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Abstract: Against the backdrop of intensified global warming, extreme weather events such as dense
fog, low visibility, heavy precipitation, and extreme temperatures have been increased and enhanced
to a great extent. They are likely to pose severe threats to the operation of urban transportation and
associated services, which has drawn much attention in recent decades. However, there are still plenty
of issues to be resolved in improving the emergency meteorological services and developing targeted
urban transportation meteorological services in modern cities. The present review briefly illustrates
the current cutting-edge developments and trends in the field of urban transportation meteorology in
China, including the establishment of observation networks and experiments and the development of
early warning and prediction technologies, as well as the related meteorological commercial services.
Meanwhile, reflections and discussions are provided in terms of the state-of-the-art observation
channels and methods and the application of numerical model forecasts and artificial intelligence.
With the advantages of various advanced technologies from multiple aspects, researchers could
further expand explorations on urban transportation meteorological observations, forecasts, early
warnings, and services. Associated theoretical studies and practical investigations are also to be
carried out to provide solid scientific foundations for urban transportation disaster prevention and
mitigation, for implementing the action of meteorological guarantees, and for the construction of
a high-quality smart society.

Keywords: urban meteorology; transportation meteorology; observation; forecast; early warning;
review; China

1. Introduction

In the context of the accelerated development of state-of-the-art information technolo-
gies, the smart city is a new urban development model that fully utilizes cloud computing,
Internet of Things, and other innovative technological means to make intelligent responses
to various demands for public services, social management, industrial operations, and
other activities [1]. Transportation is one of the basic and strategic industries of the national
economy in China, providing crucial support for cities’ sustainable development [2]. There-
fore, smart transportation is considered a priority area for the construction of smart cities
and smart countries, of which the meteorological service is an inseparable part [3].

In fact, meteorology is one of the key factors affecting the safety and operation of
urban transportation [4]. Taking China as an example, frequently occurring weather
disasters tend to induce serious traffic accidents or blockages and to causes damage to traffic
facilities. This is likely to generate severe threats to the safety and property of humans,
as well as social and economic development. Meanwhile, changes in meteorological

1



Atmosphere 2022, 13, 1823

conditions would have an impact on the vehicle itself, the road conditions, the driver’s
judgment, and their responsiveness in the driving process, as well as the vehicle’s interior
environment. Moreover, different meteorological conditions may have different impacts on
transportation. Compared with highways, although urban transportation is characterized
by generally lower speeds of vehicles, it is confronted with a larger flow, more pedestrians,
and more complex road conditions. Therefore, the impacts of meteorological conditions on
urban roads and vehicle travel, as well as other traffic channels such as subways, are still
significant and should not be ignored.

For instance, on 21 July 2012, Beijing suffered one of the most severe rainstorms in
local history [5], causing the urban transportation system to be almost paralyzed. In total,
95 roads in the urban area were cut off due to the heavy precipitation. Severe waterlogging
and circuit breakage brought huge losses to the citizens’ lives and property, with at least
79 deaths and 1.84 billion dollars in economic losses [6]. More recently, in 2021, the
Zhengzhou 7·20 (20 July) torrential rain event registered a record hourly precipitation
rate of 201.9 mm and the 24-h precipitation reached 624.1 mm [7]. The disaster led to
serious water accumulation in the Wulongkou Parking Lot of Zhengzhou Metro Line 5
and the surrounding area, causing one metro operating train to stop in the section ahead
of this and resulting in the deaths of 14 passengers. Moreover, a number of facilities
and equipment were damaged, and the entire network of the Zhengzhou subway was
forced to shut down for more than 50 days. Therefore, it is certainly necessary to carry out
real-time monitoring, early warning, and forecasting studies and focus on the services of
urban transportation meteorology. Effective predictions of the meteorological impacts on
urban transportation contribute to the development of effective measures of transportation
management regarding safety and smoothness, disaster prevention, and impact mitigation
in advance.

From the perspective of national policies, taking China as an example, the China
Meteorological Administration (CMA) released the “Action Plan for the Development of
Smart Meteorological Services (2019–2023)” in 2018 [8], making “the demonstration of
smart traffic meteorological services” one of the key assignments to adapt to the high-
quality construction of meteorological modernization and to improve the intelligence of
meteorological services. In terms of the urban transportation meteorology, further integra-
tions of road monitoring, intelligent grid forecasts, traffic management, map navigation,
and other associated elements are required to establish impact-based urban transportation
meteorological service models and indicators. On this basis, the business capability could
be improved to identify the risks of road sections and transportation safety levels affected
by severe weather.

Subsequently, in November 2021, the CMA, together with the China Ministry of Public
Security, the China Ministry of Transport, the China State Railway Administration, and the
China State Post Bureau, jointly formulated the “14th Five-Year Plan for Transportation
Meteorological Safeguard” [9]. It points out the current state, where (1) the construction
of a transportation meteorological monitoring station network has been taking shape;
(2) the business services of transportation meteorological forecasting and early warning
are developing rapidly, and (3) the cooperation mechanisms among multiple departments
have been basically formed. However, there are still issues waiting to be resolved, such
as (1) the pertinence of the transportation meteorological service needs to be strength-
ened and (2) the information fusion of transportation and meteorology has not yet been
analyzed in depth. Correspondingly, the goals of (1) developing digital transportation
meteorological forecast products based on intelligent grid forecasts and (2) developing tech-
nologies for transportation meteorological forecasting and early warning are proposed to
promote transportation meteorology innovation and to create a high-quality transportation
meteorological service system.

Moreover, in May 2022, to optimize the supply of high-quality meteorological services
for the social economy, the China State Council issued the “Outlines for High-quality
Meteorological Development (2022–2035)” [10], which specifically refines the important
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role of the meteorological service in the transportation industry, especially in the urban area.
It requires the further implementation of a meteorological safeguard for the construction of
a strong transportation system; the exploration of a modern, comprehensive transportation
meteorological service platform; the strengthening of the transportation meteorological
monitoring, forecasting, and early warning capabilities, and finally the construction of
a smart system of urban transportation meteorological services.

In recent decades, with the rapid development of the social economy and urbanization,
the rising demand for urban meteorological services has posed new challenges for profes-
sional meteorological fields. It is also expected to accelerate the deepening and expanding
processes of these fields, such as urban transportation meteorology. In fact, in the context
of intensified global warming, extreme meteorological events occur from time to time and
are likely to become increasingly frequent, including dense fog, low visibility, heavy precip-
itation, extreme temperatures, and other analogous phenomena [11–14], which pose severe
threats to the operation of urban transportation and associated services. Currently, there are
still many issues to be resolved in improving the emergency meteorological services and
developing targeted urban transportation meteorological services in modern cities. The
study of urban transportation meteorological monitoring, early warning, and forecasting is
of great scientific significance and application value in dealing with weather disasters, the
rational planning of urban facilities, and the improvement of urban operating quality.

The present paper briefly reviews the current cutting-edge developments and trends in
the field of urban transportation meteorology, especially in China, including the establish-
ment of observation networks and experiments in Section 2 and the development of early
warning and prediction technologies in Section 3. Meanwhile, Section 4 describes the related
meteorological commercial services. Finally, reflections and discussions are provided in
Section 5 in terms of the state-of-the-art observation channels and methods, the application
of numerical model forecasts, and artificial intelligence. These are to contribute to a scientific
basis and reference towards the operational urban transportation meteorological safeguard
and urban transportation disaster prevention and mitigation in China.

2. Urban Transportation Meteorological Observation

2.1. Urban Meteorological Observation Network

Since the beginning of the 21st century, European and American countries, as well as
Japan, have carried out meteorological observation experiments for urban areas. Among
them, short-term observation experiments on various factors, such as near-surface turbu-
lence, the vertical structure of the urban boundary layer, and the traceability and dispersion
of air pollution are mostly implemented for periods of within one year. Selected examples
are provided in Table 1 and are briefly described in the following paragraphs. On the other
hand, there are also several long-term observation experiments lasting for longer than this
(Table 2). Such observations are effectively utilized not only to reveal the characteristics
of the urban atmosphere but also to validate and promote the development of numerical
models. Various data based on these urban observation networks could be produced for
research institutions and the public.

Table 1. Short-term urban meteorological observation experiments.

Name Country Time Content

URBAN 2000 [15] USA October 2000 Tracer and meteorological field.

Joint Urban [16] USA July 2003

Tracer, dispersion,
meteorological field, boundary
layer structure, and urban
energy balance.

Pentagon Shield [17] USA 2004
Boundary layer thermal
structure, wind field, tracer, and
dispersion.
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Table 1. Cont.

Name Country Time Content

Madison Square
Garden [18]

USA 2004 Wind field, tracer, and dispersion.

HEAT [19] USA 2005
Air pollution, meteorological field,
convective and mesoscale process.

ESCOMPTE [20] France July–September 2005

Dispersion, air pollution,
meteorological field, boundary
layer structure, and urban
energy balance.

CAPITOUL [21] France June–July 2001

Tracer, dispersion, air pollution,
meteorological field, boundary
layer structure, and urban
energy balance.

DAPPLE [22] UK February 2004
Tracer, dispersion, air pollution,
and meteorological field.

REPARTEE [23] UK February 2005
Tracer, dispersion, air pollution,
meteorological field, and
boundary layer structure.

ClearfLo [24] UK May 2002

Air pollution, meteorology field,
boundary layer structure, urban
energy balance, and mesoscale
process.

BUBBLE [25] Switzerland July 2006

Tracer, dispersion,
meteorological field, boundary
layer structure, and urban
energy balance.

TOMACS [26] Japan October 2006
Meteorological field, convective
and mesoscale process.

Table 2. Long-term urban meteorological observation experiments.

Name Country Time Content

NYC mesonet [27] USA 2003–present
Meteorological field, convective
and mesoscale process.

DCNet [27] USA 2003–present Tracer and dispersion.

Helsinki Testbed [28] Finland 2005–present
Dispersion, meteorological field,
boundary layer structure,
convective and mesoscale process.

METROS [29] Japan 2002–2005
Boundary layer structure,
convective and mesoscale process.

SUIMON [30] China 2000–present
Air pollution, meteorological field,
BL structure, urban energy balance,
convective and mesoscale process.

In October 2000, the URBAN 2000 project [15] conducted several field experiments in
Salt Lake City, which investigated the transportation and diffusion around a single down-
town building, through the downtown area, and into the greater urban area. Moreover,
meteorological measurements were conducted, including temperature and the 2D/3D wind
field across the urban area. One mobile van was utilized to measure net radiation, sensible
heat flux, and three levels of temperature to 18 m AGL. The project aims to evaluate and
improve the hierarchy of atmospheric models being developed for simulating toxic agent
dispersal from potential terrorist activities in urban environments. In the following Joint
Urban 2003 project conducted in Oklahoma City [16], remote sensing instruments were
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used (radar profilers, lidars, sodars) to form a dense network. The network continuously
measures the detailed wind and turbulence characteristics of the urban atmosphere from
the ground through several kilometers above the ground, which lasts over one month.
Another difference between URBAN 2000 and Joint Urban 2003 is that the former focuses
on the urban nocturnal boundary layer (stable to neutral atmospheric conditions), while
the latter focuses on the urban daytime boundary layer (neutral to unstable).

With a distinct perspective, the Pentagon Shield field program was implemented from
9 April to 16 May 2004 in Washington, D.C. [17]. It focuses on the effects of a single building
(the Pentagon) on the flow field, chemical tracer transport, and dispersion. A unique
aspect is the use of two higher-resolution scanning Doppler lidars with overlapping and
synchronized scan patterns that work together, providing detailed data with 100-m res-
olution. Moreover, the Madison Square Garden field experiment [18] in New York City
addresses its goal in cities with tall skyscrapers. They found that the mean wind speed and
direction on the tops of tall downtown buildings are approximately equal to those near
the surface at a nearby airport, but the mean wind speed is three times larger than that at
street level. The HEAT program [19], conducted in Houston, Texas during the summer of
2005, mainly collected electrical data from the National Lightning Detection Network and
a lightning-mapping system (LDAR II), and atmospheric variables such as temperature,
moisture, winds, and aerosol from balloon-borne soundings, tethered atmospheric observa-
tion systems, and wind profilers, as well as mobile sounding units, airborne instruments,
and three Doppler radar devices.

Similar field observation experiments were conducted in France, the UK, Switzerland,
and Japan. The ESCOMPTE program [20], conducted in the Marseilles-Berre area in the
south of France during Summer 2001, covered an area of 120 × 120 km. By utilizing surface
measurement networks, remote sensing, and ship-borne, balloon-borne, and airplane
measurements, the mean standard meteorological parameters and turbulent fluxes, ozone,
ozone precursors, photochemically active trace gases, and aerosols were measured, and
a database was therefore established. The CAPITOUL experiment [21], in the city of
Toulouse in Southwest France, was conducted for one year from February 2004. Focusing
on the urban climate, it revealed that the urban surface energy balance differs between
summer and winter, while the city impacts the boundary layer when an urban breeze is
observed. Aiming at improving the understanding of the physical processes affecting the
street- and neighborhood-scale flow of air, traffic, and people, the DAPPLE project [22] was
conducted at the intersection of Marylebone Road and Gloucester Place, London, in 2003.
Data included the mean and turbulent winds at the intersection, carbon monoxide and
nitrogen dioxide, traffic flow and composition, as well as personal exposure measurements
of PM2.5, ultrafine particle counts, etc.

With respect to the urban meteorological observation networks in China, they have
been developed and generally matured in the three major urban clusters, i.e., Beijing–
Tianjin–Hebei, the Yangtze River Delta, and the Pearl River Delta. In addition to aiding
scientific research, these observation networks also effectively support the forecasts of
urban meteorology and transportation meteorology, as well as the decision making of
associated departments [31,32].

In the area of Beijing–Tianjin–Hebei, scientific experiments in the Study of Urban
Impacts on Rainfall and Fog/Haze (SURF) were conducted during 2014–2019, among which
there were three main observational experiments [33]. Two of them focused on the summer
thunderstorm processes (July–August 2015 and July–September 2016) to study the effects of
urbanization on precipitation-triggering mechanisms, movement, and intensity. The other
experiment focused on the winter haze (November 2015–January 2016) to study aerosol
sources and processes of transportation and transformation. In this area, 1992 automatic
weather stations were utilized, and the meteorological data were collected every 5 min.
Radiosondes were launched twice-daily at 0000 and 1200 UTC, with additional soundings
at 0600 UTC during flood seasons at the Nanjiao site. Based on existing operational
instruments, the planetary boundary layer network was augmented with 5 wind profilers,
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1 scanning Doppler lidar, 2 aerosol micropulse lidar, and 10 ceilometers. The turbulent flux
and associated meteorological data were collected at the towers in Beijing and Tianjin. Based
on these combined observations, the hockey-stick transition turbulence–wind relationships
over the urban canopies [34,35] have been confirmed, which describes the roles of non-local
large coherent turbulence eddies during turbulence intensity and mean wind speed under
near-neutral conditions.

As for the Yangtze River Delta region, an urban meteorological and environmental
meteorological observation network has been formed, consisting of transportation meteorol-
ogy, urban environmental meteorology, ecological meteorology, agricultural meteorology,
marine meteorology, climate resources, drought monitoring, lightning monitoring, hydrom-
eteorology, and some other specialized observation systems. Aiming at extensive urban
meteorological observations for megacities, Shanghai has built a combined ground-based
and space-based system named Shanghai’s Urban Integrated Meteorological Observation
Network (SUIMON) [30]. By utilizing a dense observation network and various instrument
types, the network collects wind, temperature, humidity, rain, and pressure every 1 min,
and it has extended the observation to the vertical plane, thus providing a four-dimensional
dataset of the area. A high frequency of severe convective precipitation events was found
over the urban area and the mouth of the Yangtze River, which matches well with the
spatial distribution of cloud-to-ground flash density. Suzhou has also constructed an urban
heat island monitoring network for urban heat island-associated investigations. It was
found that when the tree cover rate reached 40%, the daily average concentration of major
air pollutants in the urban area decreases significantly [36]. In Hangzhou, a comprehensive
detection system for compound atmospheric pollution has been established with a full
range of detection items. Results show that the most recent decade of urban development
in Hangzhou substantially reduced the atmospheric diffusion, and pollutant concentrations
rose quickly in the urban area [37]. In Nanjing and Hefei, city-wide traffic visibility moni-
toring networks have been constructed for urban transportation meteorological services.

In the urban cluster of the Pearl River Delta, a comprehensive urban meteorological
observation system has been developed, including a dense network of ground-based
automatic stations, a variety of ground-based remote sensing equipment (e.g., wind profile
radar, aerosol radar, and Doppler radar), a network of urban atmospheric composition
monitoring stations, and a Global Positioning System/Meteorology (GPS/MET) water
vapor monitoring network. Taking Shenzhen as an example, a generally complete urban
meteorological disaster monitoring system has been formed since 1994, as well as a climate
monitoring system [38]. Over the last few decades, the Shenzhen Urban Meteorological
Observing Network (SUMON) has been developed comprehensively, with its spatial and
temporal resolutions reaching 3.5 km and 1 min, respectively.

In addition, the meteorological observation towers also provide important support in
the study of urban boundary layer physics and the atmospheric environment, as well as
in the observation and monitoring of transportation meteorological-related elements. For
instance, the 325-m flux tower (39◦58′ N, 116◦22′ E) at the Institute of Atmospheric Physics
in Beijing, the 255-m flux tower (39◦06′ N, 117◦10′ E) at the Tianjin Meteorological Service
in Tianjin, and the 356-m flux tower (22◦40′ N, 113◦54′ E) at the Shiyan Meteorological
Observatory in Shenzhen provide diversified and solid foundations for local urban mete-
orological observations [39–41]. Databases of turbulent and gradient wind, temperature,
and humidity are obtained at different layers, favoring more comprehensive studies of
turbulent statistic characteristics and turbulent fluxes over the urban areas, as well as their
synoptic and climatological features [42–44].

In recent years, via ground-based remote sensing techniques including wind profilers,
microwave radiometers, and laser lidar, etc., three-dimensional observations of atmospheric
temperature, humidity, wind field, water condensate, and aerosol have been well observed
to enrich the local urban observation networks in several megacities and to further enhance
the usage of these thermal and dynamic factors in numerical models [45]. Moreover,
it is suggested that the effective combination of this equipment would help to obtain
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atmospheric profiles with higher spatial and temporal resolutions, which is also to be
further developed in the future.

In general, during the construction of urban meteorological observation networks such
as the abovementioned ones, the characteristics and development directions have been
proposed to include five aspects [30]: multiple platforms, multiple variables, multiple scales,
multiple linkages, and multiple functions. Detailed information is provided in Figure 1. In
simple terms, the multiple platforms detecting multiple variables and considering multiple
scales are to compose the comprehensive observation network via multiple linkages, which
ultimately serve the users with multiple functions.

Figure 1. Characteristics and development directions of urban transportation meteorological obser-
vation network.

2.2. Urban Meteorological Outfield Observation Experiments

From the end of the last century to the beginning of this century, a series of large-scale
outfield observation experiments have been successfully explored throughout the world,
focusing on plenty of topics, among which the urban boundary layer meteorology and
urban air pollution are two important and popular aspects [46]. In Beijing, China, the Beijing
City Atmospheric Pollution Observation Field Experiment (BECAPEX, 2001–2003) and the
Beijing Urban Boundary Layer Experiment (BUBLEX, 2004–2005) have been implemented
to obtain three-dimensional structure integrated images of Beijing’s atmospheric dynamics
and chemical process [47]. More details have also been included, such as urban observations
of the boundary layer, rainstorm adaptability, complex terrain and atmospheric circulation,
flux and energy balance, as well as the urban thermal environment [48]. Associated
studies have revealed that the air pollution in Beijing usually comes from local sources,
but the sources in the vicinity also have a prominent influence [49]. Nanjing City has also
carried out several experiments (e.g., periods in 2004 and 2006) with urban boundary layer
observations to investigate the urban mixed layer, convective entrainment zone, and cloud
feedback processes via LIDAR (Light Detection and Ranging), radiosonde, meteorological
towers, turbulence measurements, and many other techniques [50–52], based on which the
transition features of the mixed layer and the entrainment zone over Nanjing City have been
revealed by comparison between urban and suburban areas. During the past decade, the
urban meteorological observation experiments have been mainly focused on the research
of high-impact weather mechanisms and their mitigation countermeasures, on the urban
effects on weather and climate, and on the mutual feedback between urban aerosols and
weather climate [53]. Meanwhile, the observation scope has been expanded from a single
city in the past to multiple cities (city clusters and metropolitan areas) nowadays. These
investigations could assist cities in facing, detecting, and discussing hazards such as storm
surges, flooding, heatwaves, and air pollution episodes, especially in the changing climate.
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There are also downscaling outfield experiments conducted. For instance, Sun Yat-
sen University carried out an urban climate experiment in 2016–2017 in the suburbs of
Guangzhou on a reduced scale [54]. The experimental site covered an area of 4800 m2,
which was far from surrounding buildings and had an impermeable surface. Two ideal
street valley models were composed of roughly 2000 concrete building models, each
with a height of 1.2 m, a width of 0.5 m, and a wall thickness of 1.5 cm. The effects
of building heat capacities and street aspect ratios on the turbulence and temperature
spatiotemporal characteristics of two-dimensional street valleys were investigated through
outfield experiments under the typical non-stationary real meteorological conditions.

Moreover, through these outfield experiments on urban and transportation meteorol-
ogy, the associated air pollution and source emission regarding PM2.5, CO, SO2, O3, and
even various heavy metals were also analyzed to investigate their spatial and temporal
distributions and developing trends [55,56]. Studies have also revealed that, in winter,
volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, and xylene
(BTEX) could mainly be attributed to urban transportation, posing hazards for human
health [57,58]. At the same time, corresponding assessments of health risks related to
human exposure to urban transportation pollution and emissions are also currently under
investigation using the databases from multiple experiments [59,60].

2.3. Urban Transportation Meteorological Monitoring System

Since the 1980s, the Standing International Road Weather Commission (SIRWEC)
has been established worldwide by several countries to carry out studies on winter road
weather predictions, winter road treatment methods, the Road Weather Information Sys-
tem (RWIS), and the Intelligent Transportation System (ITS). The frequent information
exchange and technology sharing among members have promoted the development of
urban transportation meteorology to a great extent in various countries [61].

In China, transportation meteorological monitoring mainly started in 2005, which
is relatively late compared to developed countries [62]. At the early stage, it mostly
focused on the highways outside of cities, while less attention has been paid to urban
transportation [63,64]. At present, meteorological monitoring along urban transportation
lines is being vigorously developed, and automatic meteorological monitoring stations have
been deployed along the major roads. However, such monitoring equipment arrangements
are still not sufficient; they are unevenly distributed, with little coverage in many provinces,
especially in mountainous areas [65]. There is currently an urgent requirement to further
increase and construct urban transportation meteorological stations [66].

In addition, remote sensing techniques have been widely used and have allowed
effective progress in urban transportation meteorological monitoring applications due to
the improvement in quantification precision, wide monitoring range, fast update time, and
relatively low cost [67]. For instance, the unmanned aerial vehicle for remote sensing has
such advantages as real-time measurement (wireless communication transmission), flexi-
bility (fixed or mobile stations), high resolution (horizontally 3–5 m and vertically ~1 m),
cost-effectiveness, etc., and can gather information in dangerous environments without
any risk to flight crews, providing a powerful supplement for spaceborne remote sensing
and airborne remote sensing [68]. Such technology has been increasingly used in obtain-
ing spatial data, e.g., the conventional meteorological elements and urban transportation
flow [69,70]. These improvements provide fundamental support for the implementation of
the real-time monitoring of roads [71].

On the other hand, the usage of Internet of Things technology, which transmits data
among multiple pieces of equipment via the internet in near-real time, provides an effective
channel for the combination of meteorological information and urban transportation de-
rived from multiple sensors [72–74]. By means of the automatic and timely communication
between different equipment, it has generally realized the construction of urban trans-
portation meteorological monitoring frameworks and plays a crucial role in the business
operation of transportation management and emergency management [75,76]. Taking
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the Beijing Municipal Commission of Transportation as an example, based on the project
titled “The internet of things application demonstration project of maintaining road traf-
fic unblocked in extreme meteorological conditions”, under the framework of the first
batch of Internet of Things projects in Beijing, the meteorological information obtained
by meteorological sensors is combined with transportation information, with schemes of
prediction and early warning proposed regarding the depth of waterlogging, snow cover,
ice formation, visibility, and others [77]. It has been successfully attempted and plays an
important role in road transportation management under complex weather conditions [78].
Moreover, the Wuxi Meteorological Bureau of Jiangsu Province has also deployed Internet
of Things-based urban waterlogging monitoring stations at some specific locations on
main traffic roads [79]. Subsequently, a system of urban waterlogging monitoring and
early warning has been constructed, realizing the automated, digitalized, and refined
real-time online management of urban transportation meteorological conditions, especially
the waterlogging risk [80].

With respect to rail-based urban transportation, based on sufficient experience in
event prevention and emergency disposal, the Shanghai Urban Rail Transportation and
Shanghai Meteorological Service Center jointly developed the Shanghai Rail Transportation
Meteorological Assistant Decision-Making System in 2020, using the basic geographic data,
observations, and monitoring information of local automatic weather stations within the
Shanghai Meteorological Bureau. The real-time monitoring and risk warning of urban trans-
portation meteorological disasters, as well as other functions, are therefore achieved [81].
In general, the system mainly consists of six main sections: a central map, risk warning,
weather forecasts, impact, early warning information, and extreme weather statistics. By
adopting technologically advanced monitoring methods and obtaining timely and effective
early warning information, the meteorological risks of rail-based urban transportation
could be “moved forward”, building a solid foundation for improved operational urban
rail transportation safety.

3. Urban Transportation Meteorological Early Warning and Forecast

The early warning and forecasting of urban transportation meteorology is closely
related to the development of urban smart transportation, transportation planning, city
management, and the improvement of citizen life. Previous studies [82] have pointed out
that the existing issues needing to be addressed for the user mainly include street and
channel wind speeds, precipitation and its phase state, road surface conditions, surface
observation representativeness, refined forecasting (e.g., at the road scale), road surface
temperature and visibility etc. In recent years, researchers have conducted diverse investi-
gations on urban transportation meteorology in the field of smart cities based on a variety
of statistical analysis techniques.

Silva et al. [83] pointed out that a precise weather forecast is one of the most crucial
aspects in urban transportation and smart city big data analysis, which provides the un-
derlying design basis for safe construction and production and stable system operation.
Lu et al. [84] proposed to collect and analyze severe weather data reported on social media,
and to use regression-based early warning models to estimate the urban transportation
conditions. This could assist in urban transportation perception, forecasting, early warning,
and decision-making, with intuitive visualization solutions. Wessel [85] statistically ana-
lyzes the impact of different weather phenomena on the cycling population, including not
only the real-time weather conditions but also weather forecasts, especially regarding cloud,
rainfall, snow, and thunderstorms, etc. They have a variety of leading or lagging impacts on
the number of cyclists, which could be analyzed and obtained via statistical methodologies.
The corresponding results could be beneficial for the formulation and promotion of policies
in urban transportation planning and civilization construction. Taking the factors of sea-
sons and weekday/non-working days into consideration, Simunek and Smutny [86] have
established a transportation speed prediction conceptual model for lead times of within
1 week, combining meteorological elements such as air temperature, wind direction, wind
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speed, humidity, air pressure, and cloud cover, etc. It enriches the high-quality prediction
of the urban transportation information, and it especially has a significant improvement
effect on the estimation of arrival times and could aid the intelligent transportation system
and urban transportation prediction.

Currently, artificial intelligence theories such as machine learning are flourishing,
which brings not only new opportunities but also challenges to the field of urban trans-
portation meteorology. Researchers are also trying to adopt relevant theories and techniques
to explore the laws behind various meteorological phenomena [87]. In particular, deep
learning models, with their high robustness and strong nonlinearity, have been widely used
in the field of meteorological forecasting, including extrapolation forecasting of elements
such as temperature and precipitation, multivariate statistical forecast modeling, and nu-
merical model product applications, and also in urban transportation meteorological early
warning and forecasting [88–90]. Some cases for nowcasting and predictions of short-term
and even longer timescales are provided as follows.

For nowcasting and short-term urban transportation meteorological predictions,
Jia et al. [91] introduced the precipitation factor into the deep neural network and Long
Short-Term Memory (LSTM) methods, achieving a more accurate prediction of urban
transportation flow than the raw deep learning networks. Nagy and Simon [92] have also
demonstrated that both weather forecasts and their seasonal effects have important impacts
on the prediction of urban transportation. Intelligent integrations of various temporal and
spatial elements, such as weather, season, weekday/non-weekday, random events, and
road conditions, could effectively improve the prediction of nonlinear transportation flows
via deep learning frameworks such as the convolutional neural network (CNN) and LSTM.
On this basis, Lee and Min [93] have constructed a Long Short-Term Memory Recurrent
Neural Network (LSTM-RNN) model for urban transportation prediction using hourly
observations and forecasts of temperature and precipitation, as well as the characteristics
of urban activities affecting transportation operations. The model has been attempted and
examined in Seoul, South Korea, and is demonstrated to be effective in improving the accu-
racy of urban transportation prediction. Moreover, Ali et al. [94] successfully established
a deep hybrid neural network prediction model for urban transportation flow by using
weather reality and forecasts as external factors affecting urban transportation flow, to-
gether with the spatiotemporal characteristics of daily urban transportation. Deb et al. [95]
made full use of various deep learning methods to statistically analyze the time series
correlations between weather status changes and transportation congestion magnitudes,
and afterwards they conducted prediction experiments on transportation congestion by
using regression analysis on the weather factors, which hence effectively improved the
prediction ability regarding the urban transportation time. Based on the four situational
factors of weather, season, weekday/non-weekday, and holiday/non-holiday, Ma et al. [96]
constructed a daily urban transportation flow prediction model with a convolutional re-
current neural network and experimentally demonstrated the effectiveness and stability
of the established scheme. Considering the nonlinear characteristics of traffic flow and
the complex spatiotemporal correlations between transportation and weather, Nigam and
Srivastava [97] defined a soft time threshold to capture the long-term impact of weather
elements on transportation flow and proposed a hybrid CNN-LSTM model, which is ca-
pable of efficiently learning and predicting the transportation speed and flow issues in
smart transportation operation and management. Tukymbekov et al. [98,99] designed an
intelligent autonomous street light system based on the LSTM network using forecasts of
weather and solar radiation, achieving the adaptive adjustment of the lighting system to
effectively reduce energy consumption and serving urban transportation in a stable and
safe manner. Moreover, with a weather-based transportation analysis method, Nasser and
Simon [100] studied the relationship between transportation flow and weather factors at
different frequencies and time intervals. It helps to reasonably determine and estimate the
transportation flow under different meteorological conditions and to develop intelligent
urban transportation systems in the construction of smart cities.
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In addition, at longer timescales, based on urban transportation networks, social
statistics, human flow data, and calendar data, as well as meteorological elements such
as rainfall, snow, temperature, wind, etc., Zhou [101] simulated the correlation between
the abovementioned factors and transportation events through deep learning algorithms,
which helps to predict the frequency of possible accidents with cross-domain datasets
and contributes to emergency management and decision-making in relevant departments.
Furthermore, Ryu et al. [102] have constructed a time- and weather-aware deep learning
neural network model with multiple modules using refined weather forecasts. It produces
generally reliable and comprehensive long-term urban transportation condition predictions
and effectively facilitates long-term urban transportation planning and management.

4. Commercial Services of Urban Transportation Meteorology

In the early 20th century, commercial meteorological services began to emerge world-
wide and have been well developed, such as the numerical forecasts of the European Centre
for Medium-Range Weather Forecasts [103,104], the marine meteorological navigation of
the United States, the aviation meteorological services of Japan and New Zealand, and the
transportation meteorological services of the United Kingdom and Finland [105,106]. At
the beginning of the 21st century, several countries, including the United States, the United
Kingdom, Germany, the Netherlands, Japan, and Singapore, etc., had already carried out
the practice of smart transportation in the construction of smart cities and achieved prac-
tical success [107,108]. In October 2011, the United States National Weather Service of the
National Oceanic and Atmospheric Administration installed multifunctional sensors on
over 2000 passenger buses in New York. As the bus moves, data on temperature, humidity,
and light levels can be collected every 10 s along the route, which are then immediately
transmitted back to the National Weather Service center. Afterwards, the center integrates the
collected meteorological, geographic, and many other types of data with official surveys. The
natural disaster data network is also merged to capture the keys, to generate early warning
system information, and to provide transportation meteorological services [109]. In 2014,
Chicago launched the installation of street light sensors to collect urban pavement informa-
tion and to detect meteorological data on temperature and wind. Using Internet of Things
technology, all these sources are digitally connected, detected, analyzed, and integrated to
allow the practical application of the intelligent transportation concept and to contribute to
the construction and development of smart cities [110]. To date, a number of states in the
United States have successively established regional transportation meteorological monitor-
ing and forecasting systems, which provide real-time forecasts on transportation factors such
as pavement temperature according to their respective road conditions [111,112].

As for China, in recent years, with the progress of meteorological monitoring, early
warning and forecasting systems, as well as the rapid development of transportation-
associated construction, the meteorological department has developed rapidly in terms
of the research and application of transportation meteorological business [113]. In fact,
according to the Chinese Ministry of Public Security’s statistics, severe weather conditions
account for nearly 40% of transportation accidents and roughly 65% of direct economic
losses [114,115]. The CMA officially carried out a survey on the hidden risks of transporta-
tion meteorological hazards in 31 provinces during 2013–2015 by means of questionnaire
distribution, on-the-spot investigation, and expert evaluation [116]. After quality con-
trol, a nationwide transportation meteorological disaster risk census database was then
constructed, containing geographic information associated with hidden risks, meteoro-
logical information for observation, early warning, and prediction, accident information
on transportation under certain disaster conditions, etc., favoring the establishment of
a corresponding business system for early warning and forecasting [117]. Combining
automation and human–computer interaction, transportation meteorological disaster early
warning service products focusing on four high-impact meteorological elements, including
low visibility, strong wind, heavy precipitation, and freezing rain and snow, would be
generated for lead times of 3 days [118,119].
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Moreover, meteorological departments and commercial companies in various provinces
have also cooperated with transportation departments to jointly carry out research and
development on a series of specific service products and platforms. For instance, the Key
Laboratory of Transportation Meteorology of the China Meteorological Administration
and the Nanjing Joint Institute for Atmospheric Sciences (formerly known as the Jiangsu
Institute of Meteorological Sciences) have conducted investigations on the establishment of
a transportation meteorological information service system and on the distributed trans-
portation meteorological information sharing technology based on a web service, which
is an early practice in smart city construction [120]. The Hebei Meteorological Service
Center has also carried out research on data quality control methods for the monitoring
of transportation conditions in Hebei Province, which provides accuracy assessments for
the local transportation meteorological service business [121]. In Guangdong Province,
Foshan has actively set up a large database of transportation meteorology, which integrates
multi-source data to monitor the whole transportation flow and to optimize the route
plan system [122]. From a broader perspective, the CMA Public Meteorological Service
Center, the Huafeng Meteorological Media Group, and some other departments have also
focused on transportation meteorology, including monitoring data fusion, road inversion
algorithms, applied meteorological forecasting, as well as service system construction,
and have achieved great progress [123]. A corresponding transportation meteorological
service system platform combining information on transportation and meteorology is
therefore established for decision-making and for specific users from multiple fields of
traffic management, map navigation, logistics distribution, autopilot, Internet of Vehicles,
vehicle–road collaboration, and many others [124,125].

Beijing, as the center of China from many perspectives, including culture, science,
education, and international communication, has developed a generally complete frame-
work for urban transportation meteorological services. The Beijing Municipal Commission
of Transport and the Beijing Meteorological Bureau have cooperated closely to provide
professional, refined, and targeted transportation meteorological services for associated
departments, enterprises, and the public based on the intelligent grid forecast system [126].
They mainly focus on the safe operation of meteorological safeguard services through the
development of professional meteorological monitoring and specific forecast products, as
well as the construction of multifunctional service platforms. In addition, according to
the demand of the Beijing Traffic Management Bureau for guiding and maintaining the
transportation order on the city’s roads, it is critical to determine and release the road
closure standards when visibility levels of less than 50 m are observed [127]. However,
the current refined monitoring techniques cannot reach this criterion; thus, they need to
be further strengthened at the later stage of research and development, especially in the
application of technologies such as real-time remote sensing and image recognition [128].

From a broader perspective, such as a national one, documents from multiple depart-
ments have proposed the task of developing smart transportation meteorological service
demonstration [129,130]. In practical procedures, based on the vigorous development
of artificial intelligence and computer technology, the role of deep learning algorithms
such as deep neural networks is becoming increasingly prominent in urban transportation
meteorological services, such as real-time monitoring and early warning systems [9]. In
general, the implementation of deep learning in smart urban transportation meteorology
could be separated mainly into three steps/subsystems: (1) data collection, storage, and
query; (2) construction of an intelligent recognition algorithm; and (3) identification of the
urban transportation meteorological risk. Corresponding measures are further described in
detail in Figure 2.
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Figure 2. Detailed procedures of artificial intelligence-based smart urban transportation meteorol-
ogy system.

5. Discussion

In the present era, a new round of scientific and technological revolution and in-
dustrial change is accelerating worldwide, in addition to Chinese social and economic
development. It brings new strategic opportunities to the regional construction of urban
transportation. With the construction progress of smart cities and modern transportation,
targeted transportation meteorological monitoring, forecasting, and early warning systems
are significantly ameliorating the problems of urban road resource shortages and traffic
congestion, playing an important role in the construction of smart urban transportation.
Nevertheless, in the context of intensified global warming, extreme meteorological events
are becoming increasingly frequent, including dense fog, low visibility, heavy precipitation,
extreme temperatures, and other analogous phenomena, which pose severe threats to
the operation of urban transportation and associated services [131]. It has drawn much
attention in recent decades, and there are still plenty of issues to be resolved in improv-
ing the emergency meteorological services and developing targeted urban transportation
meteorological services in modern cities. These involve the research, development, and
transformation of a new generation of meteorological service systems, but also cooperation
among multiple departments and their own internal business adjustments.

In brief, the in-depth development of urban transportation meteorological services
and the corresponding advancement of both theoretical and technological explorations are
of great significance to improve the construction of smart cities and modern transportation.
Hence, the following perceptions and discussions are to be proposed based on the above
review and analyses.

(1) With the rapid development of observation facilities and methodologies, equipment
such as radar, satellite, microwave radiometers, unmanned aerial vehicles, and mobile
observations would further enrich the existing urban transportation meteorological ob-
servation system. The in-depth and effective integration of multi-source observations
is favorable to establish a more comprehensive and more reliable urban transporta-
tion meteorological observation big data system with higher spatial and temporal
resolutions. This would help to further reveal the spatiotemporal distribution and
variation characteristics of urban transportation meteorology-associated factors and
to provide solid support with a database for more accurate and effective forecasts and
early warnings.
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(2) Thus far, numerical weather prediction models have become the most important tool
for meteorological forecasts around the world, which discretize the dynamical and
physical equations of the atmosphere. Increasingly, operational business agencies
have begun to develop a series of global numerical models with high spatial and
temporal resolutions, generating more complete forecast systems. In this context, the
quality of numerical forecast products has been continuously improved, with the
product sources also being continuously expanded. However, their applications in the
field of transportation meteorology, especially urban transportation meteorology, are
still relatively lacking. The corresponding refinement and postprocessing of the model
outputs are important scientific and technical issues that need to be investigated.

(3) Along with the recent advancement of machine learning, plenty of complex but effi-
cient deep learning models (a branch of machine learning and artificial intelligence)
are nowadays emerging in an endless stream and they have been considered as core
technologies in many fields. However, many of them have not yet been timely and
effectively applied in the field of meteorology, especially urban transportation meteo-
rology, which needs extensive and in-depth experiments and analyses. At the same
time, facing specific application scenarios such as urban transportation meteorology, it
is always necessary to construct targeted, high-resolution meteorological observation
datasets based on multi-source observation systems and collaborative observation
experiments, which could give full play to the advantages of artificial intelligence’s
nonlinearity in data modeling and generate more reasonable and more accurate urban
transportation meteorological forecast and early warning products.

(4) With regard to the different meteorological conditions and elements, they certainly
tend to result in different impacts on urban transportation due to their different
mechanisms of onset, development, and retreat. Respective research and development
towards their optimal observation schemes, forecasts, and early warning technologies
are necessary to predict the impacts of various meteorological conditions and complex
weather events on all aspects of urban transportation in advance and to ultimately
provide stable and reliable safeguarding services.

In summary, advances in meteorological observations and numerical models, as well
as many other aspects, would bring great progress to urban transportation meteorology.
Meanwhile, with the advantages of the vast range of data-driven statistical models and
artificial intelligence frameworks, the urban transportation meteorological forecast and
early warning system could also be continuously improved and optimized, providing
a solid scientific foundation and high application value for the efficient prevention and
mitigation of disasters and the high-quality construction of smart city transportation.

Author Contributions: Conceptualization, S.Z., H.Y. and D.L.; validation, H.W. (Hongbin Wang),
L.Z. (Linyi Zhou) and C.Z.; formal analysis, S.Z. and H.Y.; investigation, Y.L., Y.Z. and Y.F.; resources,
H.W. (Hongbin Wang), Y.X., L.Z. (Ling Zhang) and X.Z.; data curation, F.Z. and H.W. (Hong Wu);
writing—original draft preparation, S.Z. and H.Y.; writing—review and editing, D.L. and H.W.
(Hongbin Wang). All authors have read and agreed to the published version of the manuscript.

Funding: This research was jointly funded by the Basic Research Fund of the Chinese Academy of
Meteorological Sciences (Grant Nos. 2022Y027 and 2021Y011), the research project of the Jiangsu
Meteorological Bureau (Grant Nos. KQ202209 and KQ202114), the 333 Project of Jiangsu Province
(Grant No. BRA2018420), the Beijing Foundation of NJIAS (Grant Nos. BJG201906, BJG202104 and
BJG202209) and the General Program of Key Science and Technology in Transportation, the Ministry
of Transport (Grant Nos. 2018-MS4-102 and ZL-2018-04).

Conflicts of Interest: The authors declare no conflict of interest.

14



Atmosphere 2022, 13, 1823

References

1. Belli, L.; Cilfone, A.; Davoli, L.; Ferrari, G.; Adorni, P.; Di Nocera, F.; Dall’Olio, A.; Pellegrini, C.; Mordacci, M.; Bertolotti, E.
IoT-enabled smart sustainable cities: Challenges and approaches. Smart Cities 2020, 3, 1039–1071. [CrossRef]

2. Xu, H.; Li, Y.; Zheng, Y.; Xu, X. Analysis of spatial associations in the energy–carbon emission efficiency of the transportation
industry and its influencing factors: Evidence from China. Environ. Impact Assess. Rev. 2022, 97, 106905. [CrossRef]

3. Ding, H.; Li, X.; Cai, Y.; Lorenzo, B.; Fang, Y. Intelligent data transportation in smart cities: A spectrum-aware approach.
IEEE/ACM Trans. Netw. 2018, 26, 2598–2611. [CrossRef]

4. Crevier, L.-P.; Delage, Y. METRo: A new model for road-condition forecasting in Canada. J. Appl. Meteorol. 2001, 40, 2026–2037.
[CrossRef]

5. Yu, M.; Liu, Y. The possible impact of urbanization on a heavy rainfall event in Beijing. J. Geophys. Res. Atmos. 2015, 120,
8132–8143. [CrossRef]

6. Chen, Y.; Sun, J.; Xu, J.; Yang, S.; Zong, Z.; Chen, T.; Fang, C.; Sheng, J. Analysis and thinking on the extremes of the 21 July 2012
torrential rain in Beijing Part I: Observation and thinking. Meteorol. Mon. 2012, 38, 1255–1266.

7. Luo, Y.; Zhang, J.; Yu, M.; Liang, X.; Xia, R.; Gao, Y.; Gao, X.; Yin, J. On the influences of urbanization on the extreme rainfall over
Zhengzhou on 20 July 2021: A convection-permitting ensemble modeling study. Adv. Atmos. Sci. 2022, 1–17. [CrossRef]

8. China Meteorological Administration. Action Plan for the Development of Smart Meteorological Services (2019–2023); China Meteoro-
logical Administration: Beijing, China, 2018.

9. China Meteorological Administration; China Ministry of Public Security; China Ministry of Transport; China State Railway
Administration; China State Post Bureau. The 14th Five-Year Plan for Transportation Meteorological Safeguard; China Meteorological
Administration: Beijing, China, 2021.

10. China State Council. Outlines for High-quality Meteorological Development (2022–2035); China State Council: Beijing, China, 2022.
11. Ge, F.; Zhu, S.; Peng, T.; Zhao, Y.; Sielmann, F.; Fraedrich, K.; Zhi, X.; Liu, X.; Tang, W.; Ji, L. Risks of precipitation extremes over

Southeast Asia: Does 1.5 ◦C or 2 ◦C global warming make a difference? Environ. Res. Lett. 2019, 14, 044015. [CrossRef]
12. Zhu, S.; Ge, F.; Fan, Y.; Zhang, L.; Sielmann, F.; Fraedrich, K.; Zhi, X. Conspicuous temperature extremes over Southeast Asia:

Seasonal variations under 1.5 ◦C and 2 ◦C global warming. Clim. Chang. 2020, 160, 343–360. [CrossRef]
13. Zhu, S.; Ge, F.; Sielmann, F.; Pan, M.; Fraedrich, K.; Remedio, A.R.C.; Sein, D.V.; Jacob, D.; Wang, H.; Zhi, X. Seasonal temperature

response over the Indochina Peninsula to a worst-case high emission forcing: A study with the regionally coupled model ROM.
Theor. Appl. Climatol. 2020, 142, 613–622. [CrossRef]

14. Ge, F.; Zhu, S.; Luo, H.; Zhi, X.; Wang, H. Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6
multi-model ensemble. Environ. Res. Lett. 2021, 16, 24013. [CrossRef]

15. Allwine, K.J.; Shinn, J.H.; Streit, G.E.; Clawson, K.L.; Brown, M. Overview of URBAN 2000. Bull. Am. Meteorol. Soc. 2002, 83,
521–536. [CrossRef]

16. Allwine, K.J.; Leach, M.J.; Stockham, L.W.; Shinn, J.S.; Hosker, R.P.; Bowers, J.F.; Pace, J.C. Overview of Joint Urban 2003: An
atmospheric dispersion study in Oklahoma City. In Proceedings of the Symposium on Planning, Nowcasting, and Forecasting in
the Urban Zone, Seattle, WA, USA, 10–15 January 2004.

17. Warner, T.; Benda, P.; Swerdlin, S.; Knievel, J.; Argenta, E.; Aronian, B.; Balsley, B.; Bowers, J.; Carter, R.; Clark, P.; et al. The
Pentagon Shield Field Program: Toward Critical Infrastructure Protection. Bull. Am. Meteorol. Soc. 2007, 88, 167–176. [CrossRef]

18. Hanna, S.; White, J.; Zhou, Y.; Kosheleva, A. Analysis of Joint Urban 2003 (JU2003) and Madison Square Garden 2005
(MSG05) Meteorological and Tracer Data. In Proceedings of the 6th Symposium on the Urban Environment, Atlanta, GA,
USA, 27 January–3 February 2006.

19. Orville, R.; Zhang, R.; Nielsen-Gammon, J.; Collins, D.; Ely, B.; Steiger, S. Houston Environmental Aerosol Thunderstorm (HEAT)

Project; Texas A&M University Department of Atmospheric Sciences: College Station, TX, USA, 2004; p. 57.
20. Cros, B.; Durand, P.; Cachier, H.; Drobinski, P.; Fréjafon, E.; Kottmeier, C.; Perros, P.; Peuch, V.-H.; Ponche, J.-L.; Robin, D.; et al.

The ESCOMPTE program: An overview. Atmos. Res. 2004, 69, 241–279. [CrossRef]
21. Masson, V.; Gomes, L.; Pigeon, G.; Liousse, C.; Pont, V.; Lagouarde, J.P.; Voogt, J.; Salmond, J.; Oke, T.R.; Hidalgo, J.; et al. The

Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment. Meteorol. Atmos. Phys. 2008, 102, 135.
[CrossRef]

22. Arnold, S.; ApSimon, H.; Barlow, J.; Belcher, S.; Bell, M.; Boddy, J.; Britter, R.; Cheng, H.; Clark, R.; Colvile, R.; et al. Introduction
to the DAPPLE Air Pollution Project. Sci. Total Environ. 2004, 332, 139–153. [CrossRef]

23. Harrison, R.M.; Dall’Osto, M.; Beddows, D.C.S.; Thorpe, A.J.; Bloss, W.J.; Allan, J.D.; Coe, H.; Dorsey, J.R.; Gallagher, M.;
Martin, C.; et al. Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): An overview of the
REPARTEE experiment and its conclusions. Atmos. Chem. Phys. 2012, 12, 3065–3114. [CrossRef]

24. Bohnenstengel, S.I.; Belcher, S.E.; Aiken, A.; Allan, J.D.; Allen, G.; Bacak, A.; Bannan, T.J.; Barlow, J.F.; Beddows, D.C.S.; Bloss,
W.J.; et al. Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bull. Am. Meteorol. Soc. 2015, 96, 779–804.
[CrossRef]

25. Rotach, M.W.; Vogt, R.; Bernhofer, C.; Batchvarova, E.; Christen, A.; Clappier, A.; Feddersen, B.; Gryning, S.-E.; Martucci, G.;
Mayer, H.; et al. BUBBLE—An urban boundary layer meteorology project. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2005, 81,
231–261. [CrossRef]

15



Atmosphere 2022, 13, 1823

26. Nakatani, T.; Misumi, R.; Shoji, Y.; Saito, K.; Seko, H.; Seino, N.; Suzuki, S.-I.; Shusse, Y.; Maesaka, T.; Sugawara, H. Tokyo
metropolitan area convection study for extreme weather resilient cities. Bull. Am. Meteorol. Soc. 2015, 96, ES123–ES126. [CrossRef]

27. Hicks, B.B.; Callahan, W.J.; Pendergrass, W.R., III; Dobosy, R.J.; Novakovskaia, E. Urban turbulence in space and in time. J. Appl.

Meteorol. Climatol. 2012, 51, 205–218. [CrossRef]
28. Koskinen, J.T.; Poutiainen, J.; Schultz, D.M.; Joffre, S.; Koistinen, J.; Saltikoff, E.; Gregow, E.; Turtiainen, H.; Dabberdt, W.F.;

Damski, J.; et al. The Helsinki Testbed: A mesoscale measurement, research, and service platform. Bull. Am. Meteorol. Soc. 2011,
92, 325–342. [CrossRef]

29. Takahashi, K.; Mikami, T.; Takahashi, H. Influence of the urban heat island phenomenon in Tokyo in land and sea breezes. In
Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009.

30. Tan, J.; Yang, L.; Grimmond, C.S.B.; Shi, J.; Gu, W.; Chang, Y.; Hu, P.; Sun, J.; Ao, X.; Han, Z. Urban integrated meteorological
observations: Practice and experience in Shanghai, China. Bull. Am. Meteorol. Soc. 2015, 96, 85–102. [CrossRef]

31. Miao, S.; Jiang, W.; Liang, P.; Liu, H.; Wang, X.; Tan, J.; Zhang, N.; Li, J.; Du, W.; Pei, L. Advances in urban meteorological research
in China. J. Meteorol. Res. 2020, 34, 218–242. [CrossRef]

32. Yu, M.; Dou, J.; Miao, S.; Chu, Y.; Sun, D. Advances of urban meteorological research: International conference on urban climate.
Adv. Meteorol. Sci. Technol. 2019, 9, 16–22.

33. Liang, X.; Miao, S.; Li, J.; Bornstein, R.; Zhang, X.; Gao, Y.; Chen, F.; Cao, X.; Cheng, Z.; Clements, C.; et al. SURF: Understanding
and Predicting Urban Convection and Haze. Bull. Am. Meteorol. Soc. 2018, 99, 1391–1413. [CrossRef]

34. Sun, J.; Mahrt, L.; Banta, R.M.; Pichugina, Y.L. Turbulence regimes and turbulence intermittency in the stable boundary layer
during CASES-99. J. Atmos. Sci. 2012, 69, 338–351. [CrossRef]

35. Sun, J.; Lenschow, D.H.; LeMone, M.A.; Mahrt, L. The role of large-coherent-eddy transport in the atmospheric surface layer
based on CASES-99 Observations. Boundary-Layer Meteorol. 2016, 160, 83–111. [CrossRef]

36. Zhu, Y.; Liu, H.; Shen, J.; Ji, Y. Influence of urban heat island on pollution diffusion in Suzhou. Plateau Meteorol. 2016, 35,
1584–1594.

37. Liu, H.; Ma, W.; Qian, J.; Cai, J.; Ye, X.; Li, J.; Wang, X. Effect of urbanization on the urban meteorology and air pollution in
Hangzhou. J. Meteorol. Res. 2015, 29, 950–965. [CrossRef]

38. Mao, X.; Jiang, Y.; Zhuang, H.; Rao, H.; Tan, M. A brief introduction to Shenzhen urban meteorological observing network of
networks. Adv. Meteorol. Sci. Technol. 2013, 3, 13–18.

39. Hu, F.; Li, X.; Chen, H.; Liu, G. Turbulence characteristics in the rough urban canopy layer. Clim. Environ. Res. 1999, 3, 252–258.
40. Miao, S.; Dou, J.; Chen, F.; Li, J.; Li, A. Analysis of observations on the urban surface energy balance in Beijing. Sci. China Earth Sci.

2012, 55, 1881–1890. [CrossRef]
41. Li, L.; Lu, C.; Chan, P.-W.; Zhang, X.; Yang, H.-L.; Lan, Z.-J.; Zhang, W.-H.; Liu, Y.-W.; Pan, L.; Zhang, L. Tower observed vertical

distribution of PM2.5, O3 and NOx in the Pearl River Delta. Atmos. Environ. 2019, 220, 117083. [CrossRef]
42. Miao, S.; Chen, F. Enhanced modeling of latent heat flux from urban surfaces in the Noah/single-layer urban canopy coupled

model. Sci. China Earth Sci. 2014, 57, 2408–2416. [CrossRef]
43. Huang, H.; Li, Y.; Han, S.; Wu, B.; Zhang, Y.; Li, C. Turbulent statistic characteristic of the urban boundary layer in Tianjin. Plateau

Meteorol. 2011, 30, 1481–1487.
44. Liang, Y.; Wu, C.; Wu, D.; Liu, B.; Li, Y.J.; Sun, J.; Yang, H.; Mao, X.; Tan, J.; Xia, R.; et al. Vertical distributions of atmospheric

black carbon in dry and wet seasons observed at a 356-m meteorological tower in Shenzhen, South China. Sci. Total Environ. 2022,
853, 158657. [CrossRef]

45. Wang, Z.; Zhang, X.; Mao, J.; Ji, C. Overview of ground-based remote sensing observation techniques for air temperature,
humidity and wind profiles. Meteorol. Hydrol. Mar. Instrum. 2018, 35, 109–116.

46. Grimmond, C.S.B. Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol. 2006, 84, 3–22. [CrossRef]
47. Xu, X.; Ding, G.; Bian, L.; Xie, L. Characteristics of atmospheric environment of boundary layer structure of city community in

BECAPEX and integrate influence. Acta Meteorol. Sin. 2004, 5, 663–671.
48. Li, J.; Shu, W. Observation and analysis of nocturnal low-level jet characteristics over Beijing in summer. Chin. J. Geophys. 2008,

51, 360–368.
49. Li, J.; Dou, J. Progress in urban meteorological experiments in Beijing. Adv. Meteorol. Sci. Technol. 2014, 4, 36–45.
50. Liu, H.; Jiang, W.; Sun, J.; Liu, G. An observation and analysis of the micrometeorological characteristics of the Nanjing urban

boundary layer, eastern China. J. Nanjing Univ. (Nat. Sci.) 2008, 1, 99–106.
51. Mao, M.; Jiang, W.; Wu, X.; Qi, F.; Yuan, R.; Fang, H.; Liu, D.; Zhou, J. LIDAR exploring of the UBL in downtown of the Nanjing

City. Acta Sci. Circumstantiae 2006, 26, 1723–1728.
52. Mao, M.; Jiang, W.; Gu, J.; Xie, C.; Zhou, J. Study on the mixed layer, entrainment zone, and cloud feedback based on lidar

exploration of Nanjing city. Geophys. Res. Lett. 2009, 36. [CrossRef]
53. Baklanov, A.; Grimmond, C.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.; Hovsepyan, A.

From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [CrossRef]
54. Chen, G.; Wang, D.; Wang, Q.; Li, Y.; Wang, X.; Hang, J.; Gao, P.; Ou, C.; Wang, K. Scaled outdoor experimental studies of urban

thermal environment in street canyon models with various aspect ratios and thermal storage. Sci. Total Environ. 2020, 726, 138147.
[CrossRef]

16



Atmosphere 2022, 13, 1823

55. Hajizadeh, Y.; Jafari, N.; Fanaei, F.; Ghanbari, R.; Mohammadi, A.; Behnami, A.; Jafari, A.; Aghababayi, M.; Abdolahnejad, A.
Spatial patterns and temporal variations of traffic-related air pollutants and estimating its health effects in Isfahan city, Iran.
J. Environ. Health Sci. Eng. 2021, 19, 781–791. [CrossRef]

56. Soleimani, A.; Toolabi, A.; Mansour, S.N.; Abdolahnejad, A.; Akther, T.; Fouladi-Fard, R.; Miri, M.; Mohammadi, A. Health risk
assessment and spatial trend of metals in settled dust of surrounding areas of Lake Urmia, NW Iran. Int. J. Environ. Anal. Chem.

2022, 1–14. [CrossRef]
57. Mojarrad, H.; Fard, R.F.; Rezaali, M.; Heidari, H.; Izanloo, H.; Mohammadbeigi, A.; Mohammadi, A.; Sorooshian, A. Spatial

trends, health risk assessment and ozone formation potential linked to BTEX. Hum. Ecol. Risk Assess. Int. J. 2019, 26, 2836–2857.
[CrossRef]

58. Wang, Y.; Bai, Y.; Zhi, X.; Wu, K.; Zhao, T.; Zhou, Y.; Xiong, J.; Zhu, S.; Zhou, W.; Hu, W.; et al. Two typical patterns of regional
PM2.5 transport for heavy air pollution over Central China: Rapid transit transport and stationary accumulation transport. Front.

Environ. Sci. 2022. [CrossRef]
59. Mokhtari, M.; Jafari, N.; Mohammadi, A.; Hajizadeh, Y.; Ghanbari, R.; Nemati, S.; Abdolahnejad, A. Temporal and spatial trends

of airborne asbestos fiber concentrations in the urban areas of Yazd, Iran. Int. J. Environ. Sci. Technol. 2018, 16, 2657–2666.
[CrossRef]

60. Faraji, M.; Mohammadi, A.; Najmi, M.; Fallahnezhad, M.; Sabetkish, N.; Kazemnejad, A.; Shoormasti, R.S.; Fazlollahi, M.R.;
Pourpak, Z.; Moin, M. Exposure to ambient air pollution and prevalence of asthma in adults. Air Qual. Atmos. Health 2021, 14,
1211–1219. [CrossRef]

61. Tian, H.; Zhang, N.; Zhang, K.; Yang, J.; Zhang, H. Advance on highway traffic meteorological research in foreign country.
J. Meteorol. Environ. 2019, 35, 79–86.

62. Zhang, C.; Zhang, L.; Cheng, C.; Wang, B. Advances in road weather forecasting system and its future development. J. Trop.

Meteorol. 2007, 23, 652–658.
63. Hu, J.; Lin, Z.; Cheng, T. Research progress on temperature prediction method for road icing. Sci. Technol. Eng. 2020, 20, 1–6.
64. Telang, S.; Chel, A.; Nemade, A.; Kaushik, G. Intelligent Transport System for a Smart City. In Security and Privacy Applications for

Smart City Development; Tamane, S.C., Dey, N., Hassanien, A.E., Eds.; Studies in Systems, Decision and Control; Springer: Cham,
Switzerland, 2021; Volume 308.

65. Lu, Z.; Liu, Z.; Li, Y.; Jia, A.; Ye, R. Research on highway traffic meteorological monitoring system. Meteorol. Hydrol. Mar. Instrum.

2021, 38, 16–19.
66. Chu, Y. On the system of road traffic’s meteorological monitoring and early warning based on GIS. J. Liaoning Police Coll. 2017, 19,

58–62.
67. Wang, L.; Li, X.; Bao, Y.; Shao, Y. Research progress of remote sensing application on transportation meteorological disasters.

Remote Sens. Land Resour. 2018, 30, 1–7.
68. Li, C.; Shen, L.; Wang, H.; Lei, T. The research on unmanned aerial vehicle remote sensing and its applications. In Proceedings of

the 2nd International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; pp. 644–647.
69. Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; LeClair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B.

Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges.
J. Unmanned Veh. Syst. 2014, 2, 69–85. [CrossRef]

70. Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; LeClair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B.
Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: Scientific and commercial applications.
J. Unmanned Veh. Syst. 2014, 2, 86–102. [CrossRef]

71. Barmpounakis, E.N.; Vlahogianni, E.I.; Golias, J.C. Unmanned Aerial Aircraft Systems for transportation engineering: Current
practice and future challenges. Int. J. Transp. Sci. Technol. 2016, 5, 111–122. [CrossRef]

72. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
73. Chapman, L.; Muller, C.L.; Young, D.T.; Warren, E.; Grimmond, S.; Cai, X.-M.; Ferranti, E. The Birmingham urban climate

laboratory: An open meteorological test bed and challenges of the smart city. Bull. Am. Meteorol. Soc. 2015, 96, 1545–1560.
[CrossRef]

74. Zhang, N.; Chen, H.; Chen, X.; Chen, J. Semantic framework of Internet of Things for smart cities: Case studies. Sensors 2016, 16, 1501.
[CrossRef]

75. Liu, C.; Ke, L. Cloud assisted Internet of things intelligent transportation system and the traffic control system in the smart city.
J. Control Decis. 2022, 1–14. [CrossRef]

76. Zhou, H.; Liu, B.; Wang, D. Design and research of urban intelligent transportation system based on the Internet of Things. In
Internet of Things. Communications in Computer and Information Science; Wang, Y., Zhang, X., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 312, pp. 572–580. [CrossRef]

77. The People’s Government of Beijing Municipality. Overall Plan for Internet of Things Application Construction in Beijing’s Urban Safe

Operation and Emergency Management; Beijing Government General Office: Beijing, China, 2011; p. 14.
78. Beijing Municipal Commission of Transportation. The Feasibility Study of “The Internet of Things Application Demonstration Project of

Maintaining Road Traffic Unblocked in Extreme Meteorological Conditions”; Beijing Municipal Commission of Transportation: Beijing,
China, 2011; pp. 127–130.

17



Atmosphere 2022, 13, 1823

79. Zhi, X.; Cui, B.; Ji, Y.; Zhu, S.; Ma, Z.; Zhang, X. Prediction of water level in urban waterlogging area based on deep learning
approach. In Proceedings of the International Conference on Electrocommunication, Intelligent Computing and Systems, Xi’an,
China, 18–19 June 2022.

80. Zhang, X.; Sun, H.; Zhang, L. Discussion on locations of road weather information system station on smart expressway. Highway

2022, 67, 248–254.
81. Geng, K. Strategy for refined control of meteorological risks in Shanghai urban rail transit. Urban Mass Transit. 2022, 25, 86–90.
82. Miao, S.; Wang, Y. Advances and prospects of urban meteorology research: Meeting users’ needs. Adv. Meteorol. Sci. Technol. 2014,

4, 6–14.
83. Silva, B.N.; Khan, M.; Han, K. Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through

Real-Time Data Processing and Decision-Making. Wirel. Commun. Mob. Comput. 2017, 2017, 9429676. [CrossRef]
84. Lu, H.; Zhu, Y.; Shi, K.; Lv, Y.; Shi, P.; Niu, Z. Using Adverse Weather Data in Social Media to Assist with City-Level Traffic

Situation Awareness and Alerting. Appl. Sci. 2018, 8, 1193. [CrossRef]
85. Wessel, J. Using weather forecasts to forecast whether bikes are used. Transp. Res. Part A Policy Pract. 2020, 138, 537–559.

[CrossRef]
86. Simunek, M.; Smutny, Z. Traffic Information Enrichment: Creating Long-Term Traffic Speed Prediction Ensemble Model for

Better Navigation through Waypoints. Appl. Sci. 2020, 11, 315. [CrossRef]
87. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understand-

ing for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]
88. Taillardat, M.; Mestre, O.; Zamo, M.; Naveau, P. Calibrated ensemble forecasts using quantile regression forests and ensemble

model output statistics. Mon. Weather Rev. 2016, 144, 2375–2393. [CrossRef]
89. Handler, S.L.; Reeves, H.D.; McGovern, A. Development of a probabilistic subfreezing road temperature nowcast and forecast

using Machine Learning. Weather Forecast. 2020, 35, 1845–1863. [CrossRef]
90. Han, S.; Xu, J.; Yan, M.; Liu, Z. Using multiple linear regression and BP neural network to predict critical meteorological conditions

of expressway bridge pavement icing. PLoS ONE 2022, 17, e0263539. [CrossRef]
91. Jia, Y.; Wu, J.; Xu, M. Traffic flow prediction with rainfall impact using a deep learning method. J. Adv. Transp. 2017, 2017, 6575947.

[CrossRef]
92. Nagy, A.M.; Simon, V. Survey on traffic prediction in smart cities. Pervasive Mob. Comput. 2018, 50, 148–163. [CrossRef]
93. Lee, Y.-J.; Min, O. Long short-term memory recurrent neural network for urban traffic prediction: A case study of Seoul. In

Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November
2018; pp. 1279–1284. [CrossRef]

94. Ali, A.; Zhu, Y.; Chen, Q.; Yu, J.; Cai, H. Leveraging spatio-temporal patterns for predicting citywide traffic crowd flows using
deep hybrid neural networks. In Proceedings of the IEEE 25th International Conference on Parallel and Distributed Systems
(ICPADS), Tianjin, China, 4–6 December 2019; pp. 125–132. [CrossRef]

95. Deb, B.; Khan, S.R.; Tanvir Hasan, K.; Khan, A.H.; Alam, M.A. Travel Time Prediction using Machine Learning and Weather
Impact on Traffic Conditions. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT),
Pune, India, 29–31 March 2019. [CrossRef]

96. Ma, D.; Song, X.; Li, P. Daily traffic flow forecasting through a contextual convolutional recurrent neural network modeling inter-
and intra-day traffic patterns. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2627–2636. [CrossRef]

97. Nigam, A.; Srivastava, S. Macroscopic traffic stream variables prediction with weather impact using hybrid CNN-LSTM model.
In Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking (ICDCN ’21); Association for
Computing Machinery: New York, NY, USA, 2021; pp. 1–6.

98. Tukymbekov, D.; Saymbetov, A.; Nurgaliyev, M.; Kuttybay, N.; Nalibayev, Y.; Dosymbetova, G. Intelligent energy efficient street
lighting system with predictive energy consumption. In Proceedings of the International Conference on Smart Energy Systems
and Technologies (SEST), Porto, Portugal, 9–11 September 2019.

99. Tukymbekov, D.; Saymbetov, A.; Nurgaliyev, M.; Kuttybay, N.; Dosymbetova, G.; Svanbayev, Y. Intelligent autonomous street
lighting system based on weather forecast using LSTM. Energy 2021, 231, 120902. [CrossRef]

100. Nasser, A.; Simon, V. A novel method for analyzing weather effect on smart City traffic. In Proceedings of the IEEE 22nd
International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 7–11 June 2021;
pp. 335–340. [CrossRef]

101. Zhou, Z. Attention based stack ResNet for citywide traffic accident prediction. In Proceedings of the 20th IEEE International
Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 369–370. [CrossRef]

102. Ryu, S.; Kim, D.; Kim, J. Weather-Aware Long-Range Traffic Forecast Using Multi-Module Deep Neural Network. Appl. Sci. 2020,
10, 1938. [CrossRef]

103. Lyu, Y.; Zhi, X.; Zhu, S.; Fan, Y.; Pan, M. Statistical calibrations of surface air temperature forecasts over East Asia using pattern
projection methods. Weather Forecast. 2021, 36, 1661–1674. [CrossRef]

104. Zhu, S.; Zhi, X.; Ge, F.; Fan, Y.; Zhang, L.; Gao, J. Subseasonal forecast of surface air temperature using superensemble approaches:
Experiments over Northeast Asia for 2018. Weather Forecast. 2021, 36, 39–51. [CrossRef]

105. Haltiner, G.J.; Williams, R.T. Some recent advances in numerical weather prediction. Mon. Weather Rev. 1975, 103, 571–590.
[CrossRef]

18



Atmosphere 2022, 13, 1823

106. Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [CrossRef]
107. Espinosa, J.M.; Holm, E.; White, M. Part 3: Technology: Creating Intelligent, Coordinated Transit: Moving New Mexico the Smart

Way. Transp. Res. Rec. J. Transp. Res. Board 2005, 1927, 137–148. [CrossRef]
108. Kueper, D. The smart transportation guidebook: Planning and designing highways and streets that support sustainable and

livable communities. ITE J. 2008, 78, 38–42.
109. Zhang, C. Big data will change several major thinking categories. J. Huazhong Univ. Sci. Technol. (Soc. Sci. Ed.) 2015, 29, 120–125.
110. English, N.; Zhao, C.; Brown, K.L.; Catlett, C.; Cagney, K. Making Sense of Sensor Data: How Local Environmental Conditions

Add Value to Social Science Research. Soc. Sci. Comput. Rev. 2020. [CrossRef]
111. Minhoto, M.J.C.; Pais, J.C.; Pereira, P.A.A.; Picado-Santos, L.G. Predicting asphalt pavement temperature with a three-dimensional

finite element method. Transp. Res. Rec. 2005, 1919, 96–110. [CrossRef]
112. Hosseini, F.; Hossain, S.M.K.; Fu, L.; Johnson, M.; Fei, Y. Prediction of pavement surface temperature using meteorological data

for optimal winter operations in parking lots. In Proceedings of the 16th International Conference on Cold Regions Engineering,
Salt Lake City, UT, USA, 19–22 July 2015; pp. 440–451.

113. Zhai, Y.; Li, X. Advances in traffic meteorological service under the influence of disastrous weather. J. Catastrophol. 2015, 30,
144–147.

114. Kang, Y.; Wang, S.; Yang, X.; Li, J.; Xu, W.; Shang, K. Progress of traffic meteorological researches about monitoring and forecasting
services on express highways. J. Arid. Meteorol. 2016, 34, 591–603.

115. China Intelligent Transportation Association. Framework and Technical Specification for Expressway Traffic Meteorological System;
China Intelligent Transportation Association: Beijing, China, 2022; p. 11.

116. Cui, B.; Liu, Y.; Wang, X.; Zhang, X. Analysis and research on the characteristics of hidden risks of highway meteorological
disasters. In Proceedings of the 32nd Annual Conference of the Chinese Meteorological Society, Tianjin, China, 14–16 October
2015; pp. 29–33.

117. Yang, F.; Xia, W.; Chen, X. Investigation of highway system during survey on disaster bearing body. City Disaster Reduct. 2021,
137, 35–38.

118. Meng, C.; Zhang, C. Development and verification of a numerical forecast model for road meteorological services. J. Appl.

Meteorol. Sci. 2012, 23, 451–458.
119. Zhao, N.; Meng, X.; Ma, C.; Qu, X.; Zhang, J. Weather forecast indexes of dense fogs based on traffic weather monitoring data.

Meteorol. Sci. Technol. 2015, 43, 145–150.
120. Feng, D.; Tang, W.; Liu, Y.; Wang, M.; Li, A.; Qu, H. Design and development of an early risk warning system of highway traffic

meteorological disasters. Meteorol. Sci. Technol. 2018, 46, 822–828.
121. Qu, X.; Ma, C.; Liu, J.; Yang, G.; Zhou, Y. Methods for controlling quality of meteorological monitoring data on expressway

surface state. Meteorol. Sci. Technol. 2012, 40, 203–206.
122. Sun, N.; Shi, H.; Han, G.; Wang, B.; Shu, L. Dynamic path planning algorithms with load balancing based on data prediction for

smart transportation systems. IEEE Access 2020, 8, 15907–15922. [CrossRef]
123. Xiao, Y.; Xi, S.; Wang, L. Research on refined forecast test and correction of maximum wind speed along expressway in Henan

province. Meteorol. Environ. Sci. 2022, 45, 29–35.
124. Wang, Z.; Han, Y.; Li, A. Advance in research and operation in traffic meteorological service in China. Adv. Meteorol. Sci. Technol.

2017, 7, 85–89.
125. Chen, Y.; Song, J.; Zhang, X.; Wang, Y.; Zhang, L. Analysis of the current status and innovative models of “immersive” specialized

meteorological services in meteorological departments. Bull. Sci. Technol. 2021, 37, 18–23.
126. Wu, J.; Liao, H. Weather, travel mode choice, and impacts on subway ridership in Beijing. Transp. Res. Part A Policy Pract. 2020,

135, 264–279. [CrossRef]
127. Li, A.; Wu, H.; Liu, Y.; Yang, J.; Tian, H.; Pan, J. Risk assessment and region partition of low visibility disasters on highway in

China. Meteorol. Mon. 2018, 44, 676–683.
128. Tian, H.; Wu, H.; Yang, J.; Gao, J.; Zhang, N.; Zhang, K. Demand analysis of meteorological decision-making service for highway

traffic. Meteorol. Environ. Sci. 2018, 41, 70–76.
129. China Meteorological Administration; China National Development and Reform Commission. The 14th Five-Year Plan for National

Meteorological Development; China Meteorological Administration: Beijing, China, 2021; p. 52.
130. China Meteorological Administration; Ministry of Science and Technology of the People´s Republic of China; Chinese Academy of

Sciences. Development Strategy of Meteorological Science and Technology in China (2021–2035); China Meteorological Administration:
Beijing, China, 2022; p. 46.

131. Lu, H.; Chen, M.; Kuang, W. The impacts of abnormal weather and natural disasters on transport and strategies for enhancing
ability for disaster prevention and mitigation. Transp. Policy 2019, 98, 2–9. [CrossRef]

19





Citation: Zhang, L.; Xu, M.; Qiu, X.;

Zhang, D.; Liao, R.; Fang, X.; Wu, B.;

Meng, F. Analysis of Spatio-Temporal

Characteristics of Visibility in the

Yellow and Bohai Seas Based on

Observational Data. Atmosphere 2023,

14, 1101. https://doi.org/10.3390/

atmos14071101

Academic Editor: Albert Gabric

Received: 5 June 2023

Revised: 26 June 2023

Accepted: 28 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Analysis of Spatio-Temporal Characteristics of Visibility in the
Yellow and Bohai Seas Based on Observational Data

Lei Zhang 1,2, Mei Xu 1,2, Xiaobin Qiu 3 , Dongbin Zhang 4, Rongwei Liao 5,* , Xiaoyi Fang 5, Bingui Wu 2,3

and Fanchao Meng 6

1 Tianjin Meteorological Information Centre, Tianjin 300074, China
2 Tianjin Key Laboratory for Oceanic Meteorology, Tianjin 300074, China
3 Tianjin Institute of Meteorological Science, Tianjin 300074, China
4 National Meteorological Information Centre, Beijing 100081, China
5 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
6 Tianjin Climate Center, Tianjin 300074, China
* Correspondence: liaorw@cma.gov.cn

Abstract: In the Yellow and Bohai Seas, the detailed characteristics of visibility are analyzed based
on automatic hourly observation data of marine visibility between 2019 and 2021. The results show
that the annual average visibility in the Yellow and Bohai Seas is 13.346 km. The average visibility at
high latitudes is higher than that at low latitudes in the Yellow and Bohai Seas. The low visibility
area is mainly distributed in the southwest of the Yellow Sea. There are obvious seasonal differences
in visibility in the Yellow and Bohai Seas. Visibility is high from September to November, with
maximum values in October. Visibility is lowest in July when the maximum visibility is low and
the minimum visibility is high. The visibility in spring is overall relatively low, and the areas of low
visibility appear in the southwest of the Yellow Sea. The visibility in autumn is overall relatively
high, and the areas of high visibility occur in the northern part of the Bohai and Yellow Seas. The
visibility has significant intraday variation. The visibility around sunset is significantly higher than
that around sunrise. The hourly visibility is low between 4:00 and 9:00, with the lowest visibility most
likely around 7:00. The hourly visibility is high between 16:00 and 21:00, with the highest visibility
most likely around 18:00. Low visibility occurs frequently between November and April, most of all
in March. Low visibility most often occurs between 4:00 and 7:00. Low visibility may occur at any
time between November and April, and also in mornings between May and August. It occurs less
often at other times.

