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From Automata to Multiautomata via Theory of Hypercompositional Structures
Reprinted from: Mathematics 2022, 10, 1, doi:10.3390/math10010001 . . . . . . . . . . . . . . . . . 37

Saifur Rahman, Maitrayee Chowdhury, Firos A. and Irina Cristea

Knots and Knot-Hyperpaths in Hypergraphs
Reprinted from: Mathematics 2022, 10, 424, doi:10.3390/math10030424 . . . . . . . . . . . . . . . 53

Hashem Bordbar

The Structure of the Block Code Generated by a BL-Algebra
Reprinted from: Mathematics 2022, 10, 692, doi:10.3390/math10050692 . . . . . . . . . . . . . . . 67

Linming Qi, Lianying Miao, Weiliang Zhao and Lu Liu

A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given
Diameter
Reprinted from: Mathematics 2022, 10, 1301, doi:10.3390/math10081301 . . . . . . . . . . . . . . . 79

Yongde Feng, Yanting Xie, Fengxia Liu and Shoujun Xu

The Extendability of Cayley Graphs Generated by Transposition Trees
Reprinted from: Mathematics 2022, 10, 1575, doi:10.3390/ math10091575 . . . . . . . . . . . . . . 89

Michal Staš
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Editorial

Preface to the Special Issue “Algebraic Structures and
Graph Theory”

Irina Cristea * and Hashem Bordbar

Centre for Information Technologies and Applied Mathematics, University of Nova Gorica, Vipavska Cesta 13,
5000 Nova Gorica, Slovenia; hashem.bordbar@ung.si
* Correspondence: irina.cristea@ung.si

1. Introduction

Connections between algebraic structure theory and graph theory have been estab-
lished in order to solve open problems in one theory with the help of the tools existing in
the other, emphasizing the remarkable properties of one theory with techniques involving
the second. This has provided new methods for solving several open problems, and has
proposed new ones. One remarkable example in this direction is the contribution of Artur
Cayley, who defined the concept of a group in 1854 (the composition table of the operation
on the group takes his name, i.e., the Cayley table) and described in 1878 the structure of a
group with a special graph, called a Cayley graph. There are many ways to define an alge-
braic structure (as a group, ring, hypergroup, hyperfield, lattice, etc.) starting from a graph
and also vice versa, with the algebraic structures leading to the various types of graph.
Many such constructions are discussed and illustrated with several non-trivial examples
in [1–4].

This Special Issue aims to collect recent theoretical and applied studies on the inter-
relations between algebraic structures and graphs. This topic has attracted the interest
of many researchers from different branches of algebra, and among the 63 submissions,
18 articles have been selected and published in this book. In the next section, we will
briefly summarize their findings; for more detail, we recommend the readers to consult the
original articles and the related bibliographies.

2. Contributions

The articles published in this Special Issue present new and up-to-date theoretical and
applied research topics related to the following: (1) algebraic structures, (2) graphs and
hypergraphs, and (3) connections between graphs and algebraic structures. We will start
with the first group, containing seven articles dealing with semigroups, differential graded
algebras, BL-algebras, hypergroups and hyperfields.

Regular elements in a semigroup play a fundamental role, being the key focus of
the study of regular semigroups. As an example of such a structure, we recall the total
transformation semigroup T(X) on a nonempty set X. In 1975, Symons [5] introduced
a subsemigroup of T(X), defined as T(X, Y) = {α ∈ T(X) | Xα ⊆ Y}, for a nonempty
subset Y of X, determining all its automorphisms. The regularity of this subsemigroup
and its implications for the computation of the number of the left/right regular elements
of T(X, Y) are discussed in [6]. A second paper [7] related to the theory of semigroups
presents a novel method for generating the M-tri basis of an ordered Γ-semigroup. Here,
the authors showed how the elements and subsets of an ordered Γ-semigroup yield to
M-tri-ideals and the M-tri basis. Another two articles are related to the theory of algebras.
The first [8] regards the differential graded algebras. Based on the notion of the Hopf Galois
extension, the author emphasizes the relationships between the derived categories D(R#H)
of the smash product R#H and D(RH), where H is a finite dimensional semisimple Hopf
algebra and R a left H-module algebra. The second paper [9] studies the structure of a
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block code generated by a BL-algebra. In particular, H. Bordbar defines a new order for the
generated code associated with a BL-algebra, and shows that the structure of the BL-algebra
with its initial order and the one of the corresponding generated code with the new defined
order coincide.

The last three manuscripts within this first group are in the framework of hypercom-
positional algebra. This is a relatively new field of abstract algebra, studying algebraic
structures endowed with at least one hyperoperation, i.e., a multivalued operation associat-
ing with any pair of elements a subset of the support set. Thus, the hypercompositional
structures are natural generalizations of the classical algebraic structures. For example,
the hypergroups are a generalization of groups, while hyperfields are a generalization
of the concept of fields. In [10] the authors work with the most well-known class of hy-
perfields, Krasner hyperfields, studying the notions of positive cone, characteristic and
C-characteristic. Using these notions, they provide a criterion for deciding whether cer-
tain hyperfields cannot be obtained via Krasner’s quotient construction. Furthermore,
they prove that for any positive integer n greater than 1, there exists an infinite quo-
tient hyperfield of characteristic n. A similar result holds for the C-characteristic. The
manuscripts [11,12] cover some applications of hypercompositional algebra to automata
theory. Massouros et al. [11] study the binary state machines with magma of two elements
as their environment. Another aspect of automata theory is discussed in [12], where the
authors propose several conditions for simplifying the verification of the GMAC con-
dition for systems of quasi-multiautomata. Furthermore, using the concatenation, they
construct quasi-multiautomata corresponding to the deterministic automata of the theory
of formal languages.

We continue our presentation of the second group of contributions published in this
Special Issue. They discuss innovative aspects in graph and hypergraph theory. Addition
signed Cayley graphs are investigated in [13] with respect to the balancing, clusterability
and sign compatibility properties. Here, the author presents the necessary conditions
such that an addition signed Cayley graph is balanced, sign-compatible, clusterable, a line
signed graph or C-consistent. The Cayley graphs are also the focus in [14]. In particular, it
is shown that the Cayley graphs generated by transposition trees on the set {1, 2, . . . , n} are
n− 2-extendable and their extendability number is n− 2 for any integer n ≥ 3. Based on the
notion of the trace norm of a {0, 1}-Brauer configuration, the authors of [15] compute the
graph energy of some families of graphs defined by Brauer configuration algebras. In [16],
the author counts the crossing number of the joint product G∗ Dn of the disconnected
graph G∗ consisting of two components isomorphic to K2 and K3 and the discrete graph
Dn with n isolated vertices. Moreover, a lower bound of the distance of the Laplacian
spectral radius of the n-vertex bipartite graphs, with a diameter equal to 4, is determined
in [17]. The paper concludes with the conjecture that the graph G(1, . . . , 1, n− d, 1, . . . , 1)
is unique, minimizing the distance of the Laplacian spectral radius among the n-vertex
bipartite graphs, with all having a diameter greater than or equal to 4. A similar argument
is posed by the authors of [18], who find upper and lower bounds on the spectral radius of
the generalized reciprocal distance matrix of a connected graph with n vertices. The main
goal of Solovyev’s paper [19] is to establish a counting formula for a 2-dimensional lattice
path model with filter restrictions in the presence of long steps. The last manuscript [20]
within this group is in the area of hypergraphs, originally introduced by Berge as extensions
of graphs, where the edges are substituted by hyperedges, being nonempty subsets of the
set of vertices. Using the innovative concepts of knot and knot-hyperpath, the authors
study the behaviour of the hyperpaths under hyper-continuous mappings and pseudo-
open mappings, and find the sufficient conditions under which a hypergraph becomes a
hypertree. The paper ends with an algorithm extracting a host graph from a hypertree.

We conclude this section with a description of the third group of manuscripts, pre-
senting different relationships between algebraic structures and graph theory. The first
paper [21] introduces a construction of a new graph associated with a semihypergroup,
using the fundamental relation γ∗. Several properties such as completeness, regularity,
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being Eulerian or Hamiltonian, and Cartesian products are studied. Much the same di-
rection is followed in the second paper [22], where a t-graph associated with a finitely
generated group, using the Minkowski metric, is defined. The groups involved here are
the two-generator finite groups, and the authors characterize the chromatic number of
a t-graph depending exclusively on the parity of t. Finally, the study presented in the
eighteenth paper [23] of this collection is focused on the construction and properties of an
ideal-based dot total graph associated with a commutative ring with nonzero unity.

3. Conclusions

Based on the number of views and citations received, we are confident that the selected
manuscripts of this edited book have aroused considerable interest among researchers in
this field, and will open new lines of investigation not only in the domain of algebraic
structure theory or graph theory, but also in other research topics. Therefore, this Special
Issue will continue with a second edition, edited by Irina Cristea and Alessandro Linzi.

Funding: This work was partially funded by the Slovenian Research Agency (research core funding
No. P1-0285).
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Abstract: The energy E(G) of a graph G is the sum of the absolute values of its adjacency matrix. In
contrast, the trace norm of a digraph Q, which is the sum of the singular values of the corresponding
adjacency matrix, is the oriented version of the energy of a graph. It is worth pointing out that one
of the main problems in this theory consists of determining appropriated bounds of these types of
energies for significant classes of graphs, digraphs and matrices, provided that, in general, finding
out their exact values is a problem of great difficulty. In this paper, the trace norm of a {0, 1}-Brauer
configuration is introduced. It is estimated and computed by associating suitable families of graphs
and posets to Brauer configuration algebras.

Keywords: brauer configuration algebra; graph energy; path algebra; poset; spectral radius; trace
norm; wild representation type

1. Introduction

Brauer configuration algebras (BCAs) were introduced recently by Green and Schroll [1].
These algebras are multiserial symmetric algebras whose theory of representation is based
on combinatorial data.

Since its introduction, BCAs have been a tool in the research of different fields of
mathematics. Its role in algebra, combinatorics, and cryptography is remarkable. For
instance, Malić and Schroll [2] associated a Brauer configuration algebra to some dessins
d’enfants used to study Riemann surfaces, Cañadas et al. investigated the structure of the
keys related to the Advanced Encryption Standard (AES) by using some so-called polygon-
mutations in BCAs. On the other hand, BCAs were a helpful tool for Espinosa et al. to
describe the number of perfect matchings in some snake graphs. We point out that Schiffler
et al. used perfect matchings of snake graphs to provide a formula for the cluster variables
associated with appropriated cluster algebras of surface type. In their doctoral dissertation,
Espinosa used the notion of the message of a Brauer configuration to obtain the results [3,4].
According to him, each polygon in a Brauer configuration has associated a word. The
concatenation of such words constitutes a message after applying a suitable specialization.

Perhaps, the message associated with a Brauer configuration is one of the most helpful
tools to obtain applications of BCAs. In this work, we use Brauer configuration messages,
some results of the theory of posets (partially ordered sets) and integer partitions to obtain
the trace norm of some {0, 1}-Brauer configurations, which are Brauer configurations
whose sets of vertices consist only of 0’s and 1’s.

It is worth pointing out that the research on trace norm has its roots in chemistry
within the Hückel molecular orbital theory (HMO) [5]. Afterwards, Gutman [6] founded
an independent line of investigation in spectral graph theory based on graph energy,
which is the sum E(G) = ∑

λ∈spect(MG)
|λ|, where spect(MG) is the set of eigenvalues of

Mathematics 2021, 9, 3042. https://doi.org/10.3390/math9233042 https://www.mdpi.com/journal/mathematics
5



Mathematics 2021, 9, 3042

the adjacency matrix MG of a graph G. The trace norm associated with the adjacency
matrix of a digraph or quiver Q denoted ||Q||∗ is a generalization of the graph energy. It
is also called the Schatten 1-norm, Ky Fan n-norm or nuclear norm. If σ1, σ2, . . . , σn are
the singular values of the m × n- adjacency matrix MQ, with σ1 ≥ σ2 ≥ · · · ≥ σn then

||Q||∗ =
min{m,n}

∑
i=1

σi. Relationships between energy graph and trace norm were investigated

first by Nikiforov [7].
One of the main problems in graph energy theory is giving the extremal values of the

energy of significant classes of graphs. For instance, Gutman [6] proved that if Tn is a tree
with n vertices then the following identity holds:

E(Sn) ≤ E(Tn) ≤ E(An) (1)

where, Sn (An) denotes the star (the Dynkin diagram of type A) with n vertices.
Graph energy associated with digraphs was investigated first by Kharaghani–Tayfeh–

Rezaie [8], afterwards by Agudelo–Nikiforov [9], who found bounds of extremal values
of the trace norm for (0, 1)-matrices. It is worth noticing that if the adjacency matrix of
a graph G is normal, then the graph energy equals the trace norm. In particular, if the
adjacency matrix MG of a graph G is symmetric, then E(G) = ||MG||∗.

Contributions

In this paper, we introduce the notion of trace norm of a {0, 1}-Brauer configuration.
Bounds and explicit values of these trace norms are given for significant classes of graphs
induced by this kind of configuration. In particular, the dimension of the associated
algebras and their centers are obtained. These results give a relationship between Brauer
configuration algebras and graph energy theories with an open problem in the field of
integer partitions proposed by Andrews in 1986. Such a problem asks for sets of integer
numbers S, T for which P(S, n) = P(T, n + a), where P(X, n) denote the number of integer
partitions of n into parts within the set X with a being a fixed positive integer [10].

As a consequence of their investigations regarding Andrews’s problem,
Cañadas et al. [11,12] introduced and enumerated a particular class of integer com-
positions (i.e., partitions for which the order of the parts matter) of type Dn, for which
the Andrews’s problem holds if a = 1. For each n, compositions of type Dn constitute
a partially ordered set whose number of two-point antichains is given by the integer se-
quence encoded in the OEIS (On-Line Encyclopedia of Integer Sequences) A344791 [13].
The following identity (2) gives the nth term (A344791)n of this sequence:

(A344791)n =
n

∑
i=1

� i
2 �

∑
j=0

hij(ti − 2tj). (2)

where tk denotes the kth triangular number, and

hij =

⎧⎪⎨⎪⎩
n + 1− i, if i = 2j and 1 ≤ j ≤ � n

2 �,
0, if i = n and j = 0,
1, otherwise.

This paper uses this sequence to estimate eigenvalues sums of matrices associated
with polygons of some {0, 1}-Brauer configurations.

It is worth noting that the relationships introduced in this paper between the theory
of Brauer configuration algebras and the graph energy theory do not appear in the current
literature devoted to these topics.

This paper is distributed as follows; in Section 2, we recall definitions and notation
used throughout the document. In particular, we introduce the notion of trace norm of
a {0, 1}-Brauer configuration. In Section 3, we give our main results, we compute and
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estimate the trace norm and graph energy of some families of graphs defined by Brauer
configuration algebras. Concluding remarks are given in Section 4. Examples of trace norm
values associated with some Brauer configurations are given in Appendix A.

The following diagram (3) shows how the notions of Brauer configuration and trace
norm are related to some of the main results presented in this paper.

Path Algebras 2.2; Theorem 1, Theorem 2

��
Brauer Configuration Algebras 2.3

��Bollobás-Nikiforov Theorem 4

��
Trace Norm 6

��Posets 2.4
�� ��

Corollary 2

��
��

Corollary 4

��
��

Theorem 7

��Corollary 3 Theorem 6

Corollary 6

��
Corollary 8

(3)

2. Background and Related Work

In this section, we introduce some definitions and notations to be used throughout the
paper. In particular, it is given a brief overview regarding the development of the research
of graph energy theory, path algebras, and Brauer configuration algebras.

Henceforth, the symbol A∗ will denote the adjoint of a matrix A, and ‖A‖F the
Frobenius norm of a matrix A. Furthermore, F is a field, N+ is the set of positive integers,
and tn denotes the nth triangular number.

2.1. Graph Energy

The notion of graph energy as the sum of the absolute values of an adjacency matrix
was introduced in 1978 by Gutman based on a series of lectures held by them in Stift
Rein, Austria [6]. As we explained in the introduction, he was motivated by earlier results
regarding the Hückel orbital total π-electron energy. According to Gutman and Furtula [14],
the results were proposed at that time in good hope that the mathematical community
would recognize its significance. However, there was no interest in the subject despite
Gutman’s efforts, perhaps due to the restrictions imposed on the studied graphs.

The interest in graph energy was renewed at the earliest 2000 when a plethora of
results started appearing. Since then, more than one hundred variations of the initial
notion have been introduced with applications in different sciences fields. In the same
work, Gutman and Furtula claim that an average of two papers per week (more than one
hundred in 2017) are written regarding the subject.

Some of the graph energy variations are:

1. The Nikiforov energy of a matrix M, which is the sum of the singular values of a matrix.
2. The Laplacian energy of a graph G of order n and size m defined as the sum of the

absolute values of the eigenvalues of the matrix L(G)− 2m
n In, where In is the identity

matrix of order n, and L(G) is the Laplacian matrix associated with G whose entries
L(G)ij are given by the following identities:

(L(G))ij =

⎧⎪⎨⎪⎩
deg(vi) if i = j,
−1 if i 
= j and vi is adjacent to vj,
0 otherwise.

where deg(v) denotes the degree of a vertex v in G.

7
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3. The Randić energy, which is the sum of the absolute values of the Randić matrix
R(G) = (R(G)ij) of a graph G, with

(R(G))ij =

⎧⎪⎪⎨⎪⎪⎩
0 if i = j,

1√
deg(vi)deg(vj)

if vi is adjacent to vj,

0 otherwise.

Although the notion of graph energy was introduced only for theoretical purposes, cur-
rently, its applications embrace a broad class of sciences. The following Table 1 shows some
examples of different works devoted to the applications of graph energy and its variations.
The authors refer the reader to [14] for more examples of these types of applications.

Table 1. Works devoted to the applications of the graph energy theory. In the case of pattern
recognition, the applications deal with military purposes.

Subject Work

Chemistry [15]
Biology [16]

Crystallography [17]
Epidemics [18]

Pattern Recognition [19]
Computer Vision [20]

Satellite Communication [21]
Spacecrafts Construction [22]

Neural Networks [23]

2.2. Path Algebras

This section recalls some facts regarding quivers, their associated path algebras, and
corresponding module categories. It is worth noting that the quiver or pass graph technique
is used in representation theory, and it is an important tool to solve many ring problems, as
Belov-Kanel et al. report in [24].

A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of two sets Q0 whose elements
are called vertices and Q1 whose elements are called arrows, s and t are maps s, t : Q1 → Q0
such that if α is an arrow, then s(α) is called the source of α, whereas t(α) is called the target
of α [25]. The adjacency matrix MQ and the spectral radius ρ(Q) = ρ(MQ) = max|λ|
(where λ runs over all the eigenvalues of MQ) of a quiver Q are given by those defined by
its underlying graph Q.

Recall that the adjacency matrix MG associated with a graph G is defined by the
following identities:

(MG)ij =

{
number of edges between i and j, if i 
= j,
two times the number of loops at i, if i = j.

A path of length l ≥ 1 with source a and target b is a sequence (a | α1, α2, . . . , αl | b)
where t(αi) = s(αi+1) for any 1 ≤ i < l. Vertices are paths of length 0 [25–27].

If Q is a quiver and F is an algebraically closed field, then the path algebra FQ of Q is
the F-algebra whose underlying F-vector space has as basis the set of all paths of length
l ≥ 0 in Q, the natural graph concatenation is the product of two paths [25,26].

An F-algebra Λ is said to be basic if it has a complete set {e1, e2, . . . , el} of primitive
orthogonal idempotents such that ei A � ej A for all i 
= j.

A relation for a quiver Q is a linear combination of paths of length ≥ 2 with the same
starting points and same endpoints, not all coefficients being zero [25,26].

Let Q be a finite and connected quiver. The two-sided ideal of the path algebra FQ
generated by the arrows of Q is called the arrow ideal of FQ and is denoted by RQ, Rl

Q is

8
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the ideal of FQ generated as an F-vector space, by the set of all paths of length ≥ l. A two-
sided ideal I of the path algebra FQ is said to be admissible if there exists m ≥ 2 such that
Rm

Q ⊆ I ⊆ R2
Q.

If I is an admissible ideal of FQ, the pair (Q, I) is said to be a bound quiver. The
quotient algebra FQ/I is said to be a bound quiver algebra.

Gabriel [28] proved that any basic algebra is isomorphic to a bound quiver algebra.
He also showed the finiteness criterion for these algebras. Taking into account that one of
the main problems in the theory of representation of algebras consists of giving a complete
description of the indecomposable modules and irreducible morphisms of the category of
finitely generated modules mod Λ of a given algebra Λ.

According to the number of indecomposable modules an algebra Λ can be of finite,
tame or wild representation type. We recall that if C is a category of finitely generated
modules over an F-algebra Λ (in this case, F is an algebraically closed field). Then a
one-parameter family in C is a set of modules of the form:

M = {M/(x− a)M | a ∈ F} (4)

where M is a Λ− F[x]-bimodule, which is finitely generated and free over F[x] [29].
Category C is said to be of tame representation type or tame type, if C =

⋃
n
Cn, and for

every n, the indecomposable modules form a one-parameter family with maybe finitely many
exceptions equivalently in each dimension d, all but a finite number of indecomposable
Λ-modules of dimension d belong to a finite number of one-parameter families. On the
other hand, C is of wild representation type or wild type if it contains n-parameter families of
indecomposable modules for arbitrarily large n [29].

It is worth noting that Drozd in 1977 and Crawley-Boevey in 1988 proved the following
result known as the trichotomy theorem.

Theorem 1 ([30,31], Corollary C). Let Λ be a finite-dimensional algebra over an algebraically
closed field. Then Λ-mod has either tame type or wild type, and not both.

The following result proved by Smith establishes a relationship between the theory of
representation of algebras and the spectra graph theory.

Theorem 2 ([32]). Let G be a finite simple graph with the spectral radius (index) ρ(G). Then
ρ(G) = 2 if and only if each connected component of G is one of the extended Dynkin diagram
Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. Moreover, ρ(G) < 2 if and only if each connected component of G is one of
Dynkin diagrams An, Dn, E6, E7, E8.

Remark 1. Note that if Q is a connected quiver without oriented cycles, then Theorem 2 allows
concluding that Q is of finite type (tame type) if and only if ρ(Q) < 2 (ρ(Q) = 2). Otherwise, Q is
of wild type. A quiver Q has one of these three properties means that the corresponding path algebra
FQ also does.

2.3. {0,1}-Brauer Configuration Algebras

In this section, we discuss some results regarding {0, 1}-Brauer configuration algebras,
we refer the reader to [1] for a more detailed study of general Brauer configuration algebras.

{0, 1}-Brauer configuration algebras are bound quiver algebras induced by a Brauer
configuration Γ = (Γ0, Γ1, μ,O) with the following characteristics:

• Γ0 = {0, 1} is said to be the set of vertices.
• Γ1 = {U1, U2, . . . , Un−1, Un ; n � 1} is a collection of multisets Ui consisting of vertices

called polygons.
• The word wi defined by the polygon Ui has the form;

wi = wi,1wi,2 . . . wi,δi .
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where wi,j ∈ {0, 1}, αi = occ(0, Ui) is the number of times that the vertex 0 occurs in
the polygon Ui, δi − αi = occ(1, Ui) is the number of times that the vertex 1 appears in
the same polygon with δi = |Ui| � 2.

• μ is a map μ : Γ0 → N+, such that μ(0) = μ(1) = 1. μ is said to be the multiplicity
function associated with Γ.

• Successor sequences S0 and S1 associated with the vertices are defined by an orienta-
tion O, which is an ordering on the polygons of the form:

S0 : U1 < · · · < U1︸ ︷︷ ︸
α1−times

< U2 < · · · < U2︸ ︷︷ ︸
α2−times

< · · · < Un−1 < · · · < Un−1︸ ︷︷ ︸
αn−1−times

< Un < · · · < Un︸ ︷︷ ︸
αn−times

S1 : U1 < · · · < U1︸ ︷︷ ︸
(δ1−α1)−times

< U2 < · · · < U2︸ ︷︷ ︸
(δ2−α2)−times

< · · · < Un−1 < · · · < Un−1︸ ︷︷ ︸
(δn−1−αn−1)−times

< Un < · · · < Un︸ ︷︷ ︸
(δn−αn)−times

Successor sequences is a way of recording how vertices appear in the polygons.

The construction of the quiver QΓ (or simply Q, if no confusion arises) goes as follows:

• Add a circular relation Un < U1, to each successor sequence S0 and S1. Ci = Si ∪
{Un < U1}, i ∈ {0, 1} is said to be a special cycle associated with i.

• Define Γ1 as the set of vertices Q0 of Q.
• Each cover Ui < Uj in a special cycle Ci defines an arrow Ui → Uj ∈ Q1.

Note that there are different special cycles associated with a vertex i ∈ {0, 1} in
a polygon Ui.

Figure 1 shows the Brauer quiver QΓ induced by a {0, 1}-Brauer configuration Γ.

Figure 1. Brauer quiver induced by a {0, 1}-Brauer configuration. Symbols li
j, i ∈ {0, 1},

j ∈ {1, 2, . . . , n} mean that the corresponding vertex Uj has associated li
j = occ(i, Uj) − 1

different loops.

The valency val(i) of a vertex i ∈ {0, 1} is given by the identity:

val(i) =
n

∑
j=1

occ(i, Uj). (5)

val(i) is the number of arrows in the i-cycles. A vertex i ∈ {0, 1} is said to be truncated
if val(i) = 1, otherwise i is non-truncated. Vertices 0 and 1 are non-truncated in a {0, 1}-
Brauer configuration algebra.

The Brauer configuration algebra ΛΓ (or Λ) defined by the quiver Q is the path algebra
FQ bounded by the admissible ideal IΓ (or I) generated by the following set of relations:

1. If a polygon Uk ∈ Γ1 contains vertices i, j and Ci, Cj are special cycles then Ci −Cj ∈ I.
2. If a is the first arrow of a special cycle Ci then Cia ∈ I.

10
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3. α0
i β1

j , β1
hα0

s , for all possible values of i, j, h, and s.

4. α0
i α0

i+1 β1
i β1

i+1, for all possible values of i.
5. α0

i l1
j , β1

i l0
j , for all possible values of i and j.

6. l0
i l1

i l0
j β1

i , l1
j α0

i for all possible values of i and j.
7. (l0

i )
2, (l1

j )
2, for all possible values of i and j.

If there exists a word-transformation T such that wi = T(wi−1)(Ri), for instance, if
wi = wi−1Ri with Ri a suitable {0,1}-word, then the cumulative message M(Γ) of Γ is defined
in such a way that M(Γ) = w1w2 . . . wn and the reduced message MR(Γ) is defined by the
concatenation word:

MR(Γ) = w1R2R3 . . . Rn

If MR(Γ) can be written as a m× n matrix, then ρ(MR(Γ)) denotes the spectral radius of the
Brauer configuration Γ and the trace norm of the Brauer configuration Γ is defined as:

||MR(Γ)||∗ =
min{m,n}

∑
k=1

σk(MR(Γ)). (6)

where σ1(MR(Γ)) � σ2(MR(Γ)) � · · · � σn(MR(Γ)) � 0 are the singular values of MR(Γ),
i.e., the square roots of the eigenvalues of MR(Γ)MR(Γ)∗.

The following Proposition 1 and Theorem 3 prove that the dimension and the center of
a Brauer configuration algebra can easily be computed from its Brauer configuration [1,33].

Proposition 1 ([1], Proposition 3.13). Let Λ be a Brauer configuration algebra associated with the
Brauer configuration Γ and let C = {C1, . . . , Ct} be a full set of equivalence class representatives
of special cycles. Assume that for i = 1, . . . , t, Ci is a special αi-cycle where αi is a non-truncated
vertex in Γ. Then

dimF Λ = 2|Q0|+ ∑
Ci∈C
|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the αi-cycle
Ci and ni = μ(αi).

Theorem 3 ([33], Theorem 4.9). Let Γ be a reduced and connected Brauer configuration and let Q
be its induced quiver and let Λ be the induced Brauer configuration algebra such that rad2 Λ 
= 0
then the dimension of the center of Λ denoted dimF Z(Λ) is given by the formula:

dimF Z(Λ) = 1 + ∑
α∈Γ0

μ(α) + |Γ1| − |Γ0|+ #(Loops Q)− |CΓ|.

where |CΓ| = {α ∈ Γ0 | val(α) = 1, and μ(α) > 1}.

In this case, rad M denotes the radical of a module M, rad M is the intersection of all
the maximal submodules of M.

The following are properties of {0, 1}-Brauer configuration algebras based on Proposi-
tion 1 and Theorem 3.

Corollary 1. Let Λ be a Brauer configuration algebra induced by a {0,1}-Brauer configuration
Γ = (Γ0, Γ1, μ,O) with rad2 Λ 
= 0. Then the following statements hold:

1. Λ is reduced and connected.
2. dimF Λ = 2n + 2tval(0)−1 + 2tval(1)−1, where tj denotes the jth triangular number.
3. dimF Z(Λ) = 1 + n + ∑1

i=0 ∑n
j=1 li

j.
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2.4. Posets

A partially ordered set (or poset) is an ordered pair (P,≤) where P is a not empty
set, and ≤ is a partial order over the elements of P, i.e., ≤ is reflexive, antisymmetric, and
transitive. Henceforth, if no confusion arises we will write P instead of (P,≤) to denote a
partially ordered set.

For each x, y ∈ P, if x ≤ y or y ≤ x, we say that x and y are comparable points, whereas
if x � y and y � x, we say that x and y are incomparable points (the subset {x, y} is a
two-point antichain), this situation is denoted by x ‖ y. An ordered set C is called a chain (or
a totally ordered set or a linearly ordered set) if and only if for all x, y ∈ C we have x ≤ y or
y ≤ x (i.e., x and y are comparable points).

A relation x ≤ y in a poset P is said to be a covering, if for any z ∈ P such that
x ≤ z ≤ y it holds that x = z or y = z [34].

3. Applications

In this section, we give applications of {0, 1}-Brauer configuration algebras in graph
energy. We start by defining some suitable {0, 1}- Brauer configuration algebras, dimen-
sions of these algebras and corresponding centers are given as well. We also compute and
estimate eigenvalues and trace norm of their reduced messages MR(Γ).

1. For n � 2 fixed, let us consider the {0,1}-Brauer configuration Δn = (Δn
0 , Δn

1 , μ,O),
such that:

Δn
0 = {0, 1}.

Δn
1 = {D1, D2, . . . , Dn}, for 1 ≤ i ≤ n, |Di| = (ti+2 − 1)2.

μ(0) = μ(1) = 1.

(7)

The orientation O is defined in such a way that in successor sequences associated
with vertices 0 and 1, it holds that Di < Di+1, for 1 � i � n.
Polygons Di can be seen as (ti+2 − 1) × (ti+2 − 1)-matrices over Z2 or as (ti+2 −
1)× 1-matrices over the vector space Pti+2−2 of polynomials of degree ≤ ti+2 − 2. Its
construction goes as follows:

(a) For any i, 1 ≤ i ≤ n, Di is a symmetric matrix,

(b) D1 =

⎡⎢⎢⎢⎢⎣
1 1 0 1 1
1 1 1 0 1
0 1 1 1 1
1 0 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
t4 + t3 + t + 1
t4 + t3 + t2 + 1
t3 + t2 + t + 1
t4 + t2 + t + 1

t4 + t3 + t2 + t + 1

⎤⎥⎥⎥⎥⎦,

(c) Di =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bi+1
1

Di−1 Bi+1
2

∗
...

Bi+1
i

Bi+1
i+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d) Blocks Bi+k

j , with k > 1 are defined as follows:

i. Over Z2, Bj
j ∈ M(j+1)×(j+1), Bj+s

j ∈ M(j+1)×(j+s+1), 0 ≤ s ≤ j + 1,

12
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ii. Over Pj+s+2, Bi+k
j =

⎡⎢⎢⎢⎢⎣
pi+k

1 (t)
pi+k

2 (t)
...

pi+k
j+1(t)

⎤⎥⎥⎥⎥⎦,

pi+k
h (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

j−h+1
∑

l=0
xl , if 1 ≤ h ≤ k,

j−h+1
∑

l=0
xl +

h−k−1
∑

j=0
xj+k−h+1, if h > k and 2 ≤ k ≤ i + 2,

pm
h (t), if m > i + 2.

Corollary 2. If Dn = FQn
Δn /In

Δn is the Brauer configuration algebra induced by the {0,1}-
Brauer configuration Δn then the following statements hold:

dimF Dn = (en − dn)
2 + (en − 1)2 + (dn − 1),

dimF Z(Dn) = (tn+2)
2 + n + 3.

(8)

where

an =
1− (−1)n − 8n− 4n2 + 8n3 + 2n4

32
= (A344791)n,

bn+2 =
n+2

∑
i=1

t2
i − 10,

cn+2 = − (n + 2)(n + 3)(n + 4)
3

+ 8,

dn = bn+2 + cn+2 + n, n ≥ 1,

en = 2
n

∑
i=1

ai+1.

(9)

Proof. For n > 1 fixed, consider the following set:

Pn = {x1,1, x1,2, x2,1, x2,2, x2,3, . . . , xi,1, . . . , xi,i+1, . . . , xn,1, . . . , xn,n+1} (10)

Pn is endowed with a partial order �, which defines the following coverings:

xj,k � xj,k+1, 1 ≤ j ≤ n, 1 ≤ k ≤ j,

xj,k � xj+1,k+1, 1 ≤ j < n, 1 ≤ k ≤ j + 1,

xr,k � xr−1,k+1, 1 < r ≤ n, 1 ≤ k ≤ r.

(11)

(Pn,�) defines a matrix Mn whose entries mi,j are given by the following identities:

mi,j =

{
1, if xi,r � xj,s or xj,s � xi,r

0, otherwise.

Clearly Mn is a (tn+1 − 1)× (tn+1 − 1) symmetric matrix with Mn = Dn−1 ∈ Δn
1 , that

is, Mn is the matrix associated with the polygon Dn−1 ∈ Δn
1 . Thus, 1

2 occ(0, Dn) equals
the number of two-point antichains in (Pn,�). Therefore, occ(0, Dn) is twice the nth
term of the sequence A344791 (see (2), (9)), and occ(1, Dn) = (tn+1 − 1)2 − occ(0, Dn).
Since dimF Dn = 2n + val(0)(val(0) − 1) + val(1)(val(1) − 1). The result holds.
Since rad2 Dn 
= 0, then dimF Z(Dn) = 1 + n + #(Loops QΔn) with #(Loops QΔn) =
(tn+2)

2 + 2. We are done.

13
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Now we are interested in estimating the eigenvalues of Mn. Since the polygons
Dn ∈ Δn

1 can be seen as (tn+1 − 1) square symmetric matrices described in the
previous proof as Dn−1 = Mn. We will assume that for each n, the real eigenvalues of
a matrix Mn are indexed in the following decreasing order:

μmax(Mn) = μ1(Mn) � μ2(Mn) � · · · � μtn+1−1(Mn) = μmin(Mn).

The next result, which derives two inequalities for the eigenvalues of Hermitian
matrices, was proved by Bollobás and Nikiforov [35].

Theorem 4 ([35], Theorem 2). Suppose that 2 � k � n and let A = (aij) be a Hermitian
matrix of size n. For every partition {1, 2, . . . , n} = N1 ∪ · · · ∪ Nk we have

μ1(A) + · · ·+ μk(A) �
k

∑
r=1

1
|Nr| ∑

i,j∈Nr

aij

and

μk+1(A) + · · ·+ μn(A) �
k

∑
r=1

1
|Nr| ∑

i,j∈Nr

aij −
1
n ∑

i,j∈1,2,...,n
aij.

The following result on the eigenvalues of Mn can be obtained by applying Theorem 4
to the matrix Mn associated with the polygon Dn−1 ∈ Δn

1 .

Corollary 3. For n > 1 and k = n. Let Mn = (mij) be the matrix associated with the
polygon Dn−1 ∈ Δn

1 . For partition {1, 2, . . . , tn+1 − 1} = N1 ∪ · · · ∪ Nn where Ni ={
i(i+1)

2 , . . . , i(i+3)
2

}
. We have

n

∑
i=1

μi(Mn) � tn+1 − 1 (12)

and
tn+1−1

∑
i=n+1

μi(Mn) ≤
2(A344791)n

tn+1 − 1
. (see (2)). (13)

Proof. Since Ni =
{

i(i+1)
2 , . . . , i(i+3)

2

}
, for each i = {1, 2, . . . , n} then |Ni| = i + 1,

besides each set Ni can be seen as a subset of the set Pn defined in (10) as follows:

Ni = {xi,1, . . . , xi,i+1}.

On the other hand, to compute ∑i,j∈Ni
aij, we will use the coverings defined in (11)

and the fact that Pn is a partial order, so we obtain:

∑
i,j∈Ni

mij = 2
i

∑
j=1

(xi,j � xi,j+1) +
i+1

∑
j=1

(xi,j � xi,j) + 2
i−1

∑
j=1

(xi,j � xi,j+2)

= 2i + (i + 1) + 2ti−1

= (i + 1)2

Therefore:

n
∑

i=1

1
|Ni | ∑

i,j∈Ni

mij = i + 1 and

1
tn+1−1 ∑

i,j∈{1,2,...,tn+1−1}
mi,j = 1

tn+1−1‖Mn‖2
F = 1

tn+1−1
(
(tn+1 − 1)2 − 2(A344791)n

)

14
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Hence, applying Theorem 4 we obtain (12) and (13).

2. For n � 1 fixed, let Γn = {Γn
0 , Γn

1 , μ,O} be a {0,1}-Brauer configuration such that:

Γn
0 = {0, 1}.

Γn
1 = {U1, U2, . . . , Un}, for 1 ≤ i ≤ n, |Ui| = 22n.

μ(0) = μ(1) = 1.

(14)

The orientation O is defined in such a way that in successor sequences associated
with vertices 0 and 1, it holds that Ui < Ui+1.
Polygons Ui can be seen as 2n × 2n-matrices over Z2 using the Kronecker product,
denoted by ⊗, as follows:

U1 =

[
1 0
1 1

]
U2 = U1 ⊗U1

...

Ui = U1 ⊗Ui−1.

(15)

Corollary 4. For n � 1, if Gn = FQn
Γn /In

Γn is the Brauer configuration algebra induced by
the {0,1}-Brauer configuration Γn then the following statements hold:

dimF Gn = 2n + 2rn(rn − 1) + 2sn(sn − 1)

dimF Z(Gn) =

{
6, i f n = 1
1− n + rn + sn, i f n � 2.

(16)

where rn and sn are the nth term of the OEIS sequences A016208 and A029858, respectively.

Proof. Given n ∈ N, let Pn = {A : A ⊆ {1, 2, . . . , n}}. For x, y ∈ Pn, define x < y
if x ⊆ y. In this case the poset (Pn,⊆) consists of all subsets of {1, 2, . . . , n} ordered
by inclusion.
We associate to each finite poset Pn of size n the following 2n × 2n-matrix:

[MPn ]ij =

{
1, i f i, j are comparable
0, i f i, j are incomparable.

Under appropriate labeling of poset points Pn, the matrix MPn can be viewed using
the Kronecker product as follows:

MP1 =

[
1 0
1 1

]
MP2 =

[
MP1 0
MP1 MP1

]
= MP1 ⊗MP1

MP3 =

[
MP2 0
MP2 MP2

]
= MP1 ⊗MP2

...

MPn =

[
MPn−1 0
MPn−1 MPn−1

]
= MP1 ⊗MPn−1

matrices MPn can be seen as pavements, cells with 1’s are colored black and those
with 0’s are colored white. Figure 2 shows examples of these types of matrices.
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Figure 2. Matrices MPn for n = 1, 2, 3 and 4.

MPn is the matrix associated with the polygon Un ∈ Γn
1 , thus occ(0, Un) can be

computed in the following fashion:

occ(0, U1) = 1

occ(0, Un) = 3(occ(0, Un−1)) + 22n−2 (17)

Therefore occ(0, Un) = ∑n
k=1 3n−k22(k−1) and occ(1, Un) = 3n thus the result holds.

Now we are interested in computing the trace norm of the {0,1}-Brauer configura-
tion Γn. For this, we recall the following theorem about the singular values of the
Kronecker product:

Theorem 5 ( [36], Theorem 4.2.15). Let A ∈ Mm,n and B ∈ Mp,q have singular value
decompositions A = V1Σ1W∗1 and B = V2Σ2W∗2 and let rankA = r1 and rankB = r2. Then
A⊗ B = (V1 ⊗V2)(Σ1 ⊗ Σ2)(W1 ⊗W2)

∗. The nonzero singular values of A⊗ B are the
r1r2 positive numbers {σi(A)σj(B) : 1 � i � r1, 1 � j � r2} (including multiplicities).

The following Lemma 1 is helpful to prove Theorem 6.

Lemma 1. Let A ∈ Mn(C) be a given matrix. If B =

[
A 0
A A

]
∈ M2n(C) then the

singular values of B are φσi(A) and φ−1σi(A) for i = 1, . . . , n, where φ =
1 +
√

5
2

is the
golden ratio.

Proof. Note that B =

[
A 0
A A

]
=

[
1 0
1 1

]
⊗ A. The singular values for[

1 0
1 1

]
are φ and φ−1, then by Theorem 5 the result holds.

Theorem 6. For each n � 1, if MR(Γn) = MPn is the matrix associated with the polygon
Un ∈ Γn

1 then
‖MPn‖∗ = 5n/2 (18)

Proof. By induction on n. For n = 1, ‖MP1‖∗ = φ + φ−1 =
√

5. Let us suppose
that ‖MPn‖∗ = (2φ− 1)n = 5n/2 and let us see that the result is fulfilled for n + 1, i.e.,

‖MPn‖∗ = (2φ− 1)n+1 = 5
n+1

2

Since MPn+1 = MP1 ⊗MPn , then for the Lemma 1 the singular values of MPn+1 are

φσi(MPn) and φ−1σi(MPn)

for i = 1, . . . , 2n. Thus,
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‖MPn+1‖∗ =
2n+1

∑
i=1

σi(MPn+1)

=
2n

∑
i=1

φσi(MPn) +
2n

∑
i=1

φ−1σi(MPn)

= φ‖MPn‖∗ + φ−1‖MPn‖∗
= ‖MPn‖∗

(
φ + φ−1

)
= ‖MPn‖∗(2φ− 1)

= (2φ− 1)n+1 = 5
n+1

2

Corollary 5.
∞

∑
n=2

1
‖MPn‖∗

=
1

2(3− φ)

Proof. By Theorem 6, we have:

∞

∑
n=2

1
‖MPn‖∗

=
∞

∑
n=2

1
(2φ− 1)n

which is a convergent geometric series with r = 1
(2φ−1) < 1 and a = 1

(2φ−1)2 , therefore:

∞

∑
n=2

1
‖MPn‖∗

=

1
(2φ− 1)2

1− 1
2φ− 1

=
1

2(3− φ)

3. For n � 1 fixed, let Φn = {Φn
0 , Φn

1 , μ,O} be a {0,1}-Brauer configuration such that:

Φn
0 = {0, 1}.

Φn
1 = {U1, U2, . . . , Un}, for1 ≤ i ≤ n, |Ui| = (i + 5)2.

μ(0) = μ(1) = 1.

(19)

For i ≥ 1, the word wi associated with the polygon Ui has the form wi = wi,1wi,2 . . . wi,δi ,
wi,j ∈ {0, 1}, occ(0, Ui) = (i + 5)(i + 3), occ(1, Ui) = 2(i + 5).
The orientation O is defined in such a way that for successor sequences associated
with vertices 0 and 1, it holds that Ui < Ui+1.
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Polygons Ui can be seen as (i+ 5)× (i+ 5)-matrices over Z2. Each row Rj is defined by
coefficients of a polynomial Pi

j (t) with the form Pi
j (t) = ui

j,1 + ui
j,2t + · · ·+ ui

j,i+4ti+4,

ui
j,k ∈ {0, 1}.

U1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
ui

j,k = ui−1
j,k , 1 ≤ j, k ≤ i + 4,

ui
j,i+5 = 0, 1 ≤ j ≤ i + 3,

ui
i+4,i+5 = 1,

ui
i+5,i+4 = 1,

ui
i+5,i+5 = 0.

(20)

Theorem 7. For n � 1, if Fn = FQn
Φn /In

Φn is the Brauer configuration algebra induced by the
{0,1}-Brauer configuration Φn, αn = 2(tn+5 − 6), and βn = εn+5 − ε5, with εi =

i(i+1)(2i+6)
6 for

i ≥ 1 then the following statements hold:

1. dimF Fn = 2n + 2tαn−1 + 2tβn−1,
2. dimF Z(Fn) = 1 + n + εn+4 − 2n,

3. Lim
n→∞

ρ(MR(Φn)) =
√

2 + 2
√

2.

Proof. The Formulas (1) and (2). for the dimension of the algebra Fn and its center Z(Fn)
are consequences of the definition of a Brauer configuration Φn and Corollary 1.

Let us prove identity 3. Firstly, we note that the characteristic polynomials Pn(λ)
associated with matrices Un can be obtained recursively. They obey the following general
rules according to the size of the corresponding matrices.

P3(λ) = λ3 − 2λ,

P4(λ) = λ4 − 4λ2,

Pn(λ) =
n

∑
j=1

an
j λj, if n ≥ 5,

an
n = 1, an

n−1 = 0, an
1 = (−1)n+12,

an
s = an−1

s−1 − an−2
s , for the remaining vertices.

P3(λ), P4(λ) and P5(λ) are characteristic polynomials of the following matrices T3, T4, and
T5, respectively:

T3 =

⎡⎣ 0 1 1
1 0 0
1 0 0

⎤⎦, T4 =

⎡⎢⎢⎣
0 1 1 0
1 0 0 1
1 0 0 1
0 0 1 0

⎤⎥⎥⎦, T5 =

⎡⎢⎢⎢⎢⎣
0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

⎤⎥⎥⎥⎥⎦.

For any k ≥ 6, Pk(λ) is the characteristic polynomial of Uk−5 ∈ Φn.
We note that for k ≥ 5, |

√
2 + 2

√
2− ρ(MR(Φ(2k−1)))| ≤ 1

10δk
, where

δk =

{
�sk
√

2Ln(2k − 1)�, if k is odd,
�sk
√

2Ln(2k − 1)�, if k is even.
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sk =

{
k− 4, if 5 ≤ k ≤ 7,
62k−8, if k ≥ 8.

Then Lim
k→∞
|
√

2 + 2
√

2 − ρ(MR(Φ(2k−1)))| = 0. Thus, ρ(MR(Φ(2k−1))) is a Cauchy

subsequence of the sequence ρ(MR(Φn), n ≥ 5 converging to
√

2 + 2
√

2.

Corollary 6. For any n ≥ 5, an n-vertex quiver Qn with underlying graph Qn of the form:

� �

�

�

�

�
�
�

�
�
�

�
�

�
�

�
�

c1 c2

c3c4

Qn =

...

is of wild type.

Proof. Since ρ(Q5) =

√√
17+5
2 , then the result holds as a consequence of Theorem 2,

Remark 1, and Theorem 7.

The following results [37] regarding some relationship between graph operations and
energy graph allow finding upper and lower bounds for ‖MR(Φn)‖∗.

Theorem 8 (Theorema 4.18 [37]). Let G, H, and G ◦ H be graphs as specified above. Then

‖G ◦ H‖∗ � ‖G‖∗ + ‖H‖∗

Equality is attained if and only if either u is an isolated vertex of G or v is an isolated vertex of H
or both.

Corollary 7 (Corollary 4.6 [37]). If {e} is a cut edge of a simple graph G, then
‖G− {e}‖∗ < ‖G‖∗.

As a consequence of these results, we obtain the following Corollary 8.

Corollary 8. For n � 6.

2
√

n− 1 < ‖MR(Φn−5)‖∗ < 2 +

⎧⎪⎨⎪⎩
2 csc( π

2(n−2) ), i f n− 3 ≡ 0(mod 2),

2 cot( π
2(n−2) ), i f n− 3 ≡ 1(mod 2).

(21)

Proof. The inequality at right hand holds as a consequence of Theorem 8 taking into
account that Qn is the coalescence [37] between the cycle C4 and An−3, and that:

‖C4‖∗ = 4 and ‖An−3‖∗ =

⎧⎪⎨⎪⎩
2 csc( π

2(n−2) )− 2, i f n− 3 ≡ 0(mod 2),

2 cot( π
2(n−2) )− 2, i f n− 3 ≡ 1(mod 2).

To prove the left hand inequality, we remove edges c1 and c2 in Qn, obtaining in this
fashion a connected tree. Since among all trees of order n, Sn attains the minimal energy.
The result holds as a consequence of Corollary 7.

4. Concluding Remarks

{0, 1}-Brauer configuration algebras give rise to the so-called trace norm of a Brauer
configuration. Such Brauer configurations are a source of a great variety of graphs and posets
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via its reduced message. The structure of the adjacency matrices associated with these graphs
allows estimating the corresponding trace norm or graph energy values. In line with the
main problem in the graph energy theory, we give explicit formulas for the trace norm of
some (0, 1)-matrices associated with these families of graphs and posets. On the other hand,
bounds for the energy of some families of graphs can be obtained via graph coalescence. It is
worth pointing out that some of these graphs underlying quivers of wild type.

An interesting task for the future will be to find the trace norms of a wide variety of
Brauer configuration algebras.
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Abbreviations

The following abbreviations are used in this manuscript:

dimF ΛΓ (Dimension of a Brauer configuration algebra)
dimF Z(ΛΓ) (Dimension of the center of a Brauer configuration algebra)
Γ0 (Vertices in a Brauer configuration Γ)
M(Γ) (Message of a Brauer configuration Γ)
MR(Γ) (Reduced message of a Brauer configuration Γ)
occ(α, V) (Number of occurrences of a vertex α in a polygon V)

V(α)
i (Ordered sequence of polygons)

val(α) (Valency of a vertex α)
w(U) (Word associated with a polygon of a Brauer configuration)
‖M‖F (Frobenius norm of matrix M)
‖M‖∗ (Trace norm of matrix M)
⊗ (Kronecker product)
φ (Golden ratio)
μi(M) (Eigenvalues of matrix M)
ρ(G) (Spectral radius of a graph G)
σi(M) (Singular values of matrix M)
tj (The jth triangular number)
MPn (Matrix associated with the polygon Un)
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Appendix A

Table A1. This table shows the graphical representation of reduced messages of the Brauer configura-
tions Γ3 (14), Δ2 (7) and Φ1 (19). The dimension of the corresponding Brauer configuration algebras
and their centers together with trace norm values.

MR(Γ) n dimF Λ dimF Z(Λ) ‖MR(Λ)‖∗

� �

�

�

��

����
��

� �

�

�

��

����
��

MR (Γ3)

3 96,630 230
√

53 ≈ 11.1803

�

�

�

�

�

�

�

�

�

��
��

�� ��
��
��

��
��

MR (Δ2)

2 7358 105

2
∑

i=1
μi(M3) ≥ 5

9
∑

i=3
μi(M3) ≤ 4

5

� �

�

�

�

�

��

����
��

MR (Φ1)

1 2942 80 4.4721 ≤ ‖MR(Φ1)‖∗ ≤ 6.8284
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1. Introduction

Let Z(R) and Reg(R) be a set of zero-divisors and a set of regular elements of
commutative ringR with 1 
= 0, respectively. In [1], Mohammad Ashraf et al. defined the
dot total graph ofR, denoted by TZ(R)(Γ(R)), as an (undirected) graph, which consists of
all elements ofR as vertex set V(TZ(R)(Γ(R))) and includes all edges such that for distinct
x, y ∈ R, e = xy ∈ E(TZ(R)(Γ(R))) if and only if xy ∈ Z(R). In this paper, we replace
Z(R) by an ideal I, and we introduce and investigate an ideal-based dot total graph of R
denoted TI(Γ(R)). In addition, Redmond [2] defined ΓI(R) as an undirected graph. It
has vertices {x ∈ R \ I | xy ∈ I f or some y ∈ R \ I}. In this case, x and y are vertices that
are both distinct and adjacent if and only if xy ∈ I, i.e., ΓI(R) is subgraph of TI(Γ(R)). It
will also appear in this paper. Further, if I = (0) in ΓI(R), then ΓI(R) = Γ(R); this graph
is studied by Anderson et al. [3], and they were interested in studying the interplay of
ring-theoretic properties of R with graph-theoretic properties of Γ(R). Moreover, they
associated a (simple) graph Γ(R) toR, which consists of a vertex set V(Γ(R)) = Z(R)∗ =
Z(R) \ {0} and edge set E(Γ(R)) such that for all distinct x, y ∈ Z(R)∗, e = xy ∈ E(Γ(R))
if and only if xy = 0. Furthermore, if I = (0) in TI(Γ(R)), then TI(Γ(R)) = Γ0(R); this
graph is studied by Beck [4], in which he considered R as a simple graph for which its
vertex set is the set of all elements of R and edge set such that for all distinct x, y ∈ R,
e = xy ∈ E(Γ0(R)) if and only if xy = 0. In addition, some fundamentals of Laplacian
eigenvalues and energy of graphs can be identified in [5–7].

Assuming G to be a graph, G can be said to be connected when a path connects
every pair of its distinctive vertices. Denoting distinct vertices of graph G to be x and
y, d(x, y) will indicate the shortest distance between the two vertices. However, where
no such path exists, it will be represented by d(x, y) = ∞. Similarly, the diameter of G
is diam(G) = sup{d(x, y) | x and y are distinct vertices o f G}. The girth of G, denoted by
gr(G), is defined as the length of shortest cycle in G (gr(G) = ∞ if G contains no cycle).
Note that if G contains a cycle, then gr(G) ≤ 2 diam(G) + 1. The degree of vertex v, written
degG(v) or deg(v), is the number of edges incident to v (or the degree of the vertex v is
the number of vertices adjacent to v). In a connected graph G, a vertex v is said to be a
cut-vertex of G if and only if G \ {v} is disconnected. Let V(G) be a vertex set of G. Then,
the subset U ⊆ V(G) is called a vertex-cut if G \U is disconnected. The connectivity of a
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graph G denoted by k(G) and is defined as the cardinality of a minimum vertex-cut of G,
which is also the same concepts we have in the edges. In a connected graph G, an edge e
is said to be a bridge of G if and only if G \ {e} is disconnected. Let E(G) be an edge set
of G. If G \ X is disconnected, it will have a subset X ⊆ E(G) as its edge-cut. Let λ(G)
denote the edge-connectivity of a connected graph G which is the size of the smallest set
of edges for which removal disconnects G. Moreover, a clique is a complete subgraph of
a graph G. The clique number denoted by ω(G) is the greatest integer n � 1 such that
Kn ⊆ G, and ω(G) = ∞ if Kn ⊆ G for all n � 1. A nontrivial connected graph G is Eulerian
if every vertex of G has an even degree. Moreover, G contains a Eulerian trail if exactly
two vertices of G have an odd degree. In addition, let G be a graph of order n ≥ 3. If
deg(u) + deg(v) ≥ n for each pair u and v of vertices of G that are not adjacent, then G is
Hamiltonian.

The present paper is organized as follows:
In Section 2, we define an ideal-based dot total graph ofR and study the most basic

results of TI(Γ(R)). We provide many examples and show that TI(Γ(R)) is always con-
nected with diam(TI(Γ(R))) � 2 and gr(TI(Γ(R))) � 5, and we determine when TI(Γ(R))
is a complete graph and a regular graph. Moreover, we find the degree of each vertex of
TI(Γ(R)). Furthermore, in Section 3, we study the connectivity of TI(Γ(R)) when TI(Γ(R))
has a no cut-vertex, and TI(Γ(R)) has a bridge. We shall also find the k(TI(Γ(R))). On
the other hand, in Section 4, we study the clique number and girth of TI(Γ(R)), and we
determine the clique number when TI(Γ(R)) has a cycle. Furthermore, we find the girth of
TI(Γ(R)), i.e., gr(TI(Γ(R))). Finally, in Section 5, we study the traversability of TI(Γ(R))
when TI(Γ(R)) is Eulerian or contains a Eulerian trail, and TI(Γ(R)) is Hamiltonian.

2. Definition and Basic Structure of TI(Γ(R))

In this section, we define an ideal-based dot total graph, denoted by TI(Γ(R)), and
show that this graph is always connected and has a small diameter of at most two. By divid-
ing the element ofR into three disjoint subsets, we study the basic results on the structure
of this graph and the relationship between TI(Γ(R)) and TZ(R)(Γ(R)), TZ(R/I)(Γ(R/I)),
ΓI(R), or Γ(R/I) with some examples clarification. Moreover, we find the degree of each
vertex of TI(Γ(R)) that depends on the three sets I, X, and Y. Furthermore, we determine
the case when TI(Γ(R)) is a complete graph or a regular graph.

Definition 1. LetR be a commutative ring with 1 
= 0 and ideal I. Then, a simple graph that is
not directed is defined as TI(Γ(R)), possessing vertices ofR. In this case, the graph has vertices x
and y that are both distinct and adjacent if and only if xy ∈ I.

Proposition 1. (a) If I = (0), then TI(Γ(R)) = Γ0(R).
(b) If Z(R) is an ideal and I = Z(R), then TI(Γ(R)) = TZ(R)(Γ(R)).
(c) If I = R, then TI(Γ(R)) = Kn, where n = |R|.
(d) LetR have a proper nonzero ideal I. Consequently, this means that TZ(R/I)(Γ(R/I))= K1,n.

The value of n is given by n = |R/I| − 1 if and only if the prime ideal ofR is I.

Proof. The proofs of (a) and (b) follow by the definition of the zero-divisor graph of R,
which appeared in Beck [4], and definition of the dot total graph of R, which appeared
recently in Ashraf et al. [1], respectively.

(c) Let x and y be distinct vertices ofR. Then, xy ∈ R = I. Thus, x is adjacent to y for
all x, y ∈ R. Hence, TI(Γ(R)) = Kn, where n = |I| = |R|. This completes the proof.

(d) Let I be a prime ideal ofR. Then,R/I is an integral domain. Thus, TZ(R/I)(Γ(R/I))
is a star graph. Hence, TZ(R/I)(Γ(R/I)) = K1,n, where n = |R/I| − 1.

Conversely, let TZ(R/I)(Γ(R/I)) = K1,n, where n = |R/I|− 1. Then, TZ(R/I)(Γ(R/I))
is a star graph, and we have the following two cases:

Case(i) If Z(R/I) = 1, thenR/I is an integral domain.
Case(ii) If Z(R/I) > 1, then there exists at least two vertices in Z(R/I). Therefore,

TZ(R/I)(Γ(R/I)) is not a star graph, which is a contradiction.
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Thus, we obtain R/I as an integral domain. Hence, I is the prime ideal of R. This
completes the proof.

In view of the following examples, we shall find TI(Γ(R)) and TZ(R/I)(Γ(R/I)) with
several ideals I of the same ringR.

Example 1. LetR = Z8. Then, (0), (2), (4), and Z8 are ideals ofR:

(i) Let I = (0), thenR/I = Z8 (see Figure 1).

0 2

6

75

4

1 3

42 6

0
1

3 5

7

Figure 1. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z8 and I = (0).

(ii) Let I = (2), thenR/I = Z2 (see Figure 2).

0 1

0 2

6

75

4

1 3

Figure 2. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z8 and I = (2).

(iii) Let I = (4), thenR/I = Z4 (see Figure 3).

0 2

31

0 4

6

75

2

1 3

Figure 3. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z8 and I = (4).

(iv) Let I = Z8, thenR/I = (0) (see Figure 4).
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Figure 4. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z8 and I = Z8.

Example 2. LetR = Z6. Then (0), (2), (3), and Z6 are ideals ofR:

(i) Let I = (0), thenR/I = Z6 (see Figure 5).
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Figure 5. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z6 and I = (0).

(ii) Let I = (2), thenR/I = Z2 (see Figure 6).
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Figure 6. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z6 and I = (2).

(iii) Let I = (3), thenR/I = Z3 (see Figure 7).
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Figure 7. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z6 and I = (3).

(iv) Let I = Z6, thenR/I = (0) (see Figure 8).
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Figure 8. (left) TZ(R/I)(Γ(R/I)) and (right) TI(Γ(R)), whenR = Z6 and I = Z6.

Theorem 1. TI(Γ(R)) is connected and diam(TI(Γ(R))) ≤ 2. Therefore, where TI(Γ(R)) has
a cycle, it implies gr(TI(Γ(R))) ≤ 5.

Proof. Assume that x and y are distinct vertices of TI(Γ(R)). In such a scenario, various
cases will be true as shown:

Case(i): If x ∈ I and y ∈ I, then xy ∈ I. Thus, x − y is a path of length one in
TI(Γ(R)).

Case(ii): If x ∈ I and y /∈ I, then xy ∈ I. Thus, x − y is a path of length one
in TI(Γ(R)).

Case(iii): If x /∈ I and y ∈ I, then this will result in a path of length one as in the
previous case.

Case(iv): If x /∈ I and y /∈ I, then we will consider the following subcases:
Subcase(a): If xy ∈ I, then x− y is a path of length one in TI(Γ(R)).
Subcase(b): If xy /∈ I, then there is some z ∈ I such that xz ∈ I and zy ∈ I.

Thus, x − z− y is a path of length two in TI(Γ(R)). Hence, TI(Γ(R)) is connected and
diam(TI(Γ(R))) ≤ 2. Since for any undirected graph, H contains a cycle, gr(H) ≤ 2
diam(H) + 1 (for reference see [8]). Thus, gr(TI(Γ(R))) ≤ 5.
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Suppose thatR is a commutative ring, and I is an ideal ofR. We construct a graph
TI(Γ(R)) with the following method:

First, the set of vertices of TI(Γ(R)) can be classified into three disjoint subsets ofR:
(i) I = (a) is the subset ofR such that I is the ideal generated by the element a.
(ii) X = {x ∈ R \ I : xb /∈ I, for all b ∈ R \ I}.
(iii) Y = {y ∈ R \ I : yb ∈ I, for some b ∈ R \ I}.
Second, we will connect the edges between the vertices defined in the three previous

sets as follows:
We define a complete graph (Kn, where n = |I|) by using the first set I = (a) as its

vertex set. Thus, we have an edge between each vertex of I (i.e., ab ∈ I). Then, join each
vertex of the second set X to all vertices of the complete graph Kn, and similarly, join each
vertex of the third set Y to all vertices of the complete graph Kn. Thus, we have an edge
between each vertex of the sets X and Y with all vertex of I (i.e., xa ∈ I and ya ∈ I). Finally,
in this part of the edges the relationship between TI(Γ(R)) and ΓI(R) is identical. Thus,
for distinct y1, y2 ∈ Y, y1 is adjacent to y2 in TI(Γ(R)) if and only if y1 is adjacent to y2 in
ΓI(R) (i.e., y1y2 ∈ I).

Henceforth, we shall rely on the three sets I, X, and Y defined above in this paper.

Theorem 2. Let y1 and y2 be any two distinct vertices of the third set Y and y1 is adjacent to y2 in
TI(Γ(R)). If y1 + I 
= y2 + I, then y1 + I is adjacent to y2 + I in Γ(R/I) and if y1 + I = y2 + I,
then y2

1, y2
2 ∈ I.

Corollary 1. Let TI(Γ(R)) have two vertices (u and v) that are both distinct and adjacent. This
implies that the elements, u + I and v + I, are adjacent in TI(Γ(R)). Assuming that u2 ∈ I, this
implies that TI(Γ(R)) has all the distinct elements of u + I adjacent to it.

Corollary 2. Let I be an ideal ofR. Then, Γ(R/I) and ΓI(R) are subgraphs of TI(Γ(R)).

Corollary 3. Assume that a nonzero ideal ofR is I. Then, if and only if the prime ideal ofR is I,
TZ(R/I)(Γ(R/I)) is subgraph of TI(Γ(R)).

Corollary 4. TI(Γ(R)) contains |I| disjoint subgraphs isomorphic to Γ(R/I).

Proof. Since ΓI(R) is subgraph of TI(Γ(R)) (see Corollary 2) and ΓI(R) contains |I|
disjoint subgraphs isomorphic to Γ(R/I), TI(Γ(R)) contains |I| disjoint subgraphs isomor-
phic to Γ(R/I).

Remark 1. Let I, X, and Y be three disjoint sets defined above, and u, v ∈ R. Then, we have the
following results:

(i) If u + I is adjacent to v + I in Γ(R/I), then u is adjacent to v in TI(Γ(R)).
(ii) If u + I is adjacent to v + I in TZ(R/I)(Γ(R/I)), then u may or may not be adjacent to

v in TI(Γ(R)) (see Example 1(iii); Figure 3).
(iii) If I is a prime ideal, then the set Y defined above will vanish.
(iv) If I = R, then the sets X and Y defined above will vanish, i.e., X and Y are empty. Thus,

TI(Γ(R)) = Kn, where n = |R|.
(v) If u ∈ I, then u is adjacent to each vertex v ∈ R.
(vi) If u ∈ X, then u is adjacent to v ∈ I only.
(vii) If u ∈ Y, then u is adjacent to v ∈ I and some v ∈ Y.
(viii) Any two distinct vertices of X are not adjacent in TI(Γ(R)), i.e., if u, v ∈ X, and u 
= v,

then uv /∈ E(TI(Γ(R))).
(ix) If Y is a subgraph of TI(Γ(R)), then each pair of distinct vertices u and v of Y is connected

by a path with a length of at most three.
(x) There are no adjacencies between elements of X and elements of Y.
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Theorem 3. Let I be a prime ideal ofR. Then, TI(Γ(R)) contains a subgraph isomorphic to Kn,
where n = |I|+ 1.

Proof. Since I is a prime ideal, Y will vanish, and there is at least one element v in X.
Moreover, we have a complete subgraph Kn, where n = |I| and the vertex v is adjacent to
each vertex of Kn. Thus, we have a complete subgraph of order n = |I|+ 1.

Theorem 4. Let I be a non-prime ideal of R, and there exists u ∈ Y such that u2 ∈ I. Then,
TI(Γ(R)) contains a subgraph isomorphic to Km, where m is at least 2|I|.

Proof. Since there exists u ∈ Y such that u2 ∈ I, all the distinct elements of u + I are
adjacent in TI(Γ(R)) (see Corollary 1). Thus, we have a complete subgraph of order
n = |I|. Moreover, by element of the set I, we have a complete subgraph Kn, where n = |I|
and all the distinct elements of u + I are adjacent to each vertex of Kn. Thus, we have a
complete subgraph of order m = n + n = |I|+ |I| = 2|I|. Therefore, if Y consists of the
elements u + I only, then m = 2|I|. If there exists v ∈ Y other than the elements u + I,
then v is adjacent to all the elements u + I or there exists an element w ∈ Y such that v is
adjacent to w, and w is adjacent to all the elements u + I. Hence, in both cases we have a
complete subgraph of order |I|+ 1, and all elements of this subgraph are adjacent to each
vertex of Kn. Thus, we have a complete subgraph of order m = |I|+ 1 + |I| = 2|I|+ 1.

Theorem 5. Let I be an ideal of R that is not prime, and u2 /∈ I for all u ∈ Y. Then, TI(Γ(R))
contains a subgraph isomorphic to Km, where m is at least |I|+ 1.

Proof. Assume that u2 /∈ I for all u ∈ Y. By the same arguments as used in Theorems 3
and 4, we obtain the result.

Corollary 5. TI(Γ(R)) is a complete graph if and only if either I = R orR ∼= Z2.

Theorem 6. Let I be a prime ideal of R. Then, the degree of each vertex of TI(Γ(R)) is either
|R| − 1 or |I|.

Proof. Since I is a prime ideal ofR, the set Y will vanish. Thus,R consists of two disjoint
subsets I and X. Then, we have the following two cases:

Case (i): If u ∈ I, then u is adjacent to each vertex in TI(Γ(R)) except u; that is, u is
adjacent to (|R| − 1) vertices, and hence the degree of u is |R| − 1.

Case (ii): If u ∈ X, then u is adjacent to the vertices, which belongs to I; that is, u is
adjacent to |I| vertices and, hence, deg(u) = |I|.

Corollary 6. Let I be an ideal ofR and u ∈ Y. Then, the number of elements of TI(Γ(R)) adjacent
to u is either |I| or at least |I|+ 1.

Proof. Let u ∈ Y. Then, we have two types of adjacencies. First, u is adjacent to each
element of I, i.e., u is adjacent to |I| vertices. Second, if |Y| ≥ 2, then u is adjacent to some
elements of Y, i.e., u is adjacent to at least one vertex of Y. Thus, u is adjacent to at least
|I|+ 1 vertices. If |Y| = 1, then u is adjacent to |I| elements only. Hence, deg(u) ≥ |I|+ 1
or deg(u) = |I|.

Corollary 7. Let I be an ideal ofR and u ∈ TI(Γ(R)). Then, the degree of u depends on the three
sets I, X, and Y defined earlier as follows.

deg(u) =

⎧⎪⎨⎪⎩
|R| − 1 i f u ∈ I
|I| i f u ∈ X or u ∈ Y and |Y| = 1
at least |I|+ 1 i f u ∈ Y and |Y| ≥ 2.
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Corollary 8. TI(Γ(R)) is regular graph if and only if either I = R orR ∼= Z2 (i.e., TI(Γ(R)) is
a complete graph).

Remark 2. Minimum degree of TI(Γ(R)) is δ(TI(Γ(R))) = |I|, and maximum degree of
TI(Γ(R)) is Δ(TI(Γ(R))) = |R| − 1.

3. Connectivity of TI(Γ(R))

In this section, we study the connectivity of TI(Γ(R)).

Theorem 7. Let I be a nonzero ideal ofR. Then, TI(Γ(R)) has no cut-vertex.

Proof. Assume that the vertex u of TI(Γ(R)) is a cut-vertex. Then, there exist x, y ∈
TI(Γ(R)) such that u lies on every path from x to y. Thus, we have the following cases.

Case (i): If x is adjacent to y, then there is a path from x to y in TI(Γ(R)) such that u
does not lie on it. Hence, we obtain a contradiction.

Case (ii): If x is not adjacent to y, then x, y /∈ I. Since I is nonzero ideal, I has at least
two elements, and we have the following subcases.

Subcase(a): If x, y ∈ X, then x is not adjacent to y, and there exist w1, w2 ∈ I such
that x is adjacent to w1, w2, and similarly, y is adjacent to w1, w2. Therefore, if u is equal
to w1 or w2, then there is at least one path from x to y, and u does not lie on it, which is
a contradiction. Moreover, we obtain the same contradiction when u is not equal to w1
and w2.

Subcase(b): If x ∈ X and y ∈ Y, then x is not adjacent to y, and by the same arguments
as used in the above subcase, we obtain the contradiction.

Subcase(c): If x, y ∈ Y, then x may or may not adjacent to y. Thus in both the cases
and by the same arguments as used in the subcase(a), we obtain a contradiction.

Corollary 9. Let I be an ideal ofR. Then, TI(Γ(R)) has a cut-vertex if and only if I is a zero ideal.

Remark 3. If TI(Γ(R)) has a cut-vertex, then 0 is the cut-vertex of TI(Γ(R)).

Theorem 8. k(TI(Γ(R))) = |I|.

Proof. By Remark 2, δ(TI(Γ(R))) = |I|. Moreover, for any graph G, k(G) � λ(G) � δ(G).
Therefore, k(TI(Γ(R))) � |I|. Now, if u ∈ I, then u is adjacent to each vertex v ∈ TI(Γ(R)).
Thus, the minimum vertex-cut is the set of all those vertices in I. Therefore, k(TI(Γ(R))) ≥
|I|, and hence k(TI(Γ(R))) = |I|.

Remark 4. For any commutative ring R with 1 
= 0, the elements of I with some elements of
Y form a vertex-cut of TI(Γ(R)). However, only the elements of I is the minimum vertex-cut of
TI(Γ(R)).

Theorem 9. TI(Γ(R)) has a bridge if and only if either TI(Γ(R)) is a graph with two vertices
(i.e., TI(Γ(R)) ∼= TI(Γ(Z2))), or I is the zero ideal ofR.

Proof. Suppose that TI(Γ(R)) has a bridge. Now, we have the following cases.
Case(i): If |R| = 2, then it is clear that TI(Γ(R)) ∼= K2, which has a bridge. Hence,

TI(Γ(R)) ∼= TI(Γ(Z2)) .
Case(ii): If |R| � 3, then either V(TI(Γ(R))) ⊆ I, V(TI(Γ(R))) ⊆ X, or V(TI(Γ(R))) ⊆

Y. Let e = uv be the bridge of TI(Γ(R)). Since there is no edge neither between any two
elements of X nor between any element of X with element of Y, we have the following
subcases.

Subcase(a): If u, v ∈ I, and |R| � 3, then there exists w ∈ R such that u and v are
adjacent to w. We note that u− v− w− u is a cycle, and there is no bridge between them;
we obtain a contradiction.
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Subcase(b): If u, v ∈ Y, and |R| � 3, then there exists w ∈ I such that u and v are
adjacent to w. We note that u− v− w− u is a cycle, and there is no bridge between them;
we obtain a contradiction.

Subcase(c): If u ∈ I, v ∈ X, and |R| � 3, then there are two possibilities.
If |I| = 1 (i.e., I is a zero ideal ofR), then v is adjacent to u = 0 only, and uv is a bridge

of TI(Γ(R)). Moreover, each vertex of X with u forms a bridge of TI(Γ(R)) (i.e., we have
|X| bridges).

If |I| ≥ 2 (i.e., I is not zero ideal ofR), then there exists u 
= w ∈ I such that u and v
are adjacent to w. We note that u− v− w− u is a cycle, and there is no bridge between
them; we obtain a contradiction.

Subcase(d): If u ∈ I, v ∈ Y, and |R| � 3, then there are three possibilities.
If |I| = 1 (i.e., I is a zero ideal ofR) and |Y| = 1, then v is adjacent to u = 0 only, and

uv is a bridge of TI(Γ(R)).
If |I| = 1 (i.e., I is a zero ideal ofR) and |Y| ≥ 2, then there exists at least one element

v 
= w ∈ Y such that v and w are connected vertices by a path P. Since each elements of Y
are adjacent to elements of I, v− P− w− 0− v is a cycle and there is no bridge between
them. This is a contradiction.

If |I| ≥ 2 (i.e., I is not zero ideal of R), then there exists u 
= w ∈ I such that v is
adjacent to w. Since each element of I is adjacent, u− v− w− u is a cycle, and there is no
bridge between them; we obtain a contradiction.

Conversely, suppose that TI(Γ(R)) is a graph with two vertices. Then, it is clear that
TI(Γ(R)) has a bridge. Let us suppose that I is the zero ideal of R (i.e., I = {0}) and
|R| ≥ 3. Then, we have at least one element u in X. Hence, 0u is a bridge in TI(Γ(R)).

Remark 5. If the ring R ∼= Z2 or I is the zero ideal of R, then TI(Γ(R)) has a bridge and vice
versa, i.e., if TI(Γ(R)) has a bridge, then the ringR ∼= Z2 or I is the zero ideal ofR.

4. Clique Number and Girth of TI(Γ(R))

In this section, we study the clique number and girth of TI(Γ(R)).

Theorem 10. Let I be a prime ideal of R and |I| = m. Then, TI(Γ(R)) has cliques of the form
K1, K2, K3, ..., Km+1. Moreover, ω(TI(Γ(R))) = m + 1.

Proof. Suppose that I is a prime ideal of R and |I| = m. Then, by using Theorem 3,
TI(Γ(R)) contains a complete subgraph of order |I|+ 1, and this order is the greatest integer
n = |I|+ 1 ≥ 2 such that Kn ⊆ TI(Γ(R)). Hence, ω(TI(Γ(R))) = |I|+ 1 = m + 1.

Theorem 11. Let I be an ideal ofR, which is not prime and there exists u ∈ Y such that u2 ∈ I.
Then, ω(TI(Γ(R))) ≥ 2|I|.

Proof. Suppose that I is not a prime ideal of R. Then, by using Theorem 4, TI(Γ(R))
contains a complete subgraph of order at least 2|I|. Hence, ω(TI(Γ(R))) ≥ 2|I|.

Theorem 12. Let I be an ideal of R, which is not prime, and u2 /∈ I for all u ∈ Y. Then,
ω(TI(Γ(R))) ≥ |I|+ 1.

Proof. Suppose that I is not a prime ideal of R. Then, by using Theorem 5, TI(Γ(R))
contains a complete subgraph of order at least |I|+ 1. Hence, ω(TI(Γ(R))) ≥ |I|+ 1.

Corollary 10. Let I be a non-prime ideal ofR and |I| = n. Then, ω(TI(Γ(R))) = ω(ΓI(R)) + n.

Remark 6. Let I be an ideal of a ring R. Then, ω(Γ(R/I)) ≤ ω(ΓI(R)) ≤ ω(TI(Γ(R))).
Moreover, we know that if ΓI(R) has no connected columns (i.e., if u2 /∈ I for all u ∈ Y), then
ω(Γ(R/I)) = ω(ΓI(R)) (for reference see Theorem 4.5 [2]).
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Theorem 13. Let I be a nonzero ideal of a ring R. If |R| ≥ 3, then TI(Γ(R)) has a cycle.
Moreover, gr(TI(Γ(R))) = 3.

Proof. Since I is a nonzero ideal, I has at least two elements (say u, v). Moreover, each
element of R is adjacent to the elements of I and |R| ≥ 3, i.e., there exists w ∈ R such
that u and v are adjacent to w. Thus, u− w− v− u is a cycle of length three, which is the
smallest cycle in TI(Γ(R)). Hence, gr(TI(Γ(R))) = 3.

Corollary 11. Let I be an ideal of a ringR. If |R| ≤ 2, then gr(TI(Γ(R))) = ∞.

Corollary 12. Let I be a zero ideal of a ringR. Then,

gr(TI(Γ(R))) =
{

3 i f |Y| ≥ 2
∞ i f |Y| ≤ 1.

Remark 7. Let I be a non-prime ideal of a ringR. Then,

gr(TI(Γ(R))) ≤ gr(ΓI(R)) ≤ gr(Γ(R/I)).

5. TI(Γ(R)) Is Eulerian and Hamiltonian

In this section, we determine when TI(Γ(R)) is Eulerian, Hamiltonian, and TI(Γ(R))
contains a Eulerian trail.

Theorem 14. Let I be an ideal of a ring R such that |R| = n ≥ 3. If I = R and |R| are odd,
then TI(Γ(R)) is a Eulerian.

Proof. Suppose that I = R and |R| is odd. Then, by Corollary 5, TI(Γ(R)) is a complete
graph Kn of odd vertices. Thus, the degree of each vertex of TI(Γ(R)) is even. Hence,
TI(Γ(R)) is Eulerian.

Theorem 15. Let I be a zero ideal of a ringR such that |X| = 1 and |Y| are even. If each vertex of
Γ(R) = Γ0(R) has odd degree, then TI(Γ(R)) contains a Eulerian trail.

Proof. Suppose that each vertex of Γ(R) = Γ0(R) has odd degree. Then, each vertex
of Y in TI(Γ(R)) has even degree. Since |X| = 1 and |Y| are even, the vertex 0 of I has
odd degree. Moreover, the degree of the vertex of X has degree one. Thus, each vertex
of TI(Γ(R)) has an even degree except for two vertices that have odd degrees. Hence,
TI(Γ(R)) contains a Eulerian trail.

Remark 8. In view of Theorem 15, the element of X is the unity of the ring R. Moreover, the
Eulerian trail of TI(Γ(R)) begins at unity and ends at zero ofR or begins at zero and ends at unity
ofR (for example,R = Z2 ×Z2 and I = (0)).

Theorem 16. Assume that a prime ideal of RingR is I. Thus, if and only if |I| is even and |X| is
odd, then TI(Γ(R)) is Eulerian. |R| also is odd.

Proof. Suppose that TI(Γ(R)) is Eulerian. Then, every vertex of TI(Γ(R)) has an even
degree. Since I is a prime ideal ofR, the degree of each vertex of TI(Γ(R)) either (|R| − 1)
or |I| (Theorem 6). Therefore, we have the following cases.

Case(i): If u ∈ X, then deg(u) = |I|, which is even. Thus, |I| is even.
Case(ii): If u ∈ I, then deg(u) = |R| − 1, which is even, and we obtain |R| as odd.
Now, we have |R| as odd and |I| as even. Therefore, |X| is odd.
Conversely, suppose that |I| is even and |X| is odd. Then, |R| is odd. Thus, |R| − 1

is even, and |I| is also even. Since I is a prime ideal of R, the degree of each vertex of
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TI(Γ(R)) is either |R| − 1 or |I|. Thus, the degree of each vertex of TI(Γ(R)) is even.
Hence, TI(Γ(R)) is Eulerian.

Theorem 17. Let I be a prime ideal of a ringR. Then, TI(Γ(R)) contains a Eulerian trail if and
only if either |I| = 2 or |X| is even or |X| = 2 and |I| are odd.

Proof. Suppose that TI(Γ(R)) contains a Eulerian trail. Then, exactly two vertices of
TI(Γ(R)) have odd degree. Since I is a prime ideal ofR, the vertex set of TI(Γ(R)) consists
of I and X only, and Y will vanish. Let u and v be the two vertices of odd degree and let
w1, w2, ..., wn be the vertices of even degree. Then, we have the following cases.

Case(i): If u, v ∈ I and wi ∈ X for all 1 ≤ i ≤ n, then deg(u) = deg(v) is odd and
deg(wi) for all 1 ≤ i ≤ n is even. Therefore, |R| − 1 is odd, and |I| = 2 is even; thus, |R| is
even and |I| = 2. Hence, |I| = 2 and |X| is even. Moreover, |R| is even.

Case(ii): If u, v ∈ I and there exists at least one wj ∈ I, then deg(u) = deg(v) =
deg(wj) is odd. Hence, there are more than two odd vertices in TI(Γ(R)), and we obtain a
contradiction.

Case(iii): If u, v ∈ X and wi ∈ I for all 1 ≤ i ≤ n, then deg(u) = deg(v) is odd and
deg(wi) for all 1 ≤ i ≤ n is even. Note that |I| is odd, and |R| − 1 is even. We obtain |I| as
odd and |R| as odd. Since u, v ∈ X only, we have |X| = 2. Hence, |X| = 2 and |I| are odd.
Moreover, |R| is odd.

Case(iv): If u, v ∈ X and there exists at least one wj ∈ X, then deg(u) = deg(v) =
deg(wj) is odd. Thus, there are more than two odd vertices in TI(Γ(R)), we obtain a
contradiction.

Case(v): If u ∈ I and v ∈ X, then deg(u) = deg(v) = deg(wi) for all 1 ≤ i ≤ n is
odd. Thus, all the vertices of TI(Γ(R)) have odd degree, and we obtain a contradiction.
Therefore in all the cases, we obtain either |I| = 2 and |X| as even or |X| = 2 and |I| as
odd.

Conversely, suppose that either |I| = 2 and |X| are even or |X| = 2 and |I| are odd.
We first assume that |I| = 2 and |X| are even. Thus, |R| is even, and let u be any vertex of
TI(Γ(R)). Therefore, we have the following cases.

Case(i): If u ∈ I, then deg(u) = |R| − 1, which is odd. Since |I| = 2 and |X| are even,
and there are only two vertices in I posessing an odd degree, and each vertices in X has an
even degree. Hence, TI(Γ(R)) contains a Eulerian trail.

