st Qu.), median, mean, third quantile (3rd Qu.) and maximum (Max.) are presented.

Table 5. Variable summary for reinsurance undertakings, observed in the years 1997 and 2018.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

ER 1000 533,000 4,615,772 58,007,935 16,883,679 3,531,957,000
ACC −234,455,888 215,796 736,604 165,830,866 14,841,470 7,165,666,533
COA 0 26 56 62 92 135
ERP 0 25,000 2,128,000 52,440,000 14,570,000 3,532,000,000

NCR_woD_ER −10,670,000,000 −220,400 1,005,000 72,290,000 10,300,000 8,241,000,000
NEP −1,260,000,000 2,994,000 7,439,000 572,500,000 81,780,000 20,330,000,000
NOR −1,338,000,000 0 0 3,208,000 1,769,000 429,200,000
NPA −5,580,000,000 147,900 3,024,000 329,200,000 39,540,000 20,090,000,000
OCC −63,649,261 0 0 12,202,336 58,062 1,487,351,655
OIN −120,478,524 0 43,051 51,501,126 1,553,194 2,502,998,729
TRE −2,206,000,000 −175,700 462,700 18,820,000 4,974,000 2,088,000,000

“Min.” stands for minimum, “1st Qu.” for first quantile, “3rd Qu.” for third quantile and “Max.” for maximum.

Equalization Reserves

The smallest equalization reserves amount to CHF 1000 and the highest to CHF
3.53 billion (Swiss Re 2001)16. In the Appendix C.1, Figure A1 shows the relative frequency
of the equalization reserves and of the one of the previous year. In total, 82% report the
equalization reserves lower than CHF 24 million, and 82% report the equalization reserves
of the previous year lower than CHF 20 million.
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Calendar Years and Legal Form

In the year 2007, most observations are noticed; hence, we re-level the variable calendar
year to the year 2007. The number of observations in a calendar year increased from 21
in the year 1997 to 62 in the year 2007 and dropped to 34 in the year 2008. In the year
1997, 3% and in the year 2018, 4% of the observations occurred. FOPI published the years
1997 to 2007 and FINMA uses another reporting system for the calendar year 2008 to
2018. FINMA (2009) supervised 28 reinsurance undertakings (2007: 25) and 42 captives
(2007: 46) in the calendar year 2008; as a consequence, mergers and acquisitions would not
explain the drop from the year 2007 to 2008. We think our counting method, companies
having a positive equalization reserves, causes the drop: some reinsurance undertakings
would have used the occasion of the new reporting system to change the reporting of the
equalization reserves.

All analyzed reinsurance undertakings and reinsurance captives are stock companies;
therefore, the variable “legal form” would not be suitable for an explanatory one. Instead,
we analyze the kind of reinsurance, captive and professional reinsurer. In the year 1997,
38% were captives, increasing to 78% in the year 2011 and dropping to 56% in the year
2018. As more observations for captives are available, we re-level the explanatory variable
to “captive”.

Net Earned Premium

The smallest net earned premium amount was CHF −1.3 billion and the highest was
CHF 20.3 billion (Swiss Re 2008). Europäische Rückversicherung reported in the year 2005
indeed a higher ceded premium (written: CHF 6.0 billion) than the gross one (written: CHF
5.1 billion), resulting in a negative net earned premium (CHF−1.3 billion). In Appendix C.1,
Figure A2 displays the relative frequency of the net earned premium and the one of the
calendar year. In total, 94% have a net earned premium lower than CHF 2.0 billion and 62%
lower than CHF 20 million.

Insurance Costs

The insurance net claims payments are within the range from CHF −5.6 billion to
CHF 20.1 billion (Swiss Re 2009). Europäische Rückversicherung reported in the year 2009
CHF 5.6 billion as payment, having an opposite sign to all other undertakings. In total, 87%
have net claims payments lower than CHF 200 million and 70% lower than CHF 20 million.
The highest release in claims reserves without change in equalization reserves was CHF
10.7 billion (Swiss Re 2009) and the highest accumulation CHF 8.2 billion (Swiss Re 2016).
Furthermore, Swiss Re reported in the year 2017 the highest release in other reserves of
CHF 1.3 billion and in the year 2014 the highest accumulation of CHF 429.2 million. In
total, 80% report a change in claims reserves without change in equalization reserves in the
range from CHF −10.7 billion to CHF 20 million and 62% a change in other reserves in the
range from CHF −1.3 billion to CHF 320 million. The relative frequency of the insurance
cost of reinsurance undertakings are shown in Appendix C.1 in Figure A3.

Operational Costs and Other Technical Income

The operational costs consist of administration cost and commission, being in the
range from CHF −0.2 to CHF 7.2 billion (Swiss Re 2006), and other cost, having values
from CHF −63.6 million (Swiss Re 2013) to CHF 1.5 billion (Swiss Re 2018). Europäische
Rückversicherung reported in the year 2008 CHF −0.2 billion as operational costs, having
an opposite sign to all other undertakings. This could occur due to ceded costs from
outward reinsurance. Indeed, in the year 2013, Swiss Re reported other costs with a
negative sign. Other technical income comprises technical interest income, attributed to the
technical part, and other technical insurance income. This item is in the range from CHF
−120 million to CHF 2.5 billion (Swiss Re 2007). Europäische Rückversicherung reported
in the years 2013 CHF 120 million as other technical income, having an opposite sign to all
other undertakings. Due to ceded cost out of outward reinsurance this could happen. In
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Appendix C.1, Figure A4 presents the relative frequency of the operational costs and of the
other technical income. In total, 70% of the administration and commission costs are below
CHF 8 million, 73% of the other costs are below CHF 13,000 and 69% of the other insurance
income is below CHF 1 million.

Technical Result and Company Age

The smallest technical result amounts to a loss of CHF 2.2 billion (Swiss Re 2001) and
the highest to CHF 2.1 billion (Swiss Re 2007). A total of 78% report a technical result lower
than CHF 6.4 million. In Appendix C.1, Figure A5 shows the relative frequency of the
technical result and of the company age. The company age is in the range from founded to
135 years. In our analysis, 88% of the companies have a company age below 30.

4.3.2. Model for the Reinsurance Undertakings

Our objective is to find a GAM and a GLM model for the reinsurance undertakings, as
presented in Section 4.2. First, we determine the distribution of the equalization reserves for
the reinsurance undertakings. In the second step, we define the GAM model by selecting
the explanatory variables. Thereafter, we study the result and apply evtree to define
classifications for explanatory variables. Finally, we apply the GLM model by using the
discrete and the transformed variables and present the main results.

Equalization Reserves’ Distribution

As mentioned in Section 4.2.1, the literature does not propose a class of distribution
for the equalization reserves. Therefore, we let our equalization reserves’ observations
speak for themselves. We fit some distribution of the exponential family (exponential,
Weibull, Gamma and log-normal distribution) on our data and compare the theoretical
and the sample quantiles, presented in Appendix D Figure A11. In Figure A11, the q-q
plots of all fitted distributions are far off the diagonal. The log-normal distribution is the
only suitable one; for the other three distributions, insufficient observation points exist
to properly fit the tail. In addition, we calculate the AIC values for these distributions,
presented in Table 6. For the reinsurance undertakings, the log-normal distribution best
approximates the response variable, equalization reserves.

Table 6. AIC values for possible distributions of equalization reserves (reinsurer).

Exponential Weibull Gamma Log-Normal
AIC 30,166 27,702 27,944 27,685

Number of
Parameters 1 2 2 2

Log-likelihood −15,082 −13,849 −13,970 −13,841

Selection of the Explanatory Variables to Define GAM

Our goal is to figure out the relationship between the response variable, equalization
reserves, with the explanatory variables, as presented in the Section 4.2.2.

In the previous paragraph, we worked out that equalization reserves could be
fitted by a log-normal distribution; thus, logER is normal distributed. According to
Wood (2010) we implement in R a GAM model with the family Gaussian and we use
the link function identity, ignoring the correlation of the explanatory variables, as men-
tioned in Section 4.2.3.3. We apply the algorithm, outlined in Equation (12), and obtain the
GAM model, as follows:

E(log(ER)) = f1(ERP) + β2 ·YEA + β3 · LEF + f4(TRE) + f5(ACC) + f6(OCC) + β0. (14)

Equalization reserves of the previous year head the selection of the explanatory vari-
ables for reinsurance undertakings. The categorial variable calendar year has the second
highest impact on the equalization reserves, according to our approach. Thereafter, the legal
form (capitves or professional reinsurers) shapes the equalization reserves. The variable

37



Risks 2022, 10, 55

technical result has position four, administration and commission cost position five, and
the variable other costs terminate the selection of the explanatory variables, shaping the
equalization reserves of the reinsurance undertakings. An additional explanatory vari-
able would not improve the fitting. In Appendix E, Table A3 shows the AIC values for
the iterations.

In the first column of Table 7, we list the intercept, the coefficients of the discrete vari-
ables, the estimated degree of freedom (edf) of the continuous variables and the significance
level of the GAM model. We use the star-notation to mark the statistical significance level
of the variables in Table 7: “.” for a p-value below 0.1, “*” for a p-value below 0.05, “**”
for a p-value below 0.01 and “***” for a p-value below 0.001. The smoothing functions of
the continuous variables are statistically significant, the intercept and some coefficients
of the discrete variables. As Fridley (2010) explains with respect to the GAM model, the
predictor variable is separated into sections and fitted by polynomial functions in each
section separately. These turning points are measured as edf: the higher the edf, the more
complex the smoothing. The continuous variables equalization reserves of the previous
year, technical result and the administration and commission costs have an edf-value of 9.0,
7.44 and 8.45, which have the highest complexity to be smoothed. The variable other costs
has an edf value of 5.03, which is the lowest complexity to be smoothed. The categorial
variable year has 2007 as the base line and the categorial variable legal form has captive as
the baseline.

GAM Result and evtree to Define Classifications for Explanatory Variable

Visualization of the fitted smoothing curves reveals the highest insight into the rela-
tionship of the explanatory variables on the equalization reserves. As outlined above in
Equation (13), we define the optimal classes of the explanatory variable and in Table A5
the used parameters of the evtree are listed. We add this information in Figure 1: for
each explanatory variable its GAM prediction on the equalization reserves is shown (solid
line), the 95% confidence interval is marked (dashed lines), the boundaries of the bins are
displayed by the vertical lines and the predicted mean effect for each class is indicated by
the dashed-pointed horizontal lines.

Equalization Reserves of the Previous Year

Equalization reserves of the previous year are shown in Figure 1a and we find three
classifications. Around 680 companies report the equalization reserves of the previous year
lower than CHF 22 million, which has a negative impact on the equalization reserves. The
next class is up to CHF 305 million, consisting of around 90 observations, influencing the
equalization reserves to increase. The higher the equalization reserves of the previous year,
the more equalization reserves are built up. As a take away, we note that the smaller the
equalization reserves of the previous year, the more these equalization reserves would be
released in the next year. To transform this continuous variable into the discrete one, we
define three classes. In the class CHF 0 to 22 million, most observations occur, on which we
level this variable.

Calendar Year

In Figure 1b, the impact of the discrete variable calendar year is displayed and two
classes are found. The calendar year is re-leveled to the year 2007. The years could be
split in the range 1997 to 2006, having a negative impact on the equalization reserves,
and 2008 to 2018, having a positive impact on the equalization reserves. By adding the
categorial variable legal form to the GAM model, the year 2017 moved from the class
2008–2018 to 1997–2006 due to a reduction in the equalization reserves of a reinsurer of
around CHF 1 billion. In the years 1997 to 2007, FOPI was in charge of the supervision and
since 2008, it was FINMA.
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Figure 1. Effects on the equalization reserves for reinsurance undertakings. (a) Effect of the equal-
ization reserves of the previous year. (b) Effect of the calendar year. (c) Effect of the technical result.
(d) Effect of the accumulation and commission costs. (e) Effect of the other costs.
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Table 7. Output of the GAM and GLM for reinsurance undertakings.

GAM GLM
Explanatory Variables Star Explanatory Variables Star

(Intercept) 14.77 *** (Intercept) 14.10 ***
Categorial: Coefficient Categorial: Coefficient

YEA (baseline: 2007) YEA (baseline: 2007)
1997 −0.30 1997 −0.99 *
1998 −1.90 *** 1998 −2.28 ***
1999 −1.69 *** 1999 −2.08 ***
2000 −1.96 *** 2000 −2.32 ***
2001 −1.93 *** 2001 −2.28 ***
2002 −2.13 *** 2002 −2.47 ***
2003 −1.19 *** 2003 −1.55 ***
2004 −1.41 *** 2004 −1.78 ***
2005 −1.08 *** 2005 −1.42 ***
2006 −0.03 2006 −0.34
2008 1.12 ** 2008 1.15 **
2009 1.03 ** 2009 1.18 **
2010 0.66 2010 0.95 *
2011 1.04 * 2011 1.19 **
2012 0.98 * 2012 0.93 *
2013 0.30 2013 0.26
2014 0.22 2014 0.15
2015 0.45 2015 0.49
2016 0.50 2016 0.66
2017 0.32 2017 0.55
2018 0.33 2018 0.53

LEF (baseline: Captive) LEF (baseline: Captive)
Prof. RE 1.03 *** Prof. RE 0.82 ***

Continuous: edf Categorial: Coefficient
s(ERP) 9.00 *** ERP (baseline: 0–22 m.)

22–305 m. 2.41 ***
305–3550 m. 4.51 ***

s(TRE) 7.44 *** TRE (baseline: −60–2100 m.)
−2200–−60 m. 0.53

s(ACC) 8.45 *** ACC (baseline: −235–15 m.)
15–55 m. 1.18 ***
55–115 m. 2.05 ***

115–470 m. 2.09 ***
470–1300 m. 1.75 **

1300–2900 m. 2.58 ***
2900–7200 m. 2.50 **

s(OCC) 5.03 ** OCC (baseline: −64–40 m.)
40–200 m. 0.06

200–550 m. −1.18
550–1500 m. −2.41 *

AIC 3218 AIC 3337
N 799 N 799

Star represents significance levels of p-values: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. edf stands for estimated
degree of freedom and Prof. RE for professional reinsurance undertakings.

Legal Form

Reinsurance undertakings are either captives or professional reinsurance undertakings.
Baseline is the category captive. As presented in Table 7, the coefficient for the profes-
sional reinsurer is 1.03: compared to captives, professional reinsurers tend to build more
equalization reserves.

40



Risks 2022, 10, 55

Technical Result

The effect of the technical result on the equalization reserves is presented in Figure 1c,
with two classes. The first classification consists of 20 nodes, and the loss of the undertaking
is higher than CHF 60 million. The effect on the equalization reserves is negative. The
second class comprises 780 observations, and the impact on the equalization reserves is
slightly positive. As a take away, we note that for reinsurance undertakings, even positive
technical results have only a slightly positive impact on equalization reserves. To transform
this continuous variable to the discrete one, we define two classes. As the most observations
occur in the class CHF −60 to 2100 million, we level this variable on this class.

Administration and Commission Costs

In Figure 1d, the effect of the administration and commission costs on the equalization
reserves is presented, with seven classes. The first class consists of 600 companies, with
administration and commissions costs up to CHF 15 million and a slightly negative impact
on the equalization reserves. In the next class, around 70 companies are collected, with
costs up to CHF 55 million and a slightly positive impact on the equalization reserves.
The class, with costs between CHF 470 million and CHF 1.3 billion, has a negative impact
on the equalization reserves, whereby this class consists of 15 observations. The higher
the administration and commission costs, the higher the accumulation of the equalization
reserves. To transform this continuous variable to the discrete one, we define seven classes.
Most observations occur in the class CHF−235 to 15 million on which we level this variable.

Other Costs

Figure 1e presents the effect of other costs on the equalization reserve, with four classes.
The first class contains 775 observations with other costs up to CHF 40 million. This class
has a sightly negative effect on the equalization reserves. In the second class, 12 companies
are captured, having other costs up to CHF 200 million; the impact on equalization reserves
is positive. Seven observations are in the third class, having other costs up to CHF 550 and
having a higher positive effect on equalization reserve than for the first class. The class
number four has five observations, having other costs up to CHF 1.5 billion and a negative
effect on equalization reserves. To transform this continuous variable to the discrete one,
we define four classes. In the class CHF −64 to 40 million, most observations occur, on
which we level this variable.

GLM Model

We apply the GLM model on the initial discrete variables year and legal form and on
the initial continuous variables, as transformed and described in the previous paragraph.
We mark the transformed variable with “c”, and Equation (14) turns to the GLM model:

E(log(ER)) = β1 · ERPc + β2 ·YEA + β3 · LEF + β4 · TREc + β5 · ACCc + β6 ·OCCc + β0. (15)

In the second column of Table 7, we list the intercept, the coefficients of the discrete
and of the transformed variables and the significance level of the GLM model. In the
GAM model and in the GLM one, the intercept has a statistically significant level “***” and
amounts to 14.77 in the GAM and to 14.10 in the GLM one. The significance level of the
initial discrete variables either remains the same or changes to the next significance level.
All except one coefficient of the initial continuous variables have a significance level of
“***” or “**” in the GLM. However, the coefficient of the technical result is not statistically
significant in the GLM model. Furthermore, the GAM model has an AIC value of 3218 and
the GLM one an AIC value of 3337, making the GAM a better one, see Table 7.

Result

For reinsurance undertakings, the GAM model performs better than the GLM one.
Based on the GAM model, we find the use of equalization reserves: accumulation and
release of the equalization reserves are observed. From the GAM and from the GLM model,
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we note that, compared to captives, professional reinsurers tend to build more equalization
reserves. Based on the GAM model, we show that reinsurance undertakings, having small
equalization reserves of the previous year, would release the equalization reserves. In
addition, from the GAM model, we find that for reinsurance undertakings, even positive
technical results have only a small positive impact on equalization reserves.

4.4. Model of the Equalization Reserves for Non-Life Undertakings

To explore the equalization reserves for non-life undertakings, we base the analysis on
FOPI data. In Section 4.4.1, we look at the data, and thereafter, in Section 4.4.2, we present
the model result using the approach described in Section 4.2.

4.4.1. Data for Non-Life Undertakings

FOPI published the equalization reserves for non-life undertakings for the calendar
years 1997 to 2007. For our analysis we filter the data points, having positive equalization
reserves, and 413 data points are available for our study. Table 8 captures the summary
of the equalization reserves and of the explanatory variables, covering the years 1997 to
2007. The currency is CHF. Minimum (Min.), first quantile (1st Qu.), median, mean, third
quantile (3rd Qu.) and maximum (Max.) are presented:

Table 8. Variable summary of non-life undertakings, observed in the years 1997 and 2007.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

ER 1000 3,006,000 13,370,000 50,401,719 64,925,000 375,394,000
ACC −171,143 4,123,740 12,809,683 209,586,622 159,078,572 6,319,819,394
COA 0 33 74 77 113 181
ERP 1000 323,000 9,499,000 44,157,007 43,442,000 375,394,000

NCR_woD_ER −314,512,646 127,408 3,165,646 93,267,811 25,688,850 3,984,956,385
NEP −12,140 13,710,000 45,890,000 749,700,000 519,300,000 22,760,000,000
NOR −40,069,000 0 0 4,487,718 1,395,000 379,109,740
NPA 0 7,280,000 28,800,000 468,700,000 328,400,000 12,160,000,000
OCC −27,034 0 229 4,603,862 742,376 327,609,822
OIN −18,428,688 52,965 2,682,174 74,735,601 22,955,164 2,456,748,842
TRE −1,192,000,000 −394,700 875,600 40,420,000 7,049,000 2,420,000,000

“Min.” stands for minimum, “1st Qu.” for first quantile, “3rd Qu.” for third quantile and “Max.” for maximum.

Equalization Reserves

The smallest equalization reserves amount to CHF 1000 and the highest to CHF
375.4 million (Mobiliar 2004). In Appendix C.2, Figure A6 shows the relative frequency
of the equalization reserves and of the one of the previous year. In total, 70% report the
equalization reserves lower than CHF 40 million, and 71% report the equalization reserves
of the previous year lower than CHF 30 million. For the year 1997, information regarding
the equalization reserves of the previous year could not be calculated and the analysis will
lack this item for the year 1997.

Calendar Years and Legal Form

In the year 1998, most observations are made; hence, we re-level the variable calendar
year to the year 1998. The number of non-life entities were reduced, on the one hand, due
to mergers and acquisition and, on the other hand, due to our selection criteria, analyzing
records with positive equalization reserves. In the year 1997, 10% and, in the year 2007, 8%
of the observations occurred. The share of mutual companies increased from 15% in the
year 1997 to 25% in year 2007.

Net Earned Premium

The smallest net earned premium amounted to CHF −12,140 and the highest to CHF
22.8 billion (Zurich 2008). Unifun reported in the years 2004 and 2005 a higher ceded
premium than the gross one, resulting in a negative net earned premium. In Appendix C.2,
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Figure A7 displays the relative frequency of the net earned premium and the one of the
calendar year. In total, 70% have a net earned premium lower than CHF 353.9 million and
47% lower than CHF 40 million.

Insurance Costs

The insurance net claims payments are within the range from CHF 0 (Polygon) to
CHF 12.2 billion (Zurich 2007). In the year 2003, Baloise reported the highest release in
claims reserves without change in equalization reserves of CHF 314.5 million, and in the
year 2003, Zurich reported the highest accumulation of CHF 3.98 billion. Furthermore,
the highest release in other reserves was CHF 40.1 million (Mobiliar 2005) and the highest
accumulation CHF 379.1 million (Zurich 2006). The relative frequency of the insurance cost
of non-life undertakings is shown Appendix C.2 in Figure A8. In total, 70% have net claims
payments lower than CHF 823.3 million and 43% lower than CHF 20 million. Furthermore,
60% report a change in claims reserves without change in equalization reserves in the range
from CHF −15.1 million to CHF 11.7 million.

Operational Costs and Other Technical Income

The operational costs consist of administration cost and commission, being in the
range from CHF−0.2 million (Appenzeller 1997) to CHF 6.3 billion (Zurich 2007), and other
costs, having values from CHF −27,034 (Orion 2006) to CHF 327.6 million (Zurich 2004).
Appenzeller received more compensation for the cost from the ceded reinsurance contract
than indeed paid, resulting in a negative administration and commission cost. Indeed,
Orion reported other costs with a negative sign. Other technical income comprises technical
interest income, attributed to non-life insurance, and other technical insurance income; this
item is in the range from CHF −18.4 million (Vaudoise 2002) to CHF 2.5 billion (Zurich
1998). Vaudoise reported in the year 2002 a negative technical interest income of CHF
20.2 million compensated by a positive other technical insurance income of CHF 1.8 million.
In Appendix C.2, Figure A9 presents the relative frequency of the operational costs and of
the other technical income. In total, 72% of the administration cost and commission are
below CHF 99.8 million, 73% of the other costs are below CHF 0.6 million and 73% of the
other insurance income is below CHF 21.6 million.

Technical Result and Company Age

Zurich reported in the year 2002 the highest technical loss of CHF 1.2 billion and in
the year 2006 Zurich had the highest technical result of CHF 2.4 billion. In Appendix C.2,
Figure A10 shows the relative frequency of the technical result and of the company age. In
total, 70% report a technical result lower than CHF 5 million. The company age is in the
range from founded to 181 years. In our analysis, 67% of the companies have a company
age below 100.

4.4.2. Model of the Non-Life Undertakings

Our objective is to find a GAM and a GLM for the non-life undertakings, as presented
in Section 4.2. First, we determine the distribution of the equalization reserves for the
non-life undertakings. In a second step, we define the GAM by selecting the explanatory
variables. Thereafter, we study the result and apply evtree to define classifications for
explanatory variables. Finally, we apply the GLM by using the discrete and the transformed
variables and present the main results.

Equalization Reserves’ Distribution

Like the reinsurance procedure, we let our equalization reserves observations speak
for themselves. We fit the exponential, Weibull, Gamma and log-normal distribution, being
of the exponential distribution family, on our data and compare the theoretical and the
sample quantiles, presented in Appendix D Figure A12. Furthermore, we calculate the
AIC values for these distributions, presented in Table 9. For the non-life undertakings, the
Gamma distribution best approximates the response variable, equalization reserves.
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Table 9. AIC values for possible distributions of equalization reserves (non-life).

Exponential Weibull Gamma Log-Normal
AIC 15,478 15,053 15,050 15,135

Number of
Parameters 1 2 2 1

Log-likelihood −7738 −7525 −7523 −7566

Selection of Explanatory Variables to Define GAM

Our goal is to figure out the relationship between the response variable, equalization
reserves, with the explanatory variables, as presented in Section 4.2.2.

In the previous paragraph, we worked out that equalization reserves could be fitted
by a Gamma distribution. According to Wood (2010), we implement in R a GAM model
with the family Gamma and we use the link function log, ignoring the correlation of the
explanatory variables, as mentioned in Section 4.2.3.3. We apply the algorithm, outlined in
Equation (12), and obtain the GAM model, as follows:

logE(ER) = f1(NPA) + f2(ERP) + f3(NCR_woD_ER) + β4 ·YEA + f5(NEP) + β0. (16)

Net claims payments head the selection of the explanatory variables. The equalization
reserves of the previous year have the second-highest impact on the equalization reserves.
Thereafter, the net change in claim reserve without change in equalization reserves shapes
the equalization reserves. The categorial variable calendar year has position four, and the
net earned premium terminates the selection of the explanatory variables, impacting the
equalization reserves of the non-life undertakings. An additional explanatory variable
would not improve the fitting. In Appendix E, Table A4 presents the AIC values for
the iterations.

In the first column of Table 10, we list the intercept, the coefficient of the categorial
variables, the edf of the continuous variables and the significance levels of the GAM
model. We use the star-notation to mark the statistical significance of the variables in
Table 10. The smoothing function of the net claims payments has significance code “**”,
whereby the smoothing functions of the continuous variables equalization reserves of the
previous year, net change in claim reserves without change in equalization reserves and net
earned premium have each the significance code “***”. Thus, all smoothing functions of the
continuous variables are statistically significant. In addition, the intercept and the coefficient
of the year 1997 are statistically significant. The continuous variables equalization reserves
of the previous year and the net change in claim reserves without equalization reserves
have an edf value of 8.79 and 7.88, having the highest complexity to be smoothed. Net
claims payments and net earned premium have an edf value of 4.94 and 3.41, having the
lowest complexity to be smoothed. The categorial variable year has 1998 as the baseline.

GAM Result and evtree to Define Classifications for Explanatory Variable

Visualization of the fitted smoothing curves reveals the highest insight into the rela-
tionship of the explanatory variables on the equalization reserves. As outlined above in
Equation (13), we defined the optimal classes of the explanatory variable and in Appendix F
in Table A6 the used parameters of the evtrees are listed. We added this information in
Figure 2: for each explanatory variable of the selection, its GAM prediction on the equaliza-
tion reserves is shown (solid line), the 95% confidence interval is marked (dashed lines),
the boundaries of the bins are displayed by the vertical lines and the predicted mean effect
for each class is indicated by the dashed-pointed horizontal lines.

Net Claims Payments

Net claims payments are shown in Figure 2a, and we find seven classes. Around
300 claims payments, being lower than CHF 180 million, have a negative impact on the
equalization reserves. The next class is up to CHF 470 million claims payments, consisting
of 45 observations without any impact on the equalization reserves. The higher the claims
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payments of the company the more equalization reserves are built up. As a take away,
we note that companies with small claims payments tend to release equalization reserves,
and the ones with high claims payments tend to establish more equalization reserves. To
transform this continuous variable into the discrete one, we define seven classes. Most
observations occur in the class CHF 0–180 million, on which we level this variable.

Equalization Reserves of the Previous Year

In Figure 2b, the impact of the equalization reserves of the previous year is displayed
and eight classes are marked. The first class has around 130 companies, having equalization
reserves of the previous year lower than CHF 2.0 million. Its impact on the equalization
reserves is negative; small companies more often release the equalization reserves of the
previous year to finance the claims. Each of the remaining seven classes have around
40 nodes. To transform this continuous variable to the discrete one, we define eight classes.
In the class CHF 0–2.0 million, most observations occur, on which we level this variable.

Net Change in Claim Reserves without Change in Equalization Reserves

Net change in claim reserves without change in equalization reserves is presented in
Figure 2c and has eight classes. The first classification consists of 20 nodes and the release
in claim reserves is higher than CHF 20 million; the effect on the equalization reserves is
negative. The next class has around 250 observations covering the release of claim reserves
up to CHF 20 million and the accumulation of claim reserves up to CHF 11 million. The
average effect on equalization reserves is negative. Within the third class, the claim reserve
would accumulate up to CHF 37 million, whereby the impact on the equalization reserves
would still be negative half as much as in the second class. The higher the accumulation of
claim reserves of the company, the more equalization reserves are built up. Releasing of
claim reserves impacts a release in equalization reserves; an accumulation of claim reserves
higher than CHF 35 million would impact an accumulation of equalization reserves. In
consequence, a small accumulation of claim reserves up to CHF 35 million would shift the
reserves from equalization to claim. To transform this continuous variable to the discrete
one, we define eight classes. In the class CHF −20–11 million, most observations occur, on
which we level this variable.

Calendar Year

In Figure 2d, the effect of the calendar year on the equalization reserves is presented;
no evtree could be found. The baseline is the year 1998. As for the year 1997, information
regarding the equalization reserves of the previous year is missing, and the effect of the
year 1997 on the equalization reserves could not be observed. All other years have a small
effect on the equalization reserves.

Net Earned Premium

Net earned premium is presented in Figure 2e, having five classes. The first class
contains around 290 observations up to CHF 300 million net earned premium. This class
has a positive effect, being close to 2, on the equalization reserves. In the second class,
around 60 companies are captured up to a net earned premium to CHF 1000 million, and
the effect is slightly negative. The higher the net earned premium of the company, the fewer
equalization reserves are built up. To transform this continuous variable to the discrete one,
we define eight classes. In the class CHF 0–300 million, most observations occur, on which
we level this variable.

GLM Model

We apply the GLM model on the initial discrete variables year and legal form and on
the initial continuous variables as transformed and described in the previous paragraph.
We mark the transformed variable with “c” and Equation (16) turns to the GLM model:
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logE(ER) = β1 · NPAc + β2 · ERPc + β3 · NCR_woD_ERc + β4 ·YEA + β5 · NEPc + β0. (17)

In the second column of Table 10, we list the intercept, the coefficients of the discrete
and of the transformed variables and the significance level of the GLM model. In the
GAM and GLM models, the intercept of the initial discrete variable year has a statistically
significant level “***” and amounts to 16.35 for the GAM model and 13.86 for the GLM
one. For the discrete variable year in the GLM model, only one coefficient has a statistically
significant level “*” and the other years are not significant. All coefficients of the initial
continuous variables ERP and NCR_woD_ERc have a significance level of “***” or “*” in
the GLM model. Two coefficients of net claims payments have a statistical significant level
“**” and “*”; the others are not significant in the GLM model.

In the GLM model for the initial continuous variable net earned premium, three
coefficients could not be defined, as net earned premium and net claims payments have
an exact linear relationship between them. In Section 4.2.2, we explain how to select the
best GAM model by looking at the AIC values. In Appendix E Table A4, we present the
AIC values: in the first iteration, the AIC value of the net earned premium is 14,948, while
AIC of the net claims payments is 14,944. The net claims payments are the best explanatory
variable in the first iteration and the net earned premium is selected in the last iteration. We
cannot explain why the last iteration, selecting the net earned premium as the explanatory
variable, should improve the GAM model. This is a limitation of our paper.

The AIC values of the GAM and GLM models are reported in Table 7: the GAM model
has an AIC value of 14,485 and the GLM one has an AIC value of 14,454, making the GLM
a better one.

Result

For non-life undertakings, the GLM performs better than the GAM model. Our ap-
proach to select the best GAM model by looking at AIC values has not detected the strong
relationship between net earned premium and net claims payments. Based on the GAM
model, we find the use of equalization reserves: accumulation and release of the equaliza-
tion reserves are observed. From the GAM model, we notice an opposite effect between
small-sized and large-sized non-life companies: for small-sized companies, the release
effect is observed regarding the insurance expenses, whereby the premium income variable
indicates an accumulation one. For large-sized companies, the release effect is observed
regarding the premium income variable, whereby the insurance expenses indicate an ac-
cumulation effect. Based on the GAM model, we note that non-life undertakings, having
small equalization reserves of the previous year, would release the equalization reserves.
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Figure 2. Effects on the equalization reserves for non-life undertakings. (a) Effect of the net claims pay-
ments. (b) Effect of the equalization reserves of the previous year. (c) Effect of the net change in claim
reserves without change in ER. (d) Effect of the calendar year. (e) Effect of the net earned premium.
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Table 10. Output of the GAM and GLM for non-life undertakings.

GAM GLM
Explanatory Variables Star Explanatory Variables Star

(Intercept) 16.35 *** (Intercept) 13.86 ***
Categorial: Coefficient Categorial: Coefficient

YEA (baseline: 1998) YEA (baseline: 1998)
1997 1.70 *** 1997 1.81
1999 0.11 1999 0.01
2000 0.06 2000 0.04
2001 −0.01 2001 0.04
2002 −0.29 2002 −0.45 .
2003 −0.19 2003 −0.16
2004 0.05 2004 0.04
2005 −0.22 2005 −0.33
2006 −0.27 2006 −0.47 *
2007 0.01 2007 −0.32

Continuous: edf Categorial: Coefficient
s(NPA) 4.94 ** NPA (baseline: 0–180 m.)

180–470 m. −0.40
470–800 m. −0.10
800–1500 m. −0.28

1500–2200 m. −1.37 *
2200–3000 m. 0.58

3000–12,200 m. −2.06 **
s(ERP) 8.79 *** ERP (baseline: 0–2.0 m.)

2.0–4.8 m. 1.57 ***
4.8–8.0 m. 1.90 ***

8.0–12.4 m. 2.36 ***
12.4–18.0 m. 2.78 ***
18.0–71.0 m. 3.38 ***

71.0–160.0 m. 3.97 ***
160.0–380.0 m. 4.42 ***

s(NCR_woD_ER) 7.88 *** NCR_woD_ER (baseline: −20–11 m.)
−315–−20 m. 0.62 *

11–37 m. 0.86 ***
37–70 m. 1.06 ***
70–115 m. 1.30 ***

115–170 m. 2.67 ***
170–700 m. 2.76 ***
700–4000 m. 3.91 ***

s(NEP) 3.41 *** NEP (baseline: 0–300 m.)
300–1000 m. 0.11
remaining na

AIC 14,485 AIC 14,454
N 413 N 413

Star represents significance levels of p-values: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. edf stands for estimated
degree of freedom.

5. Discussion

One result of this paper is that the Swiss equalization reserves could be restated out
of the publicly available figures for the years 1997 to 2018 for reinsurance undertakings
and for the years 1997 to 2007 for the non-life undertakings, although the equalization
reserves are not explicitly published. We detect that profit and loss items are identified as
explanatory variables for the equalization reserves and that the equalization reserves could
not be misused for tax optimization by defining the upper limit and their accumulation
and their release. Undertakings need the equalization reserves.

In the literature, the Swiss equalization reserves are not studied, and Swiss undertak-
ings do not publish how their equalization reserves are handled. This paper fills the gap
and starts the discussion about the equalization reserves.
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Disclosing the equalization reserves reveals the financial cushion of the undertaking
and could awaken the covetousness of some greedy short-term investors.

Equalization reserves should smooth the volatility of the case reserves, which should
be studied in detail, being a further research topic. Another further research topic could be
a study about the determination of the optimal upper limit of the equalization reserves. The
basis of this paper is the restated equalization reserves. Thus, the study could be enriched
by using the equalization reserves reported by the undertakings. In addition, a future
research direction could be the impact of the equalization reserves on the (tied) assets.

6. Conclusions

In this paper, we use publicly available data from FOPI and FINMA to restate the
equalization reserves for the years 1997 to 2018 for reinsurance and for non-life under-
takings in Switzerland and we analyze the relationship between these equalization re-
serves and the profit and loss items, using a GAM and a GLM model. The analysis
is limited to 799 observations for reinsurance undertakings and to 413 observations for
non-life undertakings.

For reinsurance undertakings, the equalization reserves depend on the equalization
reserves of the previous year, on the calendar year, on the legal form, on the technical
result, on the administration and commission costs and on other costs. The GAM model
performs better than the GLM one for reinsurance undertakings. For non-life undertakings,
the equalization reserves depend on the net claims payments, on the equalization reserves
of the previous year, on the net change in claims reserves without change in equalization
reserves, on the calendar year and on the net earned premium. The GLM model performs
better than the GAM one, for non-life undertakings.

We figure out the use of the equalization reserves for reinsurance and for non-life
undertakings: accumulation and release of the equalization reserves are observed. Based
on the GAM model, we note that reinsurance and non-life undertakings, having small
equalization reserves of the previous year, would release the equalization reserves. From
the GAM and from the GLM model, we note that, compared to captives, professional
reinsurers tend to build more equalization reserves.

We illustrated that by fixing the accumulation and the release of the equalization
reserves within the business plan, no tax advantage could be gained out of the equalization
reserves. The equalization reserves belong to the policyholder and to the portfolio.

The discussion about the disclosing of the equalization reserves should be restarted.
After finding a positive consensus, the analysis could be repeated based on more

observations and real figures.
Reinsurance and non-life undertakings should reflect whether the definition of the

equalization reserves, fixed in the business plan, should be linked to the outcome of the
capital modeling for insurance/reserving risk or linked to other profit and loss items or on
a mixture of both.

Another future research question could be derived: do the equalization reserves impact
the variance of the technical reserves within the statutory accounts for an undertaking?
Furthermore, a future research topic could be the missing explanation as to why the last
iteration improves the GAM model when defining the best GAM model, whereby the
selected last explanatory variable is highly correlated to an already identified one.

The work is limited to publicly available data, whereby the equalization reserves were
restated. To improve the GAM and the GLM model, the database should take the reported
equalization reserves as a basis. First, this would enlarge the number of observations the
analysis is based on. Second, the restated equalization reserve could be replaced by the
observation, avoiding unnecessary inaccuracies.
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Appendix A. Main Changes within FOPI’s and FINMA’s Reporting

The appendix starts in Appendix A with a short overview of the main changes within
FOPI’s and FINMA’s reporting. In Appendix B the source of the available explanatory
variables within the R model is presented: once for FOPI in Table A1 and once for FINMA in
Appendix B.2. Thereafter, in Appendix C the relative frequency of all available explanatory
variables is presented: once for reinsurance undertakings in Appendix C.1 and once for
non-life undertakings in Appendix C.2. In Appendix D the fit of the response variable’s
distribution function, equalization reserves, is depicted for reinsurance and for non-life
undertakings. Then, in Appendix E the AIC values for reinsurance and for non-life under-
takings are shown. Finally, in Appendix F the parameters of the evtree for reinsurance
and for non-life undertakings are listed.

FOPI and FINMA have disclosed the figures in a slightly different setup. The main
changes are:

• For life undertakings, FINMA changed the presentation of the number of individual
and collective contracts and the sum insured, written directly in Switzerland;

• For non-life undertakings, FINMA changed the presentation of the number of contracts
and number of risks, written directly in Switzerland;

• For life and for non-life undertakings, FINMA changed the presentation of the equal-
ization reserves, written directly in Switzerland;

• For life undertakings, FINMA publishes the written periodic premium of the direct
business in Switzerland;

• FOPI published the number of workers within the insurance industry;
• FOPI published the profit and loss and the balance sheet information of each single

(re-)insurance, undertaking each in one file. Furthermore, FOPI published these gross
and net items; FINMA publishes only the net ones;

• For non-life undertakings, FOPI published tied assets information, whereas FINMA
publishes tied assets for life and non-life undertakings within one file. Furthermore,
the composition of “Sollbetrag” changed over time.
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Appendix B. Source of the Available Explanatory Variables

Appendix B.1. FOPI’s Available Explanatory Variables

Table A1. FOPI published the files “Jahresrechnungen” in each calendar year for each undertaking.
This is the source of the available explanatory variables for reinsurance and non-life undertakings.

Variable FOPI’s Title and Calculation Cell

ACC Aufwendungen für den Versicherungsbetrieb für eigene Rechnung C32
COA Calendar Year - Foundation Year (as stated in Zefix)
LEF Included in the name of the undertaking (as stated in Zefix)

NCR_woD_ER Veränderung der Schadenrückstellungen für eigene Rechnung C19
NCR_woD_ER = C19 + ER− ERP

NEP Verdiente Prämien für eigene Rechnung C9
NOR Nicht anderweitig auszuweisende Veränderung vt. Nettorückstellungen C21
NPA Zahlungen für Versicherungsfälle für eigene Rechnung C16

OCC
Nicht realisierte Verluste aus Kapitalanlagen für anteilgebundene Lebensversicherungen C33

Sonstige vt. Aufwendungen für eigene Rechnung C34
OCC = C33 + C34

OIN

Der technischen Rechnung zugeordneter Zinsertrag für eigene Rechnung C10
Nicht realisierte Gewinne aus Kapitalanlagen für anteilgebundene Lebensversicherungen C11
Sonstige vt. Erträge für eigene Rechnung C12
OIN = C10 + C11 +C12

TRE Ergebnis der vt. Rechnung C35
YEA Calendar Year

“vt.” stands for versicherungstechnisch. Zefix is the Swiss Companies’s register.

Appendix B.2. FINMA’s Available Explanatory Variables

Table A2. FINMA published the data within a “cube” for the years 2008 to 2018. Section “Bilanz
and Erfoglsrechnung” is the source of the available explanatory variables for reinsurance and non-
life undertakings.

Variable FINMA’s Title and Calculation Section

ACC Aufwendungen für den Versicherungsbetrieb für eigene Rechnung Erfolgsrechnung - Aufwand
COA Calendar Year - Foundation Year (as stated in Zefix)
LEF Included in the name of the undertaking (as stated in Zefix)

NCR_woD_ER
Veränderung der Rückstellungen für Versicherungsfälle/ Erfolgsrechnung - Aufwand

Schadenrückstellungen (Leben und Schaden) vt. Aufwand
NCR_woD_ER = ∆claims reserves + ER− ERP

NEP Versicherungstechnische Erträge Erfolgsrechnung - Ertrag

NOR

Veränderung der übrigen vt. Erfolgsrechnung - Aufwand
Verbindlichkeiten für eigene Rechnung (Leben) vt. Aufwand
=: X1
Veränderung der übrigen vt. Erfolgsrechnung - Aufwand
Verbindlichkeiten für eigene Rechnung (Schaden) vt. Aufwand
=: X2
NOR = X1 + X2

NPA Zahlungen für Versicherungsfälle für eigene Rechnung Erfolgsrechnung - Aufwand
(Leben und Schaden) vt. Aufwand

OCC Sonstige Aufwendungen aus der Versicherungstätigkeit Erfolgsrechnung - Aufwand
OIN Sonstige Erträge aus der Versicherungstätigkeit Erfolgsrechnung - Ertrag

TRE
vt. Aufwendungen Erfolgsrechnung - Aufwand

=: X3
TRE = NEP + OIN + X3 + OCC + ACC

YEA Calendar Year

“vt.” stands for versicherungstechnisch. FINMA’s cube offers the possibility to download the data as selected; we
state the section where the items are reported. Income items have positive and costs negative signs. Zefix is the
Swiss Companies’s register.
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Appendix C. Relative Frequency

Appendix C.1. Relative Frequency—Reinsurance Undertakings
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Figure A1. Relative frequency of the equalization reserves (ER) and of the one of the prior year (ERP)
for reinsurance undertakings. The figure presents twice the relative frequency of ERP: once sliced by
the optimal bin out of our model and once sliced by equal bands, whereby the last band includes all
remaining higher observations.
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Figure A2. Relative frequency of the net earned premium (NEP) and of the calendar year (YEA) of
reinsurance undertakings. The figure presents twice the relative frequency of the NEP: once sliced by
billion and once sliced by million, whereby the last band includes all remaining higher observations.
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Figure A3. Relative frequency of the insurance cost for reinsurance undertakings: net claims pay-
ments (NPA), net change in claim reserves without change in ER (NCR_woD_ER) and net change
in other technical reserves (NOR). The figure presents twice the relative frequency of the NPA,
NCR_woD_ER and NOR: once sliced by billion and once sliced by million, whereby the last band
includes all remaining higher observations.
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Figure A4. Relative frequency of the operation cost, administration cost and commission (ACC) and
other costs (OCC), and of the other income (OIN) for reinsurance undertakings. The figure presents
twice the relative frequency of ACC, OCC and OIN: ACC and OCC are once sliced by the optimal
bin out of our model and once sliced by equal bands. OIN is once sliced by billion and once sliced
by million.
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Figure A5. Relative frequency of the technical result (TRE) and of the company age (COA) for
reinsurance undertakings.

Appendix C.2. Relative Frequency—Non-Life Undertakings
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Figure A6. Relative frequency of the equalization reserves (ER) and of the one of the prior year (ERP)
for non-life undertakings. The figure presents twice the relative frequency of ERP: once sliced by
the optimal bin out of our model and once sliced by equal bands, whereby the last band includes all
remaining higher observations.
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Figure A7. Relative frequency of the net earned premium (NEP) and of the calendar year (YEA) for
non-life undertakings. The figure presents twice the relative frequency of the NEP: once sliced by
the optimal bin out of our model and once sliced by equal bands, whereby the last band includes all
remaining higher observations.
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Figure A8. Relative frequency of the insurance cost for non-life undertakings: net claims pay-
ments (NPA), net change in claim reserves without change in ER (NCR_woD_ER) and net change
in other technical reserves (NOR). The figure presents twice the relative frequency of the NPA
and NCR_woD_ER: once sliced by the optimal bin out of our model and once sliced by equal
bands, whereby the last band includes all remaining higher observations. NOR is sliced in two
different intervals.
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Figure A9. Relative frequency of the operation cost, administration cost and commission (ACC) and
other costs (OCC), and of the other income (OIN) for non-life undertakings. The figure presents
twice the relative frequency of ACC, OCC and OIN: ACCand OCC are once sliced by billion and
once sliced by million. OIN is sliced in two different intervals.
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Figure A10. Relative frequency of the technical result (TRE) and of the company age (COA) of
non-life undertakings. The figure presents twice the relative frequency of TRE: once sliced by billion
and once sliced by million.

Appendix D. Fit of the Distribution Function of the Equalization Reserves
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Figure A11. Fit of distribution of the equalization reserves for reinsurance undertakings.
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Figure A12. Fit of distribution of the equalization reserves for non-life undertakings.

Appendix E. Model Output—AIC Values

Table A3. AIC values of the explanatory variables for the reinsurance undertakings.

AIC Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6
ACC 3761 3466 3303 3257 3232 0
COA 3894 3466 3354 3262 3252 3259
ERP 3528 0 0 0 0 0
LEF 3888 3468 3289 0 0 0

NCR_woD_ER 3854 3519 3378 3274 3247 3224
NEP 3742 3466 3312 3257 3241 3233
NOR 3885 3521 3402 3286 3256 3234
NPA 3744 3478 3314 3261 3249 3234
OCC 3885 3518 3401 3283 3248 3218
OIN 3824 3507 3343 3264 3241 3221
TRE 3816 3489 3357 3256 0 0
YEA 3820 3406 0 0 0 0

Table A4. AIC values of the explanatory variables for the non-life undertakings.

AIC Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
ACC 14,952 14,895 14,929 14,585 14,493
COA 15,076 14,995 14,677 14,643 14,608
ERP 14,999 14,793 0 0 0

NCR_woD_ER 14,971 14,942 14,591 0 0
NEP 14,948 14,946 14,930 14,572 14,485
NOR 15,020 14,948 14,932 14,583 14,501
NPA 14,944 0 0 0 0
OCC 15,006 14,949 14,992 14,588 14,500
OIN 15,003 14,908 14,866 14,593 14,501
TRE 15,000 14,946 14,926 14,593 14,502
YEA 15,070 14,957 14,674 14,500 0
LEF 15,052 14,828 14,747 14,592 14,502
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Appendix F. Parameters of evtree

Table A5. Parameters of the evtree for reinsurance undertakings.

Reinsurance
Explanatory A α̂ B b̂ # ClassesVariables

ERP
{1, 1.5, 2, . . . , 9.5,
10, 15, 20, . . . , 95,

100, 150, 200, . . . , 950}

2 {5, 10, 15, 20, 25, 30, 35, 50} 30 3
YEA 950 {10} 10 2
TRE 950 {10, 20, 30, 50, 100} 20 2
ACC 1 {5, 10, 15, 20, 30} 15 7
OCC 15 {5, 10, 15, 20, 30} 5 4

For all explanatory variable the same set A is used.