Keywords: climatology; visibility; Yellow Sea and Bohai Sea; observation data

1. Introduction

The Yellow and Bohai Seas form an important maritime area in the north of China,
and many of its ports are busy with shipping. Atmospheric visibility is an important
meteorological factor affecting marine transportation. Low visibility will make it difficult
to observe and position, which can easily cause marine traffic accidents such as collisions,
resulting in casualties, property losses, and environmental pollution. The monitoring
and forecasting of visibility can be improved by studying the changes in visibility more
precisely [1–4].

Many researchers have studied maritime visibility. Visibility research methods can be
roughly divided into three categories: field observation [5–7], satellite remote sensing [8,9]
and numerical simulation [10–13]. Research areas have been mostly concentrated in the
Newfoundland Sea area on the east coast of Canada, the sea area south of the Kamchatka
Peninsula, the California sea area on the west coast of the United States, the sea area off the
northeast coast of Scotland in the United Kingdom and the Yellow Sea of China [14–18].
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Fog is the most common and severe low–visibility weather, receiving much atten-
tion. Visibility is an indicator used to distinguish different intensities of fog. The weather
processes that lead to low visibility and thus impact maritime navigation mainly occur
in the atmospheric boundary layer at sea. However, most of our understanding of the
atmospheric boundary layer comes from studies carried out on land. A series of observa-
tion plans of maritime visibility have been implemented such as CALSPAN, CEWCOM
and Project Haar [19–21]. By such means, detailed information about the maritime atmo-
spheric boundary layer formed by low visibility has been obtained. At the same time, the
boundary layer structure of sea fog with low visibility is analyzed. These field observation
plans have raised awareness of low visibility and related concerns [22–25]. The research
provides an important reference for the accurate observation and judgment of low visi-
bility weather. However, these observations are mostly experiments, and real-time and
continuous observation data cannot be obtained.

Changes in sea visibility in the Yellow and Bohai Seas have long been a matter of
concern. Due to a lack of data obtained by direct observation at sea [26–28], the temporal
and spatial characteristics of visibility have few studies over the whole Yellow and Bohai
Seas. However, detailed observational data are essential if sea visibility in this region is to
be effectively monitored and forecasted. For this reason, the observation of marine visibility
needs to be improved in the Yellow and Bohai Seas [2,29,30].

In recent years, through the deployment of automatic stations and buoys and the
accumulation of ship observation data, the visibility observation capability of the Yellow
Sea and the Bohai Sea has been gradually enhanced. In this study, climatic characteristics of
maritime visibility and the frequency of low-visibility conditions in the Yellow and Bohai
Seas are analyzed in detail, based on high-temporal-resolution automatic observation data
of marine visibility obtained.

2. Materials and Methods

This study uses the automatic observation data of hourly marine visibility between
2019 and 2021, which is sourced from the National Meteorological Information Center. The
hourly automatic observation data set can monitor changes in meteorological parameters, as
well as hydrological information, in key sea areas with high time resolution in a continuous
and long-term manner. Automatic visibility observation devices are carried on observation
platforms such as buoys and oil platforms. The observation instruments of visibility include
forward scattering instruments and transmission instruments. Two instruments obtain
visibility, respectively, by measuring the scattering coefficient and transmission coefficient
of air [31]. The average observation error of the instruments is less than 20%, which meets
the range of visibility measurement uncertainty specified by WMO [32,33]. The National
Meteorological Information Center has integrated and controlled the quality of data from
automatic observation device which have been added to the Yellow and Bohai Seas in
recent years, thereby enriching the ocean observation data of this area and providing data
support for the development of marine meteorological research. The 2 m temperature,
sea surface temperature, 10 m u-component of wind, and 10 m v-component of wind of
ERA5 monthly averaged reanalysis data was used to analyze the climate characteristics in
the Yellow and Bohai seas from 1991 to 2020 (https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form, accessed on 30 June
2023) [34].

Automatic hourly observation data of marine visibility are obtained as follows: If less
than 3 h are missing in a day, the data for that day are retained. If more than 3 h are missing
in a day, the observation data for that day are considered absent. There are 12 missing
times, with missing times accounting for less than 0.04% of the total times. The annual
average value of visibility is the average value of visibility from January to December in a
calendar year. The seasonal division method is as follows: winter extends from December
in one year through to February of the next; spring from March to May; summer from June
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to August; and autumn from September to November. The standard deviation of visibility
is calculated based on the hourly average visibility data in the Yellow and Bohai Sea.

According to Koschmieder’s law (Formula (1)), the visibility is inversely proportional
to the atmospheric extinction coefficient.

VIS =
−ln(ε)

σ
(1)

where VIS is visibility, and σ is atmospheric extinction coefficient, and ε is contrast threshold.
The atmospheric extinction coefficient can be considered as spatially continuous

and can be Linear interpolation. For the visible light interpolation process, visibility is
first converted to atmospheric extinction coefficient, and then the extinction coefficient is
interpolated, and then converted back to visibility.

The spatial distribution of visibility is interpolated using natural interpolation method
and extrapolated using linear method [35]. The spatiotemporal characteristics of monthly
visibility in the Yellow and Bohai Sea from 2019 to 2021 were analyzed by the EOF method.
The seasonal probability distribution function of visibility, at intervals of 2 km, is deter-
mined by the frequency of visibility. The probability distribution function of visibility has
been normalized. The cumulative probability distribution function is used to analyze the
distribution of visibility data in February and July. The cumulative probability distribution
function of visibility has also been normalized. According to the “Convention on the
International Regulations for Preventing Collisions at Sea” [36], special safety measures are
required for sea navigation with visibility below 2 nautical miles. The frequency character-
istics of visibility from 2 km to 5 km were analyzed by classification in this study. Average
visibility of less than 5 km is defined as low visibility. The frequency of low visibility
is the times accumulated when the average visibility is less than 5 km. The study area
(117~127.5◦ E, 35~41.5◦ N) is the Yellow Sea and the Bohai Sea (Figure 1a). The selected
period of visibility observation data covers three years from 2019 to 2021. The spatial
distribution of observation stations covers the same sea area (Figure 1b).

Figure 1. The study region (a) and Spatial distribution of observation stations (b) (The red dots
denote the observation stations).
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3. Results

3.1. Annual and Seasonal Characteristics of Visibility

The climate characteristics of the Yellow and Bohai Seas were analyzed using ERA5
reanalysis data on 2 m air temperature, sea surface temperature, and wind from 1991 to 2020
(Figure 2). From the spatial distribution, it can be seen that both the 2 m air temperature
and sea surface temperature in the Yellow and Bohai Sea have the characteristics of low
in the north and high in the south. In the Yellow and Bohai Seas, the climate is obviously
a monsoonal climate, and southern winds prevail in summer, and northwestern winds
prevail in winter.

Figure 2. The climate characteristics in the Yellow and Bohai Seas from 1991 to 2020 ((a) 2 m air
temperature, (b) sea surface temperature, (c) wind in summer, (d) wind in winter).

In the Yellow and Bohai Seas, the average visibility at high latitudes is higher than that
at low latitudes (Figure 3a). The low visibility area is mainly distributed in the southwest
of the Yellow Sea. From the seasonal distribution of visibility (Figure 3b–e), the visibility in
spring is overall relatively low, and the areas of low visibility appear in the southwest of
the Yellow Sea. The visibility in autumn is overall relatively high, and the areas of high
visibility occur in the northern part of the Bohai and Yellow Seas. Throughout the four
seasons, the visibility in the southwest of the Yellow Sea has been consistently low.
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Figure 3. The distribution of annual (a) and seasonal ((b) winter, (c) spring, (d) summer, (e) autumn)
average visibility in the Yellow and Bohai Seas from 2019 to 2021.

Between 2019 and 2021, annual average visibility in the Yellow and Bohai Seas was
13.346 km, and the standard deviation of the annual average visibility was 4.351 km
(Table 1). As shown by the values in Table 1, the maximum average and median of visibility
both occurred in autumn and were 15.514 km and 15.696 km, respectively. The mini-
mum average and median of visibility both occurred in summer and were 12.529 km and
12.312 km (Table 1), respectively. The average and median visibility shows significant
differences between that in autumn and in summer. The average and median visibility in
winter and spring were similar.
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Table 1. Seasonal average and standard deviations of visibility (unit/km) in the Yellow and Bohai
Seas from 2019 to 2021.

Winter Spring Summer Autumn Annual

Average 12.757 12.599 12.529 15.514 13.346
Median 12.489 12.692 12.312 15.696 13.286

Standard Deviation 4.749 4.007 3.612 4.231 4.351

The maximum standard deviation of visibility was 4.749 km, in winter, and the
minimum standard deviation of visibility was 3.612 km, in summer. Although the average
visibility in winter and summer is similar, the standard deviation of visibility in winter is
significantly greater than that in summer, indicating that there is a significant difference in
the distribution of visibility in winter and summer.

Analysis of the data reveals obvious seasonal differences in the distribution of visibility
in the Yellow and Bohai Seas (Figure 4). Maximum values of PDF (Probability Density
Function) in summer and autumn are greater than 0.2, while maximum values of PDF
in winter and spring are lower than 0.2. The maximum value of visibility distribution
in winter and spring is obtained at 12–14 km, while the maximum values of visibility
distribution in summer and autumn are obtained at 10–12 km and 16–18 km, respectively.
The area of statistical distribution of low visibility is greatest in winter, and the area of high
visibility is greatest in autumn.

Figure 4. Seasonal distribution of visibility in the Yellow and Bohai Seas from 2019 to 2021.

3.2. Monthly Characteristics of Visibility

The average visibility was high and was more than 15 km from September to Novem-
ber (Table 2). The average visibility was smaller in February and July, and the visibility was
less than 12 km. The maximum average visibility appeared in October and was 15.659 km.
The minimum average visibility appeared in July and was 11.677 km.
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Table 2. Monthly average and standard deviations of visibility (unit/km) in the Yellow and Bohai
Seas from 2019 to 2021.

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Average 12.494 11.794 12.101 12.728 12.972 12.268 11.677 13.632 15.635 15.659 15.242 13.902
Median 12.439 11.098 12.131 12.436 13.174 12.062 11.527 13.782 16.009 15.548 15.444 13.908

Standard Deviation 4.386 4.705 4.601 3.841 3.439 3.633 2.906 3.938 3.419 4.533 4.614 4.904

The median visibility was high from September to November, which also exceeded
15 km (Table 2). The median visibility was low in February and July, and was less than
12 km. The maximum median visibility appeared in September and was 16.009 km. The
minimum median visibility appeared in February and was 11.098 km. The maximum
average visibility and the maximum median visibility appeared in October and September,
respectively. The occurrence time of the minimum average visibility and the minimum
median visibility appeared in July and February, respectively.

From the monthly data distribution (Figure 5), it can also be observed that changes
in monthly median visibility are similar to changes in the average value. Notably, the
maximum visibility is low and the minimum visibility is high in July.

Figure 5. Monthly distributions of visibility in the Yellow and Bohai Seas from 2019 to 2021.

The minimum value of the standard deviation of visibility appeared in July and was
2.906 km (Table 2). The maximum value of standard deviation of visibility appeared in
December, which was 4.904 km. The standard deviation of visibility in July was small,
indicating that the distribution of visibility in July was concentrated, and the fluctuation
of visibility in July was small. The standard deviation of visibility in December is large
(Figure 5).

The average and median visibility in February and July are very close, but the standard
deviation in February is significantly greater than that in July, resulting in a large difference
in the distribution of visibility between February and July. It can be clearly seen from the
comparison of the cumulative distribution function (CDF) in February and July (Figure 6)
that the occurrence probability of low visibility of less than 6 km in February is significantly
larger than that in July, and the occurrence probability of a high visibility of more than
16 km in February is also significantly larger than that in July. The frequency of low visibility
weather and high visibility weather in February is greater than that in July. Although the
average and median visibility in February and July are very close, there is a huge difference
in terms of low visibility between February and July, which has attracted much attention.
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Figure 6. Cumulative distribution function of visibility in February and July in the Yellow and Bohai
Seas from 2019 to 2021.

The spatiotemporal characteristics of visibility in the Yellow and Bohai Sea from
2019 to 2021 were analyzed using the EOF method (Figure 7). The variance contribution
of the first and second modes are 64.4% and 17.4%, respectively, and the total variance
contribution of the two modes is 81.8%. The first mode is positive in the northern Bohai Sea
and negative in the eastern Yellow Sea. The second mode is negative in the west of Bohai
Sea and positive in the north and southeast of Yellow Sea. The time coefficients of the first
and second modes have obvious changes with time, and the frequency of positive–negative
alternation of the first mode time coefficient is higher.

Figure 7. Spatial modes ((a) EOF1, (c) EOF2) and time coefficients ((b) EOF1, (d) EOF2) of visibility
in the Yellow Sea and Bohai Sea of EOF analysis.

3.3. Intraday Variations of Visibility

It can be seen from the curve of hourly visibility in the Yellow and Bohai Seas (Figure 8)
that the hourly visibility is low between 4:00 and 9:00, and the lowest visibility is most likely
around 7:00. The hourly visibility is high between 16:00 and 21:00, and highest visibility
most likely around 18:00. The visibility has obvious intraday variation characteristics. The
visibility around sunset is significantly higher than that around sunrise.
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Figure 8. Hourly visibility in the Yellow and Bohai Seas from 2019 to 2021.

Considering the distribution of visibility in the Yellow and Bohai Seas on an hourly and
monthly basis (Figure 9), it can be seen that visibility between September and November is
significantly higher than in other months. There is an obvious low-visibility period between
5:00 and 9:00 in the June–September period, with the lowest visibility occurring around
7:00 in July. There is also a high-visibility period between 18:00 and 21:00 in September,
with the highest visibility occurring around 19:00.

Figure 9. Monthly and hourly distributions of visibility in the Yellow and Bohai Seas from 2019 to 2021.

3.4. Characteristics of Low Visibility

Because low visibility has attracted more attention in previous studies, we focus on
low visibility in our analysis. From the monthly statistical chart of low-visibility frequency
in the Yellow and Bohai Seas (Figure 10), it can be seen that low visibility occurs frequently
between November and April, and most frequently of all in March. The frequency of low
visibility from July to October is relatively low.
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Figure 10. Monthly frequencies of low visibility in the Yellow and Bohai Seas from 2019 to 2021.

The change of low visibility in the Yellow and Bohai Seas during the years from
2019 to 2021 can be divided into three stages: many, medium and few. The many stage
of low visibility is from November to April of the next year. The medium stage is May
and June. The few stage is from July to October (Figure 10). In the many stage, the
frequency of visibility of less than 5 km is higher and is more than 30 times. In the few
stage, the frequency of visibility of less than 5 km is less than 15 times. In the medium
stage, the frequency of visibility of less than 5 km is between 15 and 30 times. The variation
characteristics of visibility of less than 4 km are similar as those of visibility of less than
5 km. The frequency of low visibility in the many stage is significantly higher than that in
the few stage.

It can be seen from the hourly frequency of low visibility in the Yellow and Bohai
Seas (Figure 11) that there are many instances of visibility less than 5 km between 4:00
and 7:00. Low visibility occurs less frequently between 13:00 and 18:00. The frequency of
low visibility around sunrise is significantly higher than that around sunset. The curve of
hourly low-visibility frequency is similar to the curve of hourly visibility, showing obvious
intraday variation characteristics, but the two curves are not completely corresponding.

Figure 11. Hourly frequencies of low visibility in the Yellow and Bohai Seas from 2019 to 2021.

From the days–hours statistical chart of low visibility in the Yellow and Bohai Seas
(Figure 12), it can be seen that low visibility is most likely between November and April,
when it may occur at any time of the day. Low visibility is also widespread during mornings
between May and August. It occurs less frequently at other times.
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Figure 12. Daily and hourly distributions of low visibility values in the Yellow and Bohai Seas from
2019 to 2021 (Average visibility of less than 5 km is defined as low visibility).

4. Discussion

At present, the visibility monitoring of the Yellow and Bohai Seas is mainly based on
field observation data and satellite data, both of which have advantages and disadvantages.
The field observation data offer high accuracy, but limited coverage. Satellite data have
advantages in spatial distribution, but their observation accuracy is low. Recently, the
number of automatic observation devices of visibility in the Yellow and Bohai Seas has
been increased, and their observation mode has been changed from manual observation
three times a day to automatic observation with high time resolution. Using automatic
observation data of hourly marine visibility, the precise characteristics of visibility in the
region were analyzed in this study.

We found that low visibility in the Yellow and Bohai Seas occurs most frequently
between November and April, and most frequently of all in March. The frequency of low
visibility from July to October is relatively low. Using satellite data, Wu et al. [37] found that
sea fog in the Bohai Sea is most prevalent in December, followed by April, but is less likely
to occur between August and October. In the Yellow Sea, fog is most prevalent between
March to June, and most of all in April, with less fog between August and November, least
of all in October. The study region of this paper covered both the Yellow Sea and the Bohai
Sea. The periods of low visibility identified in this study are basically consistent with those
found by Wu et al. [37]. The reported periods of high visibility indicate the common time
characteristics of the Yellow and Bohai Seas.

This study used high-time-resolution observation data, and because observation
modes have recently changed from manual observation three times a day to a higher-
frequency automatic observation, more detailed data can now be obtained. The hourly
visibility is low between 4:00 and 9:00, with low visibility most likely around 7:00. The
hourly visibility is high between 16:00 and 21:00, and high visibility most likely around
18:00. The visibility has obvious intraday variation characteristics. The visibility around
sunset is significantly higher than that around sunrise. From hourly marine visibility
data, we found that low visibility is most likely between 4:00 and 7:00, and most likely
of all at 6:00. Low visibility is least likely between 17:00 and 19:00, and least likely of
all around 18:00. The curve of hourly low-visibility frequency is similar to the curve of
hourly visibility, showing obvious intraday change characteristics, but the two curves are
not consistent. Zheng et al. [38] studied daily variations in sea fog in the Bohai Sea using
artificial observation data obtained three times a day. They found that fog was most likely
to occur at 8:00, and less likely at 14:00 and at 20:00. The results of this study are supported
by those obtained by Zheng et al. [38]. We give the hourly variation of low visibility, which
is more detailed than the characteristics reflected by Zheng et al. [38].

Although the average visibility in July is small, the low visibility is very few; the
two are not contradictory. The maximum visibility is low and the minimum visibility is
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high in July, resulting in the overall average visibility is low, while the frequency of low
visibility weather is very few. The average and median of visibility in February and July
are very close, but the standard deviation of February is significantly greater than that of
July, resulting in a large difference in the distribution of visibility between February and
July. There is a huge difference in terms of low visibility between February and July. The
frequency of low-visibility weather and high-visibility weather in February are greater than
that in July.

In spring, the areas of low visibility appear in the southwest of the Yellow Sea. In
autumn, the areas of high visibility occur in the northern part of the Bohai and Yellow Seas.
Using satellite data, Wu et al. [37] found that the frequency of sea fog in the western Yellow
Sea is significantly higher than that in the Bohai Sea in spring, and the frequency of sea fog
in autumn is the lowest among the four seasons. The results of this study are supported by
those obtained by Wu et al. [37].

According to Koschmieder’s law, visibility is inversely proportional to the extinction
coefficient. The attenuation of light intensity caused by the absorption and scattering of
light by substances such as gas molecules, aerosol particles, and water droplets when visible
light passes through the atmosphere [39]. Therefore, the magnitude of this coefficient is
influenced by the composition of the atmosphere. The weather phenomena that affect the
extinction coefficient include fog, haze, precipitation, snowfall, and dust. The correspond-
ing meteorological elements include humidity, aerosol concentration, precipitation and
snowfall [40,41].

The data in this study covers the period from 2019 to 2021. There is a great deal of
scientific evidence to support that the global pollutant levels dropped during the pandemic
of COVID-19. Some pollutants have the ability to act as fog condensation nuclei, and
reduced pollutants may lead to increased visibility [42,43]. The visibility during 2020–2021
in the Yellow Sea and Bohai Sea may be better than the average. The data used in this
study covers a short time period. There is, therefore, a need for longer-term high-resolution
visibility observation data, so that variations in visibility in the Yellow and Bohai Sea area
can be better understood.

At present, although the extent of sea visibility observation covers the whole of the
Yellow and Bohai Sea region, there is an uneven spatial distribution of observation stations.
The density of observation stations close to the coast is higher than that of those located far
offshore. In terms of spatial representation, there is still a significant difference between
offshore and the open sea. The observations of marine visibility in the Yellow and Bohai
Seas needs to be increased continuously.

5. Conclusions

Based on the hourly observation data of visibility which we obtained for the Yellow
and Bohai Seas during the years 2019–2021, and our analysis of climatic characteristics of
sea visibility in this region during this time, the following conclusions can be stated.

(1) Between 2019 and 2021, the annual average visibility of the Yellow Sea and Bohai
Sea was 13.346 km, and the standard deviation of the annual average visibility was
4.351 km. There were obvious differences in the distribution of visibility across the
seasons. The maximum average visibility was 15.514 km, in autumn. The minimum
average visibility of 12.529 km occurred in summer. The maximum standard deviation
of visibility of 4.749 km was recorded in winter and the minimum standard deviation
of 3.612 km was recorded in summer. The highest values of visibility distribution in
winter and spring were in the range of 12–14 km, while the highest values of visibility
distribution in summer and autumn were in the range of 10–12 km and 16–18 km,
respectively. The areas of low visibility appear in the southwest of the Yellow Sea in
spring. The areas of high visibility occur in the northern part of the Bohai and Yellow
Seas in autumn. The low visibility area is mainly distributed in the southwest of the
Yellow Sea.
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(2) Changes in monthly median visibility were similar to changes in average value. The
monthly visibility was high from September to November. The average value of
visibility was highest in October and lowest in July. In July, the maximum visibility is
low, and the minimum visibility is high. The visibility has obvious intraday variation
characteristics. The visibility around sunset is significantly higher than that around
sunrise. The hourly visibility is low between 4:00 and 9:00, with low visibility most
likely around 7:00. The hourly visibility is high between 16:00 and 21:00, and high
visibility most likely around 18:00.

(3) Between November and April, low visibility occurs frequently, most frequently in
March. Between July and October, the frequency of low visibility was relatively low.
Low visibility occurred frequently between 4:00 and 7:00. The change of low visibility
in the Yellow and Bohai Seas can be divided into three stages: many, medium and
few. The many stage of low visibility is from November to April of the next year.
The medium stage is May and June. The few stage is from July to October. In the
Yellow and Bohai seas, low visibility mainly occurs at any time between November
and April, and also during mornings between May and August. It occurs less often at
other times.
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Abstract: In this study, the spatiotemporal distributions of highway blockage and the low-visibility
weather events in eastern China are studied by taking Jiangsu Province as an example. Based on
the record table data of highway-blocking events, a vulnerability evaluation model for the highway
network in Jiangsu Province is established using the weight assignment methods of the fuzzy analytic
hierarchy process (FAHP) and criteria importance though intercriteria correlation (CRITIC). By using
the geographic information system, the vulnerability evaluation map of road network in low-visibility
weather in Jiangsu Province is finally drawn. The results show that the monthly blockage events on
Jiangsu highways are more frequent in the north than in the south and are more frequent along the
coast than inland, with the highest occurrence number in winter and a second peak in May. There
are basically no blockage events from July to October. Traffic blockage on Jiangsu highways mainly
occurs between 22:00 and 08:00 Beijing time. In the afternoon, there are almost no highway-blocking
events caused by low-visibility weather. The vulnerability of highway blockage in Jiangsu Province
is high in the north and low in the south and high in coastal areas and relatively low in inland. The
section K6-K99 of the G30 Lianhuo Highway is the most sensitive.

Keywords: highways; road blockage; fuzzy analytic hierarchy process; CRITIC weight assignment
method; road network vulnerability; spatiotemporal distribution

1. Introduction

Traffic blockage is a prolonged obstruction or blockage of road access due to sudden
traffic-related events, which may be caused by issues such as severe weather, geological
disasters, traffic accidents, and planned traffic blockage (road and bridge maintenance,
major social events, etc.) [1–3]. Concurrent with the rapid development of China’s economy,
the mileage and traffic flow of highways have also experienced rapid growth. Prolonged
traffic blockage affects the flow, increases the risk of major accidents, threatens the lives
of drivers, and has negative impacts on social and economic development [4]. Research
has shown that rainfall, snow, fog, and typhoons can all lead to highway blockages [5].
Researchers have found that among all the adverse weather conditions, low visibility causes
the greatest hazards during vehicle operation [6]. Many studies have demonstrated that
approximately a quarter of all traffic blockages are caused by low-visibility weather, such
as dense fog, and the rate of highway accidents in dense fog is 10 times higher than that in
normal weather [7].
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Low-visibility weather is a catastrophic weather phenomenon in which horizontal
visibility is reduced to less than 1000 m by heavy precipitation (e.g., water droplets or ice
crystals), fog, etc. [8]. On 15 November 2017, the Chu-Xin highway in Anhui Province
was affected by dense fog. More than 30 vehicles collided in succession, and the road
was severely blocked. On the morning of 28 January 2021, a series of car crashes occurred
on section 1026 of the Hu-Chong highway in Qianjiang, Hubei Province, which was also
caused by dense fog. Approximately 20 vehicles were involved in a pileup, which caused a
prolonged highway-blocking event [9].

There are many studies regarding the incidence, severity, and risk of highway crashes
caused by low-visibility weather [10,11]. Hamilton et al. [12] and Abdel-Aty et al. [13]
found that drivers are more likely to be involved in fatal crashes while driving in low-
visibility weather. Alghamd et al. [14] used Poisson regression to analyze the 30-year crash
data and found that the severity of crashes on foggy days is over 2.55 times higher than on
other days. Perry et al. [15] found more severe crashes related to low visibility on highways
than that on other roads. Wu et al. [16] applied a binary logistic regression model to actual
traffic flow and weather data from two areas in Florida to compare the traffic patterns
during persistent fog events to those during sunny periods. Their results show that the risk
of accident increases under foggy conditions. Feng et al. found there is a high correlation
between the variations of fog-related traffic accidents and low-visibility weather on four
highway sections in China [17]. By analyzing the traffic accidents and associated weather
conditions in England and Wales, Edwards et al. found that there is an obvious seasonal
variation of traffic accidents [18].

Many researchers conducted studies on the traffic vulnerability of roads. Berdica [19]
proposed a definition of vulnerability for the road traffic network for the first time, which
refers to the vulnerability factors of the road network to adverse external influences.
Husdal et al. [20] considered the road network vulnerability as the non-functionality of the
road transport network under certain circumstances, emphasizing the loss or impact of
an event on the network. Sohn [21] and Scott [22] proposed a scenario-based approach
which can identify the key locations in the road network and investigate the vulnerability
of the network. Huang et al. [23] explored the factors influencing the degree of injury and
death in traffic accidents through the aspect of accident severity. Christopher et al. [24]
studied the impact of environment on the safe driving of electric bicycles based on the
traffic statistics from the National Statistical Yearbook. Wang et al. [25] used questionnaires
to obtain the information on the driving safety of e-bike drivers. Yu et al. [26] analyzed
the impact of traffic speed on traffic safety by acquiring vehicle speed information based
on coil detectors. There are also many methods of machine learning [27] and computa-
tional intelligence [28,29] that have been applied to the analysis and identification of traffic
accident risk.

The whole vulnerability assessment mainly refers to the definition of vulnerability
to the catastrophe, including three parts: indicator screening, indicator empowerment,
and evaluation methods [30]. Among them, the combination of subjective and objective
methods was adopted in the index weighting. The subjective method is the fuzzy analytic
hierarchy process (FAHP), which optimizes the weight calculation process and can achieve
the consistency of judgment matrix and the unity of the thoughts of decision makers [31].
The method of criteria importance though intercriteria correlation (CRITIC) is adopted
for objective weighting, which has more adaptability in the weighting for indicators with
stronger relevance [32]. The combination of subjective and objective weighting methods
can make up for the shortcomings of a single method and solve the defects of a single
evaluation method. This combination model has been widely used in the assessments of
natural disaster risk, natural resources and carrying capacity [33].

Much of the research on the impact of low-visibility weather on highways is focused
on the traffic accident rate or traffic flow, while the research on traffic blockage is mainly
focused on the macroscopic level, lacking detailed analysis on the specific types of catas-
trophic weather. There is no good method for evaluating the vulnerability of motorway
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networks and no specific study on the vulnerability of road network under specific weather
hazard. There is also no specific spatial matching method for the low-visibility weather
and motorway-blocking events.

To address the abovementioned problems, this study uses highway control needs as
guidance and takes the highway-blocking events under low-visibility weather conditions
in Jiangsu Province as the main research object. Instead of lumping all weather factors
into one category, we select low-visibility weather—which accounts for a relatively high
proportion of highway weather hazards in eastern China—as the target weather type,
filter out all the low-visibility weather events that cause highway blockage, and propose a
corresponding model to evaluate the vulnerability of the road network to specific weather
hazards. Different weather events require specific response measures, which can effectively
improve the efficiency of disaster prevention and mitigation and reduce the cost of emer-
gency management. The aim of this work is to improve the existing theory of highway
traffic blockage and provide technical support to ensure the smooth and safe operation of
regional highway traffic.

The rest of this paper is organized as follows. The materials and methods are described
in Section 2. The highway blockage characteristics, distribution of low-visibility weather,
and blockage vulnerability are analyzed in Section 3. Finally, the discussions and main
conclusions are given in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Study Area

The study area is Jiangsu Province (166◦18′–121◦57′ E and 30◦45′–35◦20′ N), which
is located in the eastern part of the Jianghuai Plain along the coast of mainland China
and in the mid-latitude zone along the east coast of the Asian continent. This region is
in the climate transition zone between the subtropical and warm temperate zones and is
characterized by the East Asian monsoon climate. However, it is influenced both by the
westerlies in the middle latitudes and the easterlies in subtropical and low latitudes, thus
causing a variety of meteorological disasters. There is a network of more than 50 highways
(approximately 5000 km in total) in Jiangsu Province, as shown in Figure 1, which suffers
from low-visibility weather more and more frequently in recent years. Traffic blockage
due to fog and other low-visibility conditions has occurred repeatedly. Therefore, the road
safety problems caused by low visibility have received close attention from all sectors of
society [34].

Figure 1. Distribution of highway networks in Jiangsu Province.
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2.2. Traffic Blockage Data

The traffic blockage data used in this study are the records of traffic disruptions
on the highway network in Jiangsu Province in 2020 obtained from the Road Network
Monitoring and Emergency Response Centre of the Ministry of Transport. The records
follow the standards established by the Ministry of Transport Highway Traffic Blockage
Information Reporting System (Transportation Highway Development (2006) No. 451).
There are 16 items in the records, including the province, reporting unit, route name,
route number, starting and ending 100 m distance marker, reason for the blockage, length
(mileage) of the blockage, status, blockage type, information event classification, site
description, disposal measures, blockage discovery time, reporting time, and expected
recovery time. Considering that highway blockage information is reported manually, there
may be statistical errors in the records. The time series of data are corrected in advance,
and then data quality control is performed based on the revised correlation of blockage
causes and site descriptions.

2.3. Research Methodology

2.3.1. Determination of Blockage Events Caused by Low-Visibility Weather

In addition to low-visibility weather, the causes of highway blockages include rainfall
(water), snowfall (snow), icy roads, and other factors. However, this study focuses on
highway blockages caused by low-visibility factors. In order to pinpoint the location of the
section where the blockage event occurs, geographic information systems (GIS) technology
is used to analyze each blockage event, and the maximum segmentation unit selected in
this study is 1 km.

The specific analysis steps are shown in Figure 2. In Part 1, the SPLIT function module
in Python is used to slice the data in the record table, and the matching function is used to
calibrate and match the road network data with the highway blockage events data. In Part
2, GIS technology is used to spatially match the blockage events with the highway network
and visualize the spatial distribution.

Figure 2. Flow chart of matching assignment of highway block sections.
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Data pre-processing is performed first. New highway data are generated through
the integration of national and provincial highway route codes. To correct the manually
recorded highway blockage data, each highway blockage event in the spatial data of
the highway network is analyzed by using the correlation between the route codes and
pile numbers, and the incorrect blockage events are removed. The POINT_REMOVE
simplification algorithm of GIS platform is then used to simplify the highway network data.

The SPLIT function is used as a processing tool for each blockage event on each
highway section with a cell length of 1 km. First, each highway blockage is matched with
the corresponding highway data since the starting and ending points of each blockage
event are known. Then, the corresponding event is plotted spatially via GIS and attributed
with the appropriate information from the nearest highway marker. Traffic events are
counted as multiple events if the starting and ending markers that demarcate the extent
of the event include more than one section. Each section between the markers is therefore
counted as one event.

Based on the occurrence frequency of traffic blockage events under low-visibility
weather in 2020, this study classifies the highway sections into six levels: slight risk (<8),
less risk (8–14), medium risk (15–21), severe risk (22–28), more severe risk (29–35), and
extreme risk (>35).

2.3.2. FAHP Weight Assignment Method

In order to evaluate the vulnerability of the highway network in Jiangsu Province
under low-visibility weather, the FAHP method is used to obtain the subjective weights for
the analysis of vulnerability weight. The results can be used as one of the reference indexes
for the final analysis of vulnerability [35,36].

Based on the hierarchical analysis (AHP), the problem and influencing factors are
characterized into the three layers of target, criterion, and indicator. Secondly, the indicator
factors u1–un with the same affiliation and hierarchy are compared in pairs to measure
their importance, and the scale of importance is represented by 1 to 9 and its reciprocal.
The judgment matrix Hn×n is established though Equation (1):

Hn×n =
(
aij

)
n×n

(1)

In Equation (1), aij is the AHP importance scale of ui and uj relative to the upper
factors, in which aii is equal to 1 and aji is the reciprocal of aij. The meanings of the
importance scales are shown in Table 1.

Table 1. Meanings of importance scales.

Scale Description

1 Equally important
3 Slightly important
5 Obviously important
7 Strongly important
9 Extremely important

2, 4, 6,8 Median value

According to the scale conversion formula, the judgment matrix is transformed into a
fuzzy complementary judgment matrix Wn×n though Equations (2) and (3):

wij = logαaij + 0.5 (2)
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Wn×n =
(
wij

)
n×n

(3)

where aij is the same variable as that in Equation (1). α can be used to adjust the difference
between the weights of the final indicators, which is determined by the decision maker
according to the actual situation. In this study, α is set to be equal to or greater than 81 to
ensure that the wij is between 0 and 1. It can be seen from Equation (2) that wij represents
the relative importance of ui and uj and that wij + wji is equal to 1. When wij is equal to
0.5, ui and uj are of equal importance; when wij is greater (less) than 0.5, ui (uj) is more
important than uj (ui).

The fuzzy complementary judgment citation is further transformed into the fuzzy
consistent judgment matrix Rn×n through the following equations:

ri =
n

∑
j=1

wij (4)

rij =
ri − rj

2(n − 1)
+ 0.5 (5)

Rn×n =
(
rij

)
n×n

(6)

where rij is the FAHP importance scale of ui and uj corresponding to the upper factors, and
it satisfies the conditions of rii = 0.5, rij + rji = 1 and rij = rik − rjk + 0.5, (i, j, k = 1, 2, . . . , n).

The fuzzy judgement matrix is consistent with no need for consistency testing, and
it can reflect the subjective thought of the decision maker. The subjective weight W1
corresponding to each indicator can be obtained via the characteristic root method.

2.3.3. CRITIC Weight Assignment Method

Considering that there is a strong correlation between the selected indicators, the
CRITIC method was adopted in this study to objectively evaluate the vulnerability weight,
which was regarded as one of the final vulnerability reference indicators [37].

The CRITIC method is an objective weight assignment method which is commonly
used for the analysis of data with strong correlations between indicators while considering
the variability among indicators concurrently. By objectively calculating the indicators
of data, each indicator was assigned a different weight, and the calculation steps are as
follows [38].

The standard deviation can be used to measure the contrast intensity and dispersion
degree of indicators. A larger standard deviation represents a greater dispersion degree,
which indicates larger differences between samples and larger assigned corresponding
weights. The standard deviation can be calculated by Equation (7).

Sj =

√√√√∑
n
i=1

(
xij −

1
n ∑

n
i=1 xij

)2

n − 1
(7)

where xij denotes the ith sample for the jth indicator, Sj is the standard deviation of the jth
indicator, and n is the total number of samples for the jth indicator.

Correlation is expressed as the correlation coefficient between indicators. The stronger
the correlation between indicators is, the more conflicting the indicators are and the higher
the repetition rate of information expression. Therefore, the corresponding weights of the
indicators can be reduced to a certain extent. The correlation coefficient R can be calculated
in Equation (8).
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Rj =
p

∑
i=1

(
1 − rij

)
(8)

where Rj indicates the correlation coefficient of the jth indicator with the other indicators,
rij denotes the correlation coefficient between the ith and jth indicators, and p is the total
number of indicators.

The weight of the jth indicator W2j can be obtained from Equation (9).

W2j =
Sj × Rj

∑
p
j=1 Sj × Rj

(9)

2.3.4. Portfolio Empowerment Method

The CRITIC method considers the correlation between indicators more and pays
attention to the information content of the data itself, but it is easily affected by the two-
level value. The subjective weight assignment will ignore the information brought by
the data itself. Therefore, the combination of subjective and objective weight assignment
methods can be used for more reliable and accurate evaluation.

After the subjective and objective weighting methods are used to determine the weight
of the assessment indicators, the proportion of subjective and objective weights in the
overall weight should be clarified to better reflect the difference in the importance between
multiple assessment indicators. W1 and W2 are the weights derived from the FAHP and
CRITIC methods. The combined weight was obtained using the linear combination, as
shown in Equation (10).

W = αW1 + βW2 (10)

where α and β denote the weight allocation coefficients.
In order to find the best combined weight, the optimal weight assignment coefficients

which minimized the standard deviation of W were obtained though the following equations:

xi = αiW1i + βiW2i (11)

δ =

√√√√∑
j
i=1(xi − ∑

j
i=1

xi
j )

j
(12)

where j is the maximum of sample numbers and both α and β are between 0 and 1 and
their sum is equal to 1.

3. Results

3.1. Characteristics of Highway Blockage

3.1.1. Annual Variation of Highway Blockage

Based on the causes, site descriptions, and treatment measures, a total of 1340 highway
blockages due to the low visibility were extracted from highway blockage records in
Jiangsu Province in 2020, with a total annual cumulative blockage mileage of 69,466.3 km.
In addition, the cumulative monthly blockage mileage and monthly blockage frequency
were calculated to analyze the spatial and temporal distributions of highway blockages in
Jiangsu Province.

As shown in Figure 3, the proportions of annual highway blockage events that led to
blockage mileage less than 100 km, between 100–200 km, and 200–300 km are 85.5, 9.8, and
4.7%, respectively. The blockage events with maximum cumulative mileage and frequency
on the highways of Jiangsu Province in 2020 basically occurred in January and February,
while the minimum values were observed in August and September, when there was 0 km
of cumulative blockage and 0 events were reported. The frequency of blockage was higher
in January, February, May, November, and December, when the mileage of individual
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blockage was also higher. The number of blockage events in May shows a second peak,
which is different from the decreasing trend observed in March–April.

Figure 3. Annual variations of frequency (bars) and mileage (line) of highway-blockage events in
Jiangsu Province in 2020.

The spatial distribution of highway blockage events in Jiangsu Province in 2020
(Figure 4) shows high occurrence in the north and low occurrence in the south. For the
northern Jiangsu Province, the number of highway-blocking events in the eastern part is
also substantially higher than that in the western part. It can be seen form Figure 4 that,
as on the major north–south highways along the eastern coast and in the central region
of Jiangsu Province, there are severe highway-blocking events in the north sections of the
G15 Shenhai Highway and the G2 Beijing–Shanghai Highway. Among them, there are
more than 37 blockage events in the K760–K1163 section of the G15 Highway, making this
section one of the most severely blocked sections.

On the G25 Changshen Highway, the peak number of blockage events reached 64
in the K1762 section. The number of highway blockages in southern Suzhou was rela-
tively small, with the cities of Wuxi (except Yixing) and Suzhou having four or fewer
blockage events. There was no highway blockage on the S9 Sushao Highway and the
G50 Shanghai–Chongqing Highway in Suzhou. There were at least 11 blockage events in
Nanjing, Changzhou, and Yixing on the G25 Changshen Highway, sections K2060–K2190,
in the western part of southern Jiangsu, which is a high value area within the entire
southern Jiangsu region. Highway blockages in the central region of Suzhou were mainly
concentrated in the K710–K1038 section of the G2 Highway. Niu et al. [39] conducted a
GIS-based study on blocked highways in Jiangsu Province as a function of low visibility
and found that the G15 Shenhai Highway is the key highway blocked by fog, which is
basically consistent with the findings in this study.
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Figure 4. Spatial distribution of highway-blocking events in Jiangsu Province in 2020.

The annual variation of highway blockage spatial distribution in Jiangsu Province in
2020 (Figure 5) shows that there are more highway-blocking events in November, December,
and January than that in other months, with 6–8 blockage events in January in the northern
section of the G15 Shenhai Highway (K850–K989) and the central section of the G2 Beijing–
Shanghai Highway (K712–K958). The southern section of the G15 Shenhai Highway
K1090–K1173 was blocked less than the northern section, with six events. There were fewer
than six blockage events in the southern part of Jiangsu Province, with most blockage
occurring in the K43–K76 section of the S38 Changhe Highway in Wuxi (4–6 events). In
February, the highway blockage is the most severe, with the highest number of 12 times
on the G15 Shenhai Highway in Lianyungang and 10 blockage events occurring on the
S18 Yanhuai Highway in Huaiyin and Yancheng. The blockage events in the K710–K971
section of the G2 Beijing–Shanghai Highway and the K126–K261 section of the S28 Qiyang
Highway reached a moderate level of six events in the central region of Suzhou.

There were fewer than two blockage events in the entirety of southern Jiangsu. The
spatial distribution of highway blockages in Jiangsu Province in February showed a decreas-
ing trend from north to south and from east to west, while the blockage events in March
were mainly concentrated in the K819–K1736 section of the G25 Changshen Highway in
the city of Huaiyin and in the K38–K136 section of the S18 Yanhuai Highway in the city of
Yancheng in April. There was a sudden increase in the number of blockage events in May,
mainly in the K890–K1093 section of the G15 Shenhai Highway along the eastern coast.
Some blockage events occurred in the K854–K1087 section of the G15 Shenhai Highway
in June but were substantially fewer than that in May. The number of highway-blocking
events increased further in December. The highway-blocking events were still mainly
concentrated in the coastal area and in the K854–K1087 section of the G15 Shenhai Highway,
with 5–8 blockage events recorded in the K854–K1094 section. The K0–K206 section of the
G30 Lianhuo Highway also had relatively high risk, with five to six recorded blockage
events, while the number of highway blockages remained below two in southern Jiangsu.
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Figure 5. Annual variation of highway blockage distribution in Jiangsu Province in 2020.

3.1.2. Diurnal Variation of Highway-Blocking Events

As seen from the diurnal variation of the highway blockage frequency in Jiangsu
Province in 2020 (Figure 6), highway-blocking events are mainly concentrated in the late
night and early morning hours. The number of blockages reached the peak value between
00:00 and 01:00 Beijing time (BT) with the value of 158. From 00:00 to 04:00 BT, there was a
decreasing trend in the frequency of highway blockages, and increased between 04:00 and
05:00 BT, reaching the second highest value of 135. The trend then decreased until 09:00
BT, with almost no blockage events from 10:00–21:00 BT. The number of blockage events
started to increase after 21:00 BT and reached 130 at 23:00 BT. During the late night and
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early morning hours, there was a greater number of events with blockage mileage over
200 km, as longer and more severe blockage events were common during this period.

Figure 6. Diurnal variation of the annual average frequency of highway-blocking events in Jiangsu
Province in 2020.

The spatial distributions of highway-blocking events during different time periods in
Jiangsu Province in 2020 are shown in Figure 7. It shows that the highway-blocking events
in Jiangsu Province are mainly concentrated between 00:00 and 08:00 BT. In general, the
number of events in the north is higher than that in the south, and more events occur along
the coast than inland. The overall trend shows the characteristic of decreasing from the
eastern coast to the west, with the most highway-blocking events on the eastern coast and
in the K888–K1004 section of the G15 Shenhai Highway. The section K744–K955 in the G2
Beijing–Shanghai Highway also has more highway-blocking events than average. During
the period of 09:00–17:00 BT, the number of highway blockages in the entire province
was relatively low; only the K765–K1098 section of the G15 Shenhai Highway and the
K40–K140 section of the S18 Yanhuai Highway in the eastern coastal area had more than
eight blockage events. There was an obvious increase in the number of highway blockages
in the K0–K90 section of the G30 Lianhuo Highway in Lianyungang and the K1840–K1933
section of the G25 Changshen Highway in Huaiyin from 18:00–23:00 BT compared to the
those during the period of 09:00–17:00 BT, showing an overall increasing trend from the
inland to the eastern coastal area from 18:00–23:00 BT.
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Figure 7. Spatial distributions of highway-blocking events during different time periods in Jiangsu
Province, 2020.

3.2. Vulnerability of Highways to Low-Visibility Weather in Jiangsu Province

This study determines the vulnerability of each road unit in the Jiangsu provincial
highway network to low-visibility weather by selecting data from the records of highway
disruption events. The blockage frequency, the cumulative duration of blockage, the
duration of blockage response, the duration of blockage rescue, and the duration of highway
blockage with false alarm were used as the vulnerability indicators. The specific indicators
are shown in Table 2.

Table 2. Indicators of highway network vulnerability assessment.

Target Level Guideline Level Number Program Level Number

Vulnerability

Sensitivity A
Blockage frequency A1

Cumulative duration of blockage A2
Blockage severity A3

Emergency response
capability B

Duration of blockage response B1
Duration of blockage rescue B2

Duration of highway blockage with false alarm B3

According to the indicator system in Table 2, the relative weights of the indicators
corresponding to each fuzzy consistent judgment matrix were calculated using the char-
acteristic root method to obtain the subjective weight. By unitizing the highway network
data, the weight was calculated using the CRITIC method. The optimal weight allocation
coefficients were determined to be those with the minimum standard deviation calculated
using Equations (11) and (12). The results are shown in Figure 8, and the final weight W
assignment was obtained using Equation (13). The final weights are shown in Table 3.

W = 0.5583W1 + 0.4417W2 (13)
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Figure 8. Variation of standard deviation with weight coefficient of W1.

Table 3. Weights of indicators for the vulnerability assessment.

Target Level
Guideline

Level
Program Level W1 W2 W

Vulnerability

Sensitivity

frequency of blockage 6.75% 28.34% 16.29%
cumulative duration of

blockage
17.57% 10.06% 14.25%

Blockage severity 19.14% 11.65% 15.83%

Emergency
response

capabilities

the duration of blockage
response

21.99% 15.66% 19.19%

Blocked rescue duration 17.87% 16.59% 17.30%
the duration of highway

blockages with false
alarms

19.14% 17.71% 18.51%

.
First, each vulnerability index in Table 3 was calculated in a standardized way. Then,

each vulnerability index of each road network unit was calculated. The final evaluation
value was obtained according to W, and the evaluation results was matched to the highway
network through GIS technology, as shown in Figure 9. It is obvious that the sensitivity
of highway network in Jiangsu Province to low-visibility weather presents a decreasing
trend from north to south. The vulnerability of highway network is higher in coastal areas
and lower in southern Jiangsu. It is worth noting that the frequency of highway blockage
in Nantong City is low, but the vulnerability is high, indicating poor capacity of disaster
relief in this section. The S49 Suyang highway section in central Jiangsu is highly sensitive.
Combined with the analysis of blockage events, the rescue response time of this section is
relatively high. The high vulnerability of G30 Lianhuo Highway in Lianyungang City is
mainly due to the high severity of a single highway-blocking event. For the highways in
coastal areas, although the frequency of highway-blocking events is higher, the cumulative
severity of highway blockage is lower, and the misreporting of highway blockage time is
less. It indicates that the abilities of disaster resistance and emergency response are good in
this area, which leads to a medium level of vulnerability. The density of the road network
in the whole of southern Jiangsu is relatively high, but it is kept at a low vulnerability due
to the low frequency of highway blockage in low-visibility weather.
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Figure 9. Distribution map of highway vulnerability in Jiangsu Province.

4. Discussion

4.1. Cause Analysis of the Blockage Distribution Due to Low-Visibility Weather

The reasons for the spatiotemporal distribution of highway-blocking events in Jiangsu
Province were analyzed in relation to existing studies. Consistent with previous research,
it has been observed that the hours between 00:00 and 04:00 BT are conducive to the
occurrence of fog in Jiangsu Province; there is favorable environment of high air humidity,
low wind speed, and cooling at nighttime.

Fog tends to last until 08:00 BT in the morning and begins to dissipate after sunrise,
when the solar radiation increases, the temperature near the ground rises, and the relative
humidity of the air decreases. This is one of the reasons that contribute to the sharp decline
in the blockage events related to low-visibility weather starting at 08:00 BT [40].

Generally, after 10:00 BT, the wind speed at ground level gradually increases until
approximately 14:00 BT, when it reaches the maximum value for the day. Aerosol particles
in the air are also more likely to disperse during this period. Therefore, the probability
of low-visibility weather is lower, and the number of highway-blocking events begins
to decrease accordingly [41]. When the lighting condition is better in the afternoon, the
visibility is less likely to be affected and to drop low enough to cause highway blockage,
which makes the occurrence of blockage events less frequent.

In the coastal area of northern Jiangsu, the topography is more complex, and surface
water is more widely available. Coastal geography also provides abundant water vapor
and appropriate conditions for the formation of fog [42,43]. As a result, the frequency of
highway blockage due to low visibility in the coastal area of northern Jiangsu is higher
year-round.

In summary, the seasonal distribution of highway-blocking events in Jiangsu obviously
shows fewer events in summer and more events in winter which is consistent with the
seasonal distribution of low-visibility weather. The diurnal variation of highway-blocking
events shows that more events occur in the nighttime and that fewer occur in the daytime.

4.2. Vulnerability Assessment and Analysis of Highway Network in Low-Visibility Weather

In this study, the highway network was segmented into units by GIS technology, and
the highway-blocking events from the highway blockage data record table were matched
with the road network information by matching function. Highway-blocking events can be
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quickly positioned on specific units, and the spatial distribution map of blockage events
can be effectively obtained.

The blockage events that have happened on each road network unit were sorted out
and analyzed, and the comprehensive weight assignment method combining the FTHP
and CRITIC methods was adopted to calculate the blockage event information of each road
unit, and the final vulnerability assessment result of the entire highway network in Jiangsu
Province to low-visibility weather was obtained. The result can be used to effectively avoid
traffic blockage in practice and provide reference for road safety operation management.

The distribution of road network vulnerability to low-visibility weather in Jiangsu
Province is higher in the north and lower in the south. The coastal and central regions are
more vulnerable than the southern inland regions. Among them, the highways in coastal
areas have higher frequencies of blockage events, but their overall vulnerability is at a
medium level due to the high capability of disaster resistance and emergency response. In
the whole network, the vulnerability is higher at the intersections of highways.

In the whole highway network, the vulnerability of east–west highways—such as
highways G30 and S18—which have poor performance in disaster preparedness is higher.
The northern part of G30 is the worst in terms of disaster resilience. In addition, highway
G25 in the north is highly sensitive, which leads to higher vulnerability. It is worth noting
that although the annual blockage frequency of G40 in Nantong City is low, the overall
vulnerability also reaches a medium level due to the long false alarm blockage time in
this section.

Studies on motorway disruptions in low-visibility weather have focused more on
the traffic flow and travel mode chosen by drivers [44,45]. Chaudhuri et al. [46] used the
10-year motorway accident data in Barcelona to build a risk model for the urban motorway
network through Bayesian networks. However, accidents are contingent, and a single high
damage accident can affect the risk assessment results of the whole network. In contrast,
the traffic-blocking events used in this study have covered a wider range, taking traffic
congestion in low-visibility weather into account, and can reduce the impact of a single
event to a certain extent.

Miomir et al. [47] used the fuzzy MARCOS method to analyze accident risk at 38 points
along a 7.3 km stretch of road, which is better for shorter roads but is not applicable to
the emergency preparedness planning and design for the whole road network. Some
scholars used accident data in their studies of road traffic risk and vulnerability, which are
inextricably linked to drivers, and some have also studied the characteristics of drivers in
traffic accidents.

It is therefore difficult to define whether the specific factors that contribute to each
accident are external environmental factors or the internal factors of drivers in the study of
highway accidents. In contrast, the traffic-blocking events are based on field record data,
which allows for a clearer identification of the weather factors that led to the blockage.

It is worth noting that the geographical environment of the specific highway was not
taken into account in this study for the vulnerability modelling process. However, in the
analysis of road traffic risk, the presence of bridges and tunnels, as well as the road gradient
and road surface material, are also important reference indicators which will be considered
in the analysis of key blocked sections in the future study.

4.3. Prevention and Control Measures in the Sections with High Blockage Frequency

In this study, we have selected the three most severely blocked highways, G15, G2,
and G25, which need the focus of attention of meteorological and traffic authorities. The
blocked sections in these highways were classified into three levels according to the number
of highway-blocking events: lighter, medium, and serious (Table 4). The meteorological de-
partment should prepare forecasts for low-visibility weather, and the transport department
should prepare in advance for low-visibility weather. Additional warning signs should be
erected on the blocked roads to remind drivers to pay attention to current road conditions
and slow down. On the other hand, light-emitting diode (LED) fog lights and monitoring
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equipment should be installed in the sections prone to severe low-visibility blockages,
and reserve ramps should be built in excessively long sections prone to blockage to clear
the traffic flow in the low-visibility weather. Staff and duty points should be arranged to
be on duty in advance in the blockage-prone periods and sections. Additional weather
stations are also needed to enhance monitoring capability. In the lighter-level sections, the
density of monitoring stations should be improved to 10 km per station, while the density
for the sections of medium and serious levels needs to be increased to 5 km per station.
Appropriate emergency plans and rescue measures for different levels of traffic-blocking
events also need to be improved. It is important to warn drivers before the occurrence of
blockage, and contact drivers in time to strengthen the diversion of traffic flow after the
end of blockage.

Table 4. Actions suggested by the traffic department.

Route Number
Highway
Blockage

Highway
Blockage
Section

Fog Lights
Suggestions

Road Proposal

G15

lighter

K1164–K1184

Unidirectional
mounting

Place warning signsK1217–K1251
K823–K835

K1182–K1216 Diversion road

medium
K760–K822

Bidirectional
installation

Diversion road
K836–K844 Place warning signs

serious
K846–K1163 Diversion road
K2122–K2190 Place warning signs

G2

lighter
K1089–K1190

Unidirectional
mounting

Diversion road
K972–K991

Place warning signs
K1039–K1088

medium
K710–734

Bidirectional
installation

Place warning signs
K979–K1061 Diversion road

serious K735–K970 Place warning signs

G25

lighter K1644–K1693
Unidirectional

mounting
Place warning signs

medium
K1827–K1932

Bidirectional
installation

Diversion road
K1763–1825

Place warning signs
serious K1695–K1760

5. Conclusions

This study used the traffic blockage data of highways in Jiangsu Province in 2020 to
identify and locate highway-blocking events for individual highway marker. By using the
Python programming language, GIS technology and mathematical statistics, the spatiotem-
poral distribution characteristics of highway-blocking events in Jiangsu Province were
analyzed, and the vulnerability of Jiangsu highway network to low-visibility weather was
assessed through the FAHP and CRITIC weight assignment methods. The main conclusions
are as follows.

Jiangsu Province has a distinct seasonal variation of highway blockage with a bimodal
pattern of annual variation. Blockage events are more likely to occur in winter, followed by
spring and autumn, and they are less likely to occur in summer. Most highway-blocking
events occur during late night to early morning, followed by early evening, with minimal
occurrence in the afternoon. The peak time of blockage occurrence is during 00:00–01:00
BT, with no blockage occurring during 09:00–21:00 BT.

More highway-blocking events occur in the north of Jiangsu Province than in the
south, and more blockage events occur in the eastern coast than in the western hinterland,
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which indicates an overall decreasing trend from the coastal area to inland. Lianyungang
and Yancheng are the cities with the highest incidence of highway blockage, whereas the
most blockage events occur on the G15 Shenhai highway in the coastal area.

The main distribution characteristic of vulnerability for the highways in Jiangsu
Province is higher in the north and lower in the south. The vulnerability of highways in
coastal areas is higher than in inland areas. Among them, the K2122–K2190 section of the
G25 Shenhai Highway, the K735–K970 section of the G2 Beijing–Shanghai highway, the
K1595–K1760 section of the G25 Changshen Highway, and the K6–K99 section of the G30
Lianhuo Highway are highly sensitive to low-visibility weather. The primary factors of
high vulnerability are different in different regions. Northern Jiangsu is dominated by high
sensitivity and low capabilities of disaster resistance and emergency response, while central
Jiangsu is dominated by the capabilities of disaster resistance and emergency response. The
vulnerability of highways in southern Jiangsu is at low level due to the few blockage events.

It is important to note that the time series of the highway blockage data used in the
study is relatively short, with only 1-year data available (2020), which imposes certain
limitations on the reliability of our results. It is expected that a longer time series will
be available in the future to verify the spatiotemporal distributions obtained from the
analysis presented here. Furthermore, the quantitative analyses of the spatial and temporal
variabilities of highway-blocking events cannot be conducted due to the complexity of road
environment factors, while only qualitative analyses can be conducted through literature
research, practical investigation, and professional knowledge. Currently, it is not possible
to quantitatively analyze the characteristics and causes of highway-blocking events by
combining various meteorological elements and geographic environmental factors, which
must be continuously improved in the future.
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Abstract: Based on meteorological observations, traffic flow data and information of traffic accidents
caused by fog or agglomerate fog along the expressways in Jiangsu Province and Anhui Province
in China from 2012 to 2021, key impact factors including meteorological conditions, road hidden
dangers and traffic flow conditions are integrated to establish the prediction model for risk levels of
expressway agglomerate fog-related accidents. This model takes the discrimination of the occurrence
conditions of agglomerate fog as the starting term, and determines the hazard levels of agglomerate
fog-related accidents by introducing the probability prediction value of meteorological conditions
for fog-related accident as the disaster-causing factor. On this basis, the hourly road traffic flow and
the location of road sections with a hidden danger of agglomerate fog are taken as traffic and road
factors to construct the correction scheme for the hazard levels, and the final predicted risk level of
agglomerate fog-related accident is obtained. The results show that for the criteria of disaster-causing
factor classification threshold, 72.3% of fog-related accidents correspond to a hazard of a medium
level or above, and 86.2% of the road traffic flow conditions are consistent with the levels of the
traffic factor defined based on parametric indexes. For risk level prediction, six out of the seven
agglomerate fog-related accidents correspond to the level of higher risk or above, which can help
provide meteorological support for traffic safety under severe weather conditions. Moreover, the
model takes into account the impacts of traffic flow and the road environment, which is conducive to
further improving the reliability of the risk assessment results.

Keywords: expressway; agglomerate fog; risk level prediction of fog-related accidents; meteorological
conditions; road hidden dangers; traffic flow conditions

1. Introduction

Fog is one of the most common disastrous weather events on expressways [1,2]. With
ab increasing road network density and the changing climate environment, the impacts of
fog on expressway traffic safety and traffic efficiency are becoming increasingly serious. In
China, the accumulated mileage blocked by fog is 1.78 times the total national expressway
mileage per year on average [3,4].

The occurrence, development and dissipation of fog are caused by multiple processes
(thermodynamical, radiative, dynamical and microphysical), and these processes inter-
act nonlinearly with each other. The micro-physical characteristics of fog can impact
the duration, radiation and visibility of fog. Many studies [5–10] on the micro-physical
characteristics of fog are conducted, and present the variation characteristics number, con-
centration and size of fog droplets, which can provide some reference for the improvement
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of parameterization schemes in numerical models via a better understanding of the mech-
anism of fog occurrence. For example, Haeffelin et al. [11] used the ParisFog dataset to
investigate the effect of hydrated aerosols on visibility, the role of aerosols’ microphysical
and chemical properties on supersaturation and droplet activation, and the role of turbu-
lence and sedimentation on fog life cycles. Guo et al. [12] used the data collected in the
project Low-Visibility Weather Monitoring and Forecasting in the Beijing–Tianjin region to
study the microphysical properties of aerosol, cloud condensation nuclei, the fog droplet
spectrum and liquid water content for an unusual fog-haze event that lasted for one week
in North China. They presented the physical characteristics of aerosol accumulation, as well
as the transition and mixture of aerosol and fog. Using a ground-based counterflow virtual
impactor, Duplessis et al. [13] measured the size distributions of fog droplet and aerosol
near Halifax on the eastern coast of Canada, as well as the fog droplet residuals. In addition,
many studies analyzed the macro characteristics related to the formation, development
and dissipation of fog, such as the synoptic pattern and meteorological factors (wind speed,
relative humidity and moisture) [14–16].

Since the 21st century, many scholars have gradually applied multi-source traffic mon-
itoring data to propose various real-time accident risk prevention and control techniques
by considering the comprehensive effects of road traffic flow, weather conditions and road
features [17–20]. Xu et al. [21] took into account the meteorological elements of precipita-
tion and visibility when using logistic regression to assess the impacts of environmental
factors and real-time traffic conditions on expressway crash risks, thus improving the
prediction accuracy of expressway accident occurrence by 6.8%. Based on the real-time
traffic flow data on foggy days, Wu et al. [22] estimated the influences of traffic and weather
variables on rear-end collisions using the random logistic regression and negative binomial
distribution models.

In China, systematic studies have been conducted on various aspects including the
disaster-causing mechanism in the foggy section of expressways, dense fog or visibility
monitoring and forecasting as well as road traffic safety and security measures [23–27].
Specifically, the quantitative impact assessment of foggy weather on expressway traffic
safety is the key to defending against fog damage. Based on machine learning algo-
rithms, using traffic accident information and meteorological observations, some important
accident-related variables are selected, such as time, geolocation and the meteorological en-
vironment. Then, the mathematical models of the accident probabilities are built, which can
be used to assess the real-time traffic safety state on expressways during foggy days [28,29].
Additionally, the factors indicating accidents under low visibility conditions are selected
from the observed or simulated traffic parameters including upstream and downstream
traffic volume, speed and occupancy rate, and the road traffic safety status under foggy
conditions is quantitatively evaluated by detecting the number of traffic conflicts or safety
distance [30]. The occurrence of accidents is linked to drivers, vehicles and roads (en-
vironment), but only a few scholars have integrated multi-source information (such as
traffic, weather and visual information) into risk prediction due to the complexity and data
availability of road traffic systems. For example, Qu et al. [31] introduced the single traffic
flow and road environment to establish a risk level prediction model of fog disasters on
expressways in Hebei Province. Tian et al. [32] established a weather risk warning index
system for expressway traffic safety control by introducing the traffic flow, road alignment
and location type. However, in general, the spatio-temporal resolutions of these forecast
models are low, and the timeliness is poor. Moreover, the input data of non-meteorological
factors in the model are static, and thus the dynamic driving capability of the models is
obviously limited.

Agglomerate fog is a low-visibility weather phenomenon with locality, abruptness and
spatio-temporal inhomogeneity, and it is also a difficult problem during road traffic weather
monitoring, forecasting and early warning services. In China, the rate of traffic accidents
caused by agglomerate fog is found to be 2.5 times that caused by other severe weather
events, and the number of casualties in agglomerate fog-related accidents accounts for
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29.5% of the total number of casualties in traffic accidents [33]. Up to now, many scholars
have carried out studies on expressway agglomerate fog, with their focus on fog formation
and dissipation [34–36], simulation and diagnosis [37–39], distribution law [40–42] and
disaster-causing mechanisms [43–45], while there are few studies on the impact forecasting
or risk early warning of agglomerate fog traffic accidents. To this end, taking the Jiangsu
and Anhui area (hereinafter referred to as the “test area”, as shown in Figure 1) where
agglomerate fog accidents occur frequently as an example, this study establishes a risk level
prediction model for expressway agglomerate fog accidents by integrating the key impact
factors (meteorological environment, road hidden dangers and traffic flow conditions) and
proposing the factor classification threshold determination method. This model provides a
new approach to predict the agglomerate fog-related accident risk level. It is noteworthy
to mention that the introduction of dynamic traffic parameters and the determination of
factor classification thresholds in this study is more objective than that in past studies. We
hope the results of this study can help improve the fine-resolution meteorological impact
prediction and disaster prevention capability for expressway traffic safety under severe
weather conditions.

Figure 1. Basic information of the test area.

The remainder of this paper is organized as follows. Section 2 describes the data
sources. The modeling method is provided in Section 3. The values and calculation
procedures of the disaster-causing factor, traffic factor and road factor are given in Section 4.
Section 5 presents the application and validation of the risk level prediction model. Finally,
Section 6 gives the conclusions and discussion.

2. Data

In this study, the meteorological observation data are obtained from 616 traffic me-
teorological stations, 317 regional meteorological stations and 30 national meteorologi-
cal stations along the expressways in the test area, which are provided by the National
Meteorological Information Center of the China Meteorological Administration. The
data quality control method refers to the “Quality Control of Meteorological Observation
Data-Surface” (QX/T 118-2020) of the meteorological industry standard of the People’s
Republic of China. The traffic accident data in foggy or agglomerate foggy days are
from the traffic control departments and news reports of media. The two kinds of data
cover the period from 2012 to 2021. The traffic flow data such as vehicle flow rate and
congestion index are calculated via road section estimation and road matching based
on the mobile location information from internet navigation and national heavy-load
freight, which covers the period from 2018 to 2021. These kinds of data are derived
from the National Intelligent Road Network Monitoring Platform, and the website is
http://hmrc.palmgo.cn/lwzx2/a1c64c3e6c9b76efcbccb8effd58fcad.html (accessed on 15
May 2023). In terms of the information of road sections with hidden dangers due to agglom-

59



Atmosphere 2023, 14, 960

erate fog, this study uses the information of road sections with frequent agglomerate fog
released by the Traffic Administration Bureau of the Ministry of Public Security of the Peo-
ple’s Republic of China in recent years, and the results of expressway traffic meteorological
disaster risk survey by the China Meteorological Administration.

3. Modeling Method

3.1. Index Selection

Road traffic accident risk is jointly determined by the driver, vehicle and road envi-
ronment. Considering the predictability of traffic accident systems, three types of indexes
(weather, traffic and road) are selected to construct a risk level prediction model for ex-
pressway agglomerate fog-related accidents.

The traffic accidents in foggy days are closely related to the synoptic background.
The hazard of meteorological conditions for agglomerate fog-related accidents is selected
as the disaster-causing factor and the core index to construct the risk level prediction
model. In addition to its low visibility, fog can often cause the reduction in the road friction
coefficient through the interaction between fog droplets and dust, or through forming a
thin layer of ice on cold road surfaces. By using the random forest and support vector
machine algorithms, Song et al. [28,29] established a model depicting the relationship of
the probability of fog-related accidents within an hour with the meteorological elements
(visibility, relative humidity, wind, air temperature, etc.) and related derived variables,
where recursive feature elimination and principal component analysis were used for feature
selection. By using the results of the two models, the probability prediction value P of
the meteorological conditions for the occurrence of fog-related accidents is obtained by
weighting, which is used as the disaster-causing factor. The formula is as follows:

P =
2

∑
i=1

pi × αi (1)

where p1 is the probability prediction value output by random forest model, p2 is the
probability prediction value output by the support vector machine model, and αi is the
weight coefficient. Considering risk prevention and control, it is hoped that the events are
not missed. Hence, the ratio between the recall rates of the two models in the training set is
used as the criterion for weight assignment. For the training sample consisting of the same
accident group and control group, the recall rate of the random forest model and support
vector machine model is 75.4% and 81.4%, respectively. Therefore, α1 and α2 are 0.48 and
0.52, respectively.

The traffic factor is a dynamic correction index of the risk level prediction model for
expressway agglomerate fog-related accidents. The traffic operation of road network is
closely related to traffic meteorological disasters, and the traffic flow situation should be
considered when studying unfavorable weather effects [46]. Taking the sections of the
Beijing–Shanghai Expressway, Beijing–Taipei Expressway and Nanjing–Luoyang Express-
way in the test area where fog-related traffic accidents frequently occur as an example, the
accumulated number of fog-related accidents (Figure 2a) is generally consistent with the
annual average foggy days (visibility < 1 km) along the expressways in terms of spatial
distribution (Figure 2b). The determination coefficient of the power function fitting curve
is 0.106, which passes the confidence test at a 95% confidence level. However, it is also
influenced by the operation status of expressway traffic (Figure 2c), and the determination
coefficient of the power function fitting curve is 0.078, which passes the confidence test at a
95% confidence level. From the perspective of temporal distribution (figure omitted), dense
fog occurs frequently during 03:00–08:00 BST (Beijing standard time, the same below) and
peaks during 05:00–07:00 BST, while fog-related accidents occur mainly during 05:00–10:00
BST and peak during 07:00–08:00 BST when the traffic flow increases rapidly. Hence, this
study chooses hourly traffic flow prediction as the traffic factor for the dynamic correction
of the risk level of the occurrence of expressway agglomerate fog-related accidents.
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Figure 2. Spatial distributions of (a) accumulated number of fog-related accidents from 2013 to 2018,
(b) annual average dense fog days from 2013 to 2018, and (c) average daily traffic flow from 2018
to 2021.
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The road factor is a static correction index of the risk level prediction model for
expressway agglomerate fog-related accidents. Agglomerate fog is usually formed under
the background of meso–micro-scale circulation systems over mountainous areas, river
valleys and areas with dense river networks [45], exhibiting specificity in terms of the
geographical environment of roads. In this study, the location information of segmented
roads in the test area is collected as the road factor, which is used for the static correction
of the risk level by identifying the special form of a disaster-pregnant environment with
hidden dangers in the risk level prediction model.

3.2. Assessment Procedure

As shown in Figure 3, the assessment procedure consists of three key steps: discrim-
ination of the occurrence of agglomerate fog, risk level initial prediction of agglomerate
fog-related accidents based on the disaster-causing factor, and risk level correction of
agglomerate fog-related accidents based on traffic and road factors. To achieve the op-
erationalization and visualization of this prediction model, the hierarchical threshold
determination method is used to quantify the factors in the model.

Figure 3. Flow chart for risk assessment of agglomerate fog-related accidents.

In the first step, the occurrence of expressway agglomerate fog is taken as the starting
term of the risk level prediction model for expressway agglomerate fog-related accidents. If
the meteorological forecast data on segmented road in the test area meet the predetermined
conditions for the occurrence of agglomerate fog, the risk level of traffic accident is further
calculated; otherwise, the risk is directly determined to be low. The test area consists of
two parts: Jiangsu Province and Anhui Province. According to the data of agglomerate
fog-related traffic accidents recorded by the traffic department, the variation characteristics
of meteorological factors (visibility, relative humidity, temperature and wind) around
agglomerate fog occurrence are analyzed to establish the meteorological forecast indexes
for agglomerate fog in the two provinces separately (Table 1). Specific details can be found
in Tian et al. [35] and Gao et al. [36].
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Table 1. Meteorological forecast indexes for agglomerate fog in the test area.

Meteorological Characteristics
of Agglomerate Fog

Jiangsu Province Anhui Province

Background conditions Fog weather background Fog weather background
Relative humidity >92% >86%

Daily temperature decrease >7 ◦C >8 ◦C
Wind speed <2 m s−1 <1 m s−1

In the second step, the pre-trained meteorological probability prediction model for
fog-related accidents is utilized to obtain the probability prediction value of meteorological
conditions for fog traffic accidents on corresponding road sections. According to the
mapping relationship between the configured ranges of the disaster-causing factor at
different hazard levels and the risk levels of agglomerate fog-related traffic accidents, five
levels are initially determined, which are in the order of the extremely high level (Level 5),
high level (Level 4), medium level (Level 3), low level (Level 2) and extremely low level
(Level 1).

In the third step, the defined thresholds for grading the traffic factor and road factor
are utilized to classify the traffic flow conditions (peak and off-peak periods) and road
locations (special and ordinary types). Combined with the emergency handling experience
of public security traffic administration departments, the hazard levels of meteorological
conditions for agglomerate fog-related accidents are adjusted. On this basis, four risk levels
are obtained (Table 2), where Level I (severe risk), Level II (very high risk), Level III (high
risk) and Level IV (general risk) indicate the extremely high, very high, high and general
possibilities of the occurrence of traffic accidents induced by expressway agglomerate
fog, respectively.

Table 2. Classification of the risk levels for the occurrence of expressway agglomerate fog-related
accidents.

Hazard Level of Disaster-Causing Factor
Ordinary Location Special Location

Off-Peak Peak Off-Peak Peak

Extremely high (Level 5) I I I I
High (Level 4) II I I I

Medium (Level 3) III II II II
Low (Level 2) IV III III III

Extremely low (Level 1) No IV IV IV

4. Factor Values and Calculation

4.1. Classification of Disaster-Causing Factor

According to Equation (1), the probability prediction values of meteorological con-
ditions for fog-related accidents corresponding to 418 fog events [28,29] in the training
set are calculated, and then the frequency of disaster occurrence at a probability interval
of 0.05 is calculated by using the statistical method of histogram. Figure 4 reveals that a
significant negative skewness appears in the distribution of disaster frequency correspond-
ing to the probability of meteorological conditions, with the skewness and kurtosis being
−1.36 and 1.21, respectively, and the left side of the peak shows a monotonically increasing
trend. Thus, we count the frequency of fog-related events in the left range of the peak at
intervals of 0.01 probabilities. Then, the first occurrence of three consecutive intervals with
a frequency of more than or equal to 2 is defined as the change point where the accident
frequency begins to increase significantly. The average of the meteorological condition
probability prediction value corresponding to the continuous interval is calculated and is
used to determine the initial probability value of the meteorological conditions that induce
traffic accidents on foggy days. It is found that the probability value of disaster-causing me-
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teorological conditions is 0.19, which is taken as the critical threshold for disaster-causing
factor at Levels 1–2.

Figure 4. Histogram of disaster frequency of fog events corresponding to disaster-causing factor.

The thresholds for disaster-causing factors at Levels 2–5 are further determined based
on the cumulative distribution function. The fitting equation is determined according to
the features of the cumulative distribution functions of the probability of meteorological
conditions for fog-related accidents and the frequency of fog events, which conforms to
the exponential characteristics. On this basis, the predicted values of the probability of
meteorological conditions corresponding to the cumulative frequency of 25%, 50% and 75%
are used as the critical thresholds for disaster-causing factor at Levels 2–3, Levels 3–4 and
Levels 4–5, respectively. Using the samples of 47 fog events and 141 non-fog events from the
validation set [28,29], Table 3 validates the rationality of the of hazard of a disaster-causing
factor. The results show that the frequency of disasters at the five hazard levels is consistent
with the criteria for index classification. Approximately 72.3% of fog-related accidents
correspond to a hazard of a medium level or above, while the false alarm rate is about 7.1%.

Table 3. Defined hazard levels for disaster-causing factor and corresponding effect validation.