Case(ii): If u ∈ X, then deg(u) = |I| = 2, which is even by the same argument; there
are only two vertices w1, w2 ∈ I such that w1 and w2 are adjacent to each vertices in X
and w1 adjacent to w2 and deg(w1) = deg(w2) = |X|+ 1, which is odd. Therefore, there
are only two vertices in I that have an odd degree, and each other vertices in X has even
degree. Hence, TI(Γ(R)) contains a Eulerian trail.

Now, we assume that |X| = 2 and |I| are odd. Thus, |R| is odd, and let u be any
vertex of TI(Γ(R)). Then, we have the following cases.

Case(i): If u ∈ I, then deg(u) = |R| − 1, which is even. Since |X| = 2 and |I| are odd,
there are only two vertices in X that have an odd degree, and each other vertices in I has
an even degree. Hence, TI(Γ(R)) contains a Eulerian trail.

Case(ii): If u ∈ X, then deg(u) = |I|, which is odd; thus, |R| is odd. By the same
argument, there are only two vertices in X possessing an odd degree and each other vertices
in I has degree |R| − 1, which is even. Hence, TI(Γ(R)) contains a Eulerian trail.

From all the above cases, we conclude that TI(Γ(R)) contains a Eulerian trail. Hence,
if either |I| = 2 and |X| are even or |X| = 2 and |I| are odd, then TI(Γ(R)) contains a
Eulerian trail.

Remark 9. In view of Theorem 17, if |I| = 2, then Eulerian trail of TI(Γ(R)) begins at one of
these two elements of I and ends at other(for example R = Z6 and I = (3) see Example 2(iii)
Figure 7). Moreover, if |X| = 2, then the Eulerian trail of TI(Γ(R)) begins at one of these two
elements of X and ends at the other (for exampleR = Z3 and I = (0)).
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Theorem 18. Let I be an ideal of a ringR that is not prime such that |I| is even, |X| is odd, and
|Y| is even. Then, we have the following case:

(a) TI(Γ(R)) is Eulerian if and only if ΓI(R) is Eulerian.
(b) TI(Γ(R)) contains a Eulerian trail if and only if ΓI(R) contains a Eulerian trail.

Theorem 19. Let I be an ideal of a ringR that is not prime such that |I| is even, |X| is even, and
|Y| is odd. Then, we have the following case.

(a) TI(Γ(R)) is Eulerian if and only if ΓI(R) is Eulerian.
(b) TI(Γ(R)) contains a Eulerian trail if and only if ΓI(R) contains a Eulerian trail.

Remark 10. In view of Theorems 16, 18, and 19, since |I| is even and |R| is odd, there is no graph
on n vertices that can be realized as TI(Γ(R)) for some ringR and an ideal I ofR.

Theorem 20. Let I be a non-prime ideal of a ringR such that |I| = 2, |X| is even, and |Y| is even.
Then, TI(Γ(R)) contains a Eulerian trail if and only if ΓI(R) is Eulerian.

Proof. Suppose that TI(Γ(R)) contains a Eulerian trail. Then, each vertex of TI(Γ(R))
has an even degree except for two vertices that have odd degrees. Since I is not a prime
ideal of R, the vertex set of TI(Γ(R)) consists of I, X, and Y. Let u and v be the two
vertices of odd degree and let w1, w2, ..., wn be the vertices of even degree. Since |X| and
|Y| are even and |I| = 2, u, v ∈ I. If we assume that at least one of u, v ∈ X, then |I| is
odd, which is a contradiction, and if we assume that at least one of u, v ∈ Y, then we
have more than two odd vertices in TI(Γ(R)). Therefore, TI(Γ(R)) has no Eulerian trail,
which is a contradiction. Thus, the two elements of I are the only ones that are odd and all
other elements of X and Y are even. Now, we know that ΓI(R) is a subgraph of TI(Γ(R)),
i.e., the set Y is the set of vertex of ΓI(R), but to obtain the exact number of edges that
incident on each vertex of ΓI(R), we remove the edges join all vertex of I with each vertex
of Y. Thus, the degree of each vertex of ΓI(R) is same as the degree of each vertex of Y in
TI(Γ(R)) subtract |I|. Therefore, the degree of each vertex of ΓI(R) is even. Hence, ΓI(R)
is Eulerian.

Conversely, suppose that ΓI(R) is Eulerian. Then, each vertex of ΓI(R) has an even
degree. Thus, each vertex of Y in ΓI(R) has an even degree. Now, we will construct
TI(Γ(R)). First, we have two vertices of the set I adjacent to all vertex ofR, i.e., adjacent
to (|I| − 1 + |X|+ |Y|) vertices. Since |I| = 2, |X| and |Y| are even, and the degree of each
vertex of I is odd, i.e., we have two vertices of I being odd. Now, if we have an even vertex
of set X, which is adjacent to all vertices of I only. Thus, the degree of each vertex of X
is even. Finally, we have an even vertex of set Y adjacent to all vertex of I and at least
one vertex of Y. Since |I| = 2 is even and each vertex of Y in ΓI(R) has an even degree,
the degree of each vertex of Y in TI(Γ(R)) is even. Thus, each vertex of TI(Γ(R)) has an
even degree except for two vertices, which have odd degrees. Hence, TI(Γ(R)) contains a
Eulerian trail.

Theorem 21. Let I be an ideal of a ringR that is not prime such that |I| = 2, |X| is odd, and |Y|
is odd. Then, TI(Γ(R)) contains a Eulerian trail if and only if ΓI(R) is Eulerian.

Proof. By the same arguments used in the above Theorem 18, the proof is clear.

Example 3. Let R = Z12 and I = (6) = {0, 6}. Then, Y = {2, 3, 4, 8, 9, 10} and X =
{1, 5, 7, 11}. We observe that ΓI(R) is Eulerian and TI(Γ(R)) contains a Eulerian trail (see
Figure 9).
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Figure 9. (left)TI(Γ(R)) and (right) ΓI(R), whenR = Z12 and I = (6).

Theorem 22. Let I be an ideal of a ring R such that |R| = n ≥ 3. If I = R, then TI(Γ(R)) is
Hamiltonian.

Proof. Suppose that I = R. Then, by Corollary 5, TI(Γ(R)) is a complete graph. Hence,
TI(Γ(R)) is Hamiltonian.

Theorem 23. Let I be a zero ideal of a ringR. Then, TI(Γ(R)) cannot be Hamiltonian.

Proof. Suppose that I = (0). Then, by Corollary 9, TI(Γ(R)) has a cut-vertex. Hence
TI(Γ(R)) cannot be Hamiltonian.

Theorem 24. Let I be a nonzero ideal of a ring R such that |R| = n ≥ 3. If |I| ≥ n
2 , then

TI(Γ(R)) is Hamiltonian.

Proof. Suppose that u and v are any two vertices of TI(Γ(R)). Then, we have the follow-
ing cases.

Case(i): If u and v are adjacent for all u, v ∈ TI(Γ(R)), then TI(Γ(R)) is complete.
Therefore, TI(Γ(R)) is Hamiltonian.

Case(ii): If u and v are nonadjacent for some u, v ∈ TI(Γ(R)), then by Remarks 1
(viii), (ix), and (x), we have the following subcases:

Subcase(a): If u, v ∈ X, then by Corollary 7, deg(u) = deg(v) = |I|. Thus, deg(u) +
deg(v) = |I|+ |I| ≥ n

2 + n
2 = n. Hence, TI(Γ(R)) is Hamiltonian.

Subcase(b): If u, v ∈ Y, then by Corollary 7, deg(u) = deg(v) ≥ |I|. Thus, deg(u) +
deg(v) ≥ |I|+ |I| ≥ n

2 + n
2 = n. Hence, TI(Γ(R)) is Hamiltonian.

Subcase(c): If u ∈ X and v ∈ Y, then by Corollary 7, deg(u) = |I| and deg(v) ≥ |I|.
Thus, deg(u) + deg(v) ≥ |I|+ |I| ≥ n

2 + n
2 = n. Hence, TI(Γ(R)) is Hamiltonian.

Corollary 13. Let I be a nonzero ideal of a ringR such that |R| = n ≥ 3. If |I| ≥ n
2 for each pair

u, v of X, then TI(Γ(R)) + uv is Hamiltonian if and only if TI(Γ(R)) is Hamiltonian.

Corollary 14. Let I be a nonzero ideal of a ringR. Then, I is a maximal ideal of a ringR if and
only if TI(Γ(R)) is Hamiltonian.

6. Conclusions

We considered a generalization of dot total graph of R as well as an ideal-based
zero-divisor graph. We showed that TI(Γ(R)) is connected and has a small diameter of
at most two. Furthermore, we studied the connectivity, clique number and the girth of
TI(Γ(R)). In addition, the cases when TI(Γ(R)) is Eulerian, Hamiltonian, and TI(Γ(R))
contains a Eulerian trail. For future work, the application of this graph to the study on
Laplacian eigenvalues of an ideal-based dot total graph, which is closely related to the
work in the paper [6], can be investigated. Additionally, the energy of an ideal-based dot
total graph, which is related to the recent work in [5,7], requires more consideration. The
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purpose of studying this type of graph is beneficial from its application point of view in
practical life, such as networks, especially communication networks, which will be studied
in an independent manuscript.
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Abstract: In this paper, we study two important problems related to quasi-multiautomata: the
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1. Introduction

The theory of formal languages is closely linked to the theory of automata. An automa-
ton is a finite representation of a formal language that can consist of an infinite number
of words. Automata are often classified by means of a class of formal languages that
they can accept; see, e.g., [1], a paper dealing with the automata theory from the point
of view of our present paper, or papers such as [2,3]. The algebraic theory of automata
studies various types of such structures, which are linked to actions of groups on sets.
In the case of algebraic automata, the way of functioning is rather straightforward and
simple: the automaton has a set of states and a set of inputs and, after we apply a certain
input on a certain state, the automaton switches to a new state as specified by the tran-
sition function. However, in the theory of formal languages, automata are regarded as
devices reading strings of words instead of single input symbols only. In other words,
inputs (or characters) are catenated and one-by-one put into the automaton, which causes
changes of states. In the algebraic definition, this can be seen in the definition of automaton,
where the input alphabet is a free monoid over the input set, i.e., for each nonempty set
A, we denote A∗ the set of all finite sequences a1a2 . . . an, ai ∈ A, i.e., finite words made
of symbols from A. Moreover, A∗ regards the usual binary operation of concatenation:
u = a1 . . . an, v = b1 . . . bk, uv = a1 . . . anb1 . . . bk. With this, A∗ is a free monoid over A with
a neutral element e, the empty word.

In the course of time, the algebraic theory of automata began to regard automata
without output, the operation of concatenation has been replaced by an arbitrary group
operation, and monoid or a group have been used instead of the free monoid. Definition 2
complies with traditional books such as [4–7] or recent papers such as [8]. One can see
that the conditions are constructed in such a way that both monoid and free monoid
are applicable.

Since the late 1930s, the group theory has been generalized in the sense that the
synthesis of elements of the carrier set need no longer to be an element of that carrier
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set. When subsets are permitted (such as a line segment being a result of an “operation”
on its endpoints), we arrive at a concept of hypercompositional structures. For a basic
introduction to the topic stressing its context from a historical perspective—see, e.g., an
easy-to-follow overview paper [9].

The generalizations of algebraic automata in the sense of the theory of hypercom-
positional structures first focused on constructions of commutative hypergroups on their
state sets. Properties of automata have been described by means of properties of such
hypergroups over their state sets; see, e.g., [5,10–12]. The next step is to construct hypercom-
positional structures on the input sets and generalize the MAC condition to GMAC. Since
there are no unique neutral elements in hypercompositional structures, the UC condition is
omitted; see, e.g., [13,14]. The concept of quasi-multiautomaton originated in conference
proceedings [15] while the GMAC condition was used for the first time (in the context of
dynamical systems) in [12]—e.g., in [16,17]. In this respect, notice also suffix automata,
which accept all suffixes of a given string and belong to the basic stringologic principles.
When generalizing their transitions to include specific buffer operations, we obtain new
subtree pushdown automata, which accept all subtrees of a given tree in the prefix notation;
see, e.g., [18].

In 1959, M. O. Rabin and D. Scott introduced the concept of nondeterministic finite
automata in [19] and proved their equivalence to deterministic finite automata. A nonde-
terministic automaton, such as a deterministic one, consumes a string of input symbols.
It enters a new state for each input symbol until all input symbols are consumed. Unlike
in deterministic finite automata, the way symbols are consumed is nondeterministic, i.e.,
for a state and an input symbol, the next state may be the original or one, two, or more
possible states. Thus, in the formal definition, another state is an element of a potential
set of states, which is a set of states that must be considered simultaneously. In this re-
spect, the connection with the theory of hypercompositional structures is rather obvious.
However, introducing hypergroups on input sets does not lead to nondeterministic quasi-
multiautomata because the transition function δ : H × S −→ S used in Definition 5 of a
quasi-multiautomaton maps to the state set S instead of the set of its subsets P(S).

2. Basic Definitions

In order to clarify terminology used throughout the paper, in this section, we collect
all basic definitions.

Definition 1. [1] A deterministic automaton is a 5-tuple (A, S, s0, δ, F), where A is input alphabet,
S is a finite nonempty set of states, s0 ∈ S is the initial (or start) state, δ : A× S −→ S is the state
transition function, and F ⊆ S is the set of final states. Sometimes it is convenient to use, instead
of δ, the extended transition function δ∗ : A∗ × S −→ S, where A∗ is the set of words over the
alphabet A, which is defined recursively as follows:

1. (∀s ∈ S)(∀a ∈ A) δ∗(a, s) = δ(a, s),
2. (∀s ∈ S) δ∗(a, λ) = s where λ is the empty string,
3. (∀s ∈ S)(∀x ∈ A∗)(∀a ∈ A) δ∗(ax, s) = δ∗(δ(a, s), x).

One can see that the conditions of the following definition are constructed in such a
way that both monoid and free monoid are applicable.

Definition 2. By automaton, we mean a structure A = (I, S, δ) such that I 
= ∅ is a free monoid,
S 
= ∅, and δ : I × S→ S satisfies the following condition:

1. There exists an element e ∈ I such that δ(e, s) = s for any state s ∈ S.
2. δ(y, δ(x, s)) = δ(xy, s) for any pair x, y ∈ I and any state s ∈ S.

The set I is called the input set or input alphabet, the set S is called the state set, and the
mapping δ is called next-state or transition function.
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Remark 1. Condition 1 is often called the unit condition (UC) while condition 2 is often called the
Mixed Associativity Condition (MAC).

Notice that, in our paper, we write “xy” instead of “x · y”. However, in order to
stress the difference between concatenation and arbitrary operation, we write “x · y” in
Definition 3. For a deeper insight including historical perspective and terminology issues
(e.g., “quasi-automaton” vs. “semiautomaton”), see [16].

Definition 3. By quasi-automaton, we mean a structure A = (I, S, δ) such that I 
= ∅ is a
monoid, S 
= ∅, and δ : I × S→ S satisfies the following condition:

1. There exists an element e ∈ I such that δ(e, s) = s for any state s ∈ S.
2. δ(y, δ(x, s)) = δ(x · y, s) for any pair x, y ∈ I and any state s ∈ S.

The set I is called the input set or input alphabet, the set S is called the state set, and the
mapping δ is called next-state or transition function.

The following definition is a standard introductory definition of the theory of hyper-
compositional structures (or algebraic hyperstructures as they are also known).

Definition 4. A hypergroupoid is a pair (H, ∗), where H is a nonempty set and the mapping
∗ : H× H −→ P∗(H) is a binary hyperoperation (or hypercomposition) on H (here, P∗(H)
denotes the system of all nonempty subsets of H). If a ∗ (b ∗ c) = (a ∗ b) ∗ c holds for all a, b, c ∈ H,
then (H, ∗) is called a semi-hypergroup. Moreover, if the reproduction axiom—i.e., relation a ∗H =
H = H ∗ a for all a ∈ H—is satisfied, then the semi-hypergroup (H, ∗) is called hypergroup.

The following definition transfers the concept of quasi-automaton into the theory of
hypercompositional structures.

Definition 5. [15] A quasi–multiautomaton is a triad MA = (H, S, δ), where (H, ∗) is a semi-
hypergroup, S is a nonempty set and δ : H × S → S is a transition function satisfying the
following condition:

δ(b, δ(a, s)) ∈ δ(a ∗ b, s) for all a, b ∈ H, s ∈ S. (1)

The semi-hypergroup (H, ∗) is called the input semi-hypergroup of the quasi–multiautomaton
A (H alone is called the input set or input alphabet), the set S is called the state set of the quasi–
multiautomaton A, and δ is called next-state or transition function. Elements of the set S are called
states; elements of the set H are called input symbols or letters. Condition (1) is called Generalized
Mixed Associativity Condition (abbr. as GMAC).

Finally, we recall the notion of nondeterministic automaton.

Definition 6. If, in Definition 1, we have δ : A× S −→ P(S) instead of δ : A× S −→ S, then
the 5-tuple (A, S, s0, δ, F) is called nondeterministic automaton.

3. GMAC Condition in the Definition of Quasi-Multiautomata

This section aims at facilitating verifications of the GMAC condition. When doing so,
we use ideas included in [1], where the notion of order of a state is defined in the context of
deterministic automata of Definition 1. Notice that in [1], the term word length—meaning
the number of concatenated input symbols—is used. For example, if we consider the word
aaabba on the set a, b, then its length is 6.

Definition 7. [1] The order of a state s ∈ S of the deterministic automaton in Definition 2, denoted
by ord s, is the minimum of the lengths of words that lead from the start state s0 to s.
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Example 1. Consider an automaton as defined in Definition 1. Now, let s0 be the initial state and
s5 the final state. The input alphabet is a free monoid over the set {a, b}. It is clear from Figure 1
that ord s0 = 0, ord s1 = ord s2 = 1, ord s3 = ord s4 = 2, and ord s5 = 3.

a

a
a

a

a
b

b b

b
s

s

s

s

s s0

1

2

3

4 5

a,b

Figure 1. Finite quasi-automaton.

Obviously, the order of a state is related to the operation of concatenation of words.
Thus, in Example 1, we have that ord s3 = 2 because the shortest word taking us from s0 to
s3 is aa. However, if we generalize the concatenation operation to an arbitrary associative
operation, i.e., move to Definition 3, we have that a · a is an element of I (say a). Thus,
the “length of the word” becomes either 1 or 0 depending on whether the element is or
is not isolated. The situation becomes even more complicated for quasi-multiautomata of
Definition 5.

However, in both cases, we observe a discrepancy when transferring the intuitive
notion of order tailored to the classical case of deterministic automata to quasi-automata or
quasi-multiautomata of Definitions 3 and 5. The reason for such a discrepancy lies in the
visualization of the algebraic concept by graphs and the fact that we no longer distinguish
between start and end states. Therefore, further on, we will focus on the “descriptions of
graphs” by “counting arrows” rather than attempts to stress the algebraic part of the notion.
As a result, we cannot use the notion of order (based on word length) anymore (because,
technically speaking, there are no words anymore). Notice that the forthcoming definitions
once again enable us to “count arrows” of the graphs.

Definition 8. By the transition number of states s, t ∈ S (in this order), denoted by tn(s, t), we
mean the smallest number of transitions that take us from the state s to the state t.

It is easy to see that in Figure 1, tn(s0, s5) = 2. Indeed, applying input b takes us from
s0 to s2; then, applying input a takes us from s2 to s5, which means that the smallest number
of transitions that take us from s0 to s5 is 2.

Notice that, from Definition 8, it does not follow that tn(s, t) = tn(t, s). This is evident
in Figure 2, where tn(s1, s3) = 2 while tn(s3, s1) = 1. Next, if there is no input that would
take us from one state to another, we say that the respective transition number is 0. An
example is depicted in Figure 1, where tn(s3, s1) = 0.

s s s1 2 3

a

b

a

Figure 2. Noncommutativity of the order of two states.

Before introducing Theorem 1, recall the definition of a reversible automaton from [5].

Definition 9. An automaton A = (A, S, δ) is called reversible, if for every state s ∈ S and
every input a ∈ A (or word a ∈ A∗) there exists an input b ∈ A (or a word b ∈ A∗) such that
δ(b, δ(a, s)) = s (or δ(ab, s) = s).
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Now, we generalize the notion to the case of quasi-multiautomata.

Definition 10. A quasi-multiautomaton MA = (H, S, δ) is called reversible, if for every state
s ∈ S and every input a ∈ H there exists an input b ∈ H such that δ(b, δ(a, s)) = s.

Remark 2. Notice that in every reversible quasi-multiautomaton there is tn(s, t) = tn(t, s) for all
s, t ∈ S.

To fully clarify the above notion and its application to quasi-multiautomata, we
present the following example, in which two multiautomata are given. The first one is not
reversible while the second one, with a modified input set, is.

Example 2. Consider the interval of real numbers I1 = [1, ∞) and the hyperoperation ◦1 :
I1 × I1 → P∗(I1) defined by

a ◦ b = {c ∈ I, c ≥ a · b}, for all a, b ∈ I1.

It is obvious that the associative law holds. Therefore, the structure (I1, ◦1) is a semi-
hypergroup. Then, the triad ((I1, ◦1),R+ \ {0}, δ1), where the transition function δ1 : I1 ×
R+ \ {0} → R+ \ {0} is defined by

δ(a, r) = a · r, for all a ∈ I1, r ∈ R+ \ {0}.

which is a quasi-multiautomaton. Now, for input a = 5.2 and state r = 10, we have δ1(5.2, 20) =
104. Thus, the quasi-multiautomaton is not reversible, because there is no input b such that
δ1(b, 104) = 5.2.

Now, consider the interval I2 = (0, ∞) instead and the hyperoperation “◦2” defined in
the same way as “◦1”. For the transition function δ2, defined in the same way as δ1, the triad
((I2, ◦2),R+ \ {0}, δ2) is a reversible quasi-multiautomaton because, for each input symbol a, there
exists an input symbol 1

a such that δ2

(
1
a , δ2(a, r)

)
= r.

At this point, using the notion of a reversible quasi-multiautomaton and the transition
number of two states, we can provide the following theorem regarding the validity of the
GMAC condition 1.

Theorem 1. In every reversible quasi-multiautomaton (H, S, δ), there is tn(s, t) = tn(t, s) = 1
for every two states s, t ∈ S.

Proof. Recall that the GMAC condition (1) is δ(b, δ(a, s)) ∈ δ(a ∗ b, s) for all inputs and
states. In a reversible quasi-multiautomaton, there is tn(s, t) = tn(t, s) for all s, t ∈ S.
Suppose that there exists at least one pair of states (t, s) ∈ S, such that tn(t, s) = 2—i.e.,
from the state t we can reach the state s after application of at least two inputs. Denote
such inputs as a, b ∈ H. Therefore, on the left-hand side of the condition GMAC, we have
δ(a, δ(b, t)) = r. However, on the right-hand side, for all c ∈ a ∗ b, we never obtain the
state r, because this would mean that tn(t, s) = 1, which would be a contradiction to the
assumption that tn(t, s) = 2. Naturally, the same is true for transition numbers greater
than 2.

In the following example, we show that the implication in Theorem 1 cannot be
reversed, i.e., it is not true that if for every two states there is tn(s, t) = tn(t, s) = 1, we
obtain a reversible quasi-multiautomaton (or a quasi-multiautomaton).

Example 3. Consider the structure (H, S, δ). In this structure, we show that there is a path
between each two states, yet the GMAC condition does not hold, i.e., from the fact that tn(s, t) = 1
for all s, t ∈ S, it cannot be deduced that (H, S, δ) is a quasi-multiautomaton. Consider the set
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H = {h1, h2}, the hyperoperation “◦” defined by the following Figure 3, and the transition function
δ defined by the transition diagram in Figure 4.

◦ h1 h2
h1 h1 H
h2 H H

Figure 3. Definition of hyperoperation “◦”.

1

11

2 2

2

hr s

t

hh

hh

h

Figure 4. Transition number of every pair of states is 1, yet, GMAC does not hold.

It is clear from the transition diagram that for each pair of states r, s ∈ S there is tn(r, s) = 1.
However, the GMAC condition does not hold. Indeed, on the left-hand side, we have δ(h2, δ(h1, r)) =
δ(h1, t) = r while on the right-hand side, we have δ(h1 ◦ h2, r) = δ(h1, r) ∪ δ(h2, r) = {s, t} and
obviously the left-hand side is not included in the right-hand side.

Notice that the above example also shows that the validity of the GMAC condition
depends on the transition function as well as on the definition of the hyperoperation.

Theorem 2. If in a quasi-multiautomaton ((H, ∗), S, δ) there is tn(r, s) = 1 and tn(s, t) = 1 for
some r, s, t ∈ S, then there is tn(r, t) = 1.

Proof. Suppose that there is tn(r, s) = 1 and also tn(s, t) = 1 for some r, s, t ∈ S. Then,
there exists such an input i ∈ H for which there is δ(i, r) = s, and also an input j ∈ H for
which there is δ(j, s) = t. Since the GMAC condition holds, i.e., the state t = δ(j, δ(i, r)) is
included in the right-hand side δ(i ∗ j, r) =

⋃
c∈i∗j

δ(c, r), there is an input k ∈ i ∗ j, where⋃
c∈i∗j

δ(c, r) � δ(k, r) = t. Thus, there must be tn(r, t) = 1.

In the following Example 4, we present a trivial quasi-multiautomaton, where the
order of each pair of states is 1. The nontrivial quasi-multiautomaton is presented in
Example 5.

Example 4. Consider a quasi-multiautomaton, which was first presented in Example 5 of [16].
By coincidence, the order of each pair of states is 1, i.e., Theorem 2 holds for an arbitrary triad
of elements.

One can see that in the automaton with a free monoid, in the MAC condition of
Definition 2, we have links in the sequence of states that coincide with the “links” of
strings, i.e., concatenation. In other words, in order to reach a given state, the automaton
passes through the same states regardless of whether we regard the left- or the right-hand
side of the MAC condition of Definition 2. However, this is not the case for the quasi-
multiautomaton, where the GMAC condition suggests that there must exist a shorter, or
more efficient input that enables us to reach the same state as when applying two different
catenated inputs. Indeed, in Figure 5, we can get from b1 to b2 and from b2 to b3 or directly
from b1 to b3. Notice that without the input e4 applied to b1, the GMAC condition would
not hold.
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b1 b2 b3 b4
e3

e4

e5

e3

e4, e5

e3, e4

e5

e2 e2 e2 e2, e3, e4, e5

Figure 5. A quasi-multiautomaton where the transition number of each pair of states is 1.

Example 5. In this example, we summarize our above considerations and also explain why
Theorems 1 and 2 cannot be given as one even though they are semantically similar. In order
to maintain clarity, the quasi-multiautomaton in Figure 6 does not have evaluated transitions.
However, it is evident that the inputs could be easily supplemented as in Example 4. For this
quasi-multiautomaton, it is obvious that Theorem 2 applies. Furthermore, it is obvious that the
multi-automaton in Figure 6 is not reversible because there are no arrows in the opposite direction
in the transition diagram—i.e., from the state s1, we go to the state s2, but from the state s2 it is
not possible go to s1. If we considered bidirectional arrows in Figure 6, the quasi-multiautomaton
would be reversible. In such a case, we would be able to get from state s2 to state s4 via state s1,
which corresponds to the left side of the GMAC condition. This must be met, so we must go directly
from the state s2 to the state s4.

s

s

s

s

0 1

4

2 s3

s5

Figure 6. A quasi-multiautomaton that is not reversible.

Another indicator that would help to decide whether the GMAC condition is met or
not are identities (neutral elements) of the input hyperstructure. Recall that by an identity
of a semi-hypergroup (H, ∗), we mean such an element e ∈ H that there is x ∈ x ◦ e ∩ e ◦ x
for all x ∈ H. Although, in the definition of the quasi-multiautomaton, the UC condition of
Definition 2 is not required, it does not mean that no elements fulfilling it exist. If they do,
they are identities of the input semi-hypergroup.

Theorem 3. If in the quasi-multiautomaton ((H, ∗), S, δ) there exists an element e ∈ H with the
property δ(e, s) = s for all s ∈ S, then there is a ∈ a ∗ e ∩ e ∗ a for all a ∈ H—i.e., e is an identity
of (H, ∗).

Proof. Suppose that there is δ(e, s) = s for some e ∈ H and all s ∈ S and that the GMAC
condition δ(a, δ(b, s)) ∈ δ(a ∗ b, s) is satisfied for all a, b ∈ H and for all s ∈ S.

For an element e ∈ H, and arbitrary a ∈ H and s ∈ S, we have

δ(a, δ(e, s)) ∈ δ(a ∗ e, s) ∧ δ(e, δ(a, s)) ∈ δ(e ∗ a, s)

δ(a, s)) ∈ δ(a ∗ e, s) ∧ δ(a, s)) ∈ δ(e ∗ a, s)

δ(a, s)) ∈
⋃

c∈a∗e
δ(c, s) ∧ δ(a, s)) ∈

⋃
d∈e∗a

δ(d, s).

It is obvious that the state δ(a, s) belongs to the set of states on the right-hand side if
and only if a ∈ a ∗ e ∧ a ∈ e ∗ a, i.e., a ∈ a ∗ e ∩ a ∈ e ∗ a, for all a ∈ H.
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When the Cartesian composition of two quasi-multiautomata was constructed in [17],
the necessary condition of Theorem 1 was not satisfied. As a result, the GMAC condition
was not satisfied. The authors solved the problem by modifying the condition by adding
an extension to its right-hand side. Notice that the Cartesian composition of two automata
were introduced by Dörfler in [20], the composition was subsequently generalized to the
case of quasi-multiautomata in [17].

We conclude this section with the definition of products of automata introduced by Dörfler.

Definition 11. [21] Let A1 = (I, S, δ), A2 = (I, R, τ), and B = (J, T, σ) be quasi-automata.
By the homogeneous product A1 × A2, we mean the quasi-automaton (I, S × R, δ × τ), where
δ × τ : I × (S × R) → S × R is a mapping satisfying, for all s ∈ S, r ∈ R, a ∈ H, (δ ×
τ)(a, (s, r)) = (δ1(a, s), τ(a, r)), while the heterogeneous product A1 ⊗B is the quasi-automaton
(I × J, S× T, δ⊗ σ), where δ⊗ τ : (I × J)× (S× T) → S× T is a mapping satisfying, for all
a ∈ I, b ∈ J, s ∈ S, t ∈ T, δ⊗ σ((a, b), (s, t)) = (δ(a, s), σ(b, t)). For I, J disjoint, by A · B, we
denote the Cartesian composition of A and B, i.e., the quasi-automaton (I ∪ J, S× T, δ · σ), where
δ · σ : (I ∪ J)× (S× T)→ S× T is defined, for all x ∈ I ∪ J, s ∈ S, and t ∈ T, by

(δ · σ)(x, (s, t)) =

{
(δ(x, s), t) if x ∈ I,
(s, σ(x, t)) if x ∈ J.

Generalizing the homogeneous or heterogeneous products of quasi-automata to the
case of quasi-multiautomata is straightforward because, in these two cases, the condition
used in Theorem 2 holds. However, in the case of the Cartesian composition, the situation
is different. Since in the definition of the Cartesian composition the state set is created as
the Cartesian product of the state set of the respective quasi-multiautomata, it is obvious
from Figure 7 that the necessary condition tn(r, t) = 1 is not satisfied in the resulting
quasi-multiautomaton, as there is no direct path from state (s0, t0) to state (s1, t1) because
the respective input elements can affect one component only. For a deeper insight into this
issue, we refer the reader to Example 1 in [17], the proof of Theorem 2 in [22], or Example 4
in [16], where the GMAC condition is not satisfied anywhere and we consider modified
GMAC conditions, called E-GMAC.

(s ,t )

(s ,t ) (s ,t )

(s ,t )

1

00 0

01 1

1

Figure 7. Cartesian product of state sets.

4. Nondeterministic Quasi-Multiautomata

First of all, we provide an example of a nondeterministic automaton.

Example 6. Consider a nondeterministic finite automaton depicted in Figure 8. For input a applied
to the state s0 there is a transition to s1, or the automaton can remain in the state s0. As a result,
the machine must “decide” how to behave. The same situation applies to the input b and the
state s1. Nondeterminism means ambiguity—from a given state, more transitions can lead to the
same symbol. A nondeterministic automaton always chooses (sometimes we also say “guess”) the
transition that will lead to accepting the word—if that is possible. If we insert the word aba into the
automaton in Figure 8, then it has the following options for dealing with it:
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s0 −→ s0 −→ s0 −→ s0

s0 −→ s1 −→ s3 −→ s3

s0 −→ s1 −→ s2 −→ s3

In the first case, the automaton will remain in the state of s0; it certainly can because the rules of
transition allow this. In the second case, the automaton moves to other states and eventually reaches
s3, which is the final one. The third case has the same final state. In the second and third cases, the
automaton accepts the word. Notice that a nondeterministic automaton always automatically selects
the branch in which it accepts a word, if such a branch exists.

a

ab

bs ss

s

0 1

2

3

a,b

a,b

Figure 8. Nondeterministic automaton.

The following definition transfers the notion of nondeterministic automaton from the
context of automata to the context of quasi-multiautomata.

Definition 12. By nondeterministic quasi-multiautomaton (denoted by NMA), we mean a triad
NMA = (C(H), S, δ), where (H, ∗) is a semi-hypergroup, S is a nonempty set, and δ : C(H)×
S→ P(S), where C(H) ⊆ P∗(H) is a transition function satisfying the following condition:

δ(B, δ(A, s)) ⊆ δ(A ∗ B, s) for all A, B ∈ C(H), s ∈ S. (2)

Notation 1. We will call the condition (2) big-GMAC.

In Figure 9, we can see the basic concepts of deterministic quasi-automata, i.e., au-
tomaton with the free monoid, automaton with a monoid, and quasi-multiautomaton.
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Figure 9. Deterministic automaton.

In the case of an automaton with a free monoid, if we apply the string ad f to s0 then
δ(ad f , s0) = s3, and the string ij to s3, we reach the state s6. This is the same as applying
ad f ij directly to s0.

In the case of an automaton with a monoid, if we apply the input (character) b to the
state s0, we reach the state s4, where we apply g, which gets us to the state s3. In order for
the MAC condition to hold, there must exist an input (character) by which the automaton
goes directly from s0 to s3. In our case, such an input (character) is c (on condition that b · g
is defined as c).

The case of a quasi-multiautomaton is similar with the difference that there must be
c ∈ b ∗ g. Therefore, in Theorem 1, this is only a necessary condition, as it does not take
into account the fact that c ∈ b ∗ g.

While in nondeterministic finite automata of the formal language theory nondetermin-
ism occurs in the transition function, i.e., after we apply one input we can reach multiple
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states (see Figure 8), nondeterministic quasi-multiautomata of Definition 12 provide non-
determinism for the input set and leave the transition function single-valued.

In Figure 10, we consider the minimal extensive hyperoperation, where, for all a, b, there
is a ◦ b = {a, b}. Using Definition 6, we regard the element of the potent set, which we—by
means of the transition function—apply on a state. Thus, in Figure 10, we apply on s0 the
input in the form of the hypercomposition (hyperproduct) e ∗ f , which takes us to two
states: s3 and s6. Thus, we obtain a similar result to that after application of input a to s0 in
Figure 8.

s
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2
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s5
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c de d
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d

Figure 10. Nondeterministic quasi-multiautomaton.

Now, consider input e ∗ f = {e, f } applied on state s0 in Figure 10. Application of
condition (2) brings NMA into two states: s3 and s6. If we apply c ∗ d = {c, d} on each
of these two states, NMA turns into states s4, s5, s6, which are the results of the left-hand
side of the GMAC condition. On the right-hand side of this condition, we first evaluate
{e, f } ∗ {c, d} = {e, f , c, d}, which takes us to the set of states {s3, s4, s5, s6}. Obviously, the
set of states on the left-hand side is the subset of the set of states on the right-hand side
of GMAC.

5. Quasi-Multiautomata with the Input Semi-Hypergroup Based on Concatenation

In this section, inspired by [23], we present the construction of a quasi-multiautomata,
in which the input semi-hypergroup is based on the original concatenation operation, as is
the case of the classical concept of automata. For this type of construction, the necessary
condition of Theorem 2, tn(r, s) = 1 for all r, s ∈ S, is not required.

First, we recall the necessary concepts from the theory of formal languages. String
length |x| is the total number of symbols in the string x. A substring of a string is a sequence
of symbols that is contained in the original string—i.e., if x and y are strings, then x is a
substring of y if there exist strings z, z′ such that zxz′ = y. Prefix of the string a, denoted
by pre f (a), is such a substring of the string a that there exists a substring z of a (which
can be empty, however) such that pre f (a)z = a. Suffix of the string b, denoted su f (b), is
such a substring of the string b that there exists a substring z of a (which can be empty,
however) where zsu f (a) = a. The set of all prefixes of the string x will be denoted Spre f (x);
the empty word will be denoted by ε (see also notation used for binary trees in [24]).

Now, denote H∗ as the set of all strings over the set of symbol H and define a hyper-
operation � : H∗ × H∗ −→ P∗(H∗) by

x � y =
{

ab ∈ H∗ | a ∈ Spre f (x), b ∈ Spre f (y)
}

(3)

In other words, x � y is in fact a set of all mutual concatenations of prefixes of x and y.

Example 7. Consider set M = {0, 1, 2} and the set M∗ of all strings over M. Further, consider
strings a, b ∈ M∗, where a = 1010 and b = 22. For these, we have

Spre f (a) = {ε, 1, 10, 101, 1010} and Spre f (b) = {ε, 2, 22}.
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Thus, we obtain

a � b = {ε, 2, 22, 1, 12, 122, 10, 102, 1022, 101, 1012, 10122, 1010, 10102, 101022}.

Theorem 4. Let H∗ by an arbitrary nonempty set of strings over H and let “�” be a defined by (3).
Then, (H∗, �) is a hypergoup.

Proof. First, we show that the associative law applies. For all strings a, b, c ∈ H∗, we have

(a � b) � c =
⋃

x∈Spre f (a)

y∈Spre f (b)

xy � c =
⋃

x∈Spre f (a)

y∈Spre f (b)

z∈Spre f (c)

xyz = a �
⋃

y∈Spre f (b)

z∈Spre f (c)

yz = a � (b � c).

The reproductive axiom holds automatically because “�” is extensive, i.e., a, b ∈ a � b
for all a, b ∈ H∗. Indeed, each set of prefixes contains an empty word and the original
word, if we perform the concatenation operation of the empty string and the original string
from the second set of prefixes, we obtain the original string. Thus, the structure (H∗, �) is
a hypergoup.

In the following two examples, Examples 8 and 10, we use the above hypergroup
as the input sets for two quasi-multiautomata. We will consider two types of transition
function. In the first case, it has the role of a “pointer”, i.e., it points to the follower of s0,
which is the result of the transition s1 = δ(a, s0). In this case, the transition function is
usually specified by a table or a transition diagram as in Figure 4 and there is no formula
or rule to calculate the transition. In the second case, the transition function has the form of
an “operation”, i.e., we obtain the new state by means of calculation (as in Example 2).

Example 8. Consider the hypergroup (M∗, �) from Example 7 and the set of states T =
{a, b, c, d, . . . , m}. The transition function δT is defined by means of the transition diagram in
Figure 8. It is easy to verify that the structure MA = ((M∗, �), T, δT) is a multiautomaton satisfy-
ing the GMAC condition. In Figure 11, we use different colors to highlight the following: processing
the input word 1010, i.e., δT(1010, a), (blue); the left-hand side of GMAC δT(22, δT(1010, a) (blue
and red); right-hand side of GMAC δT(1010 � 20, a) (yellow).
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Figure 11. Quasi-multiautomaton based on a concatenation hypercomposition.
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Theorem 5. Let (H∗, �) be a hypergroup from Theorem 4 and S be a set of states. Then, it is
possible to define a transition function δ such that ((H∗, �), S, δ) is a quasi-multiautomaton.

Proof. Proof of the condition GMAC is obvious from the presented scheme in Figure 8
and from the definition of hyperoperation, where for two strings a and b, there is ab ∈ a � b.
Indeed, suppose that a = a1 . . . an, b=b1 . . . bn. Then, the left-hand side of GMAC is

δ(a, δ(b, s)) = δ(a1 . . . an, δ(b1 . . . bn, s)) = δ(an, δ(an−1, . . . δ(a1, δ(bn, δ(bn−1,...δ(b1,s))))))

while on the right-hand side, we have

δ(b ∗ a, s) = δ(b1, s)∪ δ(b1a1, s)∪ δ(b1a2, s)∪ . . .∪ δ(b1b2a1, s)∪ δ(b1b2a1a2, s)∪ . . .∪ δ(b1 . . . bna1 . . . an, s),

where the last term of the union is δ(an, δ(an−1, δ(a1, δ(bn . . . , δ(b1, s)))))), which is the
left-hand side of the GMAC condition.

Of course, the transition function cannot be arbitrary.

Example 9. Consider a quasi-multiautomaton with the same input hyprergroup (M∗, �). However,
instead of the state set T, consider the set of all natural numbers N. Next, define the transition
function δO : M∗ ×N −→ N by

δO(a, r) = a · r
for all a ∈ M∗ and r ∈ N. We can afford to define the transition function δ in such a way because
we treat numeric strings (1010 and 2020 below) as numbers. The GMAC condition is not satisfied
in this case. Indeed,

δO(22, δO(1010, 2) = δO(22, 2020) = 44440,

yet for the right-hand side of GMAC—i.e., δO(1010 � 22, 2)—we require the string 22220 to belong
to 1010 � 22. Yet, we could see in Example 7 that 22220 /∈ 1010 � 22.

Next, we will use the construction of a multiautomaton of Theorem 5 and construct a
nondeterministic quasi-multiautomaton of Definition 12. There, the element of the power
set will be used as the input word, which we will obtain as a result of two elements (strings)
a, b ∈ H∗. In this context, on the right-side of the GMAC condition, the hypercomposition
of two sets will be required. It is therefore desirable to first prove the following lemma.

Lemma 1. In the hypergroup (H∗, �), where “�” is defined by (3), there is Spre f (a � b) = a � b
for all a, b ∈ H∗.

Proof. Obviously, there is Spre f (x � y) =
⋃

z∈x�y
Spre f (z). Moreover, it is obvious that x ∈

a � b implies that x ∈ Spre f (a � b). Proving the other inclusion is also simple. Indeed, the
fact that x ∈ Spre f (a � b) =

⋃
c∈a�b

Spre f (c) implies that there exist words y, z ∈ H∗ such that

x = yz, where y ∈ Spre f (a), z ∈ Spre f (b). Yet, this means that x ∈ a � b.

Example 10. Consider the quasi-multiautomaton MA = ((M∗, �), T, δT) from Example 8 and
sets A = a � b and C = c � d, where a, b, c, d ∈ M∗. For a = 1010, b = 22, c = 1, d = ε, we have
A = {ε, 2, 22, 1, 12, 122, 10, 102, 1022, 101, 1012, 10122, 1010, 10102, 101022} (see Example 7)
and B = {ε, 1}. Proving that MA is a nondeterministic quasi-multiautomaton is rather difficult
because one needs to show validity of big-GMAC (2) for all states and inputs. However, we outline
the idea of the proof for our specific choice of states and inputs.

We need to show that there is δ(B, δ(A, a)) ⊆ δ(A � B, a). From the transition diagram, we
calculate the left-hand side of big-GMAC (2):

δ(B, δ(A, a)) = δ(B, {a, b, d, f , g, j, k, l, m}) = {a, b, d, e, f , g, i, j, k, l, m} (4)
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Before calculating the right-hand side, we first establish A � B. This is quite easy (given the
specific choice of the set B and Lemma 1):

A � B = {ε, 1, 2, 10, 12, 22, 101, 102, 122, 1010, 1012, 1022, 10102, 10122, 101022}∪
{ε, 11, 21, 101, 121, 221, 1011, 1021, 1221, 10101, 10121, 10221, 101021, 101221, 1010221} =
{ε, 1, 2, 10, 11, 12, 21, 22, 101, 102, 121, 122, 221, 1010, 1011, 1012, 1021, 1022, 1221, 10101,

10102, 10121, 10221, 101021, 101221, 101022, 1010221}

Now, again using the transition diagram, we compute

δ(A � B, a)) = {a, b, d, e, f , g, i, j, k, l, m}, (5)

and we can see that δ(B, δ(A, a)) ⊆ δ(A � B, a) ; in this case, even δ(B, δ(A, a)) = δ(A � B, a).

Lemma 2. A set H ⊆ H∗ is reflexive in a hypergroup (H∗, �).

Proof. Reflexivity of a subset H of H∗, where (H∗, ∗) is a hypergroupoid, is defined by
validity of implication x � y ∩ A 
= ∅⇒ y � x ∩ A 
= ∅ for all x, y ∈ H∗.

Suppose that x = a1 . . . an and y = b1 . . . bm, where ai, bj ∈ H for all i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}. Obviously, a1 ∈ Spre f (x) and b1 ∈ Spre f (y). Next, thanks to the
fact that ε ∈ H∗, there is Spre f (x) ⊆ x � y and Spre f (y) ⊆ x � y. Even though “�” is not
commutative, there is Spre f (x) ⊆ y � x and Spre f (y) ⊆ y � x. Thus, we have the two-element
sets {a1, b1} = x � y ∩ H and {a1, b1} = y � x ∩ H.

In the end of this section, we are going to discuss nondeterminism, which is caused
by the input structure as stated in Definition 12. In order to do so, we are going to use
the hypergroup constructed using Theorem 4. We want to show that for such a structure,
there exists a nondeterminism that is “controlled” due to the nature of the hyperoperation.
(Recall that in the theory of formal languages, nondeterminism is caused by the transition
function.) In order to do so, we are going to use the hypergroup constructed using
Theorem 4. The following example shall thus be read within the context of Definition 12
and Theorem 4.

Example 11. Regard a string a = a1 . . . an ∈ H∗. The transition function produces

δ(a, r) = δ(a1 . . . an, r) = δ(an, δ(an−1 . . . δ(a1, r)). (6)

If we now regard a nondeterministic quasi-multiautomaton, where the nondeterminism is
provided in the input by hyperoperation (3), the nondeterminism is “controlled” because from
each state in the sequence followed by the automaton, there are at most two paths. Indeed, for
a = a1 . . . an and b = b1 . . . bn, their hypercomposition is a set of strings, which are concatenations
of prefixes of a and b. Thu,s e.g., at the second position (which of course exists), the symbol a1 is
followed by a2 or b1. As Figure 12 suggests, this idea holds for all positions.

Figure 12 shows that the first position of an arbitrary string from a ∗ b (which can be
regarded as input) will be occupied by a1 or b1, the second position by a2 or b1, etc. Thus,
given the input a ∗ b, the quasi-multiautomaton will pass at most 2n paths (where a1b1 is
included in a1b1b2, i.e., these two are counted as one path).

Showing that the big-GMAC condition holds for all strings a ∈ H∗ such as in
Figure 10, where the transition function is given by a diagram (or by a table yet not a
rule) is complicated. There exists Light’s associativity test invented by F. W. Light for test-
ing whether a binary operation defined on a finite set is associative. Miyakawa, Rosenberg,
and Tatsumi [25] generalized this test for semi-hypergroups. We are not aware of any such
test for finite quasi-multiautomata with a transition diagram or table. Finding such tests
might be our next objective and the subject of further research.
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Figure 12. Scheme of possible concatenations of a = a1a2a3a4 and b = b1b2b3.

6. Discussion

Currently, the combinations of algebraic multiautomata into higher entities, using
various rules suggested by Dörfler [20,26], are studied—see, e.g., [27]. Such combinations
seem to be suitable tools for modeling various real-life systems—see, e.g., [16,21,28]—or
are even tools to control such systems [22]. However, two main problems appeared in
this respect:

1. When constructing algebraic quasi-multiautomata of Definition 5, one needs to show
that the GMAC condition (1) is satisfied. This in fact means that one has to prove
that if two arbitrary inputs are applied sequentially to a certain state s1, we obtain
a state that is contained in the subset of states given by the application potential
determined by the hyperoperation of the inputs and the state s1. In this respect, the
proof of validity of the GMAC condition is not always straightforward. In [17], the
proof is computationally demanding. If we consider various combinations of such
quasi-multiautomata, the proofs become even more complicated. For these reasons, in
Section 3, we search for conditions that could facilitate such proofs. Moreover, we
show why, in some previous cases, the GMAC condition of the composition failed
even though each separate quasi-multiautomata fulfilled it. This approach con-
stitutes a sufficiently solid base for further research and the identification of con-
ditions equivalent to GMAC. Note that the way transition number of states (see
Definition 8), or even the whole concept of quasi-multiautomaton, is understood
is similar to considerations of [29], where, in oriented graphs, one of the vertices is
considered as the initial state while selected vertices are final states and the path from
state q0 to state q f (denoted q0 →am

q f ) is simply a sequence of edges in the transition
graph without any specific structure.

2. The abovementioned generalizations of the original concept of automaton have deviated from
the original idea of concatenation of input symbols. In Definition 5, H is a semi-hypergroup,
which is called input alphabet. However, under this consideration, this “alphabet”
cannot create words. Indeed, if a, b are elements of H, i.e., letters, then a ∗ b is a subset
of H; so, it is a set of letters, not words. This might be seen as a weak point of the theory,
which diminishes its applicability. Therefore, in Section 4 and especially in Section 5,
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we construct quasi-multiautomata based on standard techniques of the theory of
formal languages. In Section 4, we modify Definition 5 in such a way that quasi-
multiautomata will work nondeterministically. However, being aware of the fact that
nondeterministic automata are of no real added value, our concept is designed to
include a limited degree of nondeterminism only. Moreover, since this paper deals
with the generalization of the automaton, the quasi-multiautomaton can be further
generalized by considering H to be an arbitrary hypergroupoid. This enhances pos-
sibilities to create input hypercompositional structures reflecting needs of automata
of the theory of formal languages. In other words, weakening requirements of the
input structure provides us a wider range of choices to construct quasi-multiautomata
based on concatenation. For example, consider that (H, ∗) is a hypergroupoid if
x ∗ y = {z, w}, where z is formed by deleting the odd-positioned letters from the
word xy and w is formed by deleting the even-positioned letters from the word xy.
However, one needs to discuss the impact of losing associativity on GMAC, which
is based on it. In Section 5, we show a construction of quasi-multiautomata, which
corresponds to automata of the theory of formal languages and is based on the idea
of concatenation of strings with associativity preserved. For quasi-automata, this is
possible thanks to the free monoid. For quasi-multiautomata, i.e., structures making
use of hypercompositional structures, we concatenate words for input. We present a
specific example. However, thanks to the multivalued nature of the hypercomposition,
a whole range of similar schemes might be thought of.

7. Conclusions

In our paper, we defined conditions that the GMAC condition must satisfy. We
also constructed algebraic a quasi-multiautomaton related to automata of the theory of
formal languages. On top of that, we constructed a quasi-multiautomaton with a limited
degree of nondeterminism. In contrast to nondeterministic automata of the theory of formal
languages, where nondeterminism is caused by the transition function, the nondeterminism
in our construction follows from the input hyperstructure. It is properties of the input
hyperstructure that have the potential to yield interesting results in such nondeterministic
quasi-multiautomata, which suggest a potential line of further research.
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Abstract: This paper deals with some theoretical aspects of hypergraphs related to hyperpaths and
hypertrees. In ordinary graph theory, the intersecting or adjacent edges contain exactly one vertex;
however, in the case of hypergraph theory, the adjacent or intersecting hyperedges may contain
more than one vertex. This fact leads to the intuitive notion of knots, i.e., a collection of explicit
vertices. The key idea of this manuscript lies in the introduction of the concept of the knot, which
is a subset of the intersection of some intersecting hyperedges. We define knot-hyperpaths and
equivalent knot-hyperpaths and study their relationships with the algebraic space continuity and
the pseudo-open character of maps. Moreover, we establish a sufficient condition under which a
hypergraph is a hypertree, without using the concept of the host graph.

Keywords: hypergraph; hyperpath; hypertree; knot; hypercontinuity; equivalent hyperpaths

1. Introduction

Being a generalization of graphs and yet having its own unique complexity and utility,
hypergraph theory has emerged as a completely new dynamic research area. The funda-
mental concepts of path, tree, trail, cycle and their different well-known properties have
already found plenty of applications in real-world problems in networking systems [1,2] of
different types or in the field of bioinformatics [3–5]. The concept of the hyperpath, called
also the path (both terms being used in a synonymous way), in a hypergraph represents the
foundation of many research works. In the majority of these studies, the hypergraphs are
considered to be directed, though there are papers related to paths in the case of undirected
hypergraphs as well. Nguyen and Pallottino [6], in their work based on directed hyper-
graphs, have given some efficient algorithms in connection to some shortest path properties.
In the same direction, we recall the work of Nielsen, Andersen and Pretolani [7], where
the authors present the procedures for finding the K-shortest hyperpaths in a directed
hypergraph. It is worth underlining that the area of research related to hyperpaths, shortest
hyperpaths [6] and their links with vehicle navigation [1], network systems based on transit
schedules [2], cellular networks [3], etc., is flourishing.

In this paper, we deal with two different problems related to hypergraphs. One
concerns the behavior of hyperpaths under hyper-continuous mappings and pseudo-open
mappings, while the other one is related to hyperpaths and hypertrees. Our study was
motivated by the definition of the so-called algebraic space [8], introduced as a pair (X, SX),
where X is a non-empty arbitrary set and SX ⊆ P(X) a non-empty family of subsets
of X. An algebraic space can be seen as an extended version of a topological space but
without having any closure property with respect to union or intersection, and it recalls the
definition of the hypergraph to a great extent. As a result, the concept of pseudo-map or
pseudo-continuity could be then defined between two hypergraphs. The key element of
this parallel study is the new concept of the knot, which is a subset of hyperedge intersection
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vertices. Since, in a hypergraph, the hyperedges appear as some subsets of the vertex set,
it is trivial to note that the intersections of all possible adjacent hyperedges may contain
more than one vertex. This fact leads to the intuitive notion of the knot that is the collection
of explicit vertices. This notion further changes the dimension of perceiving the different
concepts of hypergraphs such as walk, trail, path, tree, etc., where each of the adjacent
hyperedge intersections gives rise to knots.

In graph theory, another important concept is that of the tree, which has been ex-
tensively used in networking, especially in theoretical computer science [9]. A graph G
is a tree if there exists a unique path between any two vertices. Recall that the concept
of the hypertree was introduced in hypergraph theory in terms of its host graph, as the
hypergraph that admits a host graph that is a tree [10]. We emphasize that this fundamental
characterization of trees is not generalized in hypergraph theory, in the sense that there
is no characterization of hypertrees merely in terms of hyperpaths. This motivated us to
present, in the second part of the paper, a characteristic of hypertrees in terms of hyperpaths,
without using the concept of the host graph.

The structure of this work can be summarized as follows. First, in Section 2, we
introduce the new concepts of point-hyperwalk, point-hypertrail and point-hyperpath,
showing their differences in one illustrative example. Next, the key concepts of the knot and
knot-hyperpath are defined. In Section 3, the notions of the hyper-continuous map, strictly
hyper-continuous map and pseudo-open map between two hypergraphs are introduced
and the behavior of point-hyperpaths and knot-hyperpaths under these notions is observed.
In particular, we prove that the image of a point-hyperpath under an injective pseudo-open
mapping is a point-hyperpath, while the image of a knot-hyperpath under a pseudo-
open map is again a knot-hyperpath. Regarding the inverse image, we show that the
inverse image of a knot-hyperpath under a surjective hyper-continuous map is a weak
knot-hyperpath, or a knot-hyperpath if the map is surjective and strictly hyper-continuous.
Section 4 is dedicated to the study of hypertrees. Based on the concept of equivalent entire
knot-hyperpaths, we establish a sufficient condition under which a hypergraph becomes a
hypertree. Moreover, we present an algorithm that extracts a host graph from a hypertree.
A concluding section ends our study.

2. Preliminaries

Many definitions of hypergraphs exist; here, we will adopt the original one, given by
Berge [11]. A hypergraph is a couple H = (V, E) defined by a finite set of vertices (called
also nodes) V = {v1, . . . , vn}, with n ∈ N, and the set E = {Ei}i∈N of non-empty subsets
of V, called hyperedges. Two hyperedges Ej, Ek ∈ E, with j 
= k, such that Ej = Ek are
called repeated hyperedges [12]. In this paper, all hypergraphs are considered to be with no
repeated hyperedges.

Definition 1 ([13]). Let H = (V, E) be a hypergraph. By a hyperpath between two distinct
vertices v1 and vk in V, we mean a sequence v1E1v2E2 . . . vk−1Ek−1vk of vertices and hyperedges
having the following properties:

(i) k is a positive integer;
(ii) v1, v2, . . . , vk are distinct vertices;
(iii) E1, E2, . . . , Ek−1 are hyperedges (not necessarily distinct);
(iv) vj, vj+1 ∈ Ej for j = 1, 2, . . . , k− 1.

We call this sequence a v1 − vk–hyperpath.

Definition 2 ([13]). A hypercycle in a hypergraph H = (V, E) on a vertex v1 is a sequence
v1E1v2E2 . . . vk−1Ek−1vkEkv1, having the following properties:

(i) k is a positive integer ≥ 3;
(ii) v1E1v2E2 . . . vk−1Ek−1vk is a v1 − vk–hyperpath;
(iii) at least one of the hyperedges E1, E2, . . . , Ek−1 is distinct from Ek;
(iv) vj, vj+1 ∈ Ej for j = 1, . . . , k− 1.
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It is important to note that a path in a graph does not contain repeated edges, while
this property is not retained in the definition of a hyperpath in a hypergraph as it appears
in Definition 1. Since, in some cases, it is necessary to distinguish this special case; we
define the following types of hyperpaths.

Definition 3. A point-hyperwalk in a hypergraph H = (V, E) is a hyperpath as defined in
Definition 1, where the vertices may be repeated. A point-hyperwalk where no hyperedge is repeated
(but vertices may be repeated) is called a point-hypertrail. A point-hyperpath is a point-hypertrail in
which vertices are not repeated.

In other words, a point-hyperpath is a point-hyperwalk where neither the edges nor
the vertices are repeated.

The above definitions are illustrated in the following example.

Example 1. Let H = (V, E) be a hypergraph with the vertex set V = {vi|i = 1, 2, . . . , 50} and
hyperedges E = {E1, E2, . . . , E10} such that
E1 = {v1, v2, v3, v4, v5, v47, v9, v10},
E2 = {v12, v11, v15, v9, v10, v8, v6, v16, v7},
E3 = {v11, v12, v15, v13, v46, v14, v30},
E4 = {v14, v30, v31, v34, v33},
E5 = {v14, v30, v20, v32, v22, v21},
E6 = {v21, v22, v44, v48, v49, v50, v43},
E7 = {v50, v43, v41, v42, v36, v45, v37},
E8 = {v36, v45, v37, v46, v40, v27, v29},
E9 = {v28, v23, v24, , v27, v29, v25, v26},
E10 = {v16, v7, v18, v17, v28, v23, v24}.

We represent this hypergraph in Figure 1.

Figure 1. Hypergraph explaining point-hyperwalk, point-hypertrail and point-hyperpath notions.

We notice that

• P ≡ v1E1v9E2v12E3v14E5v21E6v50E7v37E8v20E9v28E10v7E2v12 is a point-hyperwalk, but
not a point-hypertrail, because the hyperedge E2 is repeated.

• P ≡ v12E3v30E5v22E6v43E7v37E8v29E9v28E10v7E2v12 is a point-hypertrail. Here, the vertex
v12 is repeated, but there is no repetition of the hyperedges.

• P ≡ v16E10v28E9v27E8v36E7v50E6v22 is a point-hyperpath, since hyperedges and vertices are
not repeated.
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Suppose that H = (V, E) and H′ = (V′, E′) are two hypergraphs. Let f : V → V′

be a mapping and let P ≡ v1E1v2E2 . . . vk−1Ek−1vk denote an alternating sequence of
vertices and edges in the hypergraph H. Then, we denote the f -image of this sequence
as f (P) ≡ f (v1) f (E1) f (v2) f (E2) . . . f (vk−1) f (Ek−1) f (vk), where f (Ei), i = 1, 2, . . . , k is the
f -image of Ei, i = 1, 2, . . . , k, respectively.

Generalizing the notions in Definition 1, we are ready to introduce the concepts of the
knot and knot-hyperpath, where the vertices are replaced by a cluster of vertices, each of
them behaving in a significant manner.

Definition 4. A knot K in a hypergraph H = (V, E) is a non-empty subset of the intersections
of some intersecting hyperedges. In other words, if H = (V, E) is a hypergraph and K is a knot,
then K( 
= ∅) ⊆ ∩Ei for some intersecting hyperedges Ei, i = 1, 2, . . . , k and k ≥ 2. In particular,
if K = ∩Ei, then K is called an entire knot.

Definition 5. A knot-hyperpath in a hypergraph H = (V, E) between two vertices v1 and vn is
an alternating sequence of knots and hyperedges of the following type:

{v1}E1K1E2K2E3 . . . En−1Kn−1En{vn}, (1)

where Ki ⊆ (Ei ∩ Ei+1)\(∪i−1
t=1Kt), with i = 1, . . . , n− 1, v1 ∈ E1, vn ∈ En and Eis are distinct

hyperedges.
If Ki = Ei ∩ Ei+1 for all i = 1, 2, . . . , n − 1, then the knot-hyperpath is called the entire

knot-hyperpath.

Although the entire knot-hyperpath is a particular case of the knot-hyperpath, its
significance can be seen in Section 4.

From the constructions of knots, it is clear that knots are mutually disjointed. Here, n
is called the length of the knot-hyperpath.

Example 2. By taking the hypergraph defined in Example 1, we can observe that

{v4}E1{v9, v10}E2{v11, v12, v15}E3{v14, v30}E5{v22}E6{v50}
is a knot-hyperpath of length 5.

Definition 6. Two knot-hyperpaths

P1 ≡ {v1}E1K1E2K2E3 . . . En−1Kn−1En{vn}

and
P2 ≡ {v1}E

′
1K
′
1E
′
2K
′
2E
′
3 . . . E

′
n−1K

′
n−1E

′
n{vn}

of the same length of a hypergraph H = (V, E) are called equivalent or isomorphic if

(i) Ei ∩ E
′
i 
= ∅,

(ii) Ki ∩ K
′
i 
= ∅ for all i = 1, 2, . . . , n− 1.

The above definition further can be generalized to a finite number of knot-hyperpaths
(entire knot-hyperpaths) P1, P2, . . . , Pk, where k ≥ 2 and the intersections in items (i) and
(ii) are taken as follows:

(i)
⋂k

j=1 Ej
i 
= ∅

(ii)
⋂k

j=1 Kj
i 
= ∅ for all i = 1, 2, . . . , n− 1.

Example 3. Consider the hypergraph H, with the vertex set

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13}
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and the hyperedges E1 = {v1, v2, v3, v4}, E2 = {v3, v4, v5, v7, v9}, E3 = {v2, v3, v4, v7, v8, v9},
E4 = {v8, v9, v10, v11, v12}, E5 = {v11, v12, v13}.
It can be easily verified that the following two knot-hyperpaths

P1 ≡ {v1}E1{v2, v3, v4}E3{v8, v9}E4{v11, v12}E5{v13}

and
P2 ≡ {v1}E1{v3, v4}E2{v9}E4{v11, v12}E5{v13}

are equivalent. We notice also that P1 and P2 are entire knot-hyperpaths, while

P
′
1 ≡ {v1}E1{v2, v3, v4}E3{v8, v9}E4{v11}E5{v13}

and
P
′
2 ≡ {v1}E1{v3, v4}E2{v9}E4{v12}E5{v13}

are not equivalent because the last two knots of the knot-hyperpaths P
′
1 and P

′
2 have empty intersec-

tions.

Definition 7 ([8]). A mapping f : V → V
′

from the vertex set of a hypergraph H = (V, E) to the
vertex set of another hypergraph K = (V

′
, E
′
) is said to be pseudo-open (in short, ps-open) if, for

each hyperedge Ei in E, the corresponding image f (Ei) is a hyperedge in E
′
.

Example 4. Let H = (V, E) and K = (V
′
, E
′
) be two hypergraphs with the vertex sets V =

{v1, v2, v3, v4, v5, v6} and V
′
= {v′1, v

′
2, v

′
3, v

′
4, v

′
5} and the hyperedge sets E = {{v1, v2},

{v2, v3, v4}, {v3, v4, v5}}, E
′
= {{v′1}, {v

′
2, v

′
5}, {v

′
1, v

′
2, v

′
5}}, respectively. Define the map

f : V → V
′

such that f (v1) = v
′
1 = f (v2), f (v3) = v

′
2 = f (v5), f (v4) = v

′
5, f (v6) = v

′
3.

Then, f ({v1, v2}) = {v
′
1}, f ({v2, v3, v4}) = {v

′
1, v

′
2, v

′
5}, f ({v3, v4, v5}) = {v

′
2, v

′
5}. Thus, for

each Ei ∈ E, we have f (Ei) ∈ E
′
. Hence, f is a ps-open mapping.

Definition 8. A hypergraph H = (V, E) is called connected if, for any two distinct vertices v1
and v2, there exists a hyperpath joining v1 and v2.

Definition 9. In a hypergraph H = (V, E), a sequence

{v1}G1K1G2K2G3 . . . Gn−1Kn−1Gn{vn}

is called a weak knot-hypergraph if each Gi ⊃ Ei, (Ei ∈ E) with Ki ⊆ (Gi−1 ∩ Gi)\(∪i−1
t=1Kt) for

all i = 1, 2, . . . , n− 2.

3. Hyperpaths and Hypercontinuity

In this section, we check whether the pseudo-open maps preserve the notion of
the point-hyperpath and knot-hyperpath between two hypergraphs and under which
conditions. Then, the notions of the hyper-continuous map and strictly hyper-continuous
map between two hypergraphs are stated and various possible relationships between any
two knot-hyperpaths under these notions are investigated.

Definition 10. A mapping f : V → V
′

between the vertex sets of two hypergraphs H = (V, E)
and K = (V

′
, E
′
) is called hyper-continuous if, for any E

′
i ∈ E

′
, there is some Ej ∈ E such that the

corresponding inverse image satisfies f−1(E
′
i) ⊇ Ej.

Example 5. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs, where

V = {v1, v2, v3, v4, v5, v6} and V
′
= {v′1, v

′
2, v

′
3, v

′
4, v

′
5} and E = {{v1, v2}, {v3}, {v3, v4,

v5}}, E
′
= {{v′1}, {v

′
2, v

′
3, v

′
4}, {v

′
1, v

′
2, v

′
3}}. A map f : V → V

′
is defined such that f (v1) =

v
′
1 = f (v2), f (v3) = v

′
2 = f (v5), f (v4) = v

′
5, f (v6) = v

′
3. Now, we have {v′1} ∈ E

′
and
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f−1({v′1}) = {v1, v2} ⊇ {v1, v2}(∈ E). Again, {v′2, v
′
3, v

′
4} ∈ E

′
and f−1({v′2, v

′
3, v

′
4}) =

{v3, v5, v6} ⊇ {v3}(∈ E). Moreover, {v′1, v
′
2, v

′
3}∈E

′
and f−1({v′1, v

′
2, v

′
3})={v1, v2, v3, v5} ⊇

{v1, v2}, {v3}(∈ E).
Thus, for each E

′
i ∈ E

′
, i = 1, 2, 3, there is one Ej ∈ E, j = 1, 2, 3, such that f−1(E

′
i) ⊇ Ej(∈

E). Thus, f is a hyper-continuous map from V to V
′
.

Definition 11. A mapping f : V → V
′

between the vertex sets of two hypergraphs H = (V, E)
and K = (V

′
, E
′
) is called strictly hyper-continuous if, for each E

′
i ∈ E

′
, there is an Ej ∈ E, such

that f−1(E
′
i) = Ej.

Example 6. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs, where V =

{v1, v2, v3, v4, v5, v6} and V
′
= {v′1, v

′
2, v

′
3, v

′
4, v

′
5} and E = {{v1, v2},

{v2, v3, v4}, {v3, v4, v5}}, E
′
= {{v′1}, {v

′
2, v

′
5}, {v

′
1, v

′
4}}. A map f : V → V

′
is defined such

that f (v1) = v
′
1 = f (v2), f (v3) = v

′
2 = f (v5), f (v4) = v

′
5, f (v6) = v

′
3. Now, we have {v′1} ∈

E
′

and f−1({v′1}) = {v1, v2} ∈ E. Again, {v′2, v
′
5} ∈ E

′
and f−1({v′2, v

′
5}) = {v3, v4, v5} ∈ E.

Moreover, we have {v′1, v
′
4} ∈ E

′
and f−1({v′1, v

′
4}) = {v1, v2} ∈ E.

Thus, for each E
′
i ∈ E

′
, i = 1, 2, 3, there exists an Ej ∈ E such that f−1(E

′
i) = Ej. Thus, f is

strictly hyper-continuous.

Theorem 1. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs and f is a mapping

from V into V
′
. If f is a ps-open mapping, then the f -image of a point-hyperwalk in H is a

point-hyperwalk in K.

Proof. Let
P ≡ v1E1v2E2v3E3 . . . vn−1Envn

be a point-hyperwalk in H. Then, we obtain its f -image

f (P) ≡ f (v1) f (E1) f (v2) f (E2) f (v3) f (E)3 . . . f (vn−1) f (En) f (vn).

Since P is a point-hyperwalk, it follows that v1 ∈ E1, v2 ∈ E1 ∩ E2, . . . , vn−1 ∈ En−1 ∩ En
and vn ∈ En. Thus, f (v1) ∈ f (E1), f (v2) ∈ f (E1 ∩ E2), . . . , f (vn−1) ∈ f (En−1 ∩ En),
f (vn) ∈ En. Now, E1 ∩ E2 ⊆ E1, E2 implies that f (E1 ∩ E2) ⊆ f (E1), f (E2), whence
f (E1 ∩ E2) ⊆ f (E1) ∩ f (E2). Therefore, f (v2) ∈ f (E1 ∩ E2) ⊆ f (E1) ∩ f (E2). Similarly,
f (v3) ∈ f (E2) ∩ f (E3), . . . , f (vn) ∈ f (En). Hence, f (P) is a point-hyperwalk in K.

Corollary 1. In Theorem 1, if f is an injective mapping, then the f -image of a point-hyperpath in
H is a point-hyperpath in K, too.

Theorem 2. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs and f is a ps-open

mapping from V to V
′
. Then, the f -image of a knot-hyperpath in H is a knot-hyperpath in K, too.

Proof. Let P ≡ {v1}E1K1E2K2E3K3 . . . Kn−1En{vn} be a knot-hyperpath in H with K0 =
{v1} ⊆ E1, Kn = {vn} ⊆ En and Ki ⊆ (Ei+1 ∩ Ei)\(∪i−1

t=1Kt), i = 1, 2, . . . , n− 1. Then, we
have the f -image

f (P) ≡ f (K0) f (E1) f (K1) f (E2) f (K2) f (E3) f (K3) . . . f (Kn−1) f (En) f (Kn).

In order to prove that f (P) is a knot-hyperpath, we first show that f (K0) ⊆ f (E1) and
f (Kn) ⊆ f (En). Since K0 ⊆ E1 and Kn ⊆ En, we have f (K0) ⊆ f (E1) and f (Kn) ⊆ f (En).

Since K2 ⊆ (E2 ∩ E3)\E1, we have K2 ⊆ (E2 ∩ E3) ∩ Kc
1. It follows that f (K2) ⊆

f ((E2 ∩ E3) ∩ Kc
1) ⊆ f (E2 ∩ E3) ∩ f (Kc

1) ⊆ f (E3 ∩ E2) ∩ ( f (K1))
c ⊆ f (E3 ∩ E2)\ f (K1).

Hence, f (K2) ⊆ f (E3 ∩ E2)\ f (K1).
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Similarly, K3 ⊆ (E4 ∩ E3)\(K1 ∪ K2) implies that f (K3) ⊆ f (E4 ∩ E3)\ f (K1) ∪ f (K2)
and so on. Thus, Ki ⊆ (Ei ∩ Ei+1)\(∪i−1

t=1Kt) implies that

f (Ki) ⊆ f (Ei ∩ Ei+1)\ ∪i−1
t=1 f (Kt) (2)

for any i = 1, 2, . . . , n− 1. Hence, we conclude that f (P) is a knot-hyperpath in K.

Theorem 3. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs. If f is a hyper-

continuous map from V onto V
′
, then the inverse image of a knot-hyperpath in K under f is a weak

knot-hyperpath in H.

Proof. Let P
′ ≡ K

′
0E
′
1K
′
1E
′
2K
′
2 . . . K

′
n−1E

′
nK
′
n be a knot-hyperpath in K. As f is hyper-

continuous, we have f−1(E
′
1) ⊇ E1, f−1(E

′
2) ⊇ E2, . . . , f−1(E

′
n) ⊇ En, for some hyperedges

E1, E2, . . . , En ∈ E. Moreover, the sets f−1(Ki), i = 0, 1, 2, . . . , n are nonempty because f is
an onto mapping. Now, the inverse image of the knot-hyperpath can be written as

f−1(K
′
0) f−1(E

′
1) f−1(K

′
1) f−1(E

′
2) . . . f−1(K

′
n−1) f−1(E

′
n) f−1(K

′
n),

where f−1(E
′
i) ⊇ Ei, for i = 1, 2, 3, . . . , n. Since the inverse set function behaves well for

union, intersection and complement, it follows that the conditions of a knot-hyperpath are
easily satisfied. Hence, f−1(P

′
) is a weak knot-hyperpath.

Corollary 2. The inverse image of an onto strictly hyper-continuous map of a knot-hyperpath is
again a knot-hyperpath.

Proof. Consider the knot-hyperpath

P
′ ≡ K

′
0E
′
1K
′
1E
′
2K
′
2 . . . K

′
n−1E

′
nK
′
n

as in the proof of Theorem 3. As f is strictly hyper-continuous, each f−1(Ei) belongs to E
and, by using similar arguments, we can conclude that

f−1(P
′
) ≡ f−1(K

′
0) f−1(E

′
1) f−1(K

′
1) . . . f−1(K

′
n−1) f−1(E

′
n) f−1(K

′
n)

is a knot-hyperpath.

Theorem 4. Let f : V → V
′

be a ps-open mapping from a hypergraph H = (V, E) onto a
hypergraph K = (V

′
, E
′
). If H is connected, then K is connected, too.

Proof. Let v
′
1 and v

′
2 be two any vertices in K. Since f is onto, there exists v1, v2 ∈ V such

that f (v1) = v
′
1 and f (v2) = v

′
2 ∈ V. Moreover, since H is connected and v1, v2 ∈ V, there

exists a knot-hyperpath P from v1 to v2. Because the image of a knot-hyperpath under a
ps-open mapping is again a knot-hyperpath in K, starting at f (v1) = v1

′
and ending at

f (v2) = v2
′
, we immediately conclude that K is connected.

4. Hyperpaths and Hypertrees

In this section, we will present a sufficient condition, only involving hyperpaths, under
which a hypergraph is a hypertree. Till now, the definition of a hypertree has been based
on the concept of the host graph.

Definition 12 ([14]). Suppose that H = (V, E) is a hypergraph and G = (V, F) is a graph over
the same vertex set V. We say that G is a host graph of H if each hyperedge Ei ∈ E induces a
connected subgraph in G.
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Lemma 1. There exists at least one host graph G of the hypergraph H in which the induced
subgraph obtained from any two equivalent knot-hyperpaths never forms a cycle.

Proof. Let P1 and P2 be any two equivalent knot-hyperpaths of the hypergraph H, which
may be denoted as follows:

P1 ≡ K0 = {v1}E1K1E2K2E3K3 . . . Kn−1EnKn = {vn}

and
P2 ≡ K0

′
= {v1}E1

′
K1
′
E2
′
K2
′
E3
′
K3
′
. . . Kn−1

′
En
′
Kn
′
= {vn}

and graphically represented in Figure 2.
Since they are equivalent knot-hyperpaths, it follows that Ki ∩ Ki

′ 
= ∅, Ei ∩ Ei
′ 
= ∅,

Ki ∩ Ki+1 = ∅, and Ki
′ ∩ Ki+1

′
= ∅.

Figure 2. A schematic diagram of two equivalent knot-hyperpaths P1 and P2.

We note that E1 ∪ E
′
1 can be expressed as the disjoint union of E1\E1

′
, E1

′ \E1 and
E1 ∩ E1

′
. As we know that, in any host graph of a hypergraph, all the vertices in a hyperedge

are connected, and since E1 ∩ E1
′

is contained in E1 and E1
′
, it follows that all the vertices

in E1 ∩ E1
′

can be connected to form a graph without cycles. Moreover, since E1 ∩ E1
′

and
E1\E1

′
are contained in E1, a graph can be drawn by connecting all the vertices in E1\E1

′

without forming a cycle, which can be further connected with the cycle-free graph drawn in
E1 ∩ E1

′
in the previous step. By connecting vertices in such a manner, the resultant graph

will never form a cycle. Similarly, a graph can be drawn by connecting the cycle-free graph
drawn in E1 ∩ E1

′
with a cycle-free graph in E1

′ \E1. All these constructions are depicted in
Figure 3.
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Figure 3. Model of cycle-free connected induced subgraph of a host graph of the hypergraph H.

The model is constructed in such a way that the vertex v1 is connected to K1 ∩ K1
′

and K1 ∩ K1
′

is connected to both E1\E1
′

and E1
′ \E1 through K1 ∪ K1

′
without forming a

cycle. Furthermore, it is to be noted that because K1 ∩ K1
′

is connected to E1\E1
′
, in the

next step, K2 ∩ K2
′

will connect to those vertices of E2\E2
′

that are not in E1, in order to
not create a cycle. Similarly, K2 ∩ K2

′
will connect to those vertices of E1

′ \E1 that are not
in E1

′
. This further continues till the last vertex vn, where vn is connected to Kn−1 ∩ K

′
n−1

and Kn−1 ∩ K
′
n−1 is connected to En\En

′
and En

′ \En through K1 ∪ K1
′
, without forming

a cycle. In this manner, a host graph can be drawn from the hypergraph H, where the
induced subgraph obtained from the vertices in the edges of the two paths is cycle-free. We
conclude that there exists at least one host graph G of H in which the induced subgraph
obtained from the two equivalent knot-hyperpaths will never form a cycle.

Remark 1. If the induced subgraph obtained from the vertex set of two knot-hyperpaths joining the
same vertices of any host graph of a hypergraph always produces a cycle, then the knot-hyperpaths
are not equivalent.

Theorem 5. Suppose that H is a connected hypergraph, which is a hypertree. Then, any entire
knot-hyperpaths having the same length and connecting any two vertices are equivalent.

Proof. Let P1 and P2 be any two entire knot-hyperpaths of the hypergraph H, which may
be denoted as follows:

P1 ≡ K0 = {v1}E1K1E2K2E3K3 . . . Kn−1EnKn = {vn}

and
P2 ≡ K

′
0 = {v1}E

′
1K
′
1E
′
2K
′
2E
′
3K
′
3 . . . K

′
n−1E

′
nK
′
n = {vn}.

If P1 and P2 are equivalent knot-hyperpaths, then the result is proven.
On the contrary, if P1 and P2 are not equivalent, then there exists a pair of edges

(Ei0 , E
′
i0
), where Ei0 is from P1 and E

′
i0

is from P2, such that Ei0 ∩ E
′
i0
= ∅. Since Ki0−1, Ki0 ⊆

Ei0 and K
′
i0−1, K

′
i0
⊆ E

′
i0

, we have Ki0−1 ∩ K
′
i0−1 = ∅ = Ki0 ∩ K

′
i0

. Moreover, let Ej0 , E
′
j0

be

the edges such that Ej0 ∩ E
′
j0

= ∅, while Ek ∩ E

′
k = ∅, for any k ∈ {i0, i0 + 1, . . . , j0 − 1}.

Then, the edges Ei0−1 to Ej0 and E
′
i0−1 to E

′
j0

will always form a cycle (see Figure 4) in any
host graph of H, which is a contradiction. Therefore, P1 and P2 are equivalent. Thus, we can
conclude that if H is a hypertree, then, between any two vertices, the entire knot-hyperpaths
having the same length are unique up to isomorphism.
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Figure 4. The cycle formed in a host graph of a hypergraph.

It is to be noted that two knot-hyperpaths joining two vertices in a hypertree may not
always be equivalent. This can be observed in Example 7 by introducing an extra edge
{v6, v7, v10} to the hypergraph, which subsequently produces two knot-hyperpaths joining
v0 and v1, but with different lengths.

Theorem 6. Suppose that H is a hypergraph such that, between any two vertices, there exists a
unique entire knot-hyperpath up to isomorphism. Then, H is a hypertree.

Proof. By hypothesis, between any two vertices v1 and v2 of H, there exists an entire knot-
hyperpath, which is unique up to isomorphism. It follows that H is connected. To show
that H is a hypertree, it is enough to show that H admits a host graph that is a tree. Let

P ≡ K0 = {v1}E1K1E2K2E3K3 . . . Kn−1EnKn = {v2}

be an entire knot-hyperpath joining the vertices v1 and v2. Then, the vertices contained in
the edges of this knot-hyperpath can be joined without forming a cycle, in such a way that
the constructed graph G1 is an induced subgraph with vertex set V1 = ∪Ei of some host
graph G of the given hypergraph H. Now, if ∪Ei = V, then we can take G = G1, which is a
tree. Hence, in this case, H is a hypertree and the theorem is proven.

If ∪Ei 
= V, then let v3 ∈ V be such that v3 /∈ ∪Ei. Let

P
′ ≡ {v1}E

′
1K
′
1E
′
2 . . . K

′
k−1E

′
k{v3}

be an entire knot-hyperpath joining the vertices v1 and v3. We note that there may exist
some hyperedges in P

′
that coincide with the hyperedges of P. Now, excluding these

common hyperedges, the rest of the hyperedges of P
′

can be joined without forming a cycle.
In this way, an induced subgraph G2 can be formed with vertex set ∪E

′
j and the edges set as

the union of those edges common with G1 and the edges newly formed from hyperedges
of P

′
, which are not in P. It is clear from the construction that both subgraphs G1 and G2

are not cyclic and the union G1 ∪ G2 is connected; otherwise, H would have two entire
knot-hyperpaths joining the same vertices, but not equivalent (see proof of Theorem 5).
Now, if (∪Ei)∪ (∪E

′
j) = V, then G = G1 ∪G2 is the host graph of H that is a tree and hence

H is again a hypertree.
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If (∪Ei) ∪ (∪E
′
j) 
= V, then there exists a vertex v4 ∈ V that is not in (∪Ei) ∪ (∪E

′
j).

Then, we will have an entire knot-hyperpath P
′′

joining v1 and v4 as follows:

P
′′ ≡ {v1}E

′′
1 K
′′
1 E
′′
2 . . . K

′′
l−1E

′′
l {v4}.

