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Preface

This reprint contains 14 articles published in the Special Issue, “Use of Modern Materials in

Technological Processes Accompanied by Frictional Heating“.

Analytical one-dimensional models of unsteady heat generation due to friction in the

tribosystem of two semi-bounded bodies made of FGM have been developed [1-6]. The key

assumptions of the models relate to how the thermal conductivity exponentially increases as the

distance from the contact surface increases; meanwhile, these models meet the conditions for perfect

frictional thermal contact. The exact solutions for the corresponding boundary-value problems of heat

conduction were obtained using the mathematical apparatus of the Laplace integral transform. Cases

of slipping with a constant specific power of friction [1] and its time profile, taking into consideration

the time of the contact pressure increase [2], were considered. The influence of the thermal sensitivity

of the FGM components on the temperature field, which resulted from friction during single braking

with constant deceleration, was investigated [3]. An analytical model was proposed to determine the

temperature of a friction system containing one homogeneous element and the other made of FGM

[4]. A methodology for determining the heat partition ratio in a friction couple made of FGM was

developed [5]. This methodology was adapted to determine the maximum temperature of the disc

brake system operating in a repetitive short-term (RST) mode of operation [6]. The influence of the

flash temperature on the maximum temperature during RST braking in a system that consists of two

elements made of homogeneous materials was investigated [7].

A comparative analysis of the railway brake temperature modes was carried out using

axisymmetric (2D) and spatial (3D) numerical models with FEM [8].

Appropriate numerical models for railway solid and ventilated brake discs have also been

developed [9].

The effect of adding a carbon-containing additive to the friction material of the wet clutch on the

temperature generated by friction has been studied [10]. For the same system, the effect of ceramic

and intermetallic powder additives on the tribological properties and temperature field was also

investigated [11].

The problem of the identification of the unknown temperature for frictional heat generation in a

cylindrical tribo-couple was analyzed [12].

An approach to determine the stress state of bi-material structures with interfacial homogeneous

ribbon-like deformable inclusions has been proposed [13]. The influence of FGM on the stress–strain

state of ribbon-reinforced composites was investigated as well [14].

Aleksander Yevtushenko and Michal Kuciej

Editors

ix
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Abstract: The mathematical model of heating process for a friction system made of functionally
graded materials (FGMs) was proposed. For this purpose, the boundary-value problem of heat
conduction was formulated for two semi-spaces under uniform sliding taking into consideration
heating due to friction. Assuming an exponential change in thermal conductivities of the materials,
the exact, as well as asymptotic (for small values of time), solutions to this problem were obtained.
A numerical analysis was performed for two elements made of ZrO2–Ti-6Al-4V and Al3O2–TiC
composites. The influence of the gradient parameters of both materials on the evolution and spatial
distributions of the temperature were investigated. The temperatures of the elements made of FGMs
were compared with the temperatures found for the homogeneous ceramic materials.

Keywords: frictional heating; functionally gradient materials; temperature; composite; ceramic

1. Introduction

A new class of composite materials with non-homogeneous spatial distribution of
properties has emerged in recent years in the field of materials science [1]. Such properties
are intentionally obtained during manufacturing by grading the internal structure of a
material. Depending on the fabrication process, they are designed as stepwise-graded
or continuous-graded materials [2]. The typical representatives of stepwise-graded com-
posites are the laminates. The defect of such materials is the discontinuity of stress on
the interfaces between adjacent discrete layers [3]. Materials with a continuous change in
properties, known as functionally graded materials (FGMs) are devoid of this drawback.
Nowadays, FGMs are usually a mixture of two distinct materials with continuously varying
volume fractions of the constituents that, in effect, possess smooth properties which change
along a certain direction [4]. Functionally graded materials possess a number of advan-
tages that make them attractive in potential applications [5]. For example, a significant
reduction of thermal stress in a heated element has been be achieved by introducing a
thermal conductivity gradient in the material [6]. The results of studies indicate that a
controlled continuous change in material properties can lead to a significant improvement
in resistance to contact deformation and damage [4,7]. Thus, functionally graded coatings
have been proposed as an alternative to replace conventional homogeneous coatings of
frictional elements [8,9]. It has been proven that FGM coatings subjected to thermal shocks
may suffer less damage than conventional ceramic coatings [6].

Usually, functionally graded materials are made of ceramic-metal composites and
have superior characteristics of both components, i.e., heat and corrosion resistance of the
ceramic and mechanical strength of the metal, at the same time [10]. Therefore, FGMs are
considered to be advanced materials resistant to wear and elevated temperature conditions,
and therefore they have great potential for use in heavy loaded sliding systems. One such
application is brake discs exposed to intensive heating due to friction. At the core of an
FGM disc, the material is steel to maintain structural rigidity, which gradually changes
along the thickness and approaches purely ceramic at the friction surfaces to resist the

1



Materials 2021, 14, 4285

severe thermal loading [5,11]. This significantly improves the thermomechanical behavior
of the brake system as a whole [12].

Investigations associated with the development of frictional heating models for FGMs
to determine the distributions of temperature and thermal stresses in brake systems, have
received a great deal of attention from many researchers. The most common investigations
have simulated the temperature regime in FGM brakes using numerical methods, in
particular, by means of the finite element method (FEM). The finite element analysis of
axisymmetric thermoelastic contact problems for a functionally graded disc with material
property changes in the radial direction was performed by Shahzamanian et al. [13,14].
In [5], the corresponding problem was analyzed for a disc with properties dependent on
the depth, along a normal direction to the friction surface of the disc. It was established that
with the same operating parameters, the temperature gradient in a functionally graded
disc was significantly lower than in a conventional steel disc. In a study by [9], the finite
element methodology was used to compute the subsurface stresses in functionally graded
coatings subjected to frictional contact with heat generation.

In addition to the well-established finite element method, there are other numerical
methods for solving the corresponding heat problems of friction for functionally gradient
materials. An advanced computational method for transient heat conduction analysis in a
non-homogeneous FGM, based on local boundary integral equations, was proposed by
Sladek et al. [15]. The Green’s functions for the three-dimensional FGM transient heat
conduction equation was derived using an exponential variation transform by [16]. The
boundary integral equation based upon this approach has been solved numerically using a
Galerkin approximation. The hybrid numerical method, based on the weighed residual
and Fourier transform methods, to investigate the temperature distribution in the FGM
plates under the exponential heat source load, was adopted by Tian and Jiang [17].

However, the closed-form analytical solutions to the thermal problems of friction for
FGMs have higher accuracy and require less computational time than other methods. In
general, the problems of thermomechanical contact with frictional heating for material with
non-homogeneous properties are difficult to solve analytically due to the high mathematical
complexity. For such materials, the equations of thermal conductivity and thermoelasticity
contain coefficients that depend on the spatial coordinate [18]. Thus, the exact solutions of
these equations and the determination of temperature distributions on their basis, require
some special assumptions [19]. It is known that the superb performance of a functionally
graded brake disc is achieved by introducing the appropriate gradient of thermomechanical
properties by adjusting the gradient index [4]. The distribution of material properties in
the FGM models is usually limited to unidirectional changes in the constituents of the
composite [5]. There are two main distinctive ways to approximate the distribution of
material properties through the graded direction, i.e., by means of an exponential and
a power function. Note that the actual variations of properties depend on the material
manufacturing process, which is neither exponential nor power law, therefore, in both
cases, some level of curve fitting is implied [20]. However, both of these functions have
a parameter that can be regulated to improve the fit and to adjust the gradation of the
material. This role is played by the exponential decay rate in the exponential and the power
exponent in the power law. The selection of these functions is also crucial from the point of
view of the difficulty solving the thermal problems for FGMs by analytical methods.

The one-dimensional transient heat conduction problem for an axisymmetric FGM
cylindrical shell with nonlinear thermal conductivity distributed according to the power
law has been solved by the methods of separation of variables and Bessel functions [21].
The analytical formulas for calculating the thermal and mechanical stresses in a hollow
cylinder made of FGM with properties modeled by the power law, using the direct method
of solution to the Navier equation were obtained by [16]. Steady-state and unsteady tem-
perature and thermal stress distributions in a plate, a hollow circular cylinder, and a hollow
sphere made of functionally gradient material have been studied [22–24]. They proposed
the original analytical method for solution to the one-dimensional heat conductivity prob-
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lem for heterogeneous FGMs, which was performed with proper displacement of variables,
Laplace transform, and the perturbation method. It should be noted that the perturbation
method may be employed for the study of all classes of thermoelastic problems for function-
ally graded materials, even with consideration of the thermal sensitivity of material [11].
In [10], an analytical solution of the heat conduction problem for FGM cylinders subjected
to non-uniform heat flux was obtained by using the method of matched asymptotic ex-
pansion in the perturbation technique. In [25], the Hankel transform method was used to
obtain an analytical solution of the axisymmetric stationary problem of heat conduction for
an FGM layer with thermal conductivity dependent on the depth from the heated boundary
surface. The same technique has been applied to solve the steady axisymmetric boundary
problem of thermoelasticity for non-homogeneous semi-space with thermomechanical
properties that depend exponentially on the distance from the heated surface [26]. This
approach can be used for modeling layered composites with stepwise gradation of the
properties, and also for approximate modeling of the materials with a functional change in
properties. In this last case, the functionally graded coatings were replaced by a package
of layers, whose material properties were assumed to be constant. This simplification of
material property gradation allows one to implement analytical methods for each sublayer,
using the known solutions to the thermoelastic problems of friction for isotropic bodies.
This approach is known as the multi-layered model of functionally graded materials. It has
been shown that the results obtained for the FGM layer, divided into a sufficient number of
the sublayers, are in good agreement with the data found using the corresponding exact
solutions [26]. The same approach has been used to simulate FGM with sinusoidal and
cosinusoidal power and exponential distribution of properties for a cylinder subjected to
non-uniform heat flux [27]. Thermoelastic frictional contact of the FGMs with arbitrarily
varying properties has been investigated using the multi-layered model by Liu et al. [4,7].
On the basis of the same approach, the non-stationary temperature field in a functional
gradient layer with continuous and piecewise change in material properties has been
determined by means of the Laplace transform, asymptotic analysis and integration tech-
nique [6]. The multi-layered model has been developed for analysis of the two-dimensional
sliding frictional contact problem with a functionally graded coating [28]. This model has
been used to solve the transient heat conduction and thermal stress problems for the FGM
plate taking into consideration temperature-dependent material properties [17].

Most of the above-mentioned studies have considered the problems for a heated FGM
layer on homogeneous substrate or cylinder, which can successfully simulate thermoelastic
behavior of a brake disc with FGM coating. The temperature mode of a pad-disc tribosys-
tem has been simulated using the thermal problem of friction for a functionally graded
coated half-space (a disc) sliding against a homogeneous body (a pad) in [4,7–9,27,29].
While modern materials for friction pads in brake systems are usually composites, the
proportion of individual components can also be changed along with the distance from the
friction surface. Experimental investigations have shown that functional variations in the
properties of the pad material significantly improve their braking characteristics [12,30].
In particular, the results have indicated that the wear resistance of a specimen made of a
functionally graded material is higher than the wear resistance of its analogue made of a
homogeneous material [12]. Therefore, FGMs are real candidates for the role of automotive
brake pads [29,31]. In connection with this potential application, we see the need for the
development of mathematical models of frictional heating of two element systems of the
pad-disc type, both made of functionally graded materials. The development of such mod-
els is also associated with the possibility of their use in the study of thermoelastic instability
(TEI) due to frictional heating. It is known that the system exhibits TEI in brakes when the
sliding speed exceeds a critical value [13]. The emergence of instability is accompanied by
the concentration of frictional heating over regions much smaller than the nominal contact
region, thus, leading to high localized temperature and contact pressure. The appearance
of these so-called hot spots results in various undesirable effects such as material trans-
formations, thermal cracking, and brake fade [20]. The studies concerning the effect of
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material non-homogeneity on thermal instability in brakes have shown that an FGM disc
reduces the susceptibility towards TEI by increasing the critical speed of sliding [8,20,27].

2. Statement of the Problem

Consider a heat-conduction problem for two semi-infinite FGM bodies (Figure 1).

 

Figure 1. Scheme of the problem.

It is assumed that:

1. The bodies are related to the coordinate Cartesian system Oxyz, and their initial
temperature distribution is homogeneous and equal to the ambient temperature Ta;

2. At the initial time moment t = 0, the bodies are pressed to each other with uniform
pressure p0 acting parallel to the z axis and simultaneously start sliding with constant
relative speed V0 in the positive direction of the x axis;

3. Due to friction, on the contact surface z = 0 heat is generated, which is absorbed by
the elements of friction pair in the form of heat fluxes, causing an increase in their
temperature T(z, t) over the initial value Ta;

4. During frictional heating, the sum q1 + q2 of intensities of heat fluxes directed from
the contact surface z = 0 along the normal to the insides of the bodies, is equal to
the specific power of friction q0 = f p0V0, where f is the coefficient of friction. At the
same time, the temperatures T on the friction surfaces of both bodies are equal [32,33];

5. Changes in the temperature gradients in the directions x and y are negligible and the
gradient in the direction z decreases, along with the distance from the contact surface;

6. Thermal conductivity of materials Kl are exponential functions of variable z, and their
specific heat cl and density ρl , l = 1, 2 are constant [34]. Here and further, the lower
index l = 1 indicates the parameters and quantities relating to the first element, and
l = 2 to the second element.

On the basis of the above assumptions, the temperature rise Θ(z, t) = T(z, t)− Ta of
the friction pair was found as the solution to the following boundary-value problem of
heat conduction:

∂

∂z

[
K1(z)

∂Θ(z, t)
∂z

]
= c1ρ1

∂Θ(z, t)
∂t

, z > 0, t > 0, (1)

∂

∂z

[
K2(z)

∂Θ(z, t)
∂z

]
= c2ρ2

∂Θ(z, t)
∂t

, z < 0, t > 0, (2)

K2(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q0, t > 0, (3)

Θ(0−, t) = Θ(0+, t), t > 0, (4)

Θ(z, t) → 0 , |z| → ∞ , t > 0, (5)
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Θ(z, 0) = 0, |z| < ∞. (6)

Taking into consideration the dependencies:

Kl(z) = Kl,0eγl |z|, |z| < ∞, Kl,0 ≡ Kl(0), γl ≥ 0, l = 1, 2, (7)

the problem Equations (1)–(6) can be written in the form:

∂2Θ(z, t)
∂z2 + γ1

∂Θ(z, t)
∂z

=
e−γ1z

k1,0

∂Θ(z, t)
∂t

, z > 0, t > 0, (8)

∂2Θ(z, t)
∂z2 − γ2

∂Θ(z, t)
∂z

=
eγ2z

k2,0

∂Θ(z, t)
∂t

, z < 0, t > 0, (9)

K2,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q0, t > 0, (10)

Θ(0−, t) = Θ(0+, t), t > 0 (11)

Θ(z, t) → 0 , |z| → ∞ , t > 0 (12)

Θ(z, 0) = 0, |z| < ∞ (13)

where
kl,0 =

Kl,0

clρl
, l = 1, 2. (14)

are the coefficients of thermal diffusivity of materials on the surface of friction z = 0.

3. Solution to the Problem

The Laplace transform [35]:

L[ Θ(z, t); p] ≡ Θ(z, p) =
∞∫

0

Θ(z, t)eptdt, Rep > 0. (15)

application to the problem Equations (8)–(13), gives:

d2Θ(z, p)
dz2 + γ1

dΘ(z, p)
dz

− p
k1,0

e−γ1zΘ(z, p) = 0, z > 0, (16)

d2Θ(z, p)
dz2 − γ2

dΘ(z, p)
dz

− p
k2,0

eγ2zΘ(z, p) = 0, z < 0, (17)

K2,0
dΘ(z, p)

dz

∣∣∣∣
z=0−

− K1,0
dΘ(z, p)

dz

∣∣∣∣
z=0+

=
q0

p
, (18)

Θ(0−, p) = Θ(0+, p), (19)

Θ(z, p) → 0 , |z| → ∞. (20)

Introducing the new variables and dimensionless parameters:

ξ1 = ξe−γ1z/2, z ≥ 0, ξ2 = γεξeγ2z/2, z ≤ 0, γε = γ∗
√

k∗0, (21)

ξ =
2

γ1

√
p

k1,0
, γ∗ = γ1

γ2
, k∗0 =

k1,0

k2,0
, (22)

the following derivatives can be found:

dΘ(z, p)
dz

= (−1)l 1
2

γlξl
dΘ(ξl , p)

dξl
,

d2Θ(z, p)
dz2 =

1
4

γ2
l ξ2

l
d2Θ(ξl , p)

dξl
2 +

1
4

γ2
l ξl

dΘ(ξl , p)
dξl

,l = 1, 2. (23)
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Taking into consideration the relations (23), Equations (16) and (17) are brought to
the form:

d2Θ(ξl , p)
dξ2

l
− 1

ξl

dΘ(ξl , p)
dξl

− Θ(ξl , p) = 0, ξl > 0, l = 1, 2 (24)

The general solution to Equation (24), satisfying the boundary condition (20), has
the form:

Θ(ξl , p) = Al(p)ξlI1(ξl), l = 1, 2 (25)

where Ik(·) are the modified Bessel functions of the first kind of the kth order, and Al(p) are
the unknown functions. After differentiating the solution (25), and taking into consideration
the relations (21), (22) and derivative [xI1(x)]′ = xI0(x) [36] (here and further, the symbol ‘
denotes the ordinary derivative), the following is found:

dΘ
dz

∣∣∣∣
z=0+

= −γ1

2
A1(p)ξ2I0(ξ),

dΘ
dz

∣∣∣∣
z=0−

=
γ2

2
A2(p)(γεξ)

2I0(γεξ). (26)

Substituting the derivatives (26) into the boundary conditions (18) and (19), the system
of two linear algebraic equations is obtained with respect to the unknown functions Al(p),
l = 1, 2, the solution of which, has the form:

A1(p) = 2Λ
I1(γεξ)

pγεξ2ψ(p)
, A2(p) = 2Λ

I1(ξ)

p(γεξ)
2ψ(p)

(27)

where
ψ(p) = I0(γεξ)I1(ξ) + KεI0(ξ)I1(γεξ), (28)

Kε =
K∗

0√
k∗0

, K∗
0 =

K1,0

K2,0
, Λ =

q0

γ2K2,0
. (29)

Taking into consideration the forms of variables ξl , l = 1, 2 (21), (22), and functions
Al(p), l = 1, 2 (27)–(29) the solutions (25) are given as:

Θ(z, p) = 2Λe−γ1z/2 ϕ1(z, p)
Ψ(p)

, z ≥ 0, Θ(z, p) = 2Λeγ2z/2 ϕ2(z, p)
Ψ(p)

, z ≤ 0, (30)

ϕ1(z, p) = I1(γεξ)I1(ξe−γ1z/2), ϕ2(z, p) = I1(ξ)I1(γεξeγ2z/2),
Ψ(p) = pγεξψ(p).

(31)

Using the Vashchenko–Zakharchenko theorem [37,38], the inverse Laplace transform
of the solutions (30) and (31) can be written in the form:

Θ(z, t) = 2Λe−
1
2 γ1z

[
ϕ1(z, 0)
Ψ′(0) +

∞

∑
n=1

ϕ1(z, pn)

Ψ′(pn)
e−pnt

]
, z ≥ 0, t ≥ 0, (32)

Θ(z, t) = 2Λe
1
2 γ2z

[
ϕ2(z, 0)
Ψ′(0) +

∞

∑
n=1

ϕ2(z, pn)

Ψ′(pn)
e−pnt

]
, z ≤ 0, t ≥ 0. (33)

where pn > 0, n = 1, 2, . . . are the real roots of the transcendental equation ψ(p) = 0 with
function ψ(p) (28).

With consideration of the expansions [36]:

I0(x) = 1 +
x2

4
+

x4

64
+ . . . , I1(x) =

x
2
+

x3

16
+ . . . , (34)

from Equation (31), it can be found that:

ϕl(z, p) ∼= ξ2 ϕ̃l(z, p), l = 1, 2, Ψ(z, p) ∼= ξ2Ψ̃(z, p), (35)

6
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ϕ̃1(z, p) =
1
4

γεe−γ1z/2
[

1 +
1
8
(γεξ)2

]
, z ≥ 0, ϕ2(z, p) =

1
4

γεeγ2z/2
(

1 +
1
8

ξ2
)

, z ≤ 0 (36)

Ψ̃(p) = pγε

[
1
2
(1 + γεKε) +

1
16

(1 + 2γεKε + 2γ2
ε + Kεγ

3
ε )ξ

2
]

, ξ2 =
4p

γ2
1k1,0

, (37)

At p → 0 , Equations (35)–(37) lead to:

ϕ1(0)
Ψ′(0) =

e−γ1z/2

2(1 + γεKε)
, z ≥ 0,

ϕ2(0)
Ψ′(0) =

eγ2z/2

2(1 + γεKε)
, z ≤ 0, (38)

Using the relation [36]:

I0(x) = J0(ix), I1(x) = −i J1(ix), J′0(x) = −J1(x), J′1(x) = J0(x)− x−1 J1(x),
i ≡ √−1,

(39)

where Jk(·) are the Bessel functions of the first kind of the kth order, and denoted μ ≡ iξ,
the temperature rise (32), (33), with consideration of Equations (22) and (38), can be written
in the form:

Θ(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂1(z, μn)

Ψ̂′(μn)
e−pnt

]
, z ≥ 0, t ≥ 0, (40)

Θ(z, t) = Λeγ2z/2

[
eγ2z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂2(z, μn)

Ψ̂′(μn)
e−pnt

]
, z ≤ 0, t ≥ 0, (41)

where

ϕ̂1(z, μn) = J1(μn)J1(γεμne−γ1z/2), ϕ̂2(z, μn) = J1(μn)J1(γεμneγ2z/2), (42)

Ψ̂′(μn) = μ2
n[(1 + γεKε)J0(μn)J0(γεμn)− (γε + Kε)J1(μn)J1(γεμn)], (43)

pn = 0.25k1,0γ2
1μ2

n, (44)

μn > 0, n = 1, 2, 3, . . ., are the real roots of the functional equation:

J0(γεμ)J1(μ) + Kε J0(μ)J1(γεμ) = 0. (45)

On the contact surface z = 0 from Equations (40)–(42), we achieve:

Θ(t) ≡ Θ(0, t) = Λ

[
1

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂(μn)

Ψ̂′(μn)
e−pnt

]
, t ≥ 0 (46)

ϕ̂(μn) ≡ ϕ̂1(0, μn) = ϕ̂2(0, μn) = J1(γεμn)J1(μn), (47)

Additionally, assuming that the materials of the friction pair are the same
(K1,0 = K2,0 ≡ K0, k1,0 = k2,0 ≡ k0, γ1 = γ2 ≡ γ), then, from Equations (21), (22), and (29),
it follows that Kε = γε = 1 and solution (46) and (47) take the form:

Θ(t) = 2Λ

(
1
4
−

∞

∑
n=1

e−pnt

μ2
n

)
, t ≥ 0, (48)

where J0(μn) ≡ 0,pn = 0.25k0γ2μ2
n.

Introducing the following dimensionless variables and parameters:

ζ =
z
a

, τ =
k1,0t
a2 , γl =

γ∗
l

a
, l = 1, 2, Θ0 =

q0a
K1,0

, Θ∗ = Θ
Θ0

(49)

7
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where a is the thickness of the friction pair elements participating in heat absorption. These
parameters are closely related to the concept of effective thickness, i.e., the distance from
the friction surface where the temperature is equal to 5% of the maximum value [39].

Taking into consideration the notations (49) in Equations (40)–(45), the dimensionless
temperature rise can be written as:

Θ∗(ζ, τ) =
K∗

0
γ∗

2
e−γ∗

1 ζ/2

[
e−γ∗

1 ζ/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ∗
1(ζ, μn)

Ψ̂′(μn)
e−λ2

nτ

]
, ζ ≥ 0, τ ≥ 0, (50)

Θ∗(ζ, τ) =
K∗

0
γ∗

2
eγ∗

2 ζ/2

[
eγ∗

2 ζ/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ∗
2(ζ, μn)

Ψ̂′(μn)
e−λ2

nτ

]
, ζ ≤ 0, τ ≥ 0, (51)

where

ϕ∗
1(ζ, μn) = J1(γεμn)J1(μne−γ∗

1 ζ/2), ϕ∗
2(ζ, μn) = J1(μn)J1(γεμneγ∗

2 ζ/2), (52)

λn = 0.5γ∗
1 μn, n = 1, 2, . . . (53)

On the contact surface ζ = 0 from Equations (50)–(52), it follows that:

Θ∗(τ) ≡ Θ∗(0, τ) =
K∗

0
γ∗

2

[
1

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ∗(μn)

Ψ̂′(μn)
e−λ2

nτ

]
, τ ≥ 0, (54)

where
ϕ∗(μn) ≡ ϕ∗

1(0, μn) = ϕ∗
2(0, μn) = J1(γεμn)J1(μn). (55)

4. An Asymptotic Solution at the Initial Stage of Sliding

At large values of the parameter p of the Laplace integral transform (15), and taking
into consideration the asymptotic behavior of the functions [36]:

Ik(x) ∼= ex
√

2πx
, k = 0, 1, (56)

from Equations (28) and (31) it can be found that:

ϕ1(z, p) ∼= e(1+γε−γ1z/2)ξ

2πξ
√

γε
eγ1z/4, z ≥ 0, ϕ2(z, p) ∼= e(1+γε+γ2z/2)ξ

2πξ
√

γε
e−γ2z/4, z ≤ 0, (57)

Ψ(p) ∼= (1 + Kε)
pe(1+γε)ξ

2π
√

γε
. (58)

Substituting Equations (57) and (58) into Equation (30), the transforms of the tempera-
ture rise can be presented as:

Θ(z, p) =
2Λe−(1+2ξ)γ1z/4

(1 + Kε)pξ
, z ≥ 0, Θ(z, p) =

2Λe(1+2ξ)γ2z/4

(1 + Kε)pξ
, z ≤ 0, (59)

In view of the notation ξ (22), the transformed solutions (59) can be written in the form:

Θ(z, p) =
Λγ1

(1 + Kε)
e−γ1z/4 e

−
√

p
k1,0

z

p
√

p
k1,0

, z ≥ 0, Θ(z, p) =
Λγ1

(1 + Kε)
eγ2z/4 e

−
√

p
k2,0

z

p
√

p
k1,0

, z ≤ 0, (60)

Using the relation [40]:

L−1[p−3/2e−α
√

p; t] = 2
√

tierfc
(

α

2
√

t

)
, α ≥ 0, (61)

8
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Taking into consideration notations (29) and (49), the dimensionless temperature rise for
small values of the Fourier number τ was received as:

Θ∗(ζ, τ) =
2γεKε

(1 + Kε)
e−γ∗

1 ζ/4√τierfc
(

ζ

2
√

τ

)
, ζ ≥ 0, 0 ≤ τ << 1, (62)

Θ∗(ζ, τ) =
2γεKε

(1 + Kε)
eγ∗

2 ζ/4√τierfc

(
− ζ

2

√
k∗0
τ

)
, ζ ≤ 0, 0 ≤ τ << 1, (63)

where ierfc(x) = π−1/2e−x2 − xerfc(x), erfc(x) = 1− erf(x), and the erf(x) is the Gaussian
error function [36]. On the contact surface ζ = 0 from Equations (63) and (62), it can be
obtained that:

Θ∗(τ) = 2γεKε

(1 + Kε)

√
τ

π
, 0 ≤ τ << 1, (64)

Substituting γ1 = γ2 = 0 and γ∗ = 1 into Equations (62)–(64), the known solutions can
be found to determine the dimensionless temperature increase in the homogeneous bodies [41]:

Θ∗(ζ, τ) =
2K∗

0
(1 + Kε)

√
τierfc

(
ζ

2
√

τ

)
, ζ ≥ 0, 0 ≤ τ << 1, (65)

Θ∗(ζ, τ) =
2K∗

0
(1 + Kε)

√
τierfc

(
− ζ

2

√
k∗0
τ

)
, ζ ≤ 0, 0 ≤ τ << 1, (66)

Θ∗(τ) =
2K∗

0
(1 + Kε)

√
τ

π
, 0 ≤ τ << 1. (67)

5. Numerical Analysis

The numerical analysis was performed based on the exact solutions (50)–(55) and
the asymptotic Equations (62)–(64). The elements are both made of functionally graded
materials in such a way that their friction surfaces z = 0 are purely ceramic ZrO2 and Al3O2
and, along the thickness of the elements, they approach the core materials Ti-6Al-4V and
TiC, respectively. The thermal properties of component materials are presented in Table 1.

Table 1. Thermal properties of the FGMs components [17,42].

Element
Number.

Material
Thermal Conductivity

K[Wm−1K−1]
Thermal Diffusivity

k × 106[m2s−1]

l = 1
ZrO2 2.09 0.86

Ti-6Al-4V 7.5 3.16

l = 2
Al3O2 1.5 4.98

TiC 33.9 9.59

In view of notations (49), Equation (7), describing the change in thermal conductivity
of materials with distance from the surface of friction, becomes:

Kl(z) = Kl,0K∗
l (ζ), K∗

l (ζ) = eγ∗
l |ζ|, |ζ| < ∞, l = 1, 2 (68)

where the values of the dimensionless gradient parameters can be calculated from the
following relation [8]:

γ∗
l = ln(Kl,1/Kl,0), Kl,0 ≡ K∗

l (0), Kl,1 ≡ K∗
l (1), l = 1, 2. (69)

The formula (69) provides that thermal conductivity changes in a manner suitable
for the FGM composition variations from pure ceramic on the friction surface, achieving
the pure core material on the effective thickness a (|ζ| = 1) inside elements. The effective
thicknesses 3.2 mm and 7.7 mm for the first (l = 1) and second (l = 2) elements, respectively
were calculated in accordance with the methodology [39]. Hence, it can be assumed that

9
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a = 7.7 mm. Then, from Table 1, the following data are taken: K1,0 = 2.09 Wm−1K−1,
K1,1 = 7.5 Wm−1K−1 for the FGM ZrO2–Ti-6Al-4V (l = 1) and K2,0 = 1.5 Wm−1K−1,
K2,1 = 33.9 Wm−1K−1 for the FGM Al3O2–TiC (l = 2). Substituting these coefficients
into the formula (69) we obtain the dimensionless gradient parameters values γ∗

1 = 1.28,
γ∗

2 = 3.12. Distribution of the thermal conductivity along the distance from the friction
surface, for considered tribosystem is presented in the Figure 2. The positive roots of the
nonlinear functional Equation (45) were found by means of the bisection method [43]. It
was necessary to take at least 70 roots of Equation (45) in order to perform calculations
according to Equations (50)–(55) with a relative accuracy of 10−3.

 

Figure 2. Distributions of the dimensionless thermal conductivities K∗
l , of FGM ZrO2–Ti-6Al-4V

(l = 1) and Al3O2–TiC (l = 2) along the dimensionless distance ζ from the friction surface.

Variations of the dimensionless temperature rise Θ∗(ζ, τ) (50)–(55) in the friction
elements ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC (l = 2) during the sliding, are shown
by the continuous curves in Figure 3, while the dashed lines in this figure illustrate the
corresponding results obtained from the solutions (65)–(67) for the friction pair elements
made of homogeneous materials ZrO2 (l = 1) and Al3O2 (l = 2). At a certain distance ζ,
the temperature monotonically increases over time (Fourier number τ). The highest
temperature is achieved on the contact surface ζ = 0. It can be seen that the elements
of tribocouple made of homogeneous materials are heated more intensively during the
sliding than the FGMs. Differences between the compared results increase over the time of
heating. Taking into consideration notations (49), it can be established that, the maximum
temperature rises are Θmax = 604 ◦C and Θmax = 765 ◦C achieved at the end of the process,
for the friction pairs made of functionally graded and homogeneous materials, respectively.

Distribution of dimensionless maximum temperature Θ∗
max, achieved at the end of

the process, along the distance from the contact surface is presented in Figure 4. With the
distance from the contact surface in the element l = 1, the difference between continuous
and dashed lines decreases. Unlike in the element l = 2, where this difference remains
almost unchanged along the thickness, and even slightly increases (to the 238◦C at distance
|z| = 1.85 mm). A much higher temperature level is reached in the homogeneous element
l = 2 made of ceramic (Al3O2) as compared with the temperature achieved in the FGM
element Al3O2–TiC, which is caused by application of the core material (TiC) with high
thermal conductivity and diffusivity.

10
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(a) (b) 

Figure 3. Evolution of the dimensionless temperature Θ∗(ζ, τ) during sliding at different distances
from the friction surface. Continuous curves represent FGMs: (a) ZrO2–Ti-6Al-4V; (b) Al3O2–TiC
and the dashed curves represent homogeneous materials: (a) ZrO2; (b) Al3O2.

 

Figure 4. Distribution of the dimensionless maximum temperature rise Θ∗
max reached at the end of

friction process, along the distance ζ from the friction surface. Continuous curves represent FGMs
ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC (l = 2); the dashed curves represent homogeneous materials
ZrO2 (l = 1) and Al3O2 (l = 2).

The time profiles of dimensionless temperature rise Θ∗ on the contact surface ζ = 0
for different values of the parameter γ∗

l , l = 1, 2, are demonstrated in Figure 5. At a certain
moment of time, the temperature of the friction surface increases with a decrease in the
material gradient parameter (the continuous curves), approaching the temperature values
obtained for a friction pair made of homogeneous materials (the dashed curves). The
differences between the individual curves obtained for FGMs and homogeneous materials
grow with the time of sliding.
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(a) (b) 

Figure 5. Evolutions of dimensionless temperature rise Θ∗ on the contact surface of the friction
pair for various values of parameter: (a) γ∗

1 for γ∗
2 = 3.12; (b) γ∗

2 for γ∗
1 = 1.28. Continuous

curves represent FGMs ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC (l = 2), the dashed curves represent
homogeneous materials ZrO2 (l = 1) and Al3O2 (l = 2).

The influence of dimensionless gradients of materials γ∗
l , l = 1, 2 (69) on the dimen-

sionless maximum temperature Θ∗
max of the contact surface is shown in Figure 6 (the

continuous curves). The dashed lines in this figure present the corresponding data calcu-
lated on the basis of the solution found for the homogeneous materials. The highest values
Θ∗

max are achieved for the elements of the friction pair made of the homogeneous ceramic
materials. Increasing the gradient parameters of the material reduces the maximum tem-
perature of the friction system. The highest reduction of Θ∗

max takes place while increasing
the parameter γ∗

1 in the element made of ZrO2–Ti-6Al-4V, while the parameter γ∗
2 value of

the element Al3O2–TiC remains constant (Figure 6a).

(a) (b) 

Figure 6. Dependencies of the maximum dimensionless temperature rise Θ∗
max on the dimensionless

gradient of material: (a) γ∗
1 for γ∗

2 = 3.12; (b) γ∗
2 for γ∗

1 = 1.28. Continuous curves represent FGMs
ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC (l = 2), the dashed curves represent homogeneous materials
ZrO2 (l = 1) and Al3O2 (l = 2).
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Distributions of dimensionless temperature Θ∗ at the end of the sliding, along the
distance 0 ≤ |ζ| ≤ 1 from the friction surface is demonstrated in Figure 7. The highest
distance value |ζ| = 1 corresponds to the previously established maximum effective thick-
ness of heating a = 7 mm. As agreed, so far, on the contact surface ζ = 0, the temperature
of the friction pair made of FGMs is lower than that in the case of the tribocouple with
homogeneous materials. Increasing the distance from the contact surface reduces the
temperature in both cases, the system made of FGMs (continuous curves) and the friction
pair made of ceramic homogeneous materials (dashed curves).

  
(a) (b) 

Figure 7. Dependencies of dimensionless temperature rise Θ∗ at the end of heating, on the dimen-
sionless distance |ζ| from the contact surface for different values of parameters: (a) γ∗

1 for γ∗
2 = 3.12;

(b) γ∗
2 for γ∗

1 = 1.28. Continuous curves represent FGMs ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC
(l = 2) and the dashed curves represent homogeneous materials ZrO2 (l = 1) and Al3O2 (l = 2).

The temperature in the first element (l = 1) decreases faster than that in the case of the
homogeneous material ZrO2, while in the second element (l = 2), the temperature of the
homogeneous material Al3O2 remains higher than the temperature of the element made of
FGM Al3O2–TiC, throughout the whole effective thickness. At a certain distance from the
friction surface, increasing the material gradient parameters (enhancement of the volume
fraction of the core material in the composite structure) causes a drop of the temperature in
both FGMs used.

6. Conclusions

According to the obtained solutions, the numerical analysis of the temperature mode
was performed for friction pair elements made of functionally graded materials, under
uniform sliding. The friction surfaces of these elements are ceramic materials, i.e., zirconium
dioxide ZrO2 and aluminum oxide Al3O2. The volume fraction of ceramics in the materials
decreases with the depth, in favor of the core materials.

The composites are the high-class titanium-aluminum-vanadium alloy Ti-6Al-4V and
titanium carbide TiC, with higher thermal conductivities than ceramics. On the basis of
the results of the calculations, the influences of the values of the friction material gradient
parameters on the time-space temperature distributions in the tribological system were
investigated. The obtained data show that the use of selected composites with a continuous
(exponential) change of thermal conductivity, improves the friction conditions, causing a
significant decrease in the temperature level reached on the friction surface, especially the
maximum value at the end of the sliding.
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Despite its purely theoretical importance, the determined analytical solution also has
practical significance. On the basis of this closed-formed expression, it is possible to quickly
estimate the temperature mode of a friction system made of FGMs with an exponential
gradient under uniform sliding. Furthermore, the exact solutions play the role of a template
for testing the approximate numerical methods. It should be noted that the solution of
formulated thermal problem of friction was obtained assuming an exponential change
in thermal conductivity. Thus, the developed model is oriented only to the FGM class
with just such a gradient. In this sense, it is a natural limitation of the solution. Other
application limitations of this model (unidirectional heating process, ideal thermal contact
of bodies, etc.) are presented in the assumptions.

In the next report, we plan to present the results concerning a study of the impact of
functional gradient structure of friction materials on the temperature in a disc brake system
during braking.
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Nomenclature

a Effective depth of heat penetration (m)
cl Specific heat (Jkg−1K−1)
f Coefficient of friction (dimensionless)
Ik(·) The modified Bessel functions of the first kind of the kth order
Jk(·) The Bessel functions of the first kind of the kth order
kl Thermal diffusivity (m2s−1)
Kl Thermal conductivity (Wm−1K−1)
p Parameter of the Laplace transform (dimensionless)
p0 Contact pressure (Pa)
ql Intensity of the frictional heat flux (Wm−2)
q0 Specific power of friction (Wm−2)
t Time (s)
T Temperature (◦C)
Ta Initial (ambient) temperature (◦C)
V0 Sliding velocity (ms−1)
x, y, z Spatial coordinates (m)
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Glossary

γl Parameter of material gradient (m−1)
γ∗

l Parameter of material gradient (dimensionless)
ζ Thickness (dimensionless)
Θl Temperature rise (◦C)
Θ∗

l Temperature rise (dimensionless)
Θ0 Temperature scaling factor (◦C)
ρl Density (kgm−3)
τ Time (dimensionless)
lower l Number of the main (l = 1) and frictional (l = 2) elements of the friction pair
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Abstract: A mathematical model for evaluation of the temperature mode of the disc–pad system
during single braking is proposed. The model is based on the thermal problem of friction formulated
for two semi-infinite bodies, compressed with pressure increasing over time while reducing the
sliding velocity from the initial value to zero at the stop. The exact solution to this problem was
obtained by means of Duhamel’s theorem. Validation of the solution was performed by achieving
in special cases parameters of known solution to this problem with constant pressure and velocity
(under uniform sliding). The results of the numerical calculations are presented for a selected friction
pair, made of functionally graded materials with titanium alloy (disc) and aluminum alloy (pad) cores
coated with ceramics graded toward friction surfaces. For the established values of the parameters
such as the rise time in pressure and the FGM gradients, the ability to quickly obtain spatiotemporal
temperature distributions in the disc and pad was presented. The influence of the variability of these
parameters on the maximum temperature of the brake system was also investigated.

Keywords: functionally graded materials; braking; frictional heating; temperature

1. Introduction

Friction elements of braking systems are subjected to severe conditions such as high
temperature and intensive wear. During braking, performance of these components in
terms of efficiency, service life, and dissipation of heat from the contact surface depends
on the operating conditions and material properties. It has been shown that the operating
characteristics of the entire assembly of the braking system can be significantly improved
by introducing a smooth gradient in the microstructure of the friction materials [1]. Such
functionally graded materials (FGMs) are a class of heterogeneous materials with continu-
ous variation of properties over their volume. Generally, these materials are composites
formed by smooth gradation of two or more constituent phases along certain dimensions of
a structure. This gradation can be regulated by changing the volume fraction distribution
of component of material from one to another in a controlled manner [2]. As a result, the
thermophysical properties of material continuously vary as a function of position along a
certain direction. This allows designing a functionally graded material in order to obtain
optimized friction characteristics of a brake.

In general, statements of thermal problems of friction contain partial differential
equations with variable coefficients. Therefore, the application of analytical methods to
their solution is difficult or even impossible. Hence, numerical methods are often used
to consider such problems. An FGM disc subjected to thermal load due to frictional
heating while taking into account the inertial force due to the rotation of the disc was
studied by Afsar and Go [3]. A 2D finite element analysis (FEA) for a circular disc with
exponential variations in thermophysical properties in the radial direction was performed.
An axisymmetric FEA of a brake disc, with properties distributed according to the power-
law function of radial position, was executed by Shahzamanian et al. [4,5]. It was found that
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the gradation index of the disc material has a crucial influence on the thermomechanical
behavior of the entire braking system.

A finite element thermal contact analysis of a functionally graded disc under dry
friction was performed by Hosseini and Talebi [6]. The core part of the considered disc
was steel, and it gradually changed through the thickness of the disc, according to a power
law, approaching pure ceramic at the outer surface. It was shown that the temperature
and the corresponding thermal displacements in the FGM disc are much lower than in
the conventional steel disc. Furthermore, it was established that the use of an FGM brake
disc may eliminate thermal cracking and wear. In particular, functionally graded materials
composed of ceramic and metal perform very well in contact problems involving friction,
since they combine the advantages of both components [7]. These elements mostly have a
metal core in order to maintain strength and rigidity, whereas ceramic is present on the
outer surfaces to resist intensive wear and elevated temperature conditions.

Separately, the study of the phenomenon of thermoelastic instability (TEI) of brake
systems with FGM should be mentioned. The solution of a 2D thermal contact problem of
friction for a functionally graded cermet brake disc was obtained by means of FEA [8]. They
investigated TEI caused by the coupled interaction of the mechanical and thermal loads in
the sliding system. Generally, this leads to the establishment of localized high-temperature
zones on the contact surface, known as hot spots, which are directly attributable to the
premature failure of the friction system. This instability is often called the frictionally
excited TEI and occurs in tribosystems when the sliding velocity exceeds a certain critical
value. It was shown that the value of the critical velocity for a functionally graded brake disc
is higher than that for a conventional homogeneous disc. This conclusion was confirmed
by further research investigating TEI in an FGM strip sliding uniformly against two
homogeneous semi-spaces [9,10]. Assuming an exponential variation of the thermophysical
properties along the thickness of an FG strip permitted obtaining an exact solution using
the analytical perturbation method. Using the same methodology, the TEI of the brake
modeled as an FGM semi-infinite body sliding against a homogeneous semi-space under
uniform pressure taking into account the frictional heating and thermal contact resistance
was investigated by Mao et al. [11]. As a result, they determined the stability boundaries
of thermoelastic instability in the considered sliding system. The effect of the arbitrarily
varying thermoelastic properties of the FGM on the TEI was considered by Mao et al. [12].
To simulate the distribution of the FGM properties, a homogeneous multilayered model
was employed. This approach is a replacement of the continuous FGM material with a
package of homogeneous layers with constant properties. The gradient was simulated
by assigning different properties values to each sublayer. It was proven that the results
received for the FGM strip, divided into a sufficient number of layers, were close to the
results found using the corresponding exact solutions [13]. It should be noted that this
conclusion is dependent on the problem under consideration, and the differences between
the obtained results may be significant in some cases [14]. This is particularly true for FGM
with temperature-dependent properties. A multilayered model was used in [15] in order to
establish the coupled effect of the frictional heat and the thermal contact resistance. Since
the homogeneous multilayered model deals with the arbitrarily varying properties of FGM,
the power-law, exponential, sinusoidal, and cosinusoidal distributions of the brake disc
properties were considered. The perturbation and transfer matrix methods were used to
deduce the characteristic equation of the TEI problem, to obtain the relationship between
the critical sliding velocity and the critical heat flux [15]. The formulated conclusions
confirm that the application of ceramic-based FGM in a brake disc, consisting of ceramics
at the sliding interface and steel in the middle layer, reduces the susceptibility of braking
system toward TEI [9–11,15].

However, FGMs are increasingly finding applications in braking systems, in the fab-
rication of not only discs, but also brake pads. Experimental investigations revealed that
FGMs could successfully fulfill the demands for brake pads and improve their characteris-
tics [1,16]. The novel functionally graded ductile iron for brake pads was investigated in
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a well-controlled model sliding test and a disc-brake machine in [16]. The results of the
tribological tests revealed a positive effect of the functional gradient of properties on the
wear of the pads and the improved stability of the friction coefficient. Govindaraju et al. [1]
developed and investigated Fe-based material on brake pads with graded composition. The
FG specimens were subjected to a dry sliding test for studying their tribological behavior.
The results were compared with the conventional brake pad specimen. It was found that
the wear resistance of the functionally gradient specimen is much greater compared to the
conventional pad material [1].

We note that a more comprehensive review of the literature on thermoelastic contact
problems with frictional heating for functionally graded materials was provided in our
previous article [17]. This article is a continuation of the research cycle started in [17], in
which the case of the uniform sliding of an FGM tribosystem was considered. The present
article concerns the transient thermal problem of friction during braking, which takes
into account the time-dependent specific friction power due to the exponential increase in
contact pressure.

2. Statement to the Problem

The frictional heating in a brake disc system during a single braking process is consid-
ered. Frictional elements of the system are two identical pads, located symmetrically to the
brake disc. At the initial time moment t = 0, pads are pressed to the friction surfaces of the
disc with uniformly distributed on the contact area and time-dependent pressure [18].

p(t) = p0 p∗(t), p∗(t) = 1 − e−t/ti , 0 ≤ t ≤ ts, (1)

where ti ≥ 0 is the rise time in contact pressure from zero to the nominal value p0, and ts is
the time of stop. Due to the interaction of friction forces, the linear velocity of vehicle V is
reduced from the initial value V0 ≡ V(0) to zero at the stop time moment t = ts according
to the following law [19,20]:

V(t) = V0V∗(t), V∗(t) = 1 − t
t0
s
+

ti

t0
s

p∗(t), t0
s =

W0

f p0 AaV0
, 0 ≤ t ≤ ts, (2)

where W0 is the initial kinetic energy of the system, f is the friction coefficient, Aa is the
nominal contact area between the pad and disc, and t0

s is the braking time with constant
deceleration ( ti → 0). The braking time, taking into account the temporal profile of the
velocity (Equation (2)), is determined from the stop condition V∗(ts) = 0. For 0 < ti ≤ 0.3t0

s
it was established [19] that ts ∼= t0

s + 0.99ti.
The sliding velocity reduction during braking is accompanied by the generation

of frictional heat on the contact surface of the friction pair. In order to determine the
temperature field generated in this way, the corresponding thermal problem of friction is
formulated on the basis of the following assumptions:

1. The materials of the pads and the disc are functionally graded with an exponential
decrease in thermal conductivity along their thickness, with invariant specific heat
and density;

2. The initial temperature of all elements is the same and equal to the ambient tempera-
ture Ta;

3. The whole work of friction goes to heating the bodies, while the wear of the friction
surfaces is neglected;

4. The free surfaces of the pads and the disc are adiabatic;
5. The thermal and mechanical properties and coefficient of friction are independent of

the temperature T;
6. Only the change in the temperature gradient in the direction perpendicular to the

friction surface is taken into account;
7. The thermal contact of friction between the pads and the disc is perfect; the tem-

peratures of their friction surfaces during braking are the same, and the sum of the
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intensity of the heat fluxes directed to both elements along the normal to the contact
surface is equal to the specific friction power:

q(t) = q0q∗(t), q0 = f p0V0, q∗(t) = p∗(t)V∗(t), 0 ≤ t ≤ ts, (3)

where the temporal profiles of pressure p∗(t) and velocity V∗(t) have the forms
expressed in Equations (1) and (2), respectively;

8. Due to the symmetry with respect to the center plane of the disc, to establish the
temperature of the braking system, it is sufficient to consider the contact scheme of
one pad with a disc of half of its thickness.

With such assumptions, a contact scheme of two sliding semi-infinite bodies (semi-
spaces) related to the Cartesian system 0xyz (Figure 1) was adopted to describe the process
of frictional heating in the disc–pad system.

Figure 1. Scheme of the frictional heating in the disc–pad system.

The temperature rise Θ = T − Ta was determined from solution to the following
one-dimensional boundary value problem of heat conduction taking into account the
generation of heat due to friction:

∂

∂z

[
K1(z)

∂Θ(z, t)
∂z

]
= c1ρ1

∂Θ(z, t)
∂t

, z > 0, 0 < t ≤ ts, (4)

∂

∂z

[
K2(z)

∂Θ(z, t)
∂z

]
= c2ρ2

∂Θ(z, t)
∂t

, z < 0, 0 < t ≤ ts, (5)

K2(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q(t), 0 < t ≤ ts, (6)

Θ(0−, t) = Θ(0+, t), 0 < t ≤ ts, (7)

Θ(z, t) → 0 , |z| → ∞ , 0 < t ≤ ts, (8)

Θ(z, 0) = 0, |z| < ∞, (9)

where
Kl(z) = Kl,0eγl |z|, |z| < ∞, Kl,0 ≡ Kl(0), γl ≥ 0, l = 1, 2, (10)

and function q(t) has the form expressed in Equation (3). Here and further, the subscript l
indicates the parameters and quantities related to the certain element—l = 1 for the disc,
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and l = 2 for the pad. Taking into account the relations in Equation (10), the problem in
Equations (6)–(9) was written in the following form:

∂2Θ(z, t)
∂z2 + γ1

∂Θ(z, t)
∂z

=
e−γ1z

k1,0

∂Θ(z, t)
∂t

, z > 0, 0 < t ≤ ts, (11)

∂2Θ(z, t)
∂z2 − γ2

∂Θ(z, t)
∂z

=
eγ2z

k2,0

∂Θ(z, t)
∂t

, z < 0, 0 < t ≤ ts, (12)

K2,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q(t), 0 < t ≤ ts, (13)

Θ(0−, t) = Θ(0+, t), 0 < t ≤ ts, (14)

Θ(z, t) → 0 , |z| → ∞ , 0 < t ≤ ts, (15)

Θ(z, 0) = 0, |z| < ∞, (16)

where
kl,0 =

Kl,0

clρl
, l = 1, 2 (17)

are the coefficients of thermal diffusivity of the materials on their contact surfaces; z = 0.

3. Solution to the Problem

In the case of a uniform slip with a constant specific power of friction q(t) = q0, t ≥ 0,
the solution to the problem in Equations (11)–(16) can be written in the following form [17]:

Θ̂(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

φ1(z, μn)

Ψ(μn)
e−pnt

]
, z ≥ 0, t ≥ 0, (18)

Θ̂(z, t) = Λeγ2z/2

[
eγ2z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

φ2,n(z, )
Ψ(μn)

e−pnt

]
, z ≤ 0, t ≥ 0, (19)

where

φ1(z, μn) = J1(μn)J1(γεμne−γ1z/2), φ2(z, μn) = J1(μn)J1(γεμneγ2z/2), (20)

Ψ(μn) = μ2
n[(1 + γεKε)J0(μn)J0(γεμn)− (γε + Kε)J1(μn)J1(γεμn)], (21)

Kε =
K∗

0√
k∗0

, γε = γ∗
√

k∗0, K∗
0 =

K1,0

K2,0
, k∗0 =

k1,0

k2,0
, γ∗ = γ1

γ2
, Λ =

q0

γ2K2,0
, (22)

pn = 0.25k1,0γ2
1μ2

n, (23)

μn > 0, n = 1, 2, 3, . . ., are the real roots of the following functional equation:

J0(γεμ)J1(μ) + Kε J0(μ)J1(γεμ) = 0, (24)

where Jk(x) denotes the Bessel functions of the first kind of the k-th order [21].
The temperature rise Θ(z, t) corresponding to the specific friction power q(t) in

Equation (3) is searched on the basis of Duhamel’s formula [22].

Θ(z, t) =
∂

∂t

t∫
0

q∗(t − s)Θ̂(z, s)ds, 0 < t ≤ ts, (25)
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where Θ̂(z, t) is the temperature rise in Equations (18)–(24) for constant specific friction
power q(t) = q0. Taking into account the solutions to Equations (18) and (19) in Duhamel’s
integral (Equation (25)), it was achieved that

Θ(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
q∗(t) + 4

γε

∞

∑
n=1

φ1(z, μn)

Ψ(μn)
G′

n(t)

]
, z ≥ 0, 0 ≤ t ≤ ts, (26)

Θ(z, t) = Λeγ2z/2

[
eγ2z/2

(1 + γεKε)
q∗(t) + 4

γε

∞

∑
n=1

φ2(z, μn)

Ψ(μn)
G′

n(t)

]
, z ≤ 0, 0 ≤ t ≤ ts, (27)

where G′
n(t) is a derivative of the function Gn(t), which is determined as

Gn(t) =
t∫

0

q∗(t − s)e−pntdt, n = 1, 2, 3, . . . (28)

Substituting the temporal profile of the specific power of friction q∗(t) in Equation (3)
into Equation (28) yielded the following equation:

Gn(t) = Gn,1(t)− 1
t0
s

Gn,2(t) +
ti

t0
s

Gn,3(t), n = 1, 2, 3, . . . , (29)

where

Gn,1(t) =
t∫

0
p∗(t − s)e−pntdt, Gn,2(t) =

t∫
0
(t − s)p∗(t − s)e−pntdt,

Gn,3(t) =
t∫

0
[p∗(t − s)]2e−pntdt.

(30)

The calculations of integrals in Equation (30) taking into account the time profile of
contact pressure p∗(t) (1), give

Gn,1(t) = p−1
n (1 − e−pnt) + a−1

n (e−pnt − e−t/ti ), (31)

Gn,2(t) = t(p−1
n − a−1

n e−t/ti )− p−2
n (1 − e−pnt)− a−2

n (e−pnt − e−t/ti ), (32)

Gn,3(t) = p−1
n (1 − e−pnt) + 2a−1

n (e−pnt − e−t/ti )− b−1
n (e−pnt − e−2t/ti ), (33)

where
an = pn − t−1

i �= 0, bn = pn − 2t−1
i �= 0n = 1, 2, 3, . . . (34)

If for any n = k, k = 1, 2, . . ., the equality pk = t−1
i (ak = 0, bk = −t−1

i ) is true, then
the integration of the Equation (30) gives

Gk,1(t) = ti(1 − e−t/ti )− te−t/ti , (35)

Gk,2(t) = ti[t − ti(1 − e−t/ti )]− 0.5t2e−t/ti , (36)

Gk,3(t) = ti(1 − e−2t/ti )− 2te−t/ti . (37)

On the other hand, for pk = 2t−1
i (ak = t−1

i , bk = 0) it was obtained that

Gk,1(t) = 0.5ti(1 − e−t/ti )
2
, (38)

Gk,2(t) = 0.5ti[t − 0.5ti(1 − e−2t/ti )]− ti[t − ti(1 − e−t/ti )]e−t/ti , (39)

Gk,3(t) = 0.5ti(1 − e−2t/ti )− 2ti(1 − e−t/ti )e−t/ti + te−2t/ti . (40)
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Substituting the function Gn,i(t), i = 1, 2, 3 in Equations (31)–(33) into the right side of
Equation (29) yields

Gn(t) =
(

1 + ti
t0
s
+ 1

t0
s pn

)
(1−e−pnt)

pn
−
(

1 + 2ti
t0
s
+ 1

t0
s an

)
(e−t/ti−e−pnt)

an
+

+ ti(e−2t/ti−e−pnt)

t0
s bn

− t
t0
s

(
1
pn

− e−t/ti
an

)
, 0 ≤ t ≤ ts, n = 1, 2, . . . .

(41)

The searched derivative of the function Gn(t) in Equation (41), meeting the conditions
in Equation (34), has the following form:

G′
n(t) =

(
1 + ti

t0
s

)
e−pnt − (1−e−pnt)

t0
s pn

+
(

1 + 2ti
t0
s
+ 1

t0
s an

)
(t−1

i e−t/ti−pne−pnt)
an

+

+ 1
t0
s an

(
1 − t

ti

)
e−t/ti − ti(2t−1

i e−2t/ti−pne−pnt)

t0
s bn

, 0 ≤ t ≤ ts, n = 1, 2, . . . .
(42)

Proceeding in a similar manner, from Equations (29) and (35)–(40), the derivative for
pk = t−1

i was found.

G′
k(t) =

t
t0
s

(
3 +

t0
s

ti
− t

2ti

)
e−t/ti +

ti

t0
s

(
2e−2t/ti − e−t/ti − 1

)
, (43)

That for pk = 2t−1
i was also found.

G′
k(t) =

(
1 + 4

ti

t0
s

)(
e−t/ti − e−2/ti

)
− ti

2t0
s

(
1 − e−2t/ti

)
− t

t0
s

(
e−t/ti + 2e−2t/ti

)
. (44)

Approaching pn → 0 ( an → −t−1
i , bn → −2t−1

i ), the limit of Equation (42) was
found.

lim
pn→0

G′
n(t) = 1 + ti

t0
s
− t

t0
s
−
(

1 + ti
t0
s

)
e−t/ti + ti

t0
s
e−2t/ti − ti

t0
s

(
1 − t

ti

)
e−t/ti =

=
(

1 − e−t/ti

)[
1 − t

t0
s
+ ti

t0
s

(
1 − e−t/ti

)]
= p∗(t)

[
1 − t

t0
s
+ ti

t0
s

p∗(t)
]
= q∗(t),

0 ≤ t ≤ ts,

(45)

where p∗(t) and q∗(t) are the dimensionless temporal profiles of pressure (Equation (1))
and specific friction power (Equation (3)), respectively, where the function q∗(t) occurs
beyond the sign of the sum in the solutions in Equations (26)–(28).

It should be noted that, at the initial time moment, from Equation (3), it follows
q∗(0) = 0 and, from Equation (42), taking into account Equation (34), it was found that

G′
n(0) = 1 + ti

t0
s
+
(

1 + 2ti
t0
s
+ 1

t0
s an

)
(t−1

i −pn)
an

− ti(2t−1
i −pn)
t0
s bn

+ 1
t0
s an

=

= 1 + ti
t0
s
− 1 − 2ti

t0
s
− 1

t0
s an

+ ti
t0
s
+ 1

t0
s an

= 0, pn �= t−1
i ∨ pn �= 2t−1

i , n = 1, 2, . . . .
(46)

If pk = t−1
i or pk = 2t−1

i , then, from Equations (43) and (44), it follows that G′
k(0) = 0.

In this way, it was shown that the solution in Equations (26) and (27) meets the initial
condition in Equation (16).