Hazard
Extremely Low Low Medium High Extremely High

[0, 0.19) [0.19, 0.60) [0.60, 0.75) [0.75, 0.84) [0.84, 1]

Number of
accidents 2 11 14 12 8

Number of
non-accidents 105 26 7 3 0

4.2. Classification of Traffic Factor

With the increasing traffic flow, the car following distance on the expressway becomes
smaller, which makes it prone to causing traffic accidents due to low visibility, slippery
road conditions or improper operation. The traffic risk under foggy weather conditions is
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basically proportional to the traffic volume, and the traffic flow can be divided into off-peak
(normal) and peak (risk) periods according to the variations in hourly traffic volume [32].
Considering that each province has different management standards for expressways
within its jurisdiction, the classification thresholds for traffic factor are determined in each
province.

The hourly traffic flow of the expressways in the test area during 2018 to 2020 is
extracted in sections based on the county level, which is further divided into several
sections at 5th-percentile interval. Furthermore, the average value of the congestion index
in each section is calculated in two provinces. The congestion index is a comprehensive
parameter characterizing the operation state of road traffic and the change in traffic flow,
which is expressed as follows:

IA,T =
N

∑
i=1

li × βi,T , i ∈ A (2)

where IA,T is the congestion index in the analysis area, A, during the period, T (unit: km h),
li is the length of road section i (unit: km), βi,T is the cumulative congestion (speed less than
40 km h−1) duration on road section i during the period, T (unit: h), i is the road section
number, and N is the total number of road sections within the analysis area.

With the increasing road utilization rate, the mutual interference between vehicles is
aggravated, and the growth characteristics of the congestion index with traffic volume also
changes significantly. The variations in the average congestion index in the unit percentile
section of hourly traffic flow are shown in Figure 5. It is found that the line type usually
changes from near-linear growth to near-exponential growth. In this study, split points are
set from 15% to 85% at an interval of 5%, and the linear fitting formula and the exponential
fitting formula between the mean congestion index and the corresponding percentile before
and after split points are calculated separately; the goodness-of-fit values on the two fitting
curves are recorded separately. The split point corresponding to the maximum value
of the average goodness of fit is determined as the position where the congestion index
abruptly changes, and the corresponding percentile value of traffic flow is adopted as
the classification threshold for the traffic factor. It is found that the largest value of the
average goodness of fit appears at the split point that adopts the 55th percentile of the
historical hourly traffic flow dataset, which can be regarded as the cut-off point when the
traffic flow becomes saturated with conflict from the free and stable state. Accordingly,
the 55th percentile value of the above historical hourly traffic flow dataset is defined as
the classification threshold for traffic the factor (9871 vehicles h−1 in Jiangsu Province and
5405 vehicles h−1 in Anhui Province). If the hourly traffic flow on the segmented road
during the target time period is higher than the threshold, it is considered the peak (risk)
traffic flow condition; otherwise, it is regarded as the off-peak (normal) condition.

Considering the difficulty of obtaining real-time traffic flow data, this study constructs
the parametric index of the traffic factor by calculating the average hourly traffic flow during
2018–2020 based on the spatio-temporal distribution characteristics of traffic flow with
the county-level sections, with months and hours as basic statistical units, which is used
to simulate the traffic flow conditions on corresponding road sections in similar periods.
Additionally, to characterize the distinct features of the sharp increase in traffic flow and
peak hours on holidays (such as the New Year’s Day and the Spring Festival), the parametric
indexes for the traffic factor during holiday periods are constructed differentially. Table 4
validates the rationality of the classification of the traffic factor using the observed traffic
flow in 2021. The results show that the parametric index of the traffic factor constructed from
historical data has a strong positive correlation with that constructed from the observed
data (statistically significant at the 99% confidence level), with which can well-simulate
the trend variations of hourly road traffic flow. Furthermore, about 86.2% of the traffic
factor levels are consistent with the conditions of road traffic flow defined based on the
observed data.
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Figure 5. The variation curve of congestion index corresponding to the percentile of hourly traffic
flow (taking the split point of 55% as an example).

Table 4. Effect validation of the classification of traffic factor levels.

Validation Scope

Pearson Correlation Coefficient
between Parametric Index of Hourly

Traffic Flow and Observed Data

Consistency of Traffic Factor Levels Classified Based on
Parametric Index and Observed Data

Consistent with Traffic Flow
Conditions

Inconsistent with Traffic
Flow Conditions

Jiangsu Province 0.850 85.6% 14.4%

Anhui Province 0.867 87.0% 13.0%

Test area 0.860 86.2% 13.8%

4.3. Identification of Road Factor Hidden Danger

Using the spatial analysis technique based on the geographic information system, the
road within a range of 1 km around the road section with frequent agglomerate fog in
the test area are marked as special location, and the rest are marked as ordinary locations.
Under similar weather conditions, the topographical features around the special road
section are more conducive to the formation and maintenance of agglomerate fog, which
help increase the occurrence probability of agglomerate fog-related accidents.

5. Application and Validation

5.1. Overall Situation

Seven agglomerate fog-related accidents in the test area from 2015 to 2021 are selected
as the test samples to assess the application of the risk prediction model for expressway
agglomerate fog-related accidents. The hindcasts give the risk level of test samples and
the classification of each factor, as shown in Table 5. Overall, six out of seven agglomerate
fog-related accidents correspond to risk level III or above, where three correspond to
the level of severe risk and three are at the level of higher risk. For the No. 4 traffic
accident on the Huaibei section of the Sixu Expressway (S06), the risk of agglomerated
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fog-caused accidents is predicted to be low as the daily temperature decrease fails to reach
the conditions for agglomerate fog formation, while the meteorological, traffic and road
factors are all conducive to the occurrence of traffic accidents. The introduction of traffic
factor and road factor has appropriately raised the risk levels of agglomerate fog-related
accidents on local road sections, especially for cases in which a low-visibility condition is
not evident around the location of the traffic accident. For example, the visibility at the
adjacent traffic weather station I5814 in accident No. 1 is approximately 2.6 km, and the
disaster-causing factor corresponds to the level of low hazard. However, considering that
it is a special location with frequent agglomerate fog events, the model adjusts the risk of
the occurrence of agglomerate fog-related accidents on this road section from level IV to
level III. In accident No. 2, the visibility at Station I2858 near the accident location is higher
than 3 km before and after the accident. However, affected by the increase in traffic flow on
the National Day, the traffic operation on this road section is in a peak condition. Therefore,
the model adjusts the risk of agglomerate fog-related accident from level IV to level III. It
can be seen that the model is of good indicative significance for the risk of agglomerate
fog-related accidents, especially for the identification and warning of road sections and
periods of risks under atypical disaster-causing meteorological conditions.

Table 5. Validation of the model application based on agglomerate fog-related accidents.

Number Accident Occurrence Period Location Situation

Distance of Traffic Station from
the Accident Location and

Corresponding
Average/Minimum Visibility

Agglomerate
Fog Index

Hazard
Factor

Traffic
Factor

Road
Factor

Risk
Level

1 13 February 2021 07:00–08:00 BST
Tongling, Anhui,

Shanghai–Chongqi-ng
Expressway (G50)

7 accidents of several
vehicles scraping each

other and rear-end
collision

1 km (I5814)
2666/1630 m

matches the
conditions

Level 2 Off-peak Special III

2 3 October 2019 06:00–07:00 BST
Bengbu, Anhui,

Nanjing–Luoyang
Expressway (G26)

10 people dead and
7 injured in 4 accidents

8 km (I2858)
3768/3432 m

matches the
conditions

Level 2 Peak Ordinary III

3 15 November 2017

07:00–08:00 BST Fuyang, Anhui,
Chuzhou–Xincai
Expressway (S12)

18 people dead and
21 injured in multi-point

and multi-vehicle
collisions

1 km (I2754)
80/57 m
71/68 m

matches the
conditions

Level 5 Peak Special

I

08:00–09:00 BST
matches the
conditions

Level 5 Peak Special

4 5 February 2017 08:00–09:00 BST
Huaibei, Anhui,
Sixian–Xuchang

Expressway (S06)

16 vehicles damaged and
6 people injured

3 km (I1358)
226/165 m

mismatch
with the

conditions
Level 5 Peak Special No

5 2 April 2016 12:00–13:00 BST
Changzhou, Jiangsu,
Shanghai–Chengdu
Expressway (G42)

51 vehicles damaged,
3 people dead and

31 injured

5 km (M9112)
1058/846 m

matches the
conditions

Level 2 Peak Ordinary III

6 7 December 2015 00:00–01:00 BST
Yancheng, Jiangsu,
Shenyang–Haikou
Expressway (G15)

3 people dead and
3 injured in multi-vehicle

collisions

4 km (M9437)
87/75 m

matches the
conditions

Level 5 Peak Ordinary I

7 23 May 2015 06:00–07:00 BST
Lianyungang, Jiangsu,

Shenyang–Haikou
Expressway (G15)

4 people dead and
8 injured in dozens of

rear-end collisions

3 km (M9433)
197/115 m

matches the
conditions

Level 4 Peak Ordinary I

5.2. Typical Cases

From 07:35 BST to 08:57 BST on 15 November 2017, a multi-point and multi-vehicle
rear-end collision occurred on the road section from 191 km to 194 km along the down-
ward direction of the Chuzhou–Xincai Expressway (S12) due to sudden agglomerate fog,
resulting in 18 deaths, 21 injuries and 70 vehicles damaged.

Figure 6 provides the output of the risk prediction model of the expressway agglom-
erate fog-related accidents. It can be seen that the risk level in northwestern Anhui is
obviously higher than that in other road networks in the test area before and after the occur-
rence of accidents. Since the early morning of November 15, the coverage of higher-risk or
above of agglomerate fog-related accidents has gradually expanded from the northwest to
southeast, and rapidly weakened from southeast to northwest after reaching its peak during
06:00–07:00 BST. From 08:00 BST to 09:00 BST, there was generally no risk of agglomerate
fog-related accidents along the expressway in the test area, but the accident section still
showed the severe risk level, indicating that the simulation results are reasonable and can
provide targeted tips for determining the risk of local road traffic safety.
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Figure 6. Assessment results of the risk level prediction model of expressway agglomerate fog-related
accidents (from 04:00 BST to 10:00 BST on 15 November 2017).
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From the evolution of road traffic risks at the accident location (Figure 7), the entire
accident section (191–194 km) showed an extremely high risk level of traffic accidents
induced by agglomerate fog two hours before the first traffic accident. After 09:00 BST,
the entire accident section returned to a no-risk situation, coinciding with the end time of
this series of traffic accidents. Particularly, the section east of the accident location (Station
I3262) is the section with the earliest occurrence time of severe risk (Level I), and the closer
section west of the accident location (Station I2754) is the section where the risk of an event
at Level I finally disappears.

Figure 7. Evolution process of the risk levels of agglomerate fog-related accidents in the accident
section (the shading indicates the period when the accident occurred).

6. Conclusions and Discussion

For severe weather-related traffic accidents, the key impact factors including mete-
orological conditions, road hidden dangers and traffic flow conditions are integrated to
establish the risk assessment procedure and risk level prediction model for expressway
agglomerate fog-related accidents, which consists of three core steps—discrimination of the
conditions for agglomerate fog occurrence, risk level initial prediction of agglomerate fog-
related accidents based on disaster-causing factors and risk level correction of agglomerate
fog-related accidents based on traffic and road factors.

The probability prediction value of meteorological conditions for fog-related accidents
is taken as the disaster-causing factor. The thresholds for five levels of disaster-causing
factor are determined according to the statistical relationship between the frequency of
historical fog-related events and the probability of meteorological conditions in the corre-
sponding periods. The validation reveals that approximately 72.3% of fog-related accidents
correspond to a hazard of the medium level or above.

The predicted value of hourly road traffic flow is taken as the traffic factor, and the
thresholds of traffic factor levels are determined in each province based on the variation
characteristics of the congestion index increasing with the traffic volume. There is a good
consistency between the traffic factor levels defined based on the parametric index of traffic
flow and the observed traffic data in 2021, where the traffic flow conditions with the same
type account for about 86.2%.

Based on the analysis and validation of seven cases of agglomerate fog-related acci-
dents from 2015 to 2021, it is found that three cases correspond to the level of higher risk
and three correspond to the level of severe risk, indicating that the prediction results can
support the demand for meteorological support for traffic safety under severe weather
conditions. In addition, the comprehensive consideration of traffic flow and road environ-
ment impacts can help in the accurate identification of key prevention areas on foggy or
agglomerate foggy days and the timely research and judgment of the risk periods, which
can improve the quality of prediction of the risk of agglomerate fog-related accidents.

This study proposes a new research idea and methodological exploration for the risk
prediction of agglomerate fog-related accidents, especially for the dynamic consideration
of the impact of road traffic flow conditions and the objective calculation of the factor
classification thresholds. However, the prediction accuracy is restricted by the limited
road condition data. In the model prediction, the real-time-measured information of
traffic flow parameters is not introduced, and some other factors such as road shape and
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vehicle type are not considered. In the future, we need to use more fog-accident data
and more detailed traffic and meteorological data to conduct studies on the influencing
mechanism of unfavorable weather conditions and the associated relationship. On this
basis, by introducing the real-time traffic flow parameters and more impact factors such
as road characteristics and vehicle types, we may continuously modify and improve the
risk prediction model of agglomerate fog-related accidents, which is beneficial to further
enhancing the reliability of the assessment results.
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Abstract: Based on the pavement temperature observation data of the transportation meteorological
stations along the Xianyang Airport Expressway, China, as well as the datasets of precipitation and
sunshine hours obtained from the nearby weather stations, the variation characteristics of local
pavement temperatures are investigated for winter in this study. Results indicate that during the
daytime, the pavement temperatures are always higher on sunny and cloudy days than those on
rainy and snowy days, while during the nighttime, the temperatures on sunny and cloudy days are
higher than those on the days with freezing rain and snow, and with the temperatures on rainy and
snowy days without icing being further higher. In general, the pavement temperatures in winter
features significant periodic oscillations with cycles of roughly 24 h, 12 h, 8 h, 6 h, 5 h and 4 h, which
differ slightly at different times for different stations. Moreover, the nowcasting experiments on
the local pavement temperatures are also carried out using a regression model via extracting the
corresponding periodic features. It shows the mean absolute errors of about 0.6 ◦C, 1.2 ◦C, and 1.5 ◦C
for lead times of 1 h, 2 h, and 3 h, respectively. The nowcasting skills are higher on rainy and snowy
days, while are inferior on sunny days. For nowcasting cases initialized at nighttime (daytime), the
mean absolute errors are 0.4 ◦C (0.7 ◦C) and 0.9 ◦C (1.4 ◦C) for lead times of 1 h and 2 h. Examinations
suggest that the nowcasting system could be well utilized in plain areas of China, whereas it shows
relatively larger biases in plateau areas with complex terrain.

Keywords: pavement temperature; nowcasting; variation characteristics; forecast validation

1. Introduction

In winter, the low temperature combined with the rain and snow tend to trigger
freezing events and lead the road to be slippery. It increases the braking distance and
reduces the anti-sideslip ability of vehicles, which poses severe threats to transportation
safety. Previous statistics have revealed that the collision and scraping accidents of vehicles
in snowy weathers are roughly 14 times of those in sunny weathers [1]. In China, the traffic
accidents in snowy days account for 6.93% of the total, thus being the second most crucial
meteorological factor for inducing traffic accidents. On 7 December 2001, slight snowfall in
Beijing caused a severe traffic jam in the city due to its coincidence with the off-duty traffic
peak [2,3].

The pavement temperature forecast is one of the most important parameters for
predicting road icing and snow. It directly affects the effectiveness of road icing and snow
state identification in the near future. The current study focuses on the Xi’an Xianyang
Airport Expressway in China, which is the traffic artery leading to the airport in Xi’an
with large traffic flows. However, its safe and smooth operation is certainly threatened by
weathers of low temperature, rain, snow and freezing. Therefore, it is of great significance to
investigate the temporal variation characteristics of local pavement temperature in winter
and its nowcasting, which is favorable for effective forecasts of snow and icing on the
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airport expressway. At the same time, the nowcasting method established for this region is
helpful to improve the pavement temperature prediction for other areas [4].

With respect to the prediction techniques of pavement temperatures, the physical
models have already been developed based on the surface energy balance earlier in the
United States and several countries in Europe [5–9]. Additionally, these models have
also been continuously improved and optimized by revealing the interactions between
meteorological and pavement conditions [10,11]. Generally, the mechanisms of pavement
temperature predictions have been studied well, and multiple numerical models have
been used worldwide [12]. Meanwhile, on this basis, combined with the multi-source data
fusion analysis and forecasting system, several methods have been developed on refined
predictions of pavement temperatures, which could be scrolled at high frequencies and
could better meet the requirements of transportation users [13,14].

In China, investigations on pavement transportation meteorology started relatively
late. In recent decades, some provinces such as Jiangsu, Beijing and Hebei have organized
transportation meteorological operational businesses to deal with the severe effects of low
temperature, rainy, snowy and freezing weathers on pavement traffic [15–17]. Multiple
physical and statistical models have been established to automatically predict the pavement
temperatures, which are examined and demonstrated to be effective in local forecast
businesses [18]. These models are generally combined with the applications of numerical
prediction products and the lead times mainly range from 0 to 24–48 h [19,20]. It is of great
significance for the identification of low temperature, rainy, snowy and freezing events
in the short term [21,22]. The predictions of pavement conditions are affected by plenty
of factors including not only the accuracy of meteorological forecasts but also the initial
observation of transportation road surfaces, the shading effect of surrounding obstructions,
the emission of human activities, and the pavement heat conductions, etc. Therefore, the
forecast accuracy of pavement conditions such as temperatures is generally limited and
less skillful than that of the conventional meteorological elements [23,24].

The accurate perception and prediction of pavement status play crucial roles in the re-
alization of vehicle–road coordination and establishment of the smart highway. The refined
meteorological services on hundred-meter-level and minute-level resolutions are becoming
an important guarantee for smart transportation capacities at all weather conditions. In
recent years, the departments of public security, transportation and meteorology have coop-
erated on the joint prevention and mitigation of severe weather impacts, which brings about
the increasing demands for forecasts of low temperature and icing pavements with higher
resolution and accuracy. In general, the forecast skills tend to decrease (increase) with
longer (shorter) lead times. Tang and Guo [25] used the autoregressive summation moving
average method to explore the fluctuation pattern of winter pavement temperature in the
near future under the impacts of external factors, and constructed a short-term forecast
model of winter pavement temperature with lead times of 3 h based on the transporta-
tion meteorological observations at minute-by-minute intervals. Further, Wang et al. [26]
carried out the nowcasting experiments using the random forest regression method for
transportation meteorological stations alongside the Ning-Su-Xu Expressway in Jiangsu
Province, detecting the influences of different input schemes and parameters of different
observation stations on the pavement temperature forecasts. On the basis of the physical
METRo model with surface energy balance principles, Qu et al. [27] conducted studies on
the 0–6 h forecasts of pavement temperatures for the Beijing–Zhangjiakou Olympic Winter
Games-associated expressway, revealing that the forecast during nighttime is characterized
by root-mean-square errors of ~1 ◦C and is superior to that during daytime. Comparisons
indicate that the statistical methods constructed on the observation analyses show generally
higher forecast skills than the physical models based on the surface energy balance for the
nowcasting of pavement temperatures [25–27].

In the current paper, the variation characteristics of observed pavement temperature
in winter are to be investigated for two transportation meteorological stations along the
Xianyang Airport Expressway in Xi’an, China. On this basis, a pavement temperature
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nowcasting method is proposed via extracting the periodic features of the temperature
temporal series and constructing the associated regression model, which is examined for
pavement temperature nowcasting experiments at a 10 min rolling update and a 10 min
interval. Meanwhile, the impacts of different sample amounts, different weather conditions,
and different initialization times on the nowcasting effects are also investigated in detail.
In addition, similar examinations on pavement temperature nowcasting are carried out
for multiple expressways to further verify the applicability of the proposed method for
different regions.

2. Dataset and Methodology

2.1. Dataset

The hourly observation datasets of the two transportation meteorological stations
(V0001 (108.92◦ E, 34.37◦ N) and V0002 (108.90◦ E, 34.43◦ N), as shown in Figure 1) along
the Xianyang Airport Expressway in Xi’an, China were obtained for the two winters of
2018/2019 and 2019/2020 from the data platform of China Meteorological Administration.
The two stations are located at the two ends of the No. 2 Grand Bridge over the Weihe
River. Station V0001 is in the suburban area. There are many building facilities around,
and the traffic flow is relatively complex. Station V0002 is located in the outer suburbs. It
is surrounded mainly by farmland, and there are also a few buildings. The altitudes of
Stations V0001 and V0002 are 37.1 m and 40.7 m, respectively. The observation elements
include pavement temperature, surface air temperature, wind speed, wind direction and
relative humidity. The pavement temperature was measured by using embedded thermal
sensor with platinum rod-shaped probe. It was noted that most transportation meteoro-
logical stations have not yet been equipped with weighing precipitation sensors due to
the maintenance difficulties and the solid precipitation such as snowfall could hardly be
monitored. Therefore, the hourly precipitations over the two transportation meteorological
stations were approximately substituted by the observations of the neighboring national
weather station (Station 57131), which is 10.1 km and 7.3 km far from Stations V0001 and
V0002, respectively. In addition, comprehensive observations such as sunshine hours from
Station 57131 were also employed to determine weather conditions (sunny, cloudy, rainy,
and snowy, etc.) at the transportation meteorological stations. Based on these hourly
observation datasets, the basic characteristics of pavement temperature variations on the
expressways were analyzed for the wintertime.

Figure 1. Locations of the transportation meteorological stations along Xianyang Airport Expressway
in Xi’an, China, and the neighboring national meteorological station.
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In order to verify the rationality of taking the national station observation (e.g., pre-
cipitation, sunshine hours, etc.) as substitutions for the two transportation meteorological
stations, Table 1 shows the statistics of observed temperature and wind among the three
stations for the total of 181 days in the two winters of 2018/2019 and 2019/2020. It is
indicated that the temperatures at Station V0001 (V0002) are slightly higher (lower) than
those at Station 57131, with their differences in daily mean, maximum and minimum
temperatures being 0.65 ◦C (1.19 ◦C), 0.76 ◦C (1.03 ◦C) and 0.58 ◦C (1.35 ◦C), respectively.
Such spatial differences might be associated with the urban heat island effects and the
local environment of these stations. Besides, the correlation coefficients between the daily
mean temperature series of the two transportation meteorological stations and the national
observation station are both greater than 0.97, with that of Station V0001 being higher than
V0002 and reaching up to 0.99. As for the wind speed, the daily averages and maximums
at the two transportation meteorological stations are all lower than those at the national
observation station. The daily average and maximum wind speeds at Station V0001 (V0002)
are characterized by values of 0.77 m/s (1.13 m/s) and 1.00 m/s (1.41 m/s) lower than those
of Station 57131, respectively, and show correlation coefficients of 0.95 (0.80) and 0.95 (0.68)
with the observations from the national station. The comparison analyses demonstrate
that the meteorological conditions at the two transportation meteorological stations are
generally similar to those of the neighboring national meteorological station. Therefore,
the observations of precipitation and sunshine hours at Station 57131 could be reasonably
taken as the corresponding status of the two transportation meteorological stations.

Table 1. Statistics of observed temperature and wind speed for Station 57131 and Stations V0001
and V0002 in the two winters, including the respective temporal averages (TAs, units: ◦C for
temperature and m/s for wind speed) and the correlation coefficients (CCs) of the two transportation
meteorological stations V0001 and V0002 to the national station 57131.

Station ID

Daily Average
Temperature

Daily Maximum
Temperature

Daily Minimum
Temperature

Daily Average
Wind Speed

Daily Maximum
Wind Speed

TA CC TA CC TA CC TA CC TA CC

57131 3.22 - 3.61 - 2.83 - 2.05 - 2.62 -
V0001 3.87 0.99 4.37 0.99 3.41 0.99 1.28 0.95 1.62 0.95
V0002 2.03 0.98 2.58 0.98 1.48 0.97 0.92 0.80 1.21 0.68

Observations with high frequency and high accuracy are the most basic fundamentals
to carry out effective early warnings and predictions of pavement low temperature and
road icing. In this study, the pavement temperature observations at the two transportation
meteorological stations were obtained every 10 min during the winter in 2018/2019 (90 days
in total, composing 12,960 samples for each station) for investigations of pavement tem-
perature nowcasting. In general, they had relatively complete datasets, except the period
of 7:00 to 13:00 on 30 December 2018 and several other missing observations, which were
further supplemented with linear interpolations. Calculations on the observations show
that the mean pavement temperature and the corresponding mean square deviation are
3.31 ◦C (3.17 ◦C) and 4.54 ◦C (3.73 ◦C) for Station V0001 (V0002), respectively. Significant
differences (at the 95% confidence level according to the Student’s t-test) are observed
between the two stations.

Based on the nowcasting experiments on pavement temperatures for the two trans-
portation meteorological stations along the Xianyang Airport Expressway, the proposed
method was further promoted and examined towards three stations in three different-
climate regions (Beijing, Hubei and Tibet). The method applicability was verified for the
three different places via pavement temperature nowcasting experiments at a 10 min rolling
update and a 10 min interval for the winter of 2021/2022. The geographical information of
the three transportation meteorological stations is displayed in Table 2.
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Table 2. Geographical information of the three transportation meteorological stations in Beijing,
Hubei and Tibet, respectively.

Station ID Region Expressway Longitude Latitude Altitude

A1412 Changping, Beijing
West Sixth Ring Road

(G4501)
116.11◦ E 40.13◦ N 75 m

Q0007 Enshi, Hubei
Shanghai-Chongqing

Expressway (G50)
109.37◦ E 30.24◦ N 708 m

U1801 Lhasa, Tibet
Ya’an–Yecheng

Expressway (G4218)
90.95◦ E 29.45◦ N 3610 m

2.2. Methodology

2.2.1. Classification of Weather Types

Using the precipitation and sunshine hour observations from Station 57131, the
weather conditions were classified into several categories, which represented the weather
of the two transportation meteorological stations along the airport expressway. The varia-
tion characteristics and nowcasting skills of pavement temperatures were subsequently
analyzed towards different weather conditions. Following Wu et al. [28] and Ma et al. [29],
the days with sunshine hours of ≥3 h and no precipitation were defined as sunny days,
while those with sunshine hours of <3 h and no precipitation were defined as cloudy days,
and the others are rainy and snowy days. It is noted that the observations of pavement
conditions were not included in the transportation meteorological stations. Therefore,
the pavement icing on rainy and snowy days needed to be recognized via the associated
elements, e.g., the simultaneous conditions of low pavement temperature (≤0 ◦C) and
precipitation occurrence at the neighboring national meteorological station [30], which
have been examined and demonstrated to be effective in previous studies on transportation
meteorological information at Lianyungang–Khorgos Expressway (G30) [31].

2.2.2. Nowcasting of Pavement Temperature

In this paper, the nowcasting of pavement temperature was constructed via the ex-
traction of periodic features of local pavement temperature series and the subsequent
regression procedures. Firstly, the power spectrum was employed to analyze the periodic
oscillation characteristics of the local pavement temperature series. It is a frequency domain
analysis method based on Fourier transform, which decomposes the total energy of the
time series into components at different frequencies, and diagnoses the main cycle of the
series according to the corresponding variance contributions, so as to determine the implied
main frequency and cycles of the series [32,33]. The calculation formula of power spectrum
intensity is as follows:
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where k is the wave number,
−
x is the mean value of the sequence, s is the standard deviation

of the sequence, and m is the maximum lag time length. The value of m is generally taken
as n/3, where n is the sample.

On this basis, the red noise power spectrum test was utilized to examine the signif-
icance of the obtained periodic characteristics. The calculation formula of the red noise
standard spectrum is as follows:

s0k =
−
s

[
1 − r(1)2

1 + r(1)2 + 2r(1)cos πk
m

]
, k = 0, 1, . . . , m (3)
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The power spectra ratio is defined as ŝk/s0k to detect the significant period. The
significant periodic functions of the pavement temperature time series were then extracted
using the mean-generation function model.

The mean-generation function was derived from the mean values at certain time
intervals of the time series. The domain of the function definition was extended to the
entire axis, which is called the periodic extension. The mean-generation function model
could be well used in multi-step forecasts as well as extreme predictions and has been
widely exploited in long-term weather forecasts and short-term climate predictions [34,35].

The sequence stationarity is one of the important prerequisites for analysis and mod-
eling of the temporal series, while previous studies have revealed the significant non-
stationary characteristics of the pavement temperature [25]. Therefore, the first-order
difference method was used in this study to make the original sequence of pavement
temperatures stabilized, in which the differential sequence of pavement temperature was
taken as the dependent variable and all periodic function sequences passing the confidence
level were used as the independent variables. The nowcasting model of pavement tem-
perature can be constructed by the multiple linear regression method with the significant
periodic function extended to the entire axis. The inversed differential calculation was,
hence, carried out to obtain the forecast results of pavement temperatures for the next 6 h
by every 10 min. Similar methods have achieved considerable effects in wind-nowcasting
experiments [36].

For the two transportation meteorological observation stations V0001 and V0002, the
pavement temperatures of every 10 min during the past 3 days before the current moment
were used as the training dataset to predict the pavement temperatures at intervals of
10 min in the next 6 h. The forecast framework was updated with real-time observations
with a rolling frequency of 10 min. Taking the first forecast experiment in this study
(initialized at 23:00 3 December 2018) as an example, the pavement temperature series
during 00:00 1 December to 23:00 3 December by every 10 min were firstly preprocessed
by the first-order difference. Afterwards, the periodic functions passing the significance
test were extracted through procedures of the power spectrum analysis, the red noise test,
and the mean-generation function to construct the nowcasting model of the pavement
temperature. The pavement temperature forecasts for the next 6 h at 10 min intervals
since 00:00 4 December 2018 were then obtained based on the extended series of periodic
functions and the inversed differential calculation.

Moreover, the same framework of nowcasting was also carried out and examined
towards Station V0002 in Shanxi and the three transportation meteorological stations in
Beijing, Hubei and Tibet using the 10-by-10 min observations in the winter of 2021/2022 to
further investigate the applicability of the nowcasting method in multiple areas.

3. Results

3.1. Characteristics of Pavement Temperature Variations

3.1.1. Diurnal Variation Characteristics

In the two winters of 2018/2019 and 2019/2020 except the day with serious data
deficiency (30 December 2018), there were 88 sunny days and 78 cloudy days. As for the
rainy and snowy days, there were 2 (1) days with and 12 (13) days without icing at Station
V0001 (V0002). Figure 2 shows the diurnal variations of pavement temperature on sunny
days, cloudy days and rainy and snowy days (with unfrozen and frozen road surfaces).
Under the multiple weather conditions, the pavement temperature is characterized by
significant diurnal variations, showing the highest values in the early afternoon and lowest
at around 07:00–08:00 in the morning. Furthermore, the sunny (rainy and snowy) days are
featured by the highest (smallest) diurnal ranges of pavement temperature, and those in the
cloudy days are located in between. The pavement temperature on sunny days is generally
higher than cloudy and rainy and snowy days in the daytime. However, it decreases rapidly
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and becomes lower than that on cloudy and rainy and snowy days without icing in the
nighttime and early morning but still higher than that on rainy and snowy days with icing.
This is due to that the clouds on cloudy and non-icing rainy and snowy days tend to block
the solar shortwave radiation reaching the surface, leading to relatively lower pavement
temperatures in the daytime, while in the nighttime, they suppress the longwave radiation
releasing out of the atmosphere from the surface, which induces the higher pavement
temperatures than the sunny days with clear sky. On the other hand, the rainy and snowy
days with icing show obviously lower pavement temperatures than the other conditions
in both daytime and nighttime, which could be attributed to the joint impacts from the
systematic cooling processes of the atmosphere and the reflection of solar radiation by
snow or ice on the pavement surface. It may also be related to the definition of weather
type in Section 2.2.1.

Figure 2. Diurnal variations of pavement temperatures at Stations V0001 (a) and V0002 (b) under
different weather conditions.

Table 3 further displays the temporal averages and mean square deviations of pave-
ment temperatures in the daytime and nighttime at Stations V0001 and V0002 under
different weather conditions. According to the local characteristics of sunrise and sunset
in winter, the daytime and nighttime are determined as 08:00–18:00 and 19:00–07:00 of
the next day, respectively. It verifies the highest pavement temperatures in the daytime of
sunny days among the several cases, which is meanwhile accompanied with the largest
variability in temperature. In the nighttime, the pavement temperature is highest in non-
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icing rainy and snowy cases, and is the lowest (maintaining at around 0 ◦C) in icing rainy
and snowy ones with the corresponding variability also being the smallest. Additionally, in
the daytime, the pavement temperatures in the sunny days are significantly different from
those under the other weather conditions passing the Student’s t-test at the 95% confidence
level, while the pavement temperatures in cloudy days and rainy and snowy days do not
differ significantly. As for the nighttime, the differences in pavement temperatures among
these several weather conditions are all non-significant according to the Student’s t-test.

Table 3. Temporal averages (AVE; units: ◦C) and mean square deviations (MSD; units: ◦C) of
pavement temperatures in the daytime and nighttime at Stations V0001 and V0002 under different
weather conditions.

Weather
Condition

V0001 V0002

Daytime Nighttime Daytime Nighttime

AVE MSD AVE MSD AVE MSD AVE MSD

Sunny 8.68 4.84 3.64 1.98 6.44 2.81 2.59 1.28
Cloudy 6.55 2.39 3.82 1.15 5.11 1.76 2.92 0.91

Rainy and snowy
(unfrozen)

6.20 1.51 4.67 1.04 5.15 1.11 4.05 0.82

Rainy and snowy
(frozen)

2.40 2.20 −0.36 0.61 1.98 1.04 0.45 0.69

3.1.2. Power Spectrum Features

In order to investigate the detailed periodic features of pavement temperature vari-
ations, the power spectrum analysis (Figure 3) was carried out towards the 12,960 data
samples which consisted of the pavement temperature observations by every 10 min in
the winter of 2018/2019 for Stations V0001 and V0002, respectively. The horizontal axis
denotes the length of cycle period, and the vertical axis is the power spectral density of the
corresponding cycle divided by the red noise standard spectrum at α = 0.05 as described
in Section 2.2.2. The spectral ratio of >1.0 represents the periodic significance at the 95%
confidence level. The greater the ratio, the more significant the cycle.

As shown in Figure 3, the power spectra of pavement temperatures at the two stations
display several significant peaks, locating at the cycle lengths of roughly 24 h, 12 h, 8 h,
6 h, 5 h and 4 h, which are all characterized by power spectrum ratios of >1.0. The first
two leading cycles reflect the diurnal and semi-diurnal variations of pavement temperature,
which are similar to the variations of surface air temperature and have been well revealed
by previous studies. The obvious periodic pattern shows a single peak at noon and a
single valley in the early morning [37]. However, the pavement temperatures are also
characterized by significant intra-diurnal high-frequency periodic oscillations with periodic
cycles of 8 h, 6 h, 5 h and 4 h, which have been seldom mentioned.

The change in the pavement temperature is affected by many factors, such as solar
radiation, cloud cover, air temperature, wind speed, relative humidity, pressure, etc. Power
spectrum analysis has been conducted for temperature, wind speed and humidity variables,
and it was found that these variables also have significant short-period oscillation, especially
for temperature and humidity. Studies on periodic variation of wind speed based on
Morlet wavelet transformation indicates that on the daily time scale, the wind speed has
a significant period of 8 h, 12 h and 24 h [38]. Smaller scale oscillations of the pavement
temperature may be related with the short-period variation of other weather variables or
the interaction of multiple variables. More comprehensive observation data are needed for
a deeper analysis of this problem.

In order to study the intra-diurnal variations of pavement temperatures in more
detail, taking the period from 1 December 2018 to 28 February 2019 as an example, power
spectrum analysis is performed on the daily pavement temperature series by every 10 min
(composing 144 samples in total). With reference to the intraseasonal oscillation analysis on
the persistent heavy rainfall in Southern China by Wei et al. [35], the daily power spectral
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density is divided by the red noise standard spectrum at α = 0.05, which are plotted as the
distributions of daily power spectrum ratios of pavement temperatures (Figure 4).

Figure 3. Power spectrum ratios of pavement temperatures by every 10 min in the winter of 2018/2019
for Stations V0001 (a) and V0002 (b).

It is indicated that there are both significant periodic oscillations with cycles of
6–12 h in the pavement temperature variations of the two transportation meteorologi-
cal stations. The distribution of power spectrum ratios suggests that certain but limited
differences exist in the periodic characteristics of pavement temperatures between the
two stations and among different days. The significant periodic oscillations of 6–12 h are
relatively stable throughout the winter. Among them, during the periods of 45th–46th days
(14–15 January 2019), the 59th–60th days (28–29 January 2019), and the 70th day (8 February
2019), the periodic characteristics of pavement temperatures are generally weaker than
those during other periods. The weather conditions are checked to be mainly cloudy during
the above periods. In addition, the two pavement temperature series are also featured
with periodic oscillations of 4–5 h, with more significant characteristics in Station V0002
than Station V0001 from the perspective of the power spectrum ratio. That is, although
the two stations are located in the same climate region, obvious differences might occur
between their periodic characteristics of pavement temperatures due to their differences
in local environments. Therefore, it is of great importance to grasp the precise periodic
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features based on the observations of the station, which play a crucial role in the accurate
predictions of local pavement temperature.

Figure 4. Distribution of daily power spectrum ratios of pavement temperatures in the winter of
2018/2019 for Stations V0001 (a) and V0002 (b). The shading denotes the significance at the 95%
confidence level.

3.2. Nowcasting of Pavement Temperatures and the Validation

3.2.1. Impacts from Sample Sizes on Forecast Results

In this study, the nowcasting model is constructed based on the oscillation analysis of
the pavement temperature series over certain periods in the past. Theoretically, it could
describe more details of the pavement temperature variations with more observation sam-
ples used and provide more accurate predictions. However, the larger sample size would
definitely result in greater computational complexity. Meanwhile, such a nowcasting model
consisting of observations has high requirements for data quality and integrity. Due to
the lack of maintenance with standardized processes, the transportation meteorological
stations generally lack in quality compared with the normal meteorological observation
stations, with the missing or abnormal data occurring more frequently. The data measures
of quality control and numerical interpolation are necessary to improve the data application.
Therefore, the workload of data preprocessing would also increase in correspondence with
the larger sample size. In order to examine the impacts from sample sizes on the pave-
ment temperature nowcasting, we used the 10-by-10 min observations of the first 3 days
(432 samples), 4 days (576 samples), and 5 days (720 samples) for model constructions,
respectively, with their forecast errors displayed and compared in Figure 5.

It can be seen that, for the two transportation meteorological stations, the increase in
the sample sizes does not have obvious influences on the pavement temperature forecasts
in the first 2 h. At Station V0001, the increasing sample sizes bring about only slight
improvements on the forecasts in the first hour. After that, the forecast error even increases
with more samples included, showing greater rising magnitudes at longer lead times. As
for Station V0002, the forecast shows slightly higher skills in the first 4 h with the increase in
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sample numbers, while the effect of sample sizes becomes unstable at lead times longer than
that, playing positive roles with 576 samples but negative roles with 720 samples. Overall,
the optimal sample size is determined as 432 (i.e., 3 days before the forecast initialization
moment) in the subsequent nowcasting experiments.

Figure 5. Impacts from sample sizes on forecast results of pavement temperatures for Stations
V0001 (a) and V0002 (b).

3.2.2. General Evaluations of the Forecasts

Based on the methodology introduced in Section 2.2.2, rolling experiments of pave-
ment temperature nowcasting were carried out for 23:00 on 3 December 2018 to 23:00 on
27 February 2019 using the pavement temperature observations in the previous 3 days.
A total of 12,384 nowcasting experiment samples were obtained. Figure 6 displays the
overall evaluations of pavement temperature nowcasting experiments for Stations V0001
and V0002 within lead times of 6 h by every 10 min. Forecasts for the two stations both
show considerable skills within lead times of first few hours, while the forecast skills
decrease significantly with the increasing lead time. The absolute errors of forecasts for
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Stations V0001 and V0002 are no greater than 1 ◦C within lead times of 90 min and 120 min,
respectively. Additionally, they show errors of <2 ◦C until lead times of 200 min and
330 min.

Figure 6. Evaluations of the pavement temperature nowcasting experiments by forecast errors (units:
◦C) and accuracies (units: %) for Stations V0001 (a) and V0002 (b), respectively.

Moreover, the statistics of ratios between the mean square deviations of the forecast
errors at different lead times and those of the observed pavement temperature series are
provided in Table 4. It is normally considered that the forecasts have practical application
values with the ratio of <0.5. Forecasts for the two stations show similar skills with the
ratios being no greater than 0.14, 0.26 and 0.36 for lead times of shorter than 1 h, 2 h and
3 h, respectively. It is implied that the proposed method could be well utilized in the
nowcasting of pavement temperatures along the expressway.

Table 4. Ratios between the mean square deviations of the forecast errors at different lead times and
those of the observed pavement temperature series.

Station
Lead Times (Units: 10 min)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

V0001 0.04 0.05 0.08 0.10 0.12 0.14 0.17 0.19 0.21 0.23 0.25 0.26 0.28 0.30 0.31 0.33 0.35 0.36
V0002 0.04 0.05 0.07 0.10 0.12 0.14 0.16 0.19 0.21 0.22 0.24 0.26 0.28 0.29 0.30 0.32 0.33 0.34

As for the forecast accuracy, when the pavement temperature observation and forecast
are both positive (>0 ◦C) or both negative (<0 ◦C), it is considered a success, otherwise it
is recorded as a failure. In general, the forecast accuracy rate for pavement temperatures
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above 0 ◦C reaches 90% at even lead times of 360 min, which is much higher than that below
0 ◦C. Although the two stations both show accuracy rates greater than 85% for negative
pavement temperatures within lead times of the first hour, it decreases rapidly from 96%
to 50% from lead times of 10 min to 360 min. It may be related to the small number of
cases with temperatures below 0 ◦C. For the climate of the area where Xianyang Airport is
located, the condition of temperature below 0 ◦C is very rare. This may affect the prediction
accuracy of the statistical model based on the variation characteristics of observation data.

In terms of the previous studies on pavement temperature nowcasting, Wang et al. [26]
used the random forest regression method to predict pavement temperatures in the next
one hour at three transportation meteorological stations along the Ning-Su-Xu Expressway
in Jiangsu province, with the obtained nowcasting results showing mean absolute errors
of 0.92 ◦C, 0.61 ◦C, and 0.52 ◦C, respectively. Tang and Guo [25] examined the pavement
temperature nowcasting experiments for the next 3 h at the Dongling Station on the
Shenyang Third Ring Road (G1501) using the autoregressive summation moving average
method with observations of the previous 23 h, exhibiting the mean absolute error of
0.26 ◦C. However, only 8 groups of experiments in 16 days are considered, and the forecast
times mainly concentrate in the early morning, which might lead to some uncertainties of
the results.

With respect to the current study with 12,384 sets of nowcasting experiments, the
prediction results at Station V0001 (V0002) for lead times of every 10 min in 1 h show
absolute errors of 0.17 ◦C (0.13 ◦C), 0.24 ◦C (0.20 ◦C), 0.35 ◦C (0.28 ◦C), 0.46 ◦C (0.36 ◦C),
0.57 ◦C (0.45 ◦C) and 0.68 ◦C (0.53 ◦C), respectively. Comparisons suggest that the pavement
temperature nowcasting skills derived from the mean-generation function model in this
study are generally equivalent to those of Wang et al. [26] using the random forest method.
However, the experiment location of Xianyang Airport Expressway is characterized by
a great complexity in the local environment, including the dense traffic flow and large
amount of people as well as the heat island effect, making the corresponding nowcasting
more difficult than the ordinary expressways. Moreover, the proposed nowcasting method
provides the temporally refined results with the time interval being only 10 min in the
present study.

Regarding the evaluations on forecast accuracy, the study follows the discrimination
in Dong et al. [39] for intuitional comparisons of the forecast skills. They conducted
a kind of qualitative categorized prediction on pavement temperatures using several
statistical methods and revealed that the multivariate regression method is fairly effective
in predicting the low pavement temperatures of <0 ◦C in northern Jiangsu with the forecast
accuracies mostly being greater than 85%, while the support vector machine model is
determined as the optimal for southern Jiangsu, and the corresponding accuracies reach
almost 95%. By contrast, here in the current paper, the proposed nowcasting method
for pavement temperatures using the mean-generation function model not only supplies
effective and accurate nowcasting results for the decision makers, but also gives quantitative
prediction results of pavement temperatures.

3.2.3. Nowcasting Skills Influenced by Weather Conditions and Initialization Time

To a great extent, the weather conditions have crucial impacts on not only the pavement
temperature itself but also the corresponding nowcasting effect. Figure 7 displays the
nowcasting evaluations of pavement temperatures under different weather conditions for
the two stations. At the early stages, the forecast skills are generally similar with mean
absolute errors being <0.2 ◦C for all the three conditions. When the lead time increases,
the forecast errors increase significantly. The largest growing rates occur on sunny days,
followed by the cloudy days, while the growing rates are slower on rainy and snowy days,
which might be associated with the relatively small variability of pavement temperatures
on rainy and snowy days. As the effect of the direct solar heating on the thermal sensors
is not considered, the measurement error of pavement temperature on sunny days may
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increase. This might also be one reason for the lower accuracy of pavement temperature
forecast on sunny days.

Figure 7. Errors of the pavement temperature nowcasting experiments under different weather
conditions for Stations V0001 (a) and V0002 (b), respectively.

Meanwhile, prediction results in Wang et al. [26] based on the random forest regression
method also indicate the highest forecast skills of pavement temperatures on rainy and
snowy days, followed by cloudy days, and the worst on sunny days. When the pavement
is covered by snow, or ice, etc., the heat exchanges between the ground and the atmosphere
become weak or even disappears. The pavement temperature is rarely influenced by
external factors and is relatively stable [2,31]. Such a phenomenon is also demonstrated by
analyses on the transportation meteorological observations on roads and bridges [40,41].

Due to the significant diurnal variation characteristics of the pavement temperature,
the nowcasting skills differ obviously among experiments initialized at different times
(Figure 8). The mean absolute errors at the lead times of 1 h and 2 h for the two stations
both show generally larger (smaller) values when initialized in the daytime (nighttime).
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Figure 8. Errors of the pavement temperature nowcasting experiments initialized at different times
for Stations V0001 (a) and V0002 (b), respectively.

For Station V0001, the absolute errors of the pavement temperature nowcasting ini-
tialized at the daytime (nighttime) at the lead time of 1 h range between 0.4 ◦C and 1.5 ◦C
(0.3 ◦C and 0.7 ◦C), while they are distributed between 0.2 ◦C and 1.3 ◦C (0.2 ◦C and 0.6 ◦C)
for Station V0002. The plot also suggests that the nowcasting errors of pavement tempera-
ture rise rapidly with the increase in lead times. At the lead time of 2 h, the nowcasting
experiments initialized at daytime and nighttime show absolute errors of 0.8–3.0 ◦C and
0.6–1.5 ◦C, respectively, for Station V0001, while 0.4–2.4 ◦C and 0.4–1.2 ◦C for Station V0002.

3.2.4. Nowcasting Experiments at Different Regions

Aiming at exploring the applicability of the proposed method in different regions,
similar nowcasting experiments on pavement temperature have been carried out towards
the typical transportation meteorological stations in Beijing, Hubei and Tibet for the winter
of 2021/2022. The nowcasting skills are compared with Station V0002, which are all
displayed in Figure 9.
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Figure 9. Errors of the pavement temperature nowcasting experiments at different stations in
multiple areas.

The results show that the three stations in plain areas with lower altitudes (75 m,
41 m, and 708 m for Stations A1412, V0002, and Q0007, respectively) do not show much
difference in the nowcasting errors within lead times of 4 h. Among them, Station A1412 in
Beijing is characterized by the highest skills of pavement temperature nowcasting, with
the absolute errors being 0.6 ◦C, 1.2 ◦C, 1.7 ◦C, and 2.1 ◦C for lead times of 1 h, 2 h, 3 h,
and 4 h, respectively. However, the nowcasting errors of pavement temperature at Station
U1801 in Tibet with the altitude of 3610 m display significantly larger values than the
abovementioned three, which have already reached 1.6 ◦C at the lead time of 1 h. On the
other hand, in terms of the ratios between the mean square deviations of the forecast errors
and those of the observed pavement temperature series, the values are relatively small
for Station U1801, i.e., 0.16, 0.25, and 0.34 at lead times of 1 h, 2 h and 3 h, respectively.
It implies that although the pavement temperatures over the plateau area with complex
terrain are generally more difficult to be predicted due to their larger variabilities, the
proposed nowcasting method using the mean-generation function model in this study has
certain reference values for the practical businesses of local early warnings and predictions
of the low pavement temperature.

4. Conclusions

Using the pavement temperature observation data of the two transportation meteoro-
logical stations along the Xianyang Airport Expressway in Shanxi, China, as well as the
datasets of precipitation and sunshine hours obtained from the nearby weather stations,
the variation characteristics of local pavement temperatures were investigated for winter
in this study. On this basis, a nowcasting method was proposed using a regression model
via extracting the corresponding periodic features. Nowcasting experiments were then
conducted and analyzed on the local pavement temperatures for the next 6 h with a rolling
frequency of 10 min and a time interval of 10 min. The conclusions could be summarized
as follows:

(1) Regardless of the weather condition, the observed temperature series are always
characterized by significant diurnal variation characteristics, with the highest and lowest
values occurring at around 14:00 and 07:00, respectively. Among the different weather
conditions, during the daytime, the pavement temperature is the highest on sunny days,
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followed by the cloudy days, with those on rainy and snowy days being the lowest. As
for the nighttime, it shows highest pavement temperatures on non-icing rainy and snowy
days, followed by the cloudy days, and the temperatures on sunny days are further lower,
with those on icing rainy and snowy days being the lowest.

(2) The pavement temperatures at the Xianyang Airport Expressway are revealed
with not only a significant 24 h periodic oscillation, but also high-frequency oscillation
characteristics of about 12 h, 8 h, 6 h, 5 h and 4 h. The nowcasting based on the extraction of
these periodic features using the mean-generation function model are demonstrated with
considerable skills on predicting the local pavement temperatures. Examinations show the
mean absolute errors of 0.2 ◦C, 0.6 ◦C, 1.2 ◦C and 1.5 ◦C for lead times of 20 min, 1 h, 2 h
and 3 h, respectively.

(3) Comparisons among the pavement temperature nowcasting under different weather
conditions indicate that the errors are smallest on rainy and snowy days, followed by cloudy
days, and the skills are lowest on sunny days. This could be attributed to the more complex
influence processes from factors such as clouds and radiation during the sunny days, as
well as the larger variability of pavement temperatures. Furthermore, it also shows different
nowcasting skills for different initialization times. The errors are generally higher (lower)
for nowcasting experiments initialized in the daytime (nighttime), with the mean absolute
errors of 0.7 ◦C and 1.4 ◦C (0.4 ◦C and 0.9 ◦C) for lead times of 1 h and 2 h, respectively.

(4) The expanded experiments for multiple transportation meteorological observation
stations in Beijing, Hubei and Tibet demonstrate considerable universality and applicability
of the method on pavement temperature nowcasting. It could achieve skillful nowcasting
results in plain areas with lower altitudes but shows relatively insufficient performances
in plateau areas with complex terrain. Nevertheless, considering the generally lower
ratios between the mean square deviations of the forecast errors and those of the observed
pavement temperature series, the nowcasting strategy can provide certain reference values
for the practical businesses of local early warnings and predictions of the low pavement
temperature.

5. Discussion

Changes in weather will affect the accuracy of the nowcast model. Two precipitation
processes were picked to analyze the impact of weather change on the forecast skills. The
results indicated that if the weather changes during the night, the impact on the forecast
skill is smaller. However, if the weather changes during the day, the impact is larger,
especially for the first several hours of weather change. With the rolling update of the
nowcast model, the forecast results become closer to the observation, whereas the results
need to be verified by more tests.

The statistical modeling method based on the extrapolation of high-frequency observa-
tions in pavement temperatures is demonstrated to be effective in the accurate nowcasting
of pavement temperatures, which could provide an important basis for the identification of
icing and snow covers on the pavement. In the road maintenance business, the advantages
of an increase in accuracy of nowcasting products and a longer lead time of short-range
forecast products are usually combined to arrange the road snow and ice removal. The
prediction errors grow rapidly with the increase in lead times. Therefore, more detailed
diagnoses and analyses on nowcasting errors are to be carried out in the future and would
be favorable for more skillful nowcasting on the pavement temperatures [42,43]. Moreover,
the statistical models could also be combined with the physical and dynamic models in the
future [44,45].
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Abstract: Accurate precipitation nowcasting (lead time: 0–2 h), which requires high spatiotemporal
resolution data, is of great relevance in many weather-dependent social and operational activities. In
this study, we are aiming to construct highly accurate deep learning (DL) models to directly obtain
precipitation nowcasting at 6-min intervals for the lead time of 0–2 h. The Convolutional Long Short-
Term Memory (ConvLSTM) and Predictive Recurrent Neural Network (PredRNN) models were
used as comparative DL models, and the Lucas–Kanade (LK) Optical Flow method was selected as a
traditional extrapolation baseline. The models were trained with high-quality datasets (resolution:
1 min) created from precipitation observations recorded by automatic weather stations in Guizhou
Province (China). A comprehensive evaluation of the precipitation nowcasting was performed, which
included consideration of the root mean square error, equitable threat score (ETS), and probability
of detection (POD). The evaluation indicated that the reduction of the number of missing values
and data normalization boosted training efficiency and improved the forecasting skill of the DL
models. Increasing the time series length of the training set and the number of training samples
both improved the POD and ETS of the DL models and enhanced nowcasting stability with time.
Training with the Hea-P dataset further improved the forecasting skill of the DL models and sharply
increased the ETS for thresholds of 2.5, 8, and 15 mm, especially for the 1-h lead time. The PredRNN
model trained with the Hea-P dataset (time series length: 8 years) outperformed the traditional LK
Optical Flow method for all thresholds (0.1, 1, 2.5, 8, and 15 mm) and obtained the best performance
of all the models considered in this study in terms of ETS. Moreover, the Method for Object-Based
Diagnostic Evaluation on a rainstorm case revealed that the PredRNN model, trained well with
high-quality observation data, could both capture complex nonlinear characteristics of precipitation
more accurately than achievable using the LK Optical Flow method and establish a reasonable
mapping network during drastic changes in precipitation. Thus, its results more closely matched the
observations, and its forecasting skill for thresholds exceeding 8 mm was improved substantially.

Keywords: precipitation forecast; nowcasting; deep learning; ConvLSTM; PredRNN

1. Introduction

Precipitation nowcasting means forecasting precipitation with a lead time of 0–2 h,
focusing more on mesoscale–microscale weather systems at a high spatiotemporal res-
olution [1–3]. Highly accurate precipitation nowcasting is vital in support of various
operational activities, e.g., disaster relief, energy management, and flood early warning
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systems. Consequently, the accuracy of precipitation nowcasting has a critical socioeco-
nomic impact.

Currently, the primary means of improving the accuracy of precipitation nowcast-
ing involve the integration of extrapolation and ensemble numerical weather prediction
(NWP) [4–8]. However, literature shows that global coarse-resolution NWP models have
challenges in generating accurate precipitation with a lead time of 0–2 h [9,10], affected
by the spin-up issue and the difficulties in non-Gaussian data assimilation. Although
convection-permitting models with high resolution could greatly improve performance,
these models are computationally expensive. Traditional integration of extrapolation meth-
ods, such as cross-correlation tracking and optical flow, has been used widely in operational
weather forecasting [11–19]. Still, they exhibit a marked reduction in forecasting skills
with increasing lead time owing to their linear operating limits and their deficiencies in
forecasting storm growth and decay [20].

In recent years, the application of deep learning (DL) [21] has become popular in
the field of meteorology [22–24] owing to its nonlinear operation, and it has achieved
substantial advances in terms of quantitative precipitation nowcasting using radar echo
extrapolation [25–32]. In comparison with the traditional integration of extrapolation and
NWP, DL models can realize relatively accurate precipitation nowcasting. For example, Shi
et al. [27] involved the convolution operation in input-to-state and state-to-state transitions
in the transformation of a two-dimensional image into a three-dimensional tensor and
proposed the Convolutional Long Short-Term Memory (ConvLSTM) model. This approach,
which was shown capable of effectively capturing spatial correlations and further realiz-
ing the extrapolation of spatiotemporal sequences, was applied to achieve quantitative
precipitation nowcasting. Subsequently, they involved the convolution operation in the
recurrent gated unit (GRU) and used a subnetwork to output a location-variant connection
structure before performing state transitions. Then, they proposed the trajectory GRU that
could handle the spatial correlations better and perform more accurately than previous
methods [28]. Wang et al. [29] designed the Spatiotemporal LSTM (ST-LSTM) model that
can transfer memories vertically and horizontally, and then they proposed the Predictive
Recurrent Neural Network (PredRNN) model. To strengthen the power for modeling
short-term dynamics and to alleviate the vanishing gradient problem, they improved the
PredRNN model to PredRNN++ [30], which incorporates a cascaded dual-memory struc-
ture and a gradient highway unit. Ji et al. [31] exploited the advantages of different DL
model architectures in combination with the ConvLSTM unit in the U-Net generator and
proposed the CLGAN model, which can better capture the precipitation object and its
characteristics. Chen et al. [32] compared and analyzed the extrapolation prediction of
radar echoes using the ConvGRU method, cross-correlation method, optical flow method,
and particle filter method and found that the output of the ConvGRU method more closely
matched the location, intensity, and shape of actual radar echoes. Many other studies
have modified existing techniques to obtain relatively better nowcasting performance in
comparison with that achieved using the integration of extrapolation [33–47]. However,
precipitation calculated from radar echoes is based on the Z–R relationship. We believe
that the Z–R relationship cannot describe the nonlinear relationship between a radar echo
and precipitation. Moreover, it is difficult to avoid calculation errors derived from the Z–R
relationship. Factors such as radar model, detection range, and clutter interference will
lead to poor universality of a DL model. Consequently, the objective of this study was to
construct DL models for precipitation nowcasting based on precipitation observation data,
which could directly obtain precipitation nowcasting.
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The reason we use DL models is their nonlinear operation, and the ConvLSTM model
is one of the classical models used in the precipitation nowcasting problem. It can extract
the spatial characteristics while capturing the time characteristics efficiently. PredRNN
improved memory information by transferring memories vertically and horizontally, and it
can perform better for forecast time compared with ConvLSTM. The Lucas–Kanade Optical
Flow (LK Optical Flow) is a good method that improved optical flow vector calculation
for traditional optical flow [48], and it was selected as a traditional baseline. We hope
to compare the two typical DL models with LK Optical Flow and try to construct highly
accurate models based on precipitation observation data.

In this study, we formed two high-quality datasets: a pre-processed precipitation
dataset (Pre-P dataset) and a heavy precipitation dataset (Hea-P dataset). Then, we con-
structed precipitation DL models that could directly obtain precipitation nowcasting based
on precipitation observation data. Furthermore, we improved the forecasting skill of the
DL models by increasing the length of the time series of the training set and by train-
ing with the Hea-P dataset. The study area selected was Guizhou Province in China
(29.2–24.7◦ N, 103.6–109.6◦ E), which features highly complex terrain and frequently expe-
riences geological disasters and floods [49,50]. Moreover, the region is also lacking in terms
of high-accuracy precipitation nowcasting.

The remainder of this manuscript is organized as follows. Section 2 describes the data
and methods used in the study. Section 3 comprehensively evaluates both the DL models
trained with different datasets and the LK Optical Flow method. Finally, the conclusions
and a discussion are presented in Section 4.

2. Data and Method

2.1. Guizhou Automatic Weather Station (AWS) Observations

High-quality real-time precipitation observation data (resolution: 1 min) recorded
over a nine-year period from 20:00 (all times UTC+8) on 31 December 2012 to 20:00 on
31 December 2021 (observation day: from 20:00 on the previous day to 20:00 on the same
day) by 1835 automatic weather stations (AWS) in Guizhou Province (as shown in Figure 1)
were obtained from the Guizhou Meteorological Information Center.

Figure 1. Distribution of the 1835 automatic weather stations in Guizhou Province, China.
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2.2. Pre-Processed Precipitation Dataset (Pre-P Dataset)

The number of missing values in the observation data was reduced using the neigh-
borhood method (where the time series before and after the missing values and the data
of nearby stations were complete). Then, the bilinear interpolation method was used to
interpolate station data within the region 24.5–29.5◦ N, 103.5–110◦ E to the gridded field
(resolution: 0.125◦ × 0.125◦). Data normalization resulted in a high-quality dataset with
a range of variation of [0, 1]. Ultimately, the pre-processed(Pre-P) dataset was formed,
comprising 788,400 samples.

2.3. Heavy Precipitation Dataset (Hea-P Dataset)

Data in the Pre-P dataset from May–September in each of the nine years from 2013–2021
were selected, and samples with little or no precipitation were removed. Consequently, the
heavy precipitation (Hea-P) dataset was determined, comprising 332,640 samples.

2.4. Lucas–Kanade (LK) Optical Flow Method

The optical flow method is defined as a method for calculating the intensity of image
pixel points over time to infer the speed and direction of object movement. It finds the
correspondence between the previous and the current frame based on changes in the pixels
of the image in the time series and the correlation between adjacent frames, from which it
calculates the motion information of objects between adjacent frames. This study employed
the LK Optical Flow method [48], the process of which can be divided into two steps:

In the first step, the optical flow vector field is calculated. The instantaneous velocity
two-dimensional vector field of the changing trend of grayscale at each point on the image
and the optical flow vector field are solved using the following three basic assumptions.

(1) The brightness is constant, i.e., when the same target moves between different
frames, the brightness will not change in any way. According to this assumption, the basic
equation of the optical flow method can be obtained:

I(x, y, t) = I(x + dx, y + dy, t + dt) (1)

where x and y are the coordinate positions of a pixel in the image, t is the time series in
which the image is located, and (dx, dy) is the distance moved to the next frame, using dt
time, i.e., the light intensity of the pixel before and after motion has remained constant.

(2) The movement in continuous time is a ‘small movement’, which means that the
change of time will not cause a drastic change in the target position. Expanding the Taylor
section of Equation (1) yields:

(x, y, t) = I

(
x, y, t +

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + ε

)
, (2)

where ε represents a second-order infinitesimal term that is negligible. Assuming the
velocity vectors u and v of the optical flow in the x-axis and y-axis directions, the formulas
will be as follows:

Iu =
dx

dt
, v =

dy

dt
, (3)

The partial derivatives of the gray scale of pixel points in the image on x, y, and t are
as follows:

Ix =
∂I

∂x
, Iy =

∂I

∂y
, It =

∂I

∂t
, (4)
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Then, substituting Equation (2) into Equation (1) and dividing by dt gives the following:

Ixu + Iyv + It = 0, (5)

where Ix, Iy, and Iz can be obtained from image data, and (u, v) is the optical flow vector.
(3) Spatial consistency (or spatial continuity) means that some points which around a

specific point have the same optical flow field or velocity.
There are two unknowns in only one constrained equation. For analyzing the n × n

region around a pixel, the pixel motion of the local region is assumed to be consistent. Then,
the n × n equations can be established in the following matrix form:

⎡
⎢⎣

Ix1 Iy1
Ix2 Iy2

...
...

⎤
⎥⎦ [u

v

]
= −

It1
It2
...

, (6)

and written as vector:
A
→
u =

→
b , (7)

where
→
u is the velocity vector:

→
u = (AT A)−1 AT

→
b , (8)

Then, the equations are solved using the least squares method.
The second step is to use the real-time precipitation field at the initial time and the

optical flow vector field calculated in the first step to extrapolate the precipitation field. In
this study, the semi-Lagrangian advection scheme was used to extrapolate the precipitation
field [48]. The semi-Lagrangian advection formula can be expressed as follows:

F(t0 + τ, x) = F(t0, x − α), (9)

where F is the extrapolated forecast precipitation field, F is the real-time precipitation
observation at the initial time, t0 is the lead time, τ is the forecast time, and α is the
displacement vector within the lead time.

The semi-Lagrangian advection scheme divides the lead time τ into N steps for
extrapolation, in this study, the lead time Δt was 6 min. The displacement amount α can be
obtained from the following iteration:

α(n+1)Δt
→
V(t0, x −

α(n)

2
), (10)

where
→
V
(

t0, x − α(n)

2

)
is the velocity vector of the precipitation at point x − α

2 , and
→
V is the

optical flow vector field, assuming the initial value of α is 0. The total displacement in the
lead time is the sum of the displacements in N steps, and n is the number of iterations.

The specific extrapolation scheme uses the remapped particle-mesh Semi-Lagrangian
scheme improved by Reich [51].

2.5. Convolutional Long Short-Term Memory (ConvLSTM) Model

The ConvLSTM model can extract the two-dimensional spatial characteristics of
precipitation while capturing the time characteristics. The convolution operation and
pooling operation are integrated into the LSTM, which adds the “input gate,” “output gate,”
and “forget gate” based on the RNN model and can record historical data over a longer
time and improve forecast accuracy. Then, realizing the spatiotemporal sequence prediction
of the precipitation, the main calculation equations in the model are as follows [27]:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci	Ct−1 + bi), (11)
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ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f	Ct−1 + b f

)
, (12)

Ct = ft	Ct−1 + it	tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc), (13)

Ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco	Ct + bo), (14)

Ht = Ot	tanh(Ct), (15)

where Xt and Ht represent input data and output data, respectively; it, ft, and Ot represent
the input gate, forget gate, and output gate, respectively; Ct is the cell state; “∗” denotes the
convolution operator; and “	” denotes the Hadamard product.

2.6. Predictive Recurrent Neural Network (PredRNN)

For more accurate transmission of time information, the new ST-LSTM was proposed,
which can transfer memories vertically and horizontally. Then, the PredRNN model was
obtained based on the ConvLSTM model, and the complete formula of the ST-LSTM model
can be expressed as follows [29]:

it = σ
(

Wxi ∗ Xt + Whi ∗ Hl
t−1 + bi

)
, (16)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Hl
t−1 + b f

)
, (17)

Cl
t = ft	Cl

t−1 + it	tanh
(

Wxg ∗ Xt + Whg ∗ Hl
t−1 + bg

)
, (18)

i′t = σ
(

W ′
xi ∗ Xt + Wmi ∗ Ml−1

t + b′i

)
, (19)

f ′t = σ
(

W ′
x f ∗ Xt + Wm f ∗ Ml−1

t + b′f

)
, (20)

Ml
t = f ′i 	Ml−1

t + i′t	tanh
(

W ′
xg ∗ Xt + Wmg ∗ Ml−1

t + b′g

)
, (21)

Ot = σ
(

Wxo ∗ Xt + Who ∗ Hl
t−1 + Wco ∗ Cl

t + Wmo ∗ Ml
t + bo

)
, (22)

Hl
t = Ot	tanh

(
W1×1 ∗

[
Cl

t , Ml
t

])
, (23)

Wxi, Whi, Wmi, Wx f , Wh f , Wm f , Wxg, Whg, Who, Wmo, Wxi′, Wx f ′, Wxg′ are all weight param-
eters, and bi, b f , bg, bo, b′i , b f ′, bg′ are learnable offset parameters. With Cl

t representing
time memory, Ml

t representing spatial memory, Hl
t representing the value of the hidden

layer, subscript t representing the time step, and superscript representing the kth hidden
layer existing in the ST-LSTM network.

For the parameters of DL models in this paper, we set the initial learning rate and the
epochs as 0.001 and 20, respectively. The root mean square error (RMSE) was selected as
the loss function.
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2.7. Verification Metrics

2.7.1. Root Mean Square Error (RMSE)

The expression for the RMSE is as follows:

RMSE =
1
n

n

∑
i=1

[( fi − Oi)
2]

1
2 , (24)

where n represents the number of grid samples of the space field, fi represents the forecast
value of the i–th sample, and Oi represents the observation of the i–th sample. The smaller
the RMSE value, the smaller the difference between the forecast value and the observed
value, i.e., the smaller the forecast error.

2.7.2. Probability of Detection (POD), False Alarm Ratio (FAR), Probability of False
Detection (POFD), and Equitable Threat Score (ETS)

Expressions for the probability of detection (POD), false alarm ratio (FAR), probability
of false detection (POFD), and equitable threat score (ETS) are as follows [52–54]:

POD =
NA

NA + NC
, (25)

FAR =
NB

NA + NB
, (26)

POFD =
NC

NB + NE
, (27)

E =
(NA + NB)(NA + NC)

NA + NB + NC − E
, (28)

ETS =
NA − E

NA + NB + NC − E
, (29)

where NA represents the number of forecast events that correspond to observed events
(forecast has, observation has); NB represents the number of events that are null (forecast
has, observation has not); NC represents the number of events that are missed (forecast
has not, observation has); NE represents the number of events that both forecast, and
observation do not occur. POD refers to the proportion of the predicted actual precipitation
area in the total actual precipitation area; the larger the value, the higher the forecast
accuracy. FAR refers to the proportion of the area with no actual precipitation in the
forecast precipitation area in the total forecast precipitation area; the smaller the value, the
smaller the forecast null rate. POFD refers to the proportion of the area that is missed in
the actual precipitation area in the area where all actual precipitation does not occur; the
smaller the value, the lower the FAR of the forecast. Additionally, the higher the ETS score,
the better the forecast performance.

In this study, we applied five thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm) to calculate the
ETS of the hourly graded precipitation. The forecasting skill of 6-min precipitation was
calculated based on the threshold of 0.01 mm.

2.7.3. Method for Object-Based Diagnostic Evaluation (MODE)

The Method for Object-Based Diagnostic Evaluation (MODE) is a spatial evaluation
method based on object attribute characteristics, which mainly evaluates a prediction by
comparing and analyzing the attributes and similarities of the main observed and forecast
areas of precipitation [55,56].
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Through the operation of spatial convolution and then under different precipitation
thresholds (i.e., 0.01, 0.1 and 2.5 mm), the important areas of precipitation to be studied are
calculated and identified as follows [57]:

C(x, y) = ∑
u,v

ϕ(u, v) f (x − u, y − v), (30)

ϕ(u, v) =

{ 1
πR2 , u2 + v2 ≤ R2

0, u2 + v2
> R2 , (31)

where f represents the original data field, C represents the convolutional field, ϕ represents
the filter function, and (x,y) and (u,v) represent grid coordinates. The mask field M is
obtained by threshold control of the convolutional field, i.e., the precipitation area in the
convolutional field where precipitation intensity is greater than or equal to threshold T is
calculated [55,56]:

M(x, y) =

{
1, C(x, y) ≤ T
0, C(x, y) > T

, (32)

By assigning grid points in the continuous region of M = 1 to the value of the corre-
sponding grid points in the original precipitation field, the reconstruction field F can be
obtained, which not only retains most of the original precipitation information of each object
(precipitation without convolution processing), but also identifies the main area of falling
precipitation when the precipitation threshold is reached. The formula for calculating F is
as follows [55,56]:

F(x, y) = M(x, y) f (x, y), (33)

Then, according to Equation (33), certain important properties of the observation field
and the precipitation field in these aeras of falling precipitation are calculated. In this study,
area, angle, aspect ratio, centroid position of longitude, and centroid position of latitude
were selected as the attributes for assessment and analysis of the area of falling precipitation.

According to Davis et al. [55,56], the matching rule proposed by uses the calculated
attributes to match objects, i.e., all matches in the process come from the important areas of
falling precipitation in the forecast field and in the observation field identified as needing
study, and the calculation formula used in this process is as follows [55–58]:

D <

Area
1
2
O + Area

1
2
f

2
, (34)

where Areao and Areaf are the areas of the main areas of falling precipitation identified in
the observation and forecast fields, and D is the centroid distance between them.

Finally, according to the weight and the confidence factor of the attribute, the total
similarity between the observation field and the important area of falling precipitation in
the precipitation field is calculated using the fuzzy logic method [57]:

I =
∑

n
i=1 ωiciGi

∑
n
i=1 ωici

, (35)

where ci and ωi represent the confidence factor and the weight for property i, respectively,
which depend only on the specific properties of the subject of tax reduction, and where the
confidence factor varies with the area size and distance of the area of falling precipitation;
and Gi is the similarity factor of the i-th attribute that is a monotonous recursive function
with a value range of between 1 and 0.
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3. Results

3.1. Data Quality Control (DQC) Evaluation

We selected May–September 2019 as the verification period because several extreme
precipitation events occurred during this period. For example, intense rainstorms that
occurred during 5–11 June 15–19 June, 20–25 June, and 27 June to 1 July caused notable
geological and flood disasters [59].

Reducing the number of missing values in the original AWS data produced a complete
time series and improved the spatial resolution of the dataset, thereby making the training
samples more representative of the observed precipitation. Data normalization narrowed
the range of extreme precipitation and improved the learning efficiency of the DL models
with respect to the features of precipitation observations during the training process. Both
processes helped DL models that exhibited improved performance in terms of ETS. The
Hea-P dataset before and after data quality control (DQC) was divided into a training
set and a validation set with a ratio of 8:1, and ETS evaluations were performed for the
verification period.

The ETSs of the DL models for 6-min precipitation nowcasting before and after DQC
are shown in Figure 2. The average ETS of the ConvLSTM model and of the PredRNN
model increased by 0.1458 and 0.0660, respectively. The ConvLSTM model showed greater
improvement in comparison with the PredRNN model; however, the PredRNN model also
exhibited reasonable improvement beyond the 12-min lead time.

Figure 2. Comparison of the ETSs of the DL models before and after data quality control (DQC).

Currently, there is no unified evaluation metric for minute-level precipitation. Con-
sequently, we calculated the ETS of hourly graded precipitation accumulated from 6-min
precipitation for different thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm), as listed in Table 1.
The forecasting skill of the ConvLSTM model with thresholds of 0.1 and 1 mm was well
improved, and the ETS for the threshold of 0.1 mm for the 1-h lead time increased by 0.2286.
Overall, the PredRNN model exhibited greater improvement in comparison with that of
the ConvLSTM model, i.e., the average ETS for thresholds exceeding 2.5 mm for the 1-h
lead time and for thresholds below 2.5 mm for the 2-h lead time increased by more than
0.09 and by 0.1305, respectively.
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Table 1. ETSs of hourly graded precipitation for DL models before and after DQC for different
thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm).

Model ConvLSTM ConvLSTM DQC PredRNN PredRNN DQC

Lead time 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h
≥0.1 mm 0.1009 0.1658 0.3295 0.2523 0.4868 0.2121 0.5097 0.3425
≥1 mm 0.2223 0.1406 0.2637 0.2346 0.3574 0.1302 0.3694 0.2363
≥2.5 mm 0.1033 0.0922 0.0687 0.0390 0.2341 0.1046 0.3319 0.1700
≥8 mm 0.0039 0.0037 0.0032 0 0.0858 0.0276 0.1783 0.0586
≥15 mm 0 0 0.0004 0 0.1289 0.0283 0.2329 0.0594

3.2. DL Models Trained Using Datasets with Different Time Series Lengths

Pre-P datasets with DQC and different time series lengths (i.e., 1, 3, 5, and 8 years)
were divided into training sets, testing sets, and validation sets with ratios of 2:1:1, 6:1:1,
10:2:1, and 16:3:1, respectively, and the verification period for all evaluations was May–
September 2019. Then, DL models were constructed using the training sets with different
time series lengths (i.e., 1, 3, 5, and 8 years). Verifications including RMSE, ETS, POD, FAR,
and POFD were applied to assess the 6-min precipitation nowcasting for the threshold of
0.01 mm generated using the DL models, as shown in Figure 3. With increasing length of
the time series of the training set, the DL models showed a marked increase in terms of
POD and ETS, and the stability of the nowcasts with time was enhanced, especially for
the ConvLSTM model trained with the training set with the 8-year time series length, i.e.,
the average POD increased by 0.1066. Additionally, the PredRNN model trained with the
training set with the 8-year time series length performed better than the ConvLSTM model,
i.e., the RMSE decreased sharply, the FAR was low, and the ETS increased by 0.0763.