Now, excluding those hyperedges of P
′′

that are common with P and P
′
, the rest

of the hyperedges of P
′′

can be joined without forming a cycle. In this way, an induced
subgraph G3 can be formed with vertex set ∪E

′′
l and the edges set as the union of those

edges common with G1 ∪ G2 and the edges newly formed from hyperedges of P
′′

that are
not in P and P

′
. It is clear from the construction that all the subgraphs G1, G2 and G3 are

not cyclic and the union G1 ∪ G2 ∪ G3 is connected. Now, if (∪Ei) ∪ (∪E
′
j) ∪ (∪E

′′
l ) = V,

then G = G1 ∪ G2 ∪ G3 is the host graph of H that is a tree and hence H is a hypertree.
As the vertex set of the hypergraph is finite, the process has a finite number of steps.

Thus, we can conclude that if H is a hypergraph such that, between any two vertices, there
exists an entire knot-hyperpath unique up to isomorphism, then H is a hypertree.

Remark 2. We can notice that the hypergraph considered in Example 3 is a hypertree, but the two
knot-hyperpaths P

′
1 and P

′
2 joining the vertices v1 and v13 are not equivalent, even though they have

the same length, while all the entire knot-hyperpaths (for example, P1 and P2) are equivalent. Hence,
the property of knots of being entire, in the above two theorems, is an important hypothesis to be
considered.

To illustrate the algorithm stated in the proof of Theorem 6, we present the following
example, where the considered hypergraph is a hypertree and a host graph is drawn using
the technique used in the proof of Theorem 6. This hypertree is represented in Figure 5.

Example 7. Consider the hypergraph H = (V, E), where V = {v0, v1, v2, . . . , v16} and E =
{E1 = {v0, v7, v6}, E2 = {v6, v10, v11}, E3 = {v11, v14, v15, v5, v16}, E4 = {v3, v1, v13}, E5 =
{v6, v2}, E6 = {v5, v16}, E7 = {v4, v9, v12}, E8 = {v5, v8, v13, v9}}. One can easily verify that
H is a hypertree and, between any two vertices, there exists an entire knot-hyperpath, unique up to
isomorphism. Now, we will use the technique used in the proof of Theorem 6, in order to obtain a
host graph that is a tree.

Figure 5. A hypergraph that is a hypertree.

Let us consider the vertices v0 and v1 and the knot-hyperpath

P ≡ {v0}E1{v6}E2{v11}E3{v5}E4{v13}E8{v1}
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joining v0 and v1. Now, the vertices in all hyperedges are connected and form a graph G1 in such a
way that it is not cyclic and it is an induced subgraph with vertex set V1 = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E8
of some host graph G of H.

Clearly, V 
= V1, and so we consider the vertex v2 ∈ V, which is not in V1. Now, a hyperpath
P
′

from v0 to v2 is constructed as follows:

P
′ ≡ {v0}E1{v6}E2{v11}E3{v5}E6{v2}.

Clearly, except E6, all other hyperedges of this knot-hyperpath appear in the previous knot-
hyperpath, and so vertices of E6 are joined in an acyclic way and represent a graph G2 with vertex
set V2 = E1 ∪ E2 ∪ E3 ∪ E6.

Here, we note that the union of the two graphs G1 and G2 is acyclic and connected. Moreover,
V1 ∪V2 
= V. Therefore, we consider an arbitrary vertex from v4, v12, v16 that is not in V1 ∪V2.
Let us consider the vertex v4 and the knot-hyperpath P

′′
constructed as follows:

P
′′ ≡ {v0}E1{v6}E2{v11}E3{v5}E4{v9}E7{v4}.

Clearly, except E7, all other hyperedges of this knot-hyperpath appear in the previous knot-
hyperpaths, and so vertices of E7 are joined in an acyclic way that represents a graph G3 with
vertex set V3 = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E7. Thus, G1 ∪ G2 ∪ G3 is connected and acyclic. Since
V1 ∪ V2 ∪ V3 
= V, we consider the vertex v16, the only one that is not in this union and the
knot-hyperpath

P
′′′ ≡ {v0}E1{v6}E5{v16}.

Clearly, except E5, all other hyperedges of this knot-hyperpath appear in the previous knot-
hyperpaths, and so vertices of E5 are joined in an acyclic way that represents a graph G4 with vertex
set V4 = E1 ∪ E5. Now, G1 ∪ G2 ∪ G3 ∪ G4 is connected and acyclic, and V1 ∪V2 ∪V3 ∪V4 = V.
Therefore, G = G1 ∪ G2 ∪ G3 ∪ G4 is the required host graph, which is a tree.

5. Conclusions

Based on the definition of a knot in a hypergraph H, which is a subset of the in-
tersections of some intersecting hyperedges of H, we have introduced the notion of the
knot-hyperpath, in order to better characterize the hyper-continuity and pseudo-continuity
of functions between two hypergraphs. Moreover, in the second part of the paper, we
have characterized the hypertrees without using the concept of a host graph. A sufficient
condition is established to check whether or not a hypergraph is a hypertree. Furthermore,
an algorithm is designed in order to extract from a hypertree a host graph that is a tree.
This algorithm has the potential to determine whether a hypergraph is a hypertree or not.
As we know, hypergraphs and hypertrees are extensively used in different branches of
applied sciences, including networking and theoretical computer science, and therefore
this investigation will give more future ideas towards the applicability of hypergraphs and
hypertrees in these fields.
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Abstract: Inspired by the concept of BL-algebra as an important part of the ordered algebra, in
this paper we investigate the binary block code generated by an arbitrary BL-algebra and study
related properties. For this goal, we initiate the study of the BL-function on a nonempty set P
based on BL-algebra L, and by using that, l-functions and l-subsets are introduced for the arbitrary
element l of a BL-algebra. In addition, by the mean of the l-functions and l-subsets, an equivalence
relation on the BL-algebra L is introduced, and using that, the structure of the code generated by an
arbitrary BL-algebra is considered. Some related properties (such as the length and the linearity) of
the generated code and examples are provided. Moreover, as the main result, we define a new order
on the generated code C based on the BL-algebra L, and show that the structures of the BL-algebra
with its order and the correspondence generated code with the defined order are the same.

Keywords: BL-function; BL-code; binary linear block codes; coding theory; BL-algebra

1. Introduction

Hajek, in 1998, introduced BL-algebra in order to provide a general framework for
formalizing statements of a fuzzy nature [1]. BL-algebra is the algebraic structure arising
from the continuous triangular norms, and it has certain logical axioms similarly to Boolean
algebras or MV-algebras from classical logic or Lukasiewicz logic, respectively. In addition,
every MV-algebra is a BL-algebra, whereas the converse is not always true. Thus, the class
of MV-algebra is a subset of the class of BL-algebra, and this is the main reason that we
selected BL-algebra to investigate the code generated by it. Moreover, Hajeck showed that
every BL-algebra with an involutory complement is MV-algebra.

In the twentieth century, there is a problem in engineering about the transmutation of
information. Shannon [2] in 1948 and Hamming [3] in 1950 provided some frameworks
to solve the problem. Their idea was developed and, as a consequence, the electronic
information could be transmitted throughout the noisy channel and stored by minimum
errors, and coding theory was born. Because the electronic information is a string of zeros
and ones, it uses a finite field as the alphabet set. Thus, coding theory can use different
areas of mathematics such as linear algebra, finite geometry, lattices, and combinatorics,
especially when the alphabet set is generalized to different types of fields. Coding theory
can be viewed not only as a part of computer science and engineering but also as a part of
pure mathematics, as the mathematicians were interested in the fundamental aspects of
this concept.

Application of coding theory in ordered algebraic structures was initiated by Jun
and Song in 2011 [4]. They introduced the notion of BCK-valued functions and estab-
lished binary block codes by using the notion of BCK-valued functions. After that, in
2014, Borumand et al. [5] and in 2015, Flaut [6] presented some relationships between
BCK-algebras and the related binary block codes. They proved that every BCK-algebra
determines a binary block code. Gilani [7] studied some properties of the codes generated
by BCK-functions in an arbitrary BCK-algebras. Details about the fundamental relations in
an arbitrary BCK-algebra and related generated code, namely BCK-code, was investigated
by Bordbar in [8]. During the last few years, binary block codes generated by different
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types of ordered algebraic structures were studied, for instance, codewords in a binary
block code generated by a UP-valued function investigated by Chinram and Iampan in
2021 [9], and in 2015, Mostafa et al. [10] applied coding theory to KU-algebras and gave
some connection between binary block codes and KU-algebras.

In this paper, we investigate the code generated by a BL-algebra. Our motivation
is to study the properties of a code generated by one ordered algebraic structure. We
begin with a discussion of the ordered algebraic structure known as BL-algebra as it is an
extended algebraic structure and has some other ordered structures as its subsets, such
as MV-algebra. Moreover, by using the order in a BL-algebra, we define a new order in a
generated code and give the code an algebraic ordered structure. The defined order among
the codewords can be useful in decoding and will be our future work. For our goal, in
Section 3 we define a BL-function on an arbitrary nonempty set P based on BL-algebra L
and by using the BL-function, l-functions of it and l-subsets of P for l ∈ L are investigated.
In addition, properties of BL-function and its l-functions and l-subsets of P that we need
for generated code are considered. In Section 4, a binary equivalence relation ≈ defines
on a BL-algebra L, and by using this relation and BL-function, the code C based on L is
generated. Finally, we study an order among the codewords of C that gives the code C an
ordered algebraic structure. In Theorem 3, we show that the BL-algebra L with its order
and the code C based on L with respect to defined order have the same structures.

2. Preliminaries

A BL-algebra is a structureL := (L,∧,∨,�,→, 0, 1) such that (L,∧,∨, 0, 1) is a bounded
lattice, (L,�, 1) is an abelian monoid, i.e., � is commutative and associative, and the
following conditions hold for all x, y, z ∈ L:

(BL1) x� 1 = x,
(BL2) x� y ≤ z if and only if x ≤ y→ z,
(BL3) x ∧ y = x� (x → y),
(BL4) (x → y) ∨ (y→ x) = 1.
Every BL-algebra L satisfies the following assertions

x = 1→ x, x → x = 1, x → 1 = 1, (1)

x ≤ y⇔ x → y = 1, (2)

x ≤ y→ x, (3)

x → (y→ z) = y→ (x → z), (4)

x ≤ y ⇒ z→ x ≤ z→ y, y→ z ≤ x → z (5)

for all x, y, z ∈ L.
For more information about BL-algebra, please refer to [1,11].
The alphabets used in coding theory are finite fields with q elements, GF(q). We say

that a code is q− ary if its codewords are defined over the q− ary alphabet GF(q). The
most commonly used alphabets are binary fields, GF(2m). This article focuses on codes
with the familiar alphabet GF(2), which are known as binary codes.

Let c be a codeword. Then the Hamming weight w(c) of a codeword c is the number
of nonzero components in the codeword. The Hamming distance between two codewords
d(c1, c2) is the number of places in which the codewords c1 and c2 differ. In other words,
d(c1, c2) is the Hamming weight of the vector c1 − c2, representing the component-wise
difference of the vectors c1 and c2. The minimum (Hamming) distance of a code C is the
minimum distance between any two codewords in the code C, that is,

d(C) = min{d(x, y) | x 
= y, x, y ∈ C}.

The notation (n, M, d) is used to represent a code with code length n, a total of M
codewords, and minimum distance d. One of the major goals of coding theory is to develop
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codes that strike a balance between having small n (for fast transmission of messages),
large M (to enable transmission of a wide variety of messages), and large d (to detect
many errors).

3. BL-Functions on a Nonempty Set P

In this section, the notions of BL-functions on a nonempty set P based on a BL-algebra
L, l-functions, and l-subsets of P for an arbitrary element l ∈ L, will be introduced. Some
of the properties connected with l-subsets of P and l-functions of a BL-function will be
investigated. Throughout this section, unless stated otherwise, L := (L,∧,∨,�,→, 0, 1)
denotes a BL-algebra. In addition, in this paper, we use the set L for our definitions as a
BL-algebra L = (L,∧,∨,�,→, 0, 1).

Definition 1. Let P be a nonempty set and L be a BL-algebra. A mapping φ : P → L is called a
BL-function on P based on L and denoted by φL. If there is no confusion of L, we use φ instead
of φL. Moreover, for a BL-function φ on P and l ∈ L, define φl : P → {0, 1} for each p ∈ P
as follows:

φl(p) =
{

1, if and only if φ(p)→ l = 1,
0, otherwise.

(6)

The function φl is called a l-function of φ.

Definition 2. Let P be a nonempty set and L be a BL-algebra. For a BL-function φ : P→ L on P
and each l ∈ L, the set Pl defined by

Pl := {p ∈ P | φ(p)→ l = 1}, (7)

is called a l-subset of P.

Example 1. Let L = {0, a, b, 1} be a set with the following Cayley tables:

� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Then L = (L,∧,∨,�,→, 0, 1) is a BL-algebra (see [12]), where x ∧ y = min{x, y} and
x ∨ y = max{x, y}.

(1) For a set P = {p1, p2, p3}, the function φ : P→ L defined by

φ(p1) = a, φ(p2) = b and φ(p3) = 1,

is a BL-function on P, and the l-subsets of P for each l ∈ L are as follows:

P0 = ∅, Pa = {p1}, Pb = {p1, p2} and P1 = P.

In addition, for each l ∈ L, the l-functions of φ are as shown in the following table:

φl p1 p2 p3
φ0 0 0 0
φa 1 0 0
φb 1 1 0
φ1 1 1 1

(2) Let Q = {q1, q2, q3, q4} and define the function ψ : Q→ L by

ψ(q1) = a, ψ(q2) = b, ψ(q3) = 1 and ψ(q4) = 0.
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Then ψ is a BL-function on Q. For each l ∈ L, the l-subsets of Q are as follows:

Q0 = {q4}, Qa = {q1, q4}, Qb = {q1, q2, q4} and Q1 = Q.

In addition, the l-functions of ψ for each l ∈ L are as shown in the following table:

ψl q1 q2 q3 q4
ψ0 0 0 0 1
ψa 1 0 0 1
ψb 1 1 0 1
ψ1 1 1 1 1

The following proposition shows the relationship between BL-function φL on P and
its l-functions and l-subsets of P for l ∈ L.

Proposition 1. Let φ : P → L be a BL-function on a nonempty set P based on L, where L is a
BL-algebra. Then the function φ can be described by its l-functions and l-subsets of P, for l ∈ L, as
the infimum of the following sets:

(∀p ∈ P)(φ(p) = inf{l ∈ L | p ∈ Pl}), (8)

in other words,
(∀p ∈ P)(φ(p) = inf{l ∈ L | φl(p) = 1}). (9)

Proof. Let p ∈ P be an arbitrary element and φ(p) = l. Then using (1),

φ(p)→ l = l → l = 1.

Thus φl(p) = 1, which means that p ∈ Pl . Assume that p ∈ Pl′ , for l′ ∈ L. Then
1 = φ(p)→ l′ = l → l′. By using (2), we conclude that l ≤ l′. Because l′ ∈ {l ∈ L | p ∈ Pl},
it follows that

φ(p) = inf{l ∈ L | p ∈ Pl}.
The equality (9) is a direct conclusion of (6) and (7).

Corollary 1. For a BL-algebra L, if φ : P→ L is a BL-function on P based on L, then for p ∈ P,

φ(p) = inf{φl(p) ↪→ l | l ∈ L},

where

φl(p) ↪→ l =
{

l if p ∈ Pl ,
1 otherwise.

Proposition 2. Let L be a BL-algebra and φ : P→ L be a BL-function on a nonempty set P based
on L. Then for elements l1, l2 ∈ L we have the following assertion,

l1 ≤ l2 ⇒ Pl1 ⊆ Pl2 (10)

Proof. Assume that l1, l2 ∈ L are arbitrary elements such that l1 ≤ l2. Hence l1 → l2 = 1.
Moreover let x ∈ Pl1 . Then φ(x) → l1 = 1, which means that φ(x) ≤ l1. By using (5)
we have

l1 → l2 ≤ φ(x)→ l2.

Thus using (1), we conclude that

(l1 → l2)→ (φ(x)→ l2) = 1→ (φ(x)→ l2) = φ(x)→ l2 = 1.

Therefore, x ∈ Pl2 , that is Pl1 ⊆ Pl2 .
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Theorem 1. Let φ : P→ L be a BL-function on P. Then

(i) (∀p1, p2 ∈ P)
(

φ(p1) 
= φ(p2) ⇔ Pφ(p1)

= Pφ(p2)

)
.

(ii) (∀l ∈ L)(∀p ∈ P)
(

p ∈ Pl ⇔ Pφ(p) ⊆ Pl

)
.

Proof. For BL-function φ : P → L, let p1, p2 ∈ P be such that Pφ(p1)

= Pφ(p2)

. Moreover,
suppose that φ(p1) = φ(p2). If x ∈ Pφ(p1)

, then

φ(x)→ φ(p1) = φ(x)→ φ(p2) = 1,

which means that x ∈ Pφ(p2)
. Thus Pφ(p1)

⊆ Pφ(p2)
. Similarly, Pφ(p2)

⊆ Pφ(p1)
, and this is

a contradiction. Therefore, for all p1, p2 ∈ P, if Pφ(p1)

= Pφ(p2)

, then φ(p1) 
= φ(p2). This
proves the (⇐).

In order to prove (⇒), suppose that p1, p2 ∈ P such that φ(p1) 
= φ(p2). Then clearly
φ(p1)→ φ(p2) 
= 1 or φ(p2)→ φ(p1) 
= 1. Hence,

Pφ(p1)
= {x ∈ P | φ(x)→ φ(p1) = 1}

= {x ∈ P | φ(x)→ φ(p2) = 1}
= Pφ(p2)

.

Therefore, Pφ(p1)

= Pφ(p2)

.
(ii) Let l ∈ L and p ∈ P be such that p ∈ Pl. Then φ(p)→ l = 1, and using Proposition 2,

Pφ(p) ⊆ Pl .

Conversely, suppose that Pφ(p) ⊆ Pl for l ∈ L and p ∈ P. Because φ(p) → φ(p) = 1,
we conclude that p ∈ Pφ(p). Therefore, p ∈ Pl and the proof is complete.

Theorem 1 part (ii) shows that the converse of Proposition 2 is true. Thus, we have the
following corollary.

Corollary 2. Let φ : P → L be a BL-function on a nonempty set P based on L, where L is a
BL-algebra. Then

(∀p1, p2 ∈ A)
(

φ(p1)→ φ(p2) = 1 ⇔ Pφ(p1)
⊆ Pφ(p2)

)
. (11)

Proposition 3. Let φ : P→ L be a BL-function on a nonempty set P and M ⊆ L. Put

α = inf{m | m ∈ M}.

Then
Pα = ∩{Pm | m ∈ M} (12)

Proof. Note that there exists the infimum of M in L for any M ⊆ L. Thus, for the infimum
element α of M we have

x ∈ Pα ⇔ φ(x)→ α = 1

⇔ (∀m ∈ M)(φ(x)→ m = 1)

⇔ (∀m ∈ M)(x ∈ Pm)

⇔ x ∈ ∩{Pm | m ∈ M}.

For a BL-algebra L and a BL-function φ : P→ L on a nonempty set P, define the sets
PL and φL as follows:

PL := {Pl | l ∈ L}, φL := {φl | l ∈ L}.
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Then we have the following corollary.

Corollary 3. If φ : P→ L is a BL-function on a nonempty set P, then

(i) Pinf{l|l∈L} = ∩{Pl | l ∈ L},
(ii) for l1, l2 ∈ L, we have Pl1 ∩ Pl2 ∈ PL.

Proposition 4. Let φ : P → L be a BL-function on a nonempty set P. Then P is represented by
the union of Pl for l ∈ L, that is,

P = ∪{Pl | l ∈ L}. (13)

Proof. Obviously, ∪{Pl | l ∈ L} ⊆ P. Let p ∈ P and l ∈ L be such that φ(p) = l. Then by
using the definition of l-subset of P, we have p ∈ Pl . Thus,

p ∈ ∪{Pl | l ∈ L},

which means that P ⊆ ∪{Pl | l ∈ L}. Therefore, P = ∪{Pl | l ∈ L}.

Proposition 5. Let φ : P→ L be a BL-function on a nonempty set P and p ∈ P. Then

∩ {Pl | p ∈ Pl} ∈ PL. (14)

Proof. Remember that by using (6) and (7), we conclude that for any p ∈ P,

p ∈ Pl ⇔ φl(p) = 1.

It follows from Proposition 3 that

∩{Pl | p ∈ Pl} = ∩{Pl | φl(p) = 1} = Pinf{l|p∈Pl} ∈ Pl .

Let φ : P→ L be a BL-function on a nonempty set P and ≈ be a binary relation on L
defined by

(∀l1, l2 ∈ L)
(
l1 ≈ l2 ⇔ Pl1 = Pl2

)
. (15)

The binary relation ≈ is an equivalence relation on L. Moreover, for an arbitrary
element l ∈ L, define the sets φ(P) and {l}≤ as follows:

φ(P) := {l ∈ L | φ(p) = l for some p ∈ P}

{l}≤ := {x ∈ L | x ≤ l} = {x ∈ L | x → l = 1}.
The relationships between an equivalence relation ≈ and the sets φ(P) and {l}≤ are

described in the following theorem.

Theorem 2. For a BL-function φ : P → L on a nonempty set P and the elements l1, l2 ∈ L, we
have the following assertion:

l1 ≈ l2 ⇔ φ(P) ∩ {l1}≤ = φ(P) ∩ {l2}≤. (16)

Proof. Suppose that l1, l2 ∈ L. Then

l1 ≈ l2 ⇔ Pl1 = Pl2
⇔ (∀p ∈ P) (φ(p)→ l1 = 1 ⇔ φ(p)→ l2 = 1)
⇔ {p ∈ P | φ(p) ∈ {l1}≤} = {p ∈ P | φ(p) ∈ {l2}≤}
⇔ φ(P) ∩ {l1}≤ = φ(P) ∩ {l2}≤.
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4. Code Generated by a BL-Algebra

The relation ≈ on L that is defined in (15) is an equivalence relation on L. Thus, it
provides the partition of L. For any l ∈ L, let [l] denotes an equivalence class containing l,
which means that

[l] := {k ∈ L | l ≈ k}.
In what follows, a binary block code of length n will be made from an arbitrary finite

BL-algebra. In this method n is a natural number; this helps us to generate a binary block
code of the desired length n.

For n ∈ N, let P = {p1, p2, . . . , pn} and L be a finite BL-algebra. Every BL-function
φ : P→ L on P determines a binary block code C of length n in the following way:

Let l ∈ L. Then for [l] the correspondence codeword is cl = c1c2 · · · cn such that for
1 ≤ i ≤ n

ci = φl(pi) (17)

where pi ∈ P. We called C a BL-code based on L and denoted by CL. If there is no confusion
of L, we use C instead of CL.

During our study of block code generated by an arbitrary BL-algebra, three parameters
are important. The first parameter is the code length n. In the BL-code based on L, we
can make a code of the desired length n. This can be helpful as we can choose the length
in different situations. The second parameter that we consider is the total number of
codewords. In this kind of code, the total number of codewords is equal to the total number
of distinct equivalence classes of ≈ relation. The third parameter is the distance between
pairs of codewords in a code. In the following examples, these notations will be explained
much more.

Example 2. Let L = {0, a, b, 1} be a set with Cayley tables as follows:

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then L := (L,∧,∨,�,→, 0, 1) is a BL-algebra. For a set P = {p1, p2, p3, p4}, let φ : P→
L be a BL-function on P given by

φ(p1) = a, φ(p2) = 0, φ(p3) = 1 and φ(p4) = b

Then the l-subsets of P are

P0 = {p2}, Pa = {p1, p2}, Pb = {p1, p2, p4} and P1 = P.

In addition, the l-functions of φ are

φp p1 p2 p3 p4
φ0 0 1 0 0
φa 1 1 0 0
φb 1 1 0 1
φ1 1 1 1 1

Clearly, we have four different equivalence classes, which are [0], [a], [b], and [1]. Thus the
total number of codewords is 4 (M = 4). By using (17), we conclude that

c0 = 0100, ca = 1100, cb = 1101, c1 = 1111.
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Thus the binary block code C of length n = 4 and 4 codewords is C = {0100, 1100, 1101, 1111}.
Besides, the minimum distance of C is 1 (d(C) = 1). It is clear that the code C is not a linear code
because 0000 /∈ C.

Let cl = l1l2 · · · ln and ck = k1k2 · · · kn be two codewords belonging to a binary block-
code C of length n. Define an order relationship ! on the set of codewords belonging to a
binary block-code C of length n as follows:

cl ! ck ⇔ li ≤ ki for i = 1, 2, · · · , n. (18)

By using (2) for the BL-algebra L and (18) for the BL-code C based on L, we conclude
that the graphs of L concerning the order ≤ and the code C with respect to the order !
have the same structures. For instance, in Example 2, we have

�

�

�

�

0

a

b

1

�

�

�

�

0100

1100

1101

1111

(L,≤) (C,!)

Therefore, we can have the following theorem.

Theorem 3. Let L := (L,∧,∨,�,→, 0, 1) be a finite BL-algebra and |L| = n, where n ∈ N.
Then L determines a block-code C of length n (namely BL-code) such that the graph of L with respect
to its order ≤ and the graph of BL-code C with respect to the order ! have the same structure.

Proof. Let L := (L,∧,∨,�,→, 0, 1) be a finite BL-algebra and L = {l1, l2, · · · , ln}. More-
over, suppose that P = L. Then P is a nonempty set and φ : L → L defined by φ(li) = li,
for 1 ≤ i ≤ n is a BL-function on L based on L. Suppose that L

≈ be a set of all equivalence
classes of the elements of L regarding the equivalence relation ≈ defined in (15). That is,

L
≈ = {[l] | l ∈ L}.

Define the mapping ψ : L
≈ −→ C by

ψ([li]) = cli , (19)

whereby using (17), we have

cli = φli (l1)φli (l2) . . . φli (ln),

for 1 ≤ i ≤ n.
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Moreover, let [li] = [lj], for i, j ∈ {1, 2, . . . , n}, and i 
= j. Then using (7) and (15), we
conclude that

[li] = [lj] ⇔ Lli = Llj

⇔ {l ∈ L | φ(l)→ li = 1} = {l ∈ L | φ(l)→ lj = 1}
⇔ {l ∈ L | φli (l) = 1} = {l ∈ L | φlj

(l) = 1}
⇔ (∀l ∈ L)

(
φli (l) = 1 ⇔ φlj

(l) = 1
)

⇔ (∀l ∈ L)
(

φli (l) = 0 ⇔ φlj
(l) = 0

)
⇔ cli = clj

.

This means that the function ψ in (19) is well defined and the inverse implications
show that the function ψ is one-to-one.

Now suppose that li, lj ∈ L are such that li ≤ lj, for 1 ≤ i, j ≤ n. Then Proposition 2
shows that Lli ⊆ Llj

. If l ∈ L and l ∈ Lli , then φli (l) = 1. Because Lli ⊆ Llj
, l ∈ Llj

and
φlj

(l) = 1, therefore φli (l) ≤ φlj
(l). Thus, in this case cli ≤ clj

.
If l ∈ L and l /∈ Lli , then φli (l) = 0 and we have two opportunities. The first one

is l ∈ Llj
, which means that φlj

(l) = 1, and the second one is l /∈ Llj
, which means that

φlj
(l) = 0. In both case, we have φli (l) ≤ φlj

(l). Hence, cli ≤ clj
. Therefore, if li ≤ lj, then

ψ(li) ! ψ(lj), that is, ψ preserves the order. Therefore, the figures of (L,≤) and (C,!) have
the same structures.

Example 3. Let L = {0, a, b, c, d, 1} be a set with the following Cayley tables.

� 1 a b c d 0
1 1 a b c d 0
a a b b d 0 0
b b b b 0 0 0
c c d 0 c d 0
d d 0 0 d 0 0
0 0 0 0 0 0 0

→ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then L = (L,∧,∨,�,→, 0, 1) is a BL-algebra. For a set P = {pi | i = 1, 2, · · · , 6}, let
φ : P→ L be a BL-function on a set P given by

φ(p1) = 0, φ(p2) = a, φ(p3) = b, φ(p4) = c, φ(p5) = d, and φ(p6) = 1.

Then
φp p1 p2 p3 p4 p5 p6
φ0 1 0 0 0 0 0
φa 1 1 1 0 1 0
φb 1 0 1 0 0 0
φc 1 0 0 1 1 0
φd 1 0 0 0 1 0
φ1 1 1 1 1 1 1

Thus, using the (17) we have

c0 = 100000, ca = 111010, cb = 101000, cc = 100110, cd = 100010, c1 = 111111.

Finally, the generated binary block code C based on L is:

C = {100000, 111010, 101000, 100110, 100010, 111111}.

Moreover, the graph of C using the order (18) is as follows:
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which is the same with the graph of L and the order (2), that is,
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5. Conclusions

In this paper, we have studied the code generated by a BL-algebra as one of the
important classes of ordered algebra. For this goal, the notion of BL-function on a nonempty
set P based on BL-algebra L was introduced, and for l ∈ L, l-fuctions of a BL-fuction and
l-subsets of P were studied. After investigating some results concerning the BL-functions,
our study has focused on a binary equivalence relation ≈ on L, and using this relation we
define the code C based on L. Finally, we have defined an order between the codewords of
C, which gives the code C the ordered structure. Moreover, the graph of C with its order
and the graph of L have the same structures.

The results related to BL-code C show that, in general, this code is not linear. For our
future work, we will concentrate on some conditions that make this binary block code
a linear code. Moreover, using the notations and ideas of this article, the order that we
defined between the codewords of the code C based on BL-algebra L can help us to find a
new algorithm for decoding the ciphertext. In our future research, we focus on this part of
the decoding algorithm.
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Abstract: Let G be a connected, undirected and simple graph. The distance Laplacian matrix L(G)

is defined as L(G) = diag(Tr)−D(G), where D(G) denotes the distance matrix of G and diag(Tr)
denotes a diagonal matrix of the vertex transmissions. Denote by ρL(G) the distance Laplacian
spectral radius of G. In this paper, we determine a lower bound of the distance Laplacian spectral
radius of the n-vertex bipartite graphs with diameter 4. We characterize the extremal graphs attaining
this lower bound.

Keywords: distance Laplacian matrix; spectral radius; diameter

MSC: 05C50

1. Introduction

The distance Laplacian and distance signless Laplacian matrices of a graph G pro-
posed by Aouchiche and Hansen [1] are defined as L(G) = diag(Tr)−D(G) and Q(G) =
diag(Tr) +D(G), respectively. Much attention has been paid to them since they were put
forward. Aouchiche et al. [2] described some elementary properties of the distance Lapla-
cian eigenvalues of graphs. Niu et al. [3] determined some extremal graphs minimizing the
distance Laplacian spectral radius among bipartite graphs in terms of the matching number
and the vertex connectivity, respectively. Nath and Paul [4] focused on the graph whose
complement is a tree or a unicyclic graph and considered the second-smallest distance
Laplacian eigenvalue. Lin and Zhou [5] determined some extremal graphs among several
classes of graphs. Tian et al. [6] proved four conjectures put forward by Aouchiche and
Hansen in [2]. One can refer to [7–11] for more details on the distance signless Laplacian
spectral radius of graphs.

Although lots of conclusions have been obtained, many more problems remain un-
solved. For instance, there are few papers focusing on the distance (signless) Laplacian
spectral radius of graphs in terms of diameter, an important parameter of graphs. For
adjacency matrices of graphs, several conclusions with respect to the diameter have been
derived (e.g., [12–14]). In [12], the authors determined some extremal graphs with small
diameter. Generally, the communication network is organized with small diameter to
improve the quality of the service on the networks. Motivated by this, in the present paper,
we deduce a lower bound of the distance Laplacian spectral radius among bipartite graphs
with diameter 4, and we hope that it could be used to address a general case.

This paper is arranged as follows. In Section 2, some elementary notions and lemmas
applied in the next parts are presented. In Section 3, the lower bound for the distance
Laplacian spectral radius is obtained for bipartite graphs with diameter 4. Moreover, the
extremal graph attaining the lower bound is determined.
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2. Preliminaries

All graphs considered in this paper are undirected, connected and simple. By V(G),
we denote the vertex set of G, and the order of G is |V(G)|. Denote by NG(u) the set of
vertices adjacent to u. If NG(u) = NG(v) for u, v ∈ V(G), then they are called twin points.
Generally, a subset S ⊂ V(G) is called a twin point set, if NG(u) = NG(v) for any u, v ∈ S.
The distance between u, v ∈ V(G), denoted by d(u, v), is the length of the shortest path
between u and v. The diameter of graph G, written as d(G) (d for short), is the maximum
distance among all pairs of vertices of G. The chromatic number of G means the least
number of colors required to color all the vertices of G such that each pair of adjacent
vertices has different colors. The spanning subgraph of G is obtained by deleting some
edges from G with order invariable. The transmission TrG(u) of a vertex u is referred to
as the sum of the distances of u to all other vertices of V(G), i.e., TrG(u) = ∑v∈V(G) d(v, u).
Trmax(G) means the maximal vertex transmission of G. Let Bn,d be the set of all n-vertex
bipartite graphs with diameter d and Cn,k the set of all n-vertex graphs with chromatic
number k.

Suppose V(G) = {v1, v2, . . . , vn}. The distance matrix D(G) of G is an n× n symmet-
ric real matrix with d(vi, vj) as the (i, j)-entry. Let the diagonal matrix diag(Tr), called the
vertex transmission matrix of G, be

diag(Tr) = diag(TrG(v1), TrG(v2), . . . , TrG(vn)).

The largest eigenvalue of the distance Laplacian matrix L(G) is called the distance
Laplacian spectral radius, written as ρL(G). For any matrix M, λ1(M) always denotes the
largest eigenvalue of M.

A vector x = (x1, x2, . . . , xn)T can be considered as a function defined on V(G) =
{v1, v2, . . . , vn}, which maps vi to xi, i.e., x(vi) = xi. Thus, for L(G),

xTL(G)x = ∑
{u,v}⊆V(G)

d(u, v)(x(u)− x(v))2.

It is clear that 1 = (1, 1, . . . , 1)T is an eigenvector corresponding to the eigenvalue
zero of L(G). Thus, if x = (x1, x2, . . . , xn)T is an eigenvector of L(G) corresponding to a
nonzero eigenvalue, then ∑n

i=1 xi = 0.

Lemma 1 (Rayleigh’s Principal Theorem, p. 29, [15]). Let A be a symmetric real matrix and u
any unit nonzero vector. Then λ1(A) ≥ uT A u with equality if and only if u is the eigenvector
corresponding to λ1(A).

Lemma 2 (Courant-Weyl Inequality, p. 31, [15]). Let A1 and A2 be two symmetric real matrices
of order n. Then

λn(A2) + λi(A1) ≤ λi(A1 + A2) for 1 ≤ i ≤ n.

Lemma 3 (Interlacing Theorem, p. 30, [15]). Suppose A is a symmetric real matrix of order n
and M a principal submatrix of A with order s(≤ n). Then

λi(A) ≥ λi(M), 1 ≤ i ≤ s.

The next lemma follows from Lemma 3 immediately.

Lemma 4 (Proposition 2.11, [6]). Let G be an n-vertex graph and M a principal submatrix of
L(G) with order s ≤ n. Then λ1(M) ≤ ρL(G).

Lemma 5 (Theorem 3.5, [1]). Suppose G + euv is the graph obtained from G by adding an edge
euv joining u and v. Then ρL(G) ≥ ρL(G + uv).

80



Mathematics 2022, 10, 1301

3. The Lower Bound of the Distance Laplacian Spectral Radius of Graphs among Bn,4

If G ∈ Bn,d, then there exists a partition {V0, V1, . . . , Vd} of V(G) such that |V0| = 1
and d(u, v) = i for u ∈ V0 and v ∈ Vi (i = 1, 2, . . . , d).

Lemma 6 (Lemma 2.1, [12]). Let G ∈ Bn,d with a vertex partition described as above. Then G[Vi]
induces an empty graph (i.e., containing no edge) for each i ∈ {0, 1, . . . , d}.

Lemma 7. Let d ≥ 3 and G ∈ Bn,d. If d(G + e) < d when any edge e is added to G, then |Vd| = 1
and the induced subgraph G[Vi−1 ∪Vi] (i = 1, 2, . . . , d) is a complete bipartite graph.

Proof. From Lemma 6, it is clear that G[Vi−1 ∪Vi] (i = 1, 2, . . . , d) is a complete bipartite
graph. Moreover, let u ∈ Vd and v ∈ Vd−3. Assume, on the contrary, that |Vd| ≥ 2, then the
graph G + euv ∈ Bn,d, a contradiction.

Remark 1. Denote a subset of Bn,d by B̃n,d, consisting of all the graphs satisfying Lemma 7. For
instance, if G ∈ B̃n,4, then G is of the form shown in Figure 1. Then the partition of V(G) can be
written as V0 = {w}, V1 = {v1, . . . , vs}, V2 = {u1, . . . , ut}, V3 = {y1, . . . , yk} and V4 = {z},
where s + t + k + 2 = n and s, t, k ≥ 1.

zw

v1

vs

u 1

u t

y
1

y
k

Figure 1. A graph G ∈ B̃n,4.

Before giving the main conclusion of this section, we first investigate the properties of
the eigenvector corresponding to ρL(G) for G ∈ B̃n,4.

Let G ∈ B̃n,4 and the partition of V(G) be arranged as in Remark 1. Without loss of
generality, suppose |V3| ≥ |V1| ≥ 1 (i.e., k ≥ s ≥ 1).

Lemma 8. Let the eigenvector corresponding to ρL(G) be x. Then⎧⎪⎨⎪⎩
x(vi) = x(vj) (1 ≤ i, j ≤ s),
x(ui) = x(uj) (1 ≤ i, j ≤ t),
x(yi) = x(yj) (1 ≤ i, j ≤ k).

Proof. Since the proofs of the three results are parallel, here we only give the first one. As
the vertices of V1 are twin points (if s > 1), d(v, vi) = d(v, vj) for each v ∈ V(G)\{vi, vj},
and thus Tr(vi) = Tr(vj) = 2s + t + 2k + 2. Considering the characteristic equations
indexed by vi and vj, it is obtained that{

ρL(G) · x(vi) = ∑v∈V(G) d(vi, v)(x(vi)− x(v))
ρL(G) · x(vj) = ∑v∈V(G) d(vj, v)(x(vj)− x(v)).

Then it follows that ρL(G) · (x(vi) − x(vj)) = (Tr(vi) + 2)(x(vi) − x(vj)). From
Lemma 4, we easily obtain

ρL(G) ≥ Trmax = Tr(w) = s + 2t + 3k + 4
> 2s + t + 2k + 4 = Tr(vi) + 2.

Thus, x(vi) = x(vj) follows.
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For the eigenvector x in Lemma 8, suppose x(w) = x0, x(vi) = x1 (1 ≤ i ≤ s),
x(ui) = x2 (1 ≤ i ≤ t), x(yi) = x3 (1 ≤ i ≤ k) and x(z) = x4. Then x can be written as

x = (x0, x1, . . . , x1︸ ︷︷ ︸
s

, x2, . . . , x2︸ ︷︷ ︸
t

, x3, . . . , x3︸ ︷︷ ︸
k

, x4)
T .

Lemma 9. Let x be as just described. If |V1| = |V3| (i.e., s = k), then⎧⎪⎨⎪⎩
x0 = −x4 
= 0,
x1 = −x3 
= 0,
x2 = 0.

Proof. Applying Lemma 8, the characteristic equation L(G) · x = ρL(G) · x can be simpli-
fied in the conventional form as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m0 · x0 − s · x1 − 2t · x2 − 3k · x3 − 4x4 = ρL(G) · x0

−x0 + m1 · x1 − t · x2 − 2k · x3 − 3x4 = ρL(G) · x1

−2x0 − s · x1 + m2 · x2 − k · x3 − 2x4 = ρL(G) · x2

−3x0 − 2s · x1 − t · x2 + m3 · x3 − x4 = ρL(G) · x3

−4x0 − 3s · x1 − 2t · x2 − k · x3 + m4 · x4 = ρL(G) · x4,

(1)

where m0 = Tr(w), m1 = Tr(vi)− 2(s− 1), m2 = Tr(ui)− 2(t− 1), m3 = Tr(yi)− 2(k− 1)
and m4 = Tr(z).

The sum of the first equality and the fifth one gives

(n + t + 2k + 2)x0 − 4(x0 + sx1 + tx2 + kx3 + x4) + (n + t + 2s + 2)x4 = ρL(G) · (x0 + x4). (2)

Since s = k and x0 + sx1 + tx2 + kx3 + x4 = 0, we have

2n(x0 + x4) = ρL(G) · (x0 + x4). (3)

Take a 2× 2 principal submatrix M of L(G), where M =

(
Tr(w) −4
−4 Tr(z)

)
. Note

that Tr(w) = Tr(z) = 2n for s = k. Then, applying Lemma 4,

ρL(G) ≥ λ1(M) = Tr(w) + 4 = 2n + 4.

Thus, we obtain x0 + x4 = 0, i.e., x0 = −x4 from (3). Similarly, from the second and
the fourth equalities in (1), it follows that

−2(x0 + x4) + (n + 2)(x1 + x3) = ρL(G) · (x1 + x3).

Since x0 + x4 = 0 and ρL(G) ≥ 2n + 4 > n + 2, x1 + x3 = 0, i.e., x1 = −x3. The fourth
equality in (1) minus the second one indicates that

2(x4 − x0) = [ρL(G)− (2s + t + 2k + 4)](x3 − x1)
= (ρL(G)− 2n + t)(x3 − x1).

(4)

If x0 = 0, then x4 = −x0 = 0. Further, from (4), it follows that x1 = −x3 = 0 (note that
ρL(G) ≥ 2n + 4). Recalling that x0 + sx1 + tx2 + kx3 + x4 = 0, we know x2 = 0, and thus
x is a zero vector, a contradiction. Hence, x0 = −x4 
= 0. Similarly, x1 = −x3 
= 0, which
implies x2 = 0. The proof is complete.

For convenience, denote the graph G ∈ B̃n,4 by G(1, s, t, k, 1) with vertex partition
shown in Remark 1. We next determine the unique extremal graph minimizing the distance
Laplacian spectral radius among B̃n,4.
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Theorem 1. The graph G(1, 1, n− 4, 1, 1) in Figure 2 is the unique graph with minimum distance
Laplacian spectral radius among B̃n,4.

zw v

u 1

u yn-4 zw v

u 1

u yn-4

u 2

G(1, 1, n - 4, 1, 1) G’

Figure 2. The graph G(1, 1, n− 4, 1, 1) ∈ B̃n,4 and graph G′.

Proof. Let G0 = G(1, s, t, k, 1) ∈ B̃n,4 with s + t + k + 2 = n and s, t, k ≥ 1. Without loss of
generality, assume that s ≤ k. We proceed by proving the following three claims, which
will imply the conclusion.

Claim 1. If s ≥ 2 in graph G0, then let G1 = G(1, s− 1, t, k + 1, 1). We claim that ρL(G0) <
ρL(G1).

In graph G0, let V(G0) = {V0, . . . , V4} and Vi be expressed as that in Remark 1. Then
we easily obtain{

Tr(w) = s + 2t + 3k + 4, Tr(vi) = Tr(yi) = 2s + t + 2k + 2,
Tr(ui) = s + 2t + k + 2, Tr(z) = 3s + 2t + k + 4,

(5)

and the distance Laplacian matrix of G0 is

L(G0) =

⎛⎜⎜⎜⎜⎝
Tr(w) −J1×s −2J1×t −3J1×k −4
−Js×1 (Tr(vi) + 2)Is − 2Js −Js×t −2Js×k −3Js×1
−2Jt×1 −Jt×s (Tr(ui) + 2)It − 2Jt −Jt×k −2Jt×1
−3Jk×1 −2Jk×s −Jk×t (Tr(yi) + 2)Ik − 2Jk −Jk×1
−4 −3J1×s −2J1×t −J1×k Tr(z)

⎞⎟⎟⎟⎟⎠.

Further, we have

|λIn −L(G0)| = (λ− Tr(vi)− 2)s−1(λ− Tr(ui)− 2)t−1(λ− Tr(yi)− 2)k−1 · |λI5 − R(G0)|, (6)

where

R(G0) =

⎛⎜⎜⎜⎜⎝
Tr(w) −s −2t −3k −4
−1 Tr(vi)− 2(s− 1) −t −2k −3
−2 −s Tr(ui)− 2(t− 1) −k −2
−3 −2s −t Tr(yi)− 2(k− 1) −1
−4 −3s −2t −k Tr(z)

⎞⎟⎟⎟⎟⎠. (7)

From the above, we say that the largest eigenvalue of R(G0) is the spectral radius of G0.
In fact, λ1(R(G0)) ≥ Tr(w) from Lemma 3, and Tr(vi) + 2, Tr(yi) + 2 and Tr(ui) + 2 are the
eigenvalues of L(G0) apart from those of R(G0) from (6). Furthermore, Tr(w) > Tr(vi) +
2 = Tr(yi) + 2 and Tr(w) > Tr(ui) + 2 by (5) clearly. Thus, λ1(R(G0)) = ρL(G0) holds.

For graph G1, we obtain the matrices L(G1) and R(G1) by substituting s− 1 and k + 1
for s and k in L(G0) and R(G0), respectively. Analogously, we have λ1(R(G1)) = ρL(G1).
Denote the characteristic polynomials of R(G0) and R(G1) by ψ0(λ) and ψ1(λ), respectively.
Next, we are aimed at proving

ψ1(ρL(G0)) < 0. (8)

By using MATLAB, we obtain

ψ1(λ)− ψ0(λ) = 4(s− k− 1) λ (λ2 − sλ− kλ− 2nλ− 4λ + 6n + sn + kn + n2). (9)
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Let g(λ) = λ (λ2 − sλ− kλ− 2nλ− 4λ + 6n + sn + kn + n2). Then the derivative of
g(λ) is

g′(λ) = 3λ2 − (2s + 2k + 4n + 8)λ + n2 + sn + kn + 6n

with symmetry axis λ̃ = 2n+s+k+4
3 . Since s ≤ k, Trmax = Tr(w) = 2n− s + k in graph G0,

and thus ρL(G0) ≥ Trmax = 2n− s + k from Lemma 4. By simple calculation, we obtain
λ̃ < 2n− s + k, and since n ≥ s + k + 3, we have

g′(2n− s + k) = 5n2 + (5k− 11s− 10)n + 5s2 − 6sk + 8s + k2 − 8k > 0.

We now say that g(λ) is strictly increasing for λ ≥ 2n − s + k. Moreover, from
n ≥ s + k + 3, it follows that

g(2n− s + k) = (2n− s + k)(n2 + kn− 3sn− 2n + 4s− 4k− 2sk + 2s2) > 0.

Note that s− k− 1 < 0 in (9). Then we have

ψ1(ρL(G0)) = ψ1(ρL(G0))− ψ0(ρL(G0)) < ψ1(2n− s + k)− ψ0(2n− s + k)
= 4(s− k− 1) · g(2n− s + k) < 0,

which establishes (8).
Applying (8), we can easily prove that ρL(G0) < ρL(G1). Assume on the contrary that

ρL(G0) > ρL(G1) (noting that ρL(G0) 
= ρL(G1) since ψ1(ρL(G0)) < 0 and ψ1(ρL(G1)) =
0). Observing that ψ1(λ) tends to infinity when λ tends to infinity (as the leading coefficient
of ψ1(λ) is 1), we can find a sufficiently large q > ρL(G0) such that ψ1(q) > 0. As ψ1(λ) is
a continuous function, from ψ1(ρL(G0)) < 0 and ψ1(q) > 0, it follows that ψ1(p) = 0 for a
positive number p between ρL(G0) and q, which is a contradiction to the fact that ρL(G1)
is the largest root of ψ1(λ) = 0. Therefore, ρL(G0) < ρL(G1).

Claim 2. Assume G2 = G(1, s− 1, t + 2, k− 1, 1), where k ≥ s ≥ 2 and t ≥ 1. Then we
claim that ρL(G0) > ρL(G2).

Let the unit eigenvector corresponding to ρL(G2) be

x = (x0, x1, . . . , x1︸ ︷︷ ︸
s−1

, x2, . . . , x2︸ ︷︷ ︸
t+2

, x3, . . . , x3︸ ︷︷ ︸
k−1

, x4)
T .

By Rayleigh’s principle,

ρL(G0)− ρL(G2) ≥ xT · (L(G0)−L(G2)) · x
= ∑

{u,v}⊆V(G0)
(dG0(u, v)− dG2(u, v))(x(u)− x(v))2

= 2(s− 1)(x1 − x2)
2 + 2(k− 1)(x3 − x2)

2 ≥ 0.

(10)

Next, we show that ρL(G0) − ρL(G2) > 0. First, if s = k, then from Lemma 9, it
follows that x1 = −x3 
= 0 and x2 = 0, and thus

ρL(G0)− ρL(G2) ≥ 4(s− 1)x2
1 > 0.

On the other hand, suppose s < k and 2(s− 1)(x1 − x2)
2 + 2(k− 1)(x3 − x2)

2 = 0 in
(10). Then x1 = x2 = x3. Substitute t + 2 for t in (4), and then x0 = x4 follows by applying
x1 = x3. In addition, by replacing s, k and t with s− 1, k− 1 and t + 2 in (2), respectively,
it gives

ρL(G2) · x0 = 2n · x0,
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and hence x0 = 0 for the reason that ρL(G2) ≥ TrG2(w) = 2n + k − s > 2n. Recalling
that x0 + (s− 1)x1 + (t + 2)x2 + (k− 1)x3 + x4 = 0, we have x1 = x2 = x3 = 0, and then
eigenvector x is the zero vector, a contradiction. Hence, if s < k, then

2(s− 1)(x1 − x2)
2 + 2(k− 1)(x3 − x2)

2 > 0.

In summary, ρL(G0)− ρL(G2) > 0 holds.

Claim 3. If s = k− 1(≥ 1) in graph G0, then let G3 = G(1, s, t + 1, k− 1, 1). We claim that
ρL(G0) > ρL(G3).

Let the unit eigenvector corresponding to ρL(G3) be

x = (x0, x1, . . . , x1︸ ︷︷ ︸
s

, x2, . . . , x2︸ ︷︷ ︸
t+1

, x3, . . . , x3︸ ︷︷ ︸
k−1=s

, x4)
T .

Then by Rayleigh’s principle and Lemma 9,

ρL(G)− ρL(G3) ≥ xT · (L(G)−L(G3)) · x
= ∑

{u,v}⊆V(G)
(dG(u, v)− dG3(u, v))(x(u)− x(v))2

= (x0 − x2)
2 + s(x1 − x2)− t(x2 − x2)

2 + s(x2 − x3)
2 − (x2 − x4)

2

= 2s · x2
1 > 0.

Now we are in a position to complete the proof of the theorem.
For graph G0 = G(1, s, t, k, 1) ∈ B̃n,4, suppose k ≥ s. If k ≥ 2 and (k− s) ≡ 0(mod 2),

then by Claim 1,

ρL(G0) ≥ ρL(G(1, s +
k− s

2
, t, k− k− s

2
, 1)) = ρL(G(1,

s + k
2

, t,
s + k

2
, 1))

with equality if and only if s = k. Furthermore, from Claim 2, we have

ρL(G(1,
s + k

2
, t,

s + k
2

, 1)) > ρL(G(1, 1, n− 4, 1, 1)).

On the other side, if k ≥ 3 and (k− s) ≡ 1(mod 2), then by Claim 1,

ρL(G0) ≥ ρL(G(1, s +
k− s− 1

2
, t, k− k− s− 1

2
, 1)) = ρL(G(1,

s + k− 1
2

, t,
s + k + 1

2
, 1)),

with equality if and only if k− s = 1. Moreover, from Claim 3,

ρL(G(1,
s + k− 1

2
, t,

s + k + 1
2

, 1)) > ρL(G(1,
s + k− 1

2
, t + 1,

s + k− 1
2

, 1)).

Finally, from Claim 2, it follows that

ρL(G(1,
s + k− 1

2
, t + 1,

s + k− 1
2

, 1)) > ρL(G(1, 1, n− 4, 1, 1)).

For the case of s = 1 and k = 2, from Claim 3, it is straightforward that

ρL(G(1, 1, n− 5, 2, 1)) > ρL(G(1, 1, n− 4, 1, 1)).

This completes the proof.
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From Theorem 1 and Lemma 5, we indicate that if G ∈ Bn,d is not a spanning subgraph
of G(1, 1, n− 4, 1, 1), then ρL(G) > ρL(G(1, 1, n− 4, 1, 1)). In addition, if s = k = 1 and
t = n− 4 in (7), then we obtain λ1(R0) = 4 + 1

2 (3n +
√

n2 + 16) by using MATLAB, i.e.,

ρL(G(1, 1, n− 4, 1, 1)) = 4 +
1
2
(3n +

√
n2 + 16).

Thus, we have the following theorem.

Theorem 2. Let G ∈ Bn,d. Then ρL(G) ≥ 4 + 1
2 (3n +

√
n2 + 16) with equality if and only if

G = G(1, 1, n− 4, 1, 1).

Proof. Denote the graph G(1, 1, n− 4, 1, 1)− evu1 by G′ (see Figure 2). First, we show that

ρL(G′) > ρL(G(1, 1, n− 4, 1, 1)). Take a 2× 2 principal submatrix M =

(
Tr(w) −4
−4 Tr(z)

)
=(

2n + 2 −4
−4 2n

)
from L(G′). By simple calculation, λ1(M) > 2n + 5 > 4 + 1

2 (3n +
√

n2 + 16). From Lemma 4, it follows that

ρL(G′) ≥ λ1(M) > 2n + 5 > 4 +
1
2
(3n +

√
n2 + 16) = ρL(G(1, 1, n− 4, 1, 1)).

Thus, we say that for any spanning subgraph H 
= G(1, 1, n− 4, 1, 1) of G(1, 1, n−
4, 1, 1), ρL(H) > ρL(G(1, 1, n− 4, 1, 1)) from Lemma 5.

Hence, now, it is clear from Theorem 1 and the above result that for any graph G ∈ Bn,d,

ρL(G) ≥ ρL(G(1, 1, n− 4, 1, 1)) = 4 +
1
2
(3n +

√
n2 + 16)

with equality if and only if G = G(1, 1, n− 4, 1, 1).

4. Conclusions

In this paper, a lower bound of the distance Laplacian spectral radius of the n-vertex
bipartite graphs with diameter 4 is obtained. The method used here is helpful for solving
the general case and we conjecture that the graph G(1, . . . , 1, n− d, 1, . . . , 1) is the unique
one minimizing the distance Laplacian spectral radius among n-vertex bipartite graphs
with even diameter d ≥ 4.
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Abstract: A connected graph Γ is k-extendable for a positive integer k if every matching M of size
k can be extended to a perfect matching. The extendability number of Γ is the maximum k such
that Γ is k-extendable. In this paper, we prove that Cayley graphs generated by transposition trees
on {1, 2, . . . , n} are (n− 2)-extendable and determine that the extendability number is n− 2 for an
integer n ≥ 3.

Keywords: extendability; cayley graphs; transposition trees; bubble-sort graphs; star graphs
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1. Introduction

Cayley graphs on a group and a generating set have been an important class of graphs
in the study of interconnection networks for parallel and distributed computing [1–6].
Some recent results about topological properties and routing problems on the networks
based on Cayley graphs on the symmetric groups with the set of transpositions as the
generating sets, including two special classes, the star graphs [5] and bubble-sort graphs [1],
can be found in [6–9].

Throughout this paper, we consider finite, simple connected graph. Let Γ be a graph
with vertex set V(Γ) and edge set E(Γ). A graph H is a subgraph of Γ if V(H) ⊆ V(Γ)
and E(H) ⊆ E(Γ). The induced subgraph Γ[C] is the subgraph of Γ with vertex set C and
edge set {uv|u, v ∈ C, uv ∈ E(Γ)}. Let G be a group, S a subset of G such that the identity
element does not belong to S and S = S−1, where S−1 = {τ−1|τ ∈ S}. The Cayley graph Γ,
denoted by Γ = Cay(G, S), is the graph whose vertex set V(Γ) = G and u, v are adjacent if
and only if u−1v ∈ S. It’s known that Γ is connected if and only if S is a generating set of G.
Furthermore, obviously, all Cayley graphs are vertex-transitive (see [10]).

We denote Sn as the symmetric group on n letters (set of all permutations on
{1, 2, . . . , n}). Now let us restrict S to be a subset of transpositions on {1, 2, . . . , n}. Clearly
all Cayley graphs Cay(Sn, S) are |S|-regular bipartite graphs. The transposition generating
graph of S, denoted by T(S), is the graph with vertex set {1, 2, . . . , n} and two vertices s
and t are adjacent if and only if the transposition (st) is in S. If T(S) is a tree, it is called
transposition trees.

An edge set M ⊆ E(Γ) is called a matching of Γ if no two of them share an end-vertex.
Moreover, a matching of Γ is said to be per f ect if it covers all vertices of Γ. A connected
graph Γ having at least 2k + 2 vertices is said to be k-extendable, introduced by Plummer [11],
if each matching M of k edges is contained in a perfect matching of Γ. Any k-extendable
graph is (k − 1)-extendable, but the converse is not true [11]. The extendability number
of Γ, denoted by ext(Γ), is the maximum k such that Γ is k-extendable. Plummer [11,12]
studied the relationship between n-extendability and other graph properties. For more
research results related to matching extendability, one can refer to [13–17]. Yu et al. [18]
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classified the 2-extendable Cayley graphs of finite abelian groups. Chen et al. [19] classified
the 2-extendable Cayley graphs of dihedral groups. Recently, Gao et al. [20] characterize
the 2-extendable quasi-abelian Cayley graphs. Their research is focused on 2-extendability
of some Cayley graphs; in this paper, we focus on the general extendability, i.e., (n− 2)-
extendability of Cayley graphs generated by transposition trees.

We proceed as follows. In Section 2, we provide preliminaries and previous related
results on Cayley graphs. In Section 3, we give our main results: show that all Cayley
graphs generated by transposition trees are (n− 2)-extendable and then determine their
extendability numbers are n− 2.

2. Preliminaries

In this section, we shall give some definitions and known results which will be used
in this paper.

Denote by Sn the group of all permutations on [n] = {1, 2, . . . , n}. Obviously,
|Sn| = n!. For convenience, we use x = x1x2 . . . xn to denote the permutation ( 1 2 ... n

x1 x2... xn
)

(see [21]); (st) to denote the permutation (1...s...t...n
1...t...s...n), which is called a transposition. Obvi-

ously, x1 . . . xs . . . xt . . . xn(st) = x1 . . . xt . . . xs . . . xn. The identity permutation 12 . . . n is
denoted by 1 . A permutation of Sn is said to be even (resp. odd) if it can be written as a
product of an even (resp. odd) number of transpositions. Let S be a subset of transpositions.
Clearly, the Cayley graph Cay(Sn, S) is a bipartite graph with one partite set containing
the vertices corresponding to odd permutations and the other partite set containing the
vertices corresponding to even permutations.

To better describe a transposition set S as the generating set, we use a simple way to de-
pict S via a graph. The transposition generating graph T(S) is the graph with vertex set [n] and
two vertices s and t are adjacent if and only if (st) ∈ S. If T(S) is a tree, it is called transposi-
tion trees, we denote by Tn the set of Cayley graphs Cay(Sn, S) generated by transposition
trees. For any graph Tn(S) = Cay(Sn, S) ∈ Tn, x = x1x2 . . . xn is adjacent to y = y1y2 . . . yn
if and only if for (st) ∈ S, xs = yt, xt = ys and xk = yk for k 
= s, t, that is y = x(st). In this
case, we say that the edge e = xy is an (st)-edge and denote g(e) = (st), which is the edge
e corresponding to transposition. Let Est = {e ∈ E(Tn(S))|e is an (st)-edge}. Obviously,
for every transposition (st) ∈ S, Est is a perfect matching of Tn(S). We have the following
propositions about Cayley graphs generated by transpositions:

Proposition 1 ([10], p. 52). Let Γ = Cay(Sn, S) be a Cayley graph generated by transpositions.
Then, Γ is connected if and only if T(S) is connected.

Proposition 2 ([22]). Let S and S′ be two sets of transpositions on [n]. Then, Cay(Sn, S) and
Cay(Sn, S′) are isomorphic if and only if T(S) and T(S′) are isomorphic.

In all Cayley graphs Tn, there are two classes which are most important, when T(S)
is isomorphic to the star K1,n−1 and the path Pn. If T(S) ∼= K1,n−1, Cay(Sn, S) is called n-
dimensional star graph and denoted by STn. If T(S) ∼= Pn, Cay(Sn, S) is called n-dimensional
bubble-sort graph and denoted by BSn. The star graph and the bubble-sort graph are
illustrated in Figures 1 and 2 for the case n = 4. Both STn and BSn are connected bipartite
(n− 1)-regular graph of order n!. When n = 3, T3(S) ∼= ST3 ∼= BS3 ∼= C6; n = 4, up to
isomorphism, there are exactly two different graphs ST4 and BS4 (see [23]).
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Figure 1. The star graph ST4 = Cay(S4, {(12), (13), (14)}).

Figure 2. The Bubble-sort graph BS4 = Cay(S4, {(12), (23), (34)}).

Let x = x1x2 . . . xn be a vertex of Tn(S). We say that xi is the i-th coordinate of x, denoted
by (x)i. It is easy to see that the Cayley graph Tn(S) has the following proposition:

Proposition 3 ([23,24]). Let T(S) be a transposition tree of order n, j one of its leaf and T {i}n (S)
(1 ≤ i ≤ n) the subgraph of Tn(S) induced by those vertices x with (x)j = i. Then, Tn(S) consists

of n vertex-disjoint subgraphs: T {1}n (S), T {2}n (S), . . . , T {n}n (S); each isomorphic to another Cayley
graph Tn−1(S′) = Cay(Sn−1, S′) with S′ = S\τ, where τ is the transposition corresponding to
the edge incident to the leaf j.

Readers can refer to [10,21] for the terminology and notation not defined in this paper.

3. Main Results

First, we will give some useful lemmas.
The Cartesian product Γ1�Γ2 of graphs Γ1 and Γ2 is a graph with vertex set

V(Γ1)×V(Γ2). Two vertices (u, v) and (u′, v′) are adjacent in Γ1�Γ2 if either u = u′ and
vv′ ∈ E(Γ2) or uu′ ∈ E(Γ1) and v = v′. Clearly Γ1�Γ2 = Γ2�Γ1.

Lemma 1. Let T be a labeled tree of order n, e any edge of T, and T1, T2 two compo-
nents of T − e, where |V(T1)| = r. Furthermore, let S (S−, S1, S2, respectively) be the
transposition set on {1, 2, . . . , n} satisfying T(S) = T (T(S−) = T − e, T(S1) = T1,
T(S2) = T2. Then, Cay(Sn, S−) has (n

r) components and each component is isomorphic to
Cay(Sr, S1)�Cay(Sn−r, S2).

Proof. Without loss of generality, we can assume r ≤ � n
2 �.
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When r = 1, T1 is an isolated vertex, e is a pendant edge and S1 = ∅. Then,
Cay(S1, S1)�Cay(Sn−1, S2) = Cay(Sn−1, S2). The lemma is true, following from
Proposition 3.

When r ≥ 2, we relabel T as follows: Relabel the vertices of T1 as {1, 2, . . . , r} and the
vertices of T2 as {r + 1, r + 2, . . . , n}. Let S′, S′−, S′1, S′2 be the corresponding transposition
sets. Obviously, S′− = S′1 ∪ S′2. By Proposition 2, we know that Cay(Sn, S) ∼= Cay(Sn, S′),
Cay(Sn, S−) ∼= Cay(Sn, S′−), and so on. Thus, we only need to prove the correspond-
ing result on S′, S′−, S′1 and S′2. Since T − e is disconnected, Cay(Sn, S′−) is also dis-
connected by Proposition 1. Let Γ1 be the component of Cay(Sn, S′−) containing the
identity element 1. Since T1 and T2 are connected, S′1 generates Sr and S′2 generates
Sn−r (let Sn−r be symmetric group on {r + 1, r + 2, . . . , n}). Then, the vertices in Γ1
can be represented as v = x1x2 . . . xrxr+1 . . . xn, where x1x2 . . . xr is a permutation on
{1, 2, . . . , r} and xr+1 . . . xn is a permutation on {r + 1, r + 2, . . . , n}. Furthermore, let
v = x1x2 . . . xrxr+1 . . . xn and v′ = x′1x′2 . . . x′rx′r+1 . . . x′n be two vertices in Γ1. Then, v and
v′ are adjacent if and only if for j, k ≤ r and (jk) ∈ S′1, xk = x′j, xj = x′k and xl = x′l for other
digits, or, for j, k ≥ r + 1 and (jk) ∈ S′2, xk = x′j, xj = x′k and xl = x′l for other digits. Thus,
Γ1
∼= Cay(Sr, S′1)�Cay(Sn−r, S′2) and |V(Γ1)| = r!(n− r)!. Since Cay(Sn, S′−) is vertex-

transitive, all components of Cay(Sn, S′−) are isomorphic and there exist n!
r!(n−r)! = (n

r)

components in it.

We need to consider the extendability of the Cartesian product when we investigate
the extendability of Tn(S). The following lemmas are used several times in the proof of our
theorem.

Lemma 2 ([25,26]). If Γ is a k-extendable graph, then Γ�K2 is (k + 1)-extendable.

Lemma 3 ([25]). If Γ1 and Γ2 are k-extendable and l-extendable graphs, respectively, then their
Cartesian product Γ1�Γ2 is (k + l + 1)-extendable.

Lemma 4 ([27]). A bipartite Cayley graph is 2-extendable if and only if it is not a cycle.

In order to prove the main result, we need other definitions and notations. The
symmetric difference of two sets A and B is defined as the set A#B = (A− B) ∪ (B− A).
Let Γ be a connected graph. If e = uv ∈ E(Γ), denote V(e) = {u, v} and E(v) = {e|V(e) ∩
{v} 
= ∅}.

Let x be a permutation of [n]. The smallest positive integer k for which xk is the
identity permutation, this number k is called the order of x, denoted by o(x) = k. f ix(x)
denotes the set of points in [n] fixed by x (see [10]). Let f ix(x) = [n]− f ix(x). As we know,
there is another way of writing the permutation as products of disjoint cycles which are
commutative (see [21]). For example, if x ∈ S9, x = 324, 158, 967, then x = (134)(68)(79) =
(68)(134)(79), and further f ix(x) = {2, 5}, f ix(x) = {1, 3, 4, 6, 7, 8, 9}, | f ix(x)| = 7. We say
that x is a type of (m1m2m3)(m4m5)(m6m7) permutation. Clearly x6 = 1 and o(x) = 6.

Theorem 1. Any Cayley graph Tn(S) ∈ Tn is (n− 2)-extendable for any integer n ≥ 3.

Proof. We prove the theorem by induction on n. For n = 3, the T3(S) is 6-cycle, which is
1-extendable. For n = 4, the T4(S) is a 3-regular bipartite Cayley graph, which is not a
cycle. T4(S) is 2-extendable by Lemma 4.

Now we assume the statement is true for all integers smaller than n (n ≥ 5). Let S be
a subset of transpositions on [n]. The transposition generating graph T(S) is a tree. We will
show that any matching M of size (n− 2) can be extended to a perfect matching of Tn(S).

Let M be a matching with (n− 2) edges. There are (n− 1) classes of edges in Tn(S)
because of |S| = n − 1. We may suppose that Es4t4 ∩ M = ∅. Let S− = S\(s4t4). By
Lemma 1, Cay(Sn, S−) has (n

r) connected components and each component is isomorphic
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to Cay(Sr, S1)�Cay(Sn−r, S2). We may assume 1 ≤ r ≤ � n
2 � by the symmetry of Cartesian

product. For the convenience, we denote the components of Tn(S)\Es4t4 = Cay(Sn, S−) by
Ci(i = 1, 2, . . . , l), where l = (n

r).

Claim 1. Ci is (n− 3)-extendable.

If r = 1, the transposition (s4t4) corresponding to the edge is a leaf of T(S), Ci
∼=

Tn−1(S′) by Proposition 3, where S′ = S− = S\(s4t4), Ci is (n − 3)-extendable by the
inductive hypothesis.

If r = 2, T2(S) = K2, Ci
∼= K2�Cay(Sn−2, S2) = K2�Tn−2(S2). Tn−2(S2) is (n− 4)-

extendable by the inductive hypothesis. Ci is (n− 3)-extendable by Lemma 2.
If r ≥ 3, by the inductive hypothesis Cay(Sr, S1) ∼= Tr(S1) is (r− 2)-extendable and

Cay(Sn−r, S2) ∼= Tn−r(S2) is (n− r− 2)-extendable. Hence, Cay(Sr, S1)�Cay(Sn−r, S2)
is (n− 3)-extendable by Lemma 3. We get the Claim.

Let J = {i|E(Ci) ∩M 
= ∅}. If |J| ≥ 2, then |E(Ci) ∩M| ≤ n− 3. When i ∈ J, each
edge set E(Ci) ∩M can be extended to a perfect matching of Ci, which is defined by M(Ci).
Clearly, M ⊂ ⋃

i∈J
M(Ci). When i /∈ J, let M(Ci) be an arbitrary perfect matching of Ci. Then,

l⋃
i=1

M(Ci) =

(⋃
i∈J

M(Ci)

)
∪
(⋃

i/∈J
M(Ci)

)
is a perfect matching of Cay(Sn, S−), which is

also a perfect matching of Tn(S).
When |J| = 1, without loss of generality, we assume that M ⊂ E(C1) and C1 contains

the identity permutation 1. If M can be extended to a perfect matching of C1, we are done.
Suppose that M cannot be extended to a perfect matching of C1. Let e2 = v1v2 be an edge
in M. M\e2 can be extended to a perfect matching of C1 (since |M\e2| = n− 3), which
is denoted by M′(C1). Let E(v1) ∩ M′(C1) = e1, E(v2) ∩ M′(C1) = e3, V(e1) = {v0, v1},
V(e3) = {v2, v3} and e4 = E(v3) ∩ Es4t4 . By the transitivity of C1 and without loss of

generality, we can assume that v0 = 1. Let o(g(e1)g(e2)g(e3)g(e4)) = a, vi =
i

∏
j=1

g(ej),

and e4b+1 ∈ Es1t1 , e4b+2 ∈ Es2t2 , e4b+3 ∈ Es3t3 , e4b+4 ∈ Es4t4 (b = 0, . . . , a − 1), where
{(s1t1), (s2t2), (s3t3), (s4t4)} ⊂ S. It is easy to see g(e2) 
= g(ei) (i = 1, 3), g(e4) 
= g(ei)
(i = 1, 2, 3), g(e1)g(e2)g(e3) 
= g(e4), v3 = g(e1)g(e2)g(e3) is an odd permutation and
v4 = g(e1)g(e2)g(e3)g(e4) is an even permutation. The cardinality of f ix(v3) can only be 2,
4, 5 and 6. We discuss these four cases one by one in order to prove that M can be extended
to a perfect matching of Tn(S).

Case 1. | f ix(v3)| = 2.
In this case, v3 is a transposition and o(v3) = 2. There are two subcases for the order

of v4.
Subcase 1.1. v4 is a type of (m1m2)(m3m4) permutation.

We have o(v4) = 2, (v4)
2 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [8]. Hence, there

is an 8-cycle C8 = v0e1v1e2 . . . v7e8v8 (v8 = v0). The vertex v4b+i ∈ V(Cb+1) (i = 0, 1, 2, 3;
b = 0, 1). We may take a perfect matching M′(C2) of C2 such that e5 ∈ M′(C2), e7 ∈ M′(C2)
and e6 /∈ M′(C2) because of C2 ∼= C1. Now we take M′′ = (M′(C1)

⋃
M′(C2))#E(C8).

Clearly M ⊂ M′′, M′′ is a perfect matching of subgraph Tn(S)[V(C1)
⋃

V(C2)]. Let M(Ci)

be a perfect matching of Ci (i = 3, . . . , l). Hence,
l⋃

i=3
M(Ci)

⋃
M′′ is a perfect matching of

Tn(S).
Subcase 1.2. v4 is a type of (m1m2m3) permutation.

We have o(v4) = 3, (v4)
3 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [12]. Hence,

there is a 12-cycle C12 = v0e1v1e2 . . . v11e12v12 (v12 = v0). The vertex v4b+i ∈ V(Cb+1)
(i = 0, 1, 2, 3; b = 0, 1, 2). We may take a perfect matching M′(Cb+1) of Cb+1 such that
e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1) (b = 1, 2) because of Cb+1

∼= C1.
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Now we take M′′ =
(

3⋃
i=1

M′(Ci)

)
#E(C12). Clearly M ⊂ M′′, M′′ is a perfect matching

of subgraph Tn(S)[
3⋃

i=1
V(Ci)]. Let M(Ci) be a perfect matching of Ci (i = 4, . . . , l). Hence,

l⋃
i=4

M(Ci)
⋃

M′′ is a perfect matching of Tn(S).

Case 2. | f ix(v3)| = 4.
In this case, v3 is a type of (m1m2m3m4) permutation and o(v3) = 4. There are two

subcases.
Subcase 2.1. v4 is a type of (m1m2m3m4)(m5m6) permutation.

We have o(v4) = 4, (v4)
4 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [16]. Hence,

there is a 16-cycle C16 = v0e1v1e2 . . . v15e16v16 (v16 = v0). The vertex v4b+i ∈ V(Cb+1)
(i = 0, 1, 2, 3; b = 0, 1, 2, 3). We may take a perfect matching M′(Cb+1) of Cb+1 such
that e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1) (b = 1, 2, 3) because of

Cb+1
∼= C1. Now we take M′′ =

(
4⋃

i=1
M′(Ci)

)
#E(C16). Clearly M ⊂ M′′, M′′ is a perfect

matching of subgraph Tn(S)[
4⋃

i=1
V(Ci)]. Let M(Ci) be a perfect matching of Ci (i = 5, . . . , l).

Hence,
l⋃

i=5
M(Ci)

⋃
M′′ is a perfect matching of Tn(S).

Subcase 2.2. v4 is a type of (m1m2m3m4m5) permutation.

We have o(v4) = 5, (v4)
5 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [20]. Hence,

there is a 20-cycle C20 = v0e1v1e2 . . . v19e20v20 (v20 = v0). The vertex v4b+i ∈ V(Cb+1)
(i = 0, 1, 2, 3; b = 0, 1, 2, 3, 4). We may take a perfect matching M′(Cb+1) of Cb+1 such
that e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1) (b = 1, 2, 3, 4) because of

Cb+1
∼= C1. Now we take M′′ =

(
5⋃

i=1
M′(Ci)

)
#E(C20). Clearly M ⊂ M′′, M′′ is a perfect

matching of subgraph Tn(S)[
5⋃

i=1
V(Ci)]. Let M(Ci) be a perfect matching of Ci (i = 6, . . . , l).

Hence,
l⋃

i=6
M(Ci)

⋃
M′′ is a perfect matching of Tn(S).

Case 3. | f ix(v3)| = 5.
In this case, v3 is a type of (m1m2m3)(m4m5) permutation and o(v3) = 6. There are

four subcases.
Subcase 3.1. v4 is a type of (m1m2m3)(m4m5m6) permutation.
We have o(v4) = 3, (v4)

3 = 1. There is a 12-cycle C12 = v0e1v1e2 . . . v11e12v12

(v12 = v0) in subgraph Tn(S)[
3⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1, 2.

The rest of the proof is similar to Subcase 1.2.
Subcase 3.2. v4 is a type of (m1m2m3m4)(m5m6) permutation.
We have o(v4) = 4, (v4)

4 = 1. There is a 16-cycle C16 = v0e1v1e2 . . . v15e16v16

(v16 = v0) in subgraph Tn(S)[
4⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3;

b = 0, 1, 2, 3. The rest of the proof is similar to Subcase 2.1.
Subcase 3.3. v4 is a type of (m1m2m3m4m5) permutation.
We have o(v4) = 5, (v4)

5 = 1. There is a 20-cycle C20 = v0e1v1e2 . . . v19e20v20

(v20 = v0) in subgraph Tn(S)[
5⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3;

b = 0, 1, 2, 3, 4. The rest of the proof is similar to Subcase 2.2.
Subcase 3.4. v4 is a type of (m1m2m3)(m4m5)(m6m7) permutation.
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We have o(v4) = 6, | f ix(v4)| = 7 and n ≥ 7, l = (n
r) ≥ 7, (v4)

6 = 1. vi =
i

∏
j=1

g(ej),

where i ∈ [24]. Hence, there is a 24-cycle C24 = v0e1v1e2 . . . v23e24v24 (v24 = v0). The
vertex v4b+i ∈ V(Cb+1) (i = 0, 1, 2, 3; b = 0, 1, 2, 3, 4, 5). We may take a perfect matching
M′(Cb+1) of Cb+1 such that e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1)

(b = 1, 2, 3, 4, 5) because of Cb+1
∼= C1. Now we take M′′ =

(
6⋃

i=1
M′(Ci)

)
#E(C24). Clearly,

M ⊂ M′′, M′′ is a perfect matching of subgraph Tn(S)[
6⋃

i=1
V(Ci)]. Let M(Ci) be a perfect

matching of Ci (i = 7, . . . , l). Hence,
l⋃

i=7
M(Ci)

⋃
M′′ is a perfect matching of Tn(S).

Case 4. | f ix(v3)| = 6.
In this case, v3 is a type of (m1m2)(m3m4)(m5m6) permutation and o(v3) = 2. There

are three subcases.
Subcase 4.1. v4 is a type of (m1m2)(m3m4)(m5m6)(m7m8) permutation.
We have o(v4) = 2. There is an 8-cycle C8 = v0e1v1e2 . . . v7e8v8 (v8 = v0) in subgraph

Tn(S)[
2⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1. The rest of the proof is

similar to Subcase 1.1.
Subcase 4.2. v4 is a type of (m1m2m3m4)(m5m6) permutation.
We have o(v4) = 4. There is a 16-cycle C16 = v0e1v1e2 . . . v15e16v16 (v16 = v0) in

subgraph Tn(S)[
4⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1, 2, 3. The rest of

the proof is similar to Subcase 2.1.
Subcase 4.3. v4 is a type of (m1m2m3)(m4m5)(m6m7) permutation.
We have o(v4) = 6. There is a 24-cycle C24 = v0e1v1e2 . . . v23e24v24 (v24 = v0) in

subgraph Tn(S)[
6⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1, 2, 3, 4, 5. The

rest of the proof is similar to Subcase 3.4.
In conclusion, any matching M of size n− 2 can be extended to a perfect matching of

Tn(S). The proof is complete.

The extendability number of Γ, denoted by ext(Γ), is the maximum k such that Γ is
k-extendable. As we know that Tn(S) ∈ Tn is an (n− 1)-regular bipartite Cayley graph and
not (n− 1)-extendable. We can obtain the extendability number of Tn(S) by Theorem 1.

Corollary 1. ext(Tn(S)) = n− 2 for n ≥ 3.

4. Concluding Remarks

In this paper, we prove that Cayley graph Tn(S) generated by transposition trees on
{1, 2, . . . , n} is (n− 2)-extendable and determine that the extendability number is n− 2,
which enriches the results on the extendability of Cayley graphs. Here, the transposition
generating graph of S is a tree. A natural problem is whether we can generalize transposi-
tion trees to general connected graphs which is worth of further investigation. We present
a conjecture.

Conjecture 1. Let S be a transposition generating set of the symmetric group Sn. Then, the Cayley
graph Cay(Sn, S) is (|S| − 1)-extendable.
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Abstract: In the paper, the crossing number of the join product G∗ + Dn for the disconnected graph
G∗ consisting of two components isomorphic to K2 and K3 is given, where Dn consists of n isolated
vertices. Presented proofs are completed with the help of the graph of configurations that is a
graphical representation of minimum numbers of crossings between two different subgraphs whose
edges do not cross the edges of G∗. For the first time, multiple symmetry between configurations
are presented as parity properties. We also determine crossing numbers of join products of G∗ with
paths Pn and cycles Cn on n vertices by adding new edges joining vertices of Dn.
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1. Introduction

The issue of reducing the number of crossings on edges of simple graphs is interesting
in a lot of areas. Probably one of the most popular areas is the implementation of the
VLSI layout because it caused a significant revolution in circuit design and thus had a
strong effect on parallel calculations. Crossing numbers have also been studied to improve
the readability of hierarchical structures and automated graphs. The visualized graph
should be easy to read and understand. For the sake of clarity of graphic drawings, some
reduction of an edge crossing is probably the most important. Note that examining number
of crossings of simple graphs is an NP-complete problem by Garey and Johnson [1].

The crossing number cr(G) of a simple graph G with the vertex set V(G) and the edge
set E(G) is the minimum possible number of edge crossings in a drawing of G in the plane
(for the definition of a drawing see Klešč [2]). One can easily verify that a drawing with the
minimum number of crossings (an optimal drawing) is always a good drawing, meaning
that no two edges cross more than once, no edge crosses itself, and also no two edges
incident with the same vertex cross. Let D be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G.
We denote the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj),
and the number of crossings among edges of Gi in D by crD(Gi). For any three mutually
edge-disjoint subgraphs Gi, Gj, and Gk of G by [2], the following equations hold:

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪ Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk) .

Throughout this paper, some parts of proofs will be based on Kleitman’s result [3]
on crossing numbers for some complete bipartite graphs Km,n on m + n vertices with a
partition V(Km,n) = V1 ∪ V2 and V1 ∩ V2 = ∅ containing an edge between every pair of
vertices from V1 and V2 of sizes m and n, respectively. He showed that

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, if min{m, n} ≤ 6. (1)
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For an overview of several exact values of crossing numbers for specific graphs or
some families of graphs, see Clancy [4]. The main goal of this survey is to summarize
all such published results for crossing numbers along with references also in an effort to
give priority to the author who published the first result. Chapter 4 is devoted to the issue
of crossing numbers of join product with all simple graphs of order at most six mainly
due to unknown values of cr(Km,n) for both m, n more than six in (1). The join product
of two graphs Gi and Gj, denoted Gi + Gj, is obtained from vertex-disjoint copies of Gi
and Gj by adding all edges between V(Gi) and V(Gj). For |V(Gi)| = m and |V(Gj)| = n,
the edge set of Gi + Gj is the union of the disjoint edge sets of the graphs Gi, Gj, and the
complete bipartite graph Km,n. Let Dn denote the discrete graph (sometimes called empty
graph) on n vertices, and let Kn be the complete graph on n vertices. The exact values for
crossing numbers of G + Dn for all graphs G of order at most four are given by Klešč and
Schrötter [5], and also for a lot of connected graphs G of order five and six [2,6–24]. Note
that cr(G + Dn) are known only for some disconnected graphs G, and so the purpose of this
paper is to extend known results concerning this topic to new disconnected graphs [25–28].

Let G∗ = (V(G∗), E(G∗)) be the disconnected graph of order five consisting of two
components isomorphic to the complete graphs K2 and K3, respectively, and let also
V(G∗) = {v1, v2, . . . , v5}. We cannot determine the crossing number of the join product
G∗ + Dn by a similar technique like in [2,18] because |E(G∗)| < |V(G∗)|. From the topo-
logical point of view, number of crossings of any drawing D of G∗ + Dn placed on surface
of the sphere does not matter which of regions is unbounded, but on how many times
edges of the graph G∗ could be crossed by a subgraph Ti in D. This representation of Ti

best describes idea of a configuration utilizing some cyclic permutation on pre-numbered
vertices of G∗.

