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In the age of neural networks and the Internet of Things (IoT), the search for new neural
network architectures capable of operating on devices with limited computing power and
small memory size is becoming an urgent agenda. Trends in the development of artificial
intelligence (AI) applications in the field of the Internet of Things include smart healthcare
services [1–5], smart object-recognition [6–8], smart environment monitoring [9,10], and
smart disaster rescue [11]. Traditionally, such applications operate in real time. For example,
security camera-based object-recognition tasks operate with detection intervals of 500
ms to capture and respond to target events. The data processing of human health and
physiological parameters from different sensors (heart rate monitoring, glucose monitoring,
oxygen saturation, etc.) generally requires immediate processing. Often, commercial
smart IoT devices transfer information to the cloud for subsequent intelligent processing.
However, stable network connections are not available everywhere, and it is a limitation
for meeting real-time requirements. The solution to this problem can be the execution of
information processing using neural networks installed directly on IoT devices. In this
case, the quality of the Internet connection would not have a significant impact. Enabling
artificial intelligence directly on the device is a challenge because of the limited computing
power and small memory size of IoT devices. Frequently, smart applications need to run on
a lightweight OS with a minimal set of libraries that imposes limitations on the operation
of resource-intensive neural networks.

AI technologies for IoT devices and edge computing are demanded in mobile health-
care (m-Health), as well as in close application domains. Ambient intelligence (AmI)
environments are constructed in IoT domains to provide smart services based on real-
time analysis of human cognitive and motion functions. This Special Issue focuses on
recent developments in the constantly growing application field of computing technolo-
gies and artificial intelligence algorithms. It includes new approaches to the organization
of artificial intelligence on edge devices, as well as the organization of modular, feed
forward, distributed, reservoir, recurrent, convolutional, and deep neural networks for
various IoT-enabled smart applications. The guest editors are Andrei Velichko (Institute
of Physics and Technology), Dmitry Korzun (Institute of Mathematics and Information
Technology), and и Alexander Meigal (Medical Institute); they are all from Petrozavodsk
State University, Russia.

The Special Issue collects eleven papers to provide a multi-domain overview of the
trends and developments in the edge computing and starts with the illustration of achieve-
ments in smart healthcare services. The digitalization of healthcare driven by the IoT and
AmI leads to the effective use of sensors, when various parameters of the human body are
instantly tracked and processed in daily life [1,2]. The concept of machine learning sensors
is applied to the diagnosis of COVID-19 as IoT application in healthcare and ambient
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assisted living. An important task is to determine the status of infection with COVID-19
using various diagnostic tests. This study provides a fast, reliable, and cost-effective al-
ternative tool for diagnosing COVID-19 based on routine blood values measured at clinic
admission. Popular machine learning classifiers were studied and their important features
were identified to ensure the high accuracy of disease diagnostics. The study [2] continues
the topic of COVID-19 diagnostic and reviews the routine blood values using a backward
feature elimination algorithm and the LogNNet reservoir neural network. The proposed
method reduces the negative pressures on the health sector and helps doctors to understand
the pathogenesis of COVID-19 using the key blood values. The method demonstrates high
opportunity of the LogNNet network to be applied in IoT smart applications.

An IoT-enabled system to monitor gait in subjects with Parkinson’s disease is presented
in study [3]. Parkinson’s disease is one of the most studied pathologies in the field of
neurology and is suitable for application of science-intensive study methods, virtual reality
technologies and even robotics. Wearable sensors and IoT-enabled technologies look
promising for monitoring motor activity and gait in Parkinson’s disease patients. The
gait was measured and characterized with help of the accelerometer signal acquired from
inertial measurement unit of a smartphone attached to the head during the timed up
and go test. Smartphones as a measuring device are well suited for the creation of IoT-
enabled systems. The use of accelerometer signals received from a smartphone inertial
measurement unit creates high potential for AI-supported systems and makes the proposed
method applicable not only in healthcare laboratories but in the daily life settings.

Smart healthcare applications, the Internet of Things (IoT), and artificial intelligence are
arguably the most appropriate customized solutions for such shortcomings of traditional
healthcare systems, such as long waiting times, unnecessary long trips to health centers,
high costs, and mandatory periodic doctor visits. The comprehensive literature review [4]
determines the impact of IoT, AI, various communication technologies, sensor networks,
and disease detection in Cardiac healthcare. The results of the review show that deep
learning is emerging as a promising technology along with the combination of IoT in the
field of cardiac care with increased accuracy and real-time clinical monitoring. In addition,
this study points out the main advantages and major challenges of e-cardiology in the areas
of IoT and AI.

Another illustration of the effective application of neural networks in healthcare is
presented in study [5]. Speech is a complex mechanism that allows us to communicate
our needs, desires, and thoughts. In some cases of nervous dysfunction, this ability is
severely affected, making daily activities that require communication difficult. This study
explores various options for an intelligent imaginary speech recognition system that can be
installed on low-cost devices with limited resources. The authors used a method based on
covariance in the frequency domain, which performed better than other methods in the
time domain. Several architectures of convolutional neural networks have been studied
and it has been demonstrated that a more complex architecture does not necessarily lead to
better results. The results prove that cheap IoT devices can be effectively used in speech
recognition and contribute to the development of IoT-enabled smart applications.

The realm of smart object-recognition applications of AI systems is presented in the
subsequent articles [6–8]. Driver assistants have become a more and more popular class
of smart IoT-enabled smart applications, as illustrated in study [6] that detects distracting
actions in driver activities. According to the World Health Organization, the increase in car
accidents is a major problem in today’s transportation systems, and is the eighth leading
cause of death worldwide. More than 80% of traffic accidents are caused by distraction
while driving. A practical approach to solving this problem is to introduce quantitative
indicators of driver activity and develop a classification system that identifies distracting
activities. Authors implemented a portfolio of different ensemble deep learning models
that have been proven to effectively classify driver distractions and provide in-vehicle
recommendations to minimize distraction levels and improve safety. Another lifesaving
application based on deep learning is a child drowning prevention system [7]. The proposed
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deep convolutional neural networks-based models can be used to automatically detect the
possible distractions of a caregiver who is supervising a child and generate alerts to warn
them. The system was tested in a swimming pool, and we think it could be implemented
in natural water reservoirs to avoid possible child drowning. Such smart applications for
the rapid detection of dangerous situations are of critical importance, as they are able to
observe persons and their activity more effectively than humans.

For the IoT-enabled smart applications, point clouds are one of the most widely used
data formats created by depth sensors. Research on feature extraction from disordered
and irregular point cloud data has advanced recently. The overview [8] of the different
types of models is presented, and studies of point clouds and remote sensing problems
have been carried out using deep learning methods. It is concluded that convolutional
neural networks achieve the best performance in various remote sensing applications that
operate directly with raw cloud data. The lightweight models are especially important for
IoT edge computing.

The research direction of smart environment monitoring is presented by the study [9],
in which a model of artificial neural network was integrated into a Raspberry Pi-based sen-
sor to implement edge computing for hourly river level prediction. The model that consists
of a three-layer perceptron is able to predict river levels with a high degree of accuracy
using only previously observed water levels, precipitation, and runoff information as input,
without the need for other hydrological and meteorological parameters. This study is a first
attempt to combine real-time customized sensors and artificial neural network algorithms
in practice. The model was built into a low-cost, open-source, and low-energy-consumption
custom sensor to forecast the water level. A high level of model performance applied to
real events, and the low-cost system is of interest for environmental monitoring. Another
potential reference case for the development of smart IoT-enabled systems for environmen-
tal monitoring is presented in the study of determining the carcinogenicity of thousands
of wide-variety classes of real-life exposure chemicals [10]. Authors have developed car-
cinogen prediction models based on the hybrid neural network deep learning method. The
proposed model has a high potential for use in various IoT environmental projects.

Smart disaster rescue is presented by an interesting development of a wearable device
for search dogs that recognizes the behavior of a dog when a victim is found, using deep
learning models [11]. With their exceptional sense of smell and hearing, search and rescue
dogs are important in first aid because they are able to locate a victim in conditions that are
difficult for humans to reach. The authors propose an implementation of a wearable device
that supports deep learning, including a base station, a mobile application, and a cloud
infrastructure. The device can, firstly, track the activity, sounds and location of the search
and rescue dog in real time, and, secondly, recognize and alert the rescue team whenever
the dog spots a victim. For activity recognition, deep convolutional neural networks were
used for classifying dog sounds, as well as inertial sensors. The developed deep learning
models operated on a wearable IoT device. The functioning of the system was tested in
two separate search and rescue scenarios, which allowed to successfully locate the victim
and inform the rescue team in real time based on IoT technology.

In conclusion, this Special Issue illustrates advanced cases of using the AI technology
for IoT-enabled smart applications. Each case demonstrates a promising trend for applying
AI in IoT environments, making a step towards the effective use of modern technologies in
our everyday life.

Author Contributions: All authors contributed equally to this editorial. All authors have read and
agreed to the published version of the manuscript.

Funding: The first part of this research is implemented with financial support by Russian Science
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Abstract: Search and Rescue (SaR) dogs are important assets in the hands of first responders, as they
have the ability to locate the victim even in cases where the vision and or the sound is limited, due
to their inherent talents in olfactory and auditory senses. In this work, we propose a deep-learning-
assisted implementation incorporating a wearable device, a base station, a mobile application, and a
cloud-based infrastructure that can first monitor in real-time the activity, the audio signals, and the
location of a SaR dog, and second, recognize and alert the rescuing team whenever the SaR dog spots
a victim. For this purpose, we employed deep Convolutional Neural Networks (CNN) both for the
activity recognition and the sound classification, which are trained using data from inertial sensors,
such as 3-axial accelerometer and gyroscope and from the wearable’s microphone, respectively. The
developed deep learning models were deployed on the wearable device, while the overall proposed
implementation was validated in two discrete search and rescue scenarios, managing to successfully
spot the victim (i.e., obtained F1-score more than 99%) and inform the rescue team in real-time for
both scenarios.

Keywords: deep learning; canine activity recognition; bark detection; wearable computing; search
and rescue system

1. Introduction

Animal Activity Recognition (AAR) and monitoring is an emerging research area
enhanced mainly by the recent advances in computing, Deep Learning (DL) algorithms,
and motion sensors. AAR attracted significant attention as it can provide significant
insights about the behavior, health condition, and location of the observing animal [1]. In
addition, if a proper network implementation is considered (e.g., with the proper devices,
software, and communication protocol) the monitoring of the animal can be performed in
real-time to allow exploitation of AAR for various purposes, e.g., study of the interaction
between different animals, search and rescue missions [2], protection of animals from
poaching and theft, etc. [3]. To perform this, the use of inertial sensors is mandated, such
as accelerometers, gyroscopes, and magnetometers as well as a Machine Learning (ML)
method, which after the proper training can accurately classify the animal activity [4].

Acknowledging the fact that AAR is a rich source of information that not only provides
insights into animals life and well-being but also about their environment, over the past
years, several works reporting on the use of animal activity recognition were published,
increasingly focusing on the use of ML [5], while several open access datasets [6] were
available, assisting the development of models and tools for accurate activity recognition
of different animals.

Sensors 2022, 22, 993. https://doi.org/10.3390/10.3390/s22030993 https://www.mdpi.com/journal/sensors
5



Sensors 2022, 22, 993

In this work, we focus on the Dog Activity Recognition (DAR) for search and rescue
(SaR) missions. SaR dogs are important assets in the hands of first responders due to
their inherent talents with olfactory and auditory senses. However, in some cases the dog
handler is impossible to be present in the same spot with the SaR dog, and thus, a life-critical
amount of time is spent as the dog must return to the trainer and guide him to the victim [7].
To solve this problem, we introduce a novel implementation comprised of a wearable
device, a base station, a cloud server, a mobile application, and Deep Convolutional Neural
Networks (CNN), which were shown in [8–10] to be more accurate compared with that of
other ML algorithms due to their ability to extract features automatically. More specifically,
we developed a back-mounted wearable device for the SaR dogs that can:

1. collect audio and motion signals, exploiting its inertial sensors (e.g., 3-axial accelerom-
eter and 3-axial gyroscope) and the embedded microphone;

2. process the produced sensor signals using DL algorithms (e.g., Deep CNNs);
3. communicate the critical message via the candidate network architecture; and
4. display in real-time the dog activity and location to its handler via a mobile application.

The proposed implementation is validated in two SaR scenarios managing to suc-
cessfully locating the victim and communicating this message to the first responders in
real-time with more than 99% F1-score.

In the rest of the paper, we analyze the related work in the field to provide a wider
view in the problem we address (Section 2). In Section 3, we propose the core modules
of our implementation along with their details and specifications, and we illustrate the
overall network architecture developed to communicate the messages between the first
responder and the SaR dog. Section 4 elaborates the data collection/annotation steps as
well as the employed CNN architectures, while in Section 5 we evaluate the algorithmic
results in terms of efficiency and efficacy. Next, in Section 6 the validation of the proposed
solution is discussed, proving that our prototype satisfies all the desired functional and
nonfunctional requirements. Finally, Section 7 discusses the obtained results, the limitations
of the approach, and the future steps, while Section 8 concludes the paper.

2. Related Work

In the current section, we present the related works presenting results on canine behav-
ior recognition, audio classification, and existing SaR systems based on animal wearables.

2.1. Activity Recognition

In prior research, animal activity recognition and monitoring was exploited to study
various types of animals, spanning from livestock animals [10–15] to wild animals [16–18].
In the former case, the animal monitoring can (a) optimize the asset management, as the
animals can be maintained always within preset “virtual fences”, (b) provide insights
about the animals’ health through tracking the fluctuation on their activity levels, and
(c) designate the optimal pastures. In wild animals, the animal activity monitoring can
(a) minimize the poaching illegal activity and stock theft, (b) extract the state of health of
the observed populations, and (c) assist the observations about the behavior of the wild
animals and the interactions between them and other species.

In the category of pet animals, a literature review which analyzes the different tech-
nologies used to monitor various target features, such as location, health, behavior, etc.
can be found in [19]. In the domain of DAR, these results can aid us towards a better
interpretation of the everyday routine of the animals and their needs, which in turn can
directly benefit the interaction with their handlers or can be exploited to perceive the
behavior SaR units, providing valuable information to their trainers (e.g., victim discovery).
The field of DAR emerged over the last decade due to the availability of low-cost sensors
and smart devices that can acquire data and perform the ML algorithmic procedure in
real-time [6,20–28]. Usually, the sensors are located in the back, collar, withers, and tail of
the dog, while the employed sensors are mainly 3-axial accelerometers, 3-axial gyroscopes
and sensors which monitor biometric data (e.g., heart rate). After completing the data
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collection process from the various sensors and performing their proper preprocessing, the
data are then fed into an ML algorithm for training to classify any forthcoming activity.

For the purposes of DAR, various ML algorithms were utilized to attain sufficient
accuracy. A k-NN classifier was employed in [21] to classify 17 different activities by
studying the naturalistic behavior of 18 dogs attaining an accuracy of about 70%. In [25],
the SVM (Support Vector Machines) classifier was applied into a dataset that comprised
24 dogs performing seven discrete activities and attained an accuracy of above 90%. Further,
in [28], the accuracy of various ML classification algorithms was evaluated in a dataset
comprising 10 dogs of different breeds, ages, sizes and gender performing seven different
activities. The employed algorithms were Random Forest, SVM, k-NN, Naïve Bayes,
and Artificial Neural Network (ANN). ANN outperformed the other four algorithms in
activity detection, whilst Random Forest outperformed the other four in emotion detection.
The attainable accuracy exceeded 96% in all cases. A recent study [6] in dog behavior
recognition examined the optimal sensor placement in the dog, through a comparison of
various algorithms (e.g., SVM). In particular, the authors attached two sensor devices to
each dog, one on the back of the dog in a harness and one on the neck collar. The movement
sensor at the back yielded up to 91% accuracy in classifying the dog activities and the
sensor placed at the collar yielded 75% accuracy at best. These results helped the current
work to decide the optimal sensor placement, which was mounting a harness on the back
of the SaR dog with the developed device in it. Finally, the authors in [29] created a huge
dataset exploiting a 3-axial accelerometer and collecting data from more than 2500 dogs of
multiple breeds. Then they trained a deep learning classifier which was then validated for
a real-world detection of eating and drinking behavior. The validated results attained a
true positive rate of 95.3% and 94.9%for eating and drinking activities, respectively. The
details of the related work on DAR are shown in Table 1.

Table 1. Summary of related work on Dog Activity Recognition (DAR).

Ref. Location Sensors
No. of

Activities
Subjects Algorithms

[20] back 3-axial accelerometer
and gyroscope - 2 dogs of 2 breeds

only measurements from
the sensors were

performed

[21] collar 3-axial accelerometer 17 18 dogs of 13 breeds k-NN

[22] collar 3-axial accelerometer 8 51 dogs of mainly
8 breeds

analytical algorithms
created by the developers

[23] collar
Heart rate, galvanic
skin resistance, and
body temperature

- various dogs
only measurements from

the sensors were
performed

[24] collar 3-axial accelerometer - 6 dogs
generalized linear mixed

effect models fit to the
activity

[25] withers 3-axial accelerometer
and gyroscope 7 24 dogs of 2 breeds SVM

[26] back
ECG, PPG, Inertial
Measurement Unit

(IMU)
various 5 dogs of 4 breeds

only measurements from
the sensors were

performed
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Table 1. Cont.

Ref. Location Sensors
No. of

Activities
Subjects Algorithms

[27] collar, vest, and
forelimb 3-axial accelerometer various 4 dogs of 4 breeds only measurements from the

sensors were performed

[28] collar, tail 3-axial accelerometer
and gyroscope 7 10 dogs of 9 breeds Random Forest, SVM, KNN,

Naïve Bayes, ANN

[6] back, collar 3-axial accelerometer
and gyroscope 7 45 dogs of 26 breeds Decision Tree, SVM

[29] collar 3-axial accelerometer 15 more than 2500 dogs
of multiple breeds Deep learning classifier

2.2. Audio Classification

Similar to wearable-based activity recognition, over the last years, there were proposed
several audio signal processing techniques relying on DL algorithms and were proved to
achieve better results than baseline ML algorithms [30]. DL algorithms, such as Deep CNNs,
possess the ability to increase their performance as the training dataset grows; thus, the
authors in [31] applied well-known CNN architectures, which were employed successfully
in computer vision tasks, to test their effectiveness on classifying large-scale audio data.
The networks architectures they used were a fully connected ANN, an AlexNet [32], a
VGG [33], an Inception V3 [34], and a ResNet-50 [35]; these networks were trained and
evaluated using AudioSet, which consists of 2,084,320 human-labeled 10-second audio clips
drawn from YouTube videos. The audio classes are based on an audio ontology [36], which
is specified as a hierarchical graph of event categories, covering a wide range of human and
animal sounds, musical instruments and genres, and common everyday environmental
sounds. Their experiments showed that the ResNet-50 model, which had the most layers
(i.e., it was deeper than the others), achieved the best results.

In addition to this, CNNs are also state-of-the-art models, even for relative smaller
audio datasets consisting of a few thousand samples. Salamon and Bello [37] compare a
baseline system (i.e., using MFCCs features) with unsupervised feature learning performed
on patches of PCA-whitened log-scaled mel-spectrograms using the UrbanSound8K dataset.
In particular, they utilized the spherical k-means algorithm [38] followed by the Random
Forests algorithm and managed an average classification accuracy 5% higher than the
baseline system. Furthermore, Karol J. Piczak [30] obtained state-of-the-art results for the
UrbanSound8K dataset, training a relatively shallow CNN (two convolutional layers),
which had as input the log-scaled mel-spectograms of the audio clips. The proposed CNN
model had an average accuracy of about 73.1% against the 68% average accuracy of the
baseline model, despite the fact that it seemed to overfit the training data. A deeper, VGG-
like CNN model (five convolutional layers) was implemented by A. Kumar [39] and used
on the UltraSound8K dataset, reaching a 73.7% average accuracy.

Finally, data augmentation techniques were adopted by the researchers to increase the
number of the audio samples. To this end, Salamon and Bello [40] explored the influence of
different augmentation techniques ((a) Time Stretching; (b) Dynamic Range Compression;
(c) Pitch Shifting; and (d) Adding Background Noise) on the performance of a proposed
CNN architecture, and they obtained an average accuracy close to 79% using recordings of
the ESC-50 (2000 clips) and ESC-10 (400 clips) datasets [41]. Moreover, Karol J Piczak [41]
utilized random time delays to the original recordings of the ESC-50 and ESC-10 datasets.
The CNN architecture achieved better accuracy results from the baseline model for both
datasets, while in the case of the ESC-50, the difference between the average accuracies was
over 20% (baseline accuracy: 44%, best CNN: 64.5%).
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2.3. Existing SaR Solutions Based on Animal Wearables

SaR systems are vital components when it comes to disaster recovery due to the
fact that every second might be life-critical. Trained animals, such as dogs (i.e., K9s), are
exploited by SaR teams due to their augmented senses (e.g., smell), and their small size is
ideal for searching under the debris for survivors.

The authors in [2] developed a two-part system consisting of a wearable computer
interface for working SaR dogs communicating with their handler via a mobile application.
The wearable comprised a bite sensor and a GPS to display the K9s location in the mobile
application. The SaR dog bites the bringsel, which is equipped with the bite sensor to
notify its handler. In addition to this, the work in [42] demonstrates several interfaces
developed for animal–computer interaction purposes, which could be used in SaR missions
for notifying the canine handler, such as bite sensors, proximity sensor, and tug sensor.
Furthermore, in [7,43] the use of head gestures is examined to establish communication
between the SaR dogs and the handlers. The developed wearable is added in a collar and is
comprised by motion sensors (3-axial accelerometer, gyroscope and magnetometer), while
the systems analyzes motion signals produced by the canine wearable using dynamic time
warping. Each detected head gesture is paired with a predetermined message that is voiced
to the humans by a smart phone. To this end, the participating K9s were specifically trained
to perform the appropriate gesture.

Existing patented canine wearables, such as [44,45], could also be used for SaR pur-
poses. A wirelessly interactive dog collar is presented in [45]; it allows voice commands and
tracking over long distances, along with features that facilitate tracking and visualization,
exploiting its embedded sensors (GPS, microphone, speaker, light). Moreover, in [44] an
enhanced animal collar is presented. This device consists of extra sensors, such as camera,
thermographic camera, and infrared camera to enable the transmission of the captured
images, in addition to audio signals.

Finally, the animal-machine collaboration was also explored. The authors in [46]
introduce a new approach to overcome the mobility problem of canines through narrow
paths in the debris utilizing a robot snake. The SaR dog carries this small robot, and when
it is close to the victim it barks to release the robot that locates the trapped person. The
robot snake is equipped with a microphone and a camera. Rat cyborg is another option
for SaR missions [47]. The system is implanted with microelectrodes in the brain of a rat,
through which the outer electrical stimuli can be delivered into the brain in vivo to control
its behaviors. The authors state that the cyborg system could be useful in search and rescue
missions where the rat handler can navigate through the debris by exploiting a camera
mounted on the rats.

Table 2 summarizes the aforementioned works including our solution, in terms of
equipped sensors/actuators and their capabilities (i.e., communication with handler and
victim, edge data processing, delivery package, search through debris, extra animal training,
no welfare concerns, no rescuer guidance needed).
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3. Network Architecture

The overall system architecture for the SaR dog real-time monitoring is illustrated in
Figure 1. The architecture is divided into two levels (i.e., layers):

1. the EDGE-level, which contains the architectural modules that have low computa-
tional power and are located at the edge of the network (i.e., wearable device, base
station and the smartphone application), and

2. the FOG-level, which contains the modules having higher computational power and
enhanced communication capabilities (publish-subscribe middleware and the local
Portable Command Center (PCOP), used during a SaR mission).

The communication from the EDGE layer to the FOG takes place mainly between
the wearable device and the Secure IoT Middleware (SIM), which contains an encrypted
KAFKA (https://kafka.apache.org/, accessed on 22 September 2021) Publish-Subscribe
broker using Wi-Fi connectivity. When such connectivity is not available at the area of oper-
ation, a secondary communication path is deployed. This path represents communication
at the EDGE layer and includes an RF (Radio Frequency) connection between the wearable
and the Base Station (BS). Once the data are collected by the BS, it uses a Wi-Fi/3G/4G
connection to publish them at the FOG layer’s KAFKA pub-sub broker through the SIM.

Finally, the smartphone of the first responder, which is the handler of the animal, is
notified in real-time about the SaR dog’s behavior by the KAFKA broker via his/her mobile
application. All these data flows can be seen in Figure 1, while the developed EDGE-level
modules are explained in detail in the following subsections.

Figure 1. Wearable for animals—system architecture and communication flows.

3.1. Wearable Device

The wearable device is the most important module as it collects various types of data,
such as 3-axial accelerometer and 3-axial gyroscope data, audio recordings, and localization
data, while it can also provide feedback to the dog via vibration and audio signals. The
wearable was developed from our team with the guidance of K9-SaR experts solely for the
purposes of the SaR task; however, it can be exploited for various other tasks comprising
animal activity monitoring and recognition, e.g., in dogs or even in livestock animals for
the purposes of behavioral analysis.

The designed harness is back-mounted vest instead of neck-mounted (i.e., collar) to
further improve the animal’s comfort by moving the center of mass to a more suitable place,
as well as to achieve higher accuracy for the activity recognition task [6]. The new design is
completely modular since all the components are attached with Velcro to the wearable. A
strip with Velcro is also included at the belly of the animal to provide for further grip. In
general, the detachability requirement is related to the dog’s safety, as it ensures that the
dog will break free from the wearable if tangled.
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In Figure 2 the sketch for the designs of the animal wearable is displayed including
the strips with velcro attachments (points A and Γ), the pouch for electronics (point B) and
the mini-camera position at the animal’s front. In particular, point B (back of the animal)
contains the main computational platform, the custom board and the battery, while the
camera is placed on the animal’s chest, always facing in front.

Additionally, except from the pouch for the electronics, another, optional, smaller
pouch/pocket was introduced, able to fit a small device (e.g., a mobile phone), or any small
item considered useful to be carried by the animal (Figure 3a). This design pertains to
rescue scenarios where the delivery of a small item to an unreachable trapped person could
be of great importance and contribute to the efficient rescue.

The main features of the wearable device, which is pictorially described in Figure 3b,
are the:

• Hardware (processing unit): Raspberry Pi 4 Compute Module (https://www.raspberrypi.
com/products/compute-module-4/, accessed on 16 December 2022) (CM4), which fea-
tures the Broadcom BCM2711, a quad-core ARM Cortex-A72 processor chosen as a pro-
cessor for the SaR wearable, with dimensions of about 55 × 40 mm. The CM4 offers the
processing power required for the complete list of features of the device, including the
inference of the DL models as well as the hardware peripherals needed to drive the sensors
and modules of the custom board.

• Power Supply Unit: Texas Instruments TPS63002, a Single Inductor Buck-Boost Con-
verter. Since the Raspberry Pi requires a 5 V power supply, a Buck-Boost Converter
offers the ability to use a single cell 3.6 V battery and still provide the desired 5 V
to the device. The specific model was selected due to its QFN package, measuring
3 mm × 3 mm and due to the small number of additional components needed for the
power supply, keeping the overall size on the board minimal.

• Battery Charger Module: Texas Instruments BQ24075 standalone 1-Cell Li-Ion 1.5-A
Linear Battery Charger. This battery charger, being in a QFN package offers a small
footprint on the device of only 3 mm × 3 mm, and the simplicity of the application
circuit assists to the minimalization of the device dimensions. The maximum battery
charging current was set to 1.0 A offering a balance between a quick charge for most
commercially available batteries and a battery health preservation by keeping the
charging rate under 0.5C.

• Battery: 18650 Li-Ion battery cell. The device was designed to operate with a single
18650 type cell, due to the wide adoption of this specific rechargeable battery format,
which helps lower the cost of the device and allows for easier maintenance, while
offering a balanced solution between energy capacity, size and weight. The operation
duration after which the battery was selected is 1 h, which was met with a cell of
3000 mAh. Longer operations can still be covered by carrying multiple spare batteries,
since it is a battery type that can be easily replaced in the field.

• RF module: XBee SX 868 modules manufactured by Digi, offering a maximum trans-
mission current of 55 mA. The communication data rate between two modules is set
to 10 Kbps to maximize the range and the module is connected to the main proces-
sor through the UART interface. These radio modules claim a theoretical maximum
range of 14.5 km in line-of-sight with a 2.1 dBi antenna and a maximum transmission
current of 55 mA. A maximum range of 750 m was achieved in a line-of-site urban
environment. They were chosen over the competition with similar performance, for
their setup simplicity and the ability to form a network with as low as two identical
modules without the need of third-party involvement and/or subscription fees.

• Audio recording module: SPH0645LM4H-B MEMS digital microphone by Knowles.
A very small low-power omnidirectional digital microphone was needed, which uses
the I²S audio bus and requires very few additional components, keeping the device’s
dimensions to a minimum.

• Audio playback module: the audio signal is constructed from the PWM output of
the processor and then it is amplified through Texas Instruments’ TPA711DGNR19
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low-voltage audio power amplifier, a mono amplifier capable of conducting up to
750 mW of RMS power to an 8Ω speaker continuously. The amplifier’s footprint
measures 5 mm × 3.1 mm, although the complete audio circuitry also includes an
electrolytic capacitor measuring 4.3 mm × 4.3 mm × 5.5 mm.

• Inertia Measurement Unit: BMI160 from Bosch Sensortec featuring a 16-bit triaxial
accelerometer and a 16-bit triaxial gyroscope. The module is selected for its very low
power consumption of 925 μA and its very small footprint of 2.5 mm × 3 mm. Both
the accelerometer and the gyroscope can be operated at high sampling rates of 3200 Hz
and 800 Hz respectively, well above the 100 Hz needed for this project.

• GNSS module: Sierra Wireless XA1110 offering a mix of GPS, GLONASS and Galileo
satellite system tracking with a maximum update rate of 10 Hz with an integrated
patch antenna. This module was selected for its small size of 12.5 × 12.5 × 6.8 mm,
which was preferable than a possibly smaller module combined with a larger separate
antenna requiring additional space.

• Vibrator module: Texas Instruments’ DRV2603 Haptic Drive. The haptic drive comes
in a QFN package measuring only 2 mm × 2 mm contributing to the small size needs
of the device.

• Camera module: The Raspberry Pi Camera Module v1 was initially selected, but was
later dropped in favor of a standalone mini actioncam like the SQ12. This change
allowed for a modular design, where the camera can be used when needed or removed
when not.

Figure 2. Drawing displaying placement of animal wearable.

Figure 3. Designed animal harness (a) and electronic device (b).

The custom board was designed to meet or exceed the predefined specifications
covering device functionality and achieve a balance between battery life, weight, and
physical dimensions. Therefore, in most cases, the chosen modules are the smallest that
would satisfy the consumption and functional requirements. The total weight of the device
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is 121 g including the battery (47 g), while the total cost for ordering the components and
assembling them was equal to 260€. Table 3 provides details on the electrical characteristics,
maximum ratings and recommended operating conditions of the device.

Table 3. Electrical characteristics of device.

Parameter Minimum Typical Maximum Unit

Absolute Maximum Ratings

Vin—Input Voltage 0.3 - 28 V

Iin—Input Current - - 1.6 A

Ichg—Battery Fast Charge Current 0.895 1 1.105 A

Vbat—Battery Charge Voltage 4.16 4.2 4.23 V

Operating Temperature −40 - 100 °C

Storage Temperature −65 - 150 °C

Recommended Operating Conditions

Vin—Input Voltage 4.35 5 6.4 V

Operating Temperature −40 - 85 °C

3.2. SaR Base Station

The BS device is a portable wireless device, based on the Raspberry Pi Zero W (https:
//www.raspberrypi.com/products/raspberry-pi-zero-w/, accessed on 19 January 2022)
and powered by an internal power-bank. It is equipped with an XBee SX 868 RF module
(https://www.digi.com/xbee, accessed on 19 January 2022) similar to the wearable devices
and creates an XBee network to which all animal wearable devices in range can connect.
This results in an extended range of coverage for the animal wearables. The BS device,
includes a pocket Wi-Fi module, granting 4G connectivity. Any messages sent from the
wearables are received by the BS through the Xbee network and delegated to the SIM
over either the Wi-Fi connection to the Pocket Wi-Fi device and then transmitted over 4G
network, or to any other known Wi-Fi hot spot. Likewise, any commands issued by the rest
of the modules to the wearables (e.g., initiate data collection), are either received directly
by the devices through Wi-Fi, or received by the BS and relayed to the devices via the
XBee network. The existence of a BS is extremely critical in a disaster scenario, as public
telecommunications networks cannot be taken for granted. For this purpose, the animal
wearable device cannot rely solely on mobile network coverage.

3.3. Smartphone Application

The application of the animal wearable is one feature of a wider application developed
for FASTER (First responder Advanced technologies for Safe and efficienT Emergency
Response) EU Horizon 2020 project (https://cordis.europa.eu/project/id/833507, accessed
on 16 December 2021). As a result, the application contains four tabs for displaying:
(a) biometrics of first responders, (b) environmental data, (c) the behavior and location of
SaR dogs, and (d) upcoming notifications (e.g., a victim was found). In general, it is an
Android application (supporting android version 8.0 and above) that makes use of Google
Maps (https://www.google.com/maps, accessed on 16 December 2021) for the depiction
of information about the location of the dog. The application receives the information
from a KAFKA broker with the aid of a Quarkus Reactive Streams (https://quarkus.io/,
accessed on 16 December 2021) service. The information flows continuously from KAFKA
to the screen of the user. Reactive streams work by publishing messages whenever they
receive new information from a source. This makes the information flow “seamless” and
most importantly it does not spam the server with http requests every some seconds. The
android system can absorb these streams with the use of a library called okSse (https:
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//github.com/biowink/oksse, accessed on 16 December 2021) which helps to establish a
connection with a reactive streams service.

Once we get the information, we feed it to our system with the use of LiveData (https:
//developer.android.com/topic/libraries/architecture/livedata, accessed on 16 December
2021). LiveData is an observable data holder class. Unlike a regular observable, LiveData
is lifecycle-aware, meaning it respects the lifecycle of other application components, such
as activities, fragments, or services. This awareness ensures LiveData only updates the
application component observers that are in an active lifecycle state. With the use of an
observer, we “observe” any changes to the state of the information, and when we find
something new we draw on the map the new location or behavior of the dog. The dog
actions describe the state in which the animal is at a particular time in space (Figure 4). For
example, whether the dog is walking/running or standing still.

Figure 4. Developed smartphone application displaying SaR dog behavior: (a) canine is not moving
and barks; (b) canine is moving and does not bark.

4. Data Collection, Processing, and Deployment of Deep Learning Algorithms

4.1. Data Collection Process

The tests were performed in an arena covered with ruins to mimic a real search
and rescue operation as best as possible (Figure 5). The tests included search and rescue
missions both during the day and night. In the former case, adequate vision is considered,
while in the latter, only limited vision can be attained. The resulting AI algorithms are
trained in both cases, as in a real operation both cases can be encountered.

Next, the testing procedure is as follows. First, a member of the rescuing team, the
“victim”, hides somewhere in the arena among the ruins, in one of the various spots which
are designed for this purpose. Then, after the wearable on the SaR dog is activated by his
trainer, the dog is allowed to search for the victim. The test is successfully completed when
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the SaR dog is able to found the “victim”. In this successful case, the SaR dog makes a
characteristic bark sound, which lasts for some seconds, while it is in a standing position
and stares at the “victim”. Depending on the location of the “victim” in the arena, the
search and rescue test may last from half a minute up to a few minutes.

Figure 5. Arena used to conduct search and rescue tests.

4.2. Labeling Process

The labeling process was performed offline using video and audio recordings. The
videos were recorded using a smartphone camera which was positioned on a high place
on one side of the arena to capture almost the entire search and rescue field. The audio
recordings were performed using the wearable device’s microphone. Only segments longer
than 2 s were considered during the labeling process, which means that a single activity
needs to last more than two consecutive seconds to be labeled. The recorded videos were
synchronized with sensor data using metadata (e.g., timestamp) and via exploiting the
plotted time series of the sensors (e.g., accelerometer). Four activities were considered:

(a) standing—the dog is standing still on four legs without its torso touching the ground,
occurring mainly when the dog successfully finds the victim;

(b) walking—the dog moves at slow speed and its legs are moving one after another;
(c) trotting—the dog moves at a faster speed than walking and slower than running. This

is the most frequent movement activity during the search and rescue operation; and
(d) running—the dog moves at a very fast speed, occurring mainly when the dog is

released by its trainer at the beginning of the search and rescue operation.

In cases where it was not possible to identify the dog activity, either due to insufficient
light during the night operation or when the dog was not clearly shown in camera, (e.g., it
was behind an obstacle) a “missing” label was considered. These data were omitted for the
Artificial Intelligence (AI) training procedure. Next, the audio recordings include only two
classes, barking and nonbarking, as the barking is the required state that designates that the
SaR dog spotted the “victim”. Examples of the four dog activities are shown in Figure 6.
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Figure 6. Instances of four activitie.

4.3. Details of the Created Dataset

The complete dataset comprises nine dog search and rescue sessions. After the labeling
process, each session is segregated in various segments, where each segment comprises
only one activity, considering a minimum segment duration of 2 s. Each second of raw
data consists of 100 values for the two 3-axial sensors (3-axial accelerometer and 3-axial
gyroscope) forming a total of 600 values. Next, each segment is segregated in samples
with a 2 s length where a 50% overlap is considered. An example of samples for the four
SaR dog activities from both the accelerometer and the gyroscope is illustrated in Figure 7.
Evidently, the amplitude of the accelerometer and the gyroscope increase as the activity
becomes more intense, which means that the lowest amplitude can be found in standing
and the highest in running.

Further, the dataset details for all seven search and rescue testing sessions are tabulated
in Table 4. Evidently, the most frequent activities are standing and trotting. This is expected,
as during the search and rescue operation, on one hand the dog trots while searching for
the “victim” between the ruins and on the other hand, when the “victim” is found, the
dog remains in a standing position and barks. Moreover, only one of the K9s provided
a sufficient amount of “running” examples (session 4), and only two canines sufficient
amount of “standing” examples (session 4 and 6). Thus, by adopting a leave one subject
out approach, it is impossible to check the model’s generalizability on the classes “running”
and “walking”, and, as a result, we merged the motion activities “running”, “walking” and
“trotting” into one class, called “searching”.

Turning our attention to the bark detection, similar to SaR dog activity detection, the
labeling process was performed offline using the provided audio recordings and it was
compared with the video recordings to verify the annotations. The annotated data were
afterwards segmented into 2 s audio clips. This window size was selected to reduce the
throughput to the developed model.

Another reason for selecting 2 s was to match the window size of the Inertial Measure-
ment Unit (IMU) data and, also, to have a better understanding of the situation the SaR
dog is into. For example, in the case of real-time inference and for e.g., a 4 s window, if the
dog barks in the first second of the audio stream the model would still classify it as bark,
despite the fact this occurred 3 s ago.

The dataset we built consists of 1761 examples (i.e., audio clips), where 258 are audio
clips containing bark and 1503 do not, leading to an unbalanced dataset, which however
reflects a real-world search and rescue operation. Before introducing the data in the Deep
CNN, we split them into three subsets, namely training set, validation set, and test set,
following the standard procedure of training an neural network. The train set contains

17



Sensors 2022, 22, 993

around 74% of the data, the validation set around 10% of the data and the test set around
16% of the data. The split was performed based on the search and rescue sessions. i.e., audio
signals recorded during a specific search and rescue session belong to the same dataset,
avoiding in this way overlapping samples between the different sets or characteristic
bark patterns.

Figure 7. Sensor samples of 2 s duration for four activities.

Table 4. Number of samples for each search and rescue session for four monitored activities.

Session No. Standing Walking Trotting Running Searching

1 32 0 38 0 38

2 44 0 28 0 28

3 37 4 20 0 24

4 22 23 80 23 126

5 18 0 10 0 10

6 47 38 27 4 69

7 34 0 13 0 13

Total (542) 234 65 216 27 308
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4.4. Developed DL Algorithms
4.4.1. Activity Recognition

The employed Deep CNN for the dog activity recognition is a lightweight architecture
to be deployed on the animal wearable (i.e., contains around 21,400 parameters), it is
based on late sensor fusion [8] (i.e., the fist convolutional layers process the input signals
individually) and consists of the following layers (Figure 8):

• layer 1: sixteen convolutional filters with a size of (1, 11), i.e., W1 has shape (1, 11,
1, 16).
This is followed by a ReLU activation function, a (1, 4) strided max-pooling operation
and a dropout probability equal to 0.5.

• layer 2: twenty-four convolutional filters with a size of (1, 11), i.e., W2 has shape (1, 11,
16, 24).
Similar to the first layer, this is followed by a ReLU activation function, a (1,2) strided
max-pooling operation and a dropout probability equal to 0.5.

• layer 3: thirty-two convolutional filters with a size of (2, 11), i.e., W3 has shape (2, 11,
24, 32).

The 2D convolution operation is followed by a ReLU activation function, a 2D global
max-pooling operation and a dropout probability equal to 0.5.

• layer 4: thirty-two hidden units, i.e., W4 has shape (32, 1), followed by a sigmoid
activation function.

Before feeding the algorithms with the collected data, we performed a preprocess-
ing routine as follows. To acquire orientation independent features, we calculated a 3D
vector (the l2-norm) from the sensors’ individual axes [48]. The orientation-independent
magnitude of the 3D-vector is defined as:

S(i) =
√

s2
x(i) + s2

y(i) + s2
z(i) (1)

where sx(i), sy(i), and sz(i) are the three respective axes of each sensor (accelerometer and
gyroscope) for the ith sample. Then, the dataset is divided seven-fold (i.e., one per session).
To obtain subject independent results and evaluate the generalization of the algorithms, we
used five folds as a training set, one as a validation set, and one as a test set. Afterwards,
a circular rotation between training, validation and test subsets was performed to ensure
that the data from all sessions will be tested. Finally, each sensor’s values (obtained by
Equation (1)) were normalized by subtracting the mean value and dividing by the standard
deviation (calculated by the examples included only in the training set), defined as:

Z(i) =
S(i)− μ

σ
(2)

where S(i) denotes the ith sample of a particular sensor (e.g., accelerometer), Z(i) its
normalized representation and μ and σ denote their mean and standard deviation values,
respectively.

Figure 8. Overall architecture of developed Deep CNN for activity recognition task. Input tensor has
two rows representing produced Z(i) for accelerometer and gyroscope, each one of them containing
200 values and one channel. Every convolutional operation is followed by a ReLU activation function,
and pooling layers are followed by a dropout equal to 0.5. Final dense layer outputs one value and is
followed by a sigmoid operation that represents probability of SaR dog searching or standing.
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4.4.2. Bark Detection

For the task of bark detection, we evaluated two different strategies. The first one is
based on a large pretrained model where we applied transfer learning, i.e., we finetuned
its weights using the dataset we collected. In particular, we selected the model introduced
in [49] that achieved state-of-the-art results in the ESC dataset [41]. The code for reproducing
the model is publicly available (https://github.com/anuragkr90/weak_feature_extractor,
accessed on 12 September 2021). The latter was a custom lightweight (i.e., contains 10,617 pa-
rameters) Deep CNN architecture and consists of the following layers (Figure 9):

• layer 1: sixteen convolutional filters (i.e., kernels) with a size of (3, 3), i.e., W1 has
shape (3, 3, 1, 16)

This is followed by the ReLU activation function, a strided (2, 2) max-pooling operation
and a dropout probability equal to 0.5.

• layer 2: twenty-four convolutional filters with a size of (3, 3), i.e., W2 has shape (3, 3,
16, 24).

Similar to the first layer, this is followed by a ReLU activation function, a (2,2) strided
max-pooling operation and a dropout probability equal to 0.5.

• layer 3: thirty-two convolutional filters with a size of (3, 3), i.e., W3 has shape (3, 3,
24, 32).

The 2D convolution operation is followed by a ReLU activation function, a global
max-pooling operation, and a dropout probability equal to 0.5.

• layer 4: thirty-two hidden units, i.e., W4 has shape (32, 1), followed by a sigmoid
activation function.

Before injecting the collected audio data in the CNN, we performed data normalization
by dividing all the values with the max value included in the sample. Afterwards, the
log-scaled mel-spectrograms were extracted from the audio clips having a window size of
1024, hop length of 512 and 128 mel-bands. Moreover, the segments of each clip overlapped
50% with the previous and the next one, and we discarded a lot of silent segments since
they increased significantly the number of not-bark examples without, however, increasing
the model’s performance.

Figures 10 and 11 visualize the transformation of a clip containing bark and a clip
including nonbarking activity, respectively. The comparative difference between the bark-
ing and the nonbarking state is obvious both in the raw data representation and in the
mel-spectrogram.

Figure 9. Overall architecture of developed Deep CNN for bark detection task. Input tensor is
log-scaled mel-spectrogram, with 173 rows, each one of them containing 128 values (mels) and one
channel. Every convolutional operation is followed by a ReLU activation function, and pooling layers
are followed by a dropout equal to 0.5. Final dense layer outputs one value and is followed by a
sigmoid operation that represents probability of SaR dog barking or not barking.
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Figure 10. Raw representation (a) and log-scaled mel-spectrogram (b) of a dog barking audio signal.

Figure 11. Raw representation (a) and log-scaled mel-spectrogram (b) of a dog not barking audio
signal (dog running).

5. Results

5.1. Results on the Activity Recognition

In this section, we benchmark the proposed CNN against four other machine learning
algorithms, namely Logistic Regression (LR), k-Nearest Neighbours (k-NN), Decision Tree
(DT), and Random Forest (RF). For these algorithms we opted to extract the same seven time-
dependent features for each sensor (accelerometer and gyroscope), resulting in 14 features
in total (see Table 5). The ML experiments were executed on a computer workstation
equipped with an NVIDIA GTX 1080Ti GPU, which has 11 gigabytes RAM, 3584 CUDA
cores, and a bandwidth of 484 GB/s. Python was used as the programming language,
and specifically the Numpy for matrix multiplications, data preprocessing, segmentation,
and transformation and the Keras high-level neural networks library using as a backend
the Tensorflow library. To accelerate the tensor multiplications, CUDA Toolkit in support
with the cuDNN was used, which is the NVIDIA GPU-accelerated library for deep neural
networks. The software is installed on a 16.04 Ubuntu Linux operating system.

The proposed CNN model was trained using the Adam optimizer [50] with the
following hyper-parameters: learning rate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 10−8,
decay = 0.0. Moreover, we set the minimum number of epochs to 500; however, the training
procedure terminated automatically whether the best training accuracy improved or not
after a threshold of 100 epochs. The training epoch that achieved the lowest error rate on
the validation set was saved, and its filters were used to obtain the accuracy of the model
on the test set.
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Table 6 presents the accuracy results that were obtained on applying the aforemen-
tioned algorithms and the developed Deep CNN architecture on the SaR dog activity
recognition dataset. The presented results were obtained per dog having different folds in
the test set (i.e., 5-fold cross-validation), while we made five runs for each to avoid reducing
the dependency on different weights initializations and averaged them afterwards. The
highest accuracy was achieved by the Deep CNN model (93.68%), which surpassed impor-
tantly the baseline algorithms, especially DT and k-NN. Moreover, having the algorithms
achieved the best results (98.57% averaged accuracy) having dog five in the test set and
the worst ones when they were evaluated on the dog seven examples (83.57% averaged
accuracy). In addition to this, through the following table we can observe that k-NN had
the biggest deviation in terms of accuracy among the seven subjects (i.e., dogs) ranging
from 73.34% to 100%, while the RF was the smallest one, ranging from 84.34% to 100%.

Table 5. Description of selected features.

Feature Description

Mean Average value

Min Minimum value

Max Maximum value

Median Median value

Standard deviation Measure of dispersion

Skewness The degree of asymmetry of the signal distribution

Kurtosis The degree of peakedness of the signal distribution

Table 6. Per dog accuracy of each Machine Learning (ML) model on dog activity recognition dataset.

Accuracy (%)

Method Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 Dog 7 Avg

LR 91.43 90.28 96.72 95.27 100.0 87.93 87.23 92.69

k-NN 94.28 93.06 100.0 89.86 100.0 85.34 73.34 90.70

DT 90.57 86.11 90.49 89.32 92.85 82.24 79.14 87.25

RF 91.71 91.67 98.69 94.86 100.0 85.17 87.23 92.76

Deep CNN 91.14 93.06 100.0 95.00 100.0 84.66 91.91 93.68

Figure 12 displays the confusion matrix of the developed deep CNN averaged over
the different test sets. The false positives (i.e., examples falsely predicted as “stand”)
are more than the false negatives (i.e., examples falsely predicted as “search”), which is
somewhat unexpected since the “search” class contains more examples than the “stand”
class. However, after performing error analysis on the obtained results we noticed that 11
out of the 65 walking activities, were falsely classified as “stand”. This misclassification
concerning the SaR dogs’ low intense activities adds around 1.52 false positives, and
without it, the portion of false-positive and negatives would be almost equal.
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Figure 12. Confusion matrix (averaged over different test sets) of developed deep CNN.