Figure 3. Forecasting skill of DL models trained with different time series lengths: (a) RMSE, (b) ETS,
(c) POD, (d) FAR, and (e) POFD.
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Taking the same verification period as above, we calculated the ETS of hourly graded
precipitation (Table 2). The ETSs of the DL models were improved with the increasing
length of the time series of the training set. For the training set with the 8-year time series
length, the ETS of the ConvLSTM model for the threshold of 0.1 mm increased sharply by
0.2484 for the 2-h lead time, while that for thresholds below 2.5 mm for the 1-h lead time
increased by more than 0.05. However, the PredRNN model showed better improvement in
terms of ETS. For example, the average ETS for the 0–2-h lead time for different thresholds
(i.e., 0.1, 1, 2.5, 8, and 15 mm) increased by 0.0852, while that for the 1-h lead time increased
by 0.1067, and that for the threshold of 2.5 mm increased by 0.1464.

Table 2. Hourly graded precipitation ETSs for the two DL models trained with Pre-P datasets with
different time series lengths for different thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm).

Model ConvLSTM 1 Year ConvLSTM 3 Years ConvLSTM 5 Years ConvLSTM 8 Years

Lead time 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h
≥0.1 mm 0.2553 0.0039 0.3015 0.0139 0.3232 0.3256 0.3295 0.2523
≥1 mm 0.2030 0.2113 0.2352 0.1300 0.2531 0.2534 0.2637 0.2346
≥2.5 mm 0.0135 0.0078 0.0313 0.0001 0.0170 0.0223 0.0687 0.0390
≥8 mm 0.0004 0 0.0067 0 0.0007 0.0013 0.0032 0
≥15 mm 0 0 0.0024 0 0 0.0006 0.0004 0

Model PredRNN 1 Year PredRNN 3 Years PredRNN 5 Years PredRNN 8 Years

Lead time 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h
≥0.1 mm 0.4302 0.1257 0.4352 0.2455 0.4680 0.2560 0.4868 0.2121
≥1 mm 0.2991 0.0352 0.3112 0.1535 0.3468 0.1517 0.4183 0.1287
≥2.5 mm 0.0877 0.0211 0.1485 0.0209 0.1757 0.0389 0.2341 0.1046
≥8 mm 0.0011 0.0002 0.0062 0.0005 0.0122 0.0001 0.0858 0.0276
≥15 mm 0.0021 0.0003 0.0076 0.0028 0.0064 0.0025 0.1289 0.0283

To summarize, increasing the length of the training set time series and the number
of the training samples both improved the forecasting skill of the DL models. Overall,
the PredRNN model exhibited greater improvement in comparison with the ConvLSTM
model, especially for the 1-h lead time, and the PredRNN model trained with the Pre-P
dataset with the 8-year time series length obtained the best performance in terms of ETS.

3.3. Deep Learning Model Training Using the Heavy Precipitation (Hea-P) Dataset

Although increasing the length of the time series of the training set could improve the
forecasting skill of the DL models, the model with the best performance still exhibited no
improvement in terms of the ETS for hourly graded precipitation when compared with the
results obtained using the LK Optical Flow method (Table 3). Even though the ETS of the
PredRNN model with the best performance was slightly higher than that of the traditional
LK Optical Flow method for the thresholds of 0.1, 2.5, and 8.0 mm for the 1-h lead time, the
ETS for the threshold of 15.0 mm for the 1-h lead time was lower than that derived using
the LK Optical Flow method. Moreover, the ETSs of the PredRNN model with different
thresholds (i.e., 0.1, 2.5, 8, and 15 mm) decreased rapidly with time, resulting in a lower
overall ETS in comparison with that derived using the LK Optical Flow method.

Table 3. ETSs of hourly graded precipitation for the LK Optical Flow method and the DL models
trained using the two types of datasets for different thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm).

Model ConvLSTM 8 Years PredRNN 8 Years LK Optical Flow

Lead time 1 h 2 h 0–2 h 1 h 2 h 0–2 h 1 h 2 h 0–2 h
≥0.1 mm 0.3295 0.2523 0.2909 0.4868 0.2121 0.3495 0.4502 0.2914 0.3708
≥1 mm 0.2637 0.2346 0.2492 0.4183 0.1287 0.2735 0.3322 0.2011 0.2666
≥2.5 mm 0.0687 0.0390 0.0539 0.2341 0.1046 0.1694 0.2178 0.1061 0.1620
≥8 mm 0.0032 0.0000 0.0016 0.0858 0.0276 0.0567 0.1081 0.0422 0.0751
≥15 mm 0.0004 0.0000 0.0002 0.1289 0.0283 0.0786 0.1681 0.0407 0.1044
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To further improve the forecasting skill of the DL models, we removed samples with
little or no precipitation and left the extreme precipitation to form the Hea-P dataset, which
we hoped would represent a more effective training sample. Taking the same verification
period as described in Section 3.2, Hea-P datasets with different time series lengths (i.e., 1,
3, 5, and 8 years) were divided into training sets, and validation sets with a ratio of 1:1, 3:1,
5:1, and 8:1, respectively. We constructed DL models using the training sets with time series
of different lengths. Then, evaluation of the 6-min precipitation nowcasting was performed
based on the RMSE, ETS, POD, FAR, and POFD, which allowed comparative assessment of
the LK Optical Flow method and the DL models trained with the two types of datasets (i.e.,
Pre-P dataset and Hea-P dataset), as shown in Figure 4.

Figure 4. Forecasting skill of the LK Optical Flow model and the PredRNN model trained with two
types of datasets: (a) RMSE, (b) ETS, (c) POD, (d) FAR, and (e) POFD.

With a sharp increase in POD and reduction in RMSE for the 8-year time series length,
the DL models trained with the Hea-P dataset performed better than those trained with the
Pre-P dataset in terms of 6-min precipitation nowcasting; specifically, the PredRNN model
outperformed the LK Optical Flow method in terms of forecasting skill. For the 1- and
3-year time series lengths, the DL models trained with the Hea-P dataset exhibited reduced
ETSs and sharply increased FAR scores. Meanwhile, the DL models trained with the Hea-P
datasets with the 5- and 8-year time series lengths also sharply increased in FAR scores.
Overall, use of the Hea-P datasets improved the POD and resulted in sharply increased
FAR values for the DL models because the DL models tended to generate more high-value
precipitation nowcasting owing to training samples with high-value precipitation in the
Hea-P dataset.

The ETSs of hourly graded precipitation for different thresholds are listed in Table 4.
The DL models trained with the Hea-P dataset improved markedly. The PredRNN model
trained with the training set with the 8-year time series length obtained notable improve-
ment for thresholds exceeding 2.5 mm, i.e., the ETS of the PredRNN model for thresholds
of 2.5, 8, and 15 mm for a 1-h lead time increased sharply by 0.1141, 0.0702, and 0.0648,
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respectively. The average ETS for thresholds below 2.5 mm for the 2-h lead time also
increased by more than 0.05. Importantly, the ETS for the threshold of 8.0 mm increased by
an average of 0.0676 for a 0–2-h lead time and by 0.0925 for a 1-h lead time. Additionally,
the ETS of the ConvLSTM model for the threshold of 2.5 mm increased by 0.0801, while
that for below the threshold of 1.0 mm decreased (note: the ETSs of the ConvLSTM model
are not listed in the table).

Table 4. ETSs of hourly graded precipitation for the PredRNN model trained with two types of
datasets for different thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm).

Model PredRNN 1 Year PredRNN 3 Years PredRNN 5 Years PredRNN 8 Years

Pre-P
dataset

Lead time 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h
≥0.1 mm 0.4302 0.1257 0.4352 0.2455 0.4680 0.2560 0.4868 0.2121
≥1 mm 0.2991 0.0352 0.3112 0.1535 0.3468 0.1517 0.4183 0.1287
≥2.5 mm 0.0877 0.0211 0.1485 0.0209 0.1757 0.0389 0.2341 0.1046
≥8 mm 0.0011 0.0002 0.0062 0.0005 0.0122 0.0001 0.0858 0.0276
≥15 mm 0.0021 0.0003 0.0076 0.0028 0.0064 0.0025 0.1289 0.0283

Hea-P
dataset

Lead time 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h
≥0.1 mm 0.4612 0.2744 0.4492 0.2862 0.4743 0.3351 0.5097 0.3425
≥1 mm 0.2571 0.1279 0.3168 0.1891 0.3513 0.2322 0.3694 0.2363
≥2.5 mm 0.2498 0.1035 0.2506 0.0978 0.2664 0.1074 0.3319 0.1700
≥8 mm 0.1320 0.0442 0.1334 0.0482 0.1384 0.0411 0.1783 0.0586
≥15 mm 0.1177 0.0312 0.1774 0.0658 0.1828 0.0459 0.2329 0.0594

Comprehensive evaluation revealed the DL models with the performance in terms
of ETS. The PredRNN model trained with the Hea-P dataset with the 8-year time series
length obtained the best performance of all models in terms of ETS for hourly graded
precipitation (Table 5). The PredRNN model outperformed the LK Optical Flow method
for all thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm), especially thresholds exceeding 2.5 mm.
Although the ConvLSTM model was improved by training with the Hea-P dataset, it still
performed a lower ETS than that of the other two models for all thresholds.

Table 5. ETSs of hourly graded precipitation for the LK Optical Flow method and the DL models
trained with the Hea-P dataset for different thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm).

Model ConvLSTM 8 Years PredRNN 8 Years LK Optical Flow

Lead time 1 h 2 h 1 h 2 h 1 h 2 h
≥0.1 mm 0.2526 0.2016 0.5097 0.3425 0.4502 0.2914
≥1 mm 0.1452 0.1108 0.3694 0.2363 0.3322 0.2011
≥2.5 mm 0.1337 0.1342 0.3319 0.1700 0.2178 0.1061
≥8 mm 0.0294 0.0283 0.1783 0.0586 0.1081 0.0422
≥15 mm 0.0012 0.0042 0.2329 0.0594 0.1681 0.0407

The spatial distributions of ETSs for hourly graded precipitation derived using the
LK Optical Flow method and the DL models trained with the Hea-P dataset with the
8-year time series length for the 1-h lead time are shown in Figure 5. For thresholds
of 0.1, 1, 2.5, and 8 mm, the higher the threshold, the lower the ETS of hourly graded
precipitation; however, the ETS for the threshold of 8 mm exhibited a sharp decrease. Areas
with high ETSs for thresholds of 0.1 and 1 mm mainly occurred in eastern, southern, and
southwestern parts of Guizhou, whereas high ETSs for thresholds of 2.5, 8, and 15 mm
mainly occurred in north-central and southern parts of Guizhou. For thresholds of 8 and
15 mm, the ETS of the ConvLSTM model was close to zero owing to many false predictions
in areas of high-value precipitation and high values of POFD and FAR. This can result from
cumulative error magnified by iterative calculation. For the threshold of 15 mm, the ETSs
of the LK Optical Flow method and the PredRNN model showed improvement mainly in
the southern and north-central parts of Guizhou. Additionally, the ETSs of the PredRNN
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model with different thresholds (i.e., 0.1, 1, 2.5, 8 and 15 mm) indicate that the PredRNN
model outperformed both the ConvLSTM model and the LK Optical Flow method.

Figure 5. Spatial distributions of ETSs for hourly graded precipitation for the 1-h lead time, derived
from the LK Optical Flow method and the DL models trained with the Hea-P dataset with the 8-year
time series length.

Figure 6 presents the spatial distributions of ETSs for the 2-h lead time. The ETSs of
both the LK Optical Flow method and the PredRNN model for different thresholds (i.e.,
0.1, 1, 2.5, 8, and 15 mm) decreased sharply for the 2-h lead time with the same pattern of
spatial distribution as that shown for the 1-h lead time. The ETS of the PredRNN model for
thresholds of 0.1 and 15 mm maintained values of 0.3–0.5 and 0.2–0.3, respectively, which
were superior to the values of the other two models.
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Figure 6. Spatial distributions of ETSs for hourly graded precipitation for the 2-h lead time, derived
from the LK Optical Flow method and the DL models trained with the Hea-P dataset with the 8-year
time series length.

In summary, the DL models trained with the Hea-P dataset improved notably in terms
of ETS for 6-min and hourly graded precipitation, especially for thresholds of 2.5, 8, and
15 mm. We determined that the PredRNN model trained with the Hea-P dataset with an
8-year time series length performed best, outperforming the LK Optical Flow method for
all thresholds. Furthermore, it performed well for thresholds of 2.5, 8, and 15 mm in the
north-central and southern parts of Guizhou.

3.4. Structure Evaluation on a Rainstorm Case

As a case for evaluation, we selected a severe rainstorm event that occurred on
6 June 2019, which produced a two-hour period (01:30–03:24) of intense precipitation [59].
We used the MODE approach to further assess the performance of both the LK Optical
Flow method and the PredRNN model trained with the Hea-P dataset with the 8-year time
series length in relation to this rainstorm case. The MODE consisted of an evaluation of the
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6-min precipitation for the threshold of 0.01 mm and an evaluation of the hourly graded
precipitation for thresholds of 0.1, 1, and 2.5 mm.

The attribute values of the 6-min precipitation objects for the observations and now-
casts, calculated for a threshold of 0.01 mm, included the area, axis angle, aspect ratio,
zonal centroid, and meridional centroid, from which we obtained the total similarity of
the precipitation objects. All attribute values and the total similarity of the 6-min precipi-
tation objects for both the LK Optical Flow method and the PredRNN model are shown
in Figure 7. The attribute values of the observations have a wide range and show rapid
fluctuation during the rainstorm, resulting in both the shape and the position of the area
of precipitation varying wildly and rapidly with time. Meanwhile, the zonal centroid and
the meridional centroid indicate that the precipitation system first evolved toward the
southwest and then moved rapidly toward the northeast. With the characteristic of linear
variation, the attribute values of the LK Optical Flow method change smoothly with time,
whereas the attribute values of the PredRNN model fluctuate widely and are much closer
to those of the observations.

Figure 7. Attribute values of 6-min precipitation objects for the LK Optical Flow method and the
PredRNN model trained with the Hea-P dataset with the 8-year time series length: (a) area, (b) axis
angle, (c) aspect ratio, (d) zonal centroid, (e) meridional centroid, and (f) total similarity.

It is evident from Figure 8 that the precipitation nowcasting of the LK Optical Flow
method for 6–12-min lead times is highly similar to the observations and shows only mini-
mal linear movement in position and shape. Nevertheless, with such characteristics, the
deviation between the observations and the nowcasting of the LK Optical Flow method in-
creases from 18 to 30 min. Conversely, the nowcasting generated using the PredRNN model
for 18 to 30 min is closer to the observations because of the ability of the model to capture
the nonlinear changes in the observations, demonstrating especially good performance for
thresholds of 8 and 15 mm.

We calculated attribute values of hourly graded precipitation for thresholds of 0.1,
1, and 2.5 mm (Table 6). The deviations between the observations and the nowcasting
generated using the LK Optical Flow method are more pronounced for a 2-h lead time
owing to the axial angle, aspect ratio, zonal centroid, and meridional centroid. Meanwhile,
with an increase in the precipitation threshold, the PredRNN model trained with the
Hea-P dataset with the 8-year time series length gradually increased in total similarity,
substantially outperforming the LK Optical Flow method. For the threshold of 2.5 mm, the

108



Atmosphere 2023, 14, 807

PredRNN model maintains a value of total similarity of >0.9, whereas the value for the LK
Optical Flow method rapidly drops below 0.75.

Figure 8. Distributions of observed and predicted precipitation for 6–30-min lead times for the
evaluated rainstorm case.

Table 6. Hourly graded precipitation MODE for different thresholds (i.e., 0.1, 1, and 2.5 mm) for the
LK Optical Flow method and the PredRNN model trained with the Hea-P dataset with the 8-year
time series length.

Precipitation
Threshold

Observation
or Forecast

Area
(Grid Points)

Axial Angle (◦)
Aspect Ratio

(Width/Length)
Zonal Centroid

(◦)
Meridional
Centroid (◦)

Total Similarity

Lead time 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h 1 h 2 h

≥0.1 mm
Observation 474 499 47.98 50.59 0.73 0.81 26.79 26.78 105.86 106.04 — —
Optical Flow 372 377 65.17 64.77 0.72 0.74 26.94 27.03 105.67 105.68 0.85 0.81

PredRNN 418 487 72.74 74.84 0.77 0.89 26.86 26.87 105.7 105.83 0.85 0.88

≥1 mm
Observation 178 265 30.47 −60.85 0.84 0.78 26.75 26.53 105.56 105.9 — —
Optical Flow 199 198 58.19 63.99 0.9 0.92 26.93 26.99 105.45 105.44 0.83 0.7

PredRNN 175 205 41.36 −42.91 0.95 0.7 26.86 26.76 105.54 105.75 0.91 0.81

≥2.5 mm
Observation 105 150 21.5 −48.17 0.7 0.59 26.78 26.63 105.57 105.9 — —
Optical Flow 135 135 49.95 55.55 0.88 0.89 26.99 27.08 105.41 105.41 0.72 0.68

PredRNN 92 123 20.11 −44.88 0.68 0.59 26.82 26.73 105.49 105.81 0.94 0.92

The results of the above quantitative evaluation are well reflected in the spatial distri-
butions of hourly precipitation shown in Figure 9. It is evident that the PredRNN model
performs better than the LK Optical Flow method for thresholds exceeding 2.5 mm, i.e.,
it can well capture the nonlinear movement and evolution of the precipitation for a 2-h
lead time. The LK Optical Flow method shows poor performance owing to the minimal
changes in the shape and position of the area of precipitation with time, resulting in false
predictions exceeding the threshold of 8.0 mm in northern Guizhou.
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Figure 9. Distributions of observed and predicted hourly precipitation for 6–30 min lead times for
the evaluated rainstorm case.

The characteristics of tiny movement and linear evolution mean that the precipitation
nowcasting of the LK Optical Flow method is unable to capture nonlinear evolution that
does not follow the rule of the latest optical flow vector in the observations. The errors also
increased over time owing to the inability of the LK Optical Flow method to adapt to the
rapid and extreme evolution of precipitation. However, the PredRNN model trained with
the Hea-P dataset can overcome the deficiencies of the traditional LK Optical Flow method,
capturing complex nonlinear evolution and establishing a reasonable mapping network
during the drastic evolution of precipitation. Thus, the nowcasting of the PredRNN model
is closer to the observations, especially for thresholds of 2.5, 8, and 15 mm.

4. Conclusions and Discussion

In this study, we formed two high-quality datasets (the Pre-P dataset and the Hea-P
dataset) based on AWS precipitation observation data. Precipitation nowcasting at 6-min
intervals for the lead times of 0–2 h was generated for Guizhou using the traditional
LK Optical Flow method and the ConvLSTM and PredRNN DL models trained with
the Pre-P and Hea-P datasets. Evaluations based on the RMSE, ETS, POD, and FAR
were used to assess the performance of the different models in generating precipitation
nowcasting. A rainstorm case was evaluated using the MODE approach to further examine
the performance of the LK Optical Flow method and the PredRNN model trained with the
Hea-P dataset with the 8-year time series length. The results obtained and the conclusions
derived were as follows.

Reducing the number of missing values in the AWS observation data improved the
quality of the DL training sample data. Data normalization also improved the training
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efficiency of the DL models. Both processes helped improve the forecasting skill of the
DL models. The greater the length of the time series of the training dataset, the better the
forecasting skill of the DL model. Increasing the time series length and the number of
samples in the training data improved the POD and ETS of the DL models and enhanced
the stability of the nowcasting over time. The PredRNN model was most improved for
hourly graded precipitation, especially for the 1-h lead time.

Training with the Hea-P dataset further improved the forecasting skill of the DL
models and sharply increased the ETSs for thresholds of 2.5, 8, and 15 mm, especially
for the 1-h lead time. The improvement in the PredRNN model was greater than that
in the ConvLSTM model. The PredRNN model trained with the Hea-P dataset with the
8-year time series length outperformed the traditional LK Optical Flow method for all
thresholds (i.e., 0.1, 1, 2.5, 8, and 15 mm) and obtained the best performance in terms of
ETS in comparison with the other DL models examined in this study. It also performed
high ETSs for thresholds exceeding 2.5 mm in the north-central and southern parts of
Guizhou. Additionally, the DL models tended to predict high-value precipitation owing to
the high-value precipitation training samples in the Hea-P dataset, which is why most DL
models showed a sharp increase in FAR values. The ETS of the ConvLSTM model for the
threshold of 2.5 mm increased, but the ETS for the thresholds of 0.1 and 1 mm decreased
owing to a sharp increase in the FAR. Owing to the magnified cumulative error through
iterative calculation, the ConLSTM model performed many false predictions in high-value
precipitation, and the ETS of the ConvLSTM model for thresholds of 8 and 15 mm was
close to zero. Unlike radar data, observation instruments and measurement standards for
precipitation observation data are unified in the industry. Generally, the spatial resolution of
AWS data is higher than that of weather radar. Consequently, the DL models considered in
this study could have reasonable transferability to other regions. Thus, the same approach
could be used to construct highly accurate precipitation nowcasting DL models based on
high-quality observation data.

The rainstorm case considered for evaluation revealed the characteristics of minimal
movement and linear evolution in the traditional LK Optical Flow method. The generated
precipitation nowcasting exhibited increasing error over time because the latest optical
flow vector could not capture subsequent nonlinear evolution. Conversely, the PredRNN
model trained with the Hea-P dataset could overcome the deficiencies of the traditional
LK Optical Flow method and could capture the complex nonlinear evolution. Thus, the
generated precipitation nowcasting was much closer to the observations. Specifically, the
PredRNN model outperformed the traditional LK Optical Flow method for the threshold
of 2.5 mm in the evaluated rainstorm case.

Currently, DL models using multisource observation data can overcome certain phys-
ical constraints and generate radar echoes that are physically more reasonable and of
reference significance. For example, Li et al. [26] used a DL model and multisource data
to produce radar echoes with physical characteristics that were improved in comparison
with those derived using single-source observation data. In future work, DL models with
multisource observations that include parameters such as temperature, pressure, and wind
speed should be investigated. The inclusion of such dynamic and thermodynamic meteoro-
logical information will further improve the forecasting skill of DL models. Additionally, a
comparative discussion with radar echo and more reasonable evaluation metrics will be
added, such as radially averaged power spectral density [26,60,61].
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Abstract: The Qinling Mountains (QMs) are considered to be the division in geology, geochemistry,
and physical geography between northern China and southern China. They have crucial effects on
regional climate, especially on rainfall and temperature, and have shown great scientific relevance to
climate change research in China. Using the observational daily and monthly rainfall and temperature
data derived from meteorological and regional automatic stations—as well as the methods of correla-
tion analysis, climate trend analysis, and Mann–Kendal and t tests—we revealed the spatiotemporal
change characteristics of temperature and rainfall and their correlation with elevation, longitude,
and latitude. The results show that the annual mean temperature (AMT) underwent a significant
increasing trend in the QMs. The maximum AMT increase occurred in spring, and the minimum
occurred in summer. Positive anomalies of annual mean rainfall amount (AMRA) occurred in the
1960s, 1980s, and 2010s, and negative anomalies occurred in the 1970s, 1990s, and 2000s. In the
QMs, the amount of moderate rainfall (MR) occupied the maximum proportion and accounted for
27.9% of the AMRA, whereas the torrential rainfall (TR) occupied the minimum proportion and
accounted for 12.8%. The AMRA amount significantly decreased by 130.1 mm from the 1980s to
the 1990s and accounted for 13.5% of the measure in the 1980s. The AMT and AMRA showed
consistent change trends with increases in elevation and latitude and showed the opposite trend as
the longitude increased. The results offer a further understanding of the meteorological background
of the QMs, helping us in further investigating the potential physical mechanisms that influence the
spatiotemporal distribution characteristics of temperature and rainfall in the QMs. This study will
provide a scientific basis for rainfall and temperature forecasts, with relevance to local ecosystems,
agriculture, soil erosion, and the prevention and mitigation of floods in the future.

Keywords: Qinling mountains; temperature; rainfall; change characteristics; geographical factors

1. Introduction

Global warming has increased the scope of climate system changes, leading to frequent
extreme rainfall events, high temperature events, and drought events, which seriously
threaten the safety of global ecological and environmental systems [1–4]. According to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC),
human activities have affected the climate to various degrees in different ways. Compared
to pre-industrialization levels (1850–1900), the increase in global temperature from 2010 to
2019 was about 0.8–1.3 ◦C, which has had a profound impact on social development [5].

115



Atmosphere 2023, 14, 696

The Qinling Mountains (QMs), located predominantly in the south of Shanxi province
in central China, are considered to be a division in geology, geochemistry, and physical
geography between northern China and southern China [6]. Furthermore, as an important
geographical boundary between central and eastern China, the QMs are situated at the
edge of the Asian monsoon region and are sensitive to climate change [7,8]. Thus, they
represent a climate transition belt where the typical subtropical zone gradually shifts into a
warm temperate zone from south to north and the humidity shifts towards a semi-humid
zone from east to west [9].

The effects of the QMs on regional climate, especially rainfall and temperature, have
been shown to have great scientific relevance for climate change research in China [10–12].
As a key region in the study of regional climate change in China, the changes experienced
in the climate elements in the QMs in the past decades have been the research focus of many
scholars. In previous studies, both increasing and decreasing trends in annual rainfall have
been reported in northwest China [13–15]. Meng et al. [16] indicated a declining trend in
annual rainfall in the QMs. Seasonally, a decreasing trend was also observed in spring and
autumn, while increasing trends were observed in summer and winter. Spring and autumn
rainfall significantly contributed to this observed decline in annual rainfall. Li et al. [17]
concluded that the intensity of extreme rainfall increased in the Qinling–Daba Mountains.
Shao et al. [18] pointed out that most extreme rainfall indices decreased in spring, autumn,
and winter and increased in summer in the Qinling–Daba Mountains. Li et al. [6] revealed
that the Qinling–Daba Mountains have an obvious effect on both the spatial–temporal
distribution and diurnal cycle of regional rainfall. Zhang et al. [4] used CMIP 6 data to
estimate future rainfall changes in the QMs and revealed the basic characteristics of the
atmospheric water cycle in mountainous areas under the action of monsoons as well as the
temporal and spatial variation mechanisms of water resources in the “central water tower”.

Mo et al. [19] simulated the temperature field in the QMs by constructing a digital
elevation model (DEM) map. Liu et al. [20] analyzed and compared the temperature of the
QMs over the past 200 years using the tree ring statistical method. Bai et al. [21] concluded
that the isotherm found in January in the QMs has gradually moved northward in the
past 50 years. Bai et al. [22] found that the trend of climate change and the time points of
abrupt climate change were consistent over the northern and southern slopes in the QMs.
Li et al. [23] indicated that the total rainfall amount has decreased, whereas the amount
of extreme rainfall has increased, based on eight extreme rainfall indexes in the northern
and southern QMs. According to the study of Zhang et al. [24], the rainfall in the QMs has
shown a downward trend in the last 50 years, and the 800 mm rainfall contour line has
clearly moved. Zhang et al. [25] found that the rainfall belt in the QMs has moved over the
last 40 years compared with the standard period. The study of Gao et al. [26] showed that
the climate in the QMs has undergone a warming and humidifying trend.

In addition, these studies on climate change in the QMs are mainly based on the data
obtained from more than 30 meteorological stations in recent years, and different results
show that the temperature has undergone an upward shift [25,27,28]. Furthermore, there is
a huge elevation difference of more than 3000 m in the QMs, and the meteorological data for
the high-elevation regions are based on the conventional vertical lapse rate of temperature
and the data derived from low-altitude stations. However, these extrapolation methods
cannot fully reflect the complex variability in temperature and rainfall in the QMs, and it is
necessary to obtain data from higher-elevation stations for supplementary correction [29].

Therefore, studying the rules of trends, as well as their attributions at different altitudes
and different time scales in the QMs, is essential to exploring climate change in China. In
this study, climate trend analysis, mutation tests, spatial interpolation, etc., were applied
to determine the rainfall and temperature trends as well as their hidden values and to
analyze the correlations with geographic factors, such as altitude, longitude, and latitude
in the QMs so as to determine the influence of geographical factors on mountain climate.
The aim of the work is to understand the response of regional climate change to global
warming; the results of this study will enhance the scientific basis of guidelines regarding
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how to deal with future climate change and promoting sustainable development and
ecological protection.

This paper is organized as follows: The details of the datasets and methodology are
given in the Materials and Methods section. The rainfall and temperature trends on annual
and seasonal scales, and analyses of their correlations with geographic factors, are given in
the Results section. The Discussion and Conclusions sections are given at the end.

2. Data and Methods

2.1. Data

In this study, the QM region refers to the mountains between the Weihe River and
the Hanjiang River in the south of Shaanxi Province, bounded by the Bahe River and the
Danjiang River Valley in the east and ending at the Jialing River in the west. The range
of the QMs is 32.42◦ N–35.27◦ N, 103.8◦ E–113.07◦ E. We used the daily and monthly
mean temperature and rainfall gauge data from 32 national surface weather stations
during the period 1961–2021 and annual mean temperature and rainfall gauge data from
406 regional automated stations during the period 2020–2021. All the data were used
to analyze climate change in the QMs and were subjected to quality control (QC). The
QC procedures for the current gauge data include the station information check, the
missing value and eigenvalue check, the time consistency check, the climate extreme value
behavior check, the spatial consistency check, and the interior consistency check. The
spatial distribution of meteorological stations and the study area are shown in Figure 1.
DEM data at a 30 m resolution were downloaded from the National Science Data Mirroring
Website of the Computer Network Information Center, Chinese Academy of Science (http:
//www.gscloud.cn, accessed on 1 March 2022) [30]. Moreover, the periods of March–May,
June–August, September–November, and December–February represent spring, summer,
autumn, and winter, respectively.

Figure 1. Spatial distribution of meteorological stations in the Qinling Mountains.

2.2. Methods

2.2.1. Climate Trend Analysis

The function of climate trend analysis is primarily to calculate and analyze the tenden-
cies and rates of meteorological elements via the following formula [31]:

Yi = a0 + a1t1 (1)

In this study, Yi is the value of the meteorological element, t1 is the time (1961–2021), a1
is the linear trend (that is, the annual climate tendency rate), and a0 is the constant term.
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2.2.2. Mann–Kendall (M-K) Test

The Mann–Kendall (M-K) method is a detection method on the basis of non-parametric
statistics proposed by Mann et al. [32] and Kendall et al. [33]. It can infer overall distribution
through the analysis of sample data, introducing the inverse sequence calculation, which
can be applied to the detection of the mutation and can reflect the exact location of the
mutations [34]. It is widely employed to detect monotonic trends in the time series of hy-
drometeorological variables, including temperature [35], streamflow [36], and rainfall [37].
This method does not require that the detected data adhere to a specific distribution, and
as such, this method requires no assumptions about the data that need to be tested [34].

In this study, the M-K method is used to test the abrupt change in temperature and
rainfall series. Its principle is to construct a rank sequence Sk in chronological order for
element sequence x:

Sk = ∑
k

i=1 ri, k = 2, 3, · · · , n (2)

where

ri =

{
1, f or xi > xj,
0, f or xi ≤ xj,

j = 1, 2, · · · , i.

The statistics UFk are defined under the assumption of random independence of
time series:

UFk =
|Sk − E(Sk)|√

var(Sk)
(3)

where UF1 = 0, E(Sk), is the mean of the cumulative Sk; var(Sk) is the variance of the
cumulative Sk. ⎧⎪⎪⎨

⎪⎪⎩
E(Sk) =

k(k − 1)
4

,

var(Sk) =
k(k − 1)(2k + 5)

72
.

(4)

Variable UFk obeys normal distribution, and different significance levels are set to
determine whether the trend of variable UFk is significant in the confidence interval. The
element sequence x is arranged in reverse chronological order, and the above process is
repeated with UBk = −UFk(k = n, n − 1, · · · , 1), UB1 = 0. By analyzing the trend of UFk

and UBk, the trend of element sequence x can be obtained and the time of its mutation
can be determined. If UFk > 0, it indicates that the sequence tends to rise; otherwise, it
declines. If the values of UFk and UBk are greater than the critical value of a significance
level, the sequence shows a significant trend. If there is an intersection point between UFk

and UBk, the position of the intersection point is the place at which the mutation occurs [38].
However, this method has some drawbacks. In the case of multiple mutation points or
multiple scale mutations in the sequence, this method is not suitable to be applied [34].

2.2.3. Running t-Test

Considering some disadvantages of the Mann–Kendall test, we also used the running
t-test method to test the abrupt change of temperature and rainfall series at the same
time. The basic idea of the running t-test is based on the significance test; to determine
if two samples will occur as mutations, one must analyze whether the difference in the
two samples’ mean values is obvious or not [34]. If the difference is greater than the given
significance level, the two samples exist with obvious qualitative changes.

The principle of this operation is as follows: x is the time series, and n is the number of
samples; a certain time point is artificially set as the reference point, and n1 and n2 are the
numbers of samples before (x1 ) and after (x2) the reference point; t meets the distribution
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of t(n1 + n2 − 2). x1 and x2 are the mean values of x1 and x2, respectively; S2
1 and S2

2 are the
variances of x1 and x2, respectively. The test statistics (t) are calculated as follows [34,38]:

t =
x1 − x2

S
√

1
n1

+ 1
n2

∼ t(n1 + n2 − 2) (5)

S =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
(6)

For a significance level of α, we can calculate the test statistic tα, and if |t| > tα, a
mutation exists. However, according to the descriptive analysis of test methods and the
previous research experience, the running t-test is relatively appropriate for the recognition
of mean value type mutations [34,38].

2.2.4. Kriging Interpolation

Kriging interpolation is the method of interpolation deriving from regionalized vari-
able theory, it is a geostatistical interpolation method and an optimal method for estimating
regional spatial differences based on the spatial variation of the property in terms of the
variogram [39–41]. Kriging interpolation obtains the estimated values of unknown points
using known point data by considering the spatial relationship between sample points, us-
ing the variogram calculation and structural information. There is no boundary effect in the
region and the output surface is smooth. The formula of calculation is as follows [39,41–43]:

Z(x0) = ∑
k

i=1 λiZ(xi) (7)

where Z(x0) is the estimated value of the meteorological point; λi is the weight coefficient of
the measured sample point i; Z(xi) is the value of the known meteorological station. Kriging
interpolation is widely used in the study of variables with spatial correlation [44–46].

In this study, monthly and annual 0.1◦ × 0.1◦ grid data are generated using Kriging
interpolation, and a correlation analysis between temperature, precipitation data, and the
geographical factors is subsequently applied. Statistical significance has been assessed
using Student’s t-test. All the significance values are at the 95% confidence level unless
otherwise stated.

3. Results

3.1. Temporal Characteristics of Temperature and Rainfall

3.1.1. Interannual and Interdecadal

The time series of regionally averaged annual mean temperature (AMT) (Figure 2) in
the QMs during the period from 1961–2021 shows that the AMT in the QMs has increased
significantly over the past 61 years, and the temperature tendency rate (TTR) is 0.22 ◦C/10a
(p = 0.05). The maximum annual temperature was 14.4 ◦C, which occurred in 2013. In that
year, an anomalous long-term high temperature occurred in the QMs, the subtropical high
was stronger to the north (Figures not shown), and the atmospheric circulation anomaly
may be the reason for the temperature increase in the QMs [47]. On the other hand,
the minimum value was 12.2 ◦C, which occurred in 1984. In that year, the La Niña event
triggered a strong East Asian winter monsoon, the Siberian high pressure was strengthened,
and the cold air was active in East Asia (Figures not shown), so the minimum temperature
occurred in the QMs [48,49]. According to the five-year moving mean temperature, the
upward trend of temperature was relatively slow before the 1980s, and the TTR value
was 0.09 ◦C/10a. Then, the AMT gradually increased from the 1980s, and the TTR was
0.54 ◦C/10a during the period 1981–1998. After that, the increasing trend slowed down,
and the TTR was 0.13 ◦C/10a during the period 1999–2021.
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Figure 2. Time series of regionally averaged annual mean temperature (AMT) (unit: ◦C) from
32 stations in the QMs during the period 1961–2021. The black line denotes the temperature curve,
the red dashed line denotes the 5-year moving average curve, and the blue line denotes the linear
trend curve.

Figure 3 shows the time series of regionally averaged annual mean rainfall amount
(AMRA) in the QMs during the period 1961–2021; it is noted that the trend of AMRA in the
QMs over the last 61 years was not significant. The maximum AMRA was 1184.2 mm, which
occurred in 2021. In that year, the anomalous plateau upper trough and the anomalous
subtropical high affected the rainfall in the QMs [50]. On the other hand, the minimum
value was 492.1 mm, which occurred in 1997. In that year, the occurrence of El Niño
phenomenon caused the Western Pacific subtropical high to move northward and retreat
southward rapidly, which was the reason for the negative rainfall anomaly in the QMs [51].
The variability in types of rainfall is consistent with the variability in AMRA, with large
interannual fluctuation, but this trend is not significant (Figures not shown).

Figure 3. Time series of regionally averaged annual mean rainfall amount (AMRA) (unit: mm) from
32 stations in the QMs during the period 1961–2021. The black line denotes the rainfall curve, the red
dashed line denotes the 5-year moving average curve, and the blue line denotes the linear trend curve.
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Table 1 shows the interdecadal statistics of regionally averaged AMT in the QMs,
indicating that negative temperature anomalies occurred in the 1960s, 1970s, and 1980s.
However, a positive temperature anomaly occurred after the 1990s. The differences seen
in the temperature anomalies in the 1960s, 1970s, 1980s, and 2010s were 1.0 ◦C (p = 0.05),
0.9 ◦C (p = 0.05), and 1.1 ◦C (p = 0.05), respectively. This indicates that the temperature has
increased significantly across the QMs in the past 51 years.

Table 1. The regionally averaged AMT in QMs for different periods.

Variable 1960s 1970s 1980s 1990s 2000s 2010s

AMT (◦C) 12.8 13.0 12.7 13.3 13.6 13.8
AMT anomaly (◦C) −0.4 −0.2 −0.5 0.1 0.4 0.6

To further understand the features of rainfall, we have examined the different clas-
sifications of rainfall in the QM region. Here, we have divided the daily rainfall into
five types: light rainfall (LR; 0.1–9.9 mm), moderate rainfall (MR; 10.0–24.9 mm), heavy
rainfall (HR; 25.0–49.9 mm), torrential rainfall (TR; 50.0–99.9 mm), and downpour rainfall
(DR; ≥100.0 mm); after this, we calculated the monthly mean values of LR, MR, HR, TR,
and DR during the period from 1961–2021.

As shown in Table 2, regarding the regionally averaged differences in types of rainfall
in the QMs during the period from 1961–2021, the MR type represents the maximum
proportion, accounting for 27.9% of the AMRA, while the TR type represents the minimum
proportion, accounting for 12.8% of the AMRA. Moreover, LR, HR, and DR accounted for
24.0%, 21.5%, and 13.8%, respectively.

Table 2. The regionally averaged light rainfall (LR), moderate rainfall (MR), heavy rainfall (HR),
torrential rainfall (TR), and downpour rainfall (DR) in the QMs during the period 1961–2021.

Period (Years)
LR

(mm)
MR

(mm)
HR

(mm)
TR

(mm)
DR

(mm)

1961–2021 218.9 254.3 196.2 116.9 125.4

As shown in Table 3, positive AMRA anomalies occurred in the 1960s, 1980s, and
2010s, and the value of the difference exceeded 50 mm in the 1980s. Negative AMRA
anomalies occurred in the 1970s, 1990s, and 2000s, and the value of the difference was
−76.4 mm in the 1990s. The AMRA significantly decreased by 130.1 mm from the 1980s to
1990s, accounting for 13.5% in the 1980s; this indicates a declining trend in the AMRA in
the QMs from the 1980s to the 1990s, which is also supported by previous studies, which
reported an obvious change in the QMs after the 1980s, with a declining rainfall trend over
the QMs [16]. In addition, a trend of increase in the AMRA was seen from the 1990s to 2010s,
and it accounted for 13.0% in the 1990s. Furthermore, a positive LR anomaly occurred
during the period 1960–1980, after which a negative LR anomaly occurred. Negative MR
and TR anomalies occurred in the 1990s and 2000s, and positive anomalies occurred in
the 2010s. Negative HR and TR anomalies occurred in the 1990s, and positive anomalies
occurred after the 2000s. The above analysis shows that the increase in the AMRA across
the QMs in the 2010s was mainly caused by increases in MR, HR, TR, and DR; in addition,
the LR had been lower than the mean rainfall since the 1990s.

According to the above analysis, the results suggest that the annual rainfall trend was
declining in the QMs before the 2000s; this result is consistent with those of Meng et al. [52]
and Wang et al. [14]. In addition, we found an increasing trend in the AMRA in the QMs
from the 1990s to the 2010s and a declining trend from the 1980s to the 1990s. Global
warming [53], Pacific decadal oscillation (PDO) [53], Atlantic multidecadal oscillation
(AMO) [53], and Asian–Pacific oscillation (APO) [54] might be the reason for AMRA
change in the QMs.
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Table 3. The regionally averaged annual mean rainfall amount (AMRA), light rainfall (LR), moderate
rainfall (MR), heavy rainfall (HR), torrential rainfall (TR), and downpour rainfall (DR) in the QMs in
different periods.

Variable 1960s 1970s 1980s 1990s 2000s 2010s

AMRA (mm) 941.9 885.8 965.5 835.4 898.4 943.9
AMRA anomaly (mm) 30.1 −26.0 53.7 −76.4 −13.5 32.1

LR (mm) 236.0 219.3 227.7 203.2 214.6 212.8
LR anomaly (mm) 17.1 0.4 8.8 −15.7 −4.4 −6.2

MR (mm) 279.7 246.4 266.3 233.4 240.7 259.5
MR anomaly (mm) 25.5 −7.9 12.1 −20.8 −14.2 5.3

HR (mm) 195.3 180.1 219.8 167.5 199.1 215.5
HR anomaly (mm) −0.9 −16.1 23.6 −28.7 2.9 19.2

TR (mm) 111.6 112.4 131.1 109.3 112.2 125.0
TR anomaly (mm) −5.3 −4.5 14.1 −7.7 −4.7 8.1

DR (mm) 119.3 127.6 120.6 122.0 131.8 131.1
DR anomaly (mm) −6.1 2.2 −4.8 −3.4 6.4 5.7

3.1.2. Seasonal

To further determine the seasonal features of temperature and rainfall, we have
examined the different seasonal features of AMT and AMRA in the QMs (Table 4). The
results show that the AMT increased from spring to winter, and the tendency rates were
0.33 ◦C/10a (p = 0.01), 0.07 ◦C/10a, 0.20 ◦C/10a (p = 0.05) and 0.28 ◦C/10a (p = 0.05),
respectively. The maximum increase in AMT occurred in spring, and the minimum occurred
in summer. In addition, the polar vorticity index and Atlantic SST index were the most
relevant circulation index and climate index, respectively, to seasonal AMT. These two
indices revealed the trend of climate warming in the past 50 years and might be related to
the significant warming in the QMs [55]. Furthermore, the significant warming might also
be associated with the warm phase of Atlantic multidecadal oscillation (AMO) [56].

Table 4. The regionally averaged AMT and AMRA in the QMs during different seasons in the period
1961–2021.

Variable Spring Summer Autumn Winter

AMT (◦C) 13.8 23.9 13.2 2.0
Tendency rate (◦C/10a) 0.33 *** 0.07 0.20 ** 0.28 **

AMRA (mm) 240.0 512.9 401.0 34.8
Tendency rate (mm/10a) −6.35 8.14 −1.10 0.66

LR (mm) 61.2 68.9 69.0 20.3
LR tendency rate (mm/10a) −1.77 −1.53 −1.46 0.06

MR (mm) 66.1 107.0 80.3 14.5
MR tendency rate (mm/10a) −3.36 2.06 −2.78 0.10

HR (mm) 48.6 113.5 70.6 –
HR tendency rate (mm/10a) −0.83 3.03 0.33 –

TR (mm) 64.1 98.8 72.9 –
TR tendency rate (mm/10a) −0.36 2.06 0.41 –

DR (mm) – 124.7 108.1 –
DR tendency rate (mm/10a) – 1.16 – –

(Note: the superscript “*” indicates the following—*** p = 0.01, ** p = 0.05; the 10a stands for 10 years).

Furthermore, the trend of increase in the AMRA manifested in winter and summer in
the QMs, with the maximum increase in summer and the minimum increase in winter. In
spring and autumn, decreases in AMRA occurred, with the maximum decreasing trend
seen in spring and the minimum decreasing trend seen in autumn. Zuo et al. [57] and
Zhao et al. [58] noted that the spring AMRA decreased in the QMs might be caused by a
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significant decrease in snow cover in Eurasia and a strengthening northerly wind from
East Asia in spring. Gu et al. [59] indicated that the decrease in AMRA in autumn in the
QMs might be closely related to SST anomalies in the tropical Pacific. In addition, the
increased AMRA in winter and summer were related to global warming, Pacific decadal
oscillation (PDO), and Atlantic multidecadal oscillation (AMO) [53]. Regarding the seasonal
distributions of the different types of rainfall, MR, HR, TR, and DR showed increasing
trends in summer, but LR did not, so we can infer that the increase in AMRA in summer
was mainly caused by the increases in MR, HR, TR, and DR. In winter, LR and MR showed
increasing trends. In spring, MR, HR, TR, and DR showed decreasing trends, which is
consistent with the decreasing trend of AMRA. In autumn, LR and MR showed decreasing
trends, while HR and TR showed increasing trends; as such, we can infer that the decrease in
AMRA in autumn was mainly caused by the decreases in LR and MR. Moreover, the change
in temperature and specific humidity in the lower atmosphere were strongly associated
with the decrease in the frequency of LR occurred in summer. The increasing temperature
was considered to reduce the frequency of LR occurred [60].

In addition, previous studies suggested that the annual and seasonal rainfall in the
QMs was influenced by climate anomalies and geographical factors [61], which could be
due to atmospheric circulation anomalies, the Asian monsoon anomaly, or a combination
of factors (i.e., vegetation cover percentage, direction of slope, degree of slope, and
so on) [62,63].

3.2. Spatial Characteristics of Temperature and Rainfall

3.2.1. Spatial Distribution of Temperature

Figure 4A shows a “dipole-type” spatial pattern in the AMT, which was distributed
from southeast to northwest in the QMs. The highest AMT was measured in Ankang
and its neighboring regions, with maximum values of above 15 ◦C. Mean temperatures of
14.0–15.0 ◦C were measured in Mianxian, Yangxian, Hanzhong, Shangnan, Shangluo, and
Danfeng. Taibai in the northwestern region of the QMs and Luonan in the northeast yielded
the minimum AMT, with values of about 8.0 ◦C; the difference between the maximum
and minimum AMT was about 7.0 ◦C. In the QM region, the AMT showed an increasing
trend (Figure 4B). The greatest increases in AMT occurred in Zhen’an, Zhashui, Fuping,
and Baoji, with a rate of over 0.3 ◦C/10a, and the smallest increases were measured in
Shiquan, Ankang, Hanyin, and Ziyang, primarily distributed in the southern region of
the QMs, with increase rates below 0.1 ◦C/10a. The above results show obvious regional
differences in the increases in AMT; the increase rate was higher in the northwestern and
central regions of the QMs and could be associated with Figure 1 for elevation. That is,
the AMT increase rate appeared to be greater at higher elevations, which was basically
consistent with the analysis results of Dong et al. [64].

Over the past 50 years, the changing temperature trends over the northern and south-
ern regions of the QMs have been obvious and synchronous, with the warming process
manifesting a “non-smooth, nonlinear, and ladder-shaped” pattern. The spatial variation
in temperature is characterized by “synchronous warming and differential north–south
change” [63]. The QM region displays differences in temperature in response to global
warming over the north and south. The northern boundary of the north subtropical zone ex-
tends upwards along the southern QMs, whereas the warming zone extends in the form of
an enclave into the northern QMs due to rapid urbanization and mountain blocking [63,65].

3.2.2. Spatial Distribution of Rainfall

As can be seen in Figure 5A, the greatest AMRA was measured in the southwest,
while lower levels occurred in the northeast of the QMs. The maximum AMRA values
were measured in Foping, Ningshan, Shiquan, Hanyin, and Ziyang, which were above
1000 mm. On the contrary, the minimum AMRA values were measured in Baoji, Xi’an, and
Weinan, located in the north of the QMs, and were below 600 mm. The difference between
the maximum and minimum AMRA was over 400 mm. The maximum trends of increase
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in AMRA were measured in Shangnan and Danfeng, with rates of 10.1–18.8 mm/10a
(Figure 5B).

Figure 4. (A) The spatial distribution of AMT (unit: ◦C) in the QMs averaged from 1961 to 2021.
(B) The spatial distribution of linear variation in AMT trends (unit: ◦C/10a) in the QMs.

As shown in Figure 6, the greatest distribution of LR occurred in the southwest of
the QMs, and the least occurred in the northeast. The total amount of LR type in the QM
region was above 170.8 mm, with the highest measurements in Liuba, Ziyang, Foping,
and Ningshan and the smallest in Huayin, Huazhou, and Tongguan. More MR type was
measured in the central QM region, and less occurred in the eastern and western regions; its
total value was above 195.6 mm, with the highest values measured in Ankang and Foping
in the east of Hanzhong and Zhashui and Zhen’an in the west of Shangluo. The smallest
values measured were in the west of Baoji and the east of Shangluo. More HR and TR were
measured in the south of the QMs, and less were measured in the remaining regions; the
highest values occurred in Ziyang, Foping, Ningshan, and Hanyin, and the smallest values
occurred in the north and east of the QMs. In addition, a decreasing LR trend was seen
across most of the QM region, while increasing trends were seen in Zhashui and Chenggu.
The increases in MR, HR, and TR occurred in the central QM region, with decreases in the
remaining regions.
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Figure 5. As in Figure 4, but for AMRA (A) (unit: mm) and AMRA trends (B) (unit: mm/10a).

3.3. The Abrupt Changes in Temperature and Rainfall

In this study, we used the M-K test and running t-test to examine dramatic changes
in the spatiotemporal characteristics of temperature. As can be seen from the results of
the M-K test (Figure 7A) and running t-test (Figure 7B) applied to the AMT time series
across the QMs, the most abrupt change occurred in 1997—that is, a significant shift in
the AMT occurred in 1997. The AMT showed an increasing trend after 1997. In fact, the
most significant increase trend was seen after 2002 (p = 0.05), signifying that the AMT in
the QMs has increased significantly since this time. In 1997, the occurrence of El Niño
phenomenon led to a global atmospheric circulation anomaly, subtropical high anomaly,
and hot and dry weather [51]. After that, solar activity, volcanic activity, human factors,
greenhouse gas emissions, and land use changes played a major role in climate warming,
and the increase in AMT in the QMs continued [66]. It can be seen from Figure 8, regarding
the M-K test (Figure 8A) and running t-test (Figure 8B) applied to the annual DR time series
across the QMs, that the year of most abrupt change was 1984; that is, a significant shift in
the annual DR occurred in 1984. The rainfall anomaly in the QMs might be associated with
sea surface temperature (SST) anomaly over the central-eastern equatorial Pacific and the
North Atlantic [67]. In 1984, an SST anomaly occurred in the east-central equatorial Pacific,
accompanied by the Walker circulation and meridional circulation anomalies. Additionally,
the DR increased in the QMs [67]. In addition, the time series of AMRA, LR, MR, and
HR showed no obvious year of abrupt change (Figures not shown), and they generally
remained stable. Other previous studies have indicated that various external forcing factors,
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such as solar radiation, greenhouse gases, and land use, could cause the abrupt changes in
the QMs during the period from 1961−2021 [68].

Figure 6. As in Figure 5A, but for LR (A), MR (C), HR (E), and TR (G) (unit: mm). As in Figure 5B,
but for LR (B), MR (D), HR (F), and TR (H) trends (unit: mm/10a).
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Figure 7. Mann–Kendall (A) and running t-tests (B) for the time series of the AMT over the QMs during
the period from 1961−2021. The two black dashed lines indicate the 95% confidence level of the two
tests. In (A), the black line denotes the sequential statistical curve, UF, and the red dashed line denotes
the reverse statistical curve, UB. The black lines in (B) denote the sequential statistical curve t.

3.4. Correlation Analysis between Temperature, Rainfall, and Geographical Factors

3.4.1. Correlation Analysis of Temperature, Rainfall, and Elevation

In order to better understand the distribution and variation of temperature and rainfall
in the QMs, we used the research methods of Huang et al. [69] and Bi [70] to analyze the
correlation between AMT and AMRA with geographic factors in this paper. The correlation
coefficients of AMT and AMRA with altitude, longitude, and latitude and the variation
characteristics of AMT and AMRA with geographical factors were studied. Since the
highest elevation of the QMs is over 3700 m and the highest national meteorological station
is 2064.9 m, we combined the data from regional automatic stations with data from the
national station to complete the spatial interpolation analysis. This better reflects the
actual distribution of meteorological elements in the high-elevation region, helping us to
understand the relationship between temperature, rainfall, and geographical elements.
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Figure 8. As in Figure 7, but for DR.

As can be seen from Table 5, there was a significant negative correlation between AMT
and elevation, with a correlation coefficient of −0.700 (p = 0.01). On the other hand, the
correlation coefficient between AMRA and elevation was significantly positive, with a value
of 0.142 (p = 0.01). Furthermore, there was a significant positive correlation between AMT
and longitude, with a correlation coefficient of 0.147 (p = 0.01). The correlation coefficient
between AMRA and longitude was significantly negative, with a value of −0.233 (p = 0.01).
In addition, there was a significant negative correlation of AMT and AMRA with latitude,
with correlation coefficients of −0.617 (p = 0.01) and −0.868 (p = 0.01).

Table 5. Correlation coefficient between the AMT and AMRA and various geographical factors in the
QMs during the period from 1961–2021.

Elevation (m) Longitude (◦E) Latitude (◦N)

AMT (◦C) −0.700 *** 0.147 *** −0.617 ***
AMRA (mm) 0.142 *** −0.233 *** −0.868 ***

(Note: the superscript “*” indicates the following—*** p = 0.01).

In order to explore the changes in air temperature and rainfall with elevation in greater
detail, the mean temperature and rainfall within the corresponding elevation ranges were
calculated at intervals of 100 m [69,70]. As Figure 9 shows, the AMT exhibited a decreasing
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trend with elevation increase, at a rate of 0.45 ◦C/100 m (p = 0.01). In the elevation range of
0 m (16.4 ◦C) to 3730 m (−1.6 ◦C), the mean temperature decreased by 18 ◦C. In the elevation
range of 0 to 2400 m, the temperature decreased slowly as the elevation increased, but
above 2400 m, the temperature decreased rapidly. In particular, the maximum temperature
decreased as the elevation increased from 3300 to 3700 m.

Figure 9. The AMT (unit: ◦C) and AMRA (unit: mm) change with elevation in the QMs. The brown
dashed line denotes the AMRA curve, and the blue dashed line denotes the AMT curve. The black
line denotes the linear trend of the temperature curve, and the black dashed line denotes the linear
trend of the rainfall curve.

The AMRA showed an increasing trend as the elevation increased. In the elevation
range of 0 to 3730 m, the changes in AMRA with increased elevation were more complicated,
with an alternating trend of “increase–decrease–increase–decrease”. In the elevation range
of 200 to 300 m, the maximum AMRA reached was 1050.0 mm. Above 900 m, the AMRA
began to increase gradually, and another maximum value was measured at the elevation of
2200 m to 2300 m—1038.8 mm. Then, above 2400 m, as the elevation increased, the AMRA
decreased in a fluctuating pattern; in the elevation range of 3600 to 3730 m, the minimum
AMRA was 817.6 mm. In addition, the AMRA rapidly dropped above 3400 m. These
results signify consistent change trends in the AMT and AMRA with elevation increases,
while the AMT and AMRA decreased from low to high elevation in the QM region.

3.4.2. Correlation Analysis of Temperature, Rainfall, and Longitude

In order to explore the changes in air temperature and rainfall at different longitudes
in more detail, the mean temperature and rainfall values within corresponding longitudinal
ranges were calculated at intervals of 0.2◦ [69,70]. As can be seen from Figure 10, with
changes in longitude, the AMT showed an increasing trend at a rate of 0.04 ◦C/0.2◦ (no
significant). The minimum temperature was 9.8 ◦C, which was measured in the longitude
range of 107.4◦–107.6◦ E, and the maximum value was 14.4 ◦C in the longitude range
of 110.6◦–110.8◦ E. Furthermore, the AMRA increased in the western QM region and
decreased in the east with longitudinal increase. In the longitude range of 107.6◦–107.8◦ E,
the maximum AMRA was measured with a value of 1109.2 mm. To the east of 107.8◦ E, the
AMRA showed a decreasing trend, and the minimum value of 875.8 mm appeared in the
longitude range of 110.6◦–110.8◦ E. These results further prove that the AMT and AMRA
showed different change trends with longitudinal increase; the AMT increased and the
AMRA decreased from the west to the east in the QM region.
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Figure 10. As in Figure 9, but for longitude in the QMs.

3.4.3. Correlation Analysis of Temperature, Rainfall, and Latitude

In order to explore the changes in air temperature and rainfall that occurred with
latitude in more detail, the mean values of temperature and rainfall within the correspond-
ing latitude range were calculated at intervals of 0.1◦ [69,70]. Figure 11 shows that with
increases in latitude, the AMT decreased with a linear trend of 0.23 ◦C/0.1◦ (p = 0.01). The
minimum AMT was 10.0 ◦C, measured at 34◦ N, and the maximum AMT was 15.9 ◦C at
32.8◦ N. Furthermore, with increases in latitude, the AMRA showed a decreasing trend of
up to −12.6 mm/0.1◦ (p = 0.01). The minimum AMRA was 842.4 mm, measured at 34.5◦ N,
and the maximum AMRA was 1165.0 mm at 32.5◦ N. This indicates significant differences
in AMRA between the north and south of the QM region. The AMT and AMRA showed
consistent change trends with increases in latitude, with both decreasing gradually from
the south to the north of the QM region.

Figure 11. As in Figure 9, but for latitude in the QMs.
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4. Discussion and Conclusions

In this study, we investigated the spatiotemporal characteristics of temperature and
rainfall in the QMs during the period 1961–2021, and the correlations between temperature
and rainfall and geographical factors were studied in detail. The results show that the AMT
has significantly increased in the QMs. This increase has been significant in all seasons,
with the maximum increasing tendency in spring and the minimum increasing tendency in
summer. Positive AMRA anomalies occurred in the 1960s, 1980s, and 2010s, and negative
anomalies occurred in the 1970s, 1990s, and 2000s. In the last ten years, MR, HR, TR,
and DR showed increasing trends, but LR did not. The AMT increase rate was greater
in the northwest and central regions of the QMs, whereas this rate was smaller in the
southwestern and eastern regions of the QMs. Considering the elevation distribution of
the QMs, the AMT increase rate appeared to be greater at higher elevations, whereas this
rate was lower at lower elevations. This result indicates that higher-elevation regions have
a more respond positive to climate change than lower-elevation regions [71]. The AMRA
showed a decreasing trend in the southwestern and northeastern regions of the QMs, as
there were fewer regions with an increasing AMRA trend compared to those where a
decreasing AMRA trend occurred.

In the QMs, MR represented the maximum proportion and accounted for 27.9% of
the AMRA, whereas TR represented the minimum proportion and accounted for 12.8%.
The AMRA significantly decreased by 130.1 mm from the 1980s to the 1990s and accounted
for 13.5% of the total in the 1980s. The increase in AMRA in the QMs in the 2010s was
mainly caused by the increases in MR, HR, TR, and DR. The years with the most abrupt
changes in AMT and DR were 1997 and 1984, respectively, in the QMs. The AMT and
AMRA showed consistent change trends with elevation and latitude increases—the AMT
and AMRA decreased from a low elevation to high elevation and from the south to the
north of the QM region, respectively. The AMT and AMRA showed different change trends
with longitude increases—the AMT increased and the AMRA decreased from the west to
the east of the QM region.

In this paper, different types of rainfall have been analyzed. Most of the literature has
mainly focused on the TR type, indicating that the change trend of TR over the last 50 years
has not been obvious, but we suggest an increasing trend in the TR in this century, which is
basically consistent with the research conclusions of Kang [45] and Huang et al. [72].

It should be noted that although this study emphasizes the spatiotemporal char-
acteristics of temperature and rainfall in the QMs, several issues remain unclear. For
example, the primary limitations of this study are the limited number of surface weather
stations in the QMs, the limited duration of the data collection period and the complex
topography of the area, which require further exploration the correlation between mete-
orological factors and geographical factors in the QMs. Furthermore, it was difficult to
analyze all the human and natural factors that could affect rainfall and temperature in
this area because of the complex topography [16]. Additionally, solar radiation, aerosol,
ENSO, and snow depth may also affect rainfall and temperature in the QMs [73]. In the
future, studies should focus on the potential physical mechanisms that influence the
spatiotemporal distribution characteristics of temperature and rainfall in order to obtain
more accurate trends and perform attribution analyses. With increases in observational
data, more in-depth research should be carried out on the spatiotemporal distribution
characteristics of temperature and rainfall and their correlations with geographical
factors. Our results are expected to enhance the understanding of the meteorological
background of the QMs.
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Abstract: We investigated the relative humidity (RH) vertical distribution characteristics before pre-
cipitation using microwave radiometer measurements over southeast China in 2021. The superposed
epoch method is used to analyze the profile and vertical statistical characteristics and evolution of RH
during precipitation events. There is a shallow, high-humidity area on the ground, with a thickness
of about 0.1–0.2 Km, from 12 to 8 h before precipitation. An obvious dry layer appears in the lower
layer near the ground 8–0 h before precipitation, with a thickness of about 1 km and humidity of
less than 80%, which continues until the appearance of precipitation. The water vapor content in
the air begins to accumulate and the humidity increases before the occurrence of LRs, MRs, and
HRs, classified by total rainfall. The SDPs, MDPs, and LDPs, which are classified by precipitation
duration, showed more obvious and significant characteristics of humidity increase. The statistical
analysis of the 44 precipitation cases shows that the relative humidity on the ground and in the air
increases significantly before precipitation, and the vertical distribution of the relative humidity and
the increase in the water vapor content in the air have a more direct and obvious impact on the
precipitation duration. The deep and high-humidity area of 2–4 km is conducive to maintaining the
precipitation process for a long time.

Keywords: relative humidity; microwave radiometer data; total rainfall; precipitation duration;
vertical distribution

1. Introduction

Moisture plays an important role in many weather processes, especially in contin-
uous precipitation process. The root cause of abnormally heavy precipitation is closely
related to the water vapor supply and transportation under the background of large-scale
circulation [1,2]. Atmospheric water vapor content and vertical distribution are crucial
meteorological parameters for understanding atmospheric thermodynamic processes [3].
On the one hand, the water vapor content directly influences the global hydrological cycle,
which is closely related to atmospheric energy transmission, radiation budget balance,
cloud and rain formation, and climate change [4–6]. On the other hand, the microphysical
features of precipitation, which can be reflected by its vertical structure, are helpful in
understanding the thermodynamic and dynamic properties of precipitation systems.

The influence of water vapor at different heights on surface precipitation is
different [7,8]. The sensitivity of the structure and strength of a squall line in the ini-
tial and early development stages to initial low-level humidity and environment vertical
wind shear are investigated in a two-dimensional idealized squall line simulation using the
WRF model. The results of the sensitivity test of low-level humidity indicate that increasing
low-level humidity is favorable for convective triggering and stronger convective sys-
tems [9]. The radar reflectivity and precipitation rate from the Precipitation Radar onboard
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Tropical Rainfall Measuring Mission satellite are obtained over the global tropical regions
(35◦ S–35◦ N) during the period from 2007 to 2012, combined with coincident vertical
velocity at 400 hPa, relative humidity at 850 hPa, and lower tropospheric stability from
European Centre for Medium-Range Weather Forecasts reanalysis. The results imply that
coincident vertical velocity at 400 hPa and relative humidity at 850 hPa are most likely to
play a dominant role in dictating the vertical development of convection [10]. The analysis
of cyclone heavy rain processes with different low-level humidity conditions in Qingdao
indicated that the relative humidity at 850 hPa before the heavy rain was higher and the
duration of rainfall was longer [11].

The traditional method of detecting atmospheric water vapor and temperature profiles
is based on the radiosonde (RS) carried by a sounding balloon. It has the advantages of high
accuracy and reliability, low power consumption, light weight, and small size. However, it
is influenced by limits of equipment and manpower costs, the launch frequency of RS is rel-
atively low [3]. Additionally, the motion path of the sounding balloon can vary, largely due
to the horizontal advection and variable ascent rate [12], which will cause measured drift
in the atmospheric profile. The microwave radiometer (MWR) is a passive remote sensing
instrument that provides vertical profiles of atmospheric temperature and water vapor
content by measuring the thermal radiation emitted by the atmosphere. Compared with
the RS, it has applicability due to the advantages of high temporal resolution, reasonable
vertical resolution, and ability to automatically measure under almost all-weather condi-
tions [13–15]. In addition, the MWR can also provide other atmospheric parameters, such
as cloud base height, integrated water vapor (IWV), and liquid water path (LWP), which are
important for evaluating cloud water resources, climate change, and precipitation [16–18].
Performance of MWR was also estimated by comparing with the RS data. The temperature
profile measured by the microwave radiometer was better under cloudy conditions, while
the RH profile had higher accuracy under cloud-free conditions [19–21]. The comparison
of temperature and vapor density obtained from MWR and RS observations during the
Integrative Monsoon Frontal Rainfall Experiment Show that: for all sky conditions, the
temperature of MWR has a good agreement with that of RS. The vapor density from two
measurements also shows reasonable agreement [22–24].

In the past, research on microwave radiometer retrieval data mainly focused on the
evolution characteristics of the total accumulated water vapor and cloud liquid water
in the whole layer before the beginning of precipitation. There are few studies on the
distribution and evolution characteristics of the vertical profile of water vapor and relative
humidity, and the analysis of the contribution of moisture to precipitation duration is also
less involved.

Jian’ou city is located to the south of Wuyi Mountains. Subtropical monsoon climate
prevailing at this city brings significant seasonal differences in temperature and rainfall.
Jian’ou has abundant rainfall, with an average annual precipitation of 1753.7 mm, and
the disasters caused by precipitation in this city are very serious. In this study, Jian’ou is
adopted as a representative city for the southeast China to investigate the vertical structure
characteristics of humidity in different rainfall regimes using continuous MWR observations
in 2021.

The remainder of this paper is organized as follows. Section 2 introduces the dataset
and method used in this study. Our analyses of RH variation and its vertical distribution
before precipitation are presented and discussed in Section 3, and conclusions are given in
Section 4.

2. Materials and Methods

The observation station selected in this study is located at Jian’ou National Reference
Climate Station (118◦19′23′′ E, 27◦03′10′′ N, UTC +8, 150 m above sea level) in southeast
China from Jan to Dec 2021 to explore the humidity properties of the atmosphere before
different rainfall regimes (Figure 1).
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Figure 1. Geographical map of study area ((a) is Fujian Province, (b) is Jian’ou Station).

2.1. Instruments

The MWR is a QFW6000 unit independently manufactured by China Research Institute
of Radiowave Propagation. It observes brightness temperature in 48 channels, including
24 K bands (22–32 GHz) and 24 V bands (51–59 GHz). Combined with ambient tempera-
ture, pressure, and relative humidity from the meteorological sensors attached to MWR,
atmospheric profiles (temperature, vapor density, and relative humidity) are retrieved from
these brightness temperatures. Atmospheric profiles derived from MWR have a temporal
resolution of ∼3 min and vertical resolutions of 50 m from the surface to 0.5 km, 100 m
from 0.5 to 2.0 km, and 250 m from 2.0 to 10.0 km.

RS is usually used as a standard criterion to evaluate other measurements because it
detects atmospheric parameters directly with various correction methods for improving its
accuracy. Atmospheric temperature, water vapor density, and relative humidity profiles
retrieved from the MWR were verified using radiosonde soundings.

Comparison of temperature and relative humidity obtained from MWR and RS were
operated at Fu’zhou station during December 2016, which have the same climate with
Jian’ou in the north of Fujian Province. For all sky conditions, the temperature of MWR has
good agreement with that of RS and a correlation coefficient (R) of 0.995, with a root mean
square error of 0.3–0.22 ◦C. The relative humidity from two measurements also shows
reasonable agreement, with an R of 0.743 and a root mean square error of 2.5–12.55%.
The relative humidity data obtained from MWR at Jian’ou station was filtered strictly
by removing missing data and singular value number during 2021. So, the atmospheric
profiles data used in this paper were successive, stable, and credible.

2.2. Data and Methods

The MWR dataset has the temporal resolution of 3 min. Since the time step of the
data is not an integer, in order to facilitate the analysis and maintain the data accuracy as
much as possible, before the individual statistics, this paper takes the average value of the
physical quantity in a total of 5 min before and after a certain time as the physical quantity
value at that time, and it is reasonable to set the temporal resolution as 5 min.

Therefore, select and classify rainfall samples according to the following criteria:

1. Investigate the hourly precipitation data of Jian’ou Station from 1 January to 31
December 2021, and continuous precipitation as a sample.
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2. Eliminate the case in which precipitation occurred in the 12 h period before the start
of precipitation, and eliminate the impact of early precipitation on the inversion data
of ground-based microwave radiometer.

3. Eliminate the weak rainfall samples with 1 mm rainfall in the first hour and less than
6 h duration.

4. The rainfall samples are divided into light rain (LR, cumulative rainfall is 0–5 mm),
moderate rain (MR, cumulative rainfall is 5–10 mm), and heavy rain (HR, cumulative
rainfall > 10 mm) according to the cumulative rainfall.

5. The rainfall samples are divided into short-duration precipitation (SDP, precipitation
duration is 1–3 h), medium-duration precipitation (MDP, precipitation duration is
4–8 h), and long-duration precipitation (LDP, precipitation duration is >9 h) according
to the duration of rainfall.

The occurrence time of precipitation is set as the 0-hour time, and the 1 h before
precipitation is set as −1 h while the 1 h after precipitation is set as +1 h. If no precipitation
occurs during the 12 h before 0-hour time, and the accumulated precipitation within 1 h
after 0 time is more than 1 mm or the precipitation duration is greater than 6 h, then the
case is picked. Using this principle, 44 samples were selected to investigate the temporal
variation in relative humidity (see Table 1). According to the total rainfall, there are 12 LRs,
13 MRs, and 19 HRs. According to the precipitation duration, there are 23 SDPs, 13 MDPs,
and 8 LDPs.

Table 1. Cases information of precipitation at Jian’ou station during 2021.

No.
Start Time of
Precipitation

Precipitation
Duration/h

Cumulative
Rainfall/mm

Classification
by Duration

Classification
by Total
Rainfall

1
2021/2/16

18:00
6 4.8 MDP LR

2
2021/3/1

23:00
5 7.3 MDP MR

3
2021/3/4

23:00
2 2.9 SDP LR

4
2021/3/11

5:00
6 8.3 MDP MR

5
2021/3/30

18:00
1 10.0 SDP HR

6
2021/4/22

13:00
1 4.5 SDP LR

7
2021/4/24

20:00
13 19.1 LDP HR

8
2021/4/27

8:00
4 2.5 MDP LR

9
2021/5/4

16:00
3 7.9 SDP MR

10
2021/5/7

17:00
11 27.0 LDP HR

11
2021/5/13

18:00
1 8.1 SDP MR
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Table 1. Cont.

No.
Start Time of
Precipitation

Precipitation
Duration/h

Cumulative
Rainfall/mm

Classification
by Duration

Classification
by Total
Rainfall

12
2021/5/16

17:00
1 5.3 SDP MR

13
2021/5/23

19:00
4 8.8 MDP MR

14
2021/5/27

5:00
8 15.3 MDP HR

15
2021/5/31

16:00
8 8.2 MDP MR

16
2021/6/4

0:00
5 10.6 MDP HR

17
2021/6/19

14:00
2 2.9 SDP LR

18
2021/6/21

16:00
7 23.8 MDP HR

19
2021/6/28

2:00
16 56.9 LDP HR

20
2021/6/29

16:00
2 21.8 SDP HR

21
2021/7/20

15:00
1 6.1 SDP MR

22
2021/7/23

15:00
2 7.0 SDP MR

23
2021/7/24

14:00
2 3.4 SDP LR

24
2021/7/27

20:00
2 26.5 SDP HR

25
2021/7/28

16:00
3 36.0 SDP HR

26
2021/7/31

0:00
1 1.0 SDP LR

27
2021/7/31

20:00
3 55.9 SDP HR

28
2021/8/1

17:00
9 35.6 LDP HR

29
2021/8/2

16:00
1 9.4 SDP MR

30
2021/8/3

15:00
3 16.0 SDP HR

31
2021/8/11

18:00
1 5.5 SDP MR

32
2021/8/14

16:00
2 3.1 SDP LR

33
2021/8/15

17:00
5 27.8 MDP HR
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Table 1. Cont.

No.
Start Time of
Precipitation

Precipitation
Duration/h

Cumulative
Rainfall/mm

Classification
by Duration

Classification
by Total
Rainfall

34
2021/8/20

16:00
3 12.0 SDP HR

35
2021/8/28

18:00
1 1.2 SDP LR

36
2021/9/8

20:00
3 10.5 SDP HR

37
2021/9/12

16:00
1 3.6 SDP LR

38
2021/10/19

18:00
16 12.1 LDP HR

39
2021/11/2

4:00
6 6.4 MDP MR

40
2021/11/13

1:00
6 1.9 MDP LR

41
2021/11/21

19:00
14 17.9 LDP HR

42
2021/12/16

5:00
8 5.8 MDP MR

43
2021/12/20

20:00
21 15.7 LDP HR

44
2021/12/25

12:00
13 3.2 LDP LR

In order to study the change characteristics of relative humidity and its vertical
structure before the beginning of different types of precipitation, temporal variations in
the relative humidity were analyzed with superposed epoch method, which highlights the
effect of the factor in the key time periods while weakening the effects of other factors [25].

The superposed epoch is a row–column array in which the ”response” index values
filling any row are data pertaining to a single key event. Thus, the number of rows is the
sample size of such events. The columns line up the index values in fixed time relation
to the key times; column averages comprise the “superposed epoch analysis.” By this
averaging method, any fluctuations in the response index that are locked in time relative to
the key time column are preserved in the average, whereas fluctuations shifting in time
from row to row are averaged out [26].

3. Results and Discussion

Because the RH can provide information about hydrometeors in the atmosphere, it
is a key parameter used in numerical models and precipitation forecast. We analyzed the
variation in the RH before and after precipitation using the superposed epoch method.
This section first presents statistical characteristics of RH from MWR before precipitation.
Moreover, retrieval applications of MWR in rainy environments are further studied to
support nowcasting and precipitation duration estimation.

3.1. Variation in RH before and after Precipitation Classify by Total Rainfall

Figure 2 shows statistical characteristics of relative humidity from 12 precipitation
cases of LR. The relative humidity on the ground and in the air began to increase 12–6 h
before the start of precipitation, and the relative humidity increased in the near ground
layer (below 0.2 km) and the middle and low layer (1–3 km), but the humidity of these two
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layers did not reach saturation (exceeded 80%). There is an obvious dry layer (humidity
is lower than 70%) between the two layers of accumulated water vapor growth, and the
thickness of the dry layer is about 0.8 km; 6–0 h before the start of precipitation, the wet
layer near the ground began to rise, and a dry layer with a thickness of 1 km appeared
near the ground until the occurrence of precipitation. The humidity continues to increase
between 1–3 km during −6 to 0 h, forming a high-humidity area.

Figure 2. Vertical distributions of relative humidity during 12 h before and 6 h after the start of LRs
in 2021.

The statistical analysis results of 13 precipitation cases of MR are shown in Figure 3.
It can be seen that the ground and air humidity increased 12–8 h before the precipitation,
especially the water vapor content near the ground increased significantly, the thickness of
the high-humidity area on the ground reached 0.2 km, and the relative humidity exceeded
90%. After −8 h, the humidity in the lower layer decreased, an obvious dry layer appeared
below 2 km, and the water vapor began to accumulate in the high humidity area around
3 km in the middle layer, and the wet layer thickened and became nearly saturated, until
the appearance of precipitation.