Table A6. Parameters of the evtree for non-life undertakings.

Non-Life
Explanatory A α̂ B b̂ # ClassesVariables

NPA {1, 1.5, 2, . . . , 9.5,
10, 15, 20, . . . , 95,

100, 150, 200, . . . , 950}

1 {5, 10, 15} 5 7
ERP 4.5 {5, 10, 15, 50, 100} 15 8

NCR_woD_ERP 2.5 {5, 10, 15} 10 8
NEP 7 {5, 10, 15} 10 5

For all explanatory variable the same set A is used.

Notes
1 In German: Versicherungsaufsichtsgesetz—VAG, see ISA (2006).
2 In German: Aufsichtsverordnung—AVO, see ISO (2006).
3 In FINMA (2011) the German expression “Schwankungsrückstellungen” is used.
4 For non-life undertakings the German expression “Sicherheits- und Schwankungsrückstellungen” is used to reflect the nature of

the reserves “safety” and “fluctuation”. In this paper we simplify this expression by using the name “equalization reserves”;
however, another reasonable name would be “fluctuation reserves”.

5 For the Credit Insurance line of business a methology is given; see Swiss Confederation (1993).
6 In FER (Foundation for Accounting and Reporting Recommendations 2018) the German words “Schwankungsrückstellungen”

and “Sicherheitsrückstellungen” are used; in this paper we refer with “equalization reserve” to both of these reserves.
7 With respect to Art. 958 of OR, the financial statements comprise balance sheet, profit and loss accounts and the notes of these

accounts; the financial statements “must be signed by the chair-person of the supreme management or administrative body and
the person responsible for financial reporting within the undertaking”.

8 The statutory accounting is the basis for the calculation, see FINMA (2019c), whereby the Swiss Code of Obligations (OR)
regulates the statutory accounting, see Swiss Confederation (1912).

9 For the years 1997 to 2018, the structure of the name of the statistical files is, as follows: two letters, two figures, followed by one
letter. The first two letters mark the type of insurance such as reinsurance or non-life undertakings. The two figures refer to the
line of business, in general. The last letter indicates the reporting item, in general.

10 In German: “Pauschalrückstellung”.
11 In order to keep the terminology simple, we use the word “reinsurance” designated for both captives and for professional

reinsurers. In the subsection for reinsurance, we are more precise.
12 Burnham and Anderson (2004) study AIC and explain the relationship between reasonable data and a good model by separating

“information” and “noise”. “Here, information relates to the structure of relationships, estimates of model parameters, and
components of variance. Noise, then, refers to the residuals: variation left unexplained.” Burnham and Anderson (2004).

13 To cite Fridley (2010): “GAMs take each predictor variable in the model and separate it into sections (delimited by ‘knots’), and
then fit polynomial functions to each section separately, with the constraint that there are no kinks at the knots (second derivatives
of the separate functions are equal at the knots).”

14 Simplicity within the notation is made; for i = 1 we define X\{x1, . . . , x0} = X. Furthermore, we neglect that categorial variables
should not have any smoothing functions.

15 Grubinger et al. (2014) explain that the parameter alpha of an evtree “regulates the complexity part of the cost function.
Increasing values of alpha encourage decreasing tree sizes.”
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16 Notation is simplified: e.g., CHF 3.53 billion (Swiss Re 2001) is the shortcut for “the reinsurance undertaking Swiss Re reports in
the calendar year 2001 CHF 3.53 billion”.
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Abstract: Due to the low demand for conventional annuities, alternative retirement products are
sought. Quite recently, tontines have been frequently brought up as a promising option in this respect.
Inspired by unit-linked life insurance and retirement products, we introduce unit-linked tontines
in this article, where the tontine payoffs are directly linked to the development of the underlying
financial market. More specifically, we consider two different tontine payoff structures differing in
the (non-)inclusion of guaranteed payments. We first price the unit-linked tontines by using the
risk-neutral pricing approach. Consequently, we study the attractiveness of these products for a
utility-maximizing policyholder and compare them with non-unit-linked tontines. Our numerical
analysis sheds light on the design challenges and gives explanations why similar products might not
be widely adopted already.

Keywords: unit-linked tontine; product design; risk neutral pricing; utility optimization; utility
performance

JEL Classification: G13; G22

1. Introduction

Unit-linked insurance policies belong to the most frequently concluded contracts in
the life insurance sector; for example, more than 50% of the UK life (re)insurance gross
written premiums were attributed to the index- and unit-linked insurance field in 2019
according to Statista (2020b). Among other attractive features, higher return expectations,
flexibility, design possibilities and tax advantages (see, e.g., Schiereck et al. 2020) certainly
play a driving role in the attractiveness of these policies. Interesting subject areas related to
unit-linked insurance contracts, such as variable annuities, include pricing and valuation
from the insurer’s or the customers’ perspective (see, e.g., Aase and Persson 1994; Ekern
and Persson 1996; Gatzert et al. 2011), hedging strategies (see, e.g., Møller 1998), impact
of stochastic interest rates (see, e.g., Schrager and Pelsser 2004) or guarantee components
(see, e.g., Ledlie et al. 2008). In this paper, inspired by variable annuities, we design
and investigate a new type of tontine that is directly linked to the developments in the
financial market.

Yet, why is it even reasonable to consider tontines when dealing with old-age provi-
sion? From a theoretical point of view, actuarially fairly priced annuities should actually
be regarded favorably by rational customers (see, e.g., Peijnenburg et al. 2016; Yaari 1965).
However, annuitization rates are rather low in reality (see, e.g., Hu and Scott 2007). This
adverse phenomenon known as the annuity puzzle (see, e.g., Ramsay and Oguledo 2018)
is hitting conventional annuities. Moreover, due to low interest rate environments and
tightening solvency regulations, it is hard to expect that annuitization rates will go up any
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time soon. Therefore, alternative retirement products are naturally searched by insurers and
customers, which brings up tontines as an option. Due to the backdrop of the demographic
change (see, e.g., Margaras 2019), the so-called tontine retirement investment has become
more and more important (see, e.g., Milevsky and Salisbury 2015; Sabin 2010). A main
characteristic of tontines is that, in contrast to annuities, longevity risk is borne, to a great
extent, by the pooled policyholders themselves. Hence, tontines are normally cheaper
and, thus, potentially more attractive. Further discussions on practicalities, qualitative
regulatory, technological and risk management issues associated with a tontine product
can be found in Milevsky et al. (2018); Winter and Planchet (2021).

Let us briefly mention some of the recent literature that has addressed relevant topics
related to tontine products. A general and historical view on tontines, as well as their possible
applications for retirement income planning, is given in Milevsky (2015). Specific forms for the
tontine payout structure are discussed in, e.g., Milevsky and Salisbury (2015). The question
regarding how the tontine principle can be used to create tontine pensions for employees is
studied in Forman and Sabin (2015). In Gemmo et al. (2020), investment possibilities in both
tontines and traditional financial assets are investigated. Fairness issues when considering
heterogeneous cohorts are considered in, e.g., Chen et al. (2020); Denuit (2019); Donnelly et al.
(2014); Milevsky and Salisbury (2016); Sabin (2010). Bernhardt and Donnelly (2019) study
the inclusion of bequest motives in tontine products. Recently, research on reasonable ways
to combine tontines and annuities has been more extensively explored, see, e.g., Chen and
Rach (2019); Chen et al. (2019, 2020); Weinert and Gründl (2020). However, to the best of our
knowledge, the idea to consider a tontine as a unit-linked product has not yet been considered
in detail in the literature.

In this article, inspired by unit-linked life and retirement insurance products, we
introduce unit-linked tontines (see Sehner (2021)). We analyze the pricing and attractiveness
of such products where two concrete unit-linked tontine payoffs are considered. We
base our product model on the tontine concept applied in, e.g., Milevsky and Salisbury
(2015), where the deterministic payout function is replaced by a stochastic payout process
that depends on the developments in the financial market. In the specific setting, one
tontine payoff is designed to coincide with the pure value of a portfolio following a certain
investment strategy in the financial market, while the other one includes guaranteed
payments, such that the policyholders participate in high portfolio values, but are secured
in bad market scenarios. We rely on the risk-neutral pricing approach to determine the
premiums required to buy the corresponding unit-linked tontines. In order to highlight the
potential of our unit-linked tontine variant, we conduct an expected utility analysis that is
commonly used in such a context (see, e.g., Mitchell 2002; Yaari 1965). More specifically,
we first search for the optimal investment strategy that maximizes the expected utility of
the policyholder for a given unit-linked tontine variant. We then numerically compare the
maximum expected utilities of the two variants. Our comparison also takes two traditional
tontine alternatives without unit-linked payments into account, namely the optimal and
the natural traditional tontine.

The main observations and results, which can be drawn from our numerical analysis,
are as follows: The unit-linked tontine may perform better than the traditional tontine
alternatives if the following circumstances are present: First, the initial number of pooled
individuals is either very low or high. Second, the expected return of the tradable risky
asset is high or its volatility is low, which leads to a higher market price of risk, working
naturally in favor of the unit-linked tontine. Third, the policyholder’s risk aversion or
subjective discount rate is low. The additional financial risk component in the unit-linked
tontine and the steady increase of the expected payment of the unit-linked tontine over
time are respectively responsible for this. For our baseline parametrization, the certainty
equivalent induced by the variant, whose payout process is defined by the pure portfolio
value, is, for instance, about 8% higher than the one belonging to the optimal traditional
tontine and about 11% higher than the one belonging to the natural traditional tontine.
As the unit-linked tontine can be more successful among customers than the traditional
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counterpart, it seems reasonable to further study it. We further observe that, if the pure
portfolio value stipulates its payout process, the unit-linked tontine may yield a higher
utility level than in the case where it includes guaranteed payments. For our baseline
parametrization, the corresponding certainty equivalent is, for instance, about 27% higher.
Nevertheless, the latter case might be attractive, especially to customers who consider
additional guarantee components important. In particular, its performance approaches that
of the superior variant if the expected return of the risky asset decreases or if the volatility
of the risky asset or the policyholder’s risk aversion increases.

The remainder of this article is organized as follows: Section 2 introduces the model
setting including the general nature of the unit-linked tontine product and the underlying
financial and mortality risks. In Section 3, we derive the pricing formulas not only for the
general payment structure, but also for both concrete variants of the unit-linked tontine. In
Section 4, we discuss the solution of the utility optimization problem for our two particular
unit-linked payment designs. In Section 5, we conduct the numerical study and present its
outputs. Section 6 concludes the article. Some additional mathematical derivations can be
found in the Appendices A–D.

2. Model Setting
2.1. Unit-Linked Tontine Product

In order to model the unit-linked tontine product, we employ the tontine concept
presented in, e.g., Milevsky and Salisbury (2015), and modify it according to our purposes.
Threfore, the idea behind the tontine type established in Milevsky and Salisbury (2015), to
which we also refer as the traditional tontine, is shortly reviewed here first. Initially, i.e., at
time 0, the buyer of such a tontine pays a single premium to the providing life insurance
company. After the insurer has issued tontines to n ∈ N individuals at time 0, they are
grouped together into a pool. For simplicity, it is assumed that these n individuals, who
are also referred to as policyholders or participants, are homogeneous, i.e., they are all
of the same age x ≥ 0 at time 0 and of the same gender (which implies that they all have
the same mortality rate). As time goes by, the insurance company disburses contractually
predetermined payments to living participants. Specifically, a living individual holding one
of the traditional tontine contracts receives at time t ≥ 0, in the first place, a specific amount
of money determined by the so-called tontine payout function denoted by dt, which is
deterministic and initially stipulated. What is more, contingent on being alive at time t, there
is the possibility that she obtains more than dt due to the fact that the theoretical payments
to the dead participants, if existent, are distributed among the survivors in the pool. Owing
to the homogeneity between the participants, this extra payment is given by (n−Nt)dt

Nt
,

where the random variable Nt denotes the stochastic number of participants alive at time t.
Overall, we can summarize the total payment that is disbursed to the considered traditional
tontine holder at time t, given that she is alive, in the following expression:

(
(n− Nt)dt

Nt
+ dt

)
1{ζx>t} =

ndt

Nt
1{ζx>t}, (1)

where the random variable ζx represents the stochastic remaining lifetime of the individual
aged x at time 0. As there are no death benefits, it is clear that the policyholder’s payments
proportionally increase if more individuals in the pool pass away. Note that throughout the
following sections, we always assume that the payments of the insurer to a tontine holder
are continuously disbursed.

When considering the unit-linked tontine product, we focus on payments stemming
from the purchase of this tontine that are explicitly linked to the financial market. In this
way, the participants directly partake in the developments in the financial market. Our
corresponding product model is adopted, to a great extent, from the traditional tontines
described above. The only difference is that the deterministic tontine payout function dt is
replaced by the so-called tontine payout process denoted by the stochastic process Ψt. This
process depends on the performance of the financial market and, hence, makes the tontine
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a unit-linked product. Apart from that, the role of Ψt stays the same as the one of dt. Note
that in this article, we study two specified variants for Ψt that are introduced in Section 3.2.
On the whole, similar to (1), the total payment being disbursed to a unit-linked tontine
holder at time t and described by the stochastic process Dt is given by

Dt =
nΨt

Nt
1{ζx>t}. (2)

2.2. Financial Market and Mortality Risk

For the examination of the unit-linked tontine introduced in Section 2.1, we need
to model the financial market. Hereinafter, we always consider the financial market in
continuous time that consists of one risky and one risk-free asset. We assume that there
are no transaction costs or liquidity risk when trading the assets in the market. Following
the well-known Black–Scholes model (see Black and Scholes 1973), the stochastic value of
the risky asset at time t, denoted by St, is described by the following geometric Brownian
motion:1

dSt = µStdt + σStdWt, S0 > 0, (3)

where W is a standard Brownian motion. The dynamics of the risk-free asset is given by

dBt = rBtdt, B0 = 1, (4)

where r is the risk-free interest rate. The three parameters µ, σ and r are constant over time
in our setting and µ > r is assumed. Note that possible dividend payments existing in the
described financial market are neglected in our framework.

Let Vt be the value of a portfolio at time t that is generated by the investments of
the insurer in the financial market. We assume that the fraction of the portfolio invested
in the risky asset at time t is described by the deterministic trading strategy πt∈ [0, 1].
This means that neither short selling of the risky portfolio nor leverage is allowed. The
remaining fraction (1− πt) is invested in the risk-free asset. By the self-financing property,
the dynamics of Vt under P is given by

dVt = πt
Vt

St
dSt + (1− πt)

Vt

Bt
dBt = (r + πt(µ− r))Vtdt + σπtVtdWt, V0 > 0. (5)

It can be shown that the explicit solution of the stochastic differential Equation (5) is
given by

Vt = V0ert+(µ−r)
∫ t

0 πsds− σ2
2
∫ t

0 π2
s ds+σ

∫ t
0 πsdWs . (6)

Besides the financial risk, mortality risk is also contained in the unit-linked tontine.
It stems from two sources, namely the unsystematic mortality risk and the systematic
mortality risk (see, e.g., Dahl et al. 2008). The unsystematic mortality risk arises from the
randomness of deaths in the pool with a known mortality law. This risk is diversifiable,
i.e., it disperses if the size of the pool grows. In contrast, the systematic mortality risk is
not diversifiable, even if the pool size is large, as it results from overarching changes in the
underlying mortality intensity. For the traditional tontines (with mortality risk exclusively)
and an infinite pool size, all the mortality risk is shared by the policyholders. With a finite
pool size, the insurer only has the risk generated by the death time of the last survivor, at
which the insurer stops its payment. Additionally, in unit-linked tontines, there is financial
market risk. Depending on the risk management strategies the insurer chooses, the insurer
might still retain some financial market risk.

To model the mortality risk, we use the following framework: The probability (under P)
that the considered individual survives the next t years from time 0 on, at which she is x
years old, is denoted by t px ∈ (0, 1]. To include the above-mentioned systematic mortality
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risk component, we, similar to, e.g., Lin and Cox (2005), allow for a mortality shock
that is represented by a random variable denoted by ε. We assume that ε has a density
function denoted by fε and that its moment-generating function denoted by Mε exists.
The shocked survival curve is then given by t px

1−ε. We set the range of ε to (−∞, 1),
so that t px

1−ε ∈ (0, 1] is preserved. If no mortality shock is existent, simply let ε = 0
a.s. We remark that the latest insurance solvency regulations require insurers to test
their balance sheets against various stress-test scenarios. For instance, in the Canadian
solvency regulation, a 10–20% decrease of mortality rates (depending on the type of annuity
is assumed for a longevity shock). The U.S. regulation assumes a stress on mortality
improvement between 16–40% (depending on the age). This results in lower mortality rates
between 0.7–6%. In Solvency II, which is implemented for insurance undertakings in the
EU, a longevity shock is defined as a decrease of annual death probabilities by 20%. The
simple model we have chosen reflects the spirit of these realistic regulation frameworks.

For the random variable Nt, which is affected by mortality risk, we can obtain the
following distribution under P when conditioning on the survival of the considered policy-
holder and on ε:

(Nt − 1|ζx > t, ε)
P∼ Bin

(
n− 1, t px

1−ε
)

, (7)

where we use the assumption that the lifetimes of the participants are stochastically inde-
pendent under P.

Following the main stream of unit-linked insurance products (e.g., Aase and Persson
1994; Bacinello et al. 2018; Bernhardt and Donnelly 2019; Briys and de Varenne 1994), we
suppose that W, constituting the financial risk, is stochastically independent of (ζx, N, ε)
under P. Note that this requirement does usually not pose a restriction as the development
of the value of the risky asset and the chances of survival do generally not interact. We
remark that the independence assumption of actuarial and financial risk in the real world
may be quite reasonable in many situations. Recent research however finds that shocks in
stock market wealth might have an impact on mortality. For example, Giulietti et al. (2020)
provide evidence that daily fluctuations in the stock market have important effects on fatal
car accidents. Schwandt (2018) demonstrates that stock wealth shocks that lead to losses
in the wealth of stock-holding retirees affect the health of retirees in the US. In our paper,
the independence assumption of these risks allows us to analyze the pricing problem and
individual welfare of the unit-linked tontine in a semi-explicit way.

Let G = {Gt}t≥0 be the filtration generated by the Brownian motion W and denote
the natural filtration with respect to ζx, N and ε by H = {Ht}t≥0. The resulting progres-
sively enlarged filtration is given by F = {Ft}t≥0, whose element Ft = Gt ∨Ht contains
all relevant information revealed until time t.

3. Pricing

In this section, we aim at pricing the unit-linked tontine product established in
Section 2.1, i.e., we determine the single initial premium denoted by P0 > 0 that needs
to be paid by a policyholder to the insurance company. As we employ the standard
risk-neutral pricing approach to find P0, we have to clarify how a risk-neutral probability
measure denoted by Q is chosen when mortality risk is also taken into account. First,
it is clear that, due to the dependence of D on the survival of the policyholder and the
other participants, the market, in which the unit-linked tontine is traded, is incomplete.
Thus, a risk-neutral probability measure is not unique and, hence, there is, in general,
also no unique price P0. For a concrete choice of Q, we assume that the insurer considers
the financial risk and the mortality risk separately when determining Q, whereby the
stochastic independence of these two risk categories is also supposed under Q. Further
discussions about the independence property between financial and actuarial risks in the P-
and the Q-worlds can be found in, e.g., Dhaene et al. (2013), where the authors investigate
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the conditions under which it is possible (or not) to transfer the independence assumption
from the physical measure P to the risk-neutral pricing measure Q.

Regarding the financial risk that is captured by the filtration G, we expect the insurer
to use the risk-neutral probability measure, which, if we restrict ourselves to G, exists and
is unique due to the completeness of the financial market described in Section 2.2. Note that
the explicit solution for Vt, which is under P given in (6), changes accordingly under Q to

Vt = V0ert− σ2
2
∫ t

0 π2
s ds+σ

∫ t
0 πsdWQ

s , (8)

where
(

WQ
t

)
t≥0

is a standard Brownian motion under Q.

Following Chen and Rach (2019), we assume that the choice of Q on H for pricing
purposes depends on the nature of the overall insurance business of the life insurance
company. If a large product range is offered, there may already be some natural hedges
between the products and, thus, the insurer would be faced with less mortality risk than in
the case in which it solely concentrates on one specific product field. We assume that the
insurer only trades tontine products and that, also due to the resulting higher mortality
risk exposure, the insurer is prudent when charging premiums, i.e., safety loadings are to
be included in some way. If t p̃x ∈ (0, 1] denotes the survival probability under Q, and since
tontines belong to the retirement product type, a possibility to reflect the insurer’s pricing
prudence is to require that

t p̃x ≥ t px, (9)

and that the mortality shock ε follows the same distribution under Q as under P. Given
these requirements, to which we stick in the following, the (shocked) survival curve under Q
runs at a higher level than the one under P, which leads to the inclusion of implicit safety
loadings in premiums. If the insurer increases t p̃x, the company is more conservative about
pricing. The choice of the magnitude of t p̃x usually depends on the pool size n since, as
already pointed out in Section 2.2, the unsystematic mortality risk becomes less relevant if n
grows. Therefore, t p̃x normally attains a rather low value if the pool size is large. As it is
determined that changing the probability measure from P to Q does not have an impact on
the distribution type of the random variable Nt, we simply replace P by Q and t px by t p̃x
in (7) when specifying the distribution of Nt under Q. The stochastic independence of the
remaining lifetimes of the participants is preserved under Q accordingly.

Having clarified the risk-neutral probability measure Q, we discuss the pricing of the
unit-linked tontine in the following. We will start with a general tontine payout process Ψt
and then continue by examining specified alternatives for it. We always assume that
the rates of convergence of t px and t p̃x towards 0 if t goes to infinity exceed the rates of
convergence or divergence of the other time-dependent quantities in order to guarantee that
all improper integrals with respect to t necessary throughout the subsequent sections exist.2

3.1. General Payment Structure

First, let Ψt be a general tontine payout process. Next, the single initial premium P0
can be calculated via the risk-neutral pricing approach as

P0 = EQ

[∫ ∞

0
e−rtDtdt

∣∣∣∣F0

]
= EQ

[∫ ∞

0
e−rt nΨt

Nt
1{ζx>t}dt

]

= n
∫ ∞

0
e−rtEQ[Ψt]EQ

[
1{ζx>t}

Nt

]
dt,

(10)
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where the stochastic independence between WQ and (ζx, N, ε) is applied in the last step.
The latter expected value in (10) is given by

EQ

[
1{ζx>t}

Nt

]
=

1
n

It, (11)

where

It =
∫ 1

−∞

(
1−

(
1− t p̃x

1−z
)n)

fε(z)dz. (12)

The detailed derivation of (11) is reported in Appendix A. Consequently, we obtain
the following general pricing formula:

P0 =
∫ ∞

0
e−rt ItEQ[Ψt]dt. (13)

3.2. Specified Payment Structures

In the following, we consider two specified variants for the tontine payout process Ψt,
which can be interesting to examine and may have potential for tontine product design. We
determine the single premiums that need to be contributed by the individual if she wants
to buy the corresponding unit-linked tontine.

As our focus is on payments with a direct linkage to the financial market, i.e., to the
developments of the risky and of the risk-free asset, hereafter, we assume that for payout
purposes, the insurer creates a tontine payment account Ψ whose value can be amounted
to the portfolio given in (8). We assess the following cases on how to potentially define Ψt:

(A) Let us first consider the case where the tontine payout process is equal to the portfolio
value V explicitly given in (8), i.e.

Ψt = Vt. (14)

This means that the tontine payout process at time t simply complies with a money
stock amounting to Vt. To generate this amount, the insurance company can invest
in the risky and the risk-free asset according to the trading strategy applied in the
corresponding portfolio. By the choice given in (14), the full potential of the financial
market will be passed on to the customers within a tontine framework. By (2), the
total tontine payment to the policyholder at time t in this case is given by nVt

Nt
1{ζx>t}.

(B) Second, inspired by participating life insurance policies with guaranteed payments
(see, e.g., Briys and de Varenne 1994), we stipulate

Ψt = Gt + α(Vt − Gt)
+, (15)

where Gt > 0 denotes the guaranteed payment at time t and α ∈ (0, 1] is the constant
participation rate, and where (Vt − Gt)

+ = max{Vt − Gt, 0}. Thus, the tontine payout
process coincides here with a predetermined payment function represented by Gt
as long as the financial market performs poorly, i.e., Vt is low, so that Vt ≤ Gt holds.
On the contrary, if the financial market performs well, i.e., Vt is high, so that Vt > Gt,
an additional participation in the positive difference Vt − Gt at the rate α is included.
Employing the choice given in (15) can satisfy customers, who appreciate additional
guarantee components smoothing uncertain payout structures. By (2), the total tontine

payment to the policyholder at time t in this case is given by
n(Gt+α(Vt−Gt)

+)
Nt

1{ζx>t}.

The tontine pricing in Cases A and B is summarized in the following two propositions:
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Proposition 1 (Case A). If Ψt is defined as in (14), the single initial premium of the resulting
version of the unit-linked tontine product is given by

P0 = V0

∫ ∞

0
Itdt. (16)

Proof. With the aid of the general pricing formula given in (13) and by using

EQ[Ψt] = EQ[Vt] = V0ert

due to the fact that the discounted portfolio value process is a Q-martingale, we ob-
tain (16).

Proposition 2 (Case B). If Ψt is defined as in (15), the single initial premium of the resulting
version of the unit-linked tontine product is given by

P0 =
∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt, (17)

where Φ is the distribution function of the standard normal distribution and the functions d̃t and d̂t
are given by

d̃t =
ln
(

V0
Gt

)
+ rt + σ2

2

∫ t
0 π2

s ds

σ
√∫ t

0 π2
s ds

and d̂t = d̃t − σ

√∫ t

0
π2

s ds. (18)

Proof. The proof of Proposition 2 is reported in Appendix B.1.

Remark 1. From the insurer’s perspective, managing such unit-linked products would require
the insurer to pay transaction costs that are linked to hedging activities against fluctuations of the
risky asset in the financial market and of the mortality development. For instance, in Case B, if
we ignore the mortality risk, the insurer has to hedge against selling a guaranteed amount plus
the call option, which by put-call parity is equivalent to selling the portfolio value plus the put
option. In bad market scenarios when the risk asset price goes down, more hedging activities would
be needed; hence, it is true that the relative transaction price will be higher if the tail is longer. A
thorough analysis that includes transaction costs is interesting and left for future research. In the
real-world implementation, these transaction costs do impact the product design. We remark that
in the presence of transaction costs, hedging and pricing are no longer valid in the classical Black
and Scholes model. In such contexts, Leland’s increasing volatility method, as per Leland (1985),
would be helpful for compensating transaction costs and an approximately complete replication can
be expected by using the delta strategy calculated from a modified Black–Scholes equation with an
appropriate modified volatility. This prescription is based on the idea that the presence of transaction
costs implies an extra fee, which is necessary for the option seller in the replication problem, i.e.,
options become more expensive in the presence of transaction costs.

4. Utility Optimization

In the following, we conduct a utility maximization analysis to find out which of the
two unit-linked tontine variants suggested in Section 3.2 is more preferable to an individual
investor. To this end, for a given unit-linked tontine variant, we search for the optimal
investment strategy that maximizes the discounted expected utility of the policyholder in
this section. We numerically compare the utility optimums of the two variants with each
other and with those of the traditional tontine alternatives without unit-linked payments in
Section 5.
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Subsequently, we always assume that the policyholder’s utility function, denoted by u,
is of constant relative risk aversion:

u(c) =
c1−γ

1− γ
, (19)

where c > 0 represents the consumable input and γ > 0 adhering to γ 6= 1 is the measure
of the policyholder’s relative risk aversion. This choice is one of the most frequently used
utility functions to capture the preferences of individuals (see, e.g., Levy 1994; Sharpe
2017).3 In the design problems below, we assume that expectations are not subjective.

4.1. General Payment Structure

For a general tontine payout process Ψt, the objective of the optimization problem, i.e.,
the discounted expected utility, can be formulated and transformed as follows:

EP

[∫ ∞

0
e−ρtu

(
nΨt

Nt

)
1{ζx>t}dt

]
=

n1−γ

1− γ

∫ ∞

0
e−ρtκtEP

[
Ψ1−γ

t

]
dt, (20)

where ρ is the constant subjective discount rate of the individual and

κt = EP

[
1{ζx>t}
N1−γ

t

]

=
n−1

∑
k=0

1

(k + 1)1−γ

(
n− 1

k

) ∫ 1

−∞

(
t px

1−z
)k+1(

1− t px
1−z
)n−1−k

fε(z)dz. (21)

The formulation of the discounted expected utility in (20) arises from translating the
formula in (10) into the utility framework, while its transformation results from applying
the power utility function given in (19) and similar calculation techniques as before. Since
the individual has to provide a single initial premium out of her available initial wealth,
denoted by v > 0, to buy the tontine product, the pricing formula found in Section 3,
where the general version is given in (13) and the specified ones in (16) and (17), naturally
forms the budget constraint in the optimization problem. The decision variables in the
optimization problem are typically appropriate quantities occurring in the tontine payout
process Ψt. This means that we eventually search for the optimal specific form of Ψt, which
determines the tontine disbursements in such a way that the policyholder is endowed with
the highest utility level possible. The general representative maximization problem overall
is given by:

Problem 1.

max
(Ψt)t≥0

n1−γ

1− γ

∫ ∞

0
e−ρtκtEP

[
Ψ1−γ

t

]
dt

s.t. v = P0 =
∫ ∞

0
e−rt ItEQ[Ψt]dt.

Note that, strictly speaking, we shall put v ≥ P0 in the budget constraint. However, as
is typically done in this kind of optimization problem, the budget constraint is binding in
the optimal solution due to the steadily positive slope of u, such that we start immediately
with equality in the constraint.

4.2. Specified Payment Structures

Now, we consider the particular unit-linked payment designs from Section 3.2 spec-
ifying the tontine payout process Ψt in two different ways and modify Problem 1 ac-
cordingly. The emerging optimization problems are then, if possible, solved analytically.
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Concerning the fractions invested in the risky and the risk-free asset, we henceforth as-
sume that they stay constant over time and are non-negative and bounded from above
by 1, i.e., πt = π ∈ [0, 1] for all t. Note that these assumptions do not actually pose a
strict restriction: By their invariability, the fractions can also be regarded as the perpetual
average percentages which determine the long-term mean composition of the portfolio.
By generally forbidding short selling, we account for the fact that bans on short selling
(can) indeed exist, as in the case in Europe in March 2020 during the coronavirus pandemic
showed (see, e.g., Smith 2020). Applying a constant π simplifies the equations in (5), (6), (8)
and (18), accordingly.

Case A: Recall that we assume for Case A that Ψt = Vt holds. Therefore, it is reasonable to
choose π and V0 (note that V0 is not ν, the initial wealth) as the decision variables in the
corresponding optimization problem. In other words, we look for the optimal portfolio
parameter combination, namely for the fraction invested in the risky asset and the initial
investment amount that is supposed to be determined in such a way that the policyholder
comes off best.4 The appropriate maximization problem derived from Problem 1 and (16)
is given by

Problem 2 (Case A-bounded investment strategy).

max
(Ψt)t≥0

n1−γ

1− γ

∫ ∞

0
e−ρtκtEP

[
Ψ1−γ

t

]
dt

s.t. v = P0 =
∫ ∞

0
e−rt ItEQ[Ψt]dt.

The objective of Problem 2 results from employing EP
[
V1−γ

t

]
=


V0e

(
r+(µ−r)π− γσ2

2 π2
)

t



1−γ

.

As it is possible to solve this problem analytically, we summarize the related optimizing
quantities in a proposition:

Proposition 3. The optimal values π∗A and V∗0
A for π and V0 solving Problem 2 are given by

π∗A =
µ− r
γσ2 1{µ−r≤γσ2} + 1{µ−r>γσ2} and V∗0

A =
v∫ ∞

0 Itdt
. (22)

Proof. The proof of Proposition 3 is reported in Appendix B.2.

We observe that the optimal value for the trading strategy in Proposition 3 coincides
with Merton’s fraction if µ− r ≤ γσ2 (see Merton 1969).

Case B: As we assume for Case B that Ψt = Gt + α(Vt − Gt)
+ holds, it is sensible to again

choose π and V0 as the decision variables in the corresponding optimization problem.5

By means of Problem 1 and (17), the maximization problem for Case B can be formulated
as follows:

Problem 3 (Case B-bounded investment strategy).

max
(π,V0)∈[0,1]×(0,∞)

n1−γ

1− γ

∫ ∞

0
e−ρtκt

· G1−γ
t

(
Φ
(

dt

)
+
∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

φ
(

y + dt

)
dy
)

dt

s.t. v = P0 =
∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt.

74



Risks 2022, 10, 78

The objective of Problem 3 results from employing similar calculation techniques as
before, which, inter alia, leads to

EP

[(
Gt + α(Vt − Gt)

+
)1−γ

]

=G1−γ
t Φ

(
dt

)
+
∫ ∞

dt

(
Gt + α

(
V0ert+(µ−r)πt− σ2

2 π2t+σπ
√

tz − Gt

))1−γ

φ(z)dz

=G1−γ
t

(
Φ
(

dt

)
+
∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

φ
(

y + dt

)
dy
)

,

(23)

where φ is the density of the standard normal distribution. Further, the substitution y = z− dt
is applied in the third line and the function dt is given by

dt =
ln
(

Gt
V0

)
− rt− (µ− r)πt + σ2

2 π2t

σπ
√

t
. (24)

If we try to solve this problem by using the method of Lagrange multipliers (see, e.g.,
Bertsekas 2014), the corresponding Lagrange function L(π, V0, λ), where λ is the Lagrange
multiplier, is defined as

L(π, V0, λ) =
n1−γ

1− γ

∫ ∞

0
e−ρtκtG

1−γ
t

(
Φ
(

dt

)
+
∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

φ
(

y + dt

)
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)

dt

+ λ

(
v−

∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt
)

.
(25)

The first-order condition with respect to π is given as
∂

∂π
L(π, V0, λ) =

n1−γ

1− γ

∫ ∞

0
e−ρtκtG

1−γ
t
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) 1
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φ
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·
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√
tyσ
√

ty−
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(
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) 1
π

d̃t
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)

dt

− λαV0σ
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0
Itφ
(

d̃t

)√
tdt = 0.

(26)

The first-order condition with respect to V0 is given as

∂

∂V0
L(π, V0, λ) =

n1−γ

(1− γ)V0σπ

∫ ∞
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e−ρtκtG

1−γ
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(
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ItΦ
(

d̃t

)
dt = 0,

(27)

and the one with respect to λ naturally coincides with the budget constraint:

v =
∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt. (28)

From (26) and (27), the following equation must hold true:
∫ ∞
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For the calculations in (26) and (27), the following identities are applied: ∂dt
∂π = 1

π d̃t,
∂d̂t
∂π = ∂d̃t

∂π − σ
√

t and

V0ertφ
(

d̃t

)
− Gtφ

(
d̂t

)
= 0. (30)

The detailed derivation of (30) is reported in Appendix A. The solution of the system
of Equations (28) and (29) (when it exists) provides the optimal values for π and V0 in
Case B. However, due to the complexity of this system of equations, we are unable to find
explicit formulas for the solution of Problem 3. Therefore, in what follows, we numerically

solve Problem 3 to find the optimal values π̃∗B and Ṽ∗0
B.

5. Numerical Analysis

In this section, we aim at discovering distinct characteristics of the introduced unit-
linked tontine product by means of numerical studies. For these studies, concrete as-
sumptions about definite numbers for the various appearing parameters and about other
modeling implementations need to be made initially. Subsequently, the specific main
objective is to compare, in terms of the utility of a policyholder, our two different variants
for the unit-linked tontine product established and priced in Section 3.2, and optimized
in Section 4.2 within several sensitivity analyses. Additionally, we seek to integrate the
traditional tontine with non-unit-linked payments into this comparison. Thereby, we are
able to indicate whether the individual, in the analyzed instances, prefers that the tontine
payment is linked to the financial market.

5.1. Setup

First, let us set up the overall framework with the different assumptions for our
numerical studies. We start with the determination of the modeling of the shocked survival
curves t px

1−ε and t p̃x
1−ε, respectively. We initially specify the survival probabilities t px

and t p̃x as

t px = e−
∫ t

0 mx+τdτ = e
e

x−g2
g1

(
1−e

t
g1

)

and t p̃x = e−
∫ t

0 m̃x+τdτ = e
e

x−g̃2
g1

(
1−e

t
g1

)

, (31)

where

mx+τ =
1
g1

e
x+τ−g2

g1 and m̃x+τ =
1
g1

e
x+τ−g̃2

g1 , (32)

are the individual’s forces of mortality at the age of x + τ with τ ≥ 0 following the Gom-
pertz law of mortality (see, e.g., Milevsky and Salisbury 2015) under P and Q, respectively.
We refer to g1 > 0, g2 > 0 and g̃2 > 0 as the first Gompertz parameter describing the dis-
persion and the second Gompertz parameters describing the modal ages at death. Note
that we assume that g1 remains the same under both probability measures P and Q, and
that g̃2 ≥ g2, so that (9) is fulfilled. For the mortality shock ε, following Chen et al. (2019),
we assume its distribution to be truncated normal:

ε ∼ N(−∞,1)

(
η1, η2

2

)
, (33)

where η1 and η2
2 are the mean and the variance parameter of the normal distribution

truncated on the interval (−∞, 1), respectively. Table 1 summarizes the assumed baseline
values for the relevant parameters and their corresponding ranges for n, µ, σ, γ and ρ, used
in our sensitivity analyses.

When choosing the parameter values given in Table 1, we include the following
considerations:
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• For the choice of the value for r, we take account of the current low interest rate
environments in many European countries. For example, the average risk-free rate
on investments in the United Kingdom in the year 2020 equals only 1.1% (see Statista
2020a);

• For the choice of the value for γ, we refer to Thomas (2016); Thomas et al. (2010), who
mention an estimate of the average risk aversion of British citizens that amounts to 0.85
when considering the power utility function. In Thomas et al. (2010); Waddington
et al. (2013), an average risk aversion γ ∈ (0.8, 1) is obtained;6

• For simplicity, we equate the value for ρ with the one of the risk-free interest rate.
This is a common assumption. However, note that the cases r > ρ and r < ρ are also
considered when letting ρ vary in the sensitivity analyses;

• For the choice of the value for v, we are guided by Royal London (2018). In this report,
it is estimated that an average British employee needs to invest £260,000 in her private
pension provision to maintain the same standard of living as in her working period
during the retirement phase;

• For the choices of the values for g1 and g2, we follow Milevsky (2020), who presents 9.38
and 88.85 for the two Gompertz parameters for British females. For the choice of the
value for g̃2, we roughly convert the corresponding applied numbers from Chen
and Rach (2019) into our framework, where we take into account that the (implicit)
safety loadings included in the premiums, that stem from the usage of the risk neutral
probability measure Q during pricing can depend on the pool size n. As described
in Section 3, a higher n implies that less unsystematic mortality risk is incorporated
in the tontines and, consequently, lower (implicit) safety loadings can be chosen.
We handle this by considering g̃2 as a function of n. By linearly interpolating, we
find g̃2(n) = −0.0062n + 95.08. Using this relation guarantees that t p̃x, and thereby
also the (implicit) safety loadings, decreases in n. Note that the condition g̃2(n) ≥ g2
is fulfilled in all considered instances, such that t p̃x(n) ≥ t px.

Table 1. Specification of relevant parameters for numerical studies.

Symbol Description Value Range

n Initial number of participants 100 [1, 1000]
x Initial age of the participants 65 −
µ Drift rate of the risky asset 0.1 (0.01, 0.2]
σ Volatility of the risky asset 0.35 (0, 0.7]
r Risk-free interest rate 0.01 −
γ Measure of the policyholder’s risk aversion 0.85 (0, 5]\{1}
ρ Subjective discount rate 0.01 [0, 0.05]
v Available initial wealth £260,000 −
g1 First Gompertz parameter 9.38 −
g2 Second Gompertz parameter under P 88.85 −
g̃2 Second Gompertz parameter under Q 94.46 −
η1 Mean parameter of the truncated normal distribution −0.0035 −
η2

2 Variance parameter of the truncated normal distribution 0.08142 −

We also need to introduce a practicable choice in Case B for the guaranteed payment Gt,
which has not been specified so far. Since we aim at taking account of the circumstance
that the individual’s attitude towards the guaranteed payment can change if she gets older,
we choose

Gt = Geδt, (34)

where G > 0 is the prescribed constant initial guarantee amount and δ the guarantee growth
rate. By this stipulation, we can consider different situations, such as the case in which the
liquidity needs of the policyholder increase with age, which can be modeled by choosing a
positive δ. If it is required that Gt is time-independent, i.e., a constant over time, simply
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let δ = 0. We choose G in such a way that the value of the guaranteed payments at time 0
corresponds to a fraction, say g ∈ (0, 1), of the total premium. Relying on (13), which
represents the described correspondence if P0 = v is multiplied by g and Ψt is replaced
by Gt, we obtain

G =
gv∫ ∞

0 e−(r−δ)t Itdt
. (35)

For the three case-related parameters α, δ and g, we summarize their assumed baseline
values in Table 2. For the sensitivity analyses below, the corresponding ranges of δ and g
are also presented in Table 2.

Table 2. Specification of relevant parameters related to Case B for numerical studies.

Symbol Description Value Range

α Participation rate 0.9 −
δ Guarantee growth rate 0.01 [−0.03, 0.05]
g Guaranteed premium fraction 0.75 (0, 1)

The following considerations are taken into account when choosing the parameter
values given in Table 2:

• For the choice of the value for α, we first notice that participation rates between 80%
and 100% are commonly practiced in reality (see, e.g., Bacinello et al. 2018). Applying
the mean value appears appropriate;

• We choose the value for δ to be equal to r = 0.01. Note that the cases where r > δ
or r < δ are also considered when letting δ vary in the sensitivity analyses;

• For the choice of the value for g, we first notice that the guaranteed premium fraction is
often chosen between 60% and 90% in practice, as this can be exemplarily observed for
the product “GarantieRente Performance” offered by Gothaer (2021). Again, applying
the mean value appears appropriate.

5.2. Comparison

The main questions we intend to answer in this numerical analysis are as follows:

• From the individual’s viewpoint, which of the two introduced unit-linked tontine
variants is preferred? How does this preference depend on the parameter values?

• From the individual’s viewpoint, how does the introduced unit-linked tontine product
perform in comparison to the traditional tontine product with no financial market
component? How does this performance ordering depend on the parameter values?

These questions will be answered in Section 5.2.2, where we present our numerical re-
sults and sensitivity analyses based on the assumptions made in Section 5.1. In preparation
for this, a short overview of the necessary details on the traditional tontine is given and the
precise comparison approach is explained in Section 5.2.1.

5.2.1. Traditional Tontine and Comparison Approach

Recall that the traditional tontines established in Milevsky and Salisbury (2015) are
introduced in Section 2.1, where its total payment is given in (1). In order to buy a traditional
tontine, we assume that the individual also spends her available initial wealth v to pay the
single initial premium charged for it. By replacing the tontine payout process Ψt in (13) by
the tontine payout function dt, this premium can be calculated via

P0 =
∫ ∞

0
e−rt Itdtdt. (36)

We consider two different variants of specific forms of dt, one rather theoretical and
one rather practical. The first one, which is also examined in, e.g., Chen et al. (2019),
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arises directly from the maximization of the discounted expected utility associated with
the purchase of the traditional tontine. In the corresponding optimization problem, dt is
naturally chosen as the decision variable. Details on this problem and its solution that is
given by the optimal version d∗t for dt are reviewed in Appendix C. We refer to the resulting
product as the optimal traditional tontine. For the second specific form of dt, we use one
of the so-called natural tontines proposed by Milevsky and Salisbury (2015). This more
practicable payout function is given by

dt = EQ
[
1{ζx>t}

]
d = t p̃xEQ

[
e− ln(t p̃x)ε

]
d = t p̃x Mε(− ln(t p̃x))d, (37)

where d > 0 is constant over time and determined by plugging (37) in the budget con-
straint v = P0, where P0 is given in (36):

d∗ =
v∫ ∞

0 e−rt It t p̃x Mε(− ln(t p̃x))dt
. (38)

Note that by applying (37), the total payment to the living traditional tontine holder
is actually also constant over time if deaths in the pool occur as expected. We refer to the
product resulting from (37) and (38) as the natural traditional tontine.

For the comparison, we look at the (maximized) discounted expected utilities arising
from the optimal findings in Section 4.2 and from above that the individual attains when
acquiring the respective tontine product alternatives. They are denoted by EU∗A and EU∗B

in case of the two unit-linked tontines from Case A and Case B, respectively, by EU∗OT

in case of the optimal traditional tontine and by EU∗NT in case of the natural traditional
tontine. For the sake of completeness, an overview of the formulas for the different (max-
imized) discounted expected utilities is given in Appendix D.7 The reason why such a
direct comparison approach is valid within our framework is that the individual spends the
same initial wealth v for every product variant. Therefore, since the purchase costs for the
policyholder are always identical, she rationally prefers the tontine that provides her with
the highest utility. To make our comparison results easier to interpret, we do not straight-
forwardly consider the different (maximized) discounted expected utility levels, but the
corresponding certainty equivalents, which are the safe amounts that make the individual
indifferent between obtaining them and the optimal uncertain total payments of the tontine
products. These certainty equivalents, which are denoted by CE∗ j with j ∈ {A, B, OT, NT}
marking the respective product variant, are thus calculated by using the same concept as
in (20) and the quantities EU∗ j for equating:

EP

[∫ ∞

0
e−ρtu

(
CE∗ j

)
1{ζx>t}dt

]
= EU∗ j

⇔CE∗ j =

(
(1− γ)EU∗ j

(∫ ∞

0
e−ρt

∫ 1

−∞
t px

1−z fε(z)dzdt
)−1

) 1
1−γ

.

(39)

As EU∗ j is strictly increasing in CE∗ j, comparing the (maximized) discounted expected
utilities is equivalent to comparing the certainty equivalents.

5.2.2. Numerical Results and Sensitivity Analyses

In Table 3, we show the first numerical findings, namely the ones for CE∗ j, that emerge
from applying the baseline parameter values given in Tables 1 and 2 (for Case B).8
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Table 3. Certainty equivalents of different tontines with baseline parameter values.

CE∗A £15,180.83
CE∗B £11,948.69
CE∗OT £14,066.46
CE∗NT £13,647.26

Comparing the certainty equivalents reported in in Table 3 shows that the policyholder
is in the best position as long as she holds the unit-linked tontine designed in Case A. When
comparing only the unit-linked tontine variants, it is more beneficial for the individual
if the tontine payout process does not include an additional guaranteed payment as in
Case B, but rather simply complies with the entire portfolio value that arises entirely out
of optimally investing in the financial market. The unit-linked tontine variant from Case
B actually performs worse than the traditional tontine, where even the more practicable
version, the natural traditional tontine, surpasses it by far, i.e., CE∗NT � CE∗B. Do the
previous observations also hold if certain parameter values change?

In Figures 1 and 2, we show the numerical comparison findings that emerge from
applying the parameter ranges given in Table 1. In particular, we present the resulting
curves for CE∗ j if the parameters n, µ, σ, γ and ρ vary, respectively.9
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Figure 1. Effects of n (a), µ (b) and σ (c) on certainty equivalents.
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Figure 2. Effects of γ (a) and ρ (b) on certainty equivalents.

Two main observations can be universally drawn from Figures 1 and 2:

• Overall, we detect in each graph that, like in Table 3, the unit-linked product from
Case A provides the policyholder with a higher certainty equivalent than the one from
Case B. As such, varying parameter values does not seem to affect the performance
order between the two unit-linked tontine alternatives (at least not for the parameters
and their ranges under consideration). Nevertheless, the performance of the tontine
from Case B more and more approaches that of the one from Case A if µ decreases or
if σ or γ increases;

• There exist regions in which the unit-linked tontine variants make the individual
better off than the traditional tontine variants. This is not very surprising for Case A,
as is known. However, it reveals that our Case B can also outperform the traditional
tontine in some parameter constellations. This emphasizes the potential attractiveness
of this participating tontine, especially to customers who consider additional guar-
antee components important. We remark that participants preferring guarantees are
typically loss averse, see e.g., Berkelaar et al. (2004); Kahneman and Tversky (1979).
In particular, the unit-linked tontine performs well if n is either very low or high,
if µ is high or if σ, γ or ρ is low. On the whole, we conclude that if the traditional
tontine product is consulted as a basis for comparison, it is possible that the unit-linked
counterpart is more successful among the customers and, thus, it seems reasonable to
promote it.