In the special case for ti → 0 , when the pressure p(t) in Equation (1) attains the
nominal value p0 immediately, and the velocity V(t) in Equation (2) reduces linearly
(braking with constant deceleration), the dimensionless temporal profile of the specific
friction power q∗(t) and function G′

n(t) in Equation (42) takes the following form:

q∗(t) = 1 − t
t0
s

, G′
n(t) = e−pnt − (1 − e−pnt)

t0
s pn

, 0 ≤ t ≤ t0
s . (47)
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From Equations (47) and (48), it follows that q∗(0) = 1, G′
n(0) = 1. This means

that fulfillment of the initial condition in Equation (16) in this case is possible when the
following equality is satisfied:

∞

∑
n=1

φ1(z, μn)

Ψ(μn)
=

0.25γε

1 + γεKε
e−γ1z/2,z ≥ 0,

∞

∑
n=1

φ2(z, μn)

Ψ(μn)
=

0.25γε

1 + γεKε
eγ2z/2, z ≤ 0, (48)

where functions φl(z, μn), l = 1, 2, and Ψ(μn) have the form in Equations (20)–(22). The val-
idation of the summation of functional series in Equation (48) was performed numerically.

4. Dimensionless Form of Solution

The following denotes are introduced:

ζ = z
a , τ =

k1,0t
a2 , τs =

k1,0ts
a2 , τ0

s =
k1,0t0

s
a2 , τi =

k1,0ti
a2 , γl =

γ∗
l

a , l = 1, 2,

Θ0 = q0a
K1,0

, Θ∗ = Θ
Θ0

,
(49)

where a = max{a1, a2}, al , and l = 1, 2 is the thickness of the friction pair element, which
actively participates in the absorption of heat. This is the distance from the friction surface,
on which the temperature is 5% of maximum values achieved on this surface [23].

al =
√

3kl,0ts, l = 1, 2. (50)

Taking into account the denotes in Equation (49) in Equations (1)–(3), (20), and (42),
and the solutions in Equations (26) and (27), the dimensionless temperature rise can be
written in the following form:

Θ∗(ζ, τ) =
K∗

0
γ∗

2
e−γ∗

1 ζ/2

[
e−γ∗

1 ζ/2

(1 + γεKε)
q∗(τ) + 4

γε

∞

∑
n=1

φ∗
1 (ζ, μn)

Ψ(μn)
G′(τ, μn)

]
, ζ ≥ 0,0 ≤ τ ≤ τs,

(51)

Θ∗(ζ, τ) =
K∗

0
γ∗

2
eγ∗

2 ζ/2

[
eγ∗

2 ζ/2

(1 + γεKε)
q∗(τ) + 4

γε

∞

∑
n=1

φ∗
2 (ζ, μn)

Ψ(μn)
G′(τ, μn)

]
, ζ ≤ 0, 0 ≤ τ ≤ τs,

(52)
where

q∗(τ) = p∗(τ)
[

1 − τ

τ0
s
+

τi

τ0
s

p∗(τ)
]

, p∗(τ) = 1 − e−τ/τi , (53)

φ∗
1 (ζ, μn) = J1(γεμn)J1(μne−γ∗

1 ζ/2), φ∗
2 (ζ, μn) = J1(μn)J1(γεμneγ∗

2 ζ/2), (54)

G′
n(τ) =

(
1 + τi

τ0
s

)
e−λnτ − (1−e−λnτ)

τ0
s λn

+
(

1 + 2τi
λ0

s
+ 1

τ0
s αn

)
(τ−1

i e−τ/τi−λne−λnτ)
αn

−

− τi(2τ−1
i e−2τ/τi−λne−λnτ)

τ0
s βn

+ 1
τ0

s αn

(
1 − τ

τi

)
e−τ/τi ,

αn = λn − τ−1
i �= 0, βn = λn − 2τ−1

i �= 0,

(55)

λn = (0.5γ∗
1 μn)

2, n = 1, 2, . . . , (56)

τs ∼= τ0
s + 0.99τi, 0 < τi ≤ 0.3τ0

s . (57)

Function Ψ(μn) is given by Equation (21), and numbers μn > 0 are the real roots of
the functional Equation (24). From Equations (43) and (44), it follows that

G′
k(τ) =

τ

τ0
s

(
3 +

τ0
s

τi
− τ

2τi

)
e−τ/τi +

τi

τ0
s

(
2e−2τ/τi − e−τ/τi − 1

)
, λk = τ−1

i , (58)

G′
k(τ) =

(
1 + 4

τi

τ0
s

)(
e−t/ti − e−2τ/τi

)
− τi

2τ0
s

(
1 − e−2τ/τi

)
− τ

τ0
s

(
e−τ/τi + 2e−2τ/τi

)
, λk = 2τ−1

i . (59)
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Substituting ζ = 0 into Equations (51), (52), and (54), the dimensionless temperature
rise on the contact surface can be written in the following form:

G′
k(τ) =

(
1 + 4

τi

τ0
s

)(
e−t/ti − e−2τ/τi

)
− τi

2τ0
s

(
1 − e−2τ/τi

)
− τ

τ0
s

(
e−τ/τi + 2e−2τ/τi

)
, λk = 2τ−1

i , (60)

where
φ∗(μn) ≡ φ∗

1 (0, μn) = φ∗
2 (0, μn) = J1(γεμn)J1(μn). (61)

In case of braking with constant deceleration ( τi → 0), from Equation (47), it can be
obtained that

q∗(τ) = 1 − τ

τ0
s

, G′(τ, μn) = e−λn τ − 1
τ0

s λn
(1 − e−λn τ), 0 ≤ τ ≤ τ0

s . (62)

It should be noted that the exact solution to the problem considering the contact scheme
of friction for two semi-infinite bodies, made of homogeneous materials (γ1 = γ2 = 0), with
account of the time of contact pressure increase, was achieved in [19]. A special case of this
solution—braking with constant deceleration—was investigated in [24].

5. Numerical Analysis

On the basis of the obtained exact solutions in Equations (51), (52), and (60), the calcu-
lations of the temperature generated due to friction in the disc–pad system during single
braking were performed. Materials of the friction surfaces of elements were zirconium diox-
ide (l = 1) and the other ceramic (l = 2). With the distance from these surfaces deeper into
the bodies, their thermal conductivity coefficients increased exponentially in accordance
with Equation (10), reaching at the effective depths al , l = 1, 2 values corresponding to
titanium and aluminum alloys, respectively. The thermal properties of the abovementioned
materials are listed in Table 1.

Table 1. Thermophysical properties of the FGM components [15,25].

Element Subscript Material
Thermal Conductivity

K [Wm−1K−1]
Thermal Diffusivity

k × 106 [m2s−1]

l = 1
ZrO2 2.09 0.86

Ti-6Al-4V 7.5 3.16

l = 2
ceramic 3 1.15

aluminum alloy 173 67.16

Values of the remaining input parameters were as follows: Aa = 0.442 · 10−2m2,
f = 0.27, p0 = 0.607 MPa, T0 = 20 ◦C, V0 = 23.8 m s−1, and W0 = 103.54 kJ [26]. From
Equation (2), the braking time with constant deceleration was found t0

s = 12 s and, next,
the stop time ts = 12.49 s. This allowed determining from Equation (50) the effective
depths of heat penetration a1 = 5.556 mm and a2 = 6.435 mm, as well as the value of the
scaling parameter a = a2. According to the methodology, described in detail in [17], the
dimensionless parameters of the material gradient were also established as γ∗

1 = 1.28 and
γ∗

2 = 4.05.
Isotherms of the temperature rise Θ(z, t) inside the elements of the friction pair are

illustrated in Figure 2. The most heated (Θ = 800 ÷ 943 ◦C) was a narrow, approximately
0.5 mm thick, near-surface area that appeared ≈ 3 s after start of braking. The lifetime of
such a high-temperature area is ≈ 3 s. The friction surfaces of both elements were cooled
down until the stop time moment. At the stop moment, the distance from the friction
surface, where the noticeable temperature occurs in the disc was greater than in the pad.
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Figure 2. Isotherms of the temperature rise Θ(z, t) in the disc and the pad at ti = 0.5 s.

Evolutions of the temperature rise Θ(z, t) during braking on the contact surface and
inside the friction elements on different depths are presented in Figure 3. At the beginning
of braking, the temperature on the friction surfaces z = 0 rapidly increases over time,
achieving the maximum value Θmax = 943◦C at the moment tmax = 5 s. This is followed by
a period of cooling of these surfaces until it stops. The temporal profiles of the temperature
inside the disc and the pad also have a similar shape. However, the known “delay” effect is
visible in the disc, which is that the time to reach the maximum temperature increases with
the distance from the contact surface. At the same time, this effect is almost imperceptible.
Noteworthy is also the process of rapid cooling on the friction surface of disc after reaching
maximum Θmax; at the stop moment, the temperature inside the disc is higher than on the
surface. Again, this effect does not occur in the pad material.

  

(a) (b) 

Figure 3. Evolutions of the temperature rise Θ(z, t) during braking at ti = 0.5 s for different distances
from the friction surface: (a) the disc; (b) the pad.

26



Materials 2021, 14, 6241

Variations of the temperature during braking on the friction surfaces of disc and pad
for different times of contact pressure increase are demonstrated in Figure 4. Extending the
time of achieving the nominal value of pressure causes a drop of maximum temperature
on the contact surface, while increasing the braking time. The effect of temperature drop
with the growth of time of pressure increase is also presented in Figure 5.

 

Figure 4. Evolutions of the temperature rise Θ(0, t) during braking for different values of the time ti

of contact pressure increase.

 

Figure 5. Dependence of the maximum temperature rise Θmax on the time ti of contact pressure
increase.

The influence of dimensionless parameters of material gradients γ∗
l , l = 1, 2 on the

dimensionless maximum temperature Θ∗
max on the contact surface is illustrated in Figure 6.

It shows that an increase in the core material volume fraction in selected FGMs (Ti-6Al-4V
for disc and aluminum alloy for pad) causes a decrease in the maximum temperature in
the brake. The biggest drop in Θ∗

max occurs when the gradient of the pad material γ∗
2 is

increased (Figure 6b). However, the highest values of Θ∗
max are reached for the friction

pair in which one of the elements is entirely made of homogeneous material. These are
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zirconium dioxide ZrO2 for the disc (Θ∗
max = 995 ◦C at γ∗

1 = 0, in Figure 6a) and the other
ceramic for the pad (Θ∗

max = 1340 ◦C at γ∗
2 = 0, in Figure 6b).

  

(a) (b) 

Figure 6. Dependence of the maximum temperature rise Θmax at ti = 0.5 s on the dimensionless
gradient of material: (a) γ∗

1 for γ∗
2 = 4.05; (b) γ∗

2 for γ∗
1 = 1.28.

6. Conclusions

The presented results are the continuation of an investigation from a previous article
of the authors [17], in which, in the dimensionless form, a comparative, qualitative analysis
was performed in order to study the influence of gradient of FGMs on the temperature
during frictional heating under uniform sliding. However, in this paper the mathematical
model was derived to determine the temperature field in a disc–pad system during single
braking. An important and unique feature of this model was its taking into account
of the time-dependent pressure and velocity for friction elements, made of functionally
graded materials with exponentially changing conductivity coefficients with thickness. The
proposed model allows for a quick assessment of the brake temperature mode depending
on the operational parameters, such as the time of contact pressure increase and the value
of the gradient of the friction materials. The analysis was performed in the dimensional
form. The friction surfaces of the materials were ceramic, and their cores were titanium
alloys (disc) and aluminum alloys (pad). It was established that extending the time of
pressure increase causes significant extending of the braking time and, thus, extending of
the braking distance. The maximum temperature reached on the friction surfaces drops
when the parameters of material gradients are increased.

Application of the proposed model has some limitations, resulting from the simpli-
fying assumptions made, especially the use of only an exponential function to describe
the thermal conductivity changes in FGMs. In further research, it is planned to include in
the formulation of the boundary value problem of heat conduction, as well as the thermal
resistance on the contact surface of the disc and the pad (imperfect thermal contact of
friction), and to adapt the obtained exact solution to determine the temperature of the
brake during a repeated short-term mode of braking.

As shown in the results of the numerical analysis presented in this article, the max-
imum temperature achieved even with a single braking is quite high. With such a tem-
perature, the necessary problem is to develop a model that takes into account the thermal
sensitivity of the materials. Some steps toward implementing the exact solutions of linear
problems for homogeneous materials to take into account their thermal sensitivity have
already been made for a single [27] and a repetitive short-term [28] braking modes. On the
basis of this methodology, the development of appropriate models for FGM has begun.
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Another problem caused by high temperatures is a reduction in the strength of the
material, especially when the temperature exceeds the melting point of the aluminum alloy.
Investigations of the strength were not the subject of this article, but they should also be
considered in the future.
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Nomenclature

al Effective depth of heat penetration (m)
Aa Area of the nominal contact region (m2)
cl Specific heat (J kg−1K−1)
f Coefficient of friction (dimensionless)
Jk(·) Bessel functions of the first kind of the k-th order
kl Thermal diffusivity (m2s−1)
Kl Thermal conductivity (W m−1K−1)
p Contact pressure (Pa)
p0 Nominal value of the contact pressure (Pa)
q Specific power of friction (W m−2)
q0 Nominal value of the specific power of friction (W m−2)
t Time (s)
ti Time of the contact pressure increase (s)
t0
s Stop time at braking with constant deceleration (s)

ts Stop time (s)
T Temperature (◦C)
Ta Initial (ambient) temperature (◦C)
V Velocity (m s−1)
V0 Initial velocity (m s−1)
W0 Initial kinetic energy of the system (J)
x, y, z Spatial coordinates (m)
lower l Number of the main (l = 1) and frictional (l = 2) elements of the friction pair
γl Parameter of material gradient (m−1)
γ∗

l Parameter of material gradient (dimensionless)
Θl Temperature rise (◦C)
Θ∗

l Temperature rise (dimensionless)
Θ0 Temperature scaling factor (◦C)
ρl Density (kg m−3)
τ Time (dimensionless)
τi Time of contact pressure increase (dimensionless)
τ0

s Braking time at constant deceleration (dimensionless)
τs Braking time (dimensionless)
ζ Spatial coordinate in axial direction (dimensionless)
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Abstract: The model of the frictional heating process during single braking to determine the tem-
perature of the functionally graded friction elements with an account of the thermal sensitivity of
materials was proposed. The basis of this model is the exact solution of the one-dimensional thermal
problem of friction during braking with constant deceleration. The formulas approximating the
experimental data of the temperature dependencies of properties of the functionally graded materials
(FGMs) were involved in the model to improve the accuracy of the achieved results. A comparative
analysis was performed for data obtained for temperature-dependent FGMs and the corresponding
data, calculated without consideration of thermal sensitivity. The results revealed that the assumption
of thermal stability of FGMs during braking may cause a significant overestimation of temperature of
the friction pair elements.

Keywords: thermal sensitivity; functionally graded materials; temperature; friction; braking

1. Introduction

During intensive braking, the volume temperature of the disc braking system may be
higher than 450 ◦C [1] and the maximum temperature on the friction surfaces of the pad
and the disc during single braking may even reach a level above 1000 ◦C [2]. In such severe
conditions, the thermal and mechanical properties of materials may highly differ from the
initial, reached at the ambient temperature. Therefore, in order to improve the theoretical
analysis of the thermoelastic behavior of the braking systems, it is necessary to develop
mathematical models taking into consideration the thermal sensitivity of friction materials.
However, the introduction of the temperature-dependent properties in formulation of
the thermal problems of friction leads to nonlinearity, so most of the published analyses
have been performed using numerical methods, especially the finite element method [3,4].
One of the alternative techniques used to develop such nonlinear models of frictional
heating is linearization by means of the Kirchhoff substitution [5]. This method relies on the
reduction of the originally nonlinear heat conduction equation to the linear one. However,
it works this way only for materials with simple nonlinearity, which means that their
thermal conductivity and specific heat capacity are temperature-dependent, but the thermal
diffusivity remains constant [6]. For materials with arbitrary nonlinearity, only the partial
linearization by the Kirchhoff substitution of such a problem is possible; as a result, another
nonlinear problem is obtained for which the method of solving is known [7]. The Kirchhoff
transform has a similar effect in the heat conduction problems formulated for solids with
simple nonlinear thermosensitivity under complex heat exchange. Some analytic–numerical
methods for the solution of such problems have been proposed in the study [8]. Another
technique to take into consideration the thermal sensitivity of materials is the method
of successive approximations (iterations), in which the solution of the corresponding
linear problem is adopted as the initial approximation, and then the solution found in the
previous step is corrected. An iteration algorithm to solve the one-dimensional problem
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of heat conduction at braking has been proposed in the article [9]. Most models of the
frictional heating process taking into account of the thermal sensitivity effect have been
developed only for homogeneous materials. Modern friction materials often have a non-
uniform, complex internal structure with a changing composition, microstructure, or
porosity across the volume of material, such as functionally graded materials (FGMs),
which are characterized by smooth variations of properties as a function of position along
certain direction. In the case of devices operating at elevated temperatures, including
braking systems, FGMs are primarily used in order to obtain high temperature resistance on
the friction surface by dissipating heat from it to the inside of the element while maintaining
low wear. FGMs of this type are usually two-component. Their friction surface is usually
made of metal-ceramic, and the metal opposite surface (core) should have high thermal
conductivity. The change of properties in the direction perpendicular to the friction surface
is described by continuous functions, usually power or exponential. In the case of the
latter, the material gradient parameters are responsible for the speed of transition from one
material to another.

The problem of wear of an FGM strip with an account of the heating on sliding contact
from friction has been considered in the study [10]. The exact solution of the problem was
obtained with the help of the integral Laplace transform technique. It was assumed that
the shear modulus is described by means of the function of the vertical coordinate. A com-
prehensive review of the literature concerning the thermal contact problems of frictional
heating for functionally graded materials was provided in our previous article [11]. So far,
investigations of the transient heat conduction in FGMs are limited, and most of them have
ignored the temperature dependence of the material properties. Therefore, in general, those
models are adequate only for relatively low temperatures in an FGM or the materials with
insignificant thermal sensitivity. To accurately describe the thermomechanical behavior of
FGMs, the temperature dependence of the material properties should be considered. The
heat conduction problems formulated for FGMs with non-uniform spatially distributed
and temperature-dependent properties are highly nonlinear. Nevertheless, several studies
concerning such problems taking into consideration the thermal sensitivity of FGMs can be
found, but most of them are solved by means of numerical or semi-analytical methods. The
finite element method has been adopted in the paper [12], to perform the nonlinear tran-
sient thermal stress analysis of a thick-walled FGM cylinder with temperature-dependent
material properties. Another nonlinear transient heat transfer and thermoelastic stress
in thermosensitive functionally graded cylinder have been investigated using the Her-
mitian transfinite element method in the study [13]. The results showed that the effect
of thermal sensitivity of materials has a significant influence on the thermal behavior of
friction systems.

An analytical approach to solve the one-dimensional transient heat conduction prob-
lem for functionally graded materials with temperature-dependent properties has been
presented in the article [14]. As for the analytical treatment, the temperature and thermal
stress solutions have been obtained in approximate forms for a simplified, homogeneous,
multi-layered model of materials. They concluded that the temperature dependence of
the material properties is one of the most important factors in the accurate evaluation
of temperature and stress distributions [14]. A similar multi-layered model was used to
formulate another thermal problem of friction for a thermally sensitive FGM plate in the
paper [15]. The authors made an attempt to optimize the functionally graded structure in
order to enhance their thermal performance. The proper manufacturing process allows the
design of an FGM according to the engineering demands by intentionally setting a specific
distribution of the properties. A hybrid genetic algorithm has been developed for the
optimization of the FGM composition with temperature-dependent material properties, in
order to minimize the thermal stresses under steady-state thermal loads [15]. The optimum
composition profile of the functionally graded materials for wide temperature ranges was
also studied in the article [16]. The thermoelastic problem for functionally graded mate-
rial with temperature-dependent properties was considered by means of the perturbation
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method. Additionally, the crack propagation path was predicted by introducing the fracture
mechanics analysis. It was concluded that the proper selection of an FGM gradient can
lead to a significant decrease in thermal stresses [16]. A transient thermoelastic behavior
of the functionally graded plate with temperature-dependent properties due to a thermal
shock was considered in the paper [17]. The temperature and thermal stress distributions
in the Cu-W functionally graded composite were found by means of the semi-analytical
micromechanical model.

The aim of this study was to investigate the influence of FGMs thermal sensitivity
on the distribution of temperature in a disc brake system. This study is a continuation
of our previous articles [11,18], which concern the transient thermal problem of friction
under uniform sliding and during single braking with an exponential increase in the
contact pressure. Due to the appearance of a high temperature level, there is a demand to
improve the results by involving the variations of material properties dependent on the
actual temperature, since the thermal sensitivity effect is particularly manifested in a high
temperature range. In this article, the braking with constant deceleration is considered,
when the nominal pressure is reached immediately at the beginning of the process, since the
increase in the time of contact pressure growth causes a drop in the achieved temperature.

2. Statement to the Problem

To develop an analytical model of frictional heating process in the braking system, the
following assumptions were taken into account:

1. The braking process with constant deceleration is considered;
2. At the initial time moment, the temperature of a brake is equal to the ambient temper-

ature Ta;
3. In the heat conduction equation, only the change in temperature gradient in the

perpendicular direction to the disc-pad contact surfaces is taken into consideration;
4. The thermal contact on the friction surfaces is perfect, i.e., the temperatures of its

contact surfaces are equal, and the sum of frictional heat fluxes intensities, acting
along the normal direction to the contact surface to the insides of the elements equal
to the specific friction power;

5. Due to the symmetry of the system with respect to the mid plane of the disc, when
determining the brake temperature, the contact of one pad and a disc with half of its
thickness is considered;

6. The pads and the disc are made of two-component thermally sensitive functionally
graded materials, in such a way that their friction surfaces are materials with low
thermal conductivity (i.e., cermet), while the core materials are characterized by higher
thermal conductivity (titanium alloys, aluminum, etc.);

7. The thermal conductivity of the disc and pads materials increases exponentially with
the distance from the contact surface;

8. The whole initial kinetic energy of the vehicle is transformed into heat during braking,
neglecting the small part of energy associated with wear on the contact surfaces of the
disc and pads;

Based on the assumptions (1)–(5), in order to determine the temperature of the disc-pad
system, the scheme of sliding with linearly decreasing velocity of two semi-spaces z ≥ 0
(disc) and z ≤ 0 (pad) has been adopted. Initiated by the frictional heating temperature
field of such a system at a given time instant t ≥ 0 depends only on the distance from the
friction surface in a perpendicular direction—independent variable z: T = T(z, t).

According to the assumption (6), the thermophysical properties of a friction pair are
functions of temperature T:

Kl,m = Kl,m(T), cl,m = cl,m(T), ρl,m = ρl,m(T), (1)

where Kl,m, cl,m and ρl,m—thermal conductivity, specific heat capacity and density of the
first (m = 1) and second (m = 2) component of the materials of the disc (l = 1) and pad
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(l = 2), respectively. Corresponding values at the initial system temperature T = T0 are
marked as follows:

K(0)
l,m ≡ Kl,m(T0),c

(0)
l,m ≡ cl,m(T0),ρ

(0)
l,m ≡ ρl,m(T0). (2)

According to the mixture law, the effective specific heat capacities and densities were
also determined:

c(0)l = c(0)l,2 Vc + (1 − Vc)c
(0)
l,1 , ρ

(0)
l = ρ

(0)
l,2 Vρ + (1 − Vρ)ρ

(0)
l,1 , (3)

where Vc, Vρ—volume fractions of the phases c(0)l,m and ρ
(0)
l,m, l = 1, 2, m = 1, 2, respectively.

Based on the assumption (7), the effective thermal conductivities Kl , l = 1, 2 of the
disc and pad materials were established from the equations:

K1(z) = K1,1eγl z, 0 ≤ z ≤ a, K2(z) = K2,1e−γ2z, −a ≤ z ≤ 0, (4)

where

γl =
γ∗

l
a

, γ∗
l = ln

⎛⎝K(0)
l,2

K(0)
l,1

⎞⎠, (5)

a = max{a1, a2}, al =

√
3k(0)l ts, (6)

k(0)l =
K(0)

l,1

c(0)l ρ
(0)
l

, (7)

and ts—stop time, and parameters al , l = 1, 2 (6) are the thicknesses of the subsurface layers
actively participating in heat absorption in the disc and pads, respectively (the so-called
effective depth of heat transfer [19]). During braking with constant deceleration, the specific
friction power decreases linearly from the nominal value q0 to zero [20]:

q(t) = q0q∗(t), q0 = f p0V0, q∗(t) = 1 − t t−1
s , 0 ≤ t ≤ ts, (8)

ts = W0 Q−1
0 , Q = q0 Aa, Aa = 0.5β(R2

e − R2
i ), (9)

where Aa—nominal area of the contact between the pad and the disc; f —friction coefficient;
p0—nominal pressure; Q0—nominal friction power; 0 ≤ β ≤ 2π—nominal friction power;

—cover angle of the pad; Ri and Re—respectively, the internal and external radii of the
pads; V0, W0—the initial velocity and kinetic energy of the system, respectively. The latter,
according to assumption (8), is equal to the total work of friction.

In order to solve the above-formulated nonlinear problem, we will use the idea of
adapting an appropriate solution of the linear problem of thermal friction. This approach
in the case of homogeneous materials was used in the studies [9,21].

3. Solution with Temperature-Independent FGMs Properties

The key element of the proposed approach is the precise solution of the linear thermal
problem of friction during braking with constant deceleration. In the case of FGMs, such a
solution for the above-adopted scheme of two sliding semi-spaces for the specific friction
power q(t) (8) and (9) can be written in the form [18]:

T(z, t) = T0 + Θ(z, t), 0 ≤ t ≤ ts, (10)

Θ(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
q∗(t) + 4

γε

∞

∑
n=1

ϕ1(z, μn)

Ψ(μn)
Gn(t)

]
, z ≥ 0, (11)
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Θ(z, t) = Λeγ1z/2

[
eγ2z/2

(1 + γεKε)
q∗(t) + 4

γε

∞

∑
n=1

ϕ2(z, μn)

Ψ(μn)
Gn(t)

]
, z ≤ 0, (12)

Gn(t) = e−pnt − (1 − e−pnt)

pnts
,pn =

1
4

k1(γ1μn)
2, (13)

ϕ1(z, μn) = J1(γεμn)J1(μne−γ1z/2), ϕ2(z, μn) = J1(μn)J1(γεμneγ2z/2), (14)

Ψ(μn) = μ2
n[(1 + γεKε)J0(μn)J0(γεμn)− (γε + Kε)J1(μn)J1(γεμn)], (15)

Kε = K∗(k∗)−1/2, γε = γ∗(k∗)1/2, (16)

Λ =
q0

γ2K(0)
2,1

, K∗ =
K(0)

1,1

K(0)
2,1

, k∗ =
k(0)1

k(0)2

, γ∗ = γ1

γ2
, (17)

where μn > 0, n = 1, 2, 3, . . ., are the real roots of the functional equation:

J0(γεμn)J1(μn) + Kε J0(μn)J1(γεμn) = 0. (18)

Jk(x)—are the Bessel functions of the first kind of the kth order [22].
The temperature of the friction surfaces of both elements, in accordance with the

assumption (4) of their perfect thermal contact of friction, should be the same. Substituting
z = 0 in Equations (10)–(12) and (14), the following were obtained:

T(t) ≡ T(0±, t) = T0 + Θ(t), 0 ≤ t ≤ ts, (19)

Θ(t) ≡ Θ(0±, t) = Λ

[
q∗(t)

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂(μn)

Ψ(μn)
Gn(t)

]
, 0 ≤ t ≤ ts, (20)

where
ϕ̂(μn) = J1(γεμn)J1(μn). (21)

Dimensionless variables and parameters were introduced:

ζ =
z
a

, τ =
k1t
a2 , τs =

k1ts

a2 , Θ0 =
q0a

K(0)
1,1

, Θ∗ = Θ
Θ0

, (22)

where parameters a and q0 were determined accordingly from Formulas (6) and (8). Taking
into account the indications (22) in Formulas (11)–(14), the dimensionless temperature rise
of the friction pair elements can be presented in the form:

Θ∗(ζ, τ) =
K∗

0
γ∗

2
e−γ∗

1 ζ/2

[
e−γ∗

1 ζ/2

(1 + γεKε)
q∗(τ) + 4

γε

∞

∑
n=1

ϕ∗
1(ζ, μn)

Ψ(μn)
Gn(τ)

]
, ζ ≥ 0, 0 ≤ τ ≤ τs,

(23)

Θ∗(ζ, τ) =
K∗

0
γ∗

2
eγ∗

2 ζ/2

[
eγ∗

2 ζ/2

(1 + γεKε)
q∗(τ) + 4

γε

∞

∑
n=1

ϕ∗
2(ζ, μn)

Ψ(μn)
Gn(τ)

]
, ζ ≥ 0, 0 ≤ τ ≤ τs,

(24)
where:

ϕ∗
1(ζ, μn) = J1(γεμn)J1(μne−γ∗

1 ζ/2), ϕ2(ζ, μn) = J1(μn)J1(γεμneγ∗
2 ζ/2), (25)

Gn(τ) = e−λnτ − 1
λnτs

(1 − e−λnτ), λn =
1
4
(γ∗

1 μn)
2, (26)
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and the remaining functions as well as parameters are given by Formulas (15)–(18). Substi-
tuting ζ = 0 in Formulas (23)–(25), the dimensionless rise of the temperature on the friction
surfaces was obtained:

Θ∗(τ) ≡ Θ∗(0±, τ) =
K∗

0
γ∗

2

[
q∗(τ)

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂(μn)

Ψ(μn)
Gn(τ)

]
, 0 ≤ τ ≤ τs, (27)

Based on Fourier’s law, the intensity of heat fluxes directed along the normal to the
contact surface z = 0 towards the insides of the friction pair elements were defined:

ql(t) = (−1)lK(0)
l,1

∂T(z, t)
∂z

∣∣∣∣
z=0±

, 0 ≤ t ≤ ts, l = 1, 2. (28)

Taking into account the indications (22) dimensionless intensities of heat fluxes q∗l =

qlq−1
0 , l = 1, 2 were written as:

q∗1(τ) = −∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

, q∗2(τ) =
∂Θ∗(ζ, τ)

K∗
0 ∂ζ

∣∣∣∣
ζ=0−

, 0 ≤ τ ≤ τs. (29)

After differentiating the solution (23)–(26) with respect to the variable ζ and subsequent
substitution of the found derivatives to the right side of Formula (30), the following
was found:

q∗1(τ) =
γεKε

(1 + γεKε)
q∗(τ) + 2γεKε

∞

∑
n=1

ϕ̃(μn)

Ψ̃(μn)
Gn(τ), 0 ≤ τ ≤ τs, (30)

q∗2(τ) =
1

(1 + γεKε)
q∗(τ) + 2

∞

∑
n=1

ϕ̃(μn)

Ψ̃(μn)
Gn(τ), 0 ≤ τ ≤ τs, (31)

where:
ϕ̃(μn) = J0(γεμn)J1(μn), Ψ̃(μn) = μ−1

n Ψ(μn), (32)

and functions Ψ(μn) and Gn(τ) can be determined from Equations (15) and (26), respectively.
It should be noted that in the case of homogeneous materials ( γi → 0, i = 1, 2 ) of

the disc and pads, the dimensionless temperature rise during braking with a constant
deceleration has the form [23]:

Θ∗(ζ, τ) = 2K∗√τ
(1+Kε)

{
ierfc

(
ζ

2
√

τ

)
− τ

τs

[(
1 + ζ2

6τ

)
ierfc

(
ζ

2
√

τ

)
− e−

ζ2
4τ

3
√

π

]}
,

ζ ≥ 0, 0 ≤ τ ≤ τs,
(33)

Θ∗(ζ, τ) = 2K∗√τ
(1+Kε)

{
ierfc

(
− ζ

2

√
k∗0
τ

)
− τ

τs

[(
1 + ζ2k∗0

6τ

)
ierfc

(
− ζ

2

√
k∗0
τ

)
− e−

ζ2k∗0
4τ

3
√

π

]}
,

ζ ≤ 0, 0 ≤ τ ≤ τs,

(34)

where ierfc(x) = π−1/2e−x2 − x erfc(x), erfc(x) = 1 − erf(x), erf(x)—Gaussian error func-
tion. For ζ = 0 from Equations (33) and (34), the known solution of Fazekas was ob-
tained [24]:

Θ∗(τ) = 2K∗

(1 + Kε)

√
τ

π

(
1 − 2τ

3τs

)
, 0 ≤ τ ≤ τs. (35)

4. Volume Temperature

With the given input parameters, solutions (19)–(27) make it possible to find the space–
time distribution of the temperature inside and its evolution on the friction surfaces of
the pad and disc, made of thermally insensitive FGMs. In order to take into account the
thermal sensitivity of materials determining the temperature of the braking system using
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the above-mentioned solutions, the thermal conductivities K(0)
l,m, specific heat capacities c(0)l,m

and densities ρ
(0)
l,m at the initial temperature T0 were replaced with corresponding values

K(ϑl)
l,m , c(ϑl)

l,m and ρ
(ϑl)
l,m found from Equations (1) and (2) for the volume temperature of the

pad and the disc during braking [2,9]:

ϑl = T0 + ϑ̂l , l = 1, 2, (36)

where:
ϑ̂l =

2αl W0

3Glc
(0)
l

, (37)

Gl = Aaalρ
(0)
l , (38)

al—the effective depths of heat penetration (6), α1 = α, α2 = 1 − α, 0 ≤ α ≤ 1—heat
partition ratio. Based on Formulas (30)–(32), the heat partition ratio was calculated from
the formula:

α ≡ q1(t)
q(t)

≈ γεKε

1 + γεKε
. (39)

5. Numerical Analysis

The calculations were performed for the friction pair, one element of which was
made of aluminium oxide Al2O3 (friction surface) and cooper Cu (core) [25]. The friction
surface and core of the second element are manufactured of zirconium dioxide ZrO2 and
titanium alloy Ti-6Al-4V [14]. The temperature-dependent properties of these materials are
as follows:

Al2O3 [26–28]

K1,1(T) = 39.717 − 0.130T + 4.463 · 10−4T2 − 2.836 · 10−7T3 + 1.941 · 10−10T4, (40)

c1,1(T) = 680.72 + 2.432T − 0.53 · 10−2T2 + 0.6 · 10−5T3 − 0.4 · 10−8T4 + 10−12T5, (41)

ρ1,1(T) = 3992.2 − 0.062T − 0.6 · 10−4T2 + 0.4 · 10−7T3 − 0.9 · 10−11T4, (42)

Cu [17,29]
K1,2(T) = 31.985 + 0.0099 T − 0.1 · 10−5T2, (43)

c1,2(T) = 523.3 + 1.4726 T − 0.0024T2 + 0.2 · 10−5T3 − 0.5 · 10−9T4, (44)

ρ1,2(T) = 492.45 − 0.01 T − 0.1 · 10−5T2, (45)

ZrO2 [27,30,31]

K2,1(T) = 1.9365 + 0.7 · 10−4T + 0.5 · 10−6 T2 − 0.2 · 10−9T3, (46)

c2,1(T) = 437.96 + 0.7767T − 0.17 · 10−2T2, (47)

ρ2,1(T) = 6104.6 − 0.1212T − 0.4 · 10−4T2 + 0.3 · 10−7T3 − 0.1 · 10−10T4, (48)

Ti-6Al-4V [32,33]

K2,2(T) = 6.6926 + 8.9177 · 10−3 T + 6.8432 · 10−6T2, (49)

c2,2(T) = 529.9316 + 0.4154T − 4.01646 · 10−4T2 + 1.6364 · 10−7T3, (50)

ρ2,2(T) = 4434 − 0.1088T − 0.8 · 10−4T2 + 10−7T3 − 0.6 · 10−10T4. (51)

Graphs of dimensionless functions K∗
l,m = Kl,m(T)/K(0)

l,m, c∗l,m = cl,m(T)/c(0)l,m and

ρ∗l,m = ρl,m(T)/ρ
(0)
l,m are illustrated in the Figures 1–3.
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Figure 1. Dependencies of the dimensionless thermal conductivities K∗
l,m on temperature T.

Figure 2. Dependencies of the dimensionless specific heat capacities c∗l,m on temperature T.

Figure 3. Dependencies of the dimensionless densities ρ∗l,m on temperature T.
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The calculations were performed according to the following scheme:

(1) the values of the input parameters were given (Table 1), and then from Equations (8) and (9)
the area of the nominal contact was calculated Aa = 0.0022 m2, specific friction power
q0 = 3.87 MW m−2, friction power Q0 = 8510 W and stop time ts = 12.1 s;

Table 1. Input parameters.

Friction
Coefficient f

Nominal
Pressure
p0, MPa

Initial Sliding
Speed

V0, ms− 1

Initial Kinetic
Energy W0, kJ

Outer
Radius Re, mm

Inner Radius
Ri, mm

Initial
Temperature

T0,
◦
C

0.27 0.602 23.8 103.54 37.5 26.5 20

(2) using the dependencies (40)–(51) the materials properties K(0)
l,m, c(0)l,m and ρ

(0)
l,m, l, m = 1, 2

at the initial temperature T0 = 20 ◦C were established (Table 2);

Table 2. Material properties at the initial temperature T0.

Element
Index

Material
Index

Material

Thermal
Conductivity

K(0)
l,m, Wm− 1K− 1

Specific Heat
Capacity

c(0)
l,m, J kg− 1K− 1

Density

ρ(0)
l,m, kgm− 3

l = 1
m = 1 Al2O3 37.24 727.29 3990.92
m = 2 Cu 402.65 147.35 8947.92

l = 2
m = 1 ZrO2 1.94 452.83 6102.16
m = 2 Ti-6Al-4V 6.87 538.08 4431.79

(3) the effective values of: the specific heat c(0)l , density ρ
(0)
l , thermal diffusivity k(0)l , the

effective depths of heat penetration al and the dimensionless gradient parameters
of materials γ∗

l , l = 1, 2 were found from Equations (3) and (5)–(7). Then, the di-
mensionless parameters Kε and γε were determined from the Formulas (16) and (17),
and also the weight Gl and heat partition ratios αl , l = 1, 2 were calculated from the
Equations (38) and (39) (Table 3);

Table 3. Calculated parameters at the initial temperature T0.

Element Index l = 1 l = 2

c(0)l , J kg−1K−1 437.3 495.5

ρ
(0)
l , kgm−3 6469.4 5267

k(0)l × 106, m2 s−1 13.2 0.743
γ∗

l 2.381 1.266
al , mm 21.854 5.193
Gl , kg 0.3127 0.0605

αl 0.896 0.104

(4) the volume temperature values ϑ
(0)
1 = 471.97 of the disc and ϑ

(0)
2 = 260.92 the pad

were obtained from the Equations (36) and (37);

(5) the values of materials properties K
(ϑ

(0)
l )

l,m , c
(ϑ

(0)
l )

l,m , ρ
(ϑ

(0)
l )

l,m , l, m = 1, 2, corresponding to

the volume temperature ϑ
(0)
l were determined from the Formulas (40)–(51);

(6) the steps (3)–(5) were repeated resulting in the corrected values for the volume tem-

perature ϑ
(1)
l = 624.93, and ϑ

(1)
2 = 292.98;

(7) by means of the formula ϑl = 0.5(ϑ(0)
l + ϑ

(1)
l ), l = 1, 2 final values of the volume

temperature ϑ1 = 548.45 ◦C, and ϑ2 = 267.95 ◦C were found;
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(8) based on the dependencies (40)–(51) the values of materials properties K(ϑl)
l,m , c(ϑl)

l,m ,ρ(ϑl)
l,m ,

l, m = 1, 2 corresponding to the volume temperature ϑl were established (Table 4) and
other parameters necessary to perform the calculations (Table 5);

Table 4. Material properties at volume temperature ϑl , l = 1, 2.

Element
Index

Material
Index

Material

Thermal
Conductivity

K(ϑl)
l,m , Wm−1K−1

Specific Heat
Capacity

c(ϑl)
l,m , J kg−1K−1

Density

ρ
(ϑl)
l,m , kgm−3

l = 1
m = 1 Al2O3 10.19 1097.93 3945.59
m = 2 Cu 367.15 401.89 8690.20

l = 2
m = 1 ZrO2 1.99 552.67 6069.84
m = 2 Ti-6Al-4V 9.57 615.44 4399.06

Table 5. Calculated parameters at volume temperature ϑl , l = 1, 2.

Element Index l = 1 l = 2

c(ϑl)
l , J kg−1K−1 749.7 584.9

ρ
(ϑl)
l , kgm−3 6317.2 5233.8

k(ϑl)
l × 106, m2 s−1 2.15 0.65

γ∗
l 3.585 1.583

al , mm 8.834 4.854
Gl , kg 0.1234 0.0562

αl 0.863 0.137

(9) the temperature field Θ∗(ζ, τ) (23)–(26), the temperature evolution Θ∗(τ) (27), and
temporal profiles of heat fluxes intensities q∗l (τ), l = 1, 2 (30)–(32) were determined.

In order to calculate the values of Bessel functions Jk(x), k = 0, 1 the programs
BESSJ0 and BESSJ1 from the Numerical Recipes package [34] were used. The roots of the
characteristic Equation (18) were searched for by the bisection method with the RTBIS
program from this package. In summation of the series in solutions (23), (24), and (30), (31)
was performed with an accuracy of 5 × 10−5. For this accuracy, the minimum number of
components was equal to 70.

Changes in the dimensionless temperature rise Θ∗(ζ, τ) during braking, at few selected
distances from the contact surface are presented in Figure 4. The temperature calculated
with an account of the thermal sensitivity of the materials (solid lines) is significantly lower
in both friction elements compared to the results achieved without taking into account the
temperature dependencies of FGMs properties (dashed lines). The maximum dimensionless
temperature on the contact surface ζ = 0 without and taking into account the thermal
sensitivity of the materials are 0.816 and 0.277, respectively (reduction of about 2.94 times)
and are reached at the time moments τmax = 0.37 and τmax = 0.29 (reduction of 21.6%).

Increasing the distance from the contact surface ζ = 0, the temperature level of both
elements drops (Figure 5). The temperature of components made of thermally sensitive
materials is lower than their temperature, found for the constant material properties. The
greatest difference between these results is on the contact surface.
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(a) (b) 

Figure 4. Evolutions of the dimensionless temperature Θ∗(ζ, τ) during braking at different distances
ζ from the surface of friction with (solid lines) and without (dashed lines) taking into account the
thermal sensitivity of the materials: (a) Al2O3—Cu; (b) ZrO2—Ti-6Al-4V.

Figure 5. Distribution of the dimensionless temperature Θ∗
max(ζ) = Θ∗(ζ, τmax) reached at the time

moment τ = τmax along the distance ζ from the surface of friction with (solid lines) and without
(dashed lines) taking into account the thermal sensitivity of the materials.

The conclusions established on the basis of Figures 4 and 5 confirm the results of the
calculations, presented in Figure 6. It shows the dimensionless temperature isotherms
Θ∗(ζ, τ). It can be seen that the effective depth of heat transfer is much greater in the case
that material properties remain unchanged under the influence of temperature, than in the
case of considering the thermally sensitive FGMs. This effect is most noticeable for the first
one (l = 1), the Al2O3-Cu element. This result is also confirmed by the parameter values al ,
l = 1, 2 presented in Tables 3 and 5.
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(a) (b) 

Figure 6. Isotherms of the dimensionless temperature Θ∗(ζ, τ) for: (a) thermally sensitivity materials;
(b) materials with properties at the initial temperature.

The time profiles of the dimensionless intensities of heat fluxes q∗l (τ), l = 1, 2 are
shown in Figure 7. They decrease linearly during the braking process from the maximum
value at the initial moment to zero at the stop. Most of the frictional heat generated is
absorbed by the first element (l = 1) Al2O3-Cu. The linear change in q∗l (τ) is the result of the
specific friction power q∗(τ) (8), which decreases linearly during braking with a constant
deceleration, and the requirement to meet the boundary condition q∗1(τ) + q∗2(τ) = q∗(τ),
0 ≤ τ ≤ τs. The influence of thermal sensitivity on the intensity of heat fluxes is much
smaller than on the temperature. For thermally sensitive materials, the maximum values
of the intensity of heat fluxes are q∗1,max = 0.864 and q∗2,max = 0.136, and for constant
properties of the materials, we have q∗1,max = 0.895 and q∗2,max = 0.105.

Figure 7. Temporal profiles of the dimensionless heat fluxes q∗l (τ), l = 1, 2 during braking with
(continuous lines) and without (dashed lines) taking into account the thermal sensitivity of the
materials. Dotted lines represent the dimensionless specific power of friction q∗.
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6. Conclusions

A calculation scheme was proposed to determine the temperature field of the friction
elements of a disc brake, taking into account the changes in the FGMs properties depending
on the actual temperature. The main part of the scheme was the adaptation of a linear
solution (with temperature-independent material properties) to the thermal problem of
friction during braking to thermally sensitive FGMs. A numerical analysis was performed
in the case of braking with constant deceleration of elements made of two-component
functionally graded materials with exponential variations in thermal conductivities in the
axial direction, across the volume of the materials. It was found that:

• the influence of thermal sensitivity on the temperature of FGMs may be more signifi-
cant than in the case of homogeneous materials;

• for the selected friction pair, taking into account the thermal sensitivity caused an
almost threefold reduction in the maximum temperature in comparison to the appro-
priate temperature values, found with the same properties of the materials;

• the influence of thermal sensitivity on the intensity of heat fluxes directed from the
friction surface to the interior of the friction pair elements is insignificant. This means
that to estimate the amount of heat absorbed by the individual elements of the friction
pair, appropriate solutions to linear problems can be used.

A verification of the developed theoretical model based on empirical results would
be advisable. However, no information on this kind of experimental data has been found
in the literature. In particular, it concerns the frictional heating of braking systems with
friction elements made of thermally sensitive FGMs. Therefore, the verification of the exact
solution was obtained carried out by determining from it, in cases of limit parameters,
known solutions of other authors for homogeneous materials, which were verified with
appropriate experimental data. A new element, significantly differentiating the results
of a given article from those published earlier by us, is the incorporation in the model of
the possibility of changing the frictional properties of FGMs under temperature influence.
This model includes many new elements, such as determining the intensity of heat fluxes
to obtain the form of the heat partition ratio, finding the volume temperature of FGMs,
developing a calculation algorithm that takes into account the thermal sensitivity of all
materials components, etc. We have shown that taking into consideration the thermal
sensitivity of materials can significantly reduce the surface temperature contact of the pad
and disc. We proposed a theoretical computational model. We hope that it will be verified
with the data obtained from other authors’ research positions. An indirect confirmation
of the correctness of our model is also the time profiles of temperature and heat fluxes
obtained on its basis, characteristic for braking with a constant deceleration.

It should be noted that all three of our papers constitute a monothematic cycle of
interrelated research. We also want to develop a suitable model for braking systems
operating in a short-term, repetitive mode. The problem of lowering the temperature level
in such systems is up to date.
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Nomenclature
al Effective depth of heat penetration (m)
Aa Area of the nominal contact region (m2)
cl,m Specific heat capacity (J kg−1K−1)
f Coefficient of friction (dimensionless)
Gl Weight of the friction elements (kg)
Jk(·) The Bessel functions of the first kind of the kth order
kl,m Thermal diffusivity (m2s−1)
Kl,m Thermal conductivity (W m−1K−1)
p Contact pressure (Pa)
p0 Nominal value of the contact pressure (Pa)
Re External radius of the pads (m)
Ri Internal radius of the pads (m)
q Specific power of friction (W m−2)
q0 Nominal value of the specific power of friction (W m−2)
Q0 Nominal friction power (W)
t Time (s)
ts Stop time (s)
T Temperature (◦C)
T0 Initial temperature (◦C)
V Velocity (m s−1)
Vc, Vρ Volume fractions of the material phases
V0 Initial velocity (m s−1)
W0 Initial kinetic energy of the system (J)
z Spatial coordinate in axial direction (m)
lower l Number of the main (l = 1) and frictional (l = 2) elements of the friction pair
lower m Number of the component material m = 1, 2 of selected friction element
αl Heat partition ratio (dimensionless)
β Cover angle of the pads (rad)
γl Parameter of material gradient (m−1)
γ∗

l Parameter of material gradient (dimensionless)
Θl Temperature rise (◦C)
Θ∗

l Temperature rise (dimensionless)
Θ0 Temperature scaling factor (◦C)
ρl,m Density (kg m−3)
τ Time (dimensionless)
τs Time of braking (dimensionless)
ζ Spatial coordinate in axial direction (dimensionless)
ϑl Volume temperature (◦C)
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Abstract: An analytical model was developed to determine the temperature of friction coupling, in
which one element was made of a functionally graded material (FGM) and the other was homoge-
neous. First, for such a system, the boundary–value problem of heat conduction was formulated with
consideration of the heat generation due to friction. Then, using the Laplace integral transform, an
exact solution to this problem was obtained for uniform sliding, and braking with constant decelera-
tion. A numerical analysis was performed for the selected friction pair consisting of the FGM (zircon
dioxide + titanium alloy) and cast iron. It was established that the use of elements made of a FGM
consisting of ZrO2 and Ti-6Al-4V can significantly reduce the maximum temperature achieved in the
friction system.

Keywords: frictional heating; functionally graded materials; temperature; braking

1. Introduction

Reviews of investigations on methods for establishing the temperature of systems
containing friction elements made of functionally gradient materials (FGMs) can be found
in previous articles [1–3]. In these studies, the methodology of determining the temperature
in such friction couples under uniform sliding [1], during braking with time-dependent
contact pressure [2], and considering the thermal sensitivity of component materials of
FGMs was investigated [3]. The main factor in this methodology is an exact solution to
the boundary–value heat conduction problem, taking into account the frictional heating of
two semi-infinite bodies made of FGMs. It should be noted, however, that the obtained
solutions did not allow determining automatically, with the help of limit transformations,
solutions to the problems in the case when one of the friction pair elements is made of
FGM and the other is homogeneous. Moreover, this type of friction pair is one of the most
common [4]. Therefore, in this study, an attempt was made to develop a mathematical
model for determining the temperature of a friction pair consisting of a body made of
a two-component FGM, sliding on the surface of a homogeneous body. An exponential
change in the thermal conductivity of the FGM with distance from the friction surface was
assumed. Two modes of changing the sliding velocity over time were considered: uniform
and linearly decreasing.

2. Statement of the Problem

The object of study is the transient temperature field, initiated in the process of
frictional heating of the friction pair elements of a braking system, corresponding to the
brake pad and disc. Taking into account the fact that the heat generated as a result of
friction during braking is mainly directed along the normal from the friction surface to
the inside of both elements [5,6], for the description of the heating process of the system, a
contact scheme of two semi-infinite bodies was adopted, related to the Cartesian coordinate
system (Figure 1).
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Figure 1. Scheme of the problem.

The pad (body 1) is made of a two-component functionally graded material (FGM), in
such a way that the friction surface is a material of low thermal conductivity and high wear
resistance (ceramics etc.), while the core material has high thermal conductivity (metal
alloys, copper, iron etc.). The increase in thermal conductivity of the pad material in the
distance from the friction surface is exponential. On the other hand, the disc (body 2)
is made of a homogeneous material (cast iron etc.). A more detailed description of the
adopted model assumptions is presented in our previous articles [1,2].

The analytical model presented in the manuscript concerns the frictional system of two
semi-infinite bodies, in which it is not possible to take into consideration the heat exchange
between the heated elements and the surrounding environment. It is known, however,
that consideration of convection cooling, would lead to a lower maximum temperature;
the most important parameters in the design process of frictional systems. It should be
ensured that the theoretical value of the permissible temperature for a given material (i.e.,
the melting point) is not exceeded. For this reason, at the design stage, calculations should
be performed for the maximum temperature achieved for adiabatic conditions on the free
surfaces of the friction system.

The braking process with constant deceleration was considered when the contact
pressure achieved its nominal value p0 immediately at the beginning of the braking, with
simultaneously reduction of velocity from the initial value V0 to zero at the stopping
moment t = ts. For such braking, the specific friction power was written in the form:

q(t) = q0q∗(t), q0 = f0 p0V0, q∗(t) = 1 − t
ts

, 0 ≤ t ≤ ts, ts =
W0

q0 Aa
, (1)

where f0—friction coefficient, W0—initial kinetic energy of the system, and Aa— area of
nominal contact between one brake pad and the disc.

The temperature field T(z, t) in the system consisting of two sliding semi-spaces was
sought based on the solution to the following thermal problem of friction:

∂

∂z

[
K1(z)

∂T(z, t)
∂z

]
= c1ρ1

∂T(z, t)
∂t

, z > 0, 0 < t ≤ ts, (2)

K2
∂2T(z, t)

∂z2 = c2ρ2
∂T(z, t)

∂t
, z < 0, 0 < t ≤ ts, (3)

T(0+, t) = T(0−, t) ≡ T(t), 0 < t ≤ ts, (4)
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K2
∂T(z, t)

∂z

∣∣∣∣
z=0−

− K1(z)
∂T(z, t)

∂z

∣∣∣∣
z=0+

= q(t), 0 < t ≤ ts, (5)

T(z, t) → T0 , |z| → ∞ , 0 < t ≤ ts, (6)

T(z, 0) = T0, |z| < ∞. (7)

where
K1(z) = K1,1eγz, z ≥ 0, γ ≥ 0, (8)

c1 = c1,1(1 − v) + c1,2v, ρ1 = ρ1,1(1 − v) + ρ1,2v, 0 ≤ v ≤ 1, (9)

temporal profile of specific friction power q(t) was determined from Equation (1), K1,m,
c1,m, and ρ1,m—thermal conductivity, specific heat, and density of the first (m = 1) and
the second (m = 2) component of pad material, respectively, and parameters K2, c2,
and ρ2 —correspond to the disc material, v—the relative volumetric fraction of the first
component of the pad material, and T0—temperature of the system at the initial time
moment t = 0.

The dimensionless variables and parameters were introduced:

ζ =
z
a

, τ =
k1t
a2 , τs =

k1ts

a2 , K∗ = K2

K1,1
, k∗ = k2

k1
, Θ∗ = T − T0

Θ0
, Θ0 =

q0a

K(0)
1,1

, (10)

where
a =

√
3k1ts, (11)

k1 =
K1,1

c1ρ1
, k2 =

K2

c2ρ2
. (12)

Taking into account the designations (10)–(12), the problem (2)–(9) was written in
the form:

∂2Θ∗(ζ, τ)

∂ζ2 + γ∗ ∂Θ∗(ζ, τ)

∂ζ
− e−γ∗ζ ∂Θ∗(ζ, τ)

∂τ
= 0, ζ > 0, 0 < τ ≤ τs, (13)

∂2Θ∗(ζ, τ)

∂ζ2 − 1
k∗

∂Θ∗(ζ, τ)

∂τ
= 0, ζ < 0, 0 < τ ≤ τs, (14)

Θ∗(0+, τ) = Θ∗(0−, τ) ≡ Θ∗(τ), 0 < τ ≤ τs, (15)

K∗ ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

− ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

= q∗(τ), 0 < τ ≤ τs, (16)

Θ∗(ζ, τ) → 0 , |ζ| → ∞ , 0 < τ ≤ τs, (17)

Θ∗(ζ, 0) = 0, |ζ| < ∞, (18)

where
q∗(τ) = 1 − τ

τs
, 0 < τ ≤ τs, (19)

γ∗ ≡ aγ = ln
(

K1,2

K1,1

)
. (20)
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3. Frictional Heating under Uniform Sliding

First, the case of frictional heating process during sliding of the pad on the disc surface
with constant velocity V0 was considered. Then for τs → ∞ from the Equation (19), it
follows that q∗(τ) = 1. For the boundary–value heat conduction problem (13)–(20) with
a constant temporal profile of specific friction power q∗(τ) = 1, the integral Laplace
transform was applied [7]:

Θ∗
(ζ, p) ≡ L[Θ∗(ζ, τ); p] =

∞∫
0

Θ∗(ζ, τ)e−pτdτ, (21)

it was obtained:

d2Θ∗
(ζ, p)

dζ2 + γ∗ dΘ∗
(ζ, p)
dζ

− pe−γ∗ζ Θ∗
(ζ, p) = 0, ζ > 0, (22)

d2Θ∗
(ζ, p)

dζ2 − p
k∗ Θ∗

(ζ, p) = 0, ζ < 0, (23)

Θ∗
(0+, p) = Θ∗

(0−, p) ≡ Θ∗
(p), (24)

K∗ dΘ∗
(ζ, p)
dζ

∣∣∣∣∣
ζ=0−

− dΘ∗
(ζ, p)
dζ

∣∣∣∣∣
ζ=0+

=
1
p

, (25)

Θ∗
(ζ, p) → 0 , |ζ| → ∞. (26)

An exact solution to the ordinary differential Equations (22) and (23), which meet the
boundary conditions (24)–(26) has the form:

Θ∗
(ζ, p) =

Δ1(ζ, p)
p
√

p Δ(p)
, ζ ≥ 0, Θ∗

(ζ, p) =
Δ2(ζ, p)

p
√

p Δ(p)
, ζ ≤ 0, (27)

where

Δ1(ζ, p) = e−0.5γ∗ζ I1

(
2

γ∗
√

pe−0.5γ∗ζ

)
, Δ2(ζ, p) = e

√
p

k∗ ζ I1

(
2

γ∗
√

p
)

, (28)

Δ(p) = I0

(
2

γ∗
√

p
)
+ Kε I1

(
2

γ∗
√

p
)

, (29)

Ik(x)—modified Bessel functions of the first kind of the kth order k = 0, 1 [8].
Using the inverse Laplace transform to the solution (27)–(29), the dimensional temper-

ature rise was found in the form:

Θ∗(ζ, τ) ≡ L−1[Θ∗
(ζ, p); τ] =

1
2πi

ω+i∞∫
ω−i∞

Θ∗
(ζ, p)epτdp, τ ≥ 0, ω ≡ Rep > 0, i ≡ √−1. (30)

The presence of
√

p, as well as the lack of the roots of function Δ(p), testifies that the
solution (36)–(39) has a branch point for p = 0. Therefore, to perform the integration on the
complex plane (Rep, Im p), the closed contour Γ was chosen, as demonstrated in Figure 2.
The contour Γ consists of the straight line Γω Re p = ω, the circles ΓR and Γδ with the radii
R and δ, respectively, with the center p = 0, and a cut of a complex p–plane along negative
real axis Re p < 0 and two boundaries Γ±. Within the contour Γ, the integral function
Θ∗

(ζ, p) in the Equation (30) is unambiguous and analytical.
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Figure 2. Integration contour Γ.