Figure 4 illustrates the vertical distributions of relative humidity during 12 h before
and 6 h after the start of 19 HR cases. From 12 to 8 h before the beginning of precipitation,
there is a process of significant humidity increase on the ground, with humidity exceeding
80% and thickness only about 0.1 km, and then the humidity near the ground decreases,
and a dry layer with humidity less than 70% appears below 1 km. From 12 h before the
precipitation, the process of external water vapor transport and humidity increase in the
middle and lower layers (1–4 km) began to occur, and the wet layer was thick.
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Figure 3. Vertical distributions of relative humidity during 12 h before and 6 h after the start of MRs
in 2021.

Figure 4. Vertical distributions of relative humidity during 12 h before and 6 h after the start of HRs
in 2021.

3.2. Variation in RH before and after Precipitation Classify by Duration

Precipitation is when water vapor in the atmosphere condenses and becomes heavy
enough to fall to the ground. Clouds are made of water vapor under different conditions,
including variations in relative humidity and air pressure, the vapor particles can begin
to combine and form much larger droplets. The increase in relative humidity, which in
turn leads to the accumulation of water vapor, is a necessary condition for the formation of
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precipitation. It not only affects the total rainfall in the rainfall regimes, but also helps to
maintain the rainfall regimes for a long time.

Figure 5 presents the mean RH profile from 0 to 10 km during 12 h before and 6 h
after the occurrence of 23 SDP cases at Jian’ou station. It is shown that the ground relative
humidity began to increase significantly 12–8 h before the start of precipitation, and average
relative humidity exceeds 80%, but the high humidity area near the ground is shallow,
about 0.2 km thick. From −8 to 0 h before the beginning of precipitation, with the increase
in water vapor, the relative humidity on the ground decreases, and a dry layer appears near
the ground. From −4 to 0 h before the precipitation, the water vapor in the air began to
increase gradually, and the humidity layer at the height of 1–4 km began to thicken. Within
2 h before the precipitation, the humidity increased rapidly and approached saturation,
with the average humidity layer thickness reaching 3 km.

Figure 5. Vertical distributions of relative humidity during 12 h before and 6 h after the start of SDPs
in 2021.

The temporally averaged RH profiles during 12 h before and 6 h after the occurrence
time of the 13 MDP events are presented in Figure 6. It is shown that the ground relative
humidity began to increase significantly 12 h before the beginning of precipitation, and
a shallow and discontinuous high humidity layer appeared, with the average relative
humidity reaching more than 80%. Continuous and deep wet areas appear, with average
humidity of more than 80% and average thickness of 2.2 Km, between 1.8–4 Km in the air.
There is an obvious dry layer between the high humidity layer on the ground and in the air,
with a thickness of about 1.5 km. With the further transportation of water vapor within
2 h before the precipitation, the dry layer between the ground and the air disappears, the
thickness of the humidity layer reaches 5–6 Km, and the average humidity exceeds 90%,
which is close to saturation.

Figure 7 presents the statistical characteristics of the relative humidity profile during
the 8 LDP cases at Jian’ou station before precipitation. It can be seen that 12–8 h before
the start of precipitation, along with the water vapor transport, a deep moisture layer
begins to appear in the middle and low layers, with a thickness of 5–6 Km and an average
humidity of more than 80%; the layer between 2 and 4 km is the water vapor concentration
zone, which air close to saturation and humidity is more than 90%. From −8 to −1 h
before precipitation, the bottom atmospheric humidity began to decrease. The atmospheric
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moisture content is low within 1 km above the ground, and the humidity is less than 80%.
The moisture is mainly concentrated in the middle and upper layers of 1.5–5.5 km, the
relative humidity is more than 80%, and the local humidity exceeds 90%.

Figure 6. Vertical distributions of relative humidity during 12 h before and 6 h after the start of MDPs
in 2021.

Figure 7. Vertical distributions of relative humidity during 12 h before and 6 h after the start of LDPs
in 2021.

4. Summary and Conclusions

The main objective of this study was to investigate the variation and vertical distri-
butions of RH before precipitation. We used the superposed epoch method to analyze the
profile of RH during precipitation events.
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There is a shallow high humidity area on the ground, with a thickness of about
0.1–0.2 km, from 12 to 8 h before precipitation. An obvious dry layer appears in the lower
layer near the ground 8–0 h before precipitation, with a thickness of about 1 km and
humidity of less than 80%, which continues until the appearance of precipitation.

The water vapor content in the air began to accumulate and the humidity increased
before the occurrence of LRs, MRs, and HRs, which is classified by total rainfall. The
increase in air humidity continues from 12 h before precipitation to the beginning of
precipitation. The wet layer thickness of LRs is the thinnest, and the height of wet layer
is also low. Before precipitation of MRs and HRs, the characteristics of water vapor
accumulation in the atmosphere are similar. High humidity areas with relative humidity
greater than 80% are continuous and deep. Before the start of HRs, the thickness of the
humidity layer (RH > 80%) can reach 4 km and the height can reach 6 km.

The SDPs, MDPs, and LDPs, which are classified by precipitation duration, also
showed statistical characteristics of significant increase in humidity. There is a high hu-
midity area in the middle and low layers until 2 h before SDPs. The 12–0 h before the
occurrence of MDPs, a continuous and deep humidity layer appeared between 1.8 and
4 Km on the ground, with an average thickness of 2.2 Km. The humidity layer became
thicker as the precipitation approached. The 12–6 h before LDPs, water vapor content
below 6 km is very rich, and the thickness of high humidity area reaches 5–6 Km. After that,
the humidity layer rises, and the high humidity layer between 1.5 and 5.5 km is maintained
until the appearance of precipitation.

The statistical analysis of the filtered 44 precipitation cases shows that the relative
humidity on the ground and in the air increases significantly before precipitation, and the
vertical distribution of the relative humidity and the increase of the water vapor content in
the air have a more direct and obvious impact on the precipitation duration. The deep and
high humidity area of 2–4 km is conducive to maintaining the precipitation process for a
long time.

A large number of numerical model simulations and reanalysis data analysis show
that the physical quantities that affect the atmospheric thermal and dynamic environment
during precipitation mainly include rising speed, relative humidity, temperature, and
vertical wind shear. The transportation of warm and humid air leads to the increase in the
convective available potential energy over the precipitation area. The increase in low-level
humidity is favorable for convective triggering and stronger convective systems. The
increased convective intensity and upward movement make it easier for new convective
cells to form at the leading edge of the cold poll. The increased low-level humidity also
leads to more precipitation, which raises the intensity of cold poor. Coincident vertical
velocity at 400 hPa and relative humidity at 850 hPa most likely play a dominant role in
dictating the vertical development of convection. The important causes of longer duration
and the larger accumulated of precipitation was the higher relative humidity conditions
and long-lasting upward motion, as well as continuous water vapor transport. Therefore, it
is of great significance to strengthen the analysis of the of low-level jet and relative humidity
vertical distribution by microwave radiometer data for the prediction of precipitation.

Author Contributions: Conceptualization, Y.Y.; Y.Z.; W.P.; methodology, Y.Y.; Y.Z.; software, Y.Y.;
validation, Y.Z.; formal analysis, Y.Y.; Y.Z.; investigation, Y.Y.; Y.Z.; resources, Y.Y.; data curation,
Y.Y.; writing—original draft preparation, Y.Y.; writing—review and editing, Y.Y.; visualization, W.P.;
supervision, Y.Y.; project administration, Y.Y.; funding acquisition, Y.Y.; Y.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Open Research Fund of Fujian Provincial Meteorological
Bureau (2021KX02), the National Key Research and Development Program of China (2019YFC1510303).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

145



Atmosphere 2023, 14, 513

Data Availability Statement: The data were observed by Fujian Provincial Meteorological Bureau. If
you want to obtain it, please apply through email (fjqxyyj@163.com).

Acknowledgments: The authors acknowledge the free use of the microwave radiometer data pro-
vided by Fujian Provincial Meteorological Bureau. We also appreciate the anonymous reviewers for
their constructive comments and thoughtful suggestions.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Zhang, L.; Du, L.; Chen, L. Analysis of Water Vapor Source and Transport Path of Abnormal Heavy Rain in Wuhan. Meteorol.

Environ. Sci. 2014, 37, 69–74.
2. Wang, X.; Xu, G.; Yuan, K. Different characteristic analysis of inversion parameters for heavy rainfall and weak rainfall by

microwave radiometer data. Torrential Rain Disasters 2016, 35, 227–233.
3. Jin, S.; Ma, Y.; Gong, W.; Liu, B.; Lei, L.; Fan, R. Characteristics of vertical atmosphere based on five-year microwave remote

sensing data over Wuhan region. Atmos. Res. 2021, 260, 105710. [CrossRef]
4. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere—Aerosols, climate, and the hydrological cycle. Science 2001,

294, 2119–2124. [CrossRef] [PubMed]
5. Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought:

How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [CrossRef]
6. Obregon, M.A.; Costa, M.J.; Silva, A.M.; Serrano, A. Impact of aerosol and water vapour on SW radiation at the surface: Sensitivity

study and applications. Atmos. Res. 2018, 213, 252–263. [CrossRef]
7. Qi, Y.; Fan, S.; Mao, J.; Li, B.; Guo, C.; Zhang, S. Impact of Assimilating Ground-Based Microwave Radiometer Data on the

Precipitation Bifurcation Forecast: A Case Study in Beijing. Atmosphere 2021, 12, 551. [CrossRef]
8. Qi, Y.; Fan, S.; Li, B.; Mao, J.; Lin, D. Assimilation of Ground-Based Microwave Radiometer on Heavy Rainfall Forecast in Beijing.

Atmosphere 2022, 13, 74. [CrossRef]
9. Gao, Y.; Sun, L.; Ma, X.; Meng, Z.; Cheng, K. The sensitivity of structure and strength of squall line to low-level humidity and

environment vertical wind shear. Trans. Atmos. Sci. 2022, 45, 938–947. (In Chinese)
10. Liu, H.; Guo, J.; Chen, T.; Zhai, P. On the seasonal variation of various types of precipitation over global tropical ocean region: A

perspective from TRMM measurements. Chin. Sci. Bull. 2017, 62, 90–104. (In Chinese) [CrossRef]
11. Liu, X.; Ma, Y.; Ling, Y.; Jiang, D.; Wan, F. Analysis of Two cyclone heavy rain processes with different low-level humidity

conditions in Qingdao. Meteorol. Sci. Technol. 2019, 47, 818–829.
12. Bedoya-Velásquez, A.E.; Navas-Guzmán, F.; Moreira, G.D.A.; Román, R.; Cazorla, A.; Ortiz-Amezcua, P.; Benavent-Oltra, J.A.;

Alados-Arboledas, L.; Olmo-Reyes, F.J.; Foyo-Moreno, I.; et al. Seasonal analysis of the atmosphere during five years by using
microwave radiometry over a mid-latitude site. Atmospheric Res. 2019, 218, 78–89. [CrossRef]

13. Li, Q.; Wei, M.; Wang, Z.; Chu, Y. Evaluation and Improvement of the Quality of Ground-Based Microwave Radiometer Clear-Sky
Data. Atmosphere 2021, 12, 435. [CrossRef]

14. Liu, M.; Liu, Y.-A.; Shu, J. Characteristics Analysis of the Multi-Channel Ground-Based Microwave Radiometer Observations
during Various Weather Conditions. Atmosphere 2022, 13, 1556. [CrossRef]

15. Ma, R.; Li, X. Sounding Data from Ground-Based Microwave Radiometers for a Hailstorm Case: Analyzing Spatiotemporal
Differences and Initializing an Idealized Model for Prediction. Atmosphere 2022, 13, 1535. [CrossRef]

16. Cui, C.; Wan, R.; Wang, B. The Mesoscale Heavy Rainfall Observing System (MHROS) over the middle region of the Yangtze
River in China. J. Geophys. Res. Atmos. 2015, 120, 10399–10417. [CrossRef]

17. Huang, J.; Minnis, P.; Lin, B.; Yi, H.; Sun-Mack, S.; Fan, T.-F.; Ayers, J. Determination of ice water path in ice-over-water cloud
systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett. 2006, 33. [CrossRef]

18. Lei, L.; Wang, Z.; Ma, Y.; Zhu, L.; Qin, J.; Chen, R.; Lu, J. Measurement of Solar Absolute Brightness Temperature Using a
Ground-Based Multichannel Microwave Radiometer. Remote Sens. 2021, 13, 2968. [CrossRef]

19. Shi, Y.; Wei, J.; Qiao, Z.; Zhao, J.; Wang, G. Atmospheric Exploration of the Qinghai–Tibet Plateau during the East Asian Winter
Monsoon (EAWM) from a Ground-Based Microwave Radiometer. Atmosphere 2022, 13, 549. [CrossRef]

20. Wei, J.; Shi, Y.; Ren, Y.; Li, Q.; Qiao, Z.; Cao, J.; Ayantobo, O.O.; Yin, J.; Wang, G. Application of Ground-Based Microwave
Radiometer in Retrieving Meteorological Characteristics of Tibet Plateau. Remote Sens. 2021, 13, 2527. [CrossRef]

21. Xu, G.; Xi, B.; Zhang, W.; Cui, C.; Dong, X.; Liu, Y.; Yan, G. Comparison of atmospheric profiles between microwave radiometer
retrievals and radiosonde soundings. J. Geophys. Res. Atmos. 2015, 120, 10313–10323. [CrossRef]

22. Xu, G.; Xi, B.; Zhang, W.; Cui, C.; Dong, X.; Liu, Y.; Yan, G. Cloud occurrence frequency and cloud liquid water path for
non-precipitating clouds using ground-based measurements over central China. J. Atmos. Sol.-Terr. Phys. 2021, 215, 105575.
[CrossRef]

23. Zhang, W.; Xu, G.; Liu, Y.; Yan, G.; Li, D.; Wang, S. Uncertainties of ground-based microwave radiometer retrievals in zenith and
off-zenith observations under snow conditions. Atmos. Meas. Tech. 2017, 10, 155–165. [CrossRef]

146



Atmosphere 2023, 14, 513

24. Zhang, W.; Xu, G.; Xi, B.; Ren, J.; Wan, X.; Zhou, L. Comparative study of cloud liquid water and rain liquid water obtained from
microwave radiometer and micro rain radar observations over central China during the monsoon. J. Geophys. Res. Atmos. 2020,
125, e2020JD032456. [CrossRef]

25. Zheng, Z.; Xu, G.; Li, Q.; Chen, C.; Li, J. Effect of precipitation on reducing atmospheric pollutant over Beijing. Atmos. Pollut. Res.

2019, 10, 1443–1453. [CrossRef]
26. Haurwitz, M.; Brier, G. A Critique of the Superposed Epoch Analysis Method: Its Application to Solar–Weather Relations. Mon.

Weather. Rev. 1981, 109, 2074–2079. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

147





Citation: Huo, L.; Xiao, L.; Wang, J.;

Jin, D.; Shi, Y.; Zhang, Q. Association

between the Rail Breakage Frequency

in Beijing–Tianjin–Hebei High-Speed

Railway and the Eurasian

Atmospheric Circulation Anomaly.

Atmosphere 2023, 14, 561. https://

doi.org/10.3390/atmos14030561

Academic Editor: Pak-Wai Chan

Received: 14 December 2022

Revised: 28 February 2023

Accepted: 11 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Communication

Association between the Rail Breakage Frequency in
Beijing–Tianjin–Hebei High-Speed Railway and the Eurasian
Atmospheric Circulation Anomaly

Liwei Huo 1, Linman Xiao 1, Ji Wang 2,*, Dachao Jin 1 , Yinglong Shi 3 and Qian Zhang 4

1 Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research
Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and
Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology,
Nanjing 210044, China

2 Beijing Regional Climate Center, Beijing 100089, China
3 College of Meteorology and Oceanography, National University of Defense Technology,

Changsha 410003, China
4 College of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China
* Correspondence: wangji_zl@163.com

Abstract: The spatiotemporal variations in the frequency of rail breakage (FRB) in the high-speed
railway of the Beijing–Tianjin–Hebei (BTH) region and its relationship with atmospheric circulation
anomalies and surface temperature are analyzed in this study, based on the monthly FRB data of
BTH region and the ERA5 reanalysis data from 2010 to 2020. The frequency of rail breaking in the
BTH region varies significantly depending on the season, with winter having the highest incidence.
In fact, more than 60% of the total FRB in the BTH region occur during the winter season. Both the
annual total and winter FRB in BTH region are very unevenly distributed in time and space, and
both are relatively similar in spatial distribution patterns. The FRB in Beijing railway section is the
most frequent, followed by Tianjin, and the lowest frequency is observed in Chengde. It is found
that the increasing winter FRB in BTH region and the intensified Siberian high are related. When
the Siberian high is strong, the East Asian winter monsoon and the East Asian Trough in the middle
troposphere could be enhanced through atmospheric teleconnection, which is conducive to the cold
air advection from northern high latitudes to the BTH region, resulting in an abnormally cold winter
in BTH region, thus providing low temperatures for broken rails on high-speed railways, and vice
versa. The research results might provide a scientific basis for monitoring and predicting the broken
rails in BTH high-speed railway during winter, thereby providing a guarantee for the safe operation
of the high-speed railway.

Keywords: Beijing–Tianjin–Hebei region; rail breakage; frequency; high-speed railway; Siberian high;
teleconnection; temperature

1. Introduction

The Beijing–Tianjin–Hebei (BTH) region is China’s capital economic circle, which
includes the capital city of China, Beijing, and the municipality of Tianjin, and is densely
populated. High-speed railway plays an important role in the coordinated development of
the Beijing–Tianjin–Hebei region. For example, the Beijing-Zhangjiakou high-speed railway
provided a strong foundation for the transportation service guarantee of the 2022 Beijing
Winter Olympics.

Railway transportation has become the main mode of modern transportation due to its
advantages of low climate impact, strong transportation capacity, and energy saving [1]. In
recent years, China’s economy has been booming, and with the implementation of “the Belt
and Road initiative”, the construction of public infrastructure has played a significant role
in rapid economic development, and railway development is one of the top priorities [2].
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Railways with a speed of 250 km/h or more are called high-speed railways [3]. At
present, high-speed railway has become one of the main ways to travel in China, so the
safety of high-speed railway is related to the safety of passengers’ lives and property. The
rails are exposed to the open air for a long time and are prone to break under the repeatedly
exerted axle loads [4]. Broken rail accidents have always been a serious hazard to a train’s
operation safety, even causing train derailing and overturning, bringing a large number of
casualties and property damage.

Generally speaking, the fracture of rail is directly related to the internal defects. Some
of these defects are formed in the process of rail production, such as micro-cracks formed in
the steel rolling [5]; some are produced during the installation and connection of rails, such
as cracks generated during welding and cooling [6]. During the use of steel rails, the initial
crack expands under the dynamic load of the train until fracture occurs, especially at low
temperatures when the possibility of fracture increases greatly [6]. The main reason is the
large seasonal temperature difference. The locked rail temperature is high in track laying
construction, when the stress desperation is higher than the locked temperature due to
high temperature, whereas winter cooling increases the tensile stress of track temperature.
Moreover, there are stress peaks during cooling process, and thus rails cannot withstand
the temperature pull generated by cooling, leading to their breakage.

For example, in the early morning of 19 December 2004, the rails at the Fata Temple
crossing in Beijing were frozen and cracked, causing 10 trains to be delayed. The main reason
for the rail freezing and cracking this time is that the temperature difference between day
and night on the 18th is too large. Coupled with the sleet during the day, the rain on the rails
freezes after a sudden drop in temperature at night, causing the rails to freeze and crack.

There are many factors influencing winter temperature anomalies in the BTH region.
The East Asian winter monsoon, for instance, has a significant impact on temperature
anomalies in BTH region [7,8]. The Arctic Oscillation (AO) is one of the major teleconnection
patterns in the northern hemisphere [9,10]. AO is characterized by the phenomenon of
a zonal band-like seesaw structure in the sea level pressure field at northern mid- and
high latitudes. AO can affect winter temperature anomalies in North China by regulating
atmospheric circulation [11]. The Eurasian telecorrelation [12] is an important telecorrelation
pattern in the Northern Hemisphere winter, and the Eurasian telecorrelation pattern is
negatively correlated with winter temperature anomalies in the BTH region [13]. Ural
blocking activity in the Urals can also influence winter temperature anomalies in the BTH by
modulating atmospheric circulation anomalies in Eurasia [14,15]. There is also a link between
the circumglobal teleconnection [16] and winter temperature anomalies in eastern China [17].

The Siberian high also plays an important role in winter temperature anomalies in
Eurasia [18–20]. Could the Siberian high influence the winter temperature anomalies in the
BTH region, thereby affecting the frequency of rail breakage (FRB) in high-speed railway?
To clarify this problem might provide scientific basis for monitoring and predicting the
frequency of broken rails and guarantee the safe operation of high-speed railway in the
BTH region.

2. Data and Methods

The monthly FRB in high-speed railway of BTH region from 2010 to 2020 is used
in present study. In order to reveal the relationship between the FRB and atmospheric
circulation anomalies affecting the BTH region in winter, the monthly ERA5 reanalysis
data from the European Centre for Medium-Range Forecasting (ECMWF) with a horizontal
resolution of 1.25◦ × 1.25◦ for 2010–2020 are also selected, including surface pressure,
2 m air temperature, and isobaric wind and geopotential height fields with a vertical
resolution of 25 hPa at 1000–100 hPa [21]. CN05.1 average temperature data [22] are also
utilized. The winter season referred to in this article is from November to February of the
following year.

Considering the limited the length of monthly FRB data in BTH region, referring to
the method applied by Huo et al. [23], November, December, January, and February are all

150



Atmosphere 2023, 14, 561

regarded as different samples instead of adopting seasonal average. In this way, there are
40 months in a total of 10 winters from 2010 to 2020, and a relatively long time series can be
constructed. Pearson correlation analysis, linear regression methods, and Student’s t test
are adopted in the statistical analysis of this work.

3. Spatio-Temporal Variability of FRB in BTH Region during Winter

The spatial distribution of FRB in BTH high-speed railway from 2010 to 2020 (Figure 1a)
shows that the FRB is very unevenly distributed. The maximum of rail breaking occurs
51 times in Beijing, and the second maximum occurs 20 times in Tianjin. The minimum of
rail breaking is only once in Chengde, and the sub-minimum is five times in Baoding. In
addition to the uneven spatial distribution, there are significant seasonal differences in the
FRB of the BTH region. From the time series of monthly FRB in BTH region (Figure 1b),
it can be found that the rail breakage of high-speed railway mostly occurs in winter, and
the FRB in each month of winter exceeds 20. The FRB in spring (March, April, and May)
and autumn (September and October) is second. Except for the FRB in September of 4, the
FRB in other months is between 5 and 10. The lowest FRB occurs in summer (June, July,
and August). During the 11-year period from 2010 to 2020, the FRB in summer is only 5,
including 2 in June, 1 in July, and 2 in August.

Figure 1. (a) Spatial distribution of annual total frequency of rail breakage (FRB) and (b) time series
of monthly FRB of high-speed railway in Beijing–Tianjin–Hebei (BTH) region during 2010–2020.

Since winter is the season with the highest FRB in BTH high-speed railway. The
average FRB during winter is obtained to further analyze its spatial and temporal distri-
bution pattern. The spatial distribution of winter FRB in BTH region is also very uneven
(Figure 2a), with the maximum and sub-maximum values still occurring in Beijing and
Tianjin with 32 and 16 breaks, respectively, while the minimum and sub-minimum values
are still located in Chengde and Baoding with one and two breakages, respectively.

In the BTH region, the percentage of FRB in winter accounts for more than 60% of
the total annual FRB (Figure 2b). In Chengde and Baoding, the percentages of winter FRB
accounts for 100% of the total FRB, i.e., the rail breaks in these two areas all occur in winter.
The winter FRB in Qinhuangdao and Hengshui both exceeds 90% of the total FRB. The
percentages of the winter FRB in Beijing and Tianjin are 63% and 80% of the total frequency,
respectively. The average temperature in the BTH region during 2010–2020 is less than 0 ◦C
in December, January, and February, except for 3.1 ◦C in November, which might be the
reason for the higher FRB in winter.

The interannual variation in the winter FRB of BTH region is also great (Figure 2c).
The winter of 2011/2012 has the highest FRB, with 15, accounting for 17% of the total.
The FRB in winter of 2015/2016 and 2016/2017 is the least, with two rail breaks in both
years, each accounting for 2% of the total rail breakage, respectively. The FRB also varies
considerably in the remaining years.
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Figure 2. (a) Spatial distribution of the winter FRB, and (b) percentage of the FRB in winter against
the FRB of whole year in BTH region during 2010–2020. (c) The doughnut chart of winter FRB in
BTH region of each year. The integer on doughnut chart represents the FRB of each winter, and the
percentage around doughnut chart represents the percentage of the winter FRB against the annual
total FRB in each year.

4. Relationship between the FRB in BTH Region and the Siberian High Anomaly

In order to reveal the influencing factors of the winter FRB in BTH region, the spatial
distribution of correlation coefficient between the FRB and the surface air pressure was
calculated (Figure 3a). It can be found that there is a significant positive correlation
between the winter FRB in BTH region and the surface pressure in the region (44–53◦ N,
60–95◦ E) adjacent to Balkhash Lake, where the significantly correlated region is located
in the southern part of the West Siberian Plain, indicating that the winter FRB in BTH
region is closely related to the Siberian high anomaly. Indeed, there are some differences
between the above-mentioned significantly correlated region and the region selected for
the Siberian high intensity index defined by previous studies [24]. Therefore, the average
surface pressure in the region [44–53◦ N, 60–95◦ E] is defined as the index of Siberian
high (ISH) in present study. The correlation coefficient between the ISH and the FRB is
calculated to be 0.46, which can pass the 95% significance test. In other words, when the
Siberian high strengthens, the winter FRB in BTH high-speed rail increases, and vice versa.
It is also noted that there is a certain positive correlation between the winter FRB in BTH
region and the surface air pressure in Mongolia Plateau, Hetao region, and the middle and
lower reaches of the Yangtze River.

The winter spatial distribution of correlation coefficients between ISH and 2 m tempera-
ture (as shown in Figure 3b) reveals that 2 m temperatures in the Siberian Plain, Mongolian
Plateau, and most regions of China, except the Tibetan Plateau, are significantly and neg-
atively correlated with the ISH. In other words, when the Siberian high is strong (weak),
temperatures in the aforementioned regions become abnormally low (high). Consequently,
a strengthened Siberian high causes winter temperatures in the BTH region to drop abnor-
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mally, resulting in external temperature conditions that are favorable for the occurrence of
rail breakage. The spatial distribution of correlation coefficients between CN05.1 surface
temperature observations and ISH in the Chinese region is consistent with the reanalysis
data (Figure is omitted).

Figure 3. (a) Spatial distribution of correlation coefficients between FRB in BTH region and surface
pressure in winter, where the rectangular box is the area selected to define Siberian high index (ISH).
(b) Correlation coefficient between ISH and 2 m temperature field. The solid magenta line denotes the
zero line. The shaded area/dot shading is the area that passes the 90/95% significance test. Green
curve indicates the BTH region.

To elucidate how the Siberian high affects the FRB in BTH high-speed railway, the
potential height and wind fields are regressed using the ISH (Figure 4). It can be seen
that that when the Siberian high anomaly is positive, significant positive potential height
anomalies and anomalous anticyclonic circulation are observed over the Siberian plain
in the lower (Figure 4a), middle (Figure 4b) and upper troposphere (Figure 4c). On the
contrary, negative potential height anomalies and anomalous cyclonic circulation are found
over the northeastern Asian region. The above anomalous circulation shows a “seesaw
oscillation” in the geopotential anomaly field over the Siberian plain and northeastern Asia.
Note that the northwest-southeast tilting dipole in 500 hPa potential height anomaly is
similar to that of the Eurasian-Pacific (EUP) teleconnection [12] over Asian continental and
Pacific regions. During the positive phase of EUP teleconnection, the equivalent barotropic
Rossby wave can be transmitted from Europe along the great circle route into Asia-Pacific
region [25], and enhance the Siberian high and the East Asian winter monsoon [26,27]
(Takaya and Nakamura, 2005; Maeda et al., 2021). Our results also indicate that when the
Siberian high is anomalously strong, on the one hand, anomalous northwesterly winds
exist at the middle and high latitudes and anomalous northeasterly winds at low latitudes
over East Asia in the lower troposphere (Figure 4a), which could enhance the East Asian
winter monsoon [7,8]. On the other hand, the negative anomalies of potential height and
anomalous cyclonic circulation in the middle troposphere of Northeast Asia (Figure 4b)
strengthen the East Asian trough, thus favoring the cold air advection into BTH region
from northern high latitudes. The regressed whole-layer integrated temperature advection
field by ISH (Figure 5) shows that when the Siberian high is strong, cold air advection
exists in the Siberian plain and the Northeast Asian region including the BTH region. The
above reasons together lead to the abnormally low temperature in the BTH region, which
provides favorable conditions for the occurrence of broken rails.
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Figure 4. Regressions of ISH with the (a) 850 hPa, (b) 500 hPa and (c) 200 hPa geopotential height
onto (shading, units: dgpm) and wind field (arrows, units: ms−1). Regression coefficients exceeding
the 95% confidence level are stippled. Only the vectors at the 95% confidence level or higher are
shown. Green curve indicates the BTH region.
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Figure 5. Regressed the vertically integrated temperature advection from the surface to 100 hPa by
ISH. Regression coefficients exceeding the 95% confidence level are stippled. Green curve indicates
the BTH region.

5. Discussion and Conclusions

Based on monthly TBF data of high-speed railway in BTH region from 2010 to 2020
and ERA5 atmospheric reanalysis data, the spatiotemporal variations of the winter FRB
in BTH region and its relationship with Siberian high anomaly are analyzed. The main
conclusions are as follows:

1. The spatial and temporal distribution of the total FRB in BTH is very uneven. The
maximum FRB in Beijing is 51, and the minimum FRB in Chengde is 1. There are
obvious seasonal differences in FRB, with the most frequent rail breaks in winter,
followed by spring and autumn, and the least in summer.

2. The spatial and temporal variability in winter FRB of BTH region is also obvious, and
its spatial distribution is similar to that of the annual total FRB. The highest and lowest
winter FRB are located in Beijing and Chengde respectively, with 32 and 1 broken
rails respectively. The percentage of winter FRB in all regions exceeds 60% of the total
annual FRB, and some regions, such as Baoding and Chengde, have 100% of the total
FRB in winter. There is also a very obvious interannual variation in the winter FRB.

3. A significant positive correlation between the winter FRB in BTH region and the
Siberian high is found. When the Siberian high is strong, it is accompanied by
positive potential height anomalies and anomalous anticyclonic circulation over the
Siberian region, as well as negative potential height anomalies and anomalous cyclonic
circulation over the northeastern Asian region. These circulation anomalies show an
equivalent barotropic feature in the vertical direction and produce the anomalous
northwesterly prevailing over BTH region in the lower troposphere, enhance the East
Asia winter monsoon, and deepen East Asian trough in the middle troposphere. All
the above circulation anomalies are conducive to the cold air advection from high
latitudes to BTH region, causing winter cooling in the BTH region, thus providing
low temperatures for rail breakage.

It should be pointed out that this study is limited to the length of FRB data, with
the period of 2010–2020. Therefore, it is necessary to analyze the relationship between
Siberian high and winter temperature anomaly in BTH region using longer data records,
and to clarify the dynamic and thermodynamic mechanisms. Using the meteorological
element fields under different future shared socio-economic paths [28] proposed by phase 6
of the Coupled Model Intercomparison Project (CMIP6), the future winter temperatures
in BTH region in the context of high and medium forcing scenarios could be predicted,
which can provide a background field of meteorological elements for the prediction of
future FRB in BTH high-speed railway. In the future, how will the intensity of Siberian
high change under different shared socio-economic paths? Will the change of Siberian high
intensity cause the winter temperature variations in BTH region? These are also questions
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worth studying. The FRB is influenced by a number of factors beyond meteorological
conditions, such as the sum of track length in a given subregion, age and hardness of the
rails, maximum vehicle axle load, total load on the rail line [29], the occurrence of subgrade
vibration isolation, type of superstructure [30], objects, such as bridges and tunnels, the
value of the neutral temperature assumed in the continuous weld rail (CWR) design, and
that actually prevailing during rail jointing [31]. It is also important to investigate the
impact of the above factors on FRB in the BTH region. The length of the railway railroads
in individual cities of BTH region is uneven. It would be an interesting question to study
the temporal variation of FRB in individual cities of the BTH region and their linkage with
meteorological factors if more detailed data on high-speed railroads data could be obtained.

In addition, monthly averaged rail breakage data are used in this study. However,
it is also important to use the day-by-day rail breakage data to analyze the features of
temperature and daily difference of temperature on the day when the rail breakage occurred
and to explore the related atmospheric circulation anomaly, so as to provide a scientific
basis for predicting the meteorological background of FRB in BTH high-speed railway.
These issues will be further studied in the future.
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Abstract: Machine learning algorithms are applied to predict intense wind shear from the Doppler
LiDAR data located at the Hong Kong International Airport. Forecasting intense wind shear in
the vicinity of airport runways is vital in order to make intelligent management and timely flight
operation decisions. To predict the time series of intense wind shear, Bayesian optimized machine
learning models such as adaptive boosting, light gradient boosting machine, categorical boosting,
extreme gradient boosting, random forest, and natural gradient boosting are developed in this study.
The time-series prediction describes a model that predicts future values based on past values. Based
on the testing set, the Bayesian optimized-Extreme Gradient Boosting (XGBoost) model outperformed
the other models in terms of mean absolute error (1.764), mean squared error (5.611), root mean
squared error (2.368), and R-Square (0.859). Afterwards, the XGBoost model is interpreted using the
SHapley Additive exPlanations (SHAP) method. The XGBoost-based importance and SHAP method
reveal that the month of the year and the encounter location of the most intense wind shear were the
most influential features. August is more likely to have a high number of intense wind-shear events.
The majority of the intense wind-shear events occurred on the runway and within one nautical mile
of the departure end of the runway.

Keywords: wind shear; time-series modeling; machine learning; Bayesian optimization

1. Introduction

Wind shear is a potentially hazardous meteorological occurrence characterized by
sudden changes in wind speed and/or direction. If this event occurs below 500 m (1600 feet)
above the ground, it is classified as low-level wind shear; if its magnitude exceeds 30 knots,
it is known as intense wind shear [1]. It is one of the most worrisome phenomena for
an aircraft because it creates violent turbulence and eddies as well as dramatic shifts in
the aircraft’s horizontal and vertical progression, which can ultimately result in a frequent
missed approach, touching down short of the runway (loss of lift), or deviation from the
true flight path during landing descent, as depicted in Figure 1. The intense wind shear
has two potentially dangerous effects on landing aircraft: aberration of the flight path and
deviation from the set approach speed [2]. Due to unanticipated changes in wind speed
or direction, the pilot may perceive immense pressure during the landing phase when the
engine power is low and the airspeed is close to stall speed.

Numerous airports around the world have reaped substantial benefits from the avail-
ability of precise, high-resolution, remote sensing technologies such as the Terminal Doppler
Weather Radar (TDWR) [3] and the Doppler Light Detection and Range (LiDAR) [4,5]. By
a significant margin, the most prevalent methods for detecting wind shear are TDWR,
ground-based anemometer networks, and wind profilers. Since the mid-1990s, this method
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has proved effective for alerting airports to wind shear, particularly during the passage
of tropical cyclones and thunderstorms. Clear weather prevents the TDWR system from
providing accurate wind data. However, certain wind-shear events are associated with
airflow reaching the airport from rugged terrain. To address these circumstances, a new
method of detection independent of humidity must be developed. For this purpose, the
LiDAR system has been added to the TDWR as a booster in order to detect and warn of
wind shear in clear skies. Doppler LiDAR can detect return signals from aerosols and
provide precise Doppler wind measurements when the air is clear. Although these tracking
or observation-based technological advances are effective at detecting wind shear in the
vicinity of an airport, they are unable to predict when the next wind-shear event will
occur, or which risk factors contribute to its occurrence [6]. Forecasting intense wind shear
in the vicinity of the airport runway and the factors that contribute to the occurrence of
intense wind shear are of the utmost importance, as their occurrence can cause significant
challenges for departing and approaching flights.

Figure 1. Intense wind shear effect on landing aircraft.

The development of a framework for the prediction of intense wind shear requires
a substantial amount of historical data on wind-shear events. Despite the fact that nu-
merous researchers in the power and energy domain have attempted to forecast wind
speed due to the demand for wind energy electricity generation and advancements in
wind energy competitiveness [7–9], few researchers have attempted to forecast wind-shear
events in the vicinity of airport runways [10,11]. For time-series modeling, several statisti-
cal and mathematical techniques have been employed in the past, such as autoregressive
integrated moving average (ARIMA) [12–14], Kolmogorov–Zurbenko filters [15,16], ex-
ponential smoothing [17,18], and others. These often result in good forecasting accuracy.
However, machine learning algorithms have recently been applied in various domains due
to their high forecasting precision and improved operational efficiency [19–24]. Therefore,
in this study, we propose the development of time-series prediction models of intense
wind shear using machine learning algorithms. The study employed Doppler LiDAR
data from 2017 to 2010 and machine learning algorithms including the Adaptive Boosting
(AdaBoost) [25], Light Gradient Boosting Machine (LightGBM) [26], Categorical Boosting
(CatBoost) [27], Gradient Boosting (XGBoost) [28], Random Forest [29], and Natural Gradi-
ent Boosting (NGBoost) [30] methods, optimized via a Bayesian optimization approach [31],
as shown in Figure 2.

In addition to evaluating the performance of models in order to select the optimal
model, crucial factors that contribute to the occurrence of intense wind shear are also
revealed. Researchers in the field of civil aviation safety should seize this opportunity as
understanding the complex interactions between multiple risk factors that determine the
occurrence of intense wind shear is essential for aviation and meteorological applications.
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Figure 2. Framework for the time-series prediction of intense wind-shear event.

2. Data and Methods

2.1. Study Location

Hong Kong International Airport (HKIA) is among the most susceptible airports in the
world to the occurrence of wind-shear events, and from 1998 to 2015 a significant number
of intense wind-shear events were documented. Wind-shear events occur once every 400
to 500 flights, according to HKIA-based pilot flight reports [32]. The airport is situated
on Lantau Island, surrounded on three sides by open sea water and by mountains to the
south that reach heights of more than 900 m above sea level. As is illustrated in Figure 3,
the mountainous terrain to the south of the HKIA exacerbates wind shear by disrupting
the flow of air and producing turbulence along the HKIA flight paths. Previously, HKIA
had two runways: the north and south runways. However, a newly constructed runway
(third runway) implies that the former north runway is now designated as the central
runway. These are oriented at 070 degrees and 250 degrees. There are a total of eight
possible configurations because each runway can be utilized for takeoffs and landings
in either direction. For instance, runway ‘07LA’ indicates landing (‘A’ refers to arrival),
with a heading angle of 070◦ (abbreviated to ‘07’) utilizing the left runway (hence ‘L’). This
depiction demonstrates aircraft landing on the North Runway from the western side of
the HKIA. Similarly, an aircraft taking off from the South Runway in the west would use
runway 25LD.

Figure 3. HKIA and surrounding terrain.
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2.2. Data Processing from Doppler LiDAR

The Doppler LiDAR at the HKIA detects the magnitude and reports the location of
occurrence of wind-shear events. Figure 4 depicts an illustration of a radial velocity plot
obtained from a Plan Position Indicator (PPI) scan of the HKIA’s south runway LIDAR
at an elevation angle of 3◦ from the horizon. To the west and south of the location, three
nautical miles (5.6 km) west-southwest of the western end of the south runway, there was
a huge area of winds in the opposite direction (colored green in Figure 4) to the dominant
east–southeast airflow.

Figure 4. Wind shear detection by LIDAR.

The development of our time-series prediction models required a substantial amount
of intense wind shear data for our research. Therefore, we first extracted the 2017 to 2020
wind shear data from LiDAR and filtered it to obtain only intense wind-shear events,
i.e., wind shear with a magnitude greater than or equal to 30 knots. The filtration produced
3781 intense wind shear data points, which are presented in Table 1. Previous research [11]
on the wind shear prediction utilized hourly data from pilot reports and weather reports,
which resulted in lower accuracy due to the transient and sporadic nature of wind shear. In
several instances at the HKIA, the Doppler LiDAR reported intense wind shear intervals
as short as 1 min; consequently, we have considered these instances. As an example, from
Table 1, we can observe that on 29 March 2019 intense wind-shear events of 37 knots and
39 knots were detected at 10:12 PM and 10:14 PM (at a 2 min interval) on runways 07CA
and 07RA, respectively. The encounter locations are designated as either RWY, MD, or MF,
as is shown in Figure 5. The rectangle in gray denotes the runway (RWY). On the right side
of the runway, the rectangles indicate the distance in miles to the final approach (1-MF is
equal to 1 nautical mile to the final approach). Likewise, the rectangles on the left indicate
the distance from the runway’s departure end. For instance, 2-MD indicates two nautical
miles from the runway’s edge at the departure end.

Table 1. Sample of extracted data from HKIA-based LiDAR.

Date Time Runway Intense Wind Shear Magnitude Encounter Location

16 May 2017 5:17 PM 07RA 35 knots RWY
19 June 2017 5:19 PM 25LA 32 knots 1-MD

— — — — —
— — — — —

29 March 2019 10:12 PM 07CA 37 knots RWY
29 March 2019 10:14 PM 07RA 39 knots RWY

— — — — —
— — — — —

21 September 2020 3:58 AM 07RA 30 knots 2-MF
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Figure 5. Schematic diagram for the representation of intense wind shear encounter locations.

2.3. Machine Learning Regression Algorithms

In this study, six machine learning regression algorithms were employed for the time-
series prediction of intense wind-shear events, including LightGBM, XGBoost, NGBoost,
AdaBoost, CatBoost, and RF. The fundamentals of the regression algorithm are described
as follows:

2.3.1. Light Gradient Boosting Machine (LightGBM) Regression

LightGBM is a gradient learning framework that is based on decision trees and the
concept of boosting. It is a variant of gradient learning. Its primary distinction from the
XGBoost model is that it employs histogram-based schemes to expedite the training phase
while lowering memory usage and implementing a leaf-wise expansion strategy with
depth constraints. The fundamental concept of the histogram-based scheme is to partition
continuous, floating-point eigenvalues into ‘k’ bins and build a histogram with a width of k.
It does not require the additional storage of presorted outcomes and can also save the value
after the partitioning of features, which is usually adequate to store with 8-bit integers,
thereby lowering memory consumption to 1/8 of the original. This imprecise partitioning
has no effect on the model’s precision. It is irrelevant whether the segmentation point is
accurate or not because the decision tree is a weak study model. The regularization effect
of the coarser segmentation points can also successfully prevent over-fitting.

Several hyperparameters must be adjusted for the LightGBM regression model to
prevent overfitting, reduce model complexity, and achieve generalized performance. These
hyperparameters are n_estimators, which is the number of boosted trees to fit, num_leaves,
which is the maximum number of tree leaves for the base learners, learning_rate, which
controls the estimation changes, reg_alpha, which is the L1 regularization term on weights,
and reg_lambda, which is the L2 regularization term on model weights.

2.3.2. Extreme Gradient Boosting (XGBoost) Regression

XGBoost is a tree-based boosting technique variant. Fundamentally, XGBoost reveals
the functional relationship, Γ, between the input factors x and the response y via an iterative
procedure wherein individual, independent trees are trained in a sequential manner on the
residuals from the preceding tree. The mathematical expression for the tree-based estimates
is given by Equation (1).

Ŷ = Γ(X) =
1
n

n

∑
k=1

Γk(X) (1)

where Ŷ represents the predictions and n illustrates the total number of trees. The regu-
larized objective function, Ψ(Ω), is minimized to learn the set of functions Γk, which are
employed in the model, as shown by Equations (2) and (3).

Ψ(Ω) = ∑i
λ(ŷi, yi) + ∑k

Π(Γk) (2)

Π(Γk) = φT +
1
2

l‖ω‖2 (3)

where λ represents the differentiable convex loss function that estimates the difference
between the prediction and actual response. The term Π is an additional regularization
expression that panelizes the growth of further trees in the model to reduce intricacies
and over-fitting. The term φ represents the leaf’s complexity, and T is the total number of
leaves in a tree. Likewise, for the XGBoost regression model, hyperparameters including
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the n_estimators, num_leaves, learning_rate, reg_alpha, and reg_lambda must be optimized to
prevent overfitting and reduce model complexity.

2.3.3. Natural Gradient Boosting (NGBoost) Regression

NGBoost is a supervised learning technique with basic probabilistic prediction ca-
pabilities. A probabilistic prediction generates a complete probability distribution over
a whole outcome space, allowing users to evaluate the uncertainty in the model’s predic-
tions. In conventional point prediction configurations, the object of concern is an estimate
of the scalar function, Φ(y|x), in which x represents a vector of different factors and y is
the response, but uncertainty estimates are not considered. In a probabilistic prediction
context, on the other hand, a stochastic forecast with a probability distribution, Θθ(y|x),
is generated by predicting the parameters θ. Provided that NGBoost is intended to be
scalable and modular with respect to the base estimator (for instance the decision trees),
probability distribution parameter (for instance, normal, Laplace, etc.), and scoring rule,
NGBoost can perform probabilistic forecasts with flexible, tree-based models (for instance,
the Maximum Likelihood Estimation). As is depicted in Figure 6, the input vector of the
different factors x in the hybrid NGBoost model is forwarded to the base estimator (decision
trees) to generate a probability distribution, Θθ(y|x), over the a whole outcome space, y.
The models are then improved using a scoring rule, S(Θθ , y), that produces calibrated
uncertainty and point predictions using a maximum likelihood estimation function. Prior
to evaluation, the NGBoost regression model parameters n_estimators and the learning_rate
must be optimized.

( )θΘ ( )θΘ( )θΘ

Figure 6. Mechanism of NGBoost regression algorithm.

2.3.4. Categorical Boosting (CatBoost) Regression

CatBoost is an innovative, gradient-boosting decision tree technique. It is capable
of handling categorical factors and employ them in the training phase rather than in
preprocessing phase. CatBoost’s advantage is that it utilizes a new pattern to determine
the leaf values while choosing the tree structure, which aids in reducing over-fitting and
enables the utilization of the entire training data set, i.e., it organizes the data of each
instance randomly and quantifies the mean value of the instances. For the regression
problem, the average of the acquired data must be utilized for a priori estimations. The
parameters for the CatBoost regression model that must be optimized prior to evaluation
are n_estimators, max_depth, and the learning_rate.

2.3.5. Adaptive Boosting (AdaBoost) Regression

Adaptive Boosting Regression is a straightforward ensemble learning model which
creates a powerful regressor by integrating several weak learners, resulting in a high-
accuracy model. The core concept is to establish the weights of weak regressors and train
the dataset at each iteration such that reliable projections of unusual observations may be
made. The working principle of AdaBoost is provided below:

• The weight distribution (π ) is initialized as π = 1/m;
• At iteration t, the weak learning is trained, i.e.,ht: x → � , using the weight distribution;
• The weight distribution is updated in accordance with previous instances of the

training dataset as πk =
πk−1exp−ψkh(xk)

Ω ;
• The final output over all the iterations t =1, 2, . . . , T is returned as f (X) = ∑

T
t=1 πtht(X)

and H(X)= sign( f (X)).
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The AdaBoost model uses a decision stump as a weak learner. The critical hyper-
parameters that need to be tuned during the learning process are the n_estimators and
learning_rate. The n_estimators are the number of decision stump to train iteratively and the
learning_rate controls the contribution of each learner. There is required to be a trade-off
between both the n_estimators and learning_rate.

2.3.6. Random Forest (RF) Regression

The RF is an ensemble of tree-based predictors in which each tree is trained with
values of an independently sampled random vector that has the same distribution for all
other trees in the forest. The kth tree is conceptually trained using an independent random
vector, ζk, with the same distribution as previous random vectors, ζk−1, resulting in a tree,
ψ(X, ζk), in which X is the input vector of different factors. When a large number of trees
are grown in a forest, their mean predictions are obtained, which improves the accuracy of
predictions and prevents over-fitting. Mathematically, it can be illustrated as Equation (4).

Ŷ =
1
l

l

∑
k=1

ψk(X) (4)

where Ŷ represent the response and l is the total amount of generated trees (1 ≤ k ≤ l).
The mean squared generalization error of any tree ψ(X) is illustrated as EX,Y(Y − ψ(X))2

for the input vector of difference (X) and the response vector (Y). As the number of trees
in the forest approaches the infinity, the mean squared generalization almost certainly
becomes:

EX,Y(Y − Λkψ(X, ζk))
2 → EX,Y

(
Y − Eζ ψ(X, ζ)

)2 (5)

A few crucial hyperparameters must be tuned during the learning phase in order to
achieve an optimized prediction score for the RF model. These hyperparameters are the
n_estimators, which is the number of trees in the forest, and the max_depth, which is the
maximum number of levels, or branches between the root node and the deepest leaf node.

2.4. Principle of Bayesian Optimization

The structure parameters of a machine learning model are its hyperparameters. Adapt-
ing a machine learning model to multiple situations requires adjusting the hyperparame-
ters [33,34]. In this study, a Bayesian hyperparameter optimization method is implemented.
The goal is to establish the mapping, f (x, θ), in which y is the response, x is the input
vector, and the θ vector determines the size of the mapping. The core principle of Bayesian
optimization is adjusting the hyperparameter of a given model in order to formulate a
model of the loss function. It utilizes a loss function to efficiently search for and select
the optimal set of hyperparameters. Employing the hyperparameter θ in a tree-based
machine learning model as one of the points in the multidimensional search space for
the optimization, the hyperparameter that minimizes the loss function value, f (θ), can be
found in the set A ∈ Xd, as shown by Equation (6).

θ∗ = argmin
θ∈A

f (θ) (6)

Usually, there is no prior information about the model’s structure; therefore, it is
assumed that the noise in the observation is shown by Equation (7).

y(θ) = f (θ) + ε, and ε ∼ N
(

0, σ2
noise

)
(7)

The Bayesian framework offers two fundamental options. First, a hypothesis function.
p( f |D) (also known as a prior function). must be chosen to represent the hypothesis of the
function to be optimized. Second, the posterior model determines the acquisition function
for determining the subsequent test point. Using the prior function,p( f |D), the Bayesian
framework constructs a loss function model based on an observed data sample, D. The
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prior function model, p( f |D), chooses between optimization and development based on
its characteristics.

2.5. Performance Assessment

The generalization capacity of various machine learning regression models could be
synthetically quantified using four different metrics: the mean absolute error (MAE), mean
squared error (MSE), root mean squared error (RMSE), and the R-square (R2, coefficient
of determination). According to Equation (8), the MAE is the average of the individual
prediction errors’ absolute values across all instances. The average squared difference
between observed and predicted values, as shown in Equation (9) is how the MSE computes
regression model error. According to Equation (10), the RMSE is the square root of the
difference between the observed and predicted values. A regression model’s ability to
accurately predict values is indicated by R2, which ranges from 0 to 1. R2 is provided by
Equation (11).

MAE = ∑
Φ

χ=1
|yχ − ŷχ|

χ
(8)

MSE =
1
χ∑

Φ

χ=1(yχ − ŷχ)
2

(9)

RMSE =

√
∑

Φ

χ=1
(yχ − ŷχ)

2

χ
(10)

R2 = 1 −
∑

Φ
x=1(yχ − ŷχ)

2

∑
Φ
χ=1
(
yχ − yavg

)2 (11)

where χ is the total number of observations, y represents the actual observation value, and
ŷ represents the predicted value.

3. Results and Discussion

The LiDAR data of 2017 to 2020 from the Hong Kong Observatory and the aviation
weather forecast department at HKIA were used to train and test six different machine
learning regression models with the goal of determining how well these models can predict
the occurrence of intense wind-shear events. Figure 7a depicts the total LiDAR-obtained
intense wind-shear data from 1 January 2017 to 31 December 2020. The data from 1 January
2017 to 31 December 2019 are the training set, which is depicted by the black line in
Figure 7b, while the data from 1 January 2020 to 31 December 2020 are the test set, which is
depicted by the green line. The vertical red line with dashes divides the training data from
the test data.

Figure 7. LiDAR data: (a) 2017–2020 intense wind shear data; (b) splitting data into train and test sets.
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The statistical information of the intense wind shear dataset is shown in Table 2. The
machine learning models, coupled with Bayesian optimization and a 5-fold cross valida-
tion, provide the predicted results based on the optimal hyperparameters. The Hyperopt
python package was used for the implementation of Bayesian optimization. The optimal
hyperparameters with search space are shown in Table 3. Table 4 shows the comparison of
the prediction performance of the machine learning regression algorithms. The predicted
intense wind shear values, based the on machine learning regression algorithms, are plot-
ted in Figure 8, and the residual errors by the machine learning models are shown by the
scatter plots (Figure 9). In addition, feature importance and contribution are illustrated by
Figure 10, and the effect of important factors is shown by Figure 11.

Table 2. Statistical information of intense wind shear from HKIA-based LIDAR.

Dataset Max Median Min Mean St. Dev

Entire dataset 40 33 30 33.881 2.596
Train dataset 40 33 30 33.743 2.455
Test dataset 40 34 30 33.921 2.366

Table 3. Optimal hyperparameters of machine learning regression algorithms.

Algorithm Hyperparameters Range Optimal Values

LightGBM
{(n_estimators), (num_leaves), (learning rate),

(reg_lambda), (reg_alpha)}
{(100–1500), (30–100),

(0.001–0.2), (1.1–1.5), (1.1–1.5)}
{1180, 28, 0.10, 1.19, 1.01}

CatBoost {(n_estimators), (max_depth), (learning rate)} {(200–1500), (2–15), (0.001–0.2)} {1060, 8, 0.08}
AdaBoost {(n_estimators), (learning rate)} {(100–1500), (0.001–0.2)} {790, 0.04}

RF {(n_estimators), (max_depth)} {(50–1000), (2–15)} {955, 5}

XGBoost
{(n_estimators), (num_leaves), (learning rate),

(reg_lambda), (reg_alpha)}
{(100–1500), (30–100),

(0.001–0.2), (1.1–1.5), (1.1–1.5)}
{880, 65, 0.05, 1.18, 1.40}

NGBoost {(n_estimators), (learning rate)} {(100–1500), (0.001–0.2)} {1130, 0.03}

Table 4 demonstrates that the Bayesian optimized-XGBoost model outperforms other
machine learning models with a minimum MAE value of 1.764, an MSE value of 5.611, an
RMSE value of 2.368, and a maximum R-square value of 0.859. The AdaBoost model, with
an MAE of 1.863, MSE of 6.815, RMSE of 2.610, and an R-square value of 0.549, performs the
worst. In addition, an analysis of Figure 8 reveals that XGBoost appears to provide a better
fit of the actual test intense wind shear time-series and a smaller residual error, represented
by red dots closer to horizontal line, when compared to other forecasting results (Figure 9).

Table 4. Performance assessment of Bayesian optimized machine learning models.

Models
Performance Metrics

MAE MSE RMSE R-Square

LightGBM 1.813 5.840 2.416 0.711
NGBoost 1.858 6.298 2.509 0.619

Random Forest 1.851 6.194 2.488 0.647
CatBoost 1.795 5.783 2.404 0.753
XGBoost 1.764 5.611 2.368 0.859
AdaBoost 1.863 6.815 2.610 0.549
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Figure 8. Predictions using machine learning models: (a) prediction of intense wind shear by XGBoost;
(b) prediction of intense wind shear by LightGBM; (c) prediction of intense wind shear by CatBoost;
(d) prediction of intense wind shear by Random Forest; (e) prediction of intense wind shear by
NGBoost; and (f) prediction of intense wind shear by AdaBoost.

Figure 9. Residual analysis by machine learning regression models; (a) NGBoost; (b) LightGBM;
(c) CatBoost; (d) Random Forest; (e) XGBoost; and (f) AdaBoost.

The importance and contribution of the factors are depicted in Figure 10 and are based
on the importance score that was determined by the Bayesian optimized-XGBoost model
and the XGBoost-based SHAP contribution plot, respectively. In both cases, it was observed
that the month of year was the most significant feature, with an importance score of 0.33,
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followed by the location of intense wind shear (0.19), the hour of the day (0.18), and runway
orientation (0.16). Figure 10b revealed that months of the year coded by lower values are
less likely to cause intense wind shear, in contrast to those with medium values. Similarly,
the location of an encounter with intense wind shear, represented by higher values, is more
likely to cause intense wind shear. In the following section, each important feature that
plays a role in the occurrence of intense wind shear is discussed in more detail.

Figure 10. Importance and contribution plots: (a) XGBoost-based feature importance plot and
(b) XGBoost-based SHAP contribution plot.

Figure 11a,b depict the scatter plot of two significant factors. Figure 11a illustrates that
the highest number of intense wind-shear events were recorded in August. The intense
wind shear in August might be due to cross-mountain airflow, which occurs over the HKIA
in August and September, during the south-west monsoon, or during passages of tropical
cyclones. These terrain-disrupted airflows cause a number of intense wind-shear events,
which negatively impact HKIA’s flight safety and operations. This is also consistent with
the previous study [11,35].

On the RWY and 1-MD from the edge of the RWY, a large number of intense wind-
shear events are observed, as shown in Figure 11b. A small number of intense wind-shear
events were observed as the distance increases from the RWY. To the best of our knowledge,
none of the previous studies have pinpointed the location where intense wind shear is most
prevalent. Nevertheless, our research indicates that RWY and 1-MD from edge of RWY are
crucial to the occurrence of intense wind shear. Pilots must maintain vigilance at 1-MD
during takeoff.

Figure 11. Effect of factors on the Intense wind shear: (a) month of year and (b) encounter location of
intense wind shear.
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4. Conclusions and Recommendations

This study is a first attempt at developing a time-series prediction model of intense
wind-shear events based on HKIA-based LiDAR data. Six state-of-the-art machine learning
regression algorithms, optimized via the Bayesian optimization approach, were employed
in this regard. The HKIA-based LiDAR data from 2017 to 2020 was used as the input. From
this study, the following conclusions can be drawn:

• On the testing dataset (intense wind-shear data of HKIA-based LiDAR from 1 January
2020 to 31 December 2020), the Bayesian optimized-XGBoost model had the best
overall performance of all the optimized machine learning regression models, with an
MAE (1.764), MSE (5.611), RMSE (2.368), and R-square (0.859), which was followed by
Bayesian optimized-CatBoost model, which had an MAE (1.795), MSE (5.783), RMSE
(2.404), and R-square (0.753);

• The AdaBoost regression model demonstrated the lowest performance in terms of
MAE (1.863), MSE (6.815), RMSE (2.610), and R-square (0.549);

• The Bayesian optimized-XGBoost model demonstrated that the month of year was the
most influential factor, followed by distance of occurrence of intense wind shear from
the RWY;

• August is more likely to have intense wind-shear events. Similarly, most of the intense
wind-shear events are expected to occur at RWY and 1-MD from the runway departure
end. The pilots are required to be cautious during takeoff.

For aviation authorities and researchers interested in aviation safety, the methodology
put forth in this study can be used to conduct an extensive investigation of intense wind
shear. The study covered in this paper was the time-series prediction of intense wind shear
using six machine learning models coupled with a Bayesian optimization approach. Future
research might use an amalgamation of a stacking ensemble and various other machine
learning ensemble algorithms with a number of additional risk factors, such as the impact
of atmospheric pressure and temperature. In addition, the causes of the occurrence of wind
shear (weather- or terrain-induced) could be used in future research.
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Abstract: In this study, wind forecasts derived from the European Centre for Medium-Range Weather
Forecasts (ECMWF), the National Centers for Environmental Prediction (NCEP), the Japan Meteo-
rological Agency (JMA) and the United Kingdom Meteorological Office (UKMO) are evaluated for
lead times of 1–7 days at the 10 m and multiple isobaric surfaces (500 hPa, 700 hPa, 850 hPa and
925 hPa) over North China for 2020. The straightforward multimodel ensemble mean (MME) method
is utilized to improve forecasting abilities. In addition, the forecast errors are decomposed to further
diagnose the error sources of wind forecasts. Results indicated that there is little difference in the
performances of the four models in terms of wind direction forecasts (DIR), but obvious differences
occur in the meridional wind (U), zonal wind (V) and wind speed (WS) forecasts. Among them,
the ECMWF and NCEP showed the highest and lowest abilities, respectively. The MME effectively
improved wind forecast abilities, and showed more evident superiorities at higher levels for longer
lead times. Meanwhile, all of the models and the MME manifested consistent trends of increasing
(decreasing) errors for U, V and WS (DIR) with rising height. On the other hand, the main source of
errors for wind forecasts at both 10 m and isobaric surfaces was the sequence component (SEQU),
which rose rapidly with increasing lead times. The deficiency of the less proficient NCEP model at
the 10 m and isobaric surfaces could mainly be attributed to the bias component (BIAS) and SEQU,
respectively. Furthermore, the MME tended to produce lower SEQU than the models at all layers,
which was more obvious at longer lead times. However, the MME showed a slight deficiency in
reducing BIAS and the distribution component of forecast errors. The results not only recognized the
model forecast performances in detail, but also provided important references for the use of wind
forecasts in business departments and associated scientific researches.

Keywords: wind forecast; error decomposition; bias; distribution; sequence

1. Introduction

Wind, the movement of air, is one of the most important meteorological elements,
and plays a significant role in determining and controlling climate and weather [1]. It has
various impacts on human life and economic society, in both positive and negative ways.
Appropriate wind conditions can help many industries, such as wind power production,
whereas high winds can cause downed trees and power lines, flying debris and buildings
to collapse, which may lead to power outages, transportation disruptions, damage to
buildings and vehicles, and injury or death [2]. With respect to transportation fields at the
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near surface, windy conditions can create dangerous driving situations on highways [3]. As
for at higher levels, abnormal winds can increase risks in terms of unstable aircraft, posing
profound threats to aviation safety [4]. Thus, accurate and reliable forecasts of winds play
an important role in both reducing traffic accidents and improving the efficiency of traffic
operations [5,6].

So far, due to improved understanding of atmospheric physical processes and the
rapid development of computer technology, numerical weather prediction (NWP) has been
greatly developed and used in various predictions of weather and climate [7–9]. Taking
wind as an example, subjective forecasts are always limited in ability because of the lack
of enough observations, while the NWP could enrich wind forecasts with multiple lead
times and multiple levels, as required [10]. In addition, it has been demonstrated that
the NWP models are generally capable of reasonably forecasting atmospheric conditions.
However, obvious differences in forecasting abilities always feature different NWP models
in different regions. Comprehensive assessments are necessary for the rational application
of NWP products and for further enhancing forecast ability [11–13].

On the other hand, considering the chaotic characteristics of atmosphere dynamics,
even the best NWP model has inevitable systematic biases. Therefore, it is important to fur-
ther post-process NWP model outputs to effectively improve forecasting abilities [14–16].
Correspondingly, many statistical post-processing methods, which enhance forecast abil-
ities by learning a function derived from the historical performances of models, have
been developed and widely utilized in recent years. Such as the frequency matching
method [17,18], the mean bias removal [19], the pattern projection methods [20,21] and
the decaying average method [22,23]. Moreover, due to the inherent limitation and un-
certainty of an individual NWP model, the multimodel ensemble methods, including the
straightforward ensemble mean, the bias-removed ensemble mean and other advanced
superensemble algorithms, have been proposed to calibrate forecast errors of temperature,
precipitation, wind and other variables, making full use of valid information from various
NWP models [24–27].

Over the past few decades, the multimodel ensemble forecasts based on various
algorithms have been demonstrated as capable of effectively improving single NWP re-
sults, which is always featured with lower root mean square errors, higher correlation
coefficients and many other metrics with higher abilities [28–30]. However, most of these
assessments could only provide composite scores, which lack certain physical interpretabil-
ities and give little insight into which aspects of the forecasts are good or bad. In this
regard, decomposing performance measures into multiple interpretable elements has been
considered an intelligent option to obtain more realistic and insightful assessments, and
comparisons between different forecast systems [31–33]. At present, error decomposition
has been widely utilized to analyze the sources of errors and to indicate future directions
for improvement [34,35]. Taking the metric of mean square error (MSE) as an example [32],
Murphy et al. [36] decomposed the MSE into correlation, conditional bias, unconditional
bias and possible other contributions. Afterwards, Geman et al. [37] decomposed the MSE
into bias and variance. More recently, Hodson et al. [38] have further decomposed it into
components of bias, distribution and sequence.

In this study, the wind forecasts derived from the European Centre for Medium-
Range Weather Forecasts (ECMWF), the National Center for Environmental Prediction
(NCEP), the United Kingdom Meteorological Office (UKMO) and the Japan Meteorological
Agency (JMA), accompanied by a multimodel ensemble mean (MME), are evaluated and
compared for multiple layers including ground (10 m) and isobaric surfaces (500 hPa,
700 hPa, 850 hPa and 925 hPa). The study area selected is North China (46◦ N–36◦ N,
111◦ E–119◦ E; NC), which features the most populous region and a major agricultural and
industrial sector [39,40]. Meanwhile, forecast errors are decomposed to diagnose the error
sources of wind forecasts in NWP models, and analyzed to determine which aspects of the
forecasts are improved by the MME. The manuscript is organized as follows. The datasets
and methods are briefly described in Section 2. Section 3 displays the comprehensive
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evaluation of the wind forecast abilities of ECMWF, NCEP, UKMO, JMA and MME. Finally,
a summary and discussion are presented in Section 4.

2. Data and Method

2.1. Data

The used forecast datasets of meridional wind (u) and zonal wind (v) at ground (10 m)
and isobaric surfaces (500 hPa, 700 hPa, 850 hPa, 925 hPa) with lead times of 1–7 days were
derived from ECMWF, NCEP, UKMO and JMA in the the Observing System Research and
Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE).

In addition, ERA5 reanalysis is selected for verification. ERA5 is a product of the
Integrated Forecast System (IFS) release 41r2, which was operational at ECMWF dur-
ing the period March 2016 to November 2016. ERA5 therefore benefits from a decade
of developments in model physics, core dynamics and data assimilation [41]. Various
considerations have to be made when choosing the verification dataset to evaluate the
performance of NWP models. Station observation has the advantage of being indepen-
dent of all models, but wind observational datasets over isobaric surfaces are difficult
to obtain. Meanwhile, reanalysis provides consistent “maps without gaps” of essential
climate variables by optimally combining observations and models [42]. Moreover, ERA5
data has been demonstrated to be capable of effectively reflecting and describing the local
atmospheric conditions in observations, and has been widely used in associated studies
including forecast error evaluation, analyzing the thermodynamic characteristics of warm
sector heavy rainfall, etc. [43–46]. On the other hand, a previous study has proved that
whether the verification data consist of reanalysis or observations, it has little impact on
final assessment results [47]; therefore, we chose ERA5 for verification in this study.

Correspondingly, the study area is unified as North China (46◦ N–36◦ N, 111◦ E–119◦ E;
NC), with a horizontal resolution of 0.5◦ × 0.5◦, and the entire year of 2020 is selected for
evaluation. Both forecast and verification datasets are obtained from the ECMWF archive
at https://apps.ecmwf.int/datasets/, accessed on 1 August 2022. The topography of North
China and its surrounding area is described in Figure 1.

Figure 1. Topography (m) of North China (marked region) and its surrounding area.

175



Atmosphere 2022, 13, 1652

2.2. Verification Metrics

Aimed at quantitative assessments of forecast results of different NWP models and
the MME method over North China for assessed period, several metrics are employed;
including the root mean square error (RMSE) and temporal correlation coefficient (TCC):

RMSE =

√
1
n
( fi − oi)

2 (1)

TCC =
∑

n
i=1

(
fi − f

)
(oi − o)√

∑
n
i=1

(
fi − f

)2√
∑

n
i=1(oi − o)2

(2)

where n indicates the total number of samples. The term fi and oi represent the forecast
and observation of sample i, respectively. The terms f and o refer to the average forecast
and observation, respectively.

In addition, the error decomposition proposed by Hodsonal et al. [38] is utilized to
diagnose the sources of error for both NWP models and the MME method. Firstly, the MSE
at each grid can be calculated by Equation (3):

MSE =
1
n

n

∑
i=1

( fi − oi)
2 (3)

where fi and oi represent the forecast and observation of sample i, respectively. According
to the decomposing method proposed by Geman et al. [37], the MSE can be decomposed
into bias and variance:

MSE(e) = (E(e2)− E(e)2) + E(e)2

= Var(e) + Bias(e)2 (4)

where e represents the forecast error of the model as the difference between the forecast
and observation, while E(e) represents the mean of the forecast error which is equal to
Bias(e) and Var(e) represents the variance of the forecast error. The variance component
quantifies the extent to which the model reproduces the observed variability, while the bias
component quantifies the ability of the model to reproduce the average characteristics of the
observations. Meanwhile, the variance component can be further decomposed to obtain a
deeper understanding of model performance [38]. The derivation begins by monotonically
sorting the model predictions and observations, then decomposing the MSE of the result:

w = sort( f )− sort(o) (5)

MSE(w) = Bias(w)2 + Var(w) (6)

where sort( f ) and sort(o) represent the sorted observations and forecasts, respectively, and
w represents the forecast error after sorting. Considering that changing the sequence of
the data does not change the mean error of the data, bias before and after the sorting is
equal. Meanwhile, the sorted observations and forecasts share the same time series, and the
variance at this point, Var(w), describes the error caused by the data distribution (Dist(e));
thus, the Equations (7) and (8) can be obtained:

Var(w) = Dist(e) (7)

MSE(w) = Bias(e)2 + Dist(e) (8)

Furthermore, the difference between MSE(e) and MSE(w) can be attributed to the
time series variation, Sequence(e); thus, the following equation can be obtained:

MSE(e)− MSE(w) = Var(e)− Var(w)
= Sequence(e)

(9)
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In conclusion, the MSE can be decomposed into the bias element, the distribution
element and the sequence element as follows:

MSE(e) = Bias(e)2 + Var(e)
= Bias(e)2 + (Var(e)− Var(w)) + Var(w)
= Bias(e)2 + Sequence(e) + Distribution(e)

(10)

where Bias(e)2 is the bias component, which characterizes the ability of the forecast to
reproduce the average characteristics of the observations, Sequence(e) is the sequence
error component, which characterizes the error due to the forecast being ahead of (or
lagging behind) the observations. Distribution(e) is the distribution error component,
which characterizes the error due to the difference in data distribution between the forecasts
and the observations. In order to transfer the units of associated error components from(

m
s

)2 into m/s, we divide both sides of the equation by RMSE at the same time and obtain
the error decomposition of the RMSE.

3. Result

3.1. Evaluation of Multiple NWP Models and the MME

Figure 2 describes the regional averaged RMSE and TCC of ECMWF, NCEP, UKMO,
JMA and MME for wind forecasts at the 10 m level over North China (NC) during a
validation period of 1–7 lead days, including the meridional wind (U10), zonal wind
(V10), wind speed (WS10) and wind direction (DIR10). Generally, multiple forecasts are
characterized by consistent trends of increasing RMSE and decreasing TCC with growing
lead times. The ECMWF shows the best performance, but with limited superiorities to
UKMO and JMA, while the NCEP shows the lowest ability among the four NWP models.
Specifically, the ECMWF features the lowest RMSEs and the highest TCCs at most lead
times for all the elements. On the other hand, NCEP tends to show the highest RMSEs and
the lowest TCCs, but it does not show much difference in comparison to other models in
terms of WS10 forecasts. Furthermore, the MME is significantly superior to the individual
NWP models, which is more evident for longer lead times. The RMSEs of the MME are
lower than ECMWF by 0.3–0.5 m/s (12◦–35◦) for U10, V10 and WS10 (DIR10) for all lead
times, and the MME shows TCCs of 0.1–0.15 higher than ECMWF for wind forecasts.

For assessments of the spatial distribution of forecast abilities for the NWP models
and MME, with the lead time of 1 day taken as an example, Figure 3 describes the spatial
distributions of RMSE for U10, V10, WS10 and DIR10 derived from ECMWF, NCEP and
MME, which denote the best NWP model, the worst NWP model and the multimodel
ensemble mean, respectively. In terms of U10 and V10, the lower RMSEs are continuously
seen around central NC, whereas the highest RMSEs occur around northwestern NC.
Meanwhile, the RMSEs of NCEP are higher than ECMWF over the whole area, and the
advantages of MME to ECMWF are mainly reflected over the southwest NC. As for DIR10,
the RMSE spatial distribution of ECMWF, NCEP and MME are generally consistent, with
the largest RMSEs reaching up to 120◦ occurring at central NC, while the lowest RMSEs
of lower than 40◦ are seen at northwestern NC. It is worth noting that the RMSEs are
obviously lower over all regions in the MME than ECMWF.

In order to assess the wind forecasts at multiple isobaric surfaces, Figure 4 describes
the regional averaged RMSE of U, V, WS and DIR at 500 hPa, 850 hPa, 700 hPa and 925 hPa,
derived from ECMWF, NCEP, UKMO, JMA and MME over NC, with lead times of 1, 4 and
7 days taken as examples. Generally, the multiple forecasts are characterized by consistent
trends of increasing RMSE (decreasing RMSE) for U, V and WS (DIR) with the rising height.
Among them, the RMSE of U, V and WS show the highest growth rates between 925 hPa
and 850 hPa, and the highest growth rate of DIR is seen between 700 hPa and 500 hPa.
Furthermore, the ECMWF shows lower RMSE than the other NWP models at all isobaric
surfaces, which is more evident at higher levels. The advantages of ECMWF diminish with
increased lead times. Furthermore, the MME tends to show lower RMSE for U, V and WS
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(DIR) than ECMWF at all levels for all lead times, which is more obvious at higher (lower)
levels for longer lead times.

Figure 2. Variations in RMSE and TCC of U10, V10, WS10 and DIR10, at lead times of 1–7 days
derived from ECMWF, NCEP, UKMO, JMA and MMA averaged over North China.

To reveal the spatial distribution of wind forecast abilities at the isobaric surfaces for
NWP models and the MME, Figure 5 describes the RMSE spatial distribution for U500,
V500, WS500 and DIR500 derived from ECMWF, NCEP and MME, with the lead time of
1 day taken as an example. Generally, multiple forecasts show similar error distribution
characteristics for U500, V500 and WS500. Specifically, the lower RMSEs are seen at central
and northeastern NC, while the largest RMSEs occur at northwestern NC. Furthermore,
NCEP shows limited forecast ability, with RMSEs reaching up to 2.2 m/s at most areas for
U500, V500 and WS500, while the RMSEs of MME are mostly lower than 2 m/s. In terms of
DIR500, the lowest RMSEs are seen at central NC for ECMWF, NCEP and MME, while the
largest occurs at the northwestern and southern NC. Furthermore, the MME shows clear
superiority to the two NWP models, with its RMSEs of lower than 60◦ for most areas.

To summarize, there is little difference in the performances of the four NWP models
in terms of wind direction forecasts, but clear differences occur in the meridional wind,
zonal wind and wind speed forecasts. The ECMWF shows general advantages over the
other three at both 10 m and isobaric surfaces, which are more pronounced at isobaric
surfaces. Furthermore, the forecast abilities of MME are superior to ECMWF for U, V, WS
and DIR, which are more distinct at higher levels for longer lead times. It is worth noting
that multiple forecasts manifest with the consistent trends of increasing (decreasing) RMSE
for U, V and WS (DIR) with rising height. In addition, all the NWP models and MME tend
to show higher forecast abilities at central NC, while they manifest with lower ability at
northwestern NC for both ground and isobaric surfaces.
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Figure 3. Spatial distributions of RMSEs for U10, V10, WS10 and DIR10 with a lead time of 1 day
derived from ECMWF, NCEP and MME.
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Figure 4. Variations in RMSE for U, V, WS and DIR at isobaric surfaces (500 hPa, 700 hPa, 850 hPa,
925 hPa) for lead times of 1–7 days, derived from ECMWF, NCEP, UKMO, JMA and MMA, averaged
over North China.

3.2. Error Decompositions of the Wind Forecasts

Although the forecast abilities of NWP models and MME have been assessed in
Section 3.1 via metrics, including RMSE and TCC, they tend to provide overall ability
scores and give little insight into which aspects of the models are good or bad. Thus, the
error decomposition method is utilized in this section to diagnose the error sources of wind
forecasts in NWP models, and to analyze which aspects of the forecasts are improved by
the MME method.