As already pointed out by Chen et al. (2021) (Theorem 5.2), the impact of the pool
size on the attractiveness of a tontine is not monotonically increasing. In their context,
they compare tontines with annuities and the critical pool size determines the preference
ordering between annuities and tontines. After the pool size reaches a certain magnitude,
tontines will become, for instance, more attractive than conventional annuities. They
observe that this number is rather small for a conventional tontine case. Now, in our
unit-linked products, this number seems rather large, shown in Figure 1a to be larger than
200, beyond which the attractiveness of the unit-linked tontine products increases in the
pool size.

In order to get a better understanding of the findings derived from Table 3 and of the
above-mentioned observations based on Figures 1 and 2, we show in Figure 3 the means
and 0.01-/0.99-quantiles under P of the optimal total payments for Cases A and B and the
traditional tontine with respect to age. For the generation of the graphs, we assume that
the considered policyholder is always alive and that the parameters attain their baseline
values given in Tables 1 and 2 (for Case B).10

By comparing Case A and Case B by means of Figure 3, the effect of the guaranteed
payment picked up in Case B becomes clear: In Figure 3c, we notice that the 0.01-quantile
curve for Case B is almost always significantly above the one for Case A. This implies
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that the inclusion of the guaranteed payment prevents the policyholder in Case B from
receiving a very low total payment in bad market scenarios. Yet, at the same time, the
guaranteed payment also limits a possible positive development of the total payment in
good market scenarios, which is, however, completely exploited by the unit-linked tontine
from Case A. This is recognizable by the 0.99-quantile curves displayed in Figure 3a,b.
Since the scale of the 0.99-quantiles, especially in Figure 3b, is much larger than the one
of the 0.01-quantiles in Figure 3c, the dominance of Case A in good market scenarios
clearly outperforms the dominance of Case B in bad market scenarios. Hence, as visible in
Figure 3a,b, the mean of the total payment for Case A is consistently higher than the one
for Case B. Due to the fact that the power utility function is strictly increasing, we can infer
from this finding that CE∗A > CE∗B holds, as observed above for the given parameters.
Moreover, we, particularly in Figure 3a,c, see that the curves for the traditional tontine,
which is represented here by the optimal version, can be above or below the ones for the
unit-linked tontine. That is why the policyholder prefers the traditional tontine to the unit-
linked tontine in some instances, while in others she does not, as apparent from Figures 1
and 2. The partial dominance of the traditional tontine explicitly shown in Figure 3 suffices
to beat the performance of the unit-linked tontine from Case B, but not the one from Case A.
This can be observed from Table 3, where all parameters also attain their baseline values.
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Figure 3. Means and 0.99-quantiles at earlier retirement ages (a) and at more advanced retirement
ages (b), and 0.01-quantiles (c) of optimal total payments for Cases A and B and the optimal traditional
tontine (OT) depending on age, assuming that the policyholder is always alive and the parameters
attain baseline values.

In the following, the impacts of the parameters n, µ, σ, γ and ρ and, eventually of the
varying parameters δ and g, being only related to Case B, will be discussed in detail.
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Sensitivity Analyses Regarding n

In Figure 1a, we notice right away the converse behavior of CE∗A and CE∗B with regard
to CE∗OT and CE∗NT as long as the initial number n of participants in the pool ranges within
relatively small values. Especially when an extremely small pool takes in a very few new
participants, the policyholder’s benefit drops sharply in case of the unit-linked tontine,
whereas it rises quickly for the traditional tontine. From around n = 250 on, the courses
of the curves belonging to the unit-linked tontine switch to an upward movement, which
becomes even steeper than the one for the traditional tontine. In summary, a purchase
decision in favor of the unit-linked tontine is wise if the pool size is either very small
or large.

In order to get a better understanding of the recorded observations, we let n vary again

and study the resulting optimal values V∗0
A and Ṽ∗0

B for the initial investment amount in
Figure 4.
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Figure 4. Effect of n on optimal values for the initial investment amount.

We observe very similar curve shapes for V∗0
A and Ṽ∗0

B in Figure 4 compared to the
ones for CE∗A and CE∗B in Figure 1a, namely the strong decline in n at the beginning,
which quickly lessens and, from around n = 250 on, turns into an increase. Consequently,
it seems that the behavior of the initial investment amount for a varying pool size causes
the performance development of the unit-linked tontine described above. If we exemplarily
consider the formula in (22) for V∗0

A, only the initial decrease appears plausible at first
glance. However, when we recall that lower (implicit) safety loadings included in the
premiums can be chosen if n grows by reducing t p̃x, just like we do, it is comprehensible
why the decrease can be slowed down and possibly even be reversed at some point. Below,
we provide more interpretations to the impact of the pool size n:

• Unit-linked products can outperform the traditional tontines (both the natural tontine
and the optimal tontine), but can also be beaten by the traditional ones. With the
chosen parameters, the unit-linked tontine type A outperforms, while the unit-linked
tontine type B is beaten by, the traditional ones;

• For the given parameters, we observe that the unit-linked products with n = 1 leads
to the highest utility level. It is implied that the unit-linked annuity is most favored.
However, let us point out that the result depends substantially on the choice of the
parameters;

• The main message is that, depending on the design of the unit-linked tontine products
including the pool size, the unit-linked tontine product can be attractive for some
individuals. Among all these products, there is no dominance in terms of expected
utility. The unit-linked products enriches the variety of the products.

Sensitivity Analyses Regarding µ and σ

If the policyholder chooses the unit-linked tontine, we observe in Figure 1b,c that her
utility enhances more and more as long as the drift rate µ of the risky asset increases and
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its volatility σ decreases, respectively. This is because the risky asset, in which investments
are made within the framework of the unit-linked tontine, is clearly more profitable if
its return grows and its risk reduces, as can be seen, for example, from a higher Sharpe
ratio µ−r

σ , which eventually is naturally also more beneficial to the policyholder. As the
certainty equivalents associated with the traditional tontine are apparently not affected by
a varying µ or σ due to its payout’s independence of the financial market, there is a certain
level at which the performance of the risky asset is so good that the traditional tontine is no
longer preferred.

Sensitivity Analyses Regarding γ and ρ

In Figure 2a, we find that CE∗ j declines for all j for higher values of γ, which means
that each tontine variant gets less interesting for the individual when she becomes more
risk-averse. This is because the risk inherent in the tontines is borne, to a great extent, by
all participants in the pool, and the payments to the policyholder are, hence, uncertain to
some extent. If the policyholder embraces less of this risk, i.e., she is more risk-averse and
prefers more stable payments, her personal benefit is, thus, smaller. However, the curves
displaying CE∗A and CE∗B exhibit (partly much) steeper slopes than those for CE∗OT

and CE∗NT due to the fact that the unit-linked tontine alternatives contain more risk,
namely not only the mortality risk but also the financial risk component. Therefore, if the
policyholder tolerates more risk, i.e., she is less risk-averse (γ decreases) and prefers riskier
payments, the unit-linked tontine is definitely the better choice. In Figure 2b, it can be
observed that when the subjective discount rate ρ grows, the personal utilities induced
by buying the examined tontines constantly diminish. The only exception is the optimal
traditional tontine that regains some attractiveness for higher values of ρ in consequence of
the specific structure of d∗t , which is explicitly given in Appendix C. Since a higher subjective
discount rate means that the individual tends to consume more at earlier retirement ages,
the decreases of CE∗A and CE∗B in ρ are explainable by the steady increases of the means
of the total unit-linked tontine payments over time, as this is exemplarily illustrated in
Figure 3a,b. In these two figures, we also observe that the magnitudes of the two mean
curves for the unit-linked tontine variants are a lot greater compared to the traditional
tontine. This gives a reason for the steeper slopes of the curves displaying CE∗A and CE∗B

in Figure 2b.

Sensitivity Analyses Regarding δ and g

When considering the choice for Gt as introduced in (34) and (35) for Case B, we
are especially interested in the impact of the guarantee growth rate δ and the guaranteed
premium fraction g on the policyholder’s tontine product preference. To analyze this, we
look at the resulting curves for CE∗B, CE∗OT and CE∗NT depicted in Figure 5, where the
ranges given in Table 2 are applied.
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Figure 5. Effects of δ (a) and g (b) on certainty equivalents.
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Both graphs of Figure 5 demonstrate a similar curve progression for CE∗B. In particular,
the resulting certainty equivalents are negatively proportional to δ and g. However, as the
payout of the traditional tontine does not depend on δ and g, neither CE∗OT nor CE∗NT

changes. As a consequence, it is possible that the policyholder benefits more from the
unit-linked tontine designed in Case B than from the traditional tontine if the guaranteed
payment is low enough. On the other hand, a high guaranteed component in the unit-linked
tontine may adversely affect the performance of the product due to stronger limitations on
possible investment gains.

6. Conclusions

In the present article, we propose unit-linked tontine products that combine the tontine
concept with the idea underlying unit-linked insurance policies, i.e., to tie payouts to the
developments in the financial market. We examine a general payment structure of the
product and analyze two specified payment structures. The two risk types contained in
the unit-linked product are the financial risk stemming from the risky asset existing in the
financial market and the mortality risk, for which we actually also incorporate the system-
atic part in our model. The premium required to buy the unit-linked tontine is determined
in a risk-neutral pricing framework. Further, we study the optimal expected utility of an
individual purchasing the unit-linked tontine by adjusting the payment structure. In our
numerical comparison and sensitivity analyses, we contrast the policyholder’s benefits
arising out of the two optimized unit-linked tontine variants, as well as the optimal and the
natural traditional tontine. In particular, we find that there exist circumstances in which the
unit-linked tontine endows the policyholder with a higher utility level than the traditional
tontine, emphasizing the potential of the suggested unit-linked tontines. More precisely,
under our numerical setting with power utility functions, the unit-linked tontines might
be a potential choice for the policyholder when the expected return of the risky asset is
high or if the volatility of the risky asset, the policyholder’s risk aversion or her subjective
discount rate is low. Moreover, we observe that if its payout process is stipulated by the
pure financial market portfolio value, the unit-linked tontine consistently makes the poli-
cyholder better off than in the case where it includes guaranteed payments. However, its
performance approaches more and more that of the superior variant if the expected return
of the risky asset decreases or if the volatility of the risky asset or the policyholder’s risk
aversion increases. Furthermore, when comparing the case with guaranteed payments with
the traditional tontine with no financial market component, this case can nevertheless be
attractive, especially to customers who consider additional guarantee elements important.
Our findings would give reason to further study this new type of product in more realistic
settings that take practical aspects into account, for instance, how the provider hedges the
mortality and financial market risks related to the unit-linked tontines and what the net
loss of the provider is. A thorough analysis of the hedging perspective requires a more
dynamic framework and will be left for future research.
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Appendix A. Detailed Derivations

The equality in (11) holds for all t as
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The equality in (30) holds for all t as, with π denoting the ratio of a circle’s circumfer-
ence to its diameter,
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Appendix B. Proofs

Appendix B.1. Proposition 2

Proof. With the aid of the general pricing formula given in (13), we obtain the claim since
the equality in (17) holds as

EQ[Ψt] = EQ
[

Gt + α(Vt − Gt)
+
]
= Gt + αEQ

[
(Vt − Gt)

+
]
,
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Appendix B.2. Proposition 3

Proof. As the budget constraint in Problem 2 depends only on V0 and not on π, the optimal
value for V0 is already completely determined by this constraint, so that we immediately
obtain

V∗0
A =

v∫ ∞
0 Itdt

,

which is obviously positive, so that we also stick to the condition that V0 > 0. Consequently,
the budget constraint is entirely taken care of by V∗0

A and, thus, the determination of the
optimal value of the trading strategy π can be done by simply maximizing the objective of
Problem 2 with respect to π. To this end, we realize the shape of the objective as a function
of π by considering the corresponding derivative:
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The identified derivative is positive (negative), i.e., the objective is strictly increasing
(decreasing) in π, if

µ− r− γσ2π >
(<) 0⇔ π <

(>)
µ− r
γσ2 .
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Since we also need to adhere to the condition that π ∈ [0, 1], it is clear that, as long
as µ− r ≤ γσ2, the optimal value for π is given by π∗A = µ−r

γσ2 . Otherwise, if µ− r > γσ2,

it is π∗A = 1. Overall, we find

π∗A =
µ− r
γσ2 1{µ−r≤γσ2} + 1{µ−r>γσ2}.

Appendix C. Review of Optimization Problem for Traditional Tontine

In the style of Problem 1, the maximization problem for the traditional tontine with
the decision variable dt can be, by using (36) and replacing Ψt by dt, formulated as follows:

max
(dt)t≥0
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By applying the techniques in Chen et al. (2019), it can be shown that the optimal
solution is given by
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where the optimal Lagrange multiplier is given by
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Appendix D. Overview of Formulas for (Maximized) Discounted Expected Utilities

The formulas for the different (maximized) discounted expected utilities EU∗ j with
j ∈ {A, B, OT, NT} that are applied for the comparison are listed in the following overview:
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where d
∗
t is given as in (24), but with π replaced by π̃∗B and V0 replaced by Ṽ∗0

B.

Notes
1 For simplicity, we have assumed log-normal risky asset dynamics, which, as well documented, may not be very realistic. It

would be interesting to look at the unit-linked tontine design problem in more general settings where the asset volatility is
random when fat-tailed returns and volatility clustering are taken into account (see, e.g., Cont and Tankov 2004; Fouque et al.
2000). The continuity assumption of the stock price is relaxed in order to capture sudden and unpredictable market changes (see,
e.g., Cont and Tankov 2004). Also, for such long-term investment problems, it would be more realistic to incorporate interest rate
fluctuations (see, e.g., Hull and White 1990; Vasicek 1977).
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2 This assumption is actually fulfilled for our specific choices of t px and t p̃x in our numerical analysis, where they are given in (31)
in Section 5.1.

3 Further properties of and a detailed discussion about the power utility function family can be found in, e.g., Wakker (2008).
4 In general, it is true that an optimal value for V0 can theoretically become arbitrarily large, which would not be feasible in reality.

However, due to the budget constraint, this can be prevented and, thus, choosing V0 as a decision variable is reasonable. For
example, the optimal value for V0 in Case A given in (22) is high only when it is justified, namely if the initial wealth spent by
the individual is large or if her survival probability is low, for instance.

5 It should be pointed out that Gt and α can theoretically also serve as decision variables. A practicable option for Gt is presented
and discussed in Section 5.1.

6 We remark that a baseline γ > 1 or another type of utility function may lead to different conclusions.
7 The discounted expected utility for the natural traditional tontine diverges for too high values of γ, i.e., EU∗NT goes to minus

infinity if γ� 1. Consequently, we do not consult the natural traditional tontine if γ attains rather large values.
8 If the two required values π̃∗B and Ṽ∗0

B for Case B introduced in Section 4.2 cannot be uniquely determined for the numerical
outcomes in this section, this is adequately reported in the related paragraphs hereinafter.

9 Due to the divergence of the discounted expected utility for the natural traditional tontine as soon as γ gets too large, we show,
in the case, where γ varies, CE∗NT only as long as γ ranges within (0, 1). Further note that as long as we assess the sensitivity
towards a parameter in any analysis in this section, all the remaining parameters attain their baseline values, if not stated
otherwise.

10 In detail, the applied total payments in Figure 3 are determined, for Case A, by nV∗t
Nt

, where V∗t = V∗0
Aert+(µ−r)π∗At− σ2

2 (π∗A)
2
t+σπ∗AWt ,

for Case B, by
n(Gt+α(V∗t −Gt)

+)
Nt

, where V∗t = Ṽ∗0
Bert+(µ−r)π̃∗Bt− σ2

2

(
π̃∗B

)2
t+σπ̃∗BWt , and, for the optimal traditional tontine, by nd∗t

Nt
.

Note that the computation of all depicted quantities is done numerically, where we divide the relevant time line running from t = 0
to t = 35 by a constant discretization step size of 0.025, which means that we overall analyze 1401 points, and simulate each occurring
random variable 450,000 times.
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Abstract: While a lot of research concentrates on the respective merits of VaR and TCE, which are
the two most classic risk indicators used by financial institutions, little has been written on the
equivalence between such indicators. Further, TCE, despite its merits, may not be the most accurate
indicator to take into account the nature of probability distribution tails. In this paper, we introduce a
new risk indicator that extends TCE to take into account higher-order risks. We compare the quantiles
of this indicator to the quantiles of VaR in a simple Pareto framework, and then in a generalized
Pareto framework. We also examine equivalence results between the quantiles of high-order TCEs.

Keywords: VaR; TCE; extended TCE; insurance regulation; risk measurement

1. Introduction

In the second half of the twentieth century, developed market economies had un-
dergone an inflationary period after World War II, followed by a disinflationary period
that started in the early 1980s accompanied by less regulation and greater reliance on
market forces. These developments resulted in improved economic performance, but also
increased volatility and market pressure on financial institutions following traditional fixed
capital standards. In order to address these developments, regulators have moved towards
risk-based capital requirements for financial institutions, while also allowing gradual re-
laxation of certain rules of governance of financial institutions and replacing them with a
principle-based approach.

The risk measures imposed by regulators on insurance companies share a common
feature: they are all related to the behavior of tails of the probability distribution of a firm’s
financial results. The reason is that the regulatory purpose of capital requirements is to
make capital available for absorbing losses occurring in extreme events, i.e., events of large
financial losses, which could bring about insolvency. Risk-based capital requirements are a
natural outgrowth of traditional prudential regulation aiming at preserving the solvency of
private financial institutions.

Hence, safety capital should be computed by looking at the extreme risks that can
impact financial institutions in general and insurance enterprises in particular. However,
regulators differ in their specification of the tail indicator that they recommend. Some
regulators impose the use of quantiles of the distribution (value at risk, or VaR), while
other regulators impose the use of partial moments (tail conditional expectation or TCE,
or an equivalent measure of expected shortfall). Furthermore, regulators also differ in
their choice of time horizon. Finally, they also differ in their choice of confidence level (i.e.,
probability value for the quantile, or for the conditional expectation).

Comité Européen des Assurances and Mercer Oliver Wyman Limited (2005) and CEA
(2007) provide a comparison of different regulatory regimes for capital requirements. The
most consequential regulation of risk-based capital is the European Union’s Solvency II.
Solvency II imposes risk-based capital requirements computed using the VaR as a risk
measure over a one-year period and with a confidence level of 99.5%. When Solvency II
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was being designed, it was to some degree modeled on the Basel II banking regulation, also
using VaR as a risk measure for capital requirement purposes, for market risk. The credit
crisis of 2008 in many ways exposed the weaknesses of VaR, and a new system of capital
regulation for banking, Basel III (see Basel Committee on Banking Supervision’s documents
from 2019 and 2022), has been developed and implemented since (see also Gatzert and
Wesker (2011) for a comparison of Solvency II and Basel regulations).

Solvency II is not only the main regulatory law for prudential regulation of insurance
enterprises in the European Union, but it has become a model for risk-based capital
requirements worldwide. The United States is one major exception to this trend, as the
U.S. model regulation of insurance firms’ capital preceded Solvency II, and it is designed
around a formula provided by the regulatory body, the National Association of Insurance
Commissioners (NAIC) (see also National Association of Insurance Commissioners (2007)
on ORSA perspectives).

The Canadian regulation of insurance capital differs from that of the European Union,
and it is based on risk assessment of the firm in the context of certain extreme events.
Canada’s Office of Supervision of Financial Institutions (OSFI) risk assessment process
begins with an evaluation of the inherent risk within each significant activity of an insurer
and the quality of risk management applied to mitigate these risks (see Canada Office
of Supervision of Financial Institutions 2022). After considering this information, OSFI
determines the level of net risk and direction (i.e., whether it is decreasing, stable, or
increasing) of the rating for each significant activity. The net risks of the significant activities
are combined, by considering their relative importance, to arrive at the overall net risk
(ONR) of the insurer. Furthermore, OSFI provides capital requirement guidelines, which
must be then included in insurers’ own risk and solvency assessment.

In the cases of both the United States and Canada, we see a significant regulatory
involvement in the supervision of risk-based capital. All regulators are, of course, involved
in this process, but the approach of the European Union and, notably, Switzerland, is more
principle-based than rule-driven. The Swiss regulation of risk-based capital for insurers
includes a capital standard, and stress-testing of certain extreme scenarios. The capital stan-
dard is based on the expected shortfall, or, equivalently, tail conditional expectation (TCE).

In this work, we focus on two regulations: Solvency II and the Swiss Solvency Test
(SST). The Swiss Solvency Test, implemented in 2004, preceded Solvency II, but in 2015 the
European Union recognized the SST as the first regime to be fully equivalent to Solvency
II. Solvency II imposes a capital requirement computed using value at risk (VaR) as a risk
measure over a 1-year period and with a confidence level of 99.5%, whereas SST uses TCE
with a confidence level of 99% over a 1-year period.

VaR and TCE are the most classic examples of risk measures (see for instance Linsmeier
and Pearson 2000; Klugman et al. 2012; Acerbi et al. 2001). A risk measure is a mapping
from the random variable representing risk exposure to the set of real numbers. It can be
interpreted as the amount of capital required to protect against adverse outcomes of a given
risk. The paper by Artzner et al. (1999) introduced the concept of coherence of risk measures
and has been very influential in the further development of risk measurement. A coherent
risk measure is defined by the following four properties: subadditivity, monotonicity,
positive homogeneity, and translation invariance. The properties of risk measures in the
context of insurance are discussed by Wang and Zitikis (2021). Acerbi and Tasche (2002)
noted that TCE is a coherent risk measure, while VaR is not (see also Society of Actuaries
(2000) on TCE).

Rostek (2010) provides an interesting alternative to evaluations of risk, a model of
preferences, in which, given beliefs about uncertain outcomes, an individual evaluates an
action by a quantile of the induced distribution. Fadina et al. (2021) designed a unified
axiomatic framework for risk evaluation principles, which quantifies jointly a loss random
variable and a set of plausible probabilities. They called such an evaluation principle a
generalized risk measure.
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Fuchs et al. (2017) show that a notion of a quantile risk measure is a natural general-
ization of that of a spectral risk measure and provides another view of the distortion risk
measures generated by a distribution function on the unit interval. In this general setting,
they prove several results on quantile or spectral risk measures and their domain with
special consideration of the expected shortfall. They also present a particularly short proof
of the subadditivity of the expected shortfall risk measure. Denuit et al. (2006) provide a
comprehensive review or modeling risk in incomplete markets, with emphasis on insurance
risks, expanding on and combining in a comprehensive review the existing literature on
quantitative risk management.

Li and Wang (2022) noted that the Basel Committee on Banking Supervision proposed
the shift from the 99% value at risk (VaR) to the 97.5% expected shortfall (ES) for internal
models in market risk assessment (see Basel Committee on Banking Supervision 2019, 2022).
Inspired by that development, Li and Wang introduced a new distributional index, the
probability equivalence level of VaR and ES (PELVE), which identifies the balancing point
for the equivalence between VaR and ES. PELVE has desirable theoretical properties, and it
distinguishes empirically heavy-tailed distributions from light-tailed ones.

Barczy et al. (2022) generalized and further developed the PELVE measure and applied
this indicator to a high-order TCE, which is distinct from the extended TCE introduced
in the present paper. Fiori and Rosazza Gianin (2021) construct another generalization by
constructing an indicator that relates monotone risk measures.

Our paper was developed independently from this stream of papers and develops
related comparisons of VaR and TCE quantiles, but without introducing an intermediate
indicator such as PELVE. A key contribution of our paper is the introduction of a new
risk indicator that extends TCE to take into account higher-order risks. We also provide
comparisons of this new indicator with more classic risk indicators.

More deeply, the goal of our paper is to understand how regulators choose such or
such risk indicators for solvency computations. Thus, our goal is to understand the implicit
utility function of insurance regulators and to understand how equivalent risk valuation
systems can be put in place, but we do so without introducing any type of utility function.
It is, of course, entirely possible that the regulations put in place are not fully a result of a
certain intent, but rather of a political process so that what we determine may not be the
output of an actual utility function of a specific regulator. However, making the implicit
functioning of actual regulations explicit should be a valuable contribution in assuring that
regulations function in an effective and efficient manner.

The paper makes use of two probabilistic assumptions, where we assume that claims
can be either Pareto or generalized Pareto (GPD) distributed. We make these assumptions
for two main reasons: they allow us to very conveniently derive readable results and they
are consistent with what is observed for claims with heavily distributed tails. The reader
interested in exploring situations where claims could be associated with semi-heavy tails
can be referred for instance to Le Courtois (2018) or Le Courtois and Walter (2014).

The paper is organized as follows. In Section 2, we provide a general overview of the
two main risk measures, VaR and TCE, and briefly discuss equivalence results that relate to
the confidence levels of VaR and TCE. In Section 3, we introduce a new and generalized
tail indicator, and we discuss the relation between the quantiles of this indicator and the
quantiles of VaR, in a simple Pareto framework, and then in a generalized Pareto framework.
Section 4 examines equivalence results between the quantiles of generalized indicators.

2. VaR and TCE

In this section, we recall key preparatory elements on VaR and TCE. We first recall
classic definitions. Then, we examine the link between VaR and TCE. We conclude with an
illustration of this link. These elements will be useful in the next section, where the core
contribution of the paper is developed.
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2.1. Definitions

The most used risk measure is value at risk (VaR), which is the expected worst loss
over a given horizon at a given confidence level. Linsmeier and Pearson (2000) define VaR
as the loss that is expected to be exceeded with a probability of only (1− α) percent during
the next holding period T. The role of regulators is to choose the value of the confidence
level α and of the horizon T.

From a mathematical viewpoint, suppose that FXT (x) represents the distribution
function of outcomes over a fixed period of time T of a portfolio of risks. An adverse
outcome is a loss and, in this case, positive values of the random variable XT are losses.
The VaR of the random variable is the α percentile of the distribution of XT , denoted by

VaRα(XT) = F−1
XT

(α).

According to the report of the National Association of Insurance Commissioners
(2007), tail conditional expectation (TCE)—or conditional tail expectation (CTE)—measures
the amount of risk within the tail of a distribution of outcomes, expressed as the probability-
weighted average of the outcomes beyond a chosen point in the distribution.

In the report produced by the CEA (2007), TCE measures the average losses over the
defined threshold (typically set as the VaR at a given confidence level α). In other words,
TCE is a conditional mean value, given that the loss exceeds the (1− α) percentile. It is
also often called tail value at risk (TVaR) or expected shortfall (ES). A broader analysis of
TCE and its properties can be found in Society of Actuaries (2000). From a mathematical
viewpoint, TCE is defined as follows:

TCEα(XT) = E[XT | XT ≥ VaRα(XT)].

Furthermore, if the random variable is continuous, we can write:

TCEα(XT) =
1

1− α

1∫

α

VaRu(XT) du.

2.2. Relation between VaR and TCE Quantiles

If we compute VaR and TCE using the same quantile, TCE will be always higher than
VaR, by construction. However, the quantiles for VaR and TCE are usually chosen to be
different by regulators. We study which relation should exist between these two quantiles.
Specifically, we examine how it is possible to find c and q such that VaRq = TCEc, where
q > c. We conduct our analysis when risks follow a generalized Pareto distribution.

Let XT be a random variable that follows a generalized Pareto distribution with three
parameters: location µ, scale σ, and shape ξ. The cumulative distribution function of XT
admits the Jenkinson–von Mises representation, which can be expressed as follows:

F(XT) = 1−
(

1 +
ξ(x− µ)

σ

)− 1
ξ

, (1)

for ξ 6= 0.
In this situation, we can show that the VaR can be computed as follows:

VaRq(XT) = µ +
(
(1− q)−ξ − 1

)
· σ

ξ
, (2)

while the tail conditional expectation admits the following expression:

TCEc(XT) = µ +
σ

ξ

(
(1− c)−ξ

1− ξ
− 1

)
.
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To solve VaRq(XT) = TCEc(XT), we first rewrite TCEc(XT) as a function of VaRc(XT):

TCEc(XT) =
1

1− ξ
·VaRc(XT) +

σ− ξµ

1− ξ
.

Thus, TCEc(XT) = VaRq(XT) is equivalent to

1
1− ξ

·VaRc(XT) +
σ− ξµ

1− ξ
−VaRq(XT) = 0. (3)

Using the above equality, we can relate the quantities c and q as follows.

Theorem 1. In the generalized Pareto framework, the quantile of TCE and the quantile of VaR obey
the following relationship when the two risk indicators are equal:

c = 1− (1− ξ)
− 1

ξ · (1− q) (4)

where 0 < ξ < 1.

Proof. See Appendix A.

Note that Equation (4) depends on ξ, but not on µ or σ. Also note that if ξ = 1
α , the

result obtained using the generalized Pareto distribution boils down to an identical result
in the subcase of Pareto Type I distributions.

2.3. Illustration

Next, we illustrate Theorem 1 in Figure 1, where we plot the TCE quantile as a function
of its equivalent VaR quantile. We plot this relation for different values of the market risk
parameter ξ, where we let ξ take values between 0.01 and 0.99. We recall that a higher value
of ξ is equivalent to an increased presence of extreme risks in the phenomenon under study.
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Figure 1. TCE quantile as a function of VaR quantile.

We can see that when there is more risk on the market, that is, when ξ → 1, the VaR
quantile has to be a number close to 1, whereas the TCE quantile can take a broad range of
values between 0.9 and 1.

This feature implies that in the presence of a lot of extreme risks, there is a large
variability in the choice of the TCE quantile, making it a difficult value to choose by
regulators. Conversely, in the presence of a lot of extreme risks, the VaR quantile is easy to
set, where the regulator only needs to choose a sufficiently high value, as is observed in the
case of the Solvency II regulation.

However, this feature is not observed when ξ is small, where a lot of admissible
values can be taken by both the VaR and TCE quantiles, and where these two quantiles
vary linearly.

Figure 1 also illustrates that a lot of the solutions to Theorem 1 are consistent with the
Solvency II and the Swiss insurance regulations. However, the figure also illustrates that
the two regulations are inconsistent. Indeed, it is practically impossible to find a pair of
reasonable values of the VaR and TCE quantiles that is consistent with both regulations.
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3. A New High-Order TCE Indicator

In this section, we introduce a new generalized TCE indicator, which is a conditional
higher-order moment of the probability distribution under study. We compute this indicator
when losses follow a Type I Pareto distribution and we derive equivalence relations with
value at risk. We also conduct a similar study when losses follow a generalized Pareto
distribution.

3.1. Definition

By analogy with higher-order moments, which are key characteristics of probability
distributions, we construct a higher-order measure of risk, which is a TCE at order m. We
denote this indicator by TCE(m) and we define it as follows:

TCE(m)
c (XT) = E[Xm

T | XT ≥ VaRc(XT)]. (5)

As an illustration, TCE(2)
c is a conditional non-central second-order moment, where

the condition is that losses exceed the 1− c percentile. Further, TCE(1)
c is the standard tail

conditional expectation indicator.
Because

E[Xm
T | XT ≥ VaRc(XT)] =

E
[

Xm
T 1XT≥VaRc(XT)

]

Pr(XT ≥ VaRc(XT))
,

we can rewrite the extended TCE indicator as follows:

TCE(m)
c (XT) =

1
1− c

E
[

Xm
T 1XT≥VaRc(XT)

]
,

so that

TCE(m)
c (XT) =

1
1− c

+∞∫

VaRc(XT)

xm dF(x), (6)

where c = F(VaRc(XT)).
Let us change variables as follows: F(x) = s, x = F−1(s) = VaRs(XT), and ds = dF(x).

We readily obtain a third equivalent representation of the extended TCE indicator:

TCE(m)
c (XT) =

1
1− c

1∫

c

(VaRs(XT))
m ds. (7)

Note that another extended TCE indicator Ξ(m) can be found in the risk management
literature (see for instance Barczy et al. (2022)). This indicator is defined by:

Ξ(m) =
m

1− c

1∫

c

(
s− c
1− c

)m−1
VaRs(XT) ds =

m
1− c

1∫

c

(
s− c
1− c

)m−1
F−1(s) ds.

If we again change variables as follows: F(x) = s, x = F−1(s) = VaRs(XT), and
ds = dF(x), we obtain:

Ξ(m) =
m

1− c

+∞∫

VaRc(XT)

(
F(x)− c

1− c

)m−1

x dF(x).

All of these expressions are distinct from Equations (5)–(7) and confirm that Ξ(m)

cannot be interpreted as a conditional higher-order moment, contrary to the indicator
examined in this paper.

98



Risks 2022, 10, 142

3.2. Pareto Distributed Losses

Let us now assume that losses follow a Type I Pareto distribution, whose probability
density function is represented by:

fXT (x) =
αθα

xα+1 , (8)

where α is the shape parameter and θ the scale parameter.
We apply the definition in Equation (6) to compute TCE(m) when losses follow a Type

I Pareto distribution. We write:

TCE(m)
c (XT) =

1
1− c

+∞∫

VaRc(XT)

xm αθα

xα+1 dx.

This expression can be developed in closed form as a function of value at risk, as
shown in the next theorem.

Theorem 2. When losses are Pareto distributed, the extended TCE indicator admits the following
expression.

TCE(m)
c (XT) =

α

α−m
(VaRc(XT))

m (9)

when α > m.

Proof. See Appendix A.

From this theorem, we deduce that VaRq(XT) = TCEc(XT) is equivalent to

α

α−m
· (VaRc(XT))

m −VaRq(XT) = 0. (10)

This equation allows us to find the relation between the extended TCE and the VaR
quantiles. Indeed, we obtain:

Theorem 3. In the Pareto framework, the extended TCE quantile (c) and the VaR quantile (q) obey
the following relationship when the two risk indicators are equal:

c = 1−
(
(α−m) θ1−m

α

)− α
m

(1− q)
1
m . (11)

Proof. See Appendix A.

For consistency with the generalized Pareto approach, we replace the shape parameter
α of the classic Pareto distribution with ξ = 1

α , which can also be interpreted as a shape
parameter.

Thus, Equation (11) can be rewritten as follows:

c = 1−
(
(1−mξ) θ1−m

)− 1
mξ

(1− q)
1
m , (12)

where 0 < ξ < 1
m .

It appears that Equation (12) generalizes the result of Theorem 1. Indeed, Equation (12)
reduces to Equation (4) when m = 1.

Figure 2 shows the extended TCE quantile as a function of the VaR quantile, for
different values of the shape parameter ξ. In the left panel of Figure 2, the scale parameter
is equal to θ = 1, while the scale parameter is equal to θ = 5 in the right panel of this figure.
Both panels are plotted assuming that m = 2.
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Figure 2. Extended TCE quantile as a function of VaR quantile. (Left panel): m = 2 and θ = 1. (Right
panel): m = 2 and θ = 5.

As in the case of Figure 1, we see that a higher value of the shape parameter leads
to more intricate situations, where the VaR quantile takes a value close to one, while the
extended TCE quantile can take a broad range of values. However, Figure 2 also shows that
a higher value of the scale parameter leads to even more intricate situations. Thus, when
value at risk is not able to distinguish between extreme risk situations, a more sophisticated
indicator such as the extended TCE indicator is able to produce such a distinction.

Figure 3 is constructed in a similar way as Figure 2, but now both panels are plotted
assuming that m = 3. By comparing Figures 2 and 3, we see that the curves are pushed to
the right for higher values of m, all other parameters being equal. Thus, varying the value
of m allows us to construct risk indicators that are more or less sensitive to the presence of
extreme risks.
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Figure 3. Extended TCE quantile as a function of VaR quantile. (Left panel): m = 3 and θ = 1. (Right
panel): m = 3 and θ = 5.

3.3. GPD Losses

Let us now generalize the previous study to the case where the loss random variable X
follows a generalized Pareto distribution. In accordance with the cdf shown in Equation (1),
we rely on the following probability density function:

fXT (x) =
1
σ

(
1 +

ξ(x− µ)

σ

)(− 1
ξ−1

)

, (13)

which generalizes Equation (8) by introducing a location parameter µ. The scale parameter
is now denoted by σ and the shape parameter is now ξ 6= 0. For information on the
estimation of tail parameters, see for instance Hill (1975) or Hosking and Wallis (1987).

We obtain a quasi-closed-form formula for the extended TCE indicator in this setting.
Indeed, we have:
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Theorem 4. In the GPD case, the extended TCE indicator can be computed as follows:

TCE(m)
c (XT) =

1
1− c

·
+∞∫

VaRc(XT)

xm 1
σ

(
1 +

ξ(x− µ)

σ

)(− 1
ξ−1

)

dx

=
1

1− c


−(−1)

−
(

m− 1
ξ +1

)
1
ξ

Γ
(
−m + 1

ξ

)
Γ(m + 1)

Γ
(

1 + 1
ξ

)
(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m

−(1− c)
(VaRc(XT))

m+1

(m + 1) · (σ− µξ) 2F1

(
1, m− 1

ξ
+ 1; m + 2;

VaRc(XT) ξ

µξ − σ

)]
, (14)

where 2F1(·, ·; ·; ·) is the hypergeometric function, Γ(·) is the gamma function, 0 < ξ < 1
m , and

VaRc(XT) = µ + σ
ξ

(
(1− c)−ξ − 1

)
.

Proof. See Appendix A.

To solve TCE(m)
c (XT) = VaRq(XT), we can equivalently solve:

1
1− c


−(−1)

−
(

m− 1
ξ +1

)
1
ξ

Γ
(
−m + 1

ξ

)
Γ(m + 1)

Γ
(

1 + 1
ξ

)
(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m

− (1− c) (VaRc(XT))
m+1

(m + 1) (σ− µξ) 2F1

(
1, m− 1

ξ
+ 1; m + 2;

VaRc(XT) ξ

µξ − σ

)]
= VaRq(XT). (15)

To numerically solve Equation (15), the following three conditions must be met:

• 0 < ξ < 1
m , to ensure the convergence of the integral in Equation (14) and to avoid the

appearance of complex numbers in Equation (15).
• µξ − σ ≥ 0, to avoid the appearance of complex numbers in Equation (15).

•
∣∣∣VaRc ξ

µξ−σ

∣∣∣ < 1, which is a necessary property of the fourth parameter of the hypergeo-
metric function.

Although Equation (15) does not admit closed-form solutions, we numerically solve it
to show the relation between the TCE(m) quantile and the VaR quantile, as a function of the
order m and of the three generalized Pareto distribution parameters ξ, µ, and σ.

We start by plotting in Figure 4 the relation between the TCE(m) and the VaR quantiles
when m = 2 and σ = 0.1. The left panel of the figure presents the situation where µ = −0.05,
while the right panel presents the situation where µ = 0.05.
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Figure 4. Extended TCE quantile as a function of VaR quantile. (Left panel): m = 2, σ = 0.1, and
µ = −0.05. (Right panel): m = 2, σ = 0.1, and µ = +0.05.

From Figure 4, we see that the location parameter µ has a sharp impact on quantile
dependences. When µ is high, the relation between indicator quantiles becomes nearly
linear, which is an ideal situation from a risk management viewpoint.

Next, we plot in Figure 5 the relation between the TCE(m) and the VaR quantiles when
m = 2 and µ = 0. The left panel of the figure presents the situation where σ = 0.1, while
the right panel presents the situation where σ = 0.4. From the comparison of the two
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panels of the figure, we see that the ideal situation where the relation between the indicator
quantiles is quasi-linear occurs for small values of the scale parameter σ.
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Figure 5. Extended TCE quantile as a function of VaR quantile. (Left panel): m = 2, σ = 0.1, and
µ = 0. (Right panel): m = 2, σ = 0.4, and µ = 0.

Finally, we plot in Figure 6 the relation between the TCE(m) and the VaR quantiles
when m = 3, µ = 0. We set σ = 0.1 in the left panel and σ = 0.4 in the right panel. Thus,
Figure 6 presents the same comparison as Figure 5, but for a larger value of the order
parameter m.
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Figure 6. Extended TCE quantile as a function of VaR quantile. (Left panel): m = 3, σ = 0.1, and
µ = 0. (Right panel): m = 3, σ = 0.4, and µ = 0.

From the comparison of Figures 5 and 6, we see that higher values of the order
parameter m lead to more intricate situations from a management viewpoint. Thus, the
presence of extreme risks in the system being considered, and their taking into account via
higher-order conditional moments, makes risk management more complicated in the sense
that choosing an indicator quantile becomes a more critical and sensitive decision.

4. Equivalence between High-Order Indicators

In this section, we study the relation between the quantiles q(m) and q(n) of distinct
extended tail conditional expectation indicators, where each indicator is associated with a
different order m or n. Namely, we examine the situation where:

TCE(m)

q(m)(XT) = TCE(n)
q(n)

(XT). (16)

We also study the sub-case where TCE is compared with a high-order TCE, that is, we
study the quantiles q and q(m) that satisfy:

TCEq(XT) = TCE(m)

q(m)(XT). (17)

4.1. Pareto Distributed Losses

If we model losses as random variables that follow a classic type I Pareto distribution,
we can use Equation (9) to compute TCE(m)

q(m)(XT) where α > m. Thus, we can compare two

higher-order TCEs as follows:

α

α−m

(
VaRq(m)(XT)

)m
=

α

α− n

(
VaRq(n)(XT)

)n
,
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where

VaRq(m)(XT) = θ
(

1− q(m)
)− 1

α .

We obtain:

α

α−m
θm
(

1− q(m)
)−m

α
=

α

α− n
θn
(

1− q(n)
)− n

α ,

which leads us to:

q(n) = 1−
(

α− n
α−m

θm−n
)− α

n (
1− q(m)

)−m
n (18)

where α > m, α > n, and θ > 0.
If we denote ξ = 1

α , we can rewrite Equation (18) as in the following proposition.

Proposition 1. When losses follow a classic Pareto distribution, the quantiles of high-order TCEs
that solve Equation (16) can be related as follows:

q(n) = 1−
( 1

ξ −m
1
ξ − n

) 1
ξn

θ
n−m

ξn
(

1− q(m)
)−m

n , (19)

where 0 < ξ < 1
m , 0 < ξ < 1

n , and θ > 0.

We now illustrate this proposition.
Figure 7 plots the relation between the quantiles q(m) and q(n) when m = 5 and n = 2.

The left panel of the figure shows the situation where θ = 1, while the right panel of the
figure shows the situation where θ = 2.
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Figure 7. Extended TCE quantile at order n = 2 as a function of extended TCE quantile at order
m = 5. (Left panel): θ = 1. (Right panel): θ = 2.

The left panel of Figure 7 can be interpreted as follows. The relation between the
high-order quantiles is countermonotonic contrary to the relation between the TCE quantile
and the VaR quantile, for instance. This means that a high value of q(m) corresponds to a
small value of q(n), and conversely.

This feature is a consequence of the fact that high-order TCEs concentrate on different
parts of probability tails. Thus, the figure shows us that a manager that reduces high-order
extreme risks at a given order, say m, is not simultaneously reducing high-order extreme
risks at another order, say n. The right panel of the figure tells us that this aspect is even
more pronounced for higher values of θ.

We now come to the specific case where n = 1, that is to the study of the relation
between TCE and a higher-order TCE:

α

α− 1
(
VaRq(XT)

)1
=

α

α−m

(
VaRq(m)(XT)

)m
.
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Equation (18) becomes

q = 1−
(

α−m
(α− 1)θm−1

)α(
1− q(m)

)−m
,

when α > m and θ > 0. Similarly, Equation (19) becomes

q = 1−



1
ξ −m

(
1
ξ − 1

)
θm−1




1
ξ (

1− q(m)
)−m

when 0 < ξ < 1
m and θ > 0.

We show in Figure 8 the relation between the TCE quantile and the high-order TCE
quantile when m = 2. The left panel of the figure shows the situation where θ = 1, while
the right panel of the figure shows the situation where θ = 2.
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Figure 8. TCE quantile as a function of extended TCE quantile at order 2. (Left panel): θ = 1. (Right
panel): θ = 2.

Figure 8 confirms the results of Figure 7. Reducing risks using TCE does not necessarily
reduce risks as measured by a high-order TCE, and conversely. Again, this effect is more
pronounced for higher values of θ.

4.2. GPD Losses

Let us now come to the more general situation where losses are modeled using a
generalized Pareto distribution. Our goal is to solve Equation (16) when the extended TCE
indicator TCE(m)

q(m) is given by Equation (14). Thus, to derive the relation between q(m) and

q(n), we numerically solve:

1
1− q(m)


−(−1)−

(
m− 1

ξ +1
)

1
ξ

Γ
(
−m + 1

ξ

)
Γ(m + 1)

Γ
(

1 + 1
ξ

)
(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m

−
(

1− q(m)
)
(

VaRq(m)(XT)
)m+1

(m + 1) · (σ− µξ)
2F1

(
1, m− 1

ξ
+ 1; m + 2;

VaRq(m)(XT) ξ

µξ − σ

)


=
1

1− q(n)


−(−1)−

(
n− 1

ξ +1
)

1
ξ

Γ
(
−n + 1

ξ

)
Γ(n + 1)

Γ
(

1 + 1
ξ

)
(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)n

−
(

1− q(n)
)
(

VaRq(n)(XT)
)n+1

(n + 1) · (σ− µξ)
2F1

(
1, n− 1

ξ
+ 1; n + 2;

VaRq(n)(XT) ξ

µξ − σ

)
 (20)

Figure 9 plots the relation between the quantiles q(m) and q(n) when m = 5, n = 2, and
σ = 0.1. The left panel of the figure shows the situation where µ = −0.05, while the right
panel of the figure shows the situation where µ = 0.05.
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Figure 9. Extended TCE quantile at order n = 2 as a function of extended TCE quantile at order
m = 5 with σ = 0.1. (Left panel): µ = −0.05. (Right panel): µ = +0.05.

From Figure 9, we deduce that the link between the high-order TCE quantiles is linear
when σ = 0.1, so this parameter of the GPD distribution is not problematic. By comparing
the two panels of the figure, we see that the parameter µ has little effect on the curves
linking the high-order TCE quantiles.

Figure 10 plots the relation between the quantiles q(m) and q(n) when m = 5, n = 2,
and µ = 0. The left panel of the figure shows the situation where σ = 0.1, while the right
panel of the figure shows the situation where σ = 0.4.
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Figure 10. Extended TCE quantile at order n = 2 as a function of extended TCE quantile at order
m = 5 with µ = 0. (Left panel): σ = 0.1. (Right panel): σ = 0.4.

Figure 10 shows us that high values of σ can yield problematic links between the
high-order TCE quantiles, hinting at probability tails that are quantified differently by
distinct high-order TCE indicators.

We now come to the specific case where n = 1, that is, to the study of the relation
between TCE and a higher-order TCE. In that case also, the solutions are numerically
obtained by solving Equation (20).

Figure 11 plots the relation between the quantiles q(m) and q when m = 2 and σ = 0.1.
The left panel of the figure shows the situation where µ = −0.05, while the right panel of
the figure shows the situation where µ = 0.05.
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Figure 11. TCE quantile as a function of extended TCE quantile at order m = 2 with σ = 0.1. (Left
panel): µ = −0.05. (Right panel): µ = +0.05.

Figure 11 tells us that the link between the second order TCE quantile and the TCE
quantile is close to linear when σ = 0.1, so that, again, this parameter of the GPD distribu-
tion is not problematic when it is not set to a high value.
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By comparing the two panels of Figure 11, we see, as in Figure 9, that large variations
of the parameter µ have a quite limited impact on the position of the curves relating a
high-order TCE quantile to the TCE quantile.

Figure 12 plots the relation between the quantiles q(m) and q when m = 2 and µ = 0.
The left panel of the figure shows the situation where σ = 0.1, while the right panel of the
figure shows the situation where σ = 0.4.
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Figure 12. TCE quantile as a function of extended TCE quantile at order m = 2 with µ = 0. (Left
panel): σ = 0.1. (Right panel): σ = 0.4.

Figure 12 confirms the conclusion of Figure 10. Specifically, high values of σ can yield
problematic links between a high-order TCE quantile and the TCE quantile.

5. Conclusions

We end this paper with a brief illustration based on actual data. We use a fire insurance
claim data set, labeled “beaonre” within the R package CASdatasets. This dataset includes
1823 observations of fire insurance claims from the year 1997. We transform this dataset
of claim costs into a dataset of reimbursements, from which we can compute VaR, TCE,
and TCE(m). To compare VaR or TCE with a high-order TCE indicator, we need to adjust
the latter quantity in terms of scale. For instance, we may want to solve VaRq(XT) =
(

TCE(m)
c (XT)

) 1
m . While exact solutions to this equation do not exist, we can still deduce a

relation between VaR and TCE(m).
We show in Figure 13 the link between VaR and the high-order TCE indicator (com-

puted with m = 2) in the case of fire data. This figure is consistent with the theoretical
results shown, for instance, in Figure 6. Thus, Figure 13 confirms, in passing, the relevance
of the GPD assumption. Further illustration with actual data is out of the scope of the
present paper but could be a matter of an interesting extension.
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Figure 13. Extended TCE quantile, with m = 2, as a function of VaR.