Theorem 1. cr(G∗ + D1) = 0 and cr(G∗ + Dn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 2, i.e., cr(G∗ +
Dn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Dn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd at

least 3.

All subcases of the proof of Theorem 2 will be clearer if a graph of configurations GD is
used as a graphical representation of minimum numbers of crossings between two different
subgraphs. Moreover, in the case of our symmetric graph G∗, the graph GD can be linked
to parity properties of configurations. Our proof of the main Theorem 2 is therefore an
inevitable combination of topological analysis of existing configurations with their parity
properties. The color resolution of weighted edges in GD will also serve us for a simpler
description of existence of its possible subgraphs in the examined drawing D of G∗ + Dn.
Software COGA [29] should be also very helpful in certain parts of presented proofs mainly
due to possibility of generating all cyclic permutations of five elements and counting of
their subsequent interchanges of adjacent elements.

The obtained crossing number of the join product G∗ + Dn is in very special form
which is caused by a completely different behavior for n even and odd number. The
paper concludes by giving crossing numbers of G∗ + Pn and G∗ + Cn with same values in
Corollaries 3 and 4, respectively, that is something unique in the crossing number theory.

2. Cyclic Permutations and Corresponding Configurations

The join product G∗ + Dn (sometimes used notation G∗ + nK1) consists of one copy of
the graph G∗ and n vertices t1, . . . , tn, and any vertex ti is adjacent to every vertex of the
graph G∗. We denote the subgraph induced by five edges incident with the fixed vertex ti
by Ti, which yields that

G∗ + Dn = G∗ ∪ K5,n = G∗ ∪
( n⋃

i=1

Ti
)

. (2)
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We consider a good drawing D of G∗ + Dn. By the rotation rotD(ti) of a vertex ti in D
we understand the cyclic permutation that records the (cyclic) counterclockwise order in
which edges leave ti, as defined by Hernández-Vélez et al. [30] or Woodall [31]. We use the
notation (12345) if the counter-clockwise order of edges incident with the fixed vertex ti
is tiv1, tiv2, tiv3, tiv4, and tiv5. We recall that rotation is a cyclic permutation. By rotD(ti),
we understand the inverse permutation of rotD(ti). In the given drawing D, it is highly
desirable to separate n subgraphs Ti into three mutually disjoint subsets depending on
how many times edges of G∗ could be crossed by Ti in D. Let us denote by RD and SD the
set of subgraphs for which crD(G∗, Ti) = 0 and crD(G∗, Ti) = 1, respectively. Edges of G∗

are crossed by each remaining subgraph Ti at least twice in D.
First, note that if D is a drawing of the join product G∗ + Dn with the empty set RD,

then ∑n
i=1 crD(G∗, Ti) ≥ n enforces at least n2 − 2n +

⌊ n
2
⌋

crossings in D provided by

crD(G∗ + Dn) ≥ crD(K5,n) + crD(G∗, K5,n) ≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n ≥ n2 − 2n +

⌊n
2

⌋
.

Based on this argument, we will only consider drawings of the graph G∗ for which
there is a possibility to obtain a subgraph Ti ∈ RD. Moreover, let Fi denote the subgraph
G∗ ∪ Ti for any Ti ∈ RD, which yields that each such subgraph Fi is represented by its
rotD(ti).

Let us discuss all possible subdrawings of G∗ induced by D. As edges of its subgraph
isomorphic to K3 do not cross each other, it is obvious there are only two such possible
drawings of G∗ presented in Figure 1.

Figure 1. Two possible non isomorphic drawings of the graph G∗. (a): the planar drawing of G∗;
(b): the drawing of G∗ with two crossings among edges.

Assume there is a good drawing D of G∗ + Dn with planar subdrawing of the graph
G∗ induced by D and also the vertex notation of G∗ in such a way as shown in Figure 1a.
Our aim is to list all possible rotations rotD(ti) which can appear in D if edges of G∗ are not
crossed by Ti. Since there is only one subdrawing of Fi \ {v4, v5} represented by the rotation
(132), there are three possibilities to obtain the subdrawing of Fi without the edge v4v5
depending on in which region both edges tiv4 and tiv5 are placed. Of course, there are two
next ways how to place the corresponding two edges together with the edge v4v5 for each
mentioned case. These 3× 2 = 6 possibilities under our consideration can be denoted by
Ak, for k = 1, . . . , 6. We will call them by the configurations of corresponding subdrawings
of the subgraph G∗ ∪ Ti in D and suppose their drawings as shown in Figure 2.

In the rest of the paper, we present a cyclic permutation by the permutation with 1
in the first position. Thus, the configurations A1, A2, A3, A4, A5, and A6 are represented
by the cyclic permutations (13245), (13254), (14532), (15432), (13452), and (13542), re-
spectively. Clearly, in a fixed drawing of the graph G∗ + Dn, some configurations from
M = {A1,A2,A3,A4,A5,A6} need not appear. We denote byMD the set of all configura-
tions that exist in the drawing D belonging to the setM.
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Figure 2. Drawings of six possible configurations Ak of subgraph Fi = G∗ ∪ Ti for Ti ∈ RD.

Let X , Y be two configurations from MD (not necessary distinct). We denote the
number of edge crossings between two different subgraphs Ti and Tj with conf(Fi) = X
and conf(Fj) = Y in D by crD(X ,Y). Finally, let cr(X ,Y) = min{crD(X ,Y)} among
all good drawings of G∗ + Dn with the planar subdrawing of G∗ induced by D given
in Figure 1a and with X ,Y ∈ MD. Our aim shall be to establish cr(X ,Y) for all pairs
X ,Y ∈ M. In particular, the configurations A1 and A4 are represented by the cyclic
permutations (13245) and (15432), respectively. Each subgraph Tj with conf(Fj) = A4
crosses edges of each Ti with conf(Fi) = A1 at least once provided by the minimum number
of interchanges of adjacent elements of (13245) required to produce (15432) = (12345)
is one, i.e., cr(A1,A4) ≥ 1. For more details see also Woodall [31]. The same reason
gives cr(A1,A2) ≥ 3, cr(A1,A3) ≥ 2, cr(A1,A5) ≥ 2, cr(A1,A6) ≥ 1, cr(A2,A3) ≥
1, cr(A2,A4) ≥ 2, cr(A2,A5) ≥ 1, cr(A2,A6) ≥ 2, cr(A3,A4) ≥ 3, cr(A3,A5) ≥ 2,
cr(A3,A6) ≥ 1, cr(A4,A5) ≥ 1, cr(A4,A6) ≥ 2, and cr(A5,A6) ≥ 3. Clearly, also
cr(Ak,Ak) ≥ 4 for any k = 1, . . . , 6. The lower bounds obtained for number of crossings
between two configurations from M are summarized in the symmetric Table 1 (here,
conf(Fi) = Ak and conf(Fj) = Al with k, l ∈ {1, . . . , 6}). Note that these values cannot be
increased, i.e., the lower bounds can be achieved in some subdrawings of G∗ ∪ Ti ∪ Tj for
Ti, Tj ∈ RD with desired configurations.

Table 1. The minimum number of crossings between two different subgraphs Ti and Tj such that
conf(Fi) = Ak and conf(Fj) = Al , where the achieved values are color-coded. Namely, the values 1,
2, 3, and 4 will correspond to green, blue, brown, and black, respectively.

- A1 A2 A3 A4 A5 A6

A1 4 3 2 1 2 1
A2 3 4 1 2 1 2
A3 2 1 4 3 2 1
A4 1 2 3 4 1 2
A5 2 1 2 1 4 3
A6 1 2 1 2 3 4

Further, due to symmetry of mentioned configurations, let us define two functions

π1 : {1, 2, 3} → {1, 2, 3}, with π1(1) = 3, π1(2) = 1, and π1(3) = 2,
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π2 : {4, 5} → {4, 5}, with π2(4) = 5, and π2(5) = 4.

Let Π1, Π2 : M → M be the functions obtained by applying π1 and π2 on corre-
sponding cyclic permutations of configurations inM, respectively. Thus, we have

Π1(A1) = A3, Π1(A3) = A5, Π1(A5) = A1, Π1(A2) = A4,

Π1(A4) = A6, Π1(A6) = A2, Π2(A1) = A2, Π2(A2) = A1,

Π2(A3) = A4, Π2(A4) = A3, Π2(A5) = A6, Π2(A6) = A5.

Therefore it is not difficult to show that values in rows of Table 1 can be obtained by
successive application of the mentioned transformations Π1 and Π2.

3. The Graph of Configurations and Parity Properties

Low possible number of crossings between two different subgraphs from the nonempty
set RD is one of main problems in determining cr(G∗ + Dn), and graph of configurations
as a graphical representation of Table 1 is going by useful tool in our research. This idea of
representation was first introduced in [26].

Let D be a good drawing of G∗ + Dn with the planar subdrawing of G∗ induced by
D given in Figure 1a, and letMD be nonempty set of all configurations that exist in D
belonging toM = {A1,A2,A3,A4,A5,A6}. A graph of configurations GD is an ordered
triple (VD, ED, wD), where VD is the set of vertices, ED is the set of edges formed by all
unordered pairs of two vertices (not necessary distinct), and a weight function w : ED → N
that associates with each edge of ED an unordered pair of two vertices of VD. The vertex
ak ∈ VD if the corresponding configuration Ak ∈ MD for some k ∈ {1, . . . , 6}. The edge
e = akal ∈ ED if ak and al are two vertices of GD. Finally, wD(e) = m ∈ N for the edge
e = akal , if m is associated lower bound between two configurations Ak and Al in Table 1.
Based on that GD is an undirected edge-weighted graph without multiple edges uniquely
determined by D and is also subgraph of G induced by VD if we define G = (V, E, w) in the
same way overM. The graph G = (V, E, w) corresponds to the edge-weighted complete
graph K6 in Figure 3, and thus will follow all subcases in the proof of the main Theorem 2
more clearly. In the rest of Figure 3, let any loop of the mentioned graph G be presented by
circle around vertex with respect to weight 4.

Figure 3. Representation of lower bounds of Table 1 by the graph G = (V, E, w).

Let αi denote the number of all subgraphs Tj ∈ RD with the configuration Ai ∈ MD
of Fj = G∗ ∪ Tj for each i = 1, . . . , 6. So, if we denote by Io = {1, 3, 5} and Ie = {2, 4, 6},
then ∑i∈Io∪Ie αi = |RD|. Moreover, for a better understanding, we get for all i ∈ Io ∪ Ie:
αi > 0 if and only if there is a subgraph Tj ∈ RD with the configuration Ai ∈ MD of
Fj = G∗ ∪ Tj if and only if ai ∈ VD in the graph GD.

Now, let us assume the configurations A1 of Fi, A4 of Fj, and A6 of Fk. The reader
can easily find a subdrawing of G∗ ∪ Ti ∪ Tj ∪ Tk in which crD(Ti, Tj) = 1, crD(Ti, Tk) = 1,
and crD(Tj, Tk) = 2, i.e., crD(Ti ∪ Tj ∪ Tk) = 4 = cr(K5,3). Further, there is a possibility to
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add another subgraph Tl that crosses edges of the graph Ti ∪ Tj ∪ Tk four times. We have
to emphasize that the vertex tl must be placed in the triangular region with three vertices
of G∗ on its boundary (in the subdrawing of G∗ ∪ Ti ∪ Tj ∪ Tk), i.e., Tl 
∈ RD ∪ SD and the
subgraph Fl = G∗ ∪ Tl is represented by rotD(tl) = (12435). Clearly, the number of adding
crossings cannot be smaller than 4 according to the well-known fact that cr(K5,4) = 8. This
situation suggests one natural problem which requires the following definition of a new
number β1. If α1 > 0, α4 > 0, and α6 > 0, then let us denote by β1 the number of subgraphs
Tl 
∈ RD ∪ SD with rotD(tl) = (12435). It is obvious that any subgraph Tl 
∈ RD ∪ SD
satisfies the condition crD(G∗ ∪ Ti ∪ Tj ∪ Tk, Tl) ≥ 2 + 4 = 6 with the configurations
A1 of Fi, A4 of Fj, and A6 of Fk, and the number of Tl 
∈ RD ∪ SD that cross the graph
G∗ ∪ Ti ∪ Tj ∪ Tk exactly six times is at most β1. Due to symmetry of some configurations,
it is appropriate to use the transform functions Π1, Π2 defined above and by the similar
way, we can also define the numbers βi for any i = 2, . . . , 6. Thus, if α2 > 0, α3 > 0, and
α5 > 0 or α3 > 0, α2 > 0, and α6 > 0 or α4 > 0, α1 > 0, and α5 > 0 or α5 > 0, α2 > 0,
and α4 > 0 or α6 > 0, α1 > 0, and α3 > 0, then let us denote by β2 or β3 or β4 or β5 or
β6 the number of subgraphs Tl 
∈ RD ∪ SD represented by the rotation (12534) or (14253)
or (15243) or (15234) or (14235), respectively. The importance of the values βi will be
presented in the proof of the main Theorem 2 as parity properties (6) and (7).

4. The Crossing Number of G∗ + Dn

A drawing D of G∗ + Dn is said to be antipode-free if crD(Ti, Tj) ≥ 1 for any two
different vertices ti and tj. In the proof of Theorem 2, the following statements related to
some restricted subdrawings of the graph G∗ + Dn are required.

Lemma 1. Let D be a good and antipode-free drawing of G∗ + Dn, n > 1, with the vertex notation
of the graph G∗ in such a way as shown in Figure 1a. For Ti ∈ RD, letAk ∈ MD be a configuration
of the corresponding subgraph Fi = G∗ ∪ Ti for some k ∈ {1, . . . , 6}. If there is a Tj ∈ SD such
that crD(Ti, Tj) = 1, then all possible rotD(tj) are given in Table 2.

Table 2. The corresponding rotations of tj, for Ti ∈ RD, Fi = G∗ ∪ Ti and Tj ∈ SD satisfying the
restriction crD(Ti, Tj) = 1.

conf(Fi) rotD(tj) conf(Fi) rotD(tj) conf(Fi) rotD(tj)

A1 (14523) A3 (12345) A5 (12453)

A2 (15423) A4 (12354) A6 (12543)

Proof. Assume the configuration A1 of the subgraph Fi = G∗ ∪ Ti for some Ti ∈ RD, i.e.,
rotD(ti) = (13245). The subdrawing of Fi induced by D contains just five regions with
ti on their boundaries, see Figure 2. If there is a Tj ∈ SD such that crD(Ti, Tj) = 1, then
the vertex tj must be placed in the region with the four vertices v1, v2, v4, and v5 of G∗ on its
boundary. Besides that only the edge v1v2 of G∗ can be crossed by tjv3, and crD(Ti, Tj) = 1
is fulfilling for Tj with rotD(tj) = (14523) if tjv4 crosses tiv5. The same idea also force that
the rotations of the vertex tj are (15423), (12345), (12354), (12453), and (12543) for the
remaining configurations A2, A3, A4, A5, and A6 of Fi, respectively.

Corollary 1. Let D be a good and antipode-free drawing of G∗ + Dn, for n > 3, with the vertex
notation of the graph G∗ in such a way as shown in Figure 1a. If Ti, Tj, and Tk ∈ RD are three
different subgraphs with crD(Ti, Tj) = 1, crD(Ti, Tk) = 1 and such that Fi, Fj, and Fk have three
mutually different configurations from any of the sets {A1,A4,A6}, {A2,A3,A5}, {A3,A2,A6},
{A1,A4,A5}, {A2,A4,A5}, and {A1,A3,A6}, then

crD(Ti ∪ Tj ∪ Tk, Tl) ≥ 6 for any Tl ∈ SD,
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i.e.,
crD(G∗ ∪ Ti ∪ Tj ∪ Tk, Tl) ≥ 7 for any Tl ∈ SD.

Proof. Let us assume the configurationsA1 of Fi,A4 of Fj, andA6 of Fk with respect to the
restrictions crD(Ti, Tj) = crD(Ti, Tk) = 1 and recall that they are represented by the cyclic
permutations rotD(ti) = (13245), rotD(tj) = (15432), and rotD(tk) = (13542). If there is
a subgraph Tl ∈ SD with crD(Ti, Tl) = 1, then the subgraph Fl can be represented only by
rotD(tl) = (14523), where the edge tlv3 crosses v1v2 of G∗ and either tlv4 or tlv5 crosses
corresponding edge of Ti. Any such subgraph Tl must cross edges of both subgraphs Tj

and Tk at least twice because the minimum number of interchanges of adjacent elements
of (14523) required to produce (15432) = (12345) and (13542) = (12453) is two. Clearly,
if crD(Tj, Tl) > 2 or crD(Tk, Tl) > 2, we obtain the desired result crD(Ti ∪ Tj ∪ Tk, Tl) ≥
1 + 3 + 2 = 6. Further, if crD(Tj, Tl) = 2 and crD(Tk, Tl) = 2, then the edge tiv5 is crossed
by tlv4 in D(Ti ∪ Tj ∪ Tl) and also tiv4 by tlv5 in D(Ti ∪ Tk ∪ Tl), respectively. However,
then crD(Ti, Tl) ≥ 2, which contradicts the fact that crD(Ti, Tl) = 1 in D(Ti ∪ Tj ∪ Tk ∪ Tl).

If there is a Tl ∈ SD with crD(Tj, Tl) = 1, then the subgraph Fl is represented only
by the cyclic permutation (12354). Using same properties as in the previous subcase, we
have crD(Ti, Tl) ≥ 2 and crD(Tk, Tl) ≥ 3. This in turn implies that crD(Ti ∪ Tj ∪ Tk, Tl) ≥
2 + 1 + 3 = 6. Of course, we can apply the same idea for the case of crD(Tk, Tl) = 1.

To finish the proof, let us consider a subgraph Tl ∈ SD with crD(Ti, Tl) = 2, crD(Tj, Tl) =
2, and crD(Tk, Tl) = 2. This enforces that the minimum number of interchanges of adjacent
elements of rotD(tl) required to produce (13245) = (15423), (15432) = (12345), and
(13542) = (12453) must be exactly two. However, it is not difficult to show that such cyclic
permutation does not exist. Similar arguments can be applied for remaining five cases (or
using the transformations Π1 and Π2), and the proof is complete.

Corollary 2. Let D be a good and antipode-free drawing of G∗ + Dn, for n > 3, with the vertex
notation of the graph G∗ in such a way as shown in Figure 1a. If Ti, Tj, and Tk ∈ RD are three
different subgraphs such that Fi, Fj, and Fk have three mutually different configurations from any
of the sets {A1,A3,A5} and {A2,A4,A6}, then

crD(Ti ∪ Tj ∪ Tk, Tl) ≥ 5 for any Tl ∈ SD,

i.e.,
crD(G∗ ∪ Ti ∪ Tj ∪ Tk, Tl) ≥ 6 for any Tl ∈ SD.

Proof. Let us assume the configurations A1 of Fi, A3 of Fj, and A5 of Fk. If there is
a subgraph Tl ∈ SD with crD(Ti, Tl) = 1, then the subgraph Fl can be represented only
by the cyclic permutations (14523). Uniqueness of all rotations in Table 2 confirms that
crD(Tj, Tl) ≥ 2 and crD(Tk, Tl) ≥ 2. Hence, crD(Ti ∪ Tj ∪ Tk, Tl) ≥ 1 + 2 + 2 = 5, and the
similar way can be applied for the case if crD(Tj, Tl) = 1 or crD(Tk, Tl) = 1 with Tl ∈ SD.
It remains to consider the case where crD(Ti, Tl) ≥ 2, crD(Tj, Tl) ≥ 2, and crD(Tk, Tl) ≥ 2,
which yields that crD(Ti ∪ Tj ∪ Tk, Tl) ≥ 2 + 2 + 2 = 6 clearly holds for any such Tl , as
claimed. The proof proceeds in the similar way for the second triple of configurations
{A2,A4,A6}, and this completes the proof.

Lemma 2. cr(G∗ + D2) = 1.

Proof. If we consider the configurations A2 of Fi and A3 of Fj, then one can easily find a
subdrawing of Ti ∪ Tj in which crD(Ti, Tj) = 1, i.e., cr(G∗ + D2) ≤ 1. The graph G∗ + D2
contains a subgraph that is a subdivision of the complete graph K5 and it is well-known
by Guy [32] that cr(K5) = 1. As cr(G∗ + D2) ≥ cr(K5) = 1, the proof of Lemma 2 is
complete.
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Theorem 2. cr(G∗ + D1) = 0 and cr(G∗ + Dn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 2, i.e., cr(G∗ +
Dn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Dn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd at

least 3.

Proof. The graph G∗ + D1 is planar, hence cr(G∗ + D1) = 0. For n ≥ 2, both special
drawings in Figures 4 and 5 produce n2 − 2n +

⌊ n
2
⌋

crossings, and so cr(G∗ + Dn) ≤
n2 − 2n +

⌊ n
2
⌋
. The opposite inequality can be proved by induction on n, and the result

holds for n = 2 by Lemma 2. For some n ≥ 3, suppose a drawing D of G∗ + Dn with

crD(G∗ + Dn) < n2 − 2n +
⌊n

2

⌋
(3)

and that
cr(G∗ + Dm) = m2 − 2m +

⌊m
2

⌋
for any integer 2 ≤ m < n. (4)

Figure 4. The good drawing of G∗ + Dn with 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

crossings for n even, n ≥ 2.

Figure 5. The good drawing of G∗ + Dn with 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 crossings for n odd, n ≥ 3, where

three subgraphs T1, T2, and Tn are fixed.

Let us first show that D must be antipode-free. Suppose that, without loss of generality,
crD(Tn−1, Tn) = 0. If at least one of Tn−1 and Tn, say Tn, does not cross G∗, it is not difficult
to verify in Figure 1 that {Tn−1, Tn} 
⊆ RD, i.e., crD(G∗, Tn−1 ∪ Tn) ≥ 1. By (1), we already
know that crD(K5,3) ≥ 4, which yields that edges of the subgraph Tn−1 ∪ Tn must be
crossed at least four times by each other Tk. So, by fixing the subgraph Tn−1 ∪ Tn in D,
we have

crD(G∗ + Dn−2) + crD(Tn−1 ∪ Tn) + crD(K5,n−2, Tn−1 ∪ Tn) + crD(G∗, Tn−1 ∪ Tn)

≥ (n− 2)2 − 2(n− 2) +
⌊n− 2

2

⌋
+ 0 + 4(n− 2) + 1 = n2 − 2n +

⌊n
2

⌋

104



Mathematics 2022, 10, 1998

The obtained crossing number contradicts the assumption (3) and confirms that the
considered drawing D is antipode-free. For easier reading, if r = |RD| and s = |SD|, then
again (3) together with crD(K5,n) ≥ 4

⌊ n
2
⌋⌊ n−1

2
⌋

using (1) imply the following inequality
with respect to possible edge crossings of G∗ in D:

crD(G∗) + s + 2(n− r− s) <
⌊n

2

⌋
. (5)

The inequality (5) forces more than
⌈ n

2
⌉

subgraphs Ti by which edges of G∗ are not
crossed, that is, r ≥

⌈ n
2
⌉
+ 1 ≥ 3 and s <

⌊ n
2
⌋
. Of course, if n is odd then previous

inequalities could be strengthened, but this is not necessary in the following process of
obtaining a contradiction with number of crossings in D. Moreover, if n = 3 then r = 3,
and crD(G∗ + D3) ≥ cr(K5,3) = 4 with the assumption (3) enforce n at least four.

Case 1: crD(G∗) = 0 and choose the vertex notation of the graph G∗ in such a way as
shown in Figure 1a. In this case, we deal with configurations from the nonempty setMD.
As the set RD is nonempty, recall that

∑
i∈Io

αi + ∑
i∈Ie

αi = r ≥ 3.

Let us first suppose that either α1 + α3 + α5 = 0 or α2 + α4 + α6 = 0. For the rest of
the proof we may therefore assume that α2 + α4 + α6 = 0, that is, α1 + α3 + α5 > 0. Since
GD is the subgraph of G induced by VD with respect to weights 2 of all its edges (without
possible loops), three possible subcases presented in Figure 6 may occur:

Figure 6. Three possible components of the graph GD if α2 = α4 = α6 = 0. (a): αi > 0 for each i ∈ Io;
(b): αi > 0 and αj > 0 for exactly two different i, j ∈ Io; (c): αi > 0 for only one i ∈ Io.

(a) αi > 0 for each i ∈ Io. Let us assume three subgraphs Tn−2, Tn−1, Tn ∈ RD such
that Fn−2, Fn−1 and Fn have three mutually different configurations from the set
MD = {A1,A3,A5}. Then, crD(Tn−2 ∪ Tn−1 ∪ Tn, Ti) ≥ 4 + 2 + 2 = 8 holds for
any other Ti ∈ RD by summing values in corresponding three rows of Table 1, and
crD(G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn, Ti) ≥ 6 is true by Corollary 2 for any Ti ∈ SD. Then, by
fixing the graph G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 8(r− 3) + 6s + 7(n− r− s) + 6

= 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 7n + r− s− 18 ≥ 4

⌊n− 3
2

⌋⌊n− 4
2

⌋
+7n +

(⌈n
2

⌉
+ 1

)
+
(

1−
⌊n

2

⌋)
− 18 ≥ n2 − 2n +

⌊n
2

⌋
.

(b) Assuming that αi > 0 for exactly two i ∈ Io, without lost of generality, let us consider
two different subgraphs Tn−1, Tn ∈ RD such that Fn−1 and Fn have configurationsA1
and A3, respectively. AsMD = {A1,A3}, we have crD(Tn−1 ∪ Tn, Ti) ≥ 4 + 2 = 6
for any Ti ∈ RD, i 
= n− 1, n. Therewith, the antipode-free property of D forces that,
crD(Tn−1 ∪ Tn, Ti) ≥ 2 trivially holds for any subgraph Ti with i 
= n− 1, n. Hence,
by fixing the graph G∗ ∪ Tn−1 ∪ Tn
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crD(G∗ + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(r− 2) + 3s + 4(n− r− s) + 2

= 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 2r− s− 10 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + 2

(⌈n
2

⌉
+ 1

)
+
(

1−
⌊n

2

⌋)
− 10 ≥ n2 − 2n +

⌊n
2

⌋
.

(c) αi > 0 for only one i ∈ Io. AsMD = {Ai}, in the rest of the paper, we may consider
Tn ∈ RD with the configurationA1 of Fn. Then edges of each other subgraph Tj ∈ RD
cross at least four times edges of Tn provided by rotD(tn) = rotD(tj). Thus, by fixing
the graph G∗ ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(r− 1) + 2s + 3(n− r− s) + 0

= 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + r− s− 4 ≥ 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+3n +

(⌈n
2

⌉
+ 1

)
+
(

1−
⌊n

2

⌋)
− 4 ≥ n2 − 2n +

⌊n
2

⌋
.

All three subcases contradict the assumption (3). In addition, let us suppose that α1 +
α3 + α5 > 0 and α2 + α4 + α6 > 0. Remark that the subgraph GD can be either connected
(consisting of a single component) or also disconnected with several components. Now, we
are able to discuss over remaining possible components of GD in the following subcases:

1. There are no two adjacent edges with weights 1 in the subgraph GD, that is, there are
four possibilities presented in Figure 7.

Figure 7. Four possible components of the subgraph GD in which there are no two adjacent edges
with weights 1. Green, blue, brown, and black correspond to the values 1, 2, 3, and 4, respectively. (a):
the complete graph K3 with edge weights 1, 2, and 3; (b): the complete graph K4 with edge weights 1,
1, 2, 2, 3, and 3; (c): the complete graph K2 with edge weight 1; (d): the complete graph K2 with edge
weight 3.

• wD(aiaj) = 1 for some i ∈ Io, j ∈ Ie, i.e., there are three cases mentioned in
Figure 7a–c. Let us consider two subgraphs Tn−1, Tn ∈ RD such that Fn−1, Fn

have different configurations from {Ai,Aj}, where i, j are associated indexes.
Using weights of edges in the considered component of GD, one can easily verify
that edges of the graph Tn−1 ∪ Tn are crossed at least five times by edges of
any another subgraph Tk ∈ RD. Moreover, since the minimum number of
interchanges of adjacent elements of rotD(tn) required to produce rotD(tn−1) is
three, any subgraph Tk with k 
= n − 1, n crosses edges of Tn−1 ∪ Tn at least
thrice. Thus, by fixing the graph G∗ ∪ Tn−1 ∪ Tn
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crD(G∗ + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 5(r− 2) + 4s + 5(n− r− s) + 1

= 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 5n− s− 9 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+5n +

(
1−

⌊n
2

⌋)
− 9 ≥ n2 − 2n +

⌊n
2

⌋
.

• wD(aiaj) > 1 for all i ∈ Io, j ∈ Ie, i.e., there is only one case mentioned in
Figure 7d. Let us again consider two subgraphs Tn−1, Tn ∈ RD such that
Fn−1, Fn have different configurations from {Ai,Aj}, where i, j are associated
indexes. Then, crD(Tn−1 ∪ Tn, Tk) ≥ 7 holds by summing edge-weights 4 and 3
for any other Tk ∈ RD. Hence, by fixing the graph G∗ ∪ Tn−1 ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 7(r− 2) + 3s + 4(n− r− s) + 3

= 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 3r− s− 11 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + 3

(⌈n
2

⌉
+ 1

)
+ 1−

⌊n
2

⌋
− 11 ≥ n2 − 2n +

⌊n
2

⌋
.

Both discussed cases again confirm a contradiction with (3) in D, and so, suppose that
there are two adjacent edges with weights 1 in the subgraph GD. Further, only in the
case if the number β j is defined, we claim that the following two properties (6) and (7)
must be also fulfilled in D:

β j + ∑
i∈Io

αi >
⌊n

2

⌋
for some j ∈ Io, (6)

β j + ∑
i∈Ie

αi >
⌊n

2

⌋
for some j ∈ Ie. (7)

For a contradiction, suppose, without loss of generality, that β1 + α1 + α3 + α5 ≤
⌊ n

2
⌋
,

that is, −α1 − α3 − α5 − β1 ≥ −
⌊ n

2
⌋
. In this case, from the definition of β1, we have

α1 > 0, α4 > 0, and α6 > 0. Thus, in the rest of the paper, let us consider three
subgraphs Tn−2, Tn−1, Tn ∈ RD such that Fn−2, Fn−1, and Fn have configurations
A1, A4, and A6, respectively. Using values in Table 1, one can easily verify that edges
of the graph Tn−2 ∪ Tn−1 ∪ Tn are crossed at least six times and seven times by edges
of any another subgraph Ti ∈ RD with the configuration A1,A3,A5 and A2,A4,A6
of Fi (of course, if Ak ∈ MD for some k ∈ Io ∪ Ie in D), respectively. However, from
Corollary 1 we get that crD(G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn, Ti) ≥ 7 holds for any Ti ∈ SD
provided by we can also assume that crD(Tn−2, Tn−1) = 1 and crD(Tn−2, Tn) = 1 due
to the congruence property (If rotD(tx) and rotD(ty) are two cyclic permutations of
odd length, and Q(rotD(tx), rotD(ty)) denotes the minimum number of interchanges
of adjacent elements of rotD(tx) required to produce the inverse cyclic permutation of
rotD(ty), then crD(Tx, Ty) = Q(rotD(tx), rotD(ty)) + 2z for some nonnegative integer
z, for more see Woodall [31]). Hence, by fixing the graph G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 6(α1 + α3 + α5 − 1) + 7(α2 + α4 + α6 − 2) + 7s

+6β1 + 7(n− r− s− β1) + 4 = 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 7n− α1 − α3 − α5 − β1 − 16

≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 7n−

⌊n
2

⌋
− 16 ≥ n2 − 2n +

⌊n
2

⌋
.

The obtained crossing number also contradicts the assumption (3) of D and confirms
that both parity properties (6) and (7) must be fulfilled in D.
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2. There are two adjacent edges with weights 1 in the subgraph GD, that is, there are five
possibilities presented in Figure 8.

(a) Let the graph GD consist of one component in such a way as shown in Figure 8a.
Without lost of generality, let us assume that a2, a3, a6 are vertices of the consid-
ered path on three vertices with weight 1 of both edges. In this case, it is obvious
that α2 + α3 + α6 = r. Since the number β3 can be defined, the property (6) forces
β3 + α3 >

⌊ n
2
⌋
. Further, let us also assume that Tn ∈ RD with the configuration

A3 of Fn. Then, by fixing the graph G∗ ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(α3 − 1) + 1(α2 + α6) + 4β3 + 2s

+3(n− r− s− β3) = 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + (α3 + β3 − α2 − α6)

−(s + α2 + α6)− 4 ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + 0−

⌊n
2

⌋
− 4 ≥ n2 − 2n +

⌊n
2

⌋
.

(b) Let the graph GD consist of one component in such a way as shown in Figure 8b.
Without lost of generality, let us assume that a2, a3, a6 are vertices of the con-
sidered path on three vertices with weight 1 of both edges and let a2, a4, a6 be
vertices of the 3-cycle with respect to weight 2 of all its edges. In this case, it is ob-
vious that α2 + α3 + α4 + α6 = r. The property (6) enforces again β3 + α3 >

⌊ n
2
⌋

because the number β3 can be defined. Further, if Tn ∈ RD is assumed with the
configuration A4 of Fn, then by fixing the graph G∗ ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(α3 + β3) + 2(n− α3 − β3 − 1)

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 2n +

(⌊n
2

⌋
+ 1

)
− 2 ≥ n2 − 2n +

⌊n
2

⌋
.

(c) Let the graph GD consist of one component in such a way as shown in Figure 8c–e.
Let us take a maximal path Pk on k vertices as the subgraph of GD with weights 1
on all its edges. If ai and aj are two inner vertices of Pk with i + 1 ≡ j (mod 2)
for which the numbers βi and β j satisfy the parity properties (6) and (7), then
addition of both inequalities thus obtained enforces a contradiction

n ≥ βi + β j + r ≥ 2
(⌊n

2

⌋
+ 1

)
.

The obtained contradictions in all three cases complete the proof for the planar sub-
drawing of G∗ induced by D given in Figure 1a.

Case 2. crD(G∗) = 2 and choose the vertex notation of the graph G∗ presented as in
Figure 1b. Since the set RD is nonempty and there is only one subdrawing of a subgraph
Fi = G∗ ∪ Ti for all Ti ∈ RD represented by the rotation (13524), the subgraph Ti is crossed
at least four times by edges of each subgraph Tj ∈ RD with j 
= i. Hence, by fixing the graph
G∗ ∪ Ti

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(r− 1) + 2(n− r) + 2 = 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+2n + 2r− 2 ≥ 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 2n + 2

(⌈n
2

⌉
+ 1

)
− 2 ≥ n2 − 2n +

⌊n
2

⌋
.

For all these mentioned cases, it turned out that there is no drawing of the graph G∗ +
Dn with fewer than n2 − 2n +

⌊ n
2
⌋

crossings, and the proof of Theorem 2 is complete.
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Figure 8. Five possible components of the subgraph GD in which there are two adjacent edges with
weights 1. Green, blue, brown, and black correspond to the values 1, 2, 3, and 4, respectively. (a): the
complete graph K3 with edge weights 1, 1, and 2; (b): the complete graph K4 with edge weights 1, 1,
2, 2, 2, and 3; (c): the complete graph K4 with edge weights 1, 1, 1, 2, 2, and 3; (d): the complete graph
K5; (e): the complete graph K6.

5. Conclusions

Into both drawings in Figures 4 and 5, we could add n− 1 or n edges forming paths
Pn, n ≥ 2 or cycles Cn, n ≥ 3 on vertices of Dn with no crossing, respectively. Thus, the
following surprising results are obvious.

Corollary 3. cr(G∗ + Pn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 2, i.e., cr(G∗ + Pn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Pn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd.

Corollary 4. cr(G∗ + Cn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 3, i.e., cr(G∗ + Cn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Cn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd.

These results extend already known results of join products of graphs on at most six
vertices with paths and cycles, see [2,5,18,20,26,33–41].
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2. Klešč, M. The crossing numbers of join of the special graph on six vertices with path and cycle. Discret. Math. 2010, 310, 1475–1481.

[CrossRef]
3. Kleitman, D.J. The crossing number of K5,n. J. Comb. Theory 1970, 9, 315–323. [CrossRef]
4. Clancy, K.; Haythorpe, M.; Newcombe, A. A survey of graphs with known or bounded crossing numbers. Australas. J. Comb.

2020, 78, 209–296.
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Abstract: State machines are a type of mathematical modeling tool that is commonly used to in-
vestigate how a system interacts with its surroundings. The system is thought to be made up of
discrete states that change in response to external inputs. The state machines whose environment is a
two-element magma are investigated in this study, focusing on the case when the magma is a group
or a hypergroup. It is shown that state machines in any two-element magma can only have up to
three states. In particular, the quasi-automata and quasi-multiautomata state machines are described
and enumerated.

Keywords: hypergroup; magma; state machines; automata

MSC: 20N20; 18B20; 68Q70

1. Introduction

The state machines and the hypergroups are mathematical achievements of the twenti-
eth century. The state machines are mathematical models which are mostly used for the
study of actual physical or behavioral processes. Their roots can be traced back to mathe-
matical logic and they are the primary and major components of Computer Theory. Alan
Mathison Turing (1912–1954) developed his theoretical universal-algorithm machine to
address the question of whether an algorithm for providing proofs whenever they do exist
can be found and he discovered that some tasks which this abstract machine is expected
to be able to perform are impossible even for it. The usefulness of the state machines
quickly began to spread in other sciences as well. For example, Warren Sturgis McCulloch
(1898–1969) and Walter Harry Pitts (1923–1969) created a mathematical model in neuro-
science [1]. The model they constructed for a “neural net” was a state machine of the
same nature as Turing’s. Stephen Cole Kleene (1909–1994) later elaborated their model [2],
while Noam Chomsky created mathematical models in linguistics for the description of
languages [3,4]. The rapid development of technology in the twentieth century has made it
possible to materialize such theoretical machines by creating the computers. This devel-
opment fulfilled the timeless dream of mankind, to create machines like the Antikythera
mechanism of the Hellenistic era (the earliest known analog computer, dated back to the
second century BC [5–7]), and the mechanical calculating devices created by Blaise Pascal
(1623–1662), by Gottfried Wilhelm von Leibniz (1646–1716), by Charles Babbade (1792–1871)
and his co-worker Ada Augusta (1815–1852), the daughter of poet Lord Byron, all of which
were as powerful as their respective technologies would allow.

The basic building blocks of a state machine are their internal qualities which are
named internal states. The internal states are reacting to certain changes in their environ-
ment and this reaction causes state transitions. In the general case, it does not matter what
the states and the environment of a state machine really are.

For example, in biology, we can consider the state of a cell in its environment, which
consists of certain chemical and physical conditions, such as PH, temperature, light and
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so on. When these chemicals do not remain within a range of concentrations and/or the
physical conditions exceed a threshold value, the cell changes its behavior, e.g., a plant cell
performs photosynthesis under the “input” of sunlight.

Also, a population group or a business can move to a new state when the economic
and social changes in its environment cross a certain threshold.

Respectively in an electronic system which involves various electrical components, the
flow of electric current can activate some of these components and the system can switch
from one state to another. In fact, as in the case of some circuits with flip-flops, the new
state depends on both, the input pulse and the previous state of the circuit.

So, the same environmental change (input) can shift the system into different states,
depending on its previous state (condition).

A lot of ink has been shed on the research and study of the behavior of such systems,
both living and non-living. In this paper, we approach this issue from a different perspective,
i.e., we will address the question of how many different state machines can “survive” or
can be acceptable in a given environment. Undoubtedly, the interaction between a system
and its environment can be vastly complicated and it still remains an area that needs to
be understood, if we wish to be in a position to predict the behaviour of the system and
perceive the level of the environmental constraints it can endure as well as their impact
on it.

We will attempt this approach with the tools of abstract Algebra, which is the most
extensively used branch of Mathematics in the study of the state machines. So, in this
paper, the environment is a set equipped with a rule of synthesis such that the result of
the synthesis of any two elements is one or more elements. In Éléments de Mathématique,
Algèbre [8], Nicolas Bourbaki used the Greek word magma, which comes from the verb
μάσσω (=knead), to indicate such a set, while in [9] this notion was generalized so as to
include more structures. Here, we use the magma of two elements, which is the environ-
ment of the binary state machines, like the 0–1 environment which is used in the digital
technology. The interaction of the environment on the states is modeled algebraically via
the different types of the associativity.

Sometimes, algebraic tools had been developed before even the relevant questions
were asked and this is one of the most fascinating aspects of mathematics: to give the
answers long before the rest of the world realizes why they should ask the questions.

During the 20th century, Algebra itself faced, and on most occasions overcame, many
difficult and serious challenges that were deriving from various mathematical and not
only areas, such as the Theory of Equations, Geometry, Topology, Quantum Mechanics,
Chemistry, etc. Also, the 20th century put an end to the paradise of determinism. David
Hilbert’s (1862–1943) visions collapsed under Kurt Gödel’s (1906–1978) work. Quantum
Mechanics, the uncertainty principle of Werner Heisenberg (1901–1976), the axiomatic
foundation of probability by Andrey Kolmogorov (1903–1987) made uncertainty inherent
in science and brought into existence its mathematics. In this direction, Frédéric Marty
(1911–1940) in a series of three papers [10–12] introduced the hypergroup in Algebra
and gave some of its initial properties. His untimely death during World War II, while
serving as a French Army officer, did not allow him to write more papers. However, the
aforementioned three were enough to bring into being the Hypercompositional Algebra.
The fundamental notion of the Hypercompositional Algebra is the hypercomposition, that
is, a law of synthesis of any two elements, which yields a set of elements instead of a single
element only.

The introduction of Hypercompositional Algebra into Computer Theory occurred in
the G.G. Massouros Ph.D. thesis [5], under the supervision of J. Mittas (1921–2012). There
followed more papers by the same author and Ch. Massouros, e.g., [13–21], as well as other
researchers such as J. Chvalina [22–28], L. Chvalinová [22], Š. Hošková-Mayerová [24,25],
M. Novák [26–32], S. Křehlík [26,27,29–31,33], M.M. Zahedi [34], M. Ghorani [34,35], D.
Heidari and S. Doostali [36], R.A. Borzooei et al. [37]. In relation to this subject, there are
applications of the Hypercompositional Algebra in graph theory, artificial intelligence,
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cryptography, sensor networks and many more that, indicatively, can be found in [38–60].
Also, results in the above areas, up to the date it was published, can be found in P. Corsini
and V. Leoreanu’s book [61].

The following section presents the necessary preliminary notions for the self-sufficiency
of the paper. The third section contains a study of operators’ and hyperoperators’ actions
and the way they define hypercompositional structures in the set on which they operate.
The fourth paragraph focuses on the detailed study of the magma of two elements, which
is the environment of the binary state machines. The next (fifth) paragraph is dedicated
to the analysis of the binary state machines, when their environment has the structure of
a group or a hypergroup. The quasi-automata and quasi-multiautomata that can exist in
such an environment are studied and enumerated.

2. Preliminaries

The fundamental notion of the Hypercompositional Algebra is the hypercomposition,
that is, a law of synthesis which yields a set of elements instead of a single element, when
applied on any two elements. More specifically, we have the definitions [9]:

Definition 1. Let E be a non-void set. A mapping from E× E into E is called a composition on
E, while a mapping from E× E into the power set P(E) of E is called a hypercomposition on E. A
hypercomposition is called partial, if ab = ∅, for some a, b in E. A set enriched with a composition
or a hypercomposition is called a magma.

The above definition, which was introduced in [9], extends the definition of the
magma given by Nicolas Bourbaki [8] in order to include laws of synthesis which are
hypercompositions on a set E.

Let (E,⊥) be a magma. For any two non-void subsets X, Y of E, X⊥Y =
={x⊥y ∈ E|x ∈ X, y ∈ Y}, if ⊥ is a composition and X⊥Y = ∪

x∈X, y∈Y
(x⊥y), if ⊥ is a

hypercomposition.
If X or Y is empty, then X⊥Y is empty. If a ∈ E, we usually write a⊥Y instead of

{a}⊥Y and X⊥a instead of X⊥{a}. In general, the singleton {a} is identified with its
member a. Sometimes it is convenient to use the relational notation A ≈ B to assert that
subsets A and B have a non-void intersection. Then, as the singleton {a} is identified
with its member a, the notation a ≈ A or A ≈ a is used as a substitute for a ∈ A. The
relation ≈may be considered as a weak generalization of the equality, since, if A and B
are singletons and A ≈ B, then A = B. Thus, a ≈ b⊥c means a = b⊥c, if the synthesis
is a composition and a ∈ b⊥c, if the synthesis is a hypercomposition. This notation
is extensively used when it is not necessary to distinguish between a composition or a
hypercomposition with respect to a law of synthesis.

Definition 2. A law of synthesis (x, y)→ x⊥y on a set E is called associative if the property,

(x⊥y)⊥z = x⊥(y⊥z)

is valid, for all elements x, y, z in E, while it is called reproductive if for all elements x in E the
equality

x⊥E = E⊥x = E

holds.

Definition 3. An associative magma is called α semigroup if the law of synthesis on the magma is
a composition, while it is called α semihypergroup if the law of synthesis is a non-partial hypercom-
position.

113



Mathematics 2022, 10, 2427

Definition 4. A reproductive magma is called α quasigroup if the law of synthesis on the magma
is a composition, while it is called α quasihypergroup if the law of synthesis is a non-partial
hypercomposition.

Definition 5. An associative and reproductive magma is called α group if the law of synthesis on the
magma is a composition, while it is called α hypergroup if the law of synthesis is a hypercomposition.

The above Definition 5 appeared in [9], which also contains a detailed presentation
of the fundamental properties that derive from the axioms of the associativity and the
reproductivity in groups and hypergroups. Among other things, in [9] it is proved that:

Theorem 1. If G is a group, then:

i. there exists an element e ∈ G such that ea = a = ae for all a ∈ G
ii. for each element a ∈ G there exists an element a′ ∈ G such that a′a = e = aa′

Theorem 2. If H is a hypergroup, then:

ab 
= ∅ for all a, b ∈ H

Thus, the hypercomposition in a hypergroup cannot be partial. In this paper, we will
consider only non-partial hypercompositions.

It is very common in the bibliography to enrich a magma with the axiom of associativ-
ity. Besides, another equality that can be valid in the successive synthesis of the magma’s
elements is the inverted associativity. Recall that a composition or a hypercomposition on a
non-void set E is called left inverted associative if

(a⊥b)⊥c = (c⊥b)⊥a, for every a, b, c ∈ E,

while it is called right inverted associative if

a⊥(b⊥c) = c⊥(b⊥a), for every a, b, c ∈ E.

The notion of the inverted associativity was initially conceived by Kazim and Naseerud-
din [62]. A magma equipped with a left inverted associativity is called left almost semigroup
if the law of synthesis is a composition, while it is called left almost semihypergroup if the law
of synthesis is a hypercomposition. The terminology is analogous for the right inverted
associative magma.

Definition 6. A reproductive magma which satisfies the axiom of the left inverted associativity is
called a left almost-group (LA-group) when the law of synthesis on the magma is a composition,
while it is called α left almost-hypergroup (LA-hypergroup) when the law of synthesis is a hypercom-
position. A reproductive, right inverted associative magma is called a right almost-group (RA-group)
or a right almost-hypergroup (RA-hypergroup) when the law of synthesis is a composition or a
hypercomposition respectively.

Apparently, if the law of synthesis is commutative, then the almost left or almost
right groups and hypergroups are groups and hypergroups, respectively. However, it is
possible for both associativity and inverted associativity to be valid in a magma. Such
cases can be found in the examples of [63], which presents a detailed study of the left/right
almost-hypergroups. For the quasi-canonical LA-hypergroups, see [64].

Every law of synthesis in a magma induces two new laws of synthesis. If the law of
synthesis is written multiplicatively, then the two induced laws are:

a/b = {x ∈ E | a ≈ xb} and b\a = {x ∈ E | a ≈ bx}
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Thus x ≈ a/b if and only if a ≈ xb and x ≈ b\a if and only if a ≈ bx. In the case of a
multiplicative magma, the two induced laws are called inverse laws and they are named
right division and left division, respectively. If the magma is commutative, it is obvious that
the right and left divisions coincide.

Directly connected to the induced laws of synthesis is the transposition axiom, which
was firstly introduced by W. Prenowitz (1906–2000) for the study of geometry with the
tools of Hypercompositional Algebra (e.g., [65]) and afterwards it was generalized by J.
Jantosciak (1942–2017) in [66].

Definition 7. A magma E is called α transposition magma if it satisfies the axiom:

b\a ≈ c/d implies ad ≈ bc, f or all a, b, c, d ∈ E

It is obvious that in a transposition magma the following implication

a\b ≈ d/c ⇒ ad ≈ bc , f or all a, b, c, d ∈ E

is valid as well. In [9], the above implications reversed and so we have the two reverse
transposition axioms:

Weak reverse transposition axiom:

ad ≈ bc implies b\a ≈ c/d or a\b ≈ d/c, f or all a, b, c, d ∈ E

Strong reverse transposition axiom:

ad ≈ bc implies b\a ≈ c/d and a\b ≈ d/c, f or all a, b, c, d ∈ E

However, the following property also applies:

ad ≈ bc ⇔ a\b ≈ d/c or b\a ≈ c/d , f or all a, b, c, d ∈ E

This axiom was named bilateral transposition axiom [9].
Special notation: In the following pages, in addition to the typical algebraic notations,

we are using Krasner’s notation for the complement and difference. So, we denote by A··B
the set of elements that are in the set A, but not in the set B.

3. Action of a Magma on a Set

Let E and S be two non-empty sets. A mapping of E into the set SS of the mappings of
S into itself is called an action of E on S. Let a→ δa be an action of E on S. The mapping δ
of S× E to S such that δ(s, a) = δa(s) is an external law of composition on S, with E being
the operating set. δ is called the law of right action of E on S. The law of left action of E on S is
defined in a similar way. The element δa(s) is also called the transform of s under a. It is
usually denoted by a right (resp. left) multiplicative notation sa (resp. as). The elements of
E are called operators.

A mapping
�
δ of S× E to the power set P(S) of S is an external law of hypercomposi-

tion on S. Then, the elements of E are called hyperoperators [67]. If a ∈ E is a hyperoperator,
then the multiplicative notation sa (resp. as) signifies an element of P(S), that is, sa ⊆ S
(resp. as ⊆ S).

A subset T of S is called stable under the action a→ δa of E on S if δa(T) ⊆ T for all
a ∈ E. The intersection of a family of stable subsets of S under a given action is a stable
subset of S as well. Therefore, if X is any subset of S, there exists a smallest stable subset of
S that contains it. This subset is said to be generated by X and it consists of the elements
(δa1 ◦ δa2 ◦ · · · ◦ δan)(x), where x ∈ X, n > 0, ai ∈ E for all i.

Definition 8. An element s2 of S is called connected to an element s1 of S if there exists an element
a of E such that δa(s1) = s2.
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It must be mentioned that s2 being connected to s1 does not necessarily imply that s1
is connected to s2. If s2 is connected to s1, there may be a sequence a1, a2, . . . , an of elements
of E such that (δa1 ◦ δa2 ◦ · · · ◦ δan)(s1) = s2. Thus, via the notion of the connected elements,
a hypercomposition can be defined on S, as follows:

s1 + s2 =

{
{s ∈ S | s = s1a and s2 = sb, with a, b ∈ E}, if s2 is connected to s1

{s1, s2}, if s2 is not connected to s1

Proposition 1. If the set of the operators E over a non-void set S is a unitary magma, then (S,+)
becomes a hypergroup.

Proof. Since E is a unitary magma, the result of the hypercomposition always contains the
two participating elements, thus s + S = S + s = S for all s ∈ S and so the reproductive
axiom is valid. Moreover, the associativity holds. Indeed, if s1, s2 and s3 are not connected
to each other, then

s1 + (s2 + s3) = (s1 + s2) + s3 = {s1, s2, s3}

Next, suppose that s2 and s3 are connected to s1. Also let s3 be connected to s2. Then:

(s1 + s2) + s3 = {q ∈ S | q = s1a and s2 = (s1a)b, with a, b ∈ E}+ s3 =

=

{
s ∈ S | s = (s1a)c, s2 = (s1a)b, and

s3 = ((s1a)c)d with a, b, c, d ∈ E

}
=

= s1 + s3

and

s1 + (s2 + s3) = s1 + {q ∈ S | q = s2a and s3 = (s2a)b, with a, b ∈ E} =
=

{
s ∈ S | s = s1c and (s1c)d = s2a, (s2a)k = s3 or

(s1c)l = s3 with a, c, d, k, l ∈ E

}
=

= s1 + s3

Similar is the proof of all the other cases and hence the proposition. �

Corollary 1. The set of vertices of a directed graph is endowed with the structure of the hypergroup
if the result of the hypercomposition of two vertices vi and vj is the set of the vertices which appear
in all the possible paths that connect vi to vj, or {vi, vj}, if there do not exist any connecting paths
from vertex vi to vertex vj.

If E is a magma, an equivalence relation ξ on E is called a congruence relation if

(a, b) ∈ ξ, (c, d) ∈ ξ implies

⎧⎨⎩
[{y} × bd] ∩ ξ 
= ∅ for all y ∈ ac

and
[ac× {z}] ∩ ξ 
= ∅ for all z ∈ bd

When the law of synthesis in the magma is a composition, then ac and bd are singletons
and the above definition is simplified to:

(a, b) ∈ ξ, (c, d) ∈ ξ implies (ac, bd) ∈ ξ

The set E/ξ of all equivalence classes defined on E by ξ becomes an associative magma
if we define

ξa·ξb = {ξc | c ≈ ab} for all ξa, ξb ∈ E/ξ
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Proposition 2. Every congruence relation ξ on a magma E is a normal equivalence relation, and
therefore the set E/ξ becomes a magma under the law of synthesis

Cx·Cy = {Cz | z ≈ xy}

where Cx is the class of an arbitrary element x ∈ E.

Proof. Since ξ is a congruence relation, for each x, y ∈ E it holds:

z′ ∈ Cx·Cy ⇒
⇒ (∃(x′, y′)) ∈ Cx × Cy) [z ≈ x′y′]⇒ (∃z ≈ xy)[z′ξ z]⇒ z′ ∈ Cz ⇒
⇒ Cx·Cy ⊆ ∪

z≈xy
Cz

Conversely now:

z′′ ∈ ∪
z≈xy

Cz ⇒
⇒ (∃z ≈ xy)[z′′ ξz]⇒

(
∃(x′′ , y′′ ) ∈ E2)[x′′ ξx ∧ y′′ ξy ∧ z′′ ≈ x′′ y′′ ]⇒

⇒ z′′ ∈ Cx·Cy ⇒ ∪
z≈xy

Cz ⊆ Cx· Cy

Thus, Cx·Cy = ∪
z≈xy

Cz, and so the quotient set E/ξ, enriched with the law of synthesis

Cx·Cy = {Cz | z ≈ xy}, is a magma. Obviously, if the law of synthesis is a composition,
then the previous equality is simplified to Cx·Cy = Cxy. �

Corollary 2. Every congruence relation ξ on a hypergroup E is a normal equivalence relation, and
therefore the quotient E/ξ becomes a hypergroup under the hypercomposition
Cx·Cy = {Cz | z ≈ xy}. If E is a group, then E/ξ is a group as well, under the composition

Cx·Cy = Cxy

Proposition 3. If E is a transposition magma and ξ is a congruence relation on E, then E/ξ is a
transposition magma.

Proof. Suppose that for some elements Cx, Cy, Cz, Cw, of the quotient set E/ξ it holds
that Cy\Cx ≈ Cz/Cw. Then there exist elements x′, y′, z′, w′ belonging to Cx, Cy, Cz, Cw,
respectively, such that y′\x′ ≈ z′/w′. Since the transposition axiom is valid in E, it derives
that x′w′ ≈ y′z′. Therefore, Cx·Cw ≈ Cy·Cz and hence the proposition. �

Definition 9. A state machine M is a triplet (S, E, δ) where S and E are sets and δ is mapping of
S× E to S.

The set S describes the internal qualities of the system. The elements of S are called
internal states of M. If S is finite, then M is called a finite state machine. The set E describes
the environmental inputs that can affect the system. The mapping δ describes the environ-
mental influences on the internal qualities of the system and it is called a state transition
function. Such a system is obviously quite general and can be used in a variety of cases.
From the mathematical standpoint, a state machine is a set with operators and the fact that
we can successfully approach, describe and examine such systems via algebraic tools and
techniques is one of the most impressive and remarkable achievements of modern algebra.

Example 1. State machines can be depicted by the so-called transition diagrams. Thus, if S = {s1}
and E is a finite set, then the relevant state machine is illustrated with the transition diagram
presented in Figure 1:
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Figure 1. Transition diagram for a state machine with one state.

Moreover, if S = {s1, s2} and E = {a}, we could have any of the following four state machines
that are shown in Figure 2:

Figure 2. Transition diagrams for a state machine with two states and a singleton as the set of
the operators.

Another way of specifying a state machine is by writing out the transition function δ in tabular
form, thus creating the so-called state transition table. For example, the state transition table of the
last in the above figure state machine is the following one:

 a 

s1 s2 
s s1 

Suppose that a ∈ E is applied to the state s ∈ S of a state machine M. Then the machine
moves to state δ(s, a) = δa(s) = sa. Next, if another input, say b ∈ E, is applied to the
machine, the resultant state is:

δ(δa(s), b) = δb(δa(s)) = δb(sa) = (sa)b

Since δb(δa(s)) = (δb ◦ δa)(s), if E is a magma, we say that the state transition function
satisfies the associativity if δb(δa(s)) = δc(s), c ≈ ab. If the law of synthesis is a composi-
tion, then the associativity is of the form δb(δa(s)) = δab(s) or equivalently (sa)b = s(ab)
and it is named mixed associativity, while if the law of synthesis is a hypercomposition,
the associativity is fulfilled if (sa)b ∈ s(ab) and it is called generalized mixed associativ-
ity [26,29,68].
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Definition 10. A state machine M = (S, E, δ) is called quasi-automaton if E is a magma and the
state transition function satisfies the mixed associativity, i.e., (sa)b = s(ab) for any pair a, b ∈ E
and any state s ∈ S.

Definition 11. A state machine M = (S,E,δ) is called quasi-multiautomaton if E is a magma and
the state transition function satisfies the generalized mixed associativity, i.e., (sa)b ∈ s(ab) for any
pair a, b ∈ E and any state s ∈ S.

A detailed presentation of the terminology, based on the historical development of
the area, can be found in the well-written paper [29]. The above definitions are in line
with [29]. Obviously, every quasi-automaton is a quasi-multiautomaton. Apparently, quasi-
multiautomata which are not quasi-automata can only exist when E is a hypercompositional
magma. On the contrary, quasi-automata exist when either the magma is endowed with
a composition or when it is endowed with a hypercomposition. A special case of quasi-
automata occurs when E is a free semigroup or a free monoid instead of an arbitrary
magma. In this case, computer theory tends to use the term “word” for the elements of E,
the term “letter” for the elements of its generating set Σ and the term concatenation of words
for the law of synthesis in E. Moreover, the free semigroup generated by Σ is denoted by
Σ+ and the corresponding free monoid by Σ∗. Also, the quasi-automaton is denoted by
M = (S,E,δ).

Proposition 4. Let (S,E,δ) be a quasi-automaton and ∼ a binary relation on the magma, defined by

a ∼ b⇔ δa = δb, where a, b ∈ E

Then ∼ is a congruence relation on E and the magma E/∼ has the same algebraic structure as E.

Proof. This relation is easily seen to be an equivalence relation. Next, let a ∼ b and c ∼ d.
From a ∼ b, it follows that δa(s) = δb(s) for all s ∈ S. Next, since c ∼ d, the following
sequence of equivalent statements holds:

δc(δa(s)) = δc(δb(s)); δc(δa(s)) = δd(δb(s)); ∪y≈ca
δy(s) = ∪

z≈db
δz(s);

Therefore, ∼ is a congruence relation on E. Next, it is easy to see that the magma E/∼
is of the same type as E, that is, if E is a semigroup, semi-hypergroup, hypergroup, group,
etc., then E/∼ has the same algebraic structure, respectively. �

Now, if M = (S,E,δ) is a quasi-automaton, then the semigroup E = Σ+/∼ or the monoid
E = Σ∗/∼ can be constructed with the use of Proposition 4. In many cases, it is more
convenient to study this semigroup rather than the original machine M. However, if we
do not want to lose sight of the set of states, we consider the machine M = (S,E,δ). Each
element of E is an equivalence class of Σ+ or Σ∗, which acts on S as follows: s[a] = δa(s),
where s ∈ S and a ∈ Σ+ or a ∈ Σ∗.

4. The Magma of 2 Elements

In this section, we will proceed to a detailed study and classification of the two-element
magma, which is the binary state machines’ environment.

While there exists only one single element magma which is a group and also a LA/RA-
group, there exist 34 = 81 magmas with 2 elements. These magmas can be constructed, clas-
sified and enumerated, with the techniques and methods which are developed in [69–71]
and [63]. In the following propositions, these magmas are presented via their Cayley tables.
Note that, in a Cayley table, the entry in the row headed by x and the column headed by y
is the synthesis x·y.
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i. Associative Magmas

Proposition 5. There exist 6 semigroups which are classified into 2 classes with 2 isomorphic
semigroups each, and into 2 single-member classes, which are presented below via their Cayley tables.
Moreover, since SG1 and SG2 are commutative, they satisfy both the left and the right inverted
associativity.

1SG  
 a b 

a a a 
b a a 

 

 a b 

a b b 
b b b 

 

2SG  
 a b 

a a a 
b a b 

 

 a b 

a a b 
b b b 

 

3SG  
 a b 

a a a 
b b b 

 

 

4SG  
 a b 

a a b 
b a b 

 

Remark 1. When a = 0 and b = 1 in the two isomorphic semigroups SG2, we get the two
well-known operations of the Boolean algebra:

x y x y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

x y x+y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

Proposition 6. There exist 10 semihypergroups which are classified into 5 classes with 2 isomorphic
semihypergroups each. These are displayed below in the form of Cayley tables. Moreover, since SH1
is commutative, it satisfies both the left and the right inverted associativity.

1SH  
 a b 

a a a 
b a {a,b} 

 

 a b 

a {a,b} b 
b b b 

 

2SH  
 a b 

a a a 
b {a,b} b 

 

 a b 

a a {a,b} 
b b b 
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3SH   
 a b 

a a a 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b b b 

 

4SH   
 a b 

a a b 
b {a,b} b 

 

 a b 

a a {a,b} 
b a b 

 

5SH   
 a b 

a a {a,b} 
b a {a,b} 

 

 a b 

a {a,b} b 
b {a,b} b 

ii. Reproductive Magmas

Proposition 7. There exist 21 quasihypergroups which are classified into 9 two-member classes and
3 single-member classes, which are presented below via their Cayley tables.

1QH  
 a b 

a a b 
b {a,b} a 

 

 a b 

a b {a,b} 
b a b 

 

2QH  
 a b 

a a {a,b} 
b b a 

 

 a b 

a b a 
b {a,b} b 

 

3QH  
 a b 

a a {a,b} 
b {a,b} a 

 

 a b 

a b {a,b} 
b {a,b} b 

 

4QH  
 a b 

a b a 
b a {a,b} 

 

 a b 

a {a,b} b 
b b a 

 

5QH  
 a b 

a b a 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b b a 

 

6QH  
 a b 

a b {a,b} 
b a {a,b} 

 

 a b 

a {a,b} b 
b {a,b} a 
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7QH  
 a b 

a {a,b} a 
b a {a,b} 

 

 a b 

a {a,b} b 
b b {a,b} 

 

8QH  
 a b 

a {a,b} a 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b b {a,b} 

 

9QH  
 a b 

a {a,b} b 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b a {a,b} 

 

10QH  
 a b 

a b {a,b} 
b {a,b} a 

 

 

11QH  
 a b 

a {a,b} b 
b a {a,b} 

 

 

12QH  
 a b 

a {a,b} a 
b b {a,b} 

 

iii. Associative and Reproductive Magmas

Proposition 8. There exists one class with 2 isomorphic commutative groups.

1G  
 a b 

a a b 
b b a 

 

 a b 

a b a 
b a b 

Proposition 9. There exist 12 hypergroups which are classified into 5 classes with 2 isomorphic
hypergroups each and into 2 single-member classes, which are presented below via their Cayley
tables. H3 − H7 are commutative.

1H   
 a b 

a a b 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b a b 
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2H   
 a b 

a a {a,b} 
b b {a,b} 

 

 a b 

a {a,b} a 
b {a,b} b 

 

3H   
 a b 

a a b 
b b {a,b} 

 

 a b 

a {a,b} a 
b a b 

 

4H   
 a b 

a a {a,b} 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b {a,b} b 

 

5H   
 a b 

a b {a,b} 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b {a,b} a 

 

6H   
 a b 

a a {a,b} 
b {a,b} b 

 

 

7H   
 a b 

a {a,b} {a,b} 
b {a,b} {a,b} 

 

H6 is the two-element B-hypergroup. B(inary)-hypergroups came into being during
the study of formal languages and automata with the use of hypercompositional alge-
bra [5,13,16,17]. The free monoid of the words generated by an alphabet Σ can be endowed
with the B-hypergroup structure, and so become a join hyperringoid [21,72–74], which is
named linguistic hyperringoid [14,21,73,74]. If the B-hypergroup is fortified with a strong
identity [31], which is necessary for the theory of formal languages and automata [14,21],
then the join hyperring comes into being [72–74]. H7 is the two-element total hypergroup.

Proposition 10. All the two-element hypergroups are transposition hypergroups.

Proof. The Cayley tables of the induced hypercompositions for the seven two-element
hypergroups are presented below. For the classes with two elements, we chose the first
hypergroup for the presentation of the induced hypercomposition. Observe that the
hypergroups H3, H4, H5, H6 and H7 are commutative; therefore, the two induced hyper-
compositions coincide, and so there is only one Cayley table corresponding to each one of
them. As mentioned above, in the Cayley tables, the entry in the row headed by x and the
column headed by y is the synthesis x/y or y\x respectively.
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1H   
/ a b 

a {a,b} b 
b b {a,b} 

 

\ a b 

a a {a,b} 
b b {a,b} 

 

2H   
/ a b 

a a {a,b} 
b b {a,b} 

 

\ a b 

a {a,b} b 
b b {a,b} 

 

3H   
/ a b 

a a b 
b b {a,b} 

 

 

4H   
/ a b 

a {a,b} {a,b} 
b b {a,b} 

 

 

5H   
/ a b 

a b {a,b} 
b {a,b} {a,b} 

 

 

6H   
/ a b 

a {a,b} a 
b b {a,b} 

 

 

7H   
/ a b 

a {a,b} {a,b} 
b {a,b} {a,b} 

 

The verification of the transposition axiom gives the rest. �

So, according to Proposition 10, there do not exist non-transposition hypergroups
with cardinality 1 or 2. However, as shown in the following example, there exist non-
transposition hypergroups if their cardinality is greater than or equal to 3.

Example 2. The hypercomposition on hypergroup H6 can be written in the following two ways:

a·b =

{
{a, b}, i f a 
= b
a, i f a = b

(1)

and

a·b =

{
H, i f a 
= b
a, i f a = b

(2)
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If H = {a, b}, then the above two formulas give the same hypercomposition, but if cardH ≥ 3,
then they produce two different hypergroups. The first one, which is the B-hypergroup, satisfies
the transposition axiom (see [13] for the proof), while the second one does not. Indeed, the induced
hypercomposition of (2) is:

a·b =

{
H··{b}, i f a 
= b
a, i f a = b

Next, if a 
= b, we have:

a/b ∩ b/a = [H··{b}] ∩ [H··{a}] 
= ∅

while
aa ∩ bb = {a} ∩ {b} = ∅.

Moreover, the verification of the reverse transposition axiom for hypergroups H1–H7
leads to the following result:

Proposition 11. All the two-element hypergroups satisfy the strong reverse transposition axiom.

A consequence of Propositions 10 and 11 is the following Theorem:

Theorem 3. All the two-element hypergroups satisfy the bilateral transposition axiom.

In [9], following the observation that the quasicanonical hypergroups, the canonical
hypergroups, and of course, the groups and the abelian groups satisfy the bilateral trans-
position axiom, the question arose: Do there exist other hypergroups satisfying the bilateral
transposition axiom apart from the quasicanonical and the canonical ones? The above Theorem 3
gives the affirmative answer to this question.

iv. Magmas with inverted associativity

Proposition 12. There exists only one class with 2 isomorphic left almost-semihypergroups, as per
the following Cayley tables.

1LA S−  
 a b 

a b b 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b a a 

Proposition 13. In addition to the five non-isomorphic commutative hypergroups (and hence
left and right almost-hypergroups) that are mentioned in Proposition 9, there also exist two non-
isomorphic left almost-hypergroups which are classified into one two-member class and into one
single-member class, as per the following Cayley tables.

1LA H−  
 a b 

a {a,b} b 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b a {a,b} 

2LA H−
 a b 

a {a,b} b 
b a {a,b} 
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Proposition 14. There exists only one class with 2 isomorphic right almost-semihypergroups, as
per the following Cayley tables.

1RA S−  
 a b 

a b {a,b} 
b b {a,b} 

 

 a b 

a {a,b} a 
b {a,b} a 

Proposition 15. In addition to the five non-isomorphic commutative hypergroups (and hence
left and right almost-hypergroups) that are mentioned in Proposition 9, there also exist two non-
isomorphic right almost-hypergroups which are classified into one two-member class and into one
single-member class, as they are presented in the following Cayley tables.

1RA H−  
 a b 

a {a,b} a 
b {a,b} {a,b} 

 

 a b 

a {a,b} {a,b} 
b b {a,b} 

 

2RA H−
 a b 

a {a,b} a 
b b {a,b} 

 

v. Rigid Magmas

The remaining 26 magmas are classified into 12 two-member classes and into two
single-member classes. The law of synthesis on the 2 magmas of the single-member classes
is a composition. The same goes for the magmas in three of the twelve two-member classes.

Proposition 16. There exist only two non-isomorphic groupoids of two elements, which are
presented in the following Cayley tables.

 a b 

a b a 
b b a 

 

 a b 

a b b 
b a a 

Definition 12. A magma is called rigid if its group of automorphisms is of order 1.

As it is shown in [75,76], there exist 21 rigid hypergroupoids whose classification is de-
scribed in Theorem 4 of [76]. The following Theorem 4 applies to the two-element magmas:

Theorem 4. There exist 9 rigid magmas of two elements, classified as follows:

i. 2 non-commutative groupoids, which do not satisfy the transposition axiom;
ii. 2 non-commutative transposition semigroups;
iii. 1 commutative quasi-hypergroup, which does not satisfy the transposition axiom;
iv. 1 LA-hypergroup, which does not satisfy the transposition axiom;
v. 1 RA-hypergroup, which does not satisfy the transposition axiom;
vi. 2 hypergroups, which satisfy both the left and right invert associativity.
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Proof.

i. Let us consider the first groupoid of Proposition 15. Then, the two induced hypercom-
positions are given in the following Cayley tables:

/ a b 

a ∅   {a,b} 

b {a,b} ∅  
 

\ a b 
a b b 
b a a 

Next, we have that a/b ∩ b\a = {a, b} ∩ {b} 
= ∅, while ab ∩ ba = {a} ∩ {b} = ∅.
Therefore, the transposition axiom is not valid. Analogous is the proof for the second
groupoid.

ii. Let us consider the semigroup SG3. Then, the two induced hypercompositions are the
following ones:

/ a b 
a a b 
b a b 

 

\ a b 

a {a,b} ∅  

b ∅  {a,b} 

The verification of the transposition axiom, according to the above Cayley tables,
proves its validity. The same goes for the case of SG4.

iii. Since QH10 is commutative, the two induced hypercompositions coincide and so
we have:

a/b = b/a = {a, b}, a/a = b, b/b = a

Next, a/b ∩ b/a = {a, b} 
= ∅ but aa ∩ bb = ∅. Therefore, the transposition axiom is
not valid.

iv. The induced hypercompositions on the LA–H2 are:

/ a b 
a {a,b} b 
b a {a,b} 

 

\ a b 
a a {a,b} 
b {a,b} b 

Since the implication

b/a ∩ a\b = {a} ∩ {a, b} 
= ∅ ⇒ ab ∩ ba = ∅

holds, the transposition axiom is not valid.
v. It is true as it is the dual of iv.
vi. The two hypergroups are H6 and H7. H6 is a B-hypergroup. As it is well known,

the B-hypergroups are join hypergroups (see [13] for the proof), that is, commutative
hypergroups which satisfy the transposition axiom. H7 is the two-element total
hypergroup and total hypergroups are join hypergroups as well [5,9,13]. �

5. Binary State Machines

Let M = (S,E,δ) be a state machine. Two states, s, t, are called connected if there exists a
sequence of inputs which causes S to leave state s and go into state t, that is, if there exists
a sequence a1, a2, . . . , an of elements of E such that (δa1 ◦ δa2 ◦ · · · ◦ δan)(s) = t. The states
s, t are called isolated to each other if neither s is connected to t, nor t to s. A state machine M
is called connected if its undirected graph is connected, while it is called strongly connected if
every ordered pair (s, t) of states in S is connected.

Proposition 17. Suppose that the connected state machine M = (S,E,δ) is a quasi-multiautomaton.
Then, for every pair (s, t) of states, there exists one element of E which connects them, i.e., δa(s) = t
for some a ∈ E.
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Proof. Let a1, a2, . . . , an be a sequence of elements of E such that (δa1 ◦ δa2 ◦ · · · ◦ δan)(s) = t.
If n = 1 the proposition is obvious. Let n > 1. Then

(δa1 ◦ δa2 ◦ · · · ◦ δan)(s) = δa1

(
δa2

(
· · · δan−1(δan(s))

))
∈

∈ ∪
a∈a1a2...an

δa(s) = {δ(s, a) | a ∈ a1a2 . . . an}

Hence, there exists a ∈ a1a2 . . . an such that t = δ(s, a). �

Theorem 5. If the magma E in a quasi-multiautomaton M = (S,E,δ) has n elements, then the set S
cannot have more than n + 1 states.

Proof. As per Proposition 17, for every pair of states (s, t), there exists one element of E
which connects them, i.e., there exists a ∈ E such that δ(s, a) = t. Therefore, if cardE = n
e.g., if E = {a1, a2, . . . , an}, then, for each state s ∈ S, there exist at most n states connected
with s, which are the si = δ(s, ai), 1 ≤ i ≤ n. Next, if some state sk ∈ S yields δ

(
sk, aj

)
= t,

then, since sk = δ(s, ak), it holds that

t = δ
(
δ(s, ak), aj

)
∈
{

δ(s, a)
∣∣ a ∈ akaj

}
⊆ S

Hence, S = {s, s1, s2, . . . , sn} and so the Theorem. �

Definition 13. If the magma E of a state machine M = (S,E,δ) has 2 elements, then M is called a
binary state machine.

Corollary 3. The set S of the states of a binary quasi-multiautomaton M = (S,E,δ) cannot have
more than 3 elements.

Theorem 6. There exists 1 binary state machine with 1 state, 16 binary state machines with 2 states
and 729 with 3 states.

Proof. The state transition table of a state machine with 1 state is:

 a b 
s1 s1 s1 

The state transition table of a state machine with 2 states is:

 a b 
s1 x y 
s2 z w 

where x, y, z, w ∈ {s1, s2}. Hence, there exist 24 = 16 different to each other binary state
machines with 2 states.

Moreover, the state transition table of the state machines with 3 states is:

 a b 
s1 x y 
s2 z w 
s3 u v 

where x, y, z, w, u, v ∈ {s1, s2, s3}. Therefore, there are 36 = 729 different to each other binary
state machines with three states. �
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Definition 14. Two state machines M1 = (S1,E1,δ1) and M2 = (S2,E2,δ2) are isomorphic if E1 and
E2 are isomorphic and there exists a one-to-one mapping f from S1 onto S2 such that

f (δ1(s, a)) = δ2( f (s), a).

Theorem 7. There exist 10 isomorphic binary state machines with 2 states, which are classified into
6 two-element classes and into 4 single-element classes, as presented in Figure 3:

Figure 3. Binary state machines with two states.
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Next, we will find which state machines are quasi-multiautomata or quasi-automata
when their magma is a group or a hypergroup. In the proofs of the following propositions,
we use the first member of each state machine class as the representative of the entire class.
Similarly, the representative of every class from the group or the hypergroups will be its
first member.

Proposition 18. If E is the group G1 (Proposition 8), then the state machines SM4, SM9, SM10 are
quasi-automata.

Proof. The verification of the axioms shows that SM4, SM9, SM10 are quasi-automata. The
rest state machines do not satisfy the mixed associativity. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2b = s1.
For SM2 it holds: (s1b)b = s1b = s1 while s1(bb) = s1a = s2.
For SM3 it holds: (s2b)a = s1a = s2 while s2(ba) = s2b = s1.
For SM5 it holds: (s2a)b = s1b = s1 while s2(ab) = s2b = s2.
For SM6 it holds: (s2b)b = s1b = s1 while s2(bb) = s2a = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1b)a = s1a = s2 while s1(ba) = s1b = s1. �

Proposition 19. If E is the hypergroup H1 (Proposition 9), then the state machines SM3, SM6,
SM9 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM3, SM6, SM9 satisfy the generalized mixed associativity and
hence they are quasi-multiautomata. Indicatively, for SM3 we have:

(s1b)a = s1a = s2 and s1(ba) = s1{a, b} = {s1a, s1b} = {s2, s1}, thus (s1b)a ∈ s1(ba)

The state machines SM4 and SM10 satisfy the mixed associativity and so they are
quasi-automata. Indicatively, for SM4 we have:

(s2b)a = s1a = s1 and s2(ba) = s2{a, b} = {s2a, s2b} = s1, thus (s2b)a = s2(ba)

The rest state machines do not satisfy any associativity condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2b = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM5 it holds: (s2a)b = s1b = s1 while s2(ab) = s2b = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1a)b = s2b = s2 while s1(ab) = s1b = s1. �
Proposition 20. If E is the hypergroup H2 (Proposition 9), then the state machines SM6, SM9 are
quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM6, SM9 satisfy the generalized mixed associativity, and
therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associativity
and so they are quasi-automata. The rest state machines do not satisfy any associativity
condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2{a, b} = {s2a, s2b} = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM3 it holds: (s2b)a = s1a = s2 while s2(ba) = s2b = s1.
For SM5 it holds: (s2b)a = s2a = s1 while s2(ba) = s2b = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2. �

Proposition 21. If E is the hypergroup H3 (Proposition 9), then the state machines SM6, SM9 are
quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.
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Proof. The state machines SM6, SM9 satisfy the generalized mixed associativity, and there-
fore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associativity and
therefore they are quasi-automata. The rest state machines do not satisfy any associativity
condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2b = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM3 it holds: (s2b)a = s1a = s2 while s2(ba) = s2b = s1.
For SM5 it holds: (s2a)b = s1b = s1 while s2(ab) = s2b = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1b)a = s1a = s2 while s1(ba) = s1b = s1. �

Proposition 22. If E is the hypergroup H4 (Proposition 9), then the state machines SM3, SM5,
SM6, SM9 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM3, SM5, SM6, SM9 satisfy the generalized mixed associativity,
and therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associa-
tivity and therefore they are quasi-automata. The rest state machines do not satisfy any
associativity condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2{a, b} = {s2a, s2b} = s1.
For SM2 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM7 it holds: (s1a)b = s2b = s1 while s1(ab) = s1{a, b} = {s1a, s1b} = s2.
For SM8 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2. �

Proposition 23. If E is the hypergroup H5 (Proposition 9), then the state machine SM8 is a
quasi-multiautomaton and the state machines SM4, SM10 are quasi-automata.

Proof. The state machine SM8 satisfies the generalized mixed associativity, and therefore
it is a quasi-multiautomaton, while SM4 and SM10 satisfy the mixed associativity and
therefore they are quasi-automata. The rest state machines do not satisfy any associativity
condition. Indeed:

For SM1 it holds: (s1a)a = s1a = s1 while s1(aa) = s1b = s2.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2b = s1.
For SM3 it holds: (s1a)a = s2a = s2 while s1(aa) = s1b = s1.
For SM5 it holds: (s2a)a = s1a = s1 while s2(aa) = s2b = s2.
For SM6 it holds: (s2a)a = s2a = s2 while s2(aa) = s2b = s1.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1b = s2.
For SM9 it holds: (s1a)a = s1a = s1 while s1(aa) = s1b = s2. �

Proposition 24. If E is the hypergroup H6 (Proposition 9), then the state machines SM3, SM5,
SM6 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM3, SM5, SM6 satisfy the generalized mixed associativity, and
therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associativity
and therefore they are quasi-automata. For the rest state machines, observe that they satisfy
none of the associativity conditions. Indeed:

For SM1 it holds: (s2b)b = s1b = s2 while s2(bb) = s2b = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM9 it holds: (s1b)b = s1b = s2 while s2(bb) = s2b = s1. �

Proposition 25. If E is the hypergroup H7 (Proposition 9), then the state machines SM3, SM5,
SM6, SM8, SM9 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.
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Proof. The state machines SM3, SM5, SM6, SM8, SM9 satisfy the generalized mixed associa-
tivity, and therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed
associativity and therefore they are quasi-automata. The remaining state machines satisfy
none of the associativity conditions. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2{a, b} = {s2a, s2b} = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2{a, b} = {s2a, s2b} = s1.
For SM7 it holds: (s2a)a = s1a = s2 while s1(aa) = s2{a, b} = {s2a, s2b} = s1. �

6. Conclusions and Open Problems

This paper approaches the state machines from within their environment in which they
can “survive”, i.e., exist and operate. They are given an extended definition which derives
from the consideration that the environment in which they can exist is an algebraic magma
in the sense of [9], where the initial definition of magma by N. Bourbaki [8] is generalized
for the purpose of incorporating algebraic structures endowed with hypercompositional
laws. Hence, a state machine M is defined as a triplet (S,E,δ), where S is the set of the states
of the machine, E is the set of the environmental inputs to the machine and δ is a mapping
of S × E to S, which describes the interaction between each state and its environment. Our
study focuses on the binary state machines, where E is a two-element magma and our
results can be summarized in Table 1:

Table 1. Classification of the magmas with two elements.

Total Number
Isomorphism

Classes
Classes with

1 Member (Rigid)
Classes with
2 Members

binary magmas 81 45 9 36
binary magmas with composition 16 10 4 6

binary magmas with hypercomposition 65 35 5 30
non-reproductive semigroups 6 4 2 2

non-reproductive semihypergroups 10 5 5
non-reproductive LA-semihypergroups 2 1 1
non-reproductive RA-semihypergroups 2 1 1

non-associative quasihypergroups 21 11 3 9
groups 2 1 1

hypergroups/transposition hypergroups 12 7 2 5
LA-hypergroups 3 2 1 1
RA-hypergroups 3 2 1 1

With regard to the classification given in this table, we note that according to the above
Theorem 3, the two-element hypergroups are not just transposition hypergroups (row 10),
but bilateral transposition hypergroups. Hence, the hitherto open question which was
asked in [9] is answered affirmatively.