Then, based on Cauchy’s theorem we obtained [9]:

1
2πi

∮
Γ

Θ∗
(ζ, p)epτdp = 0. (31)

Since the transform Θ∗
(ζ, τ) carries out the conditions of Jordan’s lemma [7]:∣∣∣∣ Δl(ζ, p)

p
√

pΔ(p)

∣∣∣∣ ≤ const.
p
√

p
, l = 1, 2, (32)

integrands on arcs ΓR in the Equation (31) tend to zero for R → ∞ ; therefore, on the basis
of the relations (30) and (31), the dimensional temperature rise was written in the form:

Θ∗(ζ, τ) + Θ∗
+(ζ, τ) + Θ∗−(ζ, τ) + Θ∗

δ(ζ, τ) = 0, |ζ| < ∞, τ ≥ 0, (33)

where
Θ∗±(ζ, τ) =

1
2πi

∫
Γ±

Θ∗
(ζ, p)epτdp, Θ∗

δ(ζ, τ) =
1

2πi

∫
Γδ

Θ∗
(ζ, p)epτdp. (34)

In the polar coordinate system (r, ϕ) with center in the point p = 0, parameter of the
Laplace transform p = reiϕ, r ≥ 0, and |ϕ| ≤ π. Then on the boundary Γ+ we obtained
p = reiπ = −r,

√
p = i

√
r, and on the edge Γ−, respectively, p = re−iπ = −r,

√
p = −i

√
r

and the first two integrals (34) took the form:

Θ∗±(ζ, τ) = ± 1
2πi

∞∫
0

Θ∗
±(ζ, r)e−rτdr, |ζ| < ∞, τ ≥ 0, (35)

where Θ∗
±(ζ, r) ≡ Θ∗

(ζ, re±iπ).
Taking into account the dependencies [8]:

I0(x) = J0(ix), I1(x) = −i J1(ix), (36)

(where Jk(x) are the Bessel functions of the first kind of the kth order k = 0, 1), from
Equations (27)–(29) was obtained:

Θ∗
±(ζ, r) =

Δ±
1 (ζ, r)

r
√

r Δ∓(r)
, ζ ≥ 0, Θ∗

±(ζ, r) =
Δ±

2 (ζ, r)
r
√

r Δ∓(r)
, ζ ≤ 0, (37)
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where:

Δ±
1 (ζ, r) = ±ie−0.5γ∗ζ J1

(
2

γ∗
√

re−0.5γ∗ζ

)
, Δ±

2 (ζ, r) = ±ie± i
√ r

k∗ ζ J1

(
2

γ∗
√

r
)

, (38)

Δ±(ζ, r) = Kε J1

(
2

γ∗
√

r
)
± i J0

(
2

γ∗
√

r
)

. (39)

On the circle Γδ it is p = δeiϕ,
√

p =
√

δe0.5iϕ, |ϕ| ≤ π. Approaching the limit δ → 0
with consideration of the solutions forms (27)–(29), the third integral (34) was written as:

Θ∗
δ(ζ, τ) = lim

δ→0

⎛⎝− 1
2πi

π∫
−π

Θ∗
δ(ζ, δeiϕ)eδeiϕτ iδeiϕdϕ

⎞⎠, τ ≥ 0, (40)

where

Θ∗
δ(ζ, δeiϕ) =

Δ1(ζ, δeiϕ)

δ
√

δe1.5iϕΔ(δeiϕ)
, ζ ≥ 0, Θ∗

δ(ζ, δeiϕ) =
Δ2(ζ, δeiϕ)

δ
√

δe1.5iϕΔ(δeiϕ)
, ζ ≤ 0, (41)

Δ1(ζ, δeiϕ) = e−0.5γ∗ζ I1

(
2

γ∗
√

δe0.5iϕe−0.5γ∗ζ

)
, (42)

Δ2(ζ, δeiϕ) = e
√

δ
k∗ ζ e0.5iϕ

I1

(
2

γ∗
√

δe0.5iϕ
)

, (43)

Δ±(ζ, r) = Kε J1

(
2

γ∗
√

r
)
± i J0

(
2

γ∗
√

r
)

. (44)

Substituting the functions (41)–(44) into Equation (40), it was found:

Θ∗
δ(ζ, τ) = lim

δ→0

⎛⎝− 1
2π

π∫
−π

Δ1(ζ, δeiϕ)√
δe0.5iϕΔ(δeiϕ)

eδeiϕτdϕ

⎞⎠, ζ ≥ 0, τ ≥ 0, (45)

Θ∗
δ(ζ, τ) = lim

δ→0

⎛⎝− 1
2π

π∫
−π

Δ2(ζ, δeiϕ)√
δe0.5iϕΔ(δeiϕ)

eδeiϕτdϕ

⎞⎠, ζ ≤ 0, τ ≥ 0. (46)

For small values of the argument [8]:

I0(x) ∼= 1, I1(x) ∼= 0.5x, (47)

from Equations (45) and (46), the following was obtained:

Θ∗
δ(ζ, τ) = − 1

γ∗ e−0.5γ∗ζ , ζ ≥ 0, Θ∗
δ(ζ, τ) = − 1

γ∗ , ζ ≤ 0, τ ≥ 0. (48)

Applying the function Θ∗±(ζ, τ) (35), (37)–(39), and Θ∗
δ(ζ, τ) (48) into the Equation (33)

and introducing the notation:
√

r = x, r = x2, the dimensional rise of temperature was
found in the form:

Θ∗(ζ, τ) =
1

γ∗

⎡⎣e−0.5γ∗ζ − 4
π

∞∫
0

F(x)G1(ζ, x)e−(0.5γ∗x)2τdx

⎤⎦, ζ ≥ 0, τ ≥ 0, (49)

Θ∗(ζ, τ) =
1

γ∗

⎡⎣1 − 4
π

∞∫
0

F(x)G2(ζ, x)e−(0.5γ∗x)2τdx

⎤⎦, ζ ≤ 0, τ ≥ 0, (50)
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where

F(x) =
J1(x)

x2
{
[J0(x)]2 + [Kε J1(x)]2

} , (51)

G1(ζ, x) = Kεe−0.5γ∗ζ J1(xe−0.5γ∗ζ), (52)

G2(ζ, x) = Kε J1(x) cos
(

γ∗ζ

2
√

k∗
x
)
− J0(x) sin

(
γ∗ζ

2
√

k∗
x
)

. (53)

Substituting ζ = 0 into Equations (49)–(53) it was established that the temperature rise
on the contact surface included in the boundary condition (24) has the form:

Θ∗(τ) = 1
γ∗

⎡⎣1 − 4
π

∞∫
0

G(x)e−(0.5γ∗x)2τdx

⎤⎦, τ ≥ 0, (54)

where

G(x) =
Kε[J1(x)]2

x2
{
[J0(x)]2 + [Kε J1(x)]2

} . (55)

On the basis of the Fourier’s law, the intensities of heat fluxes directed from the contact
surface towards the inside of the friction pair elements were defined:

q1(t) = −K1,1
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

, q2(t) = K2
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

, t ≥ 0, (56)

The dimensionless form of dependencies (56) can be found as:

q∗l (τ) =
ql(t)

q0
, l = 1, 2, (57)

and taking account of (8) and (18), it was obtained:

q∗1(τ) = −∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

, q∗2(τ) = K∗ ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

, τ ≥ 0. (58)

Substituting the dimensionless temperature rise (49)–(53) into Equation (58) and
differentiating, it was found:

q∗1(τ) = 1 +
2
π

∞∫
0

Q(x)e−(0.5γ∗x)2τdx, q∗2(τ) = − 2
π

∞∫
0

Q(x)e−(0.5γ∗x)2τdx, τ ≥ 0, (59)

where

Q(x) =
Kε J0(x)J1(x)

x
{
[J0(x)]2 + [Kε J1(x)]2

} . (60)

From Equations (59) and (60) it follows that q∗1(τ) + q∗2(τ) = 1, which confirms the
fulfillment of the boundary condition (16) for q∗(τ) = 1, τ ≥ 0.

4. Asymptotic Solutions

It should be noted that solutions (49)–(55) have the form of a quadrature; thus, using
them, numerical integration should be performed each time on the range of bounded fields.
However, in the case of small and large values of dimensionless time τ (Fourier number),
the corresponding asymptotic solution will be obtained in the analytical form, not requiring
numerical integration.
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Small values of the Fourier number 0 ≤ τ << 1 (large values of the parameter p of
the Laplace integral transform (30)). At large values of arguments, the modified Bessel
functions behave as follows [8]:

I0(x) ∼= ex
√

2πx

(
1 +

1
8x

+
9

128x2 + . . .
)

, I1(x) ∼= ex
√

2πx

(
1 − 3

8x
− 15

128x2 − . . .
)

. (61)

Limiting only to the first two components in the formula (61), the transforms of the
dimensionless temperature rise (27)–(29) were written in the form:

Θ∗
(ζ, p) ∼= e−0.25γ∗ζ−α

√
p

(1 + Kε)p
√

p

(
1 − 3γ∗e0.5γ∗ζ

16
√

p

)[
1 +

γ∗(1 − 3Kε)

16(1 + Kε)
√

p

]−1

, ζ ≥ 0, (62)

Θ∗
(ζ, p) ∼= e

√
p

k∗ ζ

(1 + Kε)p
√

p

(
1 − 3γ∗

16
√

p

)[
1 +

γ∗(1 − 3Kε

16(1 + Kε)
√

p

]−1

, ζ ≤ 0, (63)

where
α =

2
γ∗ (1 − e−0.5γ∗ζ), ζ ≥ 0. (64)

Taking into consideration that:(
1 − 3γ∗e0.5γ∗ζ

16
√

p

)[
1 +

γ∗(1 − 3Kε

16(1 + Kε)
√

p

]−1

≈ 1 − γ∗

16
√

p

(
3e0.5γ∗ζ +

1 − 3Kε

1 + Kε

)
, (65)

(
1 − 3γ∗

16
√

p

)[
1 +

γ∗(1 − 3Kε

16(1 + Kε)
√

p

]−1

≈ 1 − γ∗

4(1 + Kε)
√

p
, (66)

the transforms (62)–(64) were obtained in the form:

Θ∗
(ζ, p) ∼= e−0.25γ∗ζ−α

√
p

(1 + Kε)p
√

p

[
1 − γ∗

16
√

p

(
3e0.5γ∗ζ +

1 − 3Kε

1 + Kε

)]
, ζ ≥ 0, (67)

Θ∗
(ζ, p) ∼= e

√
p

k∗ ζ

(1 + Kε)p
√

p

(
1 − γ∗

4(1 + Kε)
√

p

)
, ζ ≤ 0. (68)

Taking account of the relations [10]:

L−1

[
e−a

√
p

p
√

pn ; τ

]
= (4τ)

n
2 inerfc

(
a

2
√

τ

)
, n = 1, 2, a ≥ 0, (69)

from the transforms of solutions (67) and (68), the dimensionless temperature rises were found:

Θ∗(ζ, τ) ∼= 2e−0.25γ∗ζ
√

τ
(1+Kε)

[
ierfc

(
α

2
√

τ

)
− γ∗√τ

8

(
3e0.5γ∗ζ + 1−3Kε

1+Kε

)
i2erfc

(
α

2
√

τ

)]
,

ζ ≥ 0,
(70)

Θ∗(ζ, τ) ∼= 2
√

τ
(1+Kε)

[
ierfc

( |ζ|
2
√

k∗τ

)
− γ∗√τ

2(1+Kε)
i2erfc

( |ζ|
2
√

k∗τ

)]
, ζ ≤ 0,

0 ≤ τ << 1,
(71)

where

i2erfc(x) = 0.25[erfc(x)− 2x ierfc(x)], ierfc(x) = π−0.5e−x2 − x erfc(x),
erfc(x) = 1 − erf(x),

(72)
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erf(x)—Gauss error function [8]. On the contact surface ζ = 0 from Equations (70) and (71)
it was obtained:

Θ∗(τ) ∼= 2
√

τ

(1 + Kε)

[
1√
π

− γ∗√τ

8(1 + Kε)

]
, 0 ≤ τ << 1. (73)

Approaching in Equations (70)–(73) the limit γ∗ → 0 ( α → ζ ), the solution for homo-
geneous materials was obtained [11]:

Θ∗(ζ, τ) ∼= 2
√

τ

(1 + Kε)
ierfc

(
ζ

2
√

τ

)
, ζ ≥ 0, (74)

Θ∗(ζ, τ) ∼= 2
√

τ

(1 + Kε)
ierfc

( |ζ|
2
√

k∗τ

)
, ζ ≤ 0, (75)

Θ∗(τ) ∼= 2
(1 + Kε)

√
τ

π
, 0 ≤ τ << 1. (76)

Large values of Fourier number τ >> 1(small values of the parameter p of the Laplace
integral transform (30)). Distributions of the modified Bessel functions for small values of
argument in the power series have the form [8]:

I0(x) ∼= 1 +
x2

4
+ . . ., I1(x) ∼= x

2

(
1 +

x2

8
+ . . .

)
. (77)

Taking into account the relations (77), the Laplace transforms of dimensionless tem-
perature rise (27)–(29) were written as:

Θ∗
(ζ, p) ∼= e−γ∗ζ

γ∗

[
β

p(β +
√

p)
+

e−γ∗ζ

2Kεγ∗(β +
√

p

]
, ζ ≥ 0, (78)

Θ∗
(ζ, p) ∼= e

√
p

k∗ ζ

γ∗

[
β

p(β +
√

p)
+

1
2Kεγ∗(β +

√
p

]
, ζ ≤ 0, (79)

where
β =

γ∗

Kε
. (80)

Using the dependencies [10]:

L−1

[
e−a

√
p

(β +
√

p)
; τ

]
=

e−
a2
4τ√

πτ
− β eaβ+β2τerfc

(
a

2
√

τ
+ β

√
τ

)
, (81)

L−1

[
β e−a

√
p

p(β +
√

p)
; τ

]
= erfc

(
a

2
√

τ

)
− eaβ+β2τerfc

(
a

2
√

τ
+ β

√
τ

)
, a ≥ 0, (82)

from the transform solutions (78) and (79), the dimensionless temperature rises were
obtained in the form:

Θ∗(ζ, τ) ∼= e−γ∗ζ

γ∗

{
1 − eβ2τerfc(β

√
τ
)
+

e−γ∗ζ

2Kεγ∗

[
1√
πτ

− β eβ2τerfc(β
√

τ

)]}
, ζ ≥ 0, τ >> 1, (83)

Θ∗(ζ, τ) ∼= 1
γ∗
{

erfc
( |ζ|

2
√

k∗τ

)
− e

β|ζ|√
k∗ +β2τerfc

( |ζ|
2
√

k∗τ
+ β

√
τ
)
+

+ 1
2Kεγ∗

[
e−

ζ2
4k∗τ√
πτ

− βe
β|ζ|√

k∗ +β2τerfc
( |ζ|

2
√

k∗τ
+ β

√
τ
)]}

, ζ ≤ 0, τ >> 1.
(84)
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Substituting ζ = 0 into Equations (83) and (84), it was found:

Θ∗(τ) ∼= 1
γ∗

{
1 − eβ2τerfc(β

√
τ
)
+

1
2Kεγ∗

[
1√
πτ

− β eβ2τerfc(β
√

τ

)]}
, τ >> 1. (85)

5. Temperature Field during Braking with Constant Deceleration

Based on Duhamel’s theorem [12], the dimensionless temperature rise during braking
with constant deceleration was sought in the form:

Θ̂∗(ζ, τ) =
∂

∂τ

τ∫
0

q∗(τ − s)Θ∗(ζ, s)ds, |ζ| < ∞, 0 ≤ τ ≤ τs, (86)

where the temporal profiles of the specific friction power q∗(τ) and function Θ∗(ζ, τ) were
determined from Equations (19), (49), and (50), respectively. Performing the integration
first, and then differentiating, from the Equation (86) we obtained:

Θ̂∗(ζ, τ) =
1

γ∗

⎡⎣e−0.5γ∗ζ q∗(τ)− 4
π

∞∫
0

F(x)G1(ζ, x)P(τ, x)dx

⎤⎦, ζ ≥ 0, 0 ≤ τ ≤ τs, (87)

Θ̂∗(ζ, τ) =
1

γ∗

⎡⎣1 − 4
π

∞∫
0

F(x)G2(ζ, x)P(τ, x)dx

⎤⎦, ζ ≤ 0, 0 ≤ τ ≤ τs, (88)

where

P(τ, x) = e−(0.5γ∗x)2τ − (1 − e−(0.5γ∗x)2τ)

(0.5γ∗x)2τs
, (89)

and functions F(x), G1(ζ, x), and G2(ζ, x) can be found from the Formulas (51)–(53).
The temperature change on the friction surface was found, substituting ζ = 0 into the

Equations (87) and (88), in the form:

Θ̂∗(τ) = 1
γ∗

⎡⎣1 − 4
π

∞∫
0

G(x)P(τ, x)dx

⎤⎦, τ ≥ 0, (90)

where functions G(x) and P(τ, x) were determined from relations (55) and (89), respectively.
Knowing the dimensionless temperature rise (87), (88), from Formulas (58) the dimen-

sionless intensities of frictional heat fluxes were found:

q̂∗1(τ) = q∗(τ) + 2
π

∞∫
0

Q(x)P(τ, x)dx, q̂∗2(τ) = − 2
π

∞∫
0

Q(x)P(τ, x)dx, 0 ≤ τ ≤ τs, (91)

where functions Q(x) and P(τ, x) have the forms (60) and (89), respectively. From Equation (91)
it follows that q̂∗1(τ)+ q̂∗2(τ) = q∗(τ), which confirms the fulfillment of the boundary condition
(16) with the dimensionless specific friction power q∗(τ) in the form (19).

6. Numerical Analysis

Calculations were performed for a friction pair, where the first element (pad) is
made of two-component FGM: zircon dioxide ZrO2 (friction surface) and titanium alloy
Ti − 6Al − 4V(core). While the second material (brake disc) is homogeneous: cast iron
ChNMKh. The properties of the materials are included in Table 1.
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Table 1. Material properties at the initial temperature T0 [3,13].

Material Thermal Conductivity

Wm−1K−1
Specific Heat Capacity

J kg−1K−1
Density kg m−3

ZrO2 1.94 452.83 6102.16
Ti-6Al-4V 6.87 538.08 4431.79
ChNMKh 52.17 444.6 7100

The values of the remaining input parameters used to perform the calculations are
listed in Table 2.

Table 2. Input parameters [14].

Friction
Coefficient

f0

Nominal
Pressure

p0, MPa

Initial Sliding
Speed

V0, ms−1

Initial Kinetic
Energy

W0, kJ

Nominal
Contact Area

Aa, m2

Initial
Temperature

T0,◦C

0.27 0.602 23.8 103.54 0.00221 20

Then, from formulas (1) and (19), the nominal value of specific friction power
q0 = 3.87 MW m−2, braking time ts = 12.1 s, and gradient parameter γ∗ = 1.26
were determined. Based on Equation (9), for an equal volumetric fraction of FGM
component (v = 0.5), the effective values of specific heat capacity and density of the
pad material were obtained, c1 = 495.45 J kg−1K−1, ρ1 = 5266.97 kg m−3, respectively.
Thereafter, the following parameters were calculated sequentially: thermal diffusivity
k1 = 0.743 · 10−6 m2s−1 and k2 = 1.65 · 10−5 m2s−1, the effective depth of heat penetration
of the pad a = 5.2 mm, the dimensionless braking time τs = 0.33, and the temperature
scaling factor Θ0 = 10, 373 ◦C, based on Equations (10)–(12).

The integrals in the obtained solutions were calculated numerically using the QAGI
procedure of the QUADPACK package [15]. Changes of the dimensionless temperature
rise and intensities of heat fluxes during sliding with a constant velocity are presented in
Figures 3–6.

 

Figure 3. Evolutions of dimensionless temperature rise Θ∗(ζ, τ) on the established distances |ζ| from
the friction surface during sliding with a constant velocity: cast iron—solid lines; FGM—dashed lines.
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Figure 4. Isotherms of dimensionless temperature rise Θ∗(ζ, τ) during sliding with constant velocity:
cast iron (1)—solid lines; FGM (2)—dashed lines.

 

Figure 5. Evolutions of dimensionless intensities of heat fluxes q∗l , l = 1, 2, directed along the normal
from the friction surface to the insides of the elements made of cast iron (solid line) and FGM (dashed
line) under uniform sliding.
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Figure 6. Change with time of the dimensionless temperature rise Θ∗(τ) on the friction surface ζ = 0
during sliding with constant velocity: exact solution—solid line; asymptotic solution—dashed line.

Temporal profiles of the dimensionless temperature rise Θ∗(ζ, τ) (49)–(53) at a few
distances from the friction surface are shown in Figure 3. The temperature of both elements
increased monotonically over time. The highest temperature was reached on the friction
surface, and decreasing moving away from it. For a given distance from this surface, the
temperature of the homogeneous cast iron element was always higher than the temperature
of the functionally graded element. Having a much greater thermal conductivity, the cast
iron was heated to a much deeper extent than the FGM (Figure 4).

Temporal profiles of dimensionless heat flux intensities q∗l (τ), l = 1, 2 (59), (60) are
demonstrated in Figure 5. It was found that the main element that absorbs frictional heat is
the cast-iron disc, especially at the initial stage of the heating process. The amount of heat
directed from the friction surface towards the inside of the pad increases with time, and
towards the inside of the disc it decreases. A comparison of dimensionless temperature
values Θ∗(τ) of the friction surface, found by means of the exact (54), (55) and asymptotic
solutions (74), (75) are shown in Figure 6. In the considered range of Fourier number
0 ≤ τ ≤ τs, the respective temperature values were almost the same.

Relevant results, obtained in the case of a linearly decreasing velocity (so-called
braking with a constant deceleration), are presented in Figures 7–10. The temporal profile
of the dimensionless temperature rise Θ̂∗(ζ, τ) (87)–(89) during the braking process was
different than during uniform sliding (Figure 7). The dimensionless time to reach the
maximum temperature on the friction surface was τmax ≈ 0.5τs and became higher when
increasing the distance from it. After reaching the maximum value, the temperature
dropped. More vividly, such a concentration of high temperature near the friction surface
is shown in the distribution of isotherms, as illustrated in Figure 8. Apparently, as in the
case of uniform sliding, the greater part of the frictionally-generated heat is absorbed by
the cast iron disc (≈ 85%) (Figure 9). The intensities of heat fluxes q̂∗l (τ), l = 1, 2 (91) are
almost unchanged during the entire braking process.
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Figure 7. Evolutions of dimensionless temperature rise Θ̂∗(ζ, τ) on the established distances
|ζ| from the friction surface during braking with constant deceleration: cast iron—solid lines;
FGM—dashed lines.

 

Figure 8. Isotherms of dimensionless temperature rise Θ̂∗(ζ, τ) during braking with constant deceler-
ation: cast iron (1)—solid lines; FGM (2)—dashed lines.
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Figure 9. Evolutions of dimensionless intensities of heat fluxes q̂∗l , l = 1, 2 directed along the normal
from the friction surface to the insides of the elements made of cast iron (solid line) and FGM (dashed
line) during braking with constant deceleration.

 

Figure 10. Dependency of maximum temperature Tmax during braking with constant deceleration on
the volumetric fraction v.

The results presented in Figures 3–9 were obtained with the same (v = 0.5) volumetric
components fractions of ZrO2 and Ti-6Al-4V, determining the effective specific heat capacity
and density using formula (9). On the other hand, the change of the maximum temperature
Tmax ≡ T(0, tmax) with the increase of the parameter v is presented in Figure 10. The
highest value Tmax = 1117 ◦C was achieved in the case of the pad made of pure zirconium
dioxide, and the lowest Tmax = 1052 ◦C, when it was made of the titanium alloy.
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7. Conclusions

A mathematical model was proposed to determine the transient temperature field in a
friction pair, in which one element is made of a functionally graded material and the other
is made of a homogeneous material. It was assumed that the thermal conductivity of a FGM
increases exponentially with the distance from the contact surface. An exact solution of the
appropriate boundary–value problem of heat conduction was formulated and then solved,
with consideration of frictional heat generation. Two cases of the friction power temporal
profiles were analyzed in detail: constant (uniform sliding), and linearly decreasing in
time (braking with constant deceleration). A numerical analysis was performed for a
two-component FGM (ZrO2 + Ti-6Al-4V) sliding on the cast-iron disc. It was found that
the greater part of heat generated due to friction was absorbed by the cast iron (about
85%), which resulted in a greater depth of effective heat penetration in this element, due
to the high thermal conductivity of cast iron. At a fixed distance from the friction surface,
the temperature of the cast iron element is higher than that of the FGM element, in both
the considered cases: uniform sliding, and during braking. Thus, in order to protect
systems against such undesirable phenomena as overheating and thermal cracking etc.,
the use of FGM on the friction elements may be justified. It is also worth emphasizing
that in the analyzed range of the Fourier number change 0 ≤ τ ≤ 0.33, the appropriate
asymptotic solution can be effectively used, giving a high accuracy of calculations, without
the inconveniences related to numerical integration in an exact solution.

It should be noted that the shape of the friction pair elements, as well as their positional
relationship, can be considered in some spatial problems of friction solved by numerical
methods, in particular the finite element method (FEM). The temperature evolution ob-
tained by them oscillates, as a result of the heating area moving on the surface of the brake
disc. The model proposed in this paper is one-dimensional, based on a physically-justified
assumption that heat, generated by friction of two elements, propagates in the direction
perpendicular to the contact surface. This allows determining the mean temperature (from
the above-mentioned oscillations) on the friction surfaces of both elements.

According to the current state of knowledge [16,17], the temperature of the friction
surface is the sum of the volume temperature (average temperature in volume), the mean
temperature, and the flash temperature. The flash temperature is the component that
takes into consideration the texture of the friction surfaces. The flash temperature cal-
culation models need appropriate experimental data as input parameters. In the case of
homogeneous materials, such data can be found in the article in ref. [13]. However, we
have not found such data for the considered friction pair. The development of models for
determining the flash temperature of such couples is a potential direction for our research.
In the future, we intend to expand the proposed mathematical model with the possibility
of testing the temperature of friction systems of this type (functionally graded and homoge-
neous materials) made of thermally sensitive materials and the temperature-dependent
friction coefficient.
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Nomenclature
a Effective depth of heat penetration (m)
Aa Area of the nominal contact region (m2)
c Specific heat capacity (J kg−1 K−1)
f0 Coefficient of friction (dimensionless)
Ik(·) Modified Bessel functions of the first kind of the kth order
Jk(·) Bessel functions of the first kind of the kth order
k Thermal diffusivity (m2 s−1)
K Thermal conductivity (W m−1 K−1)
p Dimensionless parameter of the Laplace integral transform
p0 Nominal value of the contact pressure (Pa)
r Radial coordinate in the polar system (m)
R Radius of integration contour (m)
q Specific power of friction (W m−2)
q0 Nominal value of the specific power of friction (W m−2)
t Time (s)
ts Stop time (s)
T Temperature (◦C)
T0 Initial temperature (◦C)
v Volume fraction of the material phases (dimensionless)
V0 Initial velocity (m s−1)
W0 Initial kinetic energy of the system (J)
z Spatial coordinate in axial direction (m)

Greek Symbols

γ Parameter of material gradient (m−1)
γ∗ Dimensionless parameter of material gradient
Γ Integration contour
δ Radius of integration contour (m)
Θ Temperature rise (◦C)
Θ∗ Dimensionless temperature rise
Θ0 Temperature rise scaling factor (◦C)
Θ∗ Dimensionless transform of temperature rise
ρ Density (kg m−3)
τ Dimensionless time
τs Dimensionless time of braking
ζ Dimensionless spatial coordinate in axial direction
ϕ Angular coordinate in the polar system (rad)
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Abstract: The theoretical scheme for determining the heat partition ratio (HPR) in a friction couple
made of functionally graded materials (FGMs) was proposed. As a result, the formula for the
calculation of the HPR was found, which depends on the thermal properties and the parameters
of the material’s gradient. In specific cases of these parameters, the known formulas for estimating
the HPR for homogeneous materials were obtained. Calculations were carried out for the friction
couple consisting of the following two-component FGMs: Al2O3–Cu (first body) and ZrO2–Ti–6Al–4V
(second body), under the conditions corresponding to a single braking with a constant deceleration.
It was established that the vast majority (almost 90%) of heat that was generated by friction was
absorbed by the first body in the selected couple. The possibilities of using the obtained results were
discussed herein.

Keywords: heat partition ratio; functionally graded materials; frictional heating; temperature; braking

1. Introduction

Functionally graded materials (FGMs) are materials in which, along at least one
specific direction, a continuous change in the functional or structural properties has been
obtained in a selected technological process. The possibilities of using graded materials in
technology seem to be almost unlimited. Proposals of possible FGM applications appear
for many industries, such as the following: optical, energy [1,2], aviation [3,4], medical [5],
etc. Moreover, they have been used in friction elements, including braking systems [6,7].

The significant influence of temperature on the friction and wear characteristics of
friction materials is well known and has been studied by many researchers who are involved
in determining the temperature mode of disc brakes [8–10]. The basis for establishing the
temperature are the solutions (analytical, numerical, or analytical–numerical) to the thermal
problems of friction, i.e., the boundary-value problems of heat conduction with two specific
boundary conditions on the contact surface of the pad and the disc [11,12]. One of them,
the energetic solution, determines the equality of the specific friction power q and the
sum of the heat flux intensities ql ,l = 1, 2 that are directed along the normal surface to
the contact surface towards the insides of the friction elements q1 + q2 = q. Whereas the
second solution concerns the type of thermal contact—with (imperfect) or without (perfect)
consideration of the thermal resistance on the friction surfaces. In the latter case, the surface
temperatures of the friction elements are the same. The coupling of the temperature fields
of both of the friction elements through the above-mentioned boundary conditions means
that obtaining the analytical [13–16] or the numerical [17–19] solutions of the thermal
problems of friction requires the performance of complex mathematical transformations or
long-term calculations.

In order to reduce these difficulties, there is also another approach to estimate the
temperature of the braking systems, on the basis of solutions to the thermal problems of
friction. It is based on a virtual separation of the friction pair elements and the subsequent
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replacement of the frictional interaction on their working surfaces with the heat fluxes of
the following intensities: ql = αlq, l = 1, 2, α1 = α, and α2 = 1 − α, respectively, where
α is the heat partition ratio [20,21]. Reviews of the experimental methods, as well as the
theoretical methods, for determining the HPR in braking systems have been developed [22–
25]. The theoretical methods primarily rely on the fact that the temperature field, which
is first found by means of analytical solutions, contains a priori unknown coefficient α,
which is then determined from the condition of the equality of the maximum or the mean
temperature on the friction surfaces of the pad and the disc. As a result, the formulas for
the calculation of α contain the thermo-physical properties of the friction materials and,
in some cases, the operating parameters of the process. Substituting thus determines the
value of α back into the analytical or the numerical solutions, and the temperature mode of
the braking system is estimated.

It should be noted that the formulas that have been obtained so far for determining
the HPR, based on the analytical solutions to the thermal problems of friction, concern
homogeneous materials [26–30]. The proportion of the heat distribution by means of the
HPR between polymer and steel elements was established experimentally [31]. The aim of
this study is to obtain the theoretical formulas for estimating the HPR during the braking
of friction pair elements that are made of functionally graded materials (FGMs). One of the
proposed applications of the results could be the determination of the bulk temperature
of friction elements that are made of thermally sensitive FGM, during a single braking
process [32] or a repetitive short-term braking mode [33].

2. Heating of the FGM Semi-Space by the Heat Flux with Constant Intensity

Consider a temperature of T of a semi-limited body z ≥ 0, which is uniform and equal
to T0 at the initial point in time of t = 0. The body is made of a functionally graded material
(FGM) with the thermal conductivity of K, increasing exponentially in the positive direction
of the axis z as follows:

K(z) = K0eγz, z ≥ 0, K0 ≡ K(0), (1)

where γ > 0 is the gradient of the material. Next, the semi-space is heated on the outer
surface as z = 0 by the heat flux with a constant intensity of q = q0 in time as t > 0
(Figure 1).

Figure 1. Scheme of the heating of the FGM semi-space.

The transient temperature field of the semi-space was searched in following the form:

T(z, t) = T0 + Θ(z, t), z ≥ 0, t ≥ 0, (2)

where the temperature rise of Θ(z, t) was determined from the solution to the following
boundary-value heat conduction problem:

∂

∂z

[
K(z)

∂Θ(z, t)
∂z

]
= ρc

∂Θ(z, t)
∂t

, z > 0, t > 0, (3)
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K0
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= −q0, t > 0, (4)

Θ(z, t) → 0 , z → ∞ , t > 0, (5)

Θ(z, 0) = 0, z ≥ 0, (6)

and ρ, c are the density and the specific heat capacity of the material, respectively.
The following dimensionless variables and parameters were introduced:

ζ =
z
a

, γ =
γ∗

a
, τ =

kt
a2 , k =

K0

cρ
, q∗ = q

q0
, Θ∗ = Θ

Θ0
, Θ0 =

q0a
K0

, (7)

where a is the effective heating depth, i.e., the distance from the heated surface, at which the
temperature is equal to 5% of the maximum temperature on the heated surface [2]. Taking
into account the designations (7), the problem (3)–(6) was written in following the form:

∂2Θ∗(ζ, τ)

∂ζ2 + γ∗ ∂Θ∗(ζ, τ)

∂ζ
− e−γ∗ζ ∂Θ∗(ζ, τ)

∂τ
= 0, ζ > 0, τ > 0, (8)

∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0

= −1, τ > 0, (9)

Θ∗(ζ, τ) → 0 , ζ → ∞ , τ > 0, (10)

Θ∗(ζ, 0) = 0, ζ ≥ 0. (11)

Applying the following Laplace integral transform [34]:

Θ∗
(ζ, p) ≡ L[Θ∗(ζ, τ); p] =

∞∫
0

Θ∗(ζ, τ)e−pτdτ, Rep ≥ 0, (12)

to the boundary-value problem (8)–(11), the following were obtained:

d2Θ∗
(ζ, p)

dζ2 + γ∗ dΘ∗
(ζ, p)
dζ

− pe−γ∗ζ Θ∗
(ζ, p) = 0, ζ > 0, (13)

dΘ∗
(ζ, p)
dζ

∣∣∣∣∣
ζ=0+

= − 1
p

, (14)

Θ∗
(ζ, p) → 0 , ζ → ∞. (15)

The solution to the boundary problem (13)–(15) takes the following form:

Θ∗
(ζ, p) = e−

1
2 γ∗

1 ζ ϕ(ζ, p)
Φ(p)

, ζ ≥ 0, (16)

where

ϕ(ζ, p) = I1

(
2

γ∗
√

p e−
1
2 γ∗ζ

)
, (17)

Φ(p) = p
√

p I0

(
2

γ∗
√

p
)

, (18)

Ik(x), k = 0, 1 are the modified Bessel functions of the first kind [35]. Differentiating the
function (18) with consideration of the relation of I′0(x) = I1(x), the following was found:

Φ′(p) =
3
2
√

p I0

(
2

γ∗
√

p
)
+

p
γ∗ I1

(
2

γ∗
√

p
)

. (19)
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The transition from the space of the transforms to the originals in the solution (16)–(19)
was carried out on the basis of the Vashchenko-Zakharchenko theorem [36,37] as follows:

Θ∗(ζ, τ) = e−
1
2 γ∗ζ

[
lim
p→0

ϕ(ζ, p)p
Φ(p)

+
∞

∑
n=1

ϕ(ζ, pn)

Φ′(pn)
epnτ

]
, ζ ≥ 0, τ ≥ 0, (20)

where

I0

(
2

γ∗
1

√
pn

)
≡ 0, n = 1, 2, . . . (21)

By using the expressions of the modified Bessel functions [35] as follows:

I0(x) ∼= 1 +
x2

4
+

x4

64
+ . . ., I1(x) ∼= x

2
+

x3

16
+ . . . (22)

and by limiting them to the first components, the following representations of functions
(17) and (18) for the small values of the parameter p were obtained:

ϕ(ζ, p) ∼= 1
γ∗ e−

1
2 γ∗ζ√p, Φ(p) ∼= p

√
p. (23)

Taking into account the Formulas (23) and relationships [35] as follows:

I0(x) = J0(ix), I1(x) = −i J1(ix), i ≡ √−1, (24)

where Jk(x), k = 0, 1 are the Bessel functions of the first kind, solutions (20) and (21) were
written in the following form:

Θ∗(ζ, τ) =
1

γ∗ e−
1
2 γ∗ζ

[
e−

1
2 γ∗ζ − 4

∞

∑
n=1

J1(μne− 1
2 γ∗ζ)

μ2
n J1(μn)

e−λnτ

]
, ζ ≥ 0, τ ≥ 0, (25)

where

λn =

(
1
2

γ∗μn

)2
, (26)

J0(μn) ≡ 0, n = 1, 2, . . . (27)

By adopting ζ = 0 in the solution (25)–(27), the dimensionless temperature rise on the
heated surface was found in the following form:

Θ∗(τ) ≡ Θ∗(0, τ) =
1

γ∗

(
1 − 4

∞

∑
n=1

e−λnτ

μn2

)
, τ ≥ 0. (28)

Verification of the developed model was carried out by checking the boundaries (9),
(10), and the initial (11) conditions. For this, by differentiating the solution (25) with respect
to the spatial variable ζ, and taking into account the relationship [35] as follows:

J′1(x) = J0(x)− x−1 J1(x) (29)

the following was found:

∂Θ∗(ζ, τ)

∂ζ
= −e−γ∗ζ

[
1 − 2

∞

∑
n=1

J0(μne− 1
2 γ∗ζ)

μn J1(μn)
e−λnτ

]
, ζ ≥ 0, τ ≥ 0. (30)
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Approaching Formula (30) to the limit of ζ → 0 , with consideration of the fact that μn
are the roots of Equation (27), the following was achieved:

∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

= −1, (31)

which confirms that the boundary condition (9) was satisfied. However, by approaching
to the limit ζ → ∞ in the solution (25), we have confirmed the fulfillment of the condi-
tion of the temperature fade (10). In addition, it was numerically established that the
initial condition (11) was met. In particular, according to the Formula (25), on the heated
surface ζ = 0 at the initial point in time, the dimensionless temperature rise is zero if the
following occurs:

∞

∑
n=1

1
μn2 =

1
4

. (32)

Based on the calculations, it was found that the sum of the first 102 components of the
series on the left-hand side of Equation (32) is equal to 0.248985.

In addition to the exact (25), the appropriate asymptotic solutions to the problem at
small and large values of the Fourier number τ (dimensionless time) were also found.

Small values τ (large values of the parameter p). Taking into account that, in Formulas (17)
and (18), the first components of the asymptotic of modified Bessel functions at large values
of the argument [35] were as follows:

I0(x) ∼= ex
√

2πx

(
1 +

1
8x

+ . . .
)

, I1(x) ∼= ex
√

2πx

(
1 +

3
8x

+ . . .
)

, (33)

the transformed solution (16) was written as follows:

Θ∗
(ζ, p) = e−

1
4 γ∗ζ e−b

√
p

p
√

p
, b =

2
γ∗
(

1 − e−
1
2 γ∗ζ

)
, ζ ≥ 0. (34)

Using the relation [38] as follows:

L−1

[
e−b

√
p

p
√

p
; τ

]
= 2

√
τ ierfc

(
b

2
√

τ

)
, (35)

from the Formula (34), the following form of dimensionless temperature rise at the initial
moments of heating was obtained:

Θ∗(ζ, τ) ∼= 2e−
1
4 γ∗ζ

√
τ ierfc

(
b

2
√

τ

)
, ζ ≥ 0, 0 ≤ τ << 1, (36)

where ierfc(x) = π− 1
2 e−x2 − xerfc(x), erfc(x) = 1 − erf(x), erf(x) is the Gauss error

function [35].
At ζ = 0 from the solution (36), a known result for the evolution of the temperature

on the heated surface of a homogeneous semi-space was obtained [18] as follows:

Θ∗(τ) ∼= 2
√

τ

π
, 0 ≤ τ << 1, (37)

Large values τ (small values of the parameter p). By including the first two components in
the distributions (22), from the transformed solution (16)–(18) it follows that:

Θ∗
(ζ, p) ∼= e−γ∗ζ

γ∗

[
1
p
−
(

1 − 1
2

e−γ∗ζ

)
1

(γ∗2 + p)

]
, ζ ≥ 0. (38)
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Considering the relations [38] as follows:

L−1[p−1; τ] = 1, L−1[(γ∗2 + p)
−1

; τ] = e−γ∗2τ , (39)

from the solution (38), the following asymptotic representation for the dimensionless
temperature rise at large values of time was obtained:

Θ∗(ζ, τ) ∼= e−γ∗ζ

γ∗

[
1 −

(
1 − 1

2
e−γ∗ζ

)
e−γ∗τ

]
, ζ ≥ 0, τ >> 1. (40)

The temperature rise of the heated surface was found, substituting to the formula (40)
ζ = 0 as follows:

Θ∗(τ) ∼= 1
γ∗

(
1 − 1

2
e−γ∗τ

)
, τ >> 1. (41)

3. Heating of the FGM Semi-Space by Heat Flux with the Intensity Linearly
Decreasing in Time

As presented above, the exact (25), asymptotic (36), and (40) solutions were obtained
at a constant intensity of heat flux of q = q0. This section concerns the heating of the surface
of the semi-space by heat flux with the following time profile of intensity:

q(t) = q0q∗(t), q∗(t) = 1 − t
ts

, 0 ≤ t ≤ ts, (42)

where ts is the stop moment of heating. The evolution of the heat flux intensity (42)
corresponds to the temporal profile of the specific friction power during braking with
constant deceleration [39]. The corresponding dimensionless temperature rise of Θ̂∗ was
searched based on Duhamel’s theorem [40] as follows:

Θ̂∗(ζ, τ) =
∂

∂τ

τ∫
0

q∗(τ − s)Θ∗(ζ, s)ds, ζ ≥ 0, 0 ≤ τ ≤ τs, (43)

where Θ∗ is the dimensionless temperature rise (25)–(27), q∗(τ) is the function (42), and τs
is the dimensionless stop time as follows:

τs =
kts

a2 . (44)

After the integration with the next differentiation on the right-hand side of For-
mula (42), the following was obtained:

Θ̂∗(ζ, τ) =
1

γ∗ e−
1
2 γ∗ζ

[
q∗(τ) e−

1
2 γ∗ζ − 4

∞

∑
n=1

J1(μne− 1
2 γ∗ζ)

μ2
n J1(μn)

Gn(τ)

]
, ζ ≥ 0, 0 ≤ τ ≤ τs, (45)

where

Gn(τ) = e−λnτ − (1 − e−λnτ)

λnτs
, (46)

the coefficients λn were determined from Formula (26), and the numbers μn, n = 1, 2, . . .,
are the single positive roots of Equation (27).

By putting ζ = 0 in the solution (45), the following formula was used to determine the
evolution of the dimensionless temperature rise of the heated surface that was obtained:

Θ̂∗(τ) = 1
γ∗

[
q∗(τ)− 4

∞

∑
n=1

Gn(τ)

μ2
n

]
, 0 ≤ τ ≤ τs. (47)
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4. The Heat Partition Ratio

We will generalize the results that were obtained above to the case of two (l = 1, 2)
FGM semi-spaces that exponentially increased with the distance from the surface z = 0 of
thermal conductivity as follows:

Kl(z) = Kl,0eγl z, z ≥ 0, Kl,0 ≡ Kl(0), γl ≥ 0, l = 1, 2. (48)

The surfaces of z = 0 of each semi-space were heated with the heat flux at the following
intensities:

ql(t) = αlq(t), 0 ≤ t ≤ ts, l = 1, 2, α1 = α, α2 = 1 − α, (49)

where q(t) is the function (42) and α is the unknown heat partition ratio (HPR) (Figure 2).

Figure 2. Scheme of separation of the friction pair elements.

Taking into account the form of the solutions (45) and (46), the temperature field in
each semi-space heated by heat fluxes of intensity (49) respectively, was written in the
following form:

Tl(z, t) = T0 + Θl,0Θ̂∗
l (ζl , τ∗), z ≥ 0, 0 ≤ t ≤ ts, l = 1, 2, (50)

where

Θ̂∗
l (ζl , τ∗) = 1

γ∗
l

e−
1
2 γ∗

l ζl

[
(1 − τ∗) e−

1
2 γ∗

l ζl − 4
∞

∑
n=1

J1(μne−
1
2 γ∗

l ζl )

μ2
n J1(μn)

Gl,n(τ
∗)
]

, ζl ≥ 0, 0 ≤ τ∗ ≤ 1, (51)

Gl,n(t∗) = e−λl,nτ∗ − (1 − e−λl,nτ∗)

λl,nτl,s
, (52)

λl,n =

(
1
2

γ∗
l μn

)2
τl,s, (53)

τ∗ = t
ts

, ζl =
z
al

, τl,s =
klts

a2
l

, γl =
γ∗

l
al

, kl =
Kl,0

clρl
, Θ̂∗

l =
Θ̂l

Θl,0
, Θl,0 =

αlq0al
Kl,0

, l = 1, 2, (54)

cl , ρl are the specific heat capacity and the density of the materials, respectively, μn > 0,
n = 1, 2, . . . are the single roots of Equation (27).
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Substituting z = 0 (ζl = 0) to the solution (51)–(54), the change in the temperature on
the heated surface was obtained in the following form:

Tl(t) = T0 + Θl,0Θ̂∗
l (τ

∗), 0 ≤ t ≤ ts, l = 1, 2, (55)

where

Θ̂∗
l (τ

∗) = 1
γ∗

l

[
1 − τ∗ − 4

∞

∑
n=1

Gl,n(τ
∗)

μ2
n

]
, 0 ≤ τ∗ ≤ 1. (56)

The coefficients of Θl,0 (54) in Formulas (50) and (55) contain an unknown heat parti-
tion ratio of α. In order to determine it, the equality condition of the mean temperature in
time on the heated surfaces was used as follows:

T̃1 = T̃2, (57)

where

T̃l =
1
ts

ts∫
0

Tl(t)dt, l = 1, 2, (58)

Considering the temperature on the heated surfaces (55) and (56) in the Formula (58),
after integration was found as follows:

T̃l = T0 + Θl,0Θ̃∗
l , l = 1, 2, (59)

where

Θ̃∗
l =

1
2γ∗

l

(
1 − 8

∞

∑
n=1

G̃l,n

μ2
n

)
, (60)

G̃l,n =
(1 − e−λl,n)

λl,n

(
1 +

1
λl,nτl,s

)
− 1

λl,nτl,s
, l = 1, 2, (61)

and the coefficients of λl,n were determined from the formula (53).
Substituting the mean temperature (59)–(61) to Equation (57), the HPR was obtained

in the following form:

α =
K∗

a∗Θ̃∗ + K∗ , (62)

where

a∗ = a1

a2
, K∗ =

K1,0

K2,0
, Θ̃∗ =

Θ̃∗
1

Θ̃∗
2

. (63)

If the effective heating depths are determined from the Formula [9] as follows:

al =
√

3klts, l = 1, 2, (64)

then from Formula (54) it follows that the dimensionless heating time of each semi-space is
equal to τl,s = 3−1 ∼= 0.333, and from Formulas (62) and (63) it follows that:

α =
Kε

Θ̃∗ + Kε

, (65)

where
Kε =

K∗
√

k∗
, k∗ = k1

k2
. (66)

Omitting the component containing a series, on the right-hand side of Formula (60),
i.e., assuming the following:

Θ̃∗
l
∼= 1

2γ∗
l

, l = 1, 2, (67)
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where
α ∼= K∗γ∗

a∗ + K∗γ∗ , (68)

and Formula (65) is as follows:

α ∼= Kεγ
∗

1 + Kεγ∗ , (69)

where

γ∗ =
γ∗

1
γ∗

2
. (70)

With the same effective heating depths (a∗ = 1) and dimensionless gradients of
materials (γ∗ = 1) from Formula (68), the known Block’ result [20] as follows:

α ∼= K∗

1 + K∗ , (71)

and from Formula (69), the classic Charron’s Formula [41] was achieved as follows:

α ∼= Kε

1 + Kε
, (72)

which is often used in analytical and numerical modeling of the frictional heating of
homogeneous materials during braking [42–44]. For the same materials of both semi-spaces
(K∗ = k∗ = γ∗ = a∗ = 1), all of the above obtained formulas give the value of the heat
partition ratio equal to α = 0.5.

It should be noted that the received formulas for the determination of HPR need
to be verified in the future with appropriate experimental data. Due to the lack of such
opportunity at that moment, the authors would be grateful for the provision of such data
or for carrying out the cooperative research. This would also allow us to establish the limits
of the applicability of the formulas. However, already at this stage of research, we can
assume the possibility of the practical use of the obtained formulas to determine HPR, due
to the usage of the classic methodology that has been approved for homogeneous materials.
Furthermore, the experimentally confirmed formulas for homogeneous materials can be
obtained from the proposed solution for FGMs, as a results of the proper limit approach.

An important element of the most general Formula (62) for determining the HPR are
the dimensionless time-averaged temperature rises Formulas (60) and (61) found in the
case of the heat flux intensity linearly decreasing in time. This case is often considered
when calculating the temperature of the brake systems that are operating in the mode with
a sudden increase in the contact pressure to the nominal value at the beginning of braking.
A classification of the remaining heat flux intensity temporal profiles has been proposed for
homogeneous materials, without and with consideration of the contact pressure rise [45,46].
Obtaining the appropriate solutions in the case of FGM is also one of the directions of our
research in the future.

5. Example of Calculation of the Heat Partition Ratio for an FGM Couple

Calculations were performed for two semi-limited bodies made of two-component
FGMs. The first (l = 1) element forms aluminum oxide Al2O3 (base, m = 0) and copper
Cu (core, m = 1), and the other (l = 2) contains zircon dioxide ZrO2 (base, m = 0) and
titanium alloy Ti-6Al-4V (core, m = 1). The thermo-physical properties of these materials
are demonstrated in Table 1.
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Table 1. Thermo-physical properties of FGM components [32].

Element Subscript
Material

Subscript, m Material

Thermal
Conductivity

K(0)
l,m, Wm−1K−1

Specific Heat
Capacity

c(0)
l,m, J kg−1K−1

Density ρ(0)
l,m, kgm−3

l = 1
base, 0 Al2O3 37.24 727.29 3990.92
core, 1 Cu 402.65 147.35 8947.92

l = 2
base, 0 ZrO2 1.94 452.83 6102.16
core, 1 Ti-6Al-4V 6.87 538.08 4431.79

The other operating parameters are the nominal heat flux intensity of q0 = 3.78 MW m−2,
the braking time of ts = 121 s, and the temperature at the initial time moment of T0 = 20 ◦C [32].
The dimensionless material gradient parameters of each element were calculated from the
relation [47] as follows:

γ∗
l = ln

(
Kl,1

Kl,0

)
, l = 1, 2. (73)

Obtaining the values of γ∗
1 = 2.38, γ∗

2 = 1.26. The specific heat capacity and density of
materials of the heated elements were determined according to the following mixture law:

cl = cl,1v + (1 − v)cl,0, ρl = ρl,1v + (1 − v)ρl,0, l = 1, 2, (74)

where v is the volume fractions of the base and core components. For their equal participa-
tion (v = 0.5), the following properties of FGM were found:

c1 = 437.32 J kg−1K−1, ρ1 = 6469.42 kgm−3, k1 = 1.32·10−5 m2s−1, (75)

c2 = 495.46 J kg−1K−1, ρ2 = 5266.96 kgm−3, k2 = 7.43·10−7 m2s−1. (76)

From Equation (64) the effective depths of the heat penetration were determined as
a1 = 21.8 mm, a2 = 5.2 mm. Next, based on Formulas (63), (66), and (70), the values of the
dimensionless parameters were calculated as follows: a∗ = 4.208, K∗ = 19.196, k∗ = 17.706,
Kε = 4.562, γ∗ = 1.883. This allowed for an estimation by means of Equations (60), (61)
dimensionless, time-averaged temperature rises of Θ̃∗

1 = 0.329, Θ̃∗
2 = 0.703, and their ratio

of Θ̃∗ = 0.468 (63).
By substituting the found parameter values successively to the right-hand sides of

Formulas (65) and (69), the proper values of the HPR were calculated as α = 0.907 and
α = 0.896. A slight (1.2%) difference in the obtained results allowed us to analyze the
influence of the dimensionless parameters of the thermal activity Kε (66) and the relative
gradient of the FGMs γ∗ (70) on the HPR value (Figure 3), on the basis of Formula (69) only.
For a fixed value of the thermal activity coefficient Kε, a rise of the parameter γ∗ causes
an increase in the amount of heat that is directed to the first element of the heated couple.
Conversely, by increasing the thermal activity of the friction pair at a predetermined value
γ∗, the amount of heat that is directed to the first element increases.

For the HPR values α1 = 0.896, α2 = 0.104 (49), from Equation (54), the scaling factors
of the temperature rises were determined to be Θ1,0 = 2034 ◦C and Θ2,0 = 1080 ◦C. Then,
based on the relations Formulas (55) and (56) the evolutions of the temperature on the
heated surfaces of each element were found (Figure 4).
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Figure 3. Isolines of the heat partition ratio α (69) in the coordinate system (γ∗, Kε).

 

Figure 4. Evolutions of temperature Tl , l = 1, 2 (55) and (56) on the heated surfaces z = 0 of the
considered semi-spaces made of FGMs.

It has been established that the temporal profiles of the temperature of the elements
are different, in particular in the final stage of the heating process. The time course of the
temperature of the first element (l = 1, Al2O3–Cu) is typical for the evolution of the friction
surface temperature during braking with a constant deceleration—a rapid increase in the
temperature at the beginning of braking, reaching its maximum value in the middle of the
process, followed by a temperature reduction until the standstill. However, in the second
element (l = 2, ZrO2–Ti–6Al–4V) a rise of temperature on the heated surface is monotonic
during the whole process. Such temperature behavior is decisively influenced by the
thermo-physical properties of the component materials of each element. In the functionally
graded friction couple under consideration, the materials of both of the components of
the first element have a significantly greater ability to dissipate the heat from the heated
surface than the materials of the second element (Table 1). Moreover, this is confirmed,
by the values of the coefficients α1 = 0.896, α2 = 0.104, which prove that the first element
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absorbs almost 90%, and the second only slightly more than 10% of the entire heat flux
intensity q (42). Due to the low thermal conductivity of the component materials of the
second element, in particular the zircon dioxide, the temperature of the heated surface of
this element continues to rise during heating, even with a linearly decreasing intensity of
the heat flux.

The results that are demonstrated in Figures 3 and 4 were obtained by using the HPR
value α = 0.896 that was found from the dependency (69). The approximated formula for
determining the α (69), as well as the exact Equation (65), was obtained by assuming that
the effective depths of the heating of the elements al , l = 1, 2 were determined from the
empirical Formula (64), so the corresponding values of the Fourier numbers τl,s, l = 1, 2
(54) were the same and equal to 1/3. The introduction of Formula (64) to the model is
justified when the thickness of the heated element is greater than the appropriate value al,
l = 1, 2 [2]. In general, for the determination of the temperature mode at the design stage
of the brake, the Fourier numbers τl,s, l = 1, 2 are given, and the effective heating depths
based on the relation (54) are calculated in the following form:

al =

√
klts

τl,s
, l = 1, 2. (77)

With consideration of Equation (75) for the selected friction couple and the established
time of heating (braking) ts = 12.1 s the ratio of the depths of heating a∗ (63) is determined
from the following relation:

a∗ =

√
k∗
τ∗

s
, τ∗

s =
τ1,s

τ2,s
, (78)

where k∗ is the ratio of the thermal diffusivities of the FGMs (66). By treating the Fourier
numbers τl,s, l = 1, 2 (54) as independent variables in Formula (62), their influence on
the HPR α was investigated with the previously determined values of the dimensionless
parameters, K∗ = 19.196, k∗ = 17.706, γ∗

1 = 2.38, and γ∗
2 = 1.26 for a given pair of

elements. The dimensionless parameter Θ̃∗ (63) included in Formula (62) was determined
from Formulas (60) and (61), and the finding of a∗ was made by using Formula (76). The
results of the calculations are presented in Figure 5.

  
(a) (b) 

Figure 5. Dependences of the heat partition ratio α (62) on: (a) Fourier number τ1,s for different values
of τ2,s; (b) Fourier number τ2,s for different values of τ1,s.

At a fixed value τ2,s, the HPR α quickly increases with increasing τ1,s, reaching its nom-
inal value at τ1,s ∼= 1.5 (Figure 5a). The largest nominal value α is achieved for τ1,s = 1/3,
i.e., when determining the effective heating depth using Formula (64). The results obtained
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at τ2,s = 1 and τ2,s = 2 practically coincide. A different nature of the HPR α change occurs
with a fixed value of the Fourier number τ1,s and increasing the values of τ2,s (Figure 5b).
By increasing τ2,s, the amount of heat that is absorbed by the first element decreases,
reaching a minimum value at τ2,s ∼= 1.5. It should be noted that the Fourier numbers τl,s,
l = 1, 2 (54) are dimensionless input parameters that play an important role in estimating
the temperature mode of the brakes. The designers calculate their values after determining
the geometric parameters al , l = 1, 2 (63). In the quality of these parameters, they choose
the thickness of the friction elements, or, if they are greater than the effective depth of the
heat penetration (64), then the latter. Then, having previously found the maps of those, as
shown in Figure 5, the designer can easily estimate the HPR of a given braking system.

6. Conclusions

A methodology was proposed in order to determine the heat partition ratio (HPR)
in the braking systems with friction pair elements that were made of functionally graded
materials (FGMs). The basis of this methodology is an exact solution to the initial-boundary
problem of heat conduction that is formulated for the FGM semi-space that is heated on
its surface by a heat flux with an intensity that decreases linearly with time and includes
an unknown a priori HPR. For its determination, the condition of the equality of the time-
averaged temperature on the heated surfaces of the two different semi-spaces was used.

As an example, the heat partition ratio was found for the FGM friction couple that
consisted of Al2O3–Cu and ZrO2–Ti–6Al–4V. It was established that element Al2O3–Cu
absorbs most of the heat that is generated due to friction (almost 90%). The maximum
temperature on the friction surface of the Al2O3–Cu element is about 820 ◦C and is achieved
in the middle of the braking time. However, the highest temperature of the friction surface
of the ZrO2–Ti–6Al–4V element is achieved at the stop moment and amounts to 970 ◦C.
Thus, the crucial influence on the evolution of the temperature in the functionally graded
friction couple have the thermo-physical properties of the component materials.

Then, the simulation of the HPR dependency on the dimensionless parameters, such as
the thermal activity of the friction couple, the gradient materials, and the Fourier numbers
was carried out. It was found that increasing the values of the friction couple thermal
activity or the gradient materials ratio causes an increase in the HPR. The scheme of the
map development for a given functionally graded friction pair was proposed, which allows
for a quick estimation of the HPR, depending on such input parameters as their Fourier
numbers. The importance of having such maps for the designer is indicated by the results
that have been obtained in the case of the homogeneous materials [9,28].
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Nomenclature

a Effective depth of heat penetration (m )
c Specific heat capacity (J kg−1K−1)
f0 Coefficient of friction
Ik(·) Modified Bessel functions of the first kind of the kth order
Jk(·) Bessel functions of the first kind of the kth order
k Thermal diffusivity (m2s−1)
K Thermal conductivity (Wm−1K−1)
Kε Dimensionless coefficient of thermal activity of friction couple
p Dimensionless parameter of the Laplace integral transform
q Intensity of heat flux (Wm−2)
q0 Nominal intensity of the heat flux (Wm−2)
t Time (s)
ts Braking time (s)
T Temperature (◦C)
T0 Initial temperature (◦C)
v Volume fraction of the material phases (dimensionless)
z Spatial coordinate in axial direction (m )
α Heat partition ratio
γ Parameter of material gradient (m−1)
γ∗ FGMs gradient ratio
Θ Temperature rise (◦C)
Θ∗ Dimensionless temperature rise
Θ0 Scaling factor of temperature rise (◦C)
ρ Density (kgm−3)
τ∗ Dimensionless time
τs Dimensionless braking time
ζ Dimensionless spatial coordinate in axial direction
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Abstract: The object of study is the temperature of a braking system, operating in repetitive short-
term (RST) mode. One element of the considered friction pair is made of a functionally gradient
material (FGM), and the other of a homogeneous material. To determine the temperature on the
friction surfaces of both elements, the previously obtained, exact solution of the boundary value
problem of heat conduction was adopted, with account of the heat generation due to the friction. A
calculation scheme was proposed that takes into consideration thermal sensitivity of materials and
variations of the friction coefficient under the influence of temperature. Calculations were performed
for two-component FGM (ZrO2–Ti-6Al-4V) in combination with gray cast iron (ChNMKh). It was
found that for selected friction pair materials, consideration of their thermal sensitivity reduces the
time of braking and the value of temperature achieved on the friction surfaces. At the same time, the
whole process was characterized by a good stability of braking with a slight decrease in efficiency in
each subsequent cycle.