To conclude, we introduce in this paper a new risk indicator that is a high-order
TCE risk measure. We compare the quantiles of this indicator to the quantiles of VaR in a
simple Pareto framework, and then in a generalized Pareto framework. We also examine
equivalence results between the quantiles of high-order TCEs. By doing so, we aim at
illustrating the interplay between implicit choices of risk measures by regulators and the
characteristics of probability distribution tails.
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Among the possible theoretical extensions of our paper, one could cite the verification
that the high-order indicator that we introduce is indeed a coherent risk measure. While
this is out of the scope of the present paper, a separate document is in the process of being
written on this aspect. See for instance Krokhmal (2007) or Barbosa and Ferreira (2004) for
references on the coherence of related indicators. Another possible extension of our paper
could consist in examining the relation between high-order TCEs when the probability
distribution admits tails that are not modeled using the generalized Pareto distribution,
but using, for instance, the semi-heavy tails of infinitely divisible probability distributions.
Finally, it could be interesting to examine the stability of high-order TCE indicators (see
for instance the discussion in Le Courtois et al. (2020) on the cross-stability of second and
fourth-order moments).
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Appendix A

Appendix A.1. Proof of Theorem 1

Our goal is to solve Equation (3):

1
1− ξ

VaRc +
σ− ξµ

1− ξ
−VaRq = 0.

We replace VaR with its expression given in Equation (2):

1
1− ξ

((
(1− c)−ξ − 1

)
· σ

ξ
+ µ

)
+

σ− ξµ

1− ξ
−
((

(1− q)−ξ − 1
)
· σ

ξ
+ µ

)
= 0.

We have:

1
1− ξ

((
(1− c)−ξ − 1

)
· σ

ξ

)
+

µ

1− ξ
+

σ− ξµ

1− ξ
−
((

(1− q)−ξ − 1
)
· σ

ξ

)
− µ = 0,

or
σ

ξ

(
1

1− ξ

(
(1− c)−ξ − 1

)
−
(
(1− q)−ξ − 1

))
=

µ− ξµ− µ− σ + ξµ

1− ξ
,

so that
1

1− ξ

(
(1− c)−ξ − 1

)
−
(
(1− q)−ξ − 1

)
= − σ

1− ξ

ξ

σ
.

Next, we write:

1
1− ξ

· (1− c)−ξ − (1− q)−ξ − ξ

1− ξ
= − ξ

1− ξ

and
1

1− ξ
· (1− c)−ξ = (1− q)−ξ .

Finally, we obtain:

1− c =
(
(1− ξ)(1− q)−ξ

)− 1
ξ ,

which can also be reformulated as follows:

c = 1− (1− ξ)
− 1

ξ · (1− q).
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Appendix A.2. Proof of Theorem 2

Our goal is to solve

TCE(m)
c (XT) =

1
1− c

·
+∞∫

VaRc(XT)

xm fXT (x)dx,

where fXT (x) = αθα

xα+1 .
We have:

TCE(m)
c (XT) =

1
1− c

·
+∞∫

VaRc(XT)

xm αθα

xα+1 dx,

=
1

1− c

[
− αθα

α−m
· xm−α

]+∞

VaRc(XT)
.

The quantity lim
x→+∞

(
− αθα

α−m · xm−α
)

converges to zero only if m− α < 0. Assuming

that α > m, we obtain:

TCE(m)
c (XT) =

1
1− c

αθα

α−m
· (VaRc(XT))

m−α.

Next, we write:

TCE(m)
c (XT) =

1
1− c

αθα

α−m
(VaRc(XT))

−α · (VaRc(XT))
m,

and we replace VaR with its expression:

VaRc(XT) = θ(1− c)−
1
α ,

to obtain:
TCE(m)

c (XT) =
1

1− c
αθα

α−m

(
θ · (1− c)−

1
α

)−α
· (VaRc(XT))

m.

Finally, we have:

TCE(m)
c (XT) =

α

α−m
· (VaRc(XT))

m,

which is our result.

Appendix A.3. Proof of Theorem 3

Our goal is to solve Equation (10) when VaRc(XT) = θ(1− c)−
1
α , so when XT follows a

Pareto Type I distribution. Replacing VaR with its expression, we can rewrite Equation (10)
as follows:

α

α−m
·
(

θ(1− c)−
1
α

)m
−
(

θ(1− q)−
1
α

)
= 0.

Next, we write:
α

α−m
· θm(1− c)−

m
α − θ(1− q)−

1
α = 0,

so that

c = 1−
(

α−m
αθm θ (1− q)−

1
α

)− α
m

,

which can readily be rewritten as Equation (11).
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Appendix A.4. Proof of Theorem 4

The aim of this appendix is to demonstrate that the integral:

TCE(m)(XT) =
1

1− c

+∞∫

VaRc(XT)

xm 1
σ

(
1 +

ξ(x− µ)

σ

)− 1
ξ−1

dx

can be computed to provide the result in Equation (14).
Using classic results on special functions (see for instance Lebedev (1972)), we rewrite

the integral as follows:

TCE(m)(XT) =
1

1− c

[
xm+1

(m + 1) · (σ− µξ)

(
σ + ξ(x− µ)

σ

)− 1
ξ

× 2F1

(
1, m− 1

ξ
+ 1; m + 2;

xξ

µξ − σ

)]+∞

VaRc(XT)

. (A1)

To compute the limit when x tends to infinity of the quantity J defined by:

J =
xm+1

(m + 1) · (σ− µξ)

(
σ + ξ(x− µ)

σ

)− 1
ξ

2F1

(
1, m− 1

ξ
+ 1; m + 2;

xξ

µξ − σ

)
,

we rewrite the hypergeometric function using a linear transformation:

2F1

(
1, m− 1

ξ
+ 1; m + 2;

xξ

µξ − σ

)

=
Γ
(

m− 1
ξ

)
Γ(m + 2)

Γ
(

m− 1
ξ + 1

)
Γ(m + 1)

(
− xξ

µξ − σ

)−1

2F1

(
1,−m;−m +

1
ξ
+ 1;

µξ − σ

xξ

)

+
Γ
(
−m + 1

ξ

)
Γ(m + 2)

Γ(1)Γ
(

1 + 1
ξ

)
(
− xξ

µξ − σ

)−
(

m− 1
ξ +1

)

2F1

(
m− 1

ξ
+ 1,−1

ξ
; m− 1

ξ
+ 1;

µξ − σ

xξ

)
. (A2)

Thus, J can be rewritten as follows:

J = K xm
(

1 +
ξ(x− µ)

σ

)− 1
ξ

2F1

(
1,−m;−m +

1
ξ
+ 1;

µξ − σ

xξ

)

+ L x
1
ξ

(
1 +

ξ(x− µ)

σ

)− 1
ξ

2F1

(
m− 1

ξ
+ 1,−1

ξ
; m− 1

ξ
+ 1;

µξ − σ

xξ

)
,

where K and L are functions of the parameters that are independent of x. Specifically,

K =
Γ(m− 1

ξ )

Γ
(

m− 1
ξ + 1

)
ξ

and

L =
Γ
(
−m + 1

ξ

)
Γ(m + 1)

Γ
(

1 + 1
ξ

) 1
(σ− µξ)

(
ξ

σ− µξ

)−
(

m− 1
ξ +1

)

.
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Then, we use the fact that

lim
x→+∞ 2F1

(
1,−m;−m +

1
ξ
+ 1;

µξ − σ

xξ

)
=

lim
x→∞

[(
µξ − σ

xξ

)0
+

−m
−m + 1

ξ + 1
µξ − σ

xξ
+ · · ·

]
= 1

and

lim
x→+∞ 2F1

(
m− 1

ξ
+ 1,−1

ξ
; m− 1

ξ
+ 1;

µξ − σ

xξ

)
=

= lim
x→∞



(

µξ − σ

xξ

)0
+
− 1

ξ

(
m− 1

ξ + 1
)

m− 1
ξ + 1

µξ − σ

xξ
+ · · ·


 = 1,

and also

lim
x→+∞

xm
(

1 +
ξ(x− µ)

σ

)− 1
ξ

= 0

and

lim
x→+∞

x
1
ξ

(
1 +

ξ(x− µ)

σ

)− 1
ξ

=

(
ξ

σ

)− 1
ξ

,

to show that

lim
x→∞

J = L
(

ξ

σ

)− 1
ξ

,

when ξ < 1
m .

A few elementary operations allow us to write that

lim
x→+∞

xm+1

(m + 1) · (σ− µξ)

(
σ + ξ(x− µ)

σ

)− 1
ξ

2F1

(
1, m− 1

ξ
+ 1; m + 2;

xξ

µξ − σ

)

= −(−1)−
(

m− 1
ξ +1

)
1
ξ

Γ
(
−m + 1

ξ

)
Γ(m + 1)

Γ
(

1 + 1
ξ

)
(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m
(A3)

when ξ < 1
m .

Finally, we compute the value of the primitive in Equation (A1) when x is equal to
VaRc(XT). This quantity is equal to

− (VaRc(XT))
m+1

(m + 1) · (σ− µξ)

(
σ + ξ(VaRc(XT)− µ)

σ

)− 1
ξ

2F1

(
1, m− 1

ξ
+ 1; m + 2;

VaRc(XT) ξ

µξ − σ

)
. (A4)

We input Equations (A3) and (A4) into Equation (A1) and we derive Equation (14),
which is our result.
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Abstract: Purpose: The purpose of this article is to describe the initial concept of household bridging
insurance. Design/methodology/approach: In the first part of the article, an extensive literature
review is made. This is made to show the research gap of insufficient protection of households
against destabilization resulting from the lost personal contribution. Data shown in the text present
the scale of the loss of lost unpaid work (based on household time budgets). The existing methods
of managing this loss, based on social insurance, are also shown. Findings: This paper discusses
the possibility of creating a new insurance. Its need is indicated (research gap, the scale of the
problem, and insufficient protection by the social insurance system) and a preliminary outline of
its structure is indicated (annuities character, dynamic sum insured related to the lifecycle of the
household). The article contains the theoretical background of the new product, and introduces
further research on the use of multistate models in the construction and calculation of insurance
premiums. Originality/value: So far, studies concerning, inter alia, personal damage indicate the lost
personal contribution (unpaid work for household members) and even try to evaluate it. However,
no private insurance has been proposed to mitigate the destabilization resulting from the death of an
adult household member. The article therefore proposes a new life insurance (a separated policy or
as an extension option) that would help the household to return to normal operation after the death
of one of the household members.

Keywords: life insurance; personal finance; human capital

1. Introduction

The concept of a life-insurance policy for households (HHs) presented herein was
developed from this author’s research on compensation for personal injury damage. The
postulated insurance product was designed in response to the inadequate representation
of the demand for financial support for HHs following the demise of a main provider,
as demonstrated by multiple studies. This identified gap suggests an ostensible need
for a revised life-insurance product addressed specifically to HHs, one that will provide
them with adequate financial backing following the demise of a main provider while they
struggle to adapt to the new situation. The product is not designed to provide full damage
compensation, but rather to furnish the affected HHs with material support to alleviate
the resulting income gap, to purchase or arrange for replacement of the missing material
and personal contribution, and to cover any urgent needs that may arise in the context of
their loss (such as psychological support or temporary work absence on the part of the
remaining providers).

Modern societies offer solutions to finance this type of personal loss. In Poland, the
social security system is primarily responsible for this range of services. However, the
social security compensations and payouts offered are calculated in relation to minimum
subsistence levels of income (without any regard for the significance and financial standing
of HHs). In addition, many services of this type only cover the formally recognized
members of a family—this may present additional barriers to collection of the associated

113



Risks 2022, 10, 81

claims given the rapid cultural and lifestyle changes observed in multiple segments of
the general population. In cases involving wrongful death, additional compensation may
be sought by families from the guilty party. In this context, the civil law provides for the
extension of claim rights to all HH members, regardless of formal family status. Wrongful
death claims are typically covered by liability insurance (obligatory for drivers, medical
personnel, and employers) or from private assets held by the guilty party. Because it is
difficult to perform a satisfactory evaluation of the economic effects of a HH provider’s
demise, claims often need to be presented before court, which can deter HH members from
seeking a compensation.

The above arguments emphasize the need for additional forms of insurance for HHs.
The proposed solution should fulfil the following key requirements:

1. Providing coverage for two adult providers of a shared HH, with payout claimed
after the demise of one;

2. Payout in the form of monthly annuities for a specified period of time;
3. Payout adjusted to actual needs dictated by the HH’s lifecycle.

This paper presents a diagnostic evaluation of the need for the proposed insurance
product, along with a justification for this type of product.

2. Household Finances—A Literature Survey

For many years, HH finances have been a topic of avid scientific dispute. In its
earlier stages, the principal focus was on evaluations of aggregate values of HH income,
consumption, and savings (for details, see Frenette 2014). One of the key components in
this type of approach is the Keynesian assumption of direct correlations between income
and consumption levels (Keynes 1936). The assumption holds that, for HHs, the average
propensity to consume falls as income increases, following a decline in marginal propensity
to consume. In later years, the Keynesian approach was empirically tested by Kuznets and
Goldsmith (Kuznets 1942; Goldsmith 1955), the resulting evidence for which gave rise to
the so-called Kuznets Consumption Puzzle. The authors demonstrated that, as disposable
income rises, the share of consumption in HHs remains fairly constant over a long period
of time. Further investigations were conducted in response to the intense individualization
and financialization of HHs. Here we should point out the ongoing discussion in the
literature of the introduction of excluded social groups (e.g., Latin Americans, Asians)
and children into financial services—Shim et al. (2009, 2010); Xiao et al. (2009, 2011). In
addition, cultural and country differences in consumer financial behavior are also examined
(Xiao and Fan 2002; Fan and Xiao 2011; Yao et al. 2015). They indicate a continuous increase
in the phenomenon of financialization.

A concept of HH lifecycles was developed, formally attributed to Fisher and Harrod,
expanded upon by Ando and Modigiliani (1957), and widely disputed by many other
authors (e.g., North (1994)—limitations of consumption; Thaler and Shefrin (1981)—the
economic theory of self-control; Friedman (1957)—the permanent income hypothesis;
Duesenberry (1949)—relative income theory). Initially, two stages of the HH lifecycle
were distinguished—gainful employment stage and pension stage. This model was later
expanded to include the initial stage of education (Ando and Modigiliani 1957). Each of the
identified stages focuses on specific financial decisions—education mostly involves human
capital investment, while the gainful employment stage emphasizes resource accumulation
(also indebtedness) and is followed by rentier orientation in the final stage of the HH
lifecycle. This concept was contested by observations (Campbell and Mankiw 1989) that
HHs formulate their consumption plans based on expected income and that interest rates
have no bearing upon their consumption decisions. Relations between consumption and
interest rates were also explored by Parker (1999) and Hsieh (2003). However, the concept
was heavily contested by White (1978) on the basis that the actual levels of savings of HHs
do not fit the above formula, as the second stage of a HH lifecycle should be associated with
savings and the third with consumption. In response to understandably critical arguments
of this nature voiced against the various HH lifecycle models, the current scholarly focus is
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on the concept of a lifecycle framework as a broader construct that includes a multitude
of possible empirical models that present the effective inter-stage patterns related to HH
allocation of time, effort and resources. There is still discussion in the literature about
how HHs use, throughout their lives, financial services (of various kinds) to achieve their
goals (e.g., Campbell 2006, p. 1553; Tufano 2009, p. 229; Xiao 2016). Koijen et al. (2016)
developed a pair of risk measures, health and mortality delta, for the universe of life and
health insurance products. Research by Xiao and Yao (2014), Campbell and Cocco (2003),
and Koijen et al. (2009) refer to changes in the demand for credit products along with
changes in the life phases of HH. During the lifecycle, along with the investing time, the
increase of financial wealth and the decrease of human capital, households will go through
the value ladder, from investing growth stocks transition to value (Betermier et al. 2017).
Research using Chinese data show mixed evidence. Some research asserts that the lifecycle
investment effect is insignificant (Wu and Qi 2007), but other research shows it exists to
some degree (Wu et al. 2010). At the same time, it is important to emphasize that no
universal pattern can be identified as fitting all HHs (Browning and Crossley 2001), and
that analytical evaluations of HH finances should include the following elements: HH
approaches to financial decisions and the preferences of individual members, characteristics
and specifics of various types of HHs (including the biological structure of HHs and their
child-bearing desires), and the particulars of effective phases of educational and vocational
development (for details, see: Ellis 1988; Pahl 2005).

A large proportion of the available literature has been produced in response to the
observed changes in HH structure. For instance, Pahl (1989) explored the increased trend
towards cohabitation and the related asset isolation dilemmas (see also: Vogler 2005). Other
topics include the impact of the social security system upon financial decisions made in
times of a temporary fall in HH disposable income (Browning and Crossley 2001), and
the relationships between the biological structure of HHs and changes in consumption
patterns (Browning and Mette 2000). An emphasis is also placed on changing female
roles in HHs, such as the gradual transition from a patriarchal to an egalitarian model
of role distribution, which is related to the rise in vocational aspirations among women.
Consequently, numerous authors (Pahl 1995, 2005; Burgoyne et al. 2006) insist on the proper
recognition of several HH models, depending on their specific features and the patterns of
financial decision-making adopted.

Another important issue is the scientific approach applied to the topic of financial
planning by HHs, as part of general financial management approaches (Kapoor et al. 2001;
Brounen et al. 2016). Financial planning should apply a long-term perspective and cover
all the categories of assets and liabilities held by HHs (Campbell 2006; Jajuga et al. 2015,
pp. 19–26). Therefore, it is necessary to properly recognize all elements of HH revenue
and expenditure (including labor income and non-labor revenues: social security bene-
fits, income from capital, loans and credits, endowments etc.). The effective HH revenue
structure is a combination of fixed income (such as labor), periodic revenues (temporary
social benefits), and incidental income (inheritance). Analyses of income in the context
of financial planning should properly identify those HH activities that have a direct im-
pact on the level of revenues. These may include the level of education (Cooper and
Zhu 2014; Walker and Zhu 2013) or place of residence (Nelson and Patton 1990; Mullet
et al. 1990; Gohmann et al. 1998). Inevitably, HH income is also influenced by external
factors that include globalization processes (for their direct impact on national economic
growth—United Nations 2012), demographic changes (for their strong impact on labor
markets—Kowal et al. 2016), and the operation of social security systems (Kawiński 2016).
Labor income, however, is highly susceptible to factors of a random nature. A good il-
lustration of this can be found in the catalogue published in 1944 by the International
Labor Organization (International Labour Organization (ILO) 1944), which lists the fol-
lowing risk factors: maternity, sickness, death of breadwinner, old age, unemployment,
invalidity, and emergency expenses. This cohort of studies also extends to the context of
pension/retirement income (Blau 2008; Laitner and Silverman 2005), redrawing attention
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to the already emphasized significance of HH lifecycle stages for financial planning in
the strict context of HH income. These revenues are counterbalanced by HH expenditure
and liability. These can be divided into fixed expenditure (current consumption needs
and living expenses), periodic dues (cost of child upbringing and education, healthcare
and medical expenses) and incidental expenses (decision to buy a new car—regardless of
whether it is planned or dictated by unforeseen circumstances). The structure and level
of expenditures is influenced by HH needs. These may be expressed on a micro-scale (for
instance, gender, HH lifecycle phase, HH biological structure, place of residence, health
condition of HH members, education, social status, income level), and as part of a macro
dimension (e.g., pricing of commodities and services, national economic growth, climate
and geographic conditions, culture and social factors, market information) (Żelazna 2002;
Xiao and Tao 2021). Analyses of HH finances should also strive to determine levels of indi-
vidual and shared consumption (Jędrzychowska et al. 2018). The impact of the biological
composition of HHs and the HH lifecycle is revisited in a later section of this paper.

The two categories of HH finances identified above—revenue and expenses—should
be supplemented by another group of factors, namely HH resources. The importance of this
category relates to the use of resources for achieving HH goals, such as the desire to improve
living standards. The available resources also help HHs maintain financial liquidity under
temporary financial duress or a fall in income. It must be noted in this context that certain
types of HH resources are not easily transferable (immovable resources are one such
example). Aside from these, HH resources may include financial reserves, consumer goods
(furniture, home appliances, vehicles, and apparel) and immaterial resources—mainly in
the form of human capital. In general, literary sources associate human capital with the
ability to generate revenue (Goldsmith 1983; Baek and DeVaney 2005). The current paper,
however, requires a broader perspective on the immaterial aspect of HH resources—one
that offers proper recognition of the individual effort of members expressed through labor
and service for the benefit of the HH, also referred to as a personal contribution.

Underlining the insufficient recognition by the scientific community of the topic of HH
resources (including unpaid work for HH), this author would like to refer to the report of
the Munich Center for the Economics of Aging (Hanemann and Johannes 2020). This report
(using SHARE data) discusses extensively the survivor pension programs and highlights
the risk of poverty while being a widow or widower. However, it also fails to attempt to
assess the value of the loss of personal capital and the organizational destabilization that
results from a partner’s death.

The utility of measurable indices of HH production output has been explored for
decades, both in domestic and international studies, albeit solely in the context of national
accounts. An emphasis is placed on the fact that personal effort from HH members
presents an important contribution to the national GDP. This approach focuses on the
macroeconomic scale, disregarding HH finances. Postulates from this segment include the
introduction of extended national accounts, developed by a specialized Eurostat task force,
to incorporate calculations of the non-marketable production of HHs as part of regular
public statistics (Varjonen and Alto 2006).

As observed by Kuznets (1995) and Clark (1958), GDP values are greatly understated
if formal calculations fail to recognize income in kind generated for the benefit of HHs by
their members. Female scientists Walker and Gauger (1975) were the first to stress that the
economic value of the female contribution to HH production is drastically underestimated
in conventional statistical analyses, even though approximately two thirds of HH duties are
delegated to female members, and contrasts with the observation that HH duties constitute
between 60 and 80% of total HH production output value. In her analyses, Folbre (2006)
evokes the term “care economy”, with its key component of care work. This type of
work expresses both the market and non-market value of services and labor rendered for
the benefit of the HH and, as such, should be analyzed in parallel with other forms of
HH production as it contributes to the general improvement of welfare. The significance
of reliably estimating all the elements of production and the need to include them in

116



Risks 2022, 10, 81

formal social and economic analyses have been stressed, among others, by Stiglitz et al.
(2009). In a report produced at the behest of the President of the French Republic and the
European Commission, the role of HHs as non-market producers is clearly recognized.
This assumes that the apparent lack of market value does not preclude specific elements
of the non-marketable production of HHs from being recognized as sources of otherwise
tangible value. The above report also observes that, regardless of the volatile character of
current economic conditions and social patterns, numerous tedious tasks that may safely be
delegated to third-party market providers continue to be performed by HH members. These
include, among others, home renovation, childcare and senior care, and meal preparation.

Invaluable input into the ongoing debate on the methods and (most of all) the need
for an effective evaluation of the personal contribution of each HH member can be gained
from research on compensation for personal damage claims. This segment of research
emphasizes that these services constitute “unpaid (but still productive) household work”
(Greenwood 1996, p. 89). Tinari deserves a special mention here for his extensive output on
the subject (Tinari 1998, 2005, 2011a, 2011b) and for a compendium of the state of research
(2016, as editor) on methods and prospects for personal damage compensation (in a broad
sense of the term, i.e., not reduced to claims of personal loss). For the purposes of this
paper, the most instructive observations are provided in chapter 10 of the above, which is
devoted to a valuation of lost HH services and offers a list of prime elements that require
proper consideration in this context, namely: categories of lost services, the volume and
range of such services, and the estimation of their joint value. Categories invoked in the
context of HH services include (without limitation) regular home maintenance, such as
cleaning, shopping, and washing (Ward and Krueger 1994, p. 95), but also those of a more
social dimension that are related to specific HH roles. These may include such values as
sharing pastime activities, offering advice, or even being present (children rest safely in the
presence of a parent) and being available to offer help in need (analogous to the services
of public officers on paid duty, who are remunerated for time on duty rather than the
number of interventions). This subject was elaborated upon by Olson and Rodgers (1999)
who drew a distinction between services for the HH and services of an emotional nature.
Due to the compound character of this category of services, the valuation task is difficult
and rarely employed in practice with respect to claims for compensation. In a survey
administered to members of the National Association of Forensic Economics (NAFE), only
11% of respondents said they included a measure of companionship services, and 19%
said they included valuation of guidance, counsel and/or advice services (Slesnick et al.
2013, p. 90). Moreover, the forms of such services (and time needed to perform them—this
aspect is revisited in a later section) are extremely volatile. Thus, the need to provide
childcare arises after childbirth, to be later replaced by needs of another type, such as
educational support. Another problematic issue raised in the professional literature is that
of estimating the true value of lost services. Does the time spent by a HH member on
a specific type of service correspond with that of a paid worker employed for the task?
Dulaney et al. (1992) highlight the difference between the time needed to perform a task
and the actual amount of time devoted to its performance. The authors also stress that
HH members are more likely to perform a task as a team, while paid workers tend to
operate single-handedly (but are potentially more time-efficient). These reservations gave
rise to the concept of direct production valuation (based on time spent on a task), which
is in opposition to the concept of purchasable labor (with standardized task performance
times). In contrast to the above, we provide evidence to confirm that valuation based on
purchasable labor is decidedly lower (Cushing and Rosenbaum 2012, p. 49). Another
important caveat invoked in this context is the observation that time required to perform a
task may vary between different stages in the HH lifecycle. These may arise in relation to
HH composition structure (with a baby in the house, it takes more time to prepare a meal),
but also to the age of the performer, as the labor efficiency of seniors is markedly lower
than that of younger persons (Ireland 2011). In addition, studies on compensation claims
suggest that identifying the real beneficiaries of certain HH tasks may be problematic

117



Risks 2022, 10, 81

(Martin and Weinstein 2012, section 631; Olson and Rodgers 1999, p. 260). However, this
does not constitute a problem in the context of this paper as the postulated individual
life-insurance product is designed to provide a fixed value of support for HHs, irrespective
of the particularities of personal loss experienced by each of the surviving members. Each
approach requires proper knowledge of the time spent by HH members on such tasks and
the time required to perform them. This type of information can be obtained, for instance,
from the American Time Use Survey (dating back to 2003), and by national statistics offices.
Inevitably, such values are mere averages, with substantial disproportions observed for
specific types of HHs. Nonetheless, they serve their role as points of reference.

The final issue under scrutiny is the problem of valuation. The professional literature
offers two methods: opportunity cost and replacement cost (Ireland 1999; Ireland and
Ward 1999). The first method emphasizes the fact that, following the demise of a member
responsible for given tasks, the duty of their performance falls upon another member. The
latter will, as a result, forfeit their opportunity for gainful employment, at least for the
time reserved to perform said duties. The negative consequence of this approach lies in
the fact that valuations of this type emphasize the acquisition power of certain professions
(thus, an MD delegated to kitchen duty will receive a remuneration ten times that of a
security guard). The opposite approach calls for a valuation based on the pricing of service
substitutes offered on the market. Thus, cooking tasks are valued by catering wages, house
maintenance by those of cleaning operators, and so on. Although the former approach does
not entail the need for identification of tasks, but rather the amount of time spent jointly
on those tasks expressed in terms of forfeited profit, the latter method requires a list of
specific tasks, along with the times assigned to each task and their pricing. Periodic surveys
administered to NAFE members (Luthy et al. 2015) indicate that, when working out the
value of lost HH services, most respondents prefer to use the “cost of hiring one or more
individuals to replace the particular services that were lost” (p. 66). This 50% response
matched the response in 2003, leading the authors to conclude that “Clearly, this is one area
where there is not necessarily agreement among all forensic economists, but opinions are
remarkably stable over time” (p. 82).

Invariably, scientists analyze the role of life insurance in securing HH. For example,
Harris and Yelowitz (2018), using the Health and Retirement Study, examine individuals
whose spouses died during or soon after his or her peak earning years and find that
sizable lump-sum life-insurance payouts do not significantly influence spousal well-being.
Satrovıc and Muslıja (2018) show economic and demographic determinants that are used to
predict the demand for life insurance for 150 countries during the period 2005–2010. Claims
raised on lost HH service as a form of tangible loss befalling surviving HH members
are not hypothetical: many researchers provide evidence of such claims being raised
and successfully won before a court of law (c.f. Dulaney et al. 1992, p. 124; Boss 1999,
pp. 295–96).

Members of HH can buy many types of insurance. A wide variety of experimental
methods used in research about insurance demand has been researched by Jaspersen (2016).
In his work, he reviews 95 hypothetical surveys and experimental studies. In a review
paper, Harrison and Ng (2019) argue that theories of the demand for insurance products are
well developed, but the empirical literature has gaps. A lot of the scientific work concerns
private health insurance. The theory and evidence concerning selection in competitive
health insurance markets are reviewed by Geruso and Layton (2017). They also discuss
the standard policy tools used to address the problems it creates. Based on 45 studies
from countries such as the United States, Germany, the Netherlands, and Switzerland,
Pendzialek et al. (2016) focused on a systematic review of empirical studies on price
elasticity for health insurance. However, Saltzman (2019) estimated demand for health
insurance using data from the California and Washington ACA exchanges. Using data
from China Cheng and Yu (2019) found changes in demographic conditions associated
with the one-child policy. Doiron and Kettlewell (2020) based their research on data from
Australia. Panel research of young women showed that women purchase insurance in
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preparation for pregnancy but transition out of insurance after they have finished family
building. Nayak et al. (2018) studied customer preferences when purchasing a health-
insurance policy. They also provided a total view of what customers expect from the health
insurance industry and what the industry is prepared to provide. An overview of consumer
financial issues in health care in the United States is provided by Sharpe (2016).

Additionally, a lot of work is related to disability insurance. Jimenez-Martın et al.
(2019) explored the Spanish market and showed the relationship between economic condi-
tions and disability insurance participation. According to data from the Swedish sickness
insurance system, Engstrom et al. (2017) found that one of the interventions increases the
flow to disability benefits by 20%. Armour (2018) presented research for the US Disability
Insurance market and exploited a natural experiment in information provision. Researchers
Le et al. (2019) also checked the US market and found that spousal coverage is associated
with a reduced labor supply of secondary earners. The work on life insurance in HH
financial management also includes Li and Trivedi (2016); Corea (2017); Han and Lavetti
(2017); Soika (2018); Sloan et al. (2018); Briand and Lesueur (2019); Ali et al. (2019). These
works concern the demand for insurance (factors shaping it) and are a discussion with
classical models, e.g., the classical model of insurance demand proposed by Rothschild and
Stiglitz (1976).

For subsequent deliberations, it is also necessary to emphasize another trend observed
in professional literature, one stimulated by the growing significance of services purchased
by HHs on the market (Chadeau 1985; Dąbrowska 2010). These are often associated with
civilizational changes, such as the need to place more focus on leisure activities, and are
typically realized through the delegation of certain other tedious services (both material
and immaterial) to third-party providers (p. 249). One of the most potent examples in
this regard is the growing servitization of elderly care, accompanied by the accretion of
assets assigned for this purpose; for example, in the form of long-term care insurance
(LTC) products.

3. Investigation of Motivations and Potential Developments for the Postulated
Introduction of a Bridge Life-Insurance Product

The bulk of research discussed in the previous chapter focuses on the requirement to
provide effective financial management solutions to HHs. Therefore, methods to optimize
this process should be sought in the form of new products designed to provide dedicated
support. This paper presents such a product: a bridge life-insurance policy formula aimed
at providing material support to HHs faced with the loss of an adult member (typically a
parent or a spouse).

Let us first examine the motives underpinning the proposed introduction of a bridge
life-insurance product for HHs.

3.1. The Scale of the Early/Premature Death Phenomenon

First, it is useful to note that sudden death constitutes the most challenging form of
loss for HHs, at least in terms of adaptation to change. How pronounced is the statistical
probability of an early death in Europe? Eurostat data for 2018 indicate that accidents were
responsible for 8.7% of deaths before the age of 65 in the male population (37% of these
were traffic accidents), and for 4.4% of deaths before the age of 65 in the female population
(38.6% were traffic accidents). These values fall significantly for the 65+ age segment, with
accidental deaths dropping to 2.5% of all deaths for males (13.6%—traffic accidents), and to
2.3% for women (8.4%—traffic accidents). Thus, it seems that the incidence of premature
death is fairly contained. However, early death and its consequences should not by any
means be considered moderate.

Another argument for the provision of material support for HHs faced with the loss
of a member is the formal postponement of some claims. For deaths caused by default
of a third party (such as traffic accidents, accidents at work, medical error, or homicide),
compensation may be sought before a court of law (as already noted, this approach is well
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supported in the professional literature), but the payout in such claims is inevitably delayed.
Attention then turns to the average span of such claims, namely the time span between the
incidence of death and passing of the final judgement. The analytical evaluation of 1875
verdicts passed by Polish civil courts (in the years 2017–2020 inclusive) in matters related
to personal loss compensation claims from a surviving family member gave an average
time span of 18 years between incidence and verdict, with a median of 2.8 years (this serves
to justify the postulated duration of such support to be set at 3 years).

3.2. Social Security as a Source for Financing Premature Death Risk in Households

Another question raised in this context can be formulated as follows: do the affected
HHs really need such support from a private source? After all, social security coverage
should take care of their problem. However, the public social security system has its
limitations. First, it does not extend to the entire population: a sizable proportion remains
outside the system. In Poland, overall system participation was reported to be 28 million
(data for 2021), which corresponds to 73% of the general population (26.6 million registered
by the national Social Insurance Institution and 1.4 million on the Agricultural Social
Insurance Fund). As a result, a large segment of the public is effectively devoid of support
from this source. Another limitation is that aid instruments related to the death of a family
member are only offered to HHs with a formal family status. This means that a large
segment of the population in HHs formed on cohabitation patterns (fairly frequent in
many countries, Poland included) have very limited access to this type of benefit. Informal
partners will not receive any support, and the same applies to their offspring if they are not
formally recognized by partners/parents before the proper registry office.

Regarding the recent changes observed in the structure of European populations, the
following require special mention:

− The steady rise in out-of-wedlock births—Eurostat data suggest that the rate of live
births outside marriage in the EU area grew from 25.4% in 2000 to 42.7% in 2019. This
trend is evident in all European countries except for Latvia (a 2 percentage points (pp)
decline between 2000 and 2019), Estonia and Sweden (a 0.8 pp decline). The highest
rates were reported for Portugal (a 34.6 pp decline) and Spain (a 30.7 pp decline);

− A fall in the number of contracted marriages, which also serves as an indirect measure
of the rise of informal relationship patterns—Eurostat data show that the crude mar-
riage rate, namely the annual number of marriages per 1000 population, fell by 0.9 pp
from 2000 to 2019. Eight member states (Estonia, Latvia, Lithuania, Hungary, Austria,
Romania, Slovakia, and Sweden) registered a rise, with the most notable increase
occurring in Latvia (by 2.8 pp, up to 6.6%). The most notable falls were registered for
Cyprus (by 4.5 pp, down to 8.9%), Portugal (by 3 pp, down to 3.2%), and Denmark
(by 1.9 pp, down to 3.5%);

− A rise in the average age of persons entering a contracted marriage and the associated
postponement of child-bearing decisions—Eurostat data confirm that Europeans enter
marriage at increasingly later stages in their lives. The average age of females entering
formal marriage was 30.6 years of age in 2019 (an increase from 26.8 in 2000); for males,
it was estimated at 33.3 years of age (compared to 29.6 in 2000). The most pronounced
shifts were observed for Portugal and Spain. At the same time, the average age of
first-time mothers is on the rise, and is presently calculated at 29.2 (a rise from 27.9
registered in 2010). However, a comparison of the two average values (age at first
birth vs. age at marriage) for European women (data for 2019) suggests that in only
three EU member states does the registered marriage come before the birth of a first
child (in average terms)—Slovakia (ca. 7 months before first childbirth), Croatia (ca.
5 months) and Switzerland (ca. 4 months). The remaining states seem to follow the
new trend where first childbirth occurs before the mother enters formal marriage.
The most contrasting differences are observed in Sweden (where marriage comes,
on average, 4 years and 8 months after the first child is born), France (4 years and
4 months), and Denmark (3 years and 2 months).
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These three indicators, as perfect representations of ongoing changes in the structure
of European societies, suggest a steady rise in the number of persons (cohabiting partners,
non-recognized offspring) that may be effectively excluded from this form of social support
(even if the deceased or their child was duly covered by the social security system).

The third important aspect is that both the pool and the amount of social security
benefits assigned is simply inadequate. For instance, following the death of an adult
breadwinner or parent, survivors may apply for one of the following two benefits (on top
of the regular funeral benefit paid to cover last ceremony costs): surviving spouse and
divorced spouse, and child-raising supplement for a single parent. The details of these are
as follows:

• Surviving spouse and divorced spouse: a survivor pension in amounts decided by the
number of authorized recipients and paid as a percentage of the old-age or invalidity
pension to which the deceased was or would have been entitled:

• One person: 85%;
• Two persons: 90%;
• Three or more persons: 95%.

This amount is then divided equally among all recipients. The benefit is not means-
tested. The survivor pension is paid in monthly instalments. Amounts are calculated
from the associated old-age pension or invalidity pension (for existing entitlements)
or based on regular calculations of pension received from the capital stored in pension
accounts (if the deceased was gainfully employed). The latter scenario is particularly
unfavorable to HHs. With the former scenario, HHs are better equipped to deal with
a reduction in their income and are eligible to at least 80% of the income received
prior to the fact. This may be perceived as an effective reduction of consumption by
the value previously assigned to one HH member. The latter scenario follows a more
complex path. First, the HH is accustomed to high living standards supported by
the previous earnings of the now-deceased person, and the amount of pension will
always be much lower than monthly earnings. The present pension replacement rate
for Poland is approximately 43% of final earnings. This already indicates that the
HH will be entitled to 80–95% of a sum representing a mere 43% of hitherto supplied
gains. However, the problem extends far beyond this. The cited value of the pension
replacement rate describes benefits received by a person entering their retirement age,
namely with the “entire” capital already placed on their pension accounts. If death
befalls a person with a short history of employment, their accounts may not provide a
sufficient replacement rate. Therefore, the effective payoffs will never reach the 43%
return margin. Similar types of benefit products can be found in the social security
systems of other European countries;

• Child-raising supplement for a single parent: granted to the parent or guardian of a
child or to a full-age student whose parents have died or who is not dependent on
them further to a court decision on alimony, in the amount of PLN 193 (EUR 42) per
child, up to a maximum of PLN 386 (EUR 85) per family. The amount is increased
by PLN 80 (EUR 18) in the case of disabled children, but within the limit of PLN 160
(EUR 35) per family monthly amounts. (source: MISSOC-Mutual Information System
on Social Protection n.d.). For comparison purposes, the average salary in Poland
in 2020 was PLN 5 167.47 (EUR 1131), representing an average net gain of PLN 3
731.33 (EUR 816). Thus, the volume of such support is marginal. However, many
member states do not provide this form of support. These include Bulgaria, Croatia,
the Czech Republic, Germany, Greece, Hungary, Latvia, Luxemburg, Slovakia, Spain,
and The Netherlands.

Neither of these benefits is available to all families and, as can be seen, their value is
extremely low.

The consequences of widowhood have been studied in the literature. The article by
Zick and Smith (1986) used the Panel Study of Income Dynamics (PSID) and found that
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both widowers and widows had more of poverty in the first five years of widowhood.
Research concentrates on the economic consequences for women after the death of their
husband—Hurd and Wise (1989) and Sevak et al. (2003). We also find studies containing
international comparisons on the financial situation of widows (e.g., Ahn 2005, Bíró 2013).
There is a discussion in the community about the survivor pension system—James (2009).
However, this research concerns the moment of death “in old age”, and does not cover the
risk of death at an early age—the risk of premature death.

3.3. The Moment of Death Risk Realization in Relation to HH Lifecycle Phases

Another important aspect arises in relation to phases in HH lifecycle. For current
purposes, deliberations are restricted to the target HHs of the postulated product, namely
those with two adult members and a child/children. Based on information on HH time
budgets (according Eurostat), target groups will represent the following HH lifecycle
phase scenarios: a childless HH with two adults aged 45 or younger, a HH with the
youngest child aged 6 or younger, a HH with the youngest child aged 7–17, a childless
HH with two adults past the age of 45, HH with adults past the age of 65. Inevitably,
some HHs will never yield any offspring (or will otherwise have no prospect of such HH
development), but the mathematical multistate model for the postulated insurance product
will operate on probabilities of transitions between states, and each subsequent phase
model will be calculated with suitable adjustments. It is, therefore, useful to present an
illustrative description of changes in human capital (i.e., personal contribution) for each of
the categories identified above, and separately for male and female survivors:

• Total—all the categories identified in research, also those excepted from the illustrative
set of target HHs (type I);

• Person in a couple with youngest child less than 6 years old (type II);
• Person in a couple with youngest child between 7 and 17 years old (type III);
• Person less than 45 years old, in a couple, with no children younger than 18 years old

(type IV);
• Single parent with youngest child less than 18 years old (type V) (this is meant to

illustrate changes following a death of a parent, as the scenario is not limited to
widower HHs).

Categories of activities are also identified, by gender roles, describing the involvement
of both sexes in HH duties. Three categories are included:

• Home maintenance: food management except dish washing, dish washing, house-
cleaning, household upkeep except housecleaning, laundry, ironing, handicraft and
textile production/maintenance, gardening; other pet care, construction and repairs,
shopping and services, travel related to shopping and services;

• Childcare, including supervision (without teaching), reading and talking, teaching,
reading and communication with a child, transporting a child;

• Other HH duties: HH management, assisting a family member, travel related to other
HH purposes.

Table 1 presents an overview of selected HH types and HH activities in average time
units based on responses from 15 member states participating in the 2010 edition of a
Eurostat survey. The most striking observation is that house maintenance and (obviously
enough) childcare activities are largely intensified in HHs with children, and the main
burden is generally borne by female members. By comparing couples with no children
below the age of 18, couples with babies, and couples with adolescent offspring (7–17), it is
clear that, for childless couples, the daily burden borne by women averages 176 min, and
96 min for their male partners. For a couple with a baby, these daily burdens reach 217 min
for women and 92 min for men. For couples with an adolescent child, the burden reaches
242 min for women and 105 min for men. More importantly, the above figures describe the
age of the youngest progeny, regardless of the actual number of children in the HH. For
this reason, data for couples with children should be examined with care. Nonetheless,
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the average value of female involvement in HH activities is twice that of males—this is
another important aspect that merits attention. Several types of activities—HH upkeep
(w/o housecleaning), gardening, other pet care, and construction and services—are more
often performed by male HH members. With childcare activities, the burden placed on
women is again twice that borne by men. For the third category—other HH duties—values
for women and men are more equal, and differences are much less pronounced. It is also
important to note that the average annual value of male capital placed in HH duties (Type I)
is 815 h (9.3% of a year), compared to 1600 h for women (18.3% of a year). Thus, a female
contribution to the benefit of their HH is considerably more pronounced and their loss will,
as a result, be felt more acutely. Values of personal contribution reach their peak for HHs
with an infant child (aged 6 or younger) and are observed in all types of HHs, amounting
to 1089 h (12.4% of a year) for men, and 2427 h (27.7% of a year) for women.

Table 1. Average time spent performing activities (minutes) in particular types of households.

Type I Type II Type III Type IV Type V

Type of Activities M F M F M F M F M F

H
ou

se
w

or
k

Food management except for dish washing 20 67 17 71 19 76 17 52 31 59

Dish washing 6 23 5 24 5 26 5 18 9 20

Cleaning the dwelling 10 38 9 41 9 44 8 29 16 35

Household upkeep except for cleaning the
dwelling 16 14 13 13 16 15 11 11 28 14

Laundry 1 10 1 12 0 13 1 7 4 10

Ironing 0 9 0 10 0 13 0 7 0 8

Handicraft and producing textiles, and other
care for textiles 0 5 0 2 0 3 0 2 0 2

Gardening; other pet care 12 8 6 4 10 7 7 5 6 4

Construction and repairs 14 2 14 2 16 2 14 3 8 1

Shopping and services 22 29 18 26 20 30 23 28 25 29

Travel related to shopping and services 11 14 9 12 10 13 10 14 13 14

Sum 112 219 92 217 105 242 96 176 140 196

C
hi

ld
ca

re Childcare, except for teaching, reading,
and talking 7 21 40 112 6 16 1 2 17 48

Teaching, reading, and talking with a child 7 11 35 49 9 17 0 0 20 28

Transporting a child 2 4 7 15 4 8 0 0 6 12

Sum 16 36 82 176 19 41 1 2 43 88

O
th

er
ho

us
eh

ol
d

ac
ti

vi
ti

es Household management and helping a
family member 4 7 3 5 4 7 4 5 5 5

Travel related to other household purposes 2 1 2 1 2 1 2 1 3 0

Sum 6 8 5 6 6 8 6 6 8 5
TOTAL for the day 134 263 179 399 130 291 103 184 191 289

Another important observation derived from the data presented in Table 1 relates
to changes in time budgets in HHs with a child in scenarios with both parents present,
compared with those with a single parent. For HH maintenance activities, the contribution
of a single father is higher than that of a male partner with a spouse (140 min per day for
single fathers, and 92 or 105 min for male partners in couples, depending on the age of
the youngest child). For women, this is reversed: single mothers spend less time on HH
maintenance than those in couples. For the second category—childcare—and given the
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fact that a single parent (Type V) is also a parent of an infant and then an adolescent child,
weighted averages may be required to represent the average childcare contribution from
each member over the entire 17-year span. The resulting annual averages are 30 min per
day for a father and 89 min per day for a mother. Therefore, childcare contribution from a
single mother will be comparable in value to that of a mother in a couple, while a single
father will be required to assign a substantially greater time budget (from 30 to 43 min
per day). This demonstrates that shifts in time budget following a death of an adult HH
member must be properly recognized, particularly if a female member of a HH dies.

3.4. Loss of Household Services—A Latent Loss

The final aspect to merit special attention regarding the motives for devising the
postulated insurance product for HHs relates to problems faced by surviving members
of a HH following the demise of an adult member, particularly the losses resulting from
such death and the extent of operational changes required to help them deal with the
new situation. Based on the available catalogues of such losses (e.g., Tinari 2016), the
consequences of death in a HH can be divided into three categories: loss of monetary
income, loss of HH services (non-monetary income), and elevated needs.

Regarding loss of monetary income, a plethora of methods are used for compensation
purposes. The UK is an example of a system based on actuarial life tables. Due to the lack of
cohesion in court judgements passed in this context, a special commission was established
in the 1970s and 1980s to advise on reforms and updates to the existing actuarial base.
This resulted in the publication of the first edition in 1984 of The Ogden Tables—Actuarial
Tables, with Explanatory Notes for Use in Personal Injury and Fatal Accident Cases. These were
designed to support the evaluation of lump-sum compensation for loss related to personal
injury—mainly the loss of monetary income and any cost incurred in relation to this (e.g.,
the cost of care). Tables were produced by a dedicated team under the guidance of Sir
Michael Ogden, comprising expert actuaries and law specialists of the government Actuary
Department. The tables have since been updated, modified, and improved in response
to problems voiced by economists and to resolve issues related to their use in practice.
However, despite the frequent modifications, the tables remain fairly limited and imperfect.
Polemic criticisms of this method have been voiced by many researchers (e.g., Haberman
and Bloomfield 1990; Ritchie 1994). The most recent edition can be accessed by its title:
Actuarial Tables, with Explanatory Notes for Use in Personal Injury and Fatal Accident Cases,
eighth edition updated May 2021 (Latimer-Sayer 2021).

In the United States, lost income is calculated—in principle—from gross wages, and
most states insist on discounting the values of lost income, services, and the future cost
of medical care from current values. In contrast with the British system, which is based
on a unified system of multipliers directly accessible by court officers, the US approach is
based on opinions from court-appointed expert economists, actuaries, and other specialists
(e.g., psychologists in relation to lost non-material income). This procedure is applied per
case and may differ widely depending on local state jurisdiction. A complete evaluation
of the US system can be found in Ward (2009), while examples of economic analyses for
individual US states are presented in Tinari (2016); Spizman and Tinari (2011); Anderson
and Roberts (1989); Bryan and Linke (1988); Lane and Glennon (1985); Gilbert (1994, 1997);
Thornton et al. (1997); Rodgers et al. (1996).