Of all the structures that appear in the above table, this paper presents the state
machines with two states whose environment is a two-element group or two-element
hypergroups. The results are presented in Table 2:

Table 2. Binary state machines with two states.

Group/Hypergroup
Non-Isomorphic
Quasiautomata

Non-Isomorphic
Quasi-Multiautomata

G1 3
H1 2 3
H2 2 2
H3 2 2
H4 2 4
H5 2 1
H6 2 3
H7 2 5
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According to Corollary 3, only quasiautomata and quasi-multiautomata with up to
three states can operate in the environment of a two-element magma. The description of
the three state binary machines, as well as the investigation of the state machines which
correspond to algebraic structures of E that are other than groups or hypergroups, still
remain open problems. This question becomes more complicated in the instances when
E is enriched with two laws of synthesis, as it happens in a hyperringoid [74]. It is worth
mentioning here that E is a hyperringoid in specific state machines like the automata, where
the environment is defined via an alphabet [16,17,21].

All of the above refer to deterministic state machines. However, the state transition
function can be a mapping from S× E to the power set P(S) of S, defining thus the non-
deterministic state machines (see also [13,14,67]). This consideration broadens the margins
of the study as there can exist state transition functions for which δ(s, a) is not necessarily
just a single element. It can be more than one element and it can also be none, as it is
possible for δ(s, a) to be equal to the empty set.
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Abstract: For a connected graph G on n vertices, recall that the reciprocal distance signless Laplacian
matrix of G is defined to be RQ(G) = RT(G)+RD(G), where RD(G) is the reciprocal distance matrix,
RT(G) = diag(RT1, RT2, . . . , RTn) and RTi is the reciprocal distance degree of vertex vi. In 2022,
generalized reciprocal distance matrix, which is defined by RDα(G) = αRT(G) + (1− α)RD(G), α ∈
[0, 1], was introduced. In this paper, we give some bounds on the spectral radius of RDα(G) and
characterize its extremal graph. In addition, we also give the generalized reciprocal distance spectral
radius of line graph L(G).

Keywords: graph; generalized reciprocal distance matrix; reciprocal distance signless Laplacian
matrix; spectral radius

MSC: 05C50; 05C12; 15A18

1. Introduction

In this paper, all graphs considered are finite, simple, and connected. Let G be such
a graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G), where |V(G)| = n
and |E(G)| = m. Let dvi denote the degree of vertex vi, which is simply written as di.
N(vi) denote the neighbor set of vi. The distance between vertices vi and vj in G is the
length of the shortest path connecting vi to vj, which is denoted as d(vi, vj). We use the
notation dij instead of d(vi, vj). The diameter of G, denoted by diam(G), is the maximum
distance between any pair of vertices of G. The Harary matrix of G, which is also called the
reciprocal distance matrix, is an n× n matrix defined as [1]

RDi,j =

{
1

d(vi ,vj)
, if i 
= j,

0, if i = j.

Henceforth, we consider i 
= j for d(vi, vj).
The transmission of vertex vi, denoted by TrG(vi) or Tri, is defined to be the sum of

the distances from vi to all vertices in G , that is, TrG(vi) = Tri = ∑
u∈V(G)

d(u, vi). A graph

G is said to be k-transmission regular graph if TrG(v) = k for each v ∈ V(G). Transmission
of a vertex v is also called the distance degree or the first distance degree of v.

Definition 1. Let G be a graph with V(G) = {v1, v2, . . . , vn}. The reciprocal distance degree of
a vertex v, denoted by RTrG(v), is given by

RTrG(v) = ∑
u∈V(G),u 
=v

1
d(u, v)

.
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Let RT(G) be the n× n diagonal matrix defined by RTi,i = RTrG(vi).

Sometimes we use the notation RTi instead of RTrG(vi) for i = 1, . . . , n.

Definition 2. A graph G is called a k-reciprocal distance degree regular graph if RTi = k for all
i ∈ {1, 2, . . . , n}.

The Harary index of a graph G, denoted by H(G), is defined in [1] as

H(G) =
1
2

n

∑
i=1

n

∑
j=1

RDi,j =
1
2 ∑

u,v∈V(G),u 
=v

1
d(u, v)

.

Clearly,

H(G) =
1
2

n

∑
i=1

RTi.

In [2], Bapat and Panda defined the reciprocal distance Laplacian matrix as RL(G) =
RT(G)− RD(G). It was proved that, given a connected graph G of order n, the spectral ra-
dius of its reciprocal distance Laplacian matrix ρ(RL(G)) ≤ n if and only if its complement
graph, denoted by G, is disconnected. In [3], Alhevaz et al. defined the reciprocal distance
signless Laplacian matrix as RQ(G) = RT(G) + RD(G). Recently, the lower and upper
bounds of the spectral radius of the reciprocal distance matrices and reciprocal distance
signless Laplacian matrices of graphs were given in [3–6], respectively.

In [7], the author, using the convex linear combinations of the matrices RT(G) and
RD(G), introduces a new matrix, that is generalized reciprocal distance matrix, denoted by
RDα(G), which is defined by

RDα(G) = αRT(G) + (1− α)RD(G), 0 ≤ α ≤ 1.

Since RD0(G) = RD(G), RD 1
2
(G) = 1

2 RQ(G) and RD1(G) = RT(G), then RD 1
2
(G)

and RQ(G) have the same spectral properties. To this extent these matrices RD(G), RT(G),
and RQ(G) may be understood from a completely new perspective, and some interesting
topics arise. For the these matrices RD(G), RT(G), and RQ(G), some spectral extremal
graphs with fixed structure parameters have been characterized in [8,9]. It is natural to ask
whether these results can be generalized to RDα(G).

Since RDα(G) is real symmetric matrics, we can denoted λ1(RDα(G)) ≥ λ2(RDα(G))
≥ · · · ≥ λn(RDα(G)) to the eigenvalues of RDα(G). The maximum eigenvalue
λ1(RDα(G)) is called the spectral radius of the matrix RDα(G), denoted by ρ(RDα(G)).

This paper is organized as follows. In Section 2, we give some definitions, notations,
and lemmas of generalized reciprocal distance matrix. In Section 3, we give the upper and
lower bounds of the spectral radius of the generalized reciprocal distance matrix RDα(G)
by using the reciprocal distance degree and the second reciprocal distance degree. In
Section 4, we give the bounds of the spectral radius of the generalized reciprocal distance
matrix of L(G), where L(G) is the line graph of graph G.

2. Lemmas

In this section, we give some definitions, notations, and lemmas to prepare for subse-
quent proofs.

Definition 3. Let G be a graph with V(G) = {v1, v2, . . . , vn}, the reciprocal distance matrix
RD(G) and the reciprocal distance degree sequence {RT1, RT2, . . . , RTn}. Then the second recipro-
cal distance degree of a vertex vi, denoted by Ti, is given by

Ti =
n

∑
j=1,j 
=i

1
di,j

RTj.
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Definition 4. A graph G is called a pseudo k-reciprocal distance degree regular graph if Ti
RTi

= k
for all i ∈ {1, 2, . . . , n}.

Definition 5. The Frobenius norm of an n× n matrix M = (mi,j) is

‖M‖F =

√√√√ n

∑
i=1

n

∑
j=1
|mi,j|2.

We recall that, if M is a normal matrix then ‖M‖2
F =

n
∑

i=1
|λi(M)|2 where λ1(M), . . . , λn(M)

are the eigenvalues of M. In particular, ‖RDα(G)‖2
F =

n
∑

i=1
| λi(RDα(G)) |2 .

Lemma 1 ([6]). Let G be a graph of order n with reciprocal distance degree sequence
{RT1, RT2, . . . , RTn} and second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

T1 + T2 + · · ·+ Tn = RT2
1 + RT2

2 + · · ·+ RT2
n .

Lemma 2 (Perron–Frobenius theorem [10]). If A is a non-negative matrix of order n, then
its spectral radius ρ(A) is an eigenvalue of A and it has an associated non-negative eigenvector.
Furthermore, if A is irreducible, then ρ(G) is a simple eigenvalue of A with an associated positive
eigenvector.

Lemma 3 ([7]). Let G be a graph with n ≥ 2 vertices and Harary index H(G). Then

ρ(RDα(G)) ≥ 2H(G)

n
.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Lemma 4 ([11]). Let A = (ai,j) be an n× n nonnegative matrix with spectral radius ρ(A) and
row sums S1(A), S2(A), . . . , Sn(A). Then,

min
1≤i≤n

Si(A) ≤ ρ(A) ≤ max
1≤i≤n

Si(A).

Moreover, if A is an irreducible matrix, then equality holds on either side (and hence both
sides) of the equality if and only if all row sums of A are all equal.

Lemma 5 ([6]). Let G be a graph on n vertices. Let RTmax and RTmin be the maximum and the
minimum reciprocal distance degree of G, respectively. Then, for any vi ∈ V(G),

2H(G) + (RTmax − 1)RTi − (n− 1)RTmax ≤ Ti ≤ 2H(G) + (RTmin − 1)RTi − (n− 1)RTmin.

Lemma 6 (Cauchy alternating theorem [12]). Let A be a real symmetric matrix of order n and
B be a principal submatrix of order m of A. Suppose A has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and
B has eigenvalues β1 ≥ β2 ≥ · · · ≥ βm. Then, for all k = 1, 2, . . . , m, λn−m+k ≤ βk ≤ λk.

Lemma 7. Let G be a graph on n ≥ 2 vertices with 0 ≤ α < 1. The G has exactly two distinct
generalized reciprocal distance eigenvalues if and only if G is a complete graph. In particular,
ρ(RDα(Kn)) = n− 1 and λi(RDα(Kn)) = αn− 1 for i = 2, 3, . . . , n.

Proof. Let n ≥ 2. Clearly, the spectrum of the generalized reciprocal distance matrix of the
complete graph Kn is {n− 1, (αn− 1)[n−1]}.

Let G be a graph with generalized reciprocal distance matrix RDα(G). If G has
exactly two distinct RDα-eigenvalues, then λ1(RDα(G)) > λ2(RDα(G)). Since G is a con-
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nected graph and RDα(G) is an irreducible matrix. Then, from Lemma 2, λ1(RDα(G)) =
ρ(RDα(G)) is the greatest and simple eigenvalue of RDα(G). Thus, the algebraic multiplic-
ity of λ2(RDα(G)) is n− 1, i.e.,

λ2(RDα(G)) = λ3(RDα(G)) = · · · = λn(RDα(G)). (1)

Now, to prove that G = Kn, we show that the diameter of G is 1. That is, we prove
that G does not contain an shortest path Pk, for k ≥ 3.

We suppose that G contains an induced shortest path Pk, k ≥ 3. Let B be the principal
submatrix of RDα(G) indexed by the vertices in Pk. Then by Lemma 6, we have

λi(RDα(G)) ≥ λi(B) ≥ λi+n−k(RDα(G)), i = 1, 2, . . . , k.

Using the equalities given in (1), we obtain λ2(RDα(G)) ≥ λ2(B) ≥ λ3(B) ≥ · · · ≥
λk(B) ≥ λp(RDα(G)) = λ2(RDα(G)). Thus, for k ≥ 3, the matrix B = (RDα(Pk)) has
at most two different eigenvalues. By definition, we can get the generalized reciprocal
distance matrix of P3, that is

RDα(P3) =

⎡⎣ 3
2 α 1− α 1

2 (1− α)
1− α 2(1− α) 1− α

1
2 (1− α) 1− α 3

2 α

⎤⎦.

Using the software Maple 18, it is easy to calculate that the generalized recipro-
cal distance spectrum of the path of order 3 is { 3

2 α + 1
4 + 1

4

√
36α2 − 68α + 33, 3

2 α + 1
4 −

1
4

√
36α2 − 68α + 33, 2α− 1

2}, this is false.
Therefore, G does not have two vertices at distance two or more. Then, G = Kn.

Lemma 8 ([13]). If x1 ≥ x2 ≥ · · · ≥ xm are real numbers such that
m
∑

i=1
xi = 0, then

x1 ≤
√

m− 1
m

m

∑
i=1

x2
i .

The equality holds if and only if x2 = x3 = · · · = xm = − x1
m−1 .

Lemma 9 (Rayleigh quotient theorem [14]). let M be a real symmetric matrix of order n whose
eigenvalues are λ1 ≥ λ2 ≥ . . . ≥ λn. Then, for any n-dimensional nonzero column vector x,

λ1 ≥
xT Mx

xTx
≥ λn.

Lemma 10 ([15]). If diam(G) ≤ 2 and if none of the three graphs F1, F2, and F3 depicted in
Figure 1 are induced subgraphs of G, then diam(L(G)) ≤ 2.

• • • • •

F1

• • •�
�

�
�•

•

F2

�
�

�
�
•

•

•
�
�

�
�•

•

F3

Figure 1. Graphs F1, F2, T3 in Lemma 10.

3. Bounds of ρ(RDα(G)) of Graphs

In this section, we find bounds of the spectral radius of generalizes reciprocal distance
matrix in terms of parameters associated with the structure of the graph.

Let e be the n-dimensional vector of ones.
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Theorem 1. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn}. Then

ρ(RDα(G)) ≥

√
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. Let x = [x1, x2, . . . , xn]T be the unit positive Perron eigenvector of RDα(G) corre-
sponding to ρ(RDα(G)). We take the unit vector y = 1√

n e. Then, we have

ρ(RDα(G)) =
√

ρ2(RDα(G)) =
√

xT(RDα(G))2x ≥
√

yT(RDα(G))2y. (2)

Since (RDα(G))y = 1√
n [RT1, RT2, . . . , RTn]T , we obtain

yT(RDα(G))2y =
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

Therefore,

ρ(RDα(G)) ≥

√
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

Now, assume that the equality holds. By Equation (2), we have that y is the positive
eigenvector corresponding to ρ(RDα(G)). From RDα(G)y = ρ(RDα(G))y, we obtain that
RTi = ρ(RDα(G)), for i = 1, 2, . . . , n. Therefore, graph G is a reciprocal distance degree
regular graph.

Conversely, if G is a reciprocal distance degree regular graph, then RT1 = RT2 = · · · =
RTn = k. From Lemma 2, k = ρ(RDα(G)). So

ρ(RDα(G)) = k =

√
nk2

n
=

√
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

The equality holds.

Theorem 2. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

ρ(RDα(G)) ≥
√√√√√ (αRT2

1 + (1− α)T1)2 + (αRT2
2 + (1− α)T2)2 + · · ·+ (αRT2

n + (1− α)Tn)2

n
∑

i=1
RT2

i

.

The equality holds if and only if G is a pseudo reciprocal distance degree regular graph.

Proof. Using y = 1√
n
∑

i=1
RT2

i

[RT1, RT2, . . . , RTn]T , the proof is similar to Theorem 1.

Remark 1. The lower bound given in Theorem 2 improves the bound given in Theorem 1, and the
bound given in Theorem 1 improves the bound given in Lemma 3.
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In fact, from Lemma 1, we have
n
∑

i=1
Ti =

n
∑

i=1
RT2

i . By Cauchy–Schwarz inequality

n
n

∑
i=1

(αRT2
i + (1− α)Ti)

2 ≥ (
n

∑
i=1

(αRT2
i + (1− α)Ti))

2

= (α
n

∑
i=1

RT2
i + (1− α)

n

∑
i=1

Ti)
2

= (α
n

∑
i=1

RT2
i + (1− α)

n

∑
i=1

RT2
i )

2

= (
n

∑
i=1

RT2
i )

2.

Moreover, we recall that, n
n
∑

i=1
RT2

i ≥ (
n
∑

i=1
RTi)

2. Thus

√√√√√√√
n
∑

i=1
(αRT2

i + (1− α)Ti)2

n
∑

i=1
RT2

i

≥

√√√√√√√
(

n
∑

i=1
RT2

i )
2

n
n
∑

i=1
RT2

i

=

√√√√√ n
∑

i=1
RT2

i

n

and √√√√√ n
∑

i=1
RT2

i

n
≥

√√√√√ (
n
∑

i=1
RTi)2

n2 =
2H(G)

n
.

Theorem 3. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

min
1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
≤ ρ(RDα(G)) ≤ max

1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
.

Proof. Let RDα(G) = (bi,j). Then (RDα(G))2
i,j =

n
∑

k=1
bi,kbk,j, and the row sum of (RDα(G))2

should be

Si((RDα(G))2) =
n

∑
j=1

n

∑
k=1

bi,kbk,j =
n

∑
k=1

(bi,k

n

∑
j=1

bk,j) =
n

∑
k=1

(bi,kRTk).

Hence, Si((RDα(G))2) = (1− α)Ti + αRT2
i .

Now, let x be the unit Perron vector corresponding to ρ(RDα(G)). Clearly, RDα(G)x =
ρ(RDα(G))x and (RDα(G))2x = (ρ(RDα(G)))2x. By Lemma 4, we have

min
1≤i≤n

{
(1− α)Ti + α(RTi)

2
}
≤ (ρ(RDα(G)))2 ≤ max

1≤i≤n

{
(1− α)Ti + α(RTi)

2
}

.

Thus

min
1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
≤ ρ(RDα(G)) ≤ max

1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
.
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Theorem 4. Let G be a graph with n vertices, RTmax and Tmax be the maximum reciprocal distance
degree and the maximum second reciprocal distance degree of G, respectively. Then

ρ(RDα(G)) ≤ αRTmax +
√
(αRTmax)2 + 4(1− α)Tmax

2
.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. Since RDα(G) = αRT(G) + (1− α)RD(G), 0 ≤ α ≤ 1, it can be obtained by simple
calculation

Si(RDα(G)) = RTi,

Si((RT(G))2) = Si(RT(G)RD(G)) = RT2
i ,

Si((RD(G))2) = Si(RD(G)RT(G)) = Ti.

Then

Si((RDα(G))2) =Si(α
2(RT(G))2 + α(1− α)RT(G)RD(G)

+ α(1− α)RD(G)RT(G) + (1− α)2RD(G)2)

=Si(αRT(G)(αRT(G) + (1− α)RD(G)))

+ α(1− α)Si(RD(G)RT(G)) + (1− α)2Si(RD(G)2)

=αRTiSi(RDα(G)) + (1− α)Ti

≤αRTmaxSi(RDα(G)) + (1− α)Tmax,

that is,
Si((RDα(G))2 − αRTmaxRDα(G)) ≤ (1− α)Tmax.

By Lemma 4,

ρ2(RDα(G))− αRTmaxρ(RDα(G))− (1− α)Tmax ≤ 0.

For any vertex vi, when the inequality is equal, RTi = RTmax, Ti = Tmax. That is, G is a
reciprocal distance degree regular graph.

On the contrary, when G is a reciprocal distance degree regular graph, the inequality
is equal.

Theorem 5. Let G be a graph with n vertices, RTmin and Tmin be the minimum reciprocal distance
degree and the minmum second reciprocal distance degree of G, respectively. Then

ρ(RDα(G)) ≥ αRTmin +
√
(αRTmin)2 + 4(1− α)Tmin

2
.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. The method is the same as Theorem 4.

Theorem 6. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

ρ(RDα(G)) ≤ max
1≤i,j≤n

⎧⎪⎪⎨⎪⎪⎩
α(RTi + RTj) +

√
α2(RTi − RTj)2 + 4(1− α)2 TiTj

RTi RTj

2

⎫⎪⎪⎬⎪⎪⎭. (3)

The equality holds if and only if G is a reciprocal distance degree regular graph.
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Proof. Let x = (x1, x2, . . . , xn) be the eigenvector corresponding to the eigenvalue ρ(G) of
the matrix RT(G)−1RDα(G)RT(G), xs = max{xi|i = 1, 2, . . . , n}, xt = max{xi|xi 
= xs, i =
1, 2, . . . , n}.

Through simple calculation, the value of the (i, j)-th element of RT(G)−1RDα(G)RT(G) is⎧⎨⎩αRTi, if i = j,

(1− α)
RTj
RTi

1
dij

, if i 
= j.

Because
RT(G)−1RDα(G)RT(G)x = ρ(RDα(G))x, (4)

row s and t in Equation (4) are

ρ(RDα(G))xs = αRTsxs + (1− α)
n

∑
i=1

RTi
RTs

xi
dsi

, (5)

ρ(RDα(G))xt = αRTtxt + (1− α)
n

∑
i=1

RTi
RTt

xi
dti

. (6)

After shifting the item of Equations (5) and (6), we can get

(ρ(RDα(G)− αRTs))xs = (1− α)
n

∑
i=1

RTi
RTs

xi
dsi

≤ (1− α)
xt

RTs

n

∑
i=1

RTi
1

dsi

= (1− α)
Ts

RTs
xt,

(7)

(ρ(RDα(G)− αRTt))xt = (1− α)
n

∑
i=1

RTi
RTt

xi
dti

≤ (1− α)
xs

RTt

n

∑
i=1

RTi
1

dti

= (1− α)
Tt

RTt
xs.

(8)

Multiply Equation (7) and (8) to simplify (ρ(RDα(G) − αRTs)(ρ(RDα(G) −
αRTt)xsxt ≤ (1− α)2 TsTt

RTsRTt
xtxs. Then

(ρ(RDα(G))2 − α(RTs + RTt)ρ(RDα(G)) + α2RTsRTt − (1− α)2 TsTt

RTsRTt
≤ 0.

ρ(RDα(G)) ≤
α(RTs + RTt) +

√
α2(RTs − RTt)2 + 4(1− α)2 TsTt

RTsRTt

2
.

Hence

ρ(RDα(G)) ≤ max
1≤i,j≤n

⎧⎪⎪⎨⎪⎪⎩
α(RTi + RTj) +

√
α2(RTi − RTj)2 + 4(1− α)2 TiTj

RTi RTj

2

⎫⎪⎪⎬⎪⎪⎭.

Suppose G is a k-reciprocal distance regular graph, RTi = k, Ti = k2, i = 1, 2, . . . , n.
According to Lemma 2, ρ(RDα(G)) = k, so Equation (3) holds. On the contrary, if inequality
(3) is equal, x1 = x2 = · · · = xn can be obtained from (7) and (8), that is, ρ(RDα(G)) =
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αRT1 + (1− α) T1
RT1

= αRT2 + (1− α) T2
RT2

= · · · = αRTn + (1− α) Tn
RTn

, which means that G
is a reciprocal distance degree regular graph.

Theorem 7. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

ρ(RDα(G)) ≥ min
1≤i,j≤n

⎧⎪⎪⎨⎪⎪⎩
α(RTi + RTj) +

√
α2(RTi − RTj)2 + 4(1− α)2 TiTj

RTi RTj

2

⎫⎪⎪⎬⎪⎪⎭.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. The method is the same as Theorem 6.

Theorem 8. Let G be a graph of order n and 0 ≤ α < 1, then

ρ(RDα(G)) ≤ 2αH(G)

n
+

√
n− 1

n
(‖RDα(G)‖2

F −
(2αH(G))2

n
).

The equality holds if and only if G = Kn.

Proof. We recall that
n
∑

i=1
λi(RDα(G)) = α

n
∑

i=1
RTi = 2αH(G), and

n
∑

i=1
λi(RDα(G))2 =

‖RDα(G)‖2
F. Clearly,

n

∑
i=1

(λi(RDα(G))− 2αH(G)

n
) = 0.

By Lemma 8,

ρ(RDα(G))− 2αH(G)

n
≤
√

n− 1
n

n

∑
i=1

(λi(RDα(G))− 2αH(G)

n
)2, (9)

with equality holds if and only if

λ2(RDα(G))− 2αH(G)

n
= · · · = λn(RDα(G))− 2αH(G)

n
= −ρ(RDα(G))− 2αH(G)

n
n− 1

. (10)

Since

n

∑
i=1

(λi(RDα(G))− 2αH(G)

n
)2 =

n

∑
i=1

(λi(RDα(G)))2 − 4αH(G)

n

n

∑
i=1

λi(RDα(G)) + n(
2αH(G)

n
)2

= ‖RDα(G)‖2
F − 2

(2αH(G))2

n
+

(2αH(G))2

n

= ‖RDα(G)‖2
F −

(2αH(G))2

n
.

The upper bound (9) is equivalent to

ρ(RDα(G)) ≤ 2αH(G)

n
+

√
n− 1

n
(‖RDα(G)‖2

F −
(2αH(G))2

n
) (11)

with the necessary and sufficient condition for the equality given in (10).
Now, suppose that the equality holds. Therefore, the equality condition for (11) can be

given in (10), and we obtain that G has only two distinct generalized reciprocal distance
eigenvalues. Hence, from Lemma 7, G = Kn.
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Conversely, from Lemma 7 the generalized reciprocal distance eigenvalues of Kn
are ρ(RDα(Kn) = n − 1 and λi(RDα(G)) = αn − 1, for i = 2, 3, . . . , n. Then, the equal-
ity holds.

4. Bounds of ρ(RDα(G)) of Line Graph L(G)

The line graph L(G) of G is the graph whose vertices correspond to the edges of G, and
two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent.
In this section, we give the bounds of the spectral radius of the generalized reciprocal
distance matrix of L(G).

Theorem 9. Let graph G have n vertices and m edges, and the degree of vertex vi be recorded as
di. If diam(G) ≤ 2 and graphs Fi, i = 1, 2, 3 in Lemma 10 are not induced subgraphs of G, then

ρ(RDα(L(G))) ≥
1
2 (m

2 − 3m +
n
∑

i=1
d2

i )

m
.

Proof. If diam(G) ≤ 2, the i-th row element of RDα(G) is composed of { 1
2 α(n + di −

1), (1− α)di , 1
2 (1− α)[n−di−1]}, which can be obtained from Lemma 9

ρ(RDα(L(G))) ≥ eT RDα(G)e

eTe
=

n
∑

i=1

1
2 (n + di − 1)

n
=

1
2 (n

2 + 2m− n)
n

.

Hence, line graph L(G) has n1 = m vertices and m1 = 1
2

n
∑

i=1
d2

i − m edges. Because

graphs Fi, i = 1, 2, 3 are not induced subgraphs of G, from Lemma 10, diam(L(G)) ≤ 2,
then

ρ(RDα(L(G))) ≥
1
2 (n

2
1 + 2m1 − n1)

n1

=

1
2 [m

2 + 2( 1
2

n
∑

i=1
d2

i −m)−m]

m

=

1
2 (m

2 − 3m +
n
∑

i=1
d2

i )

m
.

Theorem 10. Let graph G be r-regular graph with n vertices, and graphs Fi, i = 1, 2, 3 be
not-induced subgraphs of G. Then

ρ(RDα(L(G))) ≥ nr
4

+ r− 3.

Proof. Let graph G be r-regular graph with n vertices, the number of edges in graph G is
m = nr

2 , di = deg(vi) = r. It is proved by Theorem 9.

Theorem 11. Let the vertices set and edges set of G be V(G) = {v1, v2, . . . , vn} and E(G) =
{e1, e2, . . . , em}, deg(ei) represent the number of edges adjacent to edge ei. Then,

ρ(RDα(L(G)) ≤ max
1≤i≤m

{1
2
(m− deg(ei)− 1)

}
.

Proof. Let e = uv be an edge of G. Then, the degree of vertex e ∈ V(L(G)) is degL(G)(e) =
degG(u) + degG(v)− 2.
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In graph G, if edge e = uv is adjacent to deg(u) + deg(v)− 2 = deg(e), then denoted
|Ee| = m− 1− deg(e) as the number of edges which are not adjacent to edge e. Therefore,
in the graph L(G), there are |Ee| vertices, and their distance from vertex e is greater than 1.
Thus, the maximum element of generalized reciprocal distances matrix of the corresponding
vertices should be 1

2 (1− α). We can get

Si(RDα(L(G))) ≤ 1
2
(1− α)(m− 1− deg(ei))

+ (1− α)deg(ei) + α(
1
2

m− 1
2
+

1
2

deg(ei))

=
1
2
(m− deg(ei)− 1).

By Lemma 4, ρ(RDα(L(G))) ≤ max
1≤i≤m

{ 1
2 (m− deg(ei)− 1)}.

5. Conclusions

In this paper, we find some bounds for the spectral radius of the generalized reciprocal
distance matrix of a simple undirected connected graph G, and we also give the generalized
reciprocal distance spectral radius of line graph L(G). The graphs for which those bounds
are attained are characterized.
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1. Introduction

One of the best-known connections between groups and graph theory was presented
by A. Cayley [1]. He gave a group G as a directed graph, where the vertices correspond to
elements of G and the edges to multiplication by group generators and their inverses. Such
a graph is called a Cayley diagram or Cayley graph of G. It is a central tool in combinatorial
and geometric group theory.

Recent works reveal many different ways of associating a graph to a given finite group,
most of which were inspired by a question posed by P. Erdös [2]. These differences lie in the
adjacency criterion used to relate two group elements constituting the set of vertices of such
a graph. Some essential authors in this context are A. Abdollahi [3], A. Ballester-Bolinches
et al. [4–8], A. Lucchini [9,10], and D. Hai-Reuven [11], among others.

Our notation will be standard, as in [12] and [13] for groups and graphs. Let G =
〈g1, . . . , gn〉 be a finitely generated group and suppose now that every element g ∈ G can
be uniquely written as follows

g =
n

∏
i=1

gεi
i , (1)

with 0 ≤ εi < mi, and 1 ≤ i ≤ n. The numbers mi can be, for example, the orders of the
corresponding elements in the finite case, but they may also differ from these orders.

To determine a measure of the separation between two elements of G, we introduce
the following distance map d1 : G× G −→ N0, defined by

d1(g, h) = d1

( n

∏
i=1

gεi
i ,

n

∏
i=1

gδi
i

)
=

n

∑
i=1
|εi − δi|. (2)

The set G endowed with this distance d is a metric space. Note that d1 is just the
Minkowski lp metric for p = 1 in {(ε1, . . . , εn) | 0 ≤ εi < mi}. This is also called the taxicab
distance, Manhattan distance, or grid distance.

G. Diaz-Porto and A. Torres-Grandisson introduced t-graphs using Minkowski’s
metric in [14,15]. These graphs can be defined by the group G as the underlying set of
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vertices and the following adjacency criteria: Let t be an integer number with 1 ≤ t ≤ n.
We say that g, h ∈ G are adjacent if and only if d1(g, h) = t.

The simplest example is when G is a finite cyclic group. Let G = 〈g〉 be a cyclic group
with the finite order m. That is, G = {1, g, · · · , gm−1}. From (2), we have

d1(gi, gj) = |i− j|, for all 0 ≤ i, j ≤ m− 1. (3)

This means that in the t-graph of G there exists an edge between gi and gj if and only
if |i− j| = t. Defining on G the following relation

gi ∼ gj ⇐⇒ i ≡ j mod t, (4)

where ∼ is an equivalence relation, and then we have a partition of G in t classes given by

[gi] := {gj ∈ G | j ≡ i mod t}, (5)

where i ∈ {0, 1, . . . , t − 1}. Then, the t-graph of a finite cyclic group G can be viewed
as the union of t connected components, consisting of path graphs or isolated points.
Consequently for t ≥ 2, the t-graph is non-connected and 2-chromatic. The 1-graph of G is
a finite path graph and then connected.

If t is a divisor of the group order m, then it is well known that G has a cyclic subgroup
U of order m/t, and the elements of U form a subgraph with m/n vertices, which is a
connected component of the t-graph of G.

If G = 〈g〉 is an infinite cyclic group, then the 1-graph of G is an infinite path graph.
This statement follows directly from the definition of the t-graph.

An immediate consequence of the above discussion is that if G is a finite abelian group,
say G = 〈g1〉 × · · · × 〈gn〉, with ord(gj) = εj. Then, the 1-graph of G is the Cartesian
product of n path graphs of lengths εj, respectively. That is an n-dimensional square grid
graph. In general, using the above example, the t-graph of G is the Cartesian product of
t components.

In the general case, if G is a direct product of cyclic groups with at least one infinite
factor, then the t-graph of G is an infinite rectangular grid graph.

The first thing we can observe is that for a group G different generating systems can
give different graphs. For instance, the groups Z4 ×Z6 and Z2 ×Z12 are isomorphic, but
the graphs associated with the natural generating sets corresponding to these ways to
present the group G are different.

On the other hand, if two groups admit generating systems such that every element g
can be described as in (1), then it is possible that the corresponding t-graphs are the same,
even though the groups are not isomorphic. We can see this in the following example. It is
well known that the dihedral group Dn and the quaternion group Q8 have the subsequent
group presentation, respectively,

Dn = 〈a, b | a2 = bn = 1, aba = b−1〉, (6)

Q8 = 〈a, b | a4 = 1, a2 = b2, bab−1 = a−1〉. (7)

Furthermore,
Z2 ×Z4 = 〈a, b | a2 = b4 = 1, ab = ba〉. (8)

Note that, in terms of their generators, the elements of D4, Q8, and Z2 × Z4 can be
written as follows

{1, a, b, b2, b3, ab, ab2, ab3}. (9)

This means that the three groups have the same distance table (see Table 1) and,
consequently, the same t-graphs for all t.
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Table 1. Table of distances of Z2 ×Z4, D4, and Q8.

d1 1 a b b2 b3 ab ab2 ab3

1 0 1 1 2 3 2 3 4
a 1 0 2 3 4 1 2 3
b 1 2 0 1 2 1 2 3
b2 2 3 1 0 1 2 1 2
b3 3 4 2 1 0 3 2 1
ab 2 1 1 2 3 0 1 2
ab2 3 2 2 1 2 1 0 1
ab3 4 3 3 2 1 2 1 0

An illustration of the first four t-graphs of these three groups is presented in the
following Figure 1.

1

aabab2ab3

b3 b2 b
t=1

1

abab3bb3

ab2 a b2

t=2

b2aab3b

ab21b3ab

t=3

a b3 b ab2

abb2ab31
t=4

Figure 1. Some t-graphs of Z2 ×Z4, D4, and Q8.

Despite being non-isomorphic groups, these groups have precisely the same t-graphs
since the metric used to define the adjacency criterion only considers the writing of the
group’s elements and not how they interact. This leads to the conclusion that any two-
generator finite group G = 〈a, b〉, in which every element can be written in the form aibj

with 0 ≤ i ≤ ord(a) − 1 and 0 ≤ j ≤ ord(b) − 1, has the same t-graphs as the group
Zord(a) × Zord(b) since, when considering the form in which its elements are written in
terms of the generators, the underlying sets are the same.

Therefore, to study the t-graphs of a finite group G, it is sufficient to consider abelian
groups, expressed as products of cyclic groups. Naturally, this implies asking oneself, given
an arbitrary group G, how to determine the abelian group with which it will share the
same t-graphs. For example, the symmetric group of degree five has the same t-graph
as Z2 ×Z3 ×Z4 ×Z5. In fact, in general, the group Sym(n) can be factorized in the form
Sym(n) = Sym(n− 1)〈(12 · · · n)〉, and, applying this property inductively, we have that
Sym(n) is generated by the set {(12), (123), · · · , (12 · · · , n)}. In particular, the set

{(12)i(123)j(1234)k(12345)l | i = 0, 1, j = 0, 1, 2, k = 0, 1, 2, 3, l = 0, 1, 2, 3, 4}

is exactly Sym(5).
On the other hand, this situation brings the possibility of studying t-graphs by defining

the adjacency criterion in terms of another metric. This change may imply that the group
structure plays a more critical role.
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The main goal of this paper is to obtain some characterizations of the t-graphs G
associated with the two-generator finite group G that can be expressed in the form

G = 〈a, b〉 = {aibj | 0 ≤ i ≤ m, 0 ≤ j ≤ n}. (10)

where m ≤ ord(a) y n ≤ ord(b); n, m ∈ Z. These numbers m and n depend exclusively on
the structure, namely on the group’s presentation and the order of G. We determine the
number of connected components of G depending on whether t is an even or odd number.

2. Preliminaries on t-Graphs

A desirable property of the t-graphs is that every subgroup H of a group G naturally
results in a subgraph. However, this is, in general, not true. For example, let G be the Klein
four-group, say G = {1, a, b, ab} and H = {1, ab}. Concerning their natural generating
systems, ab and one are not adjacent in the 1-graph of G. Nevertheless, in H, they are
adjacent.

Lemma 1. Let G = 〈g1, . . . , gn〉 be a finitely generated group and H ≤ G, with H = 〈h1, . . . , hn〉
and hj = g

kj
j for some natural numbers kj. Then, the t-graph of H is a subgraph of the t-graph of G.

Proof. It follows immediately from the definition of the t-graph.

Lemma 2. Let G = 〈g1, · · · , gn〉 be a finitely generated group and suppose now that every element
in g ∈ G can be uniquely written as g = ∏n

i=1 gεi
i with 0 ≤ εi < mi and 1 ≤ i ≤ n. Further, let

H = 〈h1, · · · , hn〉 be a finitely generated group with the same property. If G and H are isomorphic,
then the corresponding t-graphs are isomorphic, for all natural numbers t.

Proof. Let f : G −→ H be a group isomorphism with f (gi) = hi, and let G = (G, E1)
and H = (H, E2) be the corresponding t-graphs of G and H, respectively. Suppose that
{x, y} ∈ E1 with x = ∏n

i=1 gεi
i and y = ∏n

i=1 gδi
i . Then, d1(x, y) = t, and we have

d1( f (x), f (y)) = d1

( n

∏
i=1

f (gi)
εi ,

n

∏
i=1

f (gi)
δi
)
= d1

( n

∏
i=1

hεi
i ,

n

∏
i=1

hδi
i )
)

=
n

∑
i=1
|εi − δi| = d1(x, y).

It follows that { f (x), f (y)} ∈ E2.

Remark 1. Note that the reciprocal of the statement in Lemma 2 is, in general, not true. For
example, the t-graphs of the dihedral D4 and the quaternions group, Q8 are isomorphic even though
D4 
∼= Q8.

To study t-graphs in the given context, we can use the spectral theory of graphs, which
consists of studying the properties of the Laplacian matrix of a graph, more specifically, its
eigenvalues and eigenvectors.

The Laplacian matrix of G = (V, E) is the n× n matrix L = (lij) indexed by V, whose
(i, j)-entry is defined as follows

lij =

⎧⎪⎨⎪⎩
−1 if {vi, vj} ∈ E
deg(vi) if i = j
0 otherwise.

(11)

To analyze the behavior of the number of connected components k(G) of the t-
graphs defined on a group G, we use the following theorem, which allows us to realize
Tables 2 and 3. A proof of this theorem can be found in [16] (Theorem 7.1).
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Theorem 1. A graph G has k connected components if and only if the algebraic multiplicity of zero
as the Laplacian eigenvalue is k.

In the following, to study the t-graphs associated with a finite group G, we will
consider only finite two-generator groups, which can be expressed in the form (10). These
numbers m and n depend exclusively on the structure, namely on the group’s presentation
and the order of G.

Let G be such a group. To observe the behavior of the number of connected compo-
nents k(G) of a t-graph G determined by a group G, we make use of Theorem 1, with which
we were able to make the following tables:

Table 2. Number of connected components of the t-graphs on Zn ×Z2.

n\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 2 - - - - - - - - - - - - - - - - - -
3 1 2 4 - - - - - - - - - - - - - - - - -
4 1 2 2 6 - - - - - - - - - - - - - - - -
5 1 2 1 4 8 - - - - - - - - - - - - - - -
6 1 2 1 2 6 10 - - - - - - - - - - - - - -
7 1 2 1 2 4 8 12 - - - - - - - - - - - - -
8 1 2 1 2 2 6 10 14 - - - - - - - - - - - -
9 1 2 1 2 1 4 8 12 16 - - - - - - - - - - -

10 1 2 1 2 1 2 6 10 14 18 - - - - - - - - - -
11 1 2 1 2 1 2 4 8 12 16 20 - - - - - - - - -
12 1 2 1 2 1 2 2 6 10 14 18 22 - - - - - - - -
13 1 2 1 2 1 2 1 4 8 12 16 20 24 - - - - - - -
14 1 2 1 2 1 2 1 2 6 10 14 18 22 26 - - - - - -
15 1 2 1 2 1 2 1 2 4 8 12 16 20 24 28 - - - - -
16 1 2 1 2 1 2 1 2 2 6 10 14 18 22 26 30 - - - -
17 1 2 1 2 1 2 1 2 1 4 8 12 16 20 24 28 32 - - -
18 1 2 1 2 1 2 1 2 1 2 6 10 14 18 22 26 30 34 - -
19 1 2 1 2 1 2 1 2 1 2 4 8 12 16 20 24 28 32 36 -
20 1 2 1 2 1 2 1 2 1 2 2 6 10 14 18 22 26 30 34 38

Table 3. Number of connected components of the t-graphs on Zn ×Z3.

n\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 2 4 - - - - - - - - - - - - - - - - -
3 1 2 2 7 - - - - - - - - - - - - - - - -
4 1 2 1 4 10 - - - - - - - - - - - - - - -
5 1 2 1 3 7 13 - - - - - - - - - - - - - -
6 1 2 1 2 4 10 16 - - - - - - - - - - - - -
7 1 2 1 2 2 7 13 19 - - - - - - - - - - - -
8 1 2 1 2 1 4 10 16 22 - - - - - - - - - - -
9 1 2 1 2 1 3 7 13 19 25 - - - - - - - - - -

10 1 2 1 2 1 2 4 10 16 22 28 - - - - - - - - -
11 1 2 1 2 1 2 2 7 13 19 25 31 - - - - - - - -
12 1 2 1 2 1 2 1 4 10 16 22 28 34 - - - - - - -
13 1 2 1 2 1 2 1 3 7 13 19 25 31 37 - - - - - -
14 1 2 1 2 1 2 1 2 4 10 16 22 28 34 40 - - - - -
15 1 2 1 2 1 2 1 2 2 7 13 19 25 31 37 43 - - - -
16 1 2 1 2 1 2 1 2 1 4 10 16 22 28 34 40 46 - - -
17 1 2 1 2 1 2 1 2 1 3 7 13 19 25 31 37 43 49 - -
18 1 2 1 2 1 2 1 2 1 2 4 10 16 22 28 34 40 46 52 -
19 1 2 1 2 1 2 1 2 1 2 2 7 13 19 25 31 37 43 49 55
20 1 2 1 2 1 2 1 2 1 2 1 4 10 16 22 28 34 40 46 52
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Remark 2. Note in the previous tables that k(G) has the same value up to a certain value of t
where, if t is even, k(G) = 2, and, if t is odd, then k(G) = 1 and, when t >

⌈m+n−2
2

⌉
, then k(G)

has a value with the following possible pattern:

1. If m = 2 (for example by dihedral groups), then the number of connected components of the
t-graph increases by four. We conjecture that K(G) = 2(2t− n)− 2.

2. If m = 3, then the number of connected components starts with seven and so progresses from
six to six, if n is odd, and starts at four and progresses from six to six when n is even. We
conjecture that K(G) = 3(2t− n− 2)− 2.

This fact leads us to state the first theorem in the next section, which allows us
to characterize first the t-graphs associated with two-generator groups in the form (10),
concerning the number of connected components.

3. The t-Graph of Some Two-Generator Groups

This section considers the t-graph of a particular case of two-generator groups. Specif-
ically, we suppose that a is an involution and b has an order n. For example, the group G
can be the abelian group Z2 ×Zn or the dihedral group Dn of order n.

Lemma 3. Let G be a two-generator group in the form (10) with n, m ≥ 2, and G is the correspond-
ing t-graph of G. Then, G has no isolated points if and only if t ≤

⌈m+n−2
2

⌉
.

Proof. Let x = aibj, y = akbl ∈ G with

d1(x, y) = |i− k|+ |j− l| = t. (12)

Then, t ∈ {0, . . . , m + n− 2}, and suppose |i− k| = s ∈ {0, . . . , m− 1}. This implies
that |j − l| = t − s ∈ {0, . . . , n − 1}. Note that if t − s > n − 1, the equality (12) is not
verified. That is, there is no edge between x and y. Then, in order not to have isolated
points, it must be fulfilled that t− s ≤ n− 1 with s ∈ {0, . . . , m− 1}. Moreover, t ≤ n− 1.
Analogously, it follows that t ≤ m − 1. Consequently, 2t ≤ m + n − 2, and, therefore,
t ≤

⌈m+n−2
2

⌉
.

Theorem 2. Let G be a two-generator group in the form (10) with n, m ≥ 2, and G = (G, E) be
the corresponding t-graph with t ≤

⌈m+n−2
2

⌉
.

1. If t is an even number, then k(G) = 2.
2. If t is an odd number, then G is connected.

Proof. From the above lemma, we have that the condition t ≤
⌈m+n−2

2
⌉

implies that G has
no isolated points. We now differentiate two possible cases.

1. Let t be an even number. We define C1 = (V1, E1) and C2 = (V2, E2), the subgraph of
G, as follows:

V1 := {aibj | i + j ≡ 0 mod 2}, (13)

E1 := {{aibj, akbl} | i + j, k + l ≡ 0 mod 2∧ |i− k|+ |j− l| = t}, (14)

and

V2 := {aibj | i + j ≡ 1 mod 2}, (15)

E2 := {{aibj, akbl} | i + j, k + l ≡ 1 mod 2∧ |i− k|+ |j− l| = t}. (16)

It is clear that V1 ∪V2 = G, and then k(G) = 2.
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2. Let t be an even number, and x = aibj ∈ G be arbitrary. If i + j ≡ 1 mod 2, then we
consider the sets

{akbl | i, k + l ≡ 0 mod 2, j ≡ 1 mod 2∧ |i− k|+ |j− l| = t} (17)

{akbl | j, k + l ≡ 0 mod 2, i ≡ 1 mod 2∧ |i− k|+ |j− l| = t}. (18)

Since G has no isolated points, at least one of these sets is non-empty, and then
{aibj, akbl} ∈ E.
If i + j ≡ 0 mod 2, then a similar analysis leads to the same conclusion. Then, we have
that G is a connected graph.

The next theorem shows that the 1-graph associated with a finite dihedral group Dn
has a simple structure. It corresponds to a square (n× 2)-grid, as shown in Figure 2 below.
Therefore, this graph is bichromatic or bipartite.

Theorem 3. The 1-graph of Dn is bipartite.

Proof. From (6), we have that

Dn = {1, b, · · · , bn−1} ∪ {ab, . . . , abn−1}. (19)

Note that
d1(bi, bi+1) = d1(abi, abi+1) = 1, (20)

then, the sets {1, b, · · · , bn−1} and {a, ab, · · · , abn−1} form a bipartition of the vertex set Dn.

bn−1 bn−2 · · · b2 b 1

aabab2· · ·abn−2abn−1

Figure 2. The 1-graph of Dn.

Theorem 2 leads to a complete characterization of the t-graphs associated with Dn.
However, before characterizing the t-graphs on dihedral groups, let us first look at some
useful lemmas.

Lemma 4. Let G = (Dn, E) be the t-graph of Dn. Then,

|E| =
{

4(n− t) + 2 If t > 1
3n− 2 If t = 1.

(21)

Proof. Let x = aibj, y = akbl ∈ Dn, then, 0 ≤ i, k ≤ 1 and 0 ≤ j, l ≤ n− 1. If d1(x, y) =
|i− k|+ |j− l| = t, then, for |i− k|, we have the following cases:

1. If i = k, then |j− l| = t. Note that there are n− t ways to choose j, l ∈ {0, . . . , n− 1}
such that the absolute value of their difference is t.

2. If i 
= k, then |j− l| = t− 1. In this case, there are n− t + 1 forms to choose j, l ∈
{0, . . . , n− 1} such that the absolute value of their difference is t− 1.

If t > 1, then there are 2(n− t) + 2(n− t + 1) ways of constructing an edge between
two elements of Dn. Therefore, we have that |E| = 4(n− t) + 2.

If t = 1 then we the same argument we have that |E| = 3n− 2.
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Lemma 5. Let f : Dn −→ Dn be defined as follows

f (aibj) =

{
bj If i = 1
abj If i = 0.

(22)

Then, f is an isometry under the Minkowski metric (2). Further, if we restrict f to U ⊂ Dn,
we have that U and f (U) are also isometric under the Minkowski metric.

Proof. It is immediate that f is an injective function and ( f ◦ f )(x) = x, for all x ∈ Dn.
That is, f is bijective. To prove that f is an isometry, let aibj, akbl ∈ Dn. Then,

1. If i, k = 1, then d1( f (aibj), f (akbl)) = d1(bj, bl) = d1(aibj, akbl).
2. If i, k = 0, then it is similar to the previous case.
3. If i = 0 and k = 1, then d1( f (aibj), f (akbl)) = d1(abj, bl) = d1(aibj, akbl).
4. If i = 1 and k = 0, then it is similar to the previous case.

Therefore, f is an isometry on Dn. The other statement is clear.

Theorem 4. (Characterization of t-graphs on Dn)
Let G = (Dn, E) the t-graph of Dn with n ≥ 2. We define r :=

⌈ n
2
⌉
.

1. If t ≤ r and t is an even number, then k(G) = 2, and these connected components are isomorphic.
2. If t ≤ r and t is an odd number, then G is an connected graph.
3. If t = r + s, with 1 ≤ s ≤ n− r, then the number K(G) of connected components of G is

given by

k(G) =
{

4(s− 1) + 2 If n is even
4s If n is odd,

(23)

where two of the connected components of G are an isomorphic path graph.

Proof.

1. It follows from Theorem 2 that k(G) = 2. The connected components of G are C1 =
(V1, E1) and C2 = (V2, E2), as in the proof of Theorem 2 (1). It is then sufficient to show
that C1

∼= C2. Using the function f defined in Lemma 5, we have for aibj, akbl ∈ V1 that

{aibj, akbl} ∈ E1 ⇐⇒ { f (aibj), f (akbl)} ∈ E2, (24)

which leads to C1
∼= C2.

2. This follows immediately from Theorem 2.
3. We differentiate two cases:

(a) Suppose t is an even number. The condition t > r implies that G has iso-
lated points, and then, using Theorem 2, we have that G has at least two
connected components. Let C1 = (V1, E1) and C2 = (V2, E2) for the connected
components constructed in the proof of Theorem 2 (1).
We prove first that |V1| = |V2|. In fact, we have that |j− l| = t or |j− l| = t− 1,
which implies that

j ∈ {t− 1, . . . , n− 1} ∪ {0, . . . , n− t} =: A, (25)

since l ∈ {0, . . . , n− 1}.
It is clear that {t− 1, . . . , n− 1} ∩ {0, . . . , n− t} = ∅, therefore

|A| = 2(n− t) + 2. (26)

On the other hand, it follows immediately that j ∈ A and i + j are even
numbers if and only if aibj ∈ V1, and then
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|V1| = |A| = 2(n− t) + 2. (27)

Analogously, |V2| = |A|, and we have |V1| = |V2|.
To demonstrate that C1

∼= C2, we consider again the function f defined in
Lemma 5. Note that f (V1) = V2, and, since f is an isometry, we have the
statement.
Finally, using Lemma 4, we have that |E| = 4(n− t) + 2, and the isomorphy
between C1 and C2 implies that |E1| = |E2|. Further, note that the minimum
value for |E1| and |E2| is 2(n − t) + 1. This proves that C1 and C2 are the
unique connected components of G, which are not isolated points, and these
are actually isomorphic path graphs.
The number of isolated points of G is |Dn| − |V1| − |V2| = 2n− 4(n− t)− 4 =
−2n + 4t− 4, and, consequently, k(G) = −2n + 4t− 2 = −2n + 4r + 4s− 2.
That is,

• If n is even, then k(G) = −2n + 4( n
2 ) + 4s− 2 = 4(s− 1) + 2.

• If n is odd, then k(G) = −2n + 4( n+1
2 ) + 4s− 2 = 4s.

(b) Suppose now that t is an odd number. Similar to before, the graph G has
isolated points, and the set

{{aibj, akbl} | i + j ≡ 0 mod 2, k + l ≡ 1 mod 2∧ |i− k|+ |j− l| = t}, (28)

is a subset of E. Let V′ be the set consisting of the non-isolated points of G.
Using the same argument as in (a), we obtain

|V′| = 2|A| = 4(n− t) + 4. (29)

By Lemma 4, we have that |E| = 4(n− t) + 2 , then, comparing |V′| and |E|
excluding the isolated points, it follows that G cannot be connected.
Let m be an even number such that{

0 ≤ m ≤ n− t− 1 if n− t− 1 is even, and
0 ≤ m ≤ n− t if n− t− 1 is odd,

(30)

and consider the subgraph C1 = (V1, E1) of G with the following edges:

{abt+m−1, bm}, {bm, bt+m}, {bt+m, abm+1}, {abm+1, abt+m+1}.

Then, C1 is a connected component of G, and, furthermore,

|V1| = 2(n− t) + 2 ∧ |E1| = 2(n− t) + 1, (31)

whence it is concluded that C1 is a path graph.
As before, using the function f from Lemma 5, we have that there exists another
connected component C2 = ( f (V1), E2), isomorphic to C1. Thus,

|E1|+ |E2| = |E| ∧ |V1|+ |V2| = |V′|. (32)

This means that C1 and C2 are the unique connected components of G, and,
analogously to the previous case, we have the same values for k(G).

The following corollary is a generalization of Theorem 3.

Corollary 1. Let G be a two-generator group in the form (10) with n, m ≥ 2, and t be an odd
number. Let further r be defined as in Theorem 2. If t ≤ r, then G = (G, E) is a bipartite graph.
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Proof. From Theorem 4, we have that G is connected. Now, we define the sets V1 and V2
as follows

V1 := {aibj | i + j ≡ 0 mod 2} (33)

V2 := {aibj | i + j ≡ 1 mod 2} (34)

It is immediate to verify that V1 and V2 form a bipartition of G, and G is a bipar-
tite graph.

An illustration of the previous Corollary is presented in Figure 3.

00 21 02 23

11

03220120

22 1013

Figure 3. The 3-graph of G = Z3 ×Z4.

Corollary 2. Let n be an odd number, n ≥ 5 and t = n+1
2 .

1. If t is odd, then G = (Dn, E) is a cycle of even length.
2. If t is even, then G = (Dn, E) is non-connected, and it has two isomorphic components, which

are two cycles. Furthermore, χ(G) = 3.

Proof. These statements follow directly from Theorem 4. Note that t = r.

1. From Lemma 4, it follows that

|E| = 4(n− ( n+1
2 )) + 2 = 2n = |Dn|, (35)

and then G is a cycle of even length.
2. G has two isomorphic connected components, say C1 = (V1, E1) and C2 = (V2, E2).

Lemma 4 implies that
|E| = 4(n− ( n+1

2 )) + 2 = 2n, (36)

and it follows that |E1| = |E2| = n, so G is constituted by two isomorphic cycles.
Finally, note that each component has an odd number of vertices. Then, χ(G) = 3.

Corollary 3. Let n be an even number, n ≥ 2 and t = n
2 + 1. Then, the t-graph of Dn consists of

two isomorphic paths graphs.

Proof. Using Theorem 4, and since n is an even number, we have that r = n
2 , and then

t = r + 1, and k(G) = 2. The rest is clear.

Corollary 4. Let n ≥ 2 and r be as in Theorem 4. Then, the t-graph of Dn is 2-chromatic if t ≤ r
and t is an odd number or t > r.

Proof. It follows immediately from Theorem 4 and Corollary 1.

Corollary 5. The n-graph of Dn has 2(n− 1) connected components, and two of these are path
graphs with two vertices.

Proof. Let G = (Dn, E) be the n-graph of Dn. From Lemma 4, it follows that |E| = 2.
Note that

{a, bn−1}, {abn−1, 1} ∈ E. (37)
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The other 2n− 4 elements of Dn are isolated points, and the proof is complete.

4. Some Questions and Conjectures

Some open questions and conjectures are presented below.

Question 1. Is it possible to characterize the t-graphs on two-generator groups, when t > r and r
is as in Theorem 2?

Question 2. Is it possible to generalize a version of Theorem 2 for an n-generator group for n, an
arbitrary natural number?

Question 3. It is possible to determine in a finite group the existence (or not) of a generating
system with the conditions stated for the definition of the t-graphs?

Conjecture 1. With respect to Theorem 2, if m is an even number and t ≤ r, it follows that the
two connected components of the t-graph G are isomorphic.

Conjecture 2. Let n ≥ 2 and r be as in Theorem 4. Then, the t-graph of Dn is 3-chromatic, if t ≤ r
and t is an even number.

Conjecture 3. If G = Zn ×Z2, then K(G) = 2(2t− n)− 2.

Conjecture 4. If G = Zn ×Z3, then K(G) = 3(2t− n− 2)− 2.

5. Discussion

In the present research, we introduce and investigate the t-graph on a finitely generated
group G. It leads to an interesting combinatorial problem. We establish conditions for t to
guarantee the existence of isolated points in the t-graph when G is a two-generator group.
We also propose an expression to determine the number of the connected components of the
t-graph. Other results have to do with the conditions that must be fulfilled for the t-graphs
of the dihedral groups to be a path graph or a cycle. Consequently, we can characterize the
chromatic number of the t-graph depending exclusively on the parity of t.
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1. Introduction

We refer to standard books of Harary [1] and West [2] for graph theory. For the signed
graphs, we refer to Zaslavsky [3,4]. All the signed graphs considered in this paper are
simple, finite and loopless.

For the preliminaries, definition and notation of signed graph S, underlying graph Su,
its negation η(S), signed isomorphism and its positive (negative) section, we refer to [5,6].

Some Basic Lemma and Theorems which are used in this paper are stated below as
a reference.

Lemma 1 ([7]). A signed graph in which every chordless cycle is positive is balanced.

Theorem 1 ([8]). A signed graph S is clusterable if—and only if—S does not contains a cycle with
exactly one negatively charged edge.

For balancing, clusterability, marking, canonical marking (C-marking), consistency,
C-consistency, S consistency, sign compatibility, line signed graph L(S), line signed root
graph, ×-line signed graph, ×-line signed root graph and the common-edge signed graph
CE(S) of signed graph, S we refer to [6,9–16].

Addition Signed Cayley Graph Σ∧n
A unitary addition Cayley graph Gn, where n ∈ I+, I+ is set of positive integers, is

a graph in which the vertex set is a ring of integers modulo n, Zn. Any two vertices x1 and
x2 are adjacent in Gn if—and only if—(x1 + x2) ∈ Un, where Un denotes the unit set.

Unitary addition Cayley graphs for n = 2, 3, 4, 5, 6 and 7 are shown in Figure 1.
The study of unitary Cayley graphs began in order to gain some insight into the graph

representation problem (see [17]), and we can extend it to the signed graphs (see [18]).
Now, we introduce the definition of an addition signed Cayley graph Σ∧n as follows:

The addition signed Cayley graph Σ∧n = (Gn, σ∧) is a signed graph whose underlying
graph is a unitary addition Cayley graph Gn, where n ∈ I+ and for an edge ab of Σ∧n ,

σ∧(ab) =

{
+ if a, b ∈ Un,
− otherwise.

Mathematics 2022, 10, 3492. https://doi.org/10.3390/math10193492 https://www.mdpi.com/journal/mathematics
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Figure 1. Examples of unitary addition Cayley graphs.

Examples of addition signed Cayley graph for n = 5, 6 and 10 can be seen in Figure 2a–c.
Throughout the paper, we consider n ≥ 2.

Figure 2. Examples of addition signed Cayley graph Σ∧n .

2. Some Properties of Σ∧
n

2.1. Balancing in Σ∧n
The balancing of some derived signed Cayley graphs has been studied in the literature

(see [19]). Here, we find out the property of balancing for the addition signed Cayley graph
Σ∧n , for which the following well-known result can be used as a tool.

Theorem 2 ([20]). Gn, n ≥ 2, is bipartite if—and only if—either n = 3 or n is even.

Lemma 2. i ∈ Un ⇒ (n− i) ∈ Un and i 
∈ Un ⇒ (n− i) 
∈ Un.

Lemma 3. Addition signed Cayley graph Σ∧n = (Gn, σ∧), for n even, is an all-negative signed graph.

Proof. Given an addition signed Cayley graph Σ∧n = (Gn, σ∧), where n is even.
Suppose the conclusion is false. Let there be a positive edge, say ij, in Σ∧n . By the definition
of Σ∧n , i, j ∈ Un. Since n is even, Un consists only of odd numbers. Thus, i and j are odd
numbers and their addition i + j is an even number. This shows that i + j /∈ Un, i.e., i and
j, are not adjacent in Σ∧n . Thus, we have a contradiction. Hence, if n is even, then Σ∧n is
all-negative signed graph.

Sampathkumar [21] gave the famous characterization to prove the balancing in a
signed graph, which is as follows:
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Theorem 3 (Marking Criterion [21]). A signed graph S = (G, σ) is balanced if—and only
if—there exists a marking μ of its vertices such that each edge uv in S satisfies σ(uv) = μ(u)μ(v).

Lemma 4. For the addition signed Cayley graph Σ∧n = (Gn, σ∧), Σ∧n is a balanced signed graph,
if for any prime p, n = pa.

Proof. n = pa, where p is a prime number. Now, we assign a marking μ to the vertices
of Σ∧n in such a manner that if u ∈ Un, then μ(u) = + and if u /∈ Un, then μ(u) = −, ∀
u ∈ V(Σ∧n ). Suppose there is an edge, say ij, in Σ∧n .

Case I: Let σ∧(ij) = +. Then, i, j ∈ Un and according to the marking μ(i) = μ(j) = +.
Thus, σ∧(ij) = μ(i)μ(j) = +.

Case II: Let σ∧(ij) = −. Then, there are three possibilities:

(a) i ∈ Un, j /∈ Un.
(b) i /∈ Un, j ∈ Un.
(c) i, j /∈ Un.

Now, for (a) and (b), by marking μ, we get μ(j) = − and μ(i) = + or vice versa.
Therefore, σ∧(ij) = μ(i)μ(j) = −. Now, if i, j /∈ Un. Then, i and j are both multiples
of p, and then i + j = kp, where k is some positive integer and i + j /∈ Un. So ij /∈ E(Σ∧n ).
Thus, condition (c) is not possible. So in every condition we get σ∧(ij) = μ(i)μ(j). Since ij
is an arbitrary edge, using Theorem 3, Σ∧n is balanced.

Theorem 4. The addition signed Cayley graph Σ∧n is balanced if—and only if—either n is even
or if n has exactly one prime factor, then n is odd.

Proof. Necessity: First, suppose ∑∧n is balanced. Now, let n = pα1
1 pα2

2 . . . pαm
m ; p1, p2, . . . , pm

being distinct primes, p1 
= 2, p1 ≤ p2 ≤ . . . ≤ pm.
In the unitary addition Cayley graph Gn, p1 + 1 
= k1 pi for i = 1, 2, . . . , m and k1 are

some positive integers i.e., p1 + 1 ∈ Un, so p1 is adjacent with one. Now, we claim that p1
and p2 are adjacent in Gn. On the contrary, suppose p1 p2 is not an edge in Gn. Then, p1 +
p2 /∈ Un. Thus, p1 + p2 = k2 pi for some i = 1, 2, . . . , m and k2 are some positive integers.
Let p1 + p2 be a multiple of p1.

p1 + p2 = αp1

p2 = αp1 − p1

= (α− 1)p1

for the positive integer α, a contradiction. With the same argument, we can show that
p1 + p2 is not a multiple of p2. Now, let p1 + p2 = αpi, for i = 3, 4, . . . , m. As we know,
the addition of two prime factors is always even; p1 + p2 is even. So, α is even and is
at least 2. However, as p1 < p2 < pi, p1 + p2 is always less than any multiple of pi
for i = 3, 4, . . . , m. Thus, p1 + p2 ∈ Un and p1 p2 is an edge in Gn. Next, if p2 is adjacent to 1
in Gn, we get a cycle

C = (p1, p2, 1, p1)

in Σ∧n . Clearly, p1 and p2 are not in Un, then by definition of Σ∧n , C is a negative cycle.
Thus, we have a negative cycle in Σ∧n , implying that Σ∧n is not balanced. Now, suppose
p2 + 1 /∈ E(Gn), since p2 + 1 
∈ Un. Then, p2 + 1 = cpi; i = 1, 2, . . . , m, c are positive
integers. Clearly,

p2 + 1 = αp1 (1)

α is a positive integer.
Since p2 
∈ Un, according to Lemma 2, n− p2 
∈ Un. Next, we claim that n− p2 is

adjacent to 1 or n− p2 + 1 = n− (p2− 1) ∈ Un. If p2− 1 ∈ Un, then according to Lemma 2,
n− p2 + 1 = n− (p2 − 1) ∈ Un. Suppose p2 − 1 
∈ Un. Then, p2 − 1 = βpi; i = 1, 2, . . . , m,
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β are positive integers. Let p2 − 1 = βp1. However, from Equation (1), p2 = αp1 − 1.
This implies

p2 − 1 = βp1

αp1 − 1− 1 = βp1

αp1 − 2 = βp1

αp1 − βp1 = 2

(α− β)p1 = 2.

This is not possible, as p1 is at least 3. Thus, p2 − 1 is not a multiple of any of the pis,
whence p2 − 1 ∈ Un. Hence, n− p2 + 1 = n− (p2 − 1) ∈ Un, whence n− p2 is adjacent
to 1 in Gn. Now, n − p2 + p1 = n − (p2 − p1). Since p1 < p2 < · · · pm, p2 − p1 
= kpi;
i = 2, 3, . . . m., k is a positive integer. Additionally, p2 − p1 is not a multiple of p1. This
shows that p2 − p1 ∈ Un and by Lemma 2, n− (p2 − p1) ∈ Un. This shows that n− p2 is
adjacent to p1 in Σn. Thus, we get a cycle

C′ = (p1, n− p2, 1, p1)

in Σn. Clearly, p1 and n− p2 do not belong to Un and 1 ∈ Un. Then, by definition Σ∧n , we
have a cycle C′ with three negative edges. Thus, a contradiction. So, by contraposition,
necessity is true.

Sufficiency: Let n be even. Then, according to Lemma 3, Σ∧n is an all-negative signed
graph. Additionally, according to Theorem 2, Gn is a bipartite graph. Hence, Σ∧n , by
Lemma 3 and Theorem 2, is balanced.

Now, let n be odd, with exactly one prime factor. Then, according to Lemma 4, Σ∧n is
balanced, hence the theorem.

2.2. Clusterability in Σ∧n
Theorem 5. The addition signed Cayley graph Σ∧n = (Gn, σ∧) is clusterable.

Proof. Given an addition signed Cayley graph Σ∧n = (Gn, σ∧). Suppose v ∈ V(Σ∧n ).
Define V∗ ⊆ V(Σ∧n ), such that V∗ = {ui : ui ∈ V(Σ∧n ) and σ∧(vui) = +}. By the definition
of Σ∧n , clearly ui and v are in Un.

If, for i and j, (i 
= j), ui and uj are adjacent, then σ∧(uiuj) = +. Thus, Un ⊆ V∗. Since
|Un| = φ(n), n − φ(n) = k (say) vertices are not in Un. Thus, only negative edges are
incident on these k vertices. Put all these vertices in the k partition V1, V2, . . . , Vk, such that
each partition contains exactly only one vertex. The clearly induced subgraph < V∗ > is
all positive. Additionally, no positive edge joins the vertex of V∗ with the vertex of any
of Vi, for i = 1, 2, . . . , k, and there is no edge xy, such that σ∧(xy) = − and x, y ∈ V∗. Thus,
there exists a partition of the V(Σ∧n ), such that every positive edge has end vertices within
the same subset and every negative edge has end vertices in a different subset. Hence,
the proof.

2.3. Sign-Compatibility in Σ∧n
Theorem 6 ([22]). A signed graph S is sign compatible if—and only if—S does not contain
a sub signed graph isomorphic to either of the two signed graphs. S1 formed by taking the path
P4 = (x, u, v, y) with both edges xu and vy negative and edge uv positive, and S2 formed by taking
S1 and identifying the vertices x and y (Figure 3).
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Figure 3. Two forbidden sub signed graphs for a sign-compatible signed graph [13].

Theorem 7. Addition signed Cayley graph Σ∧n is sign compatible if—and only if—n is 3 or even.

Proof. Let addition signed Cayley graph Σ∧n be sign compatible. If possible, suppose
the conclusion is not true. Let n be odd but not 3. Now, 01 ∈ E(Σ∧n ). As, n − 2 + 1 =
n − 1 ∈ Un, 1(n − 2) ∈ E(Σ∧n ). Additionally, n − 2 + 0 = n − 2 ∈ Un. Thus, we have
a triangle (0, 1, n− 2, 0) with one positive edge 1(n− 2) and two negative edges 01 and
(n− 2)0, which again contradict Theorem 6. Hence, the condition is necessary.

Next, let n be even. Thus, according to Lemma 3, Σ∧n , which is all-negative, is trivially
sign compatible. If n = 3, then Σ∧n is P3, which is trivially sign compatible.

Acharya and Sinha [23] showed that every line signed graph is sign compatible. Next,
we discuss the value of n for which Σ∧n is a line signed graph.

Theorem 8. Gn is a line graph if—and only if—n is equal to 2 or 3 or 4 or 6.

Proof. Necessity: Let Gn be a line graph. Meanwhile, n is not equal to 2, 3, 4 and 6.
Case I: n is prime. It is clear that n ≥ 5. Here, n is prime, so by the definition of Un,

there are numbers from 1 to (n− 1) in Un. 0 is connected to every vertex of Gn. The other
vertex, i 
= 0, in Gn is not connected to only (n− i) by definition. For any i, j ∈ V(Gn);
i 
= 0, j 
= 0 there is an induced subgraph in Gn (see Figure 4).

Figure 4. A forbidden subgraph for a line graph in Gn.

Thus, Gn contains forbidden subgraph for a line graph. Thus, Gn is not a line graph.
Case II: n is not prime. 1 is connected to 0 in Gn. Next, 1 is connected to p1, as p1 + 1 ∈

Un, where p1 is the smallest factor of n. Let αp1 = n, for a positive integer α. Now,

1 + (α− 1)p1 = 1 + αp1 − p1

= 1 + n− p1

= n− (p1 − 1).
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Since p1 − 1 ∈ Un, by Lemma 2, n− (p1 − 1) ∈ Un. Thus, 1 and (a− 1)p1 are adjacent
in Gn. Additionally, 0 is not adjacent to p1 and (a− 1)p1, because their sum is a multiple
of p1. In the same way, p1 and (a − 1)p1 are not connected in Gn because their sum is
a multiple of p1. So, we have an induced subgraph in Gn (see Figure 5). Thus, there is
a forbidden subgraph K1,3 of a line graph. Additionally, Gn is not a line graph.

Sufficiency: Let n = 2 or n = 3 or n = 4 or n = 6. Then, G2 ∼= L(P3), G3 ∼= L(P4),
G4
∼= L(C4) and G6 ∼= L(C6) (see Figure 6). Hence, the result.

Figure 5. A forbidden subgraph for a line graph in Gn.

Figure 6. Showing G2, G3, G4 and G6.

Theorem 9. Σ∧n is a line signed graph if—and only if—n = 2 or n = 3 or n = 4 or n = 6.

Proof. Necessity: Let, if possible, n be unequal to 2, 3, 4 and 6. Theorem 8 shows that
Gn 
∼= L(G), for any graph G. Thus, a contradiction and the condition are necessary.

Sufficiency: Now, suppose n = 2 or n = 3 or n = 4 or n = 6. Line signed graphs
of an addition signed Cayley graph, for these values of n, are displayed in Figure 7, hence
the sufficiency.

Figure 7. Showing Σ∧2 , Σ∧3 , Σ∧4 and Σ∧6 and its line signed root graphs.

Remark 1. Σ∧n is a ×-line signed graph if—and only if—n = 2 or n = 3 or n = 4 or n = 6.
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Proof. Let Σ∧n be a ×−line signed graph. We know that the underlying structure for line
signed graphs and ×−line signed graphs is the same. Thus, the condition comes from
Theorem 8.

Next, let n ∈ {2, 3, 4, 6}. Σ∧2 , Σ∧3 , Σ∧4 and Σ∧6 and its ×−line signed root graphs are
displayed in Figure 8. From Theorem 4, it is clear that for these values of n, an addition signed
Cayley graph is balanced. Additionally, L×(S) of any signed graph is always balanced, and its
underlying graph is a line graph (see [24]). This result comes from Theorems 4 and 8.

Figure 8. Showing Σ∧2 , Σ∧3 , Σ∧4 and Σ∧6 and its ×−line signed root graphs.

2.4. C-Consistency of Σ∧n
Lemma 5. For any prime p, p 
= 2 and n = pα, the d−(2) and d−(4) in Σ∧n is odd.

Proof. Given a Σ∧n = (Gn, σ∧), where n = pα and p is an odd prime. Since n is odd; 2,
4 ∈ Un. It is obvious that d−(2) and d−(4) in Σ∧n appear only when 2 and 4 are adjacent
to kp, where k is some positive integer. Now, (2 + 4) + cp 
= kp; positive integers c and
k. Additionally, 2 and 4 are connected to all the multiples of p, which are pα−1. Therefore
d−(2) (d−(4)) = pα−1 is odd, hence the lemma.

Theorem 10 ([25]). Let a, b and m be integers with m positive. The linear congruence ax ≡ b
(mod m) is soluble if and only if (a, m)|b. If x0 is a solution, there are exactly (a, m) incongruent
solutions given by {x0 + tm/(a, m)}, where t = 0, 1, . . . , (a, m)− 1.

Corollary 1. If (a, m) = 1 then the congruence ax ≡ b (mod m) has exactly one incongruent so-
lution.

Lemma 6. In addition, signed Cayley graph Σ∧n = (Gn, σ∧), if n = pa1
1 pa2

2 , where p1 and p2 are
two distinct odd primes, then d−(2)(d−(4)) = odd.

Proof. Given that n = pa1
1 pa2

2 in Σ∧n , p1 and p2 are distinct odd primes. As n is odd, 2 ∈ Un.
Now, the negative degree of 2 of Σ∧n appears only when 2 is adjacent with the multiples
of p1 and p2. Let Ai = {cpi; c certain positive integers, i = 1, 2}. Then,

|A1| = pa1−1
1 pa2

2

|A2| = pa1
1 pa2−1

2
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and

|A1 ∩ A2| = pa1−1
1 pa2−1

2

Thus, using the inclusion–exclusion principle

|A1 ∪ A2| = pa1−1
1 pa2

2 + pa1
1 pa2−1

2 − pa1−1
1 pa2−1

2

Since cp1(p2) + 2 = p2(p1), for certain positive integers c and so, cp1(p2)2 /∈ E(Σ∧n )
for those c. Thus, according to Theorem 10, we have

p1x ≡ −2 (mod p2) (2)

and

p2y ≡ −2 (mod p1) (3)

Due to Corollary 1, we have an incongruent solution x0 (say), which is unique for
Equation (2). So, for Equation (2) where p1x + 2 < n, we have:

x0 + 0(p2), x0 + 1(p2), x0 + 2(p2), . . . , x0 + (pa1−1
1 pa2−1

2 − 1)(p2) (4)

Thus, Equation (2) has pa1−1
1 pa2−1

2 total solutions. Similarly, the total solutions of Equa-
tion (3) are pa1−1

1 pa2−1
2 . Hence,

d−(2) = pa1−1
1 pa2

2 + pa1
1 pa2−1

2 − pa1−1
1 pa2−1

2 − pa1−1
1 pa2−1

2 − pa1−1
1 pa2−1

2

= pa1−1
1 pa2−1

2 (p1 + p2 − 3)

p1 and p2 are odd primes, which implies d−(2) is odd. The proof for d−(4) is analo-
gous.

Lemma 7. In Σ∧n = (Gn, σ∧), if n = 3a15a2 , then d−(7) = odd.

Proof. This is easy to prove using the same logic as mentioned in Lemma 6.

Theorem 11. Let n have at most two distinct odd prime factors, then Σ∧n is C consistent if—and
only if—n is even or 3.

Proof. Necessity: Let n have, at most, two distinct prime factors and let Σ∧n be C consistent.
If possible, let n be odd but not 3.

Case (a): Let n ≡ 1 (mod 3) or n ≡ 2 (mod 3). As n is odd, 2 ∈ Un. Clearly, 0 is
adjacent with 1, 2, n− 1 in Σ∧n . Since, n− 1 + 2 = 1 ∈ Un, n− 1 and 2 are connected in Σ∧n .
Since, 3 is not a factor of n, 3 ∈ Un. Now, 2 + 1 = 3 ∈ Un. Hence, 2 and 1 are adjacent
in Σ∧n . Now, the cycles Z1 = (0, 1, 2, 0), Z2 = (0, 2, n− 1, 0) have a common chord with end
vertices 0 and 2. By Lemma 6,

μσ(2) = −
Since the vertex 0 /∈ Un, d(0) = d−(0) = φ(n) = even. It follows,

μσ(0) = +.

Now, if either Z1 or Z2 is not a C-consistent cycle, a contradiction. Thus, Z1 and
Z2 both cycle are C-consistent. The common chord with end vertices zero and two are
oppositely marked, in contradiction with (Theorem 2, [26]).
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Case (b): Let n ≡ 0 (mod 3). Then, either n = 3a1 or n = 3a1 × pa2
2 . First, suppose

p2 
= 5. Since, n is odd, 2, 4 ∈ Un. According to Lemma 2, n− 2 ∈ Un. Clearly, 0 is adjacent
to 1, 4 and n− 2 in Σ∧n . Since, n− 2 + 4 = n + 2 = 2 ∈ Un, n− 2 is adjacent to 4 in Σ∧n .
Now, for cycle Z1 = (0, 1, 4, 0), Z2 = (0, 4, n− 2, 0); Z1, Z2 have a common chord with end
vertices 0 and 4. According to Lemma 6,

μσ(4) = −

Since the vertex 0 /∈ Un, d(0) = d−(0) = φ(n) = even. It follows,

μσ(0) = +.

Now, if either Z1 or Z2 is a cycle which is not C consistent, a contradiction. There-
fore, Z1 and Z2 are the cycles which are C-consistent. However, there is a chord whose
end vertices 0 and 4 have opposite marking. Here again, we find a contradiction to the
(Theorem 2, [26]).

Now, suppose p2 = 5. In this case, we consider two cycles Z1 = (0, 1, 7, 0) and
Z2 = (0, 7, 10, 13, 0) in Σ∧n . For cycles Z1, Z2 have a common chord with end vertices 0 and
7, according to Lemma 7,

μσ(7) = −
Since the vertex 0 /∈ Un, d(0) = d−(0) = φ(n) = even. It follows that

μσ(0) = +.

Now, if either Z1 or Z2 is a cycle which is not C consistent, this is a contradiction.
Therefore, Z1 and Z2 are the cycles which are C consistent. However, the end vertices 0
and 7 have the opposite marking. Here, we have a contradiction to the (Theorem 2, [26]).
Hence, n is either even or n = 3.

Sufficiency: Let n be even. According to Lemma 3, Σ∧n is all negative. Additionally,
according to Theorem 13, d(v) = d−(v) = even ∀ v ∈ V(Σ∧n ). So, according to canonical
marking μσ(v) = + ∀ v ∈ V(Σ∧n ). So when n is even, Σ∧n is trivially C consistent. If n = 3,
then G3 is a path, which is trivially C- consistent, hence the result.

3. Balance in Certain Derived Signed Graphs of Σ∧
n

Theorem 12. η(Σ∧n ) is balanced if—and only if—n is 3 or even.

Proof. Let η(Σ∧n ) be balanced. If possible, n is odd but not 3, and p is the smallest prime
factor of n. Since n− 2 + 1 = n− 1 ∈ Un, n− 2 and 1 are connected in Σ∧n . p + 1 ∈ Un
implies that p and 1 are connected in Σ∧n . Additionally, as n is odd, 2 ∈ Un and n− 2 ∈ Un.
according to Lemma 2. Since, n− 2 + p = n + (p− 2) = p− 2 ∈ Un, (n− 2)p ∈ E(Σ∧n ).
Now, for the cycle Z = (1, p, n− 2, 1) in Σ∧n we have a one positive edge 1(n− 2) and two
negative edges 1p and p(n− 2) in Z. However, in η(Σ∧n ), there is a cycle Z′ = (1, p, n− 2, 1)
with one negative edge 1(n− 2) and two positive edges 1p and p(n− 2). Thus, we have
a negative cycle that contradicts the given condition. Therefore, the only possibility is that
n is 3 or even.

Conversely, let n be even. Σ∧n , according to Lemma 3 is an all-negative signed graph.
So η(Σ∧n ) is balanced and is all positive. η(Σ∧n ) for n = 3 is a tree which is trivially balanced,
hence the converse.

We present the following theorem for the degree of the vertices of Gn (see [20]).
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Theorem 13 ([20]). Let m be any vertex of the unitary addition Cayley graph Gn. Then,

d(m) =

⎧⎨⎩
φ(n) if n is even,
φ(n) if n is odd and (m, n) 
= 1,
φ(n)− 1 if n is odd and (m, n) = 1.

Additionally, for a signed graph S, the balance property of L(S) is discussed in ([27],
Theorem 4).

Theorem 14. For an additional signed Cayley graph Σ∧n = (Gn, σ∧), its line signed graph L(Σ∧n )
is balanced if—and only if—n ∈ {2, 3, 4, 6}.

Proof. Let L(Σ∧n ) be balanced and n 
= 2, 3, 4 and 6. Now, according to Theorem 13, d(0) =
d−(0) = φ(n) = even, which implies d(0) = d−(0) = φ(n) ≥ 4. This shows that condition ii
(of Theorem 4, [27]) is not satisfied for Σ∧n . This is a contradiction. Hence, n ∈ {2, 3, 4, 6}.
The converse part is easy to prove.

For a signed graph S, the balance property of CE(S) is discussed in ([9], Theorem 13).

Theorem 15. For an additional signed Cayley graph Σ∧n = (Gn, σ∧), its common-edge signed
graph CE(Σ∧n ) is balanced if—and only if—n ∈ {3, 4, 6}.

Proof. Let n /∈ {3, 4, 6}. It is clear that 0 /∈ Un. Now, by Theorem 13, d(0) = d−(0) =
φ(n) = even, which implies d(0) = d−(0) = φ(n) ≥ 4. This shows that condition ii
(of Theorem 13, [9]) is not satisfied for Σ∧n . Thus, CE(Σ∧n ) is not balanced, which is a contradiction.
Hence, n ∈ {3, 4, 6}. The converse part is easy to prove.
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1. Introduction

Representation theory of Kac–Moody algebras to this day serves as inspiration for
numerous combinatorial problems, solutions to which give rise to interesting combinatorial
structures. Examples of this can be met in [1–3] and many other well-known works. The
problem of tensor power decomposition, in turn, can be considered from the combinatorial
perspective as a problem of counting lattice paths in Weyl chambers [4–7]. In this paper, we
count paths on the Bratteli diagram [8], reproducing the decomposition of tensor powers
of the fundamental module of the quantum group Uq(sl2) with divided powers, where
q is a root of unity ([9–12]), into indecomposable modules. Combinatorial treatment of
this problem gives rise to some interesting structures on lattice path models, such as
filter restrictions, first introduced in [13], and long steps, which are introduced in the
present paper.

In [13], the considered lattice path model was motivated by the problem of finding
explicit formulas for multiplicities of indecomposable modules in the decomposition of
tensor power of fundamental module T(1) of the small quantum group uq(sl2) ([14]). We
call this model the auxiliary lattice path model [9]. It consists of the left wall restriction at
x = 0 and filter restrictions located periodically at x = nl− 1 for n ∈ N. For n = 1, the filter
restriction is of type 1, and the rest of the values of n filter restrictions are of type 2. Applying
periodicity conditions (M + 2l, N) = (M, N), M, N ≥ l − 1 to the Bratteli diagram of this
model allows one to obtain another lattice path model, recursion for weighted numbers of
paths that coincide with recursion for multiplicities of indecomposable uq(sl2)-modules
in the decomposition of T(1)⊗N . Counting weighted numbers of paths descending from
(0, 0) to (M, N) on this folded Bratteli diagram allows one to obtain desired formula for
multiplicity, where M stands for the highest weight of a module, the multiplicity of which
is in question, and N stands for the tensor power of T(1). This has been performed in [9].