Keywords: repetitive short-term braking operation; functionally graded materials; frictional heating;
temperature

1. Introduction

The operating mode of vehicles may consist of successive cycles of braking and
accelerating, which is typical for driving in mountainous or urban terrains. Braking
systems of vehicles in such a driving mode also work periodically, so the friction pair
elements are frictionally heated during braking applications and are convectively cooled
during acceleration stages [1–3]. However, the unforced convective heat exchange with the
environment is not enough to prevent the problem of overheated friction elements during
braking actions, because it has insignificant influence on the temperature distribution [4,5].
Therefore, the characteristic feature of the repetitive short-term (RST) braking mode is that
the temperature increases throughout the volumes of the friction couple elements with
each subsequent braking cycle. Excessive temperature conditions occurring at repeated
braking processes may lead to thermal instability of the friction couple and changes in
material properties, and hence a significant reduction in braking effectiveness.

In most of the published studies concerning frictional heating processes in braking
systems under the RST mode, numerical methods have been used to solve the thermal prob-
lems of friction [1–5]. Partly, this stems from the fact that they allow for direct application
of the inhomogeneous temperature state of friction elements that has been found at the end
of each cycle as the initial temperature distribution in the next cycle, which is impossible to
perform by means of an analytical approach. The thermal behavior of the brake disc system
during single as well as RST braking modes have been studied in [4,5], with consideration
of the convective heat exchange on the free surfaces of a disc. The numerical solutions to
the problem of heat conduction and the corresponding quasistatic thermoelasticity problem
were obtained using the finite element method (FEM). The influence of the heat transfer
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coefficient on the temperature and thermal stress distributions in a brake disc during
RST was investigated. It was concluded that free convection cooling of the disc has no
pronounced effect on the temperature and thermal stresses during the single braking event,
whereas by increasing the number of braking cycles, the heat exchange process has a higher
effect on the thermal state of a brake system, particularly in the case of long-lasting cooling
periods [5]. The temperature generated during repetitive braking slightly drops with the
rise in the heat transfer coefficient, and this relationship has been found to be approximately
linear in time. Another computational model for determining the transient temperature
field in a brake disc during repeated braking is proposed in [1], with a special emphasis
placed on the mutual dependence of velocity and maximum temperature. The calculations
were carried out with consideration of the temperature-dependent coefficient of friction
and thermal sensitivity of materials. The mean, flash, maximum, and volume temperature
of the disc were determined based on the equations of heat dynamics of friction and wear.
It was shown that the flash temperature had the highest values at the beginning of process,
and gradually decreased with time in each successive braking [1]. This is consistent with
the conclusion formulated in [4] that during repetitive braking, an increase in the number
of brake cycles affects the local contact conditions, which leads to the growth of the real
contact area between the friction elements, where the flash temperature appears. A similar
coupled calculation scheme is proposed in [2], which allows one to take into consideration
the interdependence of the friction coefficient and the maximum temperature achieved
during each stage of the RST braking mode. Such a formulated nonlinear thermal problem
of friction was solved using the finite difference method.

Besides numerical models, analytical methods are applied for simulating the frictional
heating process during repetitive short-term braking [3,6,7]. Then, in order to establish the
initial condition of the thermal problem of friction for the subsequent braking cycle, the
volume-averaged temperature of friction components is involved. Comparative analysis of
the temperature distribution in a ventilated disc brake system during repeated braking is
carried out in [3] by means of the numerical (FEM), analytical, and experimental methods.
The proposed numerical model simulated the mutual motion of the stationary pad and
the rotating disc by applied moving heat source. The calculated temperature field was
compared with the corresponding results obtained from analytical solutions to the problems
of heat conduction, as well as with the experimental data achieved from the thermocouple’s
measurements. It was concluded that results determined from both theoretical methods
are convergent with the experimental data [3]. Another analytical scheme to find the mean
and volume temperature during repetitive short-term braking is proposed and successfully
verified using experimental data in [6]. In [7], considering the thermal friction problem is
considered during repetitive short-term braking mode by means of an analytical approach.
A solution to the linear boundary value problem of heat conduction supported by empirical
dependencies of material properties was used to calculate the mean temperature. Thermal
sensitivity of the friction pair materials was partially taken into account by adjusting
constant values of their properties and friction coefficient to the actual thermal state of
elements in each braking application.

The above-mentioned studies concern the frictional heating of braking systems with
friction elements made of homogeneous materials, or composites with spatially averaged
properties. In this paper, an analytical calculation scheme is proposed to determine the
temperature during repetitive short-term braking mode, in a tribosystem with a functionally
graded friction element.

2. Scheme of Braking and Model Assumptions

Brake system operation during repetitive short-term (RST) mode is based on the
successive performance of n cycles. Each of the full cycles k = 1, 2, . . . , (n − 1) consists
of two stages—braking and accelerating—and the last, n-th interrupted cycle has only a
braking period [7,8]. In the braking stages, with constant contact pressure p0, the velocity
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of the system V(k) changes linearly from the initial value V0 to the zero at the stop moment
t = t(k)s [7]:

V(k)(t) = V0 V∗(k)(t), V∗(k)(t) = 1 − t

t(k)s

, 0 ≤ t ≤ t(k)s , (1)

t(k)s =
2W0

q(k)0 Aa
, k = 1, 2, . . . , n, (2)

where Aa—nominal area of contact between the friction elements, W0—initial kinetic energy
of the system, q(k)0 —nominal value of the specific friction power. After a stop in each cycle,
there is an acceleration stage, which consists of increasing the speed to the initial value,
again V0, in the time t = tc, as follows [7]:

V(k)(t) = V0 V∗(k)(t), t(k)s ≤ t ≤ tk = t(k)s + tc, (3)

V∗(k)(t) = t − t(k)s
tc

, k = 1, 2, . . . , n − 1. (4)

The full duration of the RST brake mode is equal to:

tb = t(1)s + t(2)s + . . . + t(n)s + (n − 1)tc. (5)

Braking stages are accompanied by intensive frictional heating of the friction elements.
Before determining the resulting transient temperature field, the following simplifying
assumptions were made:

1. Initial temperature of considered a friction pair at the beginning of the subsequent
braking is equal to the volume-averaged temperature of the system;

2. As a result of the friction forces interaction, the heat is generated on the contact area of
the elements and absorbed by them along the normal direction to the friction surface.
The friction thermal contact of the elements during heating is perfect;

3. Unforced convection cooling of the system during braking stages is omitted.

According to the above assumptions, the friction pair can be formed by two semi-
infinite bodies z ≥ 0 and z ≤ 0, and the sought transient temperature field is one-
dimensional, i.e., T = T(z, t). The scheme of the considered tribosystem is illustrated
below, in Figure 1.

Figure 1. Scheme of the system.

Further, all variables and parameters related to the first semispace z ≥ 0 are indicated
by a subscript l = 1, and to the second semispace z ≤ 0 by a subscript l = 2. The first
semispace z ≥ 0 is made of the two-component (base and core) FGM. Suppose that K1,m,
c1,m, ρ1,m are the thermal conductivity, specific heat, and density of the materials of the base
(m = 1) and core (m = 2), respectively. The thermal conductivity of the FGM increases
exponentially (with the gradient parameter γ ≥ 0) in the direction normal to the working
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surface of the base. The homogeneous material of the second semispace z ≤ 0 has the
coefficient of thermal conductivity K2, specific heat c2, and density ρ2.

Additionally, it was assumed that the materials of both elements and the friction
coefficient f are thermally sensitive [2]:

K1,m(T) = K(0)
1,mK∗

1,m(T), c1,m(T) = c(0)1,mc∗1,m(T), ρ1,m(T) = ρ
(0)
1,mρ∗1,m(T), m = 1, 2, (6)

K(0)
1,m ≡ K1,m(T0), c(0)1,m ≡ c1,m(T0), ρ

(0)
1,m ≡ ρ1,m(T0), m = 1, 2, (7)

K2(T) = K(0)
2 K∗

2(T), c2(T) = c(0)2 c∗2(T), ρ2(T) = ρ
(0)
2 ρ∗2(T), (8)

K(0)
2 ≡ K2(T0), c(0)2 ≡ c2(T0), ρ

(0)
2 ≡ ρ2(T0), (9)

f (T) = f0 f ∗(T), f0 ≡ f (T0), (10)

where T0—initial temperature of the system, and the corresponding dimensionless temper-
ature functions are marked with the superscript ‘∗’. Typically, dependencies of the type
(6)–(10) are obtained as a result of processing appropriate experimental data [9].

3. Analytical Model

A key element of the proposed mathematical model is the solution to the appropriate
thermal problem of friction for the considered system during execution of the individual
braking processes. On the basis of the above qualitative assumptions of such a problem, a
non-linear boundary value problem of heat conduction can be formulated with account of
heat generation due to friction. The considered system consists of two semi-infinite bodies,
one of which is made of a FGM and the other of a homogeneous material. Unfortunately,
the significant nonlinearity of such a problem, caused by the thermal sensitivity of the
friction coefficient as well as mechanical and thermal properties, means that the solutions
can be obtained only by the numerical methods [1,2].

Another approach is also known, consisting of adapting an appropriate solution to the
linear problem to determine the temperature of the thermally sensitive braking system [8].
It has been carried out for the case of a friction pair made of homogeneous materials [7]. This
study presents an algorithm to establish the temperature of a thermally sensitive braking
system with a friction couple consisting of a functionally graded element in combination
with a homogeneous one. For such a friction pair, an exact solution of the linear, thermal
problem of friction was obtained (with the coefficient of friction and thermophysical
properties unchanged) during single braking with a constant deceleration [10]. Based on
such a solution, the evolution of the temperature on the friction surfaces of the system
operating in RST mode during the subsequent k–th braking can be calculated from the
formulas [10]:

T(k)(t) = T̂(k) + Λ(k)T∗(k)(τ), 0 ≤ t ≤ t(k)s , k = 1, 2, . . . , n, (11)

where

Λ(k) =
q(k)0 a(k)

K(k)
1,1

, (12)

T∗(k)(τ) = 1
γ∗(k)

⎡⎣1 − 4
π

∞∫
0

G(k)(x)P(k)(τ, x)dx

⎤⎦, 0 ≤ τ ≤ τ
(k)
s , (13)

G(k)(x) =
K(k)

ε [J1(x)]2

x2
{
[J0(x)]2 + [K(k)

ε J1(x)]
2
} , (14)
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P(k)(τ, x) = e−Xkτ − (1 − e−Xkτ)

Xkτ
(k)
s

, Xk =
(γ∗(k)x)2

4
, (15)

τ =
k(k)1 t

(a(k))2 , τ
(k)
s =

k(k)1 t(k)s

(a(k))2 , k(k)1 =
K(k)

1,1

ρ
(k)
1 c(k)1

, k(k)2 =
K(k)

2

ρ
(k)
2 c(k)2

, (16)

c(k)1 = vc(k)1,1 + (1 − v)c(k)1,2 , ρ
(k)
1 = vρ

(k)
1,1 + (1 − v)ρ(k)1,2 , 0 ≤ v ≤ 1, (17)

K(k)
ε =

K∗(k)
√

k∗(k)
, K∗(k) =

K(k)
2

K(k)
1,1

, k∗(k) =
k(k)2

k(k)1,1

, γ∗(k) = ln

⎛⎝K(k)
1,2

K(k)
1,1

⎞⎠, (18)

K(k)
1,m ≡ K1,m(T̂(k)), c(k)1,m ≡ c1,m(T̂(k)), ρ

(k)
1,m ≡ ρ1,m(T̂(k)), m = 1, 2, (19)

K(k)
2 ≡ K2(T̂(k)), c(k)2 ≡ c2(T̂(k)), ρ

(k)
2 ≡ ρ2(T̂(k)), (20)

q(k)0 = f (k)p0V0, f (k) ≡ f (T̂(k)), (21)

a(k) = max(a(k)1 , a(k)2 ), (22)

a(k)l =

⎧⎨⎩ dl , a(k)l, e f f ≥ dl

a(k)l, e f f , a(k)l, e f f < dl
, a(k)l,e f f =

√
3k(k)l t(k)s , l = 1, 2, (23)

where Jn(x), n = 0, 1—Bessel functions of the first kind; dl , l = 0, 1—thickness of the
friction elements (e.g., pad and disc).

The volume temperature T̂(k) of the friction system before the start of the k–th braking
was found as [7]:

T̂(k) = 0.5(T̂(k)
0 + T̂(k)

1 ), k = 1, 2, . . . , n, (24)

where

T̂(k)
i = T0 +

α
(k)
i W0

2G(k)
2,i c(k)2,i

⎛⎝ e−β
(k)
i tc − e−kβ

(k)
i tc

1 − e−β
(k)
i tc

⎞⎠, i = 0, 1, (25)

β
(k)
i =

hAvent

2G(k)
2,i c(k)2,i

, (26)

G(k)
2,i = A2d2ρ

(i,k)
2 , (27)

c(0,k)
2 = c(0)2 , c(1,k)

2 = c2(T̂
(k)
0 ), ρ

(0,k)
2 = ρ

(0)
2 , ρ

(1,k)
2 = ρ2(T̂

(k)
0 ), (28)

where h—coefficient of the convective heat transfer from the surface of the disc with an area
Avent during the acceleration stages, α

(k)
i —heat partition ratio (HPR). The methodology for

determining HPR for the functionally graded friction couple is proposed in [11]. Based on
this methodology, the heat transfer coefficient in formula (25) for the considered friction
pair (FGM—homogeneous material) was found in the form [11]:

α
(k)
i =

ε
(k)
i

1 + ε
(k)
i

, ε
(k)
i = 0.625

d∗K∗(k)
i

γ
∗(k)
i

√
π

τ
(i,k)
2

, k = 1, 2, . . . , n, i = 0, 1, (29)

where

K∗(k)
i =

K(i,k)
2

K(i,k)
1,1

, γ
∗(k)
i = ln

⎛⎝K(i,k)
1,2

K(i,k)
1,1

⎞⎠, d∗ = d1

d2
, (30)

τ
(i,k)
2 =

k(i,k)2 t(k)s

d2
2

, k(i,k)2 =
K(i,k)

2

ρ
(i,k)
2 c(i,k)2

, (31)
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K(0,k)
1,m = K(0)

1,m, K(1,k)
1,m = K1,m(T̂

(k)
0 ), m = 1, 2, K(0,k)

2 = K(0)
2 , K(1,k)

2 = K2(T̂
(k)
0 ). (32)

It should be noted that from formulas (24) and (25), it follows that before the start of
the first braking (k = 1), the volume temperature T̂(1) is equal to the initial temperature
of the system T0. Before the start of subsequent braking, when determining the volume
temperature T̂(k), k = 2, . . . , n the first component T̂(k)

0 in formula (24) was also established
using the properties of the materials at the initial temperature T0, while the second compo-
nent T̂(k)

1 was used to correct the result by taking into consideration the thermal sensitivity
of the materials.

4. Numerical Analysis

The following scheme for determination of the temperature evolution on the working
surfaces of selected friction pair elements was proposed:

1. Based on experimental data, finding the dependences of material properties and the
friction coefficient on temperature in forms (6)–(10). Determining the value of material
properties K(0)

1,m, c(0)1,m, ρ
(0)
1,m, m = 1, 2, (7), K(0)

2 , c(0)2 , ρ
(0)
2 (9) and the coefficient of friction

f0 (10) at the initial temperature T0;
2. Introduction of the input operational parameters: p0, V0, T0, W0, n, Aa, Avent, d1, d2, h,

tc,v;
3. Start of the first braking: k = 1;
4. Determination of the volume temperature T̂(k) (24)–(32);

5. Using the dependencies (6)–(10), establishment of the material properties values K(k)
1,m,

c(k)1,m, ρ
(k)
1,m, m = 1, 2 (19), K(k)

2 , c(k)2 , ρ
(k)
2 (20), the friction coefficient f (k), and specific

friction power q(k)0 (21) at the volume temperature T̂(k);

6. Determination of the stop time t(k)s (2) and temporal profile of velocity V(k)(t),

0 ≤ t ≤ t(k)s (1);
7. Calculation of the temperature evolution T(k)(t), 0 ≤ t ≤ t(k)s (11)–(23);
8. Starting the next k + 1 braking cycle and repeating starting from point (5) or ending

the calculation process after reaching the equality k = n.

The above scheme was performed for a selected friction pair, which the first element is
made of the two-component FGM: zirconium dioxide ZrO2 (base, m = 1)—titanium alloy
Ti − 6Al − 4V (core, m = 2), and the second homogeneous element is made of the gray cast
iron ChNMKh.

The properties (7) and (9) of these materials at the initial temperature T0 = 20◦C are as
follows [10,11]:

ZrO2

K(0)
1,1 = 1.94 W m−1 K−1, c(0)1,1 = 452.83 J kg−1 K−1, ρ

(0)
1,1 = 6102.16 kg m−3, (33)

Ti − 6Al − 4V

K(0)
1,2 = 6.87 W m−1 K−1, c(0)1,2 = 538.08 J kg−1 K−1, ρ

(0)
1,2 = 4431.79 kg m−3, (34)

ChNMKh

K(0)
2 = 52.17 W m−1 K−1, c(0)2 = 444.6 J kg−1 K−1, ρ

(0)
2 = 7100 kg m−3. (35)

Dependencies of material properties on the temperature have the forms:
ZrO2 [12–15]

K1,1(T) = 1.9365 + 0.7 · 10−4T + 0.5 · 10−6 T2 − 0.2 · 10−9T3, (36)

c1,1(T) = 437.96 + 0.7767T − 0.17 · 10−2T2, (37)
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ρ1,1(T) = 6104.6 − 0.1212T − 0.4 · 10−4T2 + 0.3 · 10−7T3 − 0.1 · 10−10T4, (38)

Ti − 6Al − 4V [16,17]

K1,2(T) = 6.6926 + 8.9177 · 10−3 T + 6.8432 · 10−6T2, (39)

c1,2(T) = 529.9316 + 0.4154T − 4.01646 · 10−4T2 + 1.6364 · 10−7T3, (40)

ρ1,2(T) = 4434 − 0.1088T − 0.8 · 10−4T2 + 10−7T3 − 0.6 · 10−10T4, (41)

ChNMKh [18]
K2(T) = 53.24 − 0.028T, (42)

c2(T) = 432.43 + 0.559T + 2.712 · 10−4T2 + 1.657 · 10−6T3 + 9.439 · 10−10T4, (43)

ρ2(T) = ρ
(0)
2 . (44)

The dependence of the friction coefficient on temperature for the considered friction
pair has the form (10), where [19]

f0 = 0.27, f ∗(T) = e−κ(T∗−1), T∗ = T/T0, κ = 0.7 · 10−4. (45)

Graphs of the corresponding dimensionless functions K∗
1,m(T) = K1,m(T)/K(0)

1,m,

c∗1,m(T) = c1,m(T)/c(0)1,m, ρ∗1,m(T) = ρ1,m(T)/ρ
(0)
1,m, m = 1, 2, K∗

2(T) = K2(T)/K(0)
2 ,

c∗2(T) = c2(T)/c(0)2 , ρ∗2(T) = ρ2(T)/ρ
(0)
2 and f ∗(T) are presented in Figure 2.

Calculations were made with the following operating parameters [7]:
p0 = 1.47 MPa, V0 = 27.78 m s−1, W0 = 392.1 kJ, n = 5, Aa = 4.05 · 10−2m2,
Avent = 4.44 · 10−2m2, d1 = 5.5 mm, d2 = 11 mm, h = 100 Wm−1K−1, tc = 5 s, v = 0.5.

Temporal profiles of the velocity V(k)(t) (1), (2) and specific friction power
q(k)(t) = f (k)p0V(k)(t), 0 ≤ t ≤ t(k)s , k = 1, 2, . . . , 5 are illustrated in Figure 3. A no-
ticeable effect is the extension of the braking stage in each subsequent cycle of the process
(Figure 3a). During each of the five braking applications, the intensity of the performed
friction work (equal to the area under the graph) is the same (Figure 3b). This fact made
it possible to compare the relevant temperature evolutions, demonstrated in Figure 4.
This figure shows a comparison of friction surface temperature changes during braking
T(k)(t) (11)–(24), found with (solid lines) and without (dotted lines) consideration of the
dependencies (37)–(45) of material properties on the temperature. Results corresponding
to the dotted curves were obtained for the properties of materials (34)–(36) at the initial
temperature T0 = 20◦C. In both variants, temperature changes of the friction coefficient
were taken into account in form (46).

With the exception of the first braking, consideration of the materials’ thermal sen-
sitivity resulted in a drop of the temperature on the friction surfaces. This effect is most
noticeable in the last, fifth braking. Calculated values of the friction coefficient f (k) (21),
time of braking t(k)s (2), volume temperature T̂(k) (24)–(32), and maximum temperature
for each of the five braking actions, obtained with account of thermal sensitivity, are pre-
sented in Table 1. Corresponding data found for constant values of material properties are
demonstrated in Table 2. Additionally, the data from Table 1 are presented in graphical
form in Figure 5. With each successive braking, the coefficient of friction f (k) at the volume
temperature T̂(k) decreases, while the braking time t(k)s , volume temperature T̂(k), and
maximum temperature T(k)

max increase. Consideration of materials’ thermal sensitivity in the
proposed analytical model results in greater stability of the friction coefficient value, shorter
time of braking stages, lower values of volume, and maximum temperature, compared to
the corresponding data found with unchanged material properties. The differences in the
temperature values, obtained with and without account of the thermal sensitivity of the
friction pair materials, increase with each successive braking.
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(a) (b) 

 
 

(c) (d) 

Figure 2. Temperature dependencies of the dimensionless material properties: (a) coefficient of
thermal conductivity; (b) specific heat; (c) density; and (d) friction coefficient of the considered
friction pair.

 

(a) (b) 

Figure 3. Evolutions of the: (a) velocity; (b) specific friction power, during each of the five
braking applications.
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Figure 4. Evolutions of temperature on the friction surface during each of the five braking actions
with (solid lines) and without (dotted lines) taking into account the thermal sensitivity of materials.

Table 1. Calculation results obtained with consideration of the materials’ thermal sensitivity.

k 1 2 3 4 5

f (k) 0.27 0.25 0.23 0.21 0.20

t(k)s , s 1.77 1.94 2.10 2.26 2.41
T̂(k), ◦C 20 86.85 143.21 193.48 239.74

T(k)
max, ◦C 530.27 561.29 591.46 621.11 650.49

Table 2. Calculation results obtained with constant properties of materials.

k 1 2 3 4 5

f (k) 0.27 0.24 0.22 0.20 0.18

t(k)s , s 1.77 1.95 2.15 2.36 2.60
T̂(k), ◦C 20 89.83 158.79 226.89 294.12

T(k)
max, ◦C 530.27 575.76 621.75 668.19 715.04

Due to the fact that the curve of friction heat resistance (Figure 2d) is monotonically
increasing the function of the temperature, the change in the friction coefficient during
successive braking has the opposite form to the evolution of temperature (Figure 6). At the
beginning of each braking cycle, the coefficient of friction is reduced until the maximum
temperature T(k)

max is reached. In the subsequent period of the temperature drop, which lasts
until the stop time t(k)s , the coefficient of friction slightly grows. With the increase in the
number of braking applications, the minimum value of f (k) decreases.
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(a) (b) 

 
(c) (d) 

Figure 5. Dependencies on the number of braking applications k of: (a) friction coefficient f (k) (21);

(b) braking time t(k)s (2); (c) volume temperature T̂(k) (24); (d) maximum temperature on the friction

surface T(k)
max.

Figure 6. Evolution of friction coefficient f (k) (21) during five successive braking cycles.

88



Materials 2023, 16, 881

On the basis of the results shown in Figure 6, the parameters characterizing the
operation of the braking system during the subsequent cycle, such as the average value of
the friction coefficient f (k)m , its stability f (k)s = f (k)m / f (k)max, fluctuation f (k)f = f (k)min/ f (k)max, and

braking efficiency f (k)e f f = f (k)s /(t(k)s )
2
, were determined (Table 3). All braking cycles were

characterized by good stability, and the first braking turned out to be the most effective for
the selected friction pair. With each subsequent braking, the efficiency decreases.

Table 3. Parameters of the braking process evaluation.

k 1 2 3 4 5

f (k)m 0.149 0.142 0.135 0.129 0.123

f (k)s 0.553 0.576 0.593 0.608 0.620

f (k)f
0.489 0.515 0.534 0.550 0.563

f (k)e f f , s−2 0.177 0.153 0.134 0.119 0.107

5. Conclusions

An analytical scheme was proposed to determine the temperature during the repeated
short-term (RST) operation mode of the braking system, in which one of the friction
elements is made of a functionally gradient material (FGM). The proposed approach
is a generalization of the authors’ results concerning a single braking process [10–12].
Calculations were carried out for a friction pair made of a two-component FGM (base ZrO2,
core Ti–6Al–4V) and ChNMKh gray cast iron, for five braking actions. It was found that
the braking time, the volume, and maximum temperature values increased almost linearly
with the number of braking cycles. Involving the thermal sensitivity of materials into the
calculation model causes a decrease in the maximum temperature value in relation to the
results obtained for materials with invariant properties under temperature changes. This
effect becomes more noticeable with each subsequent braking cycle. The coefficient of
friction decreases rapidly at the beginning of each braking to a minimum value, then begins
to increase slightly until standstill. The considered friction pair is characterized by good
braking stability with sufficient efficiency, slightly decreasing with each successive braking.

It should be noted that the problem of determining the effect of FGM on temperature
is currently intensively developed not only for bodies with unidirectional heat extension.
An exact solution for transient heat conduction problem in an axisymmetric cylinder made
of FGM whose thermal conductivity differs in two (radial and longitudinal) directions has
been obtained [20]. Another analytical solution for steady-state heat transfer in a hollow
sphere made of functionally graded material has been proposed [21].
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Nomenclature

a Effective depth of heat penetration of the friction element (m )
Aa Area of the nominal contact region (m2)
Avent Area of the ventilated surface of the brake disc (m2)
c Specific heat (J kg−1K−1)
d Thickness of friction elements (m )
f Coefficient of friction (dimensionless)
h Coefficient of heat transfer (W m−2K−1)
Jk(·) Bessel functions of the first kind of the kth order
k Thermal diffusivity (m2s−1)
K Thermal conductivity (W m−1K−1)
Kε Dimensionless coefficient of thermal activity of friction couple
n Number of brakings in RST brake mode
p Pressure on the contact surface (Pa)
p0 Nominal value of the contact pressure (Pa)
q Specific friction power (W m−2)
q0 Nominal value of specific friction power (W m−2)
t Time (s)
tb Time of performance of all RST mode of braking (s)
tc Cooling time during acceleration stage (s)
ts Stop time (s)
T Temperature (◦C)
T∗ Dimensionless temperature
T̂ Volume temperature (◦C)
T0 Initial temperature (◦C)
v Volume fraction of the FGM components (dimensionless)
V Velocity (m s−1)
V0 Initial velocity (m s−1)
W0 Initial kinetic energy (J)
z Spatial coordinate in axial direction (m )
α Heat partition ratio (dimensionless)
γ Parameter of material gradient (m −1)
Λ Scaling factor of temperature (◦C)
ρ Density (kg m−3)
τ Dimensionless time
τs Dimensionless time of braking
superscript k Number of a braking cycle
subscript l Number of the friction pair element
subscript m Number of the component material of functionally graded element
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4. Adamowicz, A.; Grześ, P. Analysis of disc brake temperature distribution during single braking under non-axisymmetric load.

Appl. Therm. Eng. 2011, 31, 1003–1012. [CrossRef]
5. Adamowicz, A. Effect of convective cooling on temperature and thermal stresses in disk during repeated intermittent braking. J.

Frict. Wear 2016, 37, 107–112. [CrossRef]
6. Dunaevsky, V.V. Prediction of railroad friction braking temperatures: Prediction of average bulk and average surface temperatures

of railroad wheels and brake discs. Tribol. Trans. 1991, 34, 343–352. [CrossRef]
7. Yevtushenko, A.; Topczewska, K.; Kuciej, M. Analytical Determination of the Brake Temperature Mode during Repetitive

Short-Term Braking. Materials 2021, 14, 1912. [CrossRef] [PubMed]
8. Chichinadze, A.V.; Braun, E.D.; Ginzburg, A.G.; Ignat’eva, Z.V. Calculation, Testing and Selection of Friction Couples; Nauka: Moscow,

Russian, 1979. (In Russian)
9. Chichinadze, A.V. Polymers in Friction Assembles of Machines and Devices: A Handbook; Allerton Press Inc.: New York, NY, USA, 1984.

90



Materials 2023, 16, 881

10. Yevtushenko, A.; Kuciej, M.; Topczewska, K.; Zamojski, P. Temperature in the Friction Couple Consisting of Functionally Graded
and Homogeneous Materials. Materials 2022, 15, 3600. [CrossRef] [PubMed]

11. Yevtushenko, A.; Topczewska, K.; Zamojski, P. The Heat Partition Ratio during Braking in a Functionally Graded Friction Couple.
Materials 2022, 15, 4623. [CrossRef] [PubMed]

12. Yevtushenko, A.; Topczewska, K.; Zamojski, P. Influence of Thermal Sensitivity of Functionally Graded Materials on Temperature
during Braking. Materials 2022, 15, 963. [CrossRef] [PubMed]

13. Kingery, W.D.; Francl, J.; Coble, R.L.; Vasilos, T. Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to
Zero Porosity. J. American Ceramic Soc. 1954, 37, 107–110. [CrossRef]

14. Pankratz, L.B. Thermodynamic Properties of Elements and Oxides-Bulletin 672; U.S. Bureau of Mines: Washington, DC, USA, 1982.
15. Taylor, D. Thermal expansion data. II: Binary oxides with the fluorite and rutile structures, MO2, and the antifluorite structure,

M2O. Trans. J. British Ceramic Soc. 1984, 83, 32–37.
16. Deem, H.W.; Wood, W.D.; Lucks, C.F. The relationship between Electrical and Thermal Conductivities of Titanium Trans. Metall.

Soc. AIME 1958, 212, 520–523.
17. Cezairrliyan, A.; McClure, J.L.; Taylor, R.J. Thermophysical Measurements on 90Ti-6Al-4V Alloy Above 1450 K Using a Transient

(Subsecond) Technique. J. Res. Nat. Bur. Stand.–A Phys. Chem. 1977, 81, 251–256. [CrossRef]
18. Chichinadze, A.V.; Matveevskii, R.M.; Braun, E.P. Materials in Triboengineering of Unsteady Processes; Nauka: Moscow, Russia, 1986.
19. Fu, P.; Zhao, J.; Zhang, X.; Kang, G.; Wang, P.; Kan, Q. Thermo-mechanically coupled sliding contact shakedown analysis of

functionally graded coating-substrate structures. Int. J. Mech. Sci. 2022, 222, 107241. [CrossRef]
20. Delouei, A.A.; Emamian, A.; Karimnejad, S.; Sajjadi, H. A closed-form solution for axisymmetric conduction in a finite functionally

graded cylinder. Int. Commun. Heat Mass Transf. 2019, 108, 104280. [CrossRef]
21. Delouei, A.A.; Emamian, A.; Karimnejad, S.; Sajjadi, H.; Jing, D. Two-dimensional analytical solution for temperature distribution

in FG hollow spheres: General thermal boundary conditions. Int. Commun. Heat Mass Transf. 2020, 113, 104531. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

91



materials

Article

Analytical Determination of the Brake Temperature Mode
during Repetitive Short-Term Braking

Aleksander Yevtushenko, Katarzyna Topczewska and Michal Kuciej *

Citation: Yevtushenko, A.;

Topczewska, K.; Kuciej, M. Analytical

Determination of the Brake

Temperature Mode during Repetitive

Short-Term Braking. Materials 2021,

14, 1912. https://doi.org/10.3390/

ma14081912

Academic Editor: Chuang Dong

Received: 15 February 2021

Accepted: 7 April 2021

Published: 11 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Mechanical Engineering, Bialystok University of Technology (BUT), 45C Wiejska Street,
15-351 Białystok, Poland; a.yevtushenko@pb.edu.pl (A.Y.); k.topczewska@pb.edu.pl (K.T.)
* Correspondence: m.kuciej@pb.edu.pl

Abstract: An algorithm to determine the maximum temperature of brake systems during repetitive
short-term (RST) braking mode has been proposed. For this purpose, the intermittent mode of
braking was given in the form of a few cyclic stages consisting of subsequent braking and acceleration
processes. Based on the Chichinadze’s hypothesis of temperature summation, the evolutions of
the maximum temperature during each cycle were calculated as the sum of the mean temperature
on the nominal contact surface of the friction pair elements and temperature attained on the real
contact areas (flash temperature). In order to find the first component, the analytical solution to
the one-dimensional thermal problem of friction for two semi-spaces taking into account frictional
heat generation was adapted. To find the flash temperature, the solution to the problem for the
semi-infinite rod sliding with variable velocity against a smooth surface was used. In both solutions,
the temperature-dependent coefficient of friction and thermal sensitivity of materials were taken into
account. Numerical calculations were carried out for disc and drum brake systems. The obtained
temporal variations of sliding velocity, friction power and temperature were investigated on each
stage of braking. It was found that the obtained results agree well with the corresponding data
established by finite element and finite-difference methods.

Keywords: repetitive short-term braking; frictional heating; temperature; thermal sensitivity of
materials; friction coefficient

1. Introduction

Repetitive short-term mode of braking (RST) is a sequential performance of a certain
number of cycles consisting of two stages: braking (heating) and acceleration (cooling) [1].
In analytical and numerical models, the main characteristics to describe the braking
process (temporal profiles of velocity and friction power, time to standstill, maximum
temperature, etc.) are found from solutions to the following problems [2,3]:

1. initial value problem for vehicle motion;
2. boundary-value problem of heat conduction, taking into account frictional heat gen-

eration (the so-called thermal problem of friction).

The schemes of the characteristics’ determination, consisting of subsequent solutions
to the above-mentioned problems, are the so-called uncoupled models. In this kind of
scheme, to determine the sliding velocity profile, time to stop and resulting evolution of
specific friction power, first, the initial value problem for the equation of motion of braking
system has to be considered. After finding the specific friction power in this manner,
its temporal profile is adapted to one of the boundary conditions during formulation
of the boundary-value problem of heat conduction. The equality of the specific friction
power and the sum of heat flux intensities, directed inside each element of the friction pair
perpendicular to the contact surface, is required in this condition. The disadvantage of
such an approach is that, when obtaining solutions, a constant, usually averaged with the
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braking time, the value of the friction coefficient is used. In consequence, the calculations
do not take into account the mutual influence of sliding velocity and temperature.

Numerical uncoupled models of braking in the RST mode, based on the finite element
method (FEM), were developed for automotive [4–7] and railway [8] brakes. The influence
of convective cooling of free surfaces on temperature [4] and thermal stresses were studied
in [5–7]. A comparative analysis of volumetric and mean temperature on the friction
surface of the disc brake of the diesel multiple unit, obtained by means of: (a) numerical
solution to the spatial thermal problem of friction for a disc-pad system, (b) analytical
solution to the corresponding one-dimensional problem [9], and (c) experimental data
using thermocouples [10] was carried out in [8]. To predict temperature, a computer
model of an automotive disc brake operation during short-term multiple brakings was
developed [11]. A theoretical and experimental methodology for determining the heat
transfer coefficient during the RST braking mode has been proposed [12].

However, if for a selected friction pair the experimental data of frictional thermal
stability are known, then the temperature calculations can be made according to the coupled
models [13,14]. In this kind of model, the above-mentioned problems are related to the
temperature-dependent coefficient of friction, and their solutions at each time step are
obtained simultaneously. The implementation of the coupled calculation scheme allows
to take into account the interdependence of sliding velocity and temperature during each
stage of the RST braking mode. Since both of the above-mentioned problems in the coupled
models are non-linear, their solutions were obtained numerically, using FEM [15] or the
finite differences method (FDM) [16].

The use of numerical methods allows to take into account the actual dimensions of
the braking system, including the contact area of the pad and disc, as well as the cooling of
free surfaces, thermal sensitivity of materials, etc. On the other hand, the use of numerical
methods requires researcher to have advanced skills when selecting the space–time grid,
controlling the stability of calculations, performing verification of the obtained results
with appropriate experimental data, etc. Therefore, analytical methods of solving thermal
problems of friction during braking are still being investigated, simultaneously with
numerical and experimental methods. These are mainly linear boundary value problems of
heat conduction [17]. The exact obtained solutions to such problems during single braking
cases are in the form of closed engineering formulas and allow for instant assessment of
the temperature during braking under light conditions with sufficient accuracy; when
the volumetric and the average temperatures of the friction surface do not exceed 100 ◦C
and 200 ◦C, respectively [18–20]. Under heavy and medium braking conditions, when the
volume temperature reaches values above 250 ◦C, the friction coefficient and properties
of the friction pair materials change significantly due to the influence of temperature;
therefore, numerical methods are used [21,22]. An attempt was made to use the exact
solutions of linear thermal problems of friction to determine temperature during single
braking of a system made of thermally sensitive friction materials [23–25].

It should be noted that, in the sense of methodology, the results contained in the
monograph by A.V. Chichinadze et al. [9] and in [16] are closest to our study. The algorithm
for determining the maximum temperature of a braking system in [9] is based on an
analytical solution to the thermal problem of friction during single braking for two layers.
This solution was obtained with two very important simplifying assumptions. The first
one is the presumption that the temperature of any point on the axis, perpendicular to the
friction surface, is directly proportional to the braking time. The second assumption is
that the temperature increase, in this case, is equal to the increase in the mean volumetric
temperature of the system. With such simplifications, this solution can be defined as
approximate in an analytical form. A detailed comparative analysis of the temperature
fields during single braking, obtained with the use of an approximate solution [9] and the
exact solution, was carried out in [18]. The numerical FDM solution to the thermal problem
of friction for the RST operating mode of a disc brake was obtained in [16]. This solution
also belongs to the class of approximate solutions; whereas the main purpose of this study
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was to obtain exact engineering formulae to this problem and the development, on the
basis of them, of a corresponding calculation scheme to find the maximum temperature in
a braking system operating in RST mode.

2. Statement of the Problem

A braking system operating in a repetitive short-term (RST) mode is considered. This
intermittent braking mode comprised the sequential performance of n − 1 full cycles and
the final (nth) discontinuous cycle (Figure 1). Each of the full cycles consisted of two stages.
The first one was braking, where the linear velocity of sliding, V(k), decreased from the
initial value, V0, to zero at time moments t = t(k)s , k = 1, 2, . . . , n − 1. Immediately after the
standstill, the second phase of the cycle began, which was acceleration with the released
brake. During this stage the velocity increased to initial value V0 at time t = tc.

Figure 1. Scheme of sliding velocity variations during repetitive short-term (RST) braking mode.

Thus, the duration of one full cycle was tk = t(k)s + tc, k = 1, 2, . . . , n − 1, and the

overall time of all full braking cycles was tn−1 =
n−1
∑

k=1
tk. The last interrupted cycle was

performed with the applied brake, so speed V(n) dropped from initial value V0 to zero
at stop moment t = t(n)s . Thus, the total time of the RST operation mode of braking was
tb = tn−1 + t(n)s .

Braking phases are accompanied by intense frictional heating of the friction pair
elements (disc-pad, drum-shoe, etc.). Because of high temperature gradients, the friction co-
efficient and thermo-mechanical properties of friction pair elements can differ significantly
at the initial phase and after braking. Hence, the assumption is made that, during the kth
braking, friction coefficient f , thermal conductivities Kl , specific heat capacities cl , densities
ρl and Brinell hardness HBl of friction pair materials l = 1, 2 depend on temperature T in
the form of, Equations (1) and (2):

f (T) = f0 f ∗(T), (1)

Kl(T) = Kl,0K∗
l (T), cl(T) = cl,0c∗l (T), ρl(T) = ρl,0ρ∗l (T), HBl(T) = HBl,0B∗

l (T), (2)

Where Equations (3)–(8),

f0 = f (T0), Kl,0 = Kl(T0), cl,0 = cl(T0), ρl,0 = ρl(T0), HBl,0 = HBl(T0), (3)

f ∗(T) = f1 +
f2

[ f3(T − f4)]
2 + 1

+
f5

[ f6(T − f7)]
2 + 1

, (4)
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K∗
l (T) = Kl,1 +

Kl,2

[Kl,3(T − Kl,4)]
2 + 1

+
Kl,5

[Kl,6(T − Kl,7)]
2 + 1

, (5)

c∗l (T) = cl,1 +
cl,2

[cl,3(T − cl,4)]
2 + 1

+
cl,5

[cl,6(T − cl,7)]
2 + 1

, (6)

ρ∗l (T) = ρl,1 +
ρl,2

[ρl,3(T − ρl,4)]
2 + 1

+
ρl,5

[ρl,6(T − ρl,7)]
2 + 1

, (7)

HB∗(T) = HB1 +
HB2

[HB3(T − HB4)]
2 + 1

+
HB5

[HB6(T − HB7)]
2 + 1

, (8)

where T0—initial temperature, f j, Kl,j, cl,j, HBl,j, ρl,j, l = 1, 2; j = 1, 2, . . . , 7 are parameters
of the experimental data approximations [26]. Here and below, subscripts l = 1 and l = 2
refer to quantities associated with the primary element (disc, drum, etc.) and friction lining
(pad, shoe, etc.), respectively.

The remaining assumptions of the calculation model are as follows:

1. At the initial moment of each braking phase, the friction element is pressed against
the primary element contact surface with uniform pressure p, which exponentially
increases with time t, from zero to nominal value p0, Equation (9):

p(t) = p0 p∗(t), p∗(t) = 1 − e−
t
ti , 0 ≤ t ≤ t(k)s , k = 1, 2, . . . , n, (9)

where ti—time of pressure increase.
2. At the initial moment of the kth cycle of braking, the distribution of temperature in

the tribosystem is homogeneous and equal to the averaged volumetric temperature
of friction pair T(k)

0 ;
3. As a result of the friction forces acting on the contact area of friction pair elements,

heat is generated and absorbed by these elements in the normal directions of their
friction surfaces;

4. The thermal contact of friction pair elements is perfect. In other words, the sum of
heat flux intensities directed into friction elements, is equal to the specific friction
power, and the temperatures of its contact areas are equal.

5. During the subsequent braking phases, the free surfaces of the brake system are
adiabatic and during the acceleration stages, unforced convection cooling takes place.

The applied contact pressure (10) causes a reduction of sliding velocity V(k) during
the kth braking, according to the following relation [25], Equation (10):

V(k)(t) = V0 V∗(k)(t), V∗(k)(t) = 1 − t

t(k)s,0

+ p∗(t) ti

t(k)s,0

, 0 ≤ t ≤ t(k)s , k = 1, 2, . . . , n, (10)

Where, Equation (11),

t(k)s,0 =
2W0

q(k)0 Aa
, (11)

W0—initial kinetic energy of the system, which depends on the mass of the vehicle and its
velocity at the moment just before the brake applications, q(k)0 —nominal specific friction
power, Aa—nominal contact surface area, usually determined by the dimensions of the
contact surface of friction element. Braking time t(k)s is obtained from the stop condition,
Equation (12):

V∗(k)(t(k)s ) = 0. (12)
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In case of the immediate ( ti → 0) achievement of nominal pressure value p0 in the
Equation (9) from Equation (10) we obtain the linear drop in speed, Equation (13):

V∗(k)(t) = 1 − t

t(k)s,0

, 0 ≤ t ≤ t(k)s,0 . (13)

Thus, parameter t(k)s,0 (11) is the time of braking with constant deceleration.
In the phases of acceleration, the velocity increases linearly with time, Equation (14):

V∗(k)(t) = t − t(k)s
tc

, t(k)s ≤ t ≤ tk, k = 1, 2, . . . , n. (14)

The evolution of maximum temperature T(k)
max on the friction surface during kth braking

was sought in the form of [9,15]:

T(k)
max(t) = T(k)

m (t) + T(k)
f (t), 0 ≤ t ≤ t(k)s , k = 1, 2, . . . , n, . (15)

where T(k)
m —mean temperature of the nominal contact surface and T(k)

f —average tempera-
ture of the real contact area (flash temperature).

3. Solution to the Problem

3.1. Heat Generation on the Nominal Contact Surface

Taking into account the above assumptions, to find component T(k)
m in the relation (16),

we used the a calculation scheme of frictional contact of two different semi-infinite bodies,
0 ≤ z < ∞ (l = 1) and −∞ < z ≤ 0 (l = 2), sliding against each other with velocity V(k)(t)
(10)–(13). Initiated by frictional heating during kth braking, we found transient temperature
field T(k)(z, t) in this system from the solution to the following boundary-value problem of
heat conduction, Equations (16)–(20):

∂2T(k)(z, t)
∂z2 =

1

k(k)1,0

∂T(k)(z, t)
∂t

, 0 < z < ∞, 0 < t ≤ t(k)s , (16)

K(k)
2,0

∂T(k)(z, t)
∂z

∣∣∣∣∣
z=0−

−K(k)
1,0

∂T(k)(z, t)
∂z

∣∣∣∣∣
z=0+

= q(k)(t), 0 < t ≤ t(k)s , (17)

T(k)(0+, t
)
= T(k)(0−, t

) ≡ T(k)
m (t), 0 < t ≤ t(k)s , (18)

T(k)(z, t) → T(k)
0 , |z| → ∞ , 0 < t ≤ t(k)s (19)

T(k)(z, 0) = T(k)
0 , |z| < ∞, k = 1, 2, . . . , n (20)

where, Equations (21)–(23),

q(k)(t) = q(k)0 q∗(k)(t), q(k)0 = f (k)0 p0V0, q∗(k)(t) = p∗(t)V∗(k)(t) (21)

k(k)l,0 =
K(k)

l,0

ρ
(k)
l,0 c(k)l,0

, l = 1, 2, (22)

f (k)0 = f (T(k)
0 ), K(k)

l,0 = Kl(T
(k)
0 ), c(k)l,0 = cl(T

(k)
0 ), ρ

(k)
l,0 = ρl(T

(k)
0 ). (23)
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Averaged volumetric temperature T(k)
0 of a braking system before kth braking was

calculated from the formulas, Equations (24)–(26) [9,16]:

T(k)
0 =

T(k)
0,0 + T(k)

0,1

2
, k = 1, 2, . . . , n, . (24)

T(k)
0,i = T0 +

γiW0

2G c1,i

(
e−αi tc − e−kαi tc

1 − e−αi tc

)
, i = 0, 1, (25)

γi =

√
K1,iρ1,ic1,i√

K1,iρ1,ic1,i +
√

K2,iρ2,ic2,i
(26)

where, Equations (27)–(29),

γi =

√
K1,iρ1,ic1,i√

K1,iρ1,ic1,i +
√

K2,iρ2,ic2,i
(27)

αi =
hAvent

G c1,i
(28)

Kl,1 = Kl(T
(k)
0,0 ), cl,1 = cl(T

(k)
0,0 ), ρl,1 = ρl(T

(k)
0,0 ), (29)

h—heat transfer coefficient, G, Avent—weight and total surface area of the primary element
of friction pair, respectively; values Kl,0, cl,0, ρl,0, l = 1, 2 are defined by Equation (3). For

the first braking cycle (k = 1)), from relations (25) and (26), it follows that T(1)
0 = T0.

Exact solution to the boundary-value problem of heat conduction, (17)–(22), during
single braking was obtained in [27]. Generalizing this solution to the considered case of
repetitive braking, the sought temperature on the friction surface was written in the form,
Equation (30):

T(k)
m (t) = T(k)

0 + T(k)
m,0T∗(k)

m (t) , 0 ≤ t ≤ t(k)s , k = 1, 2, . . . , n (30)

where, Equations (31)–(37),

T∗(k)
m (t) = γ

(k)
0

√
t

t(k)s,0

⎡⎢⎣
⎛⎝1 +

ti

t(k)s,0

− 2t

3t(k)s,0

⎞⎠ 2√
π

−
⎛⎝1 +

3ti

2t(k)s,0

− t

t(k)s,0

⎞⎠ F

⎛⎝√ t

t(k)s,0

⎞⎠+
ti

t(k)s,0

F

⎛⎜⎝
√√√√ 2t

t(k)s,0

⎞⎟⎠
⎤⎥⎦ (31)

F(x) =
2√
π

∞

∑
n=0

(−1)n (2x2)
n

(2n + 1)!!
, 0 ≤ x ≤ 3, F(x) =

2√
π

∞

∑
n=0

(2n − 1)!!

(2x2)n+1 , x > 3, (32)

γ
(k)
0 =

√
K(k)

1,0 ρ
(k)
1,0 c(k)1,0√

K(k)
1,0 ρ

(k)
1,0 c(k)1,0 +

√
K(k)

2,0 ρ
(k)
2,0 c(k)2,0

, (33)

T(k)
m,0 =

q(k)0 a(k)

K(k)
1,0

(34)

a(k) = max
{

a(k)l

}
(35)

a(k)l =

⎧⎨⎩ dl , a(k)l,e f f ≥ dl ,

a(k)l,e f f , a(k)l,e f f < dl ,
(36)
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a(k)l,e f f =

√
3k(k)l,0 t(k)s,0 , (37)

dl , l = 1, 2 thicknesses of the friction pair components.
The algorithm to find the mean temperature for the selected friction pair consisted in

the subsequent performance of the following steps:

1. Based on the experimental data, by means of the approximation formulas (1)–(8), de-
scribe the thermal stability of friction f (T) and temperature dependencies of thermal
Kl(T), cl(T) and mechanical ρl(T), HBl(T) properties of friction materials l = 1, 2;

2. Set the operation input parameters: p0, V0, T0, W0, n, Aa, h, G, ti, tc, dl , Kl,0, cl,0, HBl,0,
ρl,0, l = 1, 2;

3. Begin the first (k = 1) braking cycle;

4. Establish the averaged volumetric temperature T(k)
0 of the friction pair from Formulas

(25)–(29);
5. Taking into account dependencies (1)–(8) calculate the values of friction coefficient

f (k)0 and materials properties K(k)
l,0 , ρ

(k)
l,0 , l = 1, 2 (25) in temperature T(k)

0 ;

6. Determine braking time t(k)s and temporal profile of velocity V(k)(t), 0 ≤ t ≤ t(k)s from
Equations (10)–(12) and (22);

7. Calculate the evolution of mean temperature on nominal contact surface T∗(k)
m (t),

0 ≤ t ≤ t(k)s (33)–(38);
8. Start the subsequent (k + 1) cycle of braking and repeat the calculations, beginning

from point 4). The calculation process ends when condition k = n is met.

3.2. Temperature of the Real Contact Region

Real friction surfaces of braking system elements are not perfectly smooth, they are
characterized by significant roughness and waviness. Therefore, these elements are not in
contact on an entire nominal friction area, but only in some parts of one, and consists of
roughness waves. These waves form the so-called contour surface of contact, the area of
which (A(k)

c ) changes during kth braking, according to the law, Equations (38) and (39) [28]:

A(k)
c (t) = Aa

[
p(t)bν−1

0

HB(k)
min(t)

] 1
ν+1

, 0 ≤ t ≤ t(k)s , (38)

HB(k)
min(t) = min

{
HB1[T

(k)
m (t)], HB2[T

(k)
m (t)]

}
(39)

where p, T(k)
m —pressure (9) and mean temperature (30)–(37) on the nominal contact surface

with area Aa, b0, ν—parameters of the reference curve for the harder element of the friction
pair materials. Usually this is the material of a primary element (disc, drum etc.). Pressure
p(k)c , on contour area A(k)

c (38), (39) was found from the relation, Equation (40):

p(k)c (t) = p(t)
Aa

A(k)
c (t)

, 0 ≤ t ≤ t(k)s (40)

In a typical braking system, the friction linings are made of more deformable and less
durable material than the primary element material. Thus, we assume that:

1. Asperities have the spherical shape and are located on the surface of the harder and
stiffer primary element, while the friction lining surface is smooth.

2. Plastic roughness deformation mechanism takes place. This means that the contact
of a single asperity with the friction lining surface lasts until its material becomes
plastic due to a rapid increase in temperature and the appearance of significant
thermal stresses.
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3. Before coming into contact with the friction lining, the temperature of asperity does
not change along its height and is equal to the mean temperature of nominal contact
area T(k)

m .

Contact of a single asperity with a smooth friction lining surface creates the real region
of contact with a diameter as follows Equation (41) [29]:

d(k)r (t) =
(

8ravhmax

ν

) 1
2
[

p(k)c (t)

HB(k)
min(t)b0

] 1
2ν

, 0 ≤ t ≤ t(k)s , (41)

where rav—averaged radius of the asperities rounding and hmax—maximum height of the
roughness. Total area A(k)

r of the real contact region is related to area Aa of the nominal
contact surface according to the formula, Equation (42):

A(k)
r (t) = Aa

p(t)

HB(k)
min(t)

, 0 ≤ t ≤ t(k)s . (42)

Evolution of temperature T(k)
f on the real contact region with area A(k)

r (42) (flash
temperature) was determined from the following Equation (43) [26,30]:

T(k)
f (t) =

(
1 +

1√
2

)
f (k)m (t)p(t)V(k)(t)Aad(k)r (t)

A(k)
r (t)[4K(k)

1,m(t) +
√

πV(k)(t) d(k)r (t) K(k)
2,m(t) c(k)2,m(t) ρ

(k)
2,m(t)]

, 0 ≤ t ≤ t(k)s , (43)

Where Equation (44):

f (k)m (t) ≡ f
[

T(k)
m (t)

]
, K(k)

l,m(t) ≡ Kl

[
T(k)

m (t)
]
, c(k)l,m(t) ≡ cl

[
T(k)

m (t)
]
, ρ

(k)
l,m(t) ≡ ρl

[
T(k)

m (t)
]
, l = 1, 2. (44)

Summarizing, another scheme was proposed for determining the flash temperature
evolution during kth braking:

1. On the basis of the friction surface profiles of the primary friction element, the
average values of parameters b0, ν, rav, hmax characterizing the roughness shape
and their distribution along the height were calculated in the longitudinal and
transverse directions.

2. Knowing the temporal profile of mean temperature on nominal contact surface T(k)
m

(30)–(37), by means of approximation functions (1)–(8), the evolutions of HB(k)
l,m (39)

and f (k)m , K(k)
l,m, c(k)l,m, ρ

(k)
l,m, l = 1, 2 (44) were established.

3. Variations of contour contact area A(k)
c (38), (39) and contour pressure p(k)c (40) during

braking were determined, taking into account pressure profile p (9).
4. Changes of diameter d(k)r (41) and total area of real contact A(k)

r (42) in time
were established.

5. Evolution of flash temperature T(k)
f (43) was calculated, taking into account velocity

temporal profile V(k) (10)–(12).

4. Numerical Analysis

Based on the analytical model proposed above, the temperature generated during
RST braking mode was studied for two tribosystems: disc and drum brakes. The tem-
perature field of the disc brake system was analyzed using the finite differences method
in [16]. Additionally, the corresponding evolutions of temperature in the drum brake
were presented in [9], where the calculations were performed on the basis of approximate
solutions to the thermal problem of friction for two strips and experimental data. Results
of calculations presented below were obtained for the same friction materials and opera-
tional parameters as the above-mentioned studies. In both systems, the RST braking mode
was considered, which includes 4 cycles (n = 4): three full cycles (braking-acceleration)
and the last interrupted cycle (braking). The brake disc is made of cast iron ChNMKh,
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and brake pads—were manufactured from cermet FMC-11. In the second system, the
drum brake was made of 30KhHSA steel and the brake shoes were manufactured with
retinax FC-16L. The sintered cermet friction material FMC-11 contains 64% Fe, 15% Cu, 3%
SiO2, 6% BaSO4, 3% asbestos and 9% graphite. Retinax FC-16L is a composite based on
phenol-formaldehyde resins and reinforced with brass shavings [21]. The thermophysical
and mechanical properties of materials and friction coefficients of selected pairs at the
initial temperature are included in Table 1. The methodology of calculations adopted in
the present study is shown in Figure 2.

Table 1. Properties of friction pair materials at the initial temperature T0 = 20 ◦C [26].

Material f Kl , Wm−1 K−1 cl , Jkg−1 K−1 ρl , kg m−3 HBl , MPa

ChNMKh
0.45

52.17 444.6 7100 2100
FMC-11 35 479 4700 137

30KhHSA
0.39

38 490 7800 2050
FC-16L 0.79 961 2500 392

Figure 2. Flowchart of the calculation procedure.

Experimental data of frictional thermal stability and property variations under differ-
ent temperature conditions of friction materials ChNMKh/FMC-11 and 30KhHSA/FC-16L
are included in [9,26]. The values of coefficients in the functions (4)–(8), which approximate
these data, are presented in Table 2. In this paper, it was assumed that density ρl of all
selected materials changes slightly under temperature variations, so Equation (7) takes the
form ρ∗l (T) = 1, l = 1, 2. Graphs of functions f (T) (4), Kl(T) (5), cl(T) (6) and HBl(T),
l = 1, 2 (8) are presented in Figure 3.
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Table 2. Coefficients in approximation functions (4)–(6) and (8) for considered materials [31].

Coefficients Material i = 1 i = 2
i = 3,

◦C−1,×103
i = 4,
◦C

i = 5
i = 6,

◦C−1,×103
i = 7,
◦C

fi

ChNMKh/FMC-
11 0.01 1.07 1.5 –250 0 0 0

30KhHSA/FC-16L 0 1.1 0.0014 300 0 0 0

Kl,i

ChNMKh –2.37 4.22 0.196 –2543 0 0 0
FMC-11 1.125 –0.64 2.3 900 0 0 0

30KhHSA 2.455 –1.58 0.86 847 –1.05 6.3 –163
FC-16L 1 0 0 0 0 0 0

cl,i

ChNMKh –0.85 6.6 0.57 4903 1.37 1.2 443
FMC-11 0.78 0.74 3.5 1059 0.5 2.6 573

30KhHSA 2.99 −1.4 2 · 10−6 859 –0.59 1.36 20
FC-16L 1 0 0 0 0 0 0

HBl,i

ChNMKh –0.54 1 2 –50 1 1.7 500
FMC-11 –0.93 0.83 2.34 546 2.02 2 –233

30KhHSA –0.55 1 3.3 0 1 2.5 400
FC-16L 0.43 1.05 3.5 –250 0 0 0

Figure 3. Graphs of functions approximating the experimental data of the dependence on tempera-
ture: (a) coefficient of friction f ; (b) thermal conductivity Kl ; (c) specific heat capacity cl ; (d) Brinell
hardness HBl , l = 1, 2.
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4.1. Disc Brake System

The input values of operating parameters [15,16]: p0 = 1.47 MPa, V0 = 27.78 m s−1,
W0 = 392.1 kJ, Aa = 4.047 · 10−2 m2, Avent = 4.44 · 10−2 m2, G = 1.58 kg, h = 100 Wm−2K−1,
d1 = 5.5 mm, d2 = 10 mm, ti = 0.5 s, tc = 5 s, rav = 450 μm, hmax = 2.5 μm, b0 = 1.0,
ν = 2.1. Due to the geometric symmetry of the disc brake system with respect to the center
plane of the disc, to determine the temperature field we consider the tribosystem, which
consists of disc replacement and the pad with thicknesses of dl , l = 1, 2, respectively. The
thickness of the disc replacement element d1 is equal to the half of the real disc dimension.