Figure 6 describes the regional-averaged RMSE, the decomposed bias component
(BIAS), the distribution error component (DIST) and the sequence error component (SEQU)
of the 10 m wind speed (WS10) and direction (DIR10) over NC derived from ECMWF,
NCEP, UKMO, JMA and MME for lead times of 1–7 days. Generally, SEQU is the main
source of error for both WS10 and DIR10, and rises rapidly with increasing lead times.
While BIAS and DIST account for a relatively small proportion of the total error and do not
increase with growing lead times. It implies that the 10 m wind forecast errors are mainly
attributed to the forecasts being ahead of (lagging behind) the observations. However,
the deficiency of NCEP for WS10, compared with other NWP models, could mainly be
attributed to the BIAS and DIST. Furthermore, the MME tends to generate lower SEQU
than four NWP models for both WS10 and DIR10, which is more evident at longer lead
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times, while the BIAS and DIST of the MME could not show obvious superiority over the
best NWP model.

Figure 5. Spatial distributions of RMSEs for U500, V500, WS500 and DIR500 with a lead time of 1 day
derived from ECMWF, NCEP and MME.
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Figure 6. Variations in RMSE, decomposed BIAS, DIST and SEQU for WS10 and DIR10 at lead times
of 1–7 days derived from ECMWF, NCEP, UKMO, JMA and MMA, averaged over North China.

To assess the spatial distributions of each error component, Figures 7 and 8 describe
the BIAS, DIST and SEQU spatial distributions derived from ECMWF, NCEP and MME
over NC for WS10 and DIR10, respectively, with the lead time of 1 day taken as an example.
Generally, multiple forecasts perform with consistent spatial distribution for both WS10
and DIR10. In terms of WS10, the largest BIASs and DISTs occur at central NC, while also
characterized by the lowest SEQUs. In addition, the largest SEQUs of up to 1 m/s can
be seen at northwestern and southeastern NC. Although MME is generally superior to
ECMWF, its DISTs at northwestern NC are obviously higher than the ECMWF results. For
DIR10, the largest BIASs, DISTs and SEQUs mainly occur at central NC, and the lowest
DISTs and SEQUs can be seen at northwestern NC. Moreover, the MME shows lower
SEQUs than the two NWP models over most areas, but the DISTs of the MME are generally
higher than the two NWP models, which is more distinct at southeastern NC. It is worth
noting that the higher BIASs and DISTs tend to occur in the regions characterized with high
altitudes, while SEQUs are less affected. This implies that the BIASs and DISTs might be
associated with the deficiency of NWP models in simulating real terrain.

Aiming at diagnoses of the wind forecast errors at the isobaric surface, Figure 9 shows
the regional averaged RMSE and the components of BIAS, DIST and SEQU for WS500
and DIR500 over NC derived from the four NWP models and MME, with lead times of
1–7 days. Generally, the SEQU remains the main source of errors and they rise rapidly with
increasing lead times for both WS500 and DIR500. Furthermore, the proportions accounted
for by SEQU in total errors are higher than those in 10 m wind forecasts for both WS500 and
DIR500. Unlike the 10 m wind forecasts, the insufficiency of the NCEP forecasts at 500 hPa
could mainly be attributed to the SEQU. On the other hand, the MME is characterized by
lower SEQU, along with higher BIAS and DIST, than all NWP models for the WS500, which
is more evident at longer lead times.
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Figure 7. Spatial distributions of decomposed BIAS, DIST and SEQU for WS10 with a lead time of
1 day derived from ECMWF, NCEP and MME.
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Figure 8. Spatial distributions of decomposed BIAS, DIST and SEQU for DIR10 with a lead time of
1 day derived from ECMWF, NCEP and MME.

184



Atmosphere 2022, 13, 1652

Figure 9. Variations in RMSE, decomposed BIAS, DIST and SEQU for WS500 and DIR500 at lead
times of 1–7 days derived from ECMWF, NCEP, UKMO, JMA and MMA, averaged over North China.

Figures 10 and 11 further describe the spatial distributions of BIAS, DIST and SEQU
components derived from ECMWF, NCEP and MME over NC for WS500 and DIR500, with
the lead time of 1 day taken as an example. In terms of WS500, the SEQUs of NCEP over
most areas are greater than 2 m/s, which accounts for the overall insufficiency of the model.
Furthermore, the MME shows generally lower SEQUs than the two NWP models, while
the BIASs of MME at northern NC are higher than ECMWF and NCEP. For DIR500, the
three forecast systems show generally consistent distributions, and the largest SEQUs are
mainly distributed at northern NC. Furthermore, MME performs with the lower SEQUs
than ECMWF and NCEP for most areas, but there are higher DISTs at northwestern NC in
MME than the two models. In addition, MME could not produce overt improvements to
ECMWF and NCEP in terms of the BIAS component.

In summary, the main source of wind forecast errors at both 10 m and isobaric surfaces
is the SEQU component, which rises rapidly with increasing lead times. The proportions
accounted for by SEQU in total errors at isobaric surfaces are higher than that at the 10 m
level. The deficiency of NCEP at both 10 m and isobaric surfaces could mainly be attributed
to the BIAS and SEQU terms, respectively. Furthermore, the MME tends to perform with
lower SEQU than NWP models at both 10 m and isobaric surfaces, which is more distinct
for longer lead times. However, the MME shows a slight deficiency in reducing BIAS and
DIST. There are even higher DISTs for MME than NWP models, which are not included in
detail here and require exploration in future work.
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Figure 10. Spatial distributions of decomposed BIAS, DIST and SEQU for WS500 with a lead time of
1 day derived from ECMWF, NCEP and MME.
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Figure 11. Spatial distributions of decomposed BIAS, DIST and SEQU for DIR500 with a lead time of
1 day derived from ECMWF, NCEP and MME.

4. Conclusions and Discussion

In this study, the wind forecasts of 2020 derived from ECMWF, NCEP, UKMO and
JMA over NC for lead times of 1–7 days at 10 m and isobaric surfaces (500 hPa, 700 hPa,
850 hPa and 925 hPa) were evaluated and the straightforward multimodel ensemble mean
method (MME) was utilized to improve wind forecast abilities. Furthermore, the error
decomposition method was also applied to diagnose the error sources of wind forecasts
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in NWP models and analyze which aspects of the forecasts were improved by the MME
method. Associated results were obtained as follows.

Generally, there was little difference in the performances of the four NWP models in
terms of wind direction forecasts, but evident differences occurred in the meridional wind,
zonal wind and wind speed forecasts. The ECMWF showed general advantages over the
other three NWP models at both 10 m and isobaric surfaces, which were more pronounced
at isobaric surfaces. Furthermore, the forecast abilities of MME were superior to ECMWF
for U, V, WS and DIR, which were more obvious at higher levels for longer lead times. It is
worth noting that multiple forecasts manifested with the consistent trends of increasing
(decreasing) RMSE for U, V, WS (DIR) with rising height. In addition, all the NWP models
and MME tended to show higher forecast ability at central NC, while they manifested with
lower ability at northwestern NC for both ground and isobaric surfaces.

The main source of wind forecast errors at both 10 m and isobaric surfaces was
the SEQU component, which rose rapidly with increasing lead times. In addition, the
proportions accounted by SEQU in total errors at isobaric surfaces were higher than that
at the 10 m level. Furthermore, the deficiency of NCEP at the 10 m and isobaric surfaces
could mainly be attributed to the BIAS and SEQU terms, respectively. Furthermore, the
MME tended to perform with lower SEQU than NWP models at both 10 m and isobaric
surfaces, which was more distinct for longer lead times. However, the MME showed slight
deficiency in reducing BIAS and DIST, and there were even higher DISTs for the MME than
the NWP models. These results not only provide an important reference for the use of wind
NWP results in business departments and scientific research, but also in directing further
improvement of NWPs in the future.

Moreover, according to the current study, higher BIASs and DISTs tended to occur
at regions with high altitudes for wind forecasts at 10 m, which implied that the BIAS
and DIST might be associated with the deficiency of the model in simulating the real
terrain [48,49]. Thus, calibration methods incorporating geographic information should
also be examined in the future [50,51]. On the other hand, the examined MME method is
one of the most basic and straightforward multimodel ensemble methods, which assigns
all models with the same role. Considering the deficiency of MME in reducing the BIAS
and DIST of wind forecasts, the multimodel ensemble methods based on more complex
algorithms assigning different weights for different models, including Kalman filter [52,53],
object-based diagnosis [54] and deep learning methods [6,55], are also on the way to be
utilized to further improve wind forecast ability. Furthermore, with the development of
modern observation channels and technologies, observations are enriched and could be
taken into consideration to assess and calibrate the model products in a more realistic way.
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Abstract: Severe low-level wind shear (S-LLWS) in the vicinity of airport runways (25 knots or more)
is a growing concern for the safety of civil aviation. By comprehending the causes of S-LLWS
events, aviation safety can be enhanced. S-LLWS is a rare occurrence, but it is hazardous for
approaching and departing aircraft. This study introduced the self-paced ensemble (SPE) framework
and Shapley additive explanations (SHAP) interpretation system for the classification, prediction,
and interpretation of LLWS severity. Doppler LiDAR- and PIREPs-based LLWS data from Hong
Kong International Airport were obtained, trained, and evaluated to predict LLWS severity. The SPE
framework was also compared to state-of-the-art tree-based models, including light gradient boosting
machine, adaptive boosting, and classification and regression tree models. The SPE does not require
prior data treatment; however, SMOTE-ENN was utilized to treat highly imbalanced LLWS training
data for tree-based models. In terms of prediction performance, the SPE framework outperforms all
tree-based models. Using SHAP analysis, the SPE was interpreted. It was determined that “runway
25LD”, “mean hourly temperature”, and “mean wind speed” were the most significant contributors
to the occurrence of S-LLWS. The most optimistic projections for the occurrence of S-LLWS events at
runway 25LD were during periods of low-to-moderate temperatures and relatively medium-to-high
wind speeds. Similarly, the majority of S-LLWS events took place on the runway. Without the need for
data augmentation during preprocessing, the SPE framework coupled with the SHAP interpretation
system could be utilized effectively for the prediction and interpretation of LLWS severity. This study
is an invaluable resource for aviation policymakers and air traffic safety analysts.

Keywords: civil aviation safety; low-level wind shear; pilot reports; machine learning; self-paced
ensemble; Shapley additive explanations

1. Introduction

Airline operations are profoundly impacted by weather conditions. Major causes of
flight cancellations, delays, and even fatal crashes [1–3] can be traced back to this concern.
Wind shear refers to an abrupt shift in the wind’s speed or direction in the atmosphere.
Particularly during landing and takeoff, aircraft are impacted by low-level wind shear
(LLWS), which is present in a lower layer at 1600 feet above ground level (AGL). LLWS is
defined by the International Civil Aviation Organization (ICAO) [4] as a 15-knot-or-greater
change in wind direction at or below 1600 feet above ground level. It affects the aircraft’s
lift, and the resulting course deviation could endanger planes taking off or landing [5,6].

Many LLWS events with a magnitude of 25 knots or higher have been registered
at airports around the world. Because S-LLWS may have a stronger impact on aircraft
operations, timely warnings are crucial. Hong Kong International Airport is one of the most
at-risk airports for LLWS (HKIA). It is located in Lantau Island’s northern region, which is
mountainous, with peaks reaching over 900 m and valleys dropping to 300 m. Lowering
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the adverse effects of S-LLWS on airport safety and productivity is vital. A reliable LLWS
severity prediction approach is crucial for achieving the goal of providing precise and
effective wind hazard alerts and ensuring the safety of civil aviation. The development of
models for predicting the severity of LLWS closer to airport runways, however, remains
among the most challenging areas of research in civil aviation today.

Due to the fact that wind shear exhibits characteristics of meso- and micro-scale
meteorological phenomena, such as abrupt changes in speed and direction and a small
temporal–spatial scale, predicting wind shear is a difficult endeavor. LLWS events occur
in both rainy and non-rainy weather and include phenomena such as frontal gusts and
microbursts associated with severe convection, dry microbursts, low-level jets, sea breezes,
complex terrain effects, etc [7]. To ensure the safety of civil aircraft, various technologies,
including anemometers, terminal Doppler weather radar (TDWR), and Doppler light
detection and range (DLDR), have been installed at major airports around the world
to detect LLWS (LIDAR). Few airports, including those in Japan, Malaysia, the United
States, Germany, France, South Korea, Singapore, and Hong Kong, have LLWS alerting
technologies due to high instrument and maintenance costs, a lack of relevant research,
and unique local environments [8]. The anemometer-based LLWS alert system and the
TDWR have been developed since the 1970s. Their effectiveness for detecting and warning
of LLWS in rainy conditions has been demonstrated [9]. The complementary TDWR is also
capable of detecting LLWS caused by terrain. However, these technologies are incapable
of capturing LLWS events in non-rainy weather [10,11] and are unsuitable for detecting
LLWS along the glide path.

Doppler LIDAR [8], a relatively new remote sensing technology, offers a promising
alternative for detecting LLWS when the weather is clear. Similarly, certain LLWS events are
terrain-induced LLWS phenomena caused by the complex terrain surrounding an airport.
Doppler LIDAR technology, which does not depend on humid conditions for detecting
LLWS and captures LLWS due to complex terrain near airports, has been developed to
address these scenarios. Hong Kong International Airport [12], Nice Côte d’Azur Airport in
France [13], Tokyo Haneda International Airport in Japan [14] and Beijing Capital Interna-
tional Airport in China [15] are equipped with the Doppler LIDAR system. It has been added
to the TDWR as an augmentation in order to detect and warn of LLWS, even in clear skies.
However, the development of a model to predict the severity of LLWS based on Doppler
LIDAR observations remains a challenging task that must be addressed. Similarly, all of
these LLWS alerting technologies (based on remote sensing and/or on-site measurements)
have been proven effective and operational. These technologies send notifications or alerts
when LLWS events are detected or observed. However, these hardware-based technologies
are incapable of predicting the occurrence of LLWS events and assessing the risk factors that
contribute to their occurrence [16].

In the past, numerous numerical modeling techniques, including large-eddy simula-
tions (LES) [17], computational fluid dynamics (CFD) [18] and numerical weather prediction
(NWP) [12] have been employed to attempt to predict or simulate wind shear conditions.
In general, these studies focused on single or isolated occurrences of reported wind shear
events and were conducted on a case-by-case basis. There are insufficient systematic,
long-term evaluations of the ability of numerical models to predict the occurrence of LLWS
events. These days, machine learning algorithms have gained significant ground. It has
become one of the most widely used and beneficial tools in transportation research such
as road safety, transportation planning, and pavement analysis [19–22]. However, there
is a significant gap in the application of machine learning algorithm in the aviation safety
domain, particularity in the prediction and classification of LLWS severity. In this research,
efficiently predicting S-LLWS is of interest to us. However, in the data from LiDAR and
pilot reports (PIREPs), the S-LLWS class is typically much smaller than the non-severe
low-level wind shear (NS-LLWS) class. This creates a data imbalance issue and requires
data balancing prior to training and evaluation. Therefore, in contrast to hardware-based
technologies and numerical simulation modeling, which efficiently predict LLWS severity
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while simultaneously dealing with the class imbalance issue, we propose the self-paced
ensemble (SPE) framework [23]. This is an ensemble imbalance learning model for dealing
with highly imbalanced data. It aims to produce a robust ensemble by the self-paced har-
monizing of data hardness via the undersampling method that has been developed. This
framework, despite being computationally efficient, has resulted in robust performances in
the presence of extremely skewed distributions.

Although machine learning models are efficient in prediction, they do not explicitly
demonstrate the relations between input and output factors due to their black-box nature.
The interpretation of the model is equally important for appropriately assessing the model’s
performance. Previously, the machine learning model’s results were interpreted using the
variable importance analysis methods such as permutation-based importance scores. The
variable importance analysis, however, can only provide a ranking of the variables’ impor-
tance and is unable to explain how each variable individually influences the prediction
of the model. Shapley additive explanations (SHAP) analysis, based on the concept of
game theory [24], has been utilized in recent studies to quantify each factor’s effect on the
outcome [25,26]. In this research, we have also employed SHAP, analysis in conjunction
with SPE framework, for the assessment of the relative importance of various factors as
well as their contributions.

The rest of this paper is organized as follows: The following sections constitute the
research methodology, which provides the data description, the details of the proposed
SPE framework, a Bayesian optimization strategy for hyperparameter tuning, and the
description of the SHAP interpretation system. These are then followed by Section 3,
discussing the SPE framework and comparison with other machine learning models, as
well as SHAP analysis. Finally, Section 4 summarizes the conclusions and makes additional
research recommendations.

2. Materials and Methods

Initially, the LLWS data consisted of LiDAR data and pilot flight reports (PIREPs)
obtained from the Hong Kong Observatory (HKO) at HKIA. The details of data extraction
from LiDAR and PIREPs are provided in the subsequent section. The extracted data were
merged together and preprocessed to separate training–validation and testing datasets into
70% and 30%, respectively. The training dataset was used to develop an SPE framework and
tree-based machine learning models, including light gradient boosting machine (LGBM),
adaptive boosting (AdaBoost), and classification and regression tree (CART), and the testing
dataset was used to evaluate the performance of the developed model. The SPE framework
is an ensemble imbalance learning system, which does not require data balancing during the
preprocessing phase. In contrast, data balancing was required for the tree-based machine
learning models prior to training and validation, which were used to compare the results
with the SPE framework. For data balancing, a hybrid synthetic minority oversampling
technique—edited nearest neighbor (SMOTE-ENN) treatment was applied to the LLWS
training dataset. A portion of the training–validation data were also used to tune model
hyperparameters. A Bayesian optimization approach was utilized for the hyperparameter
tuning. Afterwards, the SHAP interpretation system was used to evaluate the significance
and contribution of various risk factors that generate S-LLWS in the vicinity of airport
runways. In addition, factor interaction analysis by SHAP was also conducted. Figure 1
depicts the entire operational paradigm described in this study.

2.1. Study Location

The Hong Kong International Airport (HKIA) is situated on an artificial island called
Lantau, which is surrounded on three sides by water. To the south, there are mountains that rise
to more than 900 m above sea level. The complex land–sea contrast and intricate orography
of HKIA have been the subject of numerous observational and modeling studies, all of which
have identified that they are favorable conditions for the occurrence of LLWS [27,28]. As seen
in Figure 2, the mountainous area to the south of HKIA amplifies LLWS, disrupting airflow
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and causing mountain waves, gap effluents, and other disruptions along the HKIA flight paths.
The north runway and the south runway are the two runways at HKIA. The directions they
orient are 070◦ and 250◦. Eight different arrangements are possible because each runway can
be used for takeoffs and landings in either direction. For instance, runway ‘07LA’ stands for a
landing (‘A’ stands for arrival) using the left runway (hence ‘L’) and a heading angle of 070◦.
This depicts a plane landing on HKIA’s north runway from the west. The same goes for an
aircraft taking off from the south runway and heading west—runway 25LD.

Figure 1. Framework for the prediction and interpretation of LLWS severity in the vicinity of runways.

Figure 2. Hong Kong International airport and surrounding terrain.

2.2. Instrument and Data

In this section, the Doppler LiDAR of HKIA and the pilot flight reports (PIREPs) of
HKIA inbound and outbound flights, are thoroughly discussed.

2.2.1. Doppler LiDAR at HKIA

In this study, LLWS data gathered from the 2 × long-range Doppler LiDAR at HKIA
were analysed. LiDAR operates at an infrared wavelength of approximately 1.5 microns;
100 m is the radial resolution or physical range gate. Maximum radial velocity is roughly
40 m per second. Typically, under ideal weather conditions and in the absence of obstruc-
tions such as low clouds, an observation range of 10 or 15 kilometres is achievable. In
addition to the standard fixed-elevation scans (plan-position indicator), each LiDAR is
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configured to conduct “glide-path” scans along take-off and landing flight paths. Coor-
dinating the elevation and azimuth movements of the laser scanner head accomplishes
this. Typically, the four possible configurations of the north runway (07LA, 25RA, 07LD,
and 25RD) are covered by the north LiDAR, including arrivals (A) and departures (D)
directions, and the four possible configurations of the south runway (07RA, 25LA, 07RD
and 25LD) are covered by the south LiDAR, including arrivals (A) and departures (D)
directions towards the west and the east. The headwind component along each runway
configuration (labelled “corridor”) can be derived from the “glide-path” scans’ radial veloc-
ity data. Typically, the scan revisit time for each corridor is roughly one minute, indicating
that the temporal resolution or update frequency of the headwind profiles is also roughly
one minute.

The LiDAR at HKIA usually operates by a “GLYGA LLWS alerting algorithm” [7].
For each runway corridor, GLYGA receives as input the profile of headwind components
gridded with a 100 m interval. The headwind profiles typically extend up to 4–5 NM
from the respective runway endpoint, based on scanning range and prevalent atmospheric
conditions at the time. Then, a ramp identification procedure is used to identify sudden,
consistent changes in the headwind. This is based on the “Peak Spotter” algorithm [29].
First, a profile of velocity increment is quantified by adjusting adjacent data points from the
profile of quality-controlled headwind. Next, LLWS “ramps” are identified by sequentially
recognizing the velocity increment (i.e., headwind change) within length windows of 400,
800, 1600, and 6400 m. The collection of such “ramps”, identified within a single headwind
profile, is then ranked using a severity factor [30] that scales with the headwind increment
and the inverse cube root of the ramp length. The ramp with the highest severity factor is
then used to release an automatic alert when intensity exceeds a predetermined threshold
(15 knots) at HKIA.

Mathematically, the quality-controlled headwind profile can be represented as υ(xk),
where υ is the headwind component at the xk position, which is the kth data point or range
gate along the corresponding glide path. The velocity increment at location xk can be
expressed as Δυ(xk, λ) = υ(xk)− υ(xk + λ) for a given length window (or ramp length), λ.
(For a detailed explanation of the ramp identification process at HKIA, please see [7].) The
resultant identified ramps, which correspond to a collection of data pairs (Δυ, λ), are then
ranked by the severity factor Fs, which is computed using Equation (1).

Fs =

(
Δυ

λ

)3

/Φapp (1)

where Φapp denotes the aircrafts’ approach speed, which is taken as constant. The Fs

depends primarily on Δυ/λ.

2.2.2. HKIA-Based PIREPs

Pilot flight reports (PIREP) of LLWS are an established source for confirming LLWS
alerts at HKIA. A PIREP is an abbreviation for pilot reports used in the aviation sector.
It is a report that pilots who encounter hazardous weather conditions send to air traffic
controllers. Typical PIREPs cover the flight’s en route phase and include information on
turbulence and aircraft icing. However, the HKIA wind shear PIREPs contain information
regarding the timing, location (to the nearest nautical mile), altitude (to the nearest 50 or
100 feet), and velocity (to the nearest 5 knots) of an LLWS event. Pilots can report LLWS
events to the air traffic controller at HKIA in two standard ways: by submitting a report
form after landing or departure, or by using an on-board radio communication.
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2.3. Data Processing

As discussed early, the occurrence of S-LLWS is a substantial risk to inbound and
outbound flight safety. Therefore, in order to predict the S-LLWS events, in this study, the
occurrence of LLWS severity is defined by the threshold, as shown in Equation (2).

LLWS Severity =

{
1 : S − LLWS, LLWS ≥ 25 knots

0 : NS − LLWS, LLWS 15 − 24 knots
(2)

The original wind shear dataset contains nominal and continuous factors as well as a
single target factor, LLWS severity. S-LLWS events represent all LLWS with a magnitude
of equal to or greater than 25 knots and are coded as 1, whereas NS-LLWS events have
a magnitude between 15 to 24 knots and are coded as 0. S-LLWS events are far less in
number than NS-LLWS, but they are an important class for aviation safety. Any ith event in
the original dataset can be represented as (Xi, yi) = (Ci, Ni, yi), where Ci is the continuous
factor, Ni is the nominal factor and yi is the target factor. As indicated in Table 1, the
nominal factors N of the dataset are one-hot encoded. Each nominal value in the dataset is
translated into a new column, and the column is assigned a 0 or 1 value. The number of
columns is equal to the number of nominal values. For example, an eight-column matrix is
created from a nominal factor “Runway” with eight different values (07LA, 07LD, 07RA,
07RD, 25LA, 25LD, 25RA, 25RD). The continuous features of the datasets, on the other
hand, are normalized as stated in Equation (3).

Cnorm
i,j =

Corig
i,j − min Cj

maxCj − min Cj
(3)

where Cnorm
i,j represents the jth normalized continuous factors of the ith instance of the

data. Corig
i,j represents the original jth continuous factors in the ith instance of the data. The

min Cj and maxCj represent the minimum and maximum of the jth continuous factor in
the original wind shear dataset, respectively.

Table 1. One-hot encoding of categorical factors for the modeling.

Factor Codes and Description

LLWS Severity 1: If LLWS magnitude is equal to greater than 25 knots, 0: ‘Otherwise’

Runways
07LA 1: If a wind shear event is reported at Runway 07LA, 0: ‘Otherwise’
07LD 1: If a wind shear event is reported at Runway 07LD, 0: ‘Otherwise’
07RA 1: If a wind shear event is reported at Runway 07RA, 0: ‘Otherwise’
25RD 1: If a wind shear event is reported at Runway 25RD, 0: ‘Otherwise’
25LA 1: If a wind shear event is reported at Runway 25LA, 0: ‘Otherwise’
25LD 1: If a wind shear event is reported at Runway 25LD, 0: ‘Otherwise’
25RA 1: If a wind shear event is reported at Runway 25RA, 0: ‘Otherwise’
25RD 1: If a wind shear event is reported at Runway 25RD, 0: ‘Otherwise’

Location of Occurrence
1MD 1: If a wind shear event is reported at 1MD from Runway, 0: ‘Otherwise’
1MF 1: If a wind shear event is reported at 1MF from Runway, 0: ‘Otherwise’
2MD 1: If a wind shear event is reported at 2MD from Runway, 0: ‘Otherwise’
2MF 1: If a wind shear event is reported at 2MF from Runway, 0: ‘Otherwise’
3MF 1: If a wind shear event is reported at 3MF from Runway, 0: ‘Otherwise’
RWY 1: If a wind shear event is reported at Runway, 0: ‘Otherwise’

Time of the Day
Day Time 1: If a wind shear event is reported during daytime, 0: ‘Otherwise’

Night Time 1: If a wind shear event is reported during nighttime, 0: ‘Otherwise’

Finally, there are 18 factors in the standardized wind shear dataset. The standardized
original wind shear dataset consists of the normalized continuous factors (2 factors including
hourly temperature and wind speed) as well as one-hot encoded nominal factors (16 factors).
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2.4. Self-Paced Ensemble Framework

We propose a newly developed SPE framework, which is an ensemble-based imbalance
learning framework, to develop a classification and prediction model for S-LLWS using
untreated data from LIDAR and PIREPs. Before employing the SPE framework, we present
the concepts of hardness harmonization and a self-paced factor.

2.4.1. Hardness Harmonization

All majority class samples are divided into k bins, where k a hyperparameter, based on
their hardness values. Each kth bin represents a particular level of hardness. Then, majority
class instances are undersampled to create a balanced dataset by maintaining the same
total hardness contribution in each bin. Such a method is referred to as “harmonize” in
the literature of gradient-based optimization. A similar strategy has been adopted here to
harmonize the hardness in the initial iteration. However, hardness harmonization is not
utilized in every iteration. The primary reason for this is that the number of trivial samples
increases during the training process, as the ensemble classifier gradually conforms to
the training set. Consequently, merely harmonizing the hardness contribution leaves a
large number of trivial samples. Later iterations of the learning procedure are significantly
slowed down by these less informative examples. In lieu of this, “self-paced factors” have
been introduced to perform the self-paced harmonization of undersampling.

2.4.2. Self-Paced Factor

In particular, after harmonizing the hardness contribution of each bin, the sample
probability of bins with a large population is gradually decreased. The rate of decrease is
determined by a self-paced factor (σ). When σ is large, more focus is on the harder samples
as opposed to the simple hardness contribution harmonization. In the initial few iterations,
the framework focuses primarily on informative borderline samples, and so outliers and
noise have little impact on the model’s ability to generalize. In later iterations where σ

is very large, the framework retains a reasonable proportion of trivial (high confidence)
samples as the “skeleton”, thereby preventing over-fitting. The detail of SPE framework is
shown in Algorithm 1. It is pertinent to mention that the hardness value in each iteration
(line 5–6) is updated in order to select those data samples that were most beneficial for the
current ensemble. The tangent function (line 8) has been used to control the growth of the
self-paced factor. Thus, the self-paced factor is equal to zero in the first iteration and to
infinity in the last iteration.

Algorithm 1: Self-Paced Ensemble (SPE) Framework.

1
Input: Hardness function (�), training dataset D ={(xk , yk)}

n
1 , number of bins (k), base classifier (ζ)

and number of base classifiers (∂)
2 Initialize: P ⇐ minority class in training dataset D , N ⇐ majority class in training dataset D,

3
Train classifier ζ0 by using random undersampling of subsets of majority class N0

′ and P such that
where |N0

′ | = |P|
4 for i = 1 to n do

5 Ensemble Fi(x) = 1
i

i−1
∑

j=0
ζj(x)

6 Separate majority class dataset into k bins with respect to �(x, y, Fi):
(
b1, b2, . . . , bξ

)
7

In the lth bin, the average hardness contribution can be computed as
hl = ∑s∈bl

h(xs, ys, Fi)/|bl |, ∀ l = 1, 2, . . . , k

8 The self-paced factor is updated as σ = tan
(

iΠ
2∂

)
9 The lth bin, non-normalized sampling weight: pl =

1
hl+σ

, ∀ l =1, 2, . . . , k

10 Undersampling from the lth bin with pl
∑m pl

|P| samples
11 Using newly undersampled data subset, train ζi

12 End

13 Return Final robust ensemble F(x) = 1
∂

∂

∑
m=1

ζm(x)
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2.5. Bayesian Optimization for Hyperparameter Tuning

In this study, a Bayesian optimization strategy [31] is employed alongside SPE models
and a tree-based machine learning model to determine the optimal hyperparameters.
The Bayesian optimization built a probability model for determining the value, which
automatically reduces the objective function based on the objective’s prior estimation result.
Figure 3 is a flowchart of a hybrid Bayesian optimization machine learning approach.
Additionally, provided below is the detailed procedure.

Figure 3. Bayesian approach for hyperparameters tuning.

2.5.1. Initialization

This step involves randomly initializing the appropriate hyperparameter settings
(Equation (4)), which can be used to train both the SPE model and machine learning models

based on k-fold cross validation. The loss function
(

L f

)
is additionally initialized.

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 .. h1,l
h2,1 h2,2 .. h2,l
h3,1 h3,2 .. h3,l

: : :
: : :

hm,1 hm,2 .. hm,l

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

2.5.2. Fitness Function

From the initialized values, the solution’s random number is generated. Based on the
following Equation (5), the fitness function can be used to minimize the objective function.

fitness function
(

L

H

)
=

{
D(H)
G(H)

L < L∗

L ≥ L∗ (5)

where L denotes the loss value, D(H) denotes the density estimation, which is based on the
loss value during the observations, G(H) is produced by the leftover observations value of
loss, and L∗ represents the particular quantiles.

2.5.3. Sequential Model-Based Optimization

For fine-tuning the hyperparameters of SPE and tree-based models, sequential model-
based optimization is one of the succinct forms of Bayesian optimization. Sequential
model-based optimization operates by finding the optimal hyperparameter setting, H∗,
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by building the Gaussian process, Θz, with sampled points which can be obtained by the
following Equation (6).

H∗ = argminΘz−1(H) (6)

Equation (7) can be used to calculate the loss value under ideal hyperparameter settings.

L = L f (H∗) (7)

The corresponding L and the H∗ settings are stored in the corresponding trails, which
can be represented as Ω. These corresponding trails (Ω) are used for parameter settings
and evaluations purposes. The Ω update can be determined with the help of following
Equation (8).

Ω = Ω ∪ (H∗, L) (8)

Finally, build the Gaussian process model, Θz, based on updated Ω.

2.5.4. Acquisition Function

The next iteration of the search process is computed using the acquisition function of
Bayesian optimization. The maximization of G-Mean, which is the expected improvement
in this study, is chosen as an acceptable performance criterion for the SPE model and
tree-based machine learning models. Equation (9) can be used to achieve the improvement.

D(H) = max[{Lmin − L(H)}, 0] (9)

2.5.5. Termination

When the termination criteria are satisfied in this step, the best hyperparameters for
the SPE model and tree-based machine learning models are obtained.

2.6. Evaluation of Models

In case of binary classification problem, one class is the majority (the negative) and its
sample size is represented by n1; the other class is the minority (the negative) and its sample
size is represented by n2. Let n represent the total size of training dataset, n = n1 + n2.
A binary classifier predicts whether each instance is positive or negative. Therefore, it
generates outcomes of four types: true positive

(
tp

)
, false positive

(
fp

)
, true negative (tn),

and false negative ( fn) (see confusion matrix Figure 4). The confusion matrix provides
an in-depth examination of the model’s performance when predictions are made for each
class. The precision and recall are two exceptionally vital model evaluation metrics. The
precision is obtained as the ratio of total number of true positives to the total number of true
positives and false positives, whereas recall is the ratio of total number of true positives
to the total number of true positives and false negatives. Both precision and recall can be
computed from the confusion matrix, as shown by Equations (10) and (11), respectively.

Figure 4. Confusion matrix plot.
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However, in ensemble imbalance learning, the imbalanced datasets pose a large
challenge to the use of proper metrics for the evaluation of the accuracy in the classification
outcomes [32]. The geometric mean (G-Mean), and Matthews’ correlation coefficient (MCC)
have been used in various studies instead of classification accuracy or F1-score. MCC values
should range between −1 and 1. Values closer to +1 represent improved performance. Both
MCC and G-Mean have been generally regarded as a balanced measure which can be used
even if the classes are of very different sizes. The expressions for the computation of MCC
and G-Mean from confusion matrix are given by Equations (12) and (13).

Recall =
tp

tp+ f n

(10)

Precision =
tp

tp+ f p

(11)

G − Mean =

√(
tp

tp+ f n

)(
tn

fp+tn

)
(12)

MCC =
tp× tn− f p× f n√(

tp+ f p

)(
tp+ f

)(
tn+ f p

)
(tn+ f n)

(13)

2.7. Interpretation of Model by Shapley Additive Explanations (SHAP)

The SHAP analysis relies on a game-theoretical approach to explain the outputs of the
ensemble machine learning classifiers. Since machine learning models are “black boxes”, the
core ideas behind the SHAP analysis involve interpreting these models from both a global
and local perspective. The SHAP values, which correspond to the value assigned to each
factor in the computation of a machine learning prediction, are estimated. The contribution
of each factor is determined and displayed as a Shapley value using Equation (14).

! 1 !

! (14)

where ϕi illustrates the ith factor contribution, Π the set of all factors, is the subset of
decision factor, E

(
i

)
and E

( )
illustrate the best model results with and without ith

factors, respectively. SHAP analysis yields the outputs of machine learning models through
an additive factors imputation strategy, wherein the output model is defined as a linear
sum of the input factors (Equation (15)).

g
(
Ψ′
)
= μ0 +

Λ

∑
i=1

μiΨ
′ Ψ′ ∈ {0, 1}Λ (15)

It is equal to 1 in cases when a factor is observed, otherwise it is 0. It illustrates that
the amount of all input factors, μ0, represents an outcome without factors (i.e., base value),
whereas μi shows the Shapley value of factor ith.

3. Results and Discussion

In order to predict the severity of LLWS, this study used an effective and cutting-
edge SPE framework along with tree-based machine learning models. Python 3.6.6, a free
and open-source programming language, was used in this context. For model training,
hyperparameter tuning, performance evaluation, and interpretation, we used the Scikit-
learn, sklearn.metrics, HyperOpt, and Shap libraries, as well as Python’s sklearn.metrics,
imbeans, and sklearn.ensemble. Figure 5 shows how LLWS events are distributed in
relation to runway orientation, location of occurrence, and time of day. The box plot of the
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hourly temperature and wind speed is shown in Figure 6. On the training set for tree-based
models, the SMOTE-ENN treatment strategy was used. The training–validation dataset
contained 257 instances of S-LLWS and 6908 instances of NS-LLWS prior to treatment.
The NS-LLWS instances changed into 6518 and 3069 S-LLWS instances, respectively, after
the SMOTE-ENN treatment. The performance evaluation was conducted using a testing
dataset, and comparisons were made. The best model is then utilized for SHAP analysis.

Figure 5. LLWS events distribution: (a) Frequency of S-LLWS and NS-LLWS at Runway 07LA,
(b) Frequency of S-LLWS and NS-LLWS at Runway 07LD, (c) Frequency of S-LLWS and NS-LLWS
at Runway 07RA, (d) Frequency of S-LLWS and NS-LLWS at Runway 07RD, (e) Frequency of S-
LLWS and NS-LLWS at Runway 25LA, (f) Frequency of S-LLWS and NS-LLWS at Runway 25LD,
(g) Frequency of S-LLWS and NS-LLWS at Runway 25RA, (h) Frequency of S-LLWS and NS-LLWS
at Runway 25RD, (i) Frequency of S-LLWS and NS-LLWS at 1MD from Runway, (j) Frequency of
S-LLWS and NS-LLWS at 2MD from Runway, (k) Frequency of S-LLWS and NS-LLWS at 1MF from
Runway, (l) Frequency of S-LLWS and NS-LLWS at 2MF from Runway, (m) Frequency of S-LLWS
and NS-LLWS at RWY, (n) Frequency of S-LLWS and NS-LLWS during day time, (o) Frequency of
S-LLWS and NS-LLWS during night time.
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Figure 6. Box plot: (a) hourly temperature distribution (b) wind speed distribution.

3.1. Hyperparameter Tuning Using Bayesian Optimization

We used a Bayesian optimization technique that maximized the G-Mean metric to
identify the optimal hyperparameters. It is important to note that the SPE framework
did not require any prior data treatment, and so imbalanced data were used as input.
For tee-based models, both untreated and SMOTE-ENN-treated data were used in the
hyperparameter tuning process. Table 2 shows the hyperparameters along with their ranges
and optimal values.

Table 2. Machine learning models hyperparameter tuning.

Treatment Strategy Hyperparameters Range Optimal Values

No treatment

SPE
n_estimators [500, 3000] 833
max_depth [0, 10] 7

learning_rate [0.001, 0.1] 0.077

LGBM

n_estimators [500, 3000] 2099
learning_rate [0.001, 0.1] 0.043

max_depth [0, 10] 5
lambda_l1 [0.001, 5] 0.39
lambda_l2 [0.001, 5] 0.22

AdaBoost
n_estimators [500–3000] 1873

Learning_rate [0.01, 1] 0.056

CART
min_samples_leaf [0.05, 0.1] 0.04

max_depth [0, 10] 8

SMOTE-ENN

LGBM

learning_rate [0.001, 0.1] 0.079
n_estimators [500, 3000] 2371
max_depth [0, 10] 4
lambda_l1 [0.001, 0.1] 0.57
lambda_l2 [0.001, 0.1] 0.41

AdaBoost
n_estimators [500, 3000] 3110
learning_rate [0.001, 0.1] 0.093

CART
min_samples_leaf [0.05, 0.1] 0.03

max_depth [0, 10] 8

3.2. Models Performance Assessment and Comparison

The terms S-LLWS and NS-LLWS events were used in this study to designate positive
and negative classes of LLWS, respectively. Different performance measures that were
derived from the confusion matrix were used to evaluate each model (Figure 7). The
recall value and precision values in Table 3 show how well the classifier performed in
correctly classifying S-LLWS cases and NS-LLWS cases, respectively. All models were
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observed to be able to classify NS-LLWS events with high accuracy—more than 95.02%.
Given the large number of NS-LLWS cases in the LLWS data, this was expected. The SPE
framework utilizing testing data had an 80.13% recall value, compared to all others, each
of which had a recall value of between 0.00% and 62.43% regarding the recall values for
correctly classifying S-LLWS cases. Figure 7 demonstrates that 88 of the 110 S-LLWS cases
in the testing dataset were correctly classified by the SPE framework. After that, CART
with SMOTE-ENN-treated data were used, correctly classifying 68 out of 110 S-LLWS
while incorrectly classifying the remaining 42. S-LLWS by SPE had a relative classification
accuracy rate of 29.41% higher than CART with SMOTE-ENN-treated data. The AdaBoost
model with no data treatment did the worst job of correctly classifying S-LLWS. The
110 S-LLWS cases were incorrectly classified in none of them.

Figure 7. Confusion Matrix: (a) SPE framework, (b) LGBM without data treatment, (c) AdaBoost with-
out data treatment, (d) CART without data treatment, (e) LGBM with SMOTE-ENN data treatment,
(f) AdaBoost with SMOTE-ENN data treatment, (g) CART with SMOTE-ENN data treatment.

In addition, we have utilized G-Mean and MCC methods in our study. On the testing
dataset, the SPE framework demonstrated a higher G-Mean than all other models with treated
and untreated data. G-Mean was 0.82 for the SPE framework and 0.59 for LGBM with SMOTE-
ENN-treated data. AdaBoost displays the lowest G-Mean value of 0.50 with no treated data.
The G-Mean value of the SPE framework was 39.98% greater than that of the LGBM with
SMOTE-ENN-treated data. Likewise, comparing MCC values, the SPE framework also outper-
formed LGBM, AdaBoost, and CART models, with an MCC value of 0.27 indicating the best
performance, followed by 0.24 for LGBM. Using G-Mean and MCC as balanced measures of
performance, the SPE framework utilizing imbalanced data outperformed the tree-based model
SMOTE-ENN that was applied to the balanced data. Consequently, it could be regarded as
the optimal model for the interpretation provided by the SHAP analysis, such as the relative
importance of factors, their contributions, and their interactions.
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Table 3. Performance measure of machine learning models.

Treatment Model Class Precision Recall G-Mean MCC

No treatment

SPE
NS-LLWS 0.99 0.80

0.82 0.27S-LLWS 0.13 0.80
Average 0.56 0.80

LGBM
NS-LLWS 0.97 1.00

0.55 0.24S-LLWS 0.57 0.12
Average 0.77 0.56

AdaBoost
NS-LLWS 0.96 1.00

0.50 0.00S-LLWS 0.00 0.00
Average 0.48 0.56

CART
NS-LLWS 0.97 1.00

0.55 0.23S-LLWS 0.57 0.12
Average 0.77 0.56

SMOTE-ENN

LGBM
NS-LLWS 0.98 0.61

0.59 0.07S-LLWS 0.05 0.58
Average 0.51 0.60

AdaBoost
NS-LLWS 0.97 0.61

0.58 0.04S-LLWS 0.05 0.51
Average 0.51 0.56

CART
NS-LLWS 0.97 0.53

0.57 0.05S-LLWS 0.05 0.62
Average 0.51 0.57

3.3. Self-Paced Ensemble Framework Interpretation by SHAP

3.3.1. Global Factor Interpretation

Numerous techniques can be employed to determine the relative significance of factors.
However, factor contribution is distinct from factor significance. The contribution of a factor
indicates which factor has the greatest influence on a model’s performance. In addition to
identifying relevant factors, the factor contributions provide a rational explanation for the
observed results. This study investigated the significance of each factor and its contribution
using SHAP analysis. Figure 8a depicts, initially, the factor importance of the input factors,
indicating the overarching influence of the factors on the predictions. It is the mean of
the absolute Shapley values for the entire training dataset. The average absolute SHAP
value of 0.185 indicates that, of all the features, “Runway 25LD” is the most vulnerable to
S-LLWS occurrences. The average absolute SHAP values for “hourly temperature” and
“wind speed” are 0.145 and 0.135, respectively, making them the second and third most
influential factors.

Figure 8. Global Factor Interpretation; (a) Factor Importance plot; (b) Factor Contribution plot.

204



Atmosphere 2023, 14, 37

Figure 8b is a SHAP contribution plot of the factors, illustrating the distribution of
SHAP values for each factor and the corresponding impact patterns. It is also known as the
SHAP bee swarm plot. The horizontal axis of this plot represents the SHAP value, while
the vertical axis contains all of the factors in the LLWS dataset. Each point on the plot
represents a single SHAP value for a given prediction. Red indicates a higher value for a
factor, while blue indicates a lower value. Based on the distribution of the red and blue
dots, we can derive a general sense of the impact of factors’ directionality. Some valuable
insights can be drawn from the plots for the top three factors.

The runway 25LD factor, denoted by red dots, is coded as 1. All the red dots fall to the
right of the vertical reference line, indicating the likelihood of the occurrence of S-LLWS
over runway 25LD. Blue dots fall to the left of the vertical line, indicating the occurrence of
NS-LLWS over other runways of HKIA. The previous studies [33,34] indicated that hourly
prevailing wind directions such as east, south-east, south, and south-west were found to
cause a higher risk of S-LLWS. This indicates that at 25LD, an S-LLWS event could be more
likely to happen under the easterly, southeasterly, southerly, and southwesterly directions.

In the case of the hourly temperature factor, most of the purple dots fall to the right of
the vertical line, while most of the blue dots and red dots fall to the left of the vertical line.
This illustrates that S-LLWS is most likely to occur at low-to-moderate hourly temperatures,
while a few high temperatures are more likely to cause the occurrence of NS-LLWS. The
reason for this might be a temperature inversion [35–37], which is an alteration in the
troposphere’s typical temperature lapse rate, i.e., the reduction in temperature with altitude.
On chilly, clear nights, this phenomenon typically occurs close to the ground, where the air
immediately above the ground rapidly cools and becomes much colder than the layer of air
higher up. As a result, the densely packed lower-level cold air is trapped by the layer of
warm air. This may result in severe turbulence and, subsequently, S-LLWS.

Moderate-to-high values of wind speed mostly caused the occurrence of S-LLWS and
vice versa. The findings are also consistent with previous HKIA research [33,38–41]. As
for the occurrence of LLWS, however, wind speed variation is more significant than mean
wind speed. Due to the fact that the average duration of an LLWS event confronted by an
aircraft is somewhere between a few seconds and several minutes, the hourly mean wind
speed cannot offer an accurate indication of LLWS. Therefore, more sophisticated data
about wind conditions, such as a 1 min mean turbulence intensity, is necessary to enhance
the performance of the models.

3.3.2. Local Factor Interpretation

Figure 9 depicts the SHAP explanatory force chart for two instances, randomly selected
from the actual estimate results. The base value (0.656) on the plot represents the mean
optimal SPE framework model estimations for the training dataset. The NS-LLWS condition
occurs when the SPE framework output value is less than the base value. The S-LLWS
condition occurs when the output value of the SPE Framework exceeds the base value. The
blue arrows represent the magnitude of the influence of an input factor on the probability of
NS-LLWS events. The influence of input factors on the occurrence of S-LLWS is highlighted
by red arrows. The amount of space a factor occupies on each arrow demonstrates the size
of its effect.

Consider two LLWS severity cases, one from S-LLWS and the other from NS-LLWS, which
were correctly classified with estimated values of 1.03 and 0.52, respectively (see Figure 9).
The value for S-LLWS is greater than the base value (0.656). Similarly, the value for NS-
LLWS is less than 0.656. Figure 9a depicts an S-LLWS event that occurred when runway
25LD = 1, wind speed = 2.2 m/s, and hourly temperature = 17.9C. This is shown by the
red arrows pointing to the right. The size of the “Runway 25LD” arrow is larger than the
“Wind Speed” and “Hourly Temperature” arrows. This shows that “Runway 25LD” is a
stronger predictor of S-LLWS in this case than “Wind Speed” and “Hourly Temperature.” In
contrast, for the same instance, “Day Time = 0”, as represented by the blue arrow pointing
to the left, indicates nighttime and depicts the likelihood of the occurrence of NS-LLWS.
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Similarly, in Figure 9b, for another instance correctly classified as NS-LLWS, “1MD = 1”,
“Wind Speed = 6.9 m/s”, and “pointing” the blue arrows, pointing to the left, are more
likely to result in the occurrence of NS-LLWS. It demonstrates that, 1 nautical mile away
from the end of the runway, an NS-LLWS event occurred.

Figure 9. SHAP Explanatory Force Pot: (a) Plot for an instance value equals to 1.03; (b) Plot for an
instance value equals to 0.52.

3.3.3. Factor Interaction Analysis

The SHAP interaction plots are examined to identify how the input factors, used to
evaluate the SPE framework, interact with one another in terms of their contributions
(see Figure 10). The interaction analysis of the top four influential factors, i.e., runway
25LD, hourly temperature, wind speed, and RWY (horizontal location of LLWS occurrence),
is provided. Other factors’ interactions, however, could be examined as well. The red and
blue scatter plots in Figure 10a depict the variability in the runway 25LD and 25LD SHAP
values. When the hourly temperature is low to moderate, the SHAP value for runway
25LD is higher. This means that most of the S-LLWS occurs in the vicinity of runway 25LD
when the hourly temperature ranges from low to moderate. The temperature inversion on
Hong Kong’s Lantau Island could also be contributing to this scenario.

Figure 10b depicts the distribution of wind speed at runway 25LD. Wind speed points
greater than 5 m/s have a higher SHAP value, indicating the likelihood of an S-LLWS
event. Figure 10c illustrates that most of the S-LLWS events occurred “on the runway.” The
PIREPs reported S-LLWS when aircraft were making their final approach or just when they
became airborne after takeoff.

Figure 10. Cont.
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Figure 10. SHAP Interaction Plots: (a) Interaction of Runway 25LD and Hourly Temperature;
(b) Interaction of Wind Speed and Runway 25LD; (c) Interaction of Runway 25LD and RWY (location
of LLWS occurrence); (d) Interaction of Hourly Temperature and Wind Speed.

Figure 10d shows that the optimum conditions for the occurrence of S-LLWS were
lower than average hourly temperatures and medium-to-high wind speeds. The points
representing that scenario fall to the left of the plot and above the SHAP 0.00 reference line.
However, to obtain a clear threshold, it may be necessary to know the altitude at which
LLWS happen in addition to the parameters that are already known.

4. Conclusions and Recommendations

In this research, a novel SPE framework for the prediction and imbalance classification
of LLWS severity has been proposed and compared with tree-based machine learning
models, using both treated and untreated HKIA-based LLWS data from LiDAR and PIREPs.
The SHAP interpretation system was also used to identify key risk factors and quantify
their effects on the occurrence of S-LLWS. In this study, the SPE framework was trained
and evaluated using untreated data, whereas both untreated and treated data were used
to train the LGBM, AdaBoost, and CART machine learning models. The SMOTE-ENN
technique was used as a treatment technique for highly imbalanced LLWS data. In terms of
precision, recall, G-Mean, and MCC, the experimental results demonstrated that the SPE
framework, based on the untreated data, outperforms all other tree-based models. The
newly introduced SPE framework model offers a viable option for modeling and predicting
LLWS severity based on imbalanced LLWS data.

Machine learning models, on the other hand, are regularly chastised for their lack
of transparency and interpretability. Despite the fact that machine learning models are
more adaptable and efficient than statistical approaches, their widespread recognition
in the engineering domain continues to be a challenge. To tackle the SPE framework’s
interpretability issue, the SHAP interpretation system was used to evaluate the SPE’s
output in order to identify major risk factors and assess their impact on the severity of
the LLWS. The results of the SHAP interpretation system can be used to rank the risk
factor’s overall significance. It can also be used to look into the individual and interaction
effects of risk factors (for instance, how specific effects alter in response to changes in the
risk factor’s value). The analysis revealed that runway 25LD, hourly temperature, wind
speed, and RWY (location of LLWS occurrence) were the top four most significant factors in
predicting LLWS severity. The optimistic projections for the occurrence of S-LLWS events
were low-to-medium temperatures at runway 25LD with relatively moderate-to-high wind
speeds. Likewise, most of the S-LLWS events happen on the runway.

This research outlines a strategy that can be used to conduct a large-scale analysis
of LLWS in aviation and serves as a useful tool for aviation policymakers and air traffic
safety researchers. This paper discussed the SPE framework using highly imbalanced
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LLWS data and the SHAP interpretation system. Additional research could be conducted
by combining a number of other machine learning techniques with a number of additional
risk factors, including monthly variation, location of occurrence of LLWS above ground
level, etc. Future research could be expanded by employing additional techniques for
augmenting data to deal with highly imbalanced LLWS data.
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Abstract: Low-level wind shear (LLWS) is a rare occurrence and yet poses a major hazard to the
safety of aircraft. LLWS event occurrence within 800 feet of the runway level are dangerous to
approaching and departing aircraft and must be accurately predicted. In this study, first the Bayesian
Optimization–Ensemble Learning Classifiers (BO-ELCs) including Adaptive Boosting, Light Gradient
Boosting Machine, Categorical Boosting, Extreme Gradient Boosting, and Random Forest were
trained and tested using a dataset of 234 LLWS events extracted from pilot flight reports (PIREPS) and
weather reports at Hong Kong International Airport. Afterward, the SHapley Additive exPlanations
(SHAP) algorithm was utilized to interpret the best BO-ELC. Based on the testing set, the results
revealed that the Bayesian Optimization–Random Forest Classifier outperformed the other BO-ELCs
in accuracy (0.714), F1-score (0.713), AUC-ROC (0.76), and AUR-PRC (0.75). The SHAP analysis
found that the hourly temperature, wind speed, and runway 07LA were the top three crucial factors.
A high hourly temperature and a moderate-to-high wind speed made Runway 07LA vulnerable to
the occurrence of critical LLWS events. This research was a first attempt to forecast the criticality of
LLWS in airport runway vicinities and will assist civil aviation airport authorities in making timely
flight operation decisions.

Keywords: low-level wind shear; ensemble learning classifiers; Bayesian optimization; SHapley
Additive exPlanations

1. Introduction

Globally, the civil aviation industry has grown rapidly in the last decade as a con-
sequence of enhanced economic development. Passenger traffic worldwide surpassed
8.8 billion in 2018 and is expected to triple to 10 billion by 2037. It is projected to grow at
a 3.7% annual rate in the long run and reach 19.7 billion by 2040 [1]. Although there is a
boom in the aviation industry worldwide, weather is one of the key factors that has a major
impact on overall airline operations. It is a significant contributor to flight cancellations,
delays, and—in the worst-case scenario—accidents. Wind shear is an aviation term that
refers to a sudden, abrupt change in wind direction or speed, whereas low-level wind
shear (LLWS) refers to wind shear that occurs below 1600 feet (500 m) above ground level
(AGL). Low-level jet streams, frontal systems, low-level temperature inversions, and LLWS
are closely associated, more specifically with the unique wind-shear conditions created by
man-made structures such as the distribution of various buildings, terrain roughness, and
natural obstructions such as mountains and water/land interfaces, among other factors, at
and around a particular airport [2].
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1.1. Low-Level Wind Shear: Pilots’ Invisible Enemy

The cockpit remains extremely active during the landing phase, and the captain
and co-pilot must make a number of quick decisions to complete their landing checklist.
However, poor weather conditions, complex terrain, and the presence of buildings near the
airport will increase turbulence along the glide path. Therefore, the occurrence of LLWS
below 800 feet above the ground is regarded as the most critical phenomenon for both
approaching and departing aircraft. The pilot must contend with violent updrafts and
downdrafts as well as abrupt changes in the aircraft’s horizontal and vertical movement
while completing the landing checklist. As depicted in Figure 1, this critical condition
may lead to a missed approach, landing short of the runway (loss of lift), or deviation
from the actual flight path during final approach. Basically, there are two detrimental
and potentially hazardous effects of LLWS on approaching aircraft: perturbation of the
glide path and deviancy of the approach speed from the established (set) value [3]. As a
result, the pilot may perceive additional pressure during the approach phase when the
engine power is low and the airspeed is close to stall speed due to unexpected changes
in wind direction or speed. This effect of declining and raising headwind shear on an
aircraft during an approach is depicted in Figure 2 (assuming no pilot intervention is being
used); both scenarios utilize a conventional instrument landing system with a 3-degree
glide path and final approach speed (υa). In the first scenario (Figure 2a), the approaching
aircraft is subjected to a declining headwind with the headwind speed (υhw). As the aircraft
approaches the ground, its airspeed (the aircraft’s speed in relation to the surrounding air
flow) declines, thereby lowering lift and tending to result in a greater descent angle due to
the transient force imbalance. In this scenario, the aircraft may possibly land short of the
runway. The second case (Figure 2b) assumes a rising headwind on the same glide path and
slope (3 degrees). As a result, the aircraft’s airspeed increases in relation to the surrounding
air flow, thereby generating more lift and resulting in a flatter angle of descent or even a
climb. In this scenario, landing may possibly be aborted and a go-around initiated.

Figure 1. Occurrence location of LLWS events in the vicinity of an airport runway.

hw
hw

Figure 2. Detrimental and potentially hazardous effects of LLWS on approaching aircraft: (a) declin-
ing headwind during final approach; (b) rising headwind during final approach.

1.2. Low-Level Wind Shear Detection Technologies

Airports worldwide have profited significantly from the availability of meticulous,
high-resolution technologies for remote sensing including Terminal Doppler Weather
Radar (TDWR) and Doppler Light Detection and Ranging (LiDAR) [4–6]. By far, the
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most extensively used approaches for detecting wind shear are TDWR, ground-based
anemometer networks, and wind profilers. This approach has been shown to be effective
in alerting LLWS since the mid-1990s, most notably during the passage of tropical cyclones
and thunderstorms. When the weather is clear, the TDWR system does not offer accurate
wind information. Certain LLWS incidents, on the other hand, are connected to airflow
that reaches the airport from rugged terrain. To deal with these scenarios, a new method
of detection that is not dependent on humid conditions must be developed. The LiDAR
system has been added as a booster to the TDWR in order to identify and warn of LLWS in
clear skies. When the air is clear, Doppler LiDAR can detect return signals from aerosols and
offer precise Doppler wind measurements. To ensure the safety of civil aircraft, TDWRs and
LiDARs have been extensively installed at major airports worldwide. However, only a few
airports worldwide, including Japan, Malaysia, Germany, France, Korea, Singapore, and
Hong Kong, possess these LLWS alerting system technologies due to high maintenance and
equipment costs, a lack of pertinent research, and specific geographical characteristics [7].
Additionally, these LLWS alerting technologies, which are based on remote sensing and/or
on-site measurements, have been demonstrated to be successful and operational. When an
LLWS event is detected or observed, these detection- or observation-based technologies
send notifications. However, these detection- or observation-based technologies cannot
predict when the next LLWS event will occur or what risk factors contribute to its occurrence
as well as the criticality [8].

Extreme weather conditions such as microbursts and sea breezes, as well as the
geographic surroundings of an airport, which include complex topography and struc-
tures, both contribute to wind shear events. Over 70% of pilot flight reports illustrated
terrain-induced wind shear at Hong Kong International Airport (HKIA, International Civil
Aviation Organization (ICAO) code: VHHH) [9]. Several researchers used analytical and
simulation techniques to assess the impact of LLWS, such as Lei et al. [10], who employed
a computational fluid dynamics (CFD) model to simulate the shedding of vortices from
the mountains near HKIA. It was observed that accurately modeling this shedding had
a considerable impact on forecasting terrain-induced wind shear at airports. Using data
from TDWRs and LiDARs, a high-resolution aviation model (AVM) [11] was developed to
evaluate the occurrence of terrain-induced wind shear at HKIA. The model was proven to
accurately simulate terrain-induced wind shear, including microbursts caused by Lantau
Island’s mountains. During the winter, when wind shear occurs over the runway owing to
turbulence generated by neighboring hills, Shimoyama et al. [12] researched the turbulence
over Japan’s Shonai Airport. According to the models, terrain attributes may have a consid-
erable impact on the amount of turbulence encountered along flight paths, implying that
aircraft safety may be influenced by wind direction. Furthermore, it was demonstrated that
the turbulence induced by terrain features may be predicted using this modeling method
depending on the degree to which the findings match the turbulence measured using a
Doppler radar.

1.3. Ensemble Learning Classifiers and Interpretation

In comparison to prior hardware-based techniques and numerical and simulation
models, we proposed in this study to use Bayesian Optimization–Ensemble Learning
Classifiers (BO-ELCs) to predict the criticality of LLWS events. ELCs have been applied in a
number of fields, including health care modeling, transportation and traffic safety, finance,
and economics [13–20]. However, there is a significant gap in the literature regarding the
use of ELCs in the civil aviation safety domain. In the past, Liu et al. [21] developed a neural-
network-based prediction model for the assessment of wind fields along the glide path near
HKIA using LiDAR data. It was quite effective at predicting wind shear. However, one
could argue that neural network models are difficult to comprehend since their structures or
weights include only a limited amount of information about the estimated function [22,23].
On the other hand, decision-tree-based machine learning models are easy to understand
and their outcomes can be easily explained. The models empower predictive models with
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high accuracy and stability. The predictions of ELCs do not, however, explicitly and clearly
demonstrate the relationship between changes in input and output variables, in contrast
to statistical or empirical models. The interpretation of the model is equally important
for appropriately assessing the model’s performance. Previously, the ELC results were
interpreted using the variable-importance analysis technique. The variable-importance
analysis methodologies, however, can only provide a ranking of the variables’ importance
and are unable to explain how each variable individually influences the prediction of
model. The SHapley Additive exPlanations (SHAP) algorithm, which is based on the
concept of game theory [24], has been utilized in recent studies to quantify each variable’s
effect on the outcomes and to provide information about the strength and direction of each
variable’s influence on each individual sample [25–30]. Civil aviation safety researchers
should take advantage of this opportunity because understanding the complex interactions
between several risk factors that determine the criticality of LLWS is crucial for aviation
and meteorological applications.

1.4. Research Process

The purpose of this research was to develop a model for predicting the criticality
of LLWS events in the vicinity of an airport runway and then to interpret the results via
SHAP analysis. There were four stages to the research procedure. Before constructing and
comparing the ELCs, the hyperparameters were adjusted via Bayesian Optimization (BO),
which is one of the machine learning hyperparameter tuning techniques [31]. The reasons
for which we chose the BO technique in contrast to the Grid Search CV [32] and Random
Search CV [33] techniques were its ability to lower the time needed to obtain an optimal
set of hyperparameters and its better generalized performance on the test instances. The
Bayesian-optimized models were subsequently compared to evaluate their performance. A
SHAP analysis was then employed in both the individual and global interpretation of risk
factors. It investigated the significance of risk factors and their interactions. This research is
expected to fill a gap in the literature on ensemble learning applications in civil aviation
safety.

2. Materials and Methods

In this study, five state-of-the-art ELCs, namely the Light Gradient Boosting Machine
(LGBM) [34], Random Forest (RF) [35], the Extreme Gradient Boosting Machine (XG-
Boost) [36], Categorical Boosting (CatBoost) [37], and Adaptive Boosting (AdaBoost) [38]
optimized via BO were used to predict the criticality of LLWS in the vicinity of runways
at HKIA. The data for modeling, which was extracted from Pilot Flight Reports (PIREPs)
and Hong Kong Observatory (HKO) weather reports, included the LLWS magnitude and
altitude experienced by the pilots of approaching or departing aircrafts, runway used by
approaching and departing aircraft, wind direction, time of the day, mean hourly tem-
perature, and mean wind speed. Based on these input data, the BO-ELC models were
developed for the prediction of LLWS criticality. The hyperparameters such as n_estimators,
learning rate, num_leaves, reg_lambda, reg_alpha, max_depth were a few hyperparameters
of the ELC models that were considered for optimization via the BO technique. Using
the well-tuned ELCs, a performance assessment was conducted to obtain the necessary
performance measures and assess the best model.

Afterward, using the best ELC, the Shapley additives values were computed to char-
acterize the influence of each factor on the final inference of LLWS criticality. The best
model was assessed from global and local perspectives using the SHAP model. The SHAP
algorithm is basically a local explainability model but can be employed to construct a
global explanation after taking the average of all of the local instances that illustrate macro-
level details. The global interpretations based on SHAP were consistent with the local
explanations. Figure 3 depicts the entire operational paradigm proposed in this research.
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Figure 3. Framework for the prediction and interpretation of LLWS criticality at the vicinity of
runways at HKIA.

2.1. Study Location

HKIA is located on an artificial Lantau island surrounded on three sides by open
sea water with mountains to the south that reach elevations of over 900 m above sea
level. Numerous observational and modeling studies have shown that HKIA’s intricate
orography and complex land–sea contrast are conducive to the occurrence of LLWS [39]. It
is one of the most susceptible airports to wind shear in the world. Significant LLWS events
occur once every 400 to 500 flights [40]. As shown in Figure 4, the mountainous terrain to
the south of HKIA amplifies LLWS, which disrupts airflow and generates mountain waves,
gap discharges, and other disturbances along the HKIA flight paths. Two runways exist
at HKIA: the North Runway and the South Runway. They are oriented in the 070◦ and
250◦ directions, respectively. Due to the fact that each runway can be used for takeoffs
and landings in either direction, there are a total of eight possible configurations. For
example, runway ‘07LA’ denotes landing (‘A’ refers to arrival) with a heading angle of 070◦

(shortened to ‘07’) using the left runway (hence ‘L’); this shows aircraft landing on North
Runway from the western side of HKIA. Likewise, an aircraft departing from the South
Runway in the west would use runway 25LD.

2.2. Data Processing from PIREPs and Hong Kong Observatory

In aviation, pilot reports are abbreviated as PIREPs. Pilots who encounter hazardous
weather conditions report them to air traffic controllers. The traditional PIREPs typically
include information on turbulence and aircraft icing and cover the flight’s en-route phase.
However, information about the timing, location (to the nearest nautical mile), speed
(to the nearest 5 knots), and altitude (to the nearest 50 or 100 feet) of an LLWS event is
encapsulated in the HKIA wind shear PIREPs. The positive or negative signs show a gain
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or loss, respectively, in headwind. Pilots can submit a report form after landing or taking
off, or they can use on-board radio communication to communicate LLWS events to the air
traffic controller at HKIA.

Figure 4. Hong Kong International Airport and surrounding terrain.

A substantial amount of wind shear data was essential to develop the prediction
models. To this end, 243 LLWS data were obtained from the PIREPs and HKO weather
reports. The PIREPs were used to ascertain the LLWS height and intensity as well as the
runway that arriving and departing aircraft used. As depicted in Figure 3, the occurrence
location of LLWS was divided into two zones—the critical zone and the non-critical zone—
based on the PIREPs. All LLWS events occurring within 800 ft of the surface were deemed
critical, whereas all others were deemed non-critical. An LLWS event was therefore a binary
factor with two possible outcomes as indicated by Equation (1):

LLWS =

{
1
0

C − LLWS, if LLWS is 800ft above runway level
NC − LLWS, otherwise

(1)

The combined wind shear data from HKO weather reports and PIREPs contained both
nominal factors (such as runway orientation, wind direction, month of the year, and time of
the day) and continuous factors (such and mean hourly temperature and mean wind speed).
Any i-th LLWS event in the original dataset could be represented as (Xi, yi) = (Ci, Ni, yi),
where Ci is the continuous factors, Ni is the nominal factors, and yi is the target factors. The
nominal factors N of the dataset were one-hot encoded as shown in Table 1. Each nominal
value in the dataset was translated into a new column, and the column was assigned a 0 or
1 value. The number of columns was equal to the number of nominal values. For example,
an eight-column matrix was created from a nominal factor “Runway” with six different
values (07LA, 07RA, 07RD, 25LA, 25LD, and 25RA). The continuous factors of the wind
shear datasets, on the other hand, were normalized as stated in Equation (2):

Cnorm
i,j =

C
orig
i,j − min Cj

max Cj− min Cj
(2)

where Cnorm
i,j represents the j-th normalized continuous factors of the i-th instance of the

data, and C
orig
i,j represents the original j-th continuous factors in the i-th instance of the data.

The min Cj and max Cj represent the minimum and maximum of the j-th continuous factor
in the combined wind shear dataset, respectively. Finally, there were 22 dependent factors
in the standardized wind shear dataset; i.e., normalized continuous factors (2 × factors)
and one-hot encoded nominal factors (20 × factors).
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Table 1. One-hot encoding of categorical factors for the modeling.

Factor Codes and Description

Runway Orientation
07LA 1: If a wind shear event is reported at Runway 07LA, 0: Otherwise
07RA 1: If a wind shear event is reported at Runway 07RA, 0: Otherwise
25RA 1: If a wind shear event is reported at Runway 25RA, 0: Otherwise
25LA 1: If a wind shear event is reported at Runway 25LA, 0: Otherwise
25LD 1: If a wind shear event is reported at Runway 25LD, 0: Otherwise
07RD 1: If a wind shear event is reported at Runway 07LD, 0: Otherwise

Wind Direction
N 1: If wind direction is North, 0: Otherwise

NE 1: If wind direction is North-East, 0: Otherwise
E 1: If wind direction is East 0: Otherwise

SE 1: If wind direction is South-East, 0: Otherwise
S 1: If wind direction is South, 0: Otherwise

SW 1: If wind direction is South-West, 0: Otherwise
W 1: If wind direction is West, 0: Otherwise

NW 1: If wind direction is North-West, 0: Otherwise

Season of the Year
Winter 1: If a wind shear event occurs in Winter, 0: Otherwise
Spring 1: If a wind shear event occurs in Spring, 0: Otherwise

Summer 1: If a wind shear event occurs in Summer, 0: Otherwise
Autumn 1: If a wind shear event occurs in Autumn, 0: Otherwise

Time of the Day
Day Time 1:If a wind shear event occurs during day time, 0: Otherwise

Night Time 1:If a wind shear event occurs during night time, 0: Otherwise

2.3. Hybrid Bayesian Optimization–Ensemble Learning Classifier (BO-ELC)

In this work, BO was utilized in conjunction with ELCs to train and tune the ELCs
and find the optimal hyperparameters. The BO assembled a probability model for finding
the value that automatically diminished the objective function based on the precedent
estimation outcome of the objective. Figure 5 shows the flowchart of the hybrid BO-ELC
approach. The step-by-step procedure for ELC optimization via BO is also given below.

1j j

1j

*

Figure 5. Hybrid BO-ELC approach for the prediction of LLWS criticality.
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2.3.1. Initialization

In this step, the appropriate hyperparameters settings were initialized randomly (Equa-
tion (3)), which could be used to train the ELCs based on k-fold cross validation. In addition,
a loss function

(
L f

)
, which was the black-box function and that was required to be opti-

mized, was also initialized. The aim was to determine the optimal set of hyperparameters

that globally optimized the loss function
(

L f

)
.

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 .. h1,l
h2,1 h2,2 .. h2,l
h3,1 h3,2 .. h3,l

: : :
: : :

hm,1 hm,2 .. hm,l

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

2.3.2. Fitness Function

The random number of the solution was generated from the initialized values. The fit-
ness function was used to minimize the objective function based on the following Equation (4):

fitness function

(
L

H

)
=

{
D(H)
G(H)

L < L∗

L ≥ L∗ (4)

where L denotes the loss value; D(H) denotes the density estimation, which was based
on the loss value during the observations; G(H) is produced by the leftover observations
value of loss, and L∗ represents the particular quantiles.

2.3.3. Sequential Model-Based Optimization

Sequential model-based optimization was one of the concise forms of BO used to
tune the hyperparameters of the ELCs. Sequential model-based optimization operates by
finding the optimal hyperparameter setting H∗ by building the Gaussian process Θz with a
sampled point, which can be obtained using the following Equation (5):

H∗ = argminΘz−1(H) (5)

The loss value can be determined under the optimal hyperparameter setting by using
Equation (6):

L = L f (H∗) (6)

The corresponding L and the H∗ setting were stored in the corresponding trails, which
can be represented as Ω. These corresponding trails (Ω) were used for parameter settings
and evaluation purposes. The Ω update could be determined with the help of the following
Equation (7):

Ω = Ω ∪ (H∗, L) (7)

Finally, we built the Gaussian process Θz model based on the updated Ω.

2.3.4. Acquisition Function

The acquisition function of BO was employed to compute the next iteration in the
search process. In this study, the expected improvement was chosen as an acceptable perfor-
mance criterion of the ELCs, which was the maximization of AUC-ROC. The improvement
could be obtained with the help of L by using Equation (8):

D(H) = max(Lmin − L(H), 0) (8)
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2.3.5. Termination

In this step, the optimal hyperparameters were obtained for the ELCs with the help of
the BO.

2.4. Evaluation of BO-ELCs

In EL modeling, performance assessment of the classifiers is a vital task. When a
classification problem requires checking or visualizing the performance, the area under the
receiver operating characteristics curve (AUC-ROC) and the area under the Precision and
Recall curve (AUC-PRC) can be used. Both the AUC-ROC and AUC-PRC were used as
performance metrics for the assessment of the classification models’ performances. In the
case of the ROC, the AUC-ROC ranged from 0 (fully incorrect) to 1 (perfectly classified).

In addition, we also used a confusion matrix, which provided an in-depth examination
of the model’s performance when predictions were made for each class. For the binary
classification problem, one class was the majority (the negative) and its sample size was
represented by n1; the other class was the minority (the negative) and its sample size was
represented by n2. Let n represent the total size of the training data set (n = n1 + n2).
The binary classifier predicted whether each instance was positive or negative. Therefore,
it generated four types of outcomes: true positive Tρ, false positive Fρ, true negative Tn,
and false negative Fn (see Figure 6). The Accuracy, Recall, Precision, and F1-score were
extracted from the confusion matrix and are given as Equations (9)–(12).

Classification Accuracy =
Tρ+Tη

Tρ+Fη+Tη+Fρ (9)

Precision =
Tρ

Tρ+Fρ (10)

Recall =
Tρ

Tρ+Fη (11)

F1 − Score =
Tρ

Tρ + 1
2 (Fη+Fρ)

(12)
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Figure 6. Confusion matrix plot.

On the basis of the recall and precision extracted from the confusion matrix, we could
also plot the precision–recall curve and calculate area under the curve (AUC-PRC).
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2.5. BO-ELC Interpretation Using Shapley Additive exPlanations (SHAP)

The SHAP analysis is based on a game-theory mechanism for interpretation of en-
semble learning models. The fundamental concept behind the SHAP tool is to compute
the marginal contribution of factors to the ELC output and then a “black box model” is
interpreted from both the global and local perspectives. During the training or testing
of the ELCs, a prediction value was computed for each instance, and the SHAP value
corresponded to the value assigned to each factors in the instance. The contribution of each
factors denoted by the Shapley value was computed using Equation (13):

ϕi = ∑
⊆Π{i}

!(n − | | − 1)!
n!

[ f ( ∪ {i}) − f ( )] (13)

where ϕi indicates the contribution of the i-th factor; Π represents the set of all factors;
represents the subset of the given predicted factor; and f ( i) and f ( ) represent the

model results with and without i-th factors, respectively. The SHAP analysis tool produced
interpretable ELCs via an additive factors imputation strategy in which the output model
was defined as a linear sum of the input factors (Equation (14)):

g(z′)= ϕ0 +
Λ

∑
i = 1

ϕiz′ (14)

where z′ ∈ {0, 1}Λ when a factor is observed = 1, otherwise = 0; Λ denotes the number
of input factors; ϕ0 is the base values (i.e., the predicted outcome without factors); and ϕi

denotes the Shapley value of the i-th factor. The SHAP model was used in this study for the
interpretation of Bayesian-optimization (BO)-ELC; the important factors that are likely to
cause critical LLWS were assessed. The SHAP tool performed a factor-interaction analysis
as well.