Importantly, Ward (2009) also provides a comparative analysis or calculation results
obtained from two sources, the Ogden Tables (6th edition) and the VCF fund tables. Con-
clusions from analyses of factors included in the comparison demonstrate that neither
source properly recognizes levels of education. In addition, the Ogden Tables disregard
the impact of unemployment and disability in the cycle of vocational development. In
consequence—as concluded by Ward—the Ogden Tables tend to undervalue the volume of
compensation dues of younger generations and overestimate the dues of elder employees.
Finally, Ward emphasizes that while the tables offer good predictability and cohesiveness,
the US approach has the benefit of being formed through market competition and expert
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economic input in the crucible of the courtroom, and the concepts are subject to debates
and public critique.

As demonstrated above, this particular type of loss receives proper research support,
with vivid disputes and a wealth of instruments designed for the purpose. Attention now
shifts to the problem of the lost immaterial income of HHs, which refers to the loss of
human capital defined in terms of HH services and duties and the problem of elevated
needs resulting from the demise of a HH member. Practical consequences of these two
aspects are presented below, complete with real-life examples of changes observed in
the context studied. In place of a standard questionnaire survey, this author decided to
formulate conclusions from rulings and substantiations of real-life court cases issued in
relation to compensation claims raised by physical persons following the death of a family
member. Information presented before the court can safely be considered equivalent to a
questionnaire survey or interview. Furthermore, the gravity of proceedings and the dignity
of a courtroom may in fact improve their reliability for the purpose of this study. The
following are some of the most illustrative excerpts from rulings made by Polish courts of
law in the cases studied, by type of consequence produced (case signatures are provided in
square brackets):

• Disruption of the course of education or decline of school results (the eldest son—aged
20, a student at the University of Health and Sports Science—was forced to drop the
course in order to attend to the needs of the agricultural holding left by the deceased
father [case signature I C 828/11]; a second-year student had to take a sabbatical
following the demise of both parents [XII C 42/19; when her father died, a daughter
dropped her studies for psychological and financial reasons, and moved back to live
with her mother [I C 420/15]);

• Disruption of employment (3 months work leave following the death of a cohabiting
fiancée [V ACa 849/12]; a widow on 6 months work leave following the demise of her
husband [I C 832/12]; limitation of gainful employment resulting from the need to
take over house maintenance and childcare duties by the surviving male cohabitant
with an infant daughter [I C 304/12]);

• Discontinuation or change of employment (upon the death of her partner and father
of unborn child, a six-months-pregnant survivor requires full support—the survivor’s
mother decides to leave her job to help [I C 777/16]);

• Taking up gainful employment by a person unaccustomed to the task (following the
death of the only breadwinner, a widow is forced to work as a sewist [I C 832/12]);

• Discontinuation or limitation of economic activities (a widow is compelled to dis-
continue a family business [I C 828/11]; a widow drastically limits the scope of her
agricultural business and is forced to delegate some services to third-party providers
[I ACa 878/12]);

• Changes in career development (following the death of his father, a son is forced to
decline a profitable position with a pharmaceutical company to provide care, support,
and full attendance for his mother [I C 420/15]);

• Taking over or delegating duties and services after a departed HH member (after his
wife died, a widower is incompetent to take over the fiscal duties and other aspects
of financial management of his now one-man HH and is compelled to delegate them
to his son [I C 896/11]; care duties over an infant child after the death of his mother
and prolonged hospitalization of his father are assumed by the brother of the late
mother [I ACa 896/13]; a sister helps her brother deal with house management duties
when his wife dies, such as washing, cleaning, and cooking, and the verdict calls for
limitation of such involvement [III Ca 517/18]; a widow aged 33 is helped by her
mother who moves in with her to offer house management and childcare support
[I C 120/18]; following the demise of her husband, the scope of his colossal immaterial
involvement and strenuous physical labor, such as cleaning, cooking, gardening, car
servicing and construction work appliance servicing, was beyond the capabilities of
the widow and many tasks had to be purchased on the market, such as mowing, roof
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repairs, etc./[I C 219/14]: when her mother died, her daughter aged 11 had to take
over childcare duties for her younger brothers, including babysitting and education
[I C 851/12]);

• Change of residence (when her husband died, a widow aged 46 moved with her
children to another city [I C 876/13]; a widow with two children moved to live with
her father in a cramped space, as her previous residence was no longer affordable
[I ACa 78/16]; a widow was forced to vacate parts of residence after the share previ-
ously promised as assigned to the deceased husband had been declared by the late
husband’s parents as the property of the deceased’s sister—the verdict supported the
duty to vacate [I ACa 807/12]);

• Auctioning of material assets (after her husband died, a widow was pressed to sell
their car [I C 518/12]; after her husband died, a widow could not find solace in living
alone and asked her son and his family to move in with her. She was then driven
to sell the house and build a new one near her son, which was in accordance with
previous arrangements with the late husband, but well below the planned standard
[I ACa 922/16]);

• Change of HH plans and prospects (when a son died, his intentions to invest in a
workshop with the prospect of employing his father and similar plans made with
reference to the late man’s brother were no longer feasible [I ACa 307/12]; a surviving
member of a steady cohabiting HH who is engaged with the marriage date already set
and applicable expenses covered is forced to surrender all plans, including the forgoing
house construction plans [V ACa 849/12]; following the death of his father, an eldest
son takes over the agricultural business, while the youngest son aged 15 is forced to
revise his plans of becoming a farmer and urged to apply for a culinary school [I ACa
878/12]; following the tragic death of a husband, family plans for house construction
are shattered [I C 120/18]; a late father was planning a house development project
and brewery in tandem with his son, with loans already taken out in the amount of ca.
PLN 2.5 m/EUR 500,000/[I ACa 922/16]);

• Need for psychological support, including pharmacotherapy (one and a half years
after the demise of her sister, a woman is still in need of psychological intervention
and therapy [I C 858/12]; for one year, a widow receives anti-psychotic and stress
moderation treatment [I ACa 843/12], a mother experiences emotional breakdown and
takes medication prescribed for the purpose after death of her son, with a two-year
history of particularly acute symptoms [I ACa 845/12]).

As is evident from the above examples, a premature death potentially brings a whole
wealth of diverse consequences covering both the vocational and functional aspects of HH
operation. In addition, some of the consequences tend to correspond with or reinforce one
another, for instance: the extra burden of house management will naturally limit the scope
of gainful employment or disrupt the educational path of those affected by a sudden loss.

4. Results—The Concept of a Bridge Life-Insurance Product for Households

Based on conclusions derived from analytical studies of professional literature, it can
safely be stated that the financial aspects of HHs continue to constitute a major focus of
economic analyses. New instruments, processes, and financial products should be sought
to offer adequate support for HHs for the effective realization of HH goals adjusted in line
with specific phases and scenarios of the HH lifecycle.

However, given previous deliberations on factors that serve to destabilize HH op-
eration under specific scenarios, it must be noted that the specificity of effects produced
by the demise of an adult HH member (and not at all limited to the purely emotional
responses associated with such a loss) is not yet adequately reflected in research. Most
attention is placed on lost material income. Although a few attempts have been made
to explore the context of human capital in HHs, this is chiefly in relation to HH invest-
ments in education of their members made with a view to improving future HH revenues.
Therefore, following the demise of an adult HH member, the survivors not only face a
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loss of material income (related to education) but also the loss of specific non-monetary
services and personal contributions to the benefit of the HH which were hitherto provided
by the late member. The effective volume of such contributions was presented in an earlier
section of this paper. In practice, only two economic domains place a mild emphasis on the
valuation of selected aspects related to the personal contribution of HH members, namely
macroeconomic studies (in relation to satellite accounts) and economic analyses of law and
compensation of personal loss. This paper presents the potential implementation of results
produced by the two domains regarding analyses of HH finances. This takes the form of a
bridge life-insurance product for HHs as a vehicle allowing for the transfer of the risk of a
temporary HH dysfunction following the demise of an adult provider.

Clearly, this purpose may well be served by a regular life-insurance product properly
adjusted to account for this type of loss. However, as already noted, dysfunctions resulting
from the demise of an adult HH member are mostly of a transient nature and can be
addressed by a separate bridge-type product designed to provide temporary assistance to
HHs for a period that enables them to adjust to change in their operational patterns. The
postulated product would provide temporary financial support for a set period of time (e.g.,
three years) to help the survivors make necessary replacements and adjustments related
to lost immaterial income and/or a portion of the lost monetary income (e.g., before they
receive a full compensation verdict or before a child reaches adulthood).

Some elements of the lost immaterial income are easily measurable, typically by
referring to market pricing for a similar type of service (in this context, it may be useful
to reinforce the already mentioned servitization trends observed among HHs). The broad
scope of potential types of immaterial loss borne by HHs has already been outlined, so
in this section some of their most obvious “market substitutes” are provided. The list
of measurable and readily replaceable services includes the following (with their market
substitute presented in brackets):

• Housework (housekeeper);
• Childcare (nursery, babysitter);
• Transport, such as taking children to school, shopping, etc. (cab service);
• Educational support (coach, tutor);
• Psychological support for children (professional therapist);
• provision of HH services associated with the late member’s profession—a car mechanic

responsible for service and care of the family car, a dentist provides free service to
family members (purchase of the service on the market, but only in person-power, as
the necessary purchases are still required; thus, the effective loss for the HH may be
estimated at 40% of the market price);

• Access to social services, medical service packages, trade benefits, etc. (purchase of a
market product);

• Passing own skills and abilities on to children: swimming, skiing, playing an instru-
ment (a market product of the relevant category).

It is clear that, aside from determination of the catalogue of lost services, a method is
needed to assess their proportionate time assignment, including the person-hour load per
service required to cover the loss and their relevant market value.

The key properties of the postulated life-insurance product are as follows:

1. Insurance covers two adult members (breadwinners) in a HH, and is effected upon
the demise of one such person (a form of “first risk insurance”).

The postulated product is designed for HHs with children or to those likely to have
children. In addition, the term breadwinner extends to providers of exclusively immaterial
income, such as housework and childcare duties. Originally, the concept envisaged a
whole-of-life type of insurance—in this scenario, support would be offered without time
limitation, even for HHs with adult and self-reliant progeny, up to the moment of demise
of one of the policy holders. A set term solution may be adopted in its stead, to ensure the
product does not extend past the moment the offspring reaches adulthood. However, this
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author favors the whole-of-life approach, as the destabilizing effects produced by loss of a
family member will not be any less acute past that point.

2. Support is paid in monthly instalments for a set period of time.

The product is intended to provide support for a period of time required by a HH
to adapt to the new situation. This would involve provision of material resources in
volumes adequate to the loss experienced by survivors and expressed by a drop in material
income, non-monetary income, and/or elevated needs. In an earlier section, the list of
easily measurable elements of such a loss was established—these may serve as a basis for
the effective determination of adequate payout volumes.

The value of loss experienced by a HH can be calculated as the sum of values associated
with the existing financial streams that offer the prospect of replacing the lost services (in
a broad sense of the term, i.e., including the loss of social and emotional relations). As
already noted, this type of calculation is akin to those adopted in macroeconomic analyses,
particularly in evaluations of HH productive value, satellite accounts, and the social cost of
traffic accidents. Moreover, the amount of insurance should not be set at a fixed value, as
the passing of an adult provider may realize the risk at any given phase of the HH lifecycle.

3. Payout volumes are adjusted to the phase of the HH lifecycle.

The amount of insurance would be a variable sum, and payout would be calculated in
relation to the HH lifecycle phase in which the risk was realized. For instance, the procedure
following the death of a mother of two infant children would entail calculating her previous
non-monetary contribution for the benefit of both children and her partner—washing,
cooking, cleaning, assistance, transport, etc. When such a death occurs two decades later,
the HH situation is substantially different, and losses in this category will be decidedly less
pronounced. Similar scenarios may be presented in relation to the lost monetary income,
with values established for a vocationally active person being substantially different to
those for a pensioner. As already established, the product does not entail a lump-sum
payoff, but is provided in monthly instalments in amounts adequate to replace the lost
services associated with particular stages of a HH lifecycle. It may also involve diminishing
return rates, such as 100% of pension payout in the first year, followed by 70% for the
second year of insurance coverage and 50% for the third year. This approach would offer a
considerable reduction in insurance premiums, and reflect the fact that adjustments in such
scenarios progress in a fluid fashion: some problems are solved early after the fact, others
require more time and effort.

Inevitably, the postulated product does not offer protection against any destabilizing
factor that may apply in the context of a loss, as some losses are simply irreplaceable and
certain services cannot be “purchased” on the market. This context calls for realization
of the risk of decline in HH situations and quality of life. Consequences in this category
include the following:

• Severing of family ties;
• Loss of intimacy and the prospect of family support;
• Change in lifestyle (e.g., less time for leisure and social activities);
• Lost prospects for skill acquisition (e.g., comfort of training in affable conditions);
• The risk of losing social contacts and reduction in social status (particularly in scenarios

where the late person was a member of an elite social group—lawyer, member of a
medical profession, etc.);

• The risk of decreased self-assessment in orphans;
• Limitation of time assigned for leisure, personal development, regeneration, and respite.

These categories are not included in the volume of compensation, and may be sought
by way of compensation for pain and suffering.

In conclusion, with respect to the proposed insurance product, it may be helpful
to note that HHs may safely be covered against the risk of decrease in monetary and
non-monetary income by whole-of-life products, with insurance amounts adjusted to
the practical requirements of HHs. Although such a solution offers greater benefits, its
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practical implementation may face the barrier engendered by the general lack of financial
knowledge and awareness of practical consequences that may arise following the demise
of a breadwinner. The difference in insurance premiums may form another barrier to such
development. Therefore, the postulated bridge life-insurance product for HHs should not
be regarded as a complete answer to the problem of loss, but as an instrument bridging the
apparent gap in support experienced by many HHs following the loss of an adult member;
for instance, up to the moment when their liability claims are duly recognized and settled.

5. Conclusions

The paper presents a bridge life-insurance product addressed to HHs that is designed
to cover the risk of temporary destabilization of HH functions caused by the death of a
breadwinner—this term also extends to providers of exclusively immaterial income, such
as housework and childcare duties.

It demonstrates that the postulated product may comprise dynamic insurance sums,
with values related to phases in HH lifecycle and payout in monthly instalments. Support
would be offered for a set period of time, making this an attractive alternative to standard,
properly calculated personal life-insurance products.

There are still some issues to be resolved before the concept presented herein takes its
final form. The first task is to design an adequate multistate model capable of recognizing
value of loss for each phase of the HH lifecycle, complete with a matrix of phase-to-phase
transitions. The valuation of losses associated with each phase requires a catalogue of
lost services, their range, market substitutes (if any), and the associated price of service
(per hour). Conversely, the dynamic construct of the matrix of transitions requires proper
recognition of probabilities (both of the demise on an adult HH member and of a child
being born (firstborn or otherwise). In addition, the model should recognize changes in
HH lifecycle, such as children coming of age or an adult member taking retirement. The
proposed product will also need to be examined in the context of national legislations; for
example, to ensure that absence of certain requirements or standards (e.g., the requirement
of fixed sum) shall not be questioned. Finally, based on actuarial principles and data
produced by the multi-stage model, proper estimations of insurance premiums for such a
product should be performed to verify whether the product is affordable to HHs under
local economic conditions. These issues will be addressed in further studies.
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Abstract: In many countries around the world, demographic and civilization changes have brought
about the phenomenon of aging societies. This phenomenon affects the economy, especially the
pension and health care systems, causing difficulties in their financing. The implementation of a
policy that would effectively manage the problem of the longevity risk is thus required. Using
housing resources and private health insurance to improve retirees’ living standards may serve this
purpose. The instruments we propose comprise two variants of contracts: the first for a marriage,
the second for an individual client. We analysed the cash flow in both the cases. The results suggest
that the amount of cash flows related to reverse equity and dread disease insurance benefits depends
on the spouse’s economic status, age, and health conditions. The benefits of the two variants of the
contract vary. This paper examines numerous strategies for selecting the type of the contract, taking
into consideration the abovementioned factors.

Keywords: equity release; reverse annuity contract; critical health insurance; cash flow; financial
protection of elderly

1. Introduction

Demographic changes have been caused by many factors. On the one hand, the
developments and progress in medicine and the improved living conditions have extended
life expectancy. On the other hand, the birth rate has been systematically decreasing. The
consequence of these phenomena is the rapid increase in the over-65 population. In 2019,
the percentage of people in this age group reached about 20.3% of the total European
population (Eurostat 2020b). This group has become the fastest-growing segment of the
population. It would not be an exaggeration to say that the world is turning grey.

The declining birth rate and increasing longevity worldwide have contributed to
significant changes in the population’s makeup and affected many branches of the economy,
especially the labour and medical service markets. An increase in the elderly dependency
ratio overburdens the work-age population. This indicates that in the future, pensions’
funding gap will be a significant social problem. Moreover, the burden on health care
triggered by the expenditures for the 65 and over population is becoming a large problem
due to deteriorating health conditions, the presence of chronic diseases, and the need to
provide long-term care for this social group. Ensuring financial security and health services
to such a large elderly population is becoming a big challenge (Chen et al. 2021).

Aging implies changes in financial behaviour and the perception of many aspects
of life, as well as the deterioration of health. Older adults’ life satisfaction depends on
such factors as their pensions, social support, and ability for self-care. Overall health and
financial worries are significantly associated with life satisfaction (Borg et al. 2006, 2008).
Therefore, it is also a crucial issue to provide financial peace and treatment options for the
elderly (Korenman et al. 2021).
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Many members of society, including retirees, own apartments or homes that they do
not want to sell. On average, 70 % of people own their own properties in European Union
(EU) countries (Eurostat 2020a); in Poland, this figure reaches almost 84 %, in Hungary
almost 90 %, and in Romania over 95 %. Therefore, financial institutions in different
countries have introduced equity release contracts for the retired (Hanewald et al. 2016),
which provide an additional income in exchange for surrendering their real estates. Many
variants of these contracts are available in European countries (also in Poland). The
largest European market for equity release contracts is the United Kingdom (UK) market
(Shao et al. 2015), while the largest world markets are the United States of America and
Australia (Lee and Shi 2021).

Many studies and debates focus on equity release contracts. It is suggested that the
housing equity of elderly homeowners may provide significant financial resources. The
authors of the paper by (Mullings and Hamnett 1992) examined the participation of elderly
persons in equity release schemes. In the article by (Toussaint and Elsinga 2009), attitudes
toward the use of housing equity in several EU countries are examined. Based on 2005
data, researchers have observed that respondents used housing equity in various ways
to help plan their finances. Since 2005, more people are aware that a possible method for
funding the expenses associated with old age is through the use of equity release contracts
(Marciniuk et al. 2020). Retirees are asset-rich and cash-poor; therefore, their housing
wealth can be used to supplement their retirement income. Thus, the equity release contract
is socially significant (IFoA 2019). The authors of the article (Sharma et al. 2020) point to
various schemes for approaching equity release contracts, such as focussing on government
subsidies for contracts. They conclude that the focus of government policy on equity release
to tackle the challenges of an aging population is misplaced. However, treating equity
release as an additional private source of income has many benefits.

In the richer countries of the world, an increase in demand for medical services has
been observed. This increase is caused not only by demographic changes, such as the
phenomenon of an aging population, but also by the occurrence of civilization diseases and
technological progress in medicine. These additional factors result in increased health care
expenses; consequently, it is impossible to provide high-level medical services without a
mechanism of co-financing by patients. Two basic forms of co-payment can be considered:
private payments, i.e., out of pocket expenditures, or private health insurance. Private
health insurance can ensure access to additional funding, especially for critical or chronic
illnesses. The funds obtained from this type of insurance can be used to improve the
quality of life and treatment standards even in places where the state finances medical care.
However, not everyone can afford to buy this insurance. Therefore, it has been necessary to
introduce financial products combining different types of contracts (e.g., life insurance or
equity release) with health insurance. Additional contracts are a source of financing the
health insurance premium. The paper by (Webber 1993) presents an example of the financial
contract, which meets the healthcare costs of the elderly. The authors emphasize that a
major demand for the new products have been created by demographic changes, more
widespread homeownership, and other political and cultural changes. A rapidly expanding
market for products providing finance and healthcare for the elderly was observed, and
its analysis indicates that the aged care insurance is both feasible and welfare-enhancing
(Paolucci et al. 2015). Contracts that combine with critical health insurance are described in
many papers. An example of a contract with life insurance is examined in the papers by
(Dębicka and Zmyślona 2018, 2019). The second example, considering a contract combined
with a reverse annuity contract is described in article (Dębicka et al. 2015), which discusses
an individual contract and one for a married couple (Zmyślona and Marciniuk 2020). In
the two mentioned articles, home equity release products combined with dread disease
insurance are promoted as a potential solution to long-term care costs for the elderly.

The aim of this paper is to present two variants of these contracts, the first for both
spouses and the second is a combination of two separate contracts for the wife and the
husband. In Section 2, we describe the theoretical background of the contracts, and the
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multiplied Markov models are applied. Two varieties of contract with their cash flows
are presented in Section 3. In Section 4, we analyse and compare the cash flows related to
both options. The analysis results suggest the contract version affects the amount of cash
flows connected to the reverse annuity contract and the dread disease insurance benefits,
depending on the financial needs, health status, and spouses’ age. The construction of the
presented model is original. It is a continuation of the research conducted by the authors
of the current work. Firstly, the individual model described in (Dębicka et al. 2015) was
generalized to the marital model. In addition, the model was extended to include health
benefit payments in two states (not only at the moment of diagnosis but also when the
health condition worsens). Secondly, all analyses are performed based on the authors’ own
life expectancy tables for lung cancer patients in the critical stage described in (Dębicka and
Zmyślona 2016, 2019). Finally, all calculations are performed based on original computer
programs in MATLAB.

2. Contract Combining Reverse Annuity with Critical Health Insurance

The new product consists of two elements, namely, the reverse annuity contract and
the dread disease insurance. One of the equity release forms similar to the home reversion
scheme is the reverse annuity contract (Marciniuk et al. 2020). The benefits derived from the
new product can help improve the living conditions and the quality of life for the elderly as
well as provide additional financial resources in case of a critical illness. The construction
of this kind of contract is based on a model that describes an extended lifetime considering
the risk of morbidity, severe disease, and life expectancy in the case of the critical stage.

Usually, both spouses are property owners and so the joint further lifetime of the wife
and the husband should be considered. The spouses, who want to contract reverse annuity,
receive a lifetime annuity in exchange for surrendering their real estate to a company. We
consider two kinds of cash flows; the first group is connected with the reverse annuity
contract. We distinguish a single premium and annuity benefits. This premium is not
actually paid. It depends on the percentage α of real estate value. In the considered
contract, the annuity benefits are paid with the option of selecting the last-surviving status
(Marciniuk et al. 2020). This status means that the annuity benefits are paid every year
while at least one of the spouses is alive and healthy. The annuity benefits depend on the
pensioner’s age and his/her further life expectancy and the value of the real estate W.

The second kind of cash flow concerns critical disease insurance. The survival time
in case of falling ill with a severe disease depends on its course. We consider the health
insurance premium that is paid every year that the insured party is healthy and alive. This
insurance premium is paid as a percentage (1− β) of the reverse annuity benefits. The
health insurance benefits are firstly paid in case of a diagnosis. Moreover, the contract
enables a benefit payment in the situation of deterioration of a patient’s condition. This
is important because the deterioration of health conditions in the case of a critical illness
involves the necessity of care in the terminal state. The end-of-life heath expenditures
are often huge. In many cases, families caring for terminally ill patients require financial
support. For this reason, mild and critical health conditions are distinguished. In the critical
stage the fatality rates grow rapidly, which decreases the probability of survival year by
year. The analysis of the joint cash flows connected with the reverse annuity contract and
health insurance requires the introduction of a multistate model, which is built separately
for both spouses.

We have distinguished the following steps:
First step: Equity release—in exchange for surrendering their real estate, the clients at

the retirement age receive a lifetime annuity (they do not pay a cash premium for that); the
level of this theoretical annuity is computed in relation to the value of the house.

Second step: from the theoretical annuity, a portion 1− β is paid to the insurer to
finance health insurance; the remaining portion β is paid in cash to the annuitant as a
lifetime annuity (level 1).
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Third step: in case of a mild stage illness, the annuitant does not have to pay the health
premium and therefore receives an annuity (level 2) equal to the initial theoretical annuity;
at the moment of a diagnosis, additional benefits are paid through health insurance.

Fourth step: in case of the critical stage of an illness; an additional single benefit
financed by health insurance is paid to the client (level 3).

2.1. Multistate Markov Models

The multistate model is described by the state space S = {1, 2, . . . , N} and a set of
direct transitions between states T of the state space, where (i, j) denotes a direct transition
from state i to j (i 6= j, i, j ∈ S). All the possible insured risk events up until the end of the
contract can be described by this model (Pitacco 2014; Dhaene et al. 2017; Haberman and
Pitacco 2018). We consider the Markov model in which the stationary Markov chain is described
as a discrete-time process {X(k), k ≥ 0}. The model describes the state and its changes for the
contract at time k = {0, 1, . . . , n}.

The construction of a contract combining the reverse annuity and dread disease
insurance enables the introduction of two models. The first one is related to the reverse
annuity contract and the latter with health insurance. The model connected with the reverse
annuity contract considers only two states:

1. the insured is alive and healthy;
2. the insured is dead.

The model connected with health insurance considers the course of a dread disease.
Thus, the following states are distinguished (Zmyślona and Marciniuk 2020):

1. the insured is alive and healthy;
2. the insured became mildly ill during the last year;
3. the insured has been mildly ill for at least one year;
4. the insured became critically ill during the last year;
5. the insured has been critically ill for at least one year;
6. the insured is dead (D—dead).

We assume that an insured could survive in the critical stages of illness during h years,
and for that reason the fifth stage is extended by the introduction of states 5(1), 5(2), . . . ,5(h).
The Markov model has a lack of memory; therefore, the presented model is extended by
one additional state denoted by the number 3. This state describes a case when the insured
fell mildly ill during the year. The multistate model related to the critical health insurance
is presented in Figure 1 (Zmyślona and Marciniuk 2020). The circles present the states, and
the arcs describe the direct transitions between the states.
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2.2. The Probability Structure of the Model

The probabilistic structure of the multistate model for the considered contract is given
by the transition probability matrix q[x]ij (k) = P(X(x, k + 1) = j|X(x, k) = i ). We denote the

elements of matrix Q(k) by q[x]ij (k). We define the following nonzero transition probabilities
matrix for a person initially aged x (during the time interval [x + k, x + k + 1)) connected
with the model for the reverse annuity contract

Q[x](k) =
(

q11 q12
0 1

)
, (1)

where q11 stands for the probability of surviving denoted as px+k and q12 represents the
probability of death denoted as qx+k. Considering the sex of the insured requires the
introduction of two separate matrixes Q[x] and Q[y], where x denotes the initial age of a
woman and y the initial age of a man.

The transition probabilities matrix connected with the multistate model related to
critical health insurance is given by

Q[x]
h (k) =




q11 q12 0 q14 0 0 . . . 0 q16
0 0 q23 q24 0 0 . . . 0 q26
0 0 q33 q34 0 0 . . . 0 q36
0 0 0 0 q45(1) 0 . . . 0 q46
0 0 0 0 0 q5(1)5(2) . . . 0 q5(1)6

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . 0 1
0 0 0 0 0 0 0 0 1




. (2)

The transition probabilities matrixes in the female and male populations are denoted
by Q[x]

h and Q[y]
h , respectively.

The formulas for these elements are obtained based on the methodology of the mul-
tistate life table (increment-decrement table). The descriptions of the formulation and
estimation processes are described in (Dębicka and Zmyślona 2016, 2019). These elements
depend on the following population rates:

qx+k—the probability of death;
ϕx+k—the dread disease mortality rate;
χx+k—the dread disease incidence rate (the morbidity rate);
ψx+k—the percentage of patients diagnosed in the critical stage;
ξx+k—the probability of health deterioration to the critical state;

d(i,j)x+k—the fatality rate in the population of the critically ill.

The above first three values are calculated for the whole population and the remaining
three for the patient population.

The formulas for the elements of the matrixes Qh
[x] are presented in Table 1 (Dębicka

and Zmyślona 2016, 2019). The matrix formulas for the male Qh
[y] population are obtained

analogously to those for the female population.
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Table 1. The formulas for the estimators of the transition probabilities for health insurance.

The Number of State Estimators of Transition Probabilities

1 q11 = 1− (qx+k − ϕx+k)− χx+k, q12 = χx+k(1− ψx+k)
q13 = χx+k · ψx+k, q16 = qx+k − ϕx+k

2 and 3
qij = 1− qx+k − ξx+k, for i = 2, 3 and j = 3
qij = ξx+k, for i = 2, 3 and j = 4
qi6 = qx+k, for i = 2, 3

4 q45(1) = 1− d(4,5(1))
x+k , q46 = d(4,5(1))

x+k

5(1), . . . , 5(h)
q5(i)5(j) = 1− d(5

(i) ,5(j))
x+k , for i = 1,2, . . . h − 1 and j = i + 1

q5(l)6 = d(5
(l)6)

x+k , for l = 1, 2, . . . h.

3. Two Version of Combining Contract

A property is usually owned by both spouses, so the contract should be concluded
by both a husband and a wife. The spouses may sign either one marriage contract for
which they will receive one annuity benefit, or two individual contracts, in which two
annuity benefits are paid independently. In each of the abovementioned cases, health
insurance benefits are paid independently for the husband and the wife. Both solutions
have advantages and disadvantages and provide a varied number of benefits. The choice of
the type of contract will have an impact on the formation and differentiation of the reverse
annuity and health insurance benefits.

3.1. Marriage Contract

The spouses sign one contract in which, in exchange for surrendering their rights
to the property, they receive an annuity for life. A percentage α of the real value of the
property W funds the benefit. Then, they pay two separate premiums for private health
insurance. The funds designated for paying health insurance form a part of the annuity
premium. We define β ∈ [0, 1] as the reverse annuity parameter. This parameter describes
the percentage of the paid annuity. The remaining part 1− β describes the health insurance
premium. The impact of this parameter on the benefits is described in (Zmyślona and
Marciniuk 2020). The annuity benefit is paid in advance for both spouses at the beginning
of the year, if at least one of the spouses is alive.

The cash flows connected with the marriage version of the model are obtained in
three steps. In the first step, the annuity benefits are calculated based on the multiple
state Markov model, which describes the further lifetime of a couple. It consists of 4 states
(1—both spouses are alive, 2—the wife is dead, 3—the husband is dead, and 4—both
spouses are dead).

Let pi(k) = P(X(k) = i) and P(k) = (p1(k), p2(k), p3(k), p4(k))
T be the probabilities

of the remaining process {X(k), k ≥ 0} at states k, for k = 1, 2, 3 . . .. The matrixes describ-
ing the process duration in each state are shown in Table 2 for the wife and the husband.

Table 2. The process duration matrixes for a marriage reverse annuity contract.

For a Wife For a Husband

HX(k) =




px+k qx+k px+k qx+k
0 1 0 1
0 0 px+k qx+k
0 0 0 1


 HY(k) =




py+k py+k qy+k qy+k
0 py+k 0 qy+k
0 0 1 1
0 0 0 1




The transition probability matrix for the 4-state Markov model (for a marriage) is
defined as the following Hadamard product

QX◦Y(k) = HX(k) ◦HY(k), (3)
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where x denotes the age of the wife and y the age of the husband. An element of matrix (2)
equals the following product q(X◦Y)

ij = hX
ij · hY

ij for each i and j.
The details connected with this model are presented in (Dębicka and Marciniuk 2014).

The formulas are determined based on the matrix notations described in (Dębicka 2013).
The course of the process is described by the matrix D. This matrix is defined as the

following formula

D =




PT(0)
PT(1)

. . .
PT(n)


 ∈ R(n+1)×(N·N), (4)

where P(0) = (1, 0, 0, . . . , 0)T ∈ R(N·N) denotes the initial distribution vector,

PT(t) = PT(0)
t−1
∏

k=0
Q(X◦Y)(t), where N is the state number and n is a contract duration.

This course takes into consideration both spouses’ survival times.
The annuity benefit is determined by means of the following formula (Dębicka et al. 2022)

..
b =

αW
MT(I− In+1IT

n+1 − I1IT
1
)
D(S− J4) + 1

, (5)

where MT =
(
1, v, v2, . . . , vn) ∈ Rn+1 denotes a discounting factor, which relates to the in-

terest rate. The auxiliary vectors are used, where It =

(
0, 0, . . . , 1

t+1
, 0, . . . , 0

)T
∈ R(n+1)×1,

S = (1, 1, . . . ., 1) ∈ R(N·N)×1, Ji =

(
0, 0, . . . , 1

i
, 0, . . . , 0

)T
∈ R(N·N)×1 and I is an identity

matrix with n+1 rows and columns. In this case, N = 2. The formula for the reverse annuity
contract benefit in the classical notation is presented in (e.g., Marciniuk et al. 2020).

In the second step, the health insurance benefits are estimated. The health insurance
premium is separately payable for the husband and wife. The further lifetime of a couple
is described by the model presented in Figure 1. The part of the pension allocated to
the payment of health insurance is divided between the spouses proportionally to the R
parameter, which denotes a fraction of the men in the population who fall ill with the disease
that is subject to dread disease insurance within a year. This parameter determines the risk
of morbidity connected with a critical disease in the population of men. The decomposition
of the annuity benefit is represented by the formula

..
b = β

..
b + R(1− β)

..
b + (1− R)(1− β)

..
b.

Thus, the annual health insurance premium is given by the following formulas: for a
husband pY = R(1− β)

..
b and for a wife pX = (1− R)(1− β)

..
b. The health premiums are

paid separately by the spouses for when they are healthy. Health insurance benefits are
paid individually to the spouses depending on their health condition (at the moment of the
diagnosis of a critical illness and in the event of deterioration of health), for a wife cX and
for a husband cY. The formula for calculating the value of the health benefits is given by
(compare Appendix A)

c =
MTDiag

(
CoutDT)S

MTDiag
(

C(1)
in DT

)
S

. (6)

Matrix D, describing the probability structure, is calculated on the basis of the matrix
of transition probabilities given by (2) for the husband and wife separately. Thus, the
number of columns in matrix D is reduced to N. The matrix of all premiums paid during
the term of the contract is denoted as Cout ∈ R(n+1)×N . The matrix C(1)

in ∈ R(n+1)×N equals
1 in the second and the fourth columns.

In summary, during the duration of the contract, spouses receive the following benefits:

•
..
b − pX − pY (Both spouses are healthy);

•
..
b − pY (The husband is healthy; the wife is ill or dead);
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•
..
b − pX (The husband is ill or dead; the wife is healthy);

•
..
b − pX + cY (The husband has become sick or his health has worsened; the wife is
healthy);

•
..
b − pY − pX (The husband is healthy; the wife has become sick or her health has
worsened);

•
..
b + cY (The husband has become sick or his health has worsened; the wife is sick or
dead);

•
..
b + cX (The husband is sick or dead; the wife has become sick or her health has
worsened);

•
..
b + cX + cY (The spouses have both become sick or their health has worsened).

Therefore, the spouses receive annuity benefits reduced by the health insurance pre-
mium (if they are healthy). In the event of a diagnosis or a deterioration of their health
state(s), the spouses receive health insurance benefits individually. From the moment the
diagnosis is made, the spouse does not pay the health insurance premium.

3.2. Two Individual Contracts

An individual version of the contract implies that a married couple signs two separate
contracts. In this case, the premiums and benefits connected with health insurance and the
reverse annuity contract are paid separately. The benefits of the reverse annuity contract
are financed and determined based on the part of the property value owned by a given
spouse (usually 50%) and is equal to πI I = (0.5 ·W) · α. The annuity benefits are calculated
separately for a husband

..
b Y and for a wife

..
b X. The sum of the annuity benefits in an

individual version is higher than the annuity benefit paid under the marriage contract.
However, in the individual case, the annuity benefits are paid independently to each of the
spouses only until their death. Thus, in the event of the death of one of the spouses, the
surviving partner will be deprived of the part of the dead spouse.

Within individual contracts, the spouses may separately determine a part of an annuity
benefit, which will be spent on the health insurance premium by setting the value of the
reverse annuity parameter β. Therefore, the amounts of the health insurance premium are
equal to pI I

Y = (1− βY) ·
..
b Y and pI I

X = (1− βX) ·
..
b X for a husband and a wife, respectively.

In the next step, the health insurance benefits are estimated for a husband cI I
Y and a wife cI I

X .
The cash flows related to the individual version of the contract are separately modelled

for a husband and a wife. The probability structure describing the further lifetime of a wife
is denoted by Qh

[x], whereas for a husband it is denoted by Qh
[y](compare (2)).

The benefits are obtained separately for individual models for a wife and a husband in
three steps. In the first step, the annuity benefits are obtained separately on the basis of the
further lifetime for a wife and a husband using the following formula (compare Dębicka
and Marciniuk 2014)

..
b =

α(0.5W)

MT(I− In+1IT
n+1
)
DJ1

, (7)

which is calculated separately for a husband and a wife. The matrix D is obtained on the
basis of the transition probability matrix given by (1) separately for the spouses.

In the second step, the health insurance benefits are obtained using the model de-
scribed in Figure 1. The health insurance benefits are calculated in a similar way as in the
case of a marriage version of the contract using the Formula (6).

During two individual contracts, the spouses receive the following benefits:

•
..
b X − pI I

X +
..
b Y − pI I

Y (Both spouses are healthy);

•
..
b Y − pI I

Y +
..
b X (The husband is healthy; the wife is ill);

•
..
b Y − pI I

Y (The husband is healthy; the wife is dead);

•
..
b X − pI I

X +
..
b Y (The husband is ill; the wife is healthy);

•
..
b X − pI I

X (The husband is dead; the wife is healthy);
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•
..
b X − pI I

X +
..
b Y + cI I

Y (The husband has become sick or his health has worsened; the
wife is healthy);

•
..
b X + cI I

X +
..
b Y − pI I

Y (The husband is healthy; the wife has become sick or her health
has worsened);

•
..
b Y + cI I

Y +
..
b X (The husband has become sick or his health has worsened; the wife is

sick);
•

..
b Y + cI I

Y (The husband has become sick or his health has worsened; the wife is dead);

•
..
b X + cI I

X +
..
b Y (The husband is sick; the wife has become sick or her health has

worsened);
•

..
b X + cI I

X (The husband is dead; the wife has become sick or her health has worsened);

•
..
b X + cI I

X +
..
b Y + cI I

Y (The spouses have become sick or their health has worsened).

The spouses receive annuity benefits reduced by the health insurance premium (if
they are alive and healthy). The death of a spouse deprives the living partner of a part
of their pension. Payments of dread disease insurance benefits are made in the event of
the diagnosis of a serious illness or deterioration of the health state. From the moment the
diagnosis is made, the spouse does not pay the health insurance premium.

4. Results

The retirees’ family, economic, and health conditions determine their financial needs.
The state of their health of has an important impact on their financial resources. Simulta-
neously, the elderly often have limited funds to buy an insurance policy against the risk
of a dread disease. Therefore, the described contract may be an alternative to obtaining
additional pensioner’s income and funds for treatment and palliative care in the case of a
dread disease.

A sample of numerical examples using two variants of the equity release contract is
presented in this section. In the marriage variant, it is assumed that a married couple has
a property valued at W. Together, they decide to sign the marriage reverse annuity and
spend the percentage of 1− β on withdrawing from both of their dread disease insurance
plans. In the individual variant, the spouses also have a property valued at the same sum
W. They decide to sign the individual reverse annuity contracts for 0.5W and allocate the
percentage of 1− β to buy dread disease insurance from their part of the benefit payment.
In this case, they have two separate contracts.

The empirical examples are based on actual data. The examples concern the risk of
lung cancer mortality and the morbidity of the Lower Silesia population (one of Poland’s
voivodeships). The calculations are made separately for male and female groups based on
datasets provided by the National Cancer Registry for the Lower Silesia Region
(Wojciechowska and Didikowska 2014) and the Lower Silesia Department of the National
Health Fund (the public payer in Poland). The available, unpublished data covers the
period between 2006 and 2011. The transition probabilities matrixes are obtained from
the life expectancy tables described in the (Dębicka and Zmyślona 2016). The maximum
survival time in a critical condition was 4 years. A critical stage entails diagnosis with
distant metastases or an inoperable life-threatening tumour (Dębicka and Zmyślona 2019).

Let x denote a woman’s age and y denote a man’s age. The percentage of a real value
of property α = 50 and the real value of a property is 100,000 euro. This assumption
allows for the easy rescaling of the results obtained in case of different property prices. The
discounting factor v, which is calculated from formula v = (1 + i)−1, is closely connected
with the analysed period of the disease and a constant long-term interest rate i = 0.0579.
The interest rate i was estimated on the basis of actual Polish market data based on the
yield to maturity on the fixed interest bonds and Treasury bills from 2008 (Zmyślona and
Marciniuk 2020). The percentage of men who fall ill with lung cancer in 2008, denoted
by R, equals 0.691. We consider couples aged 65, 70, 75, 80, and 85, as well as mixed-age
couples. We analyse a case when β = 0.99, which means that 1% of the annuity is intended
for paying the premium. It is obvious that the levels of the premium may vary (Zmyślona
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and Marciniuk 2020). Annual marriage reverse annuity payments, single benefit payments
of illness insurance, which could be paid twice, and premiums in euros are calculated
using self-developed programs written in MATLAB. Table 3 presents all cash flows in
both variants.

Table 3. Cash flows in two variants of equity release.

First Variant—Marriage Contract

x = y
Annuity

..
b

Benefit for
Woman

cx

Benefit for
Man

cy

Premium for
Woman

px

Premium for
Man

py

65 4085.4 8417.8 4945.8 12.6 28.2

70 4628.7 9558.4 5413.1 14.3 32.0

75 5458.0 11,903.0 6803.5 16.9 37.7

80 6717.5 15,593.0 10,410.0 20.8 46.4

85 8612.4 20,667.0 16,076.0 26.6 59.5

Second Variant—Individual Contracts

x = y
Annuity for

Woman..
bx

Annuity for
Man..

by

Total
Annuity

..
b

Benefit for
Woman

cx

Benefit for
Man

cy

Premium for
Woman

px

Premium for
Man

py

65 2287.5 2786.9 5074.4 15,253.0 4882.6 22.9 27.9

70 2657.4 3257.5 5914.9 17,760.0 5513.1 26.6 32.6

75 3252.0 3952.1 7204.1 22,956.0 7129.0 32.5 39.5

80 4195.0 4984.0 9179.0 31,513.0 11,177.0 42.0 49.9

85 5673.3 6487.8 12,161.1 44,058.0 17,526.0 56.7 64.9

In both variants, an increase in all the benefits was observed. This growth is positively
correlated with the spouses’ age. Women pay lower premiums because the incidence of
lung cancer is lower in the female population. Consequently, the critical illness insurance
benefit is significantly higher for females than for the male population. It is obvious that
in case of another disease the relation may be opposite. The percentage of the morbidity
rate under consideration R determines the distribution of the premium. In the marriage
variant, the total benefit payment of the equity release is lower than the same benefit in
the individual variant. The differences in the benefit payments increase with the rise in the
spouses’ age and reach almost 30% for x = y = 85. The same relationship is observable for
illness benefits; however, women pay an almost two-fold higher premium in the second
option, thus receiving twice as much payment. This shows that women could pay half the
premium for this particular disease, which means 0.5 · (1− β), to receive the same chronic
illness benefit payment. The critical illness insurance payment for men is comparable in
both cases. This is due to the fact that the premium is divided according to the morbidity
risk in the marriage contract. In both variants, the spouses receive a reverse annuity as
a yearly payment, and they can allow themselves to buy critical illness insurance. The
annuity income is not significantly reduced because the level of the annual premium is
very low. Whereas the health insurance benefit allows for the acquirement of significant
financial resources for health care, treatment, and improvement of the quality of life in the
case of dread disease.

As shown by the above analysis, it can be assumed that the second variant is more
favourable for the spouses. Therefore, let us analyse the relative increases in the number
of total benefits payments received by spouses at 65, 75, and 85 years depending on their
further life expectancy, which is presented in Figures 2–4.
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The dark colours indicate positive differences, i.e., a higher total benefit in the second
variant. Lighter colours represent negative differences, which means a higher total payment
in the first option. The graphs also show lines that illustrate the future life expectancy of
people at the considered age. The future life expectancy of a 65, 75, and 85-year-old woman
is 19.04, 16.54, and 6.05 years, respectively, and for men of the same age it is 14.73, 9.22, and
5.2 years, respectively.

It is visible that the similar age of the spouses’ death determines the total benefit of
the equity release contract, increasing up to 40%, and results in a higher dread disease
insurance payment in the event of sickness. This means that the second variant of the
contract is more favourable for spouses. When one of the spouses dies earlier than the
other, and the second spouse lives a long time, the first variant is more beneficial. This can
especially be observed for women, who become widows more often than men, and receive
a higher marital annuity, even by over 40%. However, when the husband additionally
suffers from a serious illness, in the considered case of lung cancer, the health insurance
benefit is of a similar amount. The lower left rectangle shows situations when the spouses
live longer than their future life expectancy. Then, the probability of receiving a higher
benefit increases. When spouses are at 65, the higher payments of the second variant of the
contract occur in 40.7% of cases, of which 61.3% concerns a situation when spouses live
above their future life expectancy. These numbers increase with the rise in the spouses’ age.
The second variant’s higher benefit occurs in 50.9% and 63.1% when spouses are at 75 and
85 years, respectively. Of these situations, 72.3% are placed in the left lower rectangle.

The spouses are not very often at the same age; therefore, Tables 4 and 5 present the
amount of the annuity and health insurance benefits in both variants for spouses of various
ages. An exemplary five-year age difference between the spouses was assumed.

Table 4. Total benefits of equity release for various ages of spouses in two variants of contract.

First Variant—Marriage Contract Second Variant—Individual Contracts

x X

y 65 70 75 80 85 y 65 70 75 80 85

65 4085 4394 4717 5006 5226 65 5074 5444 6039 6982 8460
70 4224 4629 5084 5526 5889 70 5545 5915 6510 7453 8931
75 4340 4839 5458 6115 6712 75 6240 6610 7205 8147 9625
80 4428 5008 5788 6718 7647 80 7272 7641 8237 9179 10,657
85 4493 5133 6050 7241 8612 85 8775 9145 9740 10,683 12,161

It is evident that the reverse annuity payments increase alongside the rise in the
spouses’ age in both cases. However, the benefits are higher in the second variant. The
difference in both benefits increases for younger women and decreases for older women
as the men’s age increases. For example, when x = 65 and y = 85, the benefit is over 95%
higher, and when men become older, it is only 41.2% higher, but it is still huge. It is not
difficult to notice that the payment is lower for a younger wife and an older husband than
contrariwise. In the case of men, age has a higher impact on the benefit. This relates to the
fact that men live shorter lives than women.

The critical illness insurance payment for women is almost always twice as high in
the second variant. Wives do not share the premium for this insurance with husbands.
This benefit does not depend on the age of the second spouse in the second case. For a
younger husband and an older wife, the dread disease insurance payment is higher in the
first contract; thus, it is more favourable for men.
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Table 5. Critical illness insurance payment depending on the age of spouses in two variants
of contract.

First Variant—Marriage Contract Second Variant—Individual Contract

Critical illness insurance payment for man

x
different x

y 65 70 75 80 85

65 4946 5320 5711 6060 6326 4882.6
70 4940 5413 5946 6463 6887 5513.1
75 5410 6032 6804 7622 8367 7129.3
80 6862 7761 8970 10,410 11,850 11,171
85 8387 9581 11,293 13,516 16,076 17,526

Critical illness insurance payment for woman

x different y
y 65 70 75 80 85

65 8418 9075 10,288 11,619 12,539 15,253
70 8704 9558 11,088 12,828 14,132 17,760
75 8943 9993 11,903 14,194 16,107 22,596
80 9124 10,342 12,624 15,593 18,350 31,513
85 9258 10,600 13,194 16,807 20,667 44,058

5. Discussion and Conclusions

The article presents two variants of a contract that is a combination of an equity release
and critical illness insurance. This new proposition could protect against the effects of
longevity. The contractual cash flow and different scenarios were analysed. It cannot be
clearly stated which of these contracts is better. Assuming a pessimistic variant, when both
spouses fall ill and die quickly, neither option will be beneficial, although they will receive
the health insurance benefit payment. If one spouse dies earlier and the other lives healthily
longer than the life expectancy, then the marriage variant is more favourable. On the other
hand, assuming an optimistic version, when both spouses live together in good health for a
long time, particularly above the life expectancy, the individual variant is definitely a better
choice. Of course, when concluding a contract, most people do not consider the risk of
death. The knowledge of the genetic burden concerning a critical illness can help to more
adequately adjust the client’s contract. It was shown that both contracts offer high benefits
payments, but for women, who become widows more often, the marriage contract is more
beneficial. The calculations show a very significant gender impact on the amount of the
benefits. In the considered examples, net premiums and net benefits were presented. All
the contracts have additional costs. Combining arrangements into one lowers the costs;
hence, the first variant seems to be a cheaper option than buying individual policies.