The temporal profiles of velocity V(k) (10) and specific friction power q(k) (22) during
four considered braking cycles are presented in Figure 4. Except for the short initial period
of braking, when the pressure grows, the sliding speed linearly decreases with time and
the stop time is longer with every subsequent cycle (Figure 4a). The specific friction power
increases at the beginning of each braking cycle until reaching the maximum value, and
then decreases to zero at the stop moment (Figure 4b), which is characteristic for the so-
called rational braking mode [18,19]. It should be noted that the friction work performed
at each braking cycle (the area under each of the four curves in Figure 4b) was the same
and equal to the initial kinetic energy of the system W0 = 392.1 kJ.

Figure 4. Changes in: (a) velocity V(k) and (b) specific friction power q(k) during k = 1, 2, 3, 4 braking
applications of a disc brake system.

The coefficient of friction f (k)0 (24) decreases with every subsequent braking from 0.45
during the first cycle to 0.28 during the fourth, last braking (Figure 5a). The drop of the
friction coefficient value causes the elongation of braking stage t(k)s —its values are equal to
1.54 s, 1.73 s, 1.96 s and 2.22 s, respectively for k = 1, 2, 3, 4 (Figure 5b).

Variations of mean temperature T(k)
m (30), flash temperature T(k)

f (43) and maximum

temperature T(k)
max (15) during each braking cycle of the process are shown in Figure 6.

Evolutions of mean temperature on the nominal contact area during every braking stage
correspond to the temporal profiles of specific friction power, presented in Figure 4b. At
the beginning of each braking cycle, the mean temperature T(k)

m growth takes place until
maximum value is reached, and then the temperature drop to the standstill occurs. According
to the adapted plastic roughness deformation mechanism, the flash temperature reaches
significant values at the initial moments of the braking stages, when the contact area of the
pad with the disc is relatively “cold”. Subsequent heating of this area causes a rapid decrease
in the flash temperature T(k)

f . The mean temperature of the friction surface has a decisive
influence on the time profile and the maximum temperature value. With each subsequent
braking, the highest values of T(k)

m and T(k)
max increase, while the T(k)

f decreases.

102



Materials 2021, 14, 1912

Figure 5. The values of: (a) friction coefficient f (k)0 ; (b) stop time t(k)s for disc brake in each braking
cycle k = 1, 2, 3, 4.

Figure 6. Evolutions of the mean T(k)
m , flash T(k)

f and maximum T(k)
max temperatures for disc brake

during each cycle: (a) k = 1; (b) k = 2; (c) k = 3; (d) k = 4.
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Temporal profiles of T(k)
m , T(k)

f and T(k)
max during the entire RST braking mode are

presented in Figure 7. The combined time of all four braking cycles duration is 7.45 s and
with account of the three stages of acceleration 15 s, gives the total time of the whole RST
braking mode in the disc brake system tb = 22.45 s.

Figure 7. Variations of the maximum T(k)
max (solid lines), the mean T(k)

m (dashed lines) and the flash
T(k)

f (dotted lines) temperatures during disc brake RST mode.

4.2. Drum Brake System

The values of input parameters of braking in the RST mode by friction pair con-
sisting of the drum (l = 1) and brake shoe (l = 2), were adapted [9]: p0 = 0.44 MPa,
V0 = 11.5 m s−1, W0 = 215.7 kJ, Aa = Ac = 3.85 · 10−2 m2, Avent = 15 · 10−2 m2,
G = 5.5 kg, h = 80 Wm−2K−1, d1 = 10 mm, d2 = 18 mm, ti = 0.5 s, tc = 25 s,
rav = 500 μm, hmax = 4.5 μm, b0 = 1.0, ν = 2.2.

The evolutions of sliding velocity and specific friction power for the drum brake are
presented in Figure 8. There are some similarities with the corresponding profiles for a disc
brake, which are shown in Figure 4. Sliding velocities also have short time of nonlinear
drop (Figure 8a), and the profiles of specific friction power have a local maximum, shifted
closer to the beginning of the braking period in this case (Figure 8b). Unlike the disc
system, however, the duration of the braking stage in the drum brake is shortened and the
maximum value of the specific friction power decreases with each subsequent braking.

In Figure 8a the shortening of the time of subsequent braking can be noticed, which
is related to the corresponding changes in the friction coefficient: in the considered drum
system its value during the first braking is 0.39 and increases linearly to 0.42 during
the fourth braking (Figure 9a). The respective stop times are equal to 6.17 s and 5.77 s
(Figure 9b).

Much smaller changes in the specific friction power time profiles during each braking
(Figure 8b) than in the case of a disc brake result in the fact that the temperature evolution
in the drum brake during each braking stage also differs much less (Figure 10). On the
other hand, the contribution of the mean temperature T(k)

m and the flash temperature T(k)
f

to the value of the maximum temperature T(k)
max in the drum brake are completely different

than in the disc brake. In the latter, as noted above, the time profile of the maximum
temperature was primarily shaped by the mean temperature on the friction surface. In the
drum brake, both components T(k)

m and T(k)
f show a significant influence on evolution and

values of T(k)
max. The decisive factor in the initial braking phase is the flash temperature, and

in the final stage—the mean temperature of the drum-brake shoe contact area.
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Figure 8. Changes in time during RST mode of the drum brake: (a) velocity V(k); (b) specific friction
power q(k), k = 1, 2, 3, 4.

Figure 9. The values of: (a) coefficient of friction f (k); (b) stopping time t(k)s for the drum brake in
each braking cycle k = 1, 2, 3, 4.

The changes in the temperature with time during RST braking in the drum brake
are presented in Figure 11. Duration of four braking cycles was equal to 23.81 s, three
accelerations 75 s, so the total RST operation mode lasted 98.81 s. As in the case of the disc
brake, with each subsequent braking, the highest values of the mean and the maximum
temperatures increase, whereas the flash temperatures decrease. However, these relations
are not as noticeable as in the disc brake. One of the reasons for such relatively small
changes in temperature can result from much longer (five times) cooling phase during
vehicle acceleration.
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Figure 10. Evolutions of the mean T(k)
m , flash T(k)

f and maximum T(k)
max temperatures for drum brake

during each cycle: (a) k = 1; (b) k = 2; (c) k = 3; (d) k = 4.

Figure 11. Evolutions of the maximum T(k)
max (solid lines), mean T(k)

m (dashed lines) and flash T(k)
f

(dotted lines) temperatures during drum brake RST mode.
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Values of the friction coefficient f (k), braking time t(k)s , volumetric temperature T(k)
0

and the highest values of the mean temperature T(k)
m , flash temperature T(k)

f and maximum

temperature T(k)
max during performing each of the four cycles are included in Table 3.

Table 3. Calculated values of some characteristics at each braking cycle.

Characteristic Brake System k = 1 k = 2 k = 3 k = 4

f (k)
Disc 0.45 0.38 0.32 0.28

Drum 0.39 0.40 0.41 0.42

ts
(k), s

Disc 1.54 1.73 1.96 2.22
Drum 6.17 6.00 5.87 5.77

T0
(k), ◦C

Disc 20 168 296 418
Drum 20 53 83 109

maxTm
(k), ◦C

Disc 434 542 641 741
Drum 208 243 272 298

maxTf
(k), ◦C

Disc 103 70 53 42
Drum 237 226 220 216

maxTmax
(k), ◦C

Disc 482 560 666 753
Drum 353 387 416 443

5. Summary of the Results and Discussion

The analytical model to determine the maximum temperature reached as a result of
friction during the repetitive short-term operating mode of the braking systems, consisting
of the n braking and acceleration cycles was proposed. The thermal sensitivity of the
materials of the friction pairs and the temperature dependence of the friction coefficient
were taken into account. According to the Chichinadze’s summation hypothesis, the
maximum temperature T(k)

max during each braking (k = 1, 2, . . . , n) was searched for as the
sum of the mean temperature T(k)

m on the nominal contact area and the average temperature
T(k)

f of the real contact area (flash temperature). The numerical analysis was carried out for
two systems: disc brake (cast iron/cermet) and drum brake (steel/retinax) with n = 4:

• Dependence of the friction coefficient on temperature (thermal stability curve) shows
a significant influence on the time profiles of the velocity, specific friction power and
maximum temperature. The coefficient of friction, which decreases with increasing
temperature in the disc brake system, results in elongation of each subsequent braking
stage and growth of the maximum values of the specific friction power. The effect
of the friction coefficient increase, under temperature increase to about 300 ◦C in
the drum brake system, is the reduction of the braking time and the increase of the
maximum values of the specific friction power.

• In the disc brake system operating in heavy mode, the evolution of temperature

and its maximum values T(k)
max are determined by the mean temperature T(k)

m on the
nominal contact area. The contribution of the flash temperature T(k)

f to the maximum
temperature is negligible.

• In the drum brake operating under light conditions, at the beginning of each braking
stage, maximum temperature is determined mainly by the flash temperature, while at
the end of braking it depends mostly from the mean temperature T(k)

m .
• The results obtained by means of the proposed analytical model show satisfactory

compliance with the relevant data obtained with the use of numerical methods, pub-
lished in the scientific literature. In particular, the highest values of the maximum
temperature T(k)

max at the subsequent stages of braking k = 1, 2, 3, 4, found as a result
of our calculations, are 482 ◦C, 560 ◦C, 666 ◦C and 753 ◦C (Table 3), and the corre-
sponding data obtained in the article [16] are equal to 491 ◦C, 615 ◦C, 720 ◦C, 847
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◦C, respectively. The greatest relative percentage difference of the results occurred in
the fourth stage and is equal to ≈ 11%. In the drum brake the maximum tempera-
tures T(k)

max determined by means of the proposed model, are equal to 353 ◦C, 387 ◦C,
416 ◦C and 443 ◦C (Table 3), and corresponding results presented in monograph [9] are
295 ◦C, 330 ◦C, 400 ◦C and 440 ◦C. The highest relative difference in outcomes occurs
in the stage one and is equal to ≈ 21%. It should be noted that the mean temperature
T(k)

m of the selected friction pair drum-brake shoe with similar input parameters during
single braking (k = 1) was analyzed with the use of the finite difference method in the
article [32]. The highest value of the mean temperature on the nominal contact area of
the drum-brake shoe obtained was equal to 210 ◦C [32], which is in good agreement
with the value 280 ◦C presented in Table 3.

6. Conclusions

The main advantage of the proposed approach is the demonstration of the possibility
of adapting numerous exact solutions to the linear thermal problems of friction existing
in the scientific literature, to determine the maximum temperature of the brake not only
during a single, but also during a repetitive operation mode. This allows for express
estimation with sufficient accuracy, not only of the maximum temperature, but also of
important braking characteristics such as variations of the sliding velocity and specific
friction power, stopping time and braking distance during each stage of RST braking
mode. It should be emphasized that the proposed calculation model is coupled—it allows
to take into account the mutual influence of all of the above-mentioned characteristics
in the braking process, by the temperature-dependent coefficient of friction. From the
point of view of application possibilities, it is important that this model can be used for
calculations not only for materials with stable thermo-physical properties, but also for
thermally sensitive materials.
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Nomenclature

Aa area of the nominal contact surface (m2)
Ac area of the contour contact region (m2)
Ar area of the real contact region (m2)
Avent area of the ventilated surface of the disc or drum (m2)
b0 parameter of the reference-surface curve (dimensionless)
c specific heat (J kg−1K−1)
d thickness (m)
dr diameter of an average spot of the real contact region (m)
f coefficient of friction (dimensionless)
h coefficient of heat transfer (W m−2K−1)
hmax maximum roughness height on the friction surface of the disc or drum ((m))
HB Brinell hardness (Pa)
K thermal conductivity (W m−1K−1)
n number of braking in RST brake mode
p contact pressure (Pa)
p0 nominal value of the contact pressure (Pa)
q specific power of friction (W m−2)
q0 nominal value of the specific power of friction (W m−2)
rav average rounding radius of roughness on the friction surface (rav)
t time (s)
tb time of performance of all RST mode of braking (s)
tc cooling time at acceleration (s)
ti time of pressure increase (s)
ts time of braking (s)
T temperature (◦C)
T0 initial (volumetric) temperature (◦C)
Tf flash temperature (◦C)
Tm mean temperature (◦C)
Tmax maximum temperature (◦C)
V velocity (m s−1)
V0 initial velocity (m s−1)
W0 initial kinetic energy (J)
z axial coordinate ((m))
Greek Symbols

ν parameter of the reference-surface curve (dimensionless)
ρ density (kg m−3)
Index

upper k number of a stage of braking
lower l number of the main (l = 1) and frictional (l = 2) elements of the friction couple
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Abstract: The article proposes two 3D and 2D numerical FE models of frictional heating for the
estimation of temperature distributions in railway tread brake in 1xBg configuration during repeated
long-term braking. The results of computations were compared with the time courses of temperature
measured using thermocouples throughout the duration of the tests on a full-scale dynamometer
for two different brake shoe materials in combination with a steel wheel. The resulting temperature
distributions calculated using the proposed models agreed well with the experimental measurements,
and the maximum difference in temperature values does not exceed 20%. It has been proven that 2D
FE model can be as efficient as 3D model to estimate the temperature distribution during long-term
and variable braking in the considered friction node. The differences in the calculation of the
temperature values using these models did not exceed 3%, and the calculation time for the 2D model,
compared to the 3D model, was shorter approximately 85 times for the braking cycle lasting 5032 s,
and approximately 45 times for the braking cycle lasting 3297 s.

Keywords: temperature; railway tread brake; 1xBg brake configuration; long-term braking;
finite element method

1. Introduction

Despite the development of railway technology, tread brake, designed over 100 years ago, is still
a widely used solution in railway vehicles, in particular in freight wagons and vehicles where available
space is a significant limitation in the structure, e.g., in motor bogies of motive power units or in
subway vehicles. One of the most important advantages of the tread brake is its simple design
and high reliability. In a typical pneumatic railway brake, the force exerted on friction elements is
generated by compressed air in the brake cylinder. In tread brake, the force from the brake cylinder is
multiplied by brake rigging and presses the brake block (equipped with brake shoe) against the wheel
running surface. The heat generated leads to rapid increase in temperature on the friction surfaces of
brake components and other parts of the brake assembly.

The condition of tread-braked wheel running surface is significantly influenced by the material,
from which the brake shoe is made. One of the important factors that led to the development of
composite brake blocks in Europe was an attempt to reduce rolling noise of wheelsets, which is closely
related to roughness of their running surface [1,2]. The use of composite brake shoes reduces the
roughness of wheel running surface [2,3], and experimental studies have shown that in comparison
to cast-iron, composite brake shoes also have less tendency to generate so-called hot spots [1].

111



Materials 2020, 13, 4846

Additionally, because of lower thermal conductivity, composite brake shoes increase the amount of
heat absorbed by the wheel [4].

Manufacturers of railway braking systems verify friction pair selection on full-scale
inertia dynamometer, i.e., such on which the friction pair is tested in its normal size. During the
tests of this type, the actual operating conditions of the brake are simulated, including the routes
of the proposed railway vehicles. The determined friction pair characteristics are evaluated, e.g.,
what is the relationship between the value of the coefficient of friction or wear and temperature,
sliding velocity, pressure, or braked mass. The condition of the friction elements is also analyzed, i.e.,
whether signs of thermal degradation of the material or its damage are observed under given
operating conditions. Dynamometer tests are also a stage of the process to receive approval
granted by UIC (Union Internationale des Chemins de fer—International Union of Railways)
to friction elements [5], and are also performed in the course of conformity assessment required
by European law, among others, for brake shoes used in freight wagons [6,7].

Full-scale railway brake dynamometers are also used to determine temperature of friction elements
in the course of brake application. In the article [8], Kim studied possible applications of infrared
thermography in the characterization of railway components. It was successfully used to measure
temperature of railway brake disc surface as well as to detect hot spots. It has been shown that
the infrared technique allows for high-resolution measurement of the temperature field measured
in real time and can complement the measurements with sliding thermocouples, the disadvantage
of which is inaccurate measurement due to friction and the occurring heat generation. Paper by
Hong et al. [9] is focused on investigating the mechanism of hot bands and hot spots formation in
railway brake disc during high-energy brake applications. Experimental measurements, performed on
a full-scale dynamometer, were employed to study so-called braking patterns which are observed
throughout repetitive braking process. An attempt to simulate hot band formation in an FEM
(finite element method) model has also been made by the authors and lead to the conclusion that
taking into account one-sided wear of the pad would improve the agreement between the experiment
and FE analysis.

Additionally, reduced-scale dynamometers are used to study tribological phenomena related
to railway braking. In the article [10] Tang et al. modified contact interface of the friction block to
analyze its influence on temperature fields formed during braking on the counter-face element as well
as wear of the friction block and tendency to generate squeal. Rokhim et al. employed reduced-scale
dynamometer to characterize frictional properties of composite railway brake shoe, namely dependence
of the coefficient of friction on sliding velocity and contact pressure [11]. It has to be noted, however,
that simulation of the operating conditions of the railway vehicle in reduced scale requires very careful
design of the experiment, including geometry of the friction pair [12].

Due to the cost of conducting tests on dynamometer stands, and bearing in mind how important it
is to determine the operating temperature and thermal loads of the friction pair for given parameters of
railway vehicle operation, the object of interest of both scientific research and industry is modeling of
the frictional heating process. This is evidenced by the multitude of papers published so far, the subject
of which are experimental studies of temperature fields as well as analytical and numerical modeling
of the frictional heating process.

A two-dimensional axisymmetric FE model to determine the mean temperature on the surfaces
of the brake shoe and wheel was proposed in the papers [4,13]. The partition of heat flux between
friction pair elements depended on the thermal resistance. The major advantage of the model is that it
accounts for wheel-to-rail heat flow.

The model presented by Vernersson in the article [13] was calibrated by Teimourimanesh et al.
using the results of temperature measurement obtained during the dynamometer test and passage of
a metro vehicle [14]. Teimourimanesh used it afterwards to perform calculations of the friction pair
temperature evolution for a metro vehicle [15]. The material of the wheel (ER7 steel) was thermosensitive,
i.e., thermophysical properties depended on temperature. A constant and equal deceleration value
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was established for all braking cases, and—as a consequence—a constant value of friction generated at
the wheel-brake shoe interface. The results of calculations of temperature changes were the basis for
calculations of thermomechanical loads on the wheel. The analysis of the wheel mechanical loads was
used to estimate the wheel designed service life (predicted mileage requiring replacement).

Petersson developed a two-dimensional model of the railway tread brake with a single brake shoe
using FEM [16]. The model was calibrated on the basis of temperature measurements made during
the test on a full-scale dynamometer. Using the model, the author examined the effect of heat flux
distribution between the wheel and the brake shoe, pressure distribution and heat capacity of the brake
shoe on the calculated temperature fields. Increasing the value of brake shoe heat capacity set in the
model did not significantly affect the calculated value of the wheel temperature, but had a significant
impact on the value of the brake shoe temperature

In the paper [17] Milošević et al. used FEM to develop a three-dimensional model of a frictionally
heated wheel with a tread brake in 2xBgu configuration (bilateral configuration, two brake shoes per
side of the wheel). The temperature field changes were calculated numerically for six variants of
continuous brake applications with different values of maintained velocity and pressure exerted on the
brake shoes. It was assumed that the coefficient of friction of the wheel-brake shoe system is constant
during all brake applications and independent of the velocity and pressure. In the developed brake
numerical model, perfect thermal contact between the wheel and the brake shoes was established
(equal temperature on the contact surfaces).

In the article [18] Suchánek et al. employed FEM to calculate temperature of railway wheel in
the course of two consecutive applications of a tread brake. The calculated temperature values were
subsequently used to determine equivalent stress in the wheel. One of the major simplifications of the
FE model presented in this study was that rotational motion of the wheel was not accounted for.

Handa et al. combined full-scale dynamometer test and FE model to investigate hollow wear of
wheel running surface characteristic of tread-braked railway wheels [19]. It was concluded that the
main factor contributing to this specific wear pattern is plastic deformation caused by rolling contact
on the part of the wheel profile which is heated during brake application.

Additionally, disc brakes are the subject of scientific research concerning mathematical modeling
of frictional heating. A few papers are shortly summarized below.

Sayeed Ahmed and Algarni [20] examined the relationship between the temperature change of
the disc and the number of modifications in the form of grooves and holes. The heat flux entering the
disc did not depend on the temperature in the lining area, which was possible due to the introduction
of heat partition coefficient which was constant throughout the braking process. Its value depended
on thermal effusivity of the disc and the brake pad material as well as the area of the entire rubbing
path on the disc-pad friction surface. Hence, by changing the number of grooves (change in contact
surface area), the value of the friction power directed to the disc also changed. The temperature
results obtained on the basis of numerical calculations (ANSYS) were experimentally verified using
the infrared thermometer.

The analytical model of a multi-disc braking system with the discs made of carbon friction
composite material Termar-ADF was proposed in the article by Yevtushenko et al. [21]. The authors
calculated temperature of a single brake disc with different length of the fiber bundles of the composite
taking into account convection heat transfer with the surrounding air. Based on the developed model
with micro, meso, and macro levels, the changes in temperature distributions and their correlations
with coefficient of volumetric concentration of bundles as well as the length of the bundles were shown
and discussed.

The methodology for selection of materials for disc brake pads was studied using 3D numerical
model of the disc brake [22]. Six pads materials were tested in combination with cast iron disc. A number
of parameters characterizing the frictional heating process during braking (maximum temperature,
braking time, temperature-dependent coefficients of friction and wear rate, braking efficiency, etc.)
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were accounted for allowing the selection of the optimum combination of materials in the light brake
operation mode.

Tribological characteristics (dependence of the coefficient of friction and wear rate on the
sliding distance, velocity, and contact pressure) of copper-graphite composites reinforced with
Cu-coated or uncoated SiO2 were studied in the article [23]. The measurements were carried out on
a pin-on-ring tribometer.

A broader review regarding experimental research as well as analytical and numerical modeling
of frictional heating in braking systems is presented in the articles [24–26].

Comprehensive analysis of braking systems which find application in railway vehicles was
presented by Günay et al. [27]. The authors described in detail the method of assessing braking
performance of railway vehicles. It is worth noting that an empirical formula, where coefficient
of friction is dependent simultaneously on sliding velocity and contact pressure, was given for
vehicles equipped with cast iron brake shoes. On the other hand, it is often assumed in numerical
braking simulations that the friction coefficient remains constant during braking, regardless of the
operating conditions [15–17,28]. One of the assumptions made in the present study is that taking into
account frictional characteristics dependent on operating conditions may be vital to reliably model
frictional heating during braking of railway vehicles equipped with composite brake shoes.

Apart from introduction, the paper is divided into five sections. First, the experimental part
of the study is discussed, including description of the full-scale dynamometer, materials used in
the research, test program, and results of braking torque measurement. Then, the statement of the
boundary value heat conduction problem is given and finite element models of the wheel-brake shoe
system are presented. Subsequent section contains results of numerical analysis, namely calculated
temperature fields, their discussion and comparison with the experimental measurements. Finally,
the study is summarized, and conclusions are drawn.

Experimental tests on inertia test benches (including measurements of temperature, wear,
coefficient of friction, etc.), for braking systems of rail vehicles, are usually complicated, labor-intensive,
and expensive. Numerical modeling has the potential to be a good alternative for dynamometer tests
at the initial stage of the railway braking system design process. Therefore, the main purpose of this
article is to evaluate accuracy of temperature fields estimated by numerical calculations concerning
long-lasting (order of 103 s) braking process, performed for different friction materials, using 2D and
3D FE models, where variable operating conditions and frictional characteristics are accounted for.

2. Experimental Research on a Dynamometer Test Stand for Railway Brakes

The experimental part of this work was performed on a full-scale inertia dynamometer for testing
of brake friction pairs at the Railway Research Institute in Warsaw (Figure 1a–c). The test bench was
described extensively in the article by Konowrocki et al. [29].

The simplified schematic drawing of the dynamometer is presented in Figure 1e. The drive
shafts (2) are coupled to the electric motor (1), flywheels (3), and an axis equipped with railway
wheel (4). Flywheels are used to represent the mass of a railway vehicle, the braking of which is
simulated during the test (the kinetic energy of the motor-shafts-flywheels-railway wheel system
rotational motion corresponds to the kinetic energy of the translational motion of the railway vehicle).
If solely combinations of flywheels were used, it would be possible to reach the moment of inertia
corresponding only to a few specific railway vehicle masses. To obtain moment of inertia intermediate
to the basic values, it is necessary to control the electric motor so as to reduce or supplement the
moment of inertia generated by rotating flywheels [30]. Angular velocity of the system is controlled by
the rotary encoder (Heidenhain ROD 436, Traunreut, Germany).
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(a) (b)

(c) (d)

(e)

Figure 1. A full-scale inertia dynamometer for testing of brake friction pairs at the Railway
Research Institute in Warsaw (a–c) (pictures courtesy of the Railway Research Institute in Warsaw)
and (d) 1xBg railway tread brake configuration, (e) scheme of the test rig with main components:
1—electric motor; 2—drive shaft; 3—flywheels; 4—railway wheel; 5—brake block; 6—brake cylinder;
7—load cell.

The tested friction pair comprised railway wheel (4) and composite brake shoe installed in
the holder, part of the brake block (5). Brake block is fixed to the frame which has axis of rotation
independent from the motor-shafts-flywheels-railway wheel system but coaxial to it. This way, it is
possible to measure friction generated at the wheel-brake shoe interface using load cell (7) (HBM-U2A).
The principle of braking torque measurement is presented in Appendix B to UIC Code 548 [30].
Normal force exerted on the brake block comes from compressed-air brake cylinder (6) and was
determined using load cell HBM-U2B.
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Three K-type thermocouples (NiCr-NiAl, TTE426-K-2× 0.22-850-1-QQP, Termoaparatura Wrocław,
Wrocław, Poland) were installed below wheel running surface to measure wheel temperature in the
course of the test. Thermocouples were located on average 5.8 mm below the working surface every
120◦ along the circumference and at the distance of 110 mm, 85 mm, and 55 mm from the edge of
the wheel in the z-axis direction, which gives coordinates in the cylindrical system T1E =(r = 430.62,
θ = 210◦, z = 110), T2E = (r = 430.24, θ = 330◦, z = 85), T3E =(r = 430.48, θ = 90◦, z = 55).

Two friction pairs were tested in 1xBg configuration [5,13], i.e., unilateral configuration with
a single brake shoe (Figure 1d). ER7 steel wheel and two composite materials were subject of the
experimental study, denoted Material A and Material B, respectively. The basic dimensions of the
1xBg brake shoe-wheel system are given in Table 1. The composition of the organic composites
under study is given in Table 2, and an exemplary view of the brake shoes after the tests is shown
in Figure 2. The materials chosen for the study differ in reinforcing fiber used in the formulation,
which has significant impact on their mechanical, thermophysical, and tribological properties.
Considerable amount of data acquired in the experimental part of this work allowed verification
of the numerical models described in the paper. The results of comprehensive tribological tests of
the abovementioned friction pairs, on reduced- and full-scale inertia dynamometer, are presented in
the articles [31,32]. Braking time, wheel angular velocity, braking distance, brake cylinder pressure,
braking torque, temperature under the wheel running surface, and cooling air flow velocity were
measured throughout the test.

Table 1. Dimensions of the braking system.

Parameter Value

nominal diameter of the wheel deq, m 0.87
nominal surface area Aa, mm2 25,337.91
thickness of the brake shoe, m 0.08

width of the brake shoe, m 0.32

Table 2. Formulation of the organic composites, wt% [31,32].

Base Formulation Glass Fibre Steel Fibre

Material A
65–75%

25–35% 0%
Material B 0% 25–35%

 

(a) 

 

(b) 

Figure 2. View of the brake shoes made of: (a) Material A; (b) Material B after tests on
a full-scale dynamometer.

The brake shoes were bedded-in before the execution of the main test program by braking at
120 km/h (contact force 30 kN, mass per wheel 7.5 t). The bedding-in procedure was repeated until
reaching a minimum of 85% contact area between the brake shoe and the wheel. The main test on
a full-scale dynamometer consisted of accelerating the wheel to angular velocity corresponding with
the translational velocity of a rail vehicle in real conditions, i.e., equal to 160 km/h, 120 km/h and
80 km/h (for Material A—Figure 2a) and 80 km/h, 120 km/h, and 160 km/h (for Material B—Figure 2b),
then braking to a stop. Cooling of the friction pair was performed by rotating the wheel at the angular
velocity simulating the translational velocity of 100 km/h. Subsequent braking process commenced
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when the average temperature measured by three thermocouples below the surface dropped to less
than 60 ◦C. The complete test program is presented in Table 3.

Table 3. Full-scale dynamometer test program for 1xBg configuration.

Number of
Braking

Initial Velocityof the
Vehicle V0, km/h

Contact Force
Fc, kN

Initial
Temperature Ta,

◦C
Mass per

Wheel m, t
Comments

1 160 ambient

2.5
2 120 10

50–60

3 80

4 160
5 120 30 Material A/ER7
6 80

7 160
8 120 10 10
9 80

1 80 ambient

2.5
2 120 10

50–60

3 160

4 80
5 120 30 Material B/ER7
6 160

7 80
8 120 10 10
9 160

Contact force Fc time courses and braking torque M measured during tests on a full-scale
dynamometer for the considered friction systems are presented in Figure 3. The changes in vehicle
velocity during braking are shown in Figure 4.

 

(a) 
 

(b) 

Figure 3. Changes in contact force Fc and braking torque M during braking for: (a) Material A;
(b) Material B.
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(a) 

 

(b) 

Figure 4. Changes in simulated velocity V of the vehicle during braking for: (a) Material A; (b) Material B.

3. Statement of the Problem

At the initial moment of time t = 0, wheel of the considered braking system rotates at constant
angular velocity ω0 = V0R−1

w , where V0 is the linear velocity on the wheel rolling radius Rw, equal to
the simulated vehicle velocity. Pressed by contact force Fc, the brake shoe comes into frictional sliding
contact with the wheel, which leads to reduction of angular velocity of the wheel until it is stopped.
After stopping, the brake is released, and the wheel is accelerated again. The above sequence was
repeated in accordance with the test program carried out on the dynamometer (Table 3). The single
braking time varied depending on the input parameters (initial velocity, contact force) and material
(coefficient of friction, material properties) changing over time.

Assumptions made in the calculations:

1. kinetic energy of rotating masses is entirely converted into heat;
2. deformation of the system components due to mechanical forces and temperature

is neglected—only thermal problem is considered;
3. materials of the friction elements are isotropic and their properties depend on temperature;
4. geometrical model of the wheel does not account for holes drilled for thermocouples due to very

small diameter of the tip of the thermocouple; such dimension would imply very fine distribution
of the finite element mesh in the vicinity of the holes;

5. the outer regions of the brake shoes were not modelled since the temperature in that location
does not change during the entire analyzed process;

6. the coefficient of friction changes during braking, and these changes are known a priori on the
basis of measurements on a full-scale dynamometer;

7. on the free surfaces, convective cooling takes place with the constant heat transfer coefficient,
defined separately for specific areas on the surface of the wheel and brake shoes;

8. thermal radiation was not accounted for.

Two computational models of frictional heating for 1xBg wheel-brake shoe system were developed
and tested: spatial (denoted 3D) and two-dimensional, axisymmetric (denoted 2D)—Figure 5. In the
case of the spatial model, changes in the transient temperature field T(r,θ, z, t) of the wheel and brake
shoes were determined from the solution of the following nonlinear boundary value heat conduction
problem:
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, 0 < t ≤ ts, (r,θ, z) ∈ Ωs, (1)
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0 < t ≤ ts, (r,θ, z) ∈ Ωw,
(2)

where Ks,w—thermal conductivity of materials, t—time, ts—total braking time, T—temperature,
ρ—mass density of materials, c—specific heat capacity of materials.

 

(a) 

 

(b) 

Figure 5. Finite element meshes of the tread brake used in braking simulation:
(a) spatial; (b) two-dimensional (axisymmetric) with measurement points; r—radial coordinate,
T1, T2, T3 —temperature at specific location inside the wheel, θ—circumferential coordinate,
Ωs —region within the volume of the brake shoe, Ωw —region within the volume of the wheel,
ω—angular velocity of the wheel.

In the brake shoe-wheel contact area, denoted Γ, the conditions of perfect thermal contact
were assumed:

Kw(T)
∂T
∂r

∣∣∣∣∣
r=req

−Ks(T)
∂T
∂r

∣∣∣∣∣
r=req

= q(r, θ, z, t), (r, θ, z) ∈ Γ, 0 < t ≤ ts, (3)

Tw(r,θ, z, t) = Ts(r,θ, z, t), (r,θ, z) ∈ Γ, 0 < t ≤ ts, (4)

where:
q(r,θ, z, t) = f (t)p(t)V(t), (r,θ, z) ∈ Γ, 0 < t ≤ ts, (5)

q(r,θ, z, t) is change in time of the total specific power of friction, p(t) = Fc(t)/Aa is change in
time of the contact pressure distributed uniformly on the friction surface Aa, f (t)—is change in time of
friction coefficient, V(t)—is change in time of velocity on the equivalent radius of the wheel.

In the case of a two-dimensional model, friction power generated in the brake shoe-wheel contact
area should be averaged using coverage factor η = θ0/2π. In consequence, calculations for the wheel
and brake shoe had to be carried out separately. In addition, taking into account that 3D spatial
simulations were performed for both friction elements, only wheel was analyzed in the 2D model.
The axisymmetric temperature field T(r, z, t) of the wheel was determined from the following boundary
value heat conduction problem:
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∂z

)
= ρwcw(T)

∂T
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, 0 < t ≤ ts, (r, z) ∈ Ωw. (6)

Part of the friction power density directed towards the wheel was equal to:

qw(r, z, t) = γ(t)η f (t)p(t)V(t), (r, z) ∈ Γ, 0 < t ≤ ts, (7)
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where the heat partition coefficient was calculated using Charron’s formula [33]:

γ =

√
Kwρwcw√

Ksρscs +
√

Kwρwcw
. (8)

Initially the wheel and the brake shoes were at ambient temperature T0 = Ta.
Time profile of the friction power density q(t) was calculated from braking torque and translational

velocity changes determined on the dynamometer during braking. The product of the coefficient of
friction and the contact pressure, appearing in Equation (5), was obtained from the measured braking
torque M(t) = f (t)p(t)Aareq. Knowing the velocity change (Figure 4), the friction power density is
q(t) = M(t)V(t)A−1

a (Figure 6).

 

(a) 

 

(b) 

Figure 6. Changes in frictional heat flux density generated in the wheel-brake shoe contact area
during braking: (a) Material A—ER7; (b) Material B—ER7.

4. Description of the 3D and 2D Finite Element Models of the Wheel-Brake Shoe System

The purpose of computer simulations of frictional heating was to develop computational models
that allow determination of temperature field changes in the volume of the wheel and the brake shoe.
Particularly important was the area near the contact surfaces of both objects, including the location of
measuring points from the dynamometer tests. Due to the nature of frictional heating, the highest
temperature gradients occur in the normal direction from the working surfaces of the contact elements
to the outer cylindrical surfaces. In the case of the brake shoe (only 3D model), linear distribution of
8 finite elements in the 1/100 ratio was set in this direction. For the wheel, number of finite elements
on the entire circumference of the working surface was increased (relative to the remaining area),
with a view to minimizing the total number of finite elements (Figure 5a). Additionally, a thin (of the
order of millimeters) surface layer was created.

To ensure accuracy of the results, several finite element meshes were built, starting from coarse
grid and increasing the total number of model elements, including elements of the wheel’s surface layer.
Due to the complex shape of the wheel and partial contact on the friction surface with the brake shoe,
a mesh consisting of tetrahedral, prismatic, and pyramidal elements was used.

When creating the mesh, it was necessary to merge opposite nodes of the brake shoe and
wheel surfaces, hence the shape of the elements from the outside of both parts is consistent.
These criteria forced a specific approach to dividing the area into spatial elements. The best
solution—accuracy-wise—was to use hexagonal elements characterized by regular shapes—the edges
are parallel to the direction of the largest temperature gradients. In the analyzed case it was difficult
due to the fact that the surface of the brake shoe contacting the wheel is separated by slots. Therefore,
the assumed contact area was smaller than determined from nominal width and length of the
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brake shoe. The first stage in the construction of the mesh was creating of triangular surface elements,
then their extrusion from the contact surface to the outer surface of the brake shoe. In this way,
prismatic elements were created. In the case of the wheel, a mesh of tetrahedral elements was generated
in the entire volume. In the last stage, a layer replacing tetrahedral elements with prismatic ones
was created at the working surface. Due to the largest temperature changes in the contact area,
variable thickness distribution of the elements in both objects was introduced. The number of boundary
layers was equal to 4, the boundary layer stretching factor 1.2, the thickness adjustment factor 1.2,
thickness of first layer—automatic.

Preliminary calculations were carried out to verify the approach described above. It was
found that further increasing the number of elements and changing their order to a higher
one did not affect the temperature distribution. Finally, Lagrange second order finite elements
were used to create the model’s mesh (in the case of linear elements temperatures were
significantly underestimated). The model comprised 91,794 tetrahedral, 796 pyramid, 19,202 prism,
24,872 triangular, and 1526 quadrilateral elements. The total number of degrees of freedom (DOFs)
was 228,138 (plus 67,290 internal DOFs).

By contrast, the two-dimensional model (Figure 5b) was developed using axisymmetric (2D)
quadrilateral elements (340 elements). The number of degrees of freedom was 1503.

5. Numerical Analysis

Numerical calculations of the space-time temperature distribution in the friction elements of
railway tread brake in 1xBg configuration were carried out, using 3D and 2D models described in
Section 4, for two combinations of brake shoe-wheel friction pairs (organic composite Material A/ER7
steel and organic composite Material B/ER7 steel).

Initial conditions and operating parameters for the numerical simulations were adopted from
the test program carried out on a full-scale dynamometer (Table 3) and are consistent with changes in
contact force Fc (Figure 3) and braking torque M during repeated braking (Figure 4). Knowing the
time courses of Fc and M for both friction pairs, changes in friction heat flux densities q (Figure 6)
generated on the brake shoe-wheel contact surface (Materials A or B and ER7 steel) were determined.

The thermophysical properties of the considered friction pair materials, which were used for
calculations using 2D and 3D numerical models, are shown in Tables 4 and 5. Heat transfer coefficient
with the environment h assumes different values in specific areas of the wheel (Figure 7) according to
the data listed in Table 6.

Table 4. Properties of the brake shoe materials [31].

Specific Heat Capacity
cs, J/(kg K)

Thermal Conductivity
Ks, W/(m K)

Mass Density
ρs, kg/m3

Thermal
Diffusivity

ks, m2/s

at temperature 30 ◦C 100 ◦C 30 ◦C 100 ◦C 20 ◦C
brake
shoe

material A 870 1040 1.18 1.47 1930 7.013·10−7

material B 730 860 1.41 1.74 2350 8.594·10−7

Table 5. Thermal properties of the wheel material (ER7 1 steel) [34].

Temperature,
◦C

Thermal Conductivity
Kw, W/(m K)

Specific Heat Capacity
cw, J/(kg K)

0 47.3 440
20 44.1 510
400 39.3 570

1 Density of the wheel ρw = 7850 kg m−3.
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Figure 7. Areas of different convection coefficient h applied in braking simulations [34].

Table 6. Convection coefficient values in the various wheel surface zones [34].

Zone
Heat Transfer Coefficient

h, W/(m2 K)

1 32.6
2 55.9
3 55.9

4, 5 65.3

As established in Section 2, the temperature measurement inside the steel wheel was made
using three K type thermocouples (NiCr-NiAl) located 5.8 mm below the working surface displaced
every 120◦. The same arrangement of measuring points was reproduced in the 3D spatial model
(Figure 5a) and in the simplified 2D axisymmetric model (Figure 5b).

The curves of experimentally measured and calculated time courses of temperature based on
the proposed numerical models are shown in Figures 8 and 9. The temperature values are average
values measured by thermocouples (T1−3E) and calculated at the corresponding points with the
computational models (T1−3FEM) at every time step.

 

(a) 

 

(b) 

Figure 8. Mean temperature changes: (a) Material A; (b) Material B; average values from
three thermocouples (dashed lines) T1−3E, three points from 3D and 2D numerical calculations
under the surface of the wheel T1−3FEM and three points on the surface of the wheel 3D T4−6FEM.
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 9. “7-th braking”: (a–c) Material A/ER7; (d–f) Material B/ER7.
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Temperature evolutions measured 5.8 mm (T1 = 5 mm, T2 = 6 mm, T3 = 6.5 mm) below the
wheel running surface (T1−3E) and calculated at respective points with 3D and 2D models (T1−3FEM)
are presented in Figure 8. Additionally, average temperature on the wheel running surface T4−6FEM
was calculated with the 3D model keeping identical distance of the data collection points from the
outer face of the wheel rim. The arrangement of points nos. 4–6 located on the wheel running surface
is shown on the diagram in Figure 5a.

According to the test program from Table 3, for the friction pair comprising Material A (brake shoe)
and ER7 steel (wheel), the first three brake applications (no. 1–3) were carried out successively from
initial velocities of 160 km/h, 120 km/h, and 80 km/h, at a contact force of 10 kN and mass per wheel
of 2.5 t. During braking no. 1 (160 km/h, 10 kN, 2.5 t), the average temperature measured 5.8 mm
below the wheel surface reached maximum value of T1−3E = 92.3 ◦C, for braking no. 2 (120 km/h,
10 kN, 2.5 t)—T1−3E = 99.2 ◦C, and for brake application no. 3 (80 km/h, 10 kN, 2.5 t)—T1−3E = 83.2 ◦C
(Figure 8a). The total time of three braking cycles was t1−3 = 866 s. It should be noted that braking no. 1
began when the friction elements initial temperature was T0 = 23 ◦C (cooling air (ambient) temperature
was 10 ◦C), while subsequent brakings until the end of the tests began when the average temperature,
measured by three thermocouples 5.8 mm below the wheel running surface, dropped to the value in
the range of T1−3E = 62.7÷ 64.9 ◦C.

The next stage of the study was the sequence of three brake applications (no. 4–6) initiated,
as previously, at velocities of 160 km/h, 120 km/h, and 80 km/h and mass per wheel of 2.5 t, while the
contact force was increased to 30 kN (Table 3). Due to the increase in the contact force, the time of
each single braking (t4, t5, t6) shortened, while the total time t4−6 including cooling time extended
to 966 s. However, due to the more rapid braking process, the maximum temperature values are
much higher, especially for brakings no. 4 and 5 at velocities of 160 km/h and 120 km/h—they are equal
to T1−3E = 132.2 ◦C, and 108.7 ◦C, respectively (Figure 8a).

In the final stage of the test (brakings no. 7–9) mass per wheel was increased to 10 t, and contact force
was reduced to 10 kN, while the order of brake applications remained unchanged. Due to the fourfold
increase in mass per wheel, the time of the entire sequence significantly lengthened, as compared to the
previous two braking cycles 1–3 and 4–6 and is equal to T1−3E = 3686 s. Additionally, the maximum
values of the measured temperature are much higher and reach values of T1−3E = 182.5 ◦C, 154.5 ◦C
for individual brake applications (Figure 8a).

The first three braking sequences according to Figure 8a during the time from t = 0 to t = 3297s
were carried out at the contact force Fc = 10 kN, which at the nominal area Aa = 25250 mm2, gave the
nominal contact pressure value of 0.396 MPa. The subsequent three brake applications were performed
at Fc = 30 kN (pressure of about 1.188 MPa) and the last three again at 10 kN.

The test program presented in this article for the second friction pair, consisting of the brake shoe
made of Material B and ER7 steel wheel, differs from the previous one (i.e., Material A/ER7 system)
in the order of initial braking velocities, i.e., 80 km/h, 120 km/h, and 160 km/h (Table 3). Considering the
thermophysical properties of Material B and Material A (Table 4) and the change in the performed
braking sequence, time course of temperature for this friction pair is significantly different (Figure 8b).
The difference is pronounced especially in the total braking cycle time, which is equal to t = 5032 s for
Material A/ER7 pair and t = 3297 s for Material B/ER7. This is mainly due to a completely different
gradual heating of the wheel, and thus with smaller values of the maximum temperature in the wheel
in the initial stage of testing and its faster decrease after subsequent braking to the programmed
initial temperature. That difference can also be observed by comparing the time courses of friction
power density corresponding to each of the friction pairs, shown in Figure 6.
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In the first part of the program consisting of three brake applications no. 1–3, from 80 km/h, 120
km/h, and 160 km/h, with contact force of 10 kN and mass per wheel of 2.5 t, the maximum average
temperature measured by three thermocouples located 5.8 mm below the wheel running surface,
reached values T1−3E = 49 ◦C, 83.2 ◦C, 132.7◦, respectively, where its duration was t1–3 = 652 s.
During the subsequent braking sequence (brakings no. 4–6 from 80 km/h, 120 km/h and 160 km/h,
at Fc = 30 kN and m = 2.5 t) average temperature reached maximum values of T1−3E = 89.5 ◦C, 120 ◦C,
158.4 ◦C, respectively, where t4–6 = 766 s. Throughout the final part of the program (brake applications
no. 7–9 from 80 km/h, 120 km/h, and 160 km/h, at Fc = 10 kN and m = 10 t), maximum values of the
average temperature are T1−3E = 126 ◦C, 173 ◦C, 213.8 ◦C, respectively, for t7–9 = 1879 s.

The time courses of temperature calculated with the 2D and 3D FE models show very good
agreement with measured values (Figure 8a,b). It can be seen that simplifications assumed in the
proposed numerical models, i.e., the condition of equality of temperature on the brake shoe-wheel
contact surface, introduction of the heat partition coefficient in 2D system, as well as convective heat
transfer coefficient which is constant in time, but different in particular zones of the wheel surface,
(see Figure 7), are acceptable and do not significantly affect accuracy of temperature estimation, even
for such long and variable brake applications. Both the temperature values calculated from the spatial
(3D T1−3FEM) and two-dimensional (2D T1−3FEM) models slightly increase the temperature compared
to the experimental measurement results. The difference between these values is not more than 20%
(braking no. 4, Material A and B). Comparing the 3D T1−3FEM and 2D T1−3FEM temperature values
calculated at each time step, it can be stated that their difference is negligible (max less than 3%,
however, it should be added that for both materials it is higher during cooling and is equal to 7÷9%
after braking no. 8). It can be important when choosing the calculation model of frictional heating,
especially in terms of the required computing power and “time consumption” concerning model
preparation and calculation itself.

In addition, time courses of the average 3D T4−6FEM temperature on the brake shoe-wheel contact
surface calculated using the three-dimensional FE model at the condition of temperature equality on
that surface were shown in Figure 8a,b.

In the case of friction pairs of the same type as presented 1xBg brake configuration, it must be
stated that the initial estimation of the time course of temperature can be carried out using a 2D
model, achieving a satisfactory approximation. The temperature calculations were performed on
a workstation with following parameters: CPU Intel® Xeon® E5-2698 v4 @ 2.20GHz; RAM 64 GB
(DDR4). The calculation times for the Material A/ER7 pair performed were equal to 1h 35 min for the
2D model and 114 h 50 min for the 3D model. However, in the case of the Material B/ER7 friction pair,
calculation times were 1 h 13 min and 51 h 32 min, respectively.

In order to perform a detailed analysis of the time courses of temperature (measured—dash
dotted lines, and calculated by 2D model—dashed lines and 3D model—solid lines) in the braking
system discussed in this work, braking no. 7 for both friction pairs was considered (Figure 9).
For Material A/ER7 friction pair, it is braking from 160 km/h at mass per wheel of 10 t and contact
force of 10 kN, while for Material B/ER7 pair—80 km/h at mass per wheel of 10 t and contact force
of 10 kN. The analysis of single brakings for both cases (plots in Figure 9a,d) confirms the earlier
observation that the calculations made using both numerical models approximate the actual time
course of temperature very well. Small percentage differences (max 3.37% for Mat. A and 3.3% for
Mat. B) between the measured and calculated temperature values may stem both from simplifications
imposed on numerical models and measurement errors resulting, among others, from the delay in
response of the thermocouples used in experimental part of this study.

The analyzed multiple braking processes are relatively long—they differ significantly from the
typical cases of single braking (order of 10−1 s) occurring e.g., in motor vehicles. The long duration of
the processes, in addition to the large size of the objects such as the wheel of a rail vehicle, with an outer
diameter of 870 mm (assumed rolling radius was 437 mm), require a significant computing power
and lead to many longer calculations. Therefore, the results obtained in this study, apart from their
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correctness verified by experimental research, are also intended to justify the previously formulated
statement that the 2D axisymmetric model is sufficient to provide results at a similar level of accuracy.
In order to perform such analysis, temperature points 1–6 are marked on the time courses of temperature
obtained from calculations made with the 2D and 3D models presented in Figure 9a and d. For the
abovementioned time points the temperature distributions are shown in Figure 9b and c (Material A/ER7
pair) and Figure 9e and f (Material B/ER7 pair)—for the curve lying on the circumference of the circle in
the middle of the brake shoe thickness (Figure 9b,e), and in the axial direction (Figure 9c,f)—for a profile
marked in the schematic drawing with a thick line. As can be seen from the time courses of temperature
in Figure 9b,e, during braking no. 7 for both considered friction pairs at time points no. 2–5, when the
temperature rises and reaches maximum values, this distribution is non-uniform. The maximum
temperature fluctuations around the circumference at these points are at a level of 5.5% (Material A)
and 13% (Material B), which confirms the assumption that the axisymmetric model will be sufficient
to obtain similar results. By contrast, the temperature distribution in the axial direction shown in
Figure 9c,f, for both friction pairs, differ by a maximum of 171% for Material A and 115% for Material
B. The temperature along the analyzed curve for two friction pairs is higher on the right-hand side of
the line z = 91 mm due to the lower width of the area absorbing heat through conduction.

Temperature distributions inside the brake shoe and wheel during braking no. 7, corresponding to
the time points indicated in Figure 9a,d, are presented for the considered friction pairs in Figure 10.
In addition to presenting the subsequent stages of temperature change in the wheel and its gradual
heating with the braking time, it is also worth noting that the temperature distribution in the wheel at
the analyzed time points in both friction pairs is of an axisymmetric nature. The above observation
also confirms the possibility of using the 2D FE model to analyze time courses of temperature in 1xBg
braking systems during repeated, variable, and prolonged braking.

 

 
Figure 10. Cont.
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(a) (b) 

Figure 10. Temperature distribution in the wheel and brake shoe for selected time points marked in
Figure 9a,d, for braking no. 7: (a) Material A/ER7; (b) Material B/ER7.
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6. Summary and Conclusions

Two 3D and 2D FE numerical models of frictional heating were proposed to calculate temperature
fields in the railway tread brake in 1xBg configuration. The consistency of the results obtained
for two different friction pairs composed of the brake shoes made of organic composite materials
(denoted Materials A and B) and the steel wheel (ER7) demonstrates the usefulness of the developed
computational models.

Temperature values calculated from 3D and 2D models are slightly overestimated as compared to
the results of experimental measurements and the difference between these values does not exceed 20%.
For this reason, it can be stated that both the 3D and 2D model may be used to successfully estimate
the temperature distribution in the friction elements of 1xBg braking system, which is beneficial in the
design of new friction pairs in terms of their thermophysical and tribological properties.

Comparison of the temperature calculated using 3D and 2D models at each time step shows
that the difference is not greater than 3% for the frictional heating processes and not more than
9% during the cooling steps between successive brake applications. The comparison of models
presented in the article proved that 2D frictional heating model can be successfully used to estimate
the temperature distributions in the discussed friction node. The computation time (workstation CPU
Intel® Xeon® E5-2698 v4 @ 2.20GHz; RAM 64 GB (DDR4)) performed with the 2D model compared to
the more general 3D model is reduced by approximately 85 times for the braking cycle lasting 5032 s,
and approximately 45 times for the braking cycle lasting 3297 s.

Both proposed numerical models of frictional heating have certain limitations of applicability.
In this article speed and heat flux density determined from experimentally measured braking torque
were used as input values. The next stage in the future development of the presented models will be,
among others, the mutual coupling of the speed and the friction coefficient through the average
temperature on the contact surface of the friction node.

Despite some limitations of the proposed models, they can be used not only to estimate the
temperature level during repeated and long-term braking, but also, for example, to study the effect of
convective heat exchange on the average wheel temperature or detection of potential wheel overheating
related to extreme operating conditions.

The above numerical modeling approach can also be successfully applied to a different type of
railway tread brake, e.g., 2xBgu.

The authors of this work did not find any studies where 3D and 2D models of railway tread brake
were compared and verified with experimental data, which is also a major asset of this work.
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Nomenclature

Aa nominal area of the contact region between brake shoe and wheel (m2)
c specific heat capacity (J/(kg K))
deq nominal wheel outer diameter deq = 2req (m)
f coefficient of friction (dimensionless)
Fc contact force (N)
h heat transfer coefficient (W/(m2 K))
k thermal diffusivity (m2/s)
K thermal conductivity (W/(m K))
m braking mass per one wheel (kg)
M braking torque (N m)
p contact pressure (MPa)
q specific friction power (W/m2)
r radial coordinate (m)
req equivalent radius of the contact region (m)
Rw equivalent radius of the wheel Rw = req (m)
t time (s)
ts total braking time (s)
T temperature (◦C)
Ta ambient temperature (◦C)
T0 initial temperature (◦C)
T1−3 average temperature from T1, T2 and T3 (◦C)
T4−6 average temperature from T4, T5 and T6 (◦C)
T1, T2, T3 temperature at specific location inside the wheel (◦C)
T4, T5, T6 temperature at specific location on the contact surface of the wheel (◦C)
V velocity on the equivalent radius of the wheel (vehicle velocity) (m/s)
V0 initial vehicle velocity (m/s)
z axial coordinate (m)
Greek symbols
γ heat partition coefficient (dimensionless)
Γ contact region of the brake shoe and wheel (m2)
η coverage factor (dimensionless)
θ circumferential coordinate (rad)
ρ mass density (kg/m3)
ω angular velocity of the wheel (rad/s)
ω0 initial angular velocity of the wheel (rad/s)
Ωs region within the volume of the brake shoe (m3)
Ωw region within the volume of the wheel (m3)
Subscripts
s, w brake shoe, wheel
E experiment
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Abstract: A new approach to numerical simulation using the finite element method (FEM) for the
rotational motion of discs for railway vehicle disc brake systems was proposed. For this purpose,
spatial models of transient heating due to the friction of such systems with solid and ventilated discs
were developed. The performed calculations and the results obtained allowed justification of the
possibility of simplifying the shape of the ventilated brake disc through elimination of ventilation
channels. This contributes to a significant reduction in computational time, without compromising
the accuracy of the results. The spatial and temporal temperature distributions in the ventilated and
the solid disc of the same mass were analyzed. The share of energy dissipated due to convection
and thermal radiation to the environment in relation to the total work done during a single braking
was investigated. The maximum temperature values found as a result of computer simulations were
consistent with the corresponding experimental results.

Keywords: railway disc brake; frictional heating; moving heat source; temperature; finite ele-
ment method

1. Introduction

Carrying out a computer simulation with the use of FEA of the transient temperature
field of the brake consists of several steps. In addition to the precise determination of
the operating parameters as well as the shape and dimensions of the friction elements,
it requires simplifying assumptions while developing the calculation models. Modern
computational units make it possible to include a number of interdependent quantities
(e.g., coefficient of friction, thermophysical properties, heat transfer coefficient, hardness,
average temperature of the nominal contact area, flash temperature, maximum temperature,
etc.) in numerical calculations of the thermal problems of friction. These values correspond
with the complex shapes of the brake pads and discs, and even entire assemblies of parts
in the vicinity of the brake [1–3]. Such an approach, aimed at a comprehensive assessment
of the temperature state, is based on a system of equations of thermal dynamics of friction
and wear [4]. The basic problems of this system concern (1) the determination of the
time profiles of pressure, velocity, and friction power density; (2) obtaining experimental
and then analytical relations of the coefficients of friction and wear rate on temperature;
(3) the experimental dependency of the temperature-dependent material properties; (4) the
determination of the average temperature of the nominal contact area and the temperature
of the real contact area (flash temperature) and eventually their sum—the maximum
temperature [4].

Along with the increase in the complexity of the computational model of the process by
generalizing the basic equations of the HDFW (heat dynamics of friction and wear) system
to different braking modes and brake systems, the computation time may be significantly
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extended. In order to shorten that time, analytical or numerical models that do not take
into account temperature changes in the circumferential direction (axisymmetric or 2D
models) are used [5]. Omission of the circumferential coordinates allow us to obtain reliable
results with a solid disc, associated with the pads in the shape of a ring segment. Then, by
introducing the heat partition coefficient, the temperature is set separately for the disc (2D
model) and the pads (3D model). In the case of a ventilated disc with an irregular shape of
the nominal contact area (due to external contours and internal cuts), only 3D calculation
models should be used to determine the temperature mode of the brake.

Changes in transient temperature fields of a passenger vehicle brake disc with ex-
ponentially increasing pressure and non-linearly decreasing disc angular velocity were
analyzed in the article [6]. The cyclic heating of the surface of the friction ring (rubbing
path) of the disc was modeled by means of a moving surface heat source with alternately
changing areas of heating and convection cooling. The changes in the temperature, braking
time, and heat flux densities on the working surface of the disc were presented. A similar
approach was proposed in [5]. During the numerical simulation of a moving heat source, a
program code developed by the authors was proposed, generating boundary conditions
on the working surface of the disc in the MES MSC.Patran/MSC.Nastran environment.
For this purpose, functions describing the change of the heat flux density heating the disc
were developed separately for each of the finite elements uniformly distributed in the
circumferential and radial direction. This approach provides an accurate representation
of the frictional power density portion in the area of displacement of the pad relative to
the stationary disc. A significant advantage of the proposed method is the possibility of
adapting this technique to a ventilated disc, provided that its outer surface is consistent and
homogenous in the area of heating. The disadvantage, however, is that it is not possible to
perform calculations using the contact model of heating the brake, taking into account the
simultaneous mutual influence of the pads and the disc on the temperature.

The approach proposed in [6] was adapted to the thermal-structural coupling model
in order to determine not only the temperature field, but also to carry out transient stress
analysis and to describe the phenomenon of hot spot formation [7]. The main purpose of the
work was to develop a methodology for identifying thermal fatigue cracks. The calculations
were carried out for the regular shapes of the solid disc and pads. It was shown that at a
fixed point of the disc, the temperature evolution takes the form of cyclically repeating
stages of rising and falling with each revolution of the wheel.

The temperature fields of the ventilated disc brake elements during a single braking
were determined numerically in the software environment based on the ANSYS Workbench
platform [8]. In the developed contact thermo-structural coupled computational model,
the stopping time as well as the exponential increase in contact pressure and the nonlinear
velocity change were known a priori before the analysis. This also includes the variable
heat transfer coefficient from the surfaces of the pads and the disc. The simulations
were carried out using the direct coupling method, which is an iterative calculation of
temperature and stress fields. The temperature changes over time at selected points on the
disc obtained by the calculations were consistent with the corresponding results obtained
using thermocouples embedded in these points. The temperature time profiles on the
working surface of the disc revealed distinct and regular oscillations, declining with the
distance from the friction surface.

Transient temperature fields of the pad and ventilated disc were found using the
finite element method, adapted in COMSOL Multiphysics® [9]. Using the heat partition
coefficient, simulations of frictional heating were carried out separately for the disc and the
pads. Although the calculations of the temperature of the pads did not require interference
with the standard tools available in the commercial FEM software environment, special
modules (Mathematics and Deformed Geometry) were used to determine the temperature
of the disc, to represent the movement of the heating area of a complex shape on the friction
surface of the stationary disc. In fact, the change in the rotational velocity of the ventilated
disc and the deformation of the surface layer of its geometric model were related, allowing
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for an accurate representation of the heat flux density proportional to the power of friction
forces during braking.