We found that the auxiliary lattice path model can be modified in a different way,
giving results for representation theory of Uq(sl2), the quantized universal enveloping
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algebra of sl2 with divided powers, when q is a root of unity ([15]). Instead of applying
periodicity conditions to the auxiliary lattice path model, as in the case of uq(sl2), for Uq(sl2)
we consider all filters to be of the 1st type and also allow additional steps from x = nl− 2 to
x = (n− 2)l− 1, where n ≥ 3. Counting weighted numbers of paths descending from (0, 0)
to (M, N) on the Bratteli diagram of the lattice path model obtained by this modification
gives a formula for the multiplicity of T(M) in the decomposition of T(1)⊗N .

The main goal of this paper is to give a more in-depth combinatorial treatment of the
auxiliary lattice path model in the presence of long steps and obtain explicit formulas for
weighted numbers of paths, descending from (0, 0) to (M, N). We explore combinatorial
properties of long steps, as well as define boundaries and congruence of regions in lattice
path models. Latter is found to be useful for deriving formulas for weighted numbers of
paths. For any considered region, weighted numbers of paths at boundary points uniquely
define such for the rest of the region by means of recursion. So, for congruent regions in
different lattice path models, regions where, roughly speaking, recursion is similar, it is
sufficient to prove identities only for boundary points of such regions.

This paper is organized as follows. In Section 2, we introduce the necessary notation.
In Section 3, we give background on the auxiliary lattice path model. In Section 4, we
introduce the notion of regions in lattice path models, boundary points and congruence
of regions. In Section 5, we explore combinatorial properties of long steps in periodically
filtered lattice path models and consider the auxiliary lattice path model in the presence of
long steps. We do so by means of boundary points and congruence of regions. In Section 6,
we modify the auxiliary lattice path model and argue that the recursion for the weighted
number of paths in such modified model coincides with the recursion for multiplicities
of modules in tensor product decomposition of T(1)⊗N for Uq(sl2) with divided powers,
where q is a root of unity. In Section 7, we prove formulas for the weighted numbers of
descending paths, relevant to this modified model. In Section 8, we conclude this paper
with observations for possible future directions or research.

2. Notations

In this paper, we use the notation following [16]. For our purposes of counting
multiplicities in tensor power decomposition of Uq(sl2)-module T(1), throughout this
paper, we consider the lattice

L = {(n, m)|n + m = 0 mod 2} ⊂ Z2,

and the set of steps S = SL ∪ SR, where

SR = {(x, y)→ (x + 1, y + 1)}, SL = {(x, y)→ (x− 1, y + 1)}.

A lattice path P in L is a sequence P = (P0, P1, . . . , Pm) of points Pi = (xi, yi) in L with
starting point P0 and the endpoint Pm. The pairs P0 → P1, P1 → P2 . . . Pm−1 → Pm are called
steps of P .

Given starting point A and endpoint B, a set S of steps and a set of restrictions C
we write

L(A→ B;S | C)
for the set of all lattice paths from A to B that have steps from S and obey the restrictions
from C. We denote the number of paths in this set as

|L(A→ B;S | C)|.

The set of restrictions C in lattice path models considered throughout this paper mostly
contain wall restrictions and filter restrictions. Left(right) wall restrictions forbid steps in
the left(right) direction, reflecting descending paths and preventing them from crossing
the ’wall’. Filter restrictions forbid steps in certain directions and provide other steps with
non-uniform weights, so paths can cross the ’filter’ in one direction, but cannot cross it in
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the opposite direction. A rigorous definition of these restrictions is given in subsequent
sections.

To each step from (x, y) to (x̃, ỹ) we assign the weight function ω : S −→ R>0 and use
notation (x, y) ω−→ (x̃, ỹ) to denote that the step from (x, y) to (x̃, ỹ) has the weight ω. By
default, all unrestricted steps from S will have weight 1 and is denoted by an arrow with
no number at the top. The weight of a path P is defined as the product

ω(P) =
m−1

∏
i=0

ω(Pi → Pi+1).

For the set L(A→ B;S | C) we define the weighted number of paths as

Z(L(A→ B;S | C)) = ∑
P

ω(P),

where the sum is taken over all paths P ∈ L(A→ B;S | C).

3. The Auxiliary Lattice Path Model

In this section, we briefly revise notions and results obtained in [13], relevant for future
considerations. It is convenient for us to omit mentioning S in L(A→ B;S | C). All paths
considered below involve steps from set S unless stated otherwise.

3.1. Unrestricted Paths

Let L(A→ B) be the set of unrestricted paths from A to B on lattice L with the steps
S. An example of such a path is given in Figure 1.

(x, y) = (0, 0)

(1, 1)(−1, 1)

(M,N)

Figure 1. Example of an unrestricted path in L((0, 0)→ (M, N)) for lattice L and set of steps S.

Lemma 1. For a set of unrestricted paths with steps S we have

|L((0, 0)→ (M, N))| =
(

N
N−M

2

)
. (1)

3.2. Wall Restrictions

Definition 1. For lattice paths that start at (0, 0) we will say thatW L
d with d ≤ 0 is a left wall

restriction (relative to x = 0) if at points (d, y) paths are allowed to take steps of type SR only

W L
d = {(d, y)→ (d + 1, y + 1) only}.

Lemma 2. The number of paths from (0, 0) to (M, N) with the set of steps S and one wall restriction
W L

a can be expressed via the number of unrestricted paths as

|L((0, 0)→ (M, N) | W L
a )| =

(
N

N−M
2

)
−
(

N
N−M

2 + a− 1

)
, for M ≥ a, (2)
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We considered the left walls located at x = 0. An example of possible steps for paths
descending from (0, 0) in the presence of this restriction is given in Figure 2.

(0, 0)

WL
0

Figure 2. Arrangement of steps for points of L in presence of restrictionW L
0 .

3.3. Filter Restrictions

Definition 2. For n ∈ N, we say that there is a filter Fn
d of type n, located at x = d if at

x = d, d + 1 only the following steps are allowed:

Fn
d = {(d, y) n−→ (d+ 1, y+ 1), (d+ 1, y+ 1)→ (d+ 2, y+ 2), (d+ 1, y+ 1) 2−→ (d, y+ 2)}.

The index above the arrow is the weight of the step.

Note that by default, an arrow with no number at the top means that the corresponding
step has a weight of 1. An example of possible steps for descending paths in the presence
of this restriction is given in Figure 3. We highlighted steps of weight 2 with red instead of
an arrow with a superscript 2 for future convenience, as those are the most common for the
auxiliary lattice path model and its modifications. We were mostly involved with filters
of type 1, so superscripts n were avoided, leaving Bratteli diagrams with black and red
arrows, with weights 1 and 2 correspondingly.

. . .

Fn
d

. . .

n

n

n

n

Figure 3. Filter Fn
d . Red arrows correspond to steps (d + 1, y + 1) 2−→ (d, y + 2) that has a weight 2.

Black arrows with superscript n correspond to steps (d, y) n−→ (d + 1, y + 1). Other steps have
weight 1.
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Lemma 3. The number of lattice paths from (0, 0) to (M, N) with steps from S and filter restriction
Fn

d with x = d > 0 and n ∈ N is

Z(LN((0, 0)→ (M, N) | Fn
d )) =

(
N

N−M
2

)
−
(

N
N−M

2 + d

)
, for M < d, (3)

Z(LN((0, 0)→ (M, N) | Fn
d )) = n

(
N

N−M
2

)
, for M > d. (4)

Proof. The proof is the same as for Lemma 4.8 and Lemma 4.9 in [13].

3.4. Counting Paths in the Auxiliary Lattice Path Model

Consider the lattice path model for the set of paths on L descending from (0, 0) to
(M, N) with steps S in the presence of restrictionsW L

0 , F 1
l−1, F 2

nl−1, n ∈ N, n ≥ 2. Such set
is denoted as

LN((0, 0)→ (M, N);S | W L
0 ,F 1

l−1, {F 2
nl−1}∞

n=2)

and such a model is called the auxiliary lattice path model. The main theorem of [13] gives
an explicit formula for weighted numbers of paths in the auxiliary lattice path model. Then,
in [9], periodicity conditions (M + 2l, N) = (M, N), M, N ≥ l − 1 were applied, resulting
in a folded Brattelli diagram. For such a diagram, recursion on the weighted numbers
of paths coincides with recursion on multiplicities of indecomposable uq(sl2)-modules
in tensor product decomposition of T(1)⊗N . Note that due to properties of the category
Rep(uq(sl2)), we mostly considered odd values of l; however, the results remain to be true
for even values of l as well.

Before coming to modifications of the auxiliary lattice path model relevant to the
representation theory of Uq(sl2) at the roots of unity, we need to slightly tweak it. We
are interested in paths descending from (0, 0) to (M, N) with steps S in the presence of
restrictionsW L

0 , F 1
nl−1, n ∈ N, instead of filters of type 2. Such lattice path model is depicted

in Figure 4.

. . .

(0, 0)

F1
l−1 F1

2l−1 F1
3l−1WL

0

Figure 4. Arrangement of steps for points of L in the considered, slightly tweaked version of the
auxiliary lattice path model. Here, we depict the case, where l = 5.
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Definition 3. We denote by multiplicity function in the j-th strip Mj
(M,N)

the weighted number of
paths in set

LN((0, 0)→ (M, N);S | W L
0 , {F 1

nl−1}, n ∈ N)

with the endpoint (M, N) that lies within (j− 1)l − 1 ≤ M ≤ jl − 2

Mj
(M,N)

= Z(LN((0, 0)→ (M, N);S | W L
0 , {F 1

nl−1}, n ∈ N)), (5)

where M ≥ 0 and j =
[

M+1
l + 1

]
.

Now consider the version of the main theorem in [13] corresponding to this model.

Theorem 1 ([13]). The multiplicity function in the j-th strip is given by

Mj
(M,N)

=

[
N−(j−1)l+1

4l

]
∑
k=0

Pj(k)F(N)
M+4kl +

[
N−jl

4l

]
∑
k=0

Pj(k)F(N)
M−4kl−2jl −

−

[
N−(j+1)l+1

4l

]
∑
k=0

Qj(k)F(N)
M+2l+4kl −

[
N−jl−2l

4l

]
∑
k=0

Qj(k)F(N)
M−4kl−2(j+1)l ,

where

Pj(k) =

[
j
2

]
∑
i=0

(
j− 2

2i

)(
k− i + j− 2

j− 2

)
, Qj(k) =

[
j
2

]
∑
i=0

(
j− 2

2i + 1

)(
k− i + j− 2

j− 2

)
, (6)

F(N)
M =

(
N

N−M
2

)
−
(

N
N−M

2 − 1

)
.

Proof. The proof is the same as the proof of the main theorem in [13], except that instead
of Lemma 4.9 in [13], for the slightly tweaked model one should use Lemma 3.

From now on, when mentioning the auxiliary lattice path model, we mean its slightly
tweaked version. This model will be further modified in subsequent sections. Instead of ap-
plying periodicity conditions, as for uq(sl2), we enhance this model with long steps, source
and target points which are located near filters. As a result, recursion for the weighted
numbers of paths on the resultant Bratteli diagram recreates recursion for multiplicities of
indecomposable Uq(sl2)-modules in the decomposition of T(1)⊗N .

4. Boundary Points and Congruent Regions

In this section, we consider notions, which are convenient for counting paths in the
auxiliary lattice path model in the presence of long steps. We will see, that multiplicities
on the boundary of a region uniquely define multiplicities in the rest of the region. For
proving identities between multiplicities in two congruent regions, it is sufficient to prove
such identities for their boundary points.

Definition 4. Consider the lattice path model, defined by a set of steps S and a set of restrictions
C on lattice L. Subset L0 ⊂ L with steps S and restrictions C is called a region of the lattice path
model under consideration.

Intuitively, region L0 ⊂ L is a restriction of the lattice path model defined by S, C on
lattice L to the subset L0. The word ’restriction’ is overused, so we consider regions of
lattice path models instead.
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Definition 5. Consider L0 ⊂ L a region of the lattice path model defined by steps S and restrictions
C. Point B ∈ L0 is called a boundary point of L0 if there exists B′ ∈ L, B′ /∈ L0 such that step
B′ → B is allowed in L by a set of steps S and restrictions C. The union of all such points is a
boundary of L0 and is denoted by ∂L0.

The Definition 5 introduces a notion, reminiscent of the outer boundary in graph
theory. Note that boundary points are defined with respect to some lattice path models
under consideration. For brevity, we assume that this lattice path model is known from the
context, and mentioning it will be mostly omitted.

Example 1. For a strip in the auxiliary lattice path model, its boundary is in the left filter. It is
depicted in Figure 5.

F1
l−1 F1

2l−1

L0

∂L0

Figure 5. Region L0, highlighted with blue dashed lines, is a 2nd strip for l = 5. Its boundary ∂L0 is
a set of points in the left filter restriction F1

l−1, which is highlighted with purple dashed lines.

Example 2. Consider region L0 of the unrestricted lattice path model, as depicted in Figure 6
and highlighted with blue dashed lines. Its boundary is a set of points highlighted with purple
dashed lines.

L0
∂L0

Figure 6. Region L0 is highlighted with blue dashed lines. Its boundary ∂L0 is a set of points
highlighted with purple dashed lines.
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Lemma 4. Consider region L0 of a lattice path model defined by S, C on lattice L. Weighted
numbers of paths Z(LN((0, 0)→ (M, N); . . .) for (M, N) ∈ L0 are uniquely defined by weighted
numbers of paths for its boundary points ∂L0.

Proof. Suppose weighted numbers of paths for ∂L0 are known. Suppose that there exists
some point A ∈ L0, such that its weighted number of paths cannot be expressed in terms
of weighted numbers of paths for points in ∂L0.

The first case is that recursion for a weighted number of paths for A involves some
point A′ ∈ L0, a weighted number of paths for which cannot be expressed in terms of
such for points in ∂L0. In this case, we need to consider A′ and recursion on the weighted
number of paths for such a point instead of A.

The second case is that recursion for a weighted number of paths for A involves a
weighted number of paths for some point A′ /∈ L0. Then, A ∈ ∂L0 by definition of a
boundary point and weighted number of paths for such point is known by the initial
supposition of the lemma.

Note that due to the fact that we consider descending paths, M and N, to be finite, the
first case can be iterated finitely many times at most.

Definition 6. Consider two lattice path models with steps S1, S2 and restrictions C1, C2 defined
on lattice L. Subset L1 ⊂ L is a region in the lattice path model defined by S1, C1. Subset L2 ⊂ L
is a region in the lattice path model defined by S2, C2. Regions L1 and L2 are congruent if there
exists a translation T in L such that

• TL1 = L2 as sets of points in L
• Translation T induces a bijection between steps in L1 and L2, meaning that there is a one-to-

one correspondence between steps with source and target points related by T, with preservation
of weights.

The second condition can be written down explicitly. Firstly, for each (M, N) ∈ L1

and each step (M, N)
w−→ (P, Q) in S1 obeying C1 such that (P, Q) ∈ L1, there is a step

(M′, N′) w−→ (P′, Q′) in S2 obeying C2, where T(M, N) = (M′, N′), T(P, Q) = (P′, Q′).
Secondly, for each (M′, N′) ∈ L2 and each step (M′, N′) w−→ (P′, Q′) in S2 obeying C2 such
that (P′, Q′) ∈ L2, there is a step (M, N)

w−→ (P, Q) in S1 obeying C1, where T−1(M′, N′) =
(M, N), T−1(P′, Q′) = (M, N). To put it simply, if we forget about lattice path models
outside L1 and L2, these two regions will be indistinguishable. Due to translations in L
being invertible, it is easy to see that congruence defines an equivalence relation.

Now we must prove the main theorem of this subsection.

Theorem 2. Consider two lattice path models with steps S1, S2 and restrictions C1, C2 defined on
lattice L. Region L1 of the lattice path model defined by S1, C1 is congruent to region L2 of the
lattice path model defined by S2, C2, where TL1 = L2. If equality

Z(LN((0, 0)→ (M, N);S1 | C1)) = Z(LN((0, 0)→ T(M, N);S2 | C2)) (7)

holds for all (M, N) ∈ ∂L1 ∪ T−1(∂L2), then it holds for all (M, N) ∈ L1.

Note, that if (M, N) ∈ ∂L1 it does not necessarily follow that T(M, N) ∈ ∂L2, due to
C1 and C2 being different. So, it is natural to ask Formula (7) to hold for ∂L1 ∪ T−1(∂L2).

Proof. We need to prove that Formula (7) is true for (M, N) ∈ L1. The l.h.s. can be uniquely
expressed in terms of its values at ∂L1 ∪ T−1(∂L2), following procedure in Lemma 4. Due
to the congruence between L1 and L2, recursion for the r.h.s. of (7) coincides with the one
for the l.h.s., so we can obtain the same expression on the r.h.s., but with values of weighted
numbers of paths for T(∂L1 ∪ T−1(∂L2)) = T(∂L1) ∪ ∂L2 instead of ∂L1 ∪ T−1(∂L2). We
can compare the l.h.s. and the r.h.s. term by term, for points related by translation T. All of
such terms have the same values due to the initial supposition of the theorem.
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Corollary 1. Consider lattice path models with steps S1, S2, S3 and restrictions C1, C2, C3 defined
on lattice L. Region L1 is congruent to L2 and L3, where T1(M1, N1) = (M2, N2), T2(M1, N1) =
(M3, N3) for (M1, N1) ∈ L1. If equality

Z(LN((0, 0)→ (M, N);S1 | C1)) =

= Z(LN((0, 0)→ T1(M, N);S2 | C2)) + Z(LN((0, 0)→ T2(M, N);S3 | C3)) (8)

holds for all (M, N) ∈ ∂L1 ∪ T−1
1 (∂L2) ∪ T−1

2 (∂L3), then it holds for all (M, N) ∈ L1.

Proof. Due to linearity of the r.h.s. of Formula (8), the proof repeats the one of Theorem 2.

The moral of this section is that for two congruent regions, weighted numbers of
paths are defined by values of such at the boundary of the considered regions. For proving
identities, it is sufficient to establish equality for weighted numbers of paths at boundary
points, while equality for the rest of the region will follow due to the congruence.

5. The Auxiliary Lattice Path Model in the Presence of Long Steps

Long Steps in Lattice Path Models with Filter Restrictions

Long step is a step (x, y) w−→ (x′, y + 1) in L such that |x − x′| > 1. We denote the
sequence of long steps as

S[M1, M2] = {(M1, M1 + 2m)→ (M2, M1 + 1 + 2m)}∞
m=0,

where x = M1 is the source point for the sequence and x = M2 is the target point,
|M1 −M2| > 1. For the purposes of this paper, we are mainly interested in sequences

S(k) ≡ S[l(k+ 2)− 2, lk− 1] = {(l(k+ 2)− 2, lk− 2+ 2m)→ (lk− 1, lk− 2+ 1+ 2m)}∞
m=0,

where k ∈ N and C consists of F 1
lk−1 and F 1

l(k+2)−1. We need such sequences of long steps
for modification of the auxiliary lattice path model, relevant to the representation theory of
Uq(sl2) at roots of unity.

Lemma 5. Fix k ∈ N. Let

Z(M,N) ≡ Z(LN((0, 0)→ (M, N));S | F 1
lk−1,F 1

l(k+2)−1)

be the weighted number of lattice paths from (0, 0) to (M, N) with filter restrictions F 1
lk−1,

F 1
l(k+2)−1 and set of unrestricted elementary steps S. Let

Z′(M,N) ≡ Z(LN((0, 0)→ (M, N));S∪ S(k) | F 1
lk−1,F 1

l(k+2)−1)

be the weighted number of lattice paths from (0, 0) to (M, N) with the same restrictions, with steps
S∪ S(k). Then for lk− 1 ≤ M ≤ l(k + 2)− 2 we have

Z′(M,N) = Z(M,N), if N ≤ M + 2l − 2, (9)

Z′(M,N) = Z(M,N) + Z(M+2l,N), if M + 2l ≤ N ≤ l(k + 4)− 2. (10)

Proof. In Figure 7, we depict the setting of the Lemma 5. Long steps do not impact region
I, so Formula (9) is true.
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F1
lk−1 F1

l(k+2)−1

(l(k + 2)− 2, l(k + 2)− 2)

(lk − 1, l(k + 2)− 2 + 1)

I

II

Figure 7. By square and circle we denote points, where long steps first appear. Regions I and II
highlighted with blue dashed lines correspond to cases N ≤ M + 2l − 2, as in (9), and M + 2l ≤ N ≤
l(k + 4)− 2, as in (10).

Consider Formula (10). The weighted number of paths in the l.h.s. involves points
from region II. Its boundary contains points of the left cathetus of region II, of the form
(lk− 1, N) for l(k + 2)− 1 ≤ N ≤ l(k + 4)− 2, and points of the hypotenuse of the region
II, of the form (lk− 1 + j, l(k + 2)− 1 + j) for j = 1, . . . , 2l− 1. Denote this set by ∂LI I . The
r.h.s. of (10) has two terms. The first involves region II, the boundary of which we have
already considered. The second term involves points of the region congruent to region II, as
they are related by translation T(M, N) = (M+ 2l, N), satisfying Definition 6. Its boundary
consists of the image of the left cathetus of region II under translation T. Denote this set by
∂L′I I . By Corollary 1, it is sufficient to prove Formula (10) for ∂LI I ∪ T−1(∂L′I I) = ∂LI I .

We proceed by induction over n, where N = l(k + 2) − 1 + 2n. For n = 0 from
recursion we have

Z′(lk−1,l(k+2)−1) = Z(lk−2,l(k+2)−2) + 2Z(lk,l(k+2)−2) + Z(l(k+2)−2,l(k+2)−2), (11)

which, taking into account that

Z(lk−2,l(k+2)−2) + 2Z(lk,l(k+2)−2) = Z(lk−1,l(k+2)−1),

Z(l(k+2)−2,l(k+2)−2) = Z(l(k+2)−1,l(k+2)−1),

gives us
Z′(lk−1,l(k+2)−1) = Z(lk−1,l(k+2)−1) + Z(l(k+2)−1,l(k+2)−1). (12)

We obtained the base of induction.
In a similar manner, it also follows, that Formula (10) is true for boundary points of

the hypotenuse of region II. In order to show this, one must consider recursion explicitly
and use the fact that

Z(j,j) = Z(k,k), for all j, k > 0. (13)

Now it is sufficient to prove Formula (10) for boundary points, situated in the left cathetus
of region II.

Suppose

Z′(lk−1,l(k+2)−1+2n) = Z(lk−1,l(k+2)−1+2n) + Z(l(k+2)−1,l(k+2)−1+2n) (14)
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is true. For the sake of brevity, we rewrite this expression as

Z′(p,q+2n) = Z(p,q+2n) + Z(q,q+2n), (15)

where p = lk− 1, q = l(k + 2)− 1, q = p + 2l. By Theorem 2, it follows that Formula (10) is
true for the region, corresponding to boundary points, covered by the inductive supposition.
In particular, this region includes points (p + j, q + 2n + j) for j = 0, . . . , 2l − 1. Need to
prove that

Z′(p,q+2(n+1)) = Z(p,q+2(n+1)) + Z(q,q+2(n+1)) (16)

Taking into account, that

Z′(p,q+2n+2) = Z(p−1,q+2n+1) + 2Z′(p+1,q+2n+1) + Z(q−1,q+2n+1),

Z(p,q+2n+2) = Z(p−1,q+2n+1) + 2Z(p+1,q+2n+1),

Z(q,q+2n+2) = Z(q−1,q+2n+1) + 2Z(q+1,q+2n+1),

after getting rid of the factors, we obtain

Z′(p+1,q+2n+1) = Z(p+1,q+2n+1) + Z(q+1,q+2n+1). (17)

However, this is true from the inductive supposition.

Note that Formula (10) is not true for greater values of N. Region II indeed can be
made into a parallelogram, similar to region I, since the set of boundary points will remain
the same. However, the region corresponding to this parallelogram being translated by T
contains new boundary points, where (10) does not hold and Corollary 1 cannot be used
further, even though these regions are congruent to each other. The formula for greater
values of N needs to include some new terms. In this parallelogram-like region, we need
to take into account the reflection of paths, induced by the term Z(M+2l,N) in Z′(M,N), from

the filter restriction F 1
l(k+2)−1. This is achieved by means of the first part of Lemma 3.

Now consider the triangular region, which, similarly to region II being below region I, is
below the parallelogram-like region considered previously. There, we need to take into
account long steps, acting on paths induced by the term Z(M+2l,N), which have descended
to (l(k + 2)− 2, N) and were acted upon by long steps for the second time. This is being
conducted in a similar fashion to Corollary 1, where Z(M+2l,N) is assumed to be known
from the second part of Lemma 3. This situation for the case of the auxiliary lattice path
model in the presence of long steps will be elaborated upon later.

Corollary 2. Fix j, k ∈ N, j ≤ k. Let

Z(M,N) ≡ Z(LN((0, 0)→ (M, N));S | W L
0 , {F 1

nl−1}∞
n=j)

be the weighted number of lattice paths from (0, 0) to (M, N) with filter restrictions {F 1
nl−1}∞

n=j
and set of unrestricted elementary steps S. Let

Z′(M,N) ≡ Z(LN((0, 0)→ (M, N));S∪ S(k) | W L
0 , {F 1

nl−1}∞
n=j)

be the weighted number of lattice paths from (0, 0) to (M, N) with the same restrictions, with steps
S∪ S(k). Then, for lk− 1 ≤ M ≤ l(k + 2)− 2 we have

Z′(M,N) = Z(M,N), if N ≤ M + 2l − 2, (18)

Z′(M,N) = Z(M,N) + Z(M+2l,N), if M + 2l ≤ N ≤ l(k + 4)− 2. (19)
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Proof. The proof is the same, as for Lemma 5. When proving the inductive step, we still
can apply Corollary 1 as region II is still congruent to the one, translated by T.

Note, that Formula (19), unlike (10), is true for greater values of N, as making region
II into a parallelogram-like region will not add new boundary points. The manifestation
of this fact is that we do not need to take into account the reflection of paths, as they have
already been dealt with in term Z(M+2l,N) due to the periodicity of filter restrictions. So,
for such a region Formula (19) holds. However, for the triangular region below the same
problem remains.

Consider the auxiliary lattice path model in the presence of the sequence of steps S(k).

Definition 7. We denote by multiplicity function in the j-th strip M̃j
(M,N)

the weighted number of
paths in set

LN((0, 0)→ (M, N);S∪ S̃ | W L
0 , {F 1

nl−1}, n ∈ N)

with the endpoint (M, N) that lies within (j− 1)l − 1 ≤ M ≤ jl − 2

M̃j
(M,N)

= Z(LN((0, 0)→ (M, N);S∪ S̃ | W L
0 , {F 1

nl−1}, n ∈ N)), (20)

where S̃ is a set of some additional steps and M ≥ 0 and j =
[

M+1
l + 1

]
.

In this subsection, S̃ = S(k) if not stated otherwise.

Lemma 6. For fixed k ∈ N

M̃k+1
(M,N)

=
[ N−lk+1

2l ]

∑
j=0

Mk+1+2j
(M+2jl,N)

, (21)

M̃k+3
(M,N)

=
[ N−l(k+2)+1

2l ]

∑
j=0

Mk+3+2j
(M+2jl,N)

, (22)

where M̃j
(M,N)

is the multiplicity function for j-th strip in the auxiliary model with steps S ∪ S̃,

Mj
(M,N)

is the multiplicity function for j-th strip in the auxiliary model with steps S.

Proof. We proceed by induction over n, where n = [N−l(k+2)+2
2l ], first proving (22), then

(21). For n = 0, Formula (22) follows immediately from the Theorem 2, as long steps do not
impact this region. Formula (21) follows from Corollary 2. As was discussed, Formula (19)
is true for greater values of N, mainly, it is true for a parallelogram-like region, satisfying
n = 0. So, we obtained the base of induction.

Suppose, that

M̃k+1
(M,N)

=
n+1

∑
j=0

Mk+1+2j
(M+2jl,N)

(23)

M̃k+3
(M,N)

=
n

∑
j=0

Mk+3+2j
(M+2jl,N)

(24)

is true.
Need to prove the inductive step for (24) first, thus we need to prove (22) for M+ 2ln ≤

N ≤ M + 2l(n + 1), where l(k + 2)− 1 ≤ M ≤ l(k + 3)− 2. Denote this region as L1. The
l.h.s. of (22) is a weighted number of paths, ∂L1 consists of points (l(k + 2)− 1, N) for
l(k+ 2)− 1+ 2ln ≤ N ≤ l(k+ 2)− 1+ 2l(n+ 2) and (l(k+ 2)− 1+ j, l(k+ 2)− 1+ 2ln+ j)
for j = 0, . . . , l − 1. We divide the r.h.s. of (22) into two terms. The first corresponds to
the sum given by inductive supposition in (24). It is also a weighted number of paths
defined for L2 = L1 with the same boundary points ∂L2 = ∂L1, as the l.h.s. of (22). These
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two regions are congruent, T1 = id. The second is an additional term, which we expect to
appear during an inductive step. It is given by

Mk+3+2(n+1)
(M+2(n+1)l,N)

= Z(LN((0, 0)→ (M + 2(n + 1)l, N));S | W L
0 , {F 1

ml−1}∞
m=1)

for region l(k + 2 + 2(n + 1))− 1 ≤ M ≤ l(k + 3 + 2(n + 1))− 2 and M ≤ N ≤ M + 2l.
Denote it by L3. Its boundary ∂L3 consists of points (l(k + 2 + 2(n + 1)) − 1, N) for
l(k + 2 + 2(n + 1))− 1 ≤ N ≤ l(k + 2 + 2(n + 1))− 1 + 2l. This region is an image of L1
under translation T2(M, N) = (M + 2l(n + 1), N), they are congruent. By Corollary 1, it is
sufficient to prove inductive step at points (l(k + 2)− 1, N) for l(k + 2)− 1 + 2ln ≤ N ≤
l(k+ 2)− 1+ 2l(n+ 2) and points (l(k+ 2)− 1+ j, l(k+ 2)− 1+ 2ln+ j) for j = 0, . . . , l− 1.
These are drawn in Figure 8.

Consider points of a form (l(k + 2)− 1, N). At n-th iteration we added Mk+1+2(n+1)
(M+2(n+1)l,N)

to M̃k+1
(M,N)

. This term induces paths, which further descend from (k + 1)-th strip to bound-
ary points of (k + 3)-th strip. The region in which induced paths descend is congruent
to the region, where paths corresponding to Mk+1+2(n+1)

(M+2(n+1)l,N)
continue to descend to the

boundary of (k + 3 + 2(n + 1))-th strip in the auxiliary lattice path model. This is due to
the periodicity of filter restrictions. Here, we can apply Theorem 2 to conclude that the
weighted number of induced paths arriving at the boundary of (k + 3)-th strip is equal to
Mk+3+2(n+1)

(2(n+1)l,N)
.

Consider points of a form (l(k + 2)− 1 + j, l(k + 2)− 1 + 2ln + j). For such points,
the proof is the same as for the Formula (10) for the hypotenuse of region II.

Now that we proved the inductive step for the boundary of the considered region, by
Corollary 1, it follows that

M̃k+3
(M,N)

=
n

∑
j=0

Mk+3+2j
(M+2jl,N)

+ Mk+3+2(n+1)
(M+2(n+1)l,N)

=
n+1

∑
j=0

Mk+3+2j
(M+2jl,N)

, (25)

is true for the whole region, which proves the inductive step for Formula (24).

F1
l(k+2)−1 F1

l(k+3)−1

Figure 8. Region L1, for which it is sufficient to prove (22) consists of points M + 2ln ≤ N ≤
M + 2l(n + 1) where l(k + 2)− 1 ≤ M ≤ l(k + 3)− 2. It is highlighted with blue dashed lines. Union
of boundaries for all terms of the considered expression ∂L1 ∪ T−1

1 (∂L2) ∪ T−1
2 (∂L3) consists of

points (l(k + 2)− 1, N) for l(k + 2)− 1 + 2ln ≤ N ≤ l(k + 2)− 1 + 2l(n + 2) and points (l(k + 2)−
1 + j, l(k + 2)− 1 + 2ln + j) for j = 0, . . . , l − 1. It is highlighted with purple dashed lines. Here, we
depict the case, where l = 5.
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This process for the first iterations is shown in Figure 9.

Mk+1
(...)

Mk+2
(...)

Mk+3
(...)

Mk+4
(...)

Mk+5
(...)

Mk+6
(...)

Mk+7
(...)

Mk+8
(...)

+M
k+5
(...)

+M
k+7
(...)

Mk+9
(...)

j = 0

j = 1

j = 2

. . .

Figure 9. Color emphasizes the number of iterations in the induction. Paths induced at the boundary
of (k+ 1)-th strip during (j− 1)-th iteration descend in the region, highlighted with color, correspond-
ing to j-th iteration. Colored lines outline regions congruent to each other. Dashed colored arrows
denote weighted numbers of induced paths, inflicted to (k + 3)-th strip once they have descended,
and their equivalents in strips of the auxiliary lattice path model.

This figure also shows how long steps act on descended paths corresponding to dashed
colored arrows, inducing paths at boundary points of (k + 1)-th strip, highlighted with
the dashed arrow of the same color. These induced paths, in turn, descend in the region,
highlighted with a color corresponding to the next, (j + 1)-th iteration. Proving that long
steps induce paths at boundary points of (k + 1)-th strip following this scenario amounts
to proving the inductive step for Formula (23).

Now we need to prove the inductive step for Formula (23), which amounts to proving
(21) for lk− 1 ≤ M ≤ l(k + 1)− 2 and M + 2ln ≤ N ≤ M + 2l(n+ 1). It is being conducted
in a fashion similar to the proof of (22). Again, we divide the r.h.s. of (21) in two terms. The
first one corresponds to the sum given by inductive supposition in (23). The second one is
an additional term, which we expect to appear during an inductive step. It is given by

Mk+1+2(n+1)
(M+2(n+1)l,N)

= Z(LN((0, 0)→ (M + 2(n + 1)l, N));S | W L
0 , {F 1

ml−1}∞
m=1)

for region l(k + 2(n + 1))− 1 ≤ M ≤ l(k + 1 + 2(n + 1))− 2 and M ≤ N ≤ M + 2l. By
Corollary 1, it is sufficient to prove inductive step at points (lk− 1, N) for lk− 1 + 2ln ≤
N ≤ l(k + 1)− 1 + 2l(n + 2) and points (lk− 1 + j, lk− 1 + 2ln + j) for j = 0, . . . , l − 1. It
is shown in Figure 10. This region is the same, as depicted in Figure 8, but translated by
T(M, N) = (M− 2l, N).
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F1
lk−1 F1

l(k+1)−1

Figure 10. Points M + 2ln ≤ N ≤ M + 2l(n + 1) where l(k + 2) − 1 ≤ M ≤ l(k + 3) − 2 are
highlighted with blue dashed lines. Union of boundaries for all terms of the considered expression
consists of points (l(k + 2)− 1, N) for l(k + 2)− 1 + 2ln ≤ N ≤ l(k + 2)− 1 + 2l(n + 2) and points
(l(k + 2)− 1 + j, l(k + 2)− 1 + 2ln + j) for j = 0, . . . , l − 1. They are highlighted with purple dashed
lines. Here, we depict the case where l = 5.

Consider points of a form (lk− 1, N). Above, we have seen that Formula (22) receives
term Mk+3+2(n+1)

(M+2(n+1)l,N)
during the inductive step. By inductive supposition (23), it is left to

account for the action of long steps, acting on paths, induced by this term. Denote the
weighted number of paths, corresponding to this term as

Z(M,N) ≡ Z(LN((−2l(n + 1), 0)→ (M, N));S | W L
−2l(n+1), {F 1

ml−1−2l(n+1)}∞
m=1) =

= Mk+3+2(n+1)
(M+2(n+1)l,N)

,

where lk − 1 ≤ M ≤ l(k + 2) − 1, M + 2ln ≤ N ≤ M + 2l(n + 1). Now, we want to
calculate

Z′(M,N) ≡ Z(LN((−2l(n + 1), 0)→ (M, N));S∪ S̃ | W L
−2l(n+1), {F 1

ml−1−2l(n+1)}∞
m=1).

From Corollary 2, it is given by

Z′(M,N) = Z(M,N) + Z(M+2l,N),

where
Z(M+2l,N) = Mk+3+2(n+2)

(M+2(n+2)l,N)
.

Consider points of a form (lk− 1 + j, lk− 1 + 2ln + j). For such points, the proof is
the same as for Formula (10) for the hypotenuse of region II.

Now that we have proven the inductive step for the boundary of the considered region,
by Corollary 1, it follows that

M̃k+1
(M,N)

=
n+1

∑
j=0

Mk+1+2j
(M+2jl,N)

+ Mk+1+2(n+2)
(M+2(n+2)l,N)

=
n+1

∑
j=0

Mk+1+2j
(M+2jl,N)

, (26)

187



Mathematics 2022, 10, 4209

is true for the whole region, which proves the inductive step for Formula (23).

Corollary 3. For fixed k ∈ N and m ≥ k

M̃m+1
(M,N)

=
[ N−lm+1

2l ]

∑
j=0

Mm+1+2j
(M+2jl,N)

, (27)

Proof. The result of Lemma 6 can be extended to other strips in a similar fashion to the
proof of (22). Each new term Mk+1+2j

(M+2jl,N)
in M̃k+1

(M,N)
induces paths, which further descend

from (k + 1)-th strip to boundary points of each consequent (k + 1 + m)-th strip. The
region in which these induced paths descend is congruent to the region, where they would
continue to descend in the auxiliary path model due to the periodicity of filter restrictions.
Hence, each M̃k+1+m

(M,N)
acquires term Mk+1+m+2j

(M+2jl,N)
, which proves the statement.

During this subsection, we introduced long steps and proved lemmas, necessary for
counting weighted numbers of paths in modification of the auxiliary lattice path model,
relevant for the representation theory of Uq(sl2) at roots of unity.

6. On Decomposition of T(1)⊗N for Uq(sl2) at Roots of Unity

Consider the auxiliary lattice path model with filter restrictions of type 1, in the
presence of steps

SU ≡ S∪
( ∞⋃

k=1

S(k)
)

,

and denote it as LU . The arrangement of steps for points of LU is depicted in Figure 11.

. . .

(0, 0)

WL
0 F1

l−1 F1
2l−1 F1

3l−1

Figure 11. Arrangement of steps for points of the lattice path model LU . Here, we depict the case,
where l = 5.
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Now, fix q = e
πi
l and l is odd. Category Rep(Uq(sl2)) is the category of representations

of Uq(sl2), a quantized universal enveloping algebra of sl2 with divided powers. Consider
tensor product decomposition of a tensor power of fundamental Uq(sl2)-module

T(1)⊗N =
N⊕

k=0

M(l)
T(k)(N)T(k), T(1), T(k) ∈ Rep(Uq(sl2)), (28)

where M(l)
T(k)(N) is the multiplicity of T(k) in tensor product decomposition. We consider

the tensor powers of a tilting module, and as a category of tilting modules is closed under
finite tensor products, it can be decomposed into a direct sum of tilting modules. The
highest weight of T(k) can be written as k = lk1 + k0. The Grothendieck ring of the category
of tilting modules over Uq(sl2) at odd roots of unity gives the following tensor product
rules ([9,17])

T(k0)⊗ T(1) = T(k0 + 1)⊕ T(k0 − 1), 0 ≤ k0 ≤ l − 2;

T(lk1 + k0)⊗ T(1) = T(lk1 + k0 + 1)⊕ T(lk1 + k0 − 1), 1 ≤ k0 ≤ l − 3, k1 ≥ 1;

T(lk1 + l − 2)⊗ T(1) = T(l(k1 + 1)− 3)⊕ T((k1 + 1)l − 1)⊕ T((k1 − 1)l − 1), k1 ≥ 1;

T(lk1 − 1)⊗ T(1) = T(lk1), k1 ≥ 1;

T(lk1)⊗ T(1) = T(lk1 + 1)⊕ 2T(lk1 − 1), k1 ≥ 1.

Theorem 3 ([9]). The multiplicity of the tilting Uq(sl2)-module T(k) in the decomposition of
T(1)⊗N is equal to the weighted number of lattice paths on LU connecting (0, 0) and (k, N) with
weights given by multiplicities of elementary steps SU.

Proof. Tensor product rules allow the following recursive description of multiplicities

M(l)
T(0)(N + 1) = M(l)

T(1)(N);

M(l)
T(lk1+k0)

(N + 1) = M(l)
T(lk1+k0−1)(N) + M(l)

T(lk1+k0+1)(N), 1 ≤ k0 ≤ l − 3, k1 ≥ 0;

M(l)
T(lk1−2)(N + 1) = M(l)

T(lk1−3)(N), k1 ≥ 1;

M(l)
T(lk1−1)(N + 1) = M(l)

T(lk1−2)(N) + 2M(l)
T(lk1)

(N) + M(l)
T((k1+2)l−2)(N), k1 ≥ 1;

M(l)
T(lk1)

(N + 1) = M(l)
T(lk1−1)(N) + M(l)

T(lk1+1)(N), k1 ≥ 1.

This recursion coincides with the recursion for weighted numbers of paths descending
from (0, 0) to (k, N) in lattice path model LU . The latter is depicted in Figure 11.

The main goal of the following section is to obtain the explicit formula by combinatorial
means, mainly counting lattice paths in modification LU of the auxiliary lattice path model.

7. Counting Paths

Consider the lattice path model LU . From now on, following Definition 7, we denote
by multiplicity function in the j-th strip M̃j

(M,N)
the weighted number of paths in set

LN((0, 0)→ (M, N);SU | W L
0 , {F 1

nl−1}, n ∈ N)

189



Mathematics 2022, 10, 4209

with the endpoint (M, N) that lies within (j− 1)l − 1 ≤ M ≤ jl − 2

M̃j
(M,N)

= Z(LN((0, 0)→ (M, N);SU | W L
0 , {F 1

nl−1}, n ∈ N)), (29)

where

SU = S∪
( ∞⋃

k=1

S(k)
)

.

and M ≥ 0 and j =
[

M+1
l + 1

]
. The main goal of this section is to derive an explicit formula

for M̃j
(M,N)

.

Lemma 7. For the lattice path model LU

M̃1
(M,N) = M1

(M,N), (30)

and for k ∈ N,

M̃k+1
(M,N)

=
[ N−lk+1

2l ]

∑
j=0

F(k−1+2j)
k−1 Mk+1+2j

(M+2jl,N)
, (31)

Proof. The formula for the 1st strip follows immediately as long steps have no impact and
multiplicity is the same as in the auxiliary lattice path model.

This lemma follows from gradually adding each S(k) for k = 1, 2, . . . to the initial set
of steps S and applying results of the Corollary 3 repeatedly. Let us start with k = 1. From
Corollary 3, it follows that in case of having one series of long steps, for (m + 1)-th strip we
would simply have

M̃m+1
(M,N)

|k = 1=
[ N−lm+1

2l ]

∑
j=0

Mm+1+2j
(M+2jl,N)

, (32)

where m ∈ N. This is a summation of multiplicities in the auxiliary lattice path model with
trivial coefficients. This situation is depicted in Figure 12.

M̃2
(...)

M̃3
(...)

M̃4
(...)

M̃5
(...)

M̃6
(...)

M̃7
(...)

M̃8
(...)

M̃9
(...)

M̃10
(...)

M1
(...)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

M5
(...)

M7
(...)

M9
(...)

M̃ 5
(...) =M5

(...) M7
(...) M9

(...)+ + . . .

1

Figure 12. In each strip, triangles with coefficients correspond to terms in Formula (32). Each term is
given by the multiplicity of a strip in the auxiliary lattice path model, situated to the far right of the
considered triangle. As an example, we show how this mnemonic rule works for M̃5

(M,N)
.
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In each strip, triangles with coefficients correspond to terms in Formula (32). Each
term is given by the multiplicity function of a strip in the auxiliary lattice path model,
situated to the far right of the considered triangle. The coefficient in a triangle tells us how
many terms corresponding to this multiplicity function are in Formula (32). This mnemonic
rule comes from considerations in Figure 9. The proofs of Theorem 6 and Corollary 3 define
a recursion on the coefficients near multiplicity functions from the auxiliary lattice path
model in Formula (32). This recursion is depicted in Figure 13.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

M̃1
(...) M̃2

(...)
M̃3

(...)
M̃4

(...) M̃5
(...) M̃6

(...) M̃7
(...)

M̃8
(...) M̃

9
(...) M̃

10
(...)

N = 5

N = 7

N = 9

M̃ 5
(...) =

M5
(...)

M7
(...)

M9
(...)

+

+

+
. . .

S(1)

=

Figure 13. Numbers near vertices of the lattice are the coefficients in Figure 12. Blue arrows denote
steps in the recursion, which were added by the long steps S(1) in the lattice path model. Length of
paths N, descending to a considered vertex of a lattice gives the number of the strip in the auxiliary
lattice path model, the multiplicity function of which is being added to (32) as a term. As an example,
we show formula for M̃5

(M,N)
|k = 1.

Blue arrows correspond to steps in the recursion on the coefficients, which were added
as a consequence of the presence of long steps S(1). In the black frame, it is noted that
although long steps have length 2l, as shown, for example, in Figure 12, their source and
target points belong to two adjacent strips, so when dealing with the coefficients it is
convenient to denote blue arrows as in the Figure 13. Long steps, following the idea of the
proof of Formula (22) depicted in Figure 9, induce paths that descend further, giving the
result as in Corollary 3. Similarly, blue arrows induce paths in the lattice, which descend
further, adding new terms in (32).

Note, that without blue arrows we would have obtained a single diagonal path with
weighted numbers of paths equal to 1. This situation would give us coefficients as in the
formula for multiplicities in the auxiliary lattice path model, meaning that we would have
M̃k

(...) = Mk
(...). This is exactly what we would have in case we removed the long steps S(1)

in the lattice path model.
Again, following the idea of the proof of Corollary 3, induced paths descend further

to each consequent strip as if they were to continue to descend in the auxiliary lattice path
model, so additional terms are dependent on how many strips these induced paths will
cross while they descend. In the recursion on the coefficients, it is manifested in the fact
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that the length of a descending path in Figure 13 gives the number of strips in the auxiliary
lattice path model, to which the additional term corresponds.

Now, our main goal is to apply S(k) for other k. As the considerations above suggest,
applying S(k) for k = 1, 2, . . . induces other sequences of blue arrows. From Figure 14, we
see that the recursion for the coefficients near multiplicity functions is satisfied by Catalan
numbers. This proves Formula (31).

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

2

5

9

14

20

5

14

2814

M̃1
(...) M̃2

(...)
M̃3

(...)
M̃4

(...) M̃5
(...) M̃6

(...) M̃7
(...)

M̃8
(...) M̃

9
(...) M̃

10
(...)

N = 5

N = 7

N = 9

M̃ 5
(...) =

M5
(...)

4M7
(...)

14M9
(...)

+

+

+
. . .

S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8)

Figure 14. In each strip, numbers in vertices of a lattice correspond to terms in Formula (32). Each
term is given by the multiplicity of a strip in the auxiliary lattice path model, the number of which
is given by the length of a path, descending to the considered coefficient. As an example, we show
formula for M̃5

(M,N)
.

Note, that action of black arrows on terms in (31) follows from Lemma 3 and the
periodicity of filter restrictions. The action of blue arrows on terms in (31) follows from
Corollary 1. Now let us prove the main theorem.

Theorem 4. For k ∈ N∪ {0} we have

M̃k+1
(M,N)

= F(N)
M +

[ N−lk+1
2l + 1

2 ]

∑
j=1

F(N)
−2lk+M−2jl +

[ N−lk+1
2l ]

∑
j=1

F(N)
M+2jl (33)

where lk− 1 ≤ M ≤ l(k + 1)− 2.

Proof. We proceed by induction over [N−lk+1
2l + 1

2 ]. For [N−lk+1
2l + 1

2 ] = 1 the Formula (33)
obviously gives the same result as (31), which is the base of induction.
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Suppose, that

M̃k+1
(M,N)

= F(N)
M +

n

∑
j=1

F(N)
−2lk+M−2jl +

n−1

∑
j=1

F(N)
M+2jl (34)

is true. We need to prove this statement for n + 1. It is sufficient to compare coefficients in
(33) and (31) near F(N)

M+2nl and F(N)
−2lk+M−2(n+1)l . We focus on the term F(N)

M+2nl , the rest can

be performed in a similar fashion. From the structure of Mk
(M,N)

, given by Theorem 1 and
depicted in Figure 15, we have two cases: n + 1 is odd and n + 1 is even.

Mk
(M,N)

Pk(0)F
(N)
−2l(k−1)+M−2l

Pk(0)F
(N)
M

Qk(0)F
(N)
M+2l

Qk(0)F
(N)
−2l(k−1)+M−4l

Pk(1)F
(N)
M+4l

. . .

. . .

. . .
Figure 15. Graphical presentation of terms in the formula for Mk

(M,N)
, given by Theorem 1. Each

term is depicted in accordance to the domain of the lattice where it appears for the first time.

For the case of odd n + 1 the last term in (31) is associated with Pj(
n
2 ), for the case of

even n it is Qj(
n+1

2 ). We focus on the case of odd n + 1, the other case can be proven in a
similar manner. So, the proof boils down to a combinatorial identity

n

∑
j=0

even j

F(k−1+2j)
k−1 Pk+1+2j

(n− j
2

)
−

n−1

∑
j=1
odd j

F(k−1+2j)
k−1 Qk+1+2j

(n− 1− j
2

)
= 1. (35)

From comparing coefficients near F(N)
M+2(n−2)l in the inductive supposition (34), we know

that

n−2

∑
j=0

even j

F(k−1+2j)
k−1 Pk+1+2j

(n− 2− j
2

)
−

n−3

∑
j=1
odd j

F(k−1+2j)
k−1 Qk+1+2j

(n− 3− j
2

)
= 1 (36)

is true. Take into account, that

Pj(k)− Pj(k− 1) =
(

j + 2k− 3
j− 3

)
, (37)

Qj(k)−Qj(k− 1) =
(

j + 2k− 2
j− 3

)
. (38)
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Subtracting (36) from (35), we obtain

( n−2

∑
j=0

even j

−
n−3

∑
j=1
odd j

)
F(k−1+2j)

k−1

(
j + n + k− 2

2j + k− 2

)
(39)

+F(k−1+2n)
k−1 Pk+1+2n(0)− F(k−1+2n−2)

k−1 Qk+1+2(n−1)(0) = 0

Taking into account that Pj(0) = 1 and Qj(0) = j− 2 and simplifying further, we arrive at

n

∑
j=0

(−1)jF(k−1+2j)
k−1

(
j + n + k− 2

2j + k− 2

)
= 0. (40)

n

∑
j=0

(−1)j
(

j + n + k− 2
2j + k− 2

)((2j + k− 1
j

)
−
(

2j + k− 1
j− 1

))
= 0 (41)

The last identity follows from the following lemma.

Lemma 8. For n, k ∈ N

n

∑
j=0

(−1)j
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j

)
= 2(−1)n, (42)

n

∑
j=0

(−1)j
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j− 1

)
= 2(−1)n. (43)

Proof. Let us first prove Formula (42). Denote

F(n, j) =
(−1)j+n

2

(
j + n + k− 2

2j + k− 2

)(
2j + k− 1

j

)
.

We need to show, that
n

∑
j=0

F(n, j) = 1, ∀n ∈ N.

For n = 1 it is true, which gives us the base of induction. Using Zeilberger’s algo-
rithm ([18–20]), we obtain its Wilf–Zeilberger pair

G(n, j) =
(−1)j+n j(j + k− 1)(k + 2n)

2n(n + 1)(j− n− 1)(k + 2j− 1)(k2 + n(n− 1) + k(2n− 1))

×(1 + k2n− 3n2 + k(n2 − 3n− 1) + j(2n2 + 2kn + k− 1))
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j

)
,

for which
− F(n + 1, j) + F(n, j) = G(n, j + 1)− G(n, j) (44)

is true. Applying sum over j to both sides and simplifying telescopic sum to the right, we
obtain that

n

∑
j=0

F(n + 1, j) =
n

∑
j=0

F(n, j) + G(n, 0)− G(n, n + 1). (45)

Taking into account, that G(n, 0) = 0 and G(n, n + 1) = F(n + 1, n + 1), we have

n+1

∑
j=0

F(n + 1, j) =
n

∑
j=0

F(n, j), (46)
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which, considering inductive supposition, proves Formula (42).
Formula (43) can be proven in a similar fashion, the corresponding Wilf–Zilberger pair

is given by

G(n, j) =
(−1)j+n(j− 1)(j + k)(k + 2n)

2n(n− 1)(j− n− 1)(k + 2j− 1)(k2 + n(n− 1) + k(2n− 1))

×(1 + k2(n− 1) + k(n2 − 3n)− 3n2 + j(2n2 + 2kn− k− 1))
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j− 1

)
.

The proof of this lemma concludes the proof of the identity and finishes the proof of
the initial theorem.

8. Conclusions

In this paper, we considered the lattice path model LU , which is the auxiliary lattice
path model in the presence of long steps. Weighted numbers of paths in this model
recreate multiplicities of Uq(sl2)-modules in tensor product decomposition of T(1)⊗N ,
where Uq(sl2) is a quantum deformation of the universal enveloping algebra of sl2 with
divided powers and q is a root of unity. Explicit formulas for multiplicities of all tilting
modules in tensor product decomposition were derived by purely combinatorial means in
the main theorem of this paper Theorem 4.

We found that the auxiliary lattice model defined in [13] is of great use for counting
multiplicities of modules of differently defined quantum deformations of U(sl2) at q root
of unity. For instance, in [9] we applied periodicity conditions to the auxiliary lattice path
model to obtain a folded Bratteli diagram, weighted numbers of paths for which recreate
multiplicities of modules in tensor product decomposition of T(1)⊗N , where T(1) is a
fundamental module of the small quantum group uq(sl2). In this paper, we modified the
auxiliary lattice path model by applying long steps to obtain multiplicities for the case of
Uq(sl2) with divided powers in a similar fashion.

The model defined in [13] required analysis of combinatorial properties of filters,
which we heavily relied on. In this paper, we introduced long steps and explored their
combinatorial properties. In order to derive formulas for weighted numbers of paths in
this setting, we also defined boundary points and congruence of regions in lattice path
models. The philosophy of congruence is fairly easy to understand. Two different lattice
path models can be locally indistinguishable due to coinciding recursions for weighted
numbers of paths in these regions. Weighted numbers of paths at boundary points of the
considered region uniquely define weighted numbers of paths for the rest of the region by
recursion. So, instead of proving identities for the whole region, it is sufficient to prove such
only for boundary points of the region. At boundary points, an identity can be represented
as a linear combination of weighted numbers of paths from different lattice path models
and one needs to take into account boundary points of congruent regions with respect to
all these models.

We found that besides applying periodicity conditions to the auxiliary lattice path
model, one can take Uq(sl2), consider its restriction to u−q U0

q u+
q , where u±q are subalgebras of

the small quantum group uq(sl2), generated by F and E, respectively, and U0
q is a subalgebra

of Uq(sl2), generated by K±1 and
[

K; c
t

]
, for t ≥ 0, c ∈ Z. Then, we can restrict u−q U0

q u+
q

to uq(sl2). This procedure defines another modification of the auxiliary lattice path model
and, remarkably, gives the same result as with periodicity conditions. The lattice path
model corresponding to u−q U0

q u+
q will be considered in the upcoming paper.

Considering other possible directions for further research, the following questions
remain open:
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• Multiplicity formulas for decomposition of tensor powers of fundamental representa-
tions of Uq(sln) at roots of unity remain out of reach and can be a source of inspiration
for other interesting combinatorial constructions. We expect that for Uq(sln) derivation
of such formulas will rely on similar combinatorial ideas. It is worth mentioning that
obtaining such formulas explicitly is of interest for asymptotic representation theory,
mainly, for constructing Plancherel measure and possibly obtaining its limit shape in
different regimes, including regime when n→ ∞ ([7,9,21]).

• In [22], similar lattice path models emerge when studying the Grothendieck ring of
the category of tilting modules for Uq(sl2) in the mixed case: when q is an odd root of
unity and the ground field is Fp. One can expand the combinatorial analysis presented
in this paper to a mixed case.

• Inr [23], it was shown that Uq(sln) at roots of unity is in Schur–Weyl duality with
Hecke algebra nHN(q) on ⊗NCn. For the case of Uq(sl2) at roots of unity, multiplicity
formulas should give answers for dimensions of certain representations of Temperley–
Lieb algebra TLN(q) at roots of unity. Dimensions of which representations were
obtained is an open question, at least to the knowledge of the author of this paper.
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Abstract: Graph theoretic techniques have been widely applied to model many types of links in
social systems. Also, algebraic hypercompositional structure theory has demonstrated its systematic
application in some problems. Influenced by these mathematical notions, a novel semihypergroup-
based graph (SBG) of G = 〈H, E〉 is constructed through the fundamental relation γn on H, where
semihypergroup H is appointed as the set of vertices and E is addressed as the set of edges on
SBG. Indeed, two arbitrary vertices x and y are adjacent if xγny. The connectivity of graph G is
characterized by xγ∗y, whereby the connected components SBG of G would be exactly the elements
of the fundamental group H/γ∗. Based on SBG, some fundamental characteristics of the graph
such as complete, regular, Eulerian, isomorphism, and Cartesian products are discussed along with
illustrative examples to clarify the relevance between semihypergroup H and its corresponding
graph. Furthermore, the notions of geometric space, block, polygonal, and connected components are
introduced in terms of the developed SBG. To formulate the links among individuals/countries in
the wake of the COVID (coronavirus disease) pandemic, a theoretical SBG methodology is presented
to analyze and simplify such social systems. Finally, the developed SBG is used to model the trend
diffusion of the viral disease COVID-n in social systems (i.e., countries and individuals).

Keywords: graph theory; hypergroup; fundamental relation; social systems; geometric space

MSC: 05C25; 20N20

1. Introduction

Graph theory with its systematic structure is applied to different complicated problems
such as physical, biological, and social systems. By employing graph theory, social network
structures can be modeled and analyzed to provide simplified knowledge of such systems,
where nodes (vertices) are users and lines (edges) are the links among users. Graph theory
was first proposed by Euler to solve Konigsberg’s seven-bridge problem [1]. After that,
he established a novel graph structure called an Eulerian graph [2]. The concepts of a
complete graph [3] and a bipartite graph was defined along with tree structure and coloring
problems [4]. With the integration of graph theory and fuzzy set theory, the notion of fuzzy
graph theory was proposed by Kaufmann. Then, this theory was developed by Rosenfeld,
where fuzzy relations on fuzzy sets were introduced to improve graph-theoretic concepts
(e.g., bridges and trees) [5]. To eliminate new problems in science, especially combinatorics,
hypergraph theory was initiated and formulated by Berge [6] as the generalization of graph
theory, where the edges are arbitrary subsets of the vertices to effectively analyze and
simplify complex relations in various spectra for real-world problems [7].
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Algebraic hypercompositional structure theory, with its dynamic multi-valued sys-
tems, is enumerated as the extension of a classical algebraic structure. Marty introduced a
hyperoperation (hypercomposition) on a nonvoid set H, which is a map from H × H to the
power set P(H) of H, such that with associative property and reproductivity, H would be
hypergroup [8]. Then, the hypercompositional structure theory was improved in terms of
theory and applications by Corsini et al. [9]. Freni determined a novel characterization of
the derived hypergroup via strongly regular equivalence relation γ on a hypergroup H,
and a binary operation on the quotient set H/γ∗ so that H/γ∗ is a group with relation γ∗

as a fundamental relation (γ∗ is the transitive closure of γ and H/γ∗ is the fundamental
group) [10,11]. Indeed, a fundamental relation is a powerful gadget for the derivation of
universal algebra (group, ring, module, etc.) on algebraic hypercompositional structures as
well as fuzzy algebraic hypercompositional structures. The present authors studied and
formulated the fundamental relations on the fuzzy hypergroup, fuzzy hyperring, and fuzzy
hypermodule, where their fundamental relations have the smallest equivalence relation
resulting in their quotients being a group, ring, and module, respectively, [12–14]. In other
studies, they appointed the fundamental functor between the category of fuzzy hyperrings
(hypermodules) and the category of rings (modules) [15,16].

The relevance between graphs/hypergraphs and hypergroups has been investigated
by many scholars such as Corsini [17] and Leoreanu [18]. Farshi et al. studied hypergroups
associated with hypergraphs and established a ρ-hypergroup with a given hypergraph by
describing a relation ρ which resulted in the fundamental relation of an ρ-hypergroup [19].
Kalampakas et al. surveyed path hypergroupoids, especially commutativity and graph
connectivity, along with the directed graph isomorphism classes of C-hypergroupoids [20].
Nikkhah et al. developed hypergroups constructed from hypergraphs using a hyperopera-
tion upon the set of vertice degrees of a hypergraph, where the established hypergroupoid
is Hv-group [21]. Recently, the present authors proposed a Caley graph related to a semi-
hypergroup (hypergroup) with some important features including the category of Cayley
graphs and a functor with an application in social networks [22].

With dynamic and potential applications of graph theory in various fields of science,
i.e., computer science, linguistics, physics, chemistry, social sciences, biology, mathematics,
bioinformatics, etc., many studies have been conducted [23]. For example, Savinkov et al.
analyzed and modeled human lymphatic systems via graph theory [24]. The systematic
converter derivation/modeling and advanced control in an emerging/challenging power
electronics converter was simulated by graph theory as a powerful mathematical struc-
ture [25]. Park et al. indicated important insights from complex travel mobility networks
with graph-based spatiotemporal analytics [26]. In another work, an effective transductive
learning technique was proposed by employing variational nonlocal graph theory for
hyperspectral image classification [27]. Recently, the authors presented a soft hypergraph
as the generalization of graph theory with the pragmatic application for modeling global
interactions in social media networks [28].

The COVID-19 (coronavirus disease 2019) pandemic is considered the most fatal
global health catastrophe to date with its serious negative and destructive impact on
human life, i.e., social, economical, and environmental challenges. After its detection, the
virus extended globally and caused innumerable death. At present, there is no definitive
treatment of clinical antiviral drugs or vaccines against the virus [29]. Almost whole
nations attempted to decline the transition of the disease via examination and treating
patients, quarantining suspected persons through contact tracing, limiting large gatherings,
maintaining complete or partial lockdowns, etc. The impact of COVID-19 on various
societies and useful ways for controlling viral disease were investigated in [30].

The principal objective of this study is to establish a novel framework of a graph called
SBG using a specific relation of algebraic hypercompositional structures in the context
of social systems, i.e., the spread trend of the coronavirus disease among societies and
individuals. After the Introduction and the Preliminary sections, in Section 3, we appoint a
neoteric graph G = 〈H, E〉 by applying a fundamental relation γ∗ on a semihypergroup H.
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The elements of H are vertices and two vertices x and y are adjacent if xγny, that is, they
are considered edges. The connectivity SBG of G is defined as xγ∗y, where the connected
components of G are precisely the elements of the fundamental group H/γ∗. Certain
fundamental properties of graph theory such as complete, regular, Eulerian, isomorphism,
and Cartesian products are proposed. In addition, elucidatory examples are applied to
demonstrate the relationship between semihypergroup (hypergroup) H and its associated
graph. The mathematical notions of geometric space, block, polygonal, and connected
components are discussed. In the end, in Section 4, the developed SBG is utilized to model
the global outbreak of COVID-n in social systems (i.e., individuals as well as countries)
(Figure 1).

Figure 1. SBG for modeling global spread of COVID-n.

2. Preliminaries

Definition 1. A hypergroupoid (L, )) is a nonvoid set L with a hyperoperation ), which is a map
) : L × L → P∗(L), where P∗(L) implies the family of all nonvoid subsets of L [9]. Denote
c ) d as the hyperproduct of c and d for every c, d ∈ L. A hypergroupoid (L, )) is described as a
semihypergroup if L has associative property, i.e., (c ) d) ) e = c ) (d ) e) for all c, d, e ∈ L. A
hypergroup is a semihypergroup along with reproductivity axiom, that is e ) L = L ) e = L for all
e ∈ L. A hypergroupoid (L, )) is called quasihypergroup if the reproductivity property holds. The
hypergroup is commutative if e ) f = f ) e for all e, f ∈ L. A nonvoid subset M of a hypergroup L
is a subhypergroup of L if z )M = M ) z = M for every z ∈ M.

Assume E and F are nonvoid subsets of L, hence E ) F =
⋃

e∈E, f∈F e ) f . Moreover, l ∈ L
and E ⊆ L, we have l ) E =

⋃
e∈E l ) e. If associativity holds, then we denote the hyperproduct of

elements x1, . . . , xn of L by ∏n
i=1 xi := x1 ) x2 ) . . . ) xn.

Suppose that (L, )) and (L′, )′) are two hypergroups. A map ψ : L −→ L′ is determined
as a homomorphism if ψ(k ) l) = ψ(k) )′ ψ(l) for all k, l ∈ L. Furthermore, ψ is named an
isomorphism if it is one to one and onto homomorphism written by L ∼= L′.

The following Definition 2, Proposition 1, Theorem 1, Proposition 2, and Theorem 2
are taken from [31].

Definition 2. Assume that L is a nonvoid set and σ is a binary relation on L. Consider the following
hypercomposition “◦” on L as:

x ◦ y = {z ∈ L : (x, z) ∈ σ, (z, y) ∈ σ} (1)
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(L, ◦) is a hypergroupoid provided there exists z ∈ L so that (x, z) ∈ σ and (z, y) ∈ σ for
every couple of elements x, y ∈ L.

Denote the hypercompositional structure in Equation (1) by Lσ. The reproductivity property
in Lσ is satisfied if and only if (x, y) ∈ σ for all x, y ∈ Lσ.

Proposition 1.

• Lσ is a quasihypergroup if and only if (x, y) ∈ σ for all x, y ∈ Lσ.
• Lσ is a semihypergroup if and only if (x, y) ∈ σ for all x, y ∈ Lσ.

Theorem 1. Let σ be a binary relation on the nonvoid set L. Then, the hypercomposition x ◦ y
satisfies the reproductivity or associativity only when Lσ is total (i.e., x ◦ y = Lσ).

Each relation σ on finite set L = {a1, a2, . . . , an} can be represented through a Boolean
matrix Mσ with n× n elements. The Boolean matrix Mσ = (mij) is defined as follows:

mij =

{
1, i f (ai, aj) ∈ σ

0, otherwise

In Boolean algebra, we have

0 + 1 = 1 + 0 = 1 + 1 = 1, 0 + 0 = 0

0.0 = 0.1 = 1.0 = 0, 1.1 = 1

Lσ is hypergroupoid if and only if M2
σ = S, where S = (sij) with sij = 1 for all i, j.

Proposition 2.

• Lσ is a quasihypergroup if and only if Mσ = S.
• Lσ is a semihypergroup if and only if Mσ = S.

Theorem 2. The only relation σ which results in a quasihypergroup or semihypergroup is the one
with Mσ = S. Additionally, Lσ is the total hypergroup.

It was revealed that with a few lines of the Mathematica program, the results were
constructed for the enumeration of the hypergroupoid associated with binary relations of
orders 2, 3, 4, and 5 by a significantly simpler procedure [31].

Definition 3. A graph G is a pair G = (V, E), where V is a set of elements described as vertices
and E is a set of edges [32]. The two vertices associated with an edge are called endpoints. If x = y,
then the edge is considered as a loop. A vertex is isolated if it is incident with no edges. The graph
G is simple if it has no loops and no two distinct edges have the same pair of ends. The graph
G is called null graph when its edges set is empty. Graph H is named a subgraph of graph G if
V(H) ⊆ V(G), E(H) ⊆ E(G), and the ends of an edge e ∈ E(H) are the same as its ends in G.
Denote d(x) as the degree of vertex x as well as the number of edges incident with x.

A path in graph G consists of a sequence x1, e1, x2, e2, . . . , ek, xk that the edges ei are distinct.
Furthermore, if x1 = xk then, we call the path a cycle. Consider that d(x, y) is the length of the
shortest path between two vertices x and y. Note that diam(G) = sup{d(a, b)} for all a and b that
are vertices of G, which is called the diameter of graph G. The graph G is connected if there exists
a path from vertex x to vertex y, or graph G includes several connected components. A tree is a
connected graph that includes no simple cyclic path. Denote kn as a complete graph, where every
pair of vertices is adjacent. An Eulerian circuit is a closed path through a graph applying each edge
once and an Eulerian graph is a graph that has this property. Furthermore, graph G is called a
Hamiltonian graph if it has a cycle that passes each vertex exactly once. If every vertex has the same
degree, the graph is regular, or k-regular if ∀x ∈ V, d(x) = k.
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Theorem 3. A finite graph G without isolated vertices is Eulerian if and only if G is connected
and each vertex has an even degree [32].

Definition 4. The Cartesian product of two graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 is denoted
by G1�G2, that is a graph with vertices set V1 ×V2, where vertices (t1, t2), (w1, w2) are adjacent
if and only if t1 = w1, (t2, w2) ∈ E2 or t2 = w2, (t1, w1) ∈ E1 for t1, w1 ∈ V1, t2, w2 ∈ V2 [33].

3. Semihypergroup-Based Graph (SBG) Based on Relation γ

Consider an SBG of G = 〈H; E = (γn)n∈N〉, where (H, ◦) is a semihypergroup and γn
is the relation on H. The order of G is o(G) =|H| . The elements of H are represented as
vertices and the relations γn are appointed as edges. We assign x and y to be adjacent, if
xγny. Clearly, for n = 1 and xγ1x, the edge is a loop.

Indeed, γn was determined in [10] as follows:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i) (2)

Consider γ1 = {(a, a) |a ∈ H}. Clearly, the relations γn have symmetric property and
relation γ has a reflexive and symmetric property for every n ∈ N, where γ =

⋃
n≥1 γn. Let

γ∗ be the transitive closure of γ. The class of H/γ∗ was addressed as γ∗(z) = {w |zγ∗w},
for z, w ∈ H. It was proven that for hypergroup H, the relation γ is transitive and γ∗ has
the smallest strongly regular equivalence property that results H/γ∗ is an Abelian group
(fundamental group).

Theorem 4. Assume that H is a hypergroup. Then, for an SBG of G = 〈H; E = (γn)n∈N〉, the
following statements hold:

(i) A path exists between two vertices x and y of G if and only if xγ∗y.
(ii) The SBG of G is connected if and only if the fundamental group H/γ∗ is a singleton, that is

|H/γ∗|= 1.

Proof. Proof of (i): Consider a path from vertex x to vertex y. Then, there exists a sequence
(a1, . . . , ak) ∈ Hk so that x = a1γ1a2 . . . γkak = y, that is equal to xγ∗y. Conversely, if xγ∗y,
then ∃(a1, . . . , ak) ∈ Hk such that x = a1γ1a2 . . . γkak = y. Therefore, there exists a path
from vertex x to vertex y.

Proof of (ii): By applying (i), for x, y ∈ H, a path exists from vertex x to vertex y if and
only if xγ∗y. Therefore, the SBG of G is a connected graph if and only if γ∗ = H × H (i.e.,
clearly, γ∗ ⊆ H × H. Furthermore, for all x, y ∈ H, since (x, y) ∈ γ∗, then H × H ⊆ γ∗).
Since xγ∗y, we have γ∗(x) = γ∗(y) which means that the fundamental group H/γ∗ =
{γ∗(x)|x ∈ H} is a singleton, i.e., |H/γ∗|= 1.

Theorem 5. The connected components SBG of G are precisely the elements of the fundamental
group H/γ∗.

Proof. Let x, y be two vertices SBG of G. By employing Theorem 4, vertex x is connected to
vertex y if and only if xγ∗y. Then, for all a ∈ H, every element of γ∗(a) is connected. With
the equivalence relation of γ∗, the elements of H/γ∗ would be the connected components
SBG of G.

Theorem 6. Let H be a semihypergroup. If the SBG of G = 〈H, E〉 is complete, then the relation
γ is transitive.

Proof. Let xγy and yγz. For some n1, n2 ∈ N, we have xγn1 y and yγn2 z. Since the SBG of
G is complete, therefore, for some n ∈ N, we have xγnz that yields xγz.

203



Mathematics 2022, 10, 4405

Remark 1. Note that a loop is not considered an edge. If xγx, then for every ai ∈ H, ∃σ ∈ Sn we
have x ∈ ∏n

i=1 ai and x ∈ ∏n
i=1 aσ(i). Hence, ∏n

i=1 ai = ∏n
i=1 aσ(i).

Definition 5. Let H be a nonvoid set and let γ∗ be the defined relation in Equation (2). Consider
the hypercomposition “�” on H as follows:

x� y = {w ∈ H : (x, w) ∈ γ∗, (w, y) ∈ γ∗} (3)

We denote the hypercompositional structure (H,�) by Hγ∗ . The Hγ∗ is a hypergroupoid if
∃w ∈ H so that (x, w) ∈ γ∗ and (w, y) ∈ γ∗ for every x, y ∈ H. Since γ∗ is transitive, we have
(x, y) ∈ γ∗ for all x, y ∈ Hγ∗ , then the reproductivity property holds. In fact, for the arbitrary
element x ∈ Hγ∗ , the reproductivity axiom y ∈ x� Hγ∗ holds for all y ∈ Hγ∗ , as per the transitive
property of γ∗.

Proposition 3.

(i) Hγ∗ is a semihypergroup if and only if (x, y) ∈ γ∗ for all x, y ∈ Hγ∗ .
(ii) Hγ∗ is a quasihypergroup if and only if (x, y) ∈ γ∗ for all x, y ∈ Hγ∗ .
(iii) The SBG of G =

〈
Hγ∗ , E

〉
is a connected graph if and only if (x, y) ∈ γ∗ for all x, y ∈ Hγ∗ .

(iv) The SBG of G =
〈

Hγ∗ , E
〉

is a complete graph if and only if Hγ∗ is total, i.e., x� y = Hγ∗

for all x, y ∈ Hγ∗ .

Proof. Proof of (i): It is derived by applying Proposition 1.
Proof of (ii): With the validity of the reproductivity property, the statement is proven.
Proof of (iii): Since Hγ∗ is a quasihypergroup and considering part (i), we have Hγ∗ as

a hypergroup. By Theorem 4, we have xγ∗y for all x, y ∈ Hγ∗ if and only if the SBG of G is
connected.

Proof of (iv): The statement is attained from Equation (3).

Example 1. Consider (H, ◦) as a semihypergroup that is given in Table 1.

Table 1. Semihypergroup (H, ◦)

◦ 0 1 2

0 0 1 2

1 1 {0,2} 1

2 2 1 {0,2}

It is seen that 1 ∈ 1 ◦ 2, 1 ∈ 2 ◦ 1, then 1γ1. Furthermore, we have 0γ0, 2γ2 and 0γ2. The
corresponding SBG of G is depicted in Figure 2. Moreover, H/γ∗ = {{0, 2}, 1} and |H/γ∗|
= 1.

1

0 2

Figure 2. SBG of G.

γ is transitive and the SBG of G is not connected, because vertices 0 and 1 are not adjacent.
The SBG of G is not complete, which results in the invalidity of the reverse Theorem 6.

Corollary 1. Let G = 〈H, E〉 be an SBG, and let H be a semihypergroup. If the SBG of G is
complete, then H/γ∗ is a singleton, and diam(G) = 1.
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Proof. By applying Theorems 4 and 6, the relation γ is transitive and H/γ∗ is a singleton.
Since the SBG of G is complete, then every path from vertex x to vertex y has a maximum
length of 1, which means diam(G) = 1.

Proposition 4. Suppose that H is a hypergroup on the SBG of G = 〈H, E〉. Then, the degree of
vertex x in SBG of G is equal to |γ∗(x)|.

Proof. Let H be a hypergroup. By employing Theorem 4 and γ∗(x) as an equivalence
class of x, the results show that the number of edges incident with vertex x is equal to
|γ∗(x)|.

Corollary 2. Let G = 〈H, E〉 be an SBG, and let H be a hypergroup. Assume that |γ∗(x)|= k for
all x ∈ H. Then, the SBG of G is a k-regular graph.

Theorem 7. Let H1 be a hypergroup on SBG of G1 = 〈H1, E1〉. Let H2 be a subhypergroup of H1
on SBG of G2 = 〈H2, E2〉. Then, the SBG of G2 is a sub-SBG of G1.

Proof. Assume that H2 is a subhypergroup of H1, then H2 ⊂ H1. Therefore, the vertices
SBG of G2 is contained in the vertices SBG of G1 and the edges G2 is included in the edges
of G1. Then, the SBG of G2 is a sub-SBG of G1.

Theorem 8. Let H be a hypergroup. The SBG of G = 〈H, E〉 is Eulerian if and only if |γ∗(z)|= 2k
for all z ∈ H, k ∈ N.

Proof. Let H be a hypergroup. Then, the relation γ is transitive [9]. By applying Theorem 4,
the SBG of G is a connected graph. Additionally, with Proposition 4, d(z) = |γ∗(z)|, for all
z ∈ H and by Theorem 3, the proof is completed.

Example 2. Let (H, ◦) be a hypergroup in [34] (Example 28 (3)).
The corresponding SBG of G is shown in Figure 3, which is a connected and complete graph.

Moreover, H/γ∗ = {{a, b, c}} and |H/γ∗|= 1. Additionally, |γ∗(a)|= |γ∗(b)|= |γ∗(c)|= 2,
that means d(a) = d(b) = d(c) = 2. Furthermore, diam(G) = 1 and the SBG of G is a 2-regular
and Eulerian graph.

a

b c

Figure 3. SBG of G.

Definition 6. The SBG of G is isomorphic to the SBG of G′, if there exists a bijection φ from the
set vertices of G to the set vertices of G′, such that xγGy⇐⇒ φ(x)γG′φ(y), written by G ∼= G′.

Theorem 9. Let (H1, ◦1) and (H2, ◦2) be two isomorphic hypergroups and let G1 and G2 be
two SBGs associated with H1 and H2, respectively. Then, the SBG of G1 and the SBG of G2 are
isomorphisms.

Proof. Assume H1 and H2 are isomorphisms. Then, |H1|= |H2| and we have |G1|= |G2|.
Furthermore, if vertex x is connected to vertex y, then xγ∗y and we have ∃(a1, . . . , an) ∈
Hn, ∃σ ∈ Sn; x ∈ ∏n

i=1 ai, y ∈ ∏n
i=1 aσ(i). Let φ : H1 −→ H2 be an isomorphism and let

φ(x) = x′, φ(y) = y′ and φ(ai) = a′i. Furthermore, φ(∏n
i=1 ai) = ∏n

i=1 φ(ai) = ∏n
i=1 a′i,

which yields x′ that is connected to y′. Hence, G1
∼= G2.
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Example 3. To show that the reverse of Theorem 9 is not satisfied, consider two hypergroups (H, ◦)
and (H′, ◦′) in [34] (Example 16 (3)).

Let f : H −→ H′ with f (a) = 1, f (b) = 1, f (c) = 2. Since f (a ◦ b) = f (H) = {1, 2}
and f (a) ◦′ f (b) = 1 ◦ 1 = 1, means that f is not an isomorphism (i.e., f (a ◦ b) 
= f (a) ◦′ f (b)).
The two SBGs are isomorphisms, as depicted in Figure 4.

a

b c

0

1 2

Figure 4. SBGs of G and G′ associated with H and H′.

Definition 7. Let G = 〈H, E〉 and G′ = 〈H′, E′〉 be two SBGs, where H and H′ are two
hypergroups and E = {E1, . . . , Em} and E′ = {E′1, . . . , E′n}. Define the Cartesian product G � G′

with the vertices set H × H′ and edges set El × E′k for 1 ≤ l ≤ m, 1 ≤ k ≤ n.

Example 4. Consider two SBGs in Example 3. By considering G = 〈H, E〉 and G′ = 〈H′, E′〉,
the Cartesian product of two SBGs G and G′ is depicted in Figure 5. The vertices of G � G′ are
H × H′ = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2), (c, 0), (c, 1), (c, 2)} and the corresponding
edges are E× E′ = {[(a, 0), (b, 0)], [(a, 0), (a, 1)], . . . , [(a, 2), (c, 2)]}.

Figure 5. Cartesian product of SBGs G and G′.

Proposition 5. Let G = 〈H, E〉 and G′ = 〈H′, E′〉 be two SBGs and let (a1, b1), (a2, b2) ∈
H × H′. Then,

(a1, b1)γG×G′(a2, b2)⇐⇒ a1γGa2, b1γG′b2.

Geometric Concept of SBG

A geometric space is a couple (S, V) where S is a nonvoid set and V is the family of
a nonvoid subset of S. The elements of S are considered points and the elements of V
are represented as blocks. If V covers S, then a polygonal of (S, V) is an n-tuple of blocks
(V1, V2, . . . , Vn) so that Vi ∩Vi+1 
= ∅, for every i ∈ {1, 2, . . . , n− 1}. Introduce the relation
≈ on S as follows:

x ≈ y⇐⇒ ∃(V1, V2, . . . , Vn); x ∈ V1, y ∈ Vn.

206



Mathematics 2022, 10, 4405

If V covers S, then the relation is an equivalence relation. The equivalence class [x] is
determined as a connected component of x in S [10,11].

According to the SBG of G, we consider a pair 〈H, E〉 as a geometric space of SBG,
where H is a semihypergroup (set of vertices) and E is the set of relations γn (set of edges)
for n ∈ N on H. For every x, y ∈ H, we have xEiy ⇐⇒ xγny with the given relation γn
as follows:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i)

Take a polygonal SBG of G = 〈H, E〉 as (E1, E2, . . . , En), so that Ei ∩ Ei+1 
= ∅ (i.e.,
(x, x′) ∈ Ei, (x′, x′′) ∈ Ei+1) for 1 ≤ i ≤ n− 1. By applying the polygonal concept of SBG,
the relation ≈ is defined as follows:

x ≈ y⇐⇒ ∃Ei, 1 ≤ i ≤ n; (x, z) ∈ E1, (z, y) ∈ En

The relation ≈ is an equivalence relation. The SBG of G is connected and the equiva-
lence class [x] = {y |xγ∗y} =|γ∗(x) |, where [x] is a connected component by Theorem 4.
Indeed, the connected components SBG of G = 〈H, E〉 are equivalence classes modulo γ∗.
The geometric space G = 〈H, E〉 is connected if it includes only one connected component,
i.e., H = [x], for x ∈ H. Clearly, the relation ≈ is the transitive closure of the relation
γ =

⋃
n∈N

γn. The blocks of the geometric space SBG of G = 〈H, E〉 using relation γn are the

constructed sets with permuting finite hyperproducts of distinct finite points (vertices).

4. SBG for Modeling the Spread Trend of COVID-n

SBG can be utilized to model the spread trend of COVID-n by travelers in different
countries and on a large scale, involved countries. In this pattern, the vertices represent
individuals/countries and edges appoint the relationship among individuals/countries
which are based on a fundamental relation.