The introduction of critical illness insurance into the contract has caused two important
constraints for the presented model. Firstly, the limited critical illness survival time (a four-
year period for lung cancer as described in the studied example) enforced the application
of the periodic life tables. Secondly, since an estimation of the relationship between cancer
risk for both the spouses seems impossible, we have assumed independence between
the spouses’ life expectancies. A justification of the possibility of such an assumption of
independence is presented in (Zmyślona and Marciniuk 2020).

The studied contracts could be used as part of longevity risk management policies as
they provide an instrument of incentive for the retirees to use housing resources to improve
their living conditions. In case of a dread disease, additional funds are likely to improve the
quality of life during the treatment. The two variants of contracts, marriage and individual,
could help pensioners to manage their home budget.
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Appendix A

The formula for the value of the health benefits is given by

c =
MTDiag

(
CoutDT)S

MTDiag
(

C(1)
in DT

)
S

(A1)

Proof. Let C = Cin − Cout, where Cout ∈ R(n+1)×N denotes the matrix of all premiums
paid during the term of the contract and Cin ∈ R(n+1)×N is the matrix of all the benefits,
which are paid at state 2 and 4 in the amount c. Hence

Cin =




0 c 0 c . . . 0
0 c 0 c . . . 0
...

...
...

... . . .
...

0 c 0 c . . . 0


 = c ·




0 1 0 1 . . . 0
0 1 0 1 . . . 0
...

...
...

... . . .
...

0 1 0 1 . . . 0


 = c ·C(1)

in .

We use the equivalence principle for the multistate insurance (cf. Dębicka 2013), which
has the following form

MTDiag
(

CDT
)

S = 0,

where MT =
(
1, v, v2, . . . , vn) ∈ Rn+1, S = (1, 1, . . . ., 1) ∈ R(N·N)×1 and D ∈ R(n+1)×(N·N)

describes the matrix probability (such as in Formula (4)).
Hence

MTDiag
(
(Cin −Cout)DT

)
S = 0

and
MTDiag

(
CoutDT

)
S = MTDiag

(
CinDT

)
S

Due to Cin = c ·C(1)
in , we receive

MTDiag
(

CoutDT
)

S = c ·MTDiag
(

C(1)
in DT

)
S

which completes the proof. �
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Abstract: We discuss several known formulas that use the Macaulay duration and convexity of
commonly used cash flow streams to approximate their net present value, and compare them with
a new approximation formula that involves hyperbolic functions. Our objective is to assess the
reliability of each approximation formula under different scenarios. The results in this note should
be of interest to actuarial candidates and educators as well as analysts working in all areas of
actuarial practice.

Keywords: Macaulay duration; Macaulay convexity; net present value of cash flows

1. Introduction

Actuaries and actuarial science students at universities all over the world are familiar
with approximation formulas for the present value of cash flow streams using some notion
of cash flow duration or convexity. For example, the syllabus of Exam FM of the US-based
Society of Actuaries includes the topic of approximations using the Macaulay and modified
duration and convexity, while the UK-based Institute and Faculty of Actuaries in its material
for exam CM1 mentions approximations derived from a Taylor series expansion.

Beside the academic and pedagogical interest in such approximation formulas, one
may also consider the practical value in the management of interest rate risk. Although
abundant computing power has enabled firms to implement elaborate immunization
strategies that incorporate multi-factor stochastic interest rate models, non-parallel yield
curve shifts, and complicated asset and liability characteristics, the restrictions posed by a
simplistic valuation model are not unreasonable if rates remain historically low, yield curves
stay relatively flat, and we can control the potential errors. Indeed, it may be helpful to
know which approximation formula proves to be the most reliable, and to use it as a quick
validation tool when time constraints preclude the use of a more sophisticated approach.

Alps (2017) describes a realistic scenario involving an investment actuary and her
CEO, where the use of an approximation formula would be warranted or even necessitated.
This is especially true in today’s world of fast-changing rates, when companies have to
react almost instantly to benchmark fund rates and quantitative tightening decisions by the
Federal Reserve or other central banks.

In this note, we discuss several known formulas that use the Macaulay duration and
convexity of commonly used cash flow streams to approximate their net present value, and
compare them with a new approximation formula that involves hyperbolic functions. In
addition to annuities, dividend stocks, and bonds, we also consider the cases of negative
payments and embedded options to perform a deeper assessment. The notions of effective
duration and convexity are defined in the next section and used to price the embedded
options. Our objective is to measure the reliability of each approximation formula under
different scenarios. As alluded to earlier, we only consider parallel interest rate shocks to
flat yield curves.
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1.1. Literature Review

The idea of using a bond’s duration to approximate changes to its price goes back
to Macaulay (1938). Some authors credit Fischer and Weil (1971) with the publication
of the first duration–convexity approximation formula. Enhancements of that formula
by controlling the missing higher-order terms and incorporating passage of time were
announced in Jarjir and Rakotondratsimba (2008, 2012), though the resulting formulas
contain parameters that are unintuitive and hard to calibrate. A conceptually simpler
formula was given in Barber (1995), and independently in Livingston and Zhou (2005)
for the modified duration, which was subsequently generalized to a duration–convexity
model in Tchuindjo (2008). Further work in Barber and Dandapani (2017) considered
negative-yielding bonds, and Johansson (2012) added passage of time. A separate duration–
convexity formula appears in Alps (2017) and is applied to an empirical study of basic
immunization strategies in Nie et al. (2021), while a very recent paper by Barber (2022)
further generalizes a duration–convexity approximation by introducing an additional
‘compounding’ parameter. Finally, traditional approximations have been implemented in
statistical analysis packages; see Lee (2021) for R code.

1.2. Notation

We denote the net present value of a cash flow stream by P. The interest rate r is
annualized and continuously compounded (i.e., force of interest). ∆r is the change in
interest rates from the initial value r0 to r. Finally, the annual discount factor v is by
definition equal to e−r.

Throughout the remainder of this paper and for convenience, assume r0 = 1.6%,
which is approximately the yield on the 10-year T-bond at the beginning of this year.

2. Materials and Methods

Recall that the Macaulay duration of a stream of cash flows {CFtj}n
j=1 being paid at

future times {tj}n
j=1 is defined by

d =
∑n

j=1 CFtj vtj tj

∑n
j=1 CFtj vtj

= −dP/dr
P

,

while its Macaulay convexity is given by

c =
∑n

j=1 CFtj vtj t2
j

∑n
j=1 CFtj vtj

=
d2P/dr2

P
.

We do not consider the modified duration here because the Macaulay duration has a
more intuitive interpretation (being the ‘average’ timing of the cash flows) and tends to
result in tighter approximations for non-negative rates.

In the case of bonds with embedded options, it will be necessary to price the value of
the option using a simple Black model. Recall that the pricing formula for, say, a European
call option with expiration at time t and strike K is

V = vt(PΦ(d1)− KΦ(d2))

where Φ represents the standard normal c.d.f. and the quantities d1,2 are given by

d1,2 =
ln(P/K)

σ
√

t
± σ
√

t
2

with σ the bond price volatility. We also need more flexible measures of bond duration and
convexity. To that end, define the effective duration by means of

152



Risks 2022, 10, 153

de = −
P(r0 + ∆r)− P(r0 − ∆r)

2P0 ∆r

and the effective convexity as

ce =
P(r0 + ∆r)− 2P0 + P(r0 − ∆r)

P0 (∆r)2 .

2.1. Fischer–Weil’s Approximation

This follows immediately from Calculus and the definitions above.

∆P
P0
≈ −d0 ∆r +

c0

2
(∆r)2. (1)

It is assumed that the Macaulay duration and convexity are computed at rate r0, hence
the subscripts.

2.2. Barber’ 1995 Approximation

Instead of the second-order Taylor polynomial of P, we consider the first-order Taylor
polynomial of ln P, thus obtaining

ln P ≈ ln P0 − d0 ∆r,

thus
P ≈ P0 e−d0 ∆r. (2)

Unlike the first-order Taylor polynomial in P that has no convexity, the functional form
of Barber’s approximation bequeaths it with a certain degree of positive curvature. This
leads to good approximation results whenever c0 ≈ d2

0 and poor performance for c0 < 0.

2.3. Tchuindjo’ Approximation

Similar to Barber’s approximation, but involving the second-order Taylor polynomial
of ln P

ln P ≈ ln P0 − d0 ∆r +
c0 − d2

0
2

(∆r)2, (3)

from which one solves for P. The added quadratic term gives better results in cases where
c0 − d2

0 is non-trivial, but may still introduce large errors whenever c0 < 0.

2.4. Alps’ Approximation

The approximation formula and its derivation can be found in Alps (2017). The central
idea in the derivation of this approximation is to compute a Taylor polynomial for the
current value of the cash flow stream at time t = d0. This choice results in high accuracy in
situations where d0 > 0, and less so for d0 < 0.

We have rewritten it below in terms of continuously compounded interest rates.

P ≈ P0 e−d0 ∆r

(
1 +

c0 − d2
0

2

(
e∆r − 1

)2
)

. (4)

2.5. Hyperbolic Approximation

We have not encountered this approximation formula in the literature and we assume
its derivation is presented here for the first time. Consider the homogeneous differential
equation P′′ − c0P = 0 that mimics the definition of Macauley convexity given earlier in
this note. Its general solution takes the form

P = a e
√

c0 r + b e−
√

c0 r
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(do not worry for the time being about the case c0 < 0.) Setting P(r0) = P0 and
P′(r0) = −d0 P0, which is a reformulation of the definition of Macauley duration, one
obtains the approximation

P ≈ P0

(
1
2

(
1− d0√

c0

)
e
√

c0 ∆r +
1
2

(
1 +

d0√
c0

)
e−
√

c0 ∆r
)

which can be rewritten as

P ≈ P0

(
cosh(

√
c0 ∆r)− d0√

c0
sinh(

√
c0 ∆r)

)
. (5)

The well-known trig identities

cosh(iθ) =
eiθ + e−iθ

2
= cos θ , sinh(iθ) =

eiθ − e−iθ

2
= i sin θ

can be used in the case c0 < 0 to obtain

P ≈ P0

(
cos
(√
|c0| ∆r

)
− d0√

|c0|
sin
(√
|c0| ∆r

))
,

which is useful whenever there is a computational issue with imaginary numbers.
In the next section, we demonstrate that the hyperbolic approximation is less prone

to errors than other well-known approximations in situations where the duration and/or
convexity are negative. Recall that negative convexity cash flow streams can be easily
constructed with the addition of negative cash flows to a stream of positive payments, when
considering callable bonds, or with mortgage-backed securities due to the prepayment
option in conventional residential mortgages.

3. Results

Approximation formulas such as Equations (1)–(5) should ideally be intuitive and
behave well in special cases.

(i) The simplest cash flow is cash, which has trivial duration and convexity and is
unaffected by interest rate changes. By substituting d0 = c0 = 0 or taking the
corresponding limit in the case of (5) and using the fact that

lim
θ→0

sinh θ

θ
= lim

θ→0

sin θ

θ
= 1,

we obtain P = P0 as expected.
(ii) Next, take a zero-coupon bond, for which c0 = d2

0: Except for Fischer–Weil’s approx-
imation, the rest reduce to Barber’s approximation, which is perfectly accurate in
this case. On the other hand, the error associated with Fischer-Weil’s approxima-
tion increases with the bond duration and it can be as high as 0.56% for a 30-year
zero-coupon bond after a 100 bp increase in rates.

(iii) For a convexity-hedged (c0 → 0) portfolio, Fischer–Weil’s and the hyperbolic approxi-
mations reduce to the first-order approximation ∆P ≈ −d0 P0 ∆r. The corresponding
results for the other approximation formulas are not as intuitive and their accuracy
relative to the above approximation cannot be determined without additional details
about the cash flow characteristics.

We supplement the theoretical tests above with some concrete examples.

(iv) Consider a 10-year annuity-immediate with annual payments of 10. Recall that our
assumption is r0 = 1.6% and compute the present value P0 = 10a10 = 91.6728.
Another easy calculation gives the Macaulay duration and convexity as d0 = 5.3681
and c0 = 37.0554, respectively.
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In Table 1, the exact value of P is computed using the same formula as for P0 but at
the new continuously compounded rate.

Table 1. PV of 10-year annuity with annual payments of 10.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp 96.7682 96.7637 96.7283 96.7682 96.7669 96.7668
−80 bp 95.7207 95.7184 95.6954 95.7207 95.7199 95.7199
−60 bp 94.6876 94.6866 94.6735 94.6876 94.6871 94.6873
−40 bp 93.6687 93.6684 93.6625 93.6687 93.6685 93.6686
−20 bp 92.6639 92.6638 92.6623 92.6639 92.6638 92.6639

0 bp 91.6728 91.6728 91.6728 91.6728 91.6728 91.6728

20 bp 90.6954 90.6954 90.6939 90.6954 90.6953 90.6954
40 bp 89.7313 89.7316 89.7254 89.7313 89.7311 89.7314
60 bp 88.7804 88.7813 88.7672 88.7804 88.7800 88.7807
80 bp 87.8425 87.8447 87.8193 87.8425 87.8417 87.8432

100 bp 86.9173 86.9216 86.8815 86.9173 86.9162 86.9186

We can observe that Tchuindjo’s approximation outperforms the rest, while Barber’s
lags behind for sizable rate changes. This was to be expected, since Barber’s approximation
lacks a convexity term and will not do well in cases when c0 − d2

0 is non-trivial. On the
other hand, Alps’ and the hyperbolic approximations are roughly equally accurate behind
Tchuindjo’s.

(v) Next, add a negative cash flow at time 20. We have chosen CF20 = −120 in the
example below; the net present value is P0 = 4.5349 and the Macaulay duration and
convexity are d0 = −275.7817 and c0 = −6, 936.8498, respectively.

Looking at Table 2 below, it may come as a surprise that the approximations by
Tchuindjo and Alps blow up completely. However, we can provide a simple mathematical
explanation for the bizarre behavior. Whenever c0 < 0, the quadratic term of these two
approximations that includes the expression c0 − d2

0 has the potential to be extremely
influential. As ∆r increases, said term can overwhelm the baseline value P0 and the linear
term, resulting in large errors. Barber’s approximation exhibits the opposite weakness:
missing a quadratic term implies that the negative convexity is not accounted for at all. In
fact, for suitable CF20, we can obtain d0 = 0, in which case Barber’s approximation fails to
yield any results.

Table 2. NPV of 10-year annuity with annual payments of 10 and a payment of −120 at time 20.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp −9.6622 −9.5445 0.2877 0.0045 −0.8684 −8.0590
−80 bp −6.5366 −6.4769 0.4994 0.0351 −0.7850 −5.7162
−60 bp −3.5601 −3.5352 0.8669 0.1946 −0.3873 −3.2151
−40 bp −0.7266 −0.7193 1.5048 0.7747 0.5372 −0.6250
−20 bp 1.9698 1.9707 2.6123 2.2128 2.1924 1.9824

0 bp 4.5349 4.5349 4.5349 4.5349 4.5349 4.5349

20 bp 6.9742 6.9733 7.8725 6.6685 6.6069 6.9619
40 bp 9.2929 9.2859 13.6664 7.0357 4.8785 9.1962
60 bp 11.4960 11.4726 23.7243 5.3262 −10.6004 11.1758
80 bp 13.5885 13.5335 41.1846 2.8930 −64.7471 12.8461

100 bp 15.5748 15.4686 71.4950 1.1275 −215.8388 14.1608
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We conclude this example by mentioning that the top-performing approximation is
Fischer–Weil’s, while the hyperbolic approximation is second-best.

(vi) Let us now consider a dividend stock, whose theoretical price is computed using
Gordon’s dividend discount model

P =
D

r− g

with D representing next year’s dividend and g its constant continuously compounded
growth rate in perpetuity. A quick calculation gives d = (r− g)−1 and c = 2(r− g)−2;
for g = 0.6% we obtain d0 = 100 and c0 = 20, 000. Assume D = 1.

Some of the results in Table 3 may appear counterintuitive at first sight. Gordon’s
model suggests that P has an inverse relationship to r; however, all approximations except
for Alps’ and Barber’s eventually produce a divergent estimate for P as ∆r increases.
However, this is explained by the fact that we are attempting to trace a hyperbola using
quadratic curves. Moreover, all approximations struggle to keep up with P for large
negative values of ∆r.

Table 3. Price of a dividend stock with D = 1 and g = 0.6%.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp n/a 300.0000 271.8282 448.1689 403.4619 354.6482
−80 bp 500.0000 244.0000 222.5541 306.4854 291.5285 269.3175
−60 bp 250.0000 196.0000 182.2119 218.1472 213.9771 205.6762
−40 bp 166.6667 156.0000 149.1825 161.6074 160.7412 158.5990
−20 bp 125.0000 124.0000 122.1403 101.8813 101.8813 101.8813

0 bp 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000

20 bp 83.3333 84.0000 81.8731 83.5270 83.4590 83.7590
40 bp 71.4286 76.0000 67.0320 72.6149 72.2257 74.2635
60 bp 62.5000 76.0000 54.8812 65.7047 64.4487 70.7488
80 bp 55.5556 84.0000 44.9329 61.8783 58.8586 72.9319

100 bp 50.0000 100.0000 36.7879 60.6531 54.6026 80.9885

Overall, Alps’ approximation proves to be the most dependable for moderate changes
in the interest rates.

(vii) Next, consider a 10-year bond with a coupon rate of r0 and face value of 100. A quick
calculation yields d0 = 9.3151 and c0 = 90.6932.

It turns out that the last three approximation formulas clearly outperform the rest,
with Tchuindjo’s having a slight advantage over Alps’ and the hyperbolic approximation,
as evidenced from Table 4. The subpar performance of Fischer–Weil on bonds is one of the
reasons why this approximation is not widely utilized, despite its robustness in cases such
as (v).

It has been shown empirically that although investment-grade bonds fall in price when
interest rates rise, that is not necessarily the case with high-yield bonds whose duration can
be negative due to default risk; see Melentyev and Yu (2020). For such bonds, care should
be exercised when using the approximations by Tchuindjo or Alps.
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Table 4. PV of 10-year par bond with coupon rate r0.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp 109.7839 109.7686 109.7628 109.7843 109.7836 109.7830
−80 bp 107.7501 107.7423 107.7368 107.7503 107.7499 107.7497
−60 bp 105.7556 105.7523 105.7482 105.7557 105.7555 105.7554
−40 bp 103.7996 103.7986 103.7963 103.7996 103.7995 103.7995
−20 bp 101.8813 101.8812 101.8805 101.8813 101.8813 101.8813

0 bp 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000

20 bp 98.1550 98.1551 98.1542 98.1550 98.1550 98.1550
40 bp 96.3456 96.3465 96.3425 96.3455 96.3454 96.3456
60 bp 94.5710 94.5742 94.5642 94.5709 94.5707 94.5712
80 bp 92.8306 92.8381 92.8188 92.8304 92.8301 92.8310

100 bp 91.1238 91.1383 91.1056 91.1234 91.1229 91.1246

(viii) Finally, assume the bond is callable, with the European call strike set at K = 101.0000
and bond price volatility σ = 8%. The call is exercised a year ahead of the bond’s
maturity and has price V = 9.9431, which is subtracted from the price of a conventional
bond to arrive at the callable bond price. Using ∆r = 20 bp in the calculation of the
effective duration and convexity, we obtain de = 5.3333 and ce = 50.3993. The positive
convexity may surprise some readers, but note that the convexity turns negative when
the interest rate gets closer to 0 and the bond price approaches the strike.

It is important to observe in Table 5 that none of the approximation formulas can
consistently outperform the rest, if our objective is to estimate the full range of prices for
such a bond. In effect, we are trying to approximate a function with an inflection point
using quadratic curves, and thus significant approximation errors are inevitable.

Table 5. NPV of 10-year par bond with coupon rate r0, callable for 101 at t = 9.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp 95.0594 95.0868 94.9903 95.0946 95.0913 95.0910
−80 bp 94.0367 94.0445 93.9824 94.0485 94.0464 94.0466
−60 bp 93.0197 93.0204 92.9853 93.0220 93.0209 93.0213
−40 bp 92.0148 92.0144 91.9987 92.0149 92.0144 92.0146
−20 bp 91.0265 91.0265 91.0226 91.0266 91.0265 91.0266

0 bp 90.0569 90.0569 90.0569 90.0569 90.0569 90.0569

20 bp 89.1053 89.1053 89.1014 89.1053 89.1052 89.1053
40 bp 88.1692 88.1720 88.1560 88.1715 88.1710 88.1717
60 bp 87.2437 87.2568 87.2207 87.2552 87.2541 87.2559
80 bp 86.3227 86.3597 86.2953 86.3559 86.3540 86.3577

100 bp 85.3991 85.4808 85.3797 85.4735 85.4705 85.4768

The only useful conclusion is that the hyperbolic approximation is never the worst
one, since it tends to be “sandwiched” between other approximations.

4. Discussion

We have established through a number of theoretical considerations and concrete
examples that the accuracy of various Macaulay approximations can vary widely. Ap-
proximations that outperform in one case turn out to be unreliable in another case. The
hyperbolic approximation, introduced in this paper, exhibited modest errors in most cases
and thus the most reliability among the five approximations studied.

We can envision a variety of uses for the results presented here:

• To perform expeditious interest risk calculations by practitioners;
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• As a study note to gain insight into risk management concepts that are tested in the
actuarial examinations in the US and Europe;

• As potential areas of student research or as assigned projects that utilize real financial
data in actuarial science classes taught by academics.

There is also potential to expand the scope of this study by incorporating non-flat
yield curves, key rate durations, passage of time, and more complex financial instruments.
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Abstract: We consider the problem where a modeller conducts sensitivity analysis of a model
consisting of random input factors, a corresponding random output of interest, and a baseline
probability measure. The modeller seeks to understand how the model (the distribution of the input
factors as well as the output) changes under a stress on the output’s distribution. Specifically, for a
stress on the output random variable, we derive the unique stressed distribution of the output that is
closest in the Wasserstein distance to the baseline output’s distribution and satisfies the stress. We
further derive the stressed model, including the stressed distribution of the inputs, which can be
calculated in a numerically efficient way from a set of baseline Monte Carlo samples and which is
implemented in the R package SWIM on CRAN. The proposed reverse sensitivity analysis framework
is model-free and allows for stresses on the output such as (a) the mean and variance, (b) any
distortion risk measure including the Value-at-Risk and Expected-Shortfall, and (c) expected utility
type constraints, thus making the reverse sensitivity analysis framework suitable for risk models.

Keywords: distortion risk measures; expected utility; Wasserstein distance; robustness and sensitivity
analysis; model uncertainty

1. Introduction

Sensitivity analysis is indispensable for model building, model interpretation, and
model validation, as it provides insight into the relationship between model inputs and
outputs. A key tool used for sensitivity analysis are sensitivity measures, that assign to
each model input a score, representing an input factor’s ability to explain the variability of
a model output’s summary statistic; see Saltelli et al. (2008) and Borgonovo and Plischke
(2016) for an in-depth review. One of the most widely used output summary statistic is the
variance, which gives rise to sensitivity measures, e.g., the Sobol indices, that apportion
the uncertainty in the output’s variance to input factors. In many applications, such
as reliability management and financial and insurance risk management, however, the
variance is not the output statistic of concern and instead quantile-base measures are used;
indicatively, see Asimit et al. (2019); Fissler and Pesenti (2022); Maume-Deschamps and
Niang (2018); Tsanakas and Millossovich (2016). Furthermore, typical for financial risk
management applications is that model inputs are subject to distributional uncertainty.
Probabilistic (or global) sensitivity measures, however, tacitly assume that the model’s
distributional assumptions are correctly specified; indeed, sensitivity measures based on
the difference between conditional (on a model input) and unconditional densities (of
the output) are termed “common rationale” Borgonovo et al. (2016). Examples include
indices, such as Borgonovo’s sensitivity measures Borgonovo (2007), the f -sensitivity index
Rahman (2016), and sensitivity indices based on the Cramér–von Mises distance Gamboa
et al. (2018), we also refer to Plischke and Borgonovo (2019) for a detailed overview and to
Gamboa et al. (2020) for estimation of these sensitivity measures. Recently, Plischke and
Borgonovo (2019) define sensitivity measures that depend only on the copula between input
factors, whereas Pesenti et al. (2021) propose a sensitivity measure based on directional
derivatives that take dependence between input factors into account. Estimating these
sensitivities, however, may render difficult in application where joint observations are
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scarce, e.g., insurance portfolios, and their interpretation may be limited as dependence
structures are commonly specified by expert opinions Denuit et al. (2006).

We consider an alternative sensitivity analysis framework proposed in Pesenti et al.
(2019) that (a) considers statistical summaries relevant to risk management, (b) applies to
models subject to distributional uncertainty, thus instead of relying on correctly specified
distributions from which to calculate sensitivity measures we derive alternative distribu-
tions that fulfil a specific probabilistic stress and are “closest” to the baseline distribution;
and (c) studies reverse sensitivity measures. Differently to the framework proposed in
Pesenti et al. (2019) who use the Kullback–Leibler divergence to quantify the closedness
of probability measures, in this work we consider the Wasserstein distance of order two
to measure the distance between distribution functions. The Wasserstein distance allows
for more flexibility in the choice of stresses including survival probabilities (via quantiles)
used in reliability analysis, risk measures employed in finance and insurance, and utility
functions relevant for decision under ambiguity.

Central to the reverse sensitivity analysis framework is a baseline model, the 3-tuple
(X, g,P), consisting of random input factors X = (X1, . . . , Xn), an aggregation function
g : Rn → R mapping input factors to a univariate output Y = g(X), and a probability
measure P. The methodology has been termed reverse sensitivity analysis by Pesenti et al.
(2019) since it proceeds in a reverse fashion to classical sensitivity analysis where input
factors are perturbed and the corresponding altered output is studied. Indeed, in the reverse
sensitivity analysis proposed by Pesenti et al. (2019) a stress on the output’s distribution is
defined and changes in the input factors are monitored. The quintessence of the sensitivity
analysis methodology is, however, not confined to stressing the output’s distribution, it is
also applicable to stressing an input factor and observing the changes in the model output
and in the other inputs. Throughout the exposition, we focus on the reverse sensitivity
analysis that proceeds via the following steps:

(i) Specify a stress on the baseline distribution of the output;
(ii) Derive the unique stressed distribution of the output that is closest in the Wasserstein

distance and fulfils the stress;
(iii) The stressed distribution induces a canonical Radon–Nikodym derivative dQ∗

dP ; a
change of measures from the baseline P to the stressed probability measure Q∗;

(iv) Calculate sensitivity measures that reflect an input factors’ change in distribution from
the baseline to the stressed model.

Sensitivity testing using divergence measures–in the spirit of the reverse sensitivity
methodology–has been studied by Cambou and Filipović (2017) using f -divergences on a
finite probability space; by Pesenti et al. (2019) and Pesenti et al. (2021) using the Kullback–
Leibler divergence; and Makam et al. (2021) consider a discrete sample space combined
with the χ2-divergence. It is however known that the set of distribution functions with finite
f -divergence, e.g., the Kullback–Leibler and χ2 divergence–around a baseline distribution
function depends on the baseline’s tail-behaviour, thus the choice of f -divergence should
be chosen dependent on the baseline distribution Kruse et al. (2019). The Wasserstein
distance on the contrary, automatically adapts to the baseline distribution function in that
the Wasserstein distance penalises dissimilar distributional features such as different tail be-
haviour Bernard et al. (2020). The Wasserstein distance has enjoyed numerous applications
to quantify distributional uncertainty, see, e.g., Blanchet and Murthy (2019) and Bernard
et al. (2020) for applications to financial risk management. In the context of uncertainty
quantification, Moosmüeller et al. (2020) utilise the Wasserstein distance to elicit the (un-
certain) aggregation map g from the distributional knowledge of the inputs and outputs.
Fort et al. (2021) utilises the Wasserstein distance to introduce global sensitivity indices
for computer codes whose output is a distribution function. In this manuscript we use the
Wasserstein distance as it allows for different stresses compared to the Kullback–Leibler
divergence. Indeed, the Wasserstein distance allows for stresses on any distortion risk mea-
sures, while the Kullback–Leibler divergence only allow for stresses on risk measures which
are Value-at-Risk (VaR) and VaR and Expected Shortfall jointly, see Pesenti et al. (2019).
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This paper is structured as follows: In Section 2, we state the notation and definitions
necessary for the exposition. Section 3 introduces the optimisation problems and we derive
the unique stressed distribution function of the output which has minimal Wasserstein
distance to the baseline output’s distribution and satisfies a stress. The considered stresses
include constraints on risk measures, quantiles, expected utilities, and combinations thereof.
In Section 4, we characterise the canonical Radon–Nikodym derivative, induced by the
stressed distribution function, and study how input factors’ distributions change when
moving from the baseline to the stressed model. An application of the reverse sensitivity
analysis is demonstrated on a mixture model in Section 5.

All proofs are delegated to Appendix A.

2. Preliminaries

Throughout we work on a measurable space (Ω,A) and denote the sets of distribution
functions with finite second moment by

M =

{
G : R→ [0, 1]

∣∣∣∣ G non-decreasing, right-continuous , lim
x↘−∞

G(x) = 0 ,

lim
x↗+∞

G(x) = 1 , and
∫

x2 dG(x) < +∞
}

,

and the corresponding set of square-integrable (left-continuous) quantile functions by

M̆ =
{

Ğ ∈ L2([0, 1])
∣∣ Ğ non-decreasing & left-continuous

}
.

or any distribution function G ∈ M, we denote its corresponding (left-continuous) quantile
function by Ğ ∈ M̆, that is Ğ(u) = inf{ y ∈ R |G(y) ≥ u}, u ∈ [0, 1], with the convention
that inf ∅ = +∞. We measure the discrepancy between distribution functions on the real
line using the Wasserstein distance of order 2, defined as follows.

Definition 1 (Wasserstein Distance). The Wasserstein distance (of order 2) between two distri-
bution functions F1 and F2 is defined as Villani (2008)

W2(F1 , F2) = inf
π∈Π(F1, F2)

{(∫

R2
|z1 − z2|2 π(dz1, dz2)

) 1
2
}

,

where Π(F1, F2) denotes the set of all bivariate probability measures with marginal distributions F1
and F2, respectively.

The Wasserstein distance is the minimal quadratic cost associated with transporting
the distribution F1 to F2 using all possible couplings (bivariate distributions) with fixed
marginals F1 and F2. The Wasserstein distance admits desirable properties to quantify
model uncertainty such as the comparison of distributions with differing support, e.g., with
the empirical distribution function. Moreover it is symmetric and forms a metric on the
space of probability measures; we refer to Villani (2008) for an overview and properties of
the Wasserstein distance. It is well known (Dall’Aglio 1956) that for distributions on the
real line, the Wasserstein distance admits the representation

W2(F1 , F2) =

(∫ 1

0

∣∣F̆1(u)− F̆2(u)
∣∣2du

) 1
2

.

3. Deriving the Stressed Distribution

Throughout this section we assume that the modeller’s baseline model is the 3-tuple
(X, g,P) consisting of a random vector of input factors X = (X1, . . . , Xn), an aggregation
function g : Rn → R mapping input factors to a (for simplicity) univariate output Y = g(X),
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and a probability measure P. The baseline probability measure P reflects the modeller’s
(statistical and expert) knowledge of the distribution of X and we denote the distribution
function of the output by F(y) = P(Y ≤ y). The modeller then performs reverse sensitivity
analysis, that is tries to understand how prespecified stresses/constraints on the output
distribution F, e.g., an increase in jointly its mean and standard deviation or a risk measures
such as the Value-at-Risk (VaR) or Expected Shortfall (ES), affects the baseline model, e.g.,
the joint distribution of the input factors. For this, we first define the notion of a stressed
distribution. Specifically, for given constraints we call a solution to the optimisation problem

arg min
G∈M

W2(G, F) subject to stresses/constraints on G , (1)

a stressed distribution. In problem (1), the baseline distribution F is fixed and we seek
over all alternative distributions G ∈ M the one who satisfies the stress(es) and which has
smallest Wasserstein distance to F. The solution to problem (1)–the stressed distribution–
may be interpreted as the most “plausible” distribution function arising under adverse
circumstances. Examples of stresses and constraints considered in this work include an
increase (decrease), compared to their corresponding values under the reference probability
P, in e.g., the mean, mean and standard deviation, distortion risk measures, and utility
functions, and combinations thereof.

Next, we recall the concept of weighted isotonic projection which is intrinsically
connected to the solution of optimisation problem (1); indeed the stressed quantile functions
can be uniquely characterised via weighted isotonic projections.

Definition 2 (Weighted Isotonic Projection Barlow et al. (1972)). The weighted isotonic projec-
tion `↑w of a function ` ∈ L2([0, 1]) with weight function w : [0, 1]→ [0,+∞), w ∈ L2([0, 1]), is
its weighted projection onto the set of non-decreasing and left-continuous functions in L2([0, 1]).
That is, the unique function satisfying

`↑w = arg min
h∈M̆

∫ 1

0
(`(u)− h(u))2 w(u) du .

When the weight function is constant, i.e., w(x) ≡ c, c > 0, we write `↑(·) = `↑c(·), as in
this case the isotonic projection is indeed independent of c. The weighted isotonic projection
admits not only a graphical interpretation as the non-decreasing function that minimises
the weighted L2-distance from ` but has also a discrete counterpart: the weighted isotonic
regression Barlow et al. (1972). Numerically efficient algorithms for calculating weighted
isotonic regressions are available, e.g., the R package isotone De Leeuw et al. (2010).

In the next sections, we solve problem (1) for different choices of constraints. Specifi-
cally, for risk measures constraints (Section 3.1), integral constraints (Section 3.2), Value-at-
Risk constraints (Section 3.3), and expected utility constraint (Section 3.4), and in Section 3.5
we consider ways to smooth stressed distributions. Using these stressed distributions, we
derive the stressed probability measures in Section 4 and study how a stress on the output
is reflected on the input distribution(s).

3.1. Risk Measure Constraints

This section considers stresses on distortion risk measures, that is we derive the unique
stressed distribution that satisfies an increase and/or decrease of distortion risk measures
while minimising the Wasserstein distance to the baseline distribution F.

162



Risks 2022, 10, 141

Definition 3 (Distortion Risk Measures). Let γ ∈ L2([0, 1]) be a square-integrable function
with γ : [0, 1]→ [0,+∞) and

∫ 1
0 γ(u) du = 1. Then the distortion risk measure ργ with distortion

weight function γ is defined as

ργ(G) =
∫ 1

0
Ğ(u)γ(u) du for G ∈ M . (2)

The above definition of distortion risk measures makes the assumption that positive
realisations are undesirable (losses) while negative realisations are desirable (gains). The
class of distortion risk measures includes one of the most widely used risk measures in
financial risk management, the Expected Shortfall (ES) at level α ∈ [0, 1) (also called Tail
Value-at-Risk), with γ(u) = 1

1−α1{u>α}, see, e.g., Acerbi and Tasche (2002). The often
used risk measure Value-at-Risk (VaR), while admitting a representation given in (2), has a
corresponding weight function γ that is not square-integrable. We derive the solution to
optimisation problem (1) with a VaR constraint in Section 3.3.

Theorem 1 (Distortion Risk Measures). Let rk ∈ R, ργk be a distortion risk measure with weight
function γk and assume there exists a distribution function G̃ ∈ M satisfying ργk (G̃) = rk for all
k ∈ {1, . . . , d}. Then, the optimisation problem

arg min
G∈M

W2(G, F) subject to ργk (G) = rk k = 1, . . . , d, (3)

has a unique solution given by

Ğ∗(u) =

(
F̆(u) +

d

∑
k=1

λkγk(u)

)↑
, (4)

where the Lagrange multipliers λk are such that the constraints are fulfilled, that is ργk (G
∗) = rk

for all k = 1, . . . , d.

In the above theorem, and also in later results, we assume that there exists a dis-
tribution function which satisfies all constraints. This assumption is not restrictive and
requires that, particularly, multiple constraints are chosen carefully, e.g., imposing that∫ 1

0 Ğ(u)du > 1
1−α

∫ 1
α Ğ(u)du for α ∈ (0, 1), i.e., the mean being larger than the ESα, cannot

be fulfilled by any distribution function; thus, a combination of stresses not of interest to a
modeller.

We observe that the optimal quantile function is the isotonic projection of a weighted
linear combination of the baseline’s quantile function F̆ and the distortion weight functions
of the risk measures. A prominent group of risk measures is the class of coherent risk mea-
sures, that are risk measures fulfilling the properties of monotonicity, positive homogeneity,
translation invariance, and sub-additivity; see Artzner et al. (1999) for a discussion and
interpretation. It is well-known that a distortion risk measure is coherent, if and only if,
its distortion weight function γ(·) is non-decreasing Kusuoka (2001). For the special case
of a constraint on a coherent distortion risk measure that results in a larger risk measure
compared to the baseline’s, we obtain an analytical solution without the need to calculate
an isotonic projection.

Proposition 1 (Coherent Distortion Risk Measure). If ργ is a coherent distortion risk measure
and r ≥ ργ(F), then optimisation problem (3) with d = 1 has a unique solution given by

Ğ∗(u) = F̆(u) +
r− ργ(F)
∫ 1

0 (γ(u))
2 du

γ(u) .
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We illustrate the stressed distribution functions for constraints on distortion risk
measures in the next example. Specifically, we look at the α-β risk measures which are a
parametric family of distortion risk measures.

Example 1 (α-β Risk Measure). The α-β risk measure, 0 < β ≤ α < 1, is defined by

γ(u) = 1
η

(
p1{u<β} + (1− p)1{u≥α}

)
,

where p ∈ [0, 1] and η = p β + (1− p) (1− α) is the normalising constant. This parametric
family contains several notable risk measures as special cases: for p = 0 we obtain ESα, and for
p = 1 the conditional lower tail expectation (LTE) at level β.

Moreover, if p < 1
2

(
p > 1

2

)
the α-β risk measure emphasises losses (gains) relative to gains

(losses). For α = β and p < 1
2 , the risk measure is equivalent to κ(ESα[Y]− λE[Y]), where

κ = (1−2p) (1−α)
η and λ = p

κ η .

Figure 1 displays the baseline F̆Y and the stressed Ğ∗Y quantile functions of a random variable
Y under a 10% increase on the α-β risk measure with β = 0.1, α = 0.9, and various p ∈
{0.25, 0.5, 0.75}. The baseline distribution is chosen to be FY is Lognormal(µ, σ2) with parameters
µ = 7

8 and σ = 0.5. We observe in Figure 1 that the stressed quantile functions Ğ∗Y have, in all
three plots, a flat part which straddles β = 0.1 and a jump at α = 0.9. The length of the flat part is
increasing with increasing p while the size of the jump is decreasing with increasing p. This can
also be seen in the stressed densities g∗Y which have, for all values of p, a much heavier right albeit a
much lighter left tail than the density of the baseline model. Thus, under this stress, both tails of the
baseline distribution are altered.
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Figure 1. Top panels: Baseline quantile function F̆Y (blue dashed) compared to the stressed quantile
function Ğ∗Y (red solid) for a 10% increase on the α-β risk measure with β = 0.1, α = 0.9, and various
values of p. The green line `(·) is the function, whose isotonic projection equals ĞY(·). Bottom panels:
corresponding baseline fY and stressed g∗Y densities.

3.2. Integral Constraints

The next results are generalisations of stresses on distortion risk measures to integral
constraints, and include as a special case a stress jointly on the mean, the variance, and
distortion risk measures.
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Theorem 2 (Integral). Let hk, h̃l : [0, 1]→ [0, ∞) be square-integrable functions and assume there
exists a distribution function G̃ ∈ M satisfying

∫ 1
0 hk(u)Ğ(u) du ≤ ck and∫ 1

0 h̃l(u)
(
Ğ(u)

)2 du ≤ c̃l for all k = 1, . . . , d, and l = 1, . . . , d̃. Then the optimisation problem

arg min
G∈M

W2(G, F) subject to
∫ 1

0
hk(u)Ğ(u) du ≤ ck , k = 1, . . . , d,

∫ 1

0
h̃l(u)

(
Ğ(u)

)2 du ≤ c̃l , l = 1, . . . , d̃,

has a unique solution given by

Ğ∗(u) =

(
1

Λ̃(u)

(
F̆(u) +

d

∑
k=1

λkhk(u)

))↑Λ̃

,

where Λ̃(u) = 1 + ∑d̃
k=1 λ̃k h̃k(u) and the Lagrange multipliers λ1, . . . , λd and λ̃1, . . . , λ̃d are

non-negative and such that the constraints are fulfilled.

A combination of the above theorems provides stresses jointly on the mean, the
variance, and on multiple distortion risk measures.

Proposition 2 (Mean, Variance, and Risk Measures). Let m′ ∈ R, σ′ > 0, rk ∈ R, and
distortion risk measures ργk , k = 1, . . . , d. Assume there exists a distribution function G̃ ∈ M
with mean m′, standard deviation σ′, and which satisfies ργk (G̃) = rk, for all k = 1, . . . , d. Then
the optimisation problem

arg min
G∈M

W2(G, F) subject to
∫

x dG(x) = m′,
∫
(x−m′)2 dG(x) =

(
σ′
)2 and

ργk (G) = rk, k = 1, . . . , d,

has a unique solution given by

Ğ∗(u) =

(
1

1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))↑
,

and the Lagrange multipliers λ1, . . . , λd+2 with λ2 6= −1 are such that the constraints are fulfilled.

Example 2 (Mean, Variance, and ES). Here, we illustrate Proposition 2 with the ES risk mea-
sure and three different stresses. The top panels of Figure 2 display the baseline quantile function
F̆Y and the stressed quantile function Ğ∗Y of Y, where the baseline distribution FY of Y is again
Lognormal(µ, σ2) with parameters µ = 7

8 and σ = 0.5. The bottom panels display the correspond-
ing baseline and stressed densities. The left panels correspond to a stress, where, under the stressed
model, the ES0.95 and the mean are kept fixed at their corresponding values under the baseline model,
while the standard deviation is increased by 20%. We observe, both in the quantile and density
plot, that the stressed distribution is more spread out indicating a larger variance. Furthermore, at
y ≈ 5.77 the stressed density g∗Y(y) drops to ensure that ES0.95(G∗Y) = ES0.95(FY). This drop is
due to the fact that a stress composed of a 20% increase in the standard deviation while fixing the
mean (i.e., without a constraint on ES) results in an ES that is larger compared to the baseline’s.
Indeed, under this alternative stress (without a constraint on ES) we obtain that ES0.95(G∗Y) ≈ 7.70
compared to ES0.95(FY) ≈ 6.87.

The middle panels correspond to a 10% increase in ES0.95 and a 10% decrease in the mean,
while keeping the standard deviation fixed at its value under the baseline model. The density plot
clearly indicates a general shift of the stressed density to the left, stemming from the decrease in the
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mean, and a single trough which is induced by the increase in ES. The right panels correspond to a
10% increase in ES0.95, a 10% increase in the mean, and a 10% decrease in the standard deviation.
The stressed density still has the trough from the increase in ES; however, the density is less spread
out (reduction in the standard deviation) and generally shifted to the right (increase in the mean).
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Figure 2. Top: Baseline quantile function F̆Y compared to the stressed quantile function Ğ∗Y . Bottom:
corresponding baseline fY and stressed g∗Y densities. Left: ES0.95 and the mean being fixed and a
20% increase in the standard deviation. Middle: 10% increase in ES0.95, 10% decrease in the mean,
and fixed standard deviation. Right: 10% increase in ES0.95, 10% increase in the mean, and 10%
decrease in standard deviation. Note that in the middle and right panel the green lines are equal to
the red lines.

3.3. Value-at-Risk Constraints

In this section we study stresses on the risk measure Value-at-Risk (VaR). The VaR at
level α ∈ (0, 1) of a distribution function G ∈ M is defined as its left-continuous quantile
function evaluated at α, that is

VaRα(G) = Ğ(α) .

We further define the right-continuous VaR+, that is the right-continuous quantile function
of G ∈ M evaluated at α, by

VaR+
α (G) = Ğ+(α) = inf{y ∈ R | F(y) > α} .

Theorem 3 (VaR). Let q ∈ R and consider the optimisation problem

arg min
G∈M

W2(G, F) subject to (a) VaRα(G) = q or

(b) VaR+
α (G) = q ,

and define αF such that VaRαF (F) = q. Then, the following holds

(i) under constraint (a), if q ≤ VaRα(F), then the unique solution is given by

Ğ∗(u) = F̆(u) +
(
q− F̆(u)

)
1{u∈(αF ,α]} ;

if q > VaRα(F), then there does not exist a solution.
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(ii) under constraint (b), if q ≥ VaR+
α (F), then the unique solution is given by

Ğ∗(u) = F̆(u) +
(
q− F̆(u)

)
1{u∈(α,αF ]} ;

if q < VaR+
α (F), then there does not exist a solution.

The above theorem states that if the optimal quantile function exists it is either the
baseline quantile function F̆ or constant equal to q. Moreover, the stressed quantile function
(if it exists) jumps at α which implies that the existence of a solution hinges on the careful
choice of the stress. For a stress on VaR (constraint (a)) for example, a solution exists if and
only if the constraint satisfies q ≤ VaRα(F); a decrease in the VaRα from the baseline to the
stressed model. The reason for the non-existence of a solution when stressing VaR upwards
is that the unique increasing function that minimises the Wasserstein distance and satisfies
the constraint is not left-continuous and thus not a quantile function.

Alternatively to stressing VaR or VaR+, and in particularly in the case when a desired
stressed solution does not exist, one may stress instead the distortion risk measure Range-
Value-at-Risk (RVaR) Cont et al. (2010). The RVaR at levels 0 ≤ α < β ≤ 1 is defined by

RVaRα,β(G) =
1

β− α

∫ β

α
Ğ(u) du , for G ∈ M ,

and belongs to the class of distortion risk measures. The RVaR attains as limiting cases the
VaR and VaR+. Indeed, for any G ∈ M it holds

VaRα(G) = lim
α′↗α

RVaRα′ ,α(G) and VaR+
α (G) = lim

β↘α
RVaRα,β(G) .

The solution to stressing RVaR is provided in Theorem 1.

3.4. Expected Utility Constraint

This section considers the change from the baseline to the stressed distribution under
an increase of an expected utility constraint. In the context of utility maximisation, the next
theorem provides a way to construct stressed models with a larger utility compared to
the baseline.

Theorem 4 (Expected Utility and Risk Measures). Let u : R→ R be a differentiable concave
utility function, rk ∈ R, and ργk be distortion risk measures, for k = 1, . . . , d. Assume there exists
a distribution function G̃ satisfying

∫
R u(x) dG̃(x) ≥ c and ργk

(
G̃
)
= rk for all k = 1, . . . , d.

Then the optimisation problem

arg min
G∈M

W2(G, F) subject to
∫

R
u(x) dG(x) ≥ c & ργk (G) = rk, k = 1, . . . , d

has a unique solution given by

Ğ∗(u) = ν̆λ1



(

F̆(u) +
d

∑
k=1

λk+1γk(v)

)↑
 , (5)

where ν̆λ1 is the left-inverse of νλ1(x) = x− λ1 u′(x), and λ1 ≥ 0, (λ2, . . . , λd+1) ∈ Rd are such
that the constraints are fulfilled.

The utility function in Theorem 4 need not be monotone, indeed the theorem applies to
any differentiable concave function, without the need of an utility interpretation. Moreover,
Theorem 4 also applies to differentiable convex (disutility) functions ũ and constraint∫
R ũ(x) dG(x) ≤ c; a situation of interest in insurance premium calculations. In this case,

the solution is given by (5) with u(x) = −ũ(x).
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Example 3 (HARA Utility & ES). The Hyperbolic absolute risk aversion (HARA) utility function
is defined by

u(x) =
1− η

η

(
ax

1− η
+ b
)η

,

with parameters a > 0, ax
1−η + b > 0, and where η ≤ 1 guarantees concavity.