5.2. Results on the Bark Detection

We followed the same experimental set-up that described in section for activity recogni-
tion regarding the workstation used, the libraries, and the optimizer. The hyperparameters
of the Deep CNN were: learning rate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 10−8,
decay = 0.0, while Adam optimizer is also considered. Moreover, we set the minimum num-
ber of epochs to 1000; however, the training procedure terminated automatically whether
the best training accuracy had improved or not, after a threshold of 100 epochs. Similar
with the case of the CNN in the activity recognition, the training epoch that achieved the
lowest error rate on the validation set was saved, and its filters were used to obtain the
accuracy of the model on the test set.

The results on the test set of the developed search and rescue dataset are presented
in Table 7 the best results were achieved exploiting the Deep CNN after applying transfer
learning using the Deep CNN in [49] (named as Deep CNN TL). The attainable accuracy of
our model is 99.13% and the F1-score is 98.41%, while the Deep CNN TL achieved 99.34%
accuracy and 98.73% F1-score.

Furthermore, Figure 13 shows the confusion matrix for the bark and nonbark classes
of the lightweight CNN model. Evidently, the model produced on average more false
negatives (2.1 bark activity examples were classified and not bark) than false positives
(0.4 not bark activity examples were classified and bark) probably due to the fact that the
dataset is imbalanced, containing significantly more nonbarking examples ( 6/1 ratio).

Table 7. Performance of developed ML models on SaR dog bark detection dataset.

Method Name Accuracy F1-Score

Deep CNN TL [49] 99.34% 98.73%

Ours Deep CNN 99.13% 98.41%

Apart from the performance metrics, since we were interested in deploying the selected
DL model on the wearable device, we measured the inference time of the models. Table 8
presents the response times for both DL models measured on (a) a workstation equipped
with an Intel(R) Core(TM) i7-7700K CPU (4 cores) running on max turbo frequency equal
to 4.20 GHz and (b) a Raspberry Pi 4 computing module (quad-core ARM Cortex-A72
processor). We converted the developed models to a TensorFlow Lite format. TensorFlow
Lite is a set of tools that enables on-device machine learning such as mobile, embedded,
and IoT devices. As a result, the TensorFlow models were converted in a special efficient
portable format known as FlatBuffers (identified by the .tflite file extension), providing
several advantages over TensorFlow’s protocol buffer model format (identified by the .pb
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file extension) such as reduced size and faster inference time. The performance of the
models was not decreased after the conversion to .tflite format.

For our measurement purposes, we ran the models 10,000 times and then computed
the average inferencing time. The first inferencing run, which takes longer due to loading
overheads, was discarded. As expected the inference time for the .tflite formats is signif-
icantly lower than those of the .pb formats. Moreover, since the objective was to deploy
the model to a Raspberry Pi 4 we selected to use our Deep CNN. Even though it achieved
a 0.32% lower F1-score, it is significantly faster (almost x7 times) than the Deep CNN TL
model enabling real-time inference at the edge of the network.

Figure 13. Confusion matrix of Deep CNN on test set of SaR dog search and rescue dataset.

Table 8. Mean inference time measure in milliseconds for each model.

Model Intel I7-7700K CPU Raspberry Pi 4

Deep CNN TL [49] .pb format 175.64 ms 839.59 ms

Ours Deep CNN .pb format 39.1 ms 116.88 ms

Deep CNN TL [49] .tflite format 25.59 ms 170.10 ms

Ours Deep CNN .tflite format 5.84 ms 25.53 ms

6. Validation of the Proposed Implementation

The proposed system was validated in an abandoned and demolished hospital south-
west of Madrid, running two scenarios with the assistance of different SaR dogs. Similarly
to the data collection process, a first responder had the role of the “victim”, and was hidden
somewhere in the arena among the ruins. Then, a SaR dog with the developed wearable
mounted on its back started its SaR mission.

During this process we measured the accuracy and F1-scores of the developed bark
detection and activity recognition models separately. Moreover, we estimated the overall F1-
score for notifying the K9 handlers whether the victim was found or not. This is achieved
by injecting an alert rule on the mobile that is triggered when the SaR dog is barking
and standing simultaneously, which is what it is trained for denoting that it has found a
missing person.

Table 9 presents the classes of the collected singals (IMU and audio). Not all of the
motion signals were annotated. This is due to the fact that the SaR dog was missing (e.g.,
was behind the debris) or there was an overlap in the activities for a 2 s window (e.g., the
SaR dog was searching for the first 800 ms and then stopped moving for the rest 1200 ms).
Thus there are presented less examples than the total amount.
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Table 9. Number of samples for two SaR evaluation scenarios.

Session No. Standing Searching Barking Not Barking Duration (Sec)

1 57 98 17 258 275

2 167 170 40 555 595

Total 224 268 57 813 870

The obtained F1-scores and the corresponding accuracy results are presented in
Table 10. The developed deep CNN activity recognition model achieved a F1-score equal
to 91.21% and 91.26% accuracy, while the bark detection model acquired 99.08% F1-score
and 99.77% accuracy. In particular, the latter provided only two false positives (i.e., the
misclacified “not barking” as “barking”), and these, also, triggered the alert notification
providing the same F1-score and accuracy metrics for the overall victim detection task.

Table 10. Obtained F1-score and accuracy results for tasks of activity recognition, bark detection, and
victim found recognition regarding two evaluation SaR scenarios.

Task Accuracy F1-score

Activity recognition 91.26% 91.21%

Bark detection 99.77% 99.08%

Victim found recognition 99.77% 99.08%

Moreover, the developed solution was able to operate in real-time on the field, exploit-
ing data processing at the edge, and it enabled the first responders to be aware of the K9
position and its behavior. Figures 14 and 15 display a summary plot of the outputs of the
DL models and the received smartphone notifications with respect to the received KAFKA
messages, respectively. A video displaying these results and the whole validation proce-
dure can be found here (https://www.youtube.com/watch?v=704AV4mNfRA, accessed
on 20 January 2022).

Figure 14. Plots displaying outputs of developed DL models during 275 s of 1st SaR scenario (left).
Red line denotes threshold value (i.e., 0.5) for classifying an audio signal as “bark” and IMU signal as
“stand”. The final 25 s of this scenario are displayed on (right) plot.

25



Sensors 2022, 22, 993

Figure 15. Mobile screenshot displaying generated alert in 1st SaR scenario (left), and corresponding
KAFKA messages, with last one triggering alert rule (right).

7. Discussion

One of the main advantages of the current work is that it exploits edge computing to
process in real-time the generated data before transmitting them through the network. In
particular, in the case where there is no Wi-Fi available and the RF module is not efficient to
send streaming audio data since the maximum data rate is 250 kbits/s, and the necessary
rate for a medium quality audio signal is equal to 192 kbit/s, let alone the need to transmit
the IMU signal and the GPS coordinates. In addition to this, to expand the data transmission
range we reduced the data rate to 10 kbit/s, making it impossible to transmit the produced
raw signals.

Moreover, the inclusion of IMU sensors is significant since the included SaR dogs are
trained to bark and stand still when identifying a missing/trapped person. Thus, it reduces
the false positives (i.e., victim found recognition) in the case the algorithm outputs that the
dog barks but it is not standing or the dog falsely produces a barking sound. Furthermore,
micro movements where the dog is confused (e.g., makes small circles) or is sniffing are
not noticeable (i.e., the displayed coordinates will indicate it as standing) though the GPS
signal, due to its estimation error (could reach up to 5 m), but are classified as searching by
our algorithm.

However, one limitation of the approach is the activity recognition algorithm’s perfor-
mance. Even though the overall accuracy is high, having an average of 7.32 misclafications
in 100 s time span, for a critical mission application where even a second matters, this is
not considered to be low, mainly due to the fact that the provided algorithm has not “seen”
the examples of the dogs included in the test set. In other words, the behavioral patterns of
some dogs are not close to the others and having more training data would be beneficial
for the algorithm’s performance [51], a case that will be explored in the future.

Another possible limitation is that of the activity recognition algorithm’s generaliz-
ability in different dog breeds and environments. The SaR dogs included in training and
evaluation were German Shepherds, American Labrador Retrievers, Golden Retrievers,
Belgian Malinois, or mixed breeds (of the aforementioned) and ranged from 20 kg to 32 kg
dogs. Moreover, the training and evaluation environments (arenas) were relative small
areas with a lot of obstacles, such as debris. Thus, the algorithms performance on bigger
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SaR dogs (e.g., Saint Bernard) and wide open areas was not tested (e.g., forest covered
with snow).

Finally, the current work has followed the guidelines regarding the Ethics Code (https:
//escuelasalvamento.org/wp-content/uploads/2021/04/Codigo-Etico_vf.pdf, accessed
on 5 August 2021) of K9 training and the participating SaR dogs did not undergo any extra
training for the purposes of this paper.

8. Conclusions

In this paper, we proposed a novel implementation that performs dog activity recogni-
tion and bark detection in real-time to alert the dog handler (a) about the dog position and
(b) whether it has found the victim during a search and rescue operation. The proposed
solution can significantly aid the first aid responders in search and rescue missions, espe-
cially in places where the rescuers either are not possible to enter, e.g., below debris, or if
they cannot have the rescue dog within their line of sight. To realize thins, the candidate
implementation incorporates CNNs, which have the ability to extract features automatically,
attaining the highest accuracy compared with other known ML algorithms. In particular, it
attained an accuracy of more than 93% both in activity recognition and bark detection in
the collected test datasets and managed in both discrete validation scenarios to classify and
alert the rescuer at the time that the dog managed to find the victim.
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The following abbreviations are used in this manuscript:

DL Deep Learning
CNN Convolutional Neural Network
SaR Search and Rescue
IMU Inertial Measurement Unit
SIM Secure IoT Middleware
PCOP Portable Commmand Center
SVM Support Vector Machines
LR Logistic Regression
k-NN k-Nearest Neighbours
DT Decision Tree
RF Random Forest
ANN Artificial Neural Network
AAR Animal Activity Recognition
DAR Dog Activity Recognition
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Abstract: The increasing number of car accidents is a significant issue in current transportation
systems. According to the World Health Organization (WHO), road accidents are the eighth highest
top cause of death around the world. More than 80% of road accidents are caused by distracted
driving, such as using a mobile phone, talking to passengers, and smoking. A lot of efforts have
been made to tackle the problem of driver distraction; however, no optimal solution is provided.
A practical approach to solving this problem is implementing quantitative measures for driver
activities and designing a classification system that detects distracting actions. In this paper, we
have implemented a portfolio of various ensemble deep learning models that have been proven
to efficiently classify driver distracted actions and provide an in-car recommendation to minimize
the level of distractions and increase in-car awareness for improved safety. This paper proposes
E2DR, a new scalable model that uses stacking ensemble methods to combine two or more deep
learning models to improve accuracy, enhance generalization, and reduce overfitting, with real-time
recommendations. The highest performing E2DR variant, which included the ResNet50 and VGG16
models, achieved a test accuracy of 92% as applied to state-of-the-art datasets, including the State
Farm Distracted Drivers dataset, using novel data splitting strategies.

Keywords: deep learning; stacking; ensemble learning; distracted driving

1. Introduction

With the continuous growth of the population, new technologies and transportation
methods need to emerge to serve people effectively and efficiently. Building an efficient and
safe transportation system can positively affect economies, the environment, and human
mental and physical health. The increasing number of accidents is a major issue in our
current transportation system. According to the World Health Organization, road accidents
are the eighth highest reason for death worldwide [1]. According to [2], 1.35 million people
die every year in a car accident, and up to 50 million people are injured. This makes
traffic safety a major concern worldwide. More than 80% of road accidents are caused by
distracted driving, such as using a mobile phone, talking to passengers, and smoking [2].
Therefore, more attention has been directed to driver action analysis and monitoring. Many
efforts have been made to tackle the problem of driver distraction with effective approaches
using countermeasures for distracted driver actions [3]. The measures can be divided into
three categories: (1) distraction prevention before distraction occurs, (2) distracting action
detection (through alertness) after distraction occurs, and (3) collision avoidance when
a potential collision is expected [3]. Imposing strict fines, government legislation, and
raising public awareness are methods used to decrease the number of accidents caused
by distracted driving through preventing distraction sources before it happens. When
a potential collision is expected, collision avoidance systems are implemented in most
newly manufactured cars through lane control, automatic emergency braking, and forward-
collision warning. Distraction alertness is critical and can be more effective in preventing
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driver distraction; thus, accurate real-time driver action detection methods are essential
for this driver distraction category. Distraction alertness can be approached with different
modalities. A camera was used to detect distracted driving behavior while driving in many
applications. A Controller Area Network Bus can assess the vehicle’s performance, such as
wheel angle and brake level. Moreover, the system can detect if the driver is distracted or
focused on driving based on the in-car collected information. Finally, sensors, such as the
electrocardiograph and the electroencephalograph, can be used to estimate the emotional
and physiological states of a driver, which can be associated with the level of distraction
and fatigue in drivers [4]; however, there is a lack of reflection on the fact that they are
invasive sensors for a driver. The driver’s action or behavior, such as gaze, head pose, and
hand position, can be detected through deep learning models and the analysis of the car
information [5]. Existing methods in detecting driver distraction fall short in providing
accurate detection and recommendations in real-time. Ensemble learning has shown better
classification performance compared to individual models, as it combines the benefits of
multiple models while overcoming their drawbacks [6]. While authors in [6] used a fixed
architecture of only three deep learning models including the residual network (ResNet),
the hierarchical recurrent neural network (HRNN), and the Inception network, there is a
research gap in the literature in using a scalable and incremental stacking-based ensemble
learning with real-time recommendations to achieve high accuracy in detecting distracted
driving activities with minimal computational overhead. Thus, in this paper, we have
proposed a novel scalable model that uses ensemble learning, focusing on stacking that
combines two or more baseline models and generates an ensemble with better performance
than the adopted models. Our method aims to enhance generalization, reduce overfitting,
increase performance, and provide real-time recommendations. This paper first examines
the performance of several state-of-the-art image deep learning classification methods. An
Ensemble-Based Distraction Detection with Recommendations model is designed, namely
(E2DR), with the goal of improving the accuracy of distracted behavior detection. In the
proposed E2DR model, two or more deep learning models are aggregated in a stacking
ensemble. A recommendation layer is also provided for real-time recommendations to
drivers in each case of the distracted behaviors to allow drivers or autonomous vehicles
to take the best course of action when drivers are detected under distracted behaviors.
Experimental results show that state-of-the-art image classification models achieve a test
accuracy ranging between 82–88% in detecting driver distraction. Furthermore, results
show an average improvement of 5–8% in detection accuracy when the proposed E2DR is
used with a real-time data splitting based on the driver IDs. Similar results are obtained
for other metrics such as Precision and F1 score. The rest of this paper is as follows:
Section 2 discusses deep learning driver distraction detection systems and the related
work. Sections 3 and 4 introduce the adopted and proposed models, respectively. Section 5
presents the experimental results and analysis. We conclude the paper with future directions
in Section 6.

2. Related Work on Deep Learning Driver Distraction Detection

There are three main types of distracted driving: cognitive, visual, and manual dis-
traction. Cognitive distraction occurs when the driver’s mind is not entirely focused on
driving. Driver gaze and talking to passengers are examples of cognitive distraction. Even
drivers listening to music or the radio are at risk. The audio or music can shift the driver’s
attention from driving and overall surroundings. Visual distraction is when the driver
is not looking at the road ahead. Drivers who observe shop signs and billboards on the
side of the road are considered visually distracted. Looking at electronic devices such as
GPS devices, smartphones, and digital entertainment devices while driving is under the
category of visual distraction. Finally, manual distraction occurs when the driver, for any
reason, takes their hands off the steering wheel. Drivers who smoke while driving, eat
and drink in the car, or try to get something from anywhere in the vehicle are under the
risk of manual distraction. Texting while driving is the most dangerous driver distraction

32



Sensors 2022, 22, 1858

as it combines all three types of distractions. When drivers take their eye off the road to
send a message or check a notification, it is long enough to cover the length of a football
field at 80 km/h [5]. Various research studies have been proposed to address the drivers’
distraction detection problem. This section will survey the most recent state-of-the-art
research work using Single-based vs. Hybrid-based deep learning to address this problem.

2.1. Single-Based Deep Learning Models

A gaze estimation model called X-Aware is introduced in [7] to analyze the driver’s
face along with contextual information. The model visually improves the fusion of the
captured environment of the driver’s face, where the contextual attention mechanism is
directly attached to the output of convolutional layers of the InceptionResNetV2 networks.
The accuracy of their best model outperformed the other baseline models in the litera-
ture. The dynamics of the driver’s gaze and their use to understand other attentional
mechanisms are addressed in [8]. The model is built based on two questions, where and
what is the driver looking at. The model is trained through coarse-to-fine convolutional
networks on short sequences from the DR(eye)VE dataset [8]. Their experiments showed
that the driver’s gaze could be learned to some extent, considering its highly subjective
challenges and the scene’s irreproducibility showing the driver’s gaze for each sequence.
The results showed that the model could achieve accurate results and could be integrated
into practical applications. In [9], the authors proposed a deep learning model that detects
drivers’ behavior and actions during travel. The deep learning model classifies the driver
actions into ten classes. The first class represents safe driving, and the other nine classes
represent unsafe drivers’ actions such as fixing makeup and texting. The driver receives an
alert if an unsafe action is detected. They used Convolutional Neural Networks (CNNs) to
perform training and detection. The core of the deep learning system is ResNet50. A dense
net architecture followed the ResNet50 architecture to make classifications. The dataset
used is the State Farm dataset and included images of different drivers’ actions that cause
distracted driving. The model achieved high accuracy in detecting the driver’s actions.
A facial expression recognition model in [10] monitors drivers’ emotions and operates in
low specification devices installed in cars. A Hierarchal Weighted Random Forest Classifier
(HRFC) is used and trained on the similarity of sample data. Geometric features and facial
landmarks are detected and extracted from input images. The features are vectorized
and implemented in the Hierarchal Random-Forest Classifier to detect facial expressions.
The method was evaluated on the MMI dataset, the Keimyung University Facial Expression
of Drivers (KMU-FED) dataset and the Cohn-Kahnde dataset. The results showed that
the proposed model had similar performance to other state-of-the-art methods. The study
in [11] introduced a computationally efficient distracted driver detection system based
on convolutional neural networks. The authors proposed a new architecture called mo-
bileVGG. The architecture is based on depth-wise separable convolutions. The authors
used a simplified version of the VGG16 model, allowing the proposed architecture to
be suitable for real-time applications with decent classification accuracy. The datasets
used are the State Farm dataset and the American University in Cairo Distracted Driver
(AUCDD) detection dataset. The results showed that the proposed architecture outper-
formed other approaches while being computationally simple. The driver’s face pose is
detected by training CNNs [12]; the CNNs then identify if the driver’s head position is
considered under the category of distracted driving. The model consists of five CNNs
followed by three fully connected layers. The results showed that the proposed model has
better accuracy when compared to non-linear and linear embedding algorithms. In [13],
the authors proposed a driver action recognition system called dilated and deformable
Faster Region-Based Convolutional Neural Networks (R-CNN). It detects driver actions by
detecting motion-specific objects exhibiting inter-class similarity and intra-class differences.
The irregular and small features, such as cell phones and cigarettes, are extracted through
the dilated and deformable residual block. Then, the region proposal optimization network
algorithm decreases the number of features and improves the model’s efficiency. Finally,
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the feature pooling module is replaced with a deformable one, and the R-CNN network is
trained as the classifier of the network. The authors established the dataset and contained
images of different driver actions. Results showed that the model demonstrates acceptable
results. Authors in [14] implemented a driver distraction detection model that uses a
light-weight octave-like convolutional neural network. The network consists of octave-like
convolutional blocks called OLCMNet. The OCLM block splits the feature map into two
branches through point-wise convolution. Average pooling and depth-wise convolution
are performed on the feature map. A DC operator captures the fine details in the high-
frequency branches. Lastly, the OCLMNet exchanges further information between layers.
The model performed well on the Lilong Distracted Driving Behavior dataset while being
implemented on a limited computation budget. A unique approach is proposed in [15] that
uses both spatial and temporal information of electroencephalography (EEG) signals as an
input to a deep learning model. The relationship between the driver distraction and the
EEG signal in the time domain is mapped through gated recurrent units (GRUs) and CNNs.
Twenty-four volunteers were tested while doing activities that cause a distraction while
driving, and their EEG response was recorded. Then, the proposed deep learning network
was trained based on the EEG information. The deep learning approach consisted of a
temporal–spatial information network (TSIN), combining CNNs and GRUs to better detect
spatial and temporal features from EEG signals. The authors of [16] proposed a modifier
deep learning approach for distraction detection. They used the OpenPose library for a
two-category problem of distraction detection. The library draws 43 points on the facial
skeleton to detect the human face. The detection is sent to a deep neural network that uses
the ResNet50 model. The results demonstrated good accuracy and outperformed other
residual network architectures. The work in [17] introduced a new approach to distracted
driver detection using wearable sensing and deep neural networks. The study included
information from twenty participants through wearable motion sensors attached to their
wrists. The participants performed five distraction activities under instructions in a driving
simulator. The captured data were sent to a deep learning model that consisted of recurrent
neural networks and long short-term memory (RNN-LSTM) which classified distraction
tasks. The results showed a good potential for the wearable proposed sensing approach.

2.2. Hybrid-Based Deep Learning Models

A hybrid model is designed in [18] with an ensemble of weighted CNNs for driver
posture classification. The authors proved that using a weighted ensemble classifier using
the genetic algorithm resulted in a better confidence score for classification. Additionally,
the effect of variable visual elements is analyzed, such as face and hands, in detecting
distracted driver action through localization of face and hands. The dataset used is the
Distracted Driver dataset, which contains ten classes of driver actions. The best model has
an accuracy of 96%, and a smaller version of the ensemble model achieved an accuracy of
94.29%. In [19], a distracted driver detection technique using pose estimation is introduced.
The model is an ensemble of ResNets and classifies drivers through pose estimation images.
ResNet and HRnet are used to generate pose images. Then, ResNet50 and ResNet101
classify the original and pose estimation images. The grid search method identifies the
optimum weight for predictions from both models. Classifying pose estimation images is
useful when used with the original image classification model as it increases classification
accuracy. The dataset used is the AUCDD dataset. The results showed that the introduced
model achieved an accuracy of 94.28%. The study in [20] detected driver–vehicle volatilities
using driving data to detect the occurrence of critical events and give appropriate feedback
to drivers and surrounding vehicles through analyzing multiple real-time data streams
such as vehicle movements, instability of driving, and driver distraction. The deep learning
model consisted of a Convolutional Neural Network (CNN) model and a long short-
term memory (LSTM) model. The data were collected from more than 3500 drivers and
included 1315 severe and 7566 normal events. The model achieved high accuracy and
was effective in detecting accidents. A CNNs-based model to identify driver’s activities
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is introduced in [21]. The driving activities are divided into several classes, in which 4
are considered normal driving activities, and the other three are classified as distracted
driving. The Gaussian mixture model detects the driver’s body from the background before
sending the image to the CNN model. The authors used transfer learning to fine-tune three
pre-trained state-of-the-art CNN models: Restnet50, AlexNet, and GoogLeNet. The model
was trained as a binary classifier to detect whether the driver was distracted or not. The
authors collected the data from 10 drivers involved in the most common driving activities.
The results showed that the model was effective as a binary classifier. In [22], a model
for distracted driving action recognition is proposed using a hybrid of two convolutional
neural network architectures, Xception and Inception V3, to detect 10 classes of driver
actions. The authors used ImageNet weights for transfer learning. The performance of
both models was analyzed under different weighting schemes. Using pre-trained weights
helped the network learn basic shapes and edges without starting training from scratch,
which allowed the model to achieve good results in under 10 epochs of training, applied
to the State Farm Distracted Driver dataset. The results showed that the Inception model
had a better performance compared to the Xception model. A distracted driver action
recognition system is introduced in [23] based on the Discriminative Scale Space Tracking
(DSST) and Deep Predictive Coding Network (PCN) algorithms, dynamic face tracking,
location, and face detection. Then, the YOLOv3 object detection model detects distracting
behavior around the driver’s face, such as phone calls and smoking. The dataset used is a
self-built dataset of people making phone calls and smoking. The results demonstrated that
the model could detect a driver’s behavior with high accuracy. A hybrid driver distraction
detection model is presented in [24]. The model uses CNNs and Bidirectional Long Short-
Term Memory (BiLSTM). The proposed model captures the spatio-spectral features of the
images and consists of two steps: (1) detect the spatial features of different postures using
CNNs automatically, and (2) the spectral components from the stacked feature map are
extracted through the BiLSTMs. They used the AUCDD dataset. Results showed that their
model performed better than most state-of-the-art models. The work in [25] used deep
learning to detect driver inattentive and aggressive behavior. They classified inattentive
driver behavior into driver fatigue, downiness, driver distraction, and other risky driver
behavior such as driving aggressiveness. All these risky driving behaviors are associated
with various factors that include driving age, experience, illness, and gender. The authors
used CNNs, RNNs and LSTMs. They showed that the CNNs achieved the best performance.
The algorithm in [26] detects driver manual distraction using two modules; in the first
module, the bounding boxes of the driver’s right ear and right hand are detected from
RGB images through YOLO, a deep learning object detection model. Then, the bounding
boxes are taken as an input by the second module, a multi-layer perceptron, to predict the
distraction type. The dataset consisted of 106,677 frames extracted from a video obtained
from 20 participants in a driving simulator. The proposed algorithm achieved comparable
results with other models in the same field. Table 1 provides a comparative study of
the recent work in driver distraction detection systems. There is a research gap in the
literature in using stacking-based ensemble learning to achieve high accuracy in detecting
distracted driving activities with minimal computational overhead. Thus, in this paper,
we have proposed a framework that uses ensemble learning, focusing on stacking that
combines two baseline models and generates an ensemble with better performance than
the adopted models.
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Table 1. Comparative Analysis of Driver Distraction detection systems.

Paper Model (Type) Dataset Validation Pros Cons

[7] Deep learning Gaze
estimation system Driver Gaze in the Wild dataset Accuracy High performance It can be only

accurate to an extent

[8]
Deep learning

Gaze estimation
driver-assistant system

DR(eye)VE dataset Ground truth Provide suggestion Driver gaze
is subjective

[9] Deep learning distracted
driver detection Distracted driver dataset

Accuracy, Recall,
Precision,
F1 score

Computationally
efficient

Few epochs
for training

[10] Hierarchical, weighted
random forest (WRF) model

The Keimyung University
Facial Expression of Drivers

(KMU-FED) and the
Cohn-Kahnde datasets

Accuracy
Requires low amount

of memory and
computing operations

Not accurate when
the face is rotated

[11] Driver distraction detection
using CNNs

State farm dataset and the AUC
distracted driver dataset

Accuracy,
sensitivity

Computationally
efficient

Not enough
validation metrics

[12]
Deep learning distracted

driver detection using
pose estimation

AUC Distracted Driver Dataset Accuracy,
Fl score

Pose estimation
improves accuracy

Low-resolution
images

affected training

[13] Driver action recognition
using R-CNN

images of different
driver actions

Accuracy and
log loss

Effective feature
representation Small dataset

[14]
Driver Distraction
recognition Using
Octave-Like CNN

Lilong Distracted Driving
Behavior data

Accuracy,
training duration Lightweight network Not enough

validation metrics

[15]
Temporal–Spatial Deep

Learning driver
distraction detection

EEG signals from
24 participants

Precision, Recall,
F1 score Unique approach

Drivers’ individual
differences need to

be considered

[16] Optimized Residual Neural
Network Architecture

The State Farm Distracted
Driver dataset

Accuracy,
training time Enhanced model Only detects

head movement

[17]
Wearable sensing and deep

learning driver
distraction detection

Wearable sensing information
from 20 participants

Recall, Precision,
F1 score Good potential Small dataset

[18] Hybrid Distraction detection
model using deep learning State farm dataset Accuracy Computationally

expensive
Not enough
validation

[19] Triple-Wise
Multi-Task Learning AUC Distracted Driver Dataset Accuracy,

sensitivity
High detection

accuracy
High

computational cost

[20] Safety-critical
events prediction

Driving events from
3500 drivers

Accuracy, Recall,
Precision,
F1 score

Can detect potential
car accidents

Hard to get
enough data

[21] CNN driver action
detection system

10 drivers’ data with
driving activities Accuracy Accurate It does not detect the

driver action

[22] CNN driver action
detection system Distracted driver dataset Accuracy

and loss
Computationally

simple Not enough training

[23]
Distracted driver behavior

detection using
deep learning

Self-built dataset of drivers
making phone calls

and smoking

Recall, Precision,
Speed Real-time

Only trained
to detect

2 driver actions

[24] hybrid driver distraction
detection model

(AUC) Distracted Driver
Dataset

Accuracy and
loss High Performance Complex

[25] Driver
Inattentiveness detection NA Accuracy

Comprehensive
analysis of deep
learning models

Not effective
in detecting

aggressive behavior

[26] Deep learning manual
distraction detection model

106,677 frames extracted from a
video that was taken from

20 participants in a
driving simulator

Accuracy, Recall,
Precision,
F1 score

Novel approach Only detects
manual distraction
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3. Adopted Deep Learning Models

3.1. ResNet50 Model

ResNet50 is a 50-layer deep convolutional neural network (Figure 1) [27]. The pre-
trained version of the network can be imported from the ImageNet database [28], trained
on over a million photos. The network is trained to classify images into 1,000 different
object categories, including pencils, tables, mice, and various animals and objects. As a
result, the network has learned a variety of rich feature representations for a large variety
of images [29]. In the final classification model, ResNet50 is used as the convolutional base,
and the pre-trained model is used to learn the patterns in the data. ResNet50 requires the
size of the input images to be 224 × 224 (width, height) [29]. All the experiments were
conducted with color images. The dimensions of each image sent to the classification model
were (224, 224, 3), where 3 indicates the number of channels in the images. The three
channels indicated are color channels composed of Green, blue, and red.

Figure 1. The ResNet50 blocks [27].

3.2. VGG16 Model

Oxford’s VGG16 architecture from the Visual Geometry Group (VGG) (Figure 2)
has an advantage over AlexNet by replacing large kernel-sized filter 5 and 100 in the
second and first convolutional layers, respectively, with several kernel-sized filters of size
3 × 3 one after another [30]. Similar to the ResNet50 model, the input to the network
is a 224 × 224 × 3 image, where 3 indicates the RGB channels. The image is passed
through a series of convolutional layers with small receptive field filters with a size of
3 × 3 [31]. This filter size is the smallest to capture center, up/down and left/right notions.
Additionally, the configuration utilizes 1 × 1 convolutional filters that can be considered a
linear transformation of the input channel [32].

Figure 2. The VGG16 blocks [33].

3.3. Inception Model

The Inception model (Figure 3) is a significant milestone in the evolution of CNN
classifiers. Inception changed the traditional approach of adding more and deeper convolu-
tional layers to improve performance [34]. Inception went through several versions and
developed with time. Inception V1 [35] uses multiple filters that operate simultaneously,
making the network wider rather than deeper. Then, the authors introduced Inception V2
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and V3 [36]. Inception V2 significantly improved performance and computational speed
by using two 3 × 3 convolutional operations instead of a single 5 × 5 convolution which
is 2.78 times more computationally expensive [37]. Inception V3, the model used in the
experiment, includes all upgrades in Inception V2 and factorized 7 × 7 convolutions, which
improved performance even more, and added Label Smoothing to decrease the chances
of overfitting [38]. The main contribution of Inception V4 is adding reduction blocks to
change the width and height of the grid [39].

Figure 3. The Inception v3 architecture [39].

3.4. MobileNet Model

MobileNet (Figure 4) is the first mobile computer vision model based on Tensor-
Flow [40]. The name Mobile implies the ability of the model to function in mobile applica-
tions [41]. MobileNet is based on separable depth-wise convolutions, which significantly
reduces the number of parameters, especially when compared to networks with regular
convolutions that have the same depth of the nets. This makes MobileNet a lightweight
deep neural network suitable for mobile applications [42]. The depth-wise separable con-
volution is made from two primary operations: depth-wise convolution and point-wise
convolution. The depth-wise convolution came from the idea that the filter’s spatial and
depth dimensions can be separated. The filter is separated by its height and width di-
mensions, and then the depth dimension is separated from the horizontal (width×height)
dimension. The point-wise convolution is a 1 × 1 convolution that changes the dimension
of the previous layer.

Figure 4. The MobileNet Architecture [43].

4. The Proposed E2DR Model

Existing driver distraction detection systems in the literature only use a single model
trained for classification. Moreover, most recent work uses a single state-of-the-art classifier
or a network of convolutional neural layers to get the best performance. In this paper, an
Ensemble-Based Distraction Detection with Recommendations system is designed, namely
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E2DR, to improve the accuracy of driver distraction detection and provide recommenda-
tions. In the proposed E2DR model, two deep learning models are aggregated in a stacking
ensemble. A recommendation layer is also provided for real-time recommendations in
each case of distracted behaviors. The E2DR model enhances the generalization of the
detection process and reduces overfitting. The E2DR model allows drivers or autonomous
vehicles, depending on the technology in the vehicle, to take the best action when drivers
are detected under distracted behaviors.

4.1. The Ensemble-Based Distraction Detection with Recommendations Model (E2DR)

Stacked generalization (SG) was first introduced in [44]; it was shown that stacking
reduces the bias of the single model concerning the training set, where bias is the average
difference between actual and predicted results [44]. The deduction results from the
stacking model’s ability to harness the capabilities of more than one well-performing model
on a regression or classification task to generate better performance and predictions than
base classifiers in the ensemble, which reduces the error and bias. Inspired by the theory of
stacking generalization, the E2DR model combines two or more detection models to provide
better and more accurate predictions than individual models. The stacking algorithm takes
the output of the base model as an input to another model, sometimes called a meta-learner,
which learns how to combine the predictions of base models to generate better predictions.
In more detail, the stacking architecture has two levels. The first level contains the base
models, and the second level includes a meta-learner that concatenates the outcomes of
base models to provide final predictions. Figure 5 shows the pair-wise stacking in the E2DR
architecture (i.e., only two base models are combined).

Figure 5. The E2DR (Pair-wise stacking) Architecture.

4.2. E2DR Variants

In this paper, six models are developed using variants of base model 1 and base
model 2, such as E2DR (A1, A2) where A1 and A2 ∈ {ResNet, VGG16, MobileNet, Inception}.
The E2DR model combines 2 of the mentioned models using the Stacked Generalization
(SG) ensemble method. The SG ensemble method uses the outputs from the pre-trained base
models, concatenates them, and sends them to a meta-learner model at level 2 consisting
of a dense layer for classification. Once the distracted behavior is classified, a set of
recommended actions are provided to ensure safety. We calculate an assessment measure
for each E2DR (A1, A2) using Accuracy, Loss, F-measure, Precision, and Recall.

4.3. Computational Complexity

Assume TA1 and TA2 are the computational time taken by both base models A1 and A2,
respectively. Assume the meta learner needs overhead of TM and the recommendation layer
needs O(k) to retrieve recommendations based on the output classification, where k is the
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number of recommendations. We assume a linear search algorithm for recommendations
extraction. The overall computational complexity of the E2DR model is computed as the
maximum of TA1 and TA2 in addition to the overhead of concatenation and recommendation
retrieval, as shown in Equation (1).

TE2DR = O(Max(TA1, and TA2)+ TM +O(k) (1)

4.4. Adopted Base Model Architectures

All adopted architectures use CNNs, a deep learning model that learns from spatial
features of images by creating feature maps using filters and kernels (sliding windows).
Many variations of CNNs have been studied recently to detect driving postures and actions.
The models adopted in this paper are among the highest-performing CNN models. For all
models, we used a learning rate of 0.001 and Categorical Cross Entropy as the loss function.
The models are explained in detail in Section 3.

ResNet50 Model: When building the CNN model, the classification top of the ResNet50
Model (Figure 6), which was originally designed to classify 1000 classes [45], was dropped
from the network to adapt the new CNN architecture to the dataset used that included
only 10 classes. To avoid the problem of overfitting, a drop-out layer was added, and
performance on the validation set was observed after every epoch. The hyperparameters,
such as batch size, learning rate, and the number of neurons, were adjusted to optimize the
model’s performance and enhance the model’s generalizability. We used different batch
sizes: 128, 64, 32, and 16 to understand the significance of selecting the batch size as well as
its effect on the network, with 32 as the best performing batch size.

 
Figure 6. ResNet50 Architecture.

VGG16 Model: The VGG16 model (Figure 7) is among the largest models with many
parameters. The padding is 1 pixel for 3 × 3 convolutional layers to preserve the spatial
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padding after undergoing convolution. The five-max pooling layers carry out the spatial
pooling that follows some convolutional layers [46]. The max pooling is applied through a
2 × 2 pixel widow that has a stride value of 2. The same filter size is applied several times,
allowing the network to represent complex features [47]. This “blocks” concept became
more common after VGG was introduced [46]. As with the ResNet50, the classification
layer (top layer) is adapted to the used dataset with 10 classes. The hyperparameter was
chosen to optimize performance and training time with a batch size equals to 32.

Figure 7. Dense net architecture (VGG16).

Inception model: The Inception model (Figure 8) is a widely-used image classification
model with medium complexity. Its continual evolution resulted in the creation of multiple
versions of the model. The one used in the experiments is the third version of the network,
which has similar parameters to the ResNet50 model discussed earlier. The batch size equals
32, and the model is trained for 5 epochs. The model uses smaller convolutions which
can be significant in decreasing computational time. In addition, factorizing convolutions
reduces the number of parameters. Therefore, the Inception model has a lower training
time compared to the ResNet50 and VGG16 models.

MobileNet model: we used the MobileNet architecture (Figure 9) to classify drivers’
actions to examine its performance, considering it is the smallest state-of-the-art image
classification network in terms of size and number of parameters. The main difference
compared to other models is that MobileNet uses a 3 × 3 depth-wise convolution and
1 × 1 point-wise convolution instead of the traditional 3 × 3 convolution layer in most
CNN models. The dense network is similar to the ResNet and Inception model networks
discussed earlier. The batch size is 32, and the model was trained for 5 epochs. The top
layer was removed from the network as with other models to modify the classifications
according to the dataset used.
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Figure 8. The Inception Model Architecture.

 
Figure 9. Model Architecture (MobileNet).
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4.5. Recommendations

Adding a recommendation after the classification of each class can be a great improve-
ment to the distracted driver detection implementations. In most cases, the best action to
consider, especially in driving, is as easy as keeping the driver’s focus on the road with no
distraction. Reminding drivers is the best action to consider avoiding losing their attention
during driving. An alert system can be effective with alternatives and actions to remind
drivers of options to ensure their safety, especially drivers that need to take an important
phone call or send an urgent text. In the case of autonomous vehicles, the recommendations
can be sent to the vehicle to perform the best course of action. However, this is limited by
the technology available in the vehicle. Table 2 provides the list of recommended actions as
alertness signals to the driver based on the class of distracting activities while driving. The
category of the distracting activities is retrieved from the ensemble classification layer in
the E2DR model.

Table 2. Recommendations for distracted drivers.

Class Number Class Recommendation

C0 Safe driving -
C1 Texting—Right “Please avoid texting in all cases or make a stop”
C2 Talking on the phone—Right “Please use a hands-free device”
C3 Texting—Left “Please avoid texting in all cases or make a stop”
C4 Talking on the phone—Left “Please use a hands-free device”
C5 Adjusting Radio “Please use steering control”
C6 Drinking “Please keep your hands at the steering wheel or make a stop”
C7 Reaching Behind “Please keep your eyes on the road make a stop”
C8 Hair and Makeup “Please make a stop”
C9 Talking to passenger “Please keep your eyes on the road while talking”

5. Experimental Analysis and Results

5.1. Dataset

The dataset used in the experiment is the State Farm Distracted Drivers dataset [48].
There are 22,424 images of drivers in distracted positions that can be used for training and
testing. The images in the dataset were taken with the contribution of 26 unique subjects
in different cars (random numbering (i.e., not in consecutive order)). The dataset has
10 classes: safe driving, texting—right, talking on the phone—right, texting—left, talking
on the phone—left, operating the radio, drinking, reaching behind, hair and makeup, and
talking to a passenger. A representation of each class in the dataset is shown in Figure 10.

Figure 10. State Farm Distracted Driver dataset class representation [47].

5.2. Experimental Setup

A MacBook Pro and Google collab (Pro) are used to train and test the models.
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5.3. Preprocessing and Splitting Strategy

The Distracted Driver dataset is ingested, then preprocessed as follows: (1) the images
and the driver_imgs_list.csv file are stored, (2) the images are loaded, converted from
BGR to RGB, and resized to 244 × 244 × 3 as this is the size used by most models and
architectures for transfer learning, (3) the data are split into training, validation, and test
sets; the validation and test set was created based on the subject (Driver ID); the subjects
chosen for validation were: p18, p27, and p39, and the subjects chosen for testing were:
p015, p022, p050, and p056. Finally, the labels were converted into categorical values. As a
result, the training set had 15,963 images, the validation set had 2769 images and the test
set had 3692 images.

5.4. Evaluation Metrics

Precision, Recall, F1 score, and Accuracy [49–54] are the most well-known evaluation
metrics to assess the performance of a classifier. Precision finds pertinent instances among
the gathered instances. It can be defined as the ratio between the True Positives (TP) and
the sum of True Positives and False Positives (FP) as shown in Equation (2).

Precision = (TP)/(TP + FP) (2)

Recall, also known as Sensitivity, is defined as the ratio of True Positives and the sum
of True Positives and False Negatives (FN).

Recall = (TP)/(TP + FN) (3)

F1 score: It is defined as the harmonic mean of Precision and Recall as shown in
Equation (4).

F1 − Score = (2 ∗ Precision × Recall)/(Precision + Recall) (4)

Accuracy finds the correct predictions among the total predictions. It is defined as the
ratio between the sum of True Positives and True Negatives and the sum of True Positives,
False Negatives, True Negatives, and False Negatives.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (5)

5.5. Performance Evaluation: Base Models

The performance of all base models is shown in Table 3. ResNet50 performs best
with the highest accuracy and recall on the test set. The VGG16 performs just as well
as the ResNet50 model, but the training time was significantly longer than ResNet50
and all other tested models since it has many variables. The Inception model had a test
accuracy of 0.83, lower than ResNet50 and VGG16. The Inception model had the highest
loss, and the training time was close to the ResNet50 model. Finally, the MobileNet
had a similar performance to the Inception model with a lower loss and significantly
faster training time. This is because MobileNet is a low-power, low-latency, light model
parameterized to meet the constraints of computational and time resources of various
applications. Choosing which optimum model to use depends on the trade-off between
performance and computational complexity. ResNet50 and VGG16 can be used when
powerful and robust computational resources and flexible time constraints are available.
The MobileNet can be used for faster training and decent accuracy, which is not as good as
VGG16 and ResNet50 but is still a good choice for limited computational resources. The
Inception model did not perform well and lagged other models in most aspects, making
it not favorable compared to the other tested models. Figure 11 shows how each model
performed on the training, validation, and test sets. As shown in Figure 11, all models have
a gradual increase in validation accuracy with the increasing number of epochs except for
the MobileNet model, which has the highest validation accuracy at the third epoch and
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decreases afterwards. Similarly, the loss of all models decreases as epochs increase except
for the MobileNet, which had the lowest loss value at epoch number three, which shows
that the model was overfitting after epoch three. We even increased the number of epochs
up to one, and we observed that the individual baseline models suffered from overfitting
and could not show an increase in performance even when training was continued for
a larger number of epochs. The performance report (Figure 12) shows how each model
performs for each class. All models perform well for classes 1–5 and perform poorly for
class 8, which is “hair and makeup”, because it is a challenging class to be detected and
usually confused with class 7, as shown in the confusion matrices in Figure 13. Moreover,
the data quality for this class might not be on the same level as other classes.

Table 3. Deep learning image classification models performance.

Model Training Accuracy Validation Accuracy Test Accuracy

ResNet 0.89 0.88 0.88
VGG16 0.94 0.86 0.87

Mobile Net 0.88 0.84 0.82
Inception 0.83 0.84 0.83

 

 

 

 

Figure 11. Accuracy and loss graphs for the models on the training and validation sets.
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Figure 12. Performance reports for deep learning models on the test set.

Figure 13. Confusion matrices for the deep learning models.

5.6. The E2DR Performance Evaluation
5.6.1. Settings

In the first layer of the E2DR model, the individual models were trained. Their layers
are executed in parallel (after optimizations) when loaded in the ensemble, so their weights
are not altered during training. Each of the two base models has 10 outputs representing
each class in the dataset. The output of the base models is sent to a concatenation layer,
which is then sent to a dense layer with 10 neurons (equal to the number of classes).
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A SoftMax activation function is used to perform classification. A learning rate of 0.001
and Adam optimizer are used to compile the model with a batch size equal to 32. The loss
function used is the Categorical Cross Entropy loss function. The E2DR was trained for
five epochs similar to base models.

5.6.2. Results and Discussion

The results of the E2DR models showed a remarkable improvement in performance
compared to the individual models. The best performing E2DR model was the stacked
ensemble combination of ResNet and VGG16 with a test accuracy of 92%. The lowest-
performing E2DR model with a test accuracy of 88% was the MobileNet–Inception E2DR
variant, which was also expected, as the base models did not perform very well individually.
The performance of each variant of the E2DR model is shown in Table 4. The improvement
in accuracy was around 5–8%, which is a significant improvement considering that the base
models could not exceed the late 80% in their accuracy. The fact that E2DR models reached
accuracies exceeding 90% proves that the E2DR models effectively improved generalization
compared to the individual base models. Other metrics, such as Precision, Recall, and
F1 scores, showed similar results and improvements to accuracy, which further validates
the model’s performance. The loss function used in all experiments is the Categorical Cross
Entropy function, representing the confidence of predictions made by the model. The loss of
the base models and the E2DR variants were in the same range with a small improvement in
the E2DR models. This is because the classification confidence did not significantly improve,
which means that despite making more correct classifications, which led to an increase in
accuracy, the model did not have high certainty in making those predictions. Although the
ensemble model in [6] achieved a higher performance with the traditional percentage-based
data split, our method provides further credibility as it was tested on completely new data,
which simulates real-world scenarios. This was performed by choosing subjects (Driver
IDs) that are not included in the training set when constructing the validation and test
sets, allowing the model to be tested on data it had not seen before. This approach is
not followed in other implementations. The batch size used when recording the training
duration is 32. The performance and confusion matrix of the highest performing E2DR
model, which includes ResNet50 and VGG16, is presented in Figure 14. When looking
at the performance report of this E2DR variant, the strongest classes from the ResNet50
model were 0 and 6, while the VGG16 performed best for classes 3 and 4. However, after
analyzing the performance report of the E2DR model, our method combined the strong
classes from each model in a single robust model. This is one of the most useful advantages
of the E2DR model, where the model combines the skills and strong points of different
models into one model, allowing the base models to complement each other in terms
of performance. Similarly, Figure 15 shows the performance report and the confusion
matrix of the lowest-performing E2DR variant that uses MobileNet and Inception as base
models. Although it is the lowest-performing variant, it still showed a huge performance
boost compared to the base models’ performance. The E2DR model effectively addressed
the weak points of the Inception model (classes 0 and 7) and MobileNet model (classes
2 and 9) by boosting the classification performance for those classes in the E2DR model.
Comparing the confusion matrices of the base models and the E2DR variants also improves
classification performance, especially for class 8, where the confusion rate with class 7
has decreased compared to the base models. Figures 16–18 visualize the performance
evaluation across different metrics for the base models and the E2DR variants. The E2DR
variants outperform the baseline models measured by the test Accuracy, Precision, Recall,
F1 score, and Loss value, as shown in Figures 16–18. As recorded in Equation (1), the
computational time to fully develop the E2DR models would be the maximum training
duration of the combined base models in addition to the overhead of concatenation and
recommendation retrieval. The execution of the E2DR models after training can be applied
in real time. The additional overhead in training the E2DR models is shown in Figure 19.
It can be observed that there is an average overhead of 7% in using the E2DR models, as
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illustrated in Figure 19. However, due to the limited GPU computational power in the
experimental hardware used as discussed in Section 5.2., we anticipate that this overhead
will be significantly reduced if additional GPUs are used in the training phase. Using the
baseline models, the recognition time of one image is 14.45 ms on average with 15.21 ms
(on average) when using the ensemble E2DR models.