The temperature fields of the disc and pads during a single braking of a rail vehicle
were analyzed in the article [10]. The process of frictional heating during braking was
simulated on a dynamometer test bench. When developing the calculation model, the
ventilated disc was replaced with a solid disc with the same outer dimensions and mass.
The same mass was maintained by increasing the thickness of the heated layer parallel
to the friction surface as well as by simplifying the area of the disc-hub interface. In the
contact area of the pad with the disc, perfect thermal friction conditions were assumed, i.e.,
the temperature of the opposite surfaces at each point was equal, and the sum of the heat
flux densities directed from the friction surface to the inside of the disc and the pads was
equal to the friction power density. In each of the ten tested variants of the single braking,
a high consistency of the maximum disc temperature value, calculated by means of FEM
and measured using thermocouples, was achieved. It was found that replacing a ventilated
disc with a solid disc of the same mass during a single braking provides a sufficient level
of accuracy in finding the temperature.

Currently, two types of brake discs are used in railway vehicles: solid and ventilated (in
radial or tangential direction). The discs are manufactured as monoblocks or as individual
friction rings. According to [11], taking into account the dimensions of the axle-mounted
railway discs (typically 640 mm in diameter) and thicknesses from 80 (steel) to 110 mm
(cast iron), high air pumping leads to aerodynamic loses and energy consumption. As
a result, operating costs and the negative impact on the environment increase. In the
above-mentioned work, the disc was developed with both radial vanes and circumferential
pillars, the so-called radial vanes/pillared design. As was shown, such a structure of the
disc does not differ from the traditional one in terms of the amount of energy dissipated by
convection, and at the same time it shows much better (about 50%) equivalent aerodynamic
(air pumping) losses. It was shown that a parameter that must be taken into account when
designing discs is the ratio of convective power dissipation to aerodynamic power losses.
Using the computational fluid dynamics (CFD) method, the changes during braking of
the parameters, such as aerodynamic (pumping) power loss, convective-heat dissipation
(power loss), and the aerodynamic efficiency ratio dependent on the angular velocity of the
disc, were analyzed. It was emphasized that the commonly used discs for rail vehicles were
produced for years without significant changes, before the introduction of the advanced
CFD methods.

At a given time, there are many different approaches, methods, and simplifications
in the numerical modeling of temperature fields of a rotating disc and stationary brake
pads. Their analyses are provided in review articles [12,13]. Undoubtedly, one of the
most important requirements when developing such models, apart from the accurate
determination of the maximum temperature and flash temperature occurring in the real
contact areas of the pads with the disc, the variability of friction coefficients and wear
intensity, etc., was to shorten the computational time. Recent achievements in the modeling
of disc temperature fields, the main goal of which was to develop a model that is universal
and does not require significant time to obtain results, are presented in [14]. The authors
proposed a calculation scheme that they described as a uniformly distributed heat source
method, abbreviated as the UDHS (uniformly distributed heat source) method [14]. The
method, unlike those in the literature, aimed at finding a way to obtain accurate results in a
short time. The basic simplification assumption of the UDHS method consists of adopting a
homogeneous distribution of heat flux intensity on the friction surface and approximating
the mutual cyclic motion of the disc and the pad with the cosine function. The obtained
results were verified on the basis of temperature measurements using thermocouples on a
full-scale test bench.

A similar but more advanced approach, based on the Gaussian mixture function
(GMHS—Gaussian mixture heat source Method), was proposed in [15]. The method, as
in [14], is based on the Gaussian function approximation of the heat flux intensity distribu-
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tion at a specific point on the working surface of the disc. At a constant angular velocity,
these cycles were evenly distributed in time, and at a linearly decreasing velocity, the
maximum value of the flux decreased with each subsequent cycle. It should be emphasized
that this method has a significant simplification. At a given moment, the entire friction
surface of the disc (in the circumferential and radial direction) was simultaneously heated
with a heat flux of one and the same value.

A similar approach, albeit for the 2D axisymmetric model, simplifying the 3D ven-
tilated disc model, was proposed in [16]. Calculations were performed for the braking
parameters, disc dimensions, and material properties, as adapted from [17]. The function
approximating the successive passes of the pad relative to the disc was developed so as to
accurately map the temporal profile of the heat flux density (rectangular waveform), deter-
mined on the basis of the exponentially increasing pressure and the nonlinearly decreasing
angular velocity of the disc. The calculated temperature values were compared with the
corresponding measurement data from [17], and a very good agreement was obtained.

Initiated by an axisymmetric heat load, the spatial temperature field of the ventilated
disc was determined numerically by means of FEM and CFD in [18]. The wheel-mounted
brake disc R920K for the ER24PC locomotive was considered. First, distributions of the
heat transfer coefficient were found in the FLUENT environment, and then the obtained
results were used as boundary conditions for thermal analysis with the heat partition
coefficient. It was found that the ventilation channels are heated after a certain time (a
few seconds) from the beginning of the braking process. This delay in a temperature rise
resulted in a small effect of convection cooling. Parallel laboratory tests were used to verify
the calculations. The determined temperature evolution during braking agreed well with
the data from the experimental studies.

The developed numerical model of the disc brake with axisymmetric heating of the
ventilated disc [18] was then used to determine the thermal stress fields formed in the
disc during emergency braking and during braking when riding downhill with a constant
velocity [19].

In this paper, a comparative analysis of the temperature mode of the ventilated and
solid discs of a rail vehicle was carried out, considering a single brake application. For this
purpose, two techniques for modeling the rotational motion of the disc or the displacement
of the pad relative to a fixed disc are proposed. The problems related to the optimization of
the selection of a temporal step of such a size that would allow for an accurate mapping
of the oscillating temperature changes at a specific point of the working surface of the
disc are discussed in detail. During the calculations, the condition of equality of the total
friction work found numerically and the initial kinetic braking energy obtained during
experimental tests on a full-scale dynamometer test bench are verified. The calculated
temperature values are shown to be consistent with the corresponding thermocouple
measurement data.

2. Statement of the Problem

The subject of the study is the temperature field generated due to friction in a disc
brake of a railway vehicle (Figure 1). The friction pair consists of the tangential vane type
brake disc (640 mm × 110 mm), with the reduced ventilation and a set of organic composite
brake pads typically used in passenger coaches.

During a single braking, the pressure p was the same at each point of the contact area,
increasing linearly in time t from zero at the initial time t = 0 to the value p1 at t = t1, then
increasing stepwise to the nominal value ps and remaining at this value until the end of
the process t = ts:

p(t) =
{

p1t/t1, 0 ≤ t ≤ t1,
ps , t1 ≤ t ≤ ts,

(1)

where p1 = 0.5F1/Aa, ps = 0.5Fs/Aa, F1—the value of the clamping force t = t1, Fs =
1.05F1, and Aa—surface area of the nominal contact of the pad with the disc. The change
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of pressure in time (Equation (1)) corresponds to the following time profile of the angular
velocity of the disc:

ω(t) =
{

ω0 + (ω1 − ω0)t/t1, 0 ≤ t ≤ t1,
ω1 + (ωs − ω1)(t − t1)/(ts − t1), t1 < t < ts.

(2)

where ω0 ≡ ω(0), ω1 ≡ ω(t1), and ωs ≡ ω(ts).

 
Figure 1. An example of a ventilated disc brake system of a railway vehicle mounted on the inertial
test stand in the Railway Research Institute in Warsaw, Poland (picture courtesy of the Railway
Research Institute in Warsaw).

As a result of friction, heat is generated in the contact area between the pad and the
disc, causing them to heat up. When developing the calculation model, the following
assumptions were made to determine the brake temperature field:

1. The pads are positioned symmetrically on both sides of the disc. Therefore, due to the
existing load and geometric symmetry, only the half-thickness disc in combination
with one pad is analyzed;

2. The thermal contact of friction between the brake pads and the disc is perfect, i.e., the
temperature in the contact area is the same, and the sum of the heat flux densities
directed normally from the friction surface to the inside of each element is equal to
the friction power density;

3. The cooling of the free surfaces of the pads and the disc proceeds due to convection
and thermal radiation to the surrounding air;

4. Thermophysical properties of materials as well as friction and heat transfer coefficients
do not change under the influence of temperature.

The parameters and quantities relating to the pad and the disc are denoted by the
subscripts “p” and “d”, respectively, and the pad-disc friction pair is related to the cylin-
drical coordinate system of spatial variables (r, θ, z). On the basis of assumptions 1–3, the
transient temperature field T(r, θ, z, t) of the brake was found from the solution of the
following heat conduction equations of the parabolic type:

∂2T
∂r2 +

1
r

∂T
∂r

+
1
r2

∂2T
∂θ2 +

∂2T
∂z2 =

1
kp

∂T
∂t

, (r, θ, z) ∈ Ωp, 0 < t ≤ ts, (3)

∂2T
∂r2 +

1
r

∂T
∂r

+
1
r2

∂2T
∂θ2 +

∂2T
∂z2 =

1
kd

[
∂T
∂t

+ ω(t)
∂T
∂θ

]
, (r, θ, z) ∈ Ωd, 0 < t ≤ ts, (4)
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where
Ωp =

{
(r, θ, z) ∈ R3 : rp ≤ r ≤ Rp, −θ0 ≤ θ ≤ θ0, 0 ≤ z ≤ δp

}
, (5)

Ωd =
{
(r, θ, z) ∈ R3 : rd ≤ r ≤ Rd, −π ≤ θ ≤ π, 0 ≤ z ≤ δd

}
, (6)

kp,d, rp,d and Rp,d are the coefficients of thermal diffusivity and the inner and outer radii of
the elements, respectively, and 2θ0—cover angle of the pad.

Taking into account assumption 4, in the area of contact of the pad with the disc,

Γ =
{
(r, θ) ∈ R2 : rp ≤ r ≤ Rp, −θ0 ≤ θ ≤ θ0, z = 0

}
, (7)

The following conditions should be met [20]:

T(r, θ, 0+, t) = T(r, θ, 0−, t), (r, θ) ∈ Γ, 0 < t ≤ ts, (8)

Kd
∂T
∂z

∣∣∣∣
z=0−

− Kp
∂T
∂z

∣∣∣∣
z=0+

= q(r, θ, t), (r, θ) ∈ Γ, 0 < t ≤ ts, (9)

where Kp,d—thermal conductivity of materials, and the friction power density was deter-
mined from the equation:

q(r, θ, t) = f p(t)rω(t), (r, θ) ∈ Γ, 0 < t ≤ ts, (10)

in which f —coefficient of friction, and p(t) and ω(t)—pressure (Equation (1)) and angular
velocity (Equation (2)) time profiles, respectively.

Based on Assumption 2, the time profiles of the heat flux densities directed normally
from the free surface Γp,d of the pad and the disc to the environment were written as

qdiss
p,d (t) = qconv

p,d (t) + qrad
p,d (t), 0 < t ≤ ts, (11)

where
qconv

p,d (t) = h(Ta − T), qrad
p,d (t) = εp,dσ(T4

a − T4), (12)

h—heat transfer coefficient, εp,d—emissivity of materials, σ = 5.67 · 10−8 W m−2K−4—
Stefan-Boltzmann constant, and Ta—ambient temperature.

Initially, the pad and the disc were at temperature T0.
Taking into account the form of the friction power density q (Equation (10)), the time

course of the friction work during braking W was determined from the following equation:

W(t) = 2Aa

t∫
0

q(req, 0, τ)dτ, 0 < t ≤ ts, (13)

where

req =
2(R3

p − r3
p)

3(R2
p − r2

p)
, (14)

Aa—surface area of contact of the pad on one side of the disc.
On the other hand, taking into account Equations (11) and (12), the changes in the brak-

ing time of the amount of heat Wdiss
p,d , dissipated from the free surfaces to the environment,

were determined from the equations:

Wdiss
p,d (t) = 2[Wconv

p,d (t) + Wrad
p,d (t)], 0 < t ≤ ts, (15)

where

Wconv
p,d (t) = Ap,d

t∫
0

qconv
p,d (τ)dτ, Wrad

p,d (t) = Ap,d

t∫
0

qrad
p,d (τ)dτ, (16)
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Ap,d—half of the free surface areas Γp,d of two pads and one disc.

3. Development of the 3D CAD Geometric Model and Generation of the Finite
Element Mesh

The solution of the boundary value problem of heat conduction (Equations (3)–(10))
was obtained numerically using FEM, adapted in the COMSOL Multiphysics® software
package [21]. The calculations were carried out on the basis of the three models, with a
different degree of simplification of the shape of the disc, consisting mainly of taking into
account or not taking into account the ventilation channels of the disc. These are models
where:

I. The ribs forming the channels were replaced with a solid area of reduced thickness
so as to keep the mass of the disc unchanged. In this model, the relative rotational
movement of the disc and the pad takes place by assigning a variable velocity field
at each point of the disc area at a fixed pad [10];

II. The actual shape of the disc with ventilation channels was taken into account. The
rotational movement of the disc was replaced by the movement of the pad relative
to the stationary disc. This is done by changing the outer contours of the disc in the
vicinity of the contact surface according to the simulated displacement of the pad;

III. The solid disc from model I was considered, but with the relative displacement of
the components according to model II.

One of the goals of this work was to carry out a comparative analysis of the brake
temperature fields with a ventilated disc and a solid disc, representing a ventilated disc in
a simplified form. A high convergence (relative maximum temperature difference did not
exceeded 0.01%) of the results for the solid disc, obtained on the basis of the well-known
and well-approved model I, was established with the corresponding temperature values
obtained with the use of the new model III. This allowed us to be sure of the correct choice
of the proposed modelling approach and the COMSOL Multiphysics® tools applied in
model III, and then II. Therefore, only the results obtained from model III (solid disc) and
model II (ventilated disc) will be presented and discussed (Figure 2).

  
(a) (b) 

Figure 2. FE meshes and geometric 3D CAD models of the solid (model III) (a) and ventilated (model II) (b) types of disc
brakes.

The 3D CAD geometric models of the tested braking system used to generate the
finite element grids were created using the SOLIDWORKS® software (Version 2020). The
construction of the CAD geometric model of the disc required taking into account the
specificity of assigning properties and parameters of the Deformed Geometry tools of the
COMSOL Multiphysics® program. In the geometric model of the pad, the wall inclinations
were ignored due to the considerable distance from the friction surface (more than 10 mm).
The backing plate, which strengthens the lining and allows it to be properly mounted

138



Materials 2021, 14, 7804

in the holder, was replaced with the pad material. Holes were also omitted to improve
the stability of the connection between the sheet and the pad. The brake pad holder was
also not taken into account. Due to the considered short-term braking mode, all these
simplifications did not affect the obtained results, but allowed us to reduce the total number
of finite elements and thus significantly (several times) shortened the computational time.
Considering the possible practical application of the proposed numerical FE models, this is
of key importance.

The geometrical models of the ventilated and solid discs were transferred from
SOLIDWORKS® to COMSOL Multiphysics® using and the Live Link™ tool (Version
5.3). At the same time, all modifications made in SOLIDWORKS® could be constantly
updated in COMSOL Multiphysics®. Then, a second-order finite element mesh (quadratic
Lagrange) was generated. The overall final FE mesh was created in a few steps. An
important criterion for changing the size of the element of the parts of the assembly was
the expected high temperature gradients resulting from the frictional heating process
corresponding with the properties of materials. It was necessary to include several times
lower thermal conductivity of the pad compared to the steel disc. Therefore, after cre-
ating the 2D triangle elements on the plane friction surface (15 mm was the maximum
element size), the sweep feature with a predefined distribution type (arithmetic sequence)
was created. In model III, the number of the finite elements within the area of the solid
disc was equal to 179 tetrahedral and 24,036 prism elements, and the pad was divided
into 2048 prism elements. Whereas in model II, the disc consisted of 33,518 tetrahedral,
50 pyramid, 14,595 prism and 140 hexagonal elements. In this model, the pad consisted of
4669 tetrahedral and 2048 prism elements.

4. Modeling the Rotational Motion of the Disc

In the case of a solid disc with no shape changes in the circumferential direction, the
numerical modeling of temperature fields in FEM-based programs usually requires the
following:

1. Separating the pad friction surface and thus defining the nominal contact area (heating
area);

2. Formulating the boundary conditions on each surface (heat flux density, convection
cooling, thermal insulation, etc.);

3. Defining a mathematical relationship for the velocity of each point of the disc during
braking in order to obtain the effect of its rotation with respect to the stationary
heating area.

The difficulty of describing the pad-disc frictional heating process arises when the disc
is ventilated. In this case, its shape changes in the circumferential direction, caused by the
free spaces alternating with elements constituting the ribs. This requires writing in-house
program code to generate the function of changing the heat flux density separately for each
element in the area of the surface of the rubbing path of the disc [5,22].

This article proposes the adaptation of special tools, available in the COMSOL
Multiphysics® software, to deform the geometry in such a way that it corresponds to
the rotational motion of the ventilated disc in relation to the stationary pad. This task was
carried out for the disc, specially divided into objects for this purpose. The contours of
the isolated heating area of the disc with a complex shape, described by the boundaries of
the pad’s friction surface, were deformed during braking. In spite of the rotation of the
disc, the conditions of perfect thermal friction contact, with the fixed pad remaining in the
initial position, were maintained. The described deformation occurred only for selected
elements, constituting a solid layer of a certain thickness (the condition of the possibility
of deformation is the continuity of the material). Due to the presence of ribs, the adjacent
layer towards the inside of the disc, parallel to the contact surface, remained stationary
(like the pad); see Figure 3a,b.
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(a) (b)

Figure 3. Motion scheme for the pad-disc system adapted in COMSOL Multiphysics® software: (a) deformation of the layer
of the disc in plane; (b) selection of the 3D objects of the braking system in Deformed Geometry (dg).

The problem formulated in this way required the use of specially adapted tools,
available in the model for Deformed Geometry in COMSOL Multiphysics® software. When
describing the rotational motion of the disc contours, taking into account the heating area,
the following transformation equations were used for the components (bx, by) and (bx′ , by′)

of any vector
→
b for the rotation of the Cartesian coordinate system Ox′y′ by the angle θ

with respect to the stationary orthogonal system Oxy [23,24]:

bx′ = bx cos θ + by sin θ, by′ = −bx sin θ + by cos θ, (17)

or
bx = bx′ cos θ − by′ sin θ, by = bx′ sin θ + by′ cos θ. (18)

Then, in the system Oxy, the rotation of the disc contours with a separate heating area,
corresponding to the rotation of the lining relative to the stationary disc, was described by

a vector
→
d with the following components:

dx = bx − bx′ , dy = by − by′ , dz = 0. (19)

During the calculations with the use of Equations (17)–(19), it should be remembered
that the circumferential variable θ is not constant, but has a sense of the angular distance
ϑ(t), which changes with time. According to Equation (2), the braking process consisted of
two stages with linearly decreasing rotational velocity ω with constant, different at each
stage, deceleration values. Therefore, in the COMSOL Multiphysics® program, first the
rotational velocity values were calculated from Equation (2) with time steps Δt = 0.001 s,
and then the appropriate values of the angular velocity ω(t) of the contact area Γ were
determined on their basis:

ϑ(t) =
t∫

0

ω(τ)dτ, 0 < t ≤ ts. (20)

The first calculations according to the above-described scheme showed that the tem-
perature oscillations resulting from the displacement of the pad relative to the disc are so
frequent that they require a minimum data reading step of no more than 0.002 s. Such a
high concentration of data reading points for the braking process lasting several seconds
leads to a significant increase in the computation time. In order to reduce this time, while
maintaining the correct course of temperature evolution, it was decided to perform ad-
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ditional optimization calculations out of the COMSOL Multiphysics® environment. For
this purpose, a code for determining the angular velocity ω(t), 0 < t ≤ ts was written
in the Python programming and scripting language (Equation (2)). This made it possi-
ble to generate a table of values of Wdiss

p,d with a time step of 0.001 s. It should be noted
that it can also be implemented on an ongoing basis in the program, using the tools for
solving differential equations for Global ODEs (ordinary differential equations) and DAEs
(differential-algebraic equations) (calculation of the angular distance) from the Mathematics
module; however, after preliminary thermal analyses, it was found that the results obtained
in this way were not accurate enough. Thus, in order to determine the angular distance ϑ
(Equation (20)), the integration of the tabulated angular velocity ω was performed. The
optimization of the temperature calculation time was performed using two time step values.
A list of points was generated, such that the five time intervals before and after the left
(leading) edge as well as the right (exit) edge of the pad had a time step of Δt = 0.002 s, and
the remaining ones had a step of Δt = 0.01 s. A very small time step of Δt = 0.00001 s was
applied to create this list in the original, in-house Python code. In addition, the data format
in COMSOL Multiphysics® required writing the range in the form (t0,Δt,tend), where t0
and tend(the beginning and the end value of the time interval, respectively) had to be taken
into account.

5. Numerical Analysis

Theoretical calculations were performed for the tangential vane type brake disc
(640 mm × 110 mm) with the reduced ventilation and two organic composite brake
pads (Figure 1). This friction pair was modeled using the solid disc (models I and III)
and the ventilated disc (model II) with the same cover angle of the pad 2θ0 = 86.9◦ at
the ambient temperature Ta = 20 ◦C (Figure 2). The values of the thermophysical and
mechanical constants of the materials as well as the dimensions of the pads and the disc
shown in Table 1 were used. The dimensions of the systems with the solid and ventilated
disc are also presented in Figure 4a,b, respectively. In order to verify the obtained theo-
retical temperature values, corresponding experimental data were used, obtained on a
full-scale dynamometer at the Railway Research Institute in Warsaw, Poland (Table 2). The
temperature of the ventilated disc was measured using thermocouples in accordance with
the UIC (International Union of Railways) Leaflet 541-3. The rotational velocity of the
disc was adjusted for the wheel of a rail vehicle with a diameter of Rw = 890 mm. The
six thermocouples Tn, n = 1, 2, . . . , 6 were situated symmetrically 1 mm below the friction
surface on both sides of the ventilated disc (Figure 4c). The radial distances from the axis
of rotation of the disc to the individual measurement points were equal to r = 207 mm for
T̂1 and T̂2, r = 247 mm for T̂3 and T̂4, and r = 287 mm for T̂5 and T̂6. In the circumferential
direction, the distance between successive measurement points was 120◦.

Table 1. Input parameters for numerical simulation.

Parameter Disc Pad

thermal conductivity, K(W m−1 K−1) 51 1.59
specific heat at constant pressure, c(J kg−1 K−1) 500 770

density, ρ(kg m−3) 7100 2450
surface emissivity, ε 0.28 0.8

heat transfer coefficient, h 100 100
initial temperature, T0 28 28

thickness solid/ventilated, δ (mm) 55 25/35
outer radius, Rp,d (mm) 320 303
inner radius, rp,d (mm) 175 178

inner radius of the hub solid/ventilated, rp,d (mm) 127.5/168.25 178
equivalent (friction) radius, req (mm) - 247

surface area of contact of the pad on one side of the disc, Aa(m2) - 0.034
surface area of the pad (m2) - 0.241

surface area the solid/ventilated disc (m2) 1.287/2.002 -
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Numerical simulations and experimental measurements with the use of thermocou-
ples were performed for two (no. 1 and no. 2) brake applications with different, experi-
mentally recorded operating parameters (Table 2). This table contains the values of the
input parameters, such as simulated energy per braking system, brake cylinder filling time
t1 and braking times ts, with their respective braking distances l1 and ls, forces F1 and
Fs, and angular velocities ω0, ω1 and ωs. Table 2 also includes the temperature values at
the point corresponding to the location of the thermocouple T6, determined experimen-
tally T6,exp and obtained numerically TI

6,theor, TII
6,theor and TIII

6,theor on the basis of the three
above-mentioned FE calculation models. The point corresponding to the position of the
thermocouple T6 was chosen because of the highest temperature reached at this point
compared to the temperature at the other five points. In the case of a solid disc, the relative
percentage difference between the values

∣∣∣TIII
6,theor − TII

6,theor

∣∣∣ is 0.2% and 1% for braking
applications no. 1 and no. 2, respectively. The relative difference between the values of
the temperature of the ventilated disc, determined theoretically TIII

6,theor and experimentally
T6,exp, is fully acceptable and is equal to 14.4% (no. 1) and 3.8% (no. 2).

The time profiles of the angular velocity ω(t) (Equation (2)) and the angular distance
ϑ(t) (Equation (20)), obtained with the input parameters from Table 2 for the two variants
of braking are presented in Figure 5. The corresponding temperature changes in time at a
selected point P(−197 mm, 208 mm) on the disc friction surface are shown in Figure 6. The
temperature evolutions obtained on the basis of models III (solid disc) and II (ventilated
disc) are marked in red and blue, respectively. These evolutions consist of a series of cycles
(oscillations), each of which comprises two stages: first increase, and then decrease of the
temperature. The first stage relates to the situation when the measuring point is still inside
the nominal contact area during the movement of the pad, and the second—when the point
P is already outside the contact area of the pad with the disc.

Figure 5. Changes in angular velocity ω(t) and angular distance ϑ(t) of the disc.

Due to the lower initial velocity ω0 and shorter braking time ts (Table 2), the number
of cycles in the case of braking no. 1 (Figure 6a) is smaller than during braking no. 2
(Figure 6b). With each new cycle during the first stage 0 ≤ t < t1 of the braking process,
corresponding to a linear increase in pressure, the maximum temperature increases, suffers
a slight decrease at t1 = 4.2 s as the pressure force increases abruptly from value F1 to
nominal Fs, and then increases again until the time corresponding to approximately half of
the braking time (t ∼= 0.5ts). After this, a decrease in the maximum temperature is observed
with each subsequent cycle, lasting until the end of the process t = ts. It should be noted
that such a time course of temperature during braking is determined by the time profile
of the friction power density q (Equation (10)), including the stages increasing with the
start of braking, reaching the maximum value, and the next reduction to the end time
t = ts. During braking no. 1, the maximum temperature of the ventilated disc (113.22 ◦C)
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is practically the same as the temperature of the solid disc (113.07 ◦C). For braking no. 2,
the maximum temperature values were 170.47 ◦C and 169.61 ◦C, respectively. At the end
of the braking process t = ts, the temperature of the ventilated disc was 76.96 ◦C and for
the solid disc 74.83 ◦C (braking no. 1), whereas for braking no. 2 it was 110.14 ◦C and
104.83 ◦C, respectively.

  
(a) (b) 

Figure 6. Temperature changes in time at location (x = −197 mm, y = 208 mm, z = 0 mm) for the solid (red lines) and the
ventilated (blue lines) brake discs: (a) braking no. 1; (b) braking no. 2.

The oscillation amplitudes of the temperature time profiles decrease along with the
distance from the disc friction surface, and at the depth above 5 mm they disappear
altogether (Figure 7). During both brake applications, the temperature values determined
with the use of the computational models of the solid and ventilated disc are very similar.
Therefore, it can be concluded that the temperature distribution in the circumferential
direction in both the solid and the ventilated disc at this depth is homogeneous. Therefore,
the heating of the ventilated disc can be modeled using the simplification consisting of the
fact that a layer with a thickness of about 5 mm rotates, and the remaining area of the disc
towards its interior may be stationary. It would be far easier to simulate the rotation of
the disc in relation to stationary pads, using for this purpose only the basic tools of the
FEM programs, adapted in the COMSOL package. The available Translational Motion tool
requires only the velocity field, with no additional disc deformation options. The obtained
maximum temperatures at the point P6(−197 mm, 208 mm,−1 mm) corresponding to the
location of the thermocouple T6 for the ventilated and solid discs are, respectively, 96.7 ◦C
and 96.5 ◦C during braking no. 1 and 147.2 ◦C and 145.8 ◦C during braking no. 2. These
values are collated in Table 2 with the experimental data measured by the thermocouples.

The temperature distribution along the thickness of the disc for the selected time
moments at point P are presented in Figure 8. For both brake applications, at the initial
stage of the process, lasting approximately 6 s, the differences in temperature values of
the solid and ventilated discs are insignificant and are observed at the depths greater than
10 mm. After 10 s, these differences appear on the friction surface and increase when
moving away from it. The biggest temperature difference between the solid and ventilated
discs occurred at the depth |z| = 18 mm at the time moment t = 14 s and was equal to
5.5 ◦C (Figure 8a) and 10.4 ◦C (Figure 8b) for braking no. 1 and no. 2, respectively.
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(a) (b) 

Figure 7. Temperature changes in time at location (x = −197 mm, y = 208 mm) under the friction surface of the solid (red
lines) and ventilated (blue lines) brake discs: (a) braking no. 1; (b) braking no. 2.

  
(a) (b) 

Figure 8. Temperature distributions in axial (z) direction of the solid (red lines) and ventilated (blue lines) disc at location
(x = −197 mm, y = 208 mm) from (a) braking no. 1; (b) braking no. 2.

The evolutions of the work W (Equation (13)) done during braking are shown in
Figure 9. Increasing monotonically with time, at the moment of stopping, the calculated
values of the friction work are equal to 989.4 kJ (Figure 9a) and 2096 kJ (Figure 9b) for brak-
ing no. 1 and no. 2, respectively. These values agree well with the relevant experimental
data contained in Table 2, concerning the initial kinetic energy of the system W0 (985.8 kJ,
2085 kJ). Such compliance additionally confirms credibility of the obtained numerical
results.
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(a) (b) 

Figure 9. Kinetic energy W per one braking system converted into heat during (a) braking no. 1; (b) braking no. 2.

Based on Equations (16) and (17), the changes in the braking time of the heat Wdiss
p,d

dissipated to the environment from the free surfaces of the pad and the disc according to
two mechanisms—convection and radiation—are shown in Figures 10 and 11. For both
brake applications, the heat Wrad

p,d (Figures 10a and 11a) dispersed to the environment
by radiation is small compared to the heat Wconv

p,d (Figures 10b and 11b) transferred by
convection, and even smaller compared to the work of friction W (Figure 9), converted into
heat. Such small, almost negligible, amounts of energy dissipated due to thermal radiation
were expected and are physically justifiable. The energy absorption from the surfaces of
adjacent elements is of utmost importance. It should also be noted that the heat emitted
as a result of radiation is reflected between the inner walls of the ventilated disc and is
not dissipated to adjacent elements other than the disc. Therefore, significant amounts
of thermal radiation energy are dissipated only through the exposed surfaces of the disc
and partly internal and external cylindrical surfaces [11]. Despite the higher emissivity
of the material of the pad than the disc material, the low thermal conductivity of the pad
and its small free surface prevent it from playing a significant role in heat dissipation.
In turn, the heat dissipated through convection from the free surfaces of the disc to the
environment is small in relation to the total friction work during braking. The above shows
that convection during a short-term single braking (from a few to several seconds) does not
have any significant importance in the overall thermal balance of the brake. This explains,
in particular, that the temperature of the ventilated disc is higher than that of the solid disc
(Figure 6). As convection and radiation during short-term braking (from a few to several
seconds) do not play a significant role in the overall thermal balance of the brake, thermal
conductivity plays the main role in heat dissipation. The thickness of the material layer of
the disc adjacent to the pad in a ventilated type of the disc is smaller than in a solid disc of
the same mass. Hence, there is less heat dissipation by conduction in the ventilated disc.

The above conclusions are confirmed by the temperature distributions on the external
surfaces of the ventilated disc and the solid disc of the same mass in selected time moments
t = 0.4 s, 2 s, 10 s, and 14.6 s during braking no. 1, as shown in Figures 12–15. A slight
difference of 0.1 ◦C between the maximum temperature value reached in the ventilated
disc and the solid disc appears 2 s after the start of braking (Figure 13), and the greatest
difference is 2.5 ◦C, i.e., about 3% of the maximum temperature value reached—at the end
t = 14.6 s (Figure 15). In terms of quality, the temperature distributions in both types of
discs (solid and ventilated) are the same. The absence of any displacements of the heating
area in the ventilated and solid discs results from the adapted angular displacement in
time, determined independently before the temperature calculations of the COMSOL
Multiphysics® software. If this simulation step was omitted and all calculations were
performed only in the COMSOL Multiphysics® environment with a standard time step,
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slight differences in the position of the heating area would be observed and thus would
also be seen in the temperature distributions.

  
(a) (b) 

Figure 10. Changes in energy dissipated during braking no. 1 (solid disc—red lines, ventilated disc—blue lines) through
(a) thermal radiation; (b) convection.

  
(a) (b) 

Figure 11. Changes in energy dissipated during braking no. 2 (solid disc—red lines, ventilated disc—blue lines) through
(a) thermal radiation; (b) convection.

 
(a) (b) 

Figure 12. Temperature distribution in the solid (a) and ventilated (b) brake disc after t = 0.4 s of braking no. 1.
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(a) (b) 

Figure 13. Temperature distribution in the solid (a) and ventilated (b) brake disc after t = 2 s of braking no. 1.

 
(a) (b) 

Figure 14. Temperature distribution in the solid (a) and ventilated (b) brake disc after t = 10 s of braking no. 1.

 
(a) (b) 

Figure 15. Temperature distribution in the solid (a) and ventilated (b) brake disc after t = 14.6 s of braking no. 1.

6. Summary and Conclusions

Two calculation models of the ventilated disc temperature were developed, differing
in their taking into account its rotational motion. For comparative purposes, in one of these
models, the shape of the ventilated disc was simplified by replacing the pillars with an
annular area, assuming that the new disc thus formed has the same mass as the ventilated
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disc. Based on the results of the simulation of the temperature mode during two single
braking events (no. 1 and no. 2), differing in the initial kinetic energy, it was established
that

• The maximum temperature values obtained with the use of both numerical models
are consistent with the corresponding results of measurements with thermocouples
on the full scale inertial test bench;

• The differences in the maximum temperature values of the ventilated disc (model II)
and the solid disc (models I and III) are negligible and amount to about 0.15 ◦C (no. 1)
and 0.86 ◦C (no. 2). At the end of the process, these differences are 2.13 ◦C (no. 1) and
5.31 ◦C (no. 2);

• The amplitude of temperature oscillations caused by the relative motion of the pad
and the disc with a linear increase in pressure is the highest in the middle of the
braking process, and the oscillations themselves decrease with the distance from the
friction surfaces and appear in the disc to a depth of about 5 mm;

• Temperature distribution in both discs indicates the possibility of disregarding the
rotation of the disc material at a depth exceeding 5 mm. In our opinion, the result is
significant, since it allows for a simple modeling of the rotation of the axisymmetric
ring area of the disc located at a distance from the friction surface and allows the area
below this depth to remain stationary;

• Even after several seconds of braking, the disc is not heated evenly across its entire
thickness. At the end of the process, only the layer reaching one-fourth of the thickness
of the analyzed ventilated disc is heated;

• The heat dissipation due to convection and thermal radiation is not significant in the
total heat balance during braking;

• Unforced convection heat exchange with the environment during short-term braking
does not lead to significantly better cooling of the ventilated disc as compared to a
solid disc. This effect may become significant only after a few or several dozen seconds
after stopping [25,26];

• The performed calculations justify the use of the constant heat transfer coefficient with
a single short-term braking.

The obtained results, apart from the differences between the ventilated and the solid
disc, may suggest possible discrepancies in the temperature fields in the case when the
ventilated disc, combined with the irregularly shaped pad, is replaced with an axially
symmetric disc brake model. Such a brake model should actually be two models, with
separate heating of the disc and the pad. In the case of the disc, the cross-section of the solid
disc created in this work should be replicated; there is no other possibility of replacing the
ribs (pillars) of the ventilated disc. On the other hand, it would be difficult to reproduce the
cross-section of the pad, which would be a model of the axisymmetric heating of the disc.
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Nomenclature

Aa surface area of contact of the pad on one side of the disc (m2)
Ap,d half of the free surface areas Γp,d of two pads and one disc (m2)
c specific heat (J kg−1K−1)
f coefficient of friction (dimensionless)
F1 clamping force at time t = t1 (N)
Fs nominal clamping force (N)
h heat transfer coefficient (W m−2K−1)
k thermal diffusivity (m2s−1)
K thermal conductivity (W m−1K−1)
l1 braking distance at time t = t1 (m)
ls total braking distance (m)
Mb mass per brake disc (m)
p contact pressure (MPa)
p1 contact pressure at time t = t1 (MPa)
ps nominal contact pressure (MPa)
q specific friction power (W m−2)
r radial coordinate (m)
r, R inner and ouer radius, respectively (m)
req equivalent (friction) radius of the contact region (m)
Rw outer (rolling) radius of the wheel (m)
t time (s)
t1 time of increase of the clamping force to 95% of Fs (s)
ts total braking time (s)
T temperature (◦C)
Ta ambient temperature (◦C)
T0 initial temperature (◦C)
T̂1,T̂2 temperatures at the radius r = 207 mm 1 mm under the firction surfaces of the disc (◦C)
T̂3,T̂4 temperatures at the radius r = 247 mm 1 mm under the firction surfaces of the disc (◦C)
T̂5,T̂6 temperatures at the radius r = 287 mm 1 mm under the firction surfaces of the disc (◦C)
V0 initial velocity of the vehicle
W0 initial kinetic energy per one braking system (J)
Wconv

p,d heat dissipated through convection from one pad or half of the disc free surfaces (J)
Wrad

p,d heat dissipated through radiation from one pad or half of the disc free surfaces (J)
Wdiss

p,d heat dissipated from the free surfaces of two pads or the disc to the environment (J)
z axial coordinate (m)

Greek Symbols

Γp,d free surface area of the pad and the disc (m2)
δ thickness (m)
ε surface emissivity (m)
θ circumferential coordinate (rad)
θ0 half of the coever angle of the pad (rad)
ϑ angular distance of the rotating pad to the stationary disc (rad)
ρ mass density (kg m−3)
σ Stefan-Boltzmann constant (W m−2K−4)
ω angular velocity (rad s−1)
ω0 initial angular velocity (rad s−1)
ω1 angular velocity at time t = t1 (rad s−1)
ωs angular velocity at the end of braking (rad s−1)
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Ωd region within the half volume of the disc (m−3)
Ωp region within the volume of the pad (m−3)

Subscripts

p, d pad, disc
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Abstract: This paper consists of two parts. The first one contains a description and methodology of
the composite material used as friction material in clutches. Four variants of such material, differing
in the type of carbon additive (the elemental graphite, pencil graphite and foundry coke powder of
various fractions) were considered. Thermal conductivity, thermal diffusivity as well as the specific
heat all materials were determined experimentally. On the inertial IM-58 stand, a simulation of the
braking process of the friction pair consisting of a steel disc with friction material and a counterpart in
the form of a homogeneous steel disc was carried out. On this basis, averaged coefficients of friction,
unchanging in the entire sliding process, were found for the four friction pairs. The experimental
data obtained in the first stage were used in the second stage to develop two (2D and 3D) numerical
models of the friction heating process of the friction pairs under consideration. For four variants
of the friction material, a comparative spatial-temporal temperature analysis was performed using
both models. It was found that a simplified axisymmetric (2D) model can be used to estimate the
maximum temperature with high accuracy. The lowest maximum temperature (115.6 ◦C) obtained
for the same total friction work was achieved on the friction surface of the material with the addition
of GP-1.

Keywords: friction material; clutch; temperature; frictional heating; numerical model

1. Introduction

The friction materials are widely used in friction pairs of vehicles, tractors, motorcycles,
machine tools and others. Such are the hydro mechanical gearboxes, the oil-cooled brakes,
the clutches and etc. [1–3]. From the reliable operation of such units and mechanisms
depends on the safety of both service personnel and surrounding people [4].

The main advantages of friction materials are high efficiency in torque transmission,
low wear [5], smoothness and transparency of operation [4], absence of seizure and for-
mation of burns [6], effective dissipation of thermal energy generated during a slip [7],
possibility to minimize the force of switching on and switching off the friction device due
to creation of the optimum kinematic scheme.

Known friction materials containing fibers [8], are based on a polymer matrix [9],
however, for heavy-loaded friction systems, the most common are powder sintered friction
materials (PSFM) [10]. The PSFMs are produced by powder metallurgy and have a complex
composite structure that combines metal and non-metal components. As the basis of the
friction material, iron and copper have become the most widespread. An iron is used in
friction pairs without lubrication. For friction pairs with lubrication, copper-based materials
are the most common. Copper allows for efficient material processing, heat dissipation,
and low wear [11,12]. However, pure copper does not provide the required values of the
coefficient of friction and wear intensity. To change these properties, graphite powder
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is used. For these purposes natural graphite powders with a size of 80 μm, and finely
dispersed, with a size of 8–10 μm can be used [13]. Coarse graphite provides a significantly
higher coefficient of friction. It has been shown that foundry coke powder can be used
as an additive in the PSFM composition [14]. Its presence makes it possible to increase
significantly the value of the coefficient of friction of the material [14].

A feature of the operation of friction materials is slipping, accompanied by both an
increase and a decrease in pressure for a short time period, while the velocity can either
decrease in case of a friction pair closure, and increase—when it is opened. Short process
durations and high velocities lead to the release of a large amount of heat and hence
temperature. This causes the destruction of the surface layer, determining wear of the
material and, consequently, the service life of the entire machine or mechanism [15]. The
studies on the stability, corrosion-resistance, and applicability of ternary mixed metal
oxides/metallates (tungstates) and the new additive-manufactured hybrid high entropy
alloys were carried out in the articles [16,17].

The development of PSFMs requires the manufacture of samples, carrying out both
full-scale and bench tests. The duration of such a period can be either several months or
several years. In the case of PSFMs, solving the problem of heat dissipation during frictional
sliding by computational methods, would significantly reduce the development time of
the friction material for given operating conditions. Modeling the process of temperature
change in the friction zone, depending on the geometrical dimensions of the friction disc
and steel disc, the amount of lubricant supplied, as well as the composition of the PSFM
itself, would allow to predict its operation at a preliminary stage.

The transient temperature fields and quasi-static stresses of the components of a
wet multi-plate clutch during a typical engaging process were determined numerically
in one of the pioneering works [18]. The analyzed friction pair consisted of alternately
arranged steel discs and discs with a steel core lined with layers of friction material. In the
calculation model of the friction clutch, the directionality of the thermophysical properties
of materials (steel and sintered bronze) was taken into account. The temperature fields
were determined using the finite difference method, while the thermal stresses at selected
time moments of the friction process by the finite element method. The convective heat
transfer coefficient applied in the computational model of the multidisc clutch was in the
range 130–1890 W m−2 K−1. A computer simulation of the friction process taking into
account the thermomechanical contact of the working elements of the multidisc clutch with
thermoelastic instability effect was carried out in the article [19]. An attempt to identify
the features of the hot spots generation process in a wet multi-disc clutch was made in
the paper [20]. The results obtained on the basis of the thermoelastic contact model were
compared with the corresponding experimental data.

Computational models of friction clutches were discussed in terms of their transmis-
sibility and engaging control strategy, and the influence of temperature, velocity, contact
pressure and wear on the generated torque was analyzed [21].

Significant progress has been observed in the development of the analytical models of
the heat generation process due to friction in friction components of clutches [22]. In this
paper, apart from the calculations using an exact solution to the thermal problem of friction
related to the heating of the dry clutch, the results of the relevant bench tests with the use
of a thermal imaging camera are also presented. Analytical differential and integral wear
was developed to prepare detailed maps of changes in friction material wear during clutch
operation [23]. The proposed approach also allows for the analysis of changes with the
braking time of the torque transmitted by the clutch. Two different (with a priori given heat
partition coefficient or conditions of perfect thermal contact of friction) analytical models
for determining the temperature during the operation of the clutch were proposed [24]. The
temperature values obtained with the use of both theoretical models are in good agreement
with the analogous results found with the finite element (FE) axisymmetric (2D) model.
The above-mentioned analytical models that allow to determine not only the temperature,
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but also thermal stresses at a specific point on the working surface and inside the friction
material were developed [25].

However, the greatest advances in temperature modeling of friction systems such
as disc brakes and clutches stem from the use of numerical methods. Without listing all
publications on this subject in detail, one should refer the reader to relevant reviews [26–29].
The studies that were not included in these articles cover the 2D FE computational model,
implemented in ANSYS software [30]. It was assumed that both working elements of
the clutch are heated separately with heat flux proportional to the friction power den-
sity. The ratio of heat distribution in the form of the Charron’s formula was used as the
proportionality coefficient. Single and multiple clutch operation modes were considered.

The subject of temperature is closely related to other aspects of clutch operation,
in particular, such as strength of materials and mechanical properties. The analysis of the
temperature field and its gradients was performed during a single engaging of the carbon
fabric wet clutch in order to predict damage to the composite material [31]. The latter were
defined as the increase in surface roughness and the occurrence of cracks as observed on
scanning electron microscopy (SEM) micrographs.

A review and evaluation of materials used for friction elements of clutches was
presented in relation to specific design solutions developed from the end of the 19th cen-
tury [32]. The design aspects of the complex hybrid mechanical material system of a
woven fiber yarn (glass fiber with aromatic polyamide, copper, and poly-acrylic-nitrile)
reinforced friction material was performed with the intention of creating separated compo-
nent groups (matrix and fiber groups). It was noted that the obtained data can be used as
input parameters for the development of thermomechanical models of clutches.

The purpose of this article was:

(1) development of effective 2D and 3D computational models with the use FEM to
determine the temperature of the friction clutch;

(2) carrying out a comparative analysis of the temperature fields obtained by means of
both models with the same friction work done;

(3) investigating the effect of a carbon-containing additive in the structure of the new
four friction materials on the temperature mode of the clutch.

(4) When developing the computational models of frictional heating of the clutch, the au-
thors used their previous experience, gained earlier in the modeling of the temperature
mode of disc brakes [33,34].

2. Friction Materials

The basis of the composite friction material was bronze obtained from copper powder
and 10% tin (BrO10), which contained 20% of the additive in the form of elemental graphite
GE-1, pencil graphite GP-1 and foundry coke powder of various fractions C-1 and C-2.

The charge of the material was obtained by mixing the initial copper powders of the
PMS-1 grade with an average particle size of 80 μm (Figure 1a), tin of the PO-1 grade
with an average particle size of 30 μm (Figure 1b), graphite of the element grade GE-1
with an average particle size of 100 μm (Figure 1c), pencil graphite GP-1 with an average
particle size of 8 μm (Figure 1d), foundry coke powder with a size of less than 60 μm (C-1)
(Figure 1e) and 160–200 μm (C-2). Mixing of the initial powders was carried out in a mixer
of the “drunken” barrel type for 50 min.

It should be noted that the tribotechnical properties of the friction material are largely
influenced by the amount and size of the used powder additives, which determine the
contact area during friction. In addition, structure has an impact. Graphite of any grade
has a layered crystalline structure, while coke is amorphous.

The used coke powder additive is obtained by crushing large pieces of coke, which is
used as fuel, the cost of which is not high. Graphites of grades GE-1 and GP-1 are natural,
the cost of which is 20–30% higher than the cost of foundry coke.
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 1. Shape of powder particles: (a) PMS-1; (b) PO-1; (c) GE-1; (d) GP-1; (e) C-1, C-2.

156



Materials 2022, 15, 464

3. Experiment

The essence of the test method was to simulate the braking process on the inertial
stand IM-58 and record the dependence of the friction moment on the velocity and time of
braking. The scheme of the IM-58 stand is shown in Figure 2.

  
(a) (b) 

Figure 2. Inertial stand IM-58: (a) physical appearance; (b) structural scheme.

The tests were carried out with friction by the ends of a rotating counterpart 12 and a
stationary test specimen 24, which are mounted in the mandrels 11, 22 and 23 (Figure 2b).
The axes of their rotation are located horizontally and mounted on bearings 4, 7, 10, 20.
The rotating mandrel 11 is fixed on the spindle 25, which rotates from the electric motor 28
through the pulleys 1 and 2 and the V-belt transmission 3. The stationary mandrel 21 is
fixed on the piston rod 15, mounted on two radial bearings and having the ability to rotate
around its axis. The mandrel 21 and the rod 15 are held against rotation by a strain gauge
beam. The load on the samples was created by a gear oil pump 18 powered from the oil
tank 19 through the filter 17. The working oil pressure was regulated by the throttle and
recorded by the pressure gauge 16. Fixation of readings of number of turns was carried out
through the intermediate disk 6 and the speed sensor 27. The inertial masses 8 necessary to
obtain the required kinetic energy are attached to the spindle flange 25 using bolts 9 and
26. After reaching the selected rotation velocity, the spindle 25 with the inertial masses
8 was disconnected from the electric motor using an overrunning cam clutch 5 and the
stationary sample 24 was pressed with the required force against the rotating counterpart
12. With the electric motor turned off, the unique energy accumulator was the rotating
inertial masses. Under the action of frictional forces between the counterpart and the test
sample, the drive shaft along with the inertial masses gradually stopped, transmitting the
torque to the amplifier 14 and personal computer 13.

The appearance of the test specimens is shown in Figure 3. The friction disc was a
steel base in thickness 2.5 mm, made of 65G steel on which a layer of friction material
with a thickness 0.5 mm was attached. The outer and inner diameters of the friction pad
were 95 mm and 65 mm, respectively. The counterpart samples used for research were
made of 65G steel (0.62–0.7% C, 0.17–0.37% Si, ≤0.9–1.2% Mn, ≤0.035% P, ≤0.035% S,
≤0.25% Cr, ≤0.2% Cu) with the thickness of 10.0 mm, the Brinell hardness of 180–200 MPa
and the roughness of the surface of friction Ra = 0.7–0.8 μm. Hydraulic oil of grade A (TU
38.1011282-89) intended for operation in torque converters and automatic transmissions
was used as a coolant. Oil was supplied from the inner part of the disc at a rate of
1.01 min−1.

The results of the influence of the type of carbon-containing additive in the composition
of the friction material on the thermal properties and the coefficient of friction are shown in
Table 1. The coefficient of friction was recorded after 300 cycles of each test, i.e., in a steady
state wear mode.
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(a) (b) 

− − − − − − − −

Figure 3. Appearance of test samples: (a) the friction disc; (b) the steel counterpart.

Table 1. Influence of the type of carbon-containing additive on thermophysical properties and
coefficient of friction.

No. Additive
Thermal

Conductivity
W m−1 K−1

Specific Heat
J kg−1 K−1

Mass
Density
kg m−3

Thermal
Diffusivity

mm2 s−1

Specific Heat
Capacity

MJ m−3 K−1

Coefficient of
Friction

Dimensionless

1 GP-1 28.1 1189.2 6059 3.9 7.2 0.035
2 GE-1 44 2514.9 5832 3 15 0.045
3 C-1 13.6 438.3 5171 6 2.3 0.05
4 C-2 18.8 701.2 5362 5 3.7 0.06

The obtained data revealed that the highest value of the thermal conductivity of
44 W m−1 K−1 was obtained for friction material GE-1, containing coarse graphite. In the
case of fine graphite GK-1, the thermal conductivity was only 28 W m−1 K−1. This may
be due to the fact that the area of the metal contact of the formed tin bronze, in the case
of GE-1, is significantly larger than that of GP-1 (Figure 4a). The fine powder of graphite
GP-1 in the process of mixing is able to be located both between copper particles and inside
them, leading to a decrease in the area of the metal contact (Figure 4b).

− − − − − − − −

  
(a) (b) 

Figure 4. Structure of a frictional material with various mark of graphite: (a) GE-1; (b) GP-1.
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An even greater decrease in the thermal conductivity of the friction materials C-1 and C-2
containing foundry coke powder may be due to the significantly lower value of the thermal
conductivity of coke in comparison with graphite. So in the monographs [35,36] it is shown
that the thermal conductivity of coke powder of various fractions is 0.249–0.542 W m−1 K−1,
while after graphitization is equal to 0.58–1.34 W m−1 K−1. For example, the thermal conduc-
tivity of graphite determined by the spatial orientation of the layers can be 233 W m−1 K−1,
while pure copper is equal to 400 W m−1 K−1 [37].

The highest value 0.06 of the friction coefficient was obtained for the friction material
C-2 with the addition of foundry coke powder, while for graphite’s GE-1 and GP-1 0.45 and
0.35, respectively. This may be due to both the structure of the crystal lattice and spatial
orientation. Thus, graphite’s GE-1 and GP-1 have a hexagonal crystal lattice, while coke
is amorphous.

4. Numerical Model

Numerical simulation of the friction heating process clutch during a single deceleration
from the initial speed to the stop was performed on the inertial stand of the IM-58 (Figure 2).
The analyzed clutch consists of two working elements: a steel disc with friction material
applied to one face, and a steel counterpart (Figure 3). The calculations were performed
for four (no. 1, 2, 3, 4) variants of the friction material with thermophysical properties and
friction coefficients from Table 1. The values of the other input parameters are shown in
Table 2. The given values of contact pressure, velocity, moments of inertia are characterized
as parameters of heavily loaded friction units, clutches, mechanisms of automotive vehicles,
special purpose vehicles, devices, machine tools.

Table 2. Operating parameters from experimental tests.

Parameter Value

contact pressure, p(2D)
0 MPa 4

initial angular velocity, ω0 rad s−1 235.6
braking torque of the rotating masses, I0 kg m2 0.7

inner radius of the friction path, rp mm 30
outer radius of the friction path, Rp mm 47.5

initial/ambient temperature, Ta
◦C 20

heat transfer coefficient, h W m−2 K−1 600

The most important dimensions of both elements are shown in Figure 5.

Figure 5. Geometrical 3D CAD model of the clutch.
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Two numerical models were developed using FEM: axisymmetric (2D) and spatial (3D).
The differences in these models were in the material of the lining and the disc connected to
it, which had fasteners on the outer cylindrical surface limiting its rotation. In the case of
the lining from the 3D model, cuts (grooves) were taken into. In the 2D model, these cuts
were not included due to axial symmetry. Thus, nominal contact surfaces in 2D and 3D
models were different. The final FE (quadratic Lagrange elements) meshes created for both
models are shown in Figure 6, and the corresponding numbers of elements are included in
Table 3.

 
(a) (b) 

 
(c) 

Figure 6. FE meshes of the clutch: (a) axisymmetric (2D) and (b,c) spatial (3D).

Table 3. Numbers of the 2D and 3D finite elements of the clutch models.

Type of Quadratic Lagrange
Elements

Friction
Material

Steel Plate Steel Disc Assembly

quadrilateral elements 175 376 940 1491
tetrahedral elements 69,014 69,946 129,267 268,227

Taking into account the data contained in Table 2, the nominal contact surface area Aa
in the 2D model, determined by the values of the inner rp and outer Rp radius of the disc
containing the friction material, is equal to:

A(2D)
a = π(R2

p − r2
p) = 4261 · 10−6 m2, (1)

and the clamping force P of the clutch elements during braking was:

P = p(2D)A(2D)
a = 17.04 kN. (2)
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Because the friction surface area in the 3D model was smaller than in the 2D model,
the contact pressure was higher. On the basis of the dimensions (Figure 5), an appropriate
spatial CAD geometric model of two elements of the friction pair was developed and the
friction surface area was determined A(3D)

a = 3759 · 10−6 m2. Then, taking into account the
Formula (2), the contact pressure for the 3D model was determined:

p(3D) =
P

A(3D)
a

= 4.53 MPa. (3)

With the constant contact force P and the friction coefficients unchanged in the braking
process fi (Table 1), the reduction of the angular velocity ω in time t from the initial value
ω0 to zero in the moments of stopping t = ts,i is linear:

ω(t) = ω0ω∗(t), ω∗(t) = 1 − t
ts,i

, 0 ≤ t ≤ ts,i, (4)

ts,i =
ω0 I0

fiP req
, i = 1, 2, 3, 4, (5)

where the equivalent radius req was calculated from the formula [33]:

req =
2(R3

p − r3
p)

3(R2
p − r2

p)
= 0.0394 m (6)

Taking into account the Formulas (3) and (6) and the values of the coefficients of
friction from the Formula (5) contained in Table 1, the next stopping times were determined
for each of the four variants of the friction material: ts,1 = 7.02 s, ts,2 = 5.46 s, ts,3 = 4.91 s
and ts,4 = 4.09 s. Due to the constant contact force of the discs P (2) in both calculation
models, also the stopping times for 2D and 3D models with the use of the corresponding
friction materials were the same. The change in the process of braking power Qi and work
of friction Wi, i = 1, 2, 3, 4:

Qi(t) = Q0,iω
∗(t), 0 ≤ t ≤ ts,i, Q0,i = fiPω0 req, (7)

Wi(t) =
t∫

0

Qi(τ)dτ = W0,iW∗
i (t), W0,i = Q0,its,i, (8)

W∗
i (t) =

t
ts,i

(
1 − t

2ts,i

)
, 0 ≤ t ≤ ts,i, (9)

are shown in Figure 7. Based on the Formulas (8) and (9), it was established that in the
moments of stopping t = ts,i, the friction work for all four calculation variants was the
same and amounted to: Ws,i ≡ Wi(ts,i) = 0.5W0,i = 19.43 kJ, i = 1, 2, 3, 4. This value is
equal to the initial kinetic energy of the system, calculated from the formula:

W0 = 0.5I0ω2
0 = 19.43 kJ. (10)

The simulated process concerned frictional heating during braking in time 0 ≤ t ≤ ts,i,
which made it possible to stop the rotating masses at a given moment of inertia, and then
cooling the friction system during ts,i ≤ t ≤ 90 s, i = 1, 2, 3, 4. During the slip of the
clutch elements resulting in generation of heat in the time interval 0 ≤ t ≤ ts,i, in the
contact area, the thermal contact of friction was perfect, i.e., the sum of heat fluxes directed
perpendicularly from the contact surface of the friction material and the steel disc to the
inside was equal to the power density of the frictional forces, and the temperature values
of the opposite surfaces were the same. At t > ts,i, i = 1, 2, 3, 4 the friction surfaces of
the elements were adiabatic. Throughout the analyzed process (0 ≤ t ≤ 90 s), convection
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cooling on the friction-free surfaces with the constant heat transfer coefficient took place.
The exception was the two outer frontal surfaces of the sliding elements, which were
thermally insulated (h = 0) both during heating and cooling (Figure 6).

 
Figure 7. Time profiles of the power Qi and the work Wi, i = 1, 2, 3, 4 of friction during braking.

In accordance with the experimental tests carried out, the relative rotational movement
of the clutch components was simulated. The calculations were conducted in COMSOL
Multiphysics® software by using the Heat Transfer Module [38]. Additionally, in order to
determine the friction work done Wi (Figure 7), special tools, namely Global ODEs (ordi-
nary differential equations) and DAEs (differential-algebraic equations) from Mathematics
module were incorporated.

5. Numerical Analysis

The numerical simulation concerned the comparative analysis of the temperature
fields in four friction pairs (no. 1, 2, 3, 4) obtained on the basis of the axisymmetric (2D)
and spatial (3D) numerical models.

The temperature changes on the friction surface of the disc are shown in Figure 8.
The assumptions made in the analysis regarding the constant contact pressure and the
linearly decreasing angular velocity of the rotating elements lead to a typical change in
the temperature of the contact surface of the friction clutch elements—its value increases
at the beginning of the process to the maximum value within approximately 2–4 s and
then decreases slightly until it stops (Figure 8a). The differences in the time courses of
temperature on the friction surface, obtained by means of two FE models during braking,
are insignificant and occur only at the stage of cooling, after stopping (Figure 8b). The differ-
ence of the maximum temperature values obtained at the braking stage with the use of both
calculation models for all friction materials does not exceed 2% (Table 4). In the cooling
phase after stopping, the temperature of the friction surface of the disc drops gradually.
The temperature values at a fixed point in time obtained by means of the 2D or 3D model
for all four friction materials differ negligibly. It is noticeable that the temperature found
when the axisymmetric model is each time higher than that obtained with the use of the
spatial model.
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(a) (b) 

Figure 8. Temperature evolutions for four frictional material on the contact surface z = 0 at equivalent
radius r = req: (a) during braking; (b) during braking and subsequent cooling. Solid curves—2D
model; dashed curves—3D model.