We again choose the baseline distribution FY of Y to be Lognormal(µ, σ2) with µ = 7
8 and

σ = 0.5 and consider utility parameters a = 1, b = 5, and η = 0.5. Figure 3 displays the baseline
and the stressed quantile functions F̆Y and Ğ∗Y, respectively, for a combined stress on the HARA
utility and on ES at levels 0.8 and 0.95. Specifically, for all three stresses we decreasing ES0.8 by
10% and increasing ES0.95 by 10% compared to their values under the baseline model. Moreover,
the HARA utility is increased by 0%, 1%, and 3%, respectively, corresponding to the panels from
the left to the right. The flat part in the stressed quantile function Ğ∗(u) around u = 0.8, visible in
all top panels of Figure 3, is induced by the decrease in ES0.8 while the jump at u = 0.95 is due to
the increase in ES0.95. From the left to the right panel in Figure 3, we observe that the larger the
stress on the HARA utility, the more the stressed quantile function shifts away from the baseline
quantile function F̆Y.
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Figure 3. Top panels: Baseline quantile function F̆Y compared to the stressed quantile function Ğ∗Y , for
a 10% decrease in ES0.8, and a 10% increase in ES0.95, and, from left to right, a 0%, 1%, and 3% increase
in the HARA utility, respectively. The function `(·) (solid green) is the function whose isotonic
projection equals Ğ∗(·). Bottom panels: Corresponding baseline fY and stressed g∗Y densities.

3.5. Smoothing of the Stressed Distribution

We observe that the stressed quantile functions derived in Section 3 generally contain
jumps and/or flat parts even if the baseline distribution is absolutely continuous. In
situation where this is not desirable, one may consider a smoothed version of the stressed
distributions. For this, we recall that the isotonic regression, the discrete counterpart of the
weighted isotonic projection, of a function ` evaluated at u1, . . . , un with positive weights
w1, . . . , wn, is the solution to

min
u1,...,un

n

∑
i=1

(ui − `(ui))
2wi , subject to ui ≤ uj , i ≤ j . (6)

There are numerous efficient algorithms that solve (6) most notably the pool-adjacent-
violators (PAV) algorithm Barlow et al. (1972). It is well-known that the solution to the
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isotonic regression contains flat parts and jumps. A smoothed isotonic regression algorithm,
termed smooth pool-adjacent-violators (SPAV) algorithm, using an L2 regularisation was
recently proposed by Sysoev and Burdakov (2019). Specifically, they consider

min
u1,...,un

n

∑
i=1

(ui − `(ui))
2wi +

n

∑
i=1

ζi(ui+1 − ui)
2 , subject to ui ≤ uj , i ≤ j ,

where ζi ≥ 0, i = 0, . . . , n− 1, are prespecified smoothing parameters. Using a probabilitis-
tic reasoning, Sysoev and Burdakov (2019) argue that ζi may be chosen proportional to a
(e.g., quadratic) kernel evaluated at ui and ui+1, that is

ζi = ζ K(ui, ui+1) with K(ui, ui+1) =
1

|ui − ui+1|2
and ζ ≥ 0 .

The choice of smoothing parameter ζ = 0 correspond to the original isotonic regression
larger values of ζ correspond to a greater degree of smoothness of the solution. ζ can either
be prespecified or estimated using cross-validation, see e.g., Sysoev and Burdakov (2019).

To guarantee that the smoothed quantile function still fulfils the constraint, one may
replace in every step of the optimisation for finding the Lagrange parameter the PAV
with the SPAV algorithm. Thus, the Lagrange parameter are indeed found such that the
constraints are fulfilled.

Remark 1. There are numerous works proposing smooth versions of isotonic regressions. Ap-
proaches include kernel smoothers, e.g., Hall and Huang (2001), and spline techniques, e.g., Meyer
(2008). These algorithms, however, are computationally heavy in that their computational cost is
O(n2), where n is the number of data points. Furthermore, these algorithm require a careful choice
of the kernel or the spline basis which is in contrast to the SPAV. We refer the reader to Sysoev and
Burdakov (2019) for a detailed discussion and references to smooth isotonic regression algorithms.

4. Analysing the Stressed Model

Recall that a modeller is equipped with a baseline model, the 3-tuple (X, g,P), con-
sisting of a set of input factors X = (X1, . . . , Xn), a univariate output random variable
of interest, Y = g(X), and a probability measure P. For a stress on the output’s baseline
distribution FY, we derived in Section 3 the corresponding unique stressed distribution
function, denoted here by G∗Y. Thus, to fully specify the stressed model we next define a
stressed probability measure Q∗ that is induced by G∗Y.

4.1. The Stressed Probability Measures

A stressed distribution G∗Y induces a canonical change of measure that allows the
modeller to understand how the baseline model including the distributions of the inputs
changes under the stress. The Radon–Nikodym (RN) derivative of the baseline to the
stressed model is

dQ∗
dP =

g∗Y(Y)
fY(Y)

,

where fY and g∗Y denote the densities of the baseline and stressed output distribution,
respectively. The RN derivative is well-defined since fY(Y) > 0, P-a.s. The distribution
functions of input factors under the stressed model – the stressed distributions – are then
given, e.g., for input Xi, i ∈ {1, . . . , n}, by

Q∗(Xi ≤ xi) = E
[
1{Xi≤xi}

dQ∗
dP

]
= E

[
1{Xi≤xi}

g∗Y(Y)
fY(Y)

]
, xi ∈ R ,
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and for multivariate inputs X by

Q∗(X ≤ x) = E
[
1{X≤x}

g∗Y(Y)
fY(Y)

]
, x ∈ Rn ,

where E[·] denotes the expectation under P. Note that under the stressed probability
measure Q∗, the input factors’ marginal and joint distributions may be altered.

Example 4 (HARA Utility & ES continued). We continue Example 3 and illustrate the RN-
densities dQ∗

dP for the following three stresses (from the left to the right panel): a 10% decrease in
ES0.8 and a 10% increasing ES0.95 for all three stresses, and a 0%, 1%, and 3% increase in the
HARA utility, respectively.

We observe in Figure 4, that for all three stresses large realisations of Y obtain a larger weight
under the stressed probability measures Q∗ compared to the baseline probability P. Indeed, for all
three stresses it holds that dQ∗

dP (ω) > 1 whenever Y(ω) > 6 and ω ∈ Ω. This is in contrast to
small realisations of Y which obtain a weight smaller than 1. The impact of the different levels of
stresses of the HARA utility (0%, 1%, and 3%, from the left to the right panel) can be observed in
the left tail of dQ∗

dP ; a larger stress on the utility induces larger weights. The length of the trough of
dQ∗
dP is increasing from the left panel (approx. (4.53, 6.15)) to the right panel (approx. (4.43, 6.18)),

and corresponds in all cases to the constant part in G∗Y (see Figure 3, top panels) which is induced
by the decrease in ES0.8 under the stressed model.
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Figure 4. RN-densities for following stresses: a 10% decrease in both ES0.8 and ES0.95, and an increase
in the HARA utility. The change in HARA utility is 0%, 1%, and 3%, respectively, from left to right.

4.2. Reverse Sensitivity Measures

Comparison of the baseline and a stressed model can be conducted via different ap-
proaches depending on the modeller’s interest. While probabilistic sensitivity measures
underlie the assumption of a fixed probability measure and quantify the divergence be-
tween the conditional (on a model input) and the unconditional output density Saltelli et al.
(2008), the proposed framework compares a baseline and a stressed model, i.e., distribu-
tions under different probability measures. Therefore, to quantify the distributional change
in input factor Xi from the baseline P to the stressed Q∗ probability, a sensitivity measure
introduced by Pesenti et al. (2019) may be suitable which quantifies the variability of an
input factor’s distribution from the baseline to the stressed model. A generalisation of the
reverse sensitivity measure is stated here.
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Definition 4 (Marginal Reverse Sensitivity Measure Pesenti et al. (2019)). For a function
s : R→ R, the reverse sensitivity measure to input Xi with respect to a stressed probability measure
Q∗ is defined by

SQ∗i =





EQ∗ [s(Xi)]−E[s(Xi)]

max
Q∈Q

EQ[s(Xi)]−E[s(Xi)]
EQ∗ [s(Xi)] ≥ E[s(Xi)] ,

− EQ∗ [s(Xi)]−E[s(Xi)]

min
Q∈Q

EQ[s(Xi)]−E[s(Xi)]
otherwise,

where Q = {Q | Q probability measure with dQ
dP

P
= dQ∗

dP } is the set of all probability measures
whose RN-derivative have the same distribution as dQ∗

dP under P. We adopted the convention that
±∞

∞ = ±1 and 0
0 = 0.

The sensitivity measure is called “reverse”, as the stress is applied to the output
random variable Y and the sensitivity monitors the change in input Xi. The definition
of 4 applies, however, also to stresses on input factors, in which case the RN-density
dQ∗
dP is a function of the stressed input factor and we refer to Pesenti et al. (2019) for a

discussion. Note, that the reverse sensitivity measure can be viewed as a normalised
covariance measure between the input s(Xi) and the Radon Nikodym derivative dQ∗

dP .
The next proposition provides a collection of properties that the reverse sensitivity

measure possesses, we also refer to Pesenti et al. (2019) for a detailed discussion of these
properties. For this, we first recall the definition of comonotonic and counter-monotonic
random variables.

Definition 5. Two random variables Y1 and Y2 are comonotonic under P, if and only if, there
exists a random variable W and non-decreasing functions h1, h2 : R→ R, such that the following
equalities hold in distribution under P

Y1 = h1(W) and Y2 = h2(W). (7)

The random variables Y1 and Y2 are counter-monotonic under P, if and only if, (7) holds with one of
the functions h1(·), h2(·) being non-increasing, and the other non-decreasing.

If two random variables are (counter) comonotonic under one probability measure,
then they are also (counter) comonotonic under any other absolutely continuous probability
measure, see, e.g., Proposition 2.1 of Cuestaalbertos et al. (1993). Thus, we omit the
specification of the probability measure when discussing counter- and comonotonicity.

Proposition 3 (Properties of Reverse Sensitivity Measure). The reverse sensitivity measure
possesses the following properties:

(i) SQ∗i ∈ [−1, 1];
(ii) SQ∗i = 0 if (s(Xi),

dQ∗
dP ) are independent under P;

(iiii) SQ∗i = 1 if and only if (s(Xi),
dQ∗
dP ) are comonotonic;

(iv) SQ∗i = −1 if and only if (s(Xi),
dQ∗
dP ) are counter-comonotonic.

The function s(·) provides the flexibility to create sensitivity measures that quantify
changes in moments, e.g., via s(x) = xk, k ∈ N, or in the tail of distributions, e.g., via
s(x) = 1{x>VaRα(Xi)}, for α ∈ (0, 1).

Next, we generalise Definition 4 to a sensitivity measure that accounts for multiple
input factors. While SQ∗i measures the change of the distribution of Xi from the base-
line to the stressed model the sensitivity SQ∗i,j introduced below, quantifies how the joint
distribution of (Xi, Xj) changes when moving from P to Q∗.
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Definition 6 (Bivariate Reverse Sensitivity Measure). For a function s : R2 → R, the re-
verse sensitivity measure to inputs (Xi, Xj) with respect to a stressed probability measure Q∗ is
defined by

SQ∗i,j =





EQ∗ [s(Xi, Xj)]−E[s(Xi, Xj)]

max
Q∈Q

EQ[s(Xi, Xj)]−E[s(Xi, Xj)]
EQ∗ [s(Xi, Xj)] ≥ E[s(Xi, Xj)] ,

− EQ∗ [s(Xi, Xj)]−E[s(Xi, Xj)]

min
Q∈Q

EQ[s(Xi, Xj)]−E[s(Xi, Xj)]
otherwise ,

where Q is given in Definition 4.

The bivariate sensitivity measure satisfies all the properties in Proposition 3 when
s(Xi) is replaced by s(Xi, Xj). The bivariate sensitivity SQ∗i,j can also be generalised to k

input factors by choosing a function s : Rk → R.

Remark 2. Probabilistic sensitivity measures are typically used for importance measurement and
take values in [0, 1]; with 1 being the most important input factor and 0 being (desirably) independent
from the output Borgonovo et al. (2021). This is in contrast to our framework where SQ∗i lives in
[−1, 1] and e.g., a negative dependence, such as negative quadrant dependence between s(Xi) and
dQ∗
dP implies that SQ∗i < 0, see Pesenti et al. (2019) [Proposition 4.3]. Thus, the proposed sensitivity

measure is different in that it allows for negative sensitivities where the sign of SQ∗i indicates the
direction of the distributional change.

5. Application to a Spatial Model

We consider a spatial model for modelling insurance portfolio losses where each
individual loss occurs at different locations and the dependence between individual losses
is a function of the distance between the locations of the losses. Mathematically, denote
the locations of the insurance losses by z1, . . . , z10, where zm = (z1

m, z2
m) are the coordinates

of location zm, m = 1, . . . , 10. The insurance loss at location m, denoted by Lm, follows
a Gamma(5, 0.2

m ) distribution with location parameter 25. Thus, the minimum loss at
each location is 25 and locations with larger mean also exhibit larger standard deviations.
The losses L1, . . . , Lm have, conditionally on Θ = θ, a Gaussian copula with correlation
matrix given by ρi,j = Cor(Li, Lj) = e−θ||zi−zj ||, where || · || denotes the Euclidean distance.
Thus, the further apart the locations zi and zj are the smaller the correlation between Li
and Lj. The parameter Θ takes values (0, 0.4, 5) with probabilities (0.05, 0.6, 0.35) that
represent different regimes. Indeed, Θ = 0 corresponds to a correlation of 1 between all
losses, independently of their location. Larger values of Θ correspond to smaller albeit
still positive correlation. Thus, regime with Θ = 0 can be viewed as, e.g., circumstances
suitable for natural disasters. We further define the total loss of the insurance company by
Y = ∑10

m=1 Lm.
We perform two different stresses on the total loss Y detailed in Table 1. Specifically,

we consider as a first stress a 0% change in HARA utility, a 0% change in ES0.8(Y), and
a 1% increase in ES0.95(Y) from the baseline to the stressed model. The second stress is
composed of a 1% increase in HARA utility, a 1% increase in ES0.8(Y), and a 3% increase in
ES0.95(Y) compared to the baseline model. As the second stress increases all three metrics
it may be viewed as a more severe distortion of the baseline model.
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Table 1. Summary of the stresses applied to the portfolio loss Y represented in relative increases of
the stressed model from the baseline model.

HARA Utility ES0.8(Y) ES0.95(Y)

Stress 1: Q∗1 0% 0% 1%
Stress 2: Q∗2 1% 1% 3%

Next, we calculate reverse sensitivity measures for the losses L1, . . . , L10 for both
stresses Q∗1 and Q∗2 . Figure 5 displays the reverse sensitivity measures for functions
s(x) = x, s(x) = 1{x>F̆i(0.8)}, and s(x) = 1{x>F̆i(0.95)}, from the left to the right panel,
and where F̆i, denotes the P-quantile function of Li, i = 1, . . . , 10.
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Figure 5. Reverse sensitivity measures with s(x) = x, s(x) = 1{x>F̆i(0.8)}, and s(x) = 1{x>F̆i(0.95)}
(left to right), for two different stresses on the output Y. First stress (salmon) is keeping the HARA
utility and ES(Y)0.8 fixed and increasing the ES(Y)0.85 by 1%. Second stress (violet) is an increase of
1% in HARA utility, 1% ES(Y)0.8, and 3% in ES(Y)0.85.

We observe that for stress 2, the reverse sensitivities to all losses Li and all choices of
function s(·) are positive. This contrasts the reverse sensitivities for stress 1. Indeed, for
stress 1 the reverse sensitivities with both s(x) = x and s(x) = 1{x>F̆i(0.8)} are negative,
with the former values being smaller indicating a smaller change in the distributions of the
Li’s. By definition of the reverse sensitivity, the left panel corresponds to the (normalised)
difference between the expectation under the stressed and baseline model. The middle
and right panels correspond to the (normalised) change in the probability of exceeding
F̆i(0.8) and F̆i(0.95), respectively. Thus, as seen in the plots, while the expectations and
probabilities of exceeding the 80% P-quantile are smaller under the stressed model, the
probabilities of exceeding the 95% P-quantile are increased substantially. The first stress
increases the ES at level 0.95 while simultaneously fixes the utility and ES at level 0.8 to
its values under the baseline model. This induces under the stressed probability measure
a reduction of the mean and of the probability of exceeding the 80% P-quantile while
the probability of exceeding the 95% P-quantile increases. Thus, the reverse sensitivity
measures provide a spectrum of measures to analyse the distributional change of the losses
Li from the baseline to the stressed model.

Next, for a comparison we calculate the delta sensitivity measure of introduced by
Borgonovo (2007). For a probability measure Q the delta measure of Li is defined by

ξQ(Li) =
1
2

∫ ∫ ∣∣∣ fQY (y)− fQY|i(y | z)
∣∣∣ fQi (z) dy dz,

where fQY (·) and fQi (·) are the densities of Y and Li under Q, respectively, and where
fQY|i(·|·) is the conditional density of the total portfolio loss Y given Li under Q.

Table 2 reports the delta measures under the baseline model ξP and the two stresses,
i.e., ξQ

∗
1 and ξQ

∗
2 . We observe that the delta measures are similar for all losses Li and do

not change significantly under the different probability measures. As the delta sensitivity
measure quantifies the importance of input factors under a probability measure, having
similar values for ξP, ξQ

∗
1 , and ξQ

∗
1 , means that the importance ranking of the Li’s under

different stresses does not change. We also report, in the first two columns of Table 2, the

173



Risks 2022, 10, 141

reverse sensitivity measures with s(x) = 1{x>F̆(0.95)}. The reverse sensitivity measures
provide, in contrast to the delta measure, insight into the change in the distributions of the
Li’s from P and Q∗.

Table 2. Comparison of different sensitivity measures: First two columns correspond to the reverse
sensitivity measures with s(x) = 1{x>F̆(0.95)} and stressed models Q∗1 , and Q∗2 , respectively. The last
three columns are the delta measure under P, Q∗1 , and Q∗2 , respectively.

SQ∗1
i SQ∗2

i ξP ξQ
∗
1 ξQ

∗
2

L1 0.45 0.68 0.38 0.38 0.38
L2 0.47 0.62 0.29 0.29 0.29
L3 0.51 0.57 0.30 0.30 0.29
L4 0.52 0.63 0.30 0.30 0.29
L5 0.34 0.58 0.33 0.34 0.33
L6 0.41 0.62 0.34 0.34 0.32
L7 0.54 0.72 0.40 0.40 0.38
L8 0.60 0.69 0.38 0.39 0.39
L9 0.24 0.66 0.40 0.40 0.38
L10 0.41 0.73 0.39 0.38 0.37

Alternatively to considering the change in the marginal distributions Li from the base-
line to the stressed model, we can study the change in the dependence between the losses
when moving from the baseline to a stressed model. For this, we consider the bivariate
reverse sensitivity measures for the pairs (L5, L10) and (L9, L10) for the second stress Q∗2 ,
that is a 1% increase in HARA utility and ES0.8, and a 3% increase in ES0.95. Specifically,
we look at the function s(Li, Lj) = 1{Li>F̆i(0.95)} 1{Lj>F̆j(0.95)}, where F̆i(·) and F̆j(·) are the
P-quantile functions of Li and Lj respectively. This bivariate sensitivity measures quantifies

the impact a stress has on the probability of joint exceedances with values SQ
∗
2

5,10 = 0.78 and

SQ
∗
2

9,10 = 0.81 indicating that the probabilities of joint exceedances increase more for stress 2.
This can also be seen in Figure 6 which shows the bivariate copulae contours of (L5, L10)
(top panels) and (L9, L10) (bottom panels). The left contour plots correspond to the baseline
model P whereas the right panels display the contours under the stress model Q∗2 (solid
lines) together with the baseline contours (reported using partially transparent lines). The
red dots are the simulated realisations of the losses (L5, L10) and (L9, L10), respectively
(which are the same for the baseline and stressed model). We observe that for both pairs
(L5, L10) and (L9, L10) the copula under the stressed model admits larger probabilities of
joint large events, which is captured by the bivariate reverse sensitivity measure admitting
positive values close to 1.
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Figure 6. Contour plots of the bivariate copulae of (L5, L10) (top panels) and (L9, L10) (bottom panels)
under different models. The left contour plots correspond to the baseline model and the right panels
to the stress Q∗2 (solid lines) with the baseline contours reported using partially transparent lines. Red
points are simulated realisations.

6. Concluding Remarks

We extend the reverse sensitivity analysis proposed by Pesenti et al. (2019) which
proceeds as follows. Equipped with a baseline model which comprises of input and output
random variables and a baseline probability measure, one derives a unique stressed model
such that the output (or input) under the stressed model satisfies a prespecified stress and
is closest to the baseline distribution. While Pesenti et al. (2019) consider the Kullback–
Leibler divergence to measure the difference between the baseline and stressed models we
utilise Wasserstein distance of order two. Compared to Pesenti et al. (2019) the Wasserstein
distance allows for additional and different stresses on the output including the mean and
variance, any distortion risk measure including the Value-at-Risk and Expected-Shortfall,
and expected utility type constraints, thus making the reverse sensitivity analysis frame-
work suitable for models used in financial and insurance risk management. We further
discuss reverse sensitivity measures which quantify the change the inputs’ distribution
when moving from the baseline to a stressed model and illustrate our results on a spatial
insurance portfolio application. The reverse sensitivity analysis framework (including the
results from this work and from Pesenti et al. (2019) are implemented in the R package SWIM
which is available on CRAN.
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Appendix A. Proofs

Proof of Theorem 1. We solve the optimisation on the set of quantile functions M̆ and
define the Lagrangian with Lagrange multipliers λ = (λ1, . . . , λd) ∈ Rd

L(Ğ, λ) =
∫ 1

0

(
Ğ(u)− F̆(u)

)2 − 2
d

∑
k=1

λk
(
Ğ(u)γk(u)− rk

)
du

=
∫ 1

0

(
Ğ(u)−

(
F̆(u) +

d

∑
k=1

λk γk(u)

))2

− 2
d

∑
k=1

λk
(

F̆(u)γk(u)− rk
)
−
(

k

∑
k=1

λkγk(u)

)2

du .

Thus, the optimisation problem (3) is equivalent to first solving, for fixed λ, the optimisation
problem

arg min
Ğ∈M̆

L(Ğ, λ) (A1)

and then finding λ such that the constraints are fulfilled. For fixed λ, the solution to (A1) is
equal to the solution to

arg min
Ğ∈M̆

∫ 1

0

(
Ğ(u)−

(
F̆(u) +

d

∑
k=1

λk γk(u)

))2

du ,

which is given by the isotonic projection of F̆(u) + ∑d
k=1 λk γk(u) onto the set M̆ and the

Lagrange multipliers are such that the constraints are satisfied. Existence of the Lagrange
multipliers follows since the setM is non-empty. Uniqueness follows by convexity of the
Wasserstein distance, by convexity of the constraints on the set of quantile functions.

Proof of Proposition 1. For coherent distortion risk measures the corresponding weight
function γ is non-decreasing. Moreover the optimal quantile function is given by Theorem 1
and is of the form Ğλ(u) =

(
F̆(u) + λγ(u)

)↑ for some λ such that Ğλ fulfils the constraint.
The choice

λ∗ =
r− ργ(F)
∫ 1

0 (γ(u))
2 du

≥ 0

implies that Ğλ∗(u) = F̆(u) + λ∗γ(u) is a quantile function of the form (4) that fulfils the
constraint. By uniqueness of Theorem 1, Ğλ∗ is indeed the unique solution.

176



Risks 2022, 10, 141

Proof of Theorem 2. Since both constraints are convex in Ğ the Lagrangian with parame-
ters λ = (λ1, . . . , λd) and λ̃ = (λ̃1, . . . , λ̃d̃) ≥ 0 becomes

L(Ğ, λ, λ̃) =
∫ 1

0

(
Ğ(u)− F̆(u)

)2
+ 2

d

∑
k=1

λk
(
hk(u)Ğ(u)− ck

)
du

+
d̃

∑
k=1

λ̃k

(
h̃k(u)

(
Ğ(u)

)2 − c̃k

)
du

=
∫ 1

0
Λ̃(u)

(
Ğ(u)− 1

Λ̃(u)

(
F̆(u)−

d

∑
k=1

λkhk(u)

))2

− 1
Λ̃(u)

(
F̆(u)−

d

∑
k=1

λkhk(u)

)2

+
(

F̆(u)
)2 − 2

d

∑
k=1

λkck −
d̃

∑
k=1

λ̃k c̃k ,

where Λ̃(u) = 1 + ∑d̃
k=1 λ̃k h̃k(u). Since λ̃ ≥ 0 by the KKT-condition, we obtain that

Λ̃(u) ≥ 0 for all u ∈ [0, 1]. Therefore, for fixed λ, λ̃, using an argument similar to the
proof of Theorem 1, the solution (as a function of λ, λ̃) is given by the weighted isotonic
projection of 1

Λ̃(u)

(
F̆(u)−∑d

k=1 λkhk(u)
)

, with weight function Λ̃(·).

Proof of Proposition 2. The mean and variance constraint can be rewritten as

m′ =
∫

x dG(x) =
∫ 1

0
Ğ(u) du and

(
σ′
)2

=
∫ (

x−m′
)2 dG(x) =

∫ 1

0

(
Ğ(u)−m′

)2 du .

Thus, the Lagrangian with Lagrange multipliers λ = (λ1, . . . , λk+2) is, if λ2 6= −1,

L(Ğ, λ) =
∫ 1

0

(
Ğ(u)− F̆(u)

)2 du− 2λ1

(∫ 1

0
Ğ(u) du−m′

)

+ λ2

(∫ 1

0

(
Ğ(u)−m′

)2 du−
(
σ′
)2
)

− 2
d

∑
k=1

λk+2

(∫ 1

0
Ğ(u)γk(u) du− rk

)

= (1 + λ2)
∫ 1

0

(
Ğ(u)− 1

1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))2

− 1
1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2γk(u)

)2

+
(

F̆(u)
)2 du

+ 2λ1m′ + λ2

((
m′
)2 −

(
σ′
)2
)
+ 2

d

∑
k=1

λk+2 rk .

For fixed Lagrange multipliers λ with λ2 6= −1, the optimal quantile function is charac-
terised by the isotonic projection and given by (using an analogous argument to the proof
of Theorem 1)
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Ğ∗(u) =

(
1

1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))↑
(A2)

=
1

|1 + λ2|

(
sgn(1 + λ2)

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))↑

=
1

|1 + λ2|
H̆(u) ,

where we define H̆(u) =
(

sgn(1 + λ2)
(

F̆(u) + λ1 + λ2m′ + ∑d
k=1 λk+2 γk(u)

))↑
∈ M̆,

and sgn(·) denotes the sign function. Next we show that λ2 cannot be in a neighbourhood
of −1. It holds that for λ2 6= −1,

∫ 1

0

(
Ğ∗(u)

)2 du =
1

(1 + λ2)2

∫ 1

0

(
H̆(u)

)2 du . (A3)

Since the rhs of (A3) is increasing for | λ2 + 1 | ↘ 0, there exists a ε0 > 0 such that for all
ε < ε0 and λ2 ∈ (−1− ε,−1 + ε), it holds that

1
(1 + λ2)2

∫ 1

0

(
H̆(u)

)2 du >
(
σ′
)2

+
(
m′
)2 ,

which is a contradiction to the optimality of Ğ∗. Thus, λ2 is indeed bounded away from −1
and the unique solution is given in (A2).

Proof of Theorem 3. We split this proof into the two cases (i), that is constraint (a) and
(ii), i.e., constraint (b).

Case (i): For constraint a), i.e., VaRα(G) = q, we first assume that q ≤ VaRα(F)
which implies F̆(αF) = q ≤ F̆(α) and thus αF ≤ α. Therefore, Ğ∗(u) = F̆(u) +

(
q −

F̆(u)
)
1{u∈(αF ,α]} is a quantile function which satisfies the constraint. Next, we show that G∗

has a smaller Wasserstein distance to F than any other distribution function satisfying the
constraint. For this, let H̆ be a quantile function satisfying the constraint and H̆(u) 6= Ğ(u)
on a measurable set of non-zero measure. Then

W2(H, F) =
∫ αF

0

(
H̆(u)− F̆(u)

)2 du +
∫ α

αF

(
H̆(u)− F̆(u)

)2 du +
∫ 1

α

(
H̆(u)− F̆(u)

)2 du

≥
∫ α

αF

(
H̆(u)− F̆(u)

)2 du .

By non-decreasingness of H̆ and F̆ and by the constraint it holds for all u ∈ [αF, α] that
H̆(u) ≤ H̆(α) = q = F̆(αF) ≤ F̆(u). Thus, on the interval [αF, α], we obtain

(
H̆(u) −

F̆(u)
)2 ≥

(
q− F̆(u)

)2 and therefore

W2(H, F) ≥
∫ α

αF

(
H̆(u)− F̆(u)

)2 du ≥
∫ α

αF

(
q− F̆(u)

)2 du = W2(G∗, F) ,

where at least one inequality is strict since H̆(u) 6= Ğ(u) on a measurable set of non-zero
measure. Uniqueness follows by the strict convexity of the Wasserstein distance and since
the constraint is convex on the set of quantile functions.

Second, we assume that q > VaRα(F) and show that there does not exist a solution.
Assume by contradiction that Ğ is an optimal quantile function satisfying the constraint.
By definition of αF, we have that q = F̆(αF) > F̆(α) and thus αF ≥ α. We apply a similar
argument to the first part of the proof using non-decreasingness of Ğ, Ğ(α) = q, and
optimality of Ğ, to obtain that Ğ is constant equal to q on [α, αF] and equal to F̆(u) for
u > αF. Specifically, it holds that
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Ğ(u) = F̆(u) + (q− F̆(u))1{u∈(α,αF ]} , for all u > α .

Moreover, since the optimal quantile function minimises the Wasserstein distance to F, it
holds that, for all ε > 0, Ğ satisfies

Ğ(u) = F̆(u) , for all u ≤ α− ε .

Thus, we can define for all ε ∈ (0, α) the family of quantile functions

H̆ε(u) = F̆(u) + (q− F̆(u))1{u∈(α−ε,αF ]} ,

which satisfies W2(Hε1 , F) < W2(Hε2 , F) for all 0 ≤ ε1 < ε2, and H̆ε(α) = q for all ε > 0.
However, limε↘0 H̆ε(α) = F̆(α) < q and thus the quantile function limε↘0 H̆ε(u) does not
fulfil the constraint. Hence, we obtain a contradiction to the optimality of Ğ.

Case (ii): First, we assume that q ≥ VaR+
α (F) which implies that F̆(αF) = q ≥

F̆+(α) ≥ F̆(α) and thus αF ≥ α. Therefore Ğ∗(u) = F̆(u) +
(
q − F̆(u)

)
1{u∈(α,αF ]} is a

quantile function. Moreover, Ğ∗ satisfies the constraint since by right-continuity of Ğ∗, we
have that

Ğ∗+(α) = lim
ε↘0

Ğ∗+(α + ε) = q .

The proof that Ğ∗ has the smallest Wasserstein distance to F compared to any other distri-
bution function satisfying the constraint is analogous to the one in case (i).

For the case when q > VaR+
α (F), the argument of non-existence of the solution follows

using similar arguments as those in case (i).

Proof of Theorem 4. By concavity of the utility function, the constraint is convex and can
be written as −

∫ 1
0 u
(
Ğ(v)

)
dv + c ≤ 0. Thus, we can define the Lagrangian with λ1 ≥ 0

and (λ2, . . . , λd+1) ∈ Rd by

L(Ğ, λ) =
1
2

∫ 1

0

(
Ğ(v)− F̆(v)

)2 − λ1
(
u
(
Ğ(v)

)
− c
)
−

d

∑
k=1

λk+1
(
Ğ(v)γk(v)− rk

)
dv

=
∫ 1

0
T
(
Ğ(v)

)
− Ğ(v)

(
F̆(v) +

d

∑
k=1

λk+1γk(v)

)

+ 1
2
(

F̆(v)
)2

+ λ1 c +
d

∑
k=1

λk+1 rk dv ,

where T(x) = 1
2 x2 − λ1u(x). Therefore, for fixed λ1, . . . , λd+1, we apply Theorem 3.1 by

Barlow and Brunk (1972) and obtain the unique optimal quantile function (as a function of
λ1, . . . , λd+1), that is Ğ∗(v) = ν̆λ1

((
F̆(u) + ∑d

k=1 λk+1γk(v)
)↑), where ν̆λ1 is the left-inverse

of νλ1(x) = x− λ1 u′(x).
Next, we show that if d = 0, the utility constraint is binding, that is λ1 > 0. For

this, assume by contradiction that the λ1 = 0, then the optimal quantile function becomes
Ğ∗(u) = ν̆0

(
F̆(u)

)
. Since ν0(x) = x, we obtain that Ğ∗(u) = F̆(u). F̆, however, does not

fulfil the constraint, which is a contradiction to the optimality of Ğ∗.

Proof of Proposition 3. We prove the properties one-by-one:

(i) We first define for a random variable Z with P-distribution FZ the random variable
UZ := FZ(Z). Then, UZ and Z are comonotonic and UZ has a uniform distribution
under P. Next, recall that for any random variables Y1, Y2 it holds that Rüschendorf
(1983)

E
[
Y1 F−1

Y2

(
1−UY1

)]
≤ E[Y1 Y2] ≤ E

[
Y1 F−1

Y2

(
UY1

)]
. (A4)
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where F−1
Y2

(
UY1

)
is the random variable that is comonotonic to Y1 and has the same

P-distribution as Y2. Similarly, F−1
Y2

(
1−UY1

)
is the random variable that is counter-

monotonic to Y1 and has the same P-distribution as Y2. The left (right) inequality
in (A4) become equality if and only if the random variables Y1 and Y2 are counter-
comonotonic (comonotonic).
Thus, we can rewrite the maximum in the normalising constant of the reverse sensitiv-
ity measure as follows

max
Q∈Q

EQ[s(X)] = max
Z P
= dQ∗

dP

E[s(X) Z] = E
[

s(X) F−1
dQ∗
dP

(
Us(X)

)]

and the minimum in the normalising constant is

min
Q∈Q

EQ[s(X)] = min
Z P
= dQ∗

dP

E[s(X) Z] = E
[

s(X) F−1
dQ∗
dP

(
1−Us(X)

)]
.

The reverse sensitivity for the case EQ∗ [s(Xi)] ≥ E[s(Xi)] then becomes

SQ∗
i =

E[s(Xi)
dQ∗
dP ]−E[s(Xi)]

E
[

s(X) F−1
dQ∗
dP

(
Us(X)

)]
−E[s(Xi)]

,

which satisfies 0 ≤ SQ∗
i ≤ 1 using again (A4). For the case EQ∗ [s(Xi)] ≤ E[s(Xi)], it

holds that

SQ∗
i = − E[s(Xi)

dQ∗
dP ]−E[s(Xi)]

E
[

s(X) F−1
dQ∗
dP

(
1−Us(X)

)]
−E[s(Xi)]

,

which satisfies −1 ≤ SQ∗
i ≤ 0.

(ii) Assume that s(Xi) and dQ∗
dP are independent under P, then

E[s(Xi)
dQ∗
dP ] = E[s(Xi)]E

[
dQ∗
dP

]
= E[s(Xi)] ,

and the reverse sensitivity measure is indeed zero.
(iii) From property (i) we observe that s(Xi) and dQ∗

dP are comonotonic, if and only if,
SQ∗

i = 1 since in this case the right inequality in Equation (A4) becomes equality.
(iv) From property (i) we observe that s(Xi) and dQ∗

dP are counter-comonotonic, if and only
if, then SQ∗

i = 1 as in this case left inequality in Equation (A4) becomes equality.

The proof that the joint reverse sensitivity SQ∗
i,j also fulfils the above properties follows

using analogous arguments and replacing s(Xi) with s(Xi, Xj).
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Abstract: Special-rate life annuities are life annuity products whose single premium is based on
a mortality assumption driven (at least to some extent) by the health status of the applicant. The
health status is ascertained via an appropriate underwriting step (which explains the alternative
expression “underwritten life annuities”). Better annuity rates are then applied in presence of poor
health conditions. The worse the health conditions, the smaller the modal age at death (as well as
the expected lifetime), but the higher the variance of the lifetime distribution. The latter aspect is
due to significant data scarcity as well as to the mix of possible pathologies leading to each specific
rating class. A higher degree of (partially unobservable) heterogeneity inside each sub-portfolio of
special-rate annuities follows, and this results in a higher variability of the total portfolio payout.
The present research aims at analyzing the impact of extending the life annuity portfolio by selling
special-rate life annuities. Numerical evaluations have been performed by adopting a deterministic
approach as well as a stochastic one, according to diverse assumptions concerning both lifetime
distributions and portfolio structure and size. Our achievements witness the possibility of extending
the annuity business without taking huge amounts of risk. Hence, the risk management objective
“enhancing the company market share” can be pursued without significant worsening of the annuity
portfolio risk profile.

Keywords: life annuities; standard annuities; underwritten annuities; enhanced annuities; impaired
annuities; preferred risks; substandard lives

1. Introduction and Motivation

Considerable attention is currently being devoted in insurance work (and, in particular,
in the actuarial work) to the management of life annuity portfolios and to the annuity
product design, because of the growing importance of annuity benefits paid by private
pension schemes and individual policies.

In particular, the progressive shift in many countries from defined benefit to defined
contribution pension schemes has increased the interest in life annuity products with a
guaranteed periodic benefit. Nevertheless, various “weak” features of the (standard) life
annuities should be noted, looking at the product from both the annuity provider’s and the
customer’s perspective.

However, many features can be improved by moving from traditional products to
more complex products, for example, by adding riders (that is, supplementary benefits), or
by adopting restrictions on the age intervals covered, or by allowing for individual risk
factors; hence, “tailoring” the annuity rates (at least to some extent) to specific features of
the customer.

Special-rate life annuities are life annuity products whose single premium is based on
a mortality assumption driven by the health status of the applicant. The health status is
ascertained via an appropriate underwriting step (which explains the alternative expression
“underwritten life annuities”). Better annuity rates are then applied in presence of poor
health conditions. The worse the health conditions, the smaller the modal age at death (as
well as the expected lifetime), but the higher the variance of the lifetime distribution. The
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latter aspect is due to significant data scarcity as well as to the mix of possible pathologies
leading to each specific rating class. A higher degree of (partially unobservable) heterogene-
ity inside each sub-portfolio of special-rate annuities follows, and this results in a higher
variability of the total portfolio payout. By selling special-rate annuities, on the one hand,
a higher premium income can be expected, and on the other, a higher variability of the
portfolio payout must be faced. What about the “balance”? Our achievements witness the
possibility of extending the annuity business without taking huge amounts of risk. Hence,
the risk management objective “enhancing the company market share” can be pursued
without significant worsening of the annuity portfolio risk profile.

Diverse input data might lead to worse risk profiles. An appropriate sensitivity testing
can then help in checking risk profile changes. Assuming the extension of the life annuity
business as the insurer’s target, the present paper aims at providing a simple technical tool
for assessing how and to what extent selling special-rate annuities impacts the portfolio risk
profile. The structure of the proposed tool arises from a trade-off between strictly pragmatic
approaches (frequently adopted in current actuarial practice) and rigorous mathematical
settings (which may result in implementation difficulties, notably because of data scarcity).

The remainder of the paper is organized as follows. A compact literature review is
provided in Section 2, while Section 3 describes the main products in the area of special-rate
annuities. Biometric assumptions underlying the assessment of portfolio risk profiles are
defined and commented in Section 4. In Section 5, portfolio structures are specified in terms
of sub-portfolio sizes; then, results of interest, which can express the portfolio risk profile,
are defined. Our main achievements are discussed in Sections 6 and 7 where numerical
results obtained by adopting a deterministic and a stochastic approach are respectively
presented. Finally, Section 8 concludes the paper.

2. Literature Review

The main features of life annuity products are discussed in many life insurance and
actuarial textbooks. A presentation of basic actuarial models for premium and reserve
calculations for life annuities as well as a discussion of possible innovations in life annuity
products are provided by Pitacco (2021).

Heterogeneity in mortality and risk classification constitute the natural frameworks in
which the basic features of special-rate life annuities can be analyzed. Risk classification in
life insurance and life annuities is addressed in many books and papers; a compact review,
together with an extensive reference list, is provided by Haberman and Olivieri (2014).
The impact of risk classification on the structure of life annuity portfolios is dealt with by
Gatzert et al. (2012), Hoermann and Russ (2008) and Olivieri and Pitacco (2016).

The impact of heterogeneity on portfolio results and the consequent capital require-
ments are analyzed by Denuit and Frostig (2006). More specifically, Denuit and Frostig
(2007) focusses on heterogeneity among lifetimes in the context of stochastic mortality
according to the Lee-Carter model.

Heterogeneity in mortality is due to both observable and unobservable risk factors.
The reader can refer to Pitacco (2019) for a literature review from an actuarial perspective,
as well as for a discussion of models, which can be used to represent specific mortality rates
accounting for observable risk factors.

Special-rate life annuities are described in various papers and technical reports: see,
in particular Ainslie (2000), Drinkwater et al. (2006), Ridsdale (2012) and Rinke (2002).
The article by Edwards (2008) is specifically devoted to life annuity rating based on the
postcode (that is, a proxy for social class and location of housing).

An interesting analysis of market issues related to special-rate annuities is presented
by Gatzert and Klotzki (2016), where barriers on the supply side and the demand side are
in particular addressed. Practical aspects of pricing special-rate life annuities are dealt with
by Gracie and Makin (2006) and James (2016).

Special-rate annuities in the context of new product development (NPD) processes are
addressed in Chapter 9 of Pitacco (2020). In particular, the NPD according to the structure
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of the risk management process and the logic of the Stage-Gate® process is described and
commented on1.

Underwriting for special-rate life annuities can be implemented in a number of ways,
and several classifications can be conceived. An interesting classification has been proposed
by Rinke (2002), and summarized in Chapter 9 of Pitacco (2021).

Statistics regarding extra-mortality by various causes are beyond the scope of this
paper. Here, we only cite the contribution by Weinert (2006), which has suggested some
baseline choices for the lifetime distributions. For a list of references the reader can refer to
Pitacco and Tabakova (2020).

3. The Products

The terminology adopted in the technical literature to denote the various types of
special-rate annuities is not univocally defined. For example, the term “enhanced annuity”
is frequently used in the wider sense of all life annuities where, given the single premium,
the annual benefit is of a higher level than the standard, due to some customer’s char-
acteristics (health, lifestyle, etc.). In what follows, we refer to the terminology originally
adopted to define special-rate annuities, which are sold in the UK market (see Ridsdale
2012). The same terminology has also been adopted in the book (Pitacco 2021), from which
the following descriptions have been taken.

The following special-rate annuities are sold in several markets.

1. Given the single premium amount, a lifestyle annuity pays out benefits higher than
a standard life annuity because of risk factors (e.g., smoking and drinking habits,
marital status, occupation, height and weight, blood pressure and cholesterol levels),
which might result, to some extent, in a shorter life expectancy. Specific lifestyle
annuities are the following ones.

(a) Smoker life annuities: if the applicant has smoked at least a given number of
cigarettes for a certain number of years, then they are eligible for a smoker
annuity.

(b) Mortality differences between married and unmarried individuals underpin
the use of special rates in pricing the unmarried lives annuities. The observed
higher mortality rates of unmarried individuals justify a higher annuity rate.

2. The enhanced life annuity pays out an income to a person with a reduced life expectancy,
in particular because of a personal history of medical conditions. Of course, the
“enhancement” in the annuity benefit (compared to a standard-rate life annuity, same
premium) comes from the use of a higher mortality assumption.

3. The impaired life annuity pays out a higher income than an enhanced life annuity, as
a result of medical conditions which significantly shorten the life expectancy of the
annuitant (e.g., diabetes, chronic asthma, cancer, etc.).

4. Finally, care annuities are aimed at individuals with very serious impairments or
individuals who are already in a senescent-disability (or long-term care) state. These
annuities are frequently placed in the context of long-term care insurance products,
and labeled as providing benefits “in point of need” (see, for example, Pitacco 2014).

Thus, moving from type 1 to type 4 results in progressively higher mortality assump-
tions, shorter life expectancy, and hence, for a given single premium amount, in higher
annuity benefits. Of course, an insurer can decide to offer a more limited set of products.

The applicant’s health status and, notably, the presence of past or current diseases
is explicitly considered in the special-rate annuities of types 2, 3 and 4. Various factors
concerning the health status can be accounted for, and medical ascertainment is of course
required. In particular, the underwriting process for impaired-life annuities and care annu-
ities must result in classifying the applicant as a substandard risk, because of ascertainment
of significant extra-mortality. For this reason, annuities of types 3 and 4 are sometimes
named substandard life annuities.
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The above list of special-rate annuity types can be completed by the postcode life
annuities, which constitute an interesting example of “environment-based” rating. The
postcode can provide a proxy for social class and location of housing; that is, risk factors
that may have a significant impact on the lifestyle and hence on the life expectancy. Then,
its use as a rating factor for pricing life annuities can be justified.

4. The Mortality Model

To assess present values (that is, random present values and expected present values)
of benefits paid by special-rate annuities, a model quantifying the mortality of annuitants
(standard annuitants and special-rate annuitants) must be chosen. The following aspects
must be considered in particular:

• Heterogeneity in mortality inside the (total) life annuity portfolio (see Sections 4.1
and 4.2);

• Possible future mortality trends (see Section 4.1);
• The individual age-pattern of mortality (see Section 4.2).

4.1. General Aspects

A higher degree of heterogeneity in mortality affects a life annuity portfolio also
including special-rate annuities, with respect to a standard annuity portfolio. As is well
known, heterogeneity may be due to both observable and unobservable risk factors, which
imply diverse modeling choices. In the case of a life annuity portfolio, the practical problem
is: to what extent the underwriting process can detect, for each applicant, the outcomes
of the risk factors that entitle the individual to purchase a special-rate annuity? Even a
rigorous underwriting process can leave some degree of “residual” heterogenity inside
each special-rate class, because:

• Some risk factors are unobservable;
• Diverse pathologies entitle one to the same annuity rate.

Given that some degree of heterogeneity inside each risk class is unavoidable, the
problem is how to model its impact on the individual age-pattern of mortality. We focus on
the two following choices.

The modeling of heterogeneity in mortality due to unobservabke risk factors has found
an elegant and rigorous solution in the concept of (constant) frailty, initially described by
Beard (1959), but formally defined by Vaupel et al. (1979). A well known implementation
of frailty modeling leads to the so-called Gompertz–Gamma model, which results in one of
the Perks laws (see Perks 1932). A number of generalizations of the concept of frailty have
been proposed, in particular looking at possible dynamic features of the individual frailty
(a survey is presented, for example, by Pitacco 2019).

Frailty modeling to express heterogeneity in mortality has been adopted by various
Authors: see, for example, Denuit and Frostig (2007), and, in the context of special-rate
annuities, by Olivieri and Pitacco (2016).

Given the practical difficulties in calibrating the frailty model, the paper by Olivieri
and Pitacco (2016) specifically aims at assessing, via sensitivity analysis, the impact of
diverse assumptions for the frailty parameter values (notably, the Gamma parameters) on
portfolio results of interest.

A simpler choice can conversely consist in implicitly expressing the presence of het-
erogeneity in mortality by directly assuming a higher variance in the individual lifetime
distribution, as suggested by statistical data analyzed by various Authors (see, for example,
Weinert 2006), that is, the stronger the assumed degree of heterogeneity, the higher the
variance. If a mortality law is chosen to express the individual age-pattern of mortality, a
sensitivity analysis can be performed also in this setting.

As far as the future mortality trends are concerned, the following aspects can be
singled out:
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• An assumed future mortality trend can be taken into account by adopting projected
life tables or projected mortality laws;

• Representing uncertainty in future mortality trend, which implies systematic risk (that
is, the aggregate longevity risk), calls for the use of stochastic mortality models.

In what follows, we express heterogeneity inside each rating class via the variance of
the individual lifetime distribution (see Section 4.2). We disregard systematic longevity
risk, as heterogeneity mainly affects the idiosyncratic risk in each rating class; that is, the
risk of random fluctuations around the expected value.

Assumptions regarding the relations among individual lifetimes must supplement the
mortality model. Given the above hypotheses, in what follows we assume that individual
lifetimes are independent random variables. While this is, of course, a simplifying assump-
tion, correlation among lifetimes could be assumed, in particular to express uncertainty
about future mortality trends in the context of a stochastic mortality model. Conditional
independence would replace, in that case, the independence assumption.

4.2. Age Pattern of Mortality

Three (hypothetical) curves showing expected number dx of deaths between exact
age x and x + 1 out of a notional cohort of 100,000 individuals are shown in Figure 1. We
recall that the expected numbers of deaths are proportional to the values of the probability
density function in the time-continuous context defined below.