4.1. Application 1

Let H be the number of individuals. Consider H = {Michael, Robert, Emma, Olivia}.
Then, the SBG of G = 〈H, E〉 is determined in the following way:

• Each vertex addresses an individual
• An edge addresses the relationship between two vertices

Define a binary relation “◦” on H as follows:

a ◦ b = {x |x get infected to COVID− n by person a or person b}

In Table 2, the pair (H, ◦) is a hypergroup.

Table 2. Hypergroup (H, ◦).

◦ Michael = 1 Robert = 2 Emma = 3 Olivia = 4

Michael = 1 1 2 3 4

Robert = 2 2 {1,2} {3,4} 3

Emma = 3 3 {3,4} H {2,3}

Olivia = 4 4 3 {2,3} {1,4}

The following statements are attained from Table 2:

• Either Robert, Michael, or Emma infected Olivia with COVID.
• Emma is the most infectious the person for the transmission of the coronavirus disease

and all members get infected by Emma (3 ◦ 3 = H).
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Consider the relation γn as edges for two arbitrary vertices x and y as:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i)

Note that ∏n
i=1 ai is regarded as a hyperproduct of distinct elements ai for i ∈

{1, 2, . . . , n}, that is a1 ◦ a2 ◦ . . . an. We follow the procedure for all components, i.e.,

1γ22⇐⇒ 1 ∈ 2 ◦ 2, 2 ∈ 2 ◦ 2

3γ24⇐⇒ 3 ∈ 2 ◦ 3, 4 ∈ 3 ◦ 2

2γ23⇐⇒ 2 ∈ 3 ◦ 4, 3 ∈ 4 ◦ 3

1γ24⇐⇒ 1 ∈ 4 ◦ 4, 4 ∈ 4 ◦ 4

2γ24⇐⇒ 2 ∈ 3 ◦ 3, 4 ∈ 3 ◦ 3

1γ23⇐⇒ 1 ∈ 3 ◦ 3, 3 ∈ 3 ◦ 3

This means that (1, 2) ∈ e1, (3, 4) ∈ e2, (2, 3) ∈ e3, (1, 4) ∈ e4, (2, 4) ∈ e5, (1, 3) ∈ e6
where, E = {e1, e2, e3, e4, e5, e6} are the edges of SBG. The corresponding SBG of G is
depicted in Figure 6a and Table 3.

Figure 6. SBGs of G corresponding to (a) Application 1 and (b) Application 2.

Table 3. SBGs of G.

Michael Robert Emma Olivia

e1 1 1 0 0

e2 0 0 1 1

e3 0 1 1 0

e4 1 0 0 1

e5 0 1 0 1

e6 1 0 1 0

Furthermore, the equivalence class of [x] is considered as the individuals who transmit
viral disease COVID to specific person x, that is [x] = {y |xγ∗y}, where γ∗ is the transitive
closure of γ and γ =

⋃
n≥1

γn. Therefore, the class [Michael] = {Robert, Emma, Olivia}, and

so on. By applying Proposition 4, the degree of Michael is |γ∗(Michael) |= 3 and by
Corollary 2, the SBG is 3-regular.
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4.2. Application 2

Let H be a set of countries with the most reported cases and death in the world.
Consider H = {USA, Brazil, India, Russia, Mexico, UK, Italy}. Thus, the SBG of G = 〈H, E〉
is defined as follows

• Every vertex is appointed to a country.
• An edge is appointed to the relationship between two vertices.

Introduce the hyperoperation “⊕” for all x, y ∈ H, as follows:

x ⊕ y = The country or set of countries that causes disease outbreak from country x to
country y

The couple (H,⊕) is a hypergroupoid, as given in Table 4.

Table 4. Hypergroupoid (H,⊕).

⊕ USA = 1 Brazil = 2 India = 3 Russia = 4 Mexico = 5 UK = 6 Italy = 7

USA = 1 {1,2} 2 {1,2,3} 4 {1,2,5} {1,6,2} {1,7,2}

Brazil = 2 2 2 2 {2,4} 2 {2,6} {1,2}

India = 3 {1,2} {2,3} 3 {2,3,4} {1,2,3,5} {1,2,3,6} {1,2,3,7}

Russia = 4 {1,4} 2 {3,4} 4 {2,4,5} {2,4,6} {1,2,4,7}

Mexico = 5 {1,2,5} 2 {2,3,5} {1,2,4,5} 5 {1,2,5,6} H

UK = 6 {1,6} 2 {2,3} {2,4} {1,2,5,6} 6 {1,2,4,6,7}

Italy = 7 {1,7} H {2,3} {2,4} {1,2,5,7} {2,6,7} 7

Consider the relation γ given below:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i)
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we continue the procedure for all elements of H, according to Table 4, that is

1γ22⇐⇒ 1 ∈ 3⊕ 1, 2 ∈ 1⊕ 3

1γ23⇐⇒ 1 ∈ 3⊕ 5, 3 ∈ 5⊕ 3

1γ24⇐⇒ 1 ∈ 4⊕ 1, 4 ∈ 1⊕ 4

1γ25⇐⇒ 1 ∈ 3⊕ 5, 5 ∈ 5⊕ 3

1γ26⇐⇒ 1 ∈ 1⊕ 6, 6 ∈ 6⊕ 1

1γ27⇐⇒ 1 ∈ 1⊕ 7, 7 ∈ 7⊕ 1

2γ23⇐⇒ 2 ∈ 3⊕ 4, 3 ∈ 4⊕ 3

2γ24⇐⇒ 2 ∈ 3⊕ 4, 4 ∈ 4⊕ 3

2γ25⇐⇒ 2 ∈ 4⊕ 5, 5 ∈ 5⊕ 4

2γ26⇐⇒ 2 ∈ 6⊕ 2, 6 ∈ 2⊕ 6

2γ27⇐⇒ 2 ∈ 1⊕ 7, 7 ∈ 7⊕ 1

3γ24⇐⇒ 3 ∈ 3⊕ 4, 4 ∈ 4⊕ 3

3γ25⇐⇒ 3 ∈ 3⊕ 5, 5 ∈ 5⊕ 3

3γ26⇐⇒ 3 ∈ 6⊕ 3, 6 ∈ 3⊕ 6

3γ27⇐⇒ 3 ∈ 7⊕ 3, 7 ∈ 3⊕ 7

4γ25⇐⇒ 4 ∈ 4⊕ 5, 5 ∈ 5⊕ 4

4γ26⇐⇒ 4 ∈ 6⊕ 7, 6 ∈ 7⊕ 6

4γ27⇐⇒ 4 ∈ 6⊕ 7, 7 ∈ 7⊕ 6

5γ26⇐⇒ 5 ∈ 5⊕ 6, 6 ∈ 6⊕ 5

5γ27⇐⇒ 5 ∈ 5⊕ 7, 7 ∈ 7⊕ 5

6γ27⇐⇒ 6 ∈ 6⊕ 7, 7 ∈ 7⊕ 6

Therefore, E = {e1, . . . , e21} and the corresponding SBG of G is demonstrated in
Figure 6b. By applying Proposition 4, the degree of each vertex is |γ∗(z)|= 6, and G is
complete, and 6-regular. It also has an Eulerian circuit because of connectivity and has an
even degree of each vertex; therefore, graph G is Eulerian. The SBG of G is connected and
Hamiltonian and the relation γ is transitive.

5. Conclusions

The neoteric structure of a semihypergroup-based graph (SBG) is established using a
fundamental relation to advance the mathematical concept of an algebraic hypercomposi-
tional structure, namely the hypergroup, in the form of graph theory. Additionally, to model
and analyze the links in social systems, the developed SBG approach is recommended to
intuitively simplify the complicated procedure. Some significant characteristics of SBG are
proposed, including connected, complete, regular, Eulerian, isomorphism, and Cartesian
products along with illustrative examples and graphical attitude. As per the engagement
of all nations and individuals after the global COVID-n pandemic, the resulting SBG is
applied to address the trend of transmission of the coronavirus disease in social systems,
particularly countries and individuals. The next phase can be the development of fuzzy
SBG and intuitionistic fuzzy SBG with further applicable platforms.
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1. Introduction

The Hopf Galois extension was introduced in [1]. It was shown that for a finite
dimensional semisimple Hopf algebra H and a left H-module algebra R, the smash product
R#H is Morita equivalent to RH if and only if R/RH is an H∗-Galois extension. Now
suppose R is a differential graded (dg) algebra and the differential is compatible with the
H-module action. The Hopf Galois extension on dg algebra R and the equivalence between
dg module categories gr-(R#H) and gr-RH follows easily from [1]. However, if we consider
the derived categories D(R#H) and D(RH), then the problem is subtle.

In the present paper, we focus our attention on the relationship between the derived
categories D(R#H) and D(RH). We introduce the concept of Hopf dg Galois extensions
and show that R#H and RH is derived equivalent to each other if and only if R/RH is a
Hopf dg Galois extension. In some situations, for example, when R is a positive graded
algebra, the concept of Hopf dg Galois extensions is precisely equal to the concept of Hopf
Galois extensions. Thus, we can consider the Hopf dg Galois extension as a generality of
the Hopf Galois extension.

For this purpose, we proceed as follows. We first review the basic facts on derived
categories and derived functors. In Section 4, we define the Hopf dg Galois extensions.
We show that R#H and RH is derived equivalent to each other if and only if R/RH is a
Hopf dg Galois extension in Theorem 2. Finally, we give some conditions for the quotient
categories of derived categories D(R#H) and D(RH) to be equivalent.

2. Preliminaries

Throughout this paper, k is a field of characteristic 0 and all algebras are k-algebras;
unadorned ⊗ means ⊗k and Hom means Homk. Recall that a differential graded (dg)
algebra is a Z-graded algebra A =

⊕
n∈Z An equipped with a differential d of degree 1 such

that d(ab) = d(a)b + (−1)|a|ad(b), where a, b ∈ A are homogeneous elements and |a| is the
degree of a.

Suppose A is an algebra without gradings. We may view A as a dg algebra
⊕

n∈Z An
concentrated in degree zero, where

(1) A0 = A,
(2) An = 0, for every n 
= 0,
(3) the differential d = 0.
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Unless otherwise stated, all modules in this paper are right modules. Let A and B
be dg algebras. A (right) dg A-module M is a (right) A-module M, which has a grading
M =

⊕
n∈Z Mn and a differential d such that Mn Am ∈ Mn+m and d(ma) = d(m)a +

(−1)nmd(a), for m ∈ Mn and a ∈ Am. We call M a dg (A, B)-bimodule if M, which comes
with one grading and one differential, is both a left dg A-module and a right dg B-module.

Let A and B be dg algebras. Let M be a dg (A, B)-module and N be a right dg
B-bimodule. Let

Hom•B(M, N) =
⊕
n∈Z

Homn
B(M, N),

where Homn
B(M, N) is the set of all graded B-module maps of degree n. Then, Hom•B(M, N)

is a right dg A-module with a differential defined by d( f ) = dN ◦ f − (−1)n f ◦ dM ∈
Homn+1

B (M, N), for f ∈ Homn
B(M, N) and n ∈ Z. Let T be a right dg A-module. Then,

the tensor product T ⊗A M is a right dg B-module with differential d(t⊗m) = d(t)⊗m +
(−1)nt⊗ d(m) for t ∈ Tn and m ∈ M.

Let A and B be dg algebras. M(A) will denote the dg module category of dg A-
modules. D(A) will denote the derived category of dg A-modules. For a dg (A, B)-module
M, we have two functors:

Hom•B(M,−) : M(B)→M(A),

and
−⊗A M : M(A)→M(B).

These two functors compose an adjoint pair (− ⊗A M, Hom•B(M,−)), see ([2],
Lemma 19.11).

Let
RHom•B(M,−) : D(B)→ D(A)

denote the right derived functor of Hom•B(M,−) and

−⊗L
A M : D(A)→ D(B)

denote the left derived functor of−⊗A M. Due to the adjoint above, (−⊗L
A M, R Hom•B(M,−))

is an adjoint pair, see ([3], Section 5.8).
Let H be a finite dimensional semisimple Hopf algebra with counit ε. We say that R is

a left H-module algebra, if there is a left H-module action on R such that

(1) h · a ∈ Rn,
(2) h · (ab) = Σ(h(1) · a)(h(2) · b),
(3) h · 1 = ε(h) · 1,

for every a, b ∈ R and h ∈ H.
Let R be a left H-module algebra. For a left H-module M, we write MH = {m ∈

M | h · m = ε(h)m, for all h ∈ H}. Let S̄ denote the inverse of the antipode S. It is well
known that RH is a subalgebra of R and R has an (RH , R#H)-bimodule structure defined by

r1.r.(r2#h) = (S̄h) · (r1rr2),

and R has a (R#H, RH)-bimodule structure defined by

(r1#h).r.r2 = r1(h · r)r2,

where the notation “.” denotes the multiplication on the module R and the notation “·”
denotes the H-module action on the algebra R, see ([4], Sections 1.7 and 4.1).

The Hopf Galois extension is defined in [1]. R/RH is said to be right H∗-Galois if
the map

γ : R⊗RH R→ R⊗ H∗, r1 ⊗ r2 *→ (r1 ⊗ 1)ρ(r2)
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is surjective, where R is considered as a right H∗-comodule and ρ is the comodule structure
map. By ([1], Theorem 1.2), R/RH is right H∗-Galois if and only if the map R⊗RH R →
R#H, r1 ⊗ r2 *→ (r1#t)(r2#1) is surjective.

Let C be a triangulated category and B be a full triangulated subcategory of C. We call
B a thick subcategory if the following condition is satisfied:

If f : X → Y is a map in C which is contained in a distinguished triangle

X → Y → Z → X[1]

where Z is in B, and if the map f also factors through an object W of B, then X and Y are
objects of B.

If B is a thick subcategory of C, then the quotient category CB is a triangulated category.
For the thick subcategory, we have the following proposition.

Proposition 1 ([5], Proposition 1.3). A full triangulated subcategory B of a triangulated category
C is thick if and only if every object of C that is a direct summand of an object of B is itself an object
of B.

3. The Equivalences of Triangulated Categories

Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Then, A = eBe is
a dg algebra, Be is a dg (B, A)-bimodule and eB is a dg (A, B)-bimodule. For the dg (B, A)-
bimodule Be, we may find a dg (B, A)-bimodule P and a dg (B, A)-bimodule morphism
p : P → Be such that p is a quasi-isomorphism and P is K-projective both as a left dg
B-module and as a right dg A-module. Similarly, we may find a dg (A, B)-bimodule Q
and a dg (A, B)-bimodule morphism q : Q→ eB such that q is a quasi-isomorphism and Q
is K-projective both as a left dg A-module and as a right dg B-module. Then, the functor
− ⊗L

A Be : D(B) → D(A) is isomorphic to the functor − ⊗A P : D(B) → D(A) and the
functor −⊗L

A eB : D(A)→ D(B) is isomorphic to the functor −⊗A Q : D(A)→ D(B).
Since (−⊗L

A eB, RHom•B(eB,−)) is an adjoint pair between D(B) and D(A), we have
a bijection

Ψ : HomD(B)(Be⊗L
A eB, B)→ HomD(A)(Be, Be),

since RHom•B(eB, B) ∼= Be in D(A). Below, we set

ψ = Ψ−1(IdBe), (1)

where IdBe is the identity morphism in HomD(A)(Be, Be).
Similarly, (−⊗A Q, Hom•B(Q,−)) is an adjoint pair between D(B) and D(A). For

every i ∈ Z, there exists an isomorphism of dg (B, B)-bimodules

αi : Hom•B(P⊗A Q, B[i])→ Hom•A(P, Hom•B(Q, B[i])),

such that for f ∈ Homn
B(P⊗A Q, B[i]), x ∈ P, y ∈ Q, we have

αi( f )(x) : y *→ f (x⊗ y).

Note that both Q and eB are K-projective as right dg B-modules. It follows that the
quasi-isomorphism q : Q→ eB, when viewed as a right dg B-module morphism, is indeed
a homotopic equivalence. Hence the dg (B, B)-bimodule morphism

Hom•A(P, Hom•B(q, B[i])) : Hom•A(P, Hom•B(eB, B[i]))→ Hom•A(P, Hom•B(Q, B[i]))

is a quasi-isomorphism. Since Hom•B(eB, B[i]) ∼= Be[i] as dg (B, A)-bimodules, let βi denote
the quasi-isomorphism from Hom•A(P, Be[i]) to Hom•A(P, Hom•B(Q, B[i])). Thus, we have
the following isomorphism

Φi = (H0(βi))
−1 ◦ H0(αi) : HomD(B)(P⊗A Q, B[i])→ HomD(A)(P, Be[i]).
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Let φ := m ◦ (p⊗A q) be the composition

P⊗A Q
p⊗q−→ Be⊗A eB m−→ B, (2)

where m is the multiplication map in B, that is, m(b1 ⊗ b2) = b1b2. Then, φ is a dg (B, B)-
bimodule morphism. For b ∈ Bi such that d(b) = 0, let lb denote the map lb : B→ B[i], a *→
ba for a ∈ B, and let l′b denote the map l′b : Be→ Be[i], ae *→ bae, for a ∈ B. Then, we have
the following lemma.

Lemma 1. Retain the notation above, Φi(lb ◦ φ) = l′b ◦ p.

Proof. By the definitions, for x ∈ P, y ∈ Q, αi(lb ◦ φ)(x) : y *→ bp(x)q(y) and βi(l′b ◦
p)(x) : y *→ bp(x)q(y). Thus, Φi(lb ◦ φ) = l′b ◦ p.

Since P ∼= Be in D(A) and Be ⊗L
A eB ∼= P ⊗A Q in D(B), we have the following

commutative diagram.

HomD(B)(Be⊗L
A eB, B) Ψ ��

∼=
��

HomD(A)(Be, Be)

∼=
��

HomD(B)(P⊗A Q, B)
Φ0 �� HomD(A)(P, Be).

Hence the morphism ψ may be represented by φ as defined in (2). That is, we have
cone(φ) ∼= cone(ψ) in D(B). Moreover, we may use Φ0 to conduct calculations instead of
using Ψ.

Let A, B be dg algebras. Let N be a dg (A, B)-bimodule. The bimodule structure
implies a natural map lA : A → RHom•B(N, N), sending a ∈ A to the left module action
on N. In [5], Rickard characterized the Morita equivalence of derived categories. For dg
algebras, we have the following lemma.

Lemma 2 ([5], Theorem 6.4). Let A, B be dg algebras. Let N be a dg (A, B)-bimodule. Then, the
functor −⊗L

A N : D(A)→ D(B) gives an equivalence of triangulated categories if and only if

(1) N is a compact object of D(B).
(2) N is a weak generator in D(B).
(3) The map lA : A→ RHom•B(N, N) is a quasi-isomorphism.

Now we can get the following theorem.

Theorem 1. Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Set A = eBe.
The following conditions are equivalent.

(1) F = −⊗L
A eB : D(A)→ D(B) is an equivalence of triangulated categories.

(2) G = −⊗L
B Be : D(B)→ D(A) is an equivalence of triangulated categories.

(3) The morphism ψ : Be⊗L
A eB→ B is an isomorphism in D(B).

Proof. (1)⇔(2) F is left adjoint to G′ = RHom•B(eB,−) : D(B) → D(A). The functors G
and G′ are naturally isomorphic to each other since eB is a compact K-projective dg module
in D(B) and Hom•B(eB, B) ∼= Be, see ([6], Section 2.1). Then, (F, G) is an adjoint pair.
Therefore F is an equivalence of triangulated categories if and only if G is an equivalence
of triangulated categories.
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(1)⇒(3) Since F and G are equivalences, the functors − ⊗A P : D(B) → D(A) and
− ⊗B Q : D(A) → D(B) are equivalences. For every n ∈ Z, we have the following
morphisms of groups.

HomD(A)(P, P[n])
−⊗AQ−−−−−−−−−−→ HomD(B)(P⊗A Q, P⊗A Q[n])

HomD(B)(P⊗AQ,φ[n])
−−−−−−−−−−−−→ HomD(B)(P⊗A Q, B[n])

Φn−−−−−−−−−→ HomD(A)(P, Be[n])
HomD(A)(P,p[n])−1

−−−−−−−−−−−−→ HomD(A)(P, P[n]).

By Lemma 1, the composition above is the identity morphism. Since the morphisms
− ⊗A Q, Φn and HomD(A)(P, p[n])−1 are isomorphisms, HomD(B)(P ⊗A Q, φ[n]) is an
isomorphism.

By (1) and (2), (F, G) is an adjoint pair and then (−⊗A P,−⊗B Q) is an adjoint pair. So,
we have P⊗A Q ∼= B⊗B P⊗A Q ∼= B in D(B). Thus, HomD(B)(B, φ[n]) is an isomorphism
for every n ∈ Z. Hence, φ is an isomorphism in D(B) and φ is a quasi-isomorphism of dg
modules. Then, ψ is an isomorphism.

(3)⇒(1) The morphism of dg modules φ : P⊗A Q→ B is a quasi-isomorphism since
ψ is an isomorphism. Then, P⊗A Q ∼= B in D(B). By Lemma 2, the functor −⊗B P⊗A
Q : D(B)→ D(B) is an equivalence. Since we have isomorphisms Q⊗B P ∼= eB⊗B Be ∼= A
in D(A), the functor −⊗A Q⊗B P : D(A) → D(A) is an equivalence. Thus, the functor
− ⊗A Q : D(A) → D(B) is an equivalence. Hence, F = − ⊗L

A eB : D(A) → D(B) is an
equivalence of triangulated categories.

4. Hopf DG Galois Extensions

Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Suppose that R is a dg algebra with the differential d. We call R a left dg H-
module algebra if R is a left graded H-module algebra and the differential of R is compatible
with the H-module action, that is,

d(h · r) = h · d(r)

for h ∈ H and r ∈ R. Since R is a dg algebra, the smash product R#H is a dg algebra with
the differential δ = d#Id and RH is a dg subalgebra of R. Let e = 1R#t ∈ R#H. Then, e is an
idempotent in R0 and δ(e) = 0. Thus, e(R#H)e is a dg algebra with differential δ. By direct
calculation, we have the following isomorphisms ([7], Lemma 3.1).

(1) The map RH → e(R#H)e, r *→ e(r#1)e, is an isomorphism of dg algebras.
(2) The map R→ (R#H)e, r *→ (r#1)e, is an isomorphism of dg (R#H, RH)-bimodules.
(3) The map R→ e(R#H), r *→ e(r#1), is an isomorphism of dg (RH , R#H)-bimodules.

Let B = R#H and A = eBe ∼= RH . Let p : P → R be the dg (R#H, RH)-bimodule
quasi-isomorphism such that P is K-projective on both sides. Let q : Q → R be the dg
(RH , R#H)-bimodule quasi-isomorphism such that Q is K-projective on both sides. Recall
the dg (R#H, R#H)-bimodule morphism

φ : P⊗RH Q→ R#H, x⊗ y *→ p(x)q(y)

defined above. Now we can define the Hopf dg Galois extension.

Definition 1. For a dg left H-module algebra R, R/RH is called dg H∗-Galois if the morphism
φ : P⊗RH Q→ R#H is a quasi-isomorphism.

Now we have the following theorem for dg H∗-Galois extensions.
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Theorem 2. Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R be a left dg H-module algebra. The following conditions are equivalent.

(1) R/RH is dg H∗-Galois.
(2) (a) The map lR#H : R#H → RHom•RH (R, R) is a quasi-isomorphism,

(b) R is a compact object in D(RH).
(3) R is a weak generator in D(R#H).

Proof. Let B = R#H, e = 1R#t, then A = eBe = RH . Thus, the condition (1) is equivalent
to Theorem 1 (3). By Lemma 2, the condition (2) is equivalent to Theorem 1 (2) and the
condition (3) is equivalent to Theorem 1 (1). Then, by Theorem 1, (1)⇔ (2)⇔ (3).

The following results will show the relation between Hopf Galois extensions and Hopf
dg Galois extensions.

Lemma 3. Let H be a finite dimensional semisimple Hopf algebra and R be a dg left H-module
algebra. Then, RR#H is a weak generator in D(R#H) if and only if for every dg R#H-module M,
Hn(MH) = 0 for every n ∈ Z implies Hn(M) = 0 for every n ∈ Z.

Proof. Given a dg R#H-module (M, dM), by ([7], Lemma 2.2), for every n ∈ Z,

HomR#H(R, M[n]) ∼= HomR(R, M[n])H ∼= (Ker dn
M)H .

Then, for every n ∈ Z, we have

HomK(R#H)(R, M[n]) ∼= (Ker dn
M/Im dn−1

M )H ∼= (Hn(M))H .

Since H is semisimple, (−)H ∼= HomH(k,−) is an exact functor. Therefore, (Hn(M))H ∼=
Hn(MH) for every n ∈ Z. By [7] Proposition 2.5, R is a K-projective dg R#H-module. Thus, for
every n ∈ Z,

HomD(R#H)(R, M[n]) ∼= HomK(R#H)(R, M[n]) ∼= (Hn(M))H ∼= Hn(MH).

Hence, RR#H is a weak generator in D(R#H) if and only if for every dg R#H-module
M, HomD(R#H)(R, M[n]) = 0 for every n ∈ Z implies M ∼= 0 in D(R#H), if and only if
for every dg R#H-module M, Hn(MH) = 0 for every n ∈ Z implies Hn(M) = 0 for every
n ∈ Z.

Corollary 1. Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R be a left H-module dg algebra. If R/RH is right dg H∗-Galois, then the map
ϕ : R⊗RH R→ R#H, r1 ⊗ r2 *→ (r1#t)(r2#1) is a quasi-isomorphism.

Proof. Consider the short exact sequence of dg R#H-modules

0→ Ker ϕ→ R⊗RH R→ Im ϕ→ 0.

Since (−)H is an exact functor, we have the short exact sequence

0→ (Ker ϕ)H → (R⊗RH R)H → (Im ϕ)H → 0.

Since (R ⊗RH R)H = t(R ⊗RH R) = (tR) ⊗RH R = RH ⊗RH R ∼= R, for every α ∈
(Ker ϕ)H , there exists r ∈ R such that α = 1⊗ r ∈ (R⊗RH R)H . Then, ϕ(α) = ϕ(1⊗ r) =
(1#t)(r#1) = 0. However, by [1] [Lemma 0.5], (1#H)(R#1) ∼= H ⊗ R as vector spaces by

η : (1#H)(R#1)→ H ⊗ R, (1#h)(r#1) *→ h(2) ⊗ (h(1) · r),
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and
η−1 : H ⊗ R→ (1#H)(R#1), h⊗ r *→ (1#h(2))((S

−1h(1)) · r#1).

Thus, (1#t)(r#1) = 0 if and only if r = 0, which means (Ker ϕ)H = 0. Therefore,
Hn((Ker ϕ)H) = 0 for every n ∈ Z. By Lemma 3, Hn(Ker ϕ) = 0 for every n ∈ Z. Then,
Hn(R⊗RH R) ∼= Hn(Im ϕ) for every n ∈ Z.

Consider another short exact sequence of dg R#H-modules

0→ Im ϕ→ R#H → Coker ϕ→ 0.

Since (−)H is an exact functor, we have the short exact sequence

0→ (Im ϕ)H → (R#H)H → (Coker ϕ)H → 0.

By ([1], Lemma 0.5), (R#H)H = (1#t)(R#1). However,

(Im φ)H = ((R#t)(R#1))H

= (1#t)(R#t)(R#1)
= (RH#t)(R#1)
= (1#t)(RH#1)(R#1)
= (1#t)(R#1).

Thus, the map (Im ϕ)H → (R#H)H is surjective. Then, (Coker ϕ)H = 0. Therefore,
Hn((Coker ϕ)H) = 0 for every n ∈ Z. By Lemma 3, Hn(Coker ϕ) = 0 for every n ∈ Z.
So, we have Hn(Im ϕ) ∼= Hn(R#H) for every n ∈ Z. Thus, Hn(R⊗RH R) ∼= Hn(R#H) for
every n ∈ Z. Hence, ϕ is a quasi-isomorphism.

Corollary 2. Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R =

⊕
n≥0 Rn be a left H-module dg algebra. Then, R/RH is dg H∗-Galois if and

only if R/RH, forgetting the differentials, is right H∗-Galois.

Proof. Suppose that R/RH is dg H∗-Galois. Then, by Corollary 1, the map ϕ : R ⊗RH

R → R#H, r1 ⊗ r2 *→ (r1#t)(r2#1) is a quasi-isomorphism. Since H0(R) = Ker d0
R and

1R ∈ Ker d0
R, the map ϕ is surjective. Thus, R/RH is right H∗-Galois.

Suppose that R/RH is right H∗-Galois. Then, by [1] Theorem 1.2, R is a dg finitely
generated projective left RH-module, and for every dg R#H-module M, MH ⊗RH R ∼= M as
dg R#H-modules. Thus, Hn(MH) = 0 for every n ∈ Z implies Hn(M) = 0 for every n ∈ Z.
By Lemma 3, RR#H is a weak generator in D(R#H). Thus, R/RH is dg H∗-Galois.

If R is a dg algebra concentrated in degree 0, then Corollary 2 shows that R/RH is
dg H∗-Galois if and only if R/RH , forgetting the differentials, is H∗-Galois. Thus, the
definition of dg H∗-Galois is an extension of the definition of H∗-Galois.

5. The Equivalences of Quotient Categories

Suppose that B is a dg algebra and e is an idempotent in B0 such that d(e) = 0. Then,
eBe is a dg algebra. Let A = eBe. Let

D0(B) = {M ∈ D(B) | HomD(B)(M, B[n]) = 0, n ∈ Z}

and
D0(A) = {N ∈ D(A) | HomD(A)(N, Be[n]) = 0, n ∈ Z}.

By Proposition 1, it is clear thatD0(B) (resp. D0(A)) is a thick triangulated subcategory
of D(B) (resp. D(A)). Let Dq(B) denote the quotient category D(B)

D0(B) and Dq(A) denote

the quotient category D(A)
D0(A)

. Let π denote the natural quotient functor. Theorem 1 shows

that the map φ : Be⊗L
A eB→ B is an isomorphism in D(B) if and only if D(A) ∼= D(B). In
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this section, we will give some equivalent conditions for the quotient categories Dq(B) and
Dq(A) being equivalent.

Theorem 3. Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Let A = eBe
be a dg algebra. The following conditions are equivalent.

(1) The map lB : B→ RHom•A(Be, Be) is a quasi-isomorphism.
(2) HomD(B)(cone(ψ), B[n]) = 0 for all n ∈ Z.
(3) The functor −⊗L

B Be : D(B)→ D(A) implies an equivalence of triangulated categories from
Dq(B) to Dq(A).

Proof. (1)⇔(2) Consider the composition Φn ◦HomD(B)(φ, B[n]),

HomD(B)(B, B[n])
HomD(B)(φ,B[n])
−−−−−−−−−→ HomD(A)(P, P[n])

Φn−−−−−−−→ HomD(A)(P, Be[n]).

Since Φn is an isomorphism for every n, by Lemma 1, the condition (1) is equivalent to
HomD(B)(φ, B[n]) being an isomorphism for every n. Consider the distinguished triangle
in D(B),

P⊗A Q
φ �� B �� cone(φ) �� P⊗A Q[1].

In the following proving process, we write (−)∗n for the functor HomD(B)(−, B[n])
temporarily to simplify the notation. Then, we have the long exact sequence

· · · → (B)∗n
(φ)∗n−−→ (P⊗A Q)∗n → (cone(φ))∗n+1 → (B)∗n+1

(φ)∗n+1−−−→ (P⊗A Q)∗n+1 → · · · .

Thus, we have that the functor (φ)∗n is an isomorphism for every n if and only if
(cone(ψ))∗n ∼= (cone(φ))∗n = 0 for every n.

(2)⇔(3) Consider the distinguished triangle in D(B)

Be⊗L
A eB

ϕ �� B �� cone(ϕ) �� Be⊗L
A eB[1].

Then, we have a distinguished triangle in Dq(B)

π(Be⊗L
A eB)

π(ϕ) �� π(B) �� π(cone(ϕ)) �� π(Be⊗L
A eB[1]).

Suppose that HomD(B)(cone(ψ), B[n]) = 0 for all n ∈ Z, then π(cone(ϕ)) = 0 in
Dq(B). Thus, π(Be ⊗L

A eB) ∼= π(B) in Dq(B). Since eB ⊗L
B Be ∼= A in D(A), we have

π(eB⊗L
B Be) ∼= π(A) in Dq(A). Therefore, the functor −⊗L

B Be : D(B)→ D(A) implies an
equivalence of triangulated categories from Dq(B) to Dq(A).

Suppose that the functor −⊗L
B Be : D(B) → D(A) implies an equivalence of trian-

gulated categories from Dq(B) to Dq(A); then, π(Be ⊗L
A eB) ∼= π(B) in Dq(B). Thus,

π(cone(ϕ))=0 in Dq(B), that is, HomD(B)(cone(ψ), B[n])=0 for all n ∈ Z.

Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R be a left H-module algebra. Let B = R#H and e = 1#t in Theorem 3; then,
A ∼= eBe ∼= RH as dg algebras. Thus, Theorem 3 shows some equivalent conditions of the
quasi-isomorphism R#H → RHom•RH (R, R).

Corollary 3. Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Let A = eBe
be a dg algebra. If HomD(B)(B, B[n]) = 0, HomD(A)(Be, Be[n]) = 0, for n ≤ α or n ≥ β, then
the following conditions are equivalent.

(1) The map lB : B→ RHom•A(Be, Be) is a quasi-isomorphism.
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(2) HomD(B)(cone(ψ), B[n]) = 0 for α + 1 ≤ n ≤ β.
(3) HomD(B)(cone(ψ), B[n]) = 0 for all n ∈ Z.
(4) The functor −⊗L

B Be : D(B)→ D(A) implies an equivalence of triangulated categories from
Dq(B) to Dq(A).

Proof. By Theorem 3, it is clear that (1) ⇔ (3) ⇔ (4) and (3) ⇒ (2). It suffices to show
(2)⇒ (3).

(2) ⇒ (3) By the proof of Theorem 3, if we have HomD(B)(B, B[n]) = 0 and
HomD(A)(Be, Be[n]) = 0, for n ≤ α or n ≥ β, then the long exact sequence shows that
HomD(B)(B, B[n]) ∼= HomD(A)(P, Be[n]) for α + 1 ≤ n ≤ β− 1. Thus HomD(B)(B, B[n]) ∼=
HomD(A)(P, Be[n]) for all n.

Remark 1. If α = −1 and we let j(M) = min{i | Exti
D(B)(M, B) 
= 0} for M ∈ D(B), then

the condition (2) is equivalent to j(cone(ψ)) ≥ β + 1. Thus, Corollary 3 is a dg version of ([8],
Theorem 2.4).

6. Conclusions

The Hopf dg Galois extension shows the relationship between dg algbras R and
RH , which relate to the equivalences of some derived categories. Since the Hopf dg
Galois extension is compatible with the usual Hopf Galois extension, we can promote
the propositions related to Hopf Galois extension, and relate these to derived categories
in a similar way. For an H-comodule algebra and its subalgebras, there exists a kind of
Hopf Galois extensions. These may be promoted to dg algebras and derived categories in
some way.
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Abstract: We study the notions of the positive cone, characteristic and C-characteristic in (Krasner)
hyperfields. We demonstrate how these interact in order to produce interesting results in the theory
of hyperfields. For instance, we provide a criterion for deciding whether certain hyperfields cannot
be obtained via Krasner’s quotient construction. We prove that any positive integer (larger than
1) can be realized as the characteristic of some infinite hyperfield and an analogous result for the
C-characteristic. Finally, we study the (directed) graph associated with the strict partial order induced
by a positive cone in a hyperfield in various examples.
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1. Introduction

In this paper, we study Krasner hyperfields. These structures are a generalization
of the concept of the field, where the addition is allowed to be a multivalued operation,
i.e., x + y in general denotes a subset and not only an element. Apart from the applications
for which they have been introduced in [1] by Krasner, recently, these structures have arisen
naturally in several mathematical contexts. For instance, Viro in [2] used hyperfields in
tropical geometry and Lee in [3] studied these structures in connection to the model theory
of valued fields. Regarding hyperfields, it is certainly also worth mentioning the work of
Connes and Consani in number theory [4,5].

Since hyperfields represent a generalization of the concept of a field, it is natural to
ask which classical notions and theorems of the theory of fields can be generalized to the
theory of hyperfields. M. Marshall in [6] started the investigation towards a theory of real
hyperfields, generalizing the Artin-Schreier theory of real fields (for a general reference
on the latter, we refer the reader to [7]). The work of Marshall provided the basis for the
investigations made later in [8] and in [9]. In the sections below, real hyperfields will be
studied further.

Historically, a subhyperfield L of a hyperfield F is required to be closed under the
multivalued addition in the sense that x + y ⊆ L for all x, y ∈ L. However, Jun in
(Definition 2.4) [10], felt the need for a less restrictive notion and started to talk about
a multivalued operation, which can be “induced” by certain subsets. In Section 3, we
take a model theoretical point of view (encoding the multivalued operation + via the
ternary relation z ∈ x + y) to justify Jun’s feeling and precisely define the notion of the
multivalued operation induced by a subset (see also [9]). This leads us to the notion of
relational subhyperfields. The interest for relational subhyperfields is motivated by the
fact that they correspond to the submodels of hyperfields in a natural first-order language,
which we describe in Section 3.
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The notion of this characteristic is fundamental in classical field theory and, when it is
finite, it can only be a prime number. Moreover, the characteristic of a field is preserved
by subfields. In this paper, we will demonstrate that a natural generalization of the notion
of characteristic for hyperfields (see Definition 3 below), does not have to behave in the
same way: we prove that the characteristic of a hyperfield does not have to be preserved by
relational subhyperfields (Example 13), and that any integer greater than 1 can be realized
as the characteristic of some hyperfield (Theorem 3).

In addition, we study an alternative notion of the characteristic for hyperfields, known
as the C-characteristic, which in the case of fields coincides with the usual characteristic.
Moreover, this quantity is not preserved by relational subhyperfields (Example 14), and we
prove in Theorem 4 that any positive integer can be realized as the C-characteristic of some
real hyperfield. In addition, we demonstrate how useful the interplay between these two
notions of characteristic can be by providing a criterion (Theorem 6) for deciding whather
certain hyperfields cannot be obtained via Krasner’s quotient construction (see [11,12]). We
apply this result to the finite real hyperfield of Example 4.

In Section 5, we define a strict partial order relation induced by a positive cone in a
real hyperfield and study the associated directed graph in various interesting examples.

2. Preliminaries

In this section, we provide an overview of the definitions and facts that are necessary
for the rest of the paper, with several examples.

2.1. Hyperfields

Let H be a non-empty set and P(H) be its power-set. A multivalued operation + on H
is a function which associates with every pair (x, y) ∈ H× H an element of P(H), denoted
by x + y. A hyperoperation + on H is a multivalued operation, such that x + y 
= ∅ for all
x, y ∈ H. If + is a multivalued operation on H 
= ∅, then for x ∈ H and A, B ⊆ H, we set

A + B :=
⋃

a∈A,b∈B

a + b, (1)

A + x := A + {x} and x + A := {x}+ A. If A or B is empty, then so is A + B.
A hypergroup can be defined as a non-empty set H with a multivalued operation +,

which is associative (see Definition 1 (CH1) below) and reproductive (i.e., x + H = H + x = H
for all x ∈ H). This notion was first considered by F. Marty in [13–15]. Let us mention [16]
for an extended historical overview and [17,18] for a description of some applications.

If (H,+) is a hypergroup, then it follows that + is a hyperoperation. Indeed, suppose
that x + y = ∅ for some x, y ∈ H. Then,

H = x + H = x + (y + H) = (x + y) + H = ∅ + H = ∅,

which is excluded (cf. (Theorem 12) in [16]).
The following special class of hypergroups will be of interest for us.

Definition 1. A canonical hypergroup is a tuple (H,+, 0), where H 
= ∅, + is a multivalued
operation on H and 0 is an element of H such that the following axioms hold:

(CH1) + is associative, i.e., (x + y) + z = x + (y + z) for all x, y, z ∈ H,
(CH2) x + y = y + x for all x, y ∈ H,
(CH3) for every x ∈ H, there exists a unique x′ ∈ H, such that 0 ∈ x + x′ (the element x′ will be

denoted by −x),
(CH4) z ∈ x + y implies y ∈ z− x := z + (−x) for all x, y, z ∈ H.

The axiom (CH4) is known as the reversibility axiom.
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Remark 1. Some authors (see e.g., (Definition 1.2) in [19]) define canonical hypergroups requiring
explicitly that x + 0 = {x} for all x ∈ H. However, as already noted in (Section III, (b)) [12], this
property follows from (CH3) and (CH4). Indeed, suppose that y ∈ x + 0 for some x, y ∈ H. Then,
0 ∈ y− x by (CH4). Presently, y = x follows from the uniqueness required in (CH3). For this
reason, we call 0 the neutral element for +.

Remark 2. The multivalued operation of a canonical hypergroup (H,+, 0) is reproductive. To ob-
serve this fix, a ∈ H. For x ∈ H + a, there exists h ∈ H, such that x ∈ h + a ⊆ H, demonstrating
that H + a ⊆ H. For the other inclusion, take x ∈ H, then

x ∈ x + 0 ⊆ x + (a− a) = (x− a) + a,

so there exists h ∈ x− a ⊆ H, such that x ∈ h + a ⊆ H + a. It follows, in particular, that + is a
hyperoperation.

The following structures have been considered by Krasner in [1,11].

Definition 2. A hyperfield is a tuple (F,+, ·, 0, 1), which satisfies the following axioms:

(HF1) (F,+, 0) is a canonical hypergroup;
(HF2) (F \ {0}, ·, 1) is an abelian group and x · 0 = 0 · x = 0 for all x ∈ F;
(HF3) the operation · is distributive with respect to +. That is, for all x, y, z ∈ F,

x · (y + z) = x · y + x · z,

where for x ∈ F and A ⊆ F, we have set

xA := {xa | a ∈ A}.

We denote the multiplicative group of a hyperfield F by F×.

Remark 3. One can think about other kinds of hyperfields by modifying the axioms that the
additive hypergroup should fulfill. The hyperfields for which the additive hypergroup is a canonical
hypergroup (as above) are commonly known as Krasner hyperfields. As we mentioned in the
introduction, we will consider only these kinds of structures and call them simply hyperfields,
as indicated in the above definition.

Remark 4. The double distributivity law, i.e.,

(a + b)(c + d) = a · c + a · d + b · c + b · d,

does not hold in general in hyperfields. However, the fact that the inclusion

(a + b)(c + d) ⊆ ca + ad + bc + bd

holds is not difficult to verify from the definitions and has been known for long time. For instance, it
was stated without proof in [12,20]. A proof has been written in (Theorem 4B) of [2].

By induction, it is straightforward to show that

(a1 + . . . + an)(b1 + . . . + bm) ⊆ a1b1 + a1b2 + . . . + a1bm + a2b1 + . . . + anbm

for any natural numbers n, m.

Examples of hyperfields can be obtained in the following way. Let K be a field and G
a subgroup of K×. For x ∈ K×, we denote by [x]G the coset xG ∈ K×/G. Further, let [0]G
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denote the singleton containing only 0 ∈ K. Then, the quotient hyperfield of the K modulo G
is the set KG := K×/G ∪ {[0]G} with the hyperoperation

[x]G + [y]G := {[x + yg]G | g ∈ G} (x, y ∈ K)

and the operation
[x]G[y]G := [xy]G (x, y ∈ K).

This construction was demonstrated to always yield a hyperfield by Krasner himself
in [11].

Not all hyperfields can be obtained in this way, i.e., there are hyperfields that are
not quotient hyperfields. This has been demonstrated by Massouros in [12], who then
improved his results in [21]. Afterwards, Baker and Jin in [22] have found the following
theorem of Bergelson-Shapiro and Turnwald useful to prove that certain hyperfields cannot
be obtained via Krasner’s quotient construction.

Theorem 1 (Theorem 1.3 in [23]; Theorem 1 in [24]). If F is an infinite field and G is a subgroup
of F× of the finite index, then G− G = F.

The next observation gives a necessary condition for a hyperfield to be a field. This
fact is an immediate corollary of a result already noted in [20] (p. 369). We wish to state it
for later reference and we will take the opportunity to write a quick proof.

Proposition 1 ([20]). Let F be a hyperfield. If 1− 1 = {0}, then F is a field.

Proof. By distributivity (HR3), our assumption implies that a− a = {0} for all a ∈ F. Let
a, b ∈ F× and take x, y ∈ a + b. Then

x− y ⊆ (a + b)− (a + b) = (a− a) + (b− b) = {0},

so x = y and a + b is always a singleton in F.

In the literature, one can find different interesting notions of the characteristic for
hyperfields. Maybe the oldest is the one introduced by Mittas (a student of Krasner, see [20]).
Later, Viro in [2] highlighted two other possible such notions. All these coincide with the
usual characteristic of fields when the addition of the hyperfield under consideration is
singlevalued (i.e., the hyperfield is in fact a field). However, they can be different in the
general case. In this paper, we focus on the latter two notions, highlighted by Viro and
which appear also in the work of P. Gładki [8] as well as in [4,5].

Definition 3. Let F be a hyperfield. We set 1×F 1 := {1} and for n ≥ 2

n×F 1 := 1 + . . . + 1︸ ︷︷ ︸
n times

.

If there is no risk of confusion, we simply write n× 1 in place of n×F 1.

(i) The minimal n ∈ N such that 0 ∈ n×F 1 is called the characteristic of F. We denote this
number by char F. If no such number exists, we set char F = ∞.

(ii) The minimal n ∈ N such that 1 ∈ (n + 1)×F 1 is called the C-characteristic of F. We denote
this number by C-char F. If no such number exists, we set C-char F = ∞.

Remark 5.

(i) Usually if the characteristic is not finite, then one sets it to be 0. We set it to be ∞ in this
case because then some results below can be stated in a clearer way (cf. Proposition 2 and
Proposition 4).

(ii) Note that in any field, the C-characteristic is equal to the characteristic.
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(iii) For any hyperfield F we have that C-char F ≤ char F. Indeed, if 0 ∈ n×F 1, then

(n + 1)×F 1 = n×F 1 + 1 =
⋃

a∈n×F1

(a + 1) ⊇ 0 + 1 = {1},

so C-char F ≤ n.

Let us describe some examples of finite hyperfields that will be of interest for us.

Example 1. The sign hyperfield S is the set {−1, 0, 1} with the hyperoperation and operation
defined by the following tables:

+ 0 1 −1

0 {0} {1} {−1}
1 {1} {1} {−1, 0, 1}
−1 {−1} {−1, 0, 1} {−1}

· 0 1 −1

0 0 0 0

1 0 1 −1

−1 0 −1 1

As it was noted in, e.g., [25], (Page 22 (b)) this hyperfield is isomorphic to the quotient
hyperfield of an ordered field (e.g., the field R of real numbers) over the multiplicative subgroup
given by its positive cone (in the example of real numbers that is the multiplicative subgroup R>0 of
positive real numbers). This hyperfield has the C-characteristic 1 and characteristic ∞.

Example 2. This example is the hyperfield generated by the algorithm presented in [26] and called
HF521. It has five elements {0, 1,−1, a,−a} and its multiplicative group is isomorphic to Z4.
The table for the hyperoperation is as follows:

+ 0 1 −1 a −a

0 {0} {1} {−1} {a} {−a}
1 {1} {1, a,−a} {0, 1,−1, a,−a} {1,−1, a,−a} {1,−1, a,−a}
−1 {−1} {0, 1,−1, a,−a} {−1, a,−a} {1,−1, a,−a} {1,−1, a,−a}
a {a} {1,−1, a,−a} {1,−1, a,−a} {1,−1, a} {0, 1,−1, a,−a}
−a {−a} {1,−1, a,−a} {1,−1, a,−a} {0, 1,−1, a,−a} {1,−1,−a}

As it was noted in [26], this hyperfield is isomorphic to the quotient hyperfield of the finite field
with 29 elements F29 over the multiplicative subgroup of F×29 generated by 7. This hyperfield has
C-characteristic 1 and characteristic 4.

Example 3. This example is the hyperfield generated by the algorithm presented in [26] and called
HF56. It has five elements, {0, 1,−1, a,−a}. The table for the hyperoperation is as follows:
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+ 0 1 −1 a −a

0 {0} {1} {−1} {a} {−a}
1 {1} {−1, a,−a} {0, a,−a} {1,−1, a,−a} {1,−1, a,−a}
−1 {−1} {0, a,−a} {1, a,−a} {1,−1, a,−a} {1,−1, a,−a}
a {a} {1,−1, a,−a} {1,−1, a,−a} {1,−1,−a} {0, 1,−1}
−a {−a} {1,−1, a,−a} {1,−1, a,−a} {0, 1,−1} {1,−1, a}

The multiplicative group is isomorphic to Z2 ×Z2.
Note that this hyperfield is not a quotient hyperfield. Indeed, since its multiplicative group is

not cyclic, it cannot be a quotient of a finite field. Moreover, 1− 1 does not coincide with the whole
hyperfield and thus Theorem 1 ensures that it cannot be a quotient of an infinite field. We observe
that this hyperfield has the C-characteristic 2 and characteristic 3.

Example 4. Consider the set F = {0, 1,−1, a,−a, a2,−a2} and its subset P := {1, a, a2}. We
define on F the following hyperaddition:

+ 0 1 −1 a −a a2 −a2

0 {0} {1} {−1} {a} {−a} {a2} {−a2}

1 {1} {a, a2} F \
{1,−1} P F \ {0} P F \ {0}

−1 {−1} F \
{1,−1} {−a,−a2} F \ {0} −P F× −P

a {a} P F \ {0} {1, a2} F \
{a,−a} P F \ {0}

−a {−a} F \ {0} −P F \
{a,−a} {−1,−a2} F \ {0} −P

a2 {a2} P F \ {0} P F \ {0} {1, a} F \
{a2,−a2}

−a2 {−a2} F \ {0} −P F \ {0} −P F \
{a2,−a2} {−1,−a}

The multiplicative group is isomorphic to Z6. One can demonstrate that F is a hyperfield with
straightforward direct computations. In Section 2.2, below, we will study some properties of the
subset P. Moreover, we will prove that this cannot be obtained with Krasner’s quotient construction.
Note that F has the C-characteristic 2 and its characteristic is ∞.

2.2. Real Hyperfields

The Artin-Schreier theory of ordered fields, which led Artin to his solution of Hilbert’s
17th problem (see [7] for details), was generalised to hyperfields in [6]. Let us recall some
basic facts and definitions.

Definition 4. Let F be a hyperfield. A subset P ⊆ F is called a positive cone in F if

(P1) P + P ⊆ P,;
(P2) P · P ⊆ P,;
(P3) P ∩−P = ∅,;
(P4) P ∪−P = F×..

A hyperfield F is called real if it admits a positive cone.

Note that 1 ∈ P for every positive cone P in a hyperfield F. Indeed, from the axioms,
either 1 or −1 belongs to P, but not both. If −1 ∈ P, then 1 = (−1) · (−1) ∈ P again
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by the axioms. Hence, −1 cannot be in P, implying our assertion. This implies that the
characteristic of a real hyperfield must be ∞, since P + P ⊆ P and 0 /∈ P.

Example 5. The sign hyperfield S introduced in Example 1 above is real with the positive cone {1}.
This is clearly the unique possible positive cone of S.

Example 6. The hyperfield that we have introduced in Example 4 is real with the positive cone
P := {1, a, a2}. Again, this can be observed by straightforward computations.

Example 7. The hyperfield which we have introduced in Example 2 is not real. Indeed, if P would be
a positive cone, then since 1 ∈ P we must have 1 + 1 ⊆ P. On the other hand, 1 + 1 = {1, a,−a}
and by the axioms only one among a and −a can belong to P.

A similar reasoning yields that the hyperfield that we have introduced in Example 3 is not real.

Let us now briefly recall some results which have been proved in [9]. As in that paper,
we will denote by X (F|G) the set of all positive cones in F, which contain some subset G of
F and by X (F) the set of all positive cones in F.

Theorem 2 ([9]). Let P be a positive cone of a field K and assume that a multiplicative subgroup G
of K is contained in P. Consider the quotient hyperfield KG = {[x]G | x ∈ K}.
(i) The set PG := {[x]G | x ∈ P} is a positive cone of KG.
(ii) If Q is a positive cone in KG, then P := {x ∈ K | [x]G ∈ Q} is a positive cone in K.
(iii) |X (KG)| = |X (K|G)|.

Example 8. Consider the quotient hyperfield F := Q(Q×)2 , where (Q×)2 is the set of nonzero
squares in Q. The set Q+ := ∑(Q×)2 of the sums of nonzero squares in Q is the unique positive
cone of Q. Hence, by assertion (iii) of Theorem 2, F is real and has a unique positive cone
P(Q×)2 = {[x](Q×)2 | x ∈ Q+}.

3. On Relational Subhyperfields

From the point of view of model theory (for a general reference, see, e.g., [27]), standard
operations are usually encoded via binary function symbols. The same is not possible for
multivalued operations, since function symbols are classically interpreted in a structure as
functions with values in the universe of the structure and not in its power-set. Nevertheless,
as it was observed in [3], we can use the ternary relation z ∈ x + y to encode a multivalued
operation +. Thus, a hyperfield is naturally a structure on the first-order language having
two constant symbols 0, 1 for the neutral elements, a binary function symbol for the
multiplication and a ternary relation symbol to encode the hyperoperation. Considering
hyperfields as structures on this language, the general model theoretical notion of the
submodel leads to the following definition (we provide more details in Remark 7, below).

Definition 5. Let F be a hyperfield. A subset L ⊆ F is a relational subhyperfield of F if 0 ∈ L,
L \ {0} is a (multiplicative) subgroup of F \ {0} and with the induced multivalued operation,
which is defined as

x +L y := (x +F y) ∩ L (x, y ∈ L)

we have that (L, 0, 1, ·,+L) is a hyperfield.

Remark 6. Note that a priori, the multivalued operation induced by a subset L of a hyperfield F
might not be a hyperoperation, as it may admit empty values, i.e., (x +F y) ∩ L = ∅ may hold for
some x, y ∈ L. If the latter is the case, then (L, 0, 1, ·,+L) is certainly not a hyperfield; in particular,
L would not be a relational subhyperfield of F, by definition.

Remark 7. Presently, we will motivate the study of the notion introduced in Definition 5 above.
A first-order language L consists of relation, function and constant symbols. A structure on L
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is (informally) a universe (i.e., a non-empty set) where any (well-formed) expression over L is
interpreted (for a formal definition, see, e.g., (Section 1.5) in [27]). A first-order theory T over L is a
list of axioms, i.e., expressions, which can be true or false when interpreted in a certain structure.
A structure in which all the axioms of T are true is called a model of T. For example, the additive
group of integers or the cyclic group of order 5 are models of the theory of groups, as is any other
group. The field of rational numbers or the field of complex numbers are models of the theory of
fields, as is any other field. Complete graphs or star graphs are models of the theory of graphs, as is
any other graph.

Given a structure S on L and a non-empty subset A of S, it is possible to restrict to A the
interpretations in S of the symbols of L. In this way, A itself becomes a structure on L, and A is
called a substructure of S (cf. (Section 2.3) in [27]). One of the main differences between an n-ary
(n ∈ N) relation symbol, interpreted in S as a relation R ⊆ Sn and an n-ary function symbol,
interpreted in S as a function f : Sn → S, is that, when restricted to A, the latter has to satisfy the
requirement f (ā) ∈ A for all ā ∈ An; because an n-ary function symbol must, by definition, be
interpreted on A as a function f : An → A. On the other hand, the restricted relation on A is just
defined to be R ∩ An, and there are no further requirements to be satisfied.

With the notation introduced above, let us stress that under the assumption that S is a model
of T, it does not follow in general that A is a model of T too. For example, we may restrict the
operations of the field of real numbers to the set of integers Z, but we do not obtain a field. If the
substructure A happens to be itself a model of T, then it is called a submodel of S. For example,
the field of rational numbers is a submodel of the field of real numbers. If the axioms of T are
all (equivalent to) universal axioms (i.e., they can be written using only the ∀ quantifier), then
substructures are automatically submodels (this is a consequence of, e.g., (Theorem 3.3.3) in [27]).

Presently, let Thf be the theory given by the axioms of hyperfields (see Definitions 2 and 1)
written, encoding the symbol + with the ternary relation z ∈ x + y. Then, a hyperfield F is a model
of Thf and L is a relational subhyperfield of F if and only if L is a submodel of F.

In mathematics, it is customary to call subobjects the submodels of a model of the theory of
(those) objects. For example, subgroups are submodels of a group; subfields are submodels of a field;
subgraphs are submodels of a graph. However, subhyperfields are historically defined as subsets
L of a hyperfield (F, 0, 1, ·,+), such that 0, 1 ∈ L, x−1 ∈ L for all x ∈ L \ {0}, xy ∈ L and
x + y ⊆ L for all x, y ∈ L (cf. [12,20,21]). This definition can be traced back to the definition of the
subhypergroup already present in, e.g., Definition 2 and the subsequent remark in [28].

While it is clear that any subhyperfield L of a hyperfield F is a relational subhyperfield of F
with +L = +, there are examples of relational subhyperfields L′, which do not satisfy the condition
x + y ⊆ L′ for all x, y ∈ L′ (see Examples 9 and 10, below). Thus, in this setting and perhaps for
historical reasons, the use of the prefix “sub” seems to not match the common practice. Nevertheless,
our point of view is based on the choice of encoding hyperoperations with relations; thus, we chose
the name relational subhyperfield to distinguish our notion from the traditional one.

Example 9. Consider the hyperfield F := HF521 of Example 2 and its subset L := {−1, 0, 1}.
Equip L with the multivalued operation +L, as in Definition 5. Then, L is the sign hyperfield
(cf. Example 1); in particular, it is a relational subhyperfield of F. Note that 1 ∈ L but 1 +F 1 =
{1, a,−a} 
⊆ L.

Example 10. Consider the hyperfield F := HF56 of Example 3 and its subset L := {−1, 0, 1}.
Equip L with the multivalued operation +L, as in Definition 5. Then, L is the the finite field
with 3 elements F3; in particular, it is a relational subhyperfield of F. Note that 1 ∈ L but
1 +F 1 = {−1, a,−a} 
⊆ L.

One might think that the subset {−1, 0, 1} is a relational subhyperfield of any hyper-
field. The next examples demonstrate that this is not the case.

Example 11. Let F be a field (considered as a hyperfield) with char F > 3. Then, L := {−1, 0, 1}
is not a relational subhyperfield of F, since −1, 0, 1 /∈ 1 + 1 and so (1 + 1) ∩ L = ∅.
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Example 12. Consider the hyperfield F from Example 4 and its subset L := {−1, 0, 1}. Then,
1 +L 1 = ∅ and thus L is not a relational subhyperfield of F.

The following easy observation will be useful later.

Lemma 1. Let F be a hyperfield and L be a relational subhyperfield of F. For all n ∈ N, we have that

n×L 1 ⊆ n×F 1.

Proof. Let us show this by induction on n. The base step is clear. For the induction step,
given n > 1, we compute

n×L 1 =
⋃

x∈In−1(L)

x +L 1 =
⋃

x∈In−1(L)

(x +F 1) ∩ L

⊆
⋃

x∈In−1(L)

(x +F 1) ⊆
⋃

x∈In−1(F)

(x +F 1) = n×F 1,

where we have used the induction hypothesis (n− 1)×L 1 ⊆ (n− 1)×F 1.

3.1. Characteristic of Relational Subhyperfields

It is not difficult to observe that if K is a field, considered as a hyperfield, then all
relational subhyperfields of K are (traditional) subhyperfields of K and they coincide
with the subfields of K. In field theory, the characteristic of a subfield coincides with the
characteristic of the upper field. Nevertheless, in the multivalued setting, the same might
not hold.

Example 13. Consider the hyperfield F = HF521 from Example 2. We have observed that char F =
4 and that the sign hyperfield S is a relational subhyperfield of F (cf. Example 9). Since S is real, we
have that charS = ∞. Thus, the strict inequality char F < charS holds.

On the basis of Lemma 1, we can demonstrate that the characteristic of a hyperfield is
not greater than the characteristic of any of its relational subhyperfields.

Proposition 2. Let F be a hyperfield and L be a relational subhyperfield of F. Then, char F ≤
char L.

Proof. Directly from Lemma 1, we can argue that if char L < ∞, then also char F < ∞ and
char F ≤ char L. Otherwise, char L = ∞ is automatically not smaller than char F.

As we have observed in Example 13, the strict inequality might occur. In that example,
we considered the hyperfield HF521, which has characteristic 4. We now prove that that is
the minimal characteristic that a hyperfield can have in order to produce such a situation.

Proposition 3. Let F be a hyperfield and L be a relational subhyperfield of F. If char F ∈ {2, 3},
then char L = char F.

Proof. As we will observe, this follows from the fact that, since L is a relational subhyper-
field of F, we have that 0,−1 ∈ L.

Assume first that char F = 2. By assumption, we have 0 ∈ 1 +F 1 and since 0 ∈ L, we
also have 0 ∈ (1 +F 1) ∩ L = 1 +L 1, showing that char L = 2 = char F in this case.

Now assume that char F = 3. This means that 0 ∈ 1 +F 1 +F 1 and hence −1 ∈ 1 +F 1.
Since −1 ∈ L, we obtain that −1 ∈ (1 +F 1)∩ L = 1 +L 1 and 0 ∈ 1 +L 1 +L 1 follows, since
0 ∈ L. Hence, char L ≤ 3 = char F. By Proposition 2, we obtain the equality.
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3.2. C-Characteristic of Relational Subhyperfields

A result analogous to Proposition 2 for the C-characteristic follows similarly as above
from Lemma 1.

Proposition 4. Let F be a hyperfield and L be a relational subhyperfield of F. Then, C-char F ≤
C-char L.

Proof. By Lemma 1, we have that if C-char L < ∞, then also C-char F < ∞ and C-char F ≤
C-char L. Otherwise, C-char L = ∞ is automatically not smaller than C-char F.

Also for C-characteristics, the strict inequality might hold, as the following exam-
ple shows.

Example 14. Consider the hyperfield F = HF56 from Example 3. We have observed that
C-char F = 2 and that the finite field F3 of cardinality 3 is a relational subhyperfield of F (cf.
Example 10). We have that

C-charF3 = 3 > 2 = C-char F.

Let F be a hyperfield and L be a relational subhyperfield of F. Again, similarly as we
observed for the characteristic, since 1 ∈ L, we have that if C-char F = 1, then C-char L = 1
as well. Let us state this result.

Proposition 5. Let F be a hyperfield with C-char F = 1 and L be a relational subhyperfield of F.
Then, C-char L = C-char F.

Thus, in Example 14, the C-characteristic of F has the minimal value which can produce
the strict inequality.

4. Realizing Characteristics and C-Characteristics

In this section, we deal with the problem of realizing a given positive integer as the
characteristic or the C-characteristic of some hyperfield.

4.1. On the Characteristic

In classical field theory, the characteristic of a field, if finite, can only be a prime
number. In contrast, we demonstrate below that any positive integer larger than 1 can be
realized as the characteristic of some hyperfield. For a group G and x1, ..., xn ∈ G, we will
denote by 〈x1, ..., xn〉 the subgroup of G generated by x1, ..., xn.

Theorem 3. For every natural number n ∈ N>1, there exists an infinite quotient hyperfield F,
such that char F = n.

Proof. We are going to demonstrate that for every natural number n ∈ N, the quotient
hyperfield F = Q〈−n〉 has characteristic n + 1. Observe that

0 = 1 + ... + 1︸ ︷︷ ︸
n times

−n, so [0]〈−n〉 ∈ (n + 1)× [1]〈−n〉.

Hence, char F ≤ n + 1. If n = 1, then char F = 2. Let n > 1 and suppose that char F = k <
n + 1, i.e.,

[0]〈−n〉 ∈ k× [1]〈−n〉, where 1 < k ≤ n.

Then, there exist xi ∈ Z, i ∈ {1, ..., k}, such that

0 = (−n)x1 + ... + (−n)xk .
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Let N = min{x1, ..., xk} and denote mi := xi − N. Then

0 = (−n)m1 + ... + (−n)mk , (2)

where mi ∈ N∪ {0} and 1 < k ≤ n. Observe that

(−n)2l ≡ 1 (mod n + 1) and (−n)2l+1 ≡ 1 (mod n + 1)

for every l ∈ N. Thus, the left side of the Equation (2) is congruent to 0 modulo n + 1, while
the right side is congruent to k modulo n + 1. Hence,

0 ≡ k (mod n + 1),

which is a contradiction, since 1 < k ≤ n. As a consequence, we obtain that F has
characteristic n + 1.

Let us now demonstrate that finite hyperfields of even cardinality must have charac-
teristic 2.

Proposition 6. Let F be a finite hyperfield of even cardinality. Then, char F = 2.

Proof. Assume that F is a finite hyperfield, such that char F > 2. Then, 1 
= −1 and thus
a 
= −a for all a ∈ F×. Therefore, |F×|must be even, and hence |F| is odd.

If we restrict our attention to hyperfields obtained with the quotient construction, then
we can make the following observations.

Lemma 2. Let K be a field and G a subgroup of K×. Then, char KG ≤ char K.

If we consider quotient hyperfields KG, constructed with respect to a finite group G,
then by looking at the proper divisors of the cardinality of G, it is possible to bound from
above the characteristic of KG.

Proposition 7. Let K be a field and G be a finite subgroup of K×. If n ∈ N>1 divides the cardinality
of G, then char KG ≤ n.

Proof. The group G is a finite subgroup of the multiplicative group of a field; thus, it is
cyclic. Therefore, if n divides |G|, then there exists an element g ∈ G of order n. Hence,
〈g〉 = {1, g, ..., gn−1} and |〈g〉| = n. Since

0 = gn − 1 = (g− 1)(1 + g + g2 + ... + gn−1)

and g 
= 1, we obtain that
1 + g + g2 + ... + gn−1 = 0.

We conclude that 0 ∈ n× [1]KG , so char F ≤ n.

Conversely, sometimes from the characteristic of KG it is possible to deduce informa-
tion on the divisors of |G|.

Lemma 3. Let K be a field such that 1 
= −1 and G are a finite subgroup of K×. If char KG = 2,
then the cardinality of G is even.

Proof. Since G is a finite subgroup of the multiplicative group of a field, it is cyclic. Let g
be a generator of G. If char KG = 2, then 0 ∈ [1]G + [1]G. Hence [1]G = −[1]G = [−1]G, so
−1 ∈ G. We conclude that there is a positive integer k ∈ N, such that k < |G| and gk = −1.
Then, 1 = (−1)2 = g2k, hence |G| = 2k is even.
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Remark 8. The above result does not hold if 1 = −1 in K, since in that case the quotient hyperfield
KG would have characteristic 2 for any multiplicative subgroup G of K×.

Combining Proposition 7 and Lemma 3, we derive the following result.

Corollary 1. Let K be a field such that 1 
= −1 and G are a finite subgroup of K×. Then, the
quotient hyperfield KG has characteristic 2 if and only if |G| is even.

4.2. On the C-Characteristic

We now demonstrate that any positive integer can be realized as the C-characteristic
of some real hyperfield.

Theorem 4. For every natural number n ∈ N, there exists an infinite real hyperfield F, such that
C-char F = n.

Proof. We are going to demonstrate that for every positive integer n ∈ N, the quotient
hyperfield F = Q〈n+1〉 is real and has C-char F = n. First, observe that

n + 1 = 1 + ... + 1︸ ︷︷ ︸
n+1 times

, so [1]〈n+1〉 ∈ (n + 1)× [1]〈n+1〉.

Hence, C-char F ≤ n. If n = 1, then C-char F = 1. Let n > 2. and suppose that C-char F <
n, i.e.,

[1]〈n+1〉 ∈ k× [1]〈n+1〉, where 2 ≤ k < n.

Then, there exist xi ∈ Z, i ∈ {1, ..., k + 1}, such that

(n + 1)xk+1 = (n + 1)x1 + ... + (n + 1)xk .

Let N = min{x1, ..., xk+1} and denote mi := xi − N. Then,

(n + 1)mk+1 = (n + 1)m1 + ... + (n + 1)mk ,

where mi ∈ N∪ {0} and 2 ≤ k ≤ n. We obtain that

(n + 1)m1 + ... + (n + 1)mk − (n + 1)mk+1 = 0. (3)

Presently, since for any m ∈ N∪ {0}, we have

(n + 1)m ≡ 1 (mod n),

the left hand side of the Equation (3) is congruent to

1 + ... + 1︸ ︷︷ ︸
(k times)

−1 = k− 1

modulo n, while the right hand side is congruent to 0 modulo n. Hence,

k− 1 ≡ 0 (mod n),

which is a contradiction, since 2 ≤ k ≤ n. Hence, C-char F = n must hold.
Consider now the set of natural numbers

S := {(n + 1)p + 1 | p ∈ N}.

By definition, for s, t ∈ S we have that [s]〈n+1〉 = [t]〈n+1〉 if and only if there exists some
g ∈ 〈n + 1〉 such that s = gt. Suppose that g 
= 1. Without loss of generality, we can assume
that g = (n + 1)m for some m ∈ N (if not, we apply the following reasoning to the equality
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t = g−1s). Since s ≡ 1 (mod n + 1) and gt ≡ 0 (mod n + 1), we obtain a contradiction.
Hence, [s]〈n+1〉 = [t]〈n+1〉 if and only if s = t; thus,

{[(n + 1)p + 1]〈n+1〉 | p ∈ N}

is an infinite subset of F, implying that F is infinite. Moreover, the set

P〈n+1〉 := {[x]〈n+1〉 | x > 0}

is a positive cone in F by Theorem 2.

Let us now demonstrate that a finite hyperfield F must satisfy C-char F < ∞.

Proposition 8. Let F be a finite hyperfield of cardinality n > 1, which is not the field F2. Then,
C-char F ≤ 2n− 3.

Proof. Let F 
= F2 be a finite hyperfield of cardinality n > 1. If 1 + 1 = {0}, then by
Proposition 1, F is a field of characteristic 2, so n ≥ 4 and thus C-char F = 2 ≤ 2n− 3.
If 1 ∈ 1 + 1, then C-char F = 1 ≤ 2n− 3. Otherwise, let a ∈ 1 + 1. Since F× is an abelian
group of cardinality n− 1, by Remark 4, we have that

1 = an−1 ∈ (1 + 1)n−1 ⊆ 2(n− 1)×F 1

and hence C-char F ≤ 2n− 3.

From Proposition 7 and Remark 5, the following result follows immediately.

Proposition 9. Let K be a field and G a finite subgroup of K×. If n ∈ N>1 divides the cardinality
of G, then C-char KG ≤ n.

An ordered field has to be infinite. This is a consequence of the compatibility of the
order relation induced by the positive cone, with the addition of the field (see Section 5,
below). However, we have observed that there are real hyperfields, which are finite
(cf. Example 1 and Example 4). The following result shows that we can construct finite
real hyperfields with the C-characteristic 1 of any odd cardinality. Note that a finite real
hyperfield has to have an odd number of elements by Proposition 6.

Let p be a prime number. In the proof of the next result, we will use the p-adic valuation
vp on the field of rational numbers Q. Let us briefly recall how is that is defined (for more
details on valuations, we refer to [29]). Let vp(0) := ∞, and for a

b ∈ Q×, write

a
b

:= pν a′

b′
,

where ν ∈ Z and a′, b′ ∈ Z are not divisible by p. Define vp(
a
b ) := ν. Thus, vp is a map

from Q to Z∪ {∞}.

Theorem 5. For every odd number n ≥ 3, there exists a finite real hyperfield F with C-char F = 1,
such that |F| = n.

Proof. Consider the field of rational numbers Q, a positive integer k ∈ N and the subgroup
of Q×:

Gk := {x ∈ Q | vp(x) ≡ 0 (mod k) and x > 0}
where vp is the p-adic valuation on Q, for some prime number p. We are going to show that
the quotient hyperfield QGk is a finite, real hyperfield with C-characteristic 1 and cardinality
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2k + 1. First, observe that Gk ⊆ Q+; thus, QGk is real by Theorem 2. Moreover, the index
(Q+ : Gk) = k, so (Q× : Gk) = 2k and |QGk | = 2k + 1. Observe also that

1 =
1
pk +

pk − 1
pk ∈ Gk + Gk,

hence [1]Gk ∈ 2× [1]Gk , which means that C-charQGk = 1.

The following result provides a criterion for deciding whether certain hyperfields
cannot be obtained via Krasner’s quotient construction.

Theorem 6. Every finite hyperfield F with char F = ∞ and C-char F > 1 is not a quotient
hyperfield.

Proof. Consider a finite hyperfield, which is a quotient hyperfield KG. Observe first that
if char KG = ∞, then char K = ∞ by Lemma 2. Hence, K must be infinite. On the other
hand, since KG is finite, G has a finite index in K×. From Theorem 1, we obtain that
G− G = K, so in particular [1]G ∈ [1]G − [1]G. From the reversibility axiom, we obtain that
[1]G ∈ [1]G + [1]G. This shows that C-char KG = 1.

In particular, the hyperfield that we have introduced in Example 4 cannot be obtained
with Krasner’s quotient construction.

5. The Strict Partial Order Induced by a Positive Cone

We begin this section recalling the following definition.

Definition 6. A strict partial order is a set S with an binary relation <, which is:

(O1) irreflexive (x 
< x for all x ∈ S);
(O2) asymmetric (x < y implies y 
< x for all x, y ∈ S);
(O3) transitive (x < y and y < z imply x < z for all x, y, z ∈ S).

A strict partial order (S,<) is called a strict linear order if for all x, y ∈ S one has x < y, y < x
or x = y.

In the theory of ordered fields, any positive cone P induces a strict linear order. This is
defined as follows: x < y if and only if y− x ∈ P. In the hyperfield case, one can define
the relation x < y as y− x ⊆ P. One then obtains a strict partial order. Indeed, x 
< x
because 0 /∈ P and if x < y, then y < x cannot hold since P ∩ −P = ∅. In order to show
transitivity, take x, y, z ∈ F, such that x < y and y < z. We have to demonstrate that x < z.
Since y− x, z− y ⊆ P and P + P ⊆ P, we obtain that

z− x ⊆ y− y + z− x = (y− x) + (z− y) ⊆ P.

Nevertheless, this strict partial order does not have to be linear, as the following exam-
ple shows.

Example 15. Consider the quotient hyperfield Q(Q×)2 with its unique positive cone

P := {[x](Q×)2 | x ∈ Q+}.

Observe that since 1 = 2 · 12 − 1 · 12 and 2 = 1 · 22 − 2 · 12, we have that

[1](Q×)2 ∈ [2](Q×)2 − [1](Q×)2 and [2](Q×)2 ∈ [1](Q×)2 − [2](Q×)2 .

Therefore, both [2](Q×)2 − [1](Q×)2 and [1](Q×)2 − [2](Q×)2 contain elements of P and thus [1](Q×)2

and [2](Q×)2 are incomparable with respect to the order relation associated to P, since P ∩−P = ∅.
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In an ordered field K, the order relation < associated to a positive cone P is compatible
with the addition of K in the sense that a < b implies that a + c < b + c for all a, b, c ∈ K.
In the next example, we consider a real hyperfield F, such that a < b and a + c = b + c for
some a, b, c ∈ F, where < is the order induced by a positive cone of F.

Example 16. Consider the sign hyperfield S and its unique positive cone P = {1}. Observe that
0 < 1, but 0 + 1 = {1} and 1 + 1 = {1}.

We now note that in the case of the sign hyperfield S, the strict partial order relation
induced by its positive cone P = {1} is a strict linear order.

At this point, let us consider another example of the real hyperfield.

Example 17 (Example 3.6 in [9]). Consider the following cartesian product {−1, 1} × Γ, where
(Γ,+, 0,<) is an ordered abelian group. Denote F := {−1, 1} × Γ ∪ {0}. Then, the tuple
(F,�, ·, 0, (1, 0)) is a hyperfield, with the hyperaddition � defined as follows:

x � 0 = 0 � x := {x} x ∈ F

(1, γ1)� (1, γ2) := {(1, min{γ1, γ2})} γ1, γ2 ∈ Γ

(−1, γ1)� (−1, γ2) := {(−1, min{γ1, γ2})} γ1, γ2 ∈ Γ

(1, γ1)� (−1, γ2) := {(1, γ1)} γ1 < γ2 ∈ Γ

(1, γ1)� (−1, γ2) := {(−1, γ2)} γ1 > γ2 ∈ Γ

(1, γ)� (−1, γ) := {(e, δ) | e ∈ {−1, 1}, δ ≥ γ} ∪ {0} γ ∈ Γ

The result of the group multiplication · by 0 is defined to be 0, and for nonzero elements of F, we set:

(s1, γ1) · (s2, γ2) = (s1s2, γ1 + γ2).

Moreover, {(1, γ) | γ ∈ Γ} is a positive cone in F.

Remark 9. The hyperfield F from the previous example is a quotient hyperfield. It is obtained as
RE+(R), where R is a real closed field and E+(R) is the group of totally positive units with respect
to the natural valuation associated with the unique positive cone of R. For more details, we refer the
reader to [9].

One can observe that the positive cone of the real hyperfield that we have introduced
in the above example also induces a strict linear order relation.

The property that the sign hyperfield and the real hyperfield of Example 17 have in
common is that they are stringent hyperfields.

Definition 7 ([30]). A Krasner hyperfield F is said to be stringent if for all x, y ∈ F, we have that
x + y is a singleton unless y = −x.

In fact, we have the following general result.

Proposition 10. Let F be a stringent real hyperfield with positive cone P. Then, the relation

a < b ⇐⇒ b− a ⊆ P (a, b ∈ F)

is a strict linear order relation on F.

Proof. Take two distinct elements a 
= b of F. Then, b− a = {c} for some c ∈ F×. Therefore,
either c ∈ P, in which case a < b, or c ∈ −P, in which case b < a. Hence, a and b are
comparable and < is indeed a linear order.
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To any strict partial order one can easily associate a directed graph. Let (S,<) be a
strict partial order. The (directed) graph associated to < has S as its set of vertices, and an edge
goes from a vertex a to a vertex b precisely when a < b. The reader should note that in the
following illustrations, we do not draw the edges that can be deduced from the transitivity
of <. For instance, for S = {a, b, c} with a < b < c, we draw the following graph

ba c

instead of

ba c

In the case of stringent real hyperfields, we obtain a linear order by Proposition 10.
The directed graph obtained in this case can be found in Figure 1 below.

0 . . . 1 . . . x . . .. . .−1. . .. . .− x

Figure 1. The directed graph associated to a strict linear order.

In the case described in Example 15, the directed graph associated to the strict partial
order induced by the positive cone is illustrated in Figure 2 below.

0

1 . . .. . .

−1. . . . . . −y−x

x y

Figure 2. The directed graph associated to the strict partial order induced by the positive cone
described in Example 15.

Indeed, in that case, one can demonstrate that if a, b ∈ P are two distinct elements,
then they are not comparable.

In the following example, we consider a more complex situation.

Example 18. Consider the field of rational functions over the real numbers R(X). This field admits
infinitely many positive cones. Below, we define a specific one, but our reasoning would apply to
any of them. Every rational function h ∈ R(X) can be written uniquely in the following form:

h = xk f
g

, where f (0), g(0) 
= 0, k ∈ Z.

We consider the positive cone P := {h ∈ R(X) | f (0)
g(0) > 0}. We set U := {h ∈ R(X) | k = 0}

and ∑(R(X)×)2 := {h ∈ R(X) | h = h2
1 + . . . + h2

n for some h1, . . . , hn ∈ R(X)×, n ∈ N}.
Consider the quotient hyperfield F := R(X)E+ , where E+ := U ∩ ∑(R(X)×)2. In particular,
E+ ⊆ P, since sums of non-zero squares are contained in any positive cones, and from Theorem 2
we obtain that F is real with the positive cone PE+ = {[h]E+ | h ∈ P}.

238



Mathematics 2023, 11, 779

Take two elements [h1], [h2] ∈ F, such that

h1 = xk1
f1

g1
, h2 = xk2

f2

g2
with

f1(0)
g1(0)

> 0,
f2(0)
g2(0)

> 0.

First, assume that k1 
= k2. Without a loss of generality, let k1 > k2. We compute

h2 − hh1 = xk2
f2g1g− xk1−k2 f1g2 f

g1g2g
, where h =

f
g
∈ E+.

Then
( f2g1g− xk1−k2 f1g2 f )(0)

(g1g2g)(0)
=

f2(0)
g2(0)

> 0.

Hence [h2]− [h1] ⊆ PE+ , so [h2] > [h1]. Now assume that k := k1 = k2. We have

h2 − hh1 = xk f2g1g− f1g2 f
g1g2g

, where h =
f
g
∈ E+.

Take h = f
g , such that g(0) = 1 and f (0) < ( f2g1)(0)

( f1g2)(0)
. Then

( f2g1g− f1g2 f )(0)
(g1g2g)(0)

> 0.

Hence, ([h2]− [h1]) ∩ PE+ 
= ∅. On the other hand, let g(0) = 1 and f (0) > ( f2g1)(0)
( f1g2)(0)

. Then

( f2g1g− f1g2 f )(0)
(g1g2g)(0)

< 0.

Hence, ([h2]− [h1]) ∩−PE+ 
= ∅, so ([h1]− [h2]) ∩ PE+ 
= ∅. This means that [h1] and [h2] are
incomparable with respect to the partial order induced by PE+ .

We illustrate in Figure 3 below the graph associated to the strict partial order induced by P
on R(X).
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0

. . .

. . .

[h]E+
v

. . . . . .

−[h]E+
v

. . . . . .

. . .

. . .

1 . . .. . .

−1. . . . . .

. . .

. . .

k > 0

k > 0

k = 0

k = 0

k > 0

k < 0

k > 0

k > 0

k < 0

k > 0

Figure 3. The graph associated to the strict partial order induced by P on R(X).

The nodes situated above the central node labelled by 0 correspond to elements of P. The nodes
below correspond to elements of−P. Each level of this graph, which is above the central node labelled
by 0, corresponds to an integer k. For instance, the level of the node labelled by 1 consists of all the
nodes situated on the left and on the right of the node labelled by 1 and corresponds to the integer
k = 0. The levels below this level correspond to positive integers k > 0 and the levels above to
negative integers k < 0. Similarly, each level below the central node labelled by 0 correspond to an
integer. There are no edges between any two nodes of the same level, as they are incomparable. If two
nodes are in different levels, then they are connected in the upwards direction.

6. Further Research

In this paper, we have studied the notion of the positive cone in hyperfields. We have
investigated the (directed) graph associated to the strict partial order induced by a positive
cone in a hyperfield in some examples. What we have observed suggests a particular
structure of this graph (that of a linear order and that of a star, as in Example 15, or a
combination of these two, as in Example 18).

Moreover, we have considered the characteristic and the C-characteristic of hyperfields,
and we have demonstrated how these interact to produce interesting results in the theory of
hyperfields. In particular, we have obtained Theorem 6, which gives a criterion for deciding
whether a given finite hyperfield cannot be obtained via Krasner’s quotient construction.
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We have demonstrated that any positive integer larger than 1 can be realized as the
characteristic of an infinite hyperfield (Theorem 3). We ask if it is possible to realize any
characteristic with finite hyperfields as well. To try to answer this question, we have initially
focused on the finite hyperfields of the form (Fp)G and developed an algorithm to compute
their characteristic. At this point, we can provide the data in Table 1 below.