Table 4. Maximum temperature obtained using the 2D and 3D FE clutch models.

Model
Tmax Tmax Tmax Tmax

1 2 3 4

2D 115.6 ◦C 118.4 ◦C 137.9 ◦C 145.1 ◦C
3D 113.7 ◦C 117.2 ◦C 136.1 ◦C 143.5 ◦C

The temperature distributions on the friction surface in the radial direction are pre-
sented in Figure 9. In the case of the axisymmetric model, when the temperature does
not depend on the angular variable, the choice of the radial straight line along which the
calculations were performed was arbitrary, while when using the 3D model, a line along
the axis x was chosen (Figure 6b). In the contact area {30 mm ≤ r ≤ 47.5 mm, z = 0},
marked by vertical solid lines in Figure 9, the temperature distribution is shaped by a
directly proportional linear dependence of the friction power density on the radial variable
r (Figure 9a). The linear temperature rise in the contact area along the radius is the best
seen in the initial braking stage at t = 0.5 s. Outside the area of heating, a clear drop in
temperature is visible. The lack of heating after stopping results in a gradual leveling of
temperature (Figure 9b). The highest temperature is achieved in the area of heating in the
vicinity of the equivalent radius, which, according to Formula (6), is equal to req = 39.4 mm.
The difference between the maximum temperature values obtained with the 2D and 3D
models is about 3 ◦C. Over time, the differences in temperature values obtained with both
models increase and at the stopping time they are about 5 ◦C. At the time of the stop, the
maximum temperature of 117.5 ◦C (2D model) was reached for the material no. 4 on the
radius r = 39.5 mm close to the equivalent radius req = 39.4 mm (Figure 9a). At the end
of the cooling process of the clutch friction elements, the above-mentioned temperature
differences are more noticeable, but they relate to a relatively much lower temperature than
during the braking stage. At the time t = 90 s, the most heated material was that denoted
no. 2, and the least—material no. 3, but the difference between the temperatures of these
materials was insignificant (≈ 0.9 ◦C).
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(a) (b) 

Figure 9. Temperature distributions for four materials along the radial variable r on the contact
surface z = 0 in: (a) stop time moments t = ts,i, i = 1, 2, 3, 4; (b) last moment of time tend = 90 s.
Solid curves—2D model; dashed curves—3D model.

Temperature changes in the axial z direction for a stationary disc with the friction
material (−3 mm ≤ z ≤ 0) and a rotating steel disc (counterpart 0 ≤ z ≤ 10 mm) are
shown in Figure 10. In the stop times t = ts,i, i = 1, 2, 3, 4 the calculation results obtained
on the basis of 2D and 3D models agree well (Figure 10a). The temperature of the stationary
steel disc decreases with the distance from the contact surface z = 0. The slight increase
in temperature at a deflection from the contact surface in the stationary disc is associated
with the known lagging effect—the decrease in temperature inside the body is slower than
on its heated surface. At the end of the process t = tend of unforced convection cooling of
the clutch after stopping, the temperature distribution along the thickness of the friction
pair elements is even (Figure 10b). However, as in the radial direction (Figure 9b), the
differences between the temperature values obtained with the two calculation models are
noticeable (≈ 4 ◦C), but the temperature itself at that moment is not high.

The temperature distributions on the friction surface obtained by means of the 2D
and 3D models at the time moments tmax,i, i = 1, 2, 3, 4; when the maximum values of
temperature Tmax were reached (Table 4) are shown in Figure 11. They show the differences
between the results obtained with the use of two calculation models on one hand, and on
the other they show the explicitly temperature effect of using different friction materials.
For the same total friction work, the temperature of the friction surface increases with the
braking time reduction (ts,1 = 7.02 s, ts,2 = 5.46 s, ts,3 = 4.91 s, ts,4 = 4.09 s). The location
of the area with the increased temperature in the vicinity of the equivalent radius is visible
req (6).

The isotherms in the cross-section of the clutch in the plane rz at the moments of
reaching the maximum temperature in each of the four friction materials are shown in
Figure 12. The highest value of the maximum temperature Tmax = 145.1 ◦C was observed
in the case of the material no. 4, and the lowest Tmax = 115.6 ◦C was determined when
using the material no. 1. The maximum temperature was reached on the radii of 40.4 mm,
40.7 mm, 40.75 mm, 40.85 mm, for the material no. 1, 2, 3, 4 respectively. It can be seen
that the disc with the friction material is heated in the entire thickness of 3 mm, while the
counterpart is heated only to about half of its thickness (≈5 mm).
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(a) (b) 

Figure 10. Temperature distributions for four materials in axial direction r at radius r = 45 mm in:
(a) stop time moments t = ts,i, i = 1, 2, 3, 4; (b) last moment of time tend = 90 s. Solid curves—2D
model; dashed curves—3D model.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 11. Cont.
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(g) (h) 

Figure 11. Temperature distributions on the surface of friction at the time tmax,i, i = 1, 2, 3, 4 of reach-
ing the maximum temperature for four frictional materials: (a,b) tmax,1 = 4.16 s; (c,d) tmax,2 = 3.45 s;
(e,f) tmax,3 = 2.72 s; (g,h) tmax,4 = 2.35 s. Model 2D—(a,c,e,g); model 3D—(b,d,f,h).

 
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

 
 

(g) (h) 

Figure 12. Isotherms in a plane rz at the time tmax,i, i = 1, 2, 3, 4 of reaching the maximum tem-
perature for four frictional materials: (a,b) tmax,1 = 4.16 s; (c,d) tmax,2 = 3.45 s; (e,f) tmax,3 = 2.72 s;
(g,h) tmax,4 = 2.35 s. Model 2D—(a,c,e,g); model 3D—(b,d,f,h).
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6. Conclusions

This paper presents the results of experimental studies on the thermal and physical
properties and the coefficient of friction as well as numerical simulations of the temperature
mode of the new composite friction material used in the clutches. The data obtained for
the four variants (no. 1, 2, 3, 4) of such material, differing in the type of carbon additive,
were analyzed. The axisymmetric (2D) and the spatial (3D) numerical models of the wet
clutch in order to determine the transient temperature fields of the friction discs during a
single engagement and after the stop were developed. Based on the obtained results, it was
found that:

(1) the highest thermal conductivity and specific heat has the material no. 2, while the
lowest values of the quantities has the material no. 3;

(2) the highest coefficient of friction appears for the steel disc combined with the friction
material no. 4, and the lowest for steel disc and friction material no. 1;

(3) the estimation of the maximum clutch temperature can be carried out with sufficient
accuracy using a 2D model, which allows for the reduction of labor losses at the
preparatory stage and computational time. The single simulation case carried out on
the workstation with CPU Intel® Xeon® E5-2698 v4 @ 2.20GHz; RAM 64 GB (DDR4)
lasted approximately 40 s, and 2200 s, when using 2D and 3D models, respectively.
On the other hand, the determination of the temperature field in the elements of the
friction clutch is better to carry out with the use of the 3D model;

(4) At the same total friction work done during a single clutch engagement, the lowest
temperature was achieved when using friction material no. 1, and the highest for
material no. 4. Also, the use of these materials resulted in the longest and shortest
periods of frictional sliding, respectively.

It should be noted that in the proposed numerical models with the use of FEM, the av-
eraged, experimentally obtained, thermophysical properties of the composite material were
used. The development of the computational models that take into account the structure of
the composite and the properties of individual components belongs to the future.

Subsequent studies will aimed at using the developed 2D and 3D models for assessing
the effect of additives of powders (ceramic, metallic, intermetallic compounds), their
particle size, distribution and the amount in the composition of the friction material on the
thermal effects during friction. One of the important aspects would be to include realistic
properties of a coolant. This will make it possible to assess the efficiency of their use without
expensive studies on the full scale inertial test bench.
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Nomenclature

A(2D)
a nominal contact surface area in the 2D model (m2)

A(3D)
a nominal contact surface area in the 3D model (m2)

fi coefficient of friction of the i − th = 1, 2, 3, 4 friction material (dimensionless)
I0 braking torque of the rotating masses (kg m2)
h heat transfer coefficient (W m−2K−1)

p(2D)
0 contact pressure in the 2D model (MPa)

p(3D) contact pressure in the 3D model (MPa)
P clamping force of the clutch elements (N)
Qi friction power of the i − th = 1, 2, 3, 4 friction material (W)
r radial coordinate (m)
rp, Rp inner and ouer radius of the friction path, respectively (m)
req equivalent radius of the contact region (m)
t time (s)
tend total time of the process equal to 90 s (s)
ts,i braking time of the i − th = 1, 2, 3, 4 friction material (s)
T temperature (◦C)
Ta initial/ambient temperature (◦C)
W0 kinetic energy of the system (J)
Wi work of friction of the i − th = 1, 2, 3, 4 friction material (J)
z axial coordinate (m)
Greek Symbols

ω angular velocity (rad s−1)
ω0 initial angular velocity (rad s−1)
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Abstract: The basic function of friction clutches is to transfer the torque in the conditions of its smooth
engagement without vibrations. Hard working conditions under high thermal and mechanical loads,
leading to high temperature in the contact area, intense wear, and instability of the coefficient of
friction impose restrictive criteria in the design of friction materials. In this paper, the results of
experimental research of the effect of ceramic and intermetallic additives to the copper-based material
of the friction disc of the clutch on the thermophysical and frictional properties were presented.
Next, these properties were incorporated in the proposed contact 3D numerical model of the clutch
to carry out computer simulations of the heating process and subsequent cooling. Based on the
obtained experimental data and transient temperature changes of the friction and steel discs, the
relations between the powder additives, thermophysical properties of the five friction materials, and
coefficients of friction, wear, and temperature reached were discussed. Among these, it was found
that when working with the lubrication, the largest values of the coefficient of friction 0.068 and wear
13.5 μm km−1 were reached when using the 3 wt.% SiC additive.

Keywords: friction material; clutch; temperature; frictional heating; finite element analysis

1. Introduction

Powder sintered friction materials (PSFM) have become widely used in the friction
units of the automotive vehicles, motorcycles, tractors, airplanes, boats, machine tools, etc.
Such friction units include, in particular, hydro mechanical gearboxes, oil-cooled brakes,
clutches, etc. [1,2]. Powder metallurgy allows obtaining composite materials using powders
of different types and at various chemical compositions.

The PSFM should comply with the following requirements: stable value of the co-
efficient of friction, high wear resistance, effective adaptation, and high thermal conduc-
tivity [3]. As a rule, PSFM on the basis of copper are used to operate under lubrication
conditions, while materials based on iron are used at dry friction.

The achievement of the given level of tribotechnical and operating properties of the
PSFM has been achieved by the use of additives of various kinds, and granulometric
composition, the content of which is within the range 0.5–15 vol.%. The additives are able
to interact with the metal base, and to localize in the form of individual inclusions. The
main additive used in the composition of PSFM are graphites of various types, as well as
carbon-containing additives with an amorphous structure, such as coke and anthracite [4,5].

It has been shown that graphite with a size of 80 μm provides a high value of the
coefficient of friction, compared with graphite with a size of 8–10 μm. However, a much
greater increase in the coefficient of friction was achieved with the use of coke powder [6].
An additive in the form of graphite allows increasing the operating properties of the friction
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unit material [7–9]. For a material containing 5 masses % of graphite, an increase in the
sliding velocity leads to a sharp increase in the coefficient of friction, while the material itself
is characterized by the increased antifriction and anti-pressure properties, and performance
under increased load-velocity conditions. For the tin bronze containing 10% of graphite,
the wear resistance is significantly higher than bronze with the graphite contents [10].

However, the use of graphite by itself does not provide specific tribological properties.
Their further improvement is achieved through the use of additives in the PSFM structure
of solid ceramic powders and their compounds.

The composition of friction material (FM) for clutches and brake units, which has a
high coefficient of friction and a small difference between dynamic and static coefficients
of friction, was presented in the patent [11]. It was noted that this effect is achieved using
8–15% of Al2O3. By means of a method of powder metallurgy, a metal-based FM class with
high coefficient of friction and wear resistance, as well as reduced acoustic characteristics
was created [12–17]. These materials contain in their composition 2–30% of the component of
solid particles selected from metal oxides (composites), metal nitrides (carbonitrides), metal
carbides, metal borides, intermetalides, and minerals with a Mohs hardness of 3.5 or more.

Titanium dioxide is widely used in industry as an addition of a small cost, character-
ized by stable properties and non-toxicity. This additive is characterized by a very high
specific surface area, up to 600 m2 g−1, and a low thermal conductivity [18].

The carbides of transition metals are characterized by high hardness and, at the same
time, brittleness. The most commonly used is silicon carbide, which has high hardness and
thermal conductivity at low density. Its main disadvantage is the low (2 − 3 MPa m1/2)
viscosity of destruction [19].

Currently, the use of the intermetallic powder additives in tribotechnical materials is of
great interest. The intermetalides Ni3Al and NiAl appear in difficult operating conditions
due to the set of unique properties, such as increased value of impact toughness, resis-
tance to oxidation at elevated temperatures and thermal resistance. The above-mentioned
intermetalides have a density 7.3 and 5.9 g cm−3, respectively, are characterized by a
high Young’s elasticity, and may be used in products for constructional and tribotechnical
purposes [20]. An effect of the addition of intermetallic powder Ti-46Al-8Cr, obtained
by the method of mechanoactivable self-propagating high-temperature synthesis, on the
tribological properties of the copper-based antifriction material was investigated [21]. It
was shown that an increase in the content of aluminite from 0.5% to 1% leads to a decrease
in the intensity of wear of the material by more than 3 times. The inclusion of the additive
of NiAl/Al2O3 powder system in the frictional material based on copper in the range of
0.5–2.5% revealed an increase in the dynamic coefficient of friction from 0.040 to 0.051,
while wear ranged from 4.2 to 5.7 μm km−1 [22].

Newly designed PSFM materials used for friction elements of clutches, before imple-
mentation to production process, undergo a series of restrictive tests, both in full scale
and laboratory tests. Even at the stage of their preselection and elimination of the least
promising ones, this may be an expensive and time-consuming process. Numerical models
are effective (time, costs) in this first phase of designing a new friction pair, allowing for
a preliminary analysis of the level and temperature distribution of the friction pair. The
novelty presented in this article is the proposed 3D numerical models to analyze the tran-
sient temperature fields of the new designed PSFM friction materials. The study presented
an extensive numerical finite element (FE) model (from ref. [6]) of friction heating for the
estimation of temperature distributions in a wet clutch. Unlike the numerical model from
the article [6], this model takes into account the change of thermal properties of the steel
disc under the influence of temperature and two different phases of the clutch operation,
i.e., after its engagement (heat generation) and disconnection (cooling). The analysis of
temperature distribution, based on the structural and tribological tests of newly developed
PSFM materials, allowed selecting the most effective friction pair for the use in the wet
clutch disc.
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2. Materials and Experimental Methods

As a basis for the friction material, a mixture of copper powders (81 wt.%), tin (11 wt.%),
and elemental graphite GE-1 (8 wt.%) was used. The initial mixture was prepared in a blade
mixer by mixing, within 45 min, the copper powders obtained by electrolysis with a mean
particle size of 100 μm (Figure 1a), the tin obtained by spraying the melt, with a mean
particle size of 20 μm (Figure 1b), the elemental graphite GE-1, the natural origin obtained
by extraction, grinding, and processing in acid solution and having a scaly shape with a
mean size of 100 μm (Figure 1c). As test additives, the powders of silicon carbide with
a size 4–9 μm (Figure 1d) and the titanium dioxide, which is a conglomerate with a size
of 100–150 μm, were used. The conglomerate consisted of the ultra-disperse powders of
predominantly spherical shape up to 0.2 μm in size (Figure 1e) and the intermetallic powder
Ti-46Al-8Cr. Particles of the powder Ti-46Al-8Cr in the size of 50–500 nm formed agglomer-
ates in the size 5–20 μm with a high specific surface area (Figure 1f). The micro hardness of
the powder particles was 4000–5140 MPa. The powders were supplied by manufacturers.

   

(a) (b) (c) 

  
 

(d) (e) (f) 

Figure 1. Morphology of the surface of the particles of powders: (a) the copper; (b) the tin; (c) the
elemental graphite GE-1; (d) the silicon carbide; (e) the titanium dioxide; (f) the intermetalide Ti-46Al-8Cr.

The TI-46AL-8CR system was obtained by the method of the mechanoactivated self-
propagating high-temperature synthesis (MASHS) [23]. The preliminary mechanical pro-
cessing of the reaction mixture of the powders of the titanium, aluminum, and chromium
was carried out in a mill A-4.5 with the following parameters: rotational speed of the
impeller shaft 360 r min−1, the ratio of the mass of spheres and powder 10:1, and the
duration of processing 3 h. The subsequent self-propagating high-temperature synthesis
was carried out in the experimental reactor for MASHS in argon environment. The mixture
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of powders was ignited with a tungsten spiral heated by the passage of an electric current.
After cooling, the resulting sinter was milled in the planetary mill Pulverisette 6 (Fritsch,
Germany) in an alcohol medium at the following parameters: the diameter of the spheres
5 mm, the mass ratio of the spheres and the powder 20:1, rotational speed of the impeller
drive shaft 400 r min−1, and the grinding time 30 min.

The synthesized material Ti-46Al-8Cr, according to X-ray diffraction, consisted of
the basis in the form of intermetalide γ − TiAl (the spatial group P4/mmm) (Figure 2a,d
phase 1), doped by chromium, containing 64–68 at. % Ti, 30–34 at. % Al and up to 5 at. %
Cr, the inclusions of double intermetalides Ti3Al and AlCr2, and the triple intermetalide
Al0.67Cr0.08Ti0.25 (Figure 2a,c). Thin secondary τ-phase Al0.67Cr0.08Ti0.25 smaller than 0.5 μm
(Figure 2b, phase 3), falling out in grains of titanium monoaluminide, contained about
68–71 at. % Al, 20–25 at. % Ti, 7–12 at. % Cr and had a cubic grate of Pm-3m type, which
provided coherence of boundaries with the γ-phase.

  

(a) (b) 

 

Variant, No. Composition, at. % 
 Ti Al Cr 
1 64–68 30–34 1.4–5 
2 72.5–78 20–26 1.2–3 
3 20–25 68–71 7–12 
4 3–5 46–53 45–60 

 

(c) (d) 

Figure 2. Microstructure and phase composition of the synthesized SHS powder of the Ti-46Al-8Cr system
before grinding: (a,b) structure; (c) radiograph; (d) results of the micro X-ray spectral analysis (MRSA).

The α2 − Ti3Al phase (the spatial group P63/mmc) was localized mainly along the
boundaries of grains and contained about 2 at. % Cr (Figure 2b, the phase 2). In addition,
at the grain boundaries of titanium monoaluminide, there were also inclusions of excessive
phases of chromium compounds with aluminum and titanium containing 46–53 at. % Al,
45–60 at. % Cr, and 3–5 at. % Ti (Figure 2b, phase 4), the formation of which was probably
due to the problems of diffusion redistribution of components in the SHS process under
conditions of predominantly solid-phase interaction.

The samples of the friction discs for testing were made as follows: obtained charge from
the initial powders was applied by free filling to the surface of the steel base using special
technological equipment, and then preliminary sintering was carried out in dissociated
ammonia at a temperature of 840 ◦C within 50 min. For forming a system of oil-removing
channels and grooves on the surface of the sintered material, as well as obtaining a porosity
of 12–18%, the sintered workpiece of the friction disc was subjected to plastic deformation
(embossing) with a punch having a profile in the form of a “grid” on the surface. Then,
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the final sintering was carried out at a pressure of 0.1 MPa in a medium of dissociated
ammonia, which contains 75% H2 and 25% N2 at a temperature of 840 ◦C within 3 h. The
friction and steel discs are shown in Figure 3.

 
(a) (b) 

Figure 3. Clutch elements: (a) friction disc; (b) steel disc-counter body [6].

The study of the tribotechnical properties of the friction material was carried out on a
friction machine IM-58 according to the scheme friction disc-counter body at the following
input parameters. The initial velocity of braking was 10 m s−1, the contact pressure was
4 MPa, the moment of inertia of rotating masses was 0.56 N m s2, and the work of friction
was 27.5 kJ. As a counterpart, a disc made of 65H steel with a hardness of 260–320 HB
and a surface roughness of Ra = 0.7–0.8 were used [6]. The bedding-in (burnishing) of the
working surfaces by 300 engaging cycles was carried out. Then, 10 measurements of the
values of the coefficients of friction and wear were made. From these data, mean values
were determined.

The investigation of structure was carried out by means of the optical microscope
MEF-3 (Austria). The morphology of the surface of the friction disc and its microstructure
were studied on a high-resolution scanning electron microscope MIRA (Czech Republic)
with a micro-X-ray spectral console INCA 350 of the Oxford Instruments (UK) company.
The phase composition was examined on an X-ray diffractometer Ultima IV (Rigaky) in
Cu Kα-radiation at an X-ray tube voltage of 40 kV and the anode current of 40 mA. The
parameters of the crystal grate of the alloys were determined by diffraction lines located at
the large scattering angles. For a phase analysis, a standard PDF card files was used. The
thermophysical properties of investigated compositions of friction materials were carried
out on the analyzer of thermal properties Hot Disk TPS2500S. As a sensor, a spiral, being
a source of heat, was used. The sensor was located between the sample under the study
and the sample, with the known thermophysical properties. Ten measurements were made
after a given period of time, and the mean values of the thermophysical properties were
established. The tested samples had a diameter of 50 mm, a thickness of 10 mm, and were
obtained by compressing at the pressure of 2.5 t cm−2 and sintering at 840 ◦C for 3 h.

3. Results of Experimental Investigations

The results of the study of the physical and frictional properties of five compositions
of friction materials are given in Table 1.
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Table 1. Influence of the type of carbon-containing additive on the thermophysical properties and
coefficient of friction.

Variant,
No.

Material
Thermal

Conductivity,
W m−1 K−1

Specific
Heat,

J kg−1 K−1

Density,
kg m−3

Coefficient of
Friction,

Dimensionless

Wear,
μm km−1

0 Basic 7.9 5.4 4340 0.036 3.1
1 SiC 3% 6.5 5.4 4110 0.068 13.5
2 Ti-46Al-8Cr 2% 6.75 5.6 4220 0.055 5.1
3 TiO2 2% 5.9 4.8 4210 0.043 3.6
4 TiO2 5% 4.83 3.9 3980 0.052 4.3

The data obtained showed that use of additive SiC obtains the greatest value of the
coefficient of friction. The solid inclusions of SiC in the process of friction are crumbled,
displacing coarsely dispersed graphite from the surface of the friction material. The change
in the morphology of the surface layer, the closure of pores, and increase in the area of the
metal phase were fixed (Figure 4b).

   

(a) (b) (c) 

  

(d) (e) 

− − − − −

Figure 4. Morphology of the friction surface of the: (a) basic material; with powder additives (b) SiC;
(c) Ti-46Al-8Cr; (d) 2 wt.% TiO2; (e) 5 wt.% TiO2.

The introduction of the additive of the intermetallic powder of the Ti-46Al-8Cr in
an amount of 2 wt.% showed an increase in the coefficient of friction to 0.055, whereas
for the basic composition, without additives of powders, it was 0.036. An analysis of the
morphology of the surface layer showed that the initial porosity of the friction material
was preserved, and there is no replacement of graphite particles (Figure 4c), which is
characteristic of the basic composition of the friction material (Figure 4a).
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The use of TiO2 powder additive in an amount of 2 wt.% and 5 wt.% led to an increase
in the coefficient of friction to 0.043 and 0.052, respectively. An increase in the addition of
TiO2 powder from 2 to 5 wt.% showed a change in the morphology of the friction surface
of the friction material with a slight increase in the area of the metal phase (Figure 4d,e).

4. Numerical Simulation of the Temperature Mode of the Clutch

Operating Parameters

The aim of the numerical simulations was to investigate an effect of the above-
mentioned powder additives, namely one ceramic (SiC) denoted as variant 1 and three
intermetalides (2–Ti-46Al-8Cr, 3–2 wt.% TiO2 and 4–5 wt.% TiO2) to 0—the friction base
material, on the clutch temperature, presented in Figure 3. The analyzed friction pair
consisted of two discs—a fixed one with a steel substrate (65H) and a friction material
applied to it—and a steel (65H) disc rotating against the specimen. The thermophysical
properties of the materials at the ambient (initial) temperature T0 = 20 ◦C are presented in
Table 1. The changes in the properties of 65H steel with temperature increasing from 20 ◦C
to 800 ◦C are shown in Table 2.

Table 2. Temperature-dependent properties of the steel 65H [24].

Temperature,
◦C

Thermal
Conductivity,
W m−1 K−1

Density,
kg m−3

Specific Heat,
J kg−1 K−1

20 37 7850 490
100 36 7830 490
200 35 7800 510
300 34 7800 525
400 32 7730 560
500 31 7730 575
600 30 7730 590
700 29 7730 625
800 28 7730 705

The dimensions of the clutch components and the initial kinetic energy of the system
were the same as in the article [6] (Table 2). The calculations were carried out for five variants
of friction materials: 0—basic, 1—TiC, 2—Ti-46Al-8Cr, 3—2 wt.% TiO2, 4—5 wt.% TiO2 with
the corresponding values of the coefficients of friction listed in Table 1.

5. Heating Taking into Account the Thermal Sensitivity of 65H Steel
(First Calculation Model)

Two 3D numerical models were developed using the finite element method (FEM)
adapted in the Heat Transfer Module of the COMSOL Multiphysics® programme. The
first model was a generalization of the linear (with material properties unchanged) model
from the article [6] for the case of thermally sensitive materials (with temperature-varying
properties of 65H steel). The finite element analysis was limited only to the friction heating
stage during braking. The results of the calculations are presented in Figure 5 and in Table 3.

The evolutions of temperature of the friction surfaces at the equivalent radius
req = 39.4 mm shown in Figure 5 for thermosensitive (dashed lines) and constant (solid
lines) properties of materials revealed typical changes for braking at constant deceleration.
Namely, temperature increased rapidly at the beginning, reached maximum value, and
decreased until the stop. The obtained maximum temperature values did not exceed 165 ◦C
(higher values appeared when taking into account thermosensitivity of the steel), hence the
omission of the thermal sensitivity of the friction materials hardly influencing the simulation
results. It should also be noted that in this temperature range (from 20 ◦C to 165 ◦C) the
changes in the properties of steel 65H are negligible (Table 2).

Comparison of the results for 5 materials analyzed shows how braking time affects the
maximum value of the temperature. Since frictional sliding lasts only a few seconds, gener-
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ated heat cannot be absorbed by the components of the clutch and convection. Therefore,
differences in braking times have a strong effect on the maximum temperature reached.
The highest value (at thermosensitive material) is equal to 161.8 ◦C, whereas the lowest is
equal to 123.1 ◦C.

 

Figure 5. Evolution of the temperature of the friction surfaces of the clutch on the equivalent radius
req = 39.4 mm with constant (solid lines) and temperature-dependent (dashed lines) properties of
65H steel for five friction materials. Numbers 0–4 denote friction materials given in Table 1.

Table 3. Calculated parameters of the braking process for five friction materials.

Variant, No. tmax, s Tmax, ◦C ts, s Ts, ◦C

0 3.5 122.1 6.82 96.6
1 1.75 160.2 3.61 117.5
2 2.2 146.1 4.46 109.5
3 2.8 132.2 5.71 101.0
4 2.2 145.1 4.72 106.4

6. Heating with Subsequent Cooling of the Clutch Elements
(Second Calculation Model)

The second computational model concerned both the clutch heating stage due to
friction during operation as well as the next, after stopping, disengagement of the discs
and their oil cooling. Due to the negligible influence of the thermal sensitivity of 65H steel
on temperature (Figure 5), the calculations were performed with the constant, adapted
to the initial temperature, material properties. This stemmed from the relatively short
heating time of the clutch, less than 7 s, and thus limited ability to heat conduction to
other neighboring parts of the assembly. On the other hand, the cooling step following the
friction heating and lasting ≈90 s took place in the environment of the oil, which absorbed
heat from the surface of the components intensely compared to air. The construction stages
of the second model are presented below.

6.1. Boundary Conditions

As mentioned above, the analyzed friction pair consisted of three geometric objects
representing the basic elements of the clutch. The calculations were divided into two stages:

1. Heating of the friction surfaces during sliding contact with convection cooling of the
side free surfaces;
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2. Exclusive convection cooling of the lateral surfaces and working faces of the discs,
where frictional heating occurred in the first stage. The second stage simulated the
state when the components were disconnected (no friction).

It should be noted that in both stages the surfaces of the discs parallel to the friction
surfaces were adiabatic.

In the first stage, during the frictional heating with duration time denoted
ts,i, i = 0, 1, 2, 3, 4, the type of connection of geometric elements “create union” was
used. This meant that the conditions of temperature continuity and heat flux intensity
(perfect thermal contact) were required at the interface between the steel substrate and the
clutch facing (friction material). On the other hand, on the contact surface of the friction
material and the steel counterpart, there was a perfect thermal contact of friction, which
consisted of meeting the following equality of:

1. Temperatures of friction surfaces;
2. The sum of the heat flux densities directed to each part and the boundary heat source

power density.

On the lateral surfaces of both discs, heat exchange with the surrounding envi-
ronment according to Newton’s law of cooling at the constant heat transfer coefficient
h = 600 W m−2 K−1 took place.

After stopping and disconnecting the clutch components, it was necessary to change
the connection type of the parts in the “geometry” domain in COMSOL. Such a change
affects almost all stages of the model creation (finite element mesh, selecting surfaces
for heat transfer due to convection, etc.). Therefore, a new file was created, into which
the temperature field from the last time step from the braking stage study was imported.
Then, modifications were made to rebuild the geometry into an assembly. Creating an
assembly, instead of the union formulation, allowed for the separation of the objects and the
introduction of heat transfer due to convection also on the friction surfaces. The presence
of such cooling better reflects the actual conditions in the clutch on the test bench. It was
not possible when using the “create union” option in the computational model from the
article [6].

6.2. Modeling Rotational Motion

As on the test stand, in the developed numerical models, it was assumed that the
discs with the clutch facing are stationary, and the steel counterpart rotates at the angular
velocity ω. The rotation of the counterpart in relation to the stationary disc was carried
out using the well-known and verified approach of changing the velocity field at each
point of the rotating part. The components of the linear velocity V vector were determined
respectively from the dependence Vx = −yω and Vy = xω using a special tool available as
the Translational Motion option of the Heat Transfer module of the COMSOL Multiphysics®

software (Heat Transfer in Solids-Solid-Translational Motion).

6.3. Construction of a Finite Element Mesh of the Clutch

Apart from the counterpart (steel disc) characterized by geometrical axial symmetry
(mounting elements were omitted) (Figure 3b), there were differences in the shape in the
circumferential direction of the other parts (steel plate with the clutch facing) (Figure 3a).
The spatial (3D) model of the clutch was selected for the thermal finite element analysis.

When dividing the 3D geometric objects of the clutch into finite elements, an automatic
mesh generator with an option of tetrahedral elements (free tetrahedral) and the general
default size appearing under the name “normal” was used. This method takes into account
the type of the problem as well as the curvature and geometric details that change mesh
(divide into smaller elements) only in critical areas. Initial attempts to manually create
mapped or free quad elements and then building regular hexagonal finite elements on the
basis of the sweep method showed a number of warnings and errors at the edges of the
objects. This was due to the large difference in the size of the contacting edges of the two
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parts—the smallest edges in the case of a friction material with many cuts on the working
surface, steel plate, and the counterpart.

The final mesh created from of tetrahedral elements is shown in Figure 6, and before
the actual calculations, it was additionally verified in terms of distributions and maximum
values of temperature in the braking process.

 
(a) (b) 

 

(c) (d) 

Figure 6. Finite element mesh used in finite element analysis of: (a) heating; (b–d) cooling.

6.4. Results of Computer Simulations

The second order shape function (quadratic Lagrange) of elements was used to cal-
culate the temperature fields at both stages (heating and convection cooling). Such finite
elements generated the most accurate results without the need to use an extremely fine
mesh in the area of high temperature gradients. An experience in the construction of a
finite element grid was obtained from previously conducted simulations of heat generation
in disc brakes [25] and tread brakes (wheel-rail) of railway vehicles [26]. It was found that
the linear finite elements significantly falsify the calculations (over 20%) even at many
times higher than the default mesh density. The results of the calculations of the working
surfaces temperature of the clutch are shown in Figure 7 and in Table 4.
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Figure 7. Evolutions of the temperature of the friction surfaces of the clutch on the equivalent radius
req = 39.4 mm obtained by means of the computational model: from the article [6]—connected
clutch; developed in this paper—disconnected clutch. Numbers 0–4 denote friction materials given
in Table 1.

Table 4. Calculated parameters for the cooling stage for five friction materials.

Variant, No. ts, s tc, s T(c)
c , ◦C Connected [6] T(d)

c , ◦C Disconnected

0 6.82 83.18 29.8 22.2
1 3.61 86.39 29.6 25.6
2 4.46 85.54 29.6 25.7
3 5.71 84.29 29.8 25.9
4 4.72 85.28 29.7 25.8

In order to investigate the effect of oil cooling in the contact area, the temperature
distributions of the clutch in the cross-section (r, z) were compared under the condition
of perfect thermal contact and with the disconnected parts after stopping time moments
ts + 0 s, ts + 15 s, and ts + 55 s (Figures 8–10). It should be noted that because of different
braking durations for each of the five friction materials, the presented distributions occur
at slightly different points in time from the beginning at t = 0 s.

The temperature distributions in Figure 8 show the stopping times ts + 0 s. Slight
differences in the distributions for variants a and b result from the fact that for connected
clutch components (variant a) these are the values calculated and displayed from the model
in which the perfect thermal contact condition was maintained all the time, while for
disconnected components (variant b) the field is imported to the model with the separate
cooling. The highest temperature is accumulated in the central part of the friction path near
the friction radius.

Significant differences in temperature distributions resulting from the cooling method
appeared after time ts + 15 s (Figure 9). Due to the smaller total cooled area of the clutch,
at this time moment, significantly higher temperature values were achieved for the model
in which the friction pair remained connected (Figure 9a). Only for materials 1 and 2, for
which the shortest cooling times take place, was the maximum temperature of the friction
disc for variant b equally high.

The temperature evolutions are confirmed by the temperature distributions shown in
Figure 10. It can be clearly seen that the temperature field for each of the tested materials
was similar. However, while at the time moment ts + 15 s, a higher temperature was
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obtained for the friction disc, and at ts + 55 s a higher average temperature occurred for
the steel disc.

 

 

 

 

 
(a) (b) 

Figure 8. Temperature distribution at time ts + 0 s obtained using: (a) connected [6]; and (b) discon-
nected parts of the clutch for materials no. 0, 1, 2, 3, 4.
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(a) (b) 

Figure 9. Temperature distribution at time ts + 15 s obtained using: (a) connected [6]; and
(b) disconnected parts of the clutch for materials no. 0, 1, 2, 3, 4.
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(a) (b) 

Figure 10. Temperature distribution at time ts + 55 s obtained using: (a) connected [6]; and
(b) disconnected parts of the clutch for materials no. 0, 1, 2, 3, 4.
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7. Results and Discussion

The article presented an experimental analysis of material properties and thermal
finite element analysis of friction heating for new PSFM materials used for clutch facing
under lubricated conditions. Experimental tests were carried out on the IM-58 friction
machine for four different PSFM materials with different additives (SiC, Ti-46Al-8Cr, and
TiO2) and one base material. The materials produced were formed into friction discs and
combined with a steel 65H disc, determining the values of the friction coefficients for
each pair. The thermophysical properties for the new materials were investigated using
the Hot Disk TPS2500S analyzer of thermal properties. These properties and values of
the friction coefficient, as well as the input parameters (initial velocity, contact pressure,
moment of inertia of rotating masses) of the experiment were adapted to 3D numerical
models of friction heating. Based on the computer simulations carried out for the heating
stage only with five friction materials, the temperature distributions (its maximum value
on the contact surface and the time to reach this value), taking into account the temperature
changes of the material properties of the steel disc, were analyzed. In the second part of the
numerical tests, both the friction heating stage and the cooling stage after the clutch was
disengaged were taken into account.

One of the main results of the material, tribological, and numerical tests carried out is
the selection of such additives that had the greatest impact on the operation of the friction
pair, and thus also on the temperature level during clutch engagement. It was shown that
the greatest change of the tribological properties was obtained using addition of 3 wt.%
SiC in the composition of the friction material based on copper with 12% tin and 30 vol.%
graphite GE-1, namely, the coefficient of friction increased from 0.036 to 0.068. At the same
time, wear increased from 3.1 to 13.5 μm km−1. The least influence on the tribological
properties of the base material has 2 wt.% TiO2 powder, i.e. the coefficient of friction was
the smallest (0.043) at the greatest wear resistance.

The basic factors influencing the changes in temperature distribution in the friction
pair components and the evolution of the maximum temperature in the contact zone
include (1) the amount of mechanical energy converted into heat, and thus the initial
angular velocity and the moment of inertia of rotating masses; (2) the velocity at which this
energy is dissipated, i.e. the braking torque dependent on the clamping force, coefficient of
friction, and the friction radius; (3) type and dimensions of the given friction pair (thickness,
number of neighboring elements absorbing heat), (4) thermophysical properties, and
(5) cooling conditions due to convection and thermal radiation.

Assuming that in the analyzed friction pairs, braking takes place at the same input
parameters (initial angular velocity, moment of inertia of rotating masses and clamping
force), and assuming that the process time is short enough to ignore the influence of cooling,
the key factors that affect the maximum temperature are the thermophysical properties
and the coefficient of friction. As shown in Table 1, the thermophysical properties were
very similar, while the greatest difference in the values of the friction coefficients was
89% (SiC in relation to the base material). Therefore, it is the coefficient of friction and
the resulting braking time that in this case play a key role in reaching the maximum
temperature value. For the higher coefficient of friction, the braking time is shorter, and the
maximum temperature higher since the time for heat dissipation from the contact area due
to conduction being limited.

The shortest braking time ts,1 = 3.61 s and the highest temperature value equal to
160.2 ◦C among the five numerically tested materials was for the material with the addition
of ceramic powder (SiC)—the greatest value of the coefficient of friction (Table 1). The
longest braking time ts,0 = 6.82 s and lowest temperature on the working surfaces, equal
to 122.1 ◦C, was reached for the base material—the least value of the coefficient of friction.

Taking into account the disconnection of the clutch elements after stopping and
convection cooling of the working surface with oil at the heat transfer coefficient h influences
the value of the maximum contact surface temperature. The difference in the average
temperature value for the five materials with the clutch components disconnected and the
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average temperature value obtained while maintaining the condition of perfect thermal
contact was about 13 ◦C (30%) in the middle of the cooling stage (t ≈ 40 s) and 5 ◦C (17%)
at the end (t ≈ 90 s).

Based on the presented research, we can conclude that the most promising from the
point of view of achieving the shortest braking time with the same total friction work is the
friction material with a 3% addition of SiC ceramics.

As a part of the future research, it is planned to determine the mechanical properties of
the considered friction materials and to carry out numerical calculations of thermal stresses.
In addition, attempts will be made to take into account the thermal contact resistance
instead of using the perfect thermal contact condition.
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Nomenclature

h heat transfer coefficient (W m−2 K−1)
r radial coordinate (m)
req equivalent radius of the contact region (m)
t time (s)
tc cooling time equal to tc = tend − ts (s)
tend total time of the braking and cooling process equal to 90 s (s)
tmax time, at which maximum temperature on the equivalent radius was reached (s)
ts,i braking time of the i = 0, 1, 2, 3, 4 friction material (s)
T temperature (◦C)

T(c)
c

temperature of the friction surfaces at r = req, obtained using numerical model
with connected clutch components at the end of cooling t = tend

T(d)
c

temperature of the friction surfaces at r = req, obtained using numerical model
with disconnected clutch components at the end of cooling t = tend (◦C)

Tmax maximum temperature obtained during braking at time tmax (◦C)
Ts temperature obtained at the end of braking process at time ts (◦C)
T0 initial/ambient temperature (◦C)
V linear velocity vector (m s−1)
x, y Cartesian coordinates (m)
z axial coordinate (m)
Greek Symbols

ω angular velocity (rad s−1)
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Abstract: Within the framework of the one-dimensional model for a tribo-couple consisting of two
elastic cylinders accounting for the frictional heat generation on the interface due to the roughness of
the contacting dissimilar materials, a problem on the identification of the unknown temperature on
one of the limiting surfaces of either inner or outer cylindrical layers is formulated and reduced to an
inverse thermoelasticity problem via the use of the circumferential strain given on the other surface.
To solve the latter problem, a semi-analytical algorithm is suggested, and its stability with respect to
the small errors in the input data is analyzed. The efficiency of the proposed solution algorithm is
validated numerically by comparing its results with the solution of a corresponding direct problem.
The temperature and thermal stresses in the tribo-couple are analyzed.

Keywords: tribo-couple; cylindrical layers; frictional heating; unknown thermal loading; inverse
thermoelasticity problem; Volterra integral equation; stable algorithm

1. Introduction

Construction and improvement of the elements of present-day techniques, along with
the development and implementation of new materials with advanced properties, necessi-
tate the comprehensive analysis of the heat transfer and the stress–strain state in composite
materials under the simultaneous action of force and thermal fields while accounting for
a wide range of the operational and constructional features, as well as the interaction of
the structural elements of different geometry [1]. The importance of such analysis for
both mechanical engineering and material science is also motivated by the prioritized
implementation of non-destructive testing, which is important for ensuring the safety and
durability of the operational performance of the heat and power equipment [2–4].

The comprehensive thermoelastic analysis is extremely important for the structural
elements, some surface parts of which appear to be inaccessible (due to specific structural,
technological, operational, or environmental reasons) for the direct reading of the thermal
and mechanical signatures that are to be in use as the boundary conditions for the corre-
sponding direct heat-transfer and thermoelasticity problems. As a result, the corresponding
heat-transfer and thermoelasticity problems for such structural elements become ill-posed
and require some supplementary information about the thermal or mechanical process,
collected, preferably, on the accessible segments of the surface. It is worth noting that the
type of additional information can be regarded as a critical point of the methodologies for
solving the ill-posed problems of this kind.

If, for example, the original problem is supplemented with the information about
some parameters of the thermal process (e.g., temperature or heat flux) at some points of
a solid or its surface, the problem of the identification of the unknown thermal loading
can be reduced to solving an inverse heat conduction problem [5,6]. The inverse problems
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obtained in this case are substantially ill-posed and their solution is concerned with the
application of the corresponding regularizing algorithms.

There are numerous practical cases, however, when the reproduction of all the com-
ponents of thermal loading appears to be impossible within the framework of an inverse
heat-transfer problem alone. While accounting for coupling between the temperature
and strain fields, the original mathematical models in these cases can be extended to
non-classical thermoelastic problems by implementing the additional information on the
thermomechanical parameters (displacements, strains, or stresses) on the accessible seg-
ment of the surface. The problem of determining the temperature and thermostressed fields
in a solid under the above conditions can thereby be reduced to an inverse thermoelasticity
problem [7]. The inverse problems of this kind are conditionally well-posed; i.e., they may
become well-posed under certain supplementary conditions. This can be explained by the
fact that the components of the stress–strain state have the form of integral dependences on
the temperature at all points of a solid, including its boundary [1,8,9]. For non-stationary
processes, these conditions usually express the fitting between the input data at the initial
moment of time or interrelation of the mechanical components on the surfaces of the
solid [1,10]. Some methods for solving one- and two-dimensional inverse thermoelasticity
problems have been addressed in [11–16].

The inverse analysis of the temperature on inaccessible surfaces is an important issue
in the analysis of tribo-systems. Such analysis is a key point in evaluating the characteristics
of frictional interaction and material properties and is vital for both mechanical engineering
and material science. Therefore, many practical cases of thermoelasticity problems, those
that focus on the coupling between the thermal and mechanical fields, are concerned with
frictional heating induced by the roughness of the contacting surfaces of interacting solids
(see, e.g., [17–19]).

In [20–22], a technique for solving the inverse thermoelasticity problems was presented
based on the reduction to integral equations. Particularly in [21,22], one-dimensional
thermoelasticity problems were considered for interacting layers with friction. In en-
gineering practice and material science experiments, numerous tribo-systems involve
elements of cylindrical shape. In this paper, we extend the technique for solving inverse
one-dimensional thermoelasticity problems, which are obtained for the identification of the
time-dependence of a temperature of one of the circumferences of a cylindrical tribo-couple
by making use of the additionally known circumferential strain on the surface where the
thermal loading is known.

2. Formulation of the Problem

Consider a one-dimensional model of a cylindrical tribo-couple consisting of two
cylindrical elements made of dissimilar materials generating heat due to mutual interfacial
friction [17]. The model is schematized in Figure 1 and presented by a circular hollow
cylinder “1” of the inner and outer radii r = R1 and r = R0 encapsulated without tension
and gap into another cylinder “2” of the same shape with inner and outer radii r = R0
and r = R2, respectively. Assume the inner, r = R1, and outer, r = R2, circumferences of
the tribo-couple to be kept under the given transient temperatures t∗1(τ∗) and t∗2(τ∗) while
being subjected to the compressive forces P1(τ∗) and P2(τ∗). Here, r is the radial coordinate
and τ∗ is time. The mechanical and thermal contact of the cylindrical layers occurring on
the interface r = R0 is assumed to be imperfect in view of the roughness of the material on
contacting surfaces so that the linear relationship

ũ(i)(τ∗) = (−1)iniP(τ∗), i = 1, 2 (1)

obtains between the radial displacements on the interface ũ(1)(τ∗) and ũ(2)(τ∗) induced
by the deformation of micro-roughness and the contact pressure P(τ∗). Here, ni are the
coefficients characterizing the deformative features of the contacting surfaces.
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P

R R R
P

ω

Figure 1. The scheme of the considered tribo-couple, where the inner and outer cylindrical layers are
denoted by “1” and “2”, respectively; the thermal and force loadings are imposed on the inner and
outer surfaces R1 and R2 and the frictional heating occurs on the interface R0.

Assume that one of the cylinders (let it be the outer one) rotates against the other
cylinder. Let us restrict our attention to the case when the rotation reaches a steady-state
condition at a constant angular velocity ω = const. Due to the frictional forces according to
Amonton’s law, the interface r = R0 is subjected to the non-stationary heat generation, and
the specific power of the frictional heating sources equals the specific work of the friction
forces. The mechanical and thermo-physical properties of cylinders 1 and 2 are constant
and indicated with upper indices accordingly. Within the framework of the formulated
problem, the transient temperature field in the considered tribo-couple varies along the
radial coordinate r only, and in view of the plane strain condition, u(1)

z = u(2)
z = 0, where

u(i)
z is the axial displacement of the ith layer of the cylinder.

In view of the foregoing model, the one-dimensional thermoelasticity problem for the
tribo-couple is governed by the following system of equations, including:

(i) the heat-transfer equation

∂2T∗
i (ρ, τ)

∂ρ2 +
1
ρ

∂T∗
i (ρ, τ)

∂ρ
=

1
bi

∂T∗
i (ρ, τ)

∂τ
(2)

(ii) and the Lamé equations

∂2u(i)
r (ρ, τ)

∂ρ2 +
1
ρ

∂u(i)
r (ρ, τ)

∂ ρ
− u(i)

r (ρ, τ)

ρ2 = βiR0
∂ T∗

i (ρ, τ)

∂ρ
(3)

∂2u(i)
ϕ (ρ, τ)

∂ρ2 +
1
ρ

∂u(i)
ϕ (ρ, τ)

∂ρ
− u(i)

ϕ (ρ, τ)

ρ2 = 0 (4)

under the set of complementary conditions consisting of:
(i) the mechanical boundary conditions

σ
(i)
rr (ki, τ) = −Pi(τ), u(i)

ϕ (ki, τ) = 0 (5)

(ii) the mechanical interface conditions

σ
(1)
rr (1, τ) = σ

(2)
rr (1, τ) = −P(τ), σ

(1)
rϕ (1, τ) = σ

(2)
rϕ (1, τ) = − f P(τ)

u(1)
r (1, τ) + ũ(1)(τ) = u(2)

r (1, τ) + ũ(2)(τ), u(i)
z (ρ, τ) = 0

(6)
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(iii) the thermal boundary conditions

T∗
i (ki, τ) = t∗i (τ) (7)

(iv) the thermal interface conditions

λ1
∂T∗

1 (1,τ)
∂ ρ − λ2

∂ T∗
2 (1,τ)
∂ ρ = ωR2

0 f P(τ)

λ1
∂ T∗

1 (1,τ)
∂ρ + λ2

∂ T∗
2 (1,τ)
∂ρ = R0

R (T∗
2 (1, τ)− T∗

1 (1, τ))
(8)

(v) and the initial condition

T∗
i (ρ, 0) = T0 = const �= 0 (9)

where, i = 1, 2 (i = 1 corresponds to the range ρ ∈ [k1, 1) and i = 2 corresponds to the
range ρ ∈ (1, k2]), ρ = r/R0 is the dimensionless radial coordinate ρ ∈ [k1, k2], ki = Ri / R0,
τ = a2τ∗/R2

0 is the Fourier criterion, τ ∈ (0, τm], τm is a constant parameter, b 1 = a1 /a2,

b2 = 1, a i is the coefficient of thermal diffusivity, β i = α
(i)
T (1 + νi)/(1 − νi), α

(i)
T is

the coefficient of linear thermal expansion, νi is the Poisson ratio, λi denotes the heat-
conduction coefficient, T∗

i is the temperature, u(i)
r and u(i)

ϕ are the radial and circumferential

displacements, σ
(i)
rr and σ

(i)
rϕ are the radial and tangential stress-tensor components, f is the

coefficient of friction, and R is the coefficient of contact thermal resistance.
It is well known that in the case of plane strain, the thermoelasticity problem (3) and

(4) can be represented by two independent problems [23], when (i) u(i)
r �= 0, ε

(i)
rr �= 0,

ε
(i)
ϕϕ �= 0, u(i)

ϕ = ε
(i)
rϕ = 0 and (ii) u(i)

ϕ �= 0, ε
(i)
rϕ �= 0, u(i)

r =ε
(i)
rr =ε

(i)
ϕϕ = 0, i = 1, 2. Here, ε

(i)
rr ,

ε
(i)
ϕ ϕ, and ε

(i)
rϕ are, respectively, the radial, circumferential, and tangential strains of the ith

cylindrical layer.
If all the input functions and coefficients in Equations (2)–(9) are properly imposed,

then the formulated problem appears to be a well-posed direct thermoelasticity problem.
Assuming, however, the transient temperature t∗1(τ), τ ∈ [0, τm], on the inner surface
ρ = k1 to be unknown (a typical situation due to the inaccessibility of the inner surface for
the direct measurement) necessitates the determination of this function prior to solving the
direct problem.

In order to identify this function appearing in the boundary condition (7), we use the
supplementary information about the thermo-mechanical state of the compound cylinder,
i.e., the condition

ε
(2)
ϕϕ(k2, τ) = ϕ∗(τ), τ ∈ [0, τm] (10)

imposing the circumferential strain measured on the accessible outer surface ρ = k2. Here,
ϕ∗(τ) is a given function of time.

Let us determine the temperature field and thermal stresses in the considered tribo-
couple by making use of condition (10) in order to identify the unknown temperature
distribution t∗1(τ) on the inner circumference of the cylinder.

3. Solution Technique

By implementing the technique suggested in [17], a solution to the formulated ther-
moelastic problem (1), (3)–(6) can be given in the form expressing the circumferential
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strain in the cylindrical tribo-couple explicitly through the force loadings and thermal field
as follows:

ε
(i)
ϕϕ(ρ, τ) = α

(i)
T (1 + νi)T0 +

(
(1 − νi) +

1+νi
ρ2

)
ci pi(τ)

2

−
(
(1 − νi) + k2

i
1+νi

ρ2

)
ci p(τ)

2k2
i

+ (−1)i+1 1−νi
1+νi

βiT0
1−k2

i

v(i)2∫
v(i)1

ξTi(ξ, τ)dξ

+ βiT0
2ρ2

v(i)2∫
v(i)1

ξ

(
(−1)i+1 1+k2

i
1−k2

i
+ sgn(ρ − ξ)

)
Ti(ξ, τ)dξ

(11)

and

c3 p(τ) = c1 p1(τ)− c2 p2(τ) + �1

1∫
k1

ξT1(ξ, τ)dξ + �2

k2∫
1

ξT2(ξ, τ)dξ+(α1 − α2)T0 (12)

where i = 1, 2, p(τ) = P(τ)/σ∗ and pi(τ) = Pi(τ)/σ∗ are the dimensionless contact
pressure and compressive pressures on the inner and outer surfaces, σ∗ is a constant in the
dimension of stresses, νi = νi/(1 − νi), Ei = Ei/(1 − ν2

i ), Ti = (T∗
i − T0)/T0, v(i)i = ki,

v(2)1 = v(1)2 = 1, �i = 2α
(i)
T (1 + νi)T0/(1 − k2

i ), αi = α
(i)
T (1 + νi), ci = 2k2

i σ∗/((1 − k2
i )Ei),

Ei denotes the Young modulus of the ith cylindrical layer, and

c3 =
2

∑
i=1

(−1)i+1 1 − νi + (1 + νi)k2
i

1 − k2
i

σ∗
Ei

+
(n1 + n2)σ∗

R0

A general solution to Equation (4) for the circumferential strain u(i)
ϕ can be given [23] as

u(i)
ϕ (ρ, τ) =

A i(τ)R0ρ

2
+

Bi(τ)

R0ρ

where A i (τ) and B i(τ) are arbitrary and yet unknown functions of time, i = 1, 2. By
making use of conditions (5) and (6) for the displacement u(i)

ϕ and stress σ
(i)
rϕ , we can

finally derive

u(i)
ϕ (ρ, τ) = f (1+νi)R0P(τ)

Eiρ

(
1 − ρ2

k2
i

)
ε
(i)
rϕ(ρ, τ) = − f (1+νi)P(τ)

Eiρ
2 , σ

(i)
r ϕ(ρ, τ) = − f P(τ)

ρ2
(13)

Equation (13) allow for expressing the thermal stresses and displacements in the
two-layer cylindrical tribo-couple through the contact pressure found by formula (12).

Assuming the function t∗1(τ) to be known for τ ≥ 0 and making use of the integral
Laplace transform [24] by the time-variable τ yields a solution to the heat-conduction
problem (2), (7), (8) and (9) in the form as follows

Ti(ρ, τ) =
2

∑
j=1

τ∫
0

G(i)
j (ρ, τ − ξ)tj(ξ)dξ + Ω

τ∫
0

G(i)
3 (ρ, τ − ξ)p(ξ)dξ (14)
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where i = 1, 2,

G(1)
1 (ρ, τ) =

∞
∑

n=1

exp(−μ2
nτ)

∂s(Δ(sn))
(2λZ(1)

10 (1, ρ, sn) Z(2)
10 (1, k2, sn)

+ϑ(λZ(2)
00 (k2, 1, sn)Z(1)

10 (1, ρ, sn) + Z(2)
10 (1, k2, sn)Z(1)

00 (1, ρ, sn) ) )

G(1)
2 (ρ, τ) = ϑ

∞
∑

n=1

exp(−μ2
nτ)

∂s(Δ(sn))
Z(1)

00 (ρ, k1, sn)

G(1)
3 (ρ, τ) =

∞
∑

n=1

exp(−μ2
nτ)

∂s(Δ(sn))

(
Z(2)

10 (1, k2, sn) + ϑZ(2)
00 (k2, 1, sn)

)
Z(1)

00 (ρ, k1, sn)

G(2)
1 (ρ, τ) = −λϑ

∞
∑

n=1

exp(−μ2
nτ)

∂s(Δ(sn))
Z(2)

00 (ρ, k2, sn)

G(2)
2 (ρ, τ) =

∞
∑

n=1

exp(−μ2
nτ)

∂s(Δ(sn))
(2λZ(1)

10 (1, k1, sn) Z(2)
10 (1, ρ, sn)

+ϑ(λZ(1)
10 (1, k1, sn)Z(2)

00 (ρ, 1, sn) + Z(1)
00 (1, k1, sn)Z(2)

10 (1, ρ, sn)))

G(2)
3 (ρ, τ) = − ∞

∑
n=1

exp(−μ2
nτ)

∂s(Δ(sn))
(λZ(1)

10 (1, k1, sn) + ϑZ(1)
00 (1, k1, sn)) Z(2)

00 (ρ, k2, sn)

Δ(s) = 2λZ(2)
10 (1, k2, s)Z(1)

10 (1, k1, s)
+ϑ

(
λZ(1)

10 (1, k1, s)Z(2)
00 (k2, 1, s) + Z(2)

10 (1, k2, s)Z(1)
00 (1, k1, s)

)
Z(j)

10 (x, y, s) = qjx(I1(qjx)K0(qjy) + I0(qjy)K1(qjx))
Z(j)

kk (x, y, s) = Ik(qjx)Kk(qjy) + Ik(qjy)Kk(qjx)

j = 1, 2; k = 0, 1, Ω = ωR2
0 f σ∗/(λ2T0) is the dimensionless angular velocity,

λ = λ1/λ2, ϑ = Rs/R, Rs = R0/(R∗λ2), q2
1 = s/b1, q2

2 = s, R = R/R∗ is the dimensionless
interfacial thermal resistance, R∗ is a constant in the dimension of thermal resistance, Ik(s)
and Kk(s) are the modified Bessel functions of the first and second kind, k = 0, 1, s stands
for the parameter of the Laplace transform, ∂s denotes the partial derivative by s, and
sn = −μ2

n are the roots of the characteristic equation Δ(s) = 0, μn > 0, n = 1, 2, . . .
Formula (14) expresses the dependence of the temperature field within the tribo-

couple on the contact pressure, while formula (12) shows the dependence of the contact
pressure on the temperature. By making use of these two formulas along with expression
(11) for the circumferential strain, the condition for the radial displacement in (5) and (6)
yields the following formula for the contact pressure on the interface:

p(τ) =
τ∫
0

M(τ − η)(c1 p1(η)− c2 p2(η))dη +
2
∑

i=1

τ∫
0

Ni(τ − η)ti(η)dη

+
(
(1 + ν1)α

(1)
T − (1 + ν2)α

(2)
T

)
T0

τ∫
0

M(η)dη
(15)

where

M(τ) =
∞
∑

n=1

Δ(s∗n) exp(s∗nτ)
∂s(Δ∗(s∗n))

, Ni(τ) =
∞
∑

n=1

Vi(s∗n) exp(s∗nτ)
∂s(Δ∗(s∗n))

V1(s) = �1

(
2λk1Z(1)

11 (1, k1, s)Z(2)
10 (1, k2, s) + ϑ

(
λk1Z(1)

11 (1, k1, s)Z(2)
00 (k2, 1, s)

+ Z(2)
10 (1, k2, s) Z(1)

10 (k1,1,s)−1
q2

1

))
− �2λϑ

1−Z(2)
10 (1,k2,s)

q2
2

V2(s) = �1ϑ
Z(1)

10 (1,k1,s)−1
q2

1
+ �2

(
2λk2Z(1)

10 (1, k1, s)Z(2)
11 (k2, 1, s)

+ϑ

(
λZ(1)

10 (1, k1, s) Z(2)
10 (k2,1,s)−1

q2
2

+ k2Z(1)
00 (1, k1, s)Z(2)

11 (k2, 1, s)
))

Δ∗(s) = c3Δ(s)− Ω
(
�1

(
Z(2)

10 (1, k2, s) + ϑZ(2)
00 (k2, 1, s)

)
Z(1)

10 (1,k1,s)−1
q2

1

−�2

(
λZ(1)

10 (1, k1, s) + ϑZ(1)
00 (1, k1, s)

)
1−Z(2)

10 (1,k2,s)
q2

2

)
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s∗n are the roots of the characteristic equation Δ∗(s) = 0, n = 1, 2, . . .
By putting (14) and (15) into formula (11) at i = 2 and ρ = k2 within the context of the

supplementary condition (10) for the circumferential strain, we arrive at the convolution-
type Volterra integral equation of the first kind [25] for the determination of function t1(τ)
in the following form:

τ∫
0

K1(τ − η) t1(η)dη = ϕ∗(τ)−
τ∫
0

K2(τ − η) t2(η)dη

−
τ∫
0

L(τ − η) (c1 p1(η)− c2 p2(η))dη − c2
2k2

(1 + k2
2 + (1 − k2

2)ν2)p2(τ)

−
(
(1 + ν1)α

(1)
T − (1 + ν2)α

(2)
T

)
T0

τ∫
0

L(η)dη − (1 + ν2)k2α
(2)
T T0

(16)

where τ ∈ [0, τm] and

Ki(τ) =
∞
∑

k=1

Ui(sk) exp(skτ)

∂s(Δ(sk)Δ∗(sk))
, L(τ) =

∞
∑

n=1

V3(s∗n) exp(s∗nτ)
∂s(Δ∗(s∗n))

U1(s) = V1(s)V3(s) + k2�2λϑ
1−Z(2)

10 (1,k2,s)
q2

2
Δ∗(s)

U2(s) = V2(s)V3(s)− k2�2(2λk2Z(1)
10 (1, k1, s)Z(2)

11 (k2, 1, s)

+ϑ

(
λZ(1)

10 (1, k1, s) Z(2)
10 (k2,1,s)−1

q2
2

+ k2Z(1)
00 (1, k1, s)Z(2)

11 (k2, 1, s)
))

Δ∗(s)

V3(s) = − c2
k2

Δ(s) + Ω k2�2

(
λZ(1)

10 (1, k1, s) + ϑ Z(1)
00 (1, k1, s)

)
1−Z(2)

10 (1,k2,s)
q2

2

sk are roots of equations Δ(s) = 0 and Δ∗(s) = 0 combined, which are negative real
numbers sk = −γ2

k , γk > 0, k = 1, 2, . . ., when the angular velocity does not exceed a
critical value [17].