Table 4. E2DR models performance on the test set.

E2DR Model Accuracy Precision Recall F1 score Loss

MobileNet–Inception 0.88 0.89 0.88 0.88 0.55
ResNet50–Inception 0.88 0.89 0.88 0.88 0.47

ResNet50–MobileNet 0.90 0.91 0.9 0.9 0.43
VGG16–Inception 0.90 0.91 0.9 0.9 0.39

VGG16–MobileNet 0.91 0.92 0.91 0.91 0.42
ResNet50–VGG16 0.92 0.92 0.92 0.92 0.37

Figure 14. Best performing E2DR model classification report and confusion matrix.

Figure 15. Lowest performing E2DR model classification report and confusion matrix.
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Figure 16. Accuracy of base models and E2DR models.

 
Figure 17. The Precision, Recall, and F1 score of base models and E2DR models.

 

Figure 18. The Loss of base models and E2DR models.
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Figure 19. Training Time (Proposed E2DR vs. baseline deep learning models).

6. Conclusions and Future Directions

This paper examines different deep learning classification models for distracted driver
classification [55–59] and proposes a model that improves performance and provides rec-
ommendations. We explored the performance of different models: ResNet50, VGG16,
MobileNet, and Inception. All models provided viable means in detecting distracted driver
actions. This paper proposes E2DR, a new model that uses stacking ensemble methods to
improve accuracy, enhance generalization and reduce overfitting. Additionally, a set of
recommendations are added by the model. The highest performing E2DR variant, which
included the ResNet50 and VGG16 models, achieved an accuracy of 92%, while the highest
performing single model was the ResNet50 with 88% accuracy. The lowest-performing
E2DR model was the MobileNet–Inception variant, which achieved an accuracy of 88%,
and the lowest-performing individual model was the MobileNet, with an accuracy of
82%. The accuracy difference between the highest and lowest performing models for
the E2DR models and the individual models shows a significant increase in performance
when using our proposed E2DR model. Other metrics were recorded and presented to
evaluate the classification performance of the tested base models and E2DR variants such
as Recall, Precision, and F1 score, which showed a similar increase in performance. Fur-
thermore, the performance reports and confusion matrices showed that the E2DR models
effectively addressed the weak points of the base models and boosted their classification
performance. The computational complexity when developing the E2DR models from
scratch is considered a limitation. Since computational speed is important in real-time
applications, a light model such as MobileNet can be integrated with ResNet50 or VGG16,
which in our experiment showed a significant boost in performance without adding much
computational complexity.

For future work, the performance of more than two models combined in the stacking
ensemble method can be examined; it was infeasible to test multiple combinations with
the limited computational resources used to conduct the experiments. Furthermore, the
model can be associated with the police departments to fine violators and identify drivers’
actions in case of accidents. The model can also be integrated with face recognition and
alarm systems [60,61] capabilities that can allow the model to be used in a wide range of
applications, such as driver authentication and theft prevention. Finally, the model can
be developed and used in autonomous vehicles to detect critical conditions or situations
that might endanger the driver’s health and safety, such as strokes, heart attacks, and other
sicknesses. The model can recommend the vehicle to ensure the safety and health of the
driver and others.
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Abstract: Speech is a complex mechanism allowing us to communicate our needs, desires and
thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday
life activities that require communication a challenge. This paper studies different parameters of
an intelligent imaginary speech recognition system to obtain the best performance according to the
developed method that can be applied to a low-cost system with limited resources. In developing
the system, we used signals from the Kara One database containing recordings acquired for seven
phonemes and four words. We used in the feature extraction stage a method based on covariance in
the frequency domain that performed better compared to the other time-domain methods. Further,
we observed the system performance when using different window lengths for the input signal
(0.25 s, 0.5 s and 1 s) to highlight the importance of the short-term analysis of the signals for imaginary
speech. The final goal being the development of a low-cost system, we studied several architectures
of convolutional neural networks (CNN) and showed that a more complex architecture does not
necessarily lead to better results. Our study was conducted on eight different subjects, and it is meant
to be a subject’s shared system. The best performance reported in this paper is up to 37% accuracy
for all 11 different phonemes and words when using cross-covariance computed over the signal
spectrum of a 0.25 s window and a CNN containing two convolutional layers with 64 and 128 filters
connected to a dense layer with 64 neurons. The final system qualifies as a low-cost system using
limited resources for decision-making and having a running time of 1.8 ms tested on an AMD Ryzen
7 4800HS CPU.

Keywords: imaginary speech; convolutional neural network; electroencephalography; signal processing;
Kara One database

1. Introduction

Communication is the basis of interpersonal relationships and is one of the most
important ways to connect with other people and to express your needs and feelings.
The most common forms of communication are writing or speaking, but the latter is the
most natural mechanism involved in the transmission of thoughts. This relatively easy to
gain ability is often taken for granted; however, it hides a complex mechanism. Speaking
involves translating thoughts into the desired words and transmitting them with the help
of motor neurons to a large number of muscles and joint components of the vocal tract that
must be positioned differently for each spoken sound. This is why speech takes a large part
of cortical motor homunculus [1].

Unfortunately, there are cases when this ability is lost, or the speech cannot be articu-
lated due to some affections such as cerebral stroke, lock-down syndrome, amyotrophic
lateral sclerosis, cerebral palsy, etc. In order to overcome this dysfunction, a series of
alternative methods were proposed. The purpose of the research in this field was to find an
easy and natural way of communication.

The activity of the brain can be measured using different methods such as electroen-
cephalography (EEG), magnetoencephalography (MEG), electrocorticography (ECoG),
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functional magnetic resonance imaging (fMRI) and stereoelectroencephalography (sEEG).
However, when it comes to developing brain computer interface systems (BCI), the most
common methods for brain activity recording are EEG and MEG due to their considerable
advantages of being non-invasive techniques and more accessible for signal acquisition.
The ECoG signals are also widely used in BCI systems, even though they are invasive. The
major advantage of the ECoG signals is the quality of the brain activity measurements
by recording the signals directly from the cortex, eliminating in this way the attenuation
given by the tissues between the cortex and the electrodes in comparison to EEG. fMRI
signals are harder to acquire and more expensive than EEG and MEG, even though it is
also a non-invasive method. Nevertheless, the best quality of brain activity measurements
is collected using the sEEG technique because the electrodes are implanted deep into the
brain. This method is the least used method for BCI due to the invasive approach.

In our study, we chose to focus on the EEG signals for their advantages in developing
a low-cost, non-invasive portable device.

2. State of the Art

One of the first studies that tried to reconstruct the speech from EEG signals dates
back to 1967 when the scientist Edmond M. Dewan [2] discovered that we can voluntarily
control the alpha wave of the EEG signal. Starting from this point, the scientist used morse
code in his developed system in order to obtain letters and, finally, conduct words.

Later studies also focused on creating words from letters for subjects to silently com-
municate with the computer. For example, in 2000, P. R. Kennedy et al. [3] used implanted
neurotrophic electrodes on patients with amyotrophic lateral sclerosis (ALS) or brain stroke
and obtained a functional system that uses the movement of a cursor as a form of commu-
nication. One of the system paradigms was to form words from letters by moving a cursor
on the monitor and choosing the desired letter. Another similar approach was presented
in [4] that concentrated on finding the trigger of P300 event-related potential (ERT) when
the desired line and column of a matrix with letters and numbers were highlighted. Both
methods work properly; however, these approaches represent an inconvenient way to
communicate since it takes a long time to form a word.

Recent studies focused on finding patterns in EEG signals acquired during imaginary
speaking of words or phonemes rather than finding a trigger, trying to obtain a more
cursive way of communicating the thoughts. One attempt at unspoken speech recognition
was made by Marek Wester in 2006 [5] for his PhD thesis, with results that reached 50%
accuracy in multiple class classification. However, the group later revealed in [6] that the
experiment process favored the results because the signal acquisition protocol assumed to
speak or think the exact stimulus multiple consecutive times, and this accidentally creates
temporal correlation in EEG signals. This was an important discovery in data acquisition
protocol for further created databases.

In 2015, an open-source database acquired by Schunan Zhao and Frank Rudzicz
at the Toronto Rehabilitation Institute was released [7]. The database contains signals
collected from 14 healthy subjects during thinking and speaking of seven phonemes: /iy/,
/uw/, /piy/, /diy/, /tiy/, /m/, /n/ and four words: “pat”, “pot”, “knew”, “gnaw”.
This stimulus was chosen to have a relatively even number of vowels, plosives, and
nasals as well as voiced and unvoiced phonemes. The researchers further created five
binary classification tasks: consonant versus vocals (C/V), presence or absence of nasal
(±Nasal), presence or absence of bilabial (±Bilabial), presence or absence of /iy/ phoneme
(±/iy/) and presence or absence of /uw/ phoneme (±/uw/). In the conducted study, the
researchers computed various statistical features over 10% of the segment windows with
50% overlap, including mean, median, standard deviation, variance, etc. (the details are
specified in Table 1). They used the SVM-quad classifier and obtained maximum accuracy
over the /uw/ phoneme: 79.16% and the minimum accuracy when classifying consonants
versus vocals: 18.08%.
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Later, in 2017, using the same database, the researchers Pengfei Sun and Jun Qin [8]
conducted an experimental evaluation of three neural networks based on EEG-speech (NES)
with the purpose of recognizing all the eleven phonemes. The three neural network models
were: imagined EEG-speech (NES-I), biased imagined-spoken EEG-speech (NES-B) and
gated imagined-speech (NES-G), with the last two introducing the EEG signals acquired
during actual speech. The best results in this multi-classification problem were obtained
using the NES-G network with an overall accuracy of 41.5%.

Another approach for the Kara One database binary task classification was proposed
by Pramit Saha and Sidney Fels at the University of British Columbia [9]. In the developed
study, the researchers used a mixed deep neural network strategy composed of a convolu-
tional neural network (CNN), a long-short term network (LSTM) and a deep autoencoder.
The hierarchical deep neural network used the cross-covariance matrix as the input feature
matrix, with this method of feature extraction aiming to encode the connectivity of the
electrodes. The obtained results increased the overall accuracy of the above binary tasks by
22.5%, achieving an average accuracy of 77.9% across the five known tasks [7].

However, when it comes to multi-classification of the phonemes and words, the results
decrease significantly. In 2018 [10], a group of researchers introduced methods of speech
recognition in their imaginary speech recognition from EEG signals using mel-cepstral
coefficients (MFCC) as feature extraction and SVM classifier for recognition and broke
the ice with an average accuracy of 20.80%—this value rising by 9% over the chance
level. The results slightly improved when using MFCC for feature extraction and CNN
as a classifier in the study [11]. The CNN neural network improved the overall accuracy,
obtaining 24.19%.

Nevertheless, the highest accuracy over the multi-class classification of the Kara One
phonemes and words was also obtained by the researchers from the University of British
Columbia [12]. In their study, the researchers used the cross-covariance matrix (CCV) as
feature extraction and a hierarchical combination of deep neural networks. In the first level
of the final architecture of the classifier, a CNN was used to extract the spatial features from
the covariance matrix. In parallel with CNN, they applied a temporal CNN (TCNN) to
explore the hidden temporal features of the electrodes. Further, the latest fully connected
layers from the CNN and TCNN were concatenated to compose a single feature vector,
which was introduced to the second level of hierarchy consisting of a deep autoencoder
(DAE). In the third level of hierarchy, they introduced the latent vector of DAE into an
extreme gradient boost classification layer. The final neural network was first used to train
the network for all six phonological tasks of Kara One and then to combine the gained
information to further predict individual phonemes from all eleven categories.

Recent studies reported more encouraging results on the multi-class classification
system of imaginary speech recognition. Developing an impressive database of eight differ-
ent Russian words acquired from 270 subjects, the researchers [13] obtained a maximum
accuracy of 85% when classifying the nine collected words and 88% for binary classification.
The results were obtained using the frequency-domain of the signals and were classified
with ResNet18 + 2GRU (gated recurrent unit).

Significant results for the imaginary speech recognition community were also obtained
by using MEG signals. In 2020, Debadatta Dash, Paul Ferrari and Jun Wang [14] conducted a
study based on MEG signals in order to recognize imagined and articulated speech of three
different phrases of the English language. To achieve the final goal, the researchers used
the discrete wavelet transform (DWT) in the feature extraction stage using a Daubechies
(db)-4 wavelet with a seven-level decomposition. Further, they compared artificial neural
networks (ANNs) and different configurations of CNNs. The best results were recorded
using Spatial Spectral Temporal CNN, reaching an accuracy for the specific three classes of
imaginary speech of 93.24%.

ECoG signals were also used for speech recognition and synthesis by Christian
Herff et al. in [15]. The researchers managed to synthesize the vocal signals after analyzing
motor, premotor and inferior frontal cortices and obtained an accuracy of 66.1% ± 6% in
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the correct identification of the word of 55 volunteered subjects. This approach offered
very encouraging results for a real-time system; however, the brain signals were acquired
in articulated speech (not imaginary speech), and the signals were collected using an
invasive method.

Another recent study published in 2022 on ECoG signals for imaginary speech recog-
nition was conducted by Thimotheé Proix et al. [16]. For binary classification using an SVM
classifier, they managed to obtain an accuracy of over 60% for a patient-specific system. In
the feature extraction stage, they used the analytic Morlet wavelet transform. The bands of
interest were theta (4–8 Hz), low-beta (12–18 Hz), low-gamma (25–35 Hz) and broadband
high-frequency activity (80–150 Hz).

An important role in the research community for EEG signal classification was also
taken by the long-short term memory (LSTM) neural networks. LSTM neural networks are
considered an improvement of the recurrent neural networks (RNN) due to the inclusion
of the “gates” in the algorithm. These “gates” have the purpose of resolving the gradient
problem, and they allow more precise control over the information that is kept in its
memory [17]. Considering the highly dynamic behavior of the EEG signals, often the LSTM
networks offered significantly better performance over different applications of EEG signals,
such as emotion recognition, confusion detection and decision-making predictions [18–20].
A great success of LSTM neural networks for articulated speech recognition from EEG
signals was presented in [21] for an automatic speech recognition (ASR) system. The
researchers used MFCC as features and predicted the coefficients using different types of
recognition systems: generative adversarial neural networks (GAN), Wasserstein generative
adversarial neural network (WGAN) and LSTM Regression. The results showed an average
of the root mean square (RMS) of 0.126 for the LSTM regression compared with 0.193 and
0.188 registered for the GAN and WGAN networks, respectively.

The most significant results from the state-of-the-art, regarding the imaginary speech
recognition systems using surface EEG of the Kara One Database are presented in Table 1,
along with the most relevant characteristics of the systems: pre-processing method, feature
extractions and the classifier used.

This paper contains a study of EEG signals with the main purpose of recognizing seven
phonemes and four words acquired during the development of the Kara One database.
Our study was conducted on eight different subjects and is meant to be a subject’s shared
system. By a subject’s shared system, we mean a system that can only be used by subjects
in the database. However, it is not a subject-specific device that would require different
training for each new subject but assumes that only a fine-tuning will be performed when
adding a new subject.

This paper also aims to develop a study of two different features computed over
different windows of a signal. We used as feature extraction the cross-covariance over the
channels in time and frequency domains for data reduction and to encode the variability
of the electrodes during the imaginary speech. This hypothesis is based on the fact that
speaking is a complex mechanism, implying the connectivity of different areas of the brain
during the entire process. We also studied the results obtained after applying a mean filter
over the spectrum band with different window dimensions (3 and 5 samples).

Another study conducted in this paper was based on analyzing three different time-
frames: 0.25, 0.5 and 1 s. Regarding this study, we aimed to determine the best analysis
window dimension for EEG imaginary speech phoneme and word recognition. In a time
series, the statistics of the entire signal is different from the statistics of smaller windows—a
fact that can lead to a significant impact on the final results of the system.

In the second part of the study, we focused on different CNN architectures for feature
classification in order to determine which one fits our data best.
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Table 1. State-of-the-art EEG speech recognition of Kara One database phonemes and words.

Source Task
Pre-Processing

Method
Feature Extraction

Classification
Method

Accuracy

[7]

Imagined speech:
Vocal vs. Consonant (C/V)
Presence of nasal (±Nazal)
Presence of bilabial
(±bilabial)
Presence of /iy/ (±/iy/)
Presence of /uw/ (±/uw/)

Eliminating ocular
artifacts using Blind
Source Separation
(BSS)
Band-pass filter
1–50 Hz

Features of window
10%/50% overlap: mean,
median, standard deviation,
variance, maximum,
minimum, maximum ±
minimum, sum, spectral
entropy, energy, skewness
and kurtosis

SVM-quad;
Leave-one-out

C/V: 18.08%
±Nazal: 63.50%
±Bilabial: 56.64%
±/iy/: 59.60%
±/uw/: 79.16%

[9]

Imagined speech;
Vocal vs. Consonant (C/V)
Presence of nasal (±Nazal)
Presence of bilabial
±bilabial)
Presence of /iy/ (±/iy/)
Presence of /uw/ (±/uw/)

Eliminating ocular
artifacts using Blind
Source Separation
(BSS)
Band-pass filter
1–50 Hz
Subtraction of mean
value from
each channel

Cross-Covariance
Matrix (CCV)

CNN + LTSM +
Deep Autoencoder;
Random shuffled
data in train-
validation-testing:
80-10-10;
Cross-validation
method

C/V: 85.23%
±Nazal: 73.45%
±Bilabial: 75.55%
±/iy/: 73.30%
±/uw/: 81.99%

[10]

Multi-class classification:
/iy/, /uw/, /piy/, /tiy/,
/diy/, /m/, /n/ + “gnaw”,
“knew”, “pat”, “pot”

Band-pass filter
1–50 Hz
Laplacian filter over
each channel
Window 500 ms +
250 overlap
ICA for noise removal

Linear features: mean,
absolute mean, standard
deviation, sum, median,
variance, max, absolute
max, min, absolute min,
max + min, max − min
Non-linear features: Hurst
exponent, Higuchi’s
algorithm of fractal
dimension, spectral power,
spectral entropy, magnitude
and phase
MFCC coefficients

Decision tree;
SVM;
5-fold
Cross-validation;
Patient specific

Multi-class:
MFCC + decision
tree: 19.69%
Linear features +
decision tree:
15.91%
Non-linear features
+ decision tree:
14.67%
MFCC + SVM:
20.80%

[11]

Multi-class classification:
/iy/, /uw/, /piy/, /tiy/,
/diy/, /m/, /n/ + “gnaw”,
“knew”, “pat”, “pot”

Notch filter 60 Hz
Band-pass filter
0.5–100 Hz
Visual analysis of
signals and
eliminating noisy ones

MFCC coefficients

CNN
Random shuffled
data in train-
validation-testing:
80-10-10;

Multi-class
accuracy: 24.19%

[8]

Imagined speech and
spoken EEG signals;
Multi-class classification:
/iy/, /uw/, /piy/, /tiy/,
/diy/, /m/, /n/ + “gnaw”,
“knew”, “pat”, “pot”

Band-pass filter
1–200 Hz,
Subtraction of mean
value from each
channel

Imagined-EEG signals and
phonemes and spoken
EEG signals

NES-G model;
Leave-One-Out

Multi-class
accuracy: 41.5%

[12]

Imagined speech:
Vocal vs. Consonant (C/V)
Presence of nasal (±Nazal)
Presence of bilabial
(±bilabial)
Presence of /iy/ (±/iy/)
Presence of /uw/ (±/uw/)
Multi-class classification:
/iy/, /uw/, /piy/, /tiy/,
/diy/, /m/, /n/ + “gnaw”,
“knew”, “pat”, “pot”

Eliminating ocular
artifacts using blind
source separation
(BSS)
Band-pass filter
1–50 Hz
Subtraction of mean
value from
each channel

Cross-covariance
matrix (CCV)

Three hierarchical
levels:
1. CNN + TCNN
2. DAE
3. Extreme
gradient boost
leave-one-out

C/V: 89.16%
±Nazal: 78.33%
±Bilabial: 81.67%
±/iy/: 87.20%
±/uw/: 85.00%
Multi-class
accuracy (without
phonological
features): 28.08%
Multi-class
accuracy (with
phonological
features): 53.34%

[This study]

Multi-class classification:
/iy/, /uw/, /piy/, /tiy/,
/diy/, /m/, /n/ + “gnaw”,
“knew”, “pat”, “pot”

Notch filter 60 Hz
Visual analysis
of signals

Cross-covariance matrix in
time-domain
Cross-covariance matrix in
frequency-domain
Windows length: 0.25 s,
0.5 s and 1 s

CNN with different
architectures
50%/50% of
windows for
training/testing

Best multi-class
accuracy:
37.06%
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3. Materials and Methods

3.1. Preparing Database

In this paper, we used the Kara One database described in [7]. The database contains
signals acquired from 12 healthy subjects in 14 sessions during rest, speaking and thinking
eleven different stimuli from which seven are phonemes (/iy/, /uw/, /piy/, /tiy/, /diy/,
/m/, /n/) and four are words (“gnaw”, “knew”, “pat”, “pot”). Each prompt was presented
12 times, meaning a total of 132 recorded signals for each subject, except for the subjects
MM05 and P02, with a total of 165 trials.

The signals were acquired following a given protocol in order to obtain repeatability
in the database signals. The protocol started with a 5 s state of rest in which the subject
needed to relax for the next stage. Afterward, the stimulus appeared on the prompt for 2 s,
and the utterance of the prompt was heard by the subject. This was followed by a 5 s stage
in which the subject was instructed to imagine speaking the prompt. Finally, the subject
was also asked to speak the prompt aloud.

Our goal was to identify the imagined speech, so in this paper, we only used the
signals corresponding to the 5 s state of imaginary speaking of the prompt. Next, we
eliminated the first and last 0.5 s of the signal, considering that these intervals correspond
to a transition state, obtaining a 4 s signal in the end.

The signals resulting from the database were visually analyzed by an expert. In the
first step of visual data analysis, it was discovered that six of the fourteen sessions presented
signals with high noises or unattached ground wires. This situation was also discussed
by the developers of the database, Shunan Zhao and Frank Rudzicz, in their paper [7].
Considering that discovery, we discarded all signals from the six contaminated sessions.
Afterward, the expert visually analyzed all signals corresponding to thinking indexes and
eliminated from the study the ones with high noise contamination. After this process of
data analysis, we finally obtained a database with 624 signals to work with during the
study. All signals from the database were collected using the 10-20 system for electrode
positioning. In this paper, we used 62 electrodes. The electrodes and their position in the
10-20 system used are detailed in [7]. Finally, the signals were filtered using a notch filter in
order to remove the 60 Hz power line artifact and all multiples of 60 Hz smaller than the
Nyquist frequency.

3.2. Feature Extraction

In the feature extraction stage, we aimed to analyze the performance of the system
when using the time- versus frequency-domain feature extraction methods for silent speech
recognition. Another comparison study conducted in this stage was based on computing
the features using different timeframes: 0.25, 0.5 and 1 s without overlapping. During this
study, we aimed to find the time window in which the signal is quasi-stationary, but also
contains all the needed information regarding the utterance.

All signals were segmented using these timeframes, and 50% of the timeframes from
each recording were randomly distributed in the training set and 50% in the testing set.

EEG data usually produce a high-dimension time series due to the multiple electrodes.
To decrease the dimension of EEG data, usually a data compression stage is conducted
based on feature selection in order to extract the essential information from the signals [10]
or to reduce the number of channels based on their informational relevance in relation to
the system goal [22]. A new approach to reducing the data dimension of the EEG signals
was presented by Pramit Saha and Sidney Fels in their study [9], where they computed
the cross-covariance between the channels in the time domain in order to encapsulate the
variability of the electrodes. In this study, we also used this technique of feature extraction
and expanded it in the frequency domain.

The cross-covariance between two channels (c1 and c2) was defined in this study as:

Cov
(

Xc1(t), Xc2(t)
)
= E

[[
Xc1(t)− E(Xc1(t)

][
Xc2(t)− E(Xc2(t)

]]
, (1)
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where Xc1(t) represents the EEG signal acquired for channel c1, Xc2(t) is the EEG signal
acquired for channel c2, and E[Xch(t)] represents the expected value (where ch corresponds
to the specific channel c1 or c2) and is computed as:

E(Xch(t)) =
1

W

W−1

∑
i=0

xch
i (2)

The W value of Equation (2) corresponds to the window dimension for which the
features are computed.

The second method of feature extraction analyzed in this paper assumes the transfor-
mation of the time domain series of EEG signals into the frequency domain using the Fast
Fourier Transform (FFT). The Fourier transform is a method used to decompose the signal
into sinus and cosine waves.

The FFT of a channel was computed using the following:

FXch(f) =
n−1

∑
t=0

Xch
t e−

j2πft
n (3)

where Xch
t represents the EEG signal acquired for channel ch.

After computing the signals corresponding to the frequency-domain of desired chan-
nels using Equation (3), we computed the cross-covariance between the Fourier transform
of the channels.

Figures 1 and 2 present examples of a 2D feature matrix with a 62 × 62 dimension, cor-
responding to the time and frequency domain, respectively, for a 0.25 s window timeframe.

Figure 1. Example of a 2D feature matrix computed in the time domain for 0.25 s time window.

Figure 2. Example of a 2D feature matrix computed in the frequency domain for a 0.25 s time window.
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3.3. Classification

Convolutional neural networks (CNN) are powerful networks when applied to images.
They have the power to understand the image content and to extract the deep information
encoded in the input data. Nowadays, many systems are based on this type of neural net-
work. CNN showed a great success in understanding biomedical images for classification,
segmentation, detection and localization [23] for different types of input images, offered
a great false prediction rate in seizure prediction systems based on EEG signals [24], and
is widely used in BCI systems for imaginary motion recognition [25–27] and assisting in
the diagnosis of Parkinson’s disease [28]. In the imaginary speech recognition domain, the
CNN was a great resource for EEG signal classification [9,27].

The great success of CNN is due to the design of the hidden convolutional layers
working as a decoder for the disguised essential information of the two-dimension matrix
offered as input. It has the power to extract features and feed them to the dense layers
designed to classify these computed features. The component of a CNN starts with an input
layer that receives the given data. Then, it continues with the hidden layers corresponding
to the convolutional layers in the first phase, which interprets the data received from the
input. The output of the last convolutional layer is flattened and introduced into one or
multiple dense layers having the purpose of learning the extracted features. Finally, the
neural network contains an output layer, which usually has the role of classifying the data
into the desired classes [29–31]. A general CNN block diagram is presented in Figure 3.

Figure 3. Block diagram of general convolutional neural networks.

In our research, we tested different architectures of the CNN neural network with the
purpose of finding the one offering the best performance with respect to the complexity,
memory, and the running time. We started with a low complexity architecture with one
convolutional layer and one dense layer, and we increased the complexity up to three
convolutional layers and one dense layer, having a larger number of filters and neurons.

In the training phase, we used a learning rate of 0.0001, categorical cross-entropy
as loss and Adam as optimizer. We divided the training set into 75% training and 25%
validation and used k-fold cross-validation in order to obtain a more accurate performance
result. Figure 4 presents an example of the architecture used in the classification stage,
with two convolutional layers of 64 and 128 filters, respectively, and one dense layer with
64 neurons.
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Figure 4. Block diagram of the CNN architecture used in the classification stage.

4. Results

During the development of the system, we aimed to study five different variables
capable of influencing the performance of the imaginary speech recognition. Our study
of system performance analysis included: (a) the influence of CNN hyperparameters;
(b) modification of the network architecture; (c) the impact of the different activation
functions that can be used in the CNN; (d) different features capable of encoding the speech
hidden information by computing the covariance of the signals over the channels in time
and frequency (B0) domain; (e) different window dimensions for the feature extraction
method; (f) average filter of three (B3) and five (B5) dimension kernels over the computed
spectrum of the data.

For further simplification of displaying the results of different architecture models,
we used the abbreviation explained in Table 2. As an example, the architecture Conv2D
(64, 128, 64)-Dense (64) corresponds to a CNN network with three convolutional layers,
with 64, 128, and 64 filters, respectively, and one dense layer with the number of neurons in
the layer equivalent to 64. For all architectures, after the dense layer was introduced, the
output layer with 11 neurons corresponded to the 11 different classes.

Table 2. Convolutional Neural Network architecture abbreviations.

Architecture Abbreviation

Conv2D (64)-Dense (64) C64/D64
Conv2D (64, 64)-Dense (64) C64-64/D64
Conv2D (128)-Dense (128) C128/D128
Conv2D (64, 128)-Dense (64) C64-128/D64
Conv2D (128, 64)-Dense (64) C28-64/D64
Conv2D (64, 128, 64)-Dense (64) C64-128-64/D64
Conv2D (64, 128, 64)-Dense (128) C64-128-64/D128
Conv2D (128, 256, 128)-Dense (128) C128-256-128/D128
Conv2D (512, 256, 128)-Dense (128) C512-256-128/D128

The Kara One database does not show a significant class imbalance. The number of
the samples from each class starts from a minimum of 83 (phoneme \m\) and reaches
a maximum of 95 (word “pot”) out of a total of 993. The a priori probability rises from
0.083 for \m\ phoneme to 0.095 for the word “pot”.

4.1. Comparison of Activation Function: Tanh vs. Relu

The results obtained over the test set using different architectures of the CNN and
different activation functions for the convolutional layers (hyperbolic tangent vs. rectified
linear unit) using the covariance of the spectrum without an average filter (B0) computed
over 0.5 s windows are detailed in Table 3.
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Table 3. Results obtained using different CNN architectures for the covariance of spectrum features
computed over a 0.5 s window comparing the hyperbolic tangent activation function of convolutional
layers with the rectified linear unit.

Data characteristics:
Features: Covariance
of Spectrum Window:
0.5 s Bands: B0

Convolution Layer—Tanh
Dense Layer—Tanh

Output Layer—Softmax

Convolution Layer—Relu
Dense Layer—Tanh

Output Layer—Softmax

Loss Accuracy Loss Accuracy

C64/D64 1.9344 ± 0.022 0.2974 ± 0.003 1.7929 ± 0.015 0.3465 ± 0.006

C64-64/D64 1.9549 ± 0.020 0.2939 ± 0.007 1.9581 ± 0.135 0.3698 ± 0.008

C128/D128 1.9146 ± 0.059 0.3169 ± 0.004 1.7818 ± 0.028 0.3471 ± 0.008

C64-128/D64 1.9459 ± 0.020 0.2932 ± 0.004 1.9514 ± 0.078 0.3758 ± 0.004

C128-64/D64 1.9374 ± 0.033 0.2954 ± 0.003 2.0107 ± 0.063 0.3697 ± 0.002

C64-128-64/D64 1.9634 ± 0.052 0.2901 ± 0.008 2.1169 ± 0.034 0.3747 ± 0.001

C64-128-64/D128 1.9882 ± 0.105 0.3035 ± 0.006 2.3308 ± 0.042 0.3693 ± 0.001

C128-256-128/D128 2.0120 ± 0.105 0.2989 ± 0.011 2.4393 ± 0.107 0.3705 ± 0.003

4.2. Comparison of Features: Time vs. Frequency

Further in our study, we also compared the differences between the features computed
over the signal in the time and frequency domains. The results obtained using different
tested architectures are presented in Table 4. It is easy to observe a significant accuracy
decrease when using time-domain cross-covariance versus frequency-domain features.
The difference between the accuracy of the two feature extraction methods increases to
approximately 16%, with the accuracy of frequency features reaching a maximum of
37% and the maximum accuracy of the time-domain features decreasing to 21%. These
differences imply that information of speech is more easily decoded by the neural network
in the frequency domain rather than in the time domain. The main advantage of the
covariance in the frequency domain is given by the elimination of the possible delays of the
stimulus propagation over the channels, starting from the source activation of the specific
imaginary articulation of the phoneme.

A study of different architectures of the neural network shows (Figure 5) that a CNN
with three convolutional layers with 64 and 128 filters and connected with a dense layer
with 64 neurons works best for the frequency-domain features (the features that provided
the best accuracy rate), obtaining a performance of 37% accuracy. When it comes to the
time domain, the best results were obtained using less complex architectures, and the best
performance of the system was recorded using only one convolutional layer with 64 filters
and one dense layer with 64 neurons.
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Table 4. The results obtained after computing the different feature extractions: in the time domain
and frequency domain over windows of 0.25 s.

Data Characteristics:
Activation Functions:
Relu-Tanh-Softmax
Window: 0.25 s

Time Frequency

Loss Accuracy Loss Accuracy

C64/D64 2.3402 ± 0.027 0.2140 ± 0.001 1.7929 ± 0.015 0.3465 ± 0.006

C64-64/D64 2.4682 ± 0.075 0.2128 ± 0.003 1.9581 ± 0.135 0.3698 ± 0.008

C128/D128 2.5216 ± 0.155 0.2115 ± 0.002 1.7818 ± 0.028 0.3471 ± 0.008

C64-128/D64 2.3019 ± 0.031 0.2051 ± 0.001 1.9514 ± 0.078 0.3758 ± 0.004

C128-64/D64 2.5804 ± 0.324 0.2071 ± 0.010 2.0107 ± 0.063 0.3697 ± 0.002

C64-128-64/D64 2.5197 ± 0.184 0.2038 ± 0.004 2.1169 ± 0.034 0.3747 ± 0.001

C64-128-64/D128 3.2871 ± 0.402 0.2039 ± 0.002 2.3308 ± 0.042 0.3693 ± 0.001

C128-256-128/D128 3.0037 ± 0.571 0.1981 ± 0.001 2.4393 ± 0.107 0.3705 ± 0.003

 

Figure 5. Accuracy for different architectures with a 0.25 s time window.

The mean confusion matrices for all k-folds for the time and frequency features are
presented in Figure 6. In both images, we can see a distinction between phonemes and
words. The system has a difficult time recognizing one phoneme against the other but
makes a clearer distinction between them and the words. We can also observe that phoneme
\diy\ is often confused with similar phonemes such as \iy\ and \piy\. It can also be seen
that there is no significant imbalance in the recognition of any of the phonemes and words;
however, the words have a higher accuracy rate of recognition.
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Figure 6. Mean of k-fold confusion matrix in the time and frequency domains.

4.3. Comparison of Time Window Length: 0.25, 0.5 and 1 s

After we concluded that the system works better with a rectified linear unit as an
activation function for the convolutional layers in the frequency domain, we tested the
network with different window lengths for the input data. The results are presented in
Table 5.

Table 5. Comparison of different window length (0.25, 0.5, 1 s) results for the covariance of spectrum
features without an average filter (B0).

Data Characteristics:
Features: Covariance of
Spectrum Activation
Functions: Relu-Tanh-
Softmax Bands: B0

0.25 s 0.5 1 s

Loss Accuracy Loss Accuracy Loss Accuracy

C64/D64 1.7929 ± 0.015 0.3465 ± 0.006 1.9221 ± 0.023 0.3243 ± 0.005 2.0960 ± 0.033 0.2808 ± 0.011

C64-64/D64 1.9581 ± 0.135 0.3698 ± 0.008 1.9642 ± 0.019 0.3514 ± 0.004 2.2721 ± 0.087 0.2939 ± 0.007

C128/D128 1.7818 ± 0.028 0.3471 ± 0.008 1.8257 ± 0.017 0.3400 ± 0.004 2.0517 ± 0.025 0.2857 ± 0.004

C64-128/D64 1.9514 ± 0.078 0.3758 ± 0.004 1.9957 ± 0.065 0.3588 ± 0.003 2.1825 ± 0.087 0.2980 ± 0.002

C128-64/D64 2.0107 ± 0.063 0.3697 ± 0.002 1.9903 ± 0.053 0.3620 ± 0.003 2.3020 ± 0.126 0.2964 ± 0.006

C64-128-64/D64 2.1169 ± 0.034 0.3747 ± 0.001 2.1737 ± 0.080 0.3566 ± 0.002 2.3971 ± 0.091 0.2922 ± 0.003

C64-128-64/D128 2.3308 ± 0.042 0.3693 ± 0.001 2.2874 ± 0.212 0.3457 ± 0.007 2.6291 ± 0.135 0.2938 ± 0.013

C128-256-128/D128 2.4393 ± 0.107 0.3705 ± 0.003 2.4186 ± 0.142 0.3504 ± 0.005 2.6111 ± 0.325 0.2925 ± 0.006

C512-256-128/D128 2.5051 ± 0.086 0.3680 ± 0.005 2.1755 ± 0.101 0.3136 ± 0.007 2.6600 ± 0.2066 0.2871 ± 0.008

The 4 s EEG signal containing imaginary speech includes multiple imaginations of
the specific stimulus. It is hard to precisely determine the moment containing the desired
signal in the whole four seconds of recording, which is why we chose to segment the signal
over different window lengths and observe the system behavior. Table 5, as well as Figure 7,
shows that the best analysis window is 0.25 s, reaching an accuracy of 37%. Looking at
the 0.5 and 1 s window lengths, we can observe that the 0.5 s offered an accuracy close to
the 0.25 s window, meaning that the signals are still easier to decode compared to the 1 s
window in which the accuracy significantly dropped to 29%. The mean confusion matrices
for the 0.5 s window and 1 s window are presented in Figure 8.
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Figure 7. Maximum accuracy for the analyzed windows.

 

Figure 8. Mean of k-fold confusion matrix in the frequency domain for 0.5 s and 1 s windows.

4.4. Comparison of Mean Filter Kernel: B0, B3 and B5

Another study conducted in this paper focused on applying different average filter
lengths over the spectrum before computing the covariance matrix. We tested two different
filter lengths: three samples and five samples. We will further refer to the spectrum without
a mean filter as B0, the spectrum with an applied mean filter length of three samples as B3,
and the spectrum with an applied mean filter length of five samples as B5. The obtained
results can be seen in Table 6. The main motivation for this approach was developed
on the assumption that the analysis of multiple values of the spectrum, as opposed to
analyzing only the local values, can offer a better perspective of the frequency distribution
regarding different classes. This assumption did not stand up because, as can be seen in
Table 6 and in Figure 9, the better accuracy results were obtained using the unmodified
spectrum. These results imply that every frequency is important for the phoneme and word
recognition problem.
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Table 6. Comparison between the results obtained after applying different kernels for the average
filter of the spectrum. The analysis window is 0.5 s.

Data Characteristics:
Features: Covariance of
Spectrum Activation
Functions: Relu-Tanh-
Softmax Window: 0.25 s

B0 B3 B5

Loss Accuracy Loss Accuracy Loss Accuracy

C64/D64 1.7929 ± 0.015 0.3465 ± 0.006 2.0423 ± 0.011 0.2864 ± 0.003 2.0479 ± 0.023 0.2809 ± 0.003

C64-64/D64 1.9581 ± 0.135 0.3698 ± 0.008 2.4141 ± 0.185 0.2837 ± 0.007 2.3275 ± 0.023 0.2841 ± 0.003

C128/D128 1.7818 ± 0.028 0.3471 ± 0.008 2.0203 ± 0.041 0.2886 ± 0.004 1.9876 ± 0.025 0.2825 ± 0.003

C64-128/D64 1.9514 ± 0.078 0.3758 ± 0.004 2.2003 ± 0.121 0.2838 ± 0.003 2.3150 ± 0.119 0.2863 ± 0.002

C128-64/D64 2.0107 ± 0.063 0.3697 ± 0.002 2.2907 ± 0.150 0.2771 ± 0.005 2.3421 ± 0.215 0.2804 ± 0.005

C64-128-64/D64 2.1169 ± 0.034 0.3747 ± 0.001 2.5577 ± 0.244 0.2755 ± 0.003 2.5767 ± 0.171 0.2786 ± 0.007

C64-128-64/D128 2.3308 ± 0.042 0.3693 ± 0.001 2.4874 ± 0.226 0.2753 ± 0.001 2.5579 ± 0.3141 0.2707 ± 0.007

C128-256-128/D128 2.4393 ± 0.107 0.3705 ± 0.003 2.9467 ± 0.197 0.2758 ± 0.006 2.8533 ± 0.259 0.2707 ± 0.006

 

Figure 9. Maximum accuracy for the feature extraction methods analyzed.

4.5. Performance Evaluation Metrics

For a better understanding of the recorded results and the system performance, we
introduced the computed values for all extracted features: the balanced accuracy, kappa
and recall [32]. The obtained values are presented in Table 7.

Table 7. The obtained result for all features of balanced accuracy, kappa and recall.

Time—Window Length
0.25 s

Frequency—Window
Length 0.25 s

Frequency—Window
Length 0.5 s

Frequency—Window
Length 1 s

Balanced accuracy 0.2131 ± 0.001 0.3749 ± 0.004 0.3615 ± 0.003 0.2980 ± 0.001

Kappa 0.1349 ± 0.001 0.3132 ± 0.004 0.2980 ± 0.004 0.2278 ± 0.002

Recall 0.2140 ± 0.001 0.3750 ± 0.004 0.3620 ± 0.003 0.2980 ± 0.002

According to Table 7, the balanced accuracy and recall are not significantly different
from the computed accuracies for the features, and only the kappa score dropped to a value
of approximately 0.7 for all features.
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4.6. Complexity and Memory Measurements

This paper aimed to develop a low-cost system working with limited resources. To
achieve this goal, we tested different architectures of CNN networks for different types of
features and windows. This research helped us to determine the best CNN architecture,
features and window frame that can be implemented on a device with limited resources.

Given the application, the most significant resource consumer is the neural network.
For the CNN neural network architecture, the complexity of the algorithm can be estimated
as O(k × N × M × nFL−1 × nF L), where k is the kernel matrix, N is the number of
lines of the input matrix, M is the number of columns of the input matrix, nFL−1 is the
number of filters from the anterior CNN layers and nFL is the number of filters from the
current layer. In our case, the input matrix has the same number of lines and columns
(M = N = 62), and we can write the complexity as O(k × N2 × nFL−1 × nF L). The details of
the complexity, memory and time for the feature extraction stage and the best performance
CNN architecture are presented in Table 8.

Table 8. Detailed complexity, memory and time computation for the system with the best results.

System Stages Complexity Memory Time (s)

Feature
Extraction

FFT O(NxMlogM) 968 KB 3.12 × 10−4

COV O(N2) 88 KB 4.84 × 10−4

CNN

Conv2D-64 O(k × N2 × 64) 976 KB

1.7 × 10−3Conv2D-128 O(k × N2 × 64 × 128) 2.81 MB

Dense-64 O(k × N2 × 128 × 64) 7.8 MB

Dense-11 O(64 × 11) 748 B

Using an AMD Ryzen 7 4800HS CPU with 16 GB memory RAM and 2.9 GHz clock fre-
quency, we managed to obtain an average time per recognized input vector of 1.8 × 10−3 s
starting from the feature extraction stage up to the decision making. The time was estimated
(Table 8) using the characteristics of the best system in terms of performance, meaning
computing the output for the 0.25 s window vector with the C64-128/D64 neural network
architecture (Table 5).

A comparison of the methods in terms of execution time, as can be observed in Table 9,
show that there are no significant differences between the execution of the different features;
however, there is approximately an order of magnitude between the best performance
architectures and the most complex one tested.

Table 9. Execution time for all tested architectures and features.

Architecture

Features

Time—
Window Length

0.25 s

Frequency—
Window Length

0.25 s

Frequency—
Window Length

0.5 s

Frequency—
Window Length

1 s

C64/D64 5.4 × 10−4 6.4 × 10−4 6.3 × 10−4 7.3 × 10−4

C64-64/D64 1.1 × 10−3 1.2 × 10−3 1.2 × 10−3 1.3 × 10−3

C128/D128 1.5 × 10−3 1.8 × 10−3 1.6 × 10−3 1.7 x10−3

C64-128/D64 1.7 × 10−3 1.8 × 10−3 1.9 × 10−3 1.9 × 10−3

C128-64/D64 2 × 10−3 2.1 × 10−3 2.2 × 10−3 2.3 × 10−3

C64-128-64/D64 2.7 × 10−3 2.8 × 10−3 2.9 × 10−3 2.9 × 10−3

C64-128-64/D128 2.8 × 10−3 2.9 × 10−3 3 × 10−3 3.1 × 10−3

C128-256-128/D128 9.2 × 10−3 10−2 10−2 8.9 × 10−3
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5. Discussion

This paper aims to compare different parameters of an intelligent imaginary speech
recognition subject’s shared system to observe the performance variation when using
different mechanisms of feature extraction and different architectures of CNN in the classi-
fication stage.

We used the Kara One database in our study, designed and conducted at the Toronto
Rehabilitation Institute by Shunan Zhao and Frank Rudzicz [7], which contains signals
acquired during speech and imaginary speech of seven phonemes and four words.

During the recognition process, we pre-processed the signals, and after the visual
inspection, eliminated all data from subjects containing electrodes with bad connectivity
and the signals with high noise. Furthermore, in the pre-processing stage, we applied
a notch filter to remove the 60Hz power line artifact and all multiples of 60Hz smaller
than the Nyquist frequency. It is worth mentioning that, in our study, we kept all high-
frequency information.

5.1. Time vs. Frequency Features

After the pre-processing stage, we went through a feature extraction stage where we
focused on comparing the feature extraction based on cross-covariance over the channels
in the time and frequency domains. The cross-covariance method is based on the fact
that speech is a complex mechanism, requiring thinking of the speech stimulus, preparing
the vocal tract for the actual vocalization and giving the signal to all components of the
vocal tract involved in the actual speaking of the stimulus. For different stimuli, there are
different positions and components involved in the process. This mechanism demands
the activation of multiple areas of the brain that communicates in a very short time. The
connections of different areas are best highlighted by the cross-covariance between the
channels. The results presented in Table 4 show that there is a considerable difference
between the results obtained using time-domain feature extractions versus frequency-
domain feature extractions. When using frequency-domain features, the accuracy increases
by approximately 16% to a value of 0.37 compared to 0.21 obtained when using features in
the time-domain. This difference is given by the fact that the signal spectrum eliminates
the delays of the stimulus propagation over the channels, starting from the activation focus
of the specific imaginary articulation of the phoneme.

5.2. Time-Window Analysis

Another study conducted in this paper aims to compare different sizes of the analysis
window in order to observe the signal statistics of different time gaps. During this study,
we aimed to find the time window in which the signal is quasi-stationary but also contains
all the needed information regarding the utterance. We compared three analysis window
sizes: 0.25, 0.5 and 1 s. The obtained results can be seen in Table 5. Comparing the window
dimensions, we observed that the best time window length was 0.25 s. The accuracy of the
results is significantly higher when using 0.25 s, increasing to a value of 0.37, compared to
0.29 when using a 1 s window. The difference between the accuracy of the 0.25 s window
and the 0.5 s window is 1%, which is not very significant. This means that for a 0.5 s
window, the utterance of the phonemes and words are still captured by the frame.

Analyzing the results in Table 5 also shows that the maximum accuracy for all time-
frame windows was obtained using a low-complex architecture for the CNN.

5.3. Mean Filter over the Spectrum Analysis

During our research for improvement, we also tried to average the spectrum of the
signals with a filter of three and five samples. The main motivation for this approach
was developed on the assumption that the analysis of multiple values of the spectrum,
compared to analyzing only the local values, can offer a better perspective of the frequency
distribution regarding different classes. The details of this research are presented in Table 6.
As can be seen, applying an average filter over the spectrum did not increase the accuracy;
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on the contrary, the accuracy dropped by approximately 9% when using filters with three
and five samples.

5.4. CNN Architectures Analysis

In our final study, we tested different architectures for the CNN network to observe the
system performance and shape the way for the future development of similar systems. We
concluded that when it comes to the frequency-domain features (the features that provided
the best accuracy rate), the best architecture is two convolutional layers with 64 and 128
filters connected to a dense layer with 64 neurons. More complex architectures do not
improve the performance of the system, and on the contrary, the performance decreases.

6. Conclusions

This paper analyses the EEG signals for imaginary speech recognition of seven
phonemes and four words. To accomplish our purpose, we developed an intelligent
subject’s shared system using a processing chain applied to the Kara One database [7]. The
first stage in the analysis chain started with pre-processing the input signals in order to
obtain better quality data. Further in the feature extraction stage, we compared the results
obtained after computing the cross-covariance over the channels in the time and frequency
domains. During our research, we also studied different time window lengths: 0.25, 0.5
and 1 s to find the time window in which the signal is quasi-stationary but also contains all
the information needed regarding the utterance. We also studied the system behavior when
applying a mean filter with kernel sizes of three and five samples assuming that the analysis
of multiple values of the spectrum, compared to analyzing only the local values, can offer
a better perspective of the frequency distribution regarding different classes. Finally, in
the classification stage, we tested multiple architectures of the CNN neural network to
determine the best performance of the system.