3. Results and Discussion

To evaluate the capability of five BO-ELCs to predict LLWS criticality, the combined
PIREPs and HKO weather reports were separated into training and testing sets at a 7:3
ratio. Using Bayesian Optimization and 10-fold cross-validation, the hyperparameters for
each ELC were tuned to obtain the optimal set of hyperparameters. Each tuned ELC was
then evaluated using unseen instances from the testing set. In addition, the performance of
the BO-ELCs on the testing set was compared to determine the best BO-ELC model. Finally,
the game-theory-based SHapley Additive exPlanation mechanism was implemented using
the best BO-ELC model to provide explanations for the prediction of LLWS events. Based
on the 234 PIREPs, 96 (39.51%) of the LLWS events occurred over runway 07LA, 13 (5.34%)
occurred over runway 07RA, 34 (13.99%) occurred over runway 07RD, 8 (2.30%) occurred
over runway 25LA, 67 (27.57%) occurred over runway 25RA, and 25 (10.28%) occurred over
runway 25LD. In the winter season (January, February, and December), 26 LLWS events
occurred out of a total of 234 wind shear events; 139 LLWS events occurred in spring 2016
(March, April, and May); 53 occurred in summer (June, July, and August); and 25 occurred
in autumn (September, October, and November). The PIREPs also illustrated that 61.9% of
the LLWS events occurred during day time (07:00 AM–07:00 PM) and 38.1% during night
time. At the time of the LLWS event occurrence, the HKO weather reports illustrated north-
bound wind flows 1.73% of time, northeast-bound 7.35% of time, east-bound 51.9% of the
time, southeast-bound 10.3% of the time, south-bound 7.7% of the time, southwest-bound
12.1% of the time, west-bound 4.7% of the time, and northwest-bound 3.8% of the time.
The HKO weather reports also provided the hourly temperature and wind speed at the
time of the LLWS occurrences. Figure 7 shows the distribution bar plots of LLWS events
with respect to the runway orientation, seasons of the year, wind direction, and time of day
or night. The figure also contains box plots of the hourly temperature and wind speed that
show the maximum, minimum, Q1, Q3, and median values.
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Figure 7. (a) LLWS events with respect to runway; (b) LLWS events with respect to wind direction;
(c) LLWS events with respect to day/night; (d) LLWS events with respect to season of year; (e) box
plot of hourly temperature; (f) box plot of wind speed.

3.1. Hyperparameter Tuning Using Bayesian Optimization

Table 2 shows the optimal hyperparameters along with their ranges and optimal
values that were obtained via the hybrid BO-ELC approach. Each ELC model with the
optimal hyperparameters was then used for the performance evaluation.

Table 2. Hyperparameter tunings of ELCs.

Algorithm Hyperparameters Range Optimal Values

LGBM
{(n_estimators), (num_leaves), (learning

rate), (reg_lambda), (reg_alpha}
{(100–1500), (30–100), (0.001–0.2),

(1.1–1.5), (1.1–1.5)}
{900, 38, 0.07, 1.24, 1.18}

CatBoost
{(n_estimators), (max_depth),

(learning rate)}
{(200–1500), (2–15), (0.001–0.2)} {727, 5, 0.1}

AdaBoost {(n_estimators), (learning rate)} {(100–1500), (0.001–0.2)} {871, 0.08}
RF {(n_estimators), (max_depth)} {(50–1000), (2–15)} {1041, 7}

XGBoost
{(n_estimators), (num_leaves), (learning

rate), (reg_lambda), (reg_alpha}
{(100–1500), (30–100), (0.001–0.2),

(1.1–1.5), (1.1–1.5)}
{1105, 46, 0.05, 1.41, 1.27}

3.2. Performance Assessment of BO-ELCs

To assess the performances of the BO-ELCs, the ROC curves were plotted and the
AUC-ROC was calculated for each ensemble classifier. The AUC-ROC curves were used
to provide a basis for the comparison between each classifier. Figure 8 demonstrates that
all models utilized showed strong predictive values. All the developed classifiers showed
AUC-ROC values greater than 0.50. The most accurate classifier among all of the classifiers
was the BO-Random Forest model, which had an AUC-ROC of 0.759. The worst AUC-ROC
was shown by BO-AdaBoost, which was equal to 0.687.
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Figure 8. Combined ROC curve for all Bayesian-optimized ELC models.

Although the AUC-ROC is a helpful metric for determining the overall accuracy of a
binary prediction model, it does not provide class-specific accuracy (predicted accuracy
of NC-LLWS vs. predicted accuracy of C-LLWS). To illustrate the accuracy of both pre-
dictions, a confusion matrix for each classifier was generated, and several performance
indicators including accuracy, precision, recall, and the F1-score, were extracted. Table 3
reports the comparison results among five BO-ELCs and Figure 9 illustrates the AUC-PRC
when employing the testing dataset. The BO-Random Forest Classifier showed the highest
Accuracy, Precision, Recall and F1-score (Accuracy = 0.714, Precision = 0.724, Recall = 0.710,
F1-score = 0.713, AUC-PRC = 0.75). The CatBoost model was the second-best model (Ac-
curacy = 0.681, Precision = 0.674, Recall = 0.689, F1-score = 0.686, and AUC-PRC = 0.69).
The XGBoost model had the worst prediction performance among all the classifier (Accu-
racy = 0.652, Precision = 0.664, Recall = 0.652, F1-score = 0.566, and AUC-PRC = 0.68). Based
on the results of the AUC-ROC, the performance indicators that were extracted from the
confusion matrix, and AUC-PRC, the BO-Random Forest classifier had a better predicted
LLWS criticality performance and could be used for the SHAP analysis interpretation.

Table 3. Performance measures of BO-ELCs.

BO-ELC
Performance Metrics

Accuracy Precision Recall F1-Score

LGBM 0.672 0.681 0.672 0.676
AdaBoost 0.681 0.673 0.661 0.663
Random Forest 0.714 0.724 0.710 0.713
CatBoost 0.681 0.674 0.689 0.686
XGBoost 0.652 0.664 0.652 0.656
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Figure 9. Combined precision–recall curve (PRC) for all Bayesian-optimized ELC models.

3.3. Sensitivity Analysis

Developing a concise LLWS criticality prediction model is essential because more
precise models may capture the relationship between LLWS criticality and risk factors
better. The capability to interpret the classifier modeling results is equally essential. This
section describes how the SHAP method was implemented to interpret the BO-Random
Forest classifier results and the BO-CatBoost classifier results to estimate the impact of the
top three individual risk factors and their interactions.

3.3.1. Global Factors’ Importance and Contribution

For the global factors’ importance and contribution analysis, we used the BO-Random
Forest classifier, which was the best model in our case, followed by the BO-CatBoost classi-
fier, which was the second-best model. In using these two optimal models with accurate
LLWS criticality predictions, there was strong merit in investigating which factors were the
most important and quantifying how these factors contributed to the final predictions. To
explore the impact of each factor on the final prediction, the SHAP values were used. It
is worth mentioning that factor importance is not the same as factor contribution. Factor
importance indicates which factors have the greatest impact on a model’s performance.
The factor contributions not only identify relevant factors, but they also provide a logical
explanation for the observed outcome (NC-LLWS or C-LLWS). This study determined the
importance of each factor and its contribution to the model estimate using the top two
BO-ELCs with better accuracies. Figure 10a illustrates the SHAP global importance scores
for the factors used in the BO-Random Forest classifier. However, the outcome did not
indicate the proportionate contribution of each factor to the likelihood of an LLWS criticality.
It showed that the most important factor that caused the occurrence of C-LLWS was the
hourly temperature, which had a mean SHAP value of +0.98, followed by the mean wind
speed with a mean SHAP value of +0.64 and Runway 07LA (+0.41). Figure 10b illustrates
the SHAP global importance scores for the factors using the CatBoost model. The results
revealed that the most important factor that caused C-LLWS was the hourly temperature
(+0.82) followed by wind speed (+0.49) and Runway 07LA (+0.38). The sequences of the
factor importance in the case of both the BO-Random Forest classifier and the BO-CatBoost
classifier were consistent, while there was a slight difference in their SHAP values.
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Figure 10. SHAP global importance plots: (a) Random Forest; (b) CatBoost.

Similarly, a SHAP contribution evaluation was conducted to conduct a more in-
depth examination of the Random Forest and CatBoost models using SHAP beeswarm
plots (Figure 11). We created a quantitative value from the SHAP contribution plots that
combined the Shaply values and expressed the classifier contributions of factors. The input
factors were arranged on the vertical axis in order of increasing influence, starting with
the most influential. The SHAP value is shown on the horizontal axis, and the significance
of the factor is shown by the color scale, (blue to pinkish-red for low significance to high
significance). The SHAP beeswarm plots of the Random Forest and CatBoost models
illustrate that most of the moderate-to-high mean wind speeds resulted in the occurrence
of C-LLWS events, which are represented by the pinkish-red color toward the right side of
the vertical reference line with positive SHAP values (Figure 11a,b). The blue color toward
the left of the vertical reference line indicates the occurrence of NC-LLWS events due to
a low mean wind speed. Similarly, in the case of the mean hourly temperature, a high
temperature (represented in red) is shown to the right of the vertical reference line with a
positive SHAP value and blue to the left of the vertical reference line. It shows that high
temperatures resulted in C-LLWS events while low temperatures were more likely to cause
NC-LLWS events. The same was the case for wind speed and Runway 07LA.

Figure 11. SHAP beeswarm plots: (a) Random Forest; (b) CatBoost.

3.3.2. Factor Dependence and Interaction

There was no obvious correlation between the changes in the factor value and the
changes in the SHAP value in the factor global importance and contribution (beeswarm)
plot. Figure 12 supplements the contribution plot by providing more information about
how the SHAP values varied with the eigenvalues and by displaying the individual
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interpretation outcomes for the three major factors. The SHAP dependence and interaction
plots were examined to ascertain the extent to which the input variables used to evaluate
the Random Forest classifier interacted in terms of their contributions (see Figure 12). The
SHAP dependence plot is a scatter plot that demonstrates the effect a single factor had on
the predictions made by the classifier, which in our case was the Random Forest model.
The SHAP interaction plot shows the effect of two factors on the models’ predictions.

Figure 12. (a) SHAP wind speed dependence plot; (b) SHAP hourly temperature dependence plot
output; (c) SHAP Runway 07LA dependence plot; (d) SHAP interaction plot of wind speed and
hourly temperature.

The dependence and interaction plot examines the top three influential factors; namely,
hourly temperature, wind speed, and Runway 07LA. Other factor interactions, however,
could be explored as well. Figure 12a depicts the effect of wind speed on the models’
predictions. The points with high density fell above the SHAP 0.0 reference line and at
wind speeds of more than 4.4 m/s up to 8 m/s had a positive impact on the prediction
of LLWS, which meant that wind speeds higher than 4.4 m/s were more likely to cause
C-LLWS events. The results were consistent with the findings of previous studies [41,42].
However, it is pertinent to mention that for the occurrence of C-LLWS events, the variation
in wind speed is more important than the mean wind speed. The duration of a C-LLWS
event that might be encountered by an aircraft is generally within a few seconds to a few
minutes. Therefore, the hourly mean wind speed can hardly provide an accurate indication
of LLWS criticality. Therefore, more refined data on wind conditions such as a 1 min mean
in turbulence intensity may be required to improve the models’ accuracies.
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Figure 12b depicts the effect of hourly temperature on the models’ predictions. The
points with high density fell above the SHAP 0.0 reference line at an hourly temperature of
23 ◦C to 31 ◦C, which had a positive impact on the predictions of LLWS. This illustrated that
C-LLWS events were more likely to occur at temperatures between 23 ◦C and 31 ◦C. The
SHAP value for Runway 07LA when labeled ‘1’ was higher than reference 0.0 and lower
when labeled as ‘0′ (Figure 12c). This illustrated that Runway 07LA was highly vulnerable
to the occurrence of C-LLWS events. This also showed that C-LLWS events were more
likely to occur under the easterly, southeasterly, southerly, and southwesterly winds, which
was also consistent with the previous findings [5,43,44]. Pilots should be cautious when
making a “final approach” to Runway 07LA. Figure 12d demonstrates the interaction of
the wind speed and hourly temperature and their combined influence on the BO-Random
Forest classifier prediction. When the wind speed ranged from 4.2 m/s to 9.8 m/s and
the hourly temperature ranged from 24.8 ◦C to 29.5 ◦C, high density points formed in the
shaded area above the SHAP 0.0 reference line. Within these ranges, C-LLWS events were
more likely to occur.

3.3.3. Local Factor Interpretation

Figure 13 shows the SHAP explanatory force chart for two randomly selected cases
from the actual estimations. The base value (0.045) on the graph represents the mean of the
BO-Random Forest classifier estimations for the training data set. The NC-LLWS condition
occurred when the outcome value of classifier was less than the classifier’s base value.
C-LLWS events occurred when the classifier’s output value exceeded the base value. The
blue arrows illustrate the magnitude of an input factor’s effect on the likelihood of an
NC-LLWS occurrence. The likelihood of occurrence of a C-LLWS event was influenced
by input factors as indicated by the red arrows. Each arrow’s area occupied by a factor
reflects the magnitude of that factor’s effect. Consider two instances of the BO-Random
Forest classifier that were correctly classified as C-LLWS and NC-LLWS from the training
dataset. The two instances depicted in Figure 13 correctly classified as NC-LLWS and
C-LLWS had estimated values of −2.91 and 3.62, respectively. For the first randomly
selected instance (Figure 13a), when the wind speed was equal to 3.4 m/s with a moderate
hourly temperature equal to 23.8 ◦C, an NC-LLWS occurred. This figure also illustrates that
seasons other than spring can have occurrences of NC-LLWS events. The spring season
designated as 0 highlighted that for this randomly selected instance, the spring season did
not contribute to the occurrence of NC-LLWS events. Contrary to this (Figure 13b), the
combination of a moderate temperature equal to 21.6 ◦C with a high wind speed and spring
season, a C-LLWS event occurred. However, the autumn season did not contribute to the
occurrence of C-LLWS events. Similarly, for this very instance, Runway 07LA contributed
to the occurrence of a C-LLWS event. In a similar fashion, we could randomly select other
correctly classified instances for their local interpretation.

Figure 13. SHAP explanatory force plots: (a) plot of case with a value equal to 0.291; (b) plot of case
with a value equal to 3.62.
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4. Conclusions and Recommendations

This study presented the application of five state-of-the-art BO-ELCs in the prediction
of the occurrence of an LLWS criticality. Six factors, including the hourly temperature,
wind speed, runway orientation, wind direction, time of day, season, and the height of the
LLWS as a binary target factor from the PIREPs and HKO weather reports, were used as
inputs. Under the comprehensive evaluation criteria, all models achieved a high prediction
accuracy. Nevertheless, ensemble learning algorithms are frequently criticized for their lack
of interpretability and transparency. Despite the fact that engineering-domain models are
more flexible and frequently more accurate than traditional predictive statistical techniques,
this has an effect on their widespread acceptability. In this study, the model with the best
prediction was interpreted using the SHAP algorithm, and the influence of the top three
factors on the occurrence of an LLWS criticality was demonstrated. Based on the study, the
following conclusions were drawn:

• In the testing dataset, the BO-Random Forest classifier had the best overall performance
of all BO-ELCs investigated in this study with an AUC-ROC of 0.759 and accuracy,
precision, recall, F1-score, and AUC-PRC values of 0.714, 0.724, 0.710, 0.713, and 0.75,
respectively.

• The performance of each individual BO-ELC varied marginally. Despite the fact that
XGBoost’s AUC-ROC was 0.73, its accuracy, recall, precision, F1-score, and AUC-PRC
values were 0.652, 0.656, 0.664, 0.656, and 0.68, respectively.

• The AdaBoost and LGBM models demonstrated the lowest AUC-ROC (0.687) and
AUC-PRC (0.67) scores, respectively.

• SHAP demonstrated efficacy in interpreting the optimal model’s outcome (BO-Random
Forest classifier). In terms of the factor influence, the SHAP analysis revealed that
the hourly temperature is the most influential factor followed by the wind speed and
runway 07LA.

• When the wind speed was moderate to high (>4.2 m/s) and the temperature was
moderate to high (>24.5 ◦C), aircrafts on a final approach to Runway 07LA were more
likely to experience critical LLWS.

The technique proposed in this research work can be utilized to undertake a large-
scale investigation of wind shear and can serve as a useful resource for aviation authorities
and researchers who are concerned with aviation safety. In addition, this paper focused
exclusively on the prediction of LLWS criticality as computed by using five BO-ELC
classifiers (CatBoost, XGBoost, LGBM, RF, and AdaBoost) in aggregation with the SHAP
model. This study was limited to the application of machine learning models. Future
studies might be undertaken by combining a number of other BO-ELCs such as a stacking
ensemble as well as neural network models with a range of additional risk factors such as
inter-annual changes in wind shear events and their spatial distributions.
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Abstract: Pilots typically implement the go-around protocol to avoid landings that are hazardous
due to wind shear, runway excursions, or unstable approaches. Despite its rarity, it is essential for
safety. First, in this study, we present three Dynamic Ensemble Selection (DES) frameworks: Meta-
Learning for Dynamic Ensemble Selection (META-DES), Dynamic Ensemble Selection Performance
(DES-P), and K-Nearest Oracle Elimination (KNORAE), with homogeneous and heterogeneous pools
of machine learning classifiers as base estimators for the prediction of aircraft go-around in wind
shear (WS) events. When generating a prediction, the DES approach automatically selects the subset
of machine learning classifiers which is most probable to perform well for each new test instance
to be classified, thereby making it more effective and adaptable. In terms of Precision (86%), Recall
(83%), and F1-Score (84%), the META-DES model employing a pool of Random Forest (RF) classifiers
outperforms other models. Environmental and situational factors are subsequently assessed using
SHapley Additive exPlanations (SHAP). The wind shear magnitude, corridor, time of day, and WS
altitude had the greatest effect on SHAP estimation. When a strong tailwind was present at low
altitude, runways 07R and 07C were highly susceptible to go-arounds. The proposed META-DES
with a pool of RF classifiers and SHAP for predicting aircraft go-around in WS events may be of
interest to researchers in the field of air traffic safety.

Keywords: wind shear; go-around; machine learning; dynamic ensemble selection; SHapley
Additive exPlanations

1. Introduction

An abrupt change in wind direction or speed of at least 14 knots and below 1600 feet
(500 m) above runway level is referred to as wind shear (WS) in the aviation industry [1].
This could be the result of environmental conditions such as a thunderstorm, gust, or
sea breeze, or it could be the result of the airport’s proximity to complex terrain, such as
mountains or man-made structures. The occurrence of wind shear is regarded as one of the
most dangerous phenomena for approaching and departing aircrafts [2].

During the landing phase, the flight deck remains highly engaged, and the pilots must
make a number of split-second decisions to complete their landing checklist. However,
adverse weather conditions such as wind shear, mountainous terrain, and the presence of
buildings close to the airport could increase turbulence along the glide path. While complet-
ing the landing checklist, the pilot must contend with violent updrafts and downdrafts and
abrupt changes in the aircraft’s horizontal and vertical movement. As shown in Figure 1,
the head wind shear or tail wind shear may result in landing short of the runway (loss
of lift) or deviating from the actual flight path during the final approach. Consequently,
pilots initiate a go-around procedure. Despite that this protocol is implemented to prevent
unsafe landings, their complicated maneuvering procedures and limited available time
can raise additional safety concerns, particularly in wind shear events. As a result of this
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operational anomaly, air traffic controllers have a greater workload, and noise levels have
massively increased [3,4]. Additionally, the airport throughput and punctuality of flights
are negatively impacted [5,6]. Majority of go-arounds are performed at low altitudes and
low speeds, necessitating immediate adjustments to the aircraft’s altitude, thrust, and flight
path to avoid collisions with nearby air traffic.

Figure 1. Occurrence location of WS events in the vicinity of the airport runway.

Since wind shear plays a major role in the execution of go-around protocols, airports
around the world have benefited greatly from the availability of precise remote sensing
technologies, including Terminal Doppler Weather Radar (TDWR) and Doppler Light De-
tection and Range (LiDAR), to timely detect WS events [7–9]. Researchers in the past have
used a wide range of approaches to predict go-around based on various parameters as well
as contributing factors, including the environment, such as wind speed, visibility, and pres-
sure, etc., unstable approach and a change in runway configuration, as well as physiological
conditions associated with the pilot and air traffic controller, as shown in Table 1.

While these studies have shed light on the many factors that can lead to a go-around,
none of them have examined the role that wind shear plays in this phenomenon. There
is a significant gap in the literature about the prediction of go-around under wind shear
conditions. The occurrence of go-around due to wind shear is usually a rare event, however,
predicting its occurrence under wind shear conditions is of utmost importance. Therefore,
the goal of this research is to quantify the factors that contribute to the occurrence of
go-around triggered by wind shear and situational factors, such as time of day, season
of the year, and flight and aircraft type. In this study, our study location is Hong Kong
International Airport (HKIA) and we used HKIA-based pilot report (PIREPs) data. We
then employed dynamic ensemble learning strategies to classify go-around and approaches
of aircrafts. In many practical situations, ensemble learning has outperformed a single
machine learning approach [19–22]. Stacking, bagging, and boosting are the three main
ideas of ensemble learning, which encapsulates the techniques and strategies of model
blending. The fundamental aim of ensemble learning is to pool the efficacy of several
classification models into a single conclusion. A dataset with many factors or characteristics
for each instance constitutes a binary classification problem. One of the considerations is
the decision label, which should be categorical and reveal to which group each instance
belongs. The goal of classification strategies is to build classification models that can predict
and classify the dependent label for the given sample. The two most common kinds of
classification schemes are dynamic and static. A comparison of ensemble and classification
model selection techniques for static and dynamic classification approaches is depicted
in Figure 2 [23,24]. The primary difference between static and dynamic classification
approaches is whether all the test samples are predicted with the same classifier. Similar to
how classifier selection differs from ensemble classifier selection, a single classifier model
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can be comprised of several base classifiers that are employed to predict a test sample,
leading to a wide number of classification techniques that rely on their unique combination.
In most cases, the performance of a static classification strategy is inferior to that of a
dynamic one, as various classification models excel in various settings.

Table 1. Literature on various factors contributing to the occurrence of aircraft go-around.

Serial No. Parameters Contributing Factors
Model

Employed
Literature

1. Environment

Visibility, wind speed, and localizer deviation
significantly impacted go-around.

Flight simulation of
Airbus A330-200 and

Boeing 737-800
[10]

Visibility, wind speed, and pressure significantly
impacted go-around. Categorical Boosting [11]

Thunderstorms and winds exceeding 29 mph
significantly impacted go-around Statistical model [12]

2. Pilot and air
traffic controller

Unpleasant psychological condition compromised pilot
decision-making and cognitive performance

that resulted in go-around

Neuro-economics brain
imaging protocol [13]

Anomalies in pilot flying performance, including flight path
deviations and visual scanning behaviors caused go-around Flight simulator test [14]

Situational unawareness by air traffic controllers
caused go-around

Path analysis and
bootstrap [15]

Age and experience of air traffic controllers
contributed to go-around Flight simulator test [16]

Pilot and controller experiences and mental states Surveys and interviews [6]

3.
Unstable

approach/runway
configuration

Quantification of aircraft deviation at final approach Sparse Variation
Gaussian process [17]

Approach stability, departure air traffic, flight spacing,
departure traffic, and ceiling contributed to go-around

Principal component
analysis [18]

Figure 2. Types of binary classification.

For this research, we used three DES models, including Meta-Learning for Dynamic
Ensemble Selection (META-DES) [25], K-Nearest Oracle Elimination (KNORAE) [26], and
Dynamic Ensemble Selection Performance (DES-P) [27], whose input is the pools of ho-
mogenous and heterogeneous classification algorithms. The pools of homogenous and
homogenous classification algorithms are highlighted in Table 2. Afterward, SHAP anal-
ysis interpreted the results of the optimal DES model and illustrated important factors
contributing to go-around under WS conditions.

Machine learning models are typically black boxes, so their predictions may not make
the connection between input and output changes crystal clear. The interpretation of the
model is equally important for an insight of the model’s performance. Factor analysis
methods, such as permutation-based importance scores, were previously employed to
decipher the outcomes of machine learning studies. However, the factor importance
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analysis can only rank the significance of the factors, and it does not comprehend how each
factor affects the model’s prediction on its own. SHapley Additive exPlanations (SHAP)
analysis, inspired by game theory [33], has been used in recent studies to quantitatively
assess the relative importance of each contributing factor [34–36]. Use of SHAP with
machine learning models allows for the interpretation of the relative contributions and the
importance of different factors [37–40].

Table 2. Pools of various classification algorithms for the study.

Ensemble Pools of Algorithm Reference

Homogenous
Random Forest (RF) [28]

Extremely Randomized Tree (ERT) [29]
Bagging Multi-Layer Perceptron (BMLP) [30]

Heterogeneous
K-Nearest Neighbor (KNN) [27]

Support Vector Machine (SVM) [31]
Binary Logistic Regression (BLR) [32]

Our findings would aid pilots, flight attendants, air traffic controllers, and policymak-
ers in estimating when a go-around is requisite. Second, identifying mitigation strategies
to reduce aircraft go-around and, more generally, the circumstances that lend credence
to them, which may be deemed anomalous and inherently unappealing, can be aided by
quantifying the contributing factors of go-around occurrences. It is possible to reduce the
need for go-around by implementing mitigation strategies such as adjustment of protocols,
enhancing pilot education, and revamping hardware.

The remainder of this paper is structured as follows. Section 2 illustrates the research
methodology and discusses our sources of data, DES models, and the SHAP interpretation
strategy. Section 3 details the DES models’ performance as a comparison as well as the SHAP
analysis results. Section 4 encompasses the conclusion of our study and recommendations.

2. Methodology

In this study, we first analyzed the pilot reports (PIREPs) of Hong Kong International
Airport (HKIA) to determine the factors that most likely contributed to the go-around. A
PIREP is an abbreviation for pilot reports used in civil aviation. The pilots who encounter
hazardous weather conditions and go-around are sent to air traffic controllers. The factors
that can influence go-around include weather conditions such as wind shear conditions
(wind shear magnitude, altitude, and horizontal location of wind shear from the runway as
well as its causes), precipitation (rainfall), aircraft and flight (wide or narrow-body aircraft,
international or domestic flight), landing runway, and temporally specific factors such as
the season of the year and time of the day (daytime/nighttime).

Secondly, we built DES models with different pools of homogenous and heterogeneous
classifiers as base estimators to predict aircraft go-around in case of WS events. Based on the
model with the best performance, lastly, we estimated the importance and contributions of
various factors to go-around occurrence using the SHAP interpretation approach. Figure 3
depicts the whole operational paradigm proposed in this study.

2.1. Study Location

The HKIA is located on an artificial Lantau Island on the southeastern coast of main-
land China in a subtropical zone. The tropical cyclones and southwest monsoon are two
typical convective weather conditions that occur in Hong Kong. In addition to bringing
thunderstorms and showers to the region, the convective weather interrupts air traffic.
Due to these reasons, Hong Kong International Airport (HKIA) is among the airports
most susceptible to WS in the vicinity of the runway. Numerous observational and model-
ing studies have shown that HKIA’s intricate orography and complex land–sea contrast
are also conducive to the occurrence of WS [41]. Significant WS events occur once ev-
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ery 400 to 500 flights. From the opening of HKIA in 1998 until 2015, 97.70% of reports
illustrated 15–25 knots of WS [42].

Figure 3. Proposed framework of our study.

Figure 4 shows that HKIA is surrounded on three sides by open sea water and moun-
tains to the south, which reaches elevations of over 900 m above sea level. This complex
terrain surrounding HKIA also contributes to terrain-induced WS. The mountainous terrain
to the south of HKIA amplifies WS, disrupting airflow and generating mountain waves,
gap discharge, and other disturbances along the HKIA flight paths. Three runway corri-
dors exist at HKIA: the North Runway (Northern Corridor), the Central Runway (Central
Corridor), and the South Runway (Southern Corridor). The Northern Corridor is a newly
constructed runway, and therefore the previous Northern Corridor is now designated as
the Central Corridor. They are oriented in the 070◦ and 250◦ directions. Since each runway
can be used for takeoffs and landings in either direction, there are a total of twelve possible
configurations. For example, runway ‘07LA’ denotes landing (‘A’ refers to arrival) with
a heading angle of 070◦ (shortened to ‘07’) using the left runway (hence ‘L’). This shows
aircraft landing on the Northern Corridor from the western side of HKIA. Likewise, an
aircraft departing the Southern Corridor in the west would use runway 25LD.

Figure 4. Hong Kong International Airport and surrounding terrain.

235



Atmosphere 2022, 13, 2104

2.2. Data Processing from PIREPs

As stated earlier, pilot reports are abbreviated as PIREPs in aviation. When pilots
encounter hazardous weather, they notify air traffic controllers. Traditionally, PIREPs
include information about turbulence, aircraft icing, and the flight route phase. However,
because HKIA is vulnerable to WS, information about the occurrence of WS is explicitly
provided, including the occurrence date and time, the horizontal location of WS from the
runway threshold (nearest nautical mile), WS magnitude (nearest 5 knots), vertical location
or altitude of WS (to the nearest 50 or 100 ft), type of aircraft, and flight number. In addition,
if an aircraft performs a go-around during WS caused by a sea breeze or gust front, the pilot
reports go-around in the HKIA-based PIREPs, as indicated in Table 3. Note that in Table 3,
the positive or negative sign associated with the magnitude of WS indicates a headwind
and tailwind, respectively. Moreover, pilots at HKIA can submit PIREPs after landing or use
on-board radio communication to relay pertinent information to the air traffic controller.

Table 3. Extracted environmental and situational factors from HKIA-based PIREPs.

Date Time Runway Flight Type Aircraft Type WS Magnitude WS H-Location WS Altitude PPT Go-Around Cause of WS

2021-01-16 6:17 AM 07RA CX495 A35K –20 knots 3-NM 900 ft No No See breeze
2021-01-21 3:18 PM 25LA 5Y4511 B744 15 knots 2-NM 500 ft Yes No See breeze

— — — — — — — — — — —
— — — — — — — — — — —

2021-03-29 10:12 PM 07CA CX8178 B77W 25 knots RWY 50 ft No Yes Gust front
— — — — — — — — — — —
— — — — — — — — — — —

2021-09-21 3:58 AM 07RA PO980 B748 20 knots 2-NM 200 ft No Yes Gust front

A total of 1731 instances of WS events were illustrated by PIREPs from 2017 to 2021,
including both departing and approaching flights. However, out of 1731 instances, 1388
(80.18%) instances were reported by approaching flights and 343 (19.81%) by departing
flights. In this study, we dealt with the causes of go-around during WS events, and therefore,
the information reported by approaching flights was retained while that from departing
flights was discarded from the dataset. Furthermore, the dataset was preprocessed to
deal with the missing values and other irrelevant information. After carefully cleaning
redundant and erroneous information, the finalized dataset was obtained with 872 instances
in which go-around was observed 196 times. In addition, to develop a binary classification
problem, all the go-around events (being the minority class) were labeled as ‘1’, while all
the approaches (being the majority class) were labeled as “0”. A detailed description of all
the factors is shown in Table 4. The summary statistics of all the factors from HKIA-based
PIREPs are provided in Table 5.

Table 4. Environmental and situational factors’ description and coding.

Factors Descriptions Type of Data Coding

Go-around Go-around/approach Discrete ‘Go-around = 1’, ‘Approach = 0’

Vehicle-Specific Airline Flight Type Discrete ‘International flight = 1’, ‘Others = 0’
Aircraft Type Discrete ‘Wide-body = 1’, ‘Others = 0’

Runway-Specific Corridor Discrete ‘07C = 0’, ‘07R = 1’, ‘25C=2’, ‘25L = 3’

Environment-Specific

WS magnitude Continuous -
WS H-Location Discrete ‘At RWY = 0’, ‘1-NM = 1’, ‘2-NM = 2’, ‘3-NM = 3’

WS altitude Continuous -
Cause of WS Discrete ‘Gust Front = 0’, ‘Sea Breeze = 1,
Precipitation Discrete ‘Yes = 1’, ‘No = 0′

Temporal-Specific Time of day Discrete ‘Day = 1’, ‘Night=0′

Seasons Discrete ‘Winter = 0’, ‘Spring = 1’, ‘Summer = 2’, ‘Autumn = 3’
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Table 5. Descriptive statistics of various environmental and situational factors.

Factors Descriptions
Statistics

Mean St. dev Min Max

Vehicle-Specific Airline Flight Type 0.554 0.497 0 1
Aircraft Type 0.741 0.434 0 1

Runway-Specific Orientation 0.897 1.002 0 3

Environment-Specific

WS Magnitude (−/+) 17.17/−19.23 3.86/4.85 −15/15 −40/45
WS H-Location 1.473 0.896 0 3

WS V-Location (ft) 335.52 304.723 15 2000
Cause of WS 0.457 0.492 0 1
Precipitation 0.530 0.497 0 1

Temporal-Specific Time of day 0.623 0.482 0 1
Seasons 1.551 0.865 0 3

2.3. Dynamic Ensemble Selection (DES) Algorithms

As stated before, we proposed three DES models to develop a reliable classification
and prediction model for aircraft go-around and approach during WS events. The DES
models are Meta-Learning for Dynamic Ensemble Selection (META-DES), K-Nearest Oracle
Elimination (KNORAE), and Dynamic Ensemble Selection Performance (DES-P). The DES
modeling process flowchart is depicted in Figure 5.

Figure 5. Dynamic Ensemble Selection process.

2.3.1. META-DES

The objective of the META-DES algorithm [25] is to determine if the selected classifica-
tion model from a pool of latent classification models is able to classify the given test data.
This meta-problem can primarily be tackled in two steps.

Finding the meta-features for each classification model in the pool is the first step.
There are four types of meta-features: (a) posterior likelihood/probability for each target la-
bel, (b) overall local accuracy (OLA) of the classification model in the region of competence,
and (c) the neighbor’s hard classification (NHC) (a vector of ‘n’ is generated, where ‘n’ is
the number of training instances in the region of competence). The value of the vector is set
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to 1 if the classification model correctly classifies the instance within its area of competence;
otherwise, it is set to 0. (d) The confidence of the classifier (the orthogonal distance between
the input instance and the classifiers’ decision boundary).

Step two is to determine, using meta-features, whether a particular classification
algorithm is capable of producing precise predictions for a given set of test instances. As a
result, the ensemble of classifiers for the given test data consisted of every classification
algorithm selected by meta-classification models.

2.3.2. KNORAE

For any given set of test data, the KNORAE algorithm will find the subset of clas-
sification models that correctly classifies all K-Nearest Neighbors. The classification of
the test data is then given to the ensemble of these chosen classification algorithms and
open to voting (the KNORAE algorithm uses the majority voting rule for prediction). In
other words, the algorithm gets rid of classification models that incorrectly classify nearby
data [26]. The algorithm stops prioritizing nearest neighbors and looks for a classification
model that can correctly label all training instances that are close to the test data if it cannot
find a classification algorithm that can do so.

2.3.3. DES-P

By contrasting the effectiveness of each classification algorithm to that of a random
classification algorithm, this DES procedure eliminates the inefficient ones. For a given
number of classes in a training dataset, the efficacy of the random classification algorithm is
1/C (see the explanation in [27]). The dynamic selection of classification models is carried
out by comparing the performance of the classification algorithm to that of a random
classification algorithm in the neighborhood defined by the test data. For the provided
test data, the classification algorithm can be added to the ensemble if its performance is
better than a random classification algorithm. If no classification algorithm is picked, all
the algorithms in the pool will be used on the given test data.

2.4. Pool of Classifiers

The following pool of classifiers was used for the DES algorithms: homogeneous
ensembles such as Random Forest (RF), Extremely Randomized Tree (ERT), and Bagging
Multi-Layer Perceptron (BMLP), and heterogeneous ensembles consisting of pooling of
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Binary Logistic Regres-
sion (BLR) classifiers.

2.5. Performance Evaluation

The Recall, Precision, and F1-scores were used to analyze the performance of the DES
models in classifying the aircraft’s go-around and approach during WS events. For each
diagnostic label, the performance indicators were independently evaluated. For a complete
understanding of all performance metrics, below is a list of terms.

TP (True Positive): The total number of predictions that correctly identified instances of
“go-around” as “go-around.” TN (True Negative): The number of predictions that correctly
identified “approach” as “approach.” FP (False Positive): The total number of instances
in which “approach” was incorrectly predicted as “go-around.” FN (False Negative) is
the total amount of predictions that incorrectly classified “go-around” as “approach.” The
following is an explanation of the evaluation metrics:

Recall

Recall for a single class ‘i’ is the ratio between the TP to the sum of the TP and FN in
the confusion matrix for that class. It can be calculated by using Equation (1):

Recalli =
TP

TP + FN
(1)
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The overall Recall is the average of the Recall of each class, which is given by Equation (2):

Recall =
1

L

L

∑
i=1

Recalli (2)

Precision

Precision for a single class ‘i’ is the ratio between the TN to the sum of the TN and FP
in the confusion matrix for that class. It can be calculated by using Equation (3):

Precisioni =
TN

TN + FP
(3)

The overall Recall is the average of the Recall of each class, which is given by Equation (4):

Precision =
1

L

L

∑
i=1

Precisioni (4)

F1-Score

The F1-Score is a metric that considers both the Precision and the Recall of the test
instances to compute the score. It can be interpreted as a weighted mean of the Recall and
Precision. It can be calculated for class ‘i’ by using Equation (5):

F1-Scorei =
2[ (precision i)(recall i)]

precisioni+recalli
(5)

The overall F1-Score is the average of the F1-Score of each class, which is given by
Equation (6):

F1-Score = 1
L

L

∑
i=1

(
2[ (precision i)(recall i)]

precisioni+recalli

)
(6)

2.6. Dynamic Ensemble Selection Interpretation by SHapley Additive exPlanations (SHAP)

The SHAP analysis is based on a game theory approach for the explanation of the
machine learning-ensemble classifiers’ outputs. As machine learning models are “black-
box”, therefore, when interpreting these models, both a global and local perspective are the
core ideas behind the SHAP analysis. The SHAP values were estimated, which correspond
to the value given to each factor in the instance when a machine learning prediction was
computed. Equation (7) is used to calculate the contribution of each factor, which is shown
as the Shapley value:

ϕi = ∑
γ⊆Π{i}

γ!(n − |γ| − 1)!
n!

[E(γ∪ {i})− E(γ)] (7)

where ϕi illustrates the ith factor contribution, Π is the set of all factors, γ is the subset of the
decision factors, and E(γi) and E(γ) illustrate the best model results with and without ith
factors, respectively. SHAP analysis basically results in interpretable DES models through
an additive factors imputation strategy, wherein the output model is defined as a linear
sum of the input factors (Equation (8)):

g
(
Ψ′
)
= Δ0 +

Λ

∑
i=1

ΔiΨ
′ Ψ′ ∈ {0, 1}Λ (8)

It is equal to 1 in case when a factor is observed, otherwise it is 0. It illustrates the
amount of all input factors, where Δ0 represents an outcome without factors (i.e., base
value), and Δi shows the Shapley value of the ith factor.
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In this study, the SHAP analysis was employed for the interpretation of the proposed
DES model, i.e., the global importance and contribution of factors that are likely to cause
aircraft go-around as well as the interactions of factors.

3. Results and Discussion

To predict the occurrence of go-around in WS conditions, the DES models with dif-
ferent pools of base estimators were employed by using HKIA-based PIREPs. Figure 6
shows the frequency distributions of the factors from the PIREPs. To assess the potential
correlations between the factors of the PIREPs, we performed Pearson correlation analysis.
Statistically, Figure 7 illustrates that the absolute value of Pearson’s correlation coefficient
is between 1 and −1. Although we have observed a Pearson correlation coefficient value of
–0.63 for causes of WS and PPT, the correlation is moderate, and we will not exclude them for
subsequent modeling. Both the factors are environmental-specific and their inclusion in the
model may have a significant impact. For the analysis, we used the Python sklearn.metrics,
imbeans, and sklearn.ensemble, Scikit-learn, and SHAP libraries.

3.1. Data Partitioning

The dataset of 872 go-arounds and approaches under WS conditions that was extracted
from HKIA-based PIREPS and used for DES modeling has been split into primarily two
sets, which are known as the training validation set and the test set. Seventy percent of
the data was used for training validation, while thirty percent of the data was used for
actual testing. The training validation set had a total of 468 and 143 records, respectively,
for the number of approaches and the go-around events. The testing set included a total of
209 approaches and 53 records of the go-around attempts.

3.2. Grid Search Strategy for Hyperparameter Tuning

Using Stratified 10-Fold Cross-Validation, the training validation set was evaluated.
The training validation set was split into 10 equal-sized folds. Utilizing stratified sampling,
each fold retained a proportional amount of each label. The Stratified 10-Fold Cross-
Validation strategy was chosen because it maintains a proportional representation of
each label. The DES model was initially trained with nine folds, and then its F1-Score
performance was evaluated with the final fold. This procedure was repeated ten times until
all available folds (those that comprised the training set in the initial fold) comprised the
validation set. The average F1-Score of each 10 folds was then determined.

Grid Search [43] is one of the most frequently employed hyperparameter tuning
techniques for machine learning approaches. Through using the Grid Search technique,
the feasible set (search space) of hyperparameters was pre-determined, and the model’s
best hyperparameters were chosen based on their performance in cross-validation. For our
studies, the model’s hyperparameters were determined by the set of hyperparameters that
maximized the overall F1-Score (mean F1-Score across all folds). The F1-Score was chosen
as the performance indicator because it combines the recall and precision of diagnostic
labels. Table 6 shows the optimal values of the hyperparameter of the models.
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Figure 6. Distribution of go-around with respect to environmental and situational factors (a) Distri-
bution of Landing (approaches) and MAPs (Go-around); (b) Distribution of Go-around in different
season of years; (c) Distribution of Go-around with respect to type of flight; (d) Distribution of
Go-around with respect to type of aircraft; (e) Distribution of Go-around with respect to altitude
(V-Location) of the wind shear; (f) Distribution of Go-around with respect to precipitation (g) Dis-
tribution of Go-around with respect to wind shear magnitude; (h) Distribution of Go-around with
respect to wind shear horizontal (H)-location; (i) Distribution of Go-around with respect to time of
the day; (j) Distribution of Go-around with respect to corridor/runway orientation; (k) Distribution
of Go-around with respect to wind shear causes.
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Figure 7. Pearson’s correlation matrix of the explanatory factors.

Table 6. Optimal hyperparameter values of the models.

Model Hyperparameter Space Optimal Value

RF
Number of trees [100, 500, 1000, 1500, 2000, 2500, 3000] 2500

Max depth of tree [3, 5, 7, 9, 11, 13, 15] 11

BMPL
Number of estimators [200, 400, 600, 800, 1000] 500

Batch size [50, 100, 150, 200, 250, 300] 200
Epoch size [50, 100, 150, 200] 110

ERT
Number of trees [100, 500, 1000, 1500, 2000, 2500, 3000] 2000

Max depth of tree [3, 5, 7, 9, 11, 13, 15] 11

SVM
C [0.1, 1.0, 100] 100

Gamma [1.0, 0.1, 0.01, 0.001, 0.0001] 0.01

3.3. DES Models’ Performance Assessment and Comparison

As was previously mentioned, the positive and negative classes were referred to as
approach and go-around, respectively. The Precision, Recall, and F1-Score performance
metrics were extracted from the confusion matrices of each DES algorithm and used to
evaluate all models. Homogeneous and heterogeneous pools of classification algorithms
were used as the base estimators (Tables 7–10). META-DES produced a higher performance
measure for DES algorithms using RF classifiers as base estimators with Precision (86%),
Recall (83%), and F1-Score (84%) (Table 7). KNORAE-RF, the second-best DES model when
used with the RF classifier, produced an F1-Score of 82%, a Precision value of 82%, and a
Recall value of 82%. Similar to this, DES-P-BMLP produced higher performance measures,
with Precision (78%), Recall (75%), and F1-Score (77%), in the case of DES algorithms with
BMLP (Table 8). When using the ERT classifier with other DES algorithms, the META-
DES performed well (Table 9). It displayed a Precision of 78%, a Recall of 76%, and an
F1-Score of 77%. Furthermore, the META-DES with the pool of heterogeneous classifiers
(SVM+KNN+BLR) performed well as compared to DES-P and KNORAE (Table 10). It
showed a Precision of 78%, a Recall of 76%, and an F1-Score of 77%. Overall, it was found
that the META-DES-RF model performed better than the other DES models and could be
used in conjunction with SHAP analysis to determine the relative importance of different
factors as well as their contributions.
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Table 7. Comparison of performance measures of DES algorithms based on the pool of RF.

Approach

Performance Measures

Predicted
Precision Recall F1-Score

Approach Go-Around

KNORAE-RF

A
ct

u
al Approach 193 16 0.82 0.82 0.82

Go-around 15 38

DES-P-RF

A
ct

u
al Approach 182 27 0.75 0.68 0.71

Go-around 30 23

META-DES-RF

A
ct

u
al Approach 195 14 0.86 0.83 0.84

Go-around 16 37

Table 8. Comparison of performance measures of DES based on the pool of BMLP.

Approach

Performance Measures

Class
Predicted

Precision Recall F1-Score
Approach Go-Around

KNORAE-BMLP

A
ct

u
al Approach 195 15 0.77 0.75 0.76

Go-around 22 31

DES-P-BMLP

A
ct

u
al Approach 182 27 0.78 0.75 0.77

Go-around 23 30

META-DES-BMLP

A
ct

u
al Approach 195 15 0.73 0.73 0.73

Go-around 23 30

Table 9. Comparison of performance measures of DES based on the pool of ERT.

Approach

Performance Measures

Class
Predicted

Precision Recall F1-Score
Approach Go-Around

KNORAE- ERT

A
ct

u
al Approach 185 24 0.76 0.73 0.75

Go-around 24 29

DES-P-ERT

A
ct

u
al Approach 184 25 0.75 0.72 0.74

Go-around 25 28

META-DES-ERT

A
ct

u
al Approach 188 21 0.78 0.76 0.77

Go-around 21 32

Table 10. Comparison of performance measures of DES based on the pool of heterogeneous classifiers.

Approach
Performance Measures

Class
Predicted

Precision Recall F1-Score
Approach Go-Around

KNORAE-
(SVM+KNN+BLR) A

ct
u

al Approach 172 37 0.71 0.72 0.72
Go-around 21 32

DES-P-
(SVM+KNN+BLR) A

ct
u

al Approach 168 41 0.72 0.70 0.71
Go-around 23 30

META-DES-
(SVM+KNN+BLR) A

ct
u

al Approach 188 21 0.78 0.76 0.77
Go-around 21 32
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3.4. Sensitivity Analysis

It is vital to develop an evident go-around prediction model because more accurate
models might effectively capture the association between go-around and various envi-
ronmental and situational factors. The ability to comprehend the optimal META-DES-RF
model is immensely valuable. The SHAP method was used in this section to interpret the
best META-DES-RF results and calculate the combined effect of each individual risk factor.

3.4.1. Global Factors’ Importance and Contribution

We utilized the META-DES-RF model for the factors’ importance and contribution
analysis due to its superior go-around prediction compared to other models. There is a
compelling case for determining which factors are most crucial and for quantifying their
contributions to the final predictions. It is important to note that factor contribution and
factor importance are two different concepts. The importance of a factor reveals which
variables have the biggest effects on a model’s performance. The factor contributions not
only point out important factors but also give a logical justification for the observed result,
in our case “go-around” and “approach.”

The SHAP global importance scores for the factors used in the META-DES-RF are
shown in Figure 8a. The result does not, however, show how much each factor contributed
to the likelihood of a go-around happening. It demonstrates that WS magnitude, with
a mean SHAP value of +0.257, was the most significant factor that contributed to the
occurrence of go-arounds, followed by corridor, with a mean SHAP value of +0.190, time of
day (+0.190), and WS altitude (+0.160). Similar to this, a SHAP contribution evaluation was
carried out to examine the META-DES-RF model in greater detail using SHAP beeswarm
plots (Figure 8b). From the SHAP contribution plots, which combined the Shapely values
and expressed the contributions of the various factors to the META-DES-RF model, we
were able to derive a quantitative value. On the vertical axis, the input factors are arranged
from most influential to least influential in order of increasing influence. The horizontal
axis displays the SHAP value, and the color scale, which ranges from blue to red for low
significance to high significance, displays the factor’s significance.

Figure 8. SHAP global interpretation: (a) SHAP importance plot and (b) SHAP beeswarm plot.

The META-DES-RF model’s SHAP beeswarm plot showed that majority of the tailwind
led to the commencement of the aircraft go-around. The cause may be that in strong
tailwinds, an aircraft’s airspeed—the speed of the aircraft relative to the airflow around
it—does not significantly decrease as it approaches the ground, and with a high airspeed,
an aircraft may not be able to land at the designated touchdown location. Pilots increase the
throttle to go around, try again, or ask for a different runway to ensure safety. The outcome
is also in line with earlier research [44]. The second important factor was the corridor’s
orientation. Runways 07C and 07R were more likely to initiate go-arounds when there
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was wind shear. Runways 07C and 07R should not be used for landings during WS events
because go-arounds have become a safety concern. The third crucial factor was the time of
day. Although we could not pinpoint any prior research on the effect of the time of day
on the go-around, our data nonetheless revealed that majority of the go-around happened
during the day (07:00 AM to 19:00 PM).

The fourth crucial factor was WS altitude. Figure 8b illustrates how WS events that
took place at lower altitudes were held responsible for the high number of go-arounds. This
is also consistent with a previous study [45]. The cockpit remains incredibly active during
the landing phase, and the captain and co-pilot must make a number of quick decisions to
wrap up their landing checklist. However, the best course of action is to abort the landing
and perform a go-around when an unexpected WS happens very close to the runway. As a
result, majority of go-arounds happened when the aircraft ran into WS close to the ground.

3.4.2. Factor Dependence and Interaction

In the factor importance and contribution (beeswarm) plots, there was no evidence
of a correlation between the alteration in the factor value and the change in the SHAP
value. The interpretation results for the factors are shown in Figure 9, which also adds
more relevant information about how the SHAP values varied with the eigenvalues to the
contribution plot. To assess the extent to which the critical environment factors used to
evaluate the META-DES-RF interacted in terms of their contributions, the SHAP interaction
plots were examined.

Figure 9. (a) SHAP WS magnitude vs. WS altitude plot. (b) SHAP WS altitude vs. Corridor plot.
(c) SHAP WS magnitude vs. Corridor plot.
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Figure 9a shows how the models’ predictions were impacted by the WS magnitude
and WS altitude. The go-around phenomenon is heavily influenced by the points that
are above the SHAP 0.00 green reference line. Thus, it is evident that the points with
magnitudes of −14 to −32 knots are above the SHAP 0.00 green reference line. Most of the
points have labels in blue and purple, which indicate low altitude between 0 and 600 feet.
It shows that strong tailwinds at low altitudes play a greater role in the occurrence of
go-arounds. Figure 9b depicts how the WS altitude and Corridor influenced the model
predictions. It is apparent that the points with high density that fall between WS altitudes
of 0 and 600 feet are located above the SHAP 0.00 green reference line. Majority of the
points have blue and purple labels, which denote corridors 07C and 07R. It demonstrates
that runways 07C and 07R are highly susceptible to the occurrence of WS at low altitude,
thereby increasing the likelihood of a go-around.

Figure 9c illustrates the effect of the WS magnitude and Corridor on model predictions.
Clearly, the dense points that fall between WS altitudes of −14 and −32 knots are located
above the SHAP 0.00 green reference line. A significant proportion of the points is marked
with blue and purple labels, denoting corridors 07C and 07R. It reveals that runways
07C and 07R are particularly prone to the occurrence of WS at −14 to −32 knots (tailwind
condition), as well as the low altitude of WS, thereby boosting the likelihood of a go-around.

4. Conclusions and Recommendations

In this study, a Dynamic Ensemble Selection model was used with a pool of homoge-
neous (Random Forest, Extremely Randomized Tree, and Bagging Multilayer Perceptron)
and heterogeneous (Support Vector Machine, K-Nearest Neighbor, and Binary Logistic
Regression) classifiers to predict the occurrence of go-arounds using the Hong Kong In-
ternational Airport-based Pilot Reports from 2018 to 2021. The META-DES-RF model
outperformed all the other models in terms of the Precision value, the Recall value, and the
F1-Score. As a result, the META-DES framework that has been proposed presents a novel
approach to modeling and forecasting aircraft go-around in WS conditions.

The lack of inclusivity and interpretability of machine learning models has been widely
criticized. Although these approaches are often more flexible and reliable than traditional
statistical models, this hinders their widespread adoption for prediction. Therefore, in this
study, the results of META-DES-RF were evaluated, and both key risk factors and their
impact on the occurrence of go-around were analyzed using the SHAP strategy to deal
with the problem of interpretability introduced by META-DES-RF.

The top four crucial risk factors that enhance the probability of the occurrence of
go-around under WS events were WS magnitude, Corridor, time of day, and WS altitude.
The SHAP analysis revealed that there was a strong interaction among WS magnitude,
WS altitude, and Corridor. It has been observed that runways 07C and 07R of HKIA were
more prone to the occurrence of go-around. These go-around events occurred when strong
tailwinds of −14 to −32 knots occurred within 600 ft above the runway level.

The novel method used in this research could be applied to a comprehensive investiga-
tion of how WS events have affected air traffic operations. It is a helpful tool for experts in
air traffic safety and decision-makers in the aviation industry. In this study, SHAP analysis
and dynamic ensemble classifiers were only used to predict the aircraft go-around under
WS events. Future research initiatives may employ additional DES algorithms with various
pools of classification models and risk factors. Doppler LiDAR data could also be combined
with PIREPs in future research to evaluate a wide range of other parameters, including the
impact of pressure, the direction of the wind, and others.
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Abstract: Using multisource sea ice fusion data, the spatiotemporal characteristics of sea ice cover
were analyzed for the marginal seas of East Asia for the period 2005–2021. The results show that there
were obvious differences in the beginning and end dates of the sea ice in the different sea areas. The
northern Sea of Japan had the longest ice period, and Laizhou Bay and Bohai Bay in the Bohai Sea
had the shortest ice period. The time when the largest sea ice extent appeared was relatively stable
and mostly concentrated in late January to mid-February. There were obvious spatial differences
in the duration of the sea ice cover in the marginal seas of East Asia. The duration of the sea ice
cover gradually decreased from high latitude to low latitude and from nearshore to open seas. The
annual average duration of the sea ice cover was more than 100 days in most of the Sea of Japan and
approximately 20 days in most of Laizhou Bay and Bohai Bay. The melting speed was significantly
faster than the freezing speed in the Bohai Sea and Yellow Sea, resulting in asymmetric changes in
the daily sea ice extent in the two seas. The increasing trends in the maximum sea ice extent and total
sea ice extent were 0.912 × 105 km2/10 yr and 0.722 × 107 km2/10 yr, respectively, from 2005 to 2013,
both of which passed the significance test at the 0.05 level.

Keywords: climate change; climatology; sea ice; marginal sea; East Asia; observation

1. Introduction

The marginal seas of East Asia include the Bohai Sea, the Yellow Sea and the Sea
of Japan. There are frequent economic and trade activities among the coastal countries
in this sea area, and sea ice disaster is one of the major marine disasters in winter. The
huge destructive power of sea ice seriously threatens marine transportation, offshore
oil exploration, offshore engineering construction and marine fishery [1–3]. Under the
background of global climate change, there are obvious interannual and interdecadal
variations in sea ice in the marginal seas of East Asia in winter [4–11]. The research on
the characteristics of intra-annual, interannual and long-term changes in the sea ice of
the marginal seas of East Asia has important theoretical and practical significance. It
will help to accurately and comprehensively reveal the temporal and spatial patterns of
sea ice formation, development and ablation, and it will be useful for understanding the
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mechanism and impact of climate change in the northern region, improving the prediction
and prevention of sea ice disaster in the marginal seas of East Asia.

The trend in the extent of sea ice in the marginal seas of East Asia has received
extensive attention. Using a variety of satellite data, Wang et al. [12] analyzed the temporal
and spatial distribution of sea ice in the Bohai Sea from 1996 to 2011, where the maximum
value of the annual maximum sea ice extent exceeded 3.0 × 104 km2, and the minimum
value of the annual maximum sea ice extent was less than 1.0 × 104 km2. Using moderate
resolution imaging spectroradiometer (MODIS) sea ice data, Ouyang et al. [13] found that
the average maximum sea ice extent in the Bohai Sea was 2.3 × 104 ± 0.8 × 104 km2 during
the period 2000–2016. Using the reconstructed daily sea ice extent data, Yu et al. [14]
showed that the trends in the annual maximum sea ice extent and the annual average sea
ice extent were −0.33 ± 0.18% yr−1 and −0.51 ± 0.16% yr−1 from 1958 to 2015 in the Bohai
Sea. Based on the daily sea ice data of the National Snow and Ice Data Center (NSIDC)
in the United States, Liu et al. [15] showed that the period with the largest sea ice extent
in the Bohai Sea and Yellow Sea was from late January to late February each year. The
interannual oscillation of the ice extent was obvious, showing a trend of first increasing and
then decreasing over 2007–2018, and there was a significant negative correlation with the
coastal temperature of the Bohai Sea and Yellow Sea during the same period. According to
Ken and Takuya [16], the sea ice in the Sea of Japan is mainly located in the Tatar Strait in
the northwest of the Sea of Japan and the coast of Siberia. The changes in the sea ice in the
Sea of Japan are not consistent with global climate change, which may be affected by local
climatic factors. The change in the sea ice extent in the marginal seas of East Asia may be
closely related to the warming of Northeast Asia.

At present, studies on sea ice mainly use satellite remote data, including visible,
infrared, passive microwave and active microwave remote sensing [8,17,18]. Visible remote
sensing has a high resolution, but it cannot be applied for monitoring at night. In addition,
clouds have a great influence on visible and infrared remote sensing [19]. The microwave
data are not limited by day and night, are less affected by clouds and fog, and have
high spatiotemporal continuity, but passive microwave remote sensing currently has a
low resolution [20–22]. Active microwave remote sensing has a high resolution but has
shortcomings such as a long revisit time and high cost [23]. Therefore, the visible, infrared,
passive microwave, and active microwave sensors for monitoring sea ice have their own
advantages and disadvantages. The multisource fusion data combine the advantages of
the above sensor data to form high-resolution sea ice cover fusion data [24–26]. In the
marginal seas of East Asia, high-resolution fusion sea ice data are used to conduct sea ice
cover research, and the high-resolution continuous monitoring of sea ice in the marginal
seas of East Asia can be realized, which can clearly and continuously display the variation
characteristics of sea ice in the marginal seas of East Asia. At present, research on sea ice
cover has yet to be carried out in the marginal seas of East Asia using high-resolution fusion
sea ice data.

Based on the high-resolution daily sea ice cover data from 2005 to 2021, which was
developed using multisource data, this study analyzed the temporal and spatial character-
istics of the sea ice cover and sea ice extent in the marginal seas of East Asia and estimated
the trends in the sea ice extent in the sea areas over the last 17 years.

2. Materials and Methods

The IMS (interactive multisensory snow and ice mapping system) sea ice cover data
used in this study were from the National Ice Center (NIC) [27,28]. The spatial resolution
of the IMS data is 4 km, and the time resolution is 1 day. The NIC sea ice products have an
ideal spatiotemporal resolution and high confidence relative to other single-source sea ice
extent data [29]. The NIC sea ice product contains daily sea ice cover data from March 2004
to June 2021, with a total of only 8 missing days.

The value of the sea ice extent (SIE) in this study was the sum of the extent of all ice
pixels. The annual SIE was the sea ice cover from November of the previous year to May of
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the current year. For example, the SIE from November 2006 to May 2007 was defined as
the annual SIE in 2007. For the missing sea ice data, the values of the previous day and the
next day were used to fill in by means of linear interpolation. The maximum value of the
SIE in the marginal seas of East Asia in a year is defined as the maximum sea ice extent
(MSIE) in that year, and the total sea ice extent (TSIE) in that year is represented by the
daily cumulative amount of the SIE. In the marginal seas of East Asia, there are only SIE
values from November to May of the following year. The trend in the SIE was estimated
using the least squares method, and the significance level of the linear trend was judged by
the t-test method.

The study area (117–142.3◦ E, 35–52◦ N) was the Bohai Sea, the central and northern
Yellow Sea, and the Sea of Japan (Figure 1). The six areas where sea ice frequently occurs
include Liaodong Bay in the northern Bohai Sea, Bohai Bay in the western Bohai Sea,
Laizhou Bay in the southern Bohai Sea, Korea Bay in the northern Yellow Sea, Peter the
Great Bay in the western Sea of Japan, and the northern Sea of Japan. The latitudes of the
northern Sea of Japan and the Laizhou Bay are the highest and the lowest, respectively.

Figure 1. The study region.

3. Results

3.1. Temporal Characteristics of Sea Ice Extent

Table 1 shows the multiyear average first ice date and last ice date of the sea ice in
the major sea areas of the marginal seas of East Asia from 2005 to 2021, as well as the
occurrence time of the MSIE. There were obvious differences in the first and last ice dates
of the sea ice in the different sea areas of the marginal seas of East Asia, but the time of the
MSIE in each sea area was concentrated from late January to mid-February. As the latitude
of the northern Sea of Japan is the highest, the average freezing time was the earliest in
this area, which was 13 November. The average melting time of the sea ice was the latest
in the northern Sea of Japan, which was May 16. The ice period lasted for approximately
184 days in the northern Sea of Japan, which was significantly longer than the other sea
areas. Liaodong Bay, Korea Bay and Peter the Great Bay had similar first ice dates, with sea
ice appearing in mid-to-late December, but the ice period in the Peter the Great Bay was
longer than that of the other sea areas. The freezing times of Bohai Bay and Laizhou Bay
were the latest, the melting time was the earliest, and the ice period was the shortest of all
of the areas.
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Table 1. The statistics for the first ice date, last ice date, the date of the MSIE and the ice period in the
different regions of the marginal seas of East Asia from 2005 to 2021.

Region First Ice Date Last Ice Date The Date of MSIE
Ice Period and Standard

Deviation (Days)

Liaodong Bay 8 December 12 March 8 February 94 ± 19
Bohai Bay 19 December 6 March 29 January 77 ± 30

Laizhou Bay 25 December 2 March 28 January 67 ± 34
Korea Bay 10 December 10 March 9 February 90 ± 20

Peter the Great Bay 9 December 11 April 13 February 123 ± 27
Northern Sea of Japan 13 November 16 May 10 February 184 ± 7

MSIE: maximum sea ice extent.

3.2. Spatial Characteristics of Sea Ice Extent

Figure 2 shows the spatial distribution of the annual average duration of sea ice cover
in the marginal seas of East Asia from 2005 to 2021. The area with the longest duration
of sea ice cover was the northern Sea of Japan. The annual average duration of the sea
ice cover was more than 100 days in most of the Sea of Japan. The areas with the shortest
duration of sea ice cover were Laizhou Bay and Bohai Bay. The annual average duration of
the sea ice cover was approximately 20 days in most of Laizhou Bay and Bohai Bay. The
duration of the sea ice cover reached 60 days in most of Liaodong Bay and Korea Bay. The
duration of the sea ice cover in the nearshore waters was significantly longer than that in
the open sea, and it gradually decreased from the coast to the open sea. The main reasons
for the spatial differences of the sea ice were that the latitude of the northern Sea of Japan
is higher, and the temperature is lower in winter, while the latitude of the Bohai Sea and
Yellow Sea is lower, and the temperature is relatively higher in winter.

Figure 2. Annual average duration of sea ice cover in the marginal seas of East Asia from 2005 to 2021.

Large-scale sea ice appeared in 2013, and this year was selected as the typical year to
analyze the intraseasonal variation characteristics of the sea ice in the whole marginal seas
of East Asia (Figure 3). In the starting stage (Figure 3a), the sea ice first appeared in the
northern Sea of Japan. In the increasing stage (Figure 3b), the sea ice appeared in the Bohai
Sea, Yellow Sea and Peter the Great Bay, and the sea ice extent in the northern Sea of Japan
continued to increase. In the peak stage (Figure 3c), the northwest coast of the Sea of Japan
was covered by long and narrow sea ice, and there was a large amount of sea ice in Peter
the Great Bay and on the coast of the Bohai Sea and northern Yellow Sea. In the decreasing
stage (Figure 3d), the sea ice in the Yellow Sea and the Bohai Sea was mainly concentrated
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in Liaodong Bay and Korea Bay, and the sea ice in the Sea of Japan was distributed in the
northern Sea of Japan and Peter the Great Bay. In the disappearing stage (Figure 3e), the
extent of the sea ice in the areas with sea ice continuously decreased, and this was mainly
limited to the northern Sea of Japan.

Figure 3. Spatial distribution of sea ice extents in the different stages of a start (a), increase (b),
peak (c), decrease (d) and disappearance (e) in the marginal seas of East Asia.

3.3. Variation Characteristics of Sea Ice Extent

Figure 4 shows the intraseasonal variation of the daily mean sea ice extent in the Bohai
Sea, Yellow Sea, Peter the Great Bay and the northern Sea of Japan from 2005 to 2021. The
maximum sea ice extent occurred from late January to mid-February, when the sea ice
extent in the seas reached the maximum value in one year. The melting speed of the sea ice
was significantly faster than the freezing speed, resulting in the asymmetry of the daily sea
ice extent variations in the Bohai Sea and Yellow Sea (Figure 4a). The freezing and melting
times of the sea ice were similar the Peter the Great Bay and the northern Sea of Japan. The
ice period in the northern Sea of Japan was significantly longer than that of the Bohai Sea,
Yellow Sea and Peter the Great Bay.

Figure 5a shows the interannual fluctuations of the MSIE in the marginal seas of
East Asia from 2005 to 2021. The interannual fluctuations of the MSIE were large, with
a maximum value of 17.4 × 104 km2 in 2016 and a minimum value of 7.6 × 104 km2 in
2007. Figure 5b shows the changes in the total sea ice extent of the marginal seas of East
Asia over the past 17 years. The maximum value of 11.7 × 106 km2 occurred in 2013, and
the minimum value of 5.42 × 106 km2 occurred in 2006 and 2007. In the past 17 years, the
minimum value was less than half of the maximum value.

From 2005 to 2021, the trends in the MSIE (Figure 5a) and the total sea ice extent
(Figure 5b) in the marginal seas of East Asia were not significant, but there were significant
differences in the trends in each of the 9 years before and after 2013. This shows the change
characteristic of increasing first and then decreasing over the past 17 years. From 2005 to
2013, the MSIE (Figure 5a) and the total sea ice extent (Figure 5b) both showed increasing
trends, which were 0.912 × 105 km2/10 yr and 0.722 × 107 km2/10 yr, respectively, and both
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passed the significance test at the 0.05 level. From 2013 to 2021, the MSIE (Figure 5a) and the
total sea ice extent (Figure 5b) both showed decreasing trends of −0.409 × 105 km2/10 yr
and −0.370 × 107 km2/10 yr, respectively, but neither passed the significance test at the
0.05 level. From Table 2, it can be seen that the total sea ice extent for each month from
2005 to 2013 showed an increasing trend, and the increase was most obvious in January
and February, with the trends of 0.286 × 107 km2/10 yr and 0.221 × 107 km2/10 yr, both of
which passed the significance test at the 0.05 level. The total sea ice extent in each month
from 2013 to 2021 showed a decreasing trend, with the most obvious decrease in January at
−0.124 × 107 km2/10 yr, which passed the significance test at the 0.1 level.

Figure 4. Daily mean sea ice extent (black, solid line) and standard deviation (blue area) in the Bohai
Sea and Yellow Sea (a), Peter the Great Bay (b) and the northern Sea of Japan (c) from 2005 to 2021.

Table 2. Trends in the total sea ice extent in the marginal seas of East Asia (unit: 107 km2/10 yr).

Dec Jan Feb Mar Apr Year

2005–2021 0.015 0.039 0.012 −0.005 −0.002 −0.058
2005–2013 0.098 ** 0.286 ** 0.221 ** 0.058 0.056 ** 0.722 **
2013–2021 −0.049 −0.124 * −0.101 −0.058 −0.032 −0.370 *

* Passed the significance test at the 0.1 level; ** passed the significance test at the 0.05 level.

254



Atmosphere 2023, 14, 207

Figure 5. Annual maximum sea ice extent (a) and total sea ice extent (b) in the marginal seas of East
Asia from 2005 to 2021.

Figure 6 shows the annual-pentad profile of the sea ice extent in the marginal seas of
East Asia from 2005 to 2021. The years 2008, 2012, 2016 and 2018 can be classified as the
unimodal type, with the peaks appearing from the 1st pentad in February to the 3rd pentad
in February. There were two relatively obvious peaks in 2010, which were characterized
by the sea ice extent increasing first, then slightly decreasing, and then increasing once
again, with peaks appearing on the 4th pentad in January and the 3rd and 4th pentads in
February, respectively. There was no obvious peak in the sea ice extent in 2006 and 2007.
The sea ice extent of the marginal seas of East Asia was always relatively large from the 6th
pentad in January to the 1st pentad in March, resulting in the total sea ice extent in 2013
being the maximum over the past 17 years.
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Figure 6. Sea ice extent of the marginal seas of East Asia in 2005–2021 (unit: 104 km2).

4. Discussion

The research shows that the longest duration of sea ice cover in the marginal seas of
East Asia was in the northern coast of the Sea of Japan, and the duration of the sea ice cover
in the coastal waters of all regions was significantly longer than that in the open sea. The
phenomenon that the duration of the sea ice decreased from the seashore to the deep sea
in Liaodong Bay was also pointed out by Wang et al. [12] and Baoleerqimuge [30]. The
trend in the sea ice extent in the Bohai Sea and Yellow Sea showed to increase first and then
decrease from 2005 to 2021. Liu et al. [15] found that the sea ice extent increased at first
and then reduced in the Yellow Sea and Bohai Sea in 2007–2018. The results are similar to
previous studies [12,15,30].

The different studies used different kinds of data in determining the first and last ice
dates of the sea ice in the marginal seas of East Asia. Due to the differences in resolution,
temporal and spatial coverage, cloud cover and data processing methods among the
different studies, the results of the first and last ice dates in the different studies are, to a
certain extent, different [12,24,26,31].

Influenced by atmospheric and marine environments, ice conditions have obvious
interannual and interdecadal variabilities in the marginal seas of East Asia [32]. The
interannual variability of sea ice in this area is obviously related to atmospheric factors,
such as the intensity of the East Asia winter monsoon and the atmospheric circulation
at 500 hPa [33]. The formation and evolution of the sea ice are not only affected by
atmospheric conditions but also restricted by factors such as ocean circulation conditions,
sea temperature and salinity structure [6]. The marginal seas of East Asia are relatively
closed, and the changes in the sea ice are also controlled by local climatic factors [16].

The long-term change in the sea ice extent in the marginal seas of East Asia may
be related to the overall trend of climate warming in East Asia and North China [34].
However, the time scale of the data in this study was short, and climate warming in
Northeast Asia slowed down during the analysis period [35], which may be the main
reason for the insignificant long-term trends of some sea ice indicators. Obtaining a longer
series of high-resolution sea ice extent data and discussing the response mechanism of the
long-term changes and variations in the sea ice extent in the marginal seas of East Asia to
climate warming and natural climate variability are work that needs to be strengthened in
the future.
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5. Conclusions

Using high-resolution IMS multisource sea ice fusion data, the climatological charac-
teristics and the trends in the sea ice cover in the marginal seas of East Asia were analyzed
from 2005 to 2021, and the following conclusions were obtained.

(1) There were obvious differences in the first and last ice dates of the sea ice in the
different sea areas of the marginal seas of East Asia, but the date of the maximum sea ice
extent was relatively concentrated from 2005 to 2021. As the latitude of the northern Sea
of Japan is the highest, the earliest freezing time, the latest melting time and the longest
ice period were in this area. Laizhou Bay and Bohai Bay had the latest freezing time, the
earliest melting time and the shortest ice period. The occurrence time of the largest sea ice
extent was relatively stable in the marginal seas of East Asia and mostly concentrated in
late January to mid-February.

(2) There were obvious spatial differences in the duration of the sea ice cover in the
marginal seas of East Asia. The duration of the sea ice cover gradually decreased from the
high latitudes to low latitudes and from near-shore waters to open seas in the marginal
seas of East Asia over the past 17 years. The area with the longest duration of sea ice cover
was the northern Sea of Japan. The areas with the shortest duration of sea ice cover were
Laizhou Bay and Bohai Bay. The annual average duration of the sea ice cover was more
than 100 days in most of the Sea of Japan and approximately 20 days in most of Laizhou
Bay and Bohai Bay, reaching 60 days in most of Liaodong Bay and Korea Bay. The duration
of the sea ice cover in the coastal waters was significantly longer than that in the open seas,
and there were high-value bands of duration of sea ice cover along the coastline.

(3) The melting speed was significantly faster than the freezing speed in Bohai Sea and
Yellow Sea, resulting in the asymmetric changes in the daily sea ice extent in the Bohai Sea
and Yellow Sea. According to the number of occurrences of sea ice extent peaks, the style
of the sea ice extents could be divided into single peak, double peak and stable.

(4) Over the past 17 years, the maximum sea ice extent in the marginal seas of East Asia
reached a maximum value of 17.4 × 104 km2 in 2016 and a minimum value of 7.6 × 104 km2

in 2007. The sea ice extent of the marginal seas of East Asia from the 6th pentad in January
to the 1st pentad in March was relatively large, resulting in the maximum of the total
sea ice extent in 2013. The maximum sea ice extent and the total sea ice extent over the
past 17 years had obvious differences in the change trend for the first and second halves
of the period, and they all showed the change characteristics of first increasing and then
decreasing. From 2005 to 2013, the trends in the maximum sea ice extent and the total sea
ice extent were, respectively, 0.912 × 105 km2/10 yr and 0.722 × 107 km2/10 yr, which
passed the significance test at the 0.05 level.
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Abstract: Studies on the vitality of urban residents’ daily commuting and air pollution are scarce.
Based on the cell phone mobile signaling data, urban air quality observation data, and urban
transportation infrastructure environment data of Nanjing in 2019, and through the panel regression
model and the standard deviation ellipse analysis (SDE) to measure the impact of air pollution on
residents’ daily traffic vitality, we construct the survey panel matrix data system with streets as spatial
units. Through SDE and panel regression model analysis, we measured the restraining effect of air
pollution on the traffic vitality. The scope of the traffic vitality area SDE was found to shrink as the
air quality index (AQI) increases. The study found three main characteristics: (1) Under different
transportation models and different location conditions, there are obvious differences in traffic vitality.
The entire city presents a trend of “northeast-southwest” axial expansion in the spatial pattern of the
traffic vitality. Compared with the urban core area, the traffic vitality of residents in the north-south
areas of Nanjing’s periphery has declined significantly. (2) The inhibitory effect of air pollution on
public traffic vitality and self-driving traffic vitality are differences. Approximately one-tenth of traffic
activities may be inhibited by air pollution. The weakening of traffic vitality greatly reduces the city’s
ability to attract and gather people, materials, and resources. (3) The inhibitory effect of air pollution
on traffic vitality is heterogeneous under different transportation infrastructure environments. The
higher the public transportation station density and public transportation frequency of the street,
the more obvious the suppression effect of air pollution. The higher the parking density, station
accessibility, road intersections density, and transportation facility diversity, the lower the suppression
effect of air pollution. This study elucidates the relationship among air pollution, the transportation
infrastructure environment, and the traffic vitality, and provides significant guidelines for optimizing
the organization of elements in the transportation infrastructure environment, thereby mitigating the
inhibitory effect of air pollution on traffic vitality.