0

2000

4000

6000

0 25 50 75 100

Age

d
x

Impaired annuity

Enhanced annuity

Standard annuity

Figure 1. Curves of deaths for different life annuities.

The worse the health conditions, the smaller the modal age at death (as well as the life
expectancy), but the higher the variance of the lifetime distribution. The latter aspect is due
to the mix of possible pathologies leading to each specific individual classification (and also
due to data scarcity). A higher degree of (partially unobservable) heterogeneity in mortality
follows, inside each sub-portfolio of special-rate annuities. However, this heterogeneity can
be reduced by restricting the range of pathologies that entitle one to a special-rate annuity,
then making the relevant sub-portfolio more homogeneous.
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It is also worth noting that most of the available mortality statistics refer to specific
sets of pathologies (e.g., diabetes), rather than to broad sets of diseases. Splitting a class
of special-rate annuities (for example, the impaired life annuities) into pathology-related
subclasses can, hence, be an appropriate choice.

To describe the age patterns of mortality in quantitative terms, appropriate life ta-
bles can be chosen. However, the use of a mortality law (in particular a “simple” law)
significantly eases the implementation of a sensitivity analysis, which can be performed
by assigning diverse values to the relevant parameters. In line with the main purpose of
life annuities, that is, providing a post-retirement income, adult and old ages have only
been addressed in what follows. Then, the Gompertz law has been used to express the
age-pattern of mortality. Parameter values have been chosen to represent the features of
the curves of deaths, as described in Section 4.1.

In terms of the force of mortality, µx, the Gompertz law is as follows:

µx = B cx, with B, c > 0 (1)

Instead of referring to the usual parametrization in (1), we refer to the “informative”
parametrization (see, for example, Carriere 1992), that is:

µx =
1
D

exp
( x−M

D

)
, with M, D > 0 (2)

where M denotes the mode of the Gompertz probability density function and D a measure
of dispersion. Relations with the usual parameters are as follows:

c = exp
( 1

D

)
(3)

B =
exp

(
− M

D

)

D
(4)

Sensitivity analysis can simply be performed by assigning values to the mode parame-
ter M and the dispersion parameter D (as described in Sections 6.2 and 7.2).

It can be proved that the elements of the corresponding life table {`x}, with `0 =
100,000, are given by the following expression:

`x = 100,000× exp
(

exp
(
− M

D

)
− exp

( x−M
D

))
(5)

From the life table {`x}, all the biometric functions of interest (e.g., dx, qx, etc.) can
immediately be derived.

As already noted, the shape of the lifetime distribution can be driven by choosing
specific values Mk and Dk for the parameters of Equation (2). The (baseline) parameter
values shown in Table 1 determine the curves of death plotted in Figure 1. We note that the
choice of the parameter values is only aimed at performing a sensitivity analysis and does
not reflect real statistical data.

Table 1. Parameters of the Gompertz law.

Rating Class k Mk Dk

Standard 1 90 5
Enhanced 2 80 8
Impaired 3 70 13

5. The Actuarial Model

After defining the portfolio structures used in the various evaluations, we define the
quantities referred to in the deterministic and the stochastic assessments.
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5.1. Portfolio Structures

We will consider a life annuity portfolio P generally consisting of three sub-portfolios:

• Sub-portfolio SP1 initially consisting of n1 standard life annuities;
• Sub-portfolio SP2 initially consisting of n2 enhanced life annuities;
• Sub-portfolio SP3 initially consisting of n3 impaired life annuities.

Of course, one of the nk can be set equal to 0. Let n denote the size of the portfolio P,
that is:

n = n1 + n2 + n3

Assumptions underlying the actuarial model are as follows:

• The lifetime distribution for annuitants in the sub-portfolio SPk follows the Gompertz
law with parameters Mk and Dk, k = 1, 2, 3 (see Section 4.2);

• All the annuitants are age x at policy issue;
• The individual lifetimes in each sub-portfolio and in the portfolio P are independent

random variables;
• The same benefit b is paid by all the life annuity policies;
• Each sub-portfolio is closed to new entries (and hence consists of a generation of policies).

5.2. Actuarial Values

Our ultimate object is to analyze the behavior of various quantities defined as functions
of n1, n2, n3, in particular: expected value, variance and coefficient of variation (risk index)
of the portfolio payouts.

To this purpose, we first recall the basic formulae for a life annuity-immediate, with
benefit b = 1 paid to an individual age x at policy issue and assigned to sub-portfolio SPk.

The expected present value (shortly, the actuarial value) of the annual benefits paid to
the individual is given (according to the traditional actuarial notation) by:

a(k)x =
ω−x

∑
h=1

ahe h|1q(k)x (6)

where:

• ω denotes the maximum attainable age;

• ahe =
1−(1+i)−h

i is the present value of an annuity-certain, with i denoting the interest
rate used for discounting;

• h|1q(k)x =
`
(k)
x+h−`

(k)
x+h+1

`
(k)
x

is the probability of a person age x dying between age x + h and

x + h + 1, according to the biometric model with parameters Mk and Dk.

For example, with the parameter values given in Table 1 and x = 65, Equation (6)
yields:

a(1)65 = 17.29

a(2)65 = 11.00

a(3)65 = 8.20

The variance of the present value of the annual benefits is given by:

σ
2(k)
x =

ω−x

∑
h=1

a2
he h|1q(k)x −

(
a(k)x

)2
(7)

For example, with the above data, from Equation (7) we obtain:
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σ
2(1)
65 = 16.858

σ
2(2)
65 = 26.436

σ
2(3)
65 = 27.446

We denote with E(k)(nk) and Var(k)(nk) the expected value and the variance of the
benefit payouts of sub-portfolio SPk. Assuming a benefit b = 1, we obviously have:

E(k)(nk) = nk a(k)x ; k = 1, 2, 3 (8)

and, thanks to the assumption of independence among the individual lifetimes:

Var(k)(nk) = nk σ
2(k)
x ; k = 1, 2, 3 (9)

For a generic portfolio P, consisting of n = n1 + n2 + n3 policies, we then find:

E(n1, n2, n3) =
3

∑
k=1

E(k)(nk) (10)

Var(n1, n2, n3) =
3

∑
k=1

Var(k)(nk) (11)

5.3. The Risk Index

The risk index (or coefficient of variation) is a relative risk measure that expresses the
variability of a random quantity in terms of standard deviation per unit of expected value.
It is frequently adopted in risk theory and risk management to assess the so-called pooling
effect, that is, the diversification effect which is achieved by constructing a pool of risks.

For a generic portfolio P, the risk index ρ is defined as follows:

ρ(n1, n2, n3) =

√
Var(n1, n2, n3)

E(n1, n2, n3)
(12)

We note that ρ is a unit-free risk measure.

5.4. Cash Flows

Annual cash flows are, of course, random quantities. For the generic sub-portfolio
SPk, the random cash flow, that is the sub-portfolio payout, at time t, Xk(t), depends on
the number Nk(t) of annuitants alive at that time (out of the initial nk), and is of course
given by:

Xk(t) = b Nk(t); k = 1, 2, 3 (13)

Referring to a generic portfolio P, consisting of three sub-portfolios, the total payout
at time t is then given by:

X(t) =
3

∑
k=1

Xk(t) (14)

6. Portfolio Risk Profiles: Deterministic Approach

In this Section, we first assess the impact, in terms of the risk index, of the portfolio
structure on the portfolio risk profile. Biometric assumptions are as specified in Section 4.2,
with parameter values given in Table 1 (if not otherwise stated).

We then assess the impact, again in terms of the risk index, of diverse biometric
assumptions.
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6.1. Impact of the Portfolio Structure
6.1.1. Cases 1.1

We analyze the impact of the size of the sub-portfolio SP2 of enhanced annuities. Then:

n1 = 10,000

n2 = 100, 200, . . . , 1000

n3 = 0

Results are shown in Table 2.

Table 2. Cases 1.1—Impact of the portfolio structure on the risk index.

Portfolio n2 ρ(10,000, n2, 0)

P01 100 0.002378268
P02 200 0.002381505
P03 300 0.002384564
P04 400 0.002387452
P05 500 0.002390176
P06 600 0.002392740
P07 700 0.002395152
P08 800 0.002397415
P09 900 0.002399535
P10 1000 0.002401517

6.1.2. Cases 1.2

We analyze the impact of the size of the sub-portfolio SP3 of impaired annuities. Then:

n1 = 10,000

n2 = 0

n3 = 100, 200, . . . , 1000

Results are shown in Table 3.

Table 3. Cases 1.2—Impact of the portfolio structure on the risk index.

Portfolio n3 ρ(10,000, 0, n3)

P01 100 0.002382799
P02 200 0.002390524
P03 300 0.002398028
P04 400 0.002405318
P05 500 0.002412401
P06 600 0.002419283
P07 700 0.002425969
P08 800 0.002432465
P09 900 0.002438776
P10 1000 0.002444908

6.1.3. Cases 1.3

We assume that both enhanced annuities and impaired annuities are sold (together
with standard annuities), and analyze the joint impact by assuming that n3 = n2/2. Then:

n1 = 10,000

n2 = 500, 600, . . . , 1000

n3 = 250, 300, . . . , 500

Results are shown in Table 4.
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Table 4. Cases 1.3—Impact of the portfolio structure on the risk index.

Portfolio n2 n3 ρ(10,000, n2, n3)

P01 500 250 0.002407197
P02 600 300 0.002412496
P03 700 350 0.002417448
P04 800 400 0.002422070
P05 900 450 0.002426375
P06 1000 500 0.002430381

6.1.4. Cases 1.4

The launch of special-rate annuities might negatively impact on the sale of standard
annuities (the so called “cannibalization effect”). To analyze this aspect in terms of portfolio
risk profile, we assume that one half of the enhanced annuity sales (sub-portfolio SP2) are
“subtracted” from the standard annuity business (sub-portfolio SP1). Then, we consider
portfolios with the following sub-portfolio sizes:

n1 = 10,000− n2

2
n2 = 500, 600, . . . , 1000

n3 =
n2

2
= 250, 300, . . . , 500

Furthermore, it is reasonable to assume that, in case of a cannibalization effect, the mortality
in the standard annuity sub-portfolio improves. To represent this aspect, we assume
M1 = 91 (instead of M1 = 90). Results are shown in Table 5.

Table 5. Cases 1.4—Impact of the portfolio structure on the risk index.

Portfolio n1 n2 n3 ρ(n1, n2, n3)

P01 9750 500 250 0.002340041
P02 9700 600 300 0.002352541
P03 9650 700 350 0.002364783
P04 9600 800 400 0.002376774
P05 9550 900 450 0.002388521
P06 9500 1000 500 0.002400030

6.1.5. Some Comments

When considering a given set of cases, the size of subportfolios and structure of the
total portfolio change, and this of course impacts both the numerator and denominator of
the risk index. Hence, the analysis of the risk index values in the various portfolio structures
provides interesting information. We note that, in all the sets of cases we have considered,
the range of values assumed by the risk index is very narrow. From a mathematical
perspective, this is the straight consequence of a higher variability in terms of standard
deviation (the numerator of fraction (12)) offset, to a large extent, by a higher expected value
(the denominator), and, in practice, a higher volume of premiums. Therefore, the almost
constant value of the risk index witnesses this offset. A wider range of values (anyway very
limited) can be noted as the effect of the number of impaired annuities: see, for example,
the set of cases 1.2, where the increase in the risk index is equal to 2.6%, compared to the
set 1.1 where the increase is smaller than 1%.

The presence of special-rate annuities impacts on the standard annuity portfolios,
in particular, in terms of the lifetime distribution of standard annuitants. This has been
considered in Section 6.1.4 by increasing the modal age at death from 90 to 91, then
increasing the expected value of benefits paid by standard annuities. It is worth noting
that a (reasonable) impact on standard annuity premiums should follow, and this might, in
turn, impact the demand of standard annuities. Further interesting results, regarding the
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variability of the annual payouts, can be achieved via stochastic analysis and are presented
in Section 7.

6.2. Impact of Lifetime Distributions

Given the uncertainty in biometric assumptions, a sensitivity analysis is appropriate.
While keeping unchanged the parameters Mk (representing the modal age at death), we
propose diverse assumptions regarding the dispersion of the lifetime distributions, which
might more heavily impact on the portfolio risk profile. Hence, various values of the
parameters Dk are considered.

Figure 2 shows the graphs of the lifetime distribution for enhanced annuities, corre-
sponding to different values of dispersion (parameter D) while keeping the same modal
value (parameter M).
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d
x

Enhanced (80,4)

Enhanced (80,8)

Enhanced (80,12)

Figure 2. Three assumptions on lifetime dispersion for enhanced annuities.

6.2.1. Cases 2.1

We consider a portfolio only consisting of standard annuities and enhanced annuities,
with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 1000

n3 = 0

We analyze the impact of diverse assumptions on the dispersion of lifetimes in sub-portfolio
SP2. Then:

D2 = 4, 5, . . . , 13

(while keeping D1 = 5). Results are shown in Table 6.
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Table 6. Cases 2.1—Impact of the lifetime distribution on the risk index.

Portfolio D2 ρ(10,000, 1000, 0)

P01 4 0.002315649
P02 5 0.002341998
P03 6 0.002364379
P04 7 0.002383918
P05 8 0.002401517
P06 9 0.002417793
P07 10 0.002433146
P08 11 0.002447834
P09 12 0.002462022
P10 13 0.002475816

6.2.2. Cases 2.2

We consider a portfolio only consisting of standard annuities and impaired annuities,
with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 0

n3 = 1 000

We analyze the impact of diverse assumptions on the dispersion of lifetimes in sub-portfolio
SP3. Then:

D3 = 11, 12, . . . , 15

Results are shown in Table 7.

Table 7. Cases 2.2—Impact of the lifetime distribution on the risk index.

Portfolio D3 ρ(10,000, 0, 1000)

P01 11 0.002422885
P02 12 0.002433728
P03 13 0.002444908
P04 14 0.002456358
P05 15 0.002468019

6.2.3. Cases 2.3

We consider a portfolio consisting of standard annuities, enhanced annuities and
impaired annuities, with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 1000

n3 = 500

We analyze the joint impact of diverse assumptions on the dispersion of lifetimes in both
sub-portfolios SP2 and SP3. To this purpose, we assume:

D2 = D3 = 4, 5, . . . , 13

We note that lower dispersions can be achieved by restricting the range of pathologies,
which entitle the purchase of enhanced annuities and impaired annuities. Results are
shown in Table 8.
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Table 8. Cases 2.3—Impact of the lifetime distributions on the risk index.

Portfolio D2 = D3 ρ(10,000, 1000, 500)

P01 4 0.002360437
P02 5 0.002366549
P03 6 0.002373800
P04 7 0.002382362
P05 8 0.002392205
P06 9 0.002403223
P07 10 0.002415280
P08 11 0.002428234
P09 12 0.002441949
P10 13 0.002456293

6.2.4. Some Comments

Although dispersion in lifetime distributions does affect the risk profile of the annuity
portfolio, the sensitivity analysis we have performed witnesses a rather limited impact
on the risk index. We note that, of course, the broadest range of risk index values can be
found when a portfolio consisting of standard annuities, enhanced annuities and impaired
annuities is addressed, and for both the types of special-rate annuities higher values for the
dispersion parameter are considered.

7. Portfolio Risk Profiles: Stochastic Approach

Deterministic assessments performed in Section 6 only provide values of specific
markers, notably the risk index. To obtain better insights into the risk profile of a portfolio,
stochastic assessments are required. To this purpose, stochastic (Monte Carlo) simulation
procedures are commonly adopted.

As we focus on the biometric features of the various portfolios, simulation of the
numbers of survivors, that is Nk(t), k = 1, 2, 3 and t = 1, 2, . . . , is only needed. Then, via
Equations (13) and (14), the simulated outcomes of the payouts and, finally, the relevant
(empirical) distributions are obtained. Consistent with the approach adopted in Section 6,
we assume that all the assessments are performed at time t = 0, and hence our information
is given by the initial sizes of the sub-portfolios, that is, n1, n2 and n3.

The following Sections 7.1 and 7.2 are organized similarly to Sections 6.1 and 6.2,
respectively, but with a reduction in the number of cases analyzed.

Besides “descriptive” results in terms of (empirical) distributions of the annual payouts,
the stochastic approach can also yield “operational” results: an example is provided in
Section 7.3, where amounts of assets are calculated, which are needed to meet the annual
payouts with an assigned probability.

7.1. Impact of the Portfolio Structure

As already noted, we follow the organization in the cases adopted in Section 6.1,
although reducing the number of alternatives.

7.1.1. Cases 1.1

We analyze the impact of the size of the sub-portfolio SP2 of enhanced annuities. Then:

n1 = 10,000

n2 = 100, 500, 1000

n3 = 0

Empirical distributions at times 5 and 10 of the portfolio payout, that is, empirical distri-
butions of X(5) and X(10), are sketched in Figures 3 and 4, where the three portfolios are
denoted by P01, P02 and P03, respectively.
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Figure 3. Impact of the number of enhanced annuities: empirical distributions of the annual benefit
payout at time t = 5.
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Figure 4. Impact of the number of enhanced annuities: empirical distributions of the annual benefit
payout at time t = 10.
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7.1.2. Cases 1.4

To assess the impact of a possible cannibalization effect, we consider three portfolios
with the following sub-portfolio sizes:

n1 = 10,000− n2

2
n2 = 500, 800, 1000

n3 =
n2

2
= 250, 400, 500

As previously noted, to represent an improvement in mortality in the standard annuity
sub-portfolio, we assume M1 = 91 (instead of M1 = 90). Empirical distributions of the
portfolio payout X(5) and X(10) are sketched in Figures 5 and 6, respectively, where the
three portolios are denoted by P01, P02 and P03.
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Figure 5. Impact of cannibalization effect: empirical distributions of the annual benefit payout at
time t = 5.
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Figure 6. Impact of cannibalization effect: empirical distributions of the annual benefit payout at
time t = 10.

7.1.3. Some Comments

Results are self-explanatory, and in line with the findings in the deterministic setting:
the larger the (initial) number of enhanced annuities in Cases 1.1, the higher the dispersion
in the annual payouts. The same effect is, of course, witnessed by the distributions of
payouts in Cases 1.4, where presence of both enhanced annuities and impaired annuities
is assumed.

7.2. Impact of the Lifetime Distribution

To assess the impact of uncertainty in biometric assumptions, we only analyze the
Cases 2.1 considered in Section 6.2.

7.2.1. Cases 2.1

We consider a portfolio only consisting of standard annuities and enhanced annuities,
with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 1000

n3 = 0

We analyze the impact of diverse assumptions on the dispersion of lifetimes. Then:

D2 = 4, 6, 8, 10, 12

(while keeping D1 = 5). Empirical distributions of the portfolio payout X(5) and X(10) are
sketched in Figures 7 and 8, where the portfolios are respectively denoted by P01, . . . , P05.
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Figure 7. Impact of different dispersion parameters: empirical distributions of the total payout at
time t = 5.
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Figure 8. Impact of different dispersion parameters: empirical distributions of the total payout at
time t = 10.
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7.2.2. Some Comments

These results are self-evident: a larger dispersion in the lifetime distribution of an-
nuitants with enhanced annuity implies a larger dispersion in the total portfolio payout
(compare, in particular, distributions in portfolio P05 and P01. Moreover, for all the portfo-
lios, dispersions increase with time (compare the distributions in Figure 7 to the ones in
Figure 8).

7.3. Meeting the Annual Payouts

Appropriate resources must be assigned to the portfolio in order to meet the annual
payouts with a high probability. Diverse criteria can be adopted to quantify the above
resources which, whatever the criterion adopted, will partly be provided by single premi-
ums cashed at policies issued (via decumulation of the portfolio reserve) and partly by
shareholders’ capital allocated to the portfolio. In what follows, we focus on the annual
total amount of resources needed, disregarding the funding source.

7.3.1. The Percentile Principle

Referring to a generic portfolio and the relevant cash flows, we recall that X1(t),
X2(t), X3(t) denote the random payouts at time t, related to standard annuities, enhanced
annuities and impaired annuities, respectively (see Section 5.4), and:

X(t) = X1(t) + X2(t) + X3(t) (15)

denotes the portfolio total payout at time t.
We adopt the percentile principle. Hence, we have to find, for t = 1, 2, . . . , the amount

A(t) such that:
Pr[X(t) > A(t)] = ε (16)

where ε denotes an assigned (small) probability; hence, 1− ε can be interpreted as the
“adequacy” level.

A more detailed analysis could be performed by separately addressing the risk profile
of each sub-portfolio, thus calculating, for k = 1, 2, 3 and t = 1, 2, . . . the quantities Ak(t)
such that:

Pr[Xk(t) > Ak(t)] = εk (17)

However, we only focus on the overall requirement (16), which clearly takes into account
the pooling effect.

7.3.2. Numerical Results

We consider four portfolios with the structures defined in Table 9.

Table 9. Portfolio structures.

Portfolio n1 n2 n3

P01 10,000 0 0
P02 10,000 1000 0
P03 10,000 0 500
P04 10,000 1000 500

This way, we can analyze the risk profile of a “traditional” portfolio only consisting of
standard annuities (P01), a portfolio including standard annuities and enhanced annuities
(P02) or standard annuities and impaired annuities (P03) and finally a portfolio including
both types of special-rate annuities (P04).

Values of the parameters Mk and Dk for standard life annuities (k = 1), enhanced
annuities (k = 2) and impaired annuities (k = 3), respectively, are as specified in Table 1.
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Asset requirements (at a given time t), in terms of ratios
Assets

EV
, where EV denotes the

expected value of the total payout, are plotted in Figures 9–11 against the probability 1− ε.
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Figure 9. Impact of the portfolio structure on assets requirements at time t = 1.
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Figure 10. Impact of the portfolio structure on assets requirements at time t = 5.
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Figure 11. Impact of the portfolio structure on assets requirements at time t = 10.

7.3.3. Some Comments

Results in terms of assets requirements are also encouraging. We note that the range of
values, expressed by the ratio between assets required and expected values of total payout,
corresponding to the various portfolio structures are very limited, whatever the adequacy
level chosen. A higher sensitivity with respect to the adequacy level 1− ε can be observed
in particular for t = 10, because of a dispersion of the numbers of survivors and hence of
the total payouts, which increases with time.

We note that the portfolio structure of course evolves over time and, notably, the
share of standard annuities progressively increases because of longer lifetimes of standard
annuitants. Increasing shares of standard life annuities (characterized, according to a
reasonable assumption, by a variance lower than that of special-rate annuities) imply a
lower riskiness in the (total) annuity portfolio. In terms of the ratio Assets/EV, this effect
appears in particular when comparing the requirements (according to each probability
1− ε) represented in Figures 9–11.

8. Concluding Remarks

By offering special-rate life annuities, on the one hand, a higher premium income can
be expected, while on the other hand, a higher variability of the total portfolio payout will
follow because of both the larger size and the specific higher variability of payouts related
to special-rate annuities.

The analysis, in quantitative terms, of the “balance” between the two aspects (that is,
higher risk and higher premium income) has been the aim of this research. A number of
numerical evaluations have been performed by adopting both a deterministic approach and
a stochastic one as well. Diverse hypotheses on lifetime distributions have been assumed,
and various portfolio sizes and structures (in terms of numbers of standard, enhanced and
impaired annuities) have been considered.

It is worth noting that, whatever the choice of the parameter values for the Gompertz
law, the mortality model is deterministic, in the sense that no uncertainty in future mortality
trend is accounted for. In this context, it is reasonable to assume independence among
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the individual lifetimes. An interesting extension of our simple model should allow
for uncertainty in mortality trends via an appropriate stochastic mortality model. Then,
correlation among lifetimes would follow, so that independence assumption would be
replaced by conditional independence. Moreover, diverse trends and diverse degrees of
uncertainty could be considered for the various special-rate annuities by taking into account
possible improvements in medical treatments, surgery, etc.

Special attention should be placed on the “cannibalization” effect. First, a reduction in
the size of the standard annuity sub-portfolio may occur, provided that some applicants can
be eligible to special-rate annuities. A lower average mortality in the standard sub-portfolio
then follows (as noted in Section 6.1.5), leading to a (reasonable) increase in standard
annuity premiums. This might in turn impact the demand of standard life annuities (even
beyond the reduction mentioned above).

A further aspect that is interesting to investigate is the impact on the insurer’s liabilities
(and, notably, on the portfolio risk profile) of an incorrect allocation of individual risks
to the various rating classes. Because of the presence of unobservable risk factors, a
misspecification of the rating class is always possible. This would result in an unfair
annuity rate applied to some individuals and then in an increased (or reduced) probability
of loss for the insurer. In this regard, the research task should concern, in particular, the
modeling of the incorrect specification of the rating class.

The results we have obtained of course depend on assumptions (notably, regarding
both the portfolio structure, the mortality model and the relevant parameters). Nevertheless,
the broad range of assumptions regarding both the portfolio structure and the lifetime
distributions has allowed us to perform an effective sensitivity analysis, whose interesting
achievements witness the possibility of extending the life annuity business without taking
huge amounts of risk. Hence, the creation of values for customers (and an increase in the
insurer’s market share) can be pursued without a significant worsening of the company’s
risk profile.
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Abstract: A new Archimedean copula family is presented that was derived from the SAHARA
utility function introduced in the economic literature in 2011. Its properties are discussed, and its
flexibility and versatility are demonstrated. It is left tail decreasing or right tail increasing, but unlike
mainstream Archimedean families, not necessarily stochastically increasing at the same time. It is
shown that the family fits very well to a dataset of previously studied coupled lives in the literature.
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1. Introduction

Archimedean copulas, which in two dimensions are of the form Cψ(u1, u2) =
ψ
(
ψ−1(u1) + ψ−1(u2)

)
where ψ is the one-dimensional generator, have become a popular

mode of modelling dependence in both finance and insurance. Several ways of constructing
copula families are given in Chapter 3 of Joe (2015). The interpretation of the generator as
the Williamson transform of a radial random variable has given rise to new Archimedean
families; see McNeil and Nešlehová (2009, 2010). Archimedean copulas are a flexible class
due to the ease with which new Archimedean copulas with an enriched parameter space
can be constructed from existing ones using transformations. For the bivariate case, five of
such transformations, namely, left composition, right composition, scaling, exponentiation,
and the linear combination of the (inverse) generator, were introduced in the literature
by Genest et al. (1998). They were reviewed by Michiels and De Schepper (2012), and in
more detail in Michiels and De Schepper (2009), with the focus on the so-called λ func-
tion (which is the ratio of the inverse generator to its derivative). For the latter, see also
Michiels et al. (2011).

In the literature, several generalized families were constructed that contain the Archimedean
class as a special case, e.g., the Archimax family in Capéraà et al. (2000) (which includes extreme
value copulas as another special case). The background risk model where one random variable
(“systemic risk”) acts multiplicatively on a series of other random variables (“idiosyncratic
risks”) is the basis of generalization of Archimedean copulas in several ways, as demonstrated
in Côté and Genest (2019) and Marri and Moutanabbir (2022).

Commonly used families typically feature a generator being completely monotonic
and thereby the Laplace transform of a mixing random variable. Common examples
include Clayton and Frank (as far as dependence is positive), Gumbel–Hougaard, and
Joe. This subfamily of Archimedean copulas, also known as shared frailty models, has the
advantage of being valid in any dimension. Recent applications regarding shared frailty
models involve the aforementioned background risk model; see (Albrecher et al. 2011;
Furman et al. 2021; Sarabia et al. 2018).

The Gumbel–Hougaard copula is a good fit to the well-known dataset of loss vs.
Allocated Loss Adjustment Expenses (ALAE), which is the object of statistical inference
in several publications, starting with Genest et al. (1998). For extensive analysis, consult
Joe (2015). Probably there are several other case studies of dependence in insurance where
the use of shared frailty models is appropriate.
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Shared frailty dependency models have the property of being conditionally increasing
(CI) and multivariate totally positive of order 2 (MTP2), as shown in Müller and Scarsini
(2005). In the specific case of two dimensions, this is known as TP2, implying stochastically
increasing (SI), which in turn implies both left tail decreasing (LTD) and right tail increasing
(RTI). If the two involved marginal random variables are remaining lifetimes, LTD/RTI
implies that the hazard rate of the one upon hazard (e.g., death or default) of the other goes
up. The stronger condition SI implies that the hazard rate of the one given the hazard of
the other (e.g., death or default) at time t decreases as t goes up. This was noted in Spreeuw
(2006). The underlying assumption of SI may work out well in reliability theory. Consider
two printers available to office staff. When one fails, the other one, pending the repair of
the first, is used more intensively and thereby exposed to greater strain. It is sensible to
assume that the longer the first printer is out of order, the higher the failure rate of the
remaining machine would be.

For coupled lives, however, it is not so clear-cut. On the one hand, the event of
the death of one life usually triggers an elevated mortality of the surviving life, so the
assumption of LTD/RTI seems sensible. In addition, such lives are exposed to common
risks due to permanently living together and due to a similar background (“birds of a
feather flock together”, the so called long-term dependence according to Hougaard (2000)).
On the other hand, however, there is also the phenomenon of the event of the one life
dying leading to the mortality of the remaining life temporarily going up, which is the
so-called broken-heart syndrome (short-term dependence, also attributed to Hougaard
(2000)). Similar nonstandard features may apply to other cases in insurance (and finance
as well). In short, there is a case for constructing copula families allowing for flexibility in
terms of type of dependence, such as LTD/RTI but not necessarily SI.

In this paper, we introduce a new Archimedean copula family that is based on a
link between Archimedean generators and utility functions; see Spreeuw (2010) for more
details. Unlike mainstream copulas, this family has the property of being LTD/RTI, but not
necessarily SI, the latter being clearly indicated by the sign of one of the parameters.

The outline of the paper is as follows. Section 2 gives the basic definitions of Archimedean
copula, and the dependence concepts of LTD/RTI and SI. Section 3 introduces the new family
and analyzes its basic properties. Section 4 fits the new Archimedean family to the section of
censored remaining lifetime data of coupled lives, as in Luciano et al. (2008). Section 5 sets out a
conclusion.

2. Basic Definitions

Define ψ as the generator of a 2-dimensional Archimedean copula, being strictly
continuous, strictly decreasing, convex, with ψ(0) = 1 and limx→∞ ψ(x) = 0. The copula
itself is then specified as

Cψ(u1, u2) = ψ
(

ψ−1(u1) + ψ−1(u2)
)

, (1)

where u1, u2 each take values between 0 and 1.
Next are definitions of the tail concepts of left tail decreasing (LTD), right tail increasing

(RTI) and stochastically increasing (SI), based on two random variables X and Y, and their
copula C. They can all be found in Chapter 5 of Nelsen (2006).

Definition 1. Y is LTD in X (notation LTD(Y|X )) ⇔ Pr[Y ≤ y|X ≤ x ] is nonincreasing in
x for all y. For an exchangeable copula C (i.e., C(u, v) = C(v, u) for 0 ≤ u, v ≤ 1) of random
variables X and Y, LTD(Y|X ) and LTD(X|Y ) are equivalent.

Definition 2. Y is RTI in X (notation RTI(Y|X ))⇔ Pr[Y > y|X > x ] is nondecreasing in x for
all y. For an exchangeable copula C (i.e., C(u, v) = C(v, u) for 0 ≤ u, v ≤ 1) of random variables
X and Y, RTI(Y|X ) and RTI(X|Y ) are equivalent.
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Definition 3. Y is SI in X (notation SI(Y|X ))⇔ Pr[Y ≤ y|X = x ] is nonincreasing in x for
all y.

The following propositions are from Avérous and Dortet-Bernadet (2004). The second
one was originally shown in Capéraà and Genest (1993).

Proposition 1. If C is Archimedean with generator ψ, LTD(Y|X ) or LTD(X|Y ) if and only
if ψ is logconvex. Likewise, if Ĉ, the rotated copula (also known as survival copula) of C (so
Ĉ(u, v) = u + v− 1 + C(1− u, 1− v) for 0 ≤ u, v ≤ 1) is Archimedean with generator ψ̂ is
RTI(Y|X ) or RTI(X|Y ) if and only if ψ̂ is logconvex.

Proposition 2. If C is Archimedean with differentiable generator ψ, SI(Y|X ) or SI(X|Y ) if and
only if −ψ′ is logconvex.

3. SAHARA Family

The SAHARA copula family is derived from the Symmetric Asymptotic Hyperbolic
Absolute Risk Aversion (SAHARA) utility function introduced in Chen et al. (2011). This
utility function is specified below.

ϕθ,ε(s)

=





− 1
(1+ 1/θ)2−1

(
s− ε +

√
δ2 + (s− ε)2

)−(1+ 1/θ)

·
(

s− ε + (1 + 1/θ)
√

δ2 + (s− ε)2
) θ 6= 0

1
2 ln
(
(s− ε) +

√
δ2 + (s− ε)2

)

+ 1
2 δ−2(s− ε)

(√
δ2 + (s− ε)2 − (s− ε)

) θ = 0.

, θ ∈ (−∞,−1) ∪ (0, ∞), δ > 0, ε ∈ R. (2)

As shown in Spreeuw (2010), a strict Archimedean generator can be obtained from a
utility function ϕ if ϕ(∞) = lims−→∞ ϕ(s) < ∞. For SAHARA, this is the case when θ > 0.
Then, applying the formula ψθ,ε(s) = {ϕθ,ε(∞)− ϕθ,ε(s)}{ϕθ,ε(∞)− ϕθ,ε(0)}−1 leads to
the Archimedean generator

ψθ,ε(s) =


 s− ε +

√
δ2 + (s− ε)2

−ε +
√

δ2 + ε2



−(1+ 1/θ)

 s− ε + (1 + 1/θ)
√

δ2 + (s− ε)2

−ε + (1 + 1/θ)
√

δ2 + ε2


. (3)

Remark 1. This approach of obtaining an Archimedean generator from a utility function is not to
be confused with the method of obtaining the inverse of an Archimedean generator from a utility
function. For the latter, consult Spreeuw (2014).

The SAHARA utility function was inspired by nonmonotone risk aversion coefficient

ARϕ(s) =
1 + 1/θ√
(s− ε)2 + δ2

,

which, unlike common utility functions, is not monotone in its argument. It is rather
increasing for s < ε attaining a maximum for s = ε, and decreasing for s > ε. The
SAHARA utility function found applications in both finance and insurance (Bernard et al.
2021; Bernard and Kwak 2016; Brachetta and Schmidli 2020; Chen et al. 2021; Chen and
Vellekoop 2017; Li and Ma 2018; Schumacher 2018). As shown in Spreeuw (2010), a risk
aversion monotone decreasing (increasing) on the positive real line in general implies that
the corresponding Archimedean copula is stochastic increasing (stochastic decreasing) in
two dimensions. The former property applies to the vast majority of commonly applied
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copula families (including all those whose generator is a completely monotonic function).
For ε > 0 the copula is neither stochastic increasing nor stochastic decreasing. To the best of
our knowledge, there are hardly any copula families that share this property.

For ε < 0, the condition imposed on δ can be somewhat relaxed to δ ≥ 0, δ = 0
corresponding to the Clayton copula with parameter θ. Due to scaling, for some real-
valued δ∗ > 0 and ε∗, (δ, ε) = (δ∗, ε∗) gives exactly the same Archimedean copula as
(δ, ε) =

(
1, ε∗

/
δ∗
)
. To see this, we divide in (3) both numerator and denominator by δ > 0.

This gives:

ψθ,ε(s) =




s
δ − ε

δ +
√

1 +
( s

δ − ε
δ

)2

− ε
δ +

√
1 +

(
ε
δ

)2



−(1+ 1/θ)


s
δ − ε

δ + (1 + 1/θ)
√

1 +
( s

δ − ε
δ

)2

− ε
δ + (1 + 1/θ)

√
1 +

(
ε
δ

)2


.

Now, ε being real-valued implies that ε/δ is real-valued as well. In addition, it is well-
known that a generator is only defined up to a multiple constant. In other words, for β > 0,
ψθ,ε(s) and ψθ,ε(β s) generate the same Archimedean copula. δ∗ −→+ 0 is equivalent to∣∣ ε∗
/

δ∗
∣∣ −→ ∞. Hence, without loss of generality, we take δ = 1 from now on bearing in

mind that, for ε −→ −∞, the Clayton copula with parameter θ is obtained as a limiting
case. For ε −→ ∞, the Clayton copula is again obtained as a limiting case, although now
with parameter − θ

2θ+1 .
It can be numerically shown that this copula (a) for a fixed θ decreases in concordance

with increasing ε; (b) for negative fixed ε, it increases in concordance with increasing θ; and
(c) for a positive fixed ε, it first decreases and then increases in concordance in terms of θ.
For any finite ε, θ ↓ 0 and θ −→ ∞ lead to independence and comonotonicity, respectively.

According to Theorem 4.3 of Joe (1997), p. 91, for Archimedean copulas with a strict
generator, the population version of Kendall’s tau can be written as:

τ = 1− 4
∞∫

s=0

s
(

d
ds

ψθ,ε(s)
)2

ds.

Using software system Wolfram Mathematica (see Wolfram Research Inc. (2017)) this
gives the expression:

τ = 1−
(2θ + 1)

(
(θ + 2)(3θ + 2) + 4(θ + 2)ε4 + 12(θ + 1)ε2 + 2(θ + 4)ε

√
ε2 + 1 + 4(θ + 2)ε3

√
ε2 + 1

)

(θ + 2)(3θ + 2)
(

θ + ε
(√

ε2 + 1 + ε
)
+ 1
)2 ,

for ε = 0 considerably reducing to τ = { θ/(θ + 1)}2. Taking the limit for ε → −∞
, keeping θ constant, gives τ → θ/(θ + 2). This is the well-known formula of Kendall’s
tau for the Clayton copula, and therefore not very surprising. Taking the limit ε → ∞,
keeping θ constant, gives τ → − θ/(3θ + 2). This implies that, for increasing θ, the
range of values taken by τ increases. So, the lowest possible value of τ for this family
is limθ−→∞− θ/(3θ + 2) = −1/3. For fixed nonpositive ε, τ is monotone increasing in θ
from 0 to 1. For fixed and finite positive ε, τ as a function of θ first decreases until a certain
negative minimum that is greater than −1/3, and increases afterwards. The greater the
value of ε is, the greater the value of θ for which the minimum is reached and the smaller
the minimal value. The difference between Kendall’s tau for ε = 0 and ε→ −∞ is

θ

θ + 2
−
(

θ

θ + 1

)2
=

θ

(θ + 2)(θ + 1)2 ,

which is zero for θ = 0, increasing until θ =
(√

5− 1
)/

2 ≈ 0.618 (which for ε = 0 and
ε→ −∞ gives values of Kendall’s tau of 0.236 and 0.146, respectively), then decreasing for
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increasing θ and ultimately vanishing. There is no upper tail dependence, while the lower
tail dependence coefficient is 2− 1/θ .

Another interesting feature of this family concerns the conditional survival copula,
that is, if the copula of the conditional joint survival function H(x|y ) = Pr[X1 > x1, X2 >
x2 |X1 > y1, X2 > y2 ]. If the joint survival function H(x) has an Archimedean copula
with generator ψ(s), s ≥ 0, the conditional joint survival function H(x|y ) also has an
Archimedean copula with generator

ψy(s) = ψ(s + t)
/

ψ(t) , (4)

where t = ψ−1(H(y)
)
. (Usually the conditional copula is rather given in terms of the

inverse generator ψ−1
y (s) = ψ−1(sH(y)

)
− ψ−1(H(y)

)
, see (Charpentier 2003; Spreeuw

2006; Sungur 2002)) Applying (4) to the SAHARA family gives

ψy,θ,ε(s) =


 s + t− ε +

√
δ2 + (s + t− ε)2

t− ε +
√

δ2 + (t− ε)2



−(1+ 1/θ)

 s + t− ε + (1 + 1/θ)
√

δ2 + (s + t− ε)2

t− ε + (1 + 1/θ)
√

δ2 + (t− ε)2


, (5)

so the conditional copula is again SAHARA with parameters θ and ε− t. It follows that
dependence increases over time, and the copula converges to Clayton with parameter θ.
Again, this is unlike most other copula families where the limiting dependence is either
none (independence) or perfect positive.

Some scatterplots follow in Figures 1–3, for Kendall’s tau fixed at 0.25 and varying
values for ε and θ. As ε went up, we encountered on the one hand increasingly positive
dependence in the bottom left part, and increasingly negative dependence in the top right
half. Such families could be considered when data feature strongly positive dependence
for small values, and weakly positive, no, or even negative dependence for large values.

The SAHARA copula is clearly flexible and versatile. A drawback is that the in-
verse of the generator is not available in closed form, like some families introduced in
McNeil and Nešlehová (2010), Hua and Joe (2011) and Hua (2015), rendering computations
more complicated.

Figure 1. Scatterplot of the SAHARA copula for θ = 1 and ε = 0; τ = 0.25.
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Figure 2. Scatterplot of the SAHARA copula for θ = 4.5464 and ε = 2; τ = 0.25.

Figure 3. Scatterplot of the SAHARA copula for θ = 69.11 and ε = 10; τ = 0.25.

4. Application

For the numerical application in this section, we use the example about modelling
dependence of coupled lives in Luciano et al. (2008) and Spreeuw (2014). The two publi-
cations used different data, although they both concern samples specified as generations
from the same large dataset of annuitants from a Canadian insurer. In this section, copula
families are fitted into the data from Luciano et al. (2008) rather than those from Spreeuw
(2010). We follow the same procedure of modelling and calibration as that in Luciano et al.
(2008) and Spreeuw (2014). Some elaboration on deriving the empirical generator is in
order to render this paper self-contained.

The joint survival function of two remaining lifetimes Tm
x (male, age x at the start of

the observation) and T f
y (female, age y at the start of the observation) is given in terms of a

survival copula Cxy as

Sxy(s, t) = Cxy(Sm
x (s), S f

y(t)).

In this setup, the lives are coupled at the time when they are observed (rather than at
birth, as in, e.g., Frees et al. (1996)), just like in Carriere (2000). Using a modified version
of the procedure by Wang and Wells (2000), the performance of a candidate Archimedean
copula is judged on the basis of distance between the empirical Kendall function, denoted
by K̂n(xy), and the theoretical Kendall function, denoted by K

ψ−1
Â

(xy)(v), where ψ−1
Â

is the

inverse generator of the copula concerned, with Â being the parameter vector estimate
minimizing the distance between K̂n(xy) and K

ψ−1
Â

(xy)(v). For single parameter copulas,
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A = θ, while for families with two parameters, A = {θ, ε}. The distance or error is defined
under the L2 norm (so, in the usual quadratic sense). Therefore,

error
(

ψ−1
Â

(xy)
)
=
∫ 1

ξ

(
K

ψ−1
Â

(xy)(v)− K̂n(xy)(v)
)2

dv,

with

Â = arg min
A

∫ 1

ξ

(
K

ψ−1
A (xy)(v)− K̂n(xy)(v)

)2
dv.

Given that the data were right censored, the lower bound ξ was greater than zero. In
this example, it is taken to be the smallest value for which K̂n(xy) is positive:

ξ = min
{

ν : K̂n(xy)(v) > 0
}

.

The empirical Kendall function, denoted by K̂n(xy), was derived from Dabrowska’s
nonparametric estimator of the joint survival function (see Dabrowska (1988)). Given that
the data were right censored, with many observations being doubly censored, K̂n(xy) is
zero between 0 and a certain value ξ1 > 0, at which point it jumps. In this case, ξ1 = 0.23.
The pseudo-maximum likelihood (PML) procedure uses as input rescaled Kaplan–Meier
estimates of the marginal survival functions in order to accommodate censoring.

Luciano et al. (2008) fit the data to Clayton, Gumbel-Hougaard, Frank, entry 20 of Ta-
ble 4.2 in Nelsen (2006) (“4.2.20 Nelsen”) and the so-called Special copula. For convenience,
the last two are listed below with their generators:

1. 4.2.20 Nelsen: ψθ(t) = {log[e + t]}− 1
θ , θ > 0.

2. Special: ψθ(t) =
(
−t+
√

t2+4
2

) 1
θ , θ > 0.

Luciano et al. (2008) concluded that 4.2.20 Nelsen fit the data best. In this section,
we compare its performance with that of SAHARA and the best contender of common
two-parameter families from Joe (1997, 2015), i.e., BB2. Its generator is:

ψθ(t) =
{

1 +
log[1 + t]

ε

}− 1
θ

, θ, ε > 0.

The 4.2.20 Nelsen is a special case of BB2 arising for ε = 1.
Results are given in Table 1. The positive estimate for ε indicates the absence of SI.

Table 1. Results for several copula families.

Copula Parameter Estimates Error
ϕ
[−1]
θ̂

(xy)

4.2.20 Nelsen θ̂ = 1.005 0.720
BB2 Joe (1997) θ̂ = 1.469; ε̂ = 0.383 0.667

SAHARA θ̂ = 0.204; ε̂ = 0.914 0.293

As in Luciano et al. (2008), we performed a graphical comparison between the theoretical
and the empirical K functions through transformation λ(w) = w− K(w) for ξ1 ≤ w ≤ 1. The
result can be found in Figure 4. SAHARA achieved a significant improvement to the fit
compared to the other families.
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Figure 4. Graphical comparison between theoretical λ(w) = w − K(w) for SAHARA (yellow),
BB2 (green) and 4.2.20 Nelsen (orange) and empirical one (blue).

Now consider the notion of SI in more detail. For two random variables X1 and X2,
X2 being SI in X1 is equivalent to Pr[X2 > x2|X1 = x1 ] being nondecreasing in x1 for all x2.
Related to this is the notion of long-term dependence as introduced in Hougaard (2000).
If we define µm

(
t
∣∣∣T f

y = ty

)
as the conditional force of mortality of life (x) at duration

t given T f
y = ty < t ((y) dies at duration ty), then the dependence between Tm

x and T f
y

is of the long-term type if µm
(

t
∣∣∣T f

y = ty

)
is constant or decreasing as a function of ty,

while dependence is short-term if µm
(

t
∣∣∣T f

y = ty

)
is increasing as a function of ty. To

understand this, it is important to that, as indicated before, for Archimedean copulas,
stochastic increasing (SI) is equivalent to −ψ′ being logconvex. Spreeuw (2006) showed
that this property of the generator also applies to long-term dependence, implying that SI
and long-term dependence are actually equivalent. On the other hand, however, for the
SAHARA family, we have:

∂
{

ln
[
−ψ′θ,ε(s)

]}

∂s
= − 1 + 1/θ√

(s− ε)2 + 1
,

which is monotone increasing in s across the board for negative ε. For positive values
of ε, however, the expression decreases in s for 0 ≤ s < ε, so the SI property does not
hold. The positive parameter estimate for ε suggests that short-term rather than long-term
dependence may prevail between the coupled lives. To investigate this further, we analysed
the data in the same vein as in Spreeuw and Owadally (2013), who devise an augmented
Markov model to allow for short-term dependence for the entire dataset. Results are
reported in Table 2.

In this table, e denotes the time in which an integer number of years that have elapsed
since the death of the partner. So, e.g., e = 0 concerns the lives that were bereaved less than
a year ago. For each possible value of e (noting that each life was observed for 5 years or
less), we calculate number of deaths reported, the risk exposure, and the overall mortality
rate being the ratio of the values in the second and third column. So, for instance, the
risk exposure of lives who lost their partner less than a year ago is 604.87, and there were
69 lives that died within one year after their partner. Now, long-term dependence implies
that the mortality rate in the last column should be increasing as a function of e, but the
results in Table 2 show that this is not the case, and that short-term dependence may be
present even though the aggregate mortality rate for e = 4 is higher than for e equal to 1, 2
or 3.

Ideally, one such table should be shown for each gender. However, due to the small
number of observed deaths in the dataset, in particular for higher values of e caused by
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heavy censoring, males and females were combined. Results in Table 2 should thus be
interpreted as an indication of possible short-term dependence, rather than firm evidence.

Table 2. Mortality for all couples, with e denoting the number of years since partner’s death.

Deaths Exposure Mortality

Partner dead

e = 0 69 604.87 0.114075

e = 1 17 428.44 0.039679

e = 2 9 277.76 0.032403

e = 3 4 155.08 0.025590

e = 4 3 49.67 0.060395

Partner alive 751 34,631.45 0.021685

5. Conclusions

In this paper, we introduced a new Archimedean copula family derived from the
SAHARA utility function. With SAHARA utility first increasing to a maximum and subse-
quently decreasing, the corresponding copula family allows for stochastically increasing
(SI) and non-SI at the same time, depending on the sign of one of the parameters. As the
numerical application shows, this family could fit the mortality data of coupled lives well.
The parameter estimates suggest the possible existence of short-term dependence, i.e., the
mortality of bereaved lives increases on bereavement but diminishes later.
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