The best results were obtained using the cross-covariance over channels in the fre-
quency domain using a 0.25 s window length. The best performance of the system was
recorded when using a CNN with two convolutional layers and 64 and 128 filters, con-
nected to a dense layer with 64 neurons. With these system characteristics, we achieved
an accuracy of 37%, a significant improvement compared to using the Mel-Cepstral Coef-
ficients for feature extraction, where the best accuracy recorded was 20.80% when using
an SVM as the classifier [10] and 24.19% when using a CNN as the classifier [11]. During
our study, we also showed that cross-covariance in the frequency domain offers a better
understanding of the imaginary speech, reporting a better accuracy in comparison to the
study made by Pramit Saha, Muhammad Abdul-Mageed and Sidney Fels in [12] where,
using the cross-covariance in time and hierarchical deep learning (without phonological
features), the best reported accuracy was 28%. However, when using phonological features,
the accuracy increased to 54%, but this compromised the complexity and the memory of
the system and is more difficult to implement in a low-complexity portable device.

The main limitation of our proposed system includes the acquisition of new data for
each new subject before being able to wear the system. The collected data must be included
in the database for which a fine-tuning of the network training must be applied. However,
this limitation can be overcome in time by enriching the database with new examples.

In this study, we proposed a feature extraction method based on cross-covariance in
the frequency domain that offered a significant improvement for the system performance
compared to features computed in the time domain. We are confident that these features can
be further exploited to obtain even more precise systems for imaginary speech recognition.

In this paper, we achieved our goal of highlighting the importance of using frequency
in the feature extraction stage in contrast to the time domain. The advantage of using the
frequency domain is given by the elimination of the delays caused by the propagation of
the stimulus from one channel to another during the imaginary articulation of the speech.
We also showed that a quicker analysis of the signal offers a better understanding of the
thinking speech.
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Finally, we can say that the proposed system qualifies as a portable, low-cost system
using limited resources for decision making. The running time for the best performance
CNN architecture was 1.8 ms tested on an AMD Ryzen 7 4800HS CPU.
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Abstract: Since February 2020, the world has been engaged in an intense struggle with the COVID-19
disease, and health systems have come under tragic pressure as the disease turned into a pandemic.
The aim of this study is to obtain the most effective routine blood values (RBV) in the diagnosis and
prognosis of COVID-19 using a backward feature elimination algorithm for the LogNNet reservoir
neural network. The first dataset in the study consists of a total of 5296 patients with the same number
of negative and positive COVID-19 tests. The LogNNet-model achieved the accuracy rate of 99.5% in
the diagnosis of the disease with 46 features and the accuracy of 99.17% with only mean corpuscular
hemoglobin concentration, mean corpuscular hemoglobin, and activated partial prothrombin time.
The second dataset consists of a total of 3899 patients with a diagnosis of COVID-19 who were treated
in hospital, of which 203 were severe patients and 3696 were mild patients. The model reached the
accuracy rate of 94.4% in determining the prognosis of the disease with 48 features and the accuracy
of 82.7% with only erythrocyte sedimentation rate, neutrophil count, and C reactive protein features.
Our method will reduce the negative pressures on the health sector and help doctors to understand
the pathogenesis of COVID-19 using the key features. The method is promising to create mobile
health monitoring systems in the Internet of Things.

Keywords: COVID-19; biochemical and hematological biomarkers; routine blood values; feature
selection method; LogNNet neural network; Internet of Medical Things; IoT

1. Introduction

The new severe acute respiratory syndrome coronavirus (SARS-CoV-2), first identified
in 2019, has rapidly affected the world and caused a pandemic [1,2]. The disease, identified
as coronavirus 2019 (COVID-19), can cause severe pneumonia and fatal acute respiratory
distress syndrome (ARDS) [3–6]. While the disease may be asymptomatic, severe ARDS is
thought to be caused by an inflammatory cytokine storm that may be encountered during
the disease period [6,7]. The pathogen can cause a serious respiratory disorder that requires
special intervention in intensive care units (ICUs) and, in some cases, may cause death [6,7].
Moreover, the symptoms of COVID-19 induced by the new SARS-CoV-2 are difficult to
distinguish from known infections in the majority of patients [6,8,9].

Previous studies have demonstrated the clinical importance of changes in routine
blood parameters (RBV) in the diagnosis and prediction of prognosis of infectious dis-
eases [1–4,10–12]. Similarly, many abnormalities have been reported in the peripheral blood
of patients infected with COVID-19 [6,7,11]. However, Jiang et al. [13] and Zheng et al. [14]
emphasized that information on early predictive factors for particularly severe and fatal
COVID-19 cases is relatively limited and further research is needed. Huyut et al. [6] and
Lippi et al. [15] described that the rapid spread of disease in pandemics overwhelms health
systems and raises concerns about the need for intensive care treatment [6,15]. In addi-
tion, the detection of severe and mild patients in COVID-19 is an important and clinically
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difficult process in terms of morbidity and mortality [6]. Despite these clinical features of
COVID-19, studies with large samples representing laboratory abnormalities of patients
are needed [3,16]. Therefore, the relationship between COVID-19 disease and RBVs should
be supported by large datasets.

Studies have sought how to determine whether patients who are likely to benefit
from supportive care and early intervention are at risk and how to identify them [6,11].
While new tests are being developed for the diagnosis of COVID-19, Banerjee et al. [8]
stated that these applications require specialized equipment and facilities. Estimating the
diagnosis and prognosis of diseases without using advanced devices and methods can help
with various problems, such as patient comfort, as well as health system and economic
inefficiencies. For this purpose, Beck et al. [17] and Xu et al. [18] have reported that more
economical and faster alternative methods are being developed to assist clinical procedures.

Uncertainties in the routine blood values of COVID-19 patients, in addition to diffi-
culties in diagnosis and treatment have increased the interest in machine learning (ML)
and artificial intelligence (AI) approaches. Artificial intelligence models have the power
to reveal hidden relationship structures between features [19]. Artificial intelligence ap-
proaches are frequently used in real-time decision making to reduce drug costs, improve
patient comfort, and improve the quality of healthcare services [5,19].

There are several artificial intelligence methods to predict the diagnosis and mortality
of COVID-19 [4,17]. Most of these studies have relied on computed tomography (CT) [19],
while far fewer studies relied on RBVs [4,5,20]. Imaging-based solutions are costly, time-
consuming, and require specialized equipment [20]. Diagnosis based on RBV values
can provide an effective, rapid, and cost-effective alternative for the early detection and
prognosis of COVID-19 cases [5,20,21].

Previous AI studies did not use most of the RBV parameters and reported relatively
poor classifier performance compared to the current study [2,3,5,6]. In addition, previous
studies [8,19–25] have generally focused on the early diagnosis of COVID-19 disease and
have addressed relatively smaller samples. Artificial intelligence studies on predicting
the prognosis of the disease and detecting severely or mildly infected patients in the early
period based on RBVs alone are insufficient. New studies could reduce the intensity of
the ICU and help health services by detecting severe and mildly infected patients with
COVID-19 early [2,5,19,20].

Most ML approaches involve the process of transforming the feature vector from
the first multidimensional space to the second multidimensional space and detecting the
vector by a linear classifier [26]. The differences between ML models generally lie in
the transformation algorithms and their number and order. In addition, transformation
algorithms can be in the form of reducing and increasing the space dimension. The popular
machine learning classifier algorithms used for data analysis are: multilayer perceptron
(feedforward neural network with several layers, linear classifier) [27], support vector
machine [28], K-nearest neighbors method [29], XGBoost classifier [30], random forest
method [31], logistic regression [32], and decision trees [33].

ML algorithms typically require a sufficiently large number of samples. However,
in our case, the dataset has to be reduced to avoid dimensionality problems by finding
a matrix that has fewer columns and is similar to the original matrix. Since the new
matrix consists of fewer features, it can be used more efficiently than the original matrix.
Dimensionality reduction is the process of finding matrices with fewer columns. Feature
selection is one of the techniques used to reduce dimensionality, when irrelevant and
redundant features are discarded [26,34]. In addition, the selection of appropriate features
can reduce the measurement cost and provide a better understanding of the problem [26].
Feature selection methods can be classified as filters, embedded methods, and wrappers
(forward selection, backward elimination, recursive feature elimination) [26,34]. Because
feature selection is part of the training process in embedded methods, our method lies
between filters and wrappers. Searching for the best subset of features is performed during

76



Sensors 2022, 22, 4820

training of the classifier, e.g., when optimizing weights in a neural network. Therefore,
embedded methods present a lower computational cost than wrappers [26].

Most of the feature selection methods are filters, although we can find representative
methods for all three categories [26]. The large number of available feature selection
methods complicates the selection of the best method for a given problem [34]. The latest
methods that have become popular among researchers are feature selection based on
correlation (CFS) [35], filtering based on consistency [36], INTERACT [37], knowledge gain
(InfoGain) [38], ReliefF [39], recursive feature elimination for support vector machines
(SVM-RFE) [40], Lasso editing [41], and the minimum redundancy maximum relevance
(mRMR) algorithm (developed specifically for dealing with microarray data) [26].

In [42], a classifier based on the LogNNet neural network was described using a
handwriting recognition example from the MNIST database. Velichko [43] demonstrated
the use of the LogNNet to calculate risk factors for the presence of a disease based on a set
of medical health indicators. The LogNNet neural network is a feedforward network that
improves classification accuracy by passing the feature vector through a special reservoir
matrix and transforming it into a feature vector of different size [44]. Previous studies
have shown that the higher the entropy of a chaotic mapping that fills a reservoir matrix,
the better the classification accuracy [45]. Therefore, the procedure for optimizing chaotic
map parameters plays an important role in the presented data analysis method using
the LogNNet neural network. In addition, due to the characteristics of chaotic mapping,
RAM usage by a neural network can be significantly reduced. In [43], the operation of the
LogNNet algorithm on a device with 2 kB of RAM was presented. This result demonstrated
that LogNNet can be used in Internet of Things (IoT) mobile devices.

In this study, we apply the LogNNet neural network for the diagnosis and prognosis
of COVID-19 using the RBV values measured at the time of admission to the hospital.
The wrapper-type backward feature elimination algorithm has been successfully adapted
to LogNNet. The novelty of the presented method is the approach to the diagnosis and
prognosis of COVID-19 using routine blood values.

The paper has the following structure. Section 2 describes the data collection procedure,
the basic LogNNet architecture, and K-fold cross-validation technique. Section 3 presents
examples of using the feature selection methodology for two datasets. In this section, the
most important RBVs (features) effective in the diagnosis and prognosis of the disease were
selected. Using various feature combinations, the performance of the LogNNet model in
the diagnosis and prognosis of the disease was calculated. Section 4 discusses the results
and compares them with known developments. In conclusion, a general description of the
study and its scientific significance are given.

2. Materials and Methods

This study was conducted in accordance with the Declaration of Helsinki, 1989. Data
were collected retrospectively from the information system of Erzincan Binali Yıldırım
University Mengücek Gazi Training and Research Hospital (EBYU-MG) between April and
December 2021. The study had three main stages: data collection, LogNNet training with
selection of main features, and testing of feature combinations (Figure 1).

The RBV of the patients consisted of biochemical, hematological, and immunological
tests. Patients admitted to the ICU were defined as severely infected, while patients who
could not be admitted to the ICU (non-ICU, subjects in all wards) were defined as mildly
infected. The dataset SARS-CoV-2-RBV1 included information on n = 2648 COVID-19
positive outpatients and n = 2648 COVID-19 negative (control group), for a total of 5296
patients. The dataset SARS-CoV-2-RBV2 contained information of n = 203 ICU and n = 3696
non-ICU COVID-19 patients. Raw data records included patients’ diagnoses (COVID-19,
heart disease, asthma, etc.), treatment units (ICU or non-ICU), age, and RBV data. The
entire recording process took 20 h. In the raw data, RBV data were on a quantitative
scale, diagnostic data were on a multinomial scale, and treatment units were on a binomial
scale. In the data preprocessing stage, the string data were converted into numerical
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data. Categorical data were coded, repeated measurements were averaged, duplicates
were removed, and quantitative data were normalized. The missing RBV data were
complemented by the mean of the respective parameter distribution.

Figure 1. The main stages of the study for the diagnosis and prognosis of COVID-19 using the
routine blood values: data collection, LogNNet training with the selection of main features, testing
combinations of the most important features that influence the diagnosis and prognosis of the disease.

2.1. Characteristic of Participants, Workflow and Define Datasets

In the EBYU-MG hospital, only the cases that were detected as SARS-CoV-2 by
real-time reverse transcriptase polymerase chain reaction (RT-PCR) in nasopharyngeal
or oropharyngeal swabs during the dates covered by this study were diagnosed with
COVID-19. The research only included individuals over the age of 18. In order to prevent
various complications, RBV results at the first admission were recorded.

The first SARS-CoV-2-RBV dataset (SARS-CoV-2-RBV1) includes the information of
2648 patients diagnosed with COVID-19 and receiving outpatient treatment in hospital on
the specified dates, and the same number of patients (control group) whose COVID-19 tests
were negative. The control group was randomly selected from individuals over the age of
18 who had applied to the emergency COVID-19 service but had a negative RT-PCR test.
With the feature selection procedure, the most important RBV features that are effective in
the diagnosis of the disease were selected from the SARS-CoV-2-RBV1 dataset. The selected
features were fed into LogNNet neural network to examine the method’s performance in
diagnosing COVID-19 disease.

The second SARS-CoV-2-RBV dataset (SARS-CoV-2-RBV2) includes the information
of 3899 patients who were treated for COVID-19 in hospital on the specified dates. The
treatment units of these patients at the first admission were examined. The SARS-CoV-
2-RBV2 dataset contains n = 203 ICU and n = 3696 non-ICU COVID-19 patients. Then,
with the feature selection procedure, the most influential RBV traits in the prognosis of the
disease were selected from the SARS-CoV-2-RBV2 dataset. Selected features were fed into
the LogNNet neural network to examine the performance of this method in determining
the prognosis and severity of COVID-19 disease.

The SARS-CoV-2-RBV1 and SARS-CoV-2-RBV2 datasets are presented in Tables 1 and 2.
SARS-CoV-2-RBV1 and SARS-CoV-2-RBV2 datasets include immunological, hematological,
and biochemical RBV parameters and each dataset consists of 51 features. In the SARS-
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CoV-2-RBV1 dataset, positive COVID-19 test results were coded as 1 and negative as 0
(COVID-19 = 1, non-COVID-19 = 0).

Table 1. Feature numbering for SARS-CoV-2-RBV1 datasets.

№ Feature № Feature № Feature № Feature № Feature

1 CRP 12 NEU 23 MPV 34 GGT 45 Sodium
2 D-Dimer 13 PLT 24 PDW 35 Glucose 46 T-Bil
3 Ferritin 14 WBC 25 RBC 36 HDL-C 47 TP
4 Fibrinogen 15 BASO 26 RDW 37 Calcium 48 Triglyceride
5 INR 16 EOS 27 ALT 38 Chlorine 49 eGFR
6 PT 17 HCT 28 AST 39 Cholesterol 50 Urea
7 PCT 18 HGB 29 Albumin 40 Creatinine 51 UA
8 ESR 19 MCH 30 ALP 41 CK
9 Troponin 20 MCHC 31 Amylase 42 LDH
10 aPTT 21 MCV 32 CK-MB 43 LDL
11 LYM 22 MONO 33 D-Bil 44 Potassium

CRP: C-reactive protein; INR: international normalized ratio; PT: prothrombin time; PCT: Procalcitonin; ESR: ery-
throcyte sedimentation rate; aPTT: activated partial prothrombin time; LYM: lymphocyte count; NEU: neutrophil
count; PLT: platelet count; WBC: white blood cell count; BASO: basophil count; EOS: eosinophil count; HCT:
hematocrit; HGB: hemoglobin; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin con-
centration; MCV: mean corpuscular volume; MONO: monocyte count; MPV: mean platelet volume; PDW: platelet
distribution width; RBC: red blood cells; RDW: red cell distribution width; ALT: alanine aminotransaminase;
AST: aspartate aminotransferase; ALP: alkaline phosphatase; CK-MB: creatine kinase myocardial band; D-Bil:
direct bilirubin; GGT: gamma-glutamyl transferase; HDL-C: high-density lipoprotein-cholesterol; CK: creatine
kinase; LDH: lactate dehydrogenase; LDL: low-density lipoprotein; T-Bil: total bilirubin; TP: total protein; eGFR:
estimating glomerular filtration rate; UA: uric acid.

Table 2. Feature numbering for SARS-CoV-2-RBV2 datasets.

№ Feature № Feature № Feature № Feature № Feature

1 ALT 12 Chlorine 23 eGFR 34 MONO 45 Fibrinogen
2 AST 13 Cholesterol 24 Urea 35 MPV 46 INR
3 Albumin 14 Creatinine 25 UA 36 NEU 47 PT
4 ALP 15 CK 26 BASO 37 PDW 48 PCT
5 Amylase 16 LDH 27 EOS 38 PLT 49 ESR
6 CK-MB 17 LDL 28 HCT 39 RBC 50 Troponin
7 D-Bil 18 Potassium 29 HGB 40 RDW 51 aPTT
8 GGT 19 Sodium 30 LYM 41 WBC
9 Glucose 20 T-Bil 31 MCH 42 CRP

10 HDL-C 21 TP 32 MCHC 43 D-Dimer
11 Calcium 22 Triglyceride 33 MCV 44 Ferritin

ALT: alanine aminotransaminase; AST: aspartate aminotransferase; ALP: alkaline phosphatase; CK-MB: crea-
tine kinase myocardial band; D-Bil: direct bilirubin; GGT: gamma-glutamyl transferase; HDL-C: high-density
lipoprotein-cholesterol; CK: creatine kinase; LDH: lactate dehydrogenase; LDL: low-density lipoprotein; T-Bil:
total bilirubin; TP: total protein; eGFR: estimating glomerular filtration rate; UA: uric acid; BASO: basophil count;
EOS: eosinophil count; HCT: hematocrit; HGB: hemoglobin; LYM: lymphocyte count; MCH: mean corpuscular
hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; MONO:
monocyte count; MPV: mean platelet volume; NEU: neutrophil count; PDW: platelet distribution width; PLT:
platelet count; RBC: red blood cells; RDW: red cell distribution width; WBC: white blood cell count; CRP: C-
reactive protein; INR: international normalized ratio; PT: prothrombin time; PCT: procalcitonin; ESR: erythrocyte
sedimentation rate; aPTT: activated partial prothrombin time.

In the SARS-CoV-2-RBV2 dataset, severely infected (ICU) COVID-19 patients were
coded as 1, while mildly infected (non-ICU) COVID-19 patients were coded as 0. Datasets
are available for download in the Supplementary Materials.

2.2. LogNNet Architecture

Figure 2 demonstrates the principle of operation of the neural network LogNNet [43].
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Figure 2. LogNNet architecture [43].

An object in the form of a feature vector, denoted as d, is inputted to LogNNet. The
feature vector contains N coordinates (d1, d2, . . . , dN), where the number N is defined
by the user. The classifier output determines the object class to which the input feature
vector d belongs. The number of possible classes is denoted as M. LogNNet contains a
reservoir with a special matrix, denoted as W. The matrix W was filled in a row-by-row
pattern with numbers generated by the chaotic mapping xn. We use chaotic mapping based
on the congruential generator Equation (1) (see Table 3) and the algorithm of matrix W
filling shown in Algorithm 1. Vector d is converted into a vector Y of dimension N + 1 with
an additional coordinate Y0 = 1, and each component is normalized by dividing by the
maximum value of this component in the training base. The next step is a multiplication of
a special matrix W with the dimension (N + 1) × P and a vector Y. The result is a vector S’
with P coordinates, which is normalized [42] and converted into a vector Sh of dimension P
+ 1 with zero coordinate Sh [0] = 1, which plays the role of a bias element. In this way, the
primary transformation of the feature vector d into the second (P + 1)-dimensional space
is completed. Then, the vector Sh is fed to a two-layer linear classifier, with the number
of neurons H in the hidden layer Sh2, and the number of outputs M in the output layer
Sout. To indicate the parameters of the neural network, the following designation LogNNet
N:P:H:M is used.

Table 3. Chaotic map equation and list of optimized parameters with limits.

Chaotic Map
List of Optimized

Parameters (Limits)
Equation

Congruent generator

K (−100 to 100)
D (−100 to 100)
L (2 to 10,000)

C (−100 to 100)

{
xn+1 = (D − K · xn) mod L

x1 = C
(1)
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Algorithm 1. Algorithm of matrix W filling.

xn: = C;
for j: = 1 to P do
for i: = 0 to N do
begin
xn: = (D−K * xn) mod L; // Congruential generator formula
W [i,j]: = xn/L;
end;

The training of the linear classifier LogNNet was carried out using the backpropagation
method [42].

2.3. Optimization of Reservoir Parameters

The optimal chaotic mapping parameters were selected using a special algorithm. The
ranges of the parameters are indicated in Table 3. Before optimization, it is necessary to
set the following values of the constant parameters of the model: the value P + 1, which
determines the dimension of the vectors Sh and Sh2, the number of layers in the linear
classifier, the number of epochs Ep for backpropagation training, and the number of neurons
in the classifier’s hidden layer, in the case of a two-layer classifier. The training of the
LogNNet network is performed by two nested iterations [46]. The inner iteration trains the
output LogNNet classifier by backpropagation of error on the training set, and the outer
iteration optimizes the model parameters.

During the optimization process, the training and validation bases coincided and were
equivalent to the initial datasets (SARS-CoV-2-RBV1 or SARS-CoV-2-RBV2). The outer
iteration implements the particle swarm method with fitness function equal to classification
accuracy. Outer iteration ends either when the desired values of the classification accuracy
are reached, or when the specified number of iterations in the particle swarm method is
completed. As a result, the optimized model parameters (chaotic mapping parameters) at
the output allow us to obtain the highest classification accuracy on the validation set.

2.4. Classification Accuracy, K-Fold Cross-Validation and Balancing Techniques

The K-fold cross-validation technique was used to test LogNNet. This method is well
suited for the medical databases, which are not split into test and training sets. The elements
of the set (SARS-CoV-2-RBV1 or SARS-CoV-2-RBV2) are divided into K parts (K = 5). One
of the parts is taken as the test sample, and the remaining K-1 parts are used for the training
sample. Then, the average value of the metrics is calculated for all K cases when one of
the K parts of the set becomes the test sample in turn. A distinctive feature of the method
is that the separate test data are not needed for the training process. Applying the K-fold
cross-validation technique, we calculate the classification metrics: classification accuracy, A,
precision, recall, and F1-metric. Wherever we talk about the classification accuracy A in
this article, we imply the value obtained by the K-fold cross-validation method.

To obtain a higher value of A, the training K-1 parts of the sets were balanced as in [43].
The balancing implies equalizing the number of objects for each class, supplementing the
classes with copies of already existing objects, and sorting the training set in sequential
order. The balancing process can be illustrated by the following example. The training set
consists of 10 objects divided into 2 classes. Each object is assigned a feature vector dzm,
where z is the object number z = 1, . . . , 10, m is the class number m = 1, . . . , 2. For example,
we have 7 objects of class 1 (d11, d21, d41, d51, d61, d71, d101) and three objects of class 2 (d32,
d82, d92). We find the maximum number of objects (MAX) in the classes, and MAX equals 7
for class 1. We supplement the remaining groups with copies of the already existing objects
(duplication) to equalize the number to MAX. Therefore, for class 2, we acquire the group
(d32, d82, d92, d32, d82, d92, d32). Then, we compose a balanced training data set, choosing
one object from each group in turn. As a result, we achieve the following training set: (d11,
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d32, d21, d82, d41, d92, d51, d32, d61, d82, d71, d92, d101, d32), which consists of 14 vectors and
has the same number of objects in every class.

2.5. Threshold Approach

The simplest approach for classifying by one feature in the presence of only two
classes is based on determining the threshold value separating the classes Vth. For the
SARS-CoV-2-RBV1 dataset, we introduce an additional designation of the type of threshold
value Type 1 or Type 2 in accordance with the rule:

{
Type 1 : if feature value > Vth then “COVID-19” else “non-COVID-19”
Type 2 : if feature value > Vth then “non-COVID-19” else “COVID-19”

(2)

The threshold type indicates which side of the threshold the sick and healthy classes
are on.

For the SARS-CoV-2-RBV2 dataset (after balancing, see Section 2.4), we introduce a
similar relation for the type of threshold value:

{
Type 1 : if feature value > Vth then “ICU” else “non-ICU”
Type 2 : if feature value > Vth then “non-ICU” else “ICU”

(3)

Threshold accuracy after balancing datasets (see Section 2.4) is determined as

Ath =
TP + TN

TP + TN + FP + FN
(4)

were TP denotes true positive, TN true negative, FP false positive, and FN false negative.
K-fold validation is not used when calculating Ath.
The threshold value Vth was determined by stepwise enumeration and finding the

maximum value of Ath.
The threshold method reflects the dependence of one feature and COVID-19 and indi-

cates the classification success (Equations (2)–(4)). In practical applications, the LogNNet
is a more powerful classification tool than the simple threshold method, revealing more
information between features and COVID-19.

2.6. Feature Selection Method

The feature selection method is based on a wrapper-type backward feature elimination
algorithm and has two consecutive steps. First, redundant features and features that
make training of the neural network difficult are removed. In backward elimination, the
algorithm starts with all the features and removes the least significant feature at each
iteration. The features are removed by zeroing the corresponding components of the input
vectors d. The second stage includes sorting the remaining features according to their
contribution to the classification metric.

Features selection for the dataset SARS-CoV-2-RBV2 illustrates this method. Let us
suppose a reservoir optimization was carried out and an accuracy of A51 = 93.665% was
obtained (using K-fold cross-validation), where the designation ANF means the classification
accuracy when using NF = 51 features. Let us introduce additional pointers, denote the
set of removed features by FR, and denote the set of selected features by FS. For example,
A49(FR [3,33]) denotes accuracy at NF = 49 features with features z = 3 and z = 33 removed,
and A4(FS [1,22,33,41,55] denotes accuracy at NF = 4 features with the main features from
the set FS, z = 1, 22, 33, 41, 55. Next, we plot the dependence of the value of dA51 on the
number of the removed feature z (see Figure 3a), where

dA51(z) = A51 − A50(FR[z]) (5)

82



Sensors 2022, 22, 4820

(a) (b)

dA

z

dA

z

(c) (d)

dA

z

dA

z

Figure 3. Function of the feature strength dA51(z) (a), dA50(z) (b), dA49(z) (c), dA48(z) (d).

Dependence dA(z) is a function of the feature strength. The value A50(FR[z]) character-
izes the classification accuracy of the neural network using NF = 50 features, after deleting
the feature with number z. Positive feature strength dA51 (Figure 3a and Equation (5))
means that the removal of the feature reduces the classification accuracy of the network
and the feature is useful. Negative dA51 means that the feature interferes with learning
(redundant) and its removal leads to an increase in the classification properties of the neural
network. After the first selection iteration, the seven most useful features can be identified
having numbers z = 49, 36, 42, 19, 12, 3, 21 (Figure 3a). The feature that makes learning
the most difficult is number z = 44 (in Figure 3 it is indicated by the index ‘Minimum’). Its
removal makes A50(FR [44]) = 94.075%, which exceeds the previous value A51 = 93.665%.

The next iteration involves calculating the dependence of dA50(z) (Figure 3b), where

dA50(z) = A50(FR[44])− A49(FR[44,z]) (6)

Equation (6) implies the exclusion of the worst feature z = 44 and the exclusion of all
other features in turn. As a result, the next feature to exclude will be the feature z = 45, and
the best accuracy will be A49(FR [44,45]) = 94.28%.

Iterations continue until all dA values are greater than or equal to zero. Figure 3c,d
shows graphs for Equations (7) and (8)

dA49(z) = A49(FR[44,45])− A48(FR[44,45,z]) (7)

dA48(z) = A48(FR[44,45,14])− A47(FR[44,45,14,z]) (8)
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The graph in Figure 3d reflects the dependence dA48(z) that has positive values. Thus,
the best classification accuracy corresponds to A48(FR [14,44,45]) = 94.434%, after removing
the features z = 44, 45, 14. During the selection, the set of the seven best features with
highest feature strength dA also changed from the set [3,12,19,21,36,42,49] (Figure 3a) to
[3,12,36,39,40,42,49] (Figure 3d, red circle).

The second stage arranges the features according to their strength in descending order
of peak values dA. For the considered example, the sequence contains the following first
12 values [3,4,9,12,21,29,35,36,39,40,42,49] (Figure 3d).

3. Results

3.1. Dataset SARS-CoV-2-RBV1

LogNNet 51:50:20:2 architecture was used for SARS-CoV-2-RBV1 dataset. Reservoir
optimization following the method from Section 2.3 with the number of epochs Ep = 50 led
to the parameters of the congruential generator listed in Table 4.

Table 4. Optimal reservoir parameters.

Dataset SARS-CoV-2-RBV1 Dataset SARS-CoV-2-RBV2
K D L C K D L C

93 68 9276 73 47 99 8941 56

Feature selection was performed with the number of epochs Ep = 100. Prior to selection,
the dA51(z) shape is plotted in Figure 4a. After feature selection, the redundant features
have the numbers z = 21, 37, 42, 49, 40, and the dA46(z) plot is shown in Figure 4b. The
influence of features with numbers z = 20, 19, 10, 17 has increased.

(a) (b)

dA

z

dA

z

Figure 4. Function of the feature strength dA51(z) (a), dA46(z) (b).

The dependence of A46(FR [21,37,40,42,49]) on the number of epochs is shown in
Figure 5, and the values of other metrics are shown in Table 5.

Ep = 100 will be taken as the optimal value of the number of epochs. The RBV values
found most important in the diagnosis of COVID-19 are the features listed in Table 6. The
most important of these are MCHC, MCH, and aPTT. MCHC in a blood test allows to find
out the average amount of hemoglobin in an erythrocyte.
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Figure 5. Dependence of A46(FR [21,37,40,42,49]) on the number of epochs Ep.

Table 5. Classification metrics depending on the number of training epochs Ep.

Ep
A46(FR

[21,37,40,42,49])
Precision

“Non-COVID-19”
Precision

“COVID-19”
Recall

“Non-COVID-19”
Recall

“COVID-19”
F1

“Non-COVID-19”
F1

“COVID-19”

10 98.376 0.978 0.99 0.991 0.977 0.984 0.984
30 99.339 0.992 0.995 0.995 0.992 0.993 0.993
100 99.509 0.994 0.996 0.996 0.994 0.995 0.995
150 99.49 0.994 0.996 0.996 0.994 0.995 0.995
200 99.471 0.994 0.995 0.995 0.994 0.995 0.995

Table 6. The seven features found to be most important in the diagnosis of COVID-19.

Number dA46 Features

20 8.007 MCHC
19 3.399 MCH
10 3.022 aPTT
17 0.359 HCT
36 0.208 HDL-C
22 0.17 MONO
25 0.151 RBC

MCH: corpuscular hemoglobin; MCHC: corpuscular hemoglobin concentration; aPTT: activated partial prothrom-
bin time; HCT: hematocrit; HDL-C: high-density lipoprotein-cholesterol; MONO: monocyte count; RBC: red
blood cells.

The efficiency of LogNNet in determining the diagnosis of COVID-19 using only seven
features and their combinations is shown in Table 7.

Using only one feature 20 (MCHC) or 36 (HDL-C) in determining the diagnosis of
COVID-19 provides a high classification accuracy of A1(FS [20]), A1(FS [36]) ~94%. The
combination of 2 features 20 (MCHC) and 19 (MCH) allows to reach accuracy A2(FS [19,20])
~99.15%.

The accuracy of the model in diagnosing the disease with seven features was almost
equal to the accuracy rate in using all 46 features (A7~99.4 vs. A46~99.59) (Table 7).
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Table 7. LogNNet efficiency for various combinations of features.

Combinations of
Features

A Precision “Non-
COVID-19”

Precision
“COVID-19”

Recall
“Non-COVID-19”

Recall
“COVID-19”

F1
“Non-COVID-19”

F1
“COVID-19”

A46(FR [21,37,40,42,49]) 99.509 0.994 0.996 0.996 0.994 0.995 0.995

A7(FS
[10,17,19,20,22,25,36]) 99.358 0.991 0.996 0.996 0.991 0.994 0.994

A1(FS [>20]) 94.279 0.930 0.958 0.959 0.926 0.944 0.942

A1(FS [>19]) 52.418 0.526 0.524 0.500 0.548 0.509 0.532

A1(FS [10]) 52.398 0.516 0.947 0.972 0.075 0.672 0.100

A1(FS [36]) 94.429 0.935 0.955 0.956 0.932 0.945 0.943

A2(FS [19,20]) 99.150 0.989 0.994 0.994 0.989 0.992 0.991

A2(FS [20,36]) 97.583 0.973 0.979 0.979 0.972 0.976 0.976

A2(FS [19,36]) 94.373 0.934 0.955 0.957 0.931 0.945 0.943

A3(FS [10,19,20]) 99.169 0.989 0.995 0.995 0.989 0.992 0.992

A5(FS [10,17,19,22,25]) 51.699 0.526 0.546 0.784 0.250 0.604 0.277

Threshold Accuracy on One Feature

Table A1 in Appendix A contains threshold accuracy Ath, threshold values Vth, type,
and change limits for all features. Values of threshold accuracy Ath are sorted in descending
order. Case distribution histograms for features with the highest threshold accuracy (LDL,
HDL-C, Cholesterol, MCHC, Triglyceride, Amylase) are shown in Figure 6. An LDL
level lower than 116.1 mg/dL, HDL-C level lower than 43.1 mg/dL, Cholesterol level
lower than 206.3 mg/dL, Triglyceride level lower than 163.3 mg/dL, MCHC level higher
than 31.3 g/dL, and Amylase level higher than 76.3 u/L mg/dL are critical levels for the
detection of sick individuals. Considering any of these critical levels, the patients and
healthy individuals could be detected with accuracy between Ath = 85% and Ath = 94%.

(a) (b) (c)

(d) (e) (f)

Figure 6. Case distribution histograms for LDL (a), HDL-C (b), Cholesterol (c), MCHC (d), Triglyc-
eride (e), Amylase (f) from sick and healthy individuals and the threshold values Vth of these features
(blue line) in the diagnosis of the disease. Histogram bin sizes are listed in Table A1.
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For features from Table 6 not included in Figure 6, case distribution histograms (MCH,
aPTT, HCT, MONO, RBC) are demonstrated in Figure 7. The success of these features
alone in detecting sick and healthy individuals was less than 60% (Figure 7). However,
the combination of MCHC with MCH and the combination of MCHC with HDL-C in
detecting sick and healthy individuals is higher than their individual performance (Table 7).
Revealed high-level mutual information among these variables helps LogNNet to diagnose
COVID-19. The combinations of MCH, aPTT, HCT, MONO, and RBC features are not
effective in the diagnosis of the disease (A5(FS [10,17,19,22,25]), Table 7). We think that
there is a low correlation between these features and COVID-19.

(a) (b) (c)

(d) (e)

Figure 7. Case distribution histograms for MCH (a), aPTT (b), HCT (c), MONO (d), RBC (e) from
sick and healthy individuals and the threshold values Vth of these features in the diagnosis of the
disease. Histogram bin sizes are listed in Table A1.

3.2. Dataset SARS-CoV-2-RBV2

LogNNet 51:50:20:2 architecture was used for the SARS-CoV-2-RBV2 dataset. The
result of reservoir optimization obtained following the method from Section 2.3 with the
number of epochs Ep = 50 led to the parameters of the congruential generator indicated
in Table 4. Feature selection was carried out with the number of epochs Ep = 150. Prior to
selection, feature strength corresponded to dA51(z) (Figure 3a). After feature selection, the
redundant features are with numbers z = 44, 45 and 14, and the dA48(z) graph is shown in
Figure 3d.

The dependence of A48(FR [14,44,45]) on the number of epochs is shown in Figure 8,
and the values of other metrics are shown in Table 8.

Ep = 150 is be taken as the optimal value of the number of epochs. The metrics for
the “ICU” case are significantly worse than for the “non-ICU” case because of limited data
for the “ICU” case. The most important RBVs in identifying severely and mildly infected
COVID-19 patients are the features listed in Table 9. The most important of these are ESR
and NEU.
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Figure 8. Dependence of A48(FR [14,44,45]) on the number of epochs Ep.

Table 8. Classification metrics depending on the number of training epochs Ep.

Ep A48(FR [14,44,45])
Precision

“Non-ICU”
Precision

“ICU”
Recall

“Non-ICU”
Recall
“ICU”

F1
“Non-ICU”

F2
“ICU”

10 88.715 0.993 0.307 0.887 0.881 0.937 0.451
30 90.459 0.993 0.347 0.906 0.876 0.947 0.492
100 93.306 0.990 0.433 0.939 0.821 0.964 0.562
150 94.434 0.989 0.49 0.952 0.797 0.97 0.599
200 94.486 0.987 0.495 0.955 0.767 0.97 0.592

Table 9. The 12 features found to be most important in detecting severely (ICU) and mildly (non-
ICU) infected COVID-19 patients.

Number dA48 Features

49 2.18 ESR
36 1.872 NEU
42 1.59 CRP
3 1.359 Albumin
39 1.154 RBC
12 0.974 Chlorine
40 0.872 RDW
4 0.795 ALP
21 0.795 TP
9 0.769 Glucose
35 0.744 MPV
29 0.718 HGB

ESR: erythrocyte sedimentation rate; NEU: neutrophil count; CRP: C-reactive protein; RBC: red blood cells;
RDW: red cell distribution width; ALP: alkaline phosphatase; TP: total protein; MPV: mean platelet volume;
HGB: hemoglobin.

The efficiency of LogNNet when using only the 12 features and their combinations to
identify severely and mildly infected COVID-19 patients are shown in Table 10.
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Table 10. LogNNet efficiency for various combinations of features.

Combinations of Features A Precision
“Non-ICU”

Precision “ICU”
Recall

“Non-ICU”
Recall
“ICU”

F1
“Non-ICU”

F1
“ICU”

A48(FR [14,44,45]) 94.434 0.989 0.49 0.952 0.797 0.97 0.599

A12(FS
[3,4,9,12,21,29,35,36,39,40,42,49]) 90.946 0.990 0.364 0.914 0.831 0.950 0.499

A1(FS [49]) 59.598 0.950 0.059 0.605 0.418 0.694 0.097

A1(FS [49]) 75.040 0.955 0.085 0.773 0.341 0.851 0.133

A3(FS [36,42,49]) 82.712 0.989 0.210 0.827 0.826 0.900 0.334

A7(FS [3,12,36,39,40,42,49]) 89.355 0.991 0.341 0.896 0.846 0.940 0.469

The recall value indicates what percentage of individuals diagnosed as mild or severe
patients by the specialist could be recognized as mild or severe patients by our model. In
other words, the recall value indicates the success of our model in distinguishing mild or
severe patients. The precision value indicates the percentage of the individuals diagnosed
as mild or severe patients by our model who were also defined as mild or severe patients
by the specialist. In other words, the precision value shows the success of our model in
diagnosing mild or severe patients.

The accuracy of the model run with 12 features to identify mildly and severely infected
patients was close to the accuracy rate of the model run with 48 features (A12~90.9 vs.
A48~94.94) (Table 10). The accuracy with the seven features model run was 89.3%, where
the model success in diagnosing the mildly infected (precision value) was 99.1%, and
success in recognizing mildly infected patients (recall value) was 89.6%. The metrics for the
“ICU” case are significantly worse than for the “non-ICU” case. Here, our model decided in
favor of the diagnosis of mildly infected (high precision for non-ICU, low precision for ICU)
due to the sample number unbalance of our mildly infected and severely infected patients.

Threshold Accuracy on One Feature

Table A2 in Appendix A contains values of threshold accuracy Ath, threshold values
Vth, as well as types and limits of change for all features. Rows in the table are sorted in
descending order of threshold accuracy Ath. Case distribution histograms for features with
the highest threshold accuracy (NEU, Albumin, WBC, CRP, Urea, Calcium) are shown in
Figure 9.

(a) (b) (c)

(d) (e) (f)

Figure 9. Case distribution histograms for NEU (a), Albumin (b), WBC (c), CRP (d), Urea (e), Calcium
(f) from mildly and severely infected COVID-19 patients and the threshold values Vth of these
features (blue line) in the prognosis of the disease. Histogram bin sizes are listed in Table A2.
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Cases with an NEU level higher than 6.2 × 103/μL, WBC level higher than 7.93 × 103/μL,
CRP level higher than 15 mg/dL, Urea level higher than 46.9 mg/dL, Albumin level lower
than 32.2 g/L, and Calcium level lower than 8.5 mg/dL most likely require intensive care
treatment (Figure 9). Considering any of these critical levels, patients requiring intensive
care and patients not requiring intensive care could be correctly identified with the accuracy
between Ath = 72% and Ath = 78%.

For features from Table 9 not included in Figure 9, case distribution histograms (ESR,
RBC, Chlorine, RDW, ALP, TP, Glucose, MPV, HGB) are demonstrated in Figure 10. The
success of these features alone in detecting mildly and severely infected patients varies
between Ath = 54.3% and Ath = 71.5% (Figure 10). However, the performance of the
combination of the ESR, NEU, and CRP features in detecting mild and severely infected
patients was higher than their individual performance (Table 10). In addition, combinations
of these properties with the Albumin, RBC, Chlorine, and RDW properties improved
performance in detecting severely and mildly infected patients [A3(FS [36,42,49] = 82.7% vs.
A7(FS [3,12,36,39,40,42,49] = 89.3% (Table 10). We think that there is a low level of correlation
between the characteristics of ALP, TP, Glucose, MPV, and HGB and the severity of COVID-
19 (A7(FS [3,12,36,39,40,42,49])) = 89.4% vs. A12(FS [3,4,9,12,21,29,35,36,39,40,42,49]) = 90.9%
(Table 10). Therefore, the combination of the ESR, NEU, CRP, Albumin, RBC, Chlorine, and
RDW blood values is an important source of variation in determining the severity of the
disease, and high-level confidential information may be found among these variables. The
combination of these features may have important effects in the prognosis of COVID-19
disease and in identifying patients in need of intensive care.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Case distribution histograms for ESR (a), RBC (b), Chlorine (c), RDW (d), ALP (e), TP (f),
Glucose (g), MPV (h), HGB (i) from mildly and severely infected COVID-19 patients and the threshold
values Vth of these features (blue line) in the prognosis of the disease. Histogram bin sizes are listed
in Table A2.
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4. Discussion

COVID-19 is a systemic multi-organ damage disease that causes severe acute respi-
ratory syndrome, death, and continues to spread [3,47]. Despite the use of vaccines, the
spread of the disease cannot be stopped, and important mutations have been detected
in the structure of the virus [1]. It is likely that COVID-19 will continue to be present in
our lives. Despite the large number of studies on COVID-19, some of these studies were
contradictory and pathological aspects of the disease could not be fully determined [48].
Changes in many RBVs and hematological abnormalities were observed during the course
of the disease [6,48]. The fact that most patients lost their lives in case of severe infection has
led to a fight against the disease all over the world [10,49]. In addition, Brinati et al. [19] and
Zhang et al. [49] pointed out that various complications may occur during the treatment
process of COVID-19, and this makes it important to predict the prognosis of the disease
in the early period. Similarly, Mertoğlu et al. [1] and Huyut and İlkbahar [3] stated that
the early prediction of the diagnosis and prognosis of the disease are important in the first
response to severely infected COVID-19 patients.

As with immunodiagnostic testing, RT-PCR testing may present difficulties in iden-
tifying true positive and negative individuals infected with COVID-19 [4,50]. Indeed,
Teymouri et al. [50] and D’Cruz et al. [51] suggested that to increase the sensitivity of the
RT-PCR test, the test should be repeated on multiple samples and the application method-
ology should be improved. However, these procedures represent a troublesome process
for health personnel and patients. These difficulties in diagnosing COVID-19 have further
increased the importance of RBVs methods [1,2]. In this context, it is possible to determine
both the diagnosis and the prognosis of the disease with RBVs (biomarkers), which are
easier to obtain, more economical, and faster to measure [1–6].

In an ML study for the diagnosis of COVID-19 based on RBVs, Brinati et al. [19]
explained that AI models are based on clinical features and can be used for processes, such
as disease diagnosis and prognosis. AI models that use the RBVs can be both an adjunct
and an alternative method to rRT-PCR [20]. In addition, AI application results can provide
information about the infection risk level and can be used in the rapid triage and quarantine
of high-risk patients [20].

In this study, the most effective RBV biomarkers in the diagnosis and prognosis of
COVID-19 were determined by a two-step feature selection procedure for use in peripheral
IoT devices with low computing resources. Our LogNNet neural network model, fed with
selected features, identified sick and healthy individuals, and especially mildly infected
patients, with high accuracy.

In the first dataset used in this study, the RBVs of COVID-19 positive (n = 2648) patients
and COVID-19 negative (n = 2648) individuals were recorded. In the second dataset, the
RBVs of 3899 patients (n = 203 ICU and n = 3696 non-ICU) hospitalized with the diagnosis of
COVID-19 were recorded. Hence, 51 features of all patients were identified (Tables 1 and 2).
A two-stage feature selection procedure (see Section 2.5) was applied on the datasets and
features were found for each dataset. The features selected for the first dataset were fed
into the LogNNet neural network, and the accuracy of the method in the diagnosis of
COVID-19 was calculated. Then, the selected features for the second dataset were fed into
LogNNet neural network, and the performance of the method in identifying mildly and
severely infected patients (determining the prognosis of the disease) was assessed.

Previous studies on the diagnosis and prognosis of COVID-19 have indicated the
changes in most of the RBV parameters and biomarkers [1–3,5]. Mertoglu et al. [1] and
Yang et al. [52] reported that the most effective RBV biomarkers in the diagnosis and prog-
nosis of COVID-19 are CRP and LYM. However, other studies conducted for this purpose
have reported blood values of CRP, procalcitonin, ferritin, ALT, aPTT, and ESR [3,4,6].
Banerjee et al. [8] used random forest, glmnet, generalized linear models, and ANN neural
network models to determine the diagnosis of COVID-19 with 14 RBV values of 81 COVID-
19 positive and 517 healthy individuals. Glmnet was found to be the most successful model
in the diagnosis of the disease with 92% sensitivity and 91% accuracy [8]. Brinati et al. [19]
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used various ML methods with 13 RBV values for diagnosis of the disease (102 COVID-19
negative, 177 positive) and noted that the models with the highest accuracy were random
forest (82%) and logistic regression (78%). Similarly, Cabitza et al. [20] used various ML
models to rapidly detect COVID-19 using many RBV parameters and found the models
with the highest accuracy were random forest (88%), support vector machine (SVM) (88%),
and k-nearest neighbor (86%). Joshi et al. [22] developed a trained logistic regression
model using some RBVs on a dataset of 380 cases, reporting good sensitivity (93%) but
low specificity (43%). Yang et al. [21] applied various ML models on 27 RBV parameters
of a large patient population of 3356 individuals (42% COVID-19 positive), and found the
gradient boost tree model to be the most successful model in the diagnosis of the disease
with 76%-sensitivity and 80%-specificity value. In a COVID-19 study using chest computed
tomography (CT) data and RBV parameters, Mei et al. [23] showed a model combining
CNN and multilayer sensor and found the success of the model in diagnosing the disease
with 84% sensitivity and 83% specificity. Soares [24] proposed a model combining SVM,
ensembling, and SMOTE Boost models to diagnose COVID-19 using 15 RBV parameters
in a population of 599 individuals, and found the success of the model in diagnosing the
disease with 86% specificity and 70% sensitivity. Running various ML models to diagnose
COVID-19 with the RBV parameters, Soltan et al. [25] found the XGBoost method to be the
most successful model with 85% sensitivity and 90% precision. Huyut [53] used 28 routine
blood values with age on a variety of supervised ML models to detect a large population
of severely and mildly infected COVID-19 patients. The models with the highest AUC in
identifying mildly infected patients were local weighted-learning (0.95%), Kstar (0.91%),
Naïve bayes (0.85%), and K nearest neighbor (0.75%).