By setting τ = 0 in (16) and allowing ti(0) = 0, i = 1, 2, we derive the fitting condition
for the initial temperature, the circumferential strain imposed on the outer surface ρ = k2,
and the dimensionless pressures on the inner and outer circumferences of the tribo-couple
at the initial moment of time in the form as follows:

c2
2k2

(1 + k2
2 + (1 − k2

2)ν2)p2(0)− c2
k2c3

(c1 p1(0)− c2 p2(0))

− c2
k2c3

(
(1 + ν1)α

(1)
T − (1 + ν2)α

(2)
T

)
T0 + (1 + ν2)k2α

(2)
T T0 = ϕ∗(0)

The latter condition ensures the continuity of the solution of integral Equation (16).
In such a manner, the original heat-conduction problem for the considered cylindrical

tribo-couple with frictional hating is reduced to an inverse thermoelasticity problem,
which is verbalized by the integral Equation (16) and implies the determination of the
temperature on the inner surface via the temperature and circumferential strain given on
the outer surface.

It can be shown that the kernel K1(τ − η) of Equation (16) is always positive for
η ∈ [0, τ], increases monotonically and suffers the root singularity at η = τ. This means
that Equation (16) is the Abel integral equation [25]. The fact that the kernel K1(τ − η) has
the integrable singularity at η = τ implies the absence of the time delay in the maximum
response of the thermal constituent of the circumferential strain ϕ∗(τ) to the variation of
temperature t1(τ).

Assume the unknown temperature t1(η) to be a continuous function on the inter-
val [0, τ], i.e., t1(η) ∈ C[0,τ], to construct a solution to Equation (16). Let us represent
the time interval [0, τm] by the mesh consisting of m intervals of the length h = τm/m
and represent the sought-out function on each of these intervals by a linear spline
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S(1)
j (τ) = ((τj − τ)t(j−1)

1 + (τ − τj−1)t
(j)
1 )h−1, τ ∈ [τj−1, τj], τj = hj, t(j)

1 = t1(τj),
j = 1, . . . , m. As a result, Equation (16) yields the following system of linear algebraic equations:

t (1)
1 =

Φ1

c0
,

l−1

∑
j=1

Θl jt
(j)
1 + t (l)

1 =
Φl
c0

, l = 2, . . . , m (17)

Here, Φl = Φ(τl) is the values of the right-hand side of Equation (16) at the knots of
the mesh τ = τl and

Θl j ≡ ql−j =
1
c0

∞
∑

k=1

U1(sk)
∂s(Δ(sk)Δ∗(sk))

(1−exp(−γ2
k h))2

γ4
k h2 exp(−γ2

k h(l − j − 1)), j < l

c 0 =
∞
∑

k=1

U1(sk)
∂s(Δ(sk)Δ∗(sk))

1
γ2

k h

(
1 − 1−exp(−γ2

k h)
γ2

k h

)
The matrix of system (17) is the lower diagonal matrix with equal elements on each

diagonal below the main one:

Q1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0 0
q1 1 0 · · · 0 0
q2 q1 1 · · · 0 0
...

...
...

. . .
...

...
qm−1 qm−2 qm−3 · · · q1 1

⎞⎟⎟⎟⎟⎟⎠, 0 < q1 < 1, qi+1 < qi, i = 1, . . . , m − 1

It can be shown that for h > 0, the norm ‖Q1‖ = max
j

(
∑
i

∣∣Θi j
∣∣) < ∞.

System (17) can be represented in the following form:

T = Q2T + F (18)

where

Q2 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 0
q∗1 0 0 · · · 0 0
q∗2 q∗1 0 · · · 0 0
...

...
...

. . .
...

...
q∗m−1 q∗m−2 q∗m−3 · · · q∗1 0

⎞⎟⎟⎟⎟⎟⎠, T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

t(1)1

t(2)1

t(3)1
...

t(m)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, F =

1
c0

⎛⎜⎜⎜⎜⎜⎝
Φ1

Φ2 − Φ1
Φ3 − Φ2

...
Φm − Φm−1

⎞⎟⎟⎟⎟⎟⎠
q∗1 = 1 − q1, q∗i = qi−1 − qi, q∗i > 0, i = 2, . . . , m − 1. Due to the fact that

‖Q2‖ =
m−1
∑

i=1
q∗i =1 − qm < 1 for h > 0, the simple iteration routine [26,27] implies that

the problem on solving the system of Equation (18), and, consequently, (17) is well-posed.
Based on this fact, system (17) allows for deriving a recursive formula for determination of
t(l)1 , l = 1, . . . , m.

Having derived the temperature t1(τ), τ ∈ [0, τm], by means of the foregoing routine,
we can use Formula (14) to determine the temperature field within the tribo-couple. The
thermal stresses and displacements can be computed accordingly by making use of the
Formulae (11)–(13) and (15), along with the basic thermoelasticity equations [23].

4. Numerical Example and Discussion

In order to verify the proposed solution technique, consider a solution to the for-
mulated identification problem for the tribo-couple, whose inner layer 1 is made of steel
(λ1 = 21 [Wt/(m × K)], a 1 = 5.9 × 10−6 [m2/s], α

(1)
T = 14 × 10−6 [1/K], E1 = 190 [GPa],
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and ν1 = 0.3) and the outer one 2 is made of copper (λ2 = 381 [Wt/(m × K)],
a 2 = 101.9 × 10−6 [m2/s], α

(2)
T = 17 × 10−6 [1/K], E2 = 121 [GPa], and ν2 = 0.33).

Herein, we employ the following commonly used verification strategy [5] with two
stages. In the first stage, we formulate a direct problem by imposing the temperature t ∗

1(τ)
on the inner circumference of the tribo-couple. Together with the given temperature on the
outer surface and the interface thermal conditions (8), this would allow us to compute the
thermal field in the tribo-couple. Making use of the determined temperature, a solution of
the thermoelasticity problem (3)–(6) is constructed analytically. The latter solution can then
be used to derive an expression for the circumferential strain on the outer surface of the
tribo-couple. In the second stage, we formulate the inverse problem, where condition (10)
is used together with the circumferential strain computed on the previous stage in order to
restore the temperature on the inner surface by making use of the proposed algorithm. By
comparing the solution of the inverse problem with the temperature t ∗

1(τ) imposed when
formulating the direct problem on stage 1, we can draw a conclusion about the efficiency
of the algorithm. When solving the inverse problem in this stage, we also introduce some
random small errors in the distribution of the circumferential strain in order to verify the
stability of the algorithm.

By following this strategy, let us first consider the direct heat-conduction and thermoe-
lasticity problems by imposing the following boundary temperatures

t ∗
1(τ) = T0 + B(1 − cos 2τ), t ∗

2(τ) = T0 (19)

and pressures p1(τ) = CH(τ) and p2(τ) = 0, where B, C = const, H(τ) is the Heaviside
step function, to determine the circumferential strain distribution on the outer surface
ρ = k2. Then, we can approximate the constructed strain within certain accuracy and use it
as the input data for the inverse problem to determine the temperature t (l)

1 , l = 1, . . . , m,

on the inner surface ρ = k1. By comparing the computed values t (l)
1 , l = 1, . . . , m, with

the actual t1(τ), τ ∈ [0, τm], imposed in (19), we can evaluate the accuracy of the proposed
solution algorithm for the considered inverse problem of thermoelasticity.

The distribution of the dimensionless circumferential strain ε(τ) = ε
(2)
ϕϕ(k2, τ)× 104

on the outer surface ρ = k2 is shown in Figure 2a. The strain was computed from the direct
problem under the thermal loading (19) for the following parameters R 0 = 5.0 × 10−2 [m],
R 1 = 3.5 × 10−2 [m], R 2 = 6.0 × 10−2 [m], n 1 = 10−3 [m/GPa], n2 = 10−4 [m/GPa],
R = 5.0 × 10−3 [m2 × K/Wt], R ∗ = 1.1 × 10−3 [m2 × K/Wt]; σ∗ = 102 [MPa], T0 = 20 [K],
B = 200 [K], C = 102, f = 0.25, ω = 1.22 [rad/s], and τ m = 2.5.

Now we can use the computed strain as the input data for solving the inverse problem
in order to reconstruct the thermal loading on the inner circumference of cylinder 1. It is
also important to analyze the effect of small errors in the input data (which can be induced
by the errors in the stain measurement, etc.). For modeling of such errors, let us substitute
the strain distribution at the discrete time moments τi with the values ε̃(τi) computed by
the formula ε̃(τi) = ε(τi)(1 + θi × 10−2), where θi are arbitrary numbers from the interval
[−1, 1] with the uniform distribution law and represent ε̃(τ) by a linear spline. This means
that the input data are encountered with an arbitrary error falling within 1%.

In Figure 2b, the open circles denote the time distribution of the temperature t (i)
1 ,

i = 1, 250 on the inner surface of the cylinder 1, found by solving the inverse thermoelasiticy
problem with the computational step h = 0.01. It is shown that the maximum relative
error of the computed values in comparison to the corresponding values imposed in the
direct problem (19) falls within 1.8%, which confirms the stability of the proposed solution
algorithm with respect to the small errors in the input data. Due to the fact that the solutions
to well-posed direct problems are stable with respect to small errors in the input data, the
error in computing the thermal stresses, strains, and displacements by using the thermal
loading (19) of the one computed by solving the inverse problem can be dismissed.

195



Materials 2021, 14, 2657

 
(a) (b) 

Figure 2. The circumferential elastic strain ε(τ) = ε
(2)
ϕϕ(k2, τ)× 104 (a) computed by the temperature

t1(τ) given in (19) by solving the direct problem versus the dimensionless time τ; the dimensionless

temperature t (i)
1 on the inner circumference (b) as given by formula (19) (solid lines) and computed

by solving the inverse problem (open circles).

5. Conclusions

A problem on the determination of temperature and thermal-stress fields in a cylin-
drical tribo-couple with frictional heating on the interface is formulated for the case when
the thermal loading on one of its circumferences is unknown. The additional information
about the transient variation of the circumferential strain on the surface where the ther-
mal loading is known was used as a supplementary condition for the formulated inverse
thermoelasticity problem governed by a Volterra integral equation of the first kind. Due to
the fact that the kernel of this integral equation K1(τ − η) takes only positive values on the
interval η ∈ [0, τ], monotonically increases for the entire range of variables, and suffers a
root singularity at the point η = τ, this integral equation can be regarded as one of Abel
kind. The presence of the integrable singularity in this kernel at η = τ implies that there is
no delay in the maximum thermal response of the circumferential strain ϕ∗(τ) to a change
in the variation profile of temperature t1(τ) at η = τ in view of the integral dependence
of this strain on the temperature within the cylindrical layers of the tribo-couple. This
feature of kernel K1(τ − η) ensures the conditional correctness of the inverse problem. The
correctness condition in this case was derived in the form of the fitting condition for the,
circumferential strain on the periphery of the tribo-couple, and the pressures applied to its
surfaces at the initial moment of time.

It is worth noting that the analogous kernels within the framework of inverse heat-
conduction problems solely exhibit quite different features, which, in the final count, makes
these problems ill-posed [5,6].

Another advantage of the proposed technique is that the system of algebraic Equation (17),
which is the discrete analog for Equation (16), was represented in the form (18). This, in
view of the appearance of its matrix Q2 ensures the stability of its solution with respect to
small errors in the input data. An algorithm for solving the formulated inverse problem is
suggested on the basis of the linear spline approximation technique. The efficiency of the
algorithm was verified by solving the direct problem under the given thermal loading in
order to determine the circumferential strain, which was then used as the input data for
the inverse problem on the reconstruction of thermal loading.

These key features of the proposed algorithm may serve for benefit of setting up
technological and experimental cylindrical tribo-systems expecting incomplete information
about thermal loading for engineering applications and the wear analysis [28,29].
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Abstract: A numerical–analytical approach to the problem of determining the stress–strain state
of bimaterial structures with interphase ribbon-like deformable inhomogeneities under combined
force and dislocation loading has been proposed. The possibility of delamination along a part of the
interface between the inclusion and the matrix, where sliding with dry friction occurs, is envisaged.
A structurally modular method of jump functions is constructed to solve the problems arising when
nonlinear geometrical or physical properties of a thin inclusion are taken into account. A complete
system of equations is constructed to determine the unknowns of the problem. The condition for
the appearance of slip zones at the inclusion–matrix interface is formulated. A convergent iterative
algorithm for analytical and numerical determination of the friction-slip zones is developed. The
influence of loading parameters and the friction coefficient on the development of these zones
is investigated.

Keywords: ribbon-like reinforcement; composite; thin inclusion; bimaterial; nonperfect contact;
friction; jump functions

MSC: 00A06; 30E20; 45F15; 74M15; 74M25

1. Introduction

The theory and practice of the design and use of progressive composite materials with
flat reinforcement provides indisputable evidence that their tensile strength in the transver-
sal direction, in the case of unidirectional ribbon reinforcement, is between 50 and 75% of
the strength in the longitudinal direction; the use of fibers typically yields only between
2 and 15% [1–7]. Reviews and monographs [3,4,7,8] note the advantages of flat reinforce-
ment, which improves manufacturability and the mechanical properties of the composite,
increases the reinforcement factor and the resistance to leakage failure, and reduces the
statistical variation of the designed properties. It is a testament to the big prospective
application of composites with ribbon-like reinforcement. The use of external ribbon-like
reinforcement in steel-reinforced concrete makes it possible to save between 15 and 45% of
metal in comparison with reinforced concrete and pure metal structures. In addition, thin
ribbon-like elements are a common phenomenon in micro- and nanostructures [8–10].

In composite mechanics, two key issues can be distinguished: the determination of
(1) the average effective properties of the composite as a whole, and (2) the elastic or plastic
deformation processes and the possible failure of composite constituents, including contact
loss at the matrix-filler interface. In the process of the exploitation of composites, the
phenomenon of cracking and delamination is frequent; i.e., reinforcing heterogeneities can
be in both ideal and non-ideal contact with the basic material, including at the interface
of the media. Consideration of friction in the study of contact phenomena is one of the
most pressing problems for mechanical engineering and materials science in the analysis
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of phenomena and processes occurring in the moving elements of machines, at various
technological operations [11–20]. Thus, friction may be accompanied by electrical, thermal,
vibrational, and chemical processes that dampen internal dynamic processes, significantly
affecting the intensity in the wear and tear of materials and, consequently, the reliability
and durability of the structural elements made of them [12,13,16,19]. The influence of
friction can be both negative and positive.

From the point of view of structural integrity mechanics, friction between crack faces
at their relative displacement is useful in most cases, since it causes dissipation of internal
strain energy; thus, it reduces stress concentration, and reduces or even eliminates alternat-
ing plastic deformation under an alternating load. It is also known that the development
of the residual stress field contributes to the adaptation of the material to operational
loads. The compression of composite materials arising under the action of frictional forces
improves the redistribution of shear stresses, even in the case of macroscopic failure of the
reinforcement-matrix interface.

The negative consequences of friction are mainly the wear and tear on the contact
surfaces, as well as thermal radiation. At an excessive intensity, the latter can sometimes
cause unpredictable changes in the mechanical, physical, and chemical properties of the
material and the distribution of physical fields, influencing diffusion processes, in particular
hydrogen diffusion, and the development of fracture phenomena.

Most progressive multiscale methods [4,9,10] recognize a priori that the overall behav-
ior of a composite is highly dependent on the local details. For example, local imperfections
in the spacing and direction of fibers or ribbons can negatively affect the overall bearing
capacity of a structure consisting of a composite material.

However, it is impossible to draw reliable conclusions about this, especially to optimize
the stress–strain state of the structure using direct numerical methods such as the finite
element method. Therefore, the development of prediction methods that can adequately
reflect the complex mechanical behavior near such inhomogeneities is a challenge and
requires the application of either analytical tools or numerical–analytical methods.

The need to take into account the aforementioned geometric nonlinearity (a priori
unknown contact spots) significantly complicates the process of problem-solving and
requires the use of various approximate methods, even for bodies of simple geometry [4,6].
However, these methods do not always allow for the correct consideration of thin-walled
heterogeneity, nor do they guarantee the accuracy of a solution for load optimization in
future applications. During the operation of materials that have the structure that is being
considered in this work, especially when loaded by concentrated force and dislocation
factors, undesirable critical states of adhesion loss between the constituent parts may arise.
This can be avoided by locating the loading points in the so-called “safety zone” when the
shear stresses on the contact surfaces at each of their points do not exceed the critical value.

It should be noted that the vast majority of research studying the structural stability
of bodies with thin inhomogeneities does not cover the entire possible range of force or
dislocation loading of structures. Additionally, it does not provide a full opportunity to
determine the critical load and so-called “safety zone” for applications in order to optimize
the properties of structures for certain types of loading.

This work aims to develop a numerical–analytical method to study structures with
ribbon-like deformable elements, with possible frictional contact between the constituent el-
ements; moreover, it aims to study the mechanical effects of loading by force and dislocation
factors on its strength.

2. Formulation of the Problem

Consider an unbounded isotropic bulk consisting of two half-spaces with the elastic
constants Ek, νk, Gk (k = 1, 2), pressed to the interface by normal stresses σ∞

yy < 0, and
under the action of uniformly distributed at infinity stresses σ∞

xxk (k = 1, 2). The external
longitudinal shear load is determined by the stresses σ∞

yz and σ∞
xzk uniformly distributed at

infinity, concentrated intensity forces Qk, and screw dislocations with the Burger’s vector
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component bk at points ς∗k ∈ Sk (k = 1, 2), oriented along the axis in such a way that
their action causes a quasi-static antiplane SSS in the body. To ensure the straightness of
the material interface at infinity, the stresses must satisfy the conditions σ∞

xz2G1 = σ∞
xz1G2,

ν2σ∞
yy−(1−ν2)σ

∞
xx2

G2
=

ν1σ∞
yy−(1−ν1)σ

∞
xx1

G1
.

We will study the SSS of the body section with a plane xOy perpendicular to the direc-
tion Oz of its longitudinal displacement. The plane sections of half-spaces perpendicular
to this axis form two half-planes Sk (k = 1, 2), and the abscissa axis corresponds to the
interface L ∼ x between them (Figure 1).

Figure 1. Geometry and load pattern of the problem.

Along the segment L′ = [−a; a] is a thin inclusion of thickness 2h (h � a) (Figure 1),
of which the upper and lower banks may come in contact with the matrix non-ideally on
the intervals L′′ ± = [b±; c±] (|b±| ≤ |a|, |c±| ≤ |a|), respectively. Gin

x and Gin
y are the shear

moduli of the inclusion material. The upper index “in” denotes the values describing the
inclusion material’s SSS.

The contact between the half-spaces along the line L\L′ and at the inclusion–matrix
interface at the sections L′\L′′ is also mechanically ideal:

w(x,+0) = w(x,−0), σyz2(x,+0) = σyz1(x,−0), x ∈ L\L′ (1)

w(x,−h) = win(x,−h), σin
yz(x,−h) = σyz1(x,−h), x ∈ L′\L′′ −,

w(x, h) = win(x, h), σin
yz(x, h) = σyz2(x, h), x ∈ L′\L′′+.

(2)

At the contact areas L′′ ±, we assume stick-slip contact conditions [18], wherein mutual
slippage of contacting body surfaces can start, causing heat release, energy dissipation,
wear [11,16–18], etc., and that all points of L′′ ±, tangential stresses (friction forces) are
equal to:

σin
yz(x,±h) = σyz2(x,±h) = −sgn

(
win(x,±h)− w(x,±h)

)
τmax

yz (x), (3)

where τmax
yz (x) = −ασyy (x)

(
σyy < 0

)
, α is the sliding friction coefficient. Outside the area

L′′ ±, in the absence of slip on the inclusion surface, the tangential stresses may not exceed
the allowable maximum ∣∣σyz(x,±h)

∣∣ ≤ τmax
yz (x)

(
σyy < 0

)
(4)

and there is no mutual displacement of contact surfaces (displacement jump). The sign
(direction of action) of the tangential stresses is chosen depending on the sign of the
displacement difference win(x,±h)− w(x,±h) at the point in question at L′′ .
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In the case of normal pressure in the first approximation, we obtain:

τmax
yz (x) = −ασ∞

yy (5)

It is not difficult to obtain a more exact expression by constructing the solution of the
corresponding plane problem. The application of friction law in classical form (5) gives
an opportunity, of course, to simplify boundary conditions for the main problem, but the
choice of complex friction models [11–14,17], considering wear, will not fundamentally
complicate the solution process.

3. Materials and Methods

In general, the formulated problem contains three component modules: an internal
problem (the stress–strain state in the inclusion), an external problem (the stress–strain
state in the matrix), and the contact conditions (1)–(4), which relate them.

The stress–strain state in a thin inclusion (the internal problem) is described by an
appropriate mathematical model. Due to the small thickness of the inclusion, it is possible
to construct approximate relations between the components of the stress tensor and dis-
placement vector on the opposite sides of the inclusion, which adequately describe its SSS.
For example, a rather general model of a physically nonlinear thin inclusion is built in [6]:⎧⎪⎨⎪⎩

Gin
x (σin

xz)
〈

∂win

∂x

〉
h
(x)− 2σin

xz(−a)− 1
h

x∫
−a

[
σin

yz

]
h
(ξ)dξ = 0,

Gin
y (σin

yz)
[
win]

h(x) + h
〈

σin
yz

〉
h
(x) = 0,

(6)

where Gin
x and Gin

y are the variable shear moduli of the inclusion material. Taking them to
be constant, we obtain a special case of Hooke’s law. Hereinafter, the following notations
are used: [ϕ]h = ϕ(x,−h)− ϕ(x,+h) and 〈ϕ〉h = ϕ(x,−h) + ϕ(x,+h); the indexes “+”
and “−” correspond to the limit values of functions at the upper and lower edges of the
line L.

To solve the external problem, it is convenient to apply the method referenced in [6,7],
which uses the well-known jump function method (JFM). According to its paradigm, a
thin inclusion in the matrix is modeled by jumps of the components of the stresses and
displacement vectors on the line L′ :[

σyz
]

h
∼= σ−

yz − σ+
yz = f3(x),[

∂w
∂x

]
h
∼= ∂w−

∂x − ∂w+

∂x =
[ σxz

G
]

h ≡ σ−
xz

G1
− σ+

xz
G2

= f6(x), x ∈ L′ ; (7)

f3(x) = f6(x) = 0, if x /∈ L′. (8)

Furthermore, we can obtain the dependences according to which components of the
stress tensor and the derivatives of the displacement vector inside an unbounded plane S
obtain the form:

σyzk(ς) + iσxzk(ς) = σ0
yzk(ς) + iσ0

xzk(ς)− G1G2
G1+G2

1
π

∫
L′

f6(ξ)dξ
ξ−ς +

+i Gk
G1+G2

1
π

∫
L′

f3(ξ)dξ
ξ−ς (ς = x + iy, ς ∈ Sk; r = 3, 6; k = 1, 2),

(9)

and their boundary values on the upper and lower banks of the line L are the following:

σ±
yzk(x,±h) = ∓ Gk

G1+G2
f3(x) − G1G2

G1+G2
1
π

∫
L′

f6(ξ)dξ
ξ−x + σ0±

yz (x,±h),

σ±
xzk(x,±h) = ∓ Gk

G1+G2
f6(x) + G1G2

G1+G2
1
π

∫
L′

f3(ξ)dξ
ξ−x + σ0±

xz (x,±h).
(10)
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The values, further marked with the index “0” on top, correspond to the bulk’s SSS
model without inhomogeneities (inclusions, cracks, etc.) under the corresponding external
load (homogeneous solution). Hereinafter, the notations [6] are used:

σ0
yzk(ς) + iσ0

xzk(ς) = τ + i{τk + Dk(ς)+
Gk−Gj
G1+G2

Dk(ς) +
2Gk

G1+G2
Dj(ς)

}
,

Dk(ς) = − Qk+iGkbk
2π(ς−ς∗k)

(ς ∈ Sk, k = 1, 2; j = 3 − k).
(11)

Additional balance conditions must be imposed on the solution of the external problem:

a∫
−a

f3(ξ)dξ = 2h
(
σin

xz(a)− σin
xz(−a)

)
,

a∫
−a

f6(ξ)dξ = [w](a)− [w](−a).
(12)

Equation (10) can be used directly to determine the critical values of the load applied
to the structure at which slippage will begin. At some point(s) L′′ ± when the maximum
allowable slippage τmax

yz (x) is reached:

σyzk(x,±h) = τmax
yz (x), (13)

that is, once the expressions for the jumps fr (r = 3, 6) are known, the applied load can be
investigated and its critical values determined.

It is possible to apply the classical JFM to the solution of the obtained system of
Equations (1)–(12), which provides the substitution of (10) into (6) using (1)–(4), and
obtains the resulting system of singular integral equations (SSIE) to determine the unknown
fr (r = 3, 6) and the stresses in the matrix using (9) and inside the inclusion using (1)–(4).
However, such a scheme for solving the problem works well in the case of an ideal contact
of the structure components, simple geometry, and linear constitutive properties of the
inclusion material. In the case of a non-ideal contact, with the a priori unknown dimensions
of the slip zones (c± − b±), rather complicated algorithms for solving the SSIEs are required,
which do not always guarantee calculation accuracy.

We propose a different approach to solving such a problem, which can be called a struc-
turally modified JFM. The idea is to combine all equations into a global system without sub-
stituting the boundary conditions (1)–(4) into the model Equation (6), and limit values of ma-
trix components of the stress–strain relations (9). Furthermore, it is convenient to solve this
system of equations by any numerical–analytical method, for example, by the collocation
method. Submitting the system of Equations (1)–(12) in discrete form in the set of colloca-
tion points

(
xn, n = 1, N

)
, we obtain the system of 6N linear algebraic equations (SLAE) for

the determination of 6N unknowns σin
yz(xn,±h), ∂win

∂x (xn,±h), fr(xn)
(
r = 3, 6; n = 1, N

)
.

Of course, the number of unknowns for solving the problem increases, which is not crucial
with modern computational capabilities. However, the construction of SLAEs is consid-
erably simplified, as its modularity allows for making independent changes in separate
modules with significantly less effort than constructing and solving new classes of problems
with considerably more complicated parameters.

4. Numerical Results and Discussion

The accuracy of the solution in the case of non-ideal contact is very sensitive to the
correct determination of the position and size of the slip zones. Within the framework
of the proposed structural–modular MFS, we apply an iterative approach for this at each
point of the interval L′′ ±: (1) gradually with growth, we apply a small load to check
condition (13) of the beginning of the slippage process; (2) as soon as condition (13) is
satisfied at certain points xn, we assign values τmax

yz to values σin
yz(xn,±h), σyzk(xn,±h) in

all these points and re-solve the SLAE; (3) we check whether constraint (4) is satisfied
everywhere; if not, we assign values τmax

yz again to values σin
yz(xn,±h), σyzk(xn,±h) in those
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points xn where (4) is not satisfied. The process is repeated until condition (4) is satisfied
in all points

(
xn, n = 1, N

)
. It is proven that such an iterative algorithm is convergent

under monotonically increasing non-contrast loading. Despite the increased number of
SLAE equations, the calculations showed that a relative error of 0.1% of the results can
be achieved already at 21 collocation points for no more than seven iteration steps in the
worst case of a very stiff inclusion. The obtained results were validated by comparing them
with known partial solutions for an interfacial crack and an interfacial thin rigid inclusion,
as well as a thin elastic interfacial inclusion at its ideal contact with the matrix [6,7,15,18].

Figures 2 and 3 show the results of the study of the “safety zone” for the intensities and
coordinates of concentrated forces

(
Q̃2 = −Q̃1 = Q̃, ς̃∗k = ς∗k/a =x̃∗k + iỹ∗k, ς̃∗2 = ς̃∗1,

ỹ∗k = ±id̃
)

, where Q̃ = Q/πaGav, x̃∗2 = x∗2/a, d̃ = d/a, Gav = {√G1G2, max(G1, G2),
Q/πa}. The “safety zone” for a concentrated factor of a certain value will be understood
as the coordinates of its application at which slippage does not yet start at any point
of the boundary L′ ; i.e., condition (4) is not fulfilled. We define the boundary of the
“safety zone” from the following criterion: condition (4) starts to be fulfilled at least at
one point. It can be argued that an inclusion harder than the matrix changes the form
of the “safety zone” much less than a softer one. The particular case of no inclusion
G̃in

y = G̃k

(
G̃in

y = Gin
y /Gav; G̃k = Gk/Gav

)
shows the coincidence of the results with those

obtained in [6,7,18]. Additionally, note the expected trends of linear dependence of the

growth of the critical value Q̃∗ on the increase in the value τ̃max±
yz =

τmax±
yz
Gav

, as well as on

the increase in the distance d̃ of the points of application of the concentrated force. These
effects are especially appreciable for the “soft” inclusion, when G̃in

y � G̃k.

Figure 2. The boundary of the “safety zone” when loading the structure with a softer than the matrix
inclusion by a concentrated force: 1—Q̃∗ = 0.5; 2—Q̃∗ = 0.75; 3—Q̃∗ = 0.9.

Figures 4–9 show the effect of slip on the stress σ̃yz = σyz/Gav distribution along with
the inclusion–matrix interface, as well as the growth of the slip zone size and its intensity
w̃sl = wsl/a depending on the problem parameters. It is noteworthy that for a softer
than the matrix inclusion, the slippage appears and grows faster than for a more rigid
inclusion with the same problem parameters (Figures 4, 6 and 7). Decreasing the distance
of the application points from the inclusion axis, as well as increasing the load intensity,
is expected to increase the slip area and its magnitude (Figures 5–7 and 9). However, the
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displacement of the coordinates of the force application points along the inclusion axis to
its apex (Figure 8), as well as the distance from this axis (Figure 5), reduces the slip intensity.
The loading by an applied screw dislocation with a Burger’s vector b̃2 = b2G2/Gav in p.
x∗2 = 0; y∗2 = a leads to the appearance of two slip zones antisymmetric for the vertical
axis of inclusion (Figure 9).

 

Figure 3. The boundary of the “safety zone” when loading with the concentrated force Q̃∗ of the
structure without (1—G̃in

y = 1) and with harder than matrix inclusion (2—G̃in
y = 10).

 

Figure 4. Stress distribution along with the inclusion–matrix boundary, (a) and the size of the slip
zone (b) depending on the ratio G̃in

y /G̃k
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Figure 5. Stress distribution along with the inclusion–matrix boundary (a) and the value of the slip
zone (b) for inclusion harder than matrix, depending on the distance of the force application point
from its axis.

 

Figure 6. Stress distribution along with the inclusion–matrix boundary (a) and the size of the slip
zone (b) for a softer than matrix inclusion as a function of force intensity growth.
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Figure 7. Stress distribution along with the inclusion–matrix boundary (a) and the value of the slip
zone (b) for a harder than matrix inclusion as a function of force intensity growth.

 

Figure 8. Stress distribution along with the inclusion–matrix boundary (a) and the value of the slip
zone (b) for a softer inclusion than matrix depending on the change in the coordinates of the force
application points along the inclusion axis.
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Figure 9. Stress distribution along with the inclusion–matrix boundary (a) and the value of the slip
zone (b) for a softer than matrix inclusion under screw dislocation loading.

5. Conclusions

The proposed numerical–analytical approach to study the effects of mechanical contact
imperfections and friction effects of a bimaterial structure with an interfacial thin ribbon-
like deformable inclusion made it possible to obtain some important new results. Firstly,
the a priori unknown configuration of the sliding friction zone was determined under
different types of loads.

It is revealed that with the friction coefficient, type, and place of load application
unchanged, the slippage will start at a lower load and the slippage zone will be larger in
the case of a harder than the matrix inclusion. It can be argued that the shape and size of
the “safety zone” changes much less in the case of a harder than matrix inclusion than in
the case of a softer one.

The calculations confirmed the linear attenuation of the sizes of the safety and slip
zones from a decrease in the intensity or distance from the inclusion of the concentrated
factors. This is especially noticeable for the softer inclusion than the matrix inclusion.

The distribution of stresses in the inclusion vicinity, calculated to optimize the load
regime of the investigated structure, makes it possible to conclude that the greatest influence
on its stress–strain state is in the inclusion vicinity; accordingly, the appearance of slippage
between the components has the case of applying concentrated forces in the point above
the inclusion center.

The obtained results and the proposed method can be used and developed to study the
value of the energy dissipated on the inclusion, heat release due to friction, development
of wear processes, and the interaction of band inhomogeneities in composite structures
with subsequent determination of their effective mechanical characteristics, optimization
of operating load modes and the like.
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Nomenclature

SSS stress–strain state;
SSIE system of singular integral equations;
SLAE system of linear algebraic equations;
x, y, z Cartesian coordinates;
fr jump functions;
Ek, νk, Gk elastic modulus of the material;
Sk half-planes (sections of the body);
a, h, b±, c± dimensions of the inclusion and slip zones;
w, σxz, σyz, σxx, σyy displacement, stresses (components of SSS);
L′ = [−a; a] line, modelling the presence of thin inclusion;
Qk, bk magnitudes of concentrated forces and screw dislocations;
σ∞

yz, σ∞
xzk, σ∞

yy,σ∞
xxk uniformly distributed in infinity shear stresses;

α coefficient of the sliding friction;
Special denotations

[ϕ]h = ϕ(x,−h)− ϕ(x,+h), 〈ϕ〉h = ϕ(x,−h) + ϕ(x,+h);

superscripts “+” and “−”
denotes boundary values of functions on the upper and the lower
with respect to width inclusion borders accordingly;

superscript “in” marks the values corresponding to inclusion;

superscript “◦”
marks the values in the corresponding problem without
any inclusion;

superscript “~” marks the terms that become dimensionless;
subscript “k” denotes the terms corresponding to half-plains.

References

1. Comninou, M.; Schmueser, D.; Dundurs, J. Frictional slip between a layer and a substrate caused by a normal load. Int. J. Eng. Sci.
1980, 18, 131–137. [CrossRef]

2. Kalker, J.J. A survey of the mechanics of contact between solid bodies. Z. Angew. Math. Mech. 1977, 57, T3–T17.
3. Kachanov, M.; Sevostianov, I. Micromechanics of Materials, with Applications/Solid Mechanics and Its Applications; Springer: Berlin,

Germany, 2018; Volume 249, p. 712.
4. Nemat-Nasser, S.; Hori, M. Micromechanics: Overall Properties of Heterogeneous Materials; North-Holland Series in Applied

Mathematics and Mechanics; Elsevier: Amsterdam, The Netherlands, 1993; Volume 37, p. 687.
5. Sekine, H. Mechanics of debonding along the surfaces of dispersed flat inclusions in composite materials (A model of debonding

along the surface of a flat inclusion). Trans. ASME J. Appl. Mech. 1982, 48A, 1415–1420.
6. Sulym, H.T.; Piskozub, I.Z. Nonlinear deformation of a thin interface inclusion. Mater. Sci. 2018, 53, 600–608. [CrossRef]
7. Sulym, H.T. Bases of Mathematical Theory of Thermo-elastic Equilibrium of Solids Containing Thin Inclusions; Research and Publishing

Center of NTSh: L’viv, Ukraine, 2007; p. 716. (In Ukrainian)
8. Davim, J.P.; Charitidis, C.A. (Eds.) Nanocomposites. Materials, Manufacturing and Engineering; Walter de Gruyter GmbH: Berlin,

Germany; Boston, MA, USA, 2013; p. 211.
9. Wang, J.; Karihaloo, B.L.E.; Duan, H.L. Nano-mechanics or how to extend continuum mechanics to nano-scale. Bull. Pol. Acad.

Sci. Tech. Sci. 2007, 55, 133–140.
10. Wang, Y.; Huang, Z.M. Analytical Micromechanics Models for Elastoplastic Behavior of Long Fibrous Composites: A Critical

Review and Comparative Study. Materials 2018, 11, 1919. [CrossRef] [PubMed]

209



Materials 2021, 14, 4928

11. Bogdanovich, P.N.; Tkachuk, D.V. Thermal and Thermomechanical Phenomena in Sliding Contact. J. Frict. Wear 2009, 30, 153–163.
[CrossRef]

12. Evtushenko, A.A.; Kutsei, M. Effect of pressure evolution during braking on temperature of a pad-disk tribosystem. J. Frict. Wear
2010, 31, 317–325. [CrossRef]

13. Goryacheva, I.G. Contact Mechanics in Tribology; Series: Solid Mechanics and Its Applications; Springer: Berlin, Germany, 1998;
Volume 61, p. 346.

14. Hills, D.A.; Nowell, D.; Sackfield, A. Mechanics of Elastic Contact; Butterworth-Heinemann: Oxford, UK, 1993; p. 238.
15. Kharun, I.V.; Loboda, V.V. A set of interface cracks with contact zones in combined tension-shear field. Acta Mech. 2003, 166,

43–56. [CrossRef]
16. Pyriev, S.Y.; Yevtushenko, A.A.; Sulym, G.T. Thermomechanical Wear during Quasistationary Heat Generation by Friction. J.

Frict. Wear 2012, 33, 315–321. [CrossRef]
17. Sosnovskiy, L.A. Tribo-fatigue. Wear-fatigue Damage and Its Prediction (Foundations of Engineering Mechanics); Series: Foundations of

Engineering Mechanics; Springer: Berlin, Germany, 2005.
18. Sulym, H.T.; Pasternak, Y.M.; Piskozub, J.Z.; Piskozub, L.G. Longitudinal shear of a bimaterial with frictional sliding contact in

the interfacial crack. J. Theor. Appl. Mech. 2015, 54, 529–539.
19. Sun, C.T.; Qian, W. A treatment of interfacial cracks in the presence of friction. Int. J. Fract. 1998, 94, 371–382. [CrossRef]
20. Belhocine, A.; Oday, I.A. Thermomechanical Model for the Analysis of Disc Brake Using the Finite Element Method in Frictional

Contact. Multiscale Sci. Eng. 2020, 2, 27–41. [CrossRef]

210



Citation: Piskozub, Y.; Piskozub, L.;

Sulym, H. Effect of the Transverse

Functional Gradient of the Thin

Interfacial Inclusion Material on the

Stress Distribution of the Bimaterial

under Longitudinal Shear. Materials

2022, 15, 8591. https://doi.org/

10.3390/ma15238591

Academic Editor: Francisco J.

G. Silva

Received: 3 November 2022

Accepted: 28 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Effect of the Transverse Functional Gradient of the Thin
Interfacial Inclusion Material on the Stress Distribution of the
Bimaterial under Longitudinal Shear

Yosyf Piskozub 1,* , Liubov Piskozub 2 and Heorhiy Sulym 3

1 Department of Applied Mathematics, Faculty of Computer Science and Telecommunications,
Cracow University of Technology, Warszawska Str. 24, 31-155 Cracow, Poland

2 Department of Applied Mathematics and Physics, Ukrainian Academy of Printing, Pidgolosko Str. 19,
79020 Lviv, Ukraine

3 Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering,
Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland

* Correspondence: yosyf.piskozub@pk.edu.pl; Tel.: +48-574-560-665 or +38-073-222-4246

Abstract: The effect of a functional gradient in the cross-section material (FGM) of a thin ribbon-like
interfacial deformable inclusion on the stress–strain state of a piecewise homogeneous linear–elastic
matrix under longitudinal shear conditions is considered. Based on the equations of elasticity theory,
a mathematical model of such an FGM inclusion is constructed. An analytic–numerical analysis of the
stress fields for some typical cases of the continuous functional gradient dependence of the mechanical
properties of the inclusion material is performed. It is proposed to apply the constructed solutions to
select the functional gradient properties of the inclusion material to optimize the stress–strain state in
its vicinity under the given stresses. The derived equations are suitable with minor modifications for
the description of micro-, meso- and nanoscale inclusions. Moreover, the conclusions and calculation
results are easily transferable to similar problems of thermal conductivity and thermoelasticity with
possible frictional heat dissipation.

Keywords: functionally graded material; thin inclusion; composites; nonperfect contact; frictional
heating; crack; stress intensity factor

1. Introduction

Many structural materials contain numerous thin inhomogeneities in the form of
inclusions of different origins [1–7]. Quite often, these inclusions are used as elements to
reinforce the structural parts of machines and structures or as fillers in composite materials
or coatings [8–15]. The use of nanocomposites with specific properties in engineering and
technology has significantly shifted the interest from the study of objects at the macro level
(100–10−1 m) and micro level (10−3–10−6 m) to the nano level (10−9 m) [16–20].

One of the typical examples of composite materials is the structure with thin ribbon
inclusions. Structural elements made with the use of FGM have proven to be rather effective
in practice [21–23]. In this way, it is possible to achieve a significant improvement in their
mechanical, rheological, thermal, or other properties or the formation of protective thin
layers [18,24–27].

The mathematical modeling of nanostructures requires the construction of more
complex constitutional laws in comparison with the macro level [28,29]. Therefore, it is
important to construct methods for studying the stress–strain state of such structures. To
model a thin inclusion, there are mainly two basic approaches using analytical methods.
The first one is based on the use of Eshelby’s analytical solution [21,30,31] for an ellipsoidal
inclusion, in which a limiting transition with a decrease in one of the characteristic dimen-
sions of the inclusion is performed. However, its application to thin interphase inclusions
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is impossible. The second one is based on the principle of the conjugation of continua of
different measurability [32–37] and the method of jump functions [28,29,38–41]. According
to this method, the inclusions are replaced by a certain surface (in the two-dimensional
case, a line) of the discontinuity of the physical–mechanical fields, which describes the
perturbing effect of a thin inclusion. Successful attempts were made in [17,33,42–45] to
apply it to consider the influence of various physical and contact nonlinearities in the
antiplane problem of elasticity theory for two compressed half-spaces with interfacial
defects. The frictional slip with possible heat generation for contacting bodies [34,44,46–49]
and the boundary element approach [50–52] were also considered here. Inhomogeneity of
the mechanical properties of structural materials can be both designed for a specific pur-
pose (FGM) and a consequence of technological processes of obtaining new materials and
their processing (FSW, ball-burnishing process, etc.) [53,54]. Such factors cause additional
complexity in the constitutive relations for the mathematical modeling of the behavior of
such materials. However, the case of a thin inclusion of an inhomogeneous material has
not been practically studied.

The process of improving the mathematical models of FGM [11,25,26,55–58] is com-
plicated by the complex geometry of structural elements and the consideration of imper-
fections in the contact of their components. This is especially important to ensure their
qualitative design, both in terms of mechanical strength [11,59–63] and in terms of the con-
sideration of thermal, magnetic, and piezoelectric load factors [13,21,24,44,53,54,58,64,65].

The works [17,31,35,39] have been devoted to the consideration of surface energy and
stresses in nanocomposites. Consideration of the heterogeneity of inclusions’ properties
at the micro and nano scale is particularly important because the heterogeneity density of
matter (discrepancy variation in mechanical and other properties) of matter bodies with
a decrease in their scale usually increases, and the impact of this heterogeneity increases
even further.

This publication aims to develop the method of jump functions and to construct a
convenient structured and highly versatile approach to study the longitudinal displacement
and thermal heating of bodies with thin inclusions of arbitrary physical nature, including
those made from FGM.

2. Formulation of the Problem

Consider an unbounded isotropic structure consisting of two half-spaces with elastic
moduli Gk (k = 1, 2), which is subjected to an external longitudinal shear load determined
by uniformly distributed infinity stresses σ∞

yz and σ∞
yz, concentrated forces of intensity Qk

and screw dislocations with vector Burgers component bk at points ς∗k ∈ Sk(k = 1, 2). The
stresses must satisfy the conditions σ∞

xz2G1 = σ∞
xz1G2 at infinity to ensure the straightness of

the interface.
Let us investigate the stress–strain state (SSS) of the body section with a plane xOy

perpendicular to the direction Oz of its longitudinal displacement (external problem). The
plane sections of half-spaces perpendicular to this axis form two half-planes Sk (k = 1, 2)
and the abscissa axis corresponds to the interface L ∼ x between them (Figure 1). At the
interface of half-spaces (plane xOz), there is a tunnel section L′ = [−a; a] in the direction of
the shear axis z, in which a certain object of general thickness 2h (h � a) is inserted.

According to the paradigm of the method of jump functions [36], the presence of a thin
inclusion in the bulk is modeled by jumps in the components of stress and displacement
vectors in [38,40,41]:[

σyz
]

h
∼= σ−

yz − σ+
yz = f3(x), x ∈ L′[

∂w
∂x

]
h
∼= ∂w−

∂x − ∂w+

∂x =
[ σxz

G
]

h ≡ σ−
xz

G1
− σ+

xz
G2

= f6(x);
(1)

f3(x) = f6(x) = 0, if x /∈ L′. (2)
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Figure 1. The loading and geometric scheme of the problem.

It is hereinafter marked [•]h = •(x,−h) − •(x,+h), 〈•〉h = •(x,−h) + •(x,+h);
superscripts “+” and “−” correspond to the boundary values of the functions on the upper
and lower banks of the line L.

The mathematical model of a thin inclusion is given as complicated conditions of
imperfect contact between opposite matrix surfaces adjacent to the inclusion (internal
problem) [28,38–40,65]. The general model of a thin, physically nonlinear inclusion is
presented in [28,29,38], where the methods of modeling thin objects involve the integration
of the defining relations describing the physical and mechanical properties of the material
of the inclusion, with the subsequent consideration of the smallness of one of the linear
dimensions of the inclusion.

Let us consider a similar model for a thin inclusion, assuming that the mechanical
properties of the inclusion material are coordinate-dependent. This will allow us to model
the inclusions of a functionally graded material:⎧⎪⎨⎪⎩

Gin
x (x)

〈
∂win

∂x

〉
h
(x)− 2σin

xz(−a)− 1
h

x∫
−a

[
σin

yz

]
h
(ξ)dξ = 0,

Gin
y (x)

[
win]

h(x) + h
〈

σin
yz

〉
h
(x) = 0.

(3)

Here, Gin
x (x), Gin

y (x) are the variable shear moduli of the inclusion’s material. As a
special case, considering their values to be constant, we obtain Hooke’s law. The upper
index “in” denotes the terms describing the inclusion material’s SSS components.

Contact between matrix components and the inclusion at L′ and between the bimaterial
structure components along a line L\L′ is supposed to be mechanically perfect,

w(x,±h) = win(x,±h), σin
yz(x,±h) = σyzk(x,±h), x ∈ L′,

w(x,+0) = w(x,−0),
σyz2(x,+0) = σyz1(x,−0), x ∈ L\L′,

(4)

or frictional in some areas x ∈ L f ⊂ L′, as was considered in works [41,46–48],

σin
yz(x,±h) = σyzk(x,±h) = −sgn

[
win

]
h
τmax

yz . (5)

Here, τmax
yzK is the limit value of shear stresses, at which the slippage begins. In this

case, however, additional iterative methods should be applied to determine the area of the
slip zones depending on the specific types of external loading of the composite [41].
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3. Materials and Methods

Expressions for the components of the stress tensor and the derivatives of displace-
ments on the line L of the infinite plane S = S1 ∪ S2, as well as inside the latter, can be
obtained by applying the results of [37] to the solution of the external problem

σyz(z) + iσxz(z) = σ0
yz(z) + iσ0

xz(z)+
+ipkg3(z)− Cg6(z) (z ∈ Sk; r = 3, 6; k = 1, 2);

(6)

σ±
yzk(x) = ∓pk f3(x) − Cg6(x) + σ0±

yz (x),
σ±

xzk(x) = ∓C f6(x) + pkg3(x) + σ0±
xz (x),

(7)

where the notation [28,41] is introduced:

gr(z) ≡ 1
π

∫
L′

fr(x)dx
x−z , sr(x) ≡

x∫
−a

fr(x)dx,

p = 1
G1+G2

, pk = Gk p, C = G1G2 p.
(8)

The superscript “+” corresponds to k = 2 and “–” corresponds to k = 1. Values marked
with superscript “0” correspond to values in a continuous medium without inclusions
under the same external load (homogeneous solution) [28,41].

Using (7), (8) and boundary conditions (4), it is easy to obtain from model (3) a system
of singular integral equations:⎧⎨⎩ (p2 − p1) f6(x) + 2pg3(x)− s3(x)

hGin
x (x)

= F3(x),

(p2 − p1) f3(x) + 2Cg6(x)− Gin
y (x)s6(x)

h = F6(x),
F3(x) = 2

Gin
x

σin
xz(−a)− (

σ0
xz2(x)/G2 + σ0

xz1(x)/G1
)
,

F6(x) =
〈

σ0
yz

〉
(x)− Gin

y

〈
σ0

yzk(x)
Gk

〉
− Gin

y
h

[
0
w
]
(−a).

(9)

Balance conditions on the power balance and unambiguity of displacements while
moving around the thin defect must be added to the solution of the external problem:

a∫
−a

f3(ξ)dξ = 2h
(
σin

xz(a)− σin
xz(−a)

)
,

a∫
−a

f6(ξ)dξ = [w](a)− [w](−a).
(10)

Solving (9) and (10) using the methods in [29,38,41], it is easy to obtain a system of
linear algebraic equations with unknown coefficients of the decomposition of the jump
functions fr(x) into a series by orthogonal Jacobi or Chebyshev polynomials.

An important aspect of the study of the strength of such structures is the improvement
of their strength criteria. In fracture mechanics, it is acceptable to use the stress intensity
factor to describe the behavior of the SSS in the vicinity of the crack tip [42,45,61–63,66].
This is not sufficient for the case of a thin deformable inclusion. In [45], the authors obtained
the two-term asymptotical expressions for the distribution of SSS in the vicinity of the thin
inclusion tips using the introduced generalized stress intensity factors (GSIF):

K31 + iK32 = lim
r→0 (θ=0,π)

√
2πr

(
σyz + iσxz

)
. (11)

Here, (r, θ) is a system of polar coordinates with the origin near the right or the left tip
of the inclusion z = ±r exp(iθ)± a.
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Considering the well-known mathematical analogy [67], the obtained solutions to the
antiplane problem can be regarded as solutions to the accordant heat conduction problem,
if we take into account the correspondence of the values

w ∼ T, ∂w
∂x ∼ ∂T

∂x , ∂w
∂y ∼ ∂T

∂y , qx ∼ σxz, qy ∼ σyz,
Gx ∼ λx, Gy ∼ λy, K31 ∼ kqy, K32 ∼ kqx.

The terms are as follows: T—temperature, qx, qy—heat flows, λx, λy—thermal con-
ductivity coefficients, kqy, kqx—heat flow intensity factors [40].

4. Numerical Results and Discussion

Since the main focus of this article is to investigate the effect of the functional gradient
on the mechanical properties of the inclusion material, we will limit ourselves to one of
the most representative variants of the structure loading: homogeneous longitudinal shear
σ∞

yz = τ and σ∞
xzk = τk (k = 1, 2) at infinity. However, the calculations for loading by

concentrated force factors or dislocations do not make any fundamental difference except
for the necessity to consider the locality of their application [29,41].

The dependence Gx(x), Gy(x) on coordinate x for mathematical modeling can be
defined as an arbitrary function (linear, exponential, power, periodic [58], etc.), which
adequately reflects the desired practical properties of the material. To illustrate the method,
let us consider one of the illustrative variants of the functional gradient of the inclusion
material—the piecewise linear one:

Gx(x) = Gy(x) =
{
(G01 − G0)

x
a + G01, x ∈ [−a, 0];

(G02 − G01)
x
a + G01, x ∈ [0, a],

(12)

where G0, G01, G02—some given constants.
To significantly reduce the number of calculations without loss of generality, it is

convenient to use the following dimensionless quantities, marked by symbol “~” (tilde)
on top:

x̃ = x/a, h̃ = h/a, ỹ = y/a,
G̃in

x (x̃) = Gin
x (x)/Ggav, G̃in

y (x̃) = Gin
y (x)/Ggav,

τ̃k = τk/Ggav, τ̃ = τ/Ggav, Ggav =
√

G1G2,
G̃0 = G0/Ggav, G̃01 = G01/Ggav, G̃02 = G02/Ggav,
σ̃xz(x̃) = σxz(x)/Ggav, σ̃yz(x̃) = σyz(x)/Ggav.

K̃31 =
K+

31
2C̃Ggav

√
πa

, K̃32 =
K+

32
2p2Ggav

√
πa ,

where K+
31 K+

32 are the GSIFs near the tip x = +a of the inclusion.
Figures 2–11 illustrate the dependence of the stress–strain behavior of the matrix

in the inclusion vicinity on the variation in the parameters G̃0, G̃01, G̃02, the values of
which were chosen to reveal a qualitative picture of the FGM effect on the stress–strain
parameters. It can be immediately concluded from Figures 2 and 3 that under the load τ̃,
the dimensionless K̃+

31 are expected to decrease with the increasing shear moduli of any
part of the inclusion, while at K̃+

32 they appear to increase with increasing load τ̃k.
The effect of changes in the moduli G̃x(x), G̃y(x) on the stresses σ̃yz, σ̃xz on the inclu-

sion surface is more obvious if we choose a linear growth law for them along the inclusion
axis (Figures 4–6). The magnitude of the surface stresses increases significantly in the stiffer
part of the inclusion. The larger the stiffness gradient, the more significant the increase.

The choice of the piecewise linear law of moduli G̃x(x), G̃y(x) change in the Formulae (14)
as G̃01 = G̃02 (variant 1) or G̃0 = G̃01 (variant 2) has a more contrasting effect on the
surface stresses σ̃yz, σ̃xz, especially in the vicinity of the gradient breaking point x = 0
(Figures 7 and 8). Moreover, variant 2 of the functional dependence of the inclusion mate-
rial moduli leads to partial unloading in the softer part of the inclusion near the breaking
point x = 0 (Figure 8).
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Figure 2. Influence of the parameters G̃0, G̃01, G̃02 on the GSIF K̃+
31 under the load, uniformly

distributed on infinity stress σ∞
yz = τ.

Figure 3. Influence of the parameters G̃0, G̃01, G̃02 on the GSIF K̃+
32 under the load, uniformly

distributed on infinity stress σ∞
xzk = τk (k = 1, 2).

Figure 4. Stress distribution along with the upper interface (inclusion–matrix half-space S2) with a
linear distribution of material stiffness.
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Figure 5. Stress distribution along with the upper interface (inclusion–matrix half-space S2) with a
linear distribution of material stiffness.

Figure 6. Stress distribution along with the upper interface (inclusion–matrix half-space S2) with a
linear distribution of material stiffness.

Figure 7. Stress distribution along with the upper interface (inclusion—matrix half-space S2) with a
piecewise linear distribution of material stiffness.
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Figure 8. Stress distribution along with the upper interface (inclusion—matrix half-space S2) with a
piecewise linear distribution of material stiffness.

Figure 9. Stress distribution in the matrix at the vicinity of the inclusion with a linear distribution of
material stiffness.

Figure 10. Stress distribution in the matrix at the vicinity of the inclusion with the piecewise linear
distribution of material stiffness.
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Figure 11. Stress distribution in the matrix at the vicinity of the inclusion with the piecewise linear
distribution of material stiffness.

Figures 9–11 illustrate the changes in the stress field in the matrix in the inclusion
vicinity under different variants of the law of functional change of the inclusion material
moduli. The trends towards a decrease in the stress magnitudes in the vicinity of the stiffer
parts of the inclusion are visible.

5. Conclusions

The proposed sufficiently simple and mathematically correct methodology made it
possible for us to construct, for the first time, a mathematical model of a deformable thin
linear interfacial inclusion with essentially inhomogeneous linear mechanical properties.
Such a model can be used to simulate a thin inclusion from a functionally graded material
and to solve the corresponding problems of defining the stress–strain field of the corre-
sponding micro- or nanostructures by efficient analytical–numerical methods (the jump
function method and its modifications), without the need to involve purely numerical
approaches (in particular, FEM).

The calculations of the stress–strain field components for simple test cases of the
functional dependence of the shear moduli of inclusion material have demonstrated the
expected qualitative picture of their effect on the variation in the FGM parameters. In
particular, (1) the stress magnitude increases significantly in the vicinity of the inclusion
regions with increased stiffness; (2) the combination of the inclusion materials from parts
with piecewise linear mechanical characteristics may lead to partial unloading of the
inclusion and matrix in their softer part in the vicinity of the breaking point of the gradient
dependence of the inclusion material parameters; (3) the contrast of the stress field changes
of the inclusion and matrix is proportional to the increase in the gradient dependence.

The conclusions and calculation results are easily transferable to analogous problems
of thermal conductivity and thermoelasticity with possible frictional heat generation and
can be used for recommendations on the optimal operating parameters of structures.

The discussed conclusions can be useful in designing the functionally gradient me-
chanical properties of the material of inclusions and in the optimization of engineering
structures to increase their strength and service life. The proposed method is effective for
solving a wide class of problems of deformation of solids with thin deformable inclusions
of finite length and can be used for SSS calculation for different FGM inclusions.
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Nomenclature

FGM functionally gradient material;
GSIF generalized stress intensity factor;
SSS stress–strain state
x, y, z Cartesian coordinates;
fr jump functions;
Ek, νk, Gk, GinK

x , GinK
y elastic properties of the materials;

Sk half-planes (sections of the solid);
w, σxz, σyz, σxx, σyy displacement, stresses (components of SSS);
L′ = [−a; a] line, modeling the presence of thin inclusion;
Qk, bk magnitudes of concentrated forces and screw dislocations;
σ∞

yz, σ∞
xzk uniformly distributed in infinity shear stresses.
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