Table 1. Finite hyperfields of non-prime characteristic ≤ 12.

char(Fp)G p G |G|
4 29 〈16〉 7

6 199 〈125〉 11

8 2179 〈2118〉 11

9 2707 〈1085〉 11

10 7151 〈5825〉 11

12 62,323 〈28,216〉 13

The characteristic of a hyperfield of the form (Fp)G depends on p and on the multi-
plicative subgroup G of F×p . Since G is a cyclic group, we conclude that char(Fp)G depends
on the prime number p and on the choice of a divisor d of p − 1. This means that the
number N of possible hyperfields increases very fast with p. For example, in the case
of characteristic 12, before finding the hyperfield (F62323)〈28216〉, the algorithm would a
priori have to generate and check the hyperfields corresponding to 6262 prime numbers,
which gives a total of N = 449,569 possibilities. Nevertheless, we can use Proposition 7 to
substantially reduce the number of cases to be considered.

For example, if we are looking for a hyperfield of characteristic 12, then we would
assume that char(Fp)G = 12, which by Proposition 7 cannot hold if |G| is divisible by some
prime number < 12. Hence, we can restrict our attention to those prime numbers p, such
that p− 1 is divisible at least by one prime number ≥ 13. Moreover, for these primes p, we
can restrict our choice of the divisor of p− 1 to those d, which are not divisible by primes
< 12. These restrictions reduce the number of hyperfields to be checked by the algorithm
to 9871, which is approximately 2.19% of N.

Remark 10. We know that char(Fp)G 
= 14 for all prime numbers p ≤ 160,000.

An analogous problem can be posed for the realization of C-characteristics, as Theorem 5
provides only infinite hyperfields. For the hyperfields of the form (Fp)G, our algorithm
provided the data in Table 2 below.

Table 2. Finite hyperfields of non-prime C-characteristic ≤ 10.

C-char(Fp)G p G |G|
4 151 〈59〉 5

6 953 〈879〉 7

8 15137 〈11803〉 11

9 26951 〈1202〉 11

10 44221 〈31076〉 11

Remark 11. We know that C-char(Fp)G 
= 12 for all prime numbers is p ≤ 152897.

Our algorithm does not consider hyperfields of the form (Fpk )G with k > 1.
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Another natural question is if it is possible to somehow generalise Example 4 to
construct finite real hyperfields of cardinality > 7 with C-characteristic > 1, thus providing
further examples of non-quotient hyperfields.
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Abstract: In this paper, we discuss the hypothesis that an ordered Γ-semigroup can be constructed
on the M-left(right)-tri-basis. In order to generalize the left(right)-tri-basis using Γ-semigroups and
ordered semigroups, we examined M-tri-ideals from a purely algebraic standpoint. We also present
the form of the M-tri-ideal generator. We investigated the M-left(right)-tri-ideal using the ordered
Γ-semigroup. In order to obtain their properties, we used M-left(right)-tri-basis. It was possible to
generate a M-left(right)-tri-basis from elements and their subsets. Throughout this paper, we will
present an interesting example of order !mlt (!mrt), which is not a partial order of S . Additionally,
we introduce the notion of quasi-order. As an example, we demonstrate the relationship between
M-left(right)-tri-basis and partial order.

Keywords: left tri-ideal; right tri-ideal; M-left-tri-basis; M-right-tri-basis; quasi-order; partial order

MSC: 06B10; 20M25; 16Y60

1. Introduction

Several applications of algebraic structures can be found in mathematics. Generalizing
the ideals of algebraic structures and ordered algebraic structures plays an important role,
making them available for further study and application. Mathematicians studied bi-ideals,
quasi-ideals, and interior ideals during 1950–1980. However, during 1950–2019, it was
only mathematicians who studied their applications. In fact, the notion of one-sided ideals
of rings and semigroups can be regarded as a generalization of the notion of ideals of
rings and semigroups, as is the notion of quasi-ideals of semigroups and rings. In general,
semigroups are generalizations of rings and groups. In semigroup theory, certain band
decompositions are useful for studying semigroup structure. A new field in mathematics
could be opened up by this research, one that aims to use semigroups of bi-ideals of semir-
ings with semilattices that are additively reduced. The many different ideals associated
with Γ-semigroups [1] and Γ-semirings [2] have been described by several researchers.
Partially ordered relation “ ! ” satisfies the conditions of reflexivity, antisymmetry, and
transitivity. There are different classes of semigroups and Γ-semigroups based on bi-ideals
that have been described by researchers in [3–6]. Munir [7] introduced new ideals in the
form of M-bi-ideals over semigroups in 2018. An ordered semigroup is a generalization
of a semigroup with a partially ordered relation constructed on a semigroup, so that the
relation fits with the operation. An algebraic structure such as the ordered Γ-semigroup
was introduced by Sen et al. in 1993 [8] and has been studied by several authors [9–12].

For an ordered semigroup S and subsemigroup A of S , Am = A.A . . .A(m− times),
where m is a positive integer. Clearly, for any subsemigroup A of ordered semigroup S ,
An ⊆ A for all positive integers n, which are similarly right case. Hence, Ar ⊆ At for all
positive integers r and t, such that r ≥ t, but the converse is not true. As a generalization
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of the bi-ideal of semirings and semigroups, a tri-ideal of semirings and semigroups can
be characterized as a generalization of the bi-ideal. In the context of Γ-semigroups, an
ordered Γ-semigroup is an extension of the Γ-semigroup. In contrast to the notion of the
tri-ideal of semigroups, the notion of the tri-ideal of an ordered semigroup is a general
form of the notion of the tri-ideal of semigroups. In semigroup theory, the M-tri-ideal is a
generalization of the tri-ideal. Similarly, an ordered M-tri-ideal is a generalization of an
ordered tri-ideal. In this paper, we describe the basic properties of the M-tri-basis from an
algebraic standpoint. The fact that semigroups can be generalized to Γ-semigroups and
Γ-semigroups to ordered Γ-semigroups is a result of these facts. It was work by Jantanan
et al. that introduced the concept of bi-basis of ordered Γ-semigroups in 2022. We further
describe the relationship between partial order and bi-basis [13]. As recently discussed
in Palanikumar et al. [14–16], algebraic structures such as semigroups, semirings, ternary
semigroups, and ternary semirings are all ideals and the generators of these structures are
ideals. Rao introduced the tri-ideals of semigroups and semirings in [17,18]. Our paper
extends a bi-basis of an ordered Γ-semigroup into a M-bi-basis of an ordered Γ-semigroup.
We also generalize the tri-ideal of an ordered Γ-semigroup to an M-tri-basis of an ordered
Γ-semigroup. The notion of almost bi-ideals and almost quasi-ideals of ordered semigroups
is discussed in Sudaporn et al. [19]. The novel concept of M-bi-basis generators of an
ordered Γ-semigroup is introduced by Palanikumar et al. [20]. Susmita et al. have discussed
some important properties of bi-ideals of an ordered semigroups [21].

This paper discusses several important classical results for M-tri-basis and Γ-semigroups
characterized by M-tri-ideals and M-tri-basis. Furthermore, we demonstrate how the
elements and subsets of an ordered Γ-semigroup yield the M-tri-ideal and basis. This paper
extends the notion of Γ-semigroup information into ordered Γ-semigroup information. The
paper is divided into five sections. Section 1 is the introduction. There is a brief description
of an ordered Γ-semigroup in Section 2, as well as relevant definitions and results. A
numerical example of an M-left-tri-basis generator can be found in Section 3. As part of
Section 4, a numerical example is given for the M-right-tri-basis generator concept. Our
conclusions are provided in Section 5. In this paper, our purpose is to describe:

1. The generator of the M-tri-ideal for an ordered Γ-semigroup;
2. To interact, the order relation “ ! ” based on the M-tri-basis should not be a partial

order.
3. For example, the subset of an M-tri-basis is not an M-tri-basis itself.

2. Basic Concepts

It is assumed throughout this article that S denotes a Γ-semigroup, unless stated other-
wise.

Definition 1 ([1]). Let S and Γ be any two non-empty sets. Then, S is called a Γ-semigroup from
S · Γ · S → S , which maps ( f1, π, f2)→ f1 · π · f2, satisfying the condition ( f1 · π · f2) · θ · f3 =
f1 · π · ( f2 · θ · f3) for all f1, f2, f3 ∈ S and π, θ ∈ Γ.

Definition 2 ([8]). The algebraic system (S , Γ,!) is said to be an ordered Γ-semigroup if it satisfies
the following conditions:

1. S is a Γ-semigroup,
2. “ ! ” is a relation from a partially ordered set (poset) S ,
3. If s

′′ ! s
′′′

, then s
′′
πs
′ ! s

′′′
πs
′

and s
′
πs
′′ ! s

′
πs
′′′

for any s
′
, s
′′
, s
′′′ ∈ S and π ∈ Γ.

Remark 1 ([8]). Let G′ and G′′ be any two subsets of S . Then, the following properties hold:

1. G
′
ΓG

′′
= {x′πx

′′ |x′ ∈ G
′
, x
′′ ∈ G

′′
, π ∈ Γ},

2. (G
′
] = {s ∈ S|s ! x′ f or some x′ ∈ G

′ },
3. G

′ + (G
′
],

4. If G
′ + G

′′
, then (G

′
] + (G

′′
] and (G

′
]Γ(G

′′
] + (G

′
ΓG

′′
].
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Definition 3 ([17]). Let S be a Γ-semigroup and G be a subset of S called left-tri-ideal(right-tri-
ideal) (or LTI and RTI, respectively) if it satisfies the following conditions:

1. G is a Γ-subsemigroup,
2. GΓSΓGΓG + G (GΓGΓSΓG + G),

Lemma 1 ([18]). Let S be a Γ-semiring, G a subset of S , and a ∈ S. Then, the following statements
hold:

1. 〈G〉lt = G ∪ GΓG ∪ GΓSΓGΓG is the smallest Γ-LTI of S containing G,
2. 〈G〉rt = G ∪ GΓG ∪ GΓGΓSΓG is the smallest Γ-RTI of S containing G,
3. 〈a〉lt = a ∪ aΓa ∪ aΓSΓaΓa is the smallest Γ-LTI of S containing “a”,
4. 〈a〉rt = a ∪ aΓa ∪ aΓaΓSΓa is the smallest Γ-RTI of S containing “a”.

Definition 4 ([18]). (i) Let S be an ordered semigroup. A subsemigroup G of S is called an
M-left-ideal of S if SMG + G and (G] = G, where M is a positive integer that is not necessarily
one.
(ii) A subsemigroup G of S is called a M-right-ideal of S if GSM + G and (G] = G, where M is a
positive integer that is not necessarily one.

Definition 5 ([18]). Let G be a subsemigroup of an ordered semigroup G. Then,
(i) The M-left-ideal generated by G is (G)ml = (G ∪ SMG].
(ii) The M-right-ideal generated by G is (G)mr = (G ∪ GSM].

Definition 6 ([7]). Let G be a subset of S , which is called an M-bi-ideal of semigroup S if it satisfies
the following conditions:

1. G is a Γ-subsemigroup,
2. G · SM · G + G, where M is a positive integer.

Definition 7 ([13]). Let G be a subset of S that is called a bi-basis of S if it satisfies the following
conditions:

1. S = 〈G〉b.
2. If F + G such that S = 〈F〉b, then F = G.

Definition 8. Let G be the subset of S that is called an M-bi-basis of S if satisfies the following
conditions:

1. S = 〈G〉mb.
2. If F + G such that S = 〈F〉mb, then F = G.

3. M-LTB Generator

In this paper, we present some results on the M-left-tri-ideal (M-LTI) generator, based
on an ordered Γ-semigroup.

Definition 9. Let G be the subset of S called an M-LTI of S if it satisfies the following conditions:

1. G is a Γ-subsemigroup,
2. G · Γ · (S · Γ · . . . · Γ · S (M− times)) · Γ · G · Γ · G + G, where M is a positive integer,
3. If g ∈ G and s ∈ S such that s ! g, then s ∈ G.

Remark 2. If f1 ∈ S and N andM are positive integers, then the following statements hold:

1. N f1 = f1 · Γ · f1 · Γ · . . . · Γ · f1 (N − times)
2. S · Γ · S · Γ · . . . · Γ · S ((M− times)) + S · Γ · . . . · Γ · S (M− 1 times)

Remark 3. 1. Every M-bi-ideal is an M-LTI.
2. Every LTI is an M-LTI.
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Here is an example showing that the converse does not need to be true, as demon-
strated by Example 1.

Example 1.

Let S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 a2 a3 a4 a5 a6 a7

0 0 a8 a9 a10 a11 a12 a13

0 0 0 a14 a15 a16 a17 a18

0 0 0 0 a19 a20 a21 a22

0 0 0 0 0 a23 a24 a25

0 0 0 0 0 0 a26 a27

0 0 0 0 0 0 0 a28

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣a′si ∈ Z∗

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and Γ is a unit matrix. Now, we define the partial order relation ! on S : for any A, B ∈ S ,
A !(S1,S2)

B, if and only if aij ! bij , for all i and j. Then, S is an ordered Γ-semigroup of matrices
over Z∗ (non-negative integer) with the partial order relation “ ! ”.

(i) Clearly,

B1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 b2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 b3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 b4

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣b′si ∈ Z∗

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Although B1 is an M-LTI, it is not an M-bi-ideal of S .
(iii) Clearly,

B2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 b2 b3 b4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 b5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 b6

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣b′si ∈ Z∗

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Hence, B2 is an M-LTI, but not an LTI of S .

Theorem 1. 1. Let f1 ∈ S . The M-LTI generated by an element “ f1” is 〈 f1〉mlt = { f1 ∪
N ( f1 · Γ · f1)∪ f1 · Γ · (S · Γ · . . . · Γ · S (M− times)) · Γ · f1 · Γ · f1} andN , M, where
N and M are positive integers.

2. Let G be a subset of S . The M-LTI generated by set “G ” is 〈G〉mlt = {G ∪ G · Γ · G ∪ G · Γ ·
(S · Γ · . . . · Γ · S (M− times)) · Γ · G · Γ · G}.

Definition 10. Let G be a subset of S , known as an M-left-tri-basis (LTB) of S if it meets the
criteria listed below:

1. S = 〈G〉mlt.
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2. If F + G such that S = 〈F〉mlt, then F = G.

Example 2. Let S = {k1, k2, k3, k4, k5, k6} and Γ = {π1, π2}, where π1 and pi2 are defined on
S with the following table:

π1 k1 k2 k3 k4 k5 k6
k1 k1 k1 k1 k1 k1 k6
k2 k1 k1 k1 k2 k3 k6
k3 k1 k2 k3 k1 k1 k6
k4 k1 k1 k1 k4 k5 k6
k5 k1 k4 k5 k1 k1 k6
k6 k6 k6 k6 k6 k6 k6

π2 k1 k2 k3 k4 k5 k6
k1 k1 k4 k1 k4 k4 k6
k2 k1 k2 k1 k4 k4 k6
k3 k1 k4 k3 k4 k5 k6
k4 k1 k4 k1 k4 k4 k6
k5 k1 k4 k3 k4 k5 k6
k6 k6 k6 k6 k6 k6 k6

!:= {(k1, k1), (k1, k6), (k2, k2), (k2, k6), (k3, k3), (k3, k6), (k4, k4), (k4, k6), (k5, k5), (k5, k6),
(k6, k6)}. Clearly, (S , Γ,!) is an ordered Γ-semigroup.

The covering relation !:= {(k1, k6), (k2, k6), (k3, k6), (k4, k6), (k5, k6)} is represented by
Figure 1, since G = {k4, k5} is a M-LTB of S .

Figure 1. Covering relation.

Theorem 2. Let G be the M-LTB of S and f1, f2 ∈ G. If f1 ∈ (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ ·
. . . · Γ · S) · Γ · f2 · Γ · f2], then f1 = f2.

Proof. Assume that f1 ∈ (N ( f2 · Γ · f2)∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2], and suppose
that f1 
= f2. Let F = G \ { f1}. Obviously, F ⊂ G since f1 
= f2, f2 ∈ F . To show that
〈F〉mlt = S , clearly, 〈F〉mlt + S . Still, to prove that S + 〈F〉mlt, let s ∈ S . By our
hypothesis, 〈G〉mlt = S , and hence, s ∈ (G ∪ G · Γ · G ∪ G · Γ · (S · Γ · . . . · Γ · S) · Γ · G · Γ · G].
We have s ! g for some g ∈ G ∪ G · Γ · G ∪ G · Γ · (S · Γ · . . . · Γ · S) · Γ · G · Γ · G. As a result,
the following cases will be discussed.
Case-1 : Let g ∈ G. There are two subcases to examine:
Subcase-1 : Let g 
= f1, then g ∈ G \ { f1} = F + 〈F〉mlt.
Subcase-2: Let g = f1. We have g = f1 ∈ (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 ·
Γ · f2] + (F · Γ · F ∪ F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ] + 〈F〉mlt.
Case-2: Let g ∈ G · Γ · G. Then, g = g1 · π · g2, for some g1, g2 ∈ G and π ∈ Γ. In addition,
there are four subcases to be considered.
Subcase-1: Let g1 = f1 and g2 = f1. Now,

g = g1 · π · g2

= f1 · π · f1

∈ (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2] · Γ · (N ( f2 · Γ · f2) ∪
f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2]

+ ((N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2) · Γ·

(N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2)]

+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.
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Subcase-2: Let g1 
= f1 and g2 = f1. Now,

g = g1 · π · g2

∈ (G \ { f1}) · Γ · (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2]

+ ((G \ { f1}) · Γ · (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2)]

+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.

Subcase-3: Let g1 = f1 and g2 
= f1. Now,

g = g1 · π · g2

∈ (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2] · Γ · (G \ { f1})
+ ((N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2) · Γ · (G \ { f1})]
+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.

Subcase-4: Let g1 
= f1, g2 
= f1, and F = G \ { f1}. Now,

g = g1 · π · g2

∈ (G \ { f1}) · Γ · (G \ { f1})
+ 〈F〉mlt.

Case-3: Let g ∈ G · Γ · (S · Γ · . . . · Γ · S) · Γ · G · Γ · G . Then, g = g3 · π · (s1 · π1 · s2 · . . . · πn ·
sn) · θ · g4 · θ1 · g5 for some g3, g4, g5 ∈ G, s1, s2, . . . , sn ∈ S and π, θ, θ1, π1, π2, . . . , πn ∈ Γ.
We will examine eight subcases.

gi \ Subcase g3 g4 g5
Subcase− 1 f1 = g3 f1 = g4 f1 = g5
Subcase− 2 f1 
= g3 f1 = g4 f1 = g5
Subcase− 3 f1 = g3 f1 
= g4 f1 = g5
Subcase− 4 f1 = g3 f1 = g4 f1 
= g5
Subcase− 5 f1 
= g3 f1 
= g4 f1 = g5
Subcase− 6 f1 = g3 f1 
= g4 f1 
= g5
Subcase− 7 f1 
= g3 f1 = g4 f1 
= g5
Subcase− 8 f1 
= g3 f1 
= g4 f1 
= g5

Subcase-1: Let g3 = f1, g4 = f1, and g5 = f1. Now,

g = g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5

= f1 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f1 · θ1 · f1

∈ (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2] · Γ · (S · Γ · . . . · Γ · S) · Γ ·
(N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2] · Γ · (N ( f2 · Γ · f2) ∪
f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2]

+
({

(N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2) · Γ · (S · Γ · . . . · Γ · S) · Γ ·

(N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2)
}
· Γ · (N ( f2 · Γ · f2)∪

f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2

]
+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.
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Subcase-2: Let g3 
= f1, g4 = f1, and g5 = f1. Now,

g = g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5

∈ (G \ { f1}) · Γ · (S · Γ · . . . · Γ · S) · Γ · (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S)
·Γ · f2 · Γ · f2] · Γ · (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2]

+
(
(G \ { f1}) · Γ · (S · Γ · . . . · Γ · S) · Γ · (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S)

·Γ · f2 · Γ · f2) · Γ · (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2

]
+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.

Subcase-6: Let g3 = f1, g4 
= f1, and g5 
= f1. Now,

g = g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5

∈ (N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2] · Γ · (S · Γ · . . . · Γ · S)
·Γ · (G \ { f1}) · Γ · (G \ { f1})

+ ((N ( f2 · Γ · f2) ∪ f2 · Γ · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2) · Γ · (S · Γ · . . . · Γ · S)
·Γ · (G \ { f1}) · Γ · (G \ { f1})]

+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.

Subcase-8: Let g3 
= f1, g4 
= f1, g5 
= f1, and F = G \ { f1}. Now,

g = g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5

∈ (G \ { f1}) · Γ · (S · Γ · . . . · Γ · S) · Γ · (G \ { f1}) · Γ · (G \ { f1})
+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.

It is similar to prove other subcases. Hence, for all the cases, we have S + 〈F〉mlt.
Thus, S = 〈F〉mlt, which is a contradiction. Hence f1 = f2.

Lemma 2. Let G be the M-LTB of S and f1, f2, f3, f4 ∈ G. If f1 ∈ (N ( f3 · Γ · f2) ∪ f3 · Γ · (S ·
Γ · . . . · Γ · S) · Γ · f2 · Γ · f4], then f1 = f2 or f1 = f3 or f1 = f4.

Proof. Theorem 2 leads to the proof.

Definition 11. For any s1, s2 ∈ S , s1 !mlt s2 ⇐⇒ 〈s1〉mlt + 〈s2〉mlt is called a quasi-order
on S .

Remark 4. The order !mlt is not a partial order of S .

Example 3. By Example 2, 〈k5〉mlt + 〈k6〉mlt and 〈k6〉mlt + 〈k5〉mlt but k5 
= k6. Hence, the
relation !mlt is not a partial order on S .

If F is an M-LTB of S , then 〈F〉mlt = S . Let s ∈ S . Then, s ∈ 〈F〉mlt, and so,
s ∈ 〈 f1〉mlt for some f1 ∈ F . This implies 〈s〉mlt + 〈 f1〉mlt. Hence, s !mlt f1.

Remark 5. If G is a M-LTB of S then for any s ∈ S , there exists f1 ∈ G such that s !mlt f1.

Lemma 3. Let G be an M-LTB of S . If f1, f2 ∈ G such that f1 
= f2, then neither f1 !mlt f2 nor
f2 !mlt f1.
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Proof. Assume that f1, f2 ∈ G, such that f1 
= f2. Suppose that f1 !mlt f2. LetF = G \ { f1}.
Then, f2 ∈ F . Let s ∈ S . By Remark 5, there exists f3 ∈ G, such that s !mlt f3. We think
about two cases to be discussed. If f3 
= f1, then f3 ∈ F . Thus, 〈s〉mlt + 〈 f3〉mlt + 〈F〉mlt.
Hence, S = 〈F〉mlt, which is a contradiction. If f3 = f1, then s !mlt f2. Hence, s ∈ 〈F〉mlt,
since f2 ∈ F . Hence, S = 〈F〉mlt, which is a contradiction. A similar argument can be
made for other cases.

Lemma 4. Let G be the M-LTB of S and f1, f2, f3 ∈ G and s ∈ S .

1. If f1 ∈ ({ f2 · π · f3} ∪N ({ f2 · π · f3} · Γ · { f2 · π · f3})∪ { f2 · π · f3} · Γ · (S · Γ · . . . · Γ ·
S)·
Γ · { f2 · π · f3} · Γ · { f2 · π · f3}], then f1 = f2 or f1 = f3,

2. If f1 ∈ ({ f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} ∪N ({ f2 · π · (s1 · π1 · s2 · . . . ·
πn · sn) · θ · f3 · θ1 · f4} · Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4}) ∪ { f2 · π ·
(s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} · Γ · (S · Γ · . . . · Γ · S) · Γ · { f2 · π · (s1 · π1 · s2 ·
. . . · πn · sn) · θ · f3 · θ1 · f4} · Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4}], then
f1 = f2 or f1 = f3 or f1 = f4.

Proof. (1) Assume that f1 ∈ ({ f2 · π · f3} ∪N ({ f2 · π · f3} · Γ · { f2 · π · f3}) ∪ { f2 · π · f3} ·
Γ · (S · Γ · . . . · Γ · S) · Γ · { f2 · π · f3} · Γ · { f2 · π · f3}] and suppose that f1 
= f2 and f1 
= f3.
Let F = G \ { f1}. Clearly, F ⊂ G, since f1 
= f2 and f1 
= f3 implies f2, f3 ∈ F . To prove
that 〈G〉mlt + 〈F〉mlt, it suffices to determine that G + 〈F〉mlt. Let f ∈ G, if f 
= f1 that
f ∈ F , and hence, f ∈ 〈F〉mlt. If f = f1, then

f = f1 ∈ ({ f2 · π · f3} ∪N ({ f2 · π · f3} · Γ · { f2 · π · f3}) ∪ { f2 · π · f3} · Γ · (S · Γ · . . .

·Γ · S) · Γ · { f2 · π · f3} · Γ · { f2 · π · f3}]
+ (F · Γ · F ∪ F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F
+ 〈F〉mlt.

Thus, G + 〈F〉mlt. This implies 〈G〉mlt + 〈F〉mlt, as G is an M-LTB of S and S =
〈G〉mlt + 〈F〉mlt + S . Therefore, S = 〈F〉mlt, which is a contradiction. Hence, f1 = f2 or
f1 = f3.
(2) Assume that f1 ∈ ({ f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} ∪N ({ f2 · π · (s1 · π1 ·
s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} · Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4}) ∪ { f2 ·
π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} · Γ · S ·Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ ·
f3 · θ1 · f4} · Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4}] and suppose that f1 
= f2
and f1 
= f3 and f1 
= f4. Let F = G \ { f1}. Clearly, F ⊂ G, since f1 
= f2, f1 
= f3, and
f1 
= f4 imply that f2, f3, f4 ∈ F . To prove that 〈G〉mlt + 〈F〉mlt, it remains to prove that
G + 〈F〉mlt. Let f ∈ G if f 
= f1 that f ∈ F , and so, f ∈ 〈F〉mlt. Hence,

f = f1

∈ ({ f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} ∪N ({ f2 · π · (s1 · π1 · s2 · . . .

·πn · sn) · θ · f3 · θ1 · f4} · Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4}) ∪
{ f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} · Γ · (S · Γ · . . . · Γ · S) · Γ ·
{ f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} · Γ · { f2 · π · (s1 · π1 · s2 · . . .

·πn · sn) · θ · f3 · θ1 · f4}]
+ (F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ]
+ 〈F〉mlt.

Thus, G + 〈F〉mlt. This implies 〈G〉mlt + 〈F〉mlt as G is an M-LTB of S and S =
〈G〉mlt + 〈F〉mlt + S . Therefore, S = 〈F〉mlt, which is a contradiction. Hence, f1 = f2 or
f1 = f3 or f1 = f4.

Lemma 5. Let G be an M-LTB of S ,
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1. If f1 
= f2 and f1 
= f3, then f1 
!mlt f2 · π · f3.
2. If f1 
= f2, f1 
= f3 and f1 
= f4, then f1 
!mlt f2 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · f3 · θ1 · f4,

for f1, f2, f3, f4 ∈ G, π, πi, θ, θ1 ∈ Γ and si ∈ S , i = 1, 2, . . . , n.

Proof. (1) For any f1, f2, f3 ∈ G, let f1 
= f2 and f1 
= f3. Suppose that f1 !mlt f2 · π · f3
and

f1 ∈ 〈 f1〉mlt

+ {( f2 · π · f3)}mlt

= ({( f2 · π · f3)} ∪ N ({( f2 · π · f3)} · Γ · {( f2 · π · f3)}) ∪ {( f2 · π · f3)} · Γ ·
(S · Γ · . . . · Γ · S) · Γ · {( f2 · π · f3)} · Γ · {( f2 · π · f3)}].

By Lemma 4 (1), it follows that f1 = f2 or f1 = f3, which is a contradiction.
(2) For any f1, f2, f3, f4 ∈ G, let f1 
= f2, f1 
= f3, and f1 
= f4. Suppose that f1 !mlt
f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4, we have

f1 ∈ 〈 f1〉mlt

+ {( f2 · Γ · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4)}mlt

= ({( f2 · Γ · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4)} ∪ N ({( f2 · Γ · (s1 · π1 · s2

· . . . · πn · sn) · θ · f3 · θ1 · f4)} · Γ · {( f2 · Γ · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4)})
∪{( f2 · Γ · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4)} · Γ · (S · Γ · . . . · Γ · S) · Γ
·{( f2 · Γ · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4)}].

By Lemma 4 (2), it follows that f1 = f2, f1 = f3, or f1 = f4, which contradicts our
assumption.

Theorem 3. Let G be the M-LTB of S , if and only if G satisfies the following

1. For any s ∈ S ,
(1.1) there exists f2 ∈ G such that s !mlt f2 (or),
(1.2) there exists g1, g2 ∈ G such that s !mlt g1 · π · g2 (or),
(1.3) there exists g3, g4, g5 ∈ G such that s !mlt g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 ·
θ1 · g5;

2. If f1 
= f2 and f1 
= f3 and f1 
= f4, then f1 
!mlt f2 · π · f3, for any f1, f2, f3 ∈ G;
3. If f1 
= f2 and f1 
= f3 and f1 
= f4, then f1 
!mlt f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 ·

θ1 · f4, for any f1, f2, f3, f4 ∈ G, si ∈ S and πi, π, θ, θ1 ∈ Γ, i = 1, 2, . . . , n.

Proof. Assume that G is an M-LTB of S , then S = 〈G〉mlt. To prove that (1), let s ∈ S ,
s ∈ (G ∪ G · Γ · G · Γ · G ∪ G · Γ · (S · Γ · . . . · Γ · S) · Γ · G · Γ · G]. As s ∈ (G ∪ G · Γ · G · Γ · G ∪
G · Γ · (S · Γ · . . . · Γ · S) · Γ · G · Γ · G], we have s ! g for some g ∈ G ∪ G · Γ · G · Γ · G ∪ G ·
Γ · (S · Γ · . . . · Γ · S) · Γ · G · Γ · G, we think about the three following cases.
Case-1 : Let g ∈ G. Then, g = f2 for some f2 ∈ G. This implies 〈g〉mlt + 〈 f2〉mlt.
Hence, g !mlt f2. As s ! g for some g ∈ 〈 f2〉mlt. To find out 〈s〉mlt + 〈 f2〉mlt. Now,
s∪N (s · Γ · s)∪ ·Γ · (S · Γ · . . . · Γ · S) · Γ · s · Γ · s + 〈 f2〉mlt ∪N (〈 f2〉mlt · Γ · 〈 f2〉mlt)∪ 〈 f2〉mlt ·
Γ · (S · Γ · . . . · Γ · S) · Γ · 〈 f2〉mlt + f2 ∪N ( f2 ·π · f2)∪ f2 ·π · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2].
We have (s ∪N (s · Γ · s) ∪ ·Γ · (S · Γ · . . . · Γ · S) · Γ · s · Γ · s] + ( f2 ∪N ( f2 · π · f2) ∪ f2 · π ·
(S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2]. Thus, 〈s〉mlt + 〈 f2〉mlt, and hence, s !mlt f2.
Case-2 : Let g ∈ G · Γ · G. Then, g = g1 · π · g2 for some g1, g2 ∈ G and π ∈ Γ. This
implies 〈g〉mlt + 〈g1 · π · g2〉mlt. Hence, g !mlt g1 · π · g2. As s ! g for some g ∈ 〈g1 ·
π · g2〉mlt. We have s ∈ 〈g1 · π · g2〉mlt. We determine that 〈s〉mlt + 〈g1 · π · g2〉mlt. Now,
s ∪ N (s · Γ · s) ∪ ·Γ · (S · Γ · . . . · Γ · S) · Γ · s · Γ · s + ({g1 · π · g2} ∪ N ({g1 · π · g2} · Γ ·
{g1 · π · g2}) ∪ {g1 · π · g2} · Γ · (S · Γ · . . . · Γ · S) · Γ · {g1 · π · g2} · Γ · {g1 · π · g2}]. Hence,
(s ∪ N (s · Γ · s) ∪ ·Γ · (S · Γ · . . . · Γ · S) · Γ · s · Γ · s] + ({g1 · π · g2} ∪ N ({g1 · π · g2} · Γ ·
{g1 · π · g2}) ∪ {g1 · π · g2} · Γ · (S · Γ · . . . · Γ · S) · Γ · {g1 · π · g2} · Γ · {g1 · π · g2}]. This
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implies 〈s〉mlt + 〈g1 · π · g2〉mlt. Hence, s !mlt g1 · π · g2.
Case-3: Let g ∈ G · Γ · (S · Γ · . . . · Γ · S) · Γ · G · Γ · G. Then, g = g3 · π · (s1 · π1 · s2 · . . . ·
πn · sn) · θ · g4 · θ1 · g5 for some g3, g4 ∈ G. This implies 〈g〉mlt + 〈g3 · π · (s1 · π1 · s2 · . . . ·
πn · sn) · θ · g4 · θ1 · g5〉mlt. Hence, g !mlt 〈g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5〉mlt.
As s ! g for some g ∈ 〈g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5〉mlt. We have
s ∈ 〈g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5〉mlt. To prove that 〈s〉mlt + 〈g3 · π ·
(s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5〉mlt. Now, s ∪ N (s · Γ · s) ∪ ·Γ · (S · Γ · . . . · Γ · S) ·
Γ · s · Γ · s + ({g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5} ∪ N ({g3 · π · (s1 · π1 · s2 ·
. . . · πn · sn) · θ · g4 · θ1 · g5} · Γ · {g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5}) ∪ {g3 ·
π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5} · Γ · (S · Γ · . . . · Γ · S) · Γ · {g3 · π · (s1 · π1 · s2 ·
. . . · πn · sn) · θ · g4 · θ1 · g5} · Γ · {g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5}]. Hence,
(s ∪N (s · Γ · s) ∪ ·Γ · (S · Γ · . . . · Γ · S) · Γ · s · Γ · s] + ({g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ ·
g4 · θ1 · g5} ∪N ({g3 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 · g5} · Γ · {g3 ·π · (s1 ·π1 · s2 · . . . ·
πn · sn) · θ · g4 · θ1 · g5}) ∪ {g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5} · Γ · (S · Γ · . . . ·
Γ · S) · Γ · {g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5} · Γ · {g3 · π · (s1 · π1 · s2 · . . . · πn ·
sn) · θ · g4 · θ1 · g5}]. This implies 〈s〉mlt + 〈g3 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 · g5〉mlt.
Hence, s !mlt g3 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 · g5. By Lemma 5(1) and Lemma 5(2),
we have the proof of (2) and (3), respectively.

Conversely, assume that (1), (2), and (3) hold to prove that G is an M-LTB of S . To
determine that S = 〈G〉mlt, clearly, 〈G〉mlt + S . By (1), S + 〈G〉mlt and S = 〈G〉mlt. It
remains to be determined whether G is a minimal subset of S , S = 〈G〉mlt. Suppose that
S = 〈F〉mlt for some F ⊂ G. As F ⊂ G, there exists f2 ∈ G \ F . As f2 ∈ G + S = 〈F〉mlt
and f2 
∈ F , it follows that f2 ∈ (F · Γ · F · Γ · F ∪ F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ].
As f2 ∈ (F · Γ · F · Γ · F ∪ F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F ], this implies f2 ! g for
some g ∈ F · Γ · F · Γ · F ∪ F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F . There are two cases to be
observed.
Case-1: Let g ∈ F · Γ · F · Γ · F . Then, g = g1 · π · g2 for some g1, g2 ∈ F and π ∈ Γ. We
have g1, g2 ∈ G. As f2 
∈ F , f2 
= g1 and f2 
= g2. As g = g1 · π · g2, 〈g〉mlt + 〈g1 · π · g2〉mlt.
Hence, g !mlt g1 ·π · g2. As f2 ! g for some g ∈ 〈g1 ·π · g2〉mlt, we have f2 ∈ 〈g1 ·π · g2〉mlt
to prove that 〈 f2〉mlt + 〈g1 · π · g2〉mlt.
Now, f2 ∪N ( f2 · π · f2) ∪ f2 · π · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2 + ({g1 · π · g2} ∪ N ({g1 ·
π · g2} · Γ · {g1 ·π · g2})∪ {g1 ·π · g2} · Γ · (S · Γ · . . . · Γ · S) · Γ · {g1 ·π · g2} · Γ · {g1 ·π · g2}].
Hence, ( f2 ∪N ( f2 ·π · f2)∪ f2 ·π · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2] + ({g1 ·π · g2} ∪N ({g1 ·
π · g2} · Γ · {g1 ·π · g2})∪ {g1 ·π · g2} · Γ · (S · Γ · . . . · Γ · S) · Γ · {g1 ·π · g2} · Γ · {g1 ·π · g2}].
This implies 〈 f2〉mlt + 〈g1 · π · g2〉mlt. Hence, f2 !mlt g1 · π · g2. This contradicts (2).
Case-2: Let g ∈ F · Γ · (S · Γ · . . . · Γ · S) · Γ · F · Γ · F . Then, g = g3 · π · (s1 · π1 · s2 ·
. . . · πn · sn) · θ · g4 · θ1 · g5 for some g3, g4 ∈ F , si ∈ S and πi, π, θ ∈ Γ, i = 1, 2, . . . , n.
We have g3, g4 ∈ G. As f2 
∈ F , so f2 
= g3 and f2 
= g4. As g = g3 · π · (s1 · π1 · s2 ·
. . . · πn · sn) · θ · g4 · θ1 · g5, 〈g〉mlt + 〈g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5〉mlt.
Hence, g !mlt g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5. Since f2 ! g for some
g ∈ 〈g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5〉mlt, we have f2 ∈ 〈g3 · π · (s1 · π1 · s2 ·
. . . · πn · sn) · θ · g4 · θ1 · g5〉mlt. We determine that 〈 f2〉mlt + 〈g3 · π · (s1 · π1 · s2 · . . . · πn ·
sn) · θ · g4 · θ1 · g5〉mlt. Now, f2 ∪ N ( f2 · π · f2) ∪ f2 · π · (S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2 +
({g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5} ∪N ({g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ ·
g4 · θ1 · g5} · Γ · {g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5}) ∪ {g3 · π · (s1 · π1 · s2 · . . . ·
πn · sn) · θ · g4 · θ1 · g5} · Γ · (S · Γ · . . . · Γ · S) · Γ · {g3 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 ·
g5} · Γ · {g3 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 · g5}]. Hence, ( f2 ∪N ( f2 ·π · f2)∪ f2 ·π ·
(S · Γ · . . . · Γ · S) · Γ · f2 · Γ · f2] + ({g3 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 · g5} ∪N ({g3 ·
π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5} · Γ · {g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 ·
g5}) ∪ {g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5} · Γ · (S · Γ · . . . · Γ · S) · Γ · {g3 · π ·
(s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 · g5} · Γ · {g3 ·π · (s1 ·π1 · s2 · . . . ·πn · sn) · θ · g4 · θ1 · g5}].
This implies 〈 f2〉mlt + 〈g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5〉mlt. Hence, f2 !mlt
g3 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · g4 · θ1 · g5, which is a contradiction to (3). Therefore, G
is an M-LTB of S .
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Theorem 4. Let G be an M-LTB of S . Then, G is an ordered Γ-subsemigroup of S , if and only if
g1 · π · g2 = g1 or g1 · π · g2 = g2, for any g1, g2 ∈ G and π ∈ Γ.

Proof. If G is an ordered Γ-subsemigroup of S , then g1 ·π · g2 ∈ G . As g1 ·π · g2 ∈ (N (g1 ·
Γ · g2) ∪ g1 · Γ · (S · Γ · . . . · Γ · S) · Γ · g2 · Γ · g2], it follows by Lemma 2 that g1 · π · g2 = g1
or g1 · π · g2 = g2.

4. M-RTB Generator

We present some results on the M-right-tri-ideal (RTI) generator based on an ordered
Γ-semigroup.

Definition 12. Let S be an ordered Γ- semigroup. G + S is said to be an M-RTI of S if it meets
the criteria listed below:

1. G is a Γ-subsemigroup,
2. G · Γ · G · Γ · (S · Γ · . . . · Γ · S (M− times)) · Γ · G + G,
3. If g ∈ G and s ∈ S , such that s ! g, then s ∈ G.

Theorem 5. 1. For f1 ∈ S , the M-RTI generated by “ f1” is 〈 f1〉mrt = { f1 ∪N ( f1 · Γ · f1) ∪
f1 · Γ · f1 · Γ · (S · Γ · . . . · Γ · S (M− times)) · Γ · f1} and N , M, where N and M are
positive integers;

2. For G + S , the M-RTI generated by “G ” is 〈G〉mrt = {G ∪ G · Γ · G ∪ G · Γ · G · Γ · (S · Γ ·
. . . · Γ · S (M− times)) · Γ · G}.

Definition 13. Let G be a subset S called a M-right tri-basis (RTB) of S if it satisfies the following
conditions:

1. S = 〈G〉mrt.
2. If F + G such that S = 〈F〉mrt, then F = G.

Theorem 6. Let G be an M-RTB of S and f1, f2 ∈ G . If f1 ∈ (N ( f2 · Γ · f2)∪ f2 · Γ · f2 · Γ · (S ·
Γ · . . . · Γ · S) · Γ · f2], then f1 = f2.

Proof. The proof is the same as in Theorem 2.

Lemma 6. Let G be an M-RTB of S and f1, f2, f3, f4 ∈ G. If f1 ∈ (N ( f3 · Γ · f2) ∪ f2 · Γ · f4 ·
(S · Γ · . . . · Γ · S) · Γ · f3], then f1 = f2 or f1 = f3 or f1 = f4.

Proof. Theorem 2 leads to the proof.

Definition 14. For any s1, s2 ∈ S , s1 !mrt s2 ⇐⇒ 〈s1〉mrt + 〈s2〉mrt is called a quasi-order
on S .

Remark 6. The order !mrt is not a partial order of S .

Example 4. By Example 2, 〈k4〉mrt + 〈k6〉mrt and 〈k6〉mrt + 〈k4〉mrt but k4 
= k6. Hence, the
relation !mrt is not a partial order on S .

IfF is an M-RTB of S , then 〈F〉mrt = S . Let s ∈ S . Then, s ∈ 〈F〉mrt and so s ∈ 〈 f1〉mrt
for some f1 ∈ F . This implies 〈s〉mrt + 〈 f1〉mrt. Hence, s !mrt f1.

Remark 7. If G is an M-RTB of S , then for any s ∈ S , there exists f1 ∈ G such that s !mrt f1.

Lemma 7. Let G be an M-RTB of S . If f1, f2 ∈ G such that f1 
= f2, then neither f1 !mrt f2 nor
f2 !mrt f1.

Proof. The proof follows from Lemma 3.

255



Mathematics 2023, 11, 893

Lemma 8. Let G be the M-RTB of S and f1, f2, f3 ∈ G and s ∈ S .

1. If f1 ∈ ({ f2 · π · f3} ∪ N ({ f2 · π · f3} · Γ · { f2 · π · f3}) ∪ { f2 · π · f3} · Γ · { f2 · π · f3} ·
Γ · (S · Γ · . . . · Γ · S) · Γ · { f2 · π · f3}], then f1 = f2 or f1 = f3;

2. If f1 ∈ ({ f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} ∪N ({ f2 · π · (s1 · π1 · s2 · . . . ·
πn · sn) · θ · f3 · θ1 · f4} · Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4}) ∪ { f2 · π ·
(s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4} · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 ·
f4} · Γ · (S · Γ · . . . · Γ · S) · Γ · { f2 · π · (s1 · π1 · s2 · . . . · πn · sn) · θ · f3 · θ1 · f4}], then
f1 = f2 or f1 = f3 or f1 = f4.

Proof. The proof follows from Lemma 4.

Lemma 9. Let G be the M-RTB of S ,

1. If f1 
= f2 and f1 
= f3, then f1 
!mrt f2 · π · f3.
2. If f1 
= f2, f1 
= f3 and f1 
= f4, then f1 
!mrt f3 · θ · f4 · θ1 · (s1 ·π1 · s2 · . . . ·πn · sn) ·π · f2,

for f1, f2, f3, f4 ∈ G, π, πi, θ, θ1 ∈ Γ and si ∈ S , i = 1, 2, . . . , n.

Proof. The proof follows from Lemma 5.

Theorem 7. Let G be the M-RTB of S , if and only if the following conditions are met by G.

1. For any s ∈ S ,
(1.1) there exists f2 ∈ G, such that s !mrt f2 (or),
(1.2) there exists g1, g2 ∈ G, such that s !mrt g1 · π · g2 (or),
(1.3) there exists g3, g4, g5 ∈ G, such that s !mrt g4 · θ · g5 · θ1 · (s1 · π1 · s2 · . . . · πn · sn) ·
π · g3;

2. If f1 
= f2, f1 
= f3, and f1 
= f4, then f1 
!mrt f2 · π · f3, for any f1, f2, f3 ∈ G,
3. If f1 
= f2, f1 
= f3, and f1 
= f4, then f1 
!mrt f3 · θ · f4 · θ1 · (s1 · π1 · s2 · . . . · πn · sn) ·

π · f2, for any f1, f2, f3, f4 ∈ G, si ∈ S and πi, π, θ, θ1 ∈ Γ, i = 1, 2, . . . , n.

Proof. Theorem 3 leads to the proof.

Theorem 8. Let G be an M-RTB of S . Then, G is an ordered Γ-subsemigroup of S , if and only if
g1 · π · g2 = g1 or g1 · π · g2 = g2, for any g1, g2 ∈ G and π ∈ Γ.

Proof. The proof is the same as Theorem 4.

5. Conclusions

Several characterizations of the M-LTB (RTB) of an ordered Γ-semigroup are described
in this article. Our discussion has focused on some of their fundamental characteristics and
has also examined some of them using the M-tri-ideal generator. We presented the M-LTB
(RTB) of an ordered Γ-semigroup, which was constructed from an ordered Γ-semigroup
element and subset. At the end of our discussion, we explored the relationship between
partial order and the M-LTB (RTB). In the future, we plan to explore a few more types of
tri-basis and tri-M-basis. Our study will examine their research on Γ-hyper semigroups
using bi-basis and M-bi-basis.
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Abstract: For a nonempty set X, let T(X) be the total transformation semigroup on X. In this
paper, we consider the subsemigroups of T(X) which are defined by T(X,Y) = {α ∈ T(X) :
Xα ⊆ Y} and S(X, Y) = {α ∈ T(X) : Yα ⊆ Y} where Y is a non-empty subset of X. We characterize
the left regular and right regular elements of both T(X, Y) and S(X, Y). Moreover, necessary and
sufficient conditions for T(X, Y) and S(X, Y) to be left regular and right regular are given. These
results are then applied to determine the numbers of left and right regular elements in T(X, Y) for a
finite set X.
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1. Introduction and Preliminaries

Let S be a semigroup. An element x of S is called left regular if x = yx2 for some y ∈ S.
A right regular element is defined dually. Denote by LReg(S) and RReg(S) the sets of all
left regular elements and right regular elements of S, respectively. Left and right regular
elements are important in semigroup theory because they play a key role in the study of
regular semigroups, which are semigroups in which every element is both left and right
regular. Regular semigroups have many interesting properties and are used in various areas
of mathematics, including algebra, topology and theoretical computer science. An element
x of S is called left (right) magnifying if there is a proper subset M of S satisfying xM = S
(Mx = S). In 1963, Ljapin [1] studied the notion of right and left magnifying elements of a
semigroup. Several years later, Migliorini introduced the concepts of the minimal subset
related to a magnifying element of S in [2,3]. Gutan [4] researched semigroups with strong
and nonstrong magnifying elements in 1996. Later, he proved that every semigroup with
magnifying elements is factorizable in [5].

Let T(X) be the total transformation semigroup on a nonempty set X. It is well
known that T(X) is a regular semigroup. Moreover, every semigroup is isomorphic to
a subsemigroup of some total transformation semigroups. The most basic mathematical
structures are transformation semigroups. In 1952, Malcev [6] characterized ideals of
T(X). Later, Miller and Doss [7] studied its group H-classes and its Green’s relations.
The generalization of these studies is the focus of this paper.

In 1975, Symons [8] considered a subsemigroup of T(X) defined by

T(X, Y) = {α ∈ T(X) : Xα ⊆ Y}

where Y is a nonempty subset of X. He determined all the automorphisms of T(X, Y).
In 2005, Nenthein et al. [9] described regular elements in T(X, Y) and counted the number
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of all regular elements of T(X, Y) when X is a finite set. They described such a number
in terms of |X|, |Y| and their related Stirling numbers. A few years later, Sanwong and
Sommanee [10] studied regularity and Green’s relations for the semigroup T(X, Y). They
determined when T(X, Y) becomes a regular semigroup. Moreover, they gave a class of
maximal inverse subsemigroups of T(X, Y) in 2008. After that, they proved that the set
F(X, Y) = {α ∈ T(X, Y) : Xα = Yα} is the largest regular subsemigroup of T(X, Y) and
determined its Green’s relations. In [11], Sanwong described Green’s relations and found
all maximal regular subsemigroups of F(X, Y). In 2009, maximal and minimal congruences
on T(X, Y) were considered. Sanwong et al. [12] found that T(X, Y) has only one maximal
congruence if X is a finite set. They generalized [13] Theorem 3.4 for Y being infinite.
Furthermore, characterizations of all minimal congruences on T(X, Y) were given. In the
same year, Sun [14] proved that while the semigroup T(X, Y) is not left abundant, it is right
abundant. Later in 2016, Lei Sun and Junling Sun [15] investigated the natural partial order
on T(X, Y). Moreover, they determined the maximal elements and the minimal elements
of T(X, Y).

Consider the semigroup

S(X, Y) = {α ∈ T(X) : Yα ⊆ Y}.

of transformations that leave Y invariant. In 1966, Magill [16] constructed and discussed
the semigroup S(X, Y). In fact, if Y = X, then S(X, Y) = T(X). Later in [8], automorphism
groups of a semigroup S(X, Y) were given by Symons. In 2005, Nenthein et al. [9] charac-
terized regularity for S(X, Y). In addition, they found the number of regular elements in
S(X, Y) for a finite set X. Honyam and Sanwong [17] studied its ideals, group H-classes
and Green’s relations on S(X, Y). Furthermore, they described when S(X, Y) is isomorphic
to T(A) for some set A. A few years later, the left, right regular and intra-regular ele-
ments of a semigroup S(X, Y) were discussed by Choomanee, Honyam and Sanwong [18].
Moreover, when X is finite, they calculated the number of left regular elements in S(X, Y).
In [19], natural partial orders on the semigroup S(X, Y) were considered by Sun and Wang.
Moreover, they investigated left and right compatible elements with respect to this partial
oder. Finally, they described the abundance of S(X, Y). In [20], all elements in the semi-
group S(X, Y) that are left compatible with the natural partial order were studied. Left and
right magnifying elements of S(X, Y) were given by Chiram and Baupradist in [21]. In a
recent study, Punkumkerd and Honyam [22] provided a characterization of left and right
magnifying elements on the semigroup PT(X, Y). PT(X, Y) denotes the set of all partial
transformations α from a subset of X to X and (domα∩Y)α ⊆ Y, where domα is the domain
of α. Their results have shown to be more general than the previous findings from [21].

In Section 2, we consider left and right magnifying elements of T(X, Y) and S(X, Y).
We prove that each left magnifying element in T(X, Y) is not regular. Furthermore, we
show that every left and right magnifying element in S(X, Y) is regular. In Sections 3 and 4,
we focus on left and right regularity on T(X, Y) and S(X, Y). We show that every left
magnifying element in T(X, Y) is a right regular element. Every right magnifying element
is a left regular element. As [10] determined when T(X, Y) becomes a regular semigroup,
we also characterize whenever T(X, Y) and S(X, Y) is a left (right) regular semigroup.

Note that throughout this paper, we will write mappings from the right, xα rather than
α(x) and compose that the left to the right, x(αβ) = (xα)β rather than (αβ)(x) = α(β(x))
where α, β ∈ T(X) and x ∈ X. For each α ∈ T(X), we denote the set {zα−1 : z ∈ Xα} by
π(α) and πY(α) is the set {P ∈ π(α) : P ∩Y 
= ∅} for a subset Y ⊆ X. Then, it is obvious
that π(α) is a partition of X.

2. Magnifying Elements

In this section, we focus on characterizations of left magnifying elements and right
magnifying elements in T(X, Y) and S(X, Y). The relationships between magnifying ele-
ments and regular elements are given.
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Theorem 1 ([23]). Let α ∈ T(X, Y). Then, α is right magnifying if and only if α is surjective but
not injective and is such that yα−1 ∩Y 
= ∅ for all y ∈ Y and |yα−1 ∩Y| > 1 for some y ∈ Y.

Theorem 2 ([23]). A mapping α ∈ T(X) is left magnifying if and only if α is injective but not
surjective.

Theorem 3 ([23]). Let α ∈ T(X, Y). If |Y| = |X| and X 
= Y, then α is left magnifying if and
only if α is injective.

Remark 1. For each α ∈ T(X, Y), we note from Theorem 1 that α is right magnifying if and only
if Yα = Y and α|Y is not injective.

Theorem 4. Let α ∈ T(X, Y) and X 
= Y. Then, α is left magnifying in a semigroup T(X, Y) if
and only if α is injective.

Proof. Assume that α is left magnifying. Suppose that M is a proper subset of T(X, Y) satis-
fying αM = T(X, Y). Let a, b ∈ X be such that aα = bα. If |Y| = 1, then T(X, Y) contains ex-
actly one element. Thus, T(X, Y) has no proper subset M such that
αM = T(X, Y). This is a contradiction. Therefore, |Y| > 1. Let y ∈ Y \ {aα}. Define
γ : X → X by

xγ =

{
aα if x = a,
y otherwise.

It is verifiable that γ ∈ T(X, Y). From αM = T(X, Y), there exists β ∈ M such that αβ = γ.
Suppose that a 
= b. Then, aα = aγ = aαβ = bαβ = bγ = y, which is a contradiction.
Hence, a = b and so α is injective.

Suppose that α is injective. Then, we choose y ∈ Y and let M be the set {γ ∈ T(X, Y) :
(X \Y)γ = {y}}. From X 
= Y, we have M 
= ∅. It follows from our assumption that every
x ∈ Xα, there is a unique x′ ∈ X satisfying x′α = x. Let β ∈ T(X, Y). We define γ : X → X
by

xγ =

{
x′β if x ∈ Xα,
y otherwise.

It is verifiable that γ ∈ M. Now, let x ∈ X. Thus, xαγ = (xα)′β. From α being injective and
(xα)′α = xα, we obtain (xα)′ = x. Therefore, xαγ = (xα)′β = xβ. Hence, β = αγ and so
αM = T(X, Y). This implies that α is left magnifying.

The set of natural numbers is represented by the letter N. Additionally, we denote the
set of even natural numbers and the set of all odd natural numbers greater than 3 by 2N
and 2N+ 1, respectively.

Example 1. Let X = N and Y = 2N. Define α : X → Y by xα = 2x for all x ∈ X. Then,
Xα = Y. Clearly, α is injective. From Theorem 4, we obtain that α is left magnifying. We will show
that α is not a regular element. Suppose that α is a regular element in T(X, Y). Thus, there exists
β ∈ T(X, Y) such that αβα = α. Consider 3αβα = 3α = 6. Thus, 3αβ ∈ 6α−1 = {3}. Hence,
3αβ = 3, which is a contradiction. So α is not regular element.

From the above example, we will verify that in T(X, Y), each left magnifying element
is not a regular element.

Theorem 5. If X 
= Y, then every left magnifying element of T(X, Y) is not regular.

Proof. Assume that X 
= Y. Let α be a left magnifying element. From Theorem 4, we
obtain that α is injective. Suppose that α is a regular element in T(X, Y). Then, there exists
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β ∈ T(X, Y) such that α = αβα. Since X 
= Y, we choose x ∈ X \Y. Therefore, xαβα = xα
and then xαβ ∈ (xα)α−1. Since α is injective, we have xαβ = x /∈ Y. This is a contradiction
with Xβ ⊆ Y. So α is not regular.

Theorem 6. Every right magnifying element of a semigroup T(X, Y) is regular.

Proof. Let α be a right magnifying element of T(X, Y). By Remark 1, we obtain that
Yα = Y. It follows that Xα ⊆ Y = Yα. From Yα ⊆ Xα, we have Xα = Yα. This means that
α ∈ F(X, Y) and so α is a regular element of T(X, Y).

The following example shows that there exists an element in some T(X, Y) which is
regular but it is not right magnifying.

Example 2. Let X = N and Y = 2N. Define α : X → Y by

xα =

{
x + 2 if x ∈ 2N,
x + 3 otherwise.

Note that α ∈ T(X, Y). It is easy to see that Yα = 2N \ {2} 
= Y and Xα = 2N \ {2} = Yα.
Thus, α is regular but it is not right magnifying.

In the rest of this section, we consider magnifying elements in S(X, Y).

Lemma 1 ([21]). Let α ∈ S(X, Y). Then, α is a right magnifying element if and only if α is
surjective but not injective such that yα−1 ∩Y 
= ∅ for all y ∈ Y.

Lemma 2 ([21]). Let α ∈ S(X, Y). Then, α is a left magnifying element if and only if α is injective
but not surjective such that yα−1 ⊆ Y for all y ∈ Y ∩ Xα.

Lemma 3 ([9]). Let α ∈ S(X, Y). Then, α is a regular element if and only if Yα = Xα ∩Y.

Theorem 7. Every left magnifying element of a semigroup S(X, Y) is regular.

Proof. Suppose that α is left magnifying. We will show that Xα ∩ Y = Yα. Clearly,
Yα ⊆ Xα ∩ Y. Let y ∈ Xα ∩ Y. Then, there exists y′ ∈ X such that y = y′α. Thus,
y′ ∈ yα−1 ⊆ Y by Lemma 2. This implies that Xα ∩ Y = Yα. From Lemma 3, we obtain
that α is regular.

Theorem 8. Every right magnifying element of a semigroup S(X, Y) is regular.

Proof. Suppose that α is right magnifying. We will show that Xα ∩ Y = Yα. Clearly,
Yα ⊆ Xα ∩ Y. Let y ∈ Xα ∩ Y. By Lemma 1, we have yα−1 ∩ Y 
= ∅. Thus, there exists
y′ ∈ yα−1 ∩Y. Hence, y = y′α ∈ Yα. Therefore, Xα ∩Y = Yα. From Lemma 3, we obtain α
is regular.

Example 3. Let α be defined in Example 2. It is clear that α ∈ S(X, Y) and α is neither injective
nor surjective. Since Xα = Yα, this means that Xα ∩ Y = Yα. Hence, α is regular, while it is
neither a left nor right magnifying element in S(X, Y).

3. Left Regular and Right Regular Elements in T(X, Y)

Now, we start with the characterizations of left regular and right regular elements in
T(X, Y). Moreover, we determine whenever T(X, Y) becomes a left regular semigroup and
a right regular semigroup, respectively.

Theorem 9. Let α ∈ T(X, Y). Then, the following statements are equivalent.

(1) α is left regular.
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(2) Yα2 = Xα.
(3) for any P ∈ π(α), Yα ∩ P 
= ∅.

Proof. (1)⇒ (2). Suppose that α is left regular. Thus, there exists β ∈ T(X, Y) satisfying
α = βα2. This implies that Yα2 ⊆ Xα = Xβα2 ⊆ Yα2. Thus, Yα2 = Xα.

(2)⇒ (3). Suppose that Yα2 = Xα and let P ∈ π(α). Thus, there is y ∈ Xα satisfying
yα−1 = P. By assumption, we have y ∈ Yα2. Thus, there exists z ∈ Y such that y = zα2;
that is, zα ∈ yα−1 = P. It follows that zα ∈ Yα ∩ P. Therefore, Yα ∩ P 
= ∅.

(3) ⇒ (1). Assume that (3) holds. For x ∈ X, there is a unique Px ∈ π(α) satisfying
x ∈ Px. From assumption, we have Yα ∩ Px 
= ∅. So there exists x′ ∈ Y such that
x′α ∈ Px = (xα)α−1. Define β : X → X by xβ = x′ for all x ∈ X. It is obvious that
β ∈ T(X, Y). Let x ∈ X. This implies that xβα2 = x′α2 = (x′α)α = xα. Hence, α = βα2 and
so α is left regular.

If we replace Y with X in Theorem 9, we have the following corollary.

Corollary 1. Let α ∈ T(X). Then, α is left regular if and only if for each P ∈ π(α), Xα ∩ P 
= ∅.

Proof. By taking X = Y, we obtain T(X, Y) = T(X, X) = T(X) and Xα = Yα. By
Theorem 9(3), we obtain that α is regular if and only if for each P ∈ π(α), Xα ∩ P =
Yα ∩ P 
= ∅.

Theorem 10. Let α ∈ T(X, Y). Then, α is right regular if and only if α|Xα is injective.

Proof. Assume that α is right regular. Then, there exists β ∈ T(X, Y) such that α = α2β.
We will show that α|Xα is injective. Let x, y ∈ Xα be such that xα = yα. Thus, there exist
x′, y′ ∈ X such that x = x′α and y = y′α. We obtain that

x = x′α = x′α2β = (x′α)αβ = xαβ = yαβ = y′α2β = y′α = y.

Therefore, α|Xα is injective.
Conversely, suppose α|Xα is injective. Let z ∈ Xα2. Then, there exists a unique z′ ∈ Xα

such that z′α = z. We choose y ∈ Y. Define β : X → X by

zβ =

{
z′ if z ∈ Xα2,
y otherwise.

From Xα ⊆ Y, we obtain that Xβ ⊆ Xα ∪ {y} ⊆ Y. Let x ∈ X. Note that xα2 ∈ Xα2 and
(xα2)β = (xα2)′ where (xα2)′α = xα2 = xαα. Since α|Xα is injective, we have (xα2)′ = xα.
So xα2β = (xα2)′ = xα. Hence, α2β = α and so α is right regular.

Corollary 2. Let α ∈ T(X). Then, α is right regular if and only if α|Xα is injective.

From Theorems 4 and 10, we obtain the following corollary immediately.

Corollary 3. For X 
= Y, every left magnifying element of a semigroup T(X, Y) is right regular.

Corollary 4. Every right magnifying element of a semigroup T(X, Y) is left regular.

Proof. Let α be a right magnifying element. By Remark 1, we have Yα = Y. It follows that
Xα ⊆ Y = Yα = (Yα)α = Yα2 ⊆ Xα. Hence, Yα2 = Xα and so α is left regular.

Example 4. Let X = N and Y = 2N. Define α : X → Y by

xα =

{
x + 2 if x ∈ 2N,
x + 1 otherwise.
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Then, α ∈ T(X, Y). Clearly, α is not injective. We see that Xα = 2N. This means that α|Xα :
Xα→ Xα is an injection. This means that α is right regular but it is not left magnifying.

Example 5. Let X = N and Y = 2N. Define α : X → Y by

xα =

⎧⎪⎨⎪⎩
4 if x ∈ {1, 2, 3, 4},

x− 2 if x ∈ 2N \ {2, 4},
x + 1 otherwise.

Clearly, α ∈ T(X, Y). We see that Xα = 2N \ {2} = Yα2 and Yα = 2N \ {2} 
= Y. Hence, α is a
left regular element but it is not right magnifying.

Notice that for |X| ≤ 2, we obtain that T(X, Y) is left and right regular. Now, we
consider the other case.

Theorem 11. Let X 
= Y be such that |X| ≥ 3. Then, T(X, Y) is a right regular semigroup if and
only if |Y| = 1.

Proof. If |Y| = 1, then |T(X, Y)| = 1 and T(X, Y) is a right regular semigroup. Assume
that T(X, Y) is a right regular semigroup and suppose |Y| 
= 1. Let a, b, c ∈ X be distinct
elements and a, b ∈ Y. Define α : X → X by

xα =

{
a if x ∈ {a, b},
b otherwise.

Then, α ∈ T(X, Y). However, α|Xα is not injective. Thus, α is not right regular, which is a
contradiction. Hence, |Y| = 1.

Theorem 12. Let X 
= Y be such that |X| ≥ 3. Then, T(X, Y) is a left regular semigroup if and
only if |Y| = 1.

Proof. If |Y| = 1, then |T(X, Y)| = 1 and T(X, Y) is a left regular semigroup. Assume that
T(X, Y) is a left regular semigroup and |Y| 
= 1. Let a, b, c ∈ X be distinct elements and
a, b ∈ Y. Define α : X → X by

xα =

{
a if x ∈ {a, b},
b otherwise.

Then, α ∈ T(X, Y). Note that a, b /∈ bα−1 and Yα ⊆ {a, b}. So Yα ∩ bα−1 = ∅. Therefore, α
is not left regular. This is a contradiction. Hence, |Y| = 1.

Corollary 5. Every left regular element of a semigroup T(X, Y) is regular.

Proof. We first note that F(X, Y) = {α ∈ T(X, Y) : Xα = Yα} is the largest regular
subsemigroup of T(X, Y). Let α be a left regular element of T(X, Y). It follows from
Theorem 9(2) that Xα = Yα2 = (Yα)α ⊆ Yα ⊆ Xα. Thus, Xα = Yα and so α ∈ F(X, Y).
Therefore, α is a regular element of T(X, Y).

Example 6. Let X = N and Y = 2N. Define α : X → Y by

xα =

{
x + 2 if x ∈ 2N,
x + 3 otherwise.

Clearly, α ∈ T(X, Y). Consider Xα = Yα = 2N \ {2} and Yα2 = 2N \ {2, 4}. Then, α is regular
but it is not left regular.

Example 7. Let X = N and Y = 2N+ 1. Define α : X → Y by
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xα =

{
x + 1 if x ∈ 2N,
x + 2 otherwise.

It is verifiable that α ∈ T(X, Y). We obtain that α|Xα is injective and Xα 
= Yα. Thus, α is right
regular but it is not regular.

Finally, we consider the set of all left regular elements LReg(T(X, Y)) and the set of all
right regular elements RReg(T(X, Y)) of T(X, Y). We begin with the following example.

Example 8. Let X = {1, 2, 3, 4, 5} and Y = {1, 2, 3, 4}. We consider the mappings

α =

(
1 2 3 4 5
3 3 3 4 3

)
and β =

(
1 2 3 4 5
2 1 1 2 1

)
. We note that α, β ∈ T(X, Y). Moreover,

α|Xα and β|Xβ are injective; that is α, β ∈ RReg(T(X, Y)). Clearly, αβ =

(
1 2 3 4 5
1 1 1 2 1

)
.

This implies that αβ|Xαβ is not injective and so αβ /∈ RReg(T(X, Y)). In this case, we obtain that
RReg(T(X, Y)) is not a semigroup.

Theorem 13. Let |X| ≥ 3. Then, RReg(T(X, Y)) is a semigroup if and only if |Y| ≤ 2.

Proof. Suppose that |Y| ≥ 3. Let a, b, c ∈ Y be distict elements. Define α : X → Y by

xα =

⎧⎪⎨⎪⎩
a if x = b,
b if x = a,
c otherwise.

We see that Xα = {a, b, c} and α|Xα is injective. Define β : X → Y by

xβ =

{
a if x = a,
c otherwise.

Then, Xβ = {a, c} and β|Xβ is injective. Since bαβ = a and cαβ = c, we obtain a, c ∈
Xαβ. From aαβ = c = cαβ, we conclude that αβ|Xαβ is not injective. Therefore, αβ /∈
RReg(T(X, Y)) and RReg(T(X, Y)) is not closed.

Assume that |Y| ≤ 2. If |Y| = 1, then T(X, Y) is a right regular semigroup. Therefore,
RReg(T(X, Y)) is a semigroup. Suppose that |Y| = 2. Let Y = {a, b} and
α, β ∈ RReg(T(X, Y)). We will show that αβ|Xαβ is injective. Let x, y ∈ Xαβ be such
that xαβ = yαβ. If α or β is a constant mapping, then αβ is a constant mapping. Thus,
αβ|Xαβ is injective. Suppose that α and β are not constant mappings. Then, Xα = Y = Xβ.
We observe that x, y ∈ Xαβ ⊆ Xβ = Xα. If x 
= y, then xα 
= yα since α|Xα is injective. Note
that xα, yα ∈ Y = Xβ. Then, (xα)β 
= (yα)β since β|Xβ is injective. This is a contradition.
Hence, x = y. So αβ|Xαβ is injective. Therefore, RReg(T(X, Y)) is closed.

Theorem 14. Let |X| ≥ 3. Then, LReg(T(X, Y)) is a semigroup if and only if |Y| ≤ 2.

Proof. Suppose that |Y| ≥ 3. Let a, b, c ∈ Y be distinct elements. Define α : X → Y by

xα =

{
b if x = c,
c otherwise.

And we define β : X → Y by

xβ =

{
a if x = b,
b otherwise.

Then, Yα2 = (Yα)α = {b, c}α = {b, c} = Xα and Yβ2 = (Yβ)β = {a, b}β = {a, b} = Xβ.
Thus, α, β ∈ LReg(T(X, Y)). It is easy to verify that
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xαβ =

{
a if x = c,
b otherwise

such that π(αβ) = {{c}, X \ {c}} and Yαβ = {a, b}. Clearly, Yαβ ∩ {c} = ∅. Hence,
αβ /∈ LReg(T(X, Y)). So αβ is not left regular.

Conversely, suppose |Y| ≤ 2. If |Y| = 1, then T(X, Y) is a left regular semigroup. We
have LReg(T(X, Y)) is a semigroup. Assume that Y = {a, b}. Let α, β ∈ LReg(T(X, Y)).
If |Xα| = 1 or |Xβ| = 1, then αβ is a constant mapping. Suppose that |Xα| = |Xβ| = 2.
Then, π(α) = {aα−1, bα−1} and so it is a left regular element. From α being a left regular
element, we obtain Yα ∩ aα−1 
= ∅ and Yα ∩ bα−1 
= ∅. This implies that |aα−1 ∩ Y| =
1 = |bα−1 ∩ Y| and Xα = Yα = {a, b}. Similarly, |aβ−1 ∩ Y| = 1 = |bβ−1 ∩ Y| and
Xβ = Yβ = {a, b}. It is easy to verify that π(αβ) = π(α) and Yαβ = {a, b} = Yα. Hence,
Yαβ ∩ aα−1 
= ∅ and Yαβ ∩ bα−1 
= ∅. Therefore, αβ is a left regular element.

Theorem 15. If Y is finite, then RReg(T(X, Y)) = LReg(T(X, Y)).

Proof. Assume that Y is finite. Let α be a left regular element of T(X, Y). Then, Yα2 = Xα.
It follows that Xα = Yα2 ⊆ Xα2 ⊆ Xα; that is, Xα2 = Xα. From (Xα)α = Xα2 = Xα, we
obtain α|Xα : Xα → Xα is surjective. Since Xα ⊆ Y and Y is a finite set, we obtain α|Xα is
an injection. So α is right regular.

Assume that α is right regular. Thus, α|Xα : Xα → Xα is injective and also α|Xα :
Xα → Xα is surjective since Xα is finite. This means that (Xα)α = Xα. We see that
Xα = (Xα)α ⊆ Yα ⊆ Xα. Hence, Xα = Yα and so Yα2 = Xα2 = Xα. Therefore, α is a left
regular element of T(X, Y).

Next, the cardinality of right regular elements in the semigroup T(X, Y) are investi-
gated when X is finite.

Theorem 16. Let |X| = n and |Y| = r. Then,

|LReg(T(X, Y))| = |RReg(T(X, Y))| =
r
∑

k=1
k!(r

k)k
n−k

where 1 ≤ k ≤ r.

Proof. By Theorem 15, we have LReg(T(X, Y)) = RReg(T(X, Y)). This implies that
|LReg(T(X, Y))| = |RReg(T(X, Y))|. Let 1 ≤ k ≤ r and Bk = {α ∈ RReg(T(X, Y)) :
|Xα| = k}. From Y being finite, we have α|Xα : Xα → Xα is bijective for all α ∈ Bk by
Theorem 10. Notice that the number of image sets in Y of cardinality k is equal to (r

k). Since
there are kn−k ways of partitioning the remaining n− k elements into k subsets, we obtain
|Bk| = (r

k)k! kn−k. Therefore,

|RReg(T(X, Y))| =
r
∑

k=1
|Bk| =

r
∑

k=1
k!(r

k)k
n−k.

4. Left Regular and Right Regular Elements in S(X, Y)

Theorem 17 ([18]). Let α ∈ S(X, Y). Then, α is left regular if and only if Xα = Xα2 and
Yα = Yα2.

Theorem 18 ([18]). Let α ∈ S(X, Y). Then, α is right regular if and only if π(α) = π(α2) and
σ(α) = σ(α2) where σ(α) = {yα−1 : y ∈ Xα ∩Y}.

Although the left and right regular elements of S(X, Y) were characterized in [18], in
this section we obtain the different results; see the following theorems.
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Theorem 19. Let α ∈ S(X, Y). Then, α is a left regular element if and only if for every P ∈ π(α),
P ∩ Xα 
= ∅ and for every P ∈ πY(α), P ∩Yα 
= ∅.

Proof. Assume that α is a left regular element. Thus, α = βα2 for some β ∈ S(X, Y). Let
P ∈ π(α) and let x ∈ P. Then, P = (xα)α−1 and xα = xβα2 = [(xβ)α]α. We see that
(xβ)α ∈ (xα)α−1 = P and (xβ)α ∈ Xα. Therefore, P ∩ Xα 
= ∅. Let P ∈ πY(α) and let
y ∈ P∩Y. Then, P = (yα)α−1, yβ ∈ Y and yα = yβα2 = [(yβ)α]α. We note that (yβ)α ∈ Yα
and (yβ)α ∈ (yα)α−1 = P. Hence, P ∩Yα 
= ∅.

Conversely, suppose the conditions hold. Let x ∈ X. Since π(α) is a partition of
X, there is a unique Px ∈ π(α) satisfying x ∈ Px. If Px ∩ Y 
= ∅, then Px ∈ πY(α) and
Px ∩ Yα 
= ∅ by our assumption. So, we choose x′ ∈ Y satisfying x′α ∈ Px. If Px ∩ Y = ∅,
then since Px ∩ Xα 
= ∅, we choose x′ ∈ X satisfying x′α ∈ Px. Define β : X → X by
xβ = x′ for all x ∈ X. Then, β is well-defined and xβα2 = x′α2 = (x′α)α = xα. Let
y ∈ Y. Then, there is a unique Py ∈ π(α) such that y ∈ Py. Thus, Py ∩ Y 
= ∅. Therefore,
yβ = y′ ∈ Y; that is, Yβ ⊆ Y. So α is left regular.

Theorem 20. Let α ∈ S(X, Y). Then, α is a right regular element if and only if α|Xα is injective
and (Xα \Y)α ⊆ X \Y.

Proof. Assume that α is right regular. Thus, α is also a right regular element in T(X).
From Corollary 2, we have α|Xα is injective. Next, we will show that (Xα \ Y)α ⊆ X \ Y.
Let z ∈ Xα \Y. Then, z = z′α for some z′ ∈ X. Thus, z = z′α2β for some β ∈ S(X, Y) since
α is a right regular element in S(X, Y). If z′α2 ∈ Y, then z = (z′α2)β ∈ Yβ ⊆ Y, which is a
contradiction. Hence, zα = z′α2 /∈ Y and so (Xα \Y)α ⊆ X \Y.

Assume that α|Xα is injective and (Xα \Y)α ⊆ X \Y. Let β be defined in the converse
part of Theorem 10; we note that α = α2β. It is enough to verify that β ∈ S(X, Y). Let x ∈ Y.
If x /∈ Xα2, then by the definition of β, we have xβ ∈ Y. Assume that x ∈ Xα2. There is a
unique x′ ∈ Xα satisfying x′α = x. If x′ /∈ Y, then x′ ∈ Xα \ Y. By assumption, we have
x′α ∈ X \Y which is a contradiction. This means that xβ = x′ ∈ Y. Hence, Yβ ⊆ Y and so
β ∈ S(X, Y).

Example 9. Let X = N and Y = 2N. Define α : X → X by

xα =

⎧⎪⎨⎪⎩
2 if x ∈ Y,
4 if x = 1,

x− 2 otherwise.

Then, Xα = {2, 4} ∪ {2n− 1 : n ∈ N} and Yα = {2} ⊆ Y. So α ∈ S(X, Y). Moreover, we
obtain π(α) = {Y} ∪ {{2n− 1} : n ∈ N} and πY(α) = {Y}. It is clear that P ∩ Xα 
= ∅ for
every P ∈ π(α) and P ∩Yα 
= ∅ for all P ∈ πY(α). From Theorem 19, α is left regular. Note that
Xα ∩Y = {2, 4} 
= Yα. By Theorem 3, α is also not regular.

Example 10. Let α be defined in Example 2. Then, Yα ⊆ Y and also Xα ∩ Y = Yα. Thus,
α ∈ S(X, Y) and α is regular. Note that 4α−1 = {1, 2} and Xα ∩ 4α−1 = ∅. Hence, α is not a left
regular element of S(X, Y).

Example 11. Let α be defined in Example 5. Then, Yα ⊆ Y and so α ∈ S(X, Y). Consider
Y ∩ Xα = 2N \ {2} = Yα and α|Xα is not injective. Hence, α is regular but not right regular in
S(X, Y).

Example 12. Recall α from Example 4. Then, Yα ⊆ Y and so α ∈ S(X, Y). We see that α|Xα is
injective and (Xα \Y)α = ∅ ⊆ X \Y. From Theorem 20, we obtain α is right regular. Consider
Xα ∩ Y = 2N and Yα = 2N \ {2}. Hence, Xα ∩ Y 
= Yα. From Theorem 3, we obtain α is
not regular.
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Theorem 21. The following statements are equivalent.

(1) S(X, Y) = LReg(S(X, Y)).
(2) S(X, Y) = RReg(S(X, Y)).
(3) |X| ≤ 2.

Proof. (1) ⇔ (3). Assume that S(X, Y) = LReg(S(X, Y)). We will show that |X| ≤ 2.
Suppose that |X| ≥ 3. Let a, b, c ∈ X be distinct elements and a ∈ Y. Define α : X → X by

xα =

{
b if x = c,
a if x 
= c.

Claim that α ∈ S(X, Y). If c /∈ Y, then Yα = {a} ⊆ Y. Moreover, if b, c ∈ Y, then
Yα = {a, b} ⊆ Y. Thus, α ∈ S(X, Y) when c /∈ Y or b, c ∈ Y. Note that π(α) =
{{c}, X \ {c}} and Xα = {a, b}. Clearly, Xα ∩ {c} = ∅. Hence, α is not left regular. For the
case b /∈ Y and c ∈ Y, we define β : X → X by

xβ =

{
c if x = b,
a if x 
= b.

Then, Yβ = {a} ⊆ Y, π(β) = {{b}, X \ {b}} and Xβ = {a, c}. It follows that
β ∈ S(X, Y) but β /∈ LReg(S(X, Y)). We conclude that S(X, Y) 
= LReg(S(X, Y)), which is
a contradiction. So |X| ≤ 2.

Conversely, assume that |X| ≤ 2. Then, it is easy to verify that S(X, Y) is a left regular
semigroup. Hence, S(X, Y) = LReg(S(X, Y)).

(2) ⇔ (3). Assume that S(X, Y) = RReg(S(X, Y)). We will show that |X| ≤ 2.
Suppose that |X| ≥ 3. We consider α, β from condition (1) ⇔ (3). Then α, β ∈ S(X, Y).
Since Xα = {a, b} and α|Xα is not injective, we have α is not right regular. Similarly,
Xβ = {a, c} and β|Xβ is not injective. So β is not right regular, which is a contradition.
Hence, |X| ≤ 2.

Conversely, suppose that |X| ≤ 2. Then, it is clear that S(X, Y) is a right regular
semigroup. Hence, S(X, Y) = RReg(S(X, Y)).

Theorem 22. The following statements are equivalent.

(1) LReg(S(X, Y)) is a semigroup.
(2) RReg(S(X, Y)) is a semigroup.
(3) |X| ≤ 2.

Proof. (1)⇔ (3). Suppose that |X| ≥ 3. Let a, b, c ∈ X be distinct elements and a ∈ Y. It is
enough to consider only two cases.

Case 1: {b, c} ⊆ Y. Recall α, β from Theorem 14, we have α, β ∈ S(X, Y). Note that
π(α) = πY(α) = {{c}, X \ {c}} and Xα = {b, c}. Clearly, Yα ∩ {c} 
= ∅ and Yα ∩ X \
{c} 
= ∅. Thus, α is left regular; that is, α ∈ LReg(S(X, Y)). Similarly, β ∈ LReg(S(X, Y)).
Consider {c} ∈ π(αβ) and Xαβ = {a, b}. Therefore, Xαβ ∩ {c} = ∅ and so αβ is not left
regular; that is, αβ /∈ LReg(S(X, Y)). Hence, LReg(S(X, Y)) is not a semigroup.

Case 2: {b, c} 
⊆ Y. Assume that c /∈ Y. Define α : X → X by

xα =

{
c if x = c,
a otherwise.

Then, Yα = {a} ⊆ Y. So α ∈ S(X, Y). Note that π(α) = {{c}, X \ {c}}, πY(α) = {X \ {c}}
and Xα = {a, c}. Clearly, Xα ∩ {c} 
= ∅, Xα ∩ (X \ {c}) 
= ∅ and Yα ∩ (X \ {c}) 
= ∅.
Therefore, α is a left regular element of S(X, Y). Define β : X → X by

xβ =

{
b if x ∈ {b, c},
a otherwise.
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If b ∈ Y, then Yβ = {a, b} ⊆ Y. Thus, β ∈ S(X, Y). If b /∈ Y, then Yβ = {a} ⊆ Y.
So β ∈ S(X, Y). We can show that β ∈ LReg(S(X, Y)). Then, we note that π(αβ) =
{{c}, X \ {c}} and Xαβ = {a, b}. Clearly, Xαβ∩ {c} = ∅. Hence, αβ /∈ LReg(S(X, Y)) and
so LReg(S(X, Y)) is not a semigroup.

Conversely, suppose |X| ≤ 2. Then, we have LReg(S(X, Y)) = S(X, Y) is a semigroup
from Theorem 21(1).

(2)⇔ (3). Suppose that |X| ≥ 3. Let a, b, c ∈ X be distinct elements and a ∈ Y. Recall
α and β from the proof of (1) ⇔ (3). It is enough to show that α and β are right regular
elements of S(X, Y). Clearly, α|Xα and β|Xβ are injective. Consider (Xα \Y)α = {c} ⊆ X \Y

and (Xβ \Y)β =

{
∅ if b ∈ Y,
{b} if b /∈ Y

⊆ X \Y.

Then, α and β are right regular elements of S(X, Y); that is, α, β ∈ RReg(S(X, Y)). Note that
αβ|Xαβ is not injective. We conclude that αβ is not right regular. Thus, αβ /∈ RReg(S(X, Y))
and so RReg(S(X, Y)) is not a semigroup.

Conversely, suppose |X| ≤ 2. Then, we have RReg(S(X, Y)) = S(X, Y) is a semigroup
from Theorem 21(2).
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