This study identified the seven most important biomarkers in the diagnosis of COVID-
19 (Table 6). Among these features, the most important biomarkers were MCHC, MCH, and
aPTT. The overall accuracy rate of the LogNNet model, which was run with seven features,
was A7(FS [10,17,19,20,22,25,36]) ~99.3%, and the precision rate of patient identification
was 99.6%. In addition, the different combinations of features that are important in the
diagnosis of patients were examined. The overall accuracy of the LogNNet model run only
with MCHC and MCH features was A2(FS [19,20]) ~99.1% and the precision rate of patient
identification was 99.4%. The overall accuracy rate of our model using only the MCHC
feature was 94.2%, while the overall accuracy rate of the model using only the HDL-C
feature was 94.4%. According to the calculated critical levels of the main features, such as
LDL, HDL-C, Cholesterol, Triglyceride, MCHC, and Amylase (Figure 6), the health and
sickness status of individuals could be determined accurately. The fact that the performance
of the combination of MCHC and MCH and the combination of MCHC and HDL-C in the
detection of sick and healthy individuals was higher than the individual performances
suggested that there is a high level of confidential information between these blood feature
combinations and COVID-19. This information was revealed by the LogNNet neural
network method. These combinations of features can be used by LognNNet in diagnosis of
COVID-19 disease with high results.

Studies indicate that the ALT, AST, LDH, direct bilirubin, and aPTT RBVs are increased
in severe COVID-19 patients, while the hemoglobin values are decreased significantly
compared to mildly infected patients [6,23,54]. However, in other studies, the LYM, NEU,
WBC, MCH, MPV, and RDW hematological RBVs were higher in severe COVID-19 patients,
when compared to mildly infected patients [1–3,6]. Mousavi et al. [16], Zhang et al. [54], and
Zheng et al. [55] determined that patients with severe COVID-19 had lower EOS, MONO,
RBC, hematocrit, hemoglobin, and MCHC hematological values, when compared to mild
patients. Huyut et al. [6], in a study of patients who died from COVID-19, showed that the
ESR, INR, PT, CRP, D-dimer, and ferritin biomarkers are the most important biomarkers to
detect the mortality of the disease. Luo et al. [56] proposed a multi-criteria decision making
(MCDM) algorithm combining ideal the solution similarity sequencing technique (TOPSIS)
and naive Bayes (NB) as a feature selection procedure to predict the severity of COVID-19
from initial RBV values. With the MCDM model, the WBC, LYM, NEU values, and age were
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the most effective features in determining the severity of the disease with 82% accuracy
obtained by ROC analysis [56]. Similarly, Ma et al. [57] and Lai et al. [58] noted that the high
WBC and NEU values are important manifestations of bacterial infection and indicate a
serious disease state that complicates the clinical situation. Numerous studies have shown
that other proinflammatory marker levels, including CRP, ferritin, and IL-6, are associated
with worse outcomes [59–61]. Cheng et al. [62] reported that high levels of inflammatory
markers, such as ESR, CRP, and procalcitonin, may indicate hyperinflammatory reactions
in COVID-19 patients. Cavalcante-Silva et al. [63] stated that the neutrophil count was
increased in severe COVID-19 patients and the neutrophils are the main effector cells in the
development of COVID-19. The different neutrophil mechanisms, e.g., neutrophil enzymes
and cytokines, are potential targets for treating particularly severe cases of COVID-19 [63].

This study identifies the twelve most important biomarkers to determine the prognosis
of COVID-19 (detecting severely and mildly infected patients) (Table 9). The most important
of them are ESR, NEU, CRP, albumin, and RBC biomarkers. The overall accuracy of the
LogNNet model, which was run with twelve features, was 90.9%, the success rate in
diagnosing mildly infected patients (precision rate) was 99.0%, and the success rate in
diagnosing severely infected patients (precision rate) was 36.6% (Table 10). However, the
success of the LogNNet model, which was run with twelve features, in distinguishing mild
and severe patients according to their real conditions (recall value), was 91.4% and 83.1%,
respectively (Table 10).

The calculated critical levels of NEU, WBC, CRP, Urea, Albumin, and Calcium features
are important levels in determining the severity of infection of the patients (Figure 9).
Moreover, the performance of the combination of the ESR, NEU, CRP, Albumin, RBC,
Chlorine, and RDW features in detecting infected patients being higher than their individual
performance indicates a high level of confidential information about COVID-19 among
these blood features. This information was revealed by the LogNNet neural network. The
combinations of features can be used as important biomarkers in the prognosis of the
COVID-19 disease and in identifying patients in need of intensive care.

Our model decided in favor of the diagnosis of mildly infected patients (high precision
for non-ICU, low precision for ICU) because of the unbalanced sample size of mildly
infected and severely infected patients. However, our model showed a high recall value in
identifying mildly and severely infected patients. The model run with only three features
showed an average of 82.6% agreement with the expert opinion in distinguishing mildly
or severely infected patients (Table 10). However, severe patient diagnosis of our model
showed low agreement with expert opinion (low precision “ICU”) (Table 10), and the
success of our model in diagnosing severe patients is low. As a result, the LogNNet model,
which is run with the features in Table 10, can be used safely with high sensitivity (recall) to
confirm the expert opinion in recognizing mild and severely infected patients. In addition,
our model can be an alternative tool for diagnosing mildly infected patients using the
features in Table 10. Furthermore, the success of the LogNNet model using few features in
distinguishing mild and severe patients and diagnosing mildly infected patients is high.

Other studies [19,64,65] confirming the association of RBV features with COVID-19
highlight the importance of the clinical research direction that our model takes. The poor
performance of our model in diagnosing severe patients (low precision for the ICU) is an
expected situation. Several studies have stated that severe COVID-19 patients experienced
more changes in the RBV values than mildly infected patients, and that various complica-
tions could occur during the severe disease process [1–3,6]. There are many factors affecting
the intensive care need of an individual with COVID-19 and difficulties in determining this
process with only RBV values [1–6]. However, there are few studies on determining the
severity of infection in patients with COVID-19 based on the RBV values alone.

Cabitza et al. [20], Soltan et al. [25], and Rabanser et al. [66] stated that the reported
performance values are good enough, especially in terms of screening, considering the
economic benefits and rapid results of the developed artificial intelligence models. More-
over, Brinati et al. [19] suggested the necessity of conducting studies on the predictability of
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arterial blood gas tests in addition to routine blood values for the diagnosis of COVID-19. In
this context, we plan our next studies as follows. The first phase is to identify the diagnosis
and prognosis of COVID-19 with LogNNet model using the arterial blood gases. The
next phase is to determine the mortality of COVID-19 with the LogNNet model using the
RBV values.

Velichko [43] reported a method for the estimation of the occupied RAM in the im-
plementation of the LogNNet on Arduino microcontrollers. The LogNNet 51:50:20:2
model, discussed above, takes about 13.7 kB of RAM. As the matrix W occupies ~10.4 kB,
this memory can be freed due to RAM saving algorithm, and the algorithm will use
~3.3 kB. Therefore, the model can be placed on microcontrollers with a RAM size of 16 kB,
e.g., Arduino Nano.

With recent advancements in information and communication technologies due to the
adoption of IoT technology, smart health monitoring and support systems have a higher
development and acceptability margin to improve wellness [67,68]. The integration of
medical technologies into IoT is called the Internet of Medical Things (IoMT) [69].

In this context, the availability of low-cost, single-chip microcontrollers and advances
in wireless communication technology have encouraged researchers to design low-cost
embedded systems for healthcare monitoring applications [67]. Doctors can use patients’
data to remotely monitor their physiological health status and diagnose their disorders [68].
In a study designed for mobile health applications, Hu et al. [70] used various graphical
biosensors to monitor conditions, such as heart attack, brain problems, and high blood
pressure (seizures, mental disorder, etc.). In a study for a similar purpose, Vizbaras et al. [71]
reported that the stretching and bending vibrations of various chemical bonds are molecule-
specific. Therefore, certain infrared spectral ranges are of particular interest in biomedical
sensing. In addition, this approach can be used to selectively detect important biomolecules,
such as glucose, lactate, urea, ammonia, serum albumin, and so on. Clifton et al. [72]
demonstrated the use of wearable sensors for routine healthcare in their study of the
large-scale clinical adoption of "intelligent" predictive monitoring systems.

Mobile sensors for the measurement of routine blood parameters to be used in the real-
time detection of various diseases are being developed rapidly with the advancements of
technology [73–76]. The RBV values can be measured using a low-cost, mobile microscope,
an ocular camera, and a smartphone [73]. Chan et al. [74] determined PT and INR blood
values by monitoring the micro-mechanical movements of a copper particle with a proof-of-
concept using the vibration motor and camera in smartphones. Farooqi et al. [75] followed
the diabetic patients with telemonitoring and Bluetooth-enabled self-monitoring devices
and produced new solutions for the glycemic control of the patients. Zhang et al. [76]
determined various biochemical parameters by electrochemical controls.

In the feature, the data can be obtained in real time and used to provide immediate
medical advice before the health problems of the patients occur and progress. The technique
presented in this study can be used to create mobile health monitoring systems.

The output of the LogNNet model can be used in different scenarios. The presented
feature selection method can be used in conjunction with molecular testing to obtain high
sensitivity and certainty regarding suspected cases. In this way, more positive patients
can be identified, isolated, and treated in a timely manner. Likewise, the outputs of our
model can be used while the results of other tests are awaited. The results of this study
demonstrated that the LogNNet neural network model can be used with high productivity
for clinical decision support systems and mobile diagnostics.

Various independent biomarkers used in the study need to be tested in the diagno-
sis and prognosis of other infectious diseases. The low number of ICU patient groups
compared to the non-ICU group was one of the limitations of this study.

5. Conclusions

Determining the mild or severe infection status of COVID-19 patients using various
diagnostic tests and imaging results can be costly, time consuming, and is subject to different
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complications during the process. In this case, the patient’s health may be at higher risk
and health services may face tragic situations under intense pressure. This study provides
a fast, reliable, and economic alternative mobile tool for the diagnosis and prognosis of
COVID-19 based on the RBV values measured only at the time of admission to the hospital.

In this study, the most effective RBVs in the diagnosis and prognosis of COVID-19 were
determined using a feature selection method for the LogNNet reservoir neural network.
The most important RBVs in the diagnosis of the disease were MCHC, MCH, and aPTT.
The most important RBVs in the prognosis of the disease were ESR, NEU, CRP, albumin,
and RBC. The LogNNet deep neural network model accurately and precisely detected
almost all COVID-19 patients using only a few RBV features.

The health and sickness status of individuals could be determined largely accurately
using threshold levels of the LDL, HDL-C, Cholesterol, Triglyceride, MCHC, and Amylase
features. In addition, the LogNNet neural network revealed that the performance of
the combination of MCHC and MCH and the combination of MCHC and HDL-C in the
detection of sick and healthy individuals was higher than the individual performances of
these features.

Threshold levels of the NEU, WBC, CRP, Urea, Albumin, and Calcium main properties
were found to be significant in the detection of severely and mildly infected patients.
As revealed by the LogNNet network, the combination of ESR, NEU, CRP, Albumin,
RBC, Chlorine, and RDW features is an important source of variation in the prognosis
of COVID-19. We propose to use this combination of the features with LogNNet as
important biomarkers in the prognosis of the disease and in identifying patients in need of
intensive care.

The results of this study can be effectively used in medical peripheral devices of the
IoT (IoTM) with low RAM resources, including clinical decision support systems, remote
internet medicine, and telemedicine.
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Appendix A

Table A1. Threshold method parameters for SARS-CoV-2-RBV1 dataset and histogram bin sizes for
Figures 6 and 7.

№ Feature Ath, % Vth Units Type Min Max Bin Size

43 LDL 96.47 116.14 mg/dL 2 −83 258 3.4
36 HDL-C 94.73 43.09 mg/dL 2 8 115 1
39 Cholesterol 94.47 206.33 mg/dL 2 5 606 6
20 MCHC 94.35 31.31 g/dL 1 15.9 38.6 0.2
48 Triglyceride 90.96 163.35 mg/dL 2 34 1782 17
31 Amylase 85.1 76.35 u/L 1 0 1193 3
51 UA 81.12 5.39 mg/dL 1 0 14.3
47 TP 79.68 68.05 g/L 2 15 96
32 CK-MB 78.91 19.87 u/L 2 0 685.5
42 LDH 74.98 258.40 u/L 1 0 2749
29 Albumin 74.91 39.61 g/L 2 0 55.87
37 Calcium 74.21 9.01 mg/dL 2 0 12.55
30 ALP 74.13 154.35 u/L 1 0 3150
38 Chlorine 72.62 103.47 mmol/L 2 79 345
34 GGT 71.6 35.51 u/L 1 0 2732
1 CRP 70.54 4.29 mg/L 1 1 1650

41 CK 70.47 111.96 u/L 2 0 4665
45 Sodium 69.24 139.02 mmol/L 1 108 175
3 Ferritin 68.75 49.69 μg/L 1 0.2 1650

46 T-Bil 68.52 0.58 mg/dL 2 −0.35 20.95
33 D-Bil 66.09 0.16 mg/dL 2 −0.06 20
11 LYM 66.01 1.50 103/μL 2 0.08 715
40 Creatinine 64.03 1.01 mg/dL 1 0 202
7 PCT 63.22 0.12 ng/mL 1 0.12 1500
4 Fibrinogen 63.18 307.94 mg/dL 2 10.9 668.07

35 Glucose 62.42 122.05 mg/dL 1 11 846
49 eGFR 61.48 87.22 no unıt 2 3.483 561.746
27 ALT 61.35 29.54 u/L 1 0 2110
28 AST 60.65 32.19 u/L 1 0 2927
2 D-Dimer 60.37 385.41 μg/L 2 1.06 9610

50 Urea 58.19 40.99 mg/dL 1 0 427
14 WBC 58.08 5.71 103/μL 2 0.4 127
13 PLT 57.46 200.26 103/μL 2 9 768
8 ESR 57.38 14.07 mm/hr 1 2 124

16 EOS 56.4 0 103/μL 1 0 4.41
21 MCV 56.25 84.03 fL 1 56.7 122.1
22 MONO 56.25 0.54 103/μL 2 0.03 6.4 0.06
44 Potassium 55.63 4.36 mmol/L 1 0 59
26 RDW 55.49 13.21 % 2 0 30.8
15 BASO 55.04 0.029 103/μL 2 0 0.38
17 HCT 55 38.33 % 1 11.4 60.1 60
10 aPTT 56.51 31.06 Sec 1 12 23,843.7 238
12 NEU 54.8 2.60 103/μL 2 0.49 66.43
18 HGB 54.12 12.31 g/L 1 3.7 19
5 INR 53.15 0.735 no unit 2 0.12 88

25 RBC 53 4.29 106/μL 1 1.24 7.48 0.06
19 MCH 52.66 28.51 pg 1 15.9 41.9 0.2
24 PDW 51.93 11.89 fL 1 0 25.3
23 MPV 51.79 9.81 fL 1 0 15
6 PT 51.79 13.09 Sec 1 2 181
9 Troponin 50.19 25 ng/L 1 0.01 25,000
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Table A2. Threshold method parameters for SARS-CoV-2-RBV2 dataset and histogram bin sizes for
Figures 9 and 10.

№ Feature Ath, % Vth Units Type Min Max Bin Size

36 NEU 78.23 6.20 103/μL 1 0.1 31.26 0.3
3 Albumin 76.87 32.20 g/L 2 0.08 55 0.5

41 WBC 74.28 7.93 103/μL 1 0.4 68.3 0.6
42 CRP 74.03 15.051 mg/L 1 0.15 514 5
24 Urea 73.92 46.95 mg/dL 1 6 339 3
11 Calcium 72.14 8.50 mg/dL 2 0.6 12.43 0.1
21 TP 71.57 67.00 g/L 2 15 96 0.8
30 LYM 71.48 1.02 103/μL 2 0.08 58.87
40 RDW 68.89 13.30 % 1 11 27 0.16
48 PCT 67.85 0.151 ng/mL 1 0.052 100
2 AST 66.39 44.92 u/L 1 4 2927

16 LDH 66.11 267.37 u/L 1 20 1547
9 Glucose 65.46 118.13 mg/dL 1 17 846 8
7 D-Bil 65.04 0.209 mg/dL 1 0.01 20

44 Ferritin 64.17 238.116 μg/L 1 2.4 2000
15 CK 63.66 99.92 u/L 1 2 4665
43 D-Dimer 63.61 1074 μg/L 1 1.06 37,000
29 HGB 62.82 12.20 g/L 2 4 19 0.15
47 PT 62.78 14.30 Sec 1 9.4 129
23 eGFR 62.55 80.47 no unıt 2 4.724 561.746
35 MPV 62.37 10.30 fL 1 8.1 15 0.07
39 RBC 62.37 4.28 106/μL 2 1.24 7.22 0.06
50 Troponin 61.86 10.19 ng/L 1 1 4600
20 T-Bil 61.81 0.58 mg/dL 1 0.01 29
8 GGT 61.41 57.36 u/L 1 1 1085

19 Sodium 61.01 145 mmol/L 1 112 175
37 PDW 60.86 11.51 fL 1 7.6 25.3
32 MCHC 60.72 32.11 g/dL 2 3.6 39.2
28 HCT 59.71 36.63 % 2 12 56.3
1 ALT 59.02 39.80 u/L 1 0.7 1349

33 MCV 58.79 85.93 fL 1 55.8 117.8
6 CK-MB 58.72 19.38 u/L 1 1 575.4

14 Creatinine 58.39 1.26 mg/dL 1 0.46 202
12 Chlorine 58.21 107 mmol/L 1 79 137 0.58
45 Fibrinogen 57.22 334 mg/dL 1 70.56 681.88
49 ESR 57.2 38.03 mm/hr 1 2 139 1.37
5 Amylase 56.46 75.7 103/μL 2 11 874

46 INR 56.38 1.42 no unit 1 0.77 110
51 aPTT 56.33 36.12 Sec 2 12 414
25 UA 55.92 5.412 mg/dL 1 0.9 15
38 PLT 55.61 160 % 2 5 1199
34 MONO 55.22 0.474 sec 2 0.03 6.29
18 Potassium 54.99 3.815 mmol/L 2 2.4 59
27 EOS 54.72 0.111 103/Ml 2 0.01 4.41
4 ALP 54.35 63.98 u/L 1 1 3150 31

22 Triglyceride 53.27 141.6 106/μL 1 32 1402
31 MCH 53.11 28.22 pg 2 15.6 41.9
13 Cholesterol 53.11 170 mg/dL 2 5 354
10 HDL-C 53.02 34.69 mg/dL 2 8 93
26 BASO 52.75 0.01 103/μL 1 0.01 0.38
17 LDL 51.26 115.1 mg/dL 1 15 258
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Abstract: Drowning is a major health issue worldwide. The World Health Organization’s global
report on drowning states that the highest rates of drowning deaths occur among children aged
1–4 years, followed by children aged 5–9 years. Young children can drown silently in as little as 25 s,
even in the shallow end or in a baby pool. The report also identifies that the main risk factor for
children drowning is the lack of or inadequate supervision. Therefore, in this paper, we propose a
novel 5G and beyond child drowning prevention system based on deep learning that detects and
classifies distractions of inattentive parents or caregivers and alerts them to focus on active child
supervision in swimming pools. In this proposal, we have generated our own dataset, which consists
of images of parents/caregivers watching the children or being distracted. The proposed model can
successfully perform a seven-class classification with very high accuracies (98%, 94%, and 90% for
each model, respectively). ResNet-50, compared with the other models, performs better classifications
for most classes.

Keywords: deep learning; 5G and beyond; child drowning prevention; network slicing architecture

1. Introduction

Drowning is a major health problem worldwide. According to the World Health
Organization (WHO, Geneva, Switzerland), in 2015, around 360,000 people died from
drowning [1]. More than half of these deaths are of people younger than 25.

The WHO Global report on drowning [2] states that the highest rates of drowning
deaths occur among children aged 1–4, followed by children aged 5–9 years. In fact, in
countries like Australia, drowning is the leading cause of unintentional injury death in
children aged 1–3 years, and in the USA, drowning is responsible for more deaths among
children aged 1–4 years than any other cause (except birth defects) [3]. Furthermore,
drowning is the third leading cause of death worldwide for those aged from 5 to 14. In the
Western Pacific Region, children aged 5–14 years die more frequently from drowning than
from any other cause.

Drowning happens quickly and quietly and its signs often go unnoticed. Young
children can drown silently in as little as 25 s, even in the shallow end or in a baby pool [4].
For all of these reasons, it is important for parents and caregivers to actively supervise their
children around water, even if lifeguards are present.

The same report identifies the absence of or inadequate supervision as key risk factors
for the drowning of children [1]. Another report [5] from the Royal Life Saving Society
Australia (RSLA, Sydney, Australia) linked distracted parents to 77.8% of drownings in
children aged 5–9 years in public and commercial pools between 1 July 2005 and 30 June
2015. In the cases of drowning without supervision, the parent or caregiver of the child was
missing, or physically near the child but distracted (talking to another adult or attending to
another child in his/her care). Furthermore, the German Lifeguard Association (DLRG,
Bad Nenndorf, Germany) (the biggest organization of its kind in the world) reported that
more than 300 people died in Germany during 2018 (from the beginning of the year through
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the summer) and associated the growing number of children drowning to their parents’
obsession with mobile phones [6]. In addition, Royal Life Saving Australia reported that,
between 2002 and 2017, 447 children under the age of four drowned. Roughly 5% of those
deaths were a direct result of a failure to supervise owing to the use of electronic devices
(smartphone, tablet, laptop, and so on) [7].

In order to solve the problem of inadequate child supervision, in this paper, we propose
a novel 5G and beyond child drowning prevention system based on deep learning that
detects and classifies distractions of inattentive parents or caregivers. It can be deployed
in indoor swimming pools or outdoor locations such as beaches or aquatic recreation
locations aided by unmanned aerial vehicle (UAV) (drones). The system detects distracted
parents/caregivers in charge of a minor and alerts them to concentrate on the supervision
task. A 5G network slicing architecture for child drowning prevention has also been
introduced. To the best of our knowledge, this is the first paper that aims to avoid child
drowning by detecting and classifying distractions of parents in charge of a minor in aquatic
recreational spaces; it is also the first paper to use digital technologies such as artificial
intelligence and modern communication technologies (such as 5G and beyond) to detect
and alert distracted parents or caregivers. The main contributions of this study are as
follows:

• The proposal of a real-time distraction detection system that takes place in an aquatic
recreational environment (swimming pools).

• The collection of our own distracted parent/caregiver image dataset by harvesting
images of real people at a swimming pool being distracted or supervising children.

• The implementation and evaluation of three types of well-known convolutional neural
networks (CNNs) for the classification and detection system to determine the most
suitable architecture for distraction detection.

• The development of a voice alert system, pager, or wearable device that reminds the
parent or caregiver to focus on the task of child supervision.

The experimental results prove the feasibility of the child drowning prevention system.
The proposed model can successfully perform a seven-class classification with very high
accuracies (98%, 94%, and 90% for each model, respectively).

The paper is structured as follows. In Section 2, we introduce our proposed 5G-enabled
child drowning prevention system. In Section 3, we identify the most relevant key per-
formance indicators (KPIs). In Section 4, we explain the 5G-service-based architecture. In
Section 5, we discuss the proposed 5G network slicing architecture for child drowning
prevention from a technical perspective. In Section 6, we briefly describe the convolu-
tional neural network architectures used in this research. The experiments and results are
presented in Section 7. Finally, Section 8 concludes the paper and highlights some future
research directions.

Related Work

Monitoring and supervision at swimming pools or aquatic recreation locations has
drawn the attention of the research community [8], particularly for drowning prevention
and early detection of possible drowning [9,10].

Some proposed drowning detection systems [11–13] employ underwater cameras to
detect motionless drowned victims sunk at the bottom of the pool using techniques such as
background extraction [13], which consists of detecting the moving objects by identifying
the difference between the current frame and a reference frame, often called a ‘background
image’ or ‘background model’; however, these systems are limited to the victims that have
sunk to the bottom of the pool, thus wasting precious time, as they are unable to detect the
victims prior to them drowning.

Other proposed methods consist of overhead cameras mounted around the pool (such
as our proposed system) [14–16]; these systems consist of two main parts: a vision compo-
nent that can detect and track swimmers and an event-inference (water crisis) module that
analyzes swimmer observation sequences for possible drowning behavior signals. Several
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studies have been carried out regarding the detection of swimmers based on overhead
cameras [17,18]. This task is still challenging owing to disturbances at the water’s sur-
face (e.g., water exhibits random homogeneous blob movements, which could be easily
misidentified as foreground objects) [19,20]. In addition, lightning and color variations
over time due to ambient brightness even further complicate automated monitoring based
on video surveillance. Several works apply background subtraction to solve the swimmer
detection problem [13,19,20]. Currently, the development of wearable devices has become
a very common practice. It has allowed researchers to develop sensor systems to mon-
itor the physiological signals of high-performance swimming athletes [21,22], to detect
pre-drowning symptoms and alert rescue staff [23], and to supervise children. Wearable
sensor systems for infants can perceive external threats such as falls or drowning; the
methods and techniques applied in wearable sensor systems are analyzed and discussed
in [24]. In [20], a real-time detection method for constant monitoring of swimmers at an
outdoor swimming pool is presented. A background subtraction scheme is introduced,
where the background has been modeled as a composition of homogeneous region pro-
cesses. Furthermore, to solve the foreground (swimmer) detection problem, a devised
thresholding scheme has been proposed to attain a good trade-off between maximizing
target detection while minimizing background noises. In addition, to enhance the visibility
of the foreground (swimmer), a pre-processing filtering scheme able to classify each pixel of
a current frame into different pixel types has been proposed; this way, appropriate filtering
actions such as color compensation can be applied when necessary. In [19], a background
subtraction scheme based on motion and intensity information has been developed to
identify swimmers in each video frame. Image pixels are classified according to motion
as random/stationary, ripple, and swimming. A motion map is developed through the
computation of dense optical flow that characterizes the motion contents of image pixels
over a short sequence of video frames rather than a single image. Intensity information has
been modeled using a block-based mixture of Gaussians (MoG). However, these systems
([19,20]) only specify how to detect a swimmer; they do not specify how to detect if he/she
is drowning.

Current improvements in computing power have enabled the use of deep learning
algorithms for human detection and other computer-vision-related problems. Most state-of-
the-art object detectors use deep learning algorithms to extract features from input images
(or videos) and perform classification and localization, respectively [25]. In [26], a method to
detect swimmers in low-quality video using two convolutional neural networks (YOLOv2
and Tiny-YOLO) has been proposed. Our proposed 5G and beyond child drowning
prevention system is also based on deep learning (convolutional neural networks), but
focuses on the detection of distracted parents/caregivers, not swimmer detection (as
in [26]). In [27], a real-time vision system to detect drowning incidents using overhead
cameras at an outdoor swimming pool is presented. The system uses a model comprising
data fusion and hidden Markov modeling to learn of drowning events early. They focus
on (1) foreground swimmer silhouette extraction and (2) behavioral recognition. The
foreground detection module has already been reported in [20]. The system has analyzed
water crisis episodes consisting of victims that suffer distress incidents (victims exhibit
involuntary movements such as active struggling or waving [28]) and drowning incidents
understood as suffocation. The detection of distress and early drowning episodes is based
on visual indicators (instinctive response with repetitive arm movements of extending out
and pressing down, perpendicular body (vertical up) in water with small movements in
horizontal and diagonal directions). The experiments try to differentiate between three
events (water crisis, treading, and normal swimming); the best testing errors obtained are
15.15% and 15.57%, with support vector machine (SVM) and reduced model (RM) classifier,
respectively. Furthermore, the false alarm rate is at about one to five cases for each camera
in a day. In addition, one challenge of their proposed system is that a drowning incident
may happen in a way that is different from the learned instinctive drowning response
model. In this case, it must be determined how the system will react to an event for which
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it is not trained [27]. Furthermore, specialists emphasize that drowning happens quickly
and quietly, and its signs often go unnoticed (see Section 1). For this reason, in our current
paper, we propose a novel technique to detect child drowning episodes that focuses on
the caregivers of the children. To improve swimming pool safety, we use deep learning
to detect a distracted caregiver of a child in a swimming pool, similarly to the detection
of drivers’ distractions on the road. The behavior of a driver is essential for traffic safety.
On-road distractions deteriorate the driver’s performance and may lead to the loss of
vehicular control and traffic accidents. A distraction is anything that diverts the driver’s
attention from the primary task of navigating the vehicle and responding to critical events.
The authors in [29–31] use deep learning to detect distracted driver behaviors such as
texting, operating the radio, drinking, fixing hair and makeup, talking on the phone, and
so on.

2. The Proposed 5G and Beyond Child Drowning Prevention System

In the proposed scenario, families need to register when they arrive at the swimming
pool. A facial image of each family member is acquired to recognize them. The swimming
pool database registers the age of each child and links the photos of the children with their
parents and/or other family member/s. The family decides who is going to be the primary
caregiver that is going to watch the children and be responsible for their safety inside the
swimming pool and a pager is given to him/her. This task can be shared between the
parents (or other family members 18 years or older) simultaneously, which means that none
of them should be distracted. It is also possible that there is only one primary caregiver
during a certain time slot and another during the next time slot (e.g., the father is the
primary caregiver from 15:00 to 17:00 and the mother from 17:00 to 19:00).

After all of these decisions are made using the swimming pool app, the family can
access the swimming pool area. The proposed 5G and beyond child drowning prevention
system is shown in Figure 1.

If the primary caregiver decides to supervise the children outside of the pool, a specific
seat will be assigned to him/her close to the swimming pool. This guarantees that he/she
will have a good sight of the swimming pool to supervise the children. In addition, a video
camera will be directly facing him/her to detect distractions. The cameras are strategically
located at an optimal distance in a way not to obstruct people. In the case of multiple
primary caregivers, the same or multiple video cameras can be facing them. Real-time
video will be transmitted to the command center. Distractions of primary caregivers will
be detected using a deep learning algorithm.

If the primary caregiver decides to supervise the child inside the pool, different video
cameras mounted surrounding the pool will detect him/her using computer vision. For
this purpose, a high-quality monitoring system is required that consists of video cameras
with multiple high-end lenses that can zoom and steer around to detect critical details. The
video cameras need to coordinate with each other to be able to track the primary caregivers
at any time to detect possible distractions. The video cameras will identify the primary
caregiver from different perspectives inside the pool. Automated analysis of the video
footage will be carried out. A caregiver can be considered as ‘distracted’ if the convolutional
neural network analyzes the images from all of the video cameras that are simultaneously
capturing his/her behavior and he/she is characterized as being ‘distracted’ by most of
them. That is, the images of the parents/caregivers are not combined, but the images from
each camera are classified into a category. It is decided if the parent/caregiver is distracted
or not by analyzing which category is repeated the most.
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Figure 1. Proposed 5G-enabled child drowning prevention system.

When a distraction event is detected, an alert will warn the primary caregiver so that
he/she focuses on active child supervision. We assume that alerts will be sent immediately
if the kids to supervise are 5 years old or under. For kids that can swim (usually older than
5 years), parents will be alerted if the convolutional neural network detects a continuous
distracted behavior for more than 10 s, because drowning accidents happen very quickly.
Alert messages can be sent to a pager. The pager lights up or vibrates in case the caregiver
is distracted. Alert messages can also be heard through the swimming pool speakers
located in the closest vicinity of the caregiver. Furthermore, lifeguards will also get these
notification messages and act accordingly. This information will be, for example, useful
if certain caregivers are notified several times; in this case, lifeguards can supervise the
associated children much closer and talk to the parents/caregivers or take other necessary
steps if no change in their attitude is observed.
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3. Related Key Performance Indicators

The proposed 5G-enabled child drowning prevention system can be identified as a
mission critical communications (MCC) service because it requires real-time and reliable
communications for a large number of users, as well as strong security and pre-emption
handling [32]. Table 1 summarizes the major key performance indicators (KPIs) for child
drowning prevention. The end-to-end latency can be measured as the time interval required
to send the packages from a source to a destination, measured at the application level.

Table 1. Main KPIs for child drowning prevention.

End-to-End Latency
Data Rate

(Uplink/Downlink)
Reliability

5G-enabled child drowning
prevention system 20 ms

40 Mbit/s for one
video camera/1 Mbps

for remote control
99.999%

Mission critical: A quality or characteristic of a communication activity, application,
service, or device that requires low setup and transfer latency, high availability and reliabil-
ity, the ability to handle large numbers of users and devices, strong security, and priority
and pre-emption handling.

It would be possible for our use case to connect to the nearest edge server via Wi-Fi 7
(802.11be), because this standard will support a maximum throughput of at least 30 Gbps.
Features operating at both the MAC (medium access control) layer and the physical layer
(PHY) such as multi-access point coordinated beamforming, time-sensitive networking,
and multi-link operation will bring Wi-Fi 7 latency performance into the sub-10 ms realm.
These characteristics would be enough to support our high-throughput low-latency child
drowning prevention use case. However, the IEEE task group announced draft 2.0 of
802.11be, and the final version will be released in 2024.

IEEE 802.11ax (Wi-Fi 6) received final approval from the IEEE Standards Board on 1
February 2021. This standard offers a theoretical speed of up to 9.6 Gbps and 10 ms latency.
Wi-Fi 6 does not perform well in large-scale outdoor coverage scenarios and cannot meet
the ultra-low latency requirements (<10 ms).

It has been shown in [33] that Wi-Fi 6 can achieve ultra-reliable low latency perfor-
mance (i.e., <1 ms packet latency at 99.999% reliability) only when optimized and operating
in a low load up to 0.16 bps/Hz that is not appropriate for our use case.

On the other hand, 5G can reach up to 10 Gbps (only slightly higher than Wi-Fi 6), but
this technology has been designed to address the requirements of ultra reliable and low-
latency communications (URLLC). URLLC has stringent requirements for capabilities such
as latency, reliability, and availability. Some use cases include wireless control of industrial
manufacturing or production processes, remote medical surgery, and transportation safety.
It has been demonstrated in [33] that 5G NR (new radio)-FDD (frequency division duplex)
has superior URLLC performance and meets the sub-ms delay requirement at >5× higher
load than Wi-Fi 6.

Therefore, 5G is the appropriate technology for our use case thanks to its better
latencies. The proposed system requires that real-time video is backhauled from the video
cameras to the command center for remote control and analysis. The number of video
cameras will vary depending on the size of the swimming pool. Moreover, 5G can be
deployed in indoor swimming pools or even in outdoor locations such as beaches or
aquatic recreation locations that extend several kilometers. In these cases where so many
video images need to be processed as quickly and efficiently as possible, a 5G network is
required to provide sufficiently high uplink data throughput and transmission reliability as
well as sufficiently low latency. The short end-to-end latency will enable alert messages to
be sent as fast as possible if necessary as drowning happens quickly. Reliability is critical to
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detect incidents, which means that performance should not be compromised irrespective
of the channel conditions.

4. 5G Service-Based Architecture

Next, the 5G system architecture of the non-roaming case is illustrated in Figure 2 [34].
The user plane (UP) and control plane (CP) are decoupled to obtain scalable and flexible
deployments. Whereas the CP is used for network signaling, the UP carries only user
traffic.

Figure 2. Service-based representation of the 5G non-roaming system architecture [34].

The user equipment (UE) in the user plane is connected to either the radio access
network (RAN) or a non-3GPP access network (e.g., wireless local area network, WLAN)
as well as to the access and mobility management function (AMF).

Next, we explain the network functions (NFs) of the 5G core network (see the upper
part of the figure):

• Access and mobility management function (AMF): it is responsible for UE registration,
reachability and mobility.

• Session management function (SMF): it offers UE IP address allocation and manage-
ment, policy enforcement and quality of service, user plane function (UPF) selection,
and control.

• User plane function (UPF): it is the anchor point for intra and inter radio access
technology (RAT) mobility, packet routing, and forwarding.

• Policy control function (PCF): it integrates a policy framework for network slicing.
• Application function (AF): it is responsible for different services provided after the

interaction with the core network.
• User data management (UDM): it is responsible for subscriptions and many services

related to users.
• Authentication server function (AUSF): it performs the UE authentication service.
• Network slice selection function (NSSF): it offers an optimal selection of network

instances serving the users.
• Network exposure function (NEF): it collects, stores, and exposes the services and

capabilities provided by 3GPP NFs in a secure manner.
• NF repository function (NFR): it maintains and provides the deployed NF instances; it

also supports the service discovery function.
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5. A 5G Network Slicing Architecture for Child Drowning Prevention

Network slicing refers to the division of a physical network into multiple logical
networks (network slices), so that each logical network can provide specific network
characteristics for a particular use case. Network slicing provides services across multiple
network segments and different administrative domains. A 5G slice can combine resources
that belong to different infrastructure providers [35]. Network slicing is the best way for
network operators to build and manage a network that meets the requirements from a
wide range of users. Network slicing provides service flexibility and the ability to deliver
services faster with high security, isolation, and according to the quality of service (QoS)
requirements of the different applications. This way, network operators can manage their
network resources efficiently and provide differentiated and scalable services.

Slices are isolated from each other, which means that faults or errors in one slice do
not affect the proper functioning of another slice.

Next, we introduce the main design elements of our proposed 5G network slicing
architecture for child drowning prevention (see Figure 3).

 

Figure 3. Network slicing architecture for child drowning prevention.

It is divided into three layers plus an additional management and orchestration layer,
whose basic functionalities are summarized as follows:

Infrastructure layer: It refers to all of the parts of the physical network, because slices
should be end-to-end. This layer includes the IoT networks, telecommunication networks,
satellites, edge computing technologies, and the cloud. It provides the allocation of virtual
or physical resources such as computing, storage, network, or radio.

We assume that all network devices are software defined networking (SDN)-enabled
switches managed by SDN controllers that are able to program their routing tables.
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The 5G core is generally divided into ‘core—user plane’ in charge of bearer delivery
and ‘core—control plane (CP)’ in charge of control functions. Core—control plane will stay
in the central cloud (network function virtualization, (NFV)), but ‘core—user plane (UP)’
will be distributed to its tens of edge nodes nationwide and be installed in edge clouds
(NFV). Security, reliability, and latency will be critical for a 5G slice supporting the child
drowning prevention case. For such a slice, all of the necessary (and potentially dedicated)
network functions should be instantiated at the edge node. We consider that all the 5G
core functions/units (UP) should be in the edge cloud close to the users. Multi-access
edge computing (MEC) drastically reduces the latency between network nodes and remote
servers in the cloud [36] because video processing servers are placed right where the core
functions/units are located. This way, we can minimize the transmission delay to match
the requirements of our delay-critical slice for such an MCC application. Furthermore,
machine learning is crucial in supporting MCC by enabling a local decision making process
at the edge servers [37].

Network function layer: It encapsulates all of the operations related to the configura-
tion and life cycle management of the network functions that offer an end-to-end service.
Network function virtualization (NFV) [38] and SDN (software-defined networking) [39]
are two fundamental technologies to configure the virtual network resources. NFV de-
couples specific network functions from dedicated and expensive hardware platforms.
This technology can provide software building blocks named VNFs (virtualized network
functions) for the data plane that can be connected and chained according to the service
type. SDN technology enables the separation of the control plane from the data plane to
offer a flexible resource management.

Service layer: This layer provides a unified vision of the service requirements. Each
service is represented by a service instance, which embeds all of the network characteristics
that satisfy the SLA (service level agreement) requirements such as throughput or latency.
A network slice instance (NSI) is a managed entity created by an operator’s network with a
lifecycle independent of the lifecycle of the service instance(s) [40]. An NSI provides the
network characteristics required by a service instance. It is also possible that an NSI is
shared across multiple service instances of a network operator.

Based on the main KPIs (see Section 3) and functional requirements of our use case, child
drowning prevention, we propose that the drowning prevention slice has ultra-reliable and
low-latency communications (URLLC) requirements. URLLC use cases (such as mission-
critical applications) have stringent latency, reliability, and availability requirements.

Management and Orchestration (MANO): It is the framework for the management
and orchestration of all network resources (computing, networking, storage, and virtual
machine) in the cloud. It comprises three functional blocks: NFV orchestrator (NFVO),
VNF manager (VNFM), and virtualized infrastructure manager (VIM). NFVO performs on-
boarding of new network service and VNF packages, network service lifecycle management,
and resource management. VNFM manages the lifecycle of VNF instances. VIM controls
and manages the lifecycle of virtual resources as requested by the NFVO in an NFV
infrastructure (NFVI) domain.

6. Convolutional Network Models

Convolutional neural networks (CNNs): They were created out of the need to be
able to process images effectively and efficiently; nowadays, they are also used for speech
recognition. However, their strength is in image processing. Next, we describe the CNNs
used in our research.

VGG model: This architecture was proposed by Karen Simonyan and Andrew Zis-
serman [41]; it was the winner of the ImageNet Large-Scale Visual Recognition Challenge
2012 (ILSVRC12). It was designed with 16 hidden layers in VGG-16 and 19 hidden layers
in VGG-19 versions. The architecture processes input images of size 224 × 224 pixels with
three channels for color images (RGB). The image is passed through five convolutional
blocks (Figure 4). In VGG-19, the first two blocks incorporate two convolutional layers
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and the remainders incoporate four convolutional layers. Each convolutional layer uses
3 × 3 filters and rectified linear unit (ReLU) as an activation function; the convolutional
blocks also incorporate maxpooling layers to reduce image size and prevent overfitting
problems; the upper layers are composed of two full-connected layers with 4096 neurons
each, at the top, one output layer for image classification into 1000 different categories.
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Figure 4. VGG-16 and VGG-19 architecture.

ResNet model: It is a type of advanced convolutional neural network; this model
was proposed by Kaiming He in his 2016 document [42]. The ResNet-50 version consists
of 50 layers. This model is based on the idea of residual and identity blocks that use
skip connections (shortcut) (Figure 5), where the input is passed to a deeper layer. In
other words, the simple deep convolutional neural network is inspired by VGG with
3 × 3 filters and a ReLU activation function, which is modified to become a residual
network by adding skip connections to define residual blocks. On the top, the architecture
contains a fully connected output layer with a softmax activation function for classification.
Figure 6 shows the general configuration of the residual network architecture, including
ResNet-50, ResNet-101, and ResNet-152.
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Figure 5. (a) ResNet identity block and (b) ResNet convolutional block.
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Figure 6. Configuration of residual network architecture, including ResNet-50, ResNet-101,
and ResNet-152.

Inception-v3 model: This convolutional neural network was developed by Google. The
first version of inception, called “GoogLeNet”, was presented in the ImageNet Large-Scale
Visual Recognition Challenge 2014 (ILSVRC14) [43]. This first version of the architecture
is made up of 22 layers including convolutional, pooling, and a characteristic layer called
inception; the latter is a type of convolutional layer, but it is characterized using only
1 × 1, 3 × 3, and 5 × 5 filters simultaneously (Inception blocks) (Figure 7); this way,
the number of parameters to calculate is greatly reduced. This was achieved with what
Google called bottlenecks, which were convolutional layers with 1 × 1 filters to reduce the
complexity of the network. Google also includes auxiliary classifiers, intending to facilitate
the propagation of the gradients backward and to reduce the cost involved Therefore,
reducing the number of parameters and complexity resulted in a more powerful network.
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Figure 7. (a) Inception-A block, (b) inception-B block, (c) inception-C block, (d) reduction-A block,
and (e) reduction-B.

Figure 8 shows the inception and reduction blocks that were set for the third version
of this architecture.
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Figure 8. Inception-v3 architecture.

7. Experiments and Results

7.1. Dataset

The dataset is a collection of 38,000 images generated by us in the summer of 2019. The
location of the video recording was the facilities of the Fontsanta swimming pool, located
at Carrer del Marquès de Monistrol, 30, 08970 in Sant Joan Despí, Barcelona—Spain. Five
primary caregivers (people in charge of the children) were involved in the development
of these experiments. They were recorded on video, doing different activities (one video
for each action related to each of the different categories) both inside and outside the
water. The images captured from each video correspond to a specific category so that the
images have been identified and labelled manually for each category. The capture was
made taking into account that only the participants appear in the video to protect the
privacy and confidentiality of other people who are at the swimming pool. The videos were
recorded with high-resolution smart mobile devices (1920 × 1880), although the images
are preprocessed according to the input data requirements of each model (224 × 224). The
images were finally collected and classified into seven (7) categories:

• I_distracted: In the water distracted.
• I_watching: In the water watching the children.
• O_distracted: Out of the water distracted.
• O_talk_cell: Out of the water talking on a cell phone.
• O_reading: Out of the water reading a book.
• O_chatting: Out of the water chatting on a cell phone.
• O_watching: Out of the water watching the children.

To achieve a great performance during the training process with our own dataset, the
videos were not shot from a single angle. Instead, they were shot from different angles,
covering all potential perspectives of a caregiver. Furthermore, because the swimming
pool is located outdoors, the varying lighting conditions throughout the day provide a
richer dataset.

7.2. Experimental Settings

The dataset consists of approximately 38,000 images; it was split into two parts, keep-
ing a ratio of 8:2, i.e., around 30,000 images for training and 8000 for testing. In addition,
data augmentation was used to expand the training set and obtain better generalization.
Data augmentation is a technique that expands our original training dataset virtually,
through a random series of transformations from the original image, resulting in new
plausible-looking images, in order to obtain a larger number of images for training. In
computer vision, this technique became a standard for regularization, as well as to im-
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prove accuracy, generalization, and control of overfitting in CNNs. For this research, the
techniques chosen are as follows: rescale = 1./255, rotation_range = 2, shear_range = 0.2,
zoom_range = 0.2, and horizontal_flip = True.

We have selected the images from a different subject for testing purposes in order not
to contaminate the testing set. Figures 9 and 10 show a set of images of each category with
their training and testing labels.

 
Figure 9. Image set of each category with their respective training labels.

 

Figure 10. Image set of each category with their respective testing labels.

The algorithms were implemented in several Jupyter Notebooks in version 6.0.3
installed with anaconda programs suite, developed in Python. The experiments were
carried out on a Lenovo computer 2.9 GHz Intel (R) Xeon (R) processor with 72 GB RAM,
without GPU.

We implemented three different algorithms using the preset models from the python
Keras library; each one was specifically adapted to obtain optimal results after each training.
The transfer learning technique was used (further details will be provided in Section 7.4) to
take advantage of the pre-trained weights. Early stopping and dropout were implemented
as techniques to avoid overfitting to achieve an improvement of the generalization capacity.
Accuracy was selected during the training process as a metric to evaluate the performance
of each algorithm.

The setup of each model to be used is detailed below.

7.3. Convolutional Neural Network Architectures

In this paper, experiments were performed to evaluate the proposed approach with
three different CNN architectures: VGG-19, ResNet-50, and Inception-v3. Table 2 presents
a summary of the configuration for each model. For all experiments, we used an image
size of 224 × 224 × 3 and a batch size of 64.
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Table 2. Architectures of the three CNN models.

Input
VGG-19
Image

ResNet-50
Image

Inception-v3
Image

Convolutional
part

conv3-64
conv3-64

max pooling layer
conv3-128
conv3-128

max pooling layer
conv3-256
conv3-256
conv3-256
conv3-256

max-pooling layer
conv3-512
conv3-512
conv3-512
conv3-512

max-pooling layer
conv3-512
conv3-512
conv3-512
conv3-512

max-pooling layer

conv7-64, s = 2

max pooling layer

[conv1-64; conv3-64; conv1-256]–[ conv1-64]
2 blocks of [conv1-64; conv3-64; conv1-256]

[conv3-128, s = 2; conv1-128; conv1-512]–[conv3-128, s = 2]
3 blocks of [conv1-128; conv3-128; conv1-512]

[conv1-256, s = 2; conv3-256 conv1-1024]–[conv1-256, s = 2]
5 blocks of [conv1-256 conv3-256 conv1-1024]

[conv1-512, s = 2; conv3-512; conv1-2048]–[conv1-512, s = 2]
2 blocks of [conv1-512 conv3-512 conv1-2048]

global_average-pooling layer

Conv3-32, s = 2
Conv3-32
Conv3-64

max pooling layer
Conv3-80

Conv3-192, s = 2
max pooling layer

Inception A-256
Inception A-288
Inception A-288
Reduction A-768
Inception B-768
Inception B-768
Inception B-768
Inception B-768

Reduction B-1280
Inception C-2048
Inception C-2048

global_average-pooling layer

MLP classifier
FC layer-4096
FC layer-4096
FC layer-07

FC layer-2048
FC layer-2048
FC layer-07

FC layer-2048
FC layer-2048
FC layer-07

7.3.1. VGG-19

We implemented the VGG-19 version because it has a greater number of layers
(deeper network) compared with the VGG-16 version mentioned above. It is made up of a
224 × 224 × 3 input layer, five convolutional blocks with kernel 3 × 3, ReLU activation
function, without padding, and a maxpooling layer after each block followed by a flattened
layer and two additional blocks; each additional block consists of a fully connected dense
layer with 4092 neurons, a BatchNormalization layer, and a dropout layer. The last layer
is a dense layer with a softmax activation function that contains seven neurons to classify
our categories.