Keywords: air pollution; traffic vitality; built environment; spatial correlation; spatial lag model;
phone signaling data; air quality; behavioral habits; activity density; population distribution; land
use mix

1. Introduction

The traffic vitality of residents in the city directly reflects the attractiveness and diver-
sity of the city, which is embodied in the intensity and type of resident activities in the urban
space [1–3]. Improving the traffic vitality is conducive to improving the quality of life of
residents and is significant to the sustainable development of the city [4,5]. In urban trans-
portation planning, unanimous attention has been paid to the traffic vitality, particularly
the impact of the built environment on the traffic vitality [6,7]. However, researchers have
found it difficult to accurately measure the traffic vitality. Past studies are mostly based
on observational surveys in small-scale spaces (such as streets) or use short-term (such as
1 week) resident activity logs for discussion. Describing commuting vitality distribution
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and change characteristics for large-scale spaces (such as the entire city) and long-term
periods (such as spanning several weeks) is difficult [8,9]. Existing studies have identified
the spatial displacement of residents over a period of time as traffic travel activities [10].
The frequency and density of traffic trips represent traffic vitality. We identify the people
whose location changes in a relatively short period of time as the traffic travel crowd. We
take the street as a unit to measure the density of traffic people per unit area as traffic
vitality. Therefore, daily traffic vitality refers to the daily traffic density of residents in the
street unit. Generally speaking, traffic behavior mainly refers to the traffic travel activities
of individual residents, while traffic vitality is used to describe the frequency and density
of group traffic travel at the medium and macro spatial level (such as streets and larger
spatial scales). Following the continuous development of information and communications
technology (ICT) in recent years, mobile phones record the activities and travel behaviors
of residents in all aspects of daily life. These geographically attributed location big data are
real-time, continuous, and accurate among other characteristics, making them a suitable
data source for the study of residents’ transportation activities [11]. Past studies collected
mobile phone signaling data [12,13], LBS positioning data [14], GPS data [15,16], and social
media sign-in data (such as Weibo and Twitter) [17–20] among others to measure residents’
commuting activities. The specific spatial dimensions involve three levels of streets, cities,
and regions; the time dimension is accurate to the hour as the unit; and the intensity of
commuting activities and temporal and spatial characteristics are recorded [21–24].

Atmospheric particles have multiple impacts on human health and the environment.
Studies have shown that PM10 adversely affects human health and increases mortality;
while fine particulate PM2.5 and ultrafine particles are at higher risk [24–26]. At the same
time, there is a correlation between air pollution and traffic vitality. Atmospheric particles
can absorb and scatter solar radiation, and particulate matter greatly reduces the visibility
of surface traffic [27]. In addition, studies have shown that there are positive and negative
effects between transportation infrastructure and air pollution. On the one hand, with
the continuous improvement of transportation infrastructure, the transportation structure
is increasingly optimized. A new generation of transportation infrastructure facilitates
low-energy, low-polluting modes of transportation. A developed urban transportation
system can significantly reduce traffic congestion, shorten the waiting time caused by road
congestion, and increase the frequency of traffic travel. In addition, good transportation
infrastructure can also reduce the level of exhaust emissions when vehicles are idling,
thereby improving the overall level of urban haze pollution. On the other hand, from
the perspective of the utilization of transportation infrastructure, the improvement of
transportation infrastructure conditions will increase the scale of urban transportation. The
improvement of transportation infrastructure will increase the daily commuting frequency
and vitality of residents to a certain extent, which is conducive to the formation of more
commuting needs and longer commuting distances [28].

In the past three decades, China’s urbanization level has developed rapidly, and the ur-
ban population agglomeration also enhanced the traffic vitality. However, industrialization
and the rapid development of motor vehicles have caused increasingly severe air pollution
problems. Smog, PM2.5, and air quality are common in government and media reports
and have become some of the main limitations of the sustainable development of cities [29].
Traffic sources are significant to urban air quality as they could impact the air quality
along highways and streets. For example, black carbon PM is emitted primarily by traffic
sources and affected the air pollutants’ distribution [30–32]. Presently, urban geographers
mainly focus on the temporal and spatial evolution characteristics and driving factors of
air pollution, the impact of air pollution on the physical and mental health of residents,
the differences between residents in different regions and different socioeconomic back-
grounds, and the governance of air pollution areas [33]. At the same time, certain scholars
focus on urban residents’ exposure to air pollution, and use GPS, portable environmental
monitors, and other tools to determine the impact of air pollution on residents’ travel (such
as travel trajectories, traffic ways) [34,35]. These studies have shown that following the
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popularization of health awareness, air quality affects residents’ activities in urban spaces
(whether to go out for activities, travel modes, and choice of location and time of activities),
and thereby affecting residents’ traffic vitality.

Overall, current empirical research on the impact of air pollution on the traffic vitality
is lacking. Owing to the development of information technology in recent years, the
trajectory of residents’ activities can be more accurately determined. A small number of
studies have collected micro-blog sign-in data and used the city as a spatial unit to reveal
that air pollution inhibits residents’ activities (sign-in scale) [36], thereby affecting their
happiness (emotions expressed in the sign-in text) [37]. In addition, certain scholars have
focused on the impact of air pollution on specific types of activities, such as determining
whether air pollution will inhibit residents from eating out based on changes in the number
of online reviews on food and beverages [38]. However, these studies did not clearly
distinguish and quantify related factors such as air pollution, built environment, and traffic
vitality. Past studies have not analyzed the differential impact of air pollution on traffic
activity under different transportation infrastructure environments. On the one hand,
the studies that consider cities as the research unit disregard the spatial imbalance of air
pollution and mobility in large cities [39]. On the other hand, current researchers have
difficulty measuring the impact mechanism of built environment factors such as density,
mixing degree, and location (distance) on air pollution’s inhibition of traffic travel activities.

The differences among the inhibitory effects of air pollution on the traffic vitality vary
for cities at different stages of social and economic development [36]. On the other hand,
the built environment significantly influences residents’ activities. The inhibitory effect
of air pollution on the traffic vitality may be heterogeneous in the built environment. For
example, although air pollution generally reduces residents’ willingness to go out, in places
where the built environment is relatively attractive, the reduction in residents’ willingness
to travel may be relatively low. To better measure the impact of built environment elements
on the traffic vitality in an air-polluted environment, an analysis of the micro- and medium-
scale space within the city is required [37]. In addition, to control the impact of hidden
variable factors that may exist in the observation on traffic travel, it is necessary to obtain
long-term panel data to improve the accuracy of model effect analysis [38]. Residents with
different socioeconomic backgrounds live in different environments, and different residents
have different perceptions of air pollution and outdoor activity habits [39]; this disparity
exacerbates environmental injustice [40].

In recent years, the technical methods for measuring residents’ daily traffic travel
have constantly been updated. Following the popularization of mobile communication
technology, local and international researchers use mobile phone signaling data to perform
applied research on the urban center system, job–resident relationship analysis, and urban
overall planning evaluation, and implement the urban system [41–43]. Mobile phone
signaling data mainly extract the information exchange data and time stamp information
between the base station and the mobile phone terminal in the mobile communication
system to determine the spatial location and status of the phone user [44]. The identification
of residents’ travel behavior based on the travel laws of phone users has the advantages of
presenting a large sample size, balanced sampling distribution, high spatial accuracy, and
robust data timeliness. Scholars measure the built environment based on data sources such
as points of interest (POI) and Open Street Maps. The specific influencing factors include
urban structure, population density, street density, land use mix, and location [45,46]. These
studies show that big data with geographic location attributes, such as mobile phone
signaling check-in data, can reflect the daily commuting activities of residents in real
time [47].

Based on the location data of mobile phone signaling, the urban air quality observation
data, and the urban built environment data in Nanjing, 2019, this study comprehensively
constructs the panel survey matrix data with the street as the spatial unit and the day as the
time unit. The impact of air pollution on residents’ daily traffic vitality is quantified through
the panel regression model and standard deviation ellipse (SDE) analysis. According to
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existing research, people have expectations about the time spent on different types of
travel activities. Generally speaking, in the urban road environment, the walking speed is
4–5 km/h, the bicycle speed is 15–20 km/h, the car speed is 60–80 km/h, the bus speed
is 40–80 km/h, and the subway speed is 60–120 km/h [48]. Residents choose the exact
traffic travel mode, and within a fixed travel time period, they will get a stable traffic
travel range. Studies have shown that people’s choice of long-distance transportation
activities is affected by many factors, including atmospheric environment and urban built
environment [49]. Different from the necessary activities within the 15 min daily life circle
of residents, the traffic vitality pays more attention to the traffic travel behavior with a
speed of more than 20 km/h and a travel time of more than 15 min. This paper takes 15 min
as the minimum time unit and calculates the average displacement distance of mobile
phone signaling location data within the urban area of Nanjing as the minimum activity
radius of residents’ travel. On this basis, this paper uses the standard deviation ellipse
analysis model to measure the core range and direction distribution of large-scale residents’
daily traffic travel. This study elucidates the relationships among air pollution, the built
environment, and the traffic vitality through the statistical analysis of air pollution panel
data at the street level. It also provides a theoretical basis for city managers to optimize the
built environment to reduce the inhibitory effect of air pollution on the traffic vitality.

2. Data and Methods

2.1. Data Collection

2.1.1. Mobile Phone Signaling Data

This study regards the street as the basic spatial unit and the day as the basic time
unit for investigation. Specifically, mobile phone signaling data are used to measure the
intensity of residents’ commuting connections to reflect the traffic vitality [37–39]. In 2019,
we obtained 60 days of mobile phone signaling data for 2 consecutive months from Chinese
mobile operators in Nanjing, Jiangsu Province (Figure 1). On the one hand, the data
provider had deleted private information such as the resident’s name, age, work unit, and
residential address from the original data submitted. On the other hand, we focused on
analyzing the change characteristics of large-scale residents’ traffic travel location and did
not undertake in-depth analysis of individual residents’ information. We were not involved
in the description of individual private information of residents. We have supplemented
the characteristics of Nanjing’s social environment in this section and the details are as
follows: Nanjing is the capital city of Jiangsu Province, with a land area of 6587.02 km2. The
urban area is 868.28 km2. In 2019, the population of Nanjing was 9.282 million. There are 11
subway lines, 8395 buses, and more than 3 million cars in Nanjing. According to the data in
the report “2019 Nanjing Environmental Status Bulletin”, the main source of air pollutants
in Nanjing is industrial production, not motor vehicle emissions [45]. Therefore, the built
environment factors have a greater impact on the air quality in Nanjing. According to the
Bulletin on traffic transportation in Nanjing in 2016, the residents transported by private
cars take a percentage of 11.89% and those transported by public ways were 26.86% [46].

First, the user’s residence and work place, and commuters were identified based on
the staying time and recurrence rate of mobile phone users in different urban spaces. We
determined the residents’ movement trajectories based on cell phone signaling locations
and timestamps. In addition, we judged land use attributes based on the information of
points of interest on the network electronic map. Combining residents’ travel trajectories
and land use attributes, we can determine the types of residents’ daily activities. Specifically,
we collected cell phone signaling data between 22:00 at night and 5:00 a.m. the next day.
Residents were generally sleeping during this time period, and we then confirmed the
place of residence. Additionally, we collected cell phone signaling data between 10 a.m.
and 5 p.m. We combined it with industrial land, commercial land, public service land, etc.,
to determine where residents work and the activity types. In addition, we took 15 min as
the minimum time unit to further measure the movement range of the resident’s mobile
phone signaling position during this period. We determined the residents’ traffic pattern.

264



Atmosphere 2022, 13, 1592

Second, considering limitations such as the sample representativeness of mobile phone
signaling location data (significant difference between the signaling check-in frequency of
active commuter users and inactive users), data cleaning, and integration were carried out
through methods reported in past studies [32,39]. Specifically, cell phone signaling records
outside the scope of Nanjing were excluded. For multiple check-ins at a fixed location over
a long period, this study records the value of traffic vitality as 1. Furthermore, according
to the land development attributes of the user’s place of residence, this study divides the
urban functional space into seven types of labels, including workplaces, residences, public
transportation, public services, leisure and entertainment, and tourist destinations [36].

Based on mobile phone signaling data, the working population in Nanjing accounts
for 43.2% of the total population. The commuter population was compared with the most
recent census data in Nanjing, and the consistency test was carried out in the city street
unit. The two data results were linearly correlated, and the model results passed the
99% confidence interval test, with an R2 value of 0.86, which indicated strong correlation.
The results show that there is no significant difference between the two sets of data and
predicting the commuter population based on mobile phone signaling data is reliable.
Regardless of air pollution, residents have to commute to work; however, transportation
for other activities is greatly affected by residents’ subjective wishes. Therefore, this study
focuses on the activities of commuters in five other functional spaces other than the work
place and residence. These five activity tags accounted for 62.45% of all check-in records.
The data reflect that in addition to the daily commute to work, more than half of the
residents access urban public services, leisure, tourism, and other functions through daily
commuting [22,36]. Finally, this study obtained more than 5.63 million mobile phone
signaling records in the five functional spaces mentioned above. This study calculated the
sign-in density of residents’ activities in Nanjing, comprising 95 streets of 11 jurisdictions
in 2019. The average daily check-in density was 17.9 times per 10 km2.

Figure 1. Distributions of mobile phone sign-in locations (a), and AQI monitoring stations (b) and
the case site location (c).

2.1.2. Air Pollution and Meteorological Data

Owing to the concern regarding air pollution, each city has set up air monitoring
stations, and declared the city’s AQI and the concentrations of 6 types of pollutants (PM2.5,
PM10, CO, NO2, O3, SO2) in real time. The standard of the AQI is the Technical Regulation
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on Ambient Air Quality Index of China, which is a national standard. It can be found on
the website of the Ministry of Ecology and Environment of the People’s Republic of China.

The data acquisition time was from 20 October 2019 to 20 December 2019, for 60
consecutive days, including 17 non-working days and 43 working days. This time period
was the alternating period of autumn and winter, and the AQI changes obviously, which
can support the research on the influence of AQI concentration changes on traffic vitality in
this paper. This paper focuses on the general impact of air pollution on the urban traffic
vitality. Therefore, in terms of data collection time, we avoided traditional holidays such
as National Day, Labor Day, and Spring Festival, and tried our best to avoid the unstable
impact of the high traffic density during holidays on the research results. Research data
were obtained from the daily update data of the China Environment Ministry, which contain
29 air monitoring stations in Nanjing. This study continuously collected the daily AQI
and 6 types of pollutant concentration data through the 29 air monitoring stations in 2019.
We selected 342 observation days, which basically covered the meteorological observation
data of a whole year. We obtained daily real-time meteorological observation data through
the website of the Ministry of Environment of China (http://www.cnemc.cn/, accessed
on 20 December 2019). We obtained multiple sets of meteorological observation data
on each observation day, averaging 5–6 times a day, accumulatively obtained 1890 wind
speed, temperature, and precipitation observation data, and correspondingly obtained
1890 AQI data. Studies have shown a significant high correlation between the AQI and
the concentration of six types of pollutants [32]. Therefore, this study used the AQI data
of each air monitoring station to represent the air pollution in the streets. According to
Chinese national standards, air quality is divided into six levels: excellent (AQI ≤ 50), good
(50 < AQI ≤ 100), light pollution (100 < AQI ≤ 150), moderate pollution (150 < AQI ≤ 200).
As shown in Table 1, the average daily AQI of Nanjing in 2019 was 61.75 and the air quality
was mainly excellent and moderately polluted. In addition, significant differences were
observed among the AQI values of each monitoring station (F = 7.982, p-value = 0.000),
indicating significant differences in air quality in various streets of Nanjing. According
to our previous work [50–52], the stable boundary layer with less precipitation and high
air pollutants emissions works together to make winter the most polluted season [53]. In
the spring and summer, the enhanced convective activity of the atmosphere and increased
precipitation created optimal weather conditions for diffusion, which was also beneficial
for the removal of air pollutants. The dense population, large number of motor vehicles,
industrial production, and human activities in the urban area also result in the urban area
being more polluted than the suburbs [54,55].

Table 1. Variable definitions and summary statistics.

Variable Description Observation Min Max Mean Variance

Explanatory
variables (air

quality)
AQI Daily Air Quality Index 1890 20.08 61.75 27.44 161.19

Explanatory
variables

(transportation
facilities)

Parking density paking density = parking numbers
Street area (km2)

132 0.49 15.47 15.27 82.88

Station
accessibility station walkability = walking distance

Street area (km2)
132 0.06 14.73 17.84 81.74

Metro/Bus
station density station density = subway/bus stations

Street area (km2)
132 0.00 0.71 1.17 6.26

Transportation
facility diversity

Xi =
Area of Type i transportaion facility (km2)

Total land area (km2)

Pi =
Xi

∑n
i=1 Xi

Facility Diversity Index =
(−1)(∑n

i=1 pi ln(pi))
ln(n) , n = 6

132 0.27 0.68 0.09 0.83

Road
intersection

density
Road intersection dense = street road intersections

Street area (km2)
132 0.00 12.74 14.82 63.79
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Table 1. Cont.

Variable Description Observation Min Max Mean Variance

Dependent
variable

Traffic vitallity
intensity Activity intensity = Daily signaling check−in

Street area (10 km2)
49,831 0.00 17.83 50.58 3014.00

Control variable
(weather)

Precipitation Daily precipitation, dummy variable: 1 = heavy rain
and above, 0 = other 1890 0 0.02 0.12 1

Wind speed Daily average wind speed (m/s) 1890 0.45 1.72 0.76 6.82
Temperature Daily average temperature (◦C) 1890 6.94 22.65 5.32 32.76

Control variable
(date attributes) Date Non-working days, dummy variables:

1 = non-working days, 0 = working days 342 0 0.27 0.38 1

Note: Transportation facility diversity index are closely related to resident traffic activities, including bus stops,
subway stations, bicycle stops, car parking spaces, bus parking stations, gas stations, etc.

Studies have shown that meteorological conditions affect the choice of residents’ ac-
tivities [35]. The China Meteorological Administration updates the data daily. This study
collected data on the daily average wind speed, average temperature, and rainfall in 2019
released by 29 meteorological monitoring stations in Nanjing. This necessitates control of
the impact of meteorological and environmental factors when measuring the air pollution
impact on traffic vitality. We regarded heavy and extra heavy rain (precipitation ≥60 mm/d)
are as extreme weather conditions in cities. This situation is likely to cause urban water-
logging and affect residents’ traffic activities [39] and was regarded as a dummy variable
in the model in this study (Table 1). Based on the monitoring data of each meteorological
station, we take the average recorded data of the meteorological stations in the street as
the street meteorological measurement result. Based on the results of descriptive statistical
analysis, we can find that there are significant differences in temperature, humidity and
wind speed among streets (F = 33.72, p-value = 0.000; F = 175.83, p-value = 0.000), but no
significant differences in rainfall between streets (F = 1.548, p-value = 0.119).

2.1.3. Transportation Infrastructure Elements Data

This study considers the streets as the survey unit, and measures the impact of the built
environment on the vitality of residents’ transportation through five variables [6,7,9,13]:
parking density, subway station density, road intersection density, transportation facility
diversity, and spatial location (Table 1). We use streets as spatial units to measure indicators
such as traffic stops, road intersections and AQI. We take the average AQI within the street
as the street’s AQI value. In addition, we calculate the average number of road intersections
per unit area within the street. In short, the three indicators of transportation infrastructure,
air quality, and traffic vitality are all statistically calculated on the street as the spatial unit.
The population data were obtained from the database of the seventh national census in
2020. The data on subway/bus/parking stations and road intersections were obtained
from the facility points of interest and road network database in Baidu electronic map.
The calculation of the transportation facility diversity index was mainly based on the land
use classification data of Nanjing in 2020. The location distance specifically refers to the
straight-line distance from the city’s geometric center to the administrative center. Xi refers
to the ratio of the land use area of category i in a street to the land area of the street. This
indicator is used to measure the degree of transportation facility mixing, which indirectly
reflects the intensity of transportation facility and the maturity of block development. The
type of transportation facility directly affects the types of residents’ traffic activities. The
higher the degree of transportation facility mixing, the richer the types of residents’ traffic
activities, and the higher the density of residents’ activities, the stronger willingness of
residents to travel.

2.2. Research Methods

2.2.1. Spatial Panel Regression Model

The study involved 60 days of survey panel data on 95 streets. To better reveal the
restraining effect of air pollution on the traffic vitality, we selected the fixed effects model
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for controlling the unobservable time and individual effects [42]. The basic panel regression
model is expressed as follows:

Yit = γ0 + γ1Xa
it + γ2Xw

it + γ3Xd
t + ηt + ui + εit (1)

where the dependent variable Yit is the activity intensity of street i on day t, reflecting
the traffic vitality. Xa

it refers to the AQI of street i on day t, and encompasses wind speed,
temperature, and precipitation. Xw

it refers to the variable group of the meteorological
conditions of the i street on the t day, including meteorological data such as wind speed,
temperature, and precipitation. Xd

t refers to a dummy variable that distinguishes between
working days and non-working days. Studies show a significant difference between the
residential activity spaces of working and non-working days (including rest days and
holidays) [18,22]. Therefore, this study controlled for the working and non-working day
factors, and then analyzed the impact of air pollution on the traffic vitality. ηt is a time-
fixed-effect variable. ui is the street fixed effect variable. This variable is a dummy variable
for streets that controls for unobservable differences in streets that do not change over
time. εit is the error term. γ0 is the variable coefficient adjustment variable, which represents
the influence weight of each variable.

Furthermore, we explore the impact of air pollution on the traffic vitality and the het-
erogeneity of different transportation infrastructure environments, and based on the panel
regression model (Equation (1)), interaction terms between built environment variables
and air pollution variables were introduced and expressed as follows:

Yit = γ0 + γ1Xa
it + γ2Xw

it + γ3Xd
t + γ4Xb

i Xa
it + ηt + ui + εit (2)

where Xb
i refers to the streets’ built environment variable, including population density,

subway station density, road intersection density, land use mix, and location variables. The
traditional panel data regression model does not consider the spatial autocorrelation of the
elements, which may cause errors in the regression coefficients.

2.2.2. Spatial Lag Model (SLM) and the Spatial Error Model (SEM)

Studies show an obvious spatial dependence in the traffic vitality space, and there
may be a significant correlation between the intensity of residents’ activities in adjacent
spatial units [3]. Moran’s I test identified a spatial autocorrelation (p < 0.05) of street traffic
vitality. Therefore, we used GeoDa software to obtain the spatial matrix that measures the
neighborhood relationship between streets and introduced the spatial lag model (SLM)
and the spatial error model (SEM) to measure the impact of air pollution on the traffic
vitality and the heterogeneity in the built environment. SLM and SEM are two spatial
econometric regression models commonly used to calculate spatial correlations [43,44].
SLM is expressed as follows:

Yit = vKYit + γX + ε (3)

where K is an exogenous spatial weight matrix (150 × 150) reflecting the neighboring
relationships among spatial units. KYit refers to a lagging dependent variable that reflects
spatial autocorrelation. v is a parameter of spatial dependence, and its absolute value
represents the strength of spatial relevance. γ is the parameter vector. X is the independent
variable measured by the model. ε refers to the error term that satisfies the spatial autocor-
relation. In contrast with SLM which measures the spatial correlation through the spatial
lag of the dependent variable, SEM measures the spatial correlation in the error term, and
is expressed as follows:

Yit = γX + βWε + u (4)

where u is the error term, and its distribution conforms to a normal distribution with a
mean value of 0 and a fixed variance. β is the spatial dependency parameter for filtering
the spatial relevance of the error term.
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2.2.3. Standard Deviational Ellipse Model

The standard deviational ellipse (SDE) model was used to describe the directionality
and range characteristics of the spatial distribution of urban geographic elements [24]. It
has been widely used in activity space analysis [26]. In this study, the SDE tool in ArcGIS
software was used to visualize the characteristics and variations of residents’ traffic vitality
space under different air quality levels, and then quantitatively analyze the impact of air
pollution factors on the traffic travel space vitality.

3. Results

3.1. Spatial Change Characteristics of Traffic Vitality under Air Pollution

This paper measures the trajectory position coordinates of residents’ traffic travel
through mobile phone signaling data. Based on the mobile phone signaling data, this paper
uses the standard deviation ellipse model for spatial fitting, and then obtains the core area
and distribution direction of residents’ traffic vitality. Population data comes from the
seventh national census, and the statistical unit is the street. We verified and corrected the
distribution of the permanent population in the census through mobile phone signaling
data. Generally speaking, 10:00 p.m. to 6:00 a.m. is the time for residents to rest and sleep,
which can reflect the actual spatial location of residents. Based on the census data, we
use the distribution of mobile phone signaling data during sleep as a correction index to
finely measure the spatial distribution of the daily urban population. Therefore, the area
and direction of the urban population distribution ellipse will change slightly on different
survey days. To visualize the spatial changes in traffic vitality under the air pollution
environment, this study separately calculates the residents’ average traffic vitality under
the air quality of each street in four levels: excellent (AQI ≤ 50), good (50 < AQI ≤ 100),
light pollution (100 < AQI ≤ 150), and moderate pollution (150 < AQI ≤ 200). The vitality
distribution of traffic space is shown in Figure 2. Moreover, based on the data from the 7th
census of Nanjing City and the land use survey data in 2019, this study presents a map of
the spatial distribution characteristics of the population and facilities. It further reflects
the relationship between the traffic vitality (red circle) and the distribution of population
(green circle) and facilities (blue circle) (Figure 2 and Table 2).

Table 2. Standard deviation ellipse features of urban vibrancy under different air quality levels (i.e.,
AQI ≤ 50, 50 < AQI ≤ 100, 100 < AQI ≤ 150, and 150 < AQI ≤ 200) and its comparison with the SDE
of population and facilities.

Traffic
Pattern

Longitude of
Center

Point (◦)

Latitude of
Center

Point (◦)

Long Axis
Radius (km)

Short Axis
Radius (km)

Direction (◦) Area (km2)

Traffic vitality ellipse
(excellent)

Public traffic 118.37 31.17 35.29 19.59 30.73 548.97
Self-driving 118.23 30.06 31.29 18.32 28.65 482.32

Traffic vitality ellipse
(good)

Public traffic 118.36 31.12 30.62 18.13 29.22 477.15
Self-driving 118.13 28.33 28.53 17.42 27.51 433.56

Traffic vitality ellipse
(light pollution)

Public traffic 118.22 30.42 21.75 17.86 38.82 392.25
Self-driving 118.19 29.57 20.33 16.92 37.65 388.78

Traffic vitality ellipse
(moderate pollution)

Public traffic 118.28 31.11 13.39 13.72 42.68 332.23
Self-driving 118.26 32.19 12.76 13.65 40.72 297.84

Population ellipse - 118.31 31.17 33.57 21.23 37.21 528.13
Facilities ellipse - 118.32 31.19 27.50 21.17 32.29 526.82
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Figure 2. Standard deviation ellipse (SDE) features of traffic vitality under different air quality levels
(i.e., (a) AQI ≤ 50, (b) 50 < AQI ≤ 100, (c) 100 < AQI ≤ 150, and (d) 150 < AQI ≤ 200) in Nanjing.

Under good air quality, Nanjing’s traffic vitality is obviously consistent with the
spatial direction of population and distribution of facilities. This confirms that mobile
phone signaling check-in data can accurately reflect the spatial distribution of residents’
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commuting travel activities [19–22]. The traffic vitality space in Nanjing presents the spatial
characteristics of “one core–multiple centers–multiple nodes”, and areas with a high degree
of travel activity are located along the Yangtze River. The core of residents’ activities is
located in the main urban area of Nanjing, and there are many hot spots for travel activities
in the periphery of the urban area. The entire city presents a trend of “northeast–southwest”
axial expansion in the spatial pattern of the traffic vitality. The “multi-node” refers to
high-density area nodes with multiple traffic trips within the city.

The model results show that the influence of air pollution degree on residents’ will-
ingness to travel is not a simple linear relationship, but a fluctuating relationship, which
drops sharply upon reaching a certain level. When the air quality is moderately polluted,
the latitude and longitude of the SDE center point and the long and short axes change
significantly. The direction of traffic vitality SDE changed from “Southwest-Northeast” to
“East-West”. This indicates that as the risk of air pollution exposure increased, although
the intensity of traffic vitality in the urban core area declined, it remained the main choice
for residents’ travel activities. Compared with the urban core area, the traffic vitality of
residents in the north-south areas of Nanjing’s periphery has declined significantly.

In addition, the model results show that air pollution significantly compresses the size
of the active area for residents’ traffic and travel, and changes the distribution direction of
the active area. When air quality is excellent, the SDE area of traffic vitality between the
population and the distribution of facilities, indicating that residents are more willing to go
to the outer areas of the city to carry out activities. As the risk of exposure to air pollution
increases, when air quality is good, the SDE area for traffic vitality decreases to 71.3% of
the excellent air quality. When air quality is light pollution, the SDE area for traffic vitality
decreases to 47.8% of the excellent air quality. As the air quality transformed into moderate
pollution, the area of the SDE for traffic vitality is significantly reduced to 34.2% of the area
when the air quality is excellent. The SDE area of traffic vitality is significantly lower than
the SDE area of population distribution, showing significant spatial shrinkage.

3.2. Inhibitory Effect of Air Pollution on Traffic Vitality

Table 3 shows the results of the panel regression model of the impact of air pollution
on traffic vitality. Model 1 is a basic panel regression model. We used Model 1 as the base
control model, Model 2 represented SLM panel regression models, and model 3 represented
SEM panel regression models.

(1) Air pollution significantly inhibits the traffic vitality. After controlling the weather
conditions, whether it is working day or not, and the spatial correlation conditions, AQI
shows a significant negative correlation with traffic vitality. The weakening of traffic vitality
greatly reduces the city’s ability to attract and gather people, materials, and resources. Based
on models 4 and model 5, each increase of 10 unit in the AQI value reduces the public
traffic vitality intensity by approximately 0.46 times/10 km2. Therefore, as the air quality
decreases by one level (AQI increases by 50 units), the activity intensity decreases by
2.3 times/10 km2. Based on models 6, each increase of 10 unit in the AQI value reduces the
public traffic vitality intensity by approximately 0.52 times/10 km2. Therefore, as the air
quality decreases by one level (AQI increases by 50 units), the activity intensity decreases
by 2.6 times/10 km2. The daily average of 19.7 times/10 km2 of mobile phone signaling
sign-in intensity in Nanjing 2019. A change in the air quality in Nanjing from good to light
pollution causes public traffic vitality to drop by 11.67% and self-driving traffic vitality
to drop by 13.19%. Therefore, approximately one-tenth of traffic travel activities may be
inhibited by air pollution. However, a shift on the air quality in Nanjing from good to
moderate pollution (AQI increase by 100 units) inhibits nearly 23.35% of traffic travel.
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Table 3. Results of the basic panel regression and spatial panel regression models.

Variable
Model 1 Model 2 Model 3

Model 4
(Bus)

Model 5
(Subway)

Model 6
(Self-Driving)

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Date (Non-working day = ref.) 0.761 * 0.453 0.792 * 0.383 0.862 * 0.408 0.738 * 0.373 0.738 * 0.398 0.743 * 0.477
AQI −0.152 *** 0.024 −0.087 *** 0.024 −0.097 *** 0.024 −0.271 *** 0.063 −0.248 *** 0.063 −0.233 *** 0.063

Wind speed −1.063 *** 0.142 −0.093 *** 0.142 −1.103 *** 0.152 −0.498 *** 0.142 −0.472 *** 0.142 −0.518 *** 0.15
Precipitation (Non-torrential rain = ref.) −2.017 *** 0.351 −2.018 *** 0.35 −2.112 *** 0.375 −2.075 *** 0.35 −1.931 *** 0.35 −2.032 *** 0.371

Temperature 0.937 *** 0.126 0.664 *** 0.126 0.746 *** 0.135 0.672 *** 0.126 0.663 *** 0.126 0.724 *** 0.134
(Temperature)2 −0.023 *** 0.019 −0.017 *** 0.019 −0.009 *** 0.019 −0.013 *** 0.019 −0.013 ** 0.019 −0.010 ** 0.019

AQI* Parking density - - - - - - - - - - −0.001 ** 0.000
AQI* Public transportation frequency 0.325 ** 0.043 0.215 *** 0.037 - -

AQI* Station accessibility - - - - - - 0.267 ** 0.053 0.229 *** 0.053 - -
AQI* Transportation facility diversity - - - - - - −0.003 *** 0.000 −0.004 *** 0.000 −0.003 *** 0.001

AQI* Metro/Bus station density - - - - - - 0.024 ** 0.007 0.025 ** 0.006 - -
AQI* Road intersection density - - - - - - 0.002 ** 0.000 0.001 * 0.000 0.001 * 0.000

ρ - - 0.082 *** 0.008 0.075 *** 0.008 - - 0.052 *** 0.007 0.069 *** 0.007
Location fixed effect Control
Street fixation effect Control
Season fixed effects Control

N 49,831

Model fit
Adjusted R2 0.076 0.076 0.082 0.274 0.218 0.235

Log-likelihood −276,912.2 −261,782.9 −252,838.2 −273,091.1 −292,071.3 −266,721.5
AIC 438,912.2 462,295.9 462,276.5 463,212.2 473,118.6 456,115.1

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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(2) At the same time, the model results also show that meteorological conditions have
a significant impact on traffic vitality. Nanjing has a subtropical monsoon climate. The
mild and humid climatic conditions are conducive to the transportation of residents, and
eliminate the inapplicability of the model results caused by the drastic changes in outdoor
temperature in different cities [44]. The regression model results show that there is a nega-
tive correlation between meteorological conditions (temperature, humidity, etc.) and traffic
vitality (public traffic pattern, self-driving traffic pattern, etc.). The increase in temperature
and wind speed, and heavy rain lead to a significant reduction in residents’ activities,
thereby reducing the traffic vitality. In addition, as the temperature and wind speed rises,
the decreasing trend of traffic vitality in public traffic pattern gradually decreased, while the
trend of decreasing traffic vitality in self-driving traffic pattern did not change significantly.

(3) Under different traffic patterns, the traffic vitality intensity between adjacent streets
also shows spatially correlated. In general, the fit of the SLM and SEM panel regression
models shows relatively accurate. As shown in Models 1–3, compared with the results of
traditional regression models, the significance and influence trends of variables in the SLM
and SEM models are more stable. In the SEM and SLM panel regression models, the spatial
dependence parameter (ρ) value was positively significant, thereby indicating a significant
positive correlation between the adjacent streets’ traffic vitality. The model result also indi-
rectly indicates that there is spatial heterogeneity in the inhibitory effect of air pollution on
traffic vitality. In different streets, the differences in transportation infrastructure conditions
will also indirectly affect the traffic vitality under different traffic patterns.

3.3. Impact of Air Pollution on Traffic Activity Is Heterogeneous in Different Transportation
Infrastructure Environments

Models 4–6 further introduce interaction terms between transportation infrastructure
environments and air pollution variables. Owing to the accuracy of model fitting, models
4–6 exhibit greater improvement than models 1–3, and the influence coefficients of the
6 interaction variables are all significant. Model 1, Model 2, and Model 3 analyze the
correlation between air quality-related variables and traffic vitality, respectively. Among
them, Model 2 focuses on the influence analysis of “rain or not” factor on traffic vitality.
Model 3 focuses on the influence of “whether it is a working day” factor on traffic vital-
ity. Model 4, Model 5 and Model 6 respectively measure the interaction impact between
AQI index and transportation infrastructure environment factors on traffic vitality. Trans-
portation infrastructure environment factors include parking density, public transportation
frequency, station accessibility, road intersection density, transportation facility diversity,
and subway station density. The model specifically analyzes whether there is a significant
correlation between the interaction terms of different indicators and traffic vitality. Model
4–6 respectively measure the cross-influence effects of transportation infrastructure and air
pollution level on urban traffic vitality under different traffic patterns of bus, subway and
self-driving, etc. It proves that the inhibitory effect of air pollution on traffic vitality shows
significant heterogeneity in different transportation infrastructure environments.

(1) The higher the public transportation station density and public transportation
frequency of the street, the more obvious the suppression effect of air pollution. Generally
speaking, the public transportation station agglomeration is conducive to promoting the
accessibility of station and connection of urban elements, thereby enhancing the traffic
vitality [36]. The results show that densely distributed public stations areas are more
sensitive to air pollution, thus strengthening the inhibitory effect of air pollution on traffic
vitality. The research results of the models are consistent with the past studies stating that
air pollution has a significant inhibitory effect on traffic vitality [39]. Air pollution has
a strong inhibitory effect on the vitality of traffic in densely distributed public stations
areas. This inhibitory effect adversely affects the sustainable development of urban society
and economy.

(2) The higher the parking density, station accessibility, road intersections density, and
transportation facility diversity, the lower the suppression effect of air pollution. Compared
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with public traffic such as buses and subways, the impact of air pollution on self-driving
traffic pattern is relatively low. The higher the parking density in the street, the more the
opportunities for residents to drive by themselves to reach their destination and carry out
related activities. To a certain extent, the inhibitory effect of air pollution on traffic vitality
is alleviated. When the density of road intersections is high, the road system in the street
presents the spatial morphological characteristics of wide lanes, network interweaving,
and small scale. Studies have shown that a road system with small scale, small road width,
and network intertwined can help increase diversified traffic travel [26,31,37]. In addition,
the higher the degree of transportation facility diversity, the more abundant the types of
transportation provided. In addition, the diversification of activity types is considered to
be an important aspect of improving the traffic vitality [32,35]. This study shows that the
diversification of transportation facility types in built-up areas has alleviated the inhibitory
effect of air pollution on traffic vitality.

(3) The inhibitory effect of air pollution on traffic vitality presents significant space
heterogeneity. There is spatial heterogeneity in the inhibitory effect of air pollution on
traffic vitality, which will weaken the enthusiasm of residents to use urban infrastructure
and hinder the optimization and adjustment of urban functional spatial structure. If
this air pollution situation continues to increase and does not improve for a long time,
the disadvantage of the suburb’s lack of attractiveness to the population will be further
magnified. The model results are consistent with the distribution characteristics of traffic
vitality space in the central urban streets and suburban streets under different air quality
levels in the previous section. Under the increasingly serious of air pollution, the decline
in traffic vitality in the suburbs of Nanjing is significantly higher than that of the central
urban area. This will lead to the lack of suburban traffic vitality, which will further affect
the layout strategy of suburban infrastructure. Therefore, urban management departments
should pay more attention to the supervision of air quality in suburban areas, so as to
alleviate the inhibitory effect of air pollution on traffic vitality as much as possible.

4. Discussion

This study integrated mobile phone signaling data, weather, and air pollution among
other multi-source data, and conducted panel statistical analysis at the street level. The
research results have enriched the empirical research on the micro-spatial scale of traffic
vitality in the city interior area, and will elucidate the relationship among air pollution, the
built environment, and traffic vitality. In terms of the research content, this study measured
the inhibitory effect of air pollution on traffic vitality and verified the heterogeneity impact
under different transportation infrastructure environments. Considering China’s current
urban development stage of rapid urbanization, industrialization, and motorization, the
urban management departments should strengthen pollution emission management to
effectively reduce regional air pollution. In contrast, urban construction departments
should strengthen the construction of urban rail transit systems with high coverage, high
carrying capacity, and high operating frequency, optimize the layout of land use, fortify the
construction of supporting facilities, and alleviate the inhibitory effect of air pollution on
residents’ transportation.

This study is limited in the following three aspects, which should be addressed in
future. First, collecting the residents’ activity data from multiple dimensions, combining
the residents’ daily life trajectories with the built environment attributes, and refining
the relationship between different traffic modes and air pollution are necessary [23–25].
Second, in future research, we will try to integrate different types of data to enrich the
measurement models and methods of traffic vitality. Third, people with different socioe-
conomic backgrounds have different views on transportation choices and air pollution
tolerance. We need to study the differences in the inhibitory effects of air pollution on
different population types to better address environmental equity issues [32,33]. Presently,
certain theoretical studies have shown that air pollution has differentiated inhibitory effects
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and behavioral feedback on different types of people, but empirical research is required to
verify the mechanism and quantitative feedback.

5. Conclusions

This study mainly obtains the location data of mobile phone signaling in Nanjing 2019,
using the street as the space unit to calculate the traffic vitality in each street. Combining the
air quality index, daily climate state, traffic commuting pattern and the characteristics of the
street transportation infrastructure environment, we focus on exploring the inhibitory effect
of air pollution on traffic vitality and the heterogeneous impact of different transportation
infrastructure environments. The study found three main characteristics:

(1) There are obvious differences among traffic vitality under different air quality
levels. Specifically, in different transportation models and different location conditions,
there are obvious differences in traffic vitality. The traffic vitality space in Nanjing presents
the spatial characteristics of “one core-multiple centers-multiple nodes”, and areas with a
high degree of travel activity are located along the Yangtze River. The core of res-idents’
activities is located in the main urban area of Nanjing, and there are many hot spots for
travel activities in the periphery of the urban area. The entire city presents a trend of
“northeast-southwest” axial expansion in the spatial pattern of the traffic vitality. The
“Multi-node” refers to high-density area nodes with multiple traffic trips within the city.
This indicates that as the risk of air pollution exposure increased, although the in-tensity of
traffic vitality in the urban core area declined, it remained the main choice for residents’
travel activities. Compared with the urban core area, the traffic vitality of residents in the
north-south areas of Nanjing’s periphery has declined significantly.

(2) The inhibitory effect of air pollution on public traffic vitality and self-driving traffic
vitality are differences. Specifically, each increase of 10 unit in the AQI value reduces the
public traffic vitality intensity by approximately 0.46 times/10 km2. Therefore, as the air
quality decreases by one level (AQI increases by 50 units), the activity intensity decreases
by 2.3 times/10 km2. In addition, each increase of 10 unit in the AQI value reduces the
public traffic vitality intensity by approximately 0.52 times/10 km2. Therefore, as the air
quality decreases by one level (AQI increases by 50 units), the activity intensity decreases by
2.6 times/10 km2. Therefore, approximately one-tenth of traffic activities may be inhibited
by air pollution. The weakening of traffic vitality greatly reduces the city’s ability to attract
and gather people, materials, and resources.

(3) The inhibitory effect of air pollution on traffic vitality is heterogeneous under
different transportation infrastructure environments. The higher the public transportation
station density and public transportation frequency of the street, the more obvious the
suppression effect of air pollution. The higher the parking density, station accessibility, road
intersections density, and transportation facility diversity, the lower the suppression effect
of air pollution. Com-pared with public traffic such as buses and subways, the impact of air
pollution on self-driving traffic pattern is relatively low. There is spatial heterogeneity in
the inhibitory effect of air pollution on traffic vitality, which will weaken the enthusiasm of
residents to use urban infrastructure and hinder the optimization and adjustment of urban
functional spatial structure.

This paper introduces the Spatial Lag Model and Spatial Error Model to further
investigate the impact of air pollution on traffic vitality and its heterogeneity in the built
environment after controlling for spatial dependencies. The spatial matrix model of street
adjacent relationship was constructed with the help of ArcGIS software. Specifically, the
SEM model and the SLM model integrate the spatial element information, and integrate the
spatial dimension effects such as the agglomeration and diffusion of elements in the space
into the traditional regression model. This model is beneficial to analyze the interaction
effect of spatial elements in the influence mechanism. However, the model used in this
paper still needs to be further optimized, and it is necessary to study the inhibitory effect of
air pollution on different populations and different types of activities. The optimized model
can better respond to research on international environmental justice issues. People with
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different socioeconomic attributes, genders, and types of activities have different tolerances
for air pollution. Under different circumstances, there are still large differences in the traffic
vitality of residents, which needs to be further explored by empirical research.

The results of this study help to clarify the relationship between air pollution, the built
environment, and the vitality of urban transportation. In general, air pollution significantly
affects the vitality of urban traffic. Under different built environment conditions, the effect
of air pollution on urban traffic vitality also showed significant differences. Therefore, the
government needs to work with environmental protection departments, natural resource
management departments, transportation management departments, and other depart-
ments to work together to improve the urban environment. On the one hand, environmental
protection departments should strengthen the prevention and control of air pollution, in-
cluding reducing pollutant emissions, and strictly controlling new production capacity
in high-energy-consuming and high-polluting industries. Relevant departments need to
vigorously promote clean production, speed up the adjustment of the energy structure, and
increase the supply of clean energy such as natural gas and coal-to-methane. At the same
time, the environmental protection department needs to strengthen the supervision and
management of industrial projects, strengthen the constraints of energy conservation and
environmental protection indicators, and shall not approve the construction of projects that
have not passed the environmental assessment. On the other hand, the urban construction
department should appropriately increase the scale of commercial land in the built-up area
and increase the density of the road network and subway stations. In the urban area, the
proportion of industrial land will be reduced, and the mixed degree of land use will be
improved, thereby enhancing the traffic vitality of residents in the built-up area.
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Abstract: Pavement temperature is the main factor determining road icing, and accurate and timely
pavement temperature prediction is of significant importance to regional traffic safety management
and preventive maintenance. The prediction of pavement temperature at the micro-scale has been a
challenge to be tackled. To solve this problem, a bidirectional extended short-term memory network
model based on the attention mechanism (Att-BiLSTM) was proposed to improve the prediction
performance by using the time series features of pavement temperature and meteorological factors.
Pavement temperature data and climatic data were collected from a road weather station in Yunnan,
China. The results show that the MAE, MSE, and MAPE of the proposed Att-BiLSTM model were
0.330, 0.339, and 10.1%, respectively, which were better than the other baseline models. It was shown
that 93.4% of the predicted values had an error less than 1 ◦C, and 82.1% had an error less than 0.5 ◦C,
indicating that the proposed Att-BiLSTM model enables significant performance improvement.
In addition, this paper quantified and analyzed the effects of parameters such as the size of the
sliding window, the number of hidden layer neurons, and the optimizer on the performance of the
prediction model.

Keywords: transportation meteorology; pavement temperature prediction; deep learning; BiLSTM;
attention mechanisms; winter icing

1. Introduction

Road surface conditions have a significant impact on the safe operation of vehicles [1,2].
Especially in winter, rain and snow tend to cause the road surface to freeze, which can
significantly reduce the friction coefficient of asphalt pavement and create poor road
pavement driving conditions, which can cause serious traffic accidents. In winter, pavement
temperature is a significant factor determining road icing, and the accurate prediction
of pavement temperature can provide guidance for preventive and proactive pavement
maintenance and improve service levels [3,4]. For example, real-time data from pavement
condition monitoring systems can be used to predict future pavement temperatures and
salt dangerous road sections before they are at risk of icing up, preventing the risk before it
happens.

Pavement temperature prediction is a nonstationary time series prediction problem,
and traditional methods usually only rely on a previous moment of observation for pre-
diction, such as the Markov model and the autoregressive moving average model. These
methods cannot consider the thermal inertia of a pavement, so the accuracy of the models
is poor. With the rise in machine learning models, especially recurrent neural networks
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(RNNs), RNNs have made a major breakthrough in time series forecasting because RNNs
can find and model higher-order nonlinear relationships in time series. Although re-
searchers have applied RNNs and other deep learning models to pavement temperature
prediction, the meteorological factors affecting pavement temperature are less considered
in the models, so the influence of meteorological elements on pavement temperature is not
well modeled.

In this paper, a bi-directional long short-term memory (BiLSTM) model based on
an attention mechanism was proposed that is practical and implementable. The BiLSTM
can effectively solve the gradient disappearance and gradient explosion problems and is
used to capture the forward and reverse information of the sequence more completely [5].
Attentional mechanisms were used to precisely identify the most important features. The
proposed model has the ability to accurately predict pavement temperatures using historical
pavement temperature data and can provide support for preventive maintenance.

2. Literature Review

Most of the existing studies solved the pavement temperature prediction problem in
different ways, using both physical and statistical models.

Physical models are used to predict pavement temperatures by solving partial differ-
ential equations for heat transfer. For example, Sass developed a surface energy equation
in 1992 to predict pavement temperatures over a 3 h period [6]. Voldborg developed a
forecasting model that can generate short-term indicators such as air temperature, humid-
ity, and road surface temperature for each of the more than 200 road weather stations in
Denmark [7]. Meng developed a refined numerical model for the prediction of pavement
parameters, taking into account the influence of pavement factors and basic urban prop-
erties, and the results showed that solar radiation correction factors, asphalt depth, and
asphalt thermal conductivity are important parameters for the simulation of road interface
temperatures [8]. Chen J et al. proposed an innovative time-varying function to predict
pavement temperature in relation to solar radiation and air temperature [9]. However,
the physical model is complex to model and requires a large number of difficult-to-collect
parameters as input. At the same time, as Karsistoa’s results show, errors can be significant
when physical variations are complex [10].

In contrast to physical models, statistical models do not require analytical deviations
and numerical calculations to estimate pavement temperatures, but rather statistical anal-
ysis based on historical data to obtain a reasonable predictive model. Statistical models
are divided into linear and nonlinear models depending on the relationship between the
influencing factors and the pavement temperature. For example, Park et al. developed a
linear regression model for estimating the minimum surface temperature of a pavement
based on the ambient air temperature [11]. Asefzadeh et al. developed separate models for
predicting daily average pavement temperatures for different seasons and daily maximum
and minimum pavement temperatures for different asphalt layer depths [12]. Kršmanc
et al. adjusted the input parameters and different time intervals to predict pavement
temperatures based on stepwise linear regression analysis [13]. Zapata et al. developed
a medium-depth pavement temperature prediction model and conducted a sensitivity
analysis on the influencing factors, and found that there is a nonlinear relationship between
the influencing factors and the pavement temperature [14]. In contrast to the linear regres-
sion model, nonlinear regression models both typically involve more complex equations
and better capture the nonlinear relationship between pavement temperature and the
influencing factors, which makes it the classical model in this field.

With the rise in machine learning models, many promising methods have been widely
used to model pavement temperatures. Yang et al. used K-Nearest Neighbors to explore
the variation in pavement temperature on different road sections [15]. Molavi et al. evalu-
ated the performance of different machine learning models for the prediction of asphalt
pavement temperatures under average, minimum, and maximum daily temperatures [16].
Milad et al. proposed an asphalt pavement temperature prediction model through deep
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learning techniques and suggested that future researchers should integrate loss-balancing
algorithms into multi-task learning to improve the efficiency of difficult tasks. Meanwhile,
future studies of predicted pavement temperatures should consider the effects of factors
such as air temperature, wind speed, and relative humidity [17]. Li et al. proposed that the
prediction of pavement surface temperature should not be a single value, but a probability
distribution. They developed a prediction model for evaluating the probability distribution
of pavement surface temperature in winter [18].

3. Objective and General Outline

3.1. Objective

The present study aimed to proposes an attention-based BiLSTM model for the pave-
ment temperature prediction of asphalt pavement in winter. The BiLSTM was used to
completely capture the forward and reverse information of pavement temperature se-
quences and meteorological feature sequences, and the attention mechanism was used to
accurately identify the most important features and improve feature utilization to further
improve the performance of pavement temperature prediction. In addition, this study
analyzed the effects of the size of the sliding window, the number of hidden layer neurons,
the optimizer, and the training epoch on the prediction accuracy.

3.2. General Outline

Figure 1 provides the general outline of the research, which consisted of three main
steps. (1) The first step was the collection and preprocessing of winter pavement tempera-
ture data and meteorological element data. In order to collect accurate data, several road
weather stations were installed and checked regularly to ensure the stations worked well.
To further improve the data quality, data preprocessing was conducted. (2) The second step
determined the model inputs by Spearman correlation coefficients. The input feature matrix
had a significant impact on the model, and important variable extraction was performed
in order to capture the influence of meteorological factors on pavement temperature and
pavement temperature time series characteristics. (3) The third step established the optimal
pavement temperature prediction model by adjusting the model hyperparameters to predict
the future pavement temperature. The hyperparameters controlled the performance of the
model, and in order to obtain the optimal model, the optimal values of parameters such as
the size of the sliding window, the number of hidden layer neurons, and the optimizer were
obtained through the experiment. Finally, the established attention-based BiLSTM model
was used for pavement temperature prediction to further support preventive maintenance.
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Figure 1. General outline of the research methodology.

4. Data

4.1. Data Description

Compared to northern China, southern China receives less snow. When the tempera-
ture is low, thin ice is easily created on the road. Thin ice, being smooth and transparent,
prevents drivers from observing it and slowing down in advance. Most drivers in Yunnan
lack experience in driving in ice and snow, and when they find that the vehicle is out of
control, they cannot handle it rationally. As a result, thin ice causes casualties in Yunnan
every year.

The observing station is on the Niujiagou bridge on the Maliuwan–Zhaotong line
(103◦76′13′′, 27◦74′04′′) in the Wumeng Mountains. The raw data are real-time data col-
lected by VAISALA automatic road weather stations every minute, including the main
meteorological factors such as pavement temperature, air temperature, humidity, wind
speed, and rainfall. An example of the raw data is shown in Table 1.
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Table 1. The raw data format of VAISALA road weather station.

Time Visibility/m Temperature/◦C
Related

Humidity/%
Rainfall/mm

Wind
Speed/m/s

Wind
Direction/◦

Pavement
Temperature ◦C

1
December
2019 0:00

20,000 3.7 92 0 2.3 54 3.7

1
December
2019 0:01

20,000 3.7 93 0 2 32 3.7

. . . . . . . . . . . . . . . . . . . . . . . .

The total data collection period included two time periods from November 2019
to March 2020 and November 2020 to March 2021. Figure 2 shows the time sequence
distribution diagrams. After eliminating duplicate, missing, and abnormal data, the data
were resampled at the interval of one hour. Thereby, 4344 samples remained for modeling.
Figure 2 shows the time sequence distribution diagrams for November 2019 to March 2020.
The descriptive statistics of the climatic data and pavement temperature data are presented
in Table 2. The results of the analysis show that the average winter air temperature is about
5.4 degrees Celsius, and the lowest pavement temperature is about −4.1 degrees Celsius.
At the same time, the average relative humidity is 83.7% due to the high vegetation cover.
Figure 2 shows that the air and pavement temperatures are specifically cyclical.

Figure 2. Cont.
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Figure 2. Distribution of each measured variable. Pavement temperature (first), air temperature
(second), visibility (third), relative humidity (fourth), wind direction (fifth), wind speed (sixth) and
rainfall (last).

Table 2. Descriptive statistics of the climatic data and pavement temperature data.

Variable Mean St. Dev Max Min

Visibility 11,110.0 5994.4 20,000.0 112.8
Air temperature 5.4 3.7 22.3 −2.1

Humidity 83.7 11.9 98.9 34.6
Rainfall 0.0 0.0 0.2 0.0

Wind speed 1.8 0.8 5.0 0.0
Wind direction 218.2 75.2 351.3 10.1

Pavement temperature 6.5 5.3 35.9 −4.1
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4.2. Data Preprocessing

There are many uncontrollable factors in the road weather station data collection
process, especially unexpected factors such as vehicle movement and equipment failure,
which can lead to missing values and noisy data in the raw data. Therefore, the data
processing flow, as shown in Figure 3, was designed, which will be discussed later.

Figure 3. The data processing flow.

4.2.1. Data Cleaning and Replacement

The three-sigma guidelines were used to identify noisy data, which were considered
noisy if the absolute value of the difference between the value and the mean was greater
than three times its standard deviation.∣∣Xi − X

∣∣ > 3σX (1)
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where Xi is the observed value of the feature; X is the mean value of the feature; σX is the
standard deviation of the feature.

In this way, noisy data could be detected, and missing values could be found directly
from the data. After completing the noisy data and missing data detection, we removed
them and filled in the proper data. Due to the high frequency of data collection, we used
the average value for filling. The calculation formula is as shown in Equation (2).

Xi
′ =

Xi−1 + Xi+1

2
(2)

where Xi
′ is the value calculated by the averaging method.

4.2.2. Data Normalization and Resampling

In order to improve the training speed of the model and reduce the impact of different
magnitudes between different features on the complexity, the z-score normalization was
chosen to linearly transform the original data. The calculation formula is as shown in
Equation (3).

X̂i =
Xi − X

σX
(3)

where X̂i is the normalized data.
It was considered that the model could not provide a reference for the prevention of

pavement icing if the prediction time interval was too small. Therefore, the minute-Scale
data set was resampled at 1 h intervals to form a new data set.

4.2.3. Generating Samples Making

In this paper, the prediction of pavement temperature was considered as a time series
problem, which means that the model used the sliding window approach to construct
supervised learning samples. As shown in Figure 4, green represents ordinary time series
data, time series framed by black lines are used as features, and orange time series represent
labels. The process of the sliding window approach is as follows:

(1) Suppose the number of the sliding window is set as Δt, which means the model uses
the data in the previous times [t − Δt, t) to predict the pavement temperature in time t.

(2) If the number of time series data is d, a total of d − Δt samples can be constructed.

Figure 4. Sliding window approach.

5. Attention-Based BiLSTM Modeling

In this paper, an attention-based BiLSTM deep learning model for pavement tempera-
ture prediction was proposed. The model consists of five parts: an input layer, BiLSTM
layer, attention layer, fully connected layer, and output layer. Figure 5 illustrates the overall
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architecture of the Att-BiLSTM model. The BiLSTM layer is capable of extracting features
from the front and back directions of the pavement temperature time series data. After
that, the important features are further extracted using the attention layer to form a new
feature vector. The attention mechanism was introduced mainly to optimize the LSTM
structure to compensate for its lack of ability to give different levels of attention to features
over multiple time steps. Finally, the attention layer is followed by the fully connected
(FC) layers, which are regression layers used to make predictions. Each module will be
described in detail in the following subsections.

Figure 5. Framework of the proposed model.

5.1. BiLSTM

Pavement temperatures are affected by the cumulative effect of pavement tempera-
tures at multiple historical moments. When extracting temporal features, the influence of
pavement temperature at multiple historical moments should be considered. Recurrent
neural networks (RNNs) are a classical architecture for time sequence data prediction,
proposed by Hopfield [19]. The advantage of RNNs is the use of output as feedback in
RNNs compared to traditional artificial neural networks, which makes RNNs more effec-
tive in learning time-dependence [20]. However, when handling problems with long-term
dependencies, RNNs may fail to converge. In order to solve this problem, Hochreiter
and Schmidhuber proposed a long-short-term memory (LSTM) neural network, which
introduces memory cells to deal with long-term dependencies [21]. The LSTM neural
network is shown in Figure 6.
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Figure 6. Long short-term memory neural network.

With the help of the LSTM neural network, the temporal characteristics of the actual
values at the predicted target moment can be extracted from the actual pavement temper-
ature sequence at the target window moment and only mapped to the actual pavement
temperature at the target prediction moment, enabling prediction on a time series scale.
The LSTM network is calculated as follows:

ft = σ(Wf · [ht−1, xt] + b f ) (4)

it = σ(Wi · [ht−1, xt] + bi) (5)

c′t = tanh(WC · [ht−1, xt] + bC) (6)

ct = ft · ct−1 + it · c′t (7)

ot = σ(Wo · [ht−1, xt] + bo) (8)

ht = ot · tanh(ct) (9)

where t is the moment; xt is the current moment input; ft is forget gate; it is input gate; c′t
is a temporary cell state; ct is a cell state; ot is output gate; ht is the output of the hidden
layer at the current moment; ct−1 is the state of the cell at the previous moment; ht−1 is the
output of the hidden layer at the previous moment; Wf , Wi, WC, Wo are the weights to be
learned, respectively; b f , bi, bC, bo are the offsets to be learned; σ is the sigmoid activation
function.

Although LSTM overcomes the limitations of RNNs, it can still only process sequence
information from the past and cannot utilize front sequence information. Huang et al. [22]
proposed a bidirectional LSTM (BiLSTM) including forward and backward LSTM layers,
as shown in Figure 7. A BiLSTM is able to integrate and process information from both
the front and rear, capturing road temperature and associated parameter time information
more effectively.
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Figure 7. Bidirectional long short-term memory neural network.

5.2. Attention Mechanism

The attention mechanism is a distribution mechanism inspired by the human brain.
The human brain focuses on the area that needs to be focused, reducing or even not giving
attention to other areas to obtain more important detailed information. In other words, the
attention mechanism gives higher weights to relevant parts while minimizing irrelevant
parts by giving them lower weights, thus improving the accuracy of the model. The
attention mechanism structure is shown in Figure 8.

Figure 8. Structure of attention mechanism.

Here, xt(t ∈ [1, n]) denotes the input to the BiLSTM network, ht(t ∈ [1, n]) is the
output of the hidden layer obtained by BiLSTM for each input, αt(t ∈ [1, n]) is the output
of the attention mechanism for the BiLSTM hidden layer attention probability distribution,
and y is the output value of the BiLSTM with the introduction of the attention mechanism.

5.3. Evaluation Metric

Several common performance metrics are used to evaluate the performance of the
model: mean absolute error (MAE), mean square error (MSE), and mean absolute percent-
age error (MAPE), which are calculated using (10)–(12).

MAE =
∑

N
i=1|yi − ŷi|

N
(10)

MSE =
∑

N
n=1(yi − ŷi)

2

N
(11)

MAPE =
100%

N ∑
N

i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (12)
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where yi represents the observed pavement temperature and ŷi represents the predicted
pavement temperature.

6. Results and Discussion

6.1. Selection of Important Characteristic Variables

We aimed to reduce the complexity of the model input and improve the accuracy of
the prediction model. The characteristic variables with significant correlation with the
predicted target value of the pavement temperature were used as the input variables of the
pavement temperature prediction model. Considering the possible nonlinear correlation
between meteorological characteristics and pavement temperature, a Spearman correlation
analysis was performed for the six meteorological characteristics variables as well as
pavement temperature. The Spearman’s rank correlation coefficient method is often used
to analyze the closeness of a relationship between two variables and is calculated as:

r =
∑

n
i=1 ( fi − fi)( f j − f j)√

∑ n
i=1( fi − fi)

2
∑ n

i=1( f j − f j)
2

(13)

where fi and f j are the mean of the experimental values fi and f j, respectively, r is the
Spearman rank correlation coefficient, and the closer |r| is to 1, the higher the degree of
linear correlation between fi and f j. The results are shown in Figure 9.

Figure 9. Correlation coefficients between pavement temperature and various meteorological factors.

The correlation coefficient between air temperature and pavement temperature was
0.9, indicating an extremely strong correlation between air temperature and road surface
temperature. The correlation coefficients between wind speed, rainfall, visibility, and
relative humidity were weakly correlated with pavement temperature, with correlation
coefficients of 0.42, 0.37, 0.37, and −0.61, respectively. The correlation coefficient between
wind direction and pavement temperature was 0.035, indicating a very weak correlation
between wind direction and pavement temperature. Based on the Spearman correlation
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coefficient results, air temperature, wind speed, rainfall, relative humidity, and previous
road surface temperature were selected as input features.

6.2. Optimal Parameters of the Att-BiLSTM Model

After building the model structure and determining the input features of the model,
the next step was the training of the model. We divided the dataset into a ratio of 70% for
the training set, 20% for the test set, and 10% for the validation set. The Keras application
programming interface for TensorFlow was chosen to implement the model proposed in
this paper. For the proposed model, there are several important parameters that have a sig-
nificant impact on the prediction performance, including the size of the sliding window, the
number of hidden layer neurons, the type of optimizer, and the number of training epochs.
The grid search cross-validation method is used to find the optimal hyperparameters. The
optimization process for these parameters is shown below.

6.2.1. The Size of Sliding Window

For time sequence data, the size of the sliding window is the most important parameter,
as it directly affects the input features and the number of samples. Inputting sequences
with high time correlation into the model can effectively improve the prediction accuracy
of the model, while inputting sequences with low time correlation into the model will add
irrelevant information. Considering the thermal inertia of the pavement temperature, the
size of the sliding window was set to 1 h, 3 h, 5 h, 7 h, and 9 h, respectively. These values
were tested, and the optimal value was selected by the evaluation metric.

The results of the calculations are shown in Table 3 and Figure 10, which indicate that
when the size of the sliding window was 7 h, the prediction performance of the model
proposed was the best.

Table 3. Performance of the models when the size of the sliding window is 1 h, 3 h, 5 h, 7 h, and 9 h.

Δt/h MAE MSE MAPE

1 h 0.662 1.678 0.120
3 h 0.419 0.531 0.138
5 h 0.457 0.890 0.196
7 h 0.334 0.353 0.101
9 h 0.345 0.387 0.115

Figure 10. Errors comparison with different hours. MAE (left), MSE (middle), MAPE (right).

6.2.2. The Number of Hidden Layer Neurons

For neural networks, the number of hidden layer neurons also plays a significant
role. Too few hidden layer neurons can lead to underfitting of the model and the inability
to predict accurately, while too many can lead to overfitting and also increase the time
complexity. The search space was set at 50 to 300.

As can be seen from Table 4, when the number of neurons was 150, the prediction
performance of the model proposed was the best.
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Table 4. Performance of the model with the different number of neurons.

The Number of Neurons MAE MSE MAPE

50 0.391 0.389 0.239
100 0.368 0.392 0.178
150 0.334 0.353 0.101
200 0.393 0.430 0.164
250 0.398 0.434 0.189
300 0.430 0.454 0.239

6.2.3. The Optimizer

During the model training process, the model parameters were adjusted and changed
to obtain the minimum loss function. The role of the optimizer is to guide the loss function
to update in the right direction. In this paper, four commonly used optimizers are com-
pared: Adaptive Moment Estimation (Adam), Stochastic gradient descent (SGD), Adaptive
Gradients (Adagrad), and Root Mean Square Prop (RMSprop).

As can be seen from Table 5, when the optimizer was Adam, the prediction perfor-
mance of the model proposed was the best.

Table 5. Performance of the models when the optimizer is Adam, SGD, Adagrad, or RMSprop.

Optimizer MAE MSE MAPE

Adam 0.334 0.353 0.101
SGD 1.329 3.363 1.001

Adagrad 1.187 4.376 0.329
RMSprop 0.367 0.379 0.204

6.2.4. The Training Epochs

Figure 11 shows the prediction performance of the model in the training and validation
sets, through which the performance of the model on the training and validation data can be
evaluated to obtain the best epochs and prevent the model from overfitting or underfitting.
It can find that in terms of training and validation data, the MAE gradually decreases as
the epoch increases, which indicates that the model accuracy improves. The validation loss
of the model is mostly lower than the training loss, and when the epoch is roughly 70, both
the training loss and validation loss tend to be smooth, which suggests that the optimal
epochs are around 70.

Figure 11. Performance of the model during training and validation error.

292



Atmosphere 2022, 13, 1524

6.3. Performance Comparison

In this section, the predictive performance of the model proposed in the study is
compared with that of other deep learning methods, including RNNs, GRU networks,
LSTM networks and BiLSTM networks. The proposed Att-BiLSTM model and other
baseline models were trained based on the same training data set. Table 6 shows the
prediction performance comparison of the LSTM with other baseline models. The results
show that RNNs have the largest prediction error among all the algorithms for all three
metrics. This is because RNNs directly use the entire output as feedback and cannot forget
and update the influence of meteorological factors, which leads to poor prediction. The GRU
networks, as a variant of LSTM networks, have the ability to forget and update information.
Compared with RNNs, the GRU networks achieved better prediction performance, where
MAE, MSE, and MAPE were reduced by 3.2%, 9.7%, and 7.6% on average, respectively.
However, the GRU network still falls short of the LSTM networks in terms of prediction
performance due to its simplified cell states. Compared to the above two methods, the
LSTM networks further improve the prediction performance, but the effective prediction
of pavement temperature not only relies on past information but also considers the time
sequence. The BiLSTM networks can integrate and process data from both front and back
directions, which can solve the problem that LSTM only follows a one-way sequential order
in information processing and can effectively capture the time sequence information of
pavement temperature to achieve better prediction. The proposed model in this paper,
by introducing the attention mechanism, adaptively calculates and adjusts the hidden
layer state values corresponding to the original input features to highlight the important
features and weaken the minor features to further explore the internal characteristics of
the pavement temperature data. Therefore, the proposed model outperformed all models
with the MAE of 0.334, MSE of 0.353, and MAPE of 10.1%. The comparison of pavement
temperature truth and the predicted values of the proposed model on multiple days is
visualized in Figure 12.

Figure 12. Comparison of pavement temperature truth and predicted values in the test set. Data
points 1–300 in the test set (first), Data points 301–600 in the test set (second), Data points 601–866 in
the test set (third).
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Table 6. Predictive performance comparison of the proposed model with other models.

Algorithm MAE MSE MAPE

RNN 0.460 0.544 0.184
GRU 0.445 0.491 0.170
LSTM 0.428 0.515 0.165

BiLSTM 0.386 0.437 0.140

6.4. Discussion

In this section, the prediction results and applications of the proposed model are
analyzed and discussed.

Figure 13 shows the absolute errors of the predicted values of the proposed model
and observed values. It can be seen that 93.4% of the absolute error is less than 1 ◦C, and
82.1% of the absolute error is less than 0.5 ◦C, which indicates that the model has a good
predictive effect.

Figure 13. The error of the predicted and observed values.

From Figure 14, it can be found that the error values of the prediction model are more
concentrated in low temperatures (−5 to 5 ◦C), which are prone to icing, and almost all of
them are less than 1 ◦C. The prediction performance of the model in the high-temperature is
weakened and is not as good as that in the low-temperature segment, with a more discrete
distribution of error values. This may be due to the greater influence of meteorological
elements such as solar radiation and total cloudiness on the road surface temperature
in the high-temperature condition, which leads to fluctuations in the prediction errors.
Overall, the Att-BiLSTM model has better performance in the low-temperature condition
and has good prospects for engineering applications in winter low-temperature pavement
temperature prediction.

The Att-BiLSTM pavement temperature prediction model proposed in this work can
be combined with the pavement icing formation mechanism to determine future pavement
icing and improve the accuracy and reliability of icing warning. Together with the facilities
such as variable information boards or speed limit signs near the point (section), timely
information on dangerous road conditions of bad driving conditions (or early warnings
of road surface icing points) can be released to drivers, prompting them to control speed
and drive carefully, thus reducing the occurrence of vicious traffic accidents such as vehicle
skidding and rollover or rear-end collision.
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Figure 14. Distribution of errors.

7. Conclusions

The prediction of a pavement temperature at the microscopic scale has been a challenge
to be solved. To address this problem, an Att-BiLSTM pavement temperature prediction
model based on historical meteorological data and pavement temperature data was de-
veloped in this study. Pavement temperature data and meteorological data collected from
road weather stations on route G85 from Maliuwan to Zhaotong in Yunnan, China, which
covered 180 days. A feature vector was constructed to describe the influence of meteoro-
logical features on pavement temperature and the time series characteristics of pavement
temperature by Spearman’s correlation coefficient analysis. The Att-BiLSTM model pre-
dicted the future pavement temperature based on the feature vector. To demonstrate the
validity of the model, RNNs, GRU, LSTM and BiLSTM networks were selected as bench-
mark models to compare their prediction performance with the prediction performance
of the proposed model. The results show that the MAE, MSE, and MAPE of the proposed
Att-BiLSTM model were 0.330, 0.339, and 10.1%, respectively, which were better than the
other baseline models. It was shown that 93.4% of the predicted values had an error less
than 1 ◦C, and 82.1% had an error less than 0.5 ◦C, indicating that the proposed model has
a great prediction performance. The proposed prediction model has better performance
at low temperatures (−5~5 ◦C). This shows that the method proposed in this paper has
good prospects for engineering applications in low-temperature pavement temperature
prediction in winter.

In future work, internal pavement or subgrade temperatures should be further con-
sidered to obtain better performance within the pavement temperature prediction model.
In addition, the pavement temperature prediction model should be combined with the
pavement temperature prediction model to further predict pavement conditions.

Author Contributions: Conceptualization, S.B. and W.Y.; methodology, S.B. and M.Z.; software, W.L.
and W.Y.; data curation, D.L. and L.Z.; S.B. and M.Z. created the figures and table; and S.B. wrote the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the General Program of Key Science and Technology in
Transportation, the Ministry of Transport (2018-ms4-102 and zl-2018-04), the Science and Technology
Demonstration Project of the Ministry of Transport (2017-09), the Science and Technology Innovation
Program of the Department of Transportation, Yunnan Province, China (2019303 and 2021-90-2),
Yunnan Fundamental Research Project (202101at070693), and Yunnan Key Laboratory of Digital
Communications (grant NO. 202205AG070008).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

295



Atmosphere 2022, 13, 1524

Data Availability Statement: Some of the data, models, or code generated or used during the study
are available from the corresponding author by request (code for ensemble model, data analysis
method, and road weather station data).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, S.; Saeed, T.U.; Labi, S. Impact of road-surface condition on rural highway safety: A multivariate random parameters
negative binomial approach. Anal. Methods Accid. Res. 2017, 16, 75–89. [CrossRef]

2. Strong, C.K.; Ye, Z.; Shi, X. Safety effects of winter weather: The state of knowledge and remaining challenges. Transp. Rev. 2010,
30, 677–699. [CrossRef]

3. Chen, J.; Wang, H.; Xie, P. Pavement temperature prediction: Theoretical models and critical affecting factors. Appl. Therm. Eng.

2019, 158, 113755. [CrossRef]
4. Zapata, C.E.; Andrei, D.; Witczak, M.W.; Houston, W. Incorporation of environmental effects in pavement design. Road Mater.

Pavement Des. 2007, 8, 667–693. [CrossRef]
5. Lei, D.; Liu, H.; Le, H.; Huang, J.; Yuan, J.; Li, L.; Wang, Y. Ionospheric TEC Prediction Base on Attentional BiGRU. Atmosphere

2022, 13, 1039. [CrossRef]
6. Sass, B.H. A numerical model for prediction of road temperature and ice. J. Appl. Meteorol. Climatol. 1992, 31, 1499–1506.

[CrossRef]
7. Voldborg, H. On the prediction of road conditions by a combined road layer-atmospheric model in winter. Transp. Res. Rec. 1993,

1387, 231.
8. Meng, C. A numerical forecast model for road meteorology. Meteorol. Atmos. Phys. 2018, 130, 485–498. [CrossRef]
9. Chen, J.; Li, L.; Wang, H. Analytical prediction and field validation of transient temperature field in asphalt pavements. J. Cent.

South Univ. 2015, 22, 4872–4881. [CrossRef]
10. Karsisto, V.; Nurmi, P. Using car observations in road weather forecasting. In Proceedings of the International Road Weather

Conference, Fort Collins, CO, USA, 27–29 April 2016. Available online: https://www.researchgate.net/profile/Virve-Karsisto/
publication/306099501_Using_car_observations_in_road_weather_forecasting/links/57b1524c08ae95f9d8f3bbb2/Using-car-
observations-in-road-weather-forecasting.pdf (accessed on 1 August 2022).

11. Park, J.J.; Shin, E.C.; Yoon, B.J. Development of frost penetration depth prediction model using field temperature data of asphalt
pavement. Int. J. Offshore Polar Eng. 2016, 26, 341–347. [CrossRef]

12. Asefzadeh, A.; Hashemian, L.; Bayat, A. Development of statistical temperature prediction models for a test road in Edmonton,
Alberta, Canada. Int. J. Pavement Res. Technol. 2017, 10, 369–382. [CrossRef]

13. Kršmanc, R.; Slak, A.Š.; Demšar, J. Statistical approach for forecasting road surface temperature. Meteorol. Appl. 2013, 20, 439–446.
[CrossRef]

14. Gedafa, D.S.; Hossain, M.; Romanoschi, S.A. Perpetual pavement temperature prediction model. Road Mater. Pavement Des. 2014,
15, 55–65. [CrossRef]

15. Yang, C.H.; Yun, D.G.; Kim, J.G.; Lee, G.; Kim, S.B. Machine learning approaches to estimate road surface temperature variation
along road section in real-time for winter operation. Int. J. Intell. Transp. Syst. Res. 2020, 18, 343–355. [CrossRef]

16. Molavi Nojumi, M.; Huang, Y.; Hashemian, L.; Bayat, A. Application of machine learning for temperature prediction in a test
road in Alberta. Int. J. Pavement Res. Technol. 2022, 15, 303–319. [CrossRef]

17. Milad, A.; Adwan, I.; Majeed, S.A.; Yusoff, N.I.M.; Al-Ansari, N.; Yaseen, Z.M. Emerging technologies of deep learning models
development for pavement temperature prediction. IEEE Access 2021, 9, 23840–23849. [CrossRef]

18. Li, Y.; Chen, J.; Dan, H.; Wang, H. Probability prediction of pavement surface low temperature in winter based on bayesian
structural time series and neural network. Cold Reg. Sci. Technol. 2022, 194, 103434. [CrossRef]

19. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef] [PubMed]
20. Wu, X.; Liu, Z.; Yin, L.; Zheng, W.; Song, L.; Tian, J.; Yang, B.; Liu, S. A haze prediction model in chengdu based on LSTM.

Atmosphere 2021, 12, 1479. [CrossRef]
21. Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg,

Germany, 2012; pp. 37–45. [CrossRef]
22. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015. [CrossRef]

296



MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel. +41 61 683 77 34

Fax +41 61 302 89 18

www.mdpi.com

Atmosphere Editorial Office

E-mail: atmosphere@mdpi.com

www.mdpi.com/journal/atmosphere





Academic Open 

Access Publishing

www.mdpi.com ISBN 978-3-0365-8460-7