7.3.2. ResNet-50

This model contains an input layer of 224 × 224 × 3, fifty convolutional blocks with
their respective skip connections, followed by a global average pooling layer. At the top of
the model, we have added two additional blocks; each block consists of a fully connected
dense layer with 2048 neurons, a BatchNormalization layer, and a dropout layer. The last
layer is a dense layer with a softmax activation function that contains seven neurons for
our classification.

7.3.3. Inception-v3

This model is composed of a 224 × 224 × 3 input layer, two convolutional blocks of
three and two layers, followed by a maxpooling layer after each block. In the central part,
it consists of several types of inception and reduction blocks, along with a global_average-
pooling layer. At the top of the model, we added two additional blocks; each block consists
of a dense layer fully connected with 2048 neurons, a BatchNormalization layer, and a
dropout layer. The last layer is a dense layer with a softmax activation function that contains
seven neurons for our classification.

7.4. Training

The dataset consists of approximately 38,000 images (N records); it was split into
two parts, keeping a ratio of 8:2, i.e., around 30,000 images for the training set (n records)
and 8000 for the testing set (N−n records). For the training, we applied cross-validation.
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Cross-validation is a technique commonly used to validate machine learning models and
estimate the performance of the model trained on unseen data. The most robust and widely
used method of cross-validation is K iterations or K-fold cross-validation. This method
consists of splitting the training dataset into K subsets (see Figure 11). During iterations,
each of the subsets are used as validation data or testing folds and the rest (K−1) as training
data or training folds. The cross-validation process is performed repeatedly for K iterations,
with each of the subsets of validation data. The arithmetic average of the results of each
iteration is finally performed to obtain a single result. This method is highly efficient
as we evaluate it from K combinations of training and validation data, but it still has a
disadvantage, that is, computationally, it is slow. However, the choice of the number of
iterations depends on how large the dataset is. Cross-validation is most commonly used
with K values ranging from 5 to 10. If the model (estimator) is a classifier and the target
variable (y) is binary or multiclass (as in this research), the StratifiedKfold technique is
used by default. This approach introduces stratified folds, i.e., by keeping the proportion
of samples from each class in all folds. Therefore, the data from the training and testing
folds are distributed equally. It is useful when unbalanced datasets are used. To evaluate
the results, we used several metrics that are very common in machine learning applications
for classification problems.

 

Figure 11. Use of each fold in the cross-validation process (fivefold representation).

7.4.1. Loss or Cost Function

A loss function is employed to optimize a machine learning algorithm. Several
different cost functions can be used. Each of them penalizes errors differently. The loss
function most commonly used in deep neural networks for classification problems is
cross-entropy. In this research, we employed categorical cross-entropy. Categorical cross-
entropy is a loss function that is used in multi-class classification tasks, where a sample
can be considered to belong only to a specific category with a probability of 1 and to other
categories with a probability of 0, and the model must decide which category each one
belongs to.
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7.4.2. Transfer Learning and Early Stopping

A model can be trained from scratch when it is not very large or when the necessary
computational capacity for its execution is available. On the other hand, it is possible to
take advantage of the benefits of pre-established models and use them in new models.
This technique is known as transfer learning; this means that it allows us to transfer
learning from a pre-trained model such as VGG-19, ResNet-50, Inception-v3, and so on (pre-
trained models for 1000 objects’ classification) and apply it to new classification algorithms.
Furthermore, it is possible to unfreeze some pre-trained layers by adapting the model
(fine-tuning) to re-train them along with the new fully connected layers; this method
implies increasing the training time to avoid overfitting problems and to obtain optimal
performance from the algorithm.

A popular technique to overcome overfitting is early stopping. For this purpose, at
each iteration, the training set is divided into training and validation folds. The training
folds are used to train the model and the validation folds are used as validation data at each
iteration. In each training of the model, the validation folds help us to verify the accuracy
of the model at the end of each epoch. Therefore, as soon as the test error starts to increase,
the training is stopped.

7.5. Evaluation Metrics

To evaluate the results, we used several metrics that are very common in machine
learning applications for classification problems.

7.5.1. Accuracy

It is defined as the number of predictions made correctly by the model of the total
number of records.

accuracy =
TP + TN

TP + FP + FN + TN
(1)

where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives.

7.5.2. Precision

We evaluate our data for its performance of “positive” predictions.

precision =
TP

TP + FP
(2)

7.5.3. Recall (Sensitivity) (True Positive Rate)

It is calculated as the number of correct positive predictions divided by the total
number of positives.

recall =
TP

TP + FN
(3)

7.5.4. Specificity (True Negative Rate)

It is calculated as the number of correct negative predictions divided by the total
number of negatives.

speci f icity =
TN

TN + FP
(4)

7.5.5. F1 Score

It is the weighted average of precision and sensitivity. Therefore, this score takes into
account both false positives and false negatives.

F1 score = 2 × (precision × recall)
(precision + recall)

(5)
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7.5.6. Loss

Loss is the value that reflects the sum of errors in our model. It indicates whether
the model is performing well (high value) or not (low value); on the other hand, the
accuracy can be defined as the number of correct predictions divided by the number of
total predictions.

Therefore, if we analyze these two metrics together (loss and accuracy) (see Table 3),
we can deduce more information about the model performance. If loss and accuracy are
low, it implies that the model makes small errors in most of the data. However, if both are
high, it makes large errors in some of the data. Low accuracy but high loss would mean
that the model makes large errors in most of the data. However, if the accuracy is high and
the loss is low, then the model makes small errors in only some of the data, which would
be the ideal case.

Table 3. Analysis of both loss and accuracy metrics together.

Low Loss High Loss

Low Accuracy A lot of small errors A lot of big errors
High Accuracy A few small errors A few big errors

7.6. Experimental Results

After training with different configurations in the upper layers of each model, the
following results were obtained.

7.6.1. Loss and Accuracy

For training, cross validation was performed; therefore, the early stopping technique
was used to avoid overfitting (as mentioned above); thus, training is stopped once it has
reached the maximum accuracy value. Furthermore, the checkpoint was used to save the
weights of the trained model when a new maximum value arises and we can load it in the
future. Table 4 shows a summary of the accuracy and loss for the training and testing of
each model. We can see that, for training, all models achieve an accuracy above 99% and
ResNet-50 achieves a higher loss value compared with the other two models. Furthermore,
for testing, ResNet-50 achieves the highest accuracy, but also the largest loss of 98% and
0.3203, respectively. VGG-19 achieves an accuracy of 94% and the lowest loss of 0.0039
and, finally, Inception-v3 achieves an accuracy of 90% and a loss of 0.0364. Based on the
accuracy, ResNet-50 has developed much better performance compared with the other
trained models.

Table 4. Accuracy and loss for VGG-19, ResNet-50, and Inception-v3 model.

Models
Training Testing

Accuracy Loss Accuracy Loss

VGG-19 0.9987 0.0056 0.9445 0.0039
ResNet-50 0.9973 0.0110 0.9803 0.3203

Inception-v3 0.9993 0.0019 0.9044 0.0364

Table 5 shows the accuracy achieved by each model with each of the classification
categories (seven), evidencing the performance in more detail. VGG-19 achieves an accuracy
of 100% for I_watching and O_reading categories, an average accuracy of 97.42% for the
remaining categories, and a lower value of 72.73% for the O_chatting category. Similarly,
ResNet-50 achieves an accuracy of 100% for the I_watching and O_talk_cell categories and
the worst result for the O_distracted category, with an accuracy of 95.4%. On the other
hand, Inception-v3 achieves a high accuracy of 98.68% for the I_distracted category and a
lower accuracy of 66.6% for the O_talk_cell category.
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Table 5. Accuracy of each model with each category.

Parent Status
VGG-19

Accuracy (%)
ResNet-50

Accuracy (%)
Inception-v3
Accuracy (%)

Total Samples

I_distracted 98.99 97.75 98.68 1291
I_watching 100 100 96.83 883

O_distracted 92.32 95.4 95.2 1458
O_talk_cell 98.75 100 66.6 1036
O_reading 100 97.85 94.29 1069
O_chatting 72.73 97.97 90.91 935

O_watching 99.61 99.61 84.42 507

As this research work focuses on parental distraction detection for child drowning
prevention, the “In the water watching the children” (I_watching) and “Out of the water
watching the children” (O_watching) categories are the most relevant ones to detect if
parents/caregivers are really supervising their children. All of the other categories just
represent that the caregivers are distracted and should be warned. For I_watching, the
VGG-19 and ResNet-50 models achieve an accuracy of 100% and Inception-v3 achieves an
accuracy of 96.83%. Likewise, for O_watching, the VGG-19 and ResNet-50 models achieve
an accuracy of 99.61% and Inception-v3 achieves an accuracy of 84.42% (Table 4).

7.6.2. Precision, Recall, and F1-Score

Accuracy should not be considered as a single metric for measuring model perfor-
mance when using an unbalanced data set, as it counts the number of correct predictions
regardless of the type of category, leaning towards the majority categories. In other words,
from a dataset of 100 cases where 95 belong to the category “a” and five to category “b”, if
only all the cases in the first category are correctly predicted, an accuracy of 95% would
be obtained. This value is misleading because 95% refers only to the correctly predicted
values of one category (50% of the total predictions).

Because our data are unbalanced, we also consider other metrics such as recall, preci-
sion, specificity, and F1-score to evaluate our results. Table 6 shows the values obtained
in every category based on the above-mentioned metrics for VGG-19. F1-score is the har-
monic mean of precision and recall and it takes into account both false positives and false
negatives. The VGG-19 model performs well because it achieves an accuracy between 96%
and 99% for most categories and a smaller accuracy of 84% for the O_reading category. We
can also observe that, for the most relevant categories (I_watching and O_watching), this
model reaches an F1-score of 98%, demonstrating good performance in training.

Table 6. Evaluation metrics of the VGG-19 model.

Category Precision Recall F1-Score Total Samples

I_distracted 0.99 0.99 0.99 1291
I_watching 0.98 1.00 0.98 883

O_distracted 0.96 0.92 0.96 1458
O_talk_cell 0.99 0.99 0.99 1036
O_reading 0.87 1.00 0.87 1069
O_chatting 0.84 0.73 0.84 935

O_watching 0.98 1.00 0.98 507

Table 7 shows a summary of the already mentioned metrics in every category for
the ResNet-50 model. It achieves an F1-score between 97% and 99% for all categories. It
should be pointed out that this model reaches an F1-score of 98% and 99% for the most
relevant categories (I_watching and O_watching), which is the best performance of the
three models.
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Table 7. Evaluation metrics of the ResNet-50 model.

Category Precision Recall F1-Score Total Samples

I_distracted 1.00 0.98 0.99 1291
I_watching 0.97 1.00 0.98 883

O_distracted 0.99 0.95 0.97 1458
O_talk_cell 0.95 1.00 0.98 1036
O_reading 1.00 0.98 0.99 1069
O_chatting 0.96 0.98 0.97 935

O_watching 0.98 1.00 0.99 507

Finally, Table 8 shows a summary of the already mentioned metrics in every category
for the Inception-v3 model. This model achieves an F1-score between 91% and 98% for
most categories, and a minimum F1-score of 79% for the O_talk_cell category. In this case,
the Inception-v3 model achieves an F1-score of 98% for the I_watching category, but the
lowest F1-score of 84% for the O_watching category (most relevant categories).

Table 8. Evaluation metrics of the Inception-v3 model.

Category Precision Recall F1-Score Total Samples

I_distracted 0.98 0.99 0.98 1291

I_watching 0.98 0.97 0.98 883

O_distracted 0.75 0.95 0.84 1458

O_talk_cell 0.98 0.67 0.79 1036

O_reading 0.98 0.94 0.96 1069

O_chatting 0.92 0.91 0.91 935
O_watching 0.84 0.84 0.84 507

According to this, we conclude that the ResNet-50 model shows excellent performance
for this classification problem, reaching F1-scores of 98% and 99% in the I_watching and
O_watching categories, respectively (see Table 7). However, the VGG-19 model with a
value of 98% in the mentioned categories shows a solid performance as well (see Table 6).

7.6.3. Confusion Matrix, False Positive Rate, and False Negative Rate

Figures 12–14 show the confusion matrices for each model. The main diagonal shows
the number of matches found for each category between the true labels (columns) and the
predicted labels (rows).

All categories are well predicted. Considering the most relevant categories “In the
water watching the children” (I_watching) and “Out of the water watching the children”
(O_watching) mentioned above, it is possible to have some wrong predictions, which
means that, in some cases, certain distractions have not been detected. The three models
sometimes classify distracted behaviors of caregivers as ‘watching the children’ (false
positives). These cases represent a risk for children’s safety, but fortunately, do not occur
often compared with the true positive values for these categories. Inception-v3 obtains less
false positives for I_watching, with 14 versus 27 and 29 cases for VGG-19 and ResNet-50,
respectively. ResNet-50 obtains less false positives for O_watching, with 8 versus 21 and
79 cases for VGG-19 and Inception-v3, respectively. We define the false positive rate as
subtracting 1 from the specificity or as dividing false positives by the sum of false positives
and true negatives. The false-positive rate for I_watching and the three models VGG-19,
ResNet-50, and Inception-v3 is 0.43%, 0.46%, and 0.22%, respectively. The false-positive
rate for O_watching and the three models (VGG-19, ResNet-50, and Inception-v3) is 0.31%,
0.12%, and 1.18%, respectively. In terms of the false-positive rate, we observe that the
obtained values are always very small; VGG-19 and ResNet-50 perform a little worse than
Inception-v3 for I_watching. ResNet-50 shows clearly the best results for O_watching.
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Figure 12. Confusion matrix VGG-19.

Figure 13. Confusion matrix ResNet-50.

Figure 14. Confusion matrix Inception-v3.
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Furthermore, the three models sometimes classify “watching the children” as dis-
tracted behaviors (false negatives). These cases do not pose any risk, but could be annoying
for caregivers who are warned to supervise the children when they actually were doing
so. ResNet-50 and VGG-19 do not obtain any false negatives for I_watching versus 28
cases for Inception-v3. ResNet-50 and VGG-19 obtain less false negatives for O_watching,
with 2 cases each, versus 79 cases for Inception-v3. If we also consider the false-negative
rate for the most relevant categories (we define the false-negative rate as subtracting one
from recall), we can see that, for I_watching and the two models VGG-19 and ResNet-50,
it is 0% and, for Inception-v3, it is 3.17%. The false-negative rate for O_watching and
the two models VGG-19 and ResNet-50 is 0.39% and, for Inception-v3, it is 15.58%. The
false-negative rates obtained are very small (with the exception of the O_watching category
for Inception-v3). These results show that, for VGG-19 and ResNet-50, the child drowning
prevention system works correctly with a minimal error rate versus Inception-v3.

8. Conclusions and Future Work

In this paper, a novel 5G and beyond child drowning prevention system that detects
distracted parents or caregivers and alerts them to focus on active child supervision in
swimming pools was developed. For this purpose, we evaluated and implemented three
well-known CNN models: ResNet-50, VGG-19, and Inception-v3, to process and classify
images. The proposed deep CNN models have revealed that they can be used to automat-
ically detect (based on images) possible distractions of a caregiver who is supervising a
child and generate alerts to warn them.

The proposed child drowning prevention system can successfully perform a seven-
class classification with very high accuracies of 98% for ResNet-50, 94% for VGG-19, and
90% for Inception-v3. VGG-19 and ResNet-50 achieve the same high performance in the
most relevant categories I_watching and O_watching, with accuracies of 100% and 99.61%,
respectively. For I_watching, the three models achieve an F1-score of 98%. For O_watching,
they reach a F1-score of 98%, 99%, and 84% for VGG-19, ResNet-50, and Inception-V3,
respectively. In terms of false-positive rate, the obtained values are always very small;
VGG-19 and ResNet-50 perform a little worse than Inception-v3 for I_watching. ResNet-50
shows the best results for O_watching. The false-negative rates obtained are also very small
(with exception of the O_watching category for Inception-v3). VGG-19 and ResNet-50
models perform quite well with a minimal false-negative rate versus Inception-v3 for
I_watching and O_watching of 0% and 0.39%, respectively. ResNet-50, compared with
the other models performs a better classification for most categories. According to the
results reached in this research, the proposed system was tested in a swimming pool, but
we think it could also be implemented even in swimming lakes or beaches to avoid possible
child drowning.

On the other hand, special attention must be paid to security/privacy. Although there
is no doubt that distracted parent detection can save lives, associated privacy and security
issues need to be analyzed to make our child drowning system socially acceptable. These
issues include access rights to data (video images), storage of data, security of data transfer,
data analysis rights, and the governing policies. The proposed child drowning prevention
system may be vulnerable to a variety of active and passive security attacks (such as
eavesdropping) with disastrous consequences (especially if unauthorized parties access
underage images). For this reason, security and privacy risks should be minimized by
applying existing technical solutions such as encryption, authentication mechanisms, and
cryptographic access control during data collection and transmission, encryption message
digests, and hashing to assure the integrity of data during data storage and processing.
In addition, further works are also required to maintain the security and confidentiality
of data by introducing advanced encryption-based techniques. All of these security and
privacy challenges must be addressed so that the proposed child drowning prevention
system comes out as a promising way to increase swimming pool safety.
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We can define the total reaction time as the time elapsing from an observation (image),
its transmission to the edge server, the image processing for activity recognition, and the
transmission of an alert (if necessary) based on the observation (D = DUE + DUplink +
Dprocessing +DDownlink ). As future work, we would like to run the entire system (processing
of the images with the neural network and transmission using 5G) in real time. The
expected response time for our child drowning prevention system would be around twenty
milliseconds (see Table 1). Neural networks have an infinitesimal response time once the
weights and the topology have been defined [44]. Further, 5G has been designed to address
the requirements of ultra reliable and low-latency communications (URLLC). URLLC has
stringent requirements for capabilities such as latency, reliability, and availability. Some use
cases include wireless control of industrial manufacturing or production processes, remote
medical surgery, and transportation safety. Therefore, 5G is the appropriate technology for
our use case.
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Abstract: Healthcare digitalization requires effective applications of human sensors, when various
parameters of the human body are instantly monitored in everyday life due to the Internet of Things
(IoT). In particular, machine learning (ML) sensors for the prompt diagnosis of COVID-19 are an
important option for IoT application in healthcare and ambient assisted living (AAL). Determining
a COVID-19 infected status with various diagnostic tests and imaging results is costly and time-
consuming. This study provides a fast, reliable and cost-effective alternative tool for the diagnosis of
COVID-19 based on the routine blood values (RBVs) measured at admission. The dataset of the study
consists of a total of 5296 patients with the same number of negative and positive COVID-19 test
results and 51 routine blood values. In this study, 13 popular classifier machine learning models and
the LogNNet neural network model were exanimated. The most successful classifier model in terms
of time and accuracy in the detection of the disease was the histogram-based gradient boosting (HGB)
(accuracy: 100%, time: 6.39 sec). The HGB classifier identified the 11 most important features (LDL,
cholesterol, HDL-C, MCHC, triglyceride, amylase, UA, LDH, CK-MB, ALP and MCH) to detect the
disease with 100% accuracy. In addition, the importance of single, double and triple combinations of
these features in the diagnosis of the disease was discussed. We propose to use these 11 features and
their binary combinations as important biomarkers for ML sensors in the diagnosis of the disease,
supporting edge computing on Arduino and cloud IoT service.

Keywords: COVID-19; biochemical and hematological biomarkers; routine blood values; feature
selection method; LogNNet neural network; machine learning sensors; Internet of Medical Things; IoT

1. Introduction

Identified in 2019, COVID-19 is an infectious disease caused by the novel severe
acute respiratory syndrome coronavirus (SARS-CoV-2) [1,2]. Since the World Health
Organization (WHO) declared the SARS-CoV-2 infection as a pandemic, the epidemic
still maintains its severity to this day [3,4]. The early diagnosis of patients is extremely
important to manage this unprecedented emergency [5,6]. The preferred gold standard
method for detecting SARS-CoV-2 infections is the reverse polymerase chain reaction
(PCR) or reverse transcriptase-PCR (RT-PCR) technique [7]. However, the execution of
the test is time consuming (not less than 4–5 h under optimum conditions) and many
favorable conditions must be met, such as the use of special equipment and reagents, the
collection of samples and the necessity of trained personnel [8]. Machine learning (ML) and
artificial intelligence (AI) models provide a powerful motivation to uncover insights from
patients’ data in tragic events such as the COVID-19 pandemic or in situations wherein
guidelines have not yet been created [9]. ML and AI methods select the relevant biomarkers,
revealing their predictive importance and consistently detecting their interactions with
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each other. Moreover, the diagnostic performance of these methods has the ability to be
improved [9–11]. AI studies for the early detection, diagnosis and prognosis of COVID-19
relied on computed tomography (CT) and RBVs. However, imaging-based solutions are
costly and require specialized equipment. Machine learning (ML) and AI studies based on
RBVs features are a more economical and rapid alternative method for the early detection,
diagnosis and prognosis of COVID-19 [7,11,12]. Previous studies have indicated that this
disease can accompany multi-organ dysfunction and cause a variety of symptoms [3,13–15].
COVID-19 can cause severe pneumonia and severe ARDS due to inflammatory cytokine
storms [5,14]. The excessive and uncontrolled release of proinflammatory cytokines was
considered the most important primary cause of death, similar to other infections caused
by pathogenic coronaviruses [16].

The pathogen may require special attention in intensive care units (ICUs) and cause
a serious respiratory disorder, in some cases leading to death [14,16]. Moreover, it is
difficult to distinguish symptoms of COVID-19 from known infections in the majority of
patients [14,17,18]. This predictive analytics is especially required in medical information
systems (MISs) to support clinical or managerial decisions.

COVID-19 may be part of a broader spectrum of hyperinflammatory syndromes char-
acterized by the cytokine release syndrome (CRS), such as secondary hemophagocytic
lymphohistiocytosis (sHLH) [19–21]. The activation of the monocyte–macrophage system
just before the disease leads to pneumonia [22,23]. During this period, changes in many
routine laboratory parameters such as D-dimer and fibrinogen have been reported in
COVID-19 patients [1,2,4,5,14,22,24]. High ferritin, D-dimer, lactate dehydrogenase and
IL-6 levels are indicators of poor prognosis and risk of death in patients [25–27]. In addi-
tion, Winata and Kurniawan [28] reported increased D-dimer and fibrinogen degradation
product (FDP) in all patients in the late stage of COVID-19. This indicates that D-Dimer and
FDP levels are elevated due to increased hypoxia in severe COVID-19 conditions and are
significantly associated with coagulation. Kurniawan et al. [29] reported that hyperinflam-
mation, coagulation cascade, multi-organ failure, which play a role in the etiopathogenesis
of COVID-19, and biomarkers associated with these conditions, such as CRP, D-Dimer,
LDH and albumin, may be useful in predicting the outcome of COVID-19.

The previous studies detected the clinical significance of changes in the routine blood
values (RBVs) in the diagnosis and prognosis of infectious diseases [1,2,4,5,30,31]. However,
Jiang et al. [32], Zheng et al. [33] and Huyut [11] noted that information on early predictive
RBVs should be supplemented with large samples, especially for severe and fatal cases of
COVID-19.

The uncontrolled spread of the disease in pandemics distresses health systems. The
early detection of patients in pandemics is an important but clinically difficult process in
terms of morbidity and mortality [14,24]. The diagnosis and prognosis of COVID-19 with
the use of advanced devices can provide support in improving patient comfort, health
system and tackling economic inadequacies [6,11,12]. In this context, studies are carried
out to diagnose and determine the severity of the disease in the early period by using ML
and AI-based methods as well as RBVs data [7,11,12]. The basic element in ML approaches
is to determine the feature vector with a linear classifier [30]. Since ML algorithms require
a sufficiently large number of samples, the problem of dimensionality in these methods
is inevitable. To minimize this problem, the dataset should be reduced by finding a less
dimensional attribute matrix. The dimensionality problem can be minimized by discarding
irrelevant features with the feature selection procedure [30,31].

Feature selection methods can be summarized under three main headings: embed-
ded methods, filters and wrappers (backward elimination, forward selection, recursive
feature elimination) [30,31]. Feature selection in embedded methods is part of the training
process and, therefore, this method lies between filters and wrappers. In the embedded
methods, the determination of the best subset of features is performed during the training
of the classifier (for example, when optimizing weights in a neural network). In terms of
computational cost, embedded methods are more economical than wrappers [30].
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Although we can find many case studies for all three feature selection methods, most
feature selection methods are filters [30]. The existence of a large number of available
feature selection methods complicates the selection of the best method for a particular
problem [31]. The popular feature selection methods include correlation-based feature
selection (CFS) [34], consistency-based filtering [35], INTERACT [36], information gain [37],
ReliefF [38], recursive feature elimination for support vector machines (SVM-RFE) [39],
Lasso editing [40] and minimum redundancy maximum relevance (mRMR) algorithm
(developed specifically for dealing with microarray data) [30].

We examined the SARS-CoV-2-RBV1 database using the LogNNet neural network [12].
LogNNet can be defined as a feed forward network that increases the classification accuracy
by chaotic mapping that fills a reservoir matrix. It is important to optimize the chaotic
map parameters in data analysis by applying the LogNNet neural network. In addition, by
taking advantage of chaotic mapping, it is possible to significantly reduce the RAM usage
by a neural network. These results show that LogNNet can be used effectively in Internet
of Things (IoT) mobile devices.

The main point for many digital health solutions during the pandemic process is the
production of effective, fast and inexpensive alternative methods for the early diagnosis and
treatment of COVID-19 patients. However, even the most knowledgeable and experienced
physicians can interpret little of the information contained in routine blood laboratory
results, and it is extremely difficult to determine the severity of COVID-19 patients based
on RBVs findings alone [41]. In this context, ML classification models run with RBV-based
data to determine the preliminary diagnosis of COVID-19 can be an effective tool in clinical
decision support systems with an accuracy of over 95%. In this study, 13 ML models
and LogNNet neural networks were applied in the diagnosis of suspected cases with
an alternative device, based on LogNNet and Andrunio solutions, as only RBV-based,
and the most important features were determined. We made a clinical interpretation of
the relationship between these features and their various combinations with the disease.
We achieved the performance of all models in detecting the diagnosis of the disease and
reached up to 99.8% accuracy. ML sensors (Sensors 1.0 type) for the diagnosis of the
COVID-19 disease have been successfully tested in the IoT environment, and the diagnosis
of the disease has been implemented in offline and online modes. In offline mode, ML
sensors were run on an Arduino board with a LogNNet neural network with a total RAM
consumption of ~4 kB. Obtaining the findings in this study over a large sample is an
important advantage in terms of the validity of the study. We believe that this study will
help to identify suspected patients with a high probability of being infected with COVID-19
at the time of admission to the hospital with a fast and economical method, which will
make important contributions to the detection of the disease before it progresses.

The paper has the following structure. Section 2 present the related studies, Section 3
describes the data collection procedure, correlation analysis of features, machine learning
methods and the implementation of LogNNet on an Arduino board. Section 4 presents
the results from the correlation analysis of dataset, classification results, one, double, triple
and 11 feature combinations in the detection of sick and healthy individuals, and the ML
sensor concept for IoT. Section 5 discusses the results and compares them with known
developments. Section 6 presents the limitations of the study. In conclusion, a general
description of the study and its scientific significance are given.

2. Related Studies

The prompt diagnosis of COVID-19 seems to be a promising advancement for applying
at-home health care and AAL [42]. The digitalization of healthcare calls for effective
applications of human body sensors [43] and human sensing [44], including ML sensors,
to continuously monitor various parameters of the human body in everyday life with
the help of the IoT [45]. Everyday human body sensors testify to the growing number of
applications in IoT-enabled ambient intelligence (AmI) systems [46]. The paradigms of ML
sensors [47] and artificial intelligence (AI) sensors [48,49] are similar in meaning. The ML
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sensor paradigm was further developed by Warden et al. [47] and Matthew Stewart [50],
wherein the authors introduced the terms Sensors 1.0 and Sensors 2.0 devices. Sensors
2.0 devices are a combination of both a physical sensor and a machine learning module
in one package. Sensors 2.0 devices process data internally, ensuring data security, while
in Sensors 1.0 devices, these modules are physically separated. In addition, the authors
proposed the concept of creating a datasheet of ML sensors. Therefore, the development of
technology for creating ML sensors for the diagnosis of the COVID-19 disease is an urgent
problem.

In previous studies, the RBVs of people who lived and died from COVID-19, or
patients with COVID-19 and healthy individuals, were statistically compared [1,3,14,22–
24,26,51]. In addition, differences in many RBVs characteristics are known between mild
and severe COVID-19 patient groups according to statistical methods. However, this
study demonstrates that ML models using only one or two features can detect COVID-19
patients from a large group of patients with high accuracy. Therefore, this study will be
an alternative approach with extremely high sensitivity for the diagnosis of COVID-19.
ML algorithms allow for an easy interpretation of complex association structures in data
by simultaneously evaluating the cumulative effects of numerous biomarkers to discover
higher-order interactions [4,6,9]. With this benefit, the strengths of using ML in clinical
medicine are considered as an opportunity. Although various clinical studies [7,52,53]
have highlighted how blood test-based diagnosis can provide an effective and low-cost
alternative for the early detection of COVID-19 cases, relatively few ML models have been
applied to blood parameters [7,54].

An evaluation of lung CT images to predict lung cancer using deep learning with an
improved abundant clustering technique and instant trained neural networks approach
was performed in [55]. The authors achieved an accuracy of up to 98.42% in cancer
diagnosis with a minimum classification error of 0.038. Cui et al. [56] examined the
distribution of pixels in the images with the fuzzy Markov random field segmentation
approach using positron emission tomography (PET) and computed tomography (CT)
images of the affected area associated with lung tumor. The developed method provided
an accuracy of 0.85 in recognizing the lung tumor region. Tomita et al. [57] ran a logistic
regression (LR) analysis, support vector machine (SVM) and deep neural network (DNN)
models with biochemical findings, lung function tests and bronchial challenge test features
to predict the initial diagnosis of adult asthma. In the pre-diagnosis of adult asthma,
the DNN model showed 0.98%-ACC, the SVM model 0.82%-ACC and the LR model
0.94%-ACC. Ryu et al. [58] used various ML models and a deep neural network model
for the pre-diagnosis of diabetes mellitus using various physical and routine blood values
features. The deep neural network has been the most successful model with a value of 0.80-
AUC in diabetes mellitus. Kolachalama et al. [59] used a six-convolutional deep learning
architecture (CNN) with histological images, biopsy results and some clinical phenotypes
to classify kidney disease severity. The CNN model was found to be more successful
with AUC values of 0.878, 0.875 and 0.904, respectively, than the pathologist-predicted
fibrosis score (0.811, 0.800 and 0.786 AUC, respectively) for assessing 1-, 3- and 5-year
renal survival. In a study conducted to identify patients at risk of early diagnosis of fatty
liver disease, Wu et al. [60] used an artificial neural network model with three ML models.
The most successful model in the diagnosis of risky patients was the random forest with
87.48-ACC and 0.92-AUC values. Oguntimilehin et al. [61] used an ML technique on a
set of labeled typhoid fever contingent variables for the diagnosis of typhoid fever and
to establish explicable rules. The labeled database is divided into five different levels of
typhoid fever severity, with classification accuracies on both the training set and the test set
of 95% and 96%, respectively. The application was implemented using Visual Basic as the
front-end and MySQL as the back-end. Kouchaki et al. [62] used various ML methods to
predict the resistance to MTB in Mycobacterium tuberculosis (MTB) patients given a specific
drug in a timely manner and to identify resistance markers. Compared to the traditional
molecular diagnostic test, the AUC values of the best ML classifiers were higher for all
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drugs. Logistic regression and gradient tree reinforcement methods performed better than
other techniques. Taylor et al. [63] ran six machine learning algorithms with 10 features
consisting of patient demographics, RBVs results and drug information for the diagnosis of
and treatment decisions for urinary tract infection. The best performing model, XGBoost,
diagnosed the presence of a urinary tract infection with a high AUC value (0.826–0.904
confidence interval).

Yang et al. [64] ran four ML models on 3356 patients (42% COVID-19 positive) using
27 features covering both blood count and biochemical parameters. A gradient boosted
decision tree model was the most successful model in the diagnosis of the disease with a
value of 0.85-AUC. Booth et al. [9] operated 26 RBVs data elements with a support vector
machine to detect COVID-19 patients at high mortality risk and determined prognostic
biomarkers with a value of 0.93-AUC. Huyut [11] classified severely and mildly infected
patients from a large population of COVID-19 patients using 12 supervised ML models and
28 routine blood values. The models with the highest AUC for identifying mildly infected
patients were found to be local weighted learning at 0.95%, Kstar at 0.91%, Naive bayes
at 0.85% and K nearest neighbor at 0.75%. Brinati et al. [65] ran 13 RBVs with various ML
methods to detect COVID-19 patients (102 negative and 177 COVID-19 positive). They
noted that the models with the highest accuracy in the diagnosis of the disease were
random forest (82%) and logistic regression (78%). Huyut and Velichko [12] determined the
diagnosis and prognosis of the COVID-19 disease by running the LogNNet neural network
model on 51 RBVs features. The model achieved an accuracy of 99% in the diagnosis of
the disease and 84% in its prognosis. Zhang et al. [66] used a variety of demographic
indicators and 21 RBVs using a Lasso-based neural network model to detect predictors
of mortality from COVID-19. The success of the model in determining the clinical status
of the patients was 98%-AUC. Alle et al. [67] applied the XGboost and logistic regression
model on a dataset of various clinical and laboratory tests to predict COVID-19 mortality
and found accuracy rates of 83% and 92%, respectively. Gao et al. [68] applied an ensemble
model derived from support vector machine (SVM), gradient augmented decision tree
(GBDT) and neural network (NN) algorithms using 28 immune/inflammatory features to
detect COVID-19. The developed model reached 0.99 AUC in detecting infected patients.
Vaishnav et al. [69] used various machine learning models to predict mortality from COVID-
19, and the decision tree regression model produced a 70% accuracy and the random forest
regression model a 76% accuracy. Huyut and İlkbahar [5] used various biomarkers with
the CHAID decision tree to detect the diagnosis and prognosis of COVID-19. The model
produced an 81.6% accuracy in recognizing the disease and a 93.5% accuracy in determining
the prognosis of the disease. Huyut and Üstündağ [6] used 23 blood gas parameters with
the CHAID decision tree to predict the diagnosis and prognosis of COVID-19. The model
produced a 68.2% accuracy in recognizing the disease and a 65.0% accuracy in determining
the prognosis of the disease. Kukar et al. [70] constructed a machine learning model
based on 35 RBVs to diagnose 5333 negative and 160 positive COVID-19 patients with
various bacterial and viral infections. The model showed an 81.9% sensitivity and a 97.9%
specificity in detecting patients. Mei et al. [71] developed a model combining CNN and
multilayer sensor to detect COVID-19 using computed tomography (CT), various clinical
information elements and some RBVs data. The model reached an 84% sensitivity and an
83% specificity in recognizing the disease.

AI studies on the risk of poor outcome for COVID-19 patients need further validation
with larger samples [11,25,72]. Furthermore, previous AI studies using RBVs for COVID-19
diagnosis and prognosis which covered the early stages of the outbreak included less blood
values and reported poorer performance. Therefore, to detect the disease in the later stages
of the epidemic, it is necessary to study ML models on a larger sample, which can achieve
higher accuracy and use most RBVs.
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3. Data and Methods

The data used in this study were collected retrospectively from the information system
of Erzincan Binali Yıldırım University Mengücek Gazi Training and Research Hospital
(EBYU-MG) between April and December 2021. The data used in this study are shared as
open access under the name of “SARS-CoV-2-RBV1” in [12].

During the dates covered by this study, a diagnosis of SARS-CoV-2 was made by
real-time reverse transcriptase polymerase chain reaction (RT-PCR) on nasopharyngeal
or oropharyngeal swabs at the EBYU-MG hospital. RBVs results at first admission were
recorded to prevent various complications.

3.1. Characteristic of Participants, Workflow and Datasets

Between the specified dates, the digital system of our hospital was scanned and
patients diagnosed with COVID-19 (n = 2648) were selected from a large patient population
(a dataset of approximately 80 thousand patients was scanned). The routine laboratory
information of these patients was examined. The parameters (features) that were measured
from at least 80% of the patients were used. Missing data were completed with the mean
of the distribution and normalized. A total of 51 routine blood values calibrated from
approximately 70 parameters were recorded. In addition, a group (control group) with the
same number of negative COVID-19 tests (n = 2648) was identified and 51 characteristics of
these individuals were recorded. Our control group arrived at the hospital only with the
suspicion of COVID-19. Chronic disease information of the patients could not be reached.
Only data of individuals over the age of 18 were recorded.

These two datasets were combined and named “SARS-CoV-2-RBV1” dataset. The
SARS-CoV-2-RBV1 dataset includes immunological, hematological and biochemical RBVs
parameters and consists of 51 features (Table 1). In the SARS-CoV-2-RBV1 dataset, positive
COVID-19 test results were coded as 1 and negative test results as 0 (COVID-19 = 1,
non-COVID-19 = 0).

Table 1. Feature numbering for SARS-CoV-2-RBV1 dataset [12].

№ Feature № Feature № Feature № Feature № Feature

1 CRP 12 NEU 23 MPV 34 GGT 45 Sodium

2 D-Dimer 13 PLT 24 PDW 35 Glucose 46 T-Bil

3 Ferritin 14 WBC 25 RBC 36 HDL-C 47 TP

4 Fibrinogen 15 BASO 26 RDW 37 Calcium 48 Triglyceride

5 INR 16 EOS 27 ALT 38 Chlorine 49 eGFR

6 PT 17 HCT 28 AST 39 Cholesterol 50 Urea

7 PCT 18 HGB 29 Albumin 40 Creatinine 51 UA

8 ESR 19 MCH 30 ALP 41 CK

9 Troponin 20 MCHC 31 Amylase 42 LDH

10 aPTT 21 MCV 32 CK-MB 43 LDL

11 LYM 22 MONO 33 D-Bil 44 Potassium

CRP: C-reactive protein; INR: international normalized ratio; PT: prothrombin time; PCT: procalcitonin; ESR: ery-
throcyte sedimentation rate; aPTT: activated partial prothrombin time; LYM: lymphocyte count; NEU: neutrophil
count; PLT: platelet count; WBC: white blood cell count; BASO: basophil count; EOS: eosinophil count; HCT:
hematocrit; HGB: hemoglobin; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin con-
centration; MCV: mean corpuscular volume; MONO: monocyte count; MPV: mean platelet volume; PDW: platelet
distribution width; RBC: red blood cells; RDW: red cell distribution width; ALT: alanine aminotransaminase;
AST: aspartate aminotransferase; ALP: alkaline phosphatase; CK-MB: creatine kinase myocardial band; D-Bil:
direct bilirubin; GGT: gamma-glutamyl transferase; HDL-C: high-density lipoprotein cholesterol; CK: creatine
kinase; LDH: lactate dehydrogenase; LDL: low-density lipoprotein; T-Bil: total bilirubin; TP: total protein; eGFR:
estimating glomerular filtration rate; UA: uric acid.
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The features in this dataset are calibrated and contain almost all of the routine blood
values that are the subject of studies on COVID-19 in the literature. Therefore, we believe
that the bias of our study using this dataset was minimized in comparison to the literature.
In addition, the use of our dataset, which we share as open access, is important in terms of
showing the reproducibility and auditability of the results.

3.2. Correlation Analysis of Features

To determine the level of correlation between diagnosis and biochemical blood pa-
rameters, the original dataset was analyzed using the point-biserial correlation test [73].
Pearson correlation coefficient was calculated for each feature–feature pair, and a correla-
tion matrix was compiled. The correlation matrix makes it possible to judge the strength
and structure (positive or negative) of the linear relationship between diagnosis–feature
and feature–feature pairs. The correlation matrix was created using the pandas software
package [74].

3.3. Machine Learning Methods, Hyperparameters, Accuracy Estimation

Machine learning algorithms can be applied to a wide range of problems such as
classification, clustering, regression analysis, time series forecasting, etc. [75]. The SARS-
CoV-2-RBV1 dataset under study has an output parameter divided into two classes (positive
or negative diagnosis for COVID-19), so the task of the machine learning algorithm is re-
duced to binary classification based on 51 features. This study compared the accuracy of
the most popular binary classification algorithms: multinomial naive Bayes (MNB), Gaus-
sian naive Bayes (GNB), Bernoulli naive Bayes (BNB), linear discriminant analysis (LDA),
K-nearest neighbors (KNN), support vector machine classifier with linear kernel (LSVM),
support vector machine classifier with non-linear kernel (NLSVM), passive-aggressive (PA),
multilayer perceptron (MLP), decision tree (DT), extra trees (ETs) classifier, random forest
(RF), histogram-based gradient boosting (HGB).

Each classifier model has hyperparameters, for which optimization is necessary to ob-
tain the most accurate models. For optimization, the software package “auto-sklearn” [76]
was used.

Before training the models, the initial data were subjected to preprocessing, which
makes it possible to speed up the training of the models and improve the accuracy of the
classification. Preprocessing includes two stages: (1) normalization of numerical values of
the input data, (2) generation of additional features. Normalization is a procedure consisting
of bringing numerical data to a single format, which has the following options: quantile
transformer (QT)—transforms feature values so that they correspond to a uniform or normal
distribution; robust scaler (RS)—subtracts the median values for each feature and scales
according to the interquartile range; MinMax (MM)—scales feature values so that they are
all in the range from the minimum to the maximum value. The procedure for generating
additional features transforms the original set of features into a set of features with a
different dimension. This helps to select the most important features, compose additional
features from them or present the input data in a special format for the ML algorithm.
The following methods for generating additional features were used: polynomial (PN)—
creates features that are polynomial combinations of the original features; random trees
embedding (RTE)—creates a multidimensional sparse feature representation, in which
the data in each new feature are represented by binary values; extra trees preprocessor
(ETP)—selects a part of the most important features that are evaluated using the extra trees
algorithm; linear SVM preprocessor (LSVMP)—selects some of the most important features
that are evaluated using the support vector machine algorithm; independent component
analysis (ICA)—selects a set of statistically independent features from the entire original
set; Nystroem sampler (NS)—transforms a set of initial features using a low-rank matrix
approximation by the Nystroem method.

The accuracy of models ANF was assessed by the K-fold cross-validation method
(K = 5) encapsulated in software packages, wherein the designation ANF refers to the
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classification accuracy when using NF features. K-fold cross-validation method splits the
original dataset into K parts and sequentially trains the model. One of the K parts of the
dataset is used as a test sample, and the other parts as a training sample. Then, the obtained
values of the classification accuracy on the test samples are averaged. The division of the
base into parts is performed using stratification. Such approach makes it possible to reliably
estimate the accuracy of models.

In this study, we used a less common ML algorithm based on the LogNNet neural
network. The LogNNet 51:50:20:2 configuration was used, and a detailed configuration
description is given in [75]. The LogNNet architecture is IoT-oriented and can run on
devices with low computing resources (Section 3.4).

Each algorithm was given the same amount of time (1 h) to optimize the hyperparam-
eters. A computer with an AMD Ryzen 9 3950X processor and 64 GB DDR-4 RAM was
used to train the models.

3.4. Implementing LogNNet on an Arduino Board

The Arduino Nano 33 IoT board was chosen as a prototype IoT edge device with
limited computing resources. It is based on a 32-bit Microchip ATSAMD21G18 microcon-
troller with an ARM Cortex-M0+ computing core, a clock frequency of 48 MHz, 256 KB of
flash memory and 32 KB of RAM. The neural network LogNNet 51:50:20:2 from [12] was
programmed on the Arduino board and tested. Arduino Nano 33 IoT test circuit, LogNNet
architecture and board are presented in Figure 1.

 

Figure 1. Arduino Nano 33 IoT test circuit and LogNNet architecture.

3.4.1. LogNNet Program for Arduino Board

LogNNet transforms the input feature vector d into a normalized vector Y, which is
multiplied with the reservoir matrix W filled with a chaotic mapping. We used the mapping
congruent generator (1) with the parameters indicated in Table 2 and the data [12]. Then,
the transformed vector passes the output classifier (two-layer feed-forward neural network
with two hidden layers).

Table 2. Chaotic map equation and list of parameters with limits.

Chaotic Map List of Parameters Equation

Congruent generator

K = 93
D = 68

L = 9276
C = 73

{
xn+1 = (D − K · xn) mod L
x1 = C

(1)

Let us denote the matrix of weight coefficients between the layers Sh and Sh2 as W1,
and the matrix between the layers Sh2 and Sout as W2. At the output, there are two neurons
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for two classes (COVID-19 and non-COVID-19). Matrices of weight coefficients and values
of normalization coefficients were calculated on a computer with high performance and
saved in a separate library file. In addition, the library file (supplementary materials)
contains the values of K, D, L and C required for calculating the W matrix, as well as data
on configuration of the LogNNet 51:50:20:2 neural network.

When LogNNet is running, the values of the elements of the matrix W (2550 values)
are sequentially calculated using the congruent generator method (1) each time a feature
vector is input. This approach does not store the matrix W in the RAM memory of the
controller, and it leads to memory saving; however, it slows down the calculations of the
neural network.

The Arduino IDE development environment was used to implement the algorithm.
The library file with the matrices W1 and W2 and other coefficients necessary for the
operation of the neural network were loaded at the beginning of the program. The complete
code of the program is presented in Appendix A, Algorithm A1. The algorithm is divided
into functions and procedures:

• Function “Fun_activ”—activation function, lines 10–12;
• Procedure “Reservoir”—calculation of coefficients of reservoir matrix W by congruent

generator formula, multiplication of arrays and calculation of neurons in layer Sh,
lines 14–28;

• Procedure “Hidden_Layer”—calculation of neurons in the hidden layer Sh2, lines
30–39;

• Function “Output_Layer_Layer”—calculation of the output layer Sout, lines 41–54;
• The “void loop” block is an executable loop, lines 61–77;
• “void setup” block—initialization block, lines 61–77.

The scaling factor “scale_factor = 1000” makes it possible to convert data from a
floating point type to an integer (and vice versa), by multiplying (dividing) by a factor
and rounding. In the Arduino, a float variable takes 4 bytes of RAM, and an integer
variable takes 2 bytes of RAM. Therefore, storing matrices W1, W2 and other data in integer
format are more efficient, and during library initialization, the data takes 2 times less RAM
memory.

3.4.2. Test Scheme

Neural network testing is the serial sending of SARS-CoV-2-RBV1 data to the Arduino
board and counting the correct network responses. The data is generated on an external
computer (Figure 1). For sending data, a protocol was implemented that separates the
elements of the feature vector Y using the symbol “T” to avoid data gluing. At the end of
the vector Y, special characters “FN” are placed, indicating the end of the data transfer. On
the Arduino side, a protocol is implemented that recognizes the input data. In the “void
loop” block, a loop is organized to check the availability of data in the serial port buffer
using the Serial.Available function. This function returns “True” as soon as the Arduino
receives data.

4. Results

4.1. Correlation Analysis of Dataset SARS-CoV-2-RBV1

Figure 2 presents the results of the correlation analysis of the diagnosis–feature and
feature–feature pairs in the form of a “heatmap” over the entire volume of the SARS-CoV-
2-RBV1 database. The first column of Table 3 shows the features most highly associated
with the survivors and non-survivors of COVID-19 with a point-biserial correlation (rpb)
coefficient exceeding 0.5. Here, the negative or positive result of the point-biserial correla-
tion coefficient provides information about the direction of the relationship between the
diagnosis of the disease and the quantitative characteristics. As seen in the first column of
Table 3, the features most associated with disease diagnosis are MCHC, HDL-C, cholesterol
and LDH. The second column of Table 3 shows the accuracy of the cut-off values calculated
by the threshold approach [12] for each trait in classifying COVID-19 patients. The features
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presented in the second column are the predictors that classify patients with the highest
accuracy. For comparison, the results of the threshold classification Ath from [12] are pre-
sented, and features with Ath ≥ 70% are shown. The threshold classification method and
the point-biserial correlation method give an intersecting set of features, but the threshold
classification provides more diagnosis-related features. While the point-biserial correlation
coefficient reveals the level of association between living and deceased COVID-19 patient
traits, the diagnosis has only two values (1 and 0). However, when separating these two
classes, the threshold method considers all the data of the relevant feature, and it has high
sensitivity.

Table 3. Features most strongly correlated with the diagnosis according to the point-biserial correla-
tion coefficient and the threshold correlation method.

Feature
(Point-Biserial Correlation Coefficient (rpb))

Feature
(Threshold Accuracy of Classification Ath

from [12])

MCHC (0.8) MCHC (94.35%)

HDL-C (−0.77) HDL-C (94.73%)

Cholesterol (−0.71) Cholesterol (94.47%)

LDL (−0.68) LDL (96.47%)

Triglyceride (90.96%)

Amylase (85.1%)

UA (81.12%)

TP (79.68%)

CK-MB (78.91%)

LDH (74.98%)

Albumin (72.91%)

 

Figure 2. Correlation of the SARS-CoV-2-RBV1 dataset for diagnosis–feature (point-biserial correla-
tion) and feature–feature pairs (Pearson coefficient).
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An analysis of the correlation of features among themselves (Figure 2) reveals several
features that are linearly dependent on each other. The most strongly correlated pairs
with the Pearson coefficient exceeding 0.6 modulo are shown in Table 4. The same table
presents Pearson’s coefficients separately for a variety of COVID-19 positive and negative
participants. Full heatmaps by class (COVID-19, non-COVID-19) are shown in Figures 3
and 4.

Table 4. The features most strongly correlated with each other by the Pearson coefficient for the entire
database and separately for classes (positive or negative COVID-19 status).

Pair
Feature–Feature

Pearson’s Coefficient
for COVID-19

Diagnosis

Pearson’s Coefficient
for Positive
COVID-19

Pearson’s Coefficient
for Negative
COVID-19

Type High–High

HCT–HGB 0.96 0.95 (High) 0.97(High)

MPV–PDW 0.93 0.94 0.92

HCT–RBC 0.87 0.88 0.87

MCH–MCV 0.84 0.84 0.84

HGB–RBC 0.83 0.83 0.83

NEU–WBC 0.74 0.71 0.81

Albumin–TP 0.64 0.67 0.5

MCH–MCHC 0.53 0.62 0.99

MCH–RDW −0.55 −0.61 −0.51

Type High–Low

Fibrinogen–LYM −0.77 −0.78 (High) −0.01 (Low)

Cholesterol–LDL 0.65 0.59 0.012

Cholesterol–HDL-C 0.64 0.39 −0.024

Chlorine–Sodium 0.18 0.63 −0.025

Type Low–High

MCHC–MCV 0.41 0.09 1(Low) 0.84 (High)

ALT–AST 0.6 0.48 0.76

eGFR–Urea −0.55 −0.49 −0.63

INR–PT 0.12 0.075 1

D-Bil–T-Bil 0.6 0.33 0.91

HDL-C–LDL 0.63 0.19 0.3

Three main types of pair correlations can be distinguished. The High–High type is the
pairs of features for which the correlation has a high value does not depend on the presence
or absence of COVID-19 disease. The High–Low type is the pairs of features that are highly
correlated only in sick patients. The Low–High type is the pairs of features that are highly
correlated only in healthy patients. In general, the features are more correlated in patients
with COVID-19 (Figure 3). From a medical point of view, pair correlation will be reviewed
in the Discussion Section.
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Figure 3. Pearson correlation analysis results for positive diagnoses for COVID-19 from the SARS-
CoV-2-RBV1 dataset.

 

Figure 4. Pearson correlation analysis results for negative diagnoses for COVID-19 from the SARS-
CoV-2-RBV1 dataset.

4.2. Classification Results for Dataset SARS-CoV-2-RBV1

Table 5 presents the results of the machine learning algorithms optimized to obtain
the maximum classification values using 51 features. The results are sorted in descending
order of algorithm efficiency. For each algorithm, the average training and inference time
of the model and methods for preprocessing of the input data are given.
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Table 5. Results of assessing the classification accuracy of machine learning models for the SARS-
CoV-2-RBV1 dataset.

Classification Algorithm
Average Model
Accuracy A51,%

Average Learning
Time, s

Average
Inference Time, μs

Normalization
Method

Methods for Generating
Additional Features

Histogram-based Gradient
Boosting 100 6.39 11.6 - -

Random Forest 99.943 13.15 21.9 QT -

K-nearest neighbors 99.924 3.17 22.1 QT ETP

Extra Trees classifier 99.905 18.73 24.5 RS -

Multilayer Perceptron 99.886 3.99 2.2 RS LSVMP

Multinomial Naive Bayes 99.792 2.48 11.7 QT RTE

Linear Discriminant Analysis 99.773 9.15 7.5 QT PN

Support Vector Machine with
non-linear kernel 99.754 222.41 43.2 QT NS

Decision Tree 99.660 1.46 1.2 RS LSVMP

Passive-Aggressive 99.641 2.91 13.1 QT RTE

Bernoulli Naive Bayes 99.622 2.59 11.3 QT RTE

Support Vector Machine with
linear kernel 99.584 5.21 1242 MM PN

Gaussian Naive Bayes 98.565 1.68 3.5 QT ICA

LogNNet [12] 99.509 100 3 - -

The accuracy of the algorithms A51 ranged from 98.56% to 100%, indicating that all
models were good at identifying the association of features with the diagnosis of COVID-19.
The most efficient model is based on the histogram-based gradient boosting classifier with
a 100% accuracy.

Figure 5 presents the learning curves for the HGB model using all the features from
the dataset. The red curve (training accuracy) shows the training ability of the model, and
the green curve (cross-validation accuracy) shows the generalization ability of the model
depending on the number of training examples. Each point on the graph was obtained
using five different splits into a test (20%) and training (80%) subsets.

 

Figure 5. Learning curves for the histogram-based gradient boosting classifier model using 51 features
from the SARS-CoV-2-RBV1 dataset.
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The red curve represents the accuracy of the model on the training samples. The model
has sufficient complexity to recognize all training samples with a 100% accuracy. The green
curve represents the accuracy of the model on the test subset, the samples of which were
not involved in model training. With an increase in training samples, the cross-validation
accuracy of the model grows. The curves converge with each other and completely coincide
when the number of training samples is more than 2500. The dots on the graph represent
the average accuracy using five different splits, and the shaded areas represent the standard
deviation.

Unlike other models, HGB does not require data preprocessing. The training time
of the HGB model is about 6 s, which makes it possible to effectively use it to enumerate
input features when searching for optimal combinations. The LogNNet model was used to
implement the classification on the Arduino board, so its algorithm has a compact form
suitable for IoT devices.

The HGB model was used to study the most significant combinations of the first,
second and third features.

4.2.1. Investigation of the Effectiveness of the HGB Model Operating on One Feature

Table 6 presents the classification result of the SARS-CoV-2-RBV1 dataset for the HGB
model using a single input feature. The features are sorted in descending order of A1
classification accuracy. The most effective features are the first six features: LDL (№ 43),
cholesterol (№ 39), HDL-C (№ 36), MCHC (№ 20), triglyceride (№ 48) and amylase (№ 31).
The same features are dominant in assessing the correlation between the sign and the
diagnosis from Table 3.

Table 6. Classification efficiency of SARS-CoV-2-RBV1 datasets using the single feature for the
Histogram-based Gradient Boosting classifier.

№ Feature A1,% № Feature A1,% № Feature A1,% № Feature A1,%

43 LDL 96.84 4 Fibrinogen 76.03 50 Urea 68.10 21 MCV 56.43

39 Cholesterol 95.07 29 Albumin 75.3 7 PCT 63.25 22 MONO 56.26

36 HDL-C 94.99 44 Potassium 75.22 27 ALT 62.33 5 INR 56.19

20 MCHC 94.35 3 Ferritin 74.45 35 Glucose 62.17 6 PT 56.04

48 Triglyceride 93.76 38 Chlorine 73.18 49 eGFR 62.04 17 HCT 55.75

31 Amylase 90.01 46 T-Bil 72.77 14 WBC 61.91 26 RDW 55.62

51 UA 87.91 34 GGT 72.62 16 EOS 61.40 9 Troponin 54.07

42 LDH 85.76 41 CK 70.97 13 PLT 61.25 18 HGB 53.94

47 TP 80.41 2 D-
Dimer 70.46 28 AST 60.55 25 RBC 53.43

37 Calcium 80.40 33 D-Bil 70.37 8 ESR 59.12 23 MPV 53.13

32 CK-MB 79.73 11 LYM 69.90 15 BASO 58.72 24 PDW 53.09

1 CRP 77.81 45 Sodium 69.35 12 NEU 57.51 19 MCH 52.13

30 ALP 77,71 40 Creatinine 69,24 10 aPTT 56.53

4.2.2. Investigation of the Effectiveness of the HGB Model Operating on Two Features

Table 7 presents the classification result of the SARS-CoV-2-RBV1 dataset for the HGB
model using two input features. The pairs of features are sorted in descending order of
classification accuracy A2.
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Table 7. Classification efficiency of SARS-CoV-2-RBV1 dataset using 2 features for the Histogram-
based Gradient Boosting classifier.

№ First Feature Second Feature
Average Accuracy

A2,%

20-19 MCHC MCH 99.81
43-32 LDL CK-MB 99.62
36-32 HDL-C CK-MB 99.49
48-32 Triglyceride CK-MB 99.45
43-39 LDL Cholesterol 99.43
43-20 LDL MCHC 99.22
39-36 Cholesterol HDL-C 99.18
39-48 Cholesterol Triglyceride 99.11
43-42 LDL LDH 99.05
43-31 LDL Amylase 99.03
36-20 HDL-C MCHC 98.98
43-51 LDL UA 98.86
36-31 HDL-C Amylase 98.81
39-20 Cholesterol MCHC 98.73
20-48 MCHC Triglyceride 98.65
39-38 Cholesterol Chlorine 98.62
43-38 LDL Chlorine 98.43
20-31 MCHC Amylase 98.28
36-42 HDL-C LDH 98.16
48-42 Triglyceride LDH 98.14

The resulting pairs contain the most effective features: LDL (№ 43), cholesterol (№ 39),
HDL-C (№ 36), MCHC (№ 20), triglyceride (№ 48) and amylase (№ 31), which have the
best A1 score (Table 7). The best result (A2 = 99.81) was obtained for the MCHC–MCH
feature pair. At the same time, the pair contains the MCH (№ 19) feature with low efficiency
(A1 = 52.13) and Pearson correlation ~0.041. Such a combination of features with high and
low correlation is observed very often, and this combination results in a high classification
efficiency. Among the features from Table 7, the following have a low linear correlation
with the diagnosis: MCH (0.041), UA (0.066), amylase (0.03) and LDH (0.071). Pearson’s
coefficient from the distribution in Figure 3 is indicated in brackets.

There are pairs consisting entirely of effective features, for example, LDL–MCHC
(№ 43-№ 20), HDL-C–MCHC (№ 36-№ 20), etc. Figure 6 shows the relationship between
the feature pairs for the top 50 results. The main six features are in the center. Asterisks
indicate the features that most often form a pair with the main features: UA (№ 51), LDH
(№ 42), CK-MB (№ 32) and ALP (№ 30). The main feature LDL (№ 43) forms the largest
number of effective pairs for classification.

 

Figure 6. Pairs of features with high classification efficiency SARS-CoV-2-RBV1 dataset for the
Histogram-based Gradient Boosting classifier.
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To find the reasons for the effectiveness of the pairs of features from Table 7, two-
dimensional distributions of the diagnosis (attractors) were constructed for the first six pairs
(Figure 7). For the healthy patients (non-COVID-19), there are clear linear and cruciform
attractors, while for people diagnosed with COVID-19, these attractors shift and become
chaotic. This difference in the shape of the attractors allows for classifiers to effectively
distinguish between the two classes. The best separation of attractor shapes is observed
for the MCHC–MCH pair (Figure 7a) that explains its highest classification ability. For the
pairs in Figure 7b–e, shifted cruciform attractors are observed, which also contributes to
their effective separation by classifiers. In Figure 7f, two attractors are blurred, but due to
their weak intersection, the classification efficiency is high.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Two-dimensional distributions (attractors) of a COVID-19 and non-COVID-19 diagnosis in
the coordinates of feature pairs MCHC–MCH (a), LDL–CK-MB (b), HDL-C–CK-MB (c), Triglyceride–
CK-MB (d), LDL–Cholesterol (e), LDL–MCHC (f).
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When using two features, the maximum accuracy is A2 = 99.81% and this value is
lower than when using the 51 features A51 = 100%. However, feature reduction is important
to simplify the classification of patients in practical terms. More accurate models can be
obtained using three features.

4.2.3. The Study of the Most Significant Combination of Three Features of the HGB Model

Table 8 presents the classification result of the SARS-CoV-2-RBV1 dataset for the HGB
model using three input features.

Table 8. Classification efficiency of SARS-CoV-2-RBV1 dataset using 3 features for the Histogram-
based Gradient Boosting classifier.

№ First Feature Second Feature Third Feature
Average Accuracy

A3,%

39-48-32 Cholesterol Triglyceride CK-MB 99.91
39-36-32 Cholesterol HDL-C CK-MB 99.91
43-20-19 LDL MCHC MCH 99.91
20-31-19 MCHC Amylase MCH 99.85
43-51-32 LDL UA CK-MB 99.85
39-20-19 Cholesterol MCHC MCH 99.83
48-42-32 Triglyceride LDH CK-MB 99.83
36-20-19 HDL-C MCHC MCH 99.79
36-42-32 HDL-C LDH CK-MB 99.79
43-38-51 LDL Cholesterol UA 99.79
20-48-19 MCHC Triglyceride MCH 99.77
39-48-31 Cholesterol Triglyceride Amylase 99.77
39-36-38 Cholesterol HDL-C Chlorine 99.75
36-31-51 HDL-C Amylase UA 99.75
39-36-42 Cholesterol HDL-C LDH 99.75
20-51-19 MCHC UA MCH 99.74
39-48-38 Cholesterol Triglyceride Chlorine 99.72
39-31-51 Cholesterol Amylase UA 99.70
39-48-42 Cholesterol Triglyceride LDH 99.66
48-31-42 Triglyceride Amylase LDH 99.51

An analysis of Table 8 reveals that no new features have been added in the first twenty
most accurate models compared to Table 7. The MCH and MCHC features are found
only in pairs. With the addition of the third feature, the maximum classification efficiency
increased from A2 = 99.81% to A3 = 99.91%.

4.2.4. The Study of the Most Significant Combination of 11 Features of the HGB Model

Tables 7 and 8 include only 11 features: LDL (№ 43), cholesterol (№ 39), HDL-C (№ 36),
MCHC (№ 20), triglyceride (№ 48), amylase (№ 31), UA (№ 51), LDH (№ 42), CK-MB
(№ 32), ALP (№ 30) and MCH (№ 19). The classification accuracy of the HGB model using
11 features was A11 = 100%. Therefore, 11 features are sufficient to determine the presence
of COVID-19 using machine learning methods based on the histogram-based gradient
boosting classifier.

4.3. LogNNet Implementation on Arduino for Edge Computing

A compact 77-line LogNNet algorithm was created for diagnosing and predicting
COVID-19 disease using routine blood values on an Arduino controller.

LogNNet testing on Arduino revealed an accuracy of A51 = 99.7%, which coincides
with the accuracy on the model computer program [46]. The classification time for the
input vector is about 0.1 s. An estimate of the RAM used by the Arduino controller is
shown in Figure 8.
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Figure 8. Estimation of the RAM used by the Arduino controller when working with the neural
network LogNNet 51:50:20:2.

Global variables (arrays Sh, Sh2 and variables) occupy 294 bytes of RAM, and incoming
data is written to array Y, which occupies 208 bytes. The Arduino uses the Serial system
library to operate the serial port. It is loaded at initiation in the “void setup” block and takes
310 bytes of RAM. The data stored in the LogNNet.h library are also loaded into the RAM
during the program’s initialization and take 2526 bytes, the maximum contribution made
by the matrix W1—2142 bytes. For local computations within functions and procedures, at
least 1012 bytes must be reserved. The total RAM consumption is of 4350 bytes.

4.4. Machine Learning COVID-19 Sensor for IoT

The LogNNet network can be easily imported to various microcontrollers and used to
predict a diagnosis based on blood biochemical parameters. However, our experimental
results in Sections 3.2 and 3.3 are significantly inferior in accuracy to resource-intensive
machine learning algorithms. Therefore, we proposed two architectures of the IoT system
(Figure 9), which include an IoT device with LogNNet implementation (edge computing)
and a cloud service containing a trained HGB model (AI computing). These configurations
implement the prognosis of the disease in offline and online modes with ML sensors for
diagnosis of the COVID-19 disease (Sensor 1.0 type).

 

Figure 9. Two architectures of the IoT system, which includes an IoT device with LogNNet imple-
mentation (edge computing) and a cloud service containing a trained HGB model (AI computing).
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In the IoT device, the results of a biochemical blood test are entered manually or
transmitted directly from the laboratory equipment. If the cloud service is unavailable
or if the blood tests are performed on site using a mobile laboratory in remote areas, the
diagnosis is made by the LogNNet network. If the IoT device has access to the network, it
sends a network request to the cloud service, wherein the diagnosis is determined using
the HGB model. The cloud service sends a response with a diagnosis, which is displayed
on the IoT device using an LED indication or on an LCD display.

5. Discussion

5.1. Analysis of Results from a Medical Perspective

COVID-19 has a higher mortality and infectivity than influenza [3,13]. The disease
still causes death and continues to spread [1,6,15]. The use of vaccines did not stop the
spread of the disease, and important mutations were detected in the structure of the virus
during the epidemic [1]. Most of the infected patients had mild symptoms and a good
prognosis. However, some patients developed severe symptoms, such as severe pneumonia,
acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndromes
(MODSs) [2,5,24]. A need for studies to determine the prognosis and immune conditions of
the COVID-19 disease remains [3,74]. Therefore, the early evaluation of patients who need
intensive care and have high mortality expectations as well as the effective identification of
relevant biomarkers are important to reduce the mortality of the disease [5,6,25].

Various complications may be encountered during the treatment process of COVID-19
and, therefore, the course of the disease should be predicted earlier [64,77]. It is important
to diagnose and predict the prognosis of the disease at an early stage so that the first
response to severely infected COVID-19 patients can be conducted properly [2,5].

Although many studies on COVID-19 have been published, the relationships between
the pathological aspects of the disease and routine blood values have not been fully deter-
mined [77]. Previous studies have reported that changes in many RBVs and hematological
abnormalities are observed during the course of the disease [14,77].

In this study, according to the Ath threshold classification result based on [12], the most
effective features in the diagnosis of the disease were found to be LDL with 96.47%, HDL-C
with 94.73%, cholesterol with 94.47% and MCHC with 94.35% (Table 3). Indeed, in previous
studies, large changes in these features were reported in severe and fatal COVID-19 patients,
and these features may be important biomarkers for the prognosis of the disease [1,2,5,14].

Considering the linear dependency structures of the features among each other, the
most effective combinations of dual features in the diagnosis of the disease were obtained
and the Pearson correlation values were calculated (Table 4). The highly positive linear
correlation structure of some trait pairs with positive and negative individuals was remark-
able. The highest positive and negative linearly correlated trait pairs (High–High) were
HCT–HGB, MPV–PDW and HCT–RBC (96%, 93% and 87%, respectively). These features
vary greatly in severe COVID-19 patients and may be associated with the prognosis and
mortality of the disease [1,2,14]. The high positive association of trait pairs expressed as the
High–High type with both positive and negative COVID-19 individuals led us to believe
that various comorbidities such as hypertension, obesity and diabetes may exist in our
negative COVID-19 population. Considering hospital admissions of negative COVID-19
patients, these trait pairs are highly associated not only with COVID-19 but also with
various inflammatory syndromes and infections [1,2,78]. Djakpo et al. [79] stated that the
abnormalities of HGB, HCT and RBC or anemia observed in patients with comorbidities
are due to the inability of the bone marrow to produce enough RBCs to carry oxygen and
lung damage caused by COVID-19 which complicates gas exchange.

Considering the relationship of the patients with these features, the presence of pos-
sible comorbid conditions prevents erythrocyte production due to existing inflammation.
Since the variation in these trait pairs is hypersensitive to the immune response in indi-
viduals, these trait pairs were highly correlated with sick and healthy individuals. The
MCH–MCHC trait pair was found to be highly positively correlated, especially with healthy
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individuals, and this pair may be used as an important marker to distinguish healthy in-
dividuals in the diagnosis of the disease. Changes in these characteristics may indicate
the suppression of lymphocytic and erythrocyte series or platelet and erythrocyte deformi-
ties [1]. In addition, in this study, a highly positive association of the MCH–MCV trait pair
with COVID-19 was found. Mertoğlu et al. [2], Huyut et al. [14] and Karakike et al. [21]
stated that this was due to the decrease in the size of erythrocytes and anisocytosis in
patients. The high positive association of the HGB–RBC trait pair with sick individuals may
be related to impaired erythropoiesis in the later stages of the disease. The High–High type
feature set provides important clues in the isolation of both sick and healthy individuals.

In Table 4, a high (77%) negative relationship between the fibrinogen–LYM feature
pair and COVID-19 patients is seen, and we believe that this level of relationship is due
to the fibrinogen feature. Indeed, Winata and Kurniawan [28] noted that the degradation
product of fibrinogen (FBU) was increased in all patients in the late stage of COVID-19 and
that this was significantly associated with coagulation. In addition, the high correlation of
the cholesterol–LDL, cholesterol–HDL-C and chlorine-sodium trait pairs (High–Low type
in Table 4) with sick individuals showed that these trait pairs were important markers in
identifying sick individuals. Fang et al. [80] and Mertoğlu et al. [1] stated that this feature
set may be associated with multi-organ involvement in COVID-19 and the widespread
distribution of angiotensin-converting enzyme receptors in the body.

The fact that the Low–High trait pair MCHC–MCV was found to be highly positively
correlated with COVID-19 negative individuals in Table 4 suggested the importance of the
size of erythrocyte and anisocytosis in healthy individuals [80]. In addition, the functional
properties of the ALT–AST, eGFR–Urea and D-Bil–T-Bil pairs were found to be important
markers in the isolation of COVID-19 negative individuals. Mertoğlu et al. [1], Huyut
et al. [14] and Zhou et al. [27] stated that the decrease in ALT, AST, GGT, total bilirubin
and eGFR indicated that the patients had serious damage to organs such as pancreas and
kidney. In another study, Bertolini et al. [81] stated that AST, GGT, ALP and bilirubin may
be frequently elevated in COVID-19 and that the main underlying causes of this condition
may be hyper inflammation and thrombotic microangiopathy. In addition, the high positive
correlation of the INR–PT trait pair with negative COVID-19 individuals suggested that it is
important to monitor these individuals for the development of disseminated intravascular
coagulopathy and acute respiratory distress [80,82].

In this study, 13 popular classifier machine learning models and the LogNNet neural
network model were run on 51 routine blood values to detect patients infected with COVID-
19. Histogram-based gradient boosting (HGB) was the model with the fastest and highest
accuracy in determining the diagnosis of the disease (accuracy: 100%, time: 6.39 sec).

For the HGB model using a single input feature (A1), the most effective features in
the diagnosis of the disease were LDL 96.87% (№ 43), cholesterol 9507% (№ 39), HDL-C
94.99% (№ 36), MCHC 94.35% (№ 20), triglyceride (№ 48) and amylase (№ 31) (Table 6).
For the HGB model using the dual entry feature (A2), the most effective trait pair in the
diagnosis of the disease was MCHC–MCH (A2 = 99.81) (Table 7). The success of MCH
as a single-entry feature in the diagnosis of the disease is low (A1 = 52.13). Huyut and
Velichko [12] found an accuracy rate of 99.1% in the diagnosis of the disease by running the
MCHC–MCH features with LogNNet. The HGB model operated with MCHC–MCH was
found to be more successful than the LogNNet model in the diagnosis of the disease.

Since low values of MCH and high values of MCHC were associated with COVID-
19 [83], it was expected that the use of these two features together in the diagnosis of the
disease would produce higher classification success. The most effective dual trait pairs
(Table 7) were similar to the most effective single traits (Table 6) for the HGB model for
the diagnosis of the disease. This provides important information about the functional
properties of the binary trait pairs obtained with the HGB model in the diagnosis of the
disease. Six basic features, that is LDL (№ 43), cholesterol (№ 39), HDL-C (№ 36), MCHC
(№ 20), triglyceride (№ 48) and amylase (№ 31), among the combinations of binary features
used in the diagnosis of the disease and four features, that is UA (№ 51), LDH (№ 42),
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CK-MB (№ 32) and ALP (№ 30), that most frequently pair with these features are given
in Figure 6. The main feature LDL (№ 43) generated the largest number of effective pairs
for classification. The effectiveness of these feature pairs (Table 7) in detecting patients is
visualized in two-dimensional space (Figure 7). Classification is most clearly visible in the
MCHC–MCH pair (Figure 7a), which explains the higher classification ability.

In the binary feature combinations used by HGB in the diagnosis of the disease, the
maximum accuracy was A2 = 99.81% which is slightly lower than the use of 51 features
(A51 = 100%). However, feature reduction provides more cost effective and rapid results
in interpreting the classification of patients from a practical point of view and identifying
the most effective features. The highest classification success obtained for the HGB model
using three feature combinations was A3 = 99.91 (Table 8).

Analysis of Table 8 showed that no new features were added to the top twenty models
with the highest accuracy compared to Table 7. The binary combinations in Table 7 were
sufficient for the diagnosis of the disease. In addition, the co-existence of MCH and MCHC
features in all combinations reveals hidden association structures between these features
and contains important clues in the diagnosis of the disease.

In this study, the most important 11 biomarkers were found with the HGB model used
to determine the diagnosis of the disease, and with these features, all patients and healthy
individuals were correctly identified with high performance (A11 = 100%). In addition,
the importance of various combinations of these features in the diagnosis of the disease
was recognized. The performance of these 11 features, namely LDL (№ 43), cholesterol (№
39), HDL-C (№ 36), MCHC (№ 20), triglyceride (№ 48), amylase (№ 31), UA (№ 51), LDH
(№ 42), CK-MB (№ 32), ALP (№ 30) and MCH (№ 19) and their various combinations in
the diagnosis of the disease was higher than the individual performances, suggesting that
there is a high level of confidential information between these feature combinations and
COVID-19.

Kocar et al. [84] and Zinellu et al. [85] presented evidence of significant changes in
the lipid profile of severe COVID-19 patients, particularly in total cholesterol, LDL and
HDL-C concentrations. They also reported that increased cholesterol concentrations in the
cell membrane increased the binding activity of SARS-CoV-2, facilitated membrane fusion
and enabled the successful entry of the virus into the host. Therefore, Kocar et al. [84]
and Wei et al. [86] indicated that total cholesterol, LDL and HDL-C characteristics may aid
in early risk stratification and clinical decisions. However, conflicting results have been
reported for changes in triglyceride levels of severe COVID-19 patients [85]. Stephens
et al. [87] stated that in severe COVID-19 patients, the elevated serum amylase value is
often not attributable to acute pancreatitis or a clinically significant pancreatic injury, but is
more likely to be a nonspecific manifestation of shock/critical illness. Mao et al. [83] stated
that changes in leukocytes, neutrophils, lymphocytes, platelets, hemoglobin levels, MCV
and MCHC are generally associated with lung involvement, oxygen demand and disease
activity. They also noted that high MCV and low MCHC are associated with advanced
anemia and are independent predictors of disease worsening [83].

Wu et al. [88] stated that an increase or decrease in LDH is indicative of radiographic
progression or improvement. They also demonstrated the potential usefulness of serum
LDH as a marker for assessing clinical severity, monitoring treatment response and thus
aiding risk stratification and early intervention in COVID-19 pneumonia. Hu et al. [89]
stated that SARS-CoV-2 infection is associated with low serum uric acid (SUA) levels, and
this feature may be an independent risk factor for the disease. They also noted that male
patients with COVID-19 accompanied by low SUA levels are at higher risk of developing
severe symptoms than those with high SUA levels at admission. Zinellu et al. [90] found
that high CK-MB concentrations were significantly associated with severe morbidity and
mortality in COVID-19 patients. They stated that this biomarker of myocardial damage
may be useful for the classification of patients with severe COVID-19, and that high CK-MB
values may reflect excessive inflammation status. They also stated that the evaluation of CK-
MB in COVID-19 patients provides specific clinical information for early risk stratification,
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independent of myocardial necrosis and cardiac complications. Afra et al. [91] showed the
incidence of abnormal liver tests in severe COVID-19 patients and reported the association
of elevated AST, ALT and total bilirubin levels with liver injury in severe COVID-19
patients [13,91,92]. However, conflicting results have been reported regarding the ALP
levels of mild and severe COVID-19 patients [91]. In addition, Afra et al. [91] showed that
elevated liver enzymes can effectively predict hospital-critical COVID-19 cases.

The accuracy of ML algorithms is difficult to determine when used without any
physician input [93,94]. A major limitation of ML is that it is difficult to explain how these
algorithms arrive at their conclusions [95]. An ML algorithm can be likened to a black box
that takes inputs and produces outputs without any explanation as to how it produces the
outputs [94].

Additionally, if an algorithm misdiagnoses a malignant lesion, the algorithm cannot
explain why it chose a particular diagnosis [94,95]. While the printouts can aid interpreta-
tion, it can be a potential danger and problem to the patient if the model fails to explain
to a patient why he or she has diagnosed a lesion as benign or malignant, or how it has
chosen a particular treatment [94].

Physician interpretation is necessary for choosing a diagnosis or treatment. In addition
to the black box nature of these algorithms, machine learning is also prone to the “garbage
in, garbage out” motto [94]. This maxim indicates that the quality of the dataset input
determines the quality of the output. Therefore, if the data inputs are badly labeled, the
outputs of the algorithm will reflect these inaccuracies [93–95].

In addition, all the devices should be evaluated in prospective clinical trials and made
publicly available in the peer-reviewed literature.

5.2. Analysis of Results from IoT Perspective

The aim of this study is the feasibility analysis of a fast, reliable and cost-effective
digital tool for the diagnosis of COVID-19 based on the RBV values measured at admission.
The proposed solution is based on the concept of ML sensors for diagnosis of the COVID-19
disease (Sensor 1.0 type). The concept makes a step towards “smart sensorics of human”
with promising opportunities for AI applications in healthcare.

In our study, we are not targeting IoT systems for telemedicine, wherein any procedure
is performed by a physician using telecommunication means of transmitting medical data.
Solutions of clinical telemedicine are subject to strict certification. Telemedicine is prescribed
by a doctor and is administered via a medical device (never via a smartphone). Instead, we
focus on promising IoT systems for telehealth/telecare and mobile health (m-Health) [45].
First, data from ML sensors support the prognosis of the disease in offline and online
modes. Second, ML sensors can be used in AAL and other IoT environments to support a
person in his/her everyday life. Importantly, COVID-19 is not the only disease to apply
ML sensors in IoT systems.

AI methods become effective for the prognosis of various diseases. COVID-19 has
opened the new era for AI methods to mitigate future pandemics. The rapidly growing
number of publications confirms the potential of ML sensors for collecting datasets for
further analysis with AI methods. Predictive analytics uses available retrospective data and
various predictive models (including ML-constructed) to aid in answering the question
“What could happen?”. Prognosis from the sensed data is required not only for clinical
medicine (to support clinical medical decisions). Managerial predictive analytics supports
managers in healthcare at various levels to assess possible scenarios for the development of
diseases, the budgets of medical organizations, the need for medicines, etc.

In AAL, ML sensors are useful in personal use as digital assistance (recommendations,
including prognosis). In fact, the five natural human sensors (vision, hearing, touch, smell,
taste) are extended by ML sensors. A person can develop health insight from their own
RBVs in real time or collect the data for retrospective analysis. Humans themselves can
act as complicated sensors [44]. A human traditionally finds a way to enhance her/his
function, e.g., glasses (optical tool) to advance the vision or thermometer (physical tool)
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to regularly sense body temperature. Now the era of digital tools for personal health
assistance is coming.

The implemented prototype of the diagnosis tool demonstrates that the LogNNet
network can be imported to various microcontrollers. Many IoT devices can be made
smarter, opening a way to develop advanced AmI healthcare with essential parts of IoT
and edge intelligence [96]. A LogNNet-equipped ML sensor can be effectively employed in
future IoT applications for healthcare and for other problem domains that require active
digitalization and emerging AmI methods [46].

The LogNNet network can be used to predict a diagnosis based on blood biochemical
parameters. This result is an important step in smart human sensors for IoT application,
as the COVID-19 status and other blood-related health parameters are difficult to analyze
on the IoT edges (in contrast to more widespread parameters, such as temperature or
heartbeat) [97–99]. Our approach is applicable to the development of personalized bionic
systems (smart suit for a person or AmI environment with people), wherein disease status
recognition is a regular digital service for healthcare or well-being applications in everyday
life [45].

Although the small IoT devices cannot provide such high accuracy as resource-
intensive ML algorithms on powerful computer systems, AAL systems are intended for
everyday life settings (e.g., at home, workspace, outdoor). Where strict medical decisions
and critical medical support are not mandatory, the digital services may provide attention
points and optional recommendations for personal use. We believe this type of smart
human sensors will soon diffuse from the restricted medical lab setting toward the wide
market of smart consumer electronics and digital services [100].

6. Limitations of the Study

The data primarily represent a single institution (EBYU-MG) and the Turkish popula-
tion. Secondly, our dataset does not include comorbidities of patients and other diagnostic
information of patient subgroups. In practice, the data in retrospective studies collected in
a certain period cannot meet all data sample requirements. We suggest the findings in this
study be supported by a retrospective cohort study setup.

7. Conclusions and Future Studies

Determining a COVID-19 infected status with diagnostic tests and imaging results
is costly and time-consuming. If this process is prolonged, the patient’s health may be at
greater risk by being exposed to different complications. This study provides a fast, reliable
and cost-effective alternative mobile tool for the diagnosis of COVID-19 based on the RBVs
measured at the time of admission.

In this study, 13 popular classifier machine learning models and the LogNNet neural
network model were run on 51 routine blood values to detect patients infected with
COVID-19. The histogram-based gradient boosting (HGB) model was the most successful
classification model in terms of accuracy and time in detecting the diagnosis of the disease
(accuracy: 100%, time: 6.39 s). In addition, the absence of any normalization method and
additional feature selection procedure for the HGB model contributes to the speed and
efficiency of the model.

The eleven most important biomarkers in the diagnosis of the disease were found
with the HGB classifier: LDL (№ 43), cholesterol (№ 39), HDL-C (№ 36), MCHC (№ 20),
triglyceride (№ 48), amylase (№ 31), UA (№ 51), LDH (№ 42), CK-MB (№ 32), ALP (№ 30)
and MCH (№ 19). Using only these 11 RBVs features, the HGB model accurately detected
all COVID-19 patients (A11 = 100%).

The high accuracy of the single, double and triple combinations of these 11 features
selected by the HGB model in the diagnosis of the disease showed the importance of
these features in the diagnosis of the disease. In addition, the performance of double and
triple combinations of these features in the detection of sick and healthy individuals was
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higher than the individual performances, suggesting that there is a high level of hidden
information between these blood feature combinations and COVID-19.

The HGB model reveals that 11 features are sufficient for the diagnosis of the presence
of COVID-19 using the HGB classifier. These features and their binary combinations are
an important source of variation in the diagnosis of COVID-19. We propose to use these
features and their binary combinations to be run with HGB as important biomarkers in the
diagnosis of the disease.

The study results can be effectively used in IoT medical edge devices with low RAM
resources, ML sensors, portable point-of-care blood testing devices [101], decision support
systems, telecare and m-Health. This opportunity empowers the development of many
innovative applications for predictive analytics in clinical MIS or everyday AAL systems.

The artificial intelligence models for the early prediction of the diagnosis and pro-
gression of COVID-19 and other diseases produce satisfactory results. Future artificial
intelligence studies for the early diagnosis and prognosis of fatal, costly and severe diseases
will ease the burden of healthcare professionals and increase patient comfort. In addition,
the use the physiological, comorbidity and demographic features of the patients together
with the RBVs data may provide interesting insights. Testing the results of this study on
multi-racial, multi-center and larger patient groups may improve the generalizability of
the findings. In this context, this study may pave the way for many exciting subsequent
investigations.
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Appendix A

Algorithm A1. LogNNet neural network executable code on Arduino Nano IoT

1 #include “LogNNet.h” 40
2 41 byte Output_Layer() {
3 float Y[S+1]; 42 float Sout[N+1]; byte digit = 0;
4 float Sh[P+1]; 43 for (int j = 0; j <= N; j++) {
5 float Sh2[M+1]; 44 Sout[j] = 0;
6 45 for (int i = 0; i <= M; i++)
7 int i = 0; 46 Sout[j] = Sout[j] + Sh2[i] *

8 String data; 47
((float)W2[i][j]/scale_factor);

9 48 Sout[j] = Fun_activ(Sout[j]);
10 float Fun_activ(float x) { 49 }
11 return 1 / (1 + exp(-1*x)); 50 for (int j = 0; j <= N; j++) {
12 } 51 if (Sout[j] > Sout[digit])
13 52 digit = j;
14 void Reservoir(float *Y) { 53 }
15 long W = C; 54 return digit;
16 Sh[0] = 1; 55 }
17 for (int j = 1; j <= P; j++) { 56
18 Sh[j] = 0; 57 void setup() {
19 for (int i = 0; i <= S; i++) { 58 Serial.begin(115200);
20 W = (D - K * W) % L; 59 }
21 Sh[j] = Sh[j] + ((float)W/L) * Y[i]; 60
22 } 61 void loop() {
23 Sh[j] = ((Sh[j] - (float)minS[j-1]/ 62 if (Serial.available() > 0) {

24
scale_factor) /

((float)(maxS[j-1]
63 data = Serial.readStringUntil(‘T’);

25 - minS[j-1])/scale_factor)) - 0.5 64

26
-

(float)meanS[j-1]/(scale_factor*10);
65 if (data != “FN”) {

27 } 66 Y[i] = data.toFloat();
28 } 67 i++;
29 68 }
30 void Hidden_Layer() { 69 else {
31 Sh2[0] = 1; 70 i = 0;
32 for (int j = 1; j <= M; j++) { 71 Reservoir(Y);
33 Sh2[j] = 0; 72 Hidden_Layer();
34 for (int i = 0; i <= P; i++) 73 byte Digit = Output_Layer();
35 Sh2[j] = Sh2[j] + Sh[i] * 74 Serial.print(String(Digit));

36
((float)W1[i][j]/scale_factor);

75 }

37 Sh2[j] = Fun_activ(Sh2[j]); 76 }
38 } 77 }
39 } 78
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Abstract: Parkinson’s disease (PD) is increasingly being studied using science-intensive methods due
to economic, medical, rehabilitation and social reasons. Wearable sensors and Internet of Things-
enabled technologies look promising for monitoring motor activity and gait in PD patients. In this
study, we sought to evaluate gait characteristics by analyzing the accelerometer signal received
from a smartphone attached to the head during an extended TUG test, before and after single and
repeated sessions of terrestrial microgravity modeled with the condition of “dry” immersion (DI)
in five subjects with PD. The accelerometer signal from IMU during walking phases of the TUG
test allowed for the recognition and characterization of up to 35 steps. In some patients with PD,
unusually long steps have been identified, which could potentially have diagnostic value. It was
found that after one DI session, stepping did not change, though in one subject it significantly
improved (cadence, heel strike and step length). After a course of DI sessions, some characteristics of
the TUG test improved significantly. In conclusion, the use of accelerometer signals received from a
smartphone IMU looks promising for the creation of an IoT-enabled system to monitor gait in subjects
with PD.

Keywords: inertial measurement unit; smartphone; accelerometry; TUG test; gait; Parkinson’s
disease; “dry” immersion

1. Introduction

Parkinson’s disease (PD) is very suitable for the application science-intensive instru-
mental research methods. PD is gradually becoming a kind of “model disease” for the
testing of new technologies for PD diagnostics and escorting PD subjects [1]. For several
reasons, PD is one of the most studied neural pathologies in humans. One of the reasons
is that PD is a widespread neurodegenerative disease worldwide, and its prevalence is
increasing [2]. Furthermore, PD exerts a high economic burden on society [3] and worsens
the quality of life of patients with PD [4]. Next, PD is characterized by gradual progression
over decades [5], and PD symptoms are reliably quantified using clinical scales, which
allow for the mathematical modeling of PD evolvement [6]. In addition, PD seems to be
an extremely informative research object, since it allows for the development of insights
into such phenomena as muscle tone and tremor, motor commands, postural reactions,
orientation in space and gait.

Earlier, we have shown that in subjects with PD that both single session of Earth-based
microgravity—modeled with “dry” immersion conditions (DI) [7]—and a program of
repeated DI sessions [8] attenuates muscle rigidity and tremors and improves some aspects
of activity of daily living. Additionally, some motor-cognition tests [9] and characteristics of
hemodynamics and heart rate variability were improved after a program of DI sessions [10].
On the other hand, the function of a patient’s spatial orientation in a vertical stance and the

Sensors 2022, 22, 7915. https://doi.org/10.3390/10.3390/s22207915 https://www.mdpi.com/journal/sensors
155



Sensors 2022, 22, 7915

function of postural transition proved non-responsive to the condition of DI [7]. Muscle
rigidity is often associated with bradikinesia (slowness of movements) and akinesia (diffi-
culties with starting motion), which is seen in the akinetic-rigid form of PD. This allows for
the presumption that a decrease in muscle rigidity, provoked by DI conditions, may result
in an improvement of gait characteristics, e.g., gait speed, cadence and length of steps.

The Timed Up-and-Go (TUG) test has proven to be reliable in many domains of
neuromuscular and orthopedic pathology for assessing gait, basic mobility skill, strength,
agility and balance [11]. It consists of five sequential phases: (1) standing up from a chair
(Sit-to-Stand transition phase), (2) walking straight forward (Gait-Go phase, including
stand-to-walk transition), (3) turning by 180◦ (U-turn phase), (4) walking back (Gait-Come
phase), and (5) sitting down (Stand-to-Sit transition with a turn). In its classic 3 m form, the
TUG test provides an immediate score, requires no training and only needs one tester [11];
however, the classic TUG test supplies little data on gait as it requires the patient to take only
4 to 6 steps in both directions. In addition, the first step, the step prior and right after the
U-turn, and the last step are clearly specific by their biomechanical functionality (transition
to locomotion, decelerating when approaching the U-turn point and the end-point of
the test, correspondingly). To overcome this problem, longer (expanded) versions of the
TUG test were invented. For example, Haas et al. [12] presented the so-called L-test,
which includes longer walks and turning in both directions, and Galán-Mercant et al. [13]
presented a 10 m version of the TUG test. Earlier, we proposed an even longer (extended)
version of the TUG test (13 m long, which returns around 20 steps in one direction) to
provide a more precise view of a self-paced walk at a comfortable speed in the middle of
both the Gait-Go and Gait-Come phases [14].

Throughout the last decade, instrumented versions of the TUG test (iTUG) were
increasingly invented. In most of these versions, varied numbers and positions of miscella-
neous inertial measurement unit (IMU)-based wearable sensors (accelerometers) were used
to discriminate between the phases of the TUG test [15,16]. The IMU is often fixed on a
foot to obtain the exact position of a limb in real time. The quality of the sensor’s trajectory
restoration is often controlled by video capture, and its position accuracy is in the millimeter
range [17,18]. One of the problems with such a system is the time synchronization of inertial
sensor data and video flow [19]; some researchers use multi-IMU networks. For example,
in the study by Qiu et al. [20], a system of 100 Hz IMUs connected via WiFi was applied for
monitoring complex gait parameters, including knee angle dynamics. Bogaarts et al. [21] ex-
plored the impact of noise on gait features that had been extracted from smartphone sensor
data. They created a model of a moving body, generated acceleration signals for plenty of
the points on the body, then added noise to simulated signals and after that tried to extract
the gait features. As a result, they showed that sensors in from-the-shelf smartphones
are sufficient for registering acceleration signals, given that the sensor’s noises introduce
negligible impacts on the computation of step power and other similar parameters [21].

There is a multitude of technological approaches for studying PD. Among them are
optical motion trackers, biopotential devices, audio and video recording, and, especially,
wearable sensors, such as smart glasses, hats, insole sensors of ground-reaction force
and smartphones [22]. Previously, we evaluated the effect of DI on PD subjects with
conventional laboratory tools (EMG, reaction time, tapping test, posturography) [7–10].

According to the review by Deb et al. [22], wearable sensors are currently the most used
(40% articles in the field), while smartphones are the least used; however, starting from the
year 2020, there is a trend in the growing number of articles that have used smartphones for
their research [22]. Among the application areas, the diagnosis and monitoring/prognosis
of PD were the most studied, and among symptoms, the gait, tremor and speech of a
subject were the most studied [22]. Smartphone applications have good to excellent ability
for predicting and discriminating gait and postural instability between PD subjects and
healthy controls, as well as the leg dexterity and gait cycle breakdown between PD subjects
with different severities of the disease [23]. Thus, there is strong evidence regarding the
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potential use of smartphone applications to assess gait and balance among individuals with
PD in the home or laboratory [22,23].

Smartphones are equipped with IMUs that consist of a 3-axis accelerometer, a 3-axis
gyroscope and a digital magnetometer that is comparable in sensitivity to research-grade
biomechanical instrumentation [24]. In the study by Manor et al. [24], smartphones were
placed in the front pocket, which is relevant for non-laboratory settings. Typically, smart-
phones are secured to the trunk or lower extremities. In our earlier study, we suggested
a method of reconstruction of the head trajectory in 3D-space using the IMU-based ac-
celerometer and gyroscope of a smartphone, which was fixed on a subject’s head [14]. We
assumed that, in accordance with the concept of the “inverted pendulum model”, the head
produces the biggest displacement in the vertical axis [25]. Similarly, Hwang et al. [26]
conducted research with a 60 Hz single IMU fixed on a head, which is similar to the method
used in our study. They used a FIR low-pass filter to reduce the noise and applied threshold
to capture the exact phases of a stride. Since a FIR filter introduces a certain latency in the
processed series data, this fact should be considered in data analysis. The authors also
presented comprehensible figures that demonstrated that a single sensor fixed on a head
picks up acceleration signals from both legs, and further, they clarified how this obtained
signal might be “decoded” and understood. Thus, a smartphone fixed on a subject’s head
can return meaningful information about gait. Still, the 100 Hz IMU of a smartphone does
not allow for sufficiently precise tracking of the trajectory of the head.

The major hypothesis of the present study was that gait characteristics in patients with
PD are responsive to the conditions of either one session of DI or a course of repeated DI
sessions. To address this, we obtained up-sampled acceleration signals from smartphone-
based 100 Hz IMU sensors attached to the subject’s head during a 13 m TUG test before
and after single session of DI and a program of seven DI sessions.

2. Materials and Methods

2.1. Subjects

Altogether, data from six PD subjects was collected in the study. Six subjects with PD
participated in the study after providing their informed consent. Their anthropometric and
clinical data and the medication they use is presented in Table 1. All of them are from the
same cohort of subjects who participated in our earlier studies [7–10]. The data on gait
characteristics presented in this article were obtained from these studies. All subjects signed
their informed consent, and the protocol of the study was approved by the Local Ethical
Committee (joint ethics committee of the Ministry of Healthcare of the Republic of Karelia
and Petrozavodsk State University (Statement of approval No. 31, 18 December 2014)).

Table 1. The anthropometric and clinical data of the subjects with PD.

No. of Subject
Age (year)

and Gender
Height (cm),
Weight (kg)

Stage by Hoehn
& Yahr

Clinical Form

1 47 M 182, 81 1 PD, AR
2 61 M 188, 83 1 PD, T
3 58 F 158, 65 2 PD, T
4 50 M 171, 94 2 PD, T
5 55 M 178, 86 2 PD, T
6 69 M 170, 95 2 PD, T

T—tremulous form, AR—akinetic-rigid form of PD. Subject 1 participated in 2 courses of DI sessions. Subject 6
did not participate in DI sessions.

2.2. Procedures
2.2.1. On-Earth Model of Microgravity

The on-Earth microgravity was modeled using the conditions of a “dry” immersion
(DI). This method of DI has already been presented in detail in our earlier papers [7–10].
In brief, the condition of DI was created with the help of MEDSIM (Medical simulator of
weightlessness, Center for Aerospace Medicine and Technology, IMBP, Moscow, Russia),
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which is housed in the Laboratory of Novel Methods in Physiology (Petrozavodsk State
University). The MEDSIM facility uses a bathtub filled with 2 m3 of fresh, thermally
comfortable water stabilized at T = 32 ◦C. The water in the tub was periodically filtrated
and aerated to prevent bacterial contamination. The water surface was covered with a
large, square waterproof film (3 × 4 m2), which was wrapped around the subject’s body.
The DI session was conducted at 9:30 AM, in the condition of “on-medication” in order
to synchronize the effects of DI and the anti-PD therapy. The subjects usually took their
medicines 2 h before the study, at 7:30 AM. Before DI, subjects were instructed to drink
200 mL of water and urinate due to the strong diuretic effect of DI [27]. Before immersion,
subjects laid supine for approximately 10 min on a solid movable motor-driven platform
on a cotton sheet in the MEDSIM facility in order to attach electrocardiogram electrodes,
measure brachial blood pressure (BP), and familiarize (altogether around 5 min) and note
ECG recordings in standard lead II (5 min). If after 10 min of lying supine the subject’s BP
was higher than 140/80 mm Hg, he/she was not allowed to enter DI and the study was
postponed for another day. After that, the platform was driven to its bottom position, and
subjects found themselves immersed in water without direct contact with the water; the
head and upper chest were left above the water’s surface. One DI session lasts for 45 min.
BP and ECG were monitored at the 15th, 30th and 45th min. After the DI session, subjects
laid motionless on the platform in its upper position for a further 5–7 min for re-adaptation
to the pre-DI conditions and for ECG monitoring. Altogether, 22 measurements were
successfully conducted: 10 measurements before/after a single session of DI (5 paired sets
of data), and 12 measurements before and after a program of DI sessions (6 paired sets
of data).

The program of DI consisted of seven 45 min DI sessions that were conducted twice a
week for 25–30 days. The total DI dose during the course was 5 1

4 h.

2.2.2. Test Protocol: 13 m TUG Test

The TUG test was performed in its extended form (13 m instead of the conventional
3 m long test). Still, its phases were all the same: (1) standing up from a 46 cm high-
chair (Sit-to-Stand phase), (2) walk straight (13 m, Gait-Go phase, including Stand-to-Walk
transition), (3) turning by 180◦ (U-turn), (4) walking back (13 m, Gait-Come phase), and
(5) sitting down (Stand-to-Sit transition with a turn). In addition, unlike the classic 3 m
version, the 13 m version of the TUG test allowed for an analysis of the subject’s steps
(gait)—because subjects performed up to 20 steps in one direction, which is sufficient for
analyzing gait [28]. The TUG test was performed 15 min prior and then 8–10 min after
the DI session. A baseline gait analysis throughout the day was not conducted, neither
was one conducted before or after the DI session. The TUG test was performed prior and
8–10 min after the DI session.

2.3. Data Processing

During the TUG test, the acceleration and rotation rate were measured with the sensor
module in the smartphone Xiaomi Mi4 (Xiaomi Tech, Bejing, China 68.5 mm × 139.2 mm
× 8.9 mm, 149 g). The obtained signals were further processed offline.

The subject was instructed to sit still and look forward before and after the test. In a
motionless state, the shape of the accelerometer signal is formed by the current projections
of the gravity vector, measurement noise and the existing zero-G offsets, as well as the
head tremor. The beginning and end of the movement are characterized by a change in
the x-, y- and z- components of the acceleration vector due to the inclination as well as the
presence of linear accelerations while standing up and sitting down. For the gyroscope in a
motionless state, the signal includes the sensor noise as well as the head tremor; however,
it is characterized by the constancy of the mean value (measurement offset). The start and
end points of the TUG test were selected manually by analyzing the change in the mean
value due to the rotation of the head and body during inclination while standing up and
sitting down.
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The internal phases of the TUG test and step moments were determined automatically.
For steps in a straight-line walk (15–17 more or less uniform steps in the middle of both the
Gait-Go and Gait-Come phases), a set of gait features was calculated. Altogether, subjects
performed 35–40 steps in both directions, of which 30–35 steps that were in the middle of
the walk were analyzed.

2.4. Inertial Data Acquisition and Pre-Processing

The sampling rate of the inertial sensors—both the accelerometer and gyroscope—of
the Xiaomi Mi4 smartphone that was used in the present study was 100 Hz (the period
between data samples was Δt = 10 ms), which can be regarded as neither reliably accurate
nor fast. The smartphone was fixed on the back of the head of a subject with an elastic band
and, additionally, a tight-knitted hat; subjects felt comfortable with this kind of fixation
and the smartphone never fell out of its position. Values for the acceleration and angular
velocity were collected as a time-stamped data stream. Thus, the measurements were
accompanied by timestamps from the smartphone’s operating system timer. For further
analysis, the accelerometer and gyroscope measurements with a time-stamp difference of
less than 5 ms (half of the measurement period) were considered synchronous. In order to
increase the time resolution and achieve a smoother distribution, the time series data were
up-sampled to a 10-fold-higher frequency of 1 kHz (Δt’ = 1 ms) (Figure 1). In addition, an
increase in the time resolution allowed for the application of high-order digital filters to the
obtained time series.

Figure 1. Up-sampling of a periodic signal obtained during walking. The black open circles on the
bottom panel correspond to the real data sampled at a frequency of 100 Hz. The red points are new
data points reconstructed with up-sampling. The red curve is a continuous signal passing through all
the circles.

Since the analyzed signal tended to be periodic, the up-sampling, which used Fast
Fourier Transform, could be applied. Furthermore, as long as the measurement signals
are real-valued, the real (single-sided) FFT is suitable for conversion into the frequency
domain. In the frequency domain, up-sampling means there is zero-padding at the end
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of the high frequency components of the signal. The up-sampling procedure included the
following steps:

(1) forward Fourier transform of original signal X = F(x);
(2) zero-padding F(x) up to new length F(y);
(3) inverse Fourier transform of F(y) to obtain up-sampled signal y;
(4) scaling up-sampled signal y to preserve amplitudes.

A simple calibration of the zero offsets of the sensors was performed before the start
of the test. To do this, we used the measurements obtained from a smartphone placed on a
horizontal surface. It was noted that the sensor offsets were probably pre-calibrated by the
Android OS. The bias instability and velocity/angle random walk for smartphone sensors
was previously analyzed by us using the Allan variation [14]. The bias instabilities are (7.3,
8.2, 8) × 10−4 m/s2 for the x-, y- and z-axis of the accelerometer, and (1.7, 5, 7) × 10−5 deg/s
for the gyroscope. Since the test duration is less than 1 min, the bias drifts can be neglected.

The orientation of the smartphone was calculated using a well-known complementary
filter proposed by Robert Mahony et al. [29] and is expressed in the form of a quaternion Q.
Using Q, the acceleration and angular velocity measurement vectors were converted to a
global coordinate system (global frame):

GV = Q ⊗ SV ⊗ Q*, (1)

where GV and SV are “pure” quaternions associated to the 3-dimensional measurement
vector in the sensor frame and global frame, respectively; Q* is a conjugate of Q; and the ⊗
symbol represents the Hamilton product.

2.5. Turns (Rotation) Detection

Automatic detection of a turn was conducted by analyzing the projection of the angular
velocity on the vertical axis. No additional filtering of measurements was performed. If the
values of the amplitude and duration of the rotation rate exceeded certain threshold values,
a rotation was considered to be detected (recorded). At the first stage, a comparison was
made with the threshold value of the rotation rate (10 degrees per second). At the second
stage, the rotation duration was estimated. Rotations lasting less than 1 s were discarded.
If three or more turns were detected in the TUG test, the two longest turns were considered
the 1st (at the U-turn phase) and 2nd (prior to sitting down on a chair) turn. According to
the available experimental data, this algorithm was successful in 100% of cases for both
turn events.

2.6. Step Detection

Step detection was automatically performed by analyzing the time series of the ac-
celeration vector. Since the typical cadence of stepping is about two steps per second, the
measurements were filtered with a forward–backward zero-phase low-pass filter (Butter-
worth, 10th order) with a cut-off frequency of 3 Hz, which allowed us to obtain the LPF time
series data. After that, peak values of the filtered signal were detected. Moments where the
acceleration magnitude reached 11 m/s2 were taken as the approximate time-stamp of the
initial contact of the foot with the ground (T’ point).

For each step, the revised time-stamp T_step of the heel strike and the correspond-
ing maximum acceleration along the vertical axis were determined by searching for the
maximum value in the ±40 ms window near the T’ point. Not all steps taken during the
TUG test were taken into account for gait analysis. The following local maxima that were
obtained during the step detection procedure were discarded:

• the first peak corresponding to the moment of standing up and the second peak
corresponding to the moment of the first step;

• steps during the first U-turn;
• steps from the moment of the second turn until the end of the whole test.
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2.7. Gait Features
2.7.1. Duration of the TUG Test Phases (D-Parameters)

To estimate the duration of the entire TUG20 test and its phases, the following param-
eters were determined (Figure 2):

Figure 2. A representative plot of the 13 m TUG test with the phases (D1–D4) and parameters P1–P3
determined with an accelerometer (left panel) and the moments of step duration distribution (S1–S2,
right panel) along progression of time.

D1 (The entire TUG test duration): the time from the very beginning of motion (the
Sit-to-Stand movement) until the end of the test (sitting down on a chair).

D2 (Corresponds to the Sit-to-Stand phase plus the Stand-to-Walk period): the time
from the start of the lifting to the moment of the heel strike on the second step.

D3 (U-turn phase, the 1st turn duration): the time to perform a 180◦ turn at the far
turning point.

D4 (Walk-to-Sit phase, or the 2nd turn duration): the time from the beginning of the
second turn until the end of the test.

2.7.2. Characteristics of the Temporal Stability of Stepping (S-Parameters)

For the analysis of gait stability, only straight-line, uniform steps were taken into
account (see Section 2.6). The following parameters were computed:

S1 (Mean_step_duration, s): the duration of the step (dt) was determined as the
difference between consecutive time-stamps of successive steps (Tstep moments). Before
calculating the average value, two points with the largest deviation from the median value
of step duration were discarded (red crosses, see Figure 2).

S2 (Step_duration_std, s) (see Figure 2).
To calculate the cadence mean and standard deviation, the “instantaneous walking

pace” was first estimated for each step (cadence = 60/dt); then two outliers should be
discarded. Usually, these outliers were characteristic of the “transitional” moments during
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the TUG test (at the beginning and end of the Gait-Go and Gait-Come phases, and before
the U-turn).

S3 (Cadence_mean, steps per min).
S4 (Cadence_std, steps per min).
S5 The ratio of the average deviation of the two largest outliers of the step duration

to the standard deviation of the step duration without taking into account the two largest
outliers (red double-sided arrow, see Figure 2). S5 reflects a tendency to take unusually
long steps (LS).

S5 was calculated according to the following algorithm:

1. Select two outliers from “step duration” values;
2. Calculate DWO as the mean value of the step durations without outliers;
3. For each outlier, calculate the absolute difference from DWO, then calculate the mean

of differences (DOUT);
4. Calculate DWO_STD as the standard deviation of the step durations without outliers;
5. Calculate LS = DOUT/DWO_STD.

The estimates of the probability density functions of the step duration and the accel-
eration upper/lower peaks were obtained using kernel density estimation (KDE). KDE
was computed using the Python scipy.stats.gaussian_kde function (written by Robert Kern,
2004, Enthought, Inc., Austin, TX, USA). As P1, P2 and S2 values are related to the width of
the target variables’ distributions, they are shown as the full width at half maximum. On
the left panel, the red dots denote minimal acceleration when both feet were touching the
floor, and the green dots denote heel strike. The open red and green circles represent these
dots. Two outlier values are denoted with black crosses. On the right panel, the open black
circles represent the individual step duration along the time course. The outlier values,
denoted by red crosses (>0.7 s), represent unexpectedly longer steps right prior to U-turn.
Furthermore, note that during the Gait-Come phase (upper group of open black circles),
the length of the steps decreased roughly from 0.68 m to 0.6 m. For more information, see
the text below; these data were obtained from Subject 6.

2.7.3. Characteristics of the Power Stability of Stepping (P-Parameters)

To analyze the power (amplitude) characteristics of each step, the following parameters
were estimated:

P1 (Heel_strike_accel_std, m/s2): the standard deviation of the vertical acceleration in
Tstep moments. Two outliers were discarded. P1 characterizes the stability (uniformity) of
the heel strike during stepping in the Gait-Go and Gait-Come phases (see Figure 2).

P2 (Swing_accel_std, m/s2): standard deviation of the vertical acceleration minima
that corresponds to the weight transfer phase. Two outliers were discarded. P2 characterizes
the stability (uniformity) of the minima values when both feet made contact with the
floor during the swing phase of stepping during the Gait-Go and Gait-Come phases (see
Figure 2).

P3 (Peak-to-peak_vertical_acceleration_mean, m/s2): the average difference between
the minimum and maximum of the vertical accelerations in a series of straight steps.

All D- and P-parameters, and some of S-parameters, can be identified from Figure 2.
The duration of the entire TUG test (D1) and its phases—D2, D3 and D4—shown on the left
panel in Figure 2, were recognized automatically by analysis of the acceleration and rotation
rate time series data. The upper peaks (green dots) correspond to heel strike moments
and form a cloud of green open circles to the right. Their distribution is characterized
by the P1 parameter. Similarly, P2 describes the width of distribution of the acceleration
minima during the swing phase. The horizontal green and red dotted lines denote the
medians for these sets. P3 is the difference between the medians. The right panel in Figure 2
describes the distribution of the performed steps over the step duration (histogram and
kernel density estimation). S1 stands for the average step duration and S2 stands for the
standard deviation. The black circles—from the lowest to the highest—correspond to the
recognized steps from the first step to the last one in time. The two longest steps were

162



Sensors 2022, 22, 7915

excluded from the averaging statistics; however, they probably informed the light form of
“freeze of gait”.

2.8. Statistical Analysis

The analysis was executed with IBM SPSS Statistics 21.0 (SPSS, IBM Company, Chicago,
IL, USA). The values of D1–4, S1–5 and P1–3 were compared in the pairs of conditions
“before-after a single DI session” and “before-after a course of DI sessions” with the non-
parametric paired Wilcoxon t-test.

3. Results

None of the D, P and S gait characteristics responded to the conditions of a single
(“acute”) DI session (Table 2); however, in each of the five examined subjects with PD,
at least several—usually different—parameters were positively modified after a 45 min
session of DI. Furthermore, at least in 2–4 measurements of 5, the gait parameters changed
to better values. For example, in Subject 1, after a single session of DI, the D1 (duration of
the entire TUG test) decreased by 5 s—from 30 to 25 s—and the subject’s cadence increased
from 88 to 100 steps/min. After another DI session with this subject, the values of the P1
parameter (heel strike) increased from 0.55 to 0.77 m/s2, P2 increased (swing phase) from
0.50 to 0.82 m/s2, and P3 increased from 8–9 to 10–11 m/s2 (Figure 3), which provides
insight into the increased variability of step length after DI and the stronger strike of the
heel on the floor. In Subject 2, only the value of D4 decreased, which similarly occurred in
Subject 3, wherein the value of S5 decreased (Figure 3). In addition, in all five cases of DI,
the change in the distribution type of P2 from a unimodal distribution to a more bimodal
one took place (see Figure 3). The individual data for all measurements are presented in
Supplementary Material Table S1.

  
(a) (b) 

 
(c) (d) 

Figure 3. Cont.
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(e) (f) 

 
(g) (h) 

 
(i) (j) 

Figure 3. Individual plots for five separate DI sessions in three subjects. For details, see Figure 2:
(a) Subject 1 before and (b) after the 1st DI; (c) Subject 1 before and (d) after the 7th DI; (e) Subject 2
before and (f) after the 5th DI; (g) Subject 2 before and (h) after the 4th DI; (i) Subject 3 before and
(j) after the 7th DI.

Unlike with a single DI session, a course of DI sessions exerted a significant influence
on a few gait parameters, namely, D4 and S5 (see, Table 2), which means that subjects
with PD performed sitting down on a chair with turning (D4 phase) faster, and there were
unusually long steps after a course of DI sessions. The individual plots of stepping are
presented in Figure 4.
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Table 2. Gait characteristics before and after a single DI session and after a course of DI sessions.

Parameter
Before a Single

DI Session
After a Single

DI Session
p Before a Course of

DI Sessions
After a Course
of DI Sessions

p

D1 (s) 26.4 ± 3.2 25.3 ± 2.1 0.35 26.5 ± 2.3 24.7 ± 2.6 0.173
D2 (s) 2.56 ± 0.61 2.50 ± 0.44 0.89 2.66 ± 0.56 2.44 ± 0.35 0.116
D3 (s) 2.36 ± 0.52 2.60 ± 0.23 0.50 2.44 ± 0.45 2.27 ± 0.39 0.249
D4 (s) 4.19 ± 0.92 4.69 ± 1.34 0.69 4.09 ± 0.89 3.51 ± 0.64 0.046
S1 (s) 0.56 ± 0.10 0.55 ± 0.08 0.35 0.54 ± 0.08 0.52 ± 0.07 0.688
S2 (s) 0.027 ± 0.013 0.025 ± 0.01 0.89 0.02 ± 0.014 0.018 ± 0.01 1.000

S3 (steps/min) 109.1 ± 22.6 111.2 ± 18.3 0.69 112.6 ± 18.0 116.4 ± 16.6 0.249
S4 (steps/min) 4.19 ± 0.92 4.69 ± 1.34 0.50 3.64 ± 1.39 3.76 ± 1.63 0.753

S5 2.65 ± 0.54 3.37± 0.27 0.23 2.66 ± 0.61 3.26 ± 0.39 0.028
P1 (m/s2) 0.88 ± 0.40 0.95 ± 0.32 0.23 0.96 ± 0.40 0.92 ± 0.34 0.917
P2 (m/s2) 0.46 ± 0.08 0.56 ± 0.18 0.23 0.46 ± 0.11 0.61 ± 0.19 0.075
P3 (m/s2) 9.2 ± 2.26 9.9 ± 2.8 0.35 9.7 ± 2.35 10.75 ± 1.91 0.116

p—probability of difference in Wilcoxon test between “before” and “after” conditions. The meaning of D-, S- and
P-parameters can be found in the text.
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Figure 4. Cont.
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Figure 4. Individual plots for six courses of DI sessions in five subjects. For details, see Figure 2:
(a) Subject 1 before and (b) after the 1st course of DI; (c) Subject 1 before and (d) after the 2nd course
of DI; (e) Subject 2 before and (f) after the course of DI; (g) Subject 3 before and (h) after the course of
DI; (i) Subject 4 before and (j) after the course of DI; (k) Subject 5 before and (l) after the course of DI.
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4. Discussion

The purpose of this study was (1) to test the reliability of an assessment of stepping
characteristics with an up-sampled IMU-based accelerometer signal and gyroscope of a
smartphone when placed on the subject’s head, and (2) with the help of the acceleration
signal, to study the effect of a single DI session and a program of DI sessions on stepping in
subjects with PD during a long version of the TUG test.

There are plenty of studies that have demonstrated sufficient reliability of iTUG
test technologies based on a smartphone’s IMU to recognize the phases of the TUG
test [24,30–32]. It has been concluded that the iTUG test is relevant for self-administered
TUG test [31,33] and has good agreement with 3D motion video capture analysis [34], and
it is superior to stopwatch measurement [35]. As such, the recognition of sub-phases during
the instrumented TUG test, either in its classic or extended versions, with smartphone
accelerometers is not necessarily novel; however, most of these studies were conducted
with the classic 3 m TUG test, with a smartphone attached to a belt and with a 100 Hz
sampling rate.

Instead, in the present study, we focused on (1) the gait analysis during the Gait-Go
and Gait-Come phases with the help of (2) the extended 13 m TUG test, and (3) with a
smartphone fixed to the head. It has been found that the 13 m TUG test returns information
about 16–21 steps in each direction (28–36 steps, altogether), of which 15–17 steps in
the middle of the Gait-Go and Gait-Come phases of the TUG test were considered to be
functionally uniform (straight walk). This number of steps is reliable, as data collected from
10–20 strides (20 steps) were reported to be sufficient for the reliable characterization of the
gait speed and cadence of stepping [28]; however, the reliable evaluation of the variability
of stepping requires much more data (hundreds of strides) [28]. In addition, we considered
that the pre-processing of the time series with an up-sampling procedure (from 100 up
to 1000 Hz) allowed us to increase the accuracy of the capture of stepping events (heel
strike and swing phase). Moreover, we paid much attention to the step variability and
evolution over time. For example, we introduced a special new parameter that measures
the tendency to “freeze of gait”—i.e., unusually long steps, which can provide insights into
the difficulties of performing a step.

From a technical point of view, the obtained parameters and graphical presentation
of the TUG test can be regarded as reliable and demonstrative, as it allows for the tracing
of individual features of the subject’s gait and the recognition of graphical patterns of the
subjects by eye. Furthermore, the position of the smartphone on the head can be regarded
as a reliable site for the collection of information about a human’s gait. This allows for a
reduction in the number of IMUs to one that is placed on the head.

We found that a single (“acute”) 45 min DI session exerted no effect on the studied
parameters of gait across the entire group of subjects with PD, which is opposite to our
original hypothesis. On the other hand, in each subject, an individual set of gait charac-
teristics still changed. For example, in Subject 1 (see Figure 3), the entire duration of the
TUG test (D1) decreased by 5 s (or, by 15%), and the time to perform the U-turn (D3 phase)
decreased by 0.2–0.3 s, while the cadence (S1) increased by 3–12 steps/min. Furthermore, P1
(standard deviation of heel strike acceleration) and P2 (standard deviation of acceleration
minima during the swing phase) increased by 0.2–0.3 m/s2, and P3 (vertical acceleration
range) increased by 2–3 m/s2. As a whole, these changes suggest that after a single DI
session, Subject 1 walked faster, performed faster turns and stepped more firmly on the
floor. All these modifications can be regarded as positive. In Subjects 2 and 3, the effect of
DI conditions was negligible, probably due to the relatively good initial values of their gait
parameters, for example, in Subject 3, their cadence was 145 steps/min—in comparison to
90–112 steps/min in Subjects 1 and 2. In addition, Subject 1 did not take anti-PD medicine,
which means that before the DI session he stood in the “off-medication” condition. As a
result, the effect of DI was not inferred by anti-PD therapy.

The effect of a program of seven DI sessions was a bit more pronounced. At a
minimum, the D4 and S5 parameters became significantly larger after a course of DI,
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and a change in P2 values resulted in an increase after a program of DI. The reaction to
DI conditions was individually significant. Again, Subject 1 presented the most notable
improvement in D1 (by 5–6 s, or by 20%), and almost in all other parameters. Subjects
2, 4 and 5 demonstrated moderate improvement of only some parameters, and Subject 3
demonstrated a notable improvement of gait.

The Internet of Things (IoT) is comprised of interconnected devices, machines, and
servers with data storage that functioning through a network [36,37]. A smartphone can be
considered an ideal measuring device for further instrumentation and incorporation into
IoT-enabled systems since it already appears as a part of the Internet.

A smartphone is always “at hand” (in the pocket), it is not heavy or cost-effective, and
it is already pre-set for data transfer to cloud-based storage [24]. Smartphones are already
efficiently used to detect and monitor PD symptoms, e.g., with reaction time tests, tapping
tests, and voice (speech), posture and gait tests [38], and there are smartphone applications
that are available for self-testing [39]. In a sense, smartphones have undergone a kind of “in-
strumentalization” compared to regular consumer devices—for example, a treadmill [40].
Altogether, this makes smartphones a relevant candidate for the implementation of diag-
nostic and monitoring applications in PD. Smartphones are very suitable because, unlike
wearable sensors, they do not need additional resources, as they are already a part of the
Internet. In addition, smartphones are capable of performing online calculations.

Data collected on the gait of PD subjects with wearable accelerometers is suitable
for Artificial Intelligence (AI) or IoT decisional support [36,41]. AI-based wearable gait
monitoring is already used for optimization of Parkinson’s disease management [41].
We figured that smartphone applications based on AI can be applied to monitor gait
characteristics in PD subjects. Among the varied learning methods, deep learning may
provide higher accuracy in PD assessment than machine learning [42].

The TUG20 test accelerometer signals have a repetitive structure and contain gait
features. Furthermore, there are two ways that the methods of AI could be applied. First,
it can be used to collect a database of signals and split this database into two parts: the
training and test sets. To increase the adequacy of the model, this approach might be applied
after investigation of more than 100 PD cases, which is difficult in real life. The second
way is to investigate the gait features and to understand what features are significant, i.e.,
to exclude insignificant features and thus decrease the dimension of the model, and then
apply these data to clustering. This approach requires less studied cases, and we would
prefer to follow it in the future. The major limitation of this study was the insufficient
number of study subjects and measurements, which did not allow for a more precise
analysis of data to be conducted. Furthermore, control groups (young and older healthy
subjects) were not formed. In future studies, we propose that more measurements should be
conducted in control groups and subjects with PD, both under “dry” immersion conditions
and non-DI conditions.

5. Conclusions

In conclusion, the data from smartphone-based IMU accelerometers allowed us to com-
pute gait characteristics that are conventionally used in the field of locomotion physiology,
such as step duration and cadence. Like other IMU-based analyzing systems, the presented
method allowed for the recognition of the phases of the TUG test. The application of an
extended version of the TUG test provided a sufficient number of steps to characterize gait,
and it allowed for the visualization of the duration of individual steps during the process
of locomotion. Furthermore, the presented method appears to be suitable for a fast visual
evaluation of stepping patterns in PD subjects. Of note, some of the specific characteristics
of Parkinsonism events were recognized with the IMU sensors—for example, unusually
long steps, which were produced while walking.

For the entire group, the conditions of a single 45 min “dry” immersion affected none
of the studied gait parameters derived with the help of smartphone-based IMU sensors;
however, in one subject there was a clear increase in cadence, gait and turning speed. After
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a course of repeated DI sessions, some characteristics of the TUG test were improved;
however, gait speed did not significantly change.

The presented method of gait analysis appears to be suitable for further instrumenta-
tion because a smartphone is perfectly suited for association in IoT-based networks.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/10.3390/s22207915/s1, Table S1: Individual values of gait characteristics at
different study conditions.
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Abstract: Determining environmental chemical carcinogenicity is urgently needed as humans are
increasingly exposed to these chemicals. In this study, we developed a hybrid neural network
(HNN) method called HNN-Cancer to predict potential carcinogens of real-life chemicals. The
HNN-Cancer included a new SMILES feature representation method by modifying our previous
3D array representation of 1D SMILES simulated by the convolutional neural network (CNN). We
developed binary classification, multiclass classification, and regression models based on diverse
non-congeneric chemicals. Along with the HNN-Cancer model, we developed models based on the
random forest (RF), bootstrap aggregating (Bagging), and adaptive boosting (AdaBoost) methods for
binary and multiclass classification. We developed regression models using HNN-Cancer, RF, support
vector regressor (SVR), gradient boosting (GB), kernel ridge (KR), decision tree with AdaBoost (DT),
KNeighbors (KN), and a consensus method. The performance of the models for all classifications was
assessed using various statistical metrics. The accuracy of the HNN-Cancer, RF, and Bagging models
were 74%, and their AUC was ~0.81 for binary classification models developed with 7994 chemicals.
The sensitivity was 79.5% and the specificity was 67.3% for the HNN-Cancer, which outperforms the
other methods. In the case of multiclass classification models with 1618 chemicals, we obtained the
optimal accuracy of 70% with an AUC 0.7 for HNN-Cancer, RF, Bagging, and AdaBoost, respectively.
In the case of regression models, the correlation coefficient (R) was around 0.62 for HNN-Cancer
and RF higher than the SVM, GB, KR, DTBoost, and NN machine learning methods. Overall, the
HNN-Cancer performed better for the majority of the known carcinogen experimental datasets.
Further, the predictive performance of HNN-Cancer on diverse chemicals is comparable to the
literature-reported models that included similar and less diverse molecules. Our HNN-Cancer could
be used in identifying potentially carcinogenic chemicals for a wide variety of chemical classes.

Keywords: chemical carcinogens; machine learning; deep learning neural network; hybrid neural
network; convolution neural network; fast forward neural network

1. Introduction

Substances capable of causing cancer are known as carcinogens. Carcinogenicity is a
primary concern among all the toxicological endpoints due to the severity of its outcome.
Carcinogens may be genotoxic, which induces DNA damage and cancer, or non-genotoxic,
which uses other modes of action, such as tumor promotion, to exhibit their carcinogenic
potential in humans [1]. Some of the genotoxic carcinogens are mutagens too. Many
environmental chemicals have been identified as carcinogenic to humans [2,3]. The onset of
cancer in humans depends on various factors, including the dose and duration of exposure
to carcinogens. Identifying carcinogenic compounds is also an integral step during the
drug development process. The two-year rodent carcinogenicity assay has been established
as the standard to determine chemical carcinogenicity [4]. However, such animal testing
is time-consuming, costly, and unethical. The experimentalists need to replace, reduce,
and refine (3Rs) the use of animals as this 3Rs policy encourages alternative methods to
minimize the unprincipled use of animals [5].
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Computational methods for various toxicological endpoints prediction have now be-
come a popular alternative to traditional animal testing. Numerous computational models
using machine learning (ML) methods are developed to predict carcinogenicity based on
the properties of chemicals. Computational models can be classification models (qualita-
tive) that predict chemical is carcinogenic/noncarcinogenic (binary classification models) or
that predict the degree of carcinogenicity (multiclass classification), and regression models
(quantitative) that predict the dose of chemical required for carcinogenesis. Computa-
tional models based on structurally related congeneric chemicals are reported to have
high predictive performance. Luan et al. reported an accuracy of 95.2% while predicting
the carcinogenicity of N-nitroso compounds based on the support vector machine (SVM)
method [6]. Ovidiu et al. presented a SVM-based model to predict the carcinogenicity of
polycyclic aromatic hydrocarbons (PAH) with 87% accuracy [7]. Computational models
based on non-congeneric chemicals are of interest due to their predictive ability for diverse
chemicals. Fjodorova et al. predicted the carcinogenicity of non-congeneric chemicals
with 68% accuracy using a counter propagation artificial neural network (CP ANN) [8].
Tanabe et al. reported an accuracy of 70% for non-congeneric chemicals based on SVM and
improved the accuracy to 80% by developing models on the chemical subgroups based on
their structure [9]. Zhang et al. presented binary classification models based on ensemble
of the extreme gradient boosting (XGBoost) method that predicted the carcinogenicity of
chemicals with 70% accuracy [10]. Li et al. used six different ML methods to generate
the binary classification model with 83.91% accuracy and ternary (multiclass) classifica-
tion models with 80.46% accuracy for the external validation set for the best model [11].
Toma et al. developed binary classification models with an accuracy of 76% and 74% and
regression models with r2 of 0.57 and 0.65 on oral and inhalation slope factors to predict
carcinogenicity for the external validation set [12]. Fjodorova et al. reported a correlation
coefficient of 0.46 for the test set for their regression models using counter propagation
artificial neural network (CP ANN) [8]. Wang et al. constructed a deep learning model
that requires fewer data and achieved 85% accuracy on the external validation set for
carcinogenicity prediction [13].

Taken together, numerous carcinogenicity predictive models on congeneric and non-
congeneric chemicals for binary classification and a few multiclass and regression models
were reported [6–17]. However, there is a need for more non-congeneric computational
models with a broad applicability domain for carcinogenicity prediction. In this study,
to predict potential carcinogens, we developed a hybrid neural network method called,
HNN-Cancer. Based on diverse non-congeneric chemicals, we have developed binary
classification, multiclass classification, and regression models, using HNN-Cancer and
other machine learning methods. We have used the binary classification to predict a
chemical is carcinogenic or non-carcinogenic, the multiclass classification model to predict
the severity of the chemical carcinogenicity, and the regression model to predict the median
toxic dose.

2. Materials & Methods

2.1. Datasets

We have collected carcinogens from several different data sources detailed below.

1. Chemical Exposure Guidelines for Deployed Military Personnel Version 1.3 (MEG).
We curated carcinogenic chemicals from the Technical Guide 230 (TG230): “Chemical
Exposure Guidelines for Deployed Military Personnel” [18]. TG 230 provides military
exposure guidelines (MEGs) for chemicals in the air, water, and soil, along with an
assigned carcinogenicity group for each chemical. Chemicals are categorized into one
of 5 groups: Group A (human carcinogen), Group B (probable human carcinogen),
Group C (possible human carcinogen), Group D (not classifiable), and Group E (no
evidence of carcinogenicity).

2. Environmental Health Risk Assessment and Chemical Exposure Guidelines for De-
ployed Military Personnel 2013 Revision (TG230). We curated carcinogenic chemicals
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listed in the Technical Guide 230 (TG230): “Environmental Health Risk Assessment
and Chemical Exposure Guidelines for Deployed Military Personnel” [19], which
provides military exposure guidelines (MEGs).

3. National Toxicology Program (NTP). Carcinogenic chemicals were curated from the
NTP [20]. NTP lists two groups of carcinogenic chemicals: (a) reasonably anticipated
to be a human carcinogen and (b) known to be human carcinogens.

4. International Agency for Research on Cancer (IARC) Carcinogenic chemicals were
curated from IARC [21]. IARC categorizes chemicals into one of the 5 groups: Group
1 (carcinogenic to humans), Group 2A (probably carcinogenic to humans), Group 2B
(possibly carcinogenic to humans), Group 3 (not classifiable as to its carcinogenicity
to humans), and Group 4 (probably not carcinogenic to humans).

5. The Japan Society for Occupational Health (JSOH) Carcinogenic chemicals were
curated with the recommendation of Occupational Exposure Limits published by
the JSOH [22], which are classified into one of the 3 groups: Group 1 (carcinogenic
to humans), Group 2A (probably carcinogenic to humans), and Group 2B (possibly
carcinogenic to humans).

6. The National Institute for Occupational Safety and Health (NIOSH) Carcinogenic
chemicals curated from the NIOSH [23].

7. Carcinogenic Potency Database (CPDB)

a. CPDB_CPE (CPDB CarcinoPred-EL) data: CPDB data for rat carcinogenicity
were collected from the CarcinoPred-EL developed by Zhang et al. [10]. The list
contains 494 carcinogenic and 509 non-carcinogenic chemicals.

b. CPDB data: CPDB [24] data were collected and processed to obtain the me-
dian toxicity dose (TD50) for rat carcinogenicity. TD50 is the dose-rate in
mg/kg body wt/day administered throughout life that induces cancer in half
of the test animals. A total of 561 carcinogenic chemicals was obtained with
TD50 values for rat carcinogenicity. A total of 605 noncarcinogenic chemi-
cals was obtained for rat carcinogenicity. For 543 carcinogenic chemicals out
of 561, the TD50 values in mmol/kg body wt/day were also obtained from
the DSSTox database (https://www.epa.gov/chemical-research/distributed-
structure-searchable-toxicity-dsstox-database; accessed on 30 September 2017).

8. Chemical Carcinogenesis Research Information System (CCRIS). Carcinogenesis data
were collected from the CCRIS at ftp://ftp.nlm.nih.gov/nlmdata/.ccrislease/; accessed
on 30 September 2017. The carcinogenicity and mutagenicity data were extracted. A
total of 6833 chemicals was obtained after eliminating duplicates/conflicting data when
compared to data sources 1 to 6, out of which 4054 were carcinogenic/mutagenic and
2779 were non-carcinogenic/mutagenic.

9. Drugbank 2018 The drug data were collected from the drug bank (www.drugbank.
ca; accessed on 31 March 2018). The approved drugs predicted as carcinogenic by
Zhang et al. [10] were removed, the remining 1756 approved drugs were considered
non-carcinogenic.

2.1.1. Dataset I: Binary Classification Data

The two classes considered in the binary classification models were class 0 (non-
carcinogen) and class 1 (carcinogen). Datasets used to train the models are listed below:

i. For binary classification of chemicals to predict the carcinogenic or non-carcinogenic
category, 448 carcinogenic chemicals were obtained from data sources 1 to 6 above.
Data 1 (MEG): The chemicals classified into Groups A, B, and C were considered as
carcinogens. Data 2 (TG30): The chemicals listed as carcinogens were considered as
carcinogens. Data 3 (NTP): The chemicals classified as either “reasonably anticipated
to be a human carcinogen” or “known to be human carcinogens” were considered as
carcinogens. Data 4 (IARC): The chemicals classified into Groups 1, 2A, and 2B were
considered as carcinogens. Data 5 (JSOH): The chemicals classified into Groups
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1, 2A, and 2B were considered as carcinogens. Data 6 (NIOSH): The carcinogenic
chemicals listed were considered as carcinogens.

ii. CPDB_CPE chemicals from data source 7a contributed 320 carcinogenic and 458 non-
carcinogenic additional data after comparing to the data from data sources 1 to 6
and removing duplicates and conflicting chemicals.

iii. The CCRIS mutagenicity/carcinogenicity data from data source 8 contributed
3868 mutagenic/carcinogenic data and 2500 non-mutagenic/carcinogenic data.

iv. A total of 400 non-carcinogenic approved drugs from data source nine was also
used in this classification model.

For the binary classification model dataset, we used 7994 chemicals with 4636 carcino-
genic and 3358 non-carcinogenic chemicals.

2.1.2. Dataset II: Multiclass Classification Data

The classes considered in the multiclass classification models were class 0 (non-
carcinogen), 1 (possibly carcinogen and not classifiable chemicals), and 2 (carcinogen
and probably carcinogen). Datasets used to train the models are listed below:

i. For multiclass classification, 882 carcinogenic and 2 non-carcinogenic chemicals
were collected from data sources 1, 3, 4, and 5. There was a total of 2 in class 0, 604 in
class 1, and 278 in class 2 in this dataset. Data 1 (MEG): The chemicals classified
into Groups A and B were considered class 2. The chemicals classified into Groups
C and D were considered class 1 carcinogens. Chemicals classified into group
E are considered class 0 compounds. Data 3 (NTP): The chemicals classified as
either “reasonably anticipated to be a human carcinogen” or “known to be human
carcinogens” were considered class 2. Data 4 (IARC): The chemicals classified
into Groups 1 and 2A were considered class 2 carcinogens, and those classified
into Groups 2, B, and 3 were considered class 1 carcinogens. Data 5 (JSOH): The
chemicals classified into Groups 1 and 2A were considered class 2 carcinogens, and
those classified into Groups 2B were considered class 1 carcinogens. Considering
Group D of MEG data as class 1 carcinogen along with Group C and considering
Group 3 of IARC data as class 1 carcinogen along with Group 2B increased the
multiclass data significantly in this dataset. In the case of binary classification, we
discarded these groups.

ii. CPDB chemicals from data source 7b contributed 277 carcinogenic and 457 non-
carcinogenic additional data after removing duplicates and conflicting chemicals
compared to the data from data sources 1, 3, 4, and 5. The 277 carcinogenic chemicals
were categorized into class 2, and 457 noncarcinogenic chemicals were categorized
into class 0.

The dataset II for the multiclass classification models, we used a total of 459 chemicals
data in class 0, 604 chemicals data in class 1, and 555 chemicals data in class 2.

2.1.3. Dataset III: Regression Data

Regression models were developed to predict the quantitative carcinogenicity or the
median toxic dose (TD50) of the chemicals in the form of pTD50 (logarithm of the inverse
of TD50). Dataset III for the regression models consisted of 561 TD50 data in mg/kg body
wt/day converted to pTD50 from data source 7b. Independently, the regression models
were also developed on 543 TD50 data in mmol/kg body wt/day converted to pTD50.

2.2. Descriptors

Mordred descriptor calculator [25] that calculates 1613 2D molecular descriptors from
SMILES and is used for descriptor calculation. This descriptor calculator supports Python 3
that we used to run the Mordred locally. The final set of 653 descriptors was obtained with
no missing calculated values for the entire datasets for which descriptors were calculated.
The 653 descriptors were used as a final set of input features for the training and test data
set for the machine learning models.
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2.3. SMILES Preprocessing

The simplified molecular-input line-entry system (SMILES) uses ASCII strings for
the 1D chemical structure representation of a compound and can be used to convert to its
2-D or 3-D representation. It is one of the key chemical attributes and is used in our deep
learning model. Raw texts cannot be directly used as input for the deep learning models
but should be encoded as numbers. Tokenizer class in python is used to encode the SMILES
string. The SMILES preprocessing method that we used while predicting toxicity [17]
created the index for the set of unique characters of SMILES from the training set only.
If the training set consists of only two compounds “C=CC=C” and “O=CC, a dictionary
would be created for only three distinct characters in the SMILES of the training set that
would map C to 1, = to 2, and O to 3. Then, the vector output for the SMILES characters was
one-hot encoded where the categorical value of each character in the SMILES is converted
to binary vector with only the index set to 1. Thus, C, =, and O are represented by the
vectors [1 0 0], [0 1 0], and [0 0 1], respectively. If a new character, such as ‘N’, which does
not exist in the training set, appears in the SMILES of the test set, the character would
be skipped. For the string C=CC#N, the SMILES vectorization method would output the
following matrix of dimension LxM, where L = 325 is the allowed maximum length of
the SMILES string and M is the number of the unique characters in the SMILES of the
training set:

⎡
⎢⎢⎢⎢⎢⎢⎣

C
=
C
C
#
N

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
1 0 0
1 0 0
0 0 0
...

...
...

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, in the modified vectorization method, we have created a unique index for
94 characters in the ASCII table. Hence, there is no possibility of missing out on creating
an index of any character in the SMILES string represented in any format. A total of
94 characters in the ASCII table !, “, #, . . . , =, >, ?, @, A, B, C, . . . , |, }, ~ represented by
decimal numbers 33, 34, 35, . . . , 61, 62, 63, 64, 65, 66, 67, . . . 124, 125, 126, respectively, made
the vocabulary of the possible characters in the SMILES. Each of these 94 ASCII characters
were obtained by looping through the numbers 33 through 126 and converting the number
to the corresponding character using python function chr(). Then, the characters were
mapped to indices 1, 2, 3, . . . , 29, 30, 31, 32, 33, 34, 35, . . . , 92, 93, 94 using the fit_on_texts()
function of the Tokenizer module to create a dictionary.

Each character in the SMILES is converted to its corresponding index in the dictionary,
and a vector is created for the SMILES of each compound. As an example, acrylonitrile-d3
with SMILES string C=CC#N is encoded as [35, 29, 35, 35, 3, 46]. As the SMILES length
varies depending on the compound’s length and properties, the length of the encoding
results also varies. The resulting vector for the SMILES of every input compound is thus
padded with 0s or truncated so that they are of uniform length, L. The SMILES for the
input compounds are converted to a 2-D matrix of size K x L, where K is the number of
input SMILES, and L = 325 is the allowed maximum length of the SMILES string used in
the model. Thus, for the string C=CC#N, the current SMILES vectorization method would
output the following vector of length 325:

[35, 29, 35, 35, 3, 46, 0, 0, . . . , 0]
Our previous method [17] mapped the SMILES for the K number of chemicals to a

one-hot encoded matrix of size KxLxM, where M is the number of the possible characters
in the SMILES.
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3. Machine Learning Models

3.1. Hybrid Neural Network Model

Hybrid neural network (HNN) model [17] that we developed for chemical toxicity
prediction was used here by modifying the SMILES vectorization method. Then, the
method by which the vectorized SMILES input is processed by the convolutional neural
network (CNN) of the model. The model is developed in python using the Keras API
with Tensorflow in the backend. The model consists of a CNN for deep learning based on
structure attribute (SMILES) and a multilayer perceptron (MLP)-type feed-forward neural
network (FFNN) for learning based on descriptors of the chemicals. To vectorize SMILES,
each character in the SMILES string is converted to its positional index in the dictionary, as
explained in the SMILES preprocessing section. The 2D array of vectorized SMILES strings
was the input for the CNN. The embedding layer of Keras is used to convert the index of
each character in the SMILES string into a dense vector. The embedding layer takes three
arguments as input: input_dim is the vocabulary size of the characters in the SMILES string,
output_dim is the size of the embedded output for each character, and input_length is the
length of the SMILES string. In the model, we have embedded the index of each character
in the SMILES to a vector of size 100 by setting the output_dim to 100. The embedding
layer converts the input 2D array of size KxL, where K is the number of SMILES and L is
the maximum length of SMILES, to a 3D array of size KxLx100.

The 1D convolution layer activation function ReLU represented mathematically as
max(0, x), is used in the model that replaces all the negative values with zeros. The
derivative of ReLU is always 1 for positive input, which counteracts the vanishing gra-
dient problem during the backpropagation. The output of the pooling layer of the CNN,
together with the FFNN, is connected to the final fully connected layer to perform the
classification task.

3.2. Other Machine Learning Algorithms

To test the performance of HNN-Cancer for the case of binary classification and multi-
class classification, the other machine learning algorithms random forest (RF), bootstrap
aggregating (Bagging) using bagged decision tree, and adaptive boosting (AdaBoost),
were used.

Random forest (RF): A bootstrap aggregating (bagging) model that uses ensemble
decision trees to make final decisions. This algorithm uses only a subset of features to find
the best feature to separate classes at each node of the tree. The regression model fits every
feature, and the data are split at several points. The feature with the least error is selected
as the node.

Bagged decision tree (Bagging): Bagging uses a bootstrap method to reduce variance
and overfitting. It uses the ensemble method for the final decision. Bagging method uses
all features to find the best feature for the splitting node of the tree.

Adaptive boosting (AdaBoost): AdaBoost is an ensemble machine learning method
that uses weak classifiers to make stronger classifiers.

Support vector regressor (SVR): SVR depends on the subset of training data. SVR
performs non-linear regression using kernel trick and transforms inputs into m-dimensional
feature space.

Gradient boosting (GB): GB produces an ensemble of weak prediction models or
regression trees in a stage-wise fashion. Each stage optimizes a loss function by choosing
the function that points in the negative gradient direction.

Kernel ridge (KR): Ridge regression uses L2 regularization to limit the size of the
coefficients of the model and eliminates the problem in the least square regression. The
ridge method adds a penalty to the coefficients equal to the square of the magnitude of
coefficients. Regularization parameter λ controls the penalty term. Kernel ridge uses kernel
tricks to make the model non-linear.

Decision tree with AdaBoost (DT): The prediction of the decision tree was boosted
with AdaBoost. The decision tree method predicts by learning decision rules from the
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training data. AdaBoost is a boosting algorithm introduced by Freund and Schapire [26].
AdaBoost makes final predictions from weighted voting of the individual predictions from
weak learners. It implements AdaBoost.R2 algorithm [27].

KNeighbors (KN): Nearest neighbors find k number of training data closest to the test
data for which prediction is made. Each closest neighbor contributes equally while making
a prediction (default parameter).

3.3. Model Evaluation

All the statistical metric results presented for the model evaluation are the average
of 10 repeats (in the case of binary classification models and regression models) and 30
repeats (in the case of multiclass classification models). Approximately 20% of data were
separated randomly in each iteration as test sets and the remaining data as training sets,
such as five-fold cross-validation, except that the test sets were randomly selected in each
iteration. In the case of binary and multiclass classification, the performance of each model
was evaluated based on accuracy and area under the receiver operating characteristic curve
(AUC). The classification models were also assessed for sensitivity and specificity. The
evaluation scores are calculated as:

Accuracy =
TP + TN

TP + TN + FN + FP
× 100

Sensitivity (TPR) =
TP

TP + FN
× 100

Speci f icity (TNR) =
TN

TN + FP
× 100

For the five-fold cross-validation, we used 80:20 training to test set ratios, which are
good numbers for the significant data size used in this study. Further, the data are shuffled
in each iteration before separating the training and the test set to make sure the process does
not end up with a dataset containing bias in both the training and the test set. Additionally,
the average performance metrics were calculated from the outcome of 10 simulations in
the case of binary classification models and regression models. Whereas for the multiclass
classification models, the average performance metrics were calculated from the outcome
of 30 simulations. The training on 80% of the data give more room for better performance
(compared to 10-fold cross-validation with 90% data in the training set) while predicting
for an external dataset using a model trained on 100% of the data.

In the multiclass classification, micro averaging is used to obtain the average of the
metrics of all the classes. Micro averaging involves calculating the average by converting
the data in multiple classes to binary classes and giving equal weight to each observation.
In multiclass classification with the imbalanced dataset, micro averaging of any metric
is preferred when compared to macro averaging, which involves calculating the metrics
separately for each class and then averaging them by giving equal weight to each class. In
the case of multiclass classification with n number of classes,

Accmicro =
(TP1 + TP2 + · · ·+ TPn) + (TN1 + TN2 + · · ·+ TNn)

(TP1 + · · ·+ TPn) + (TN1 + · · ·+ TNn) + (FN1 + · · ·+ FNn) + (FP1 + · · ·+ FPn)

Sensitivitymicro =
TP1 + TP2 + · · ·+ TPn

(TP1 + TP2 + · · ·+ TPn) + (FN1 + FN2 + · · ·+ FNn)
× 100

Speci f icitymicro =
TN1 + TN2 + · · ·+ TNn

(TN1 + TN2 + · · ·+ TNn) + (FP1 + FP2 + · · ·+ FPn)
× 100

where TP = true positive, TN = true negative, FP = false positive, FN = false negative,
TPR = true positive rate, TNR = true negative rate.

The performance of each regression model was evaluated based on the coefficient of
determination (R2). The coefficient of determination gives the percentage of variation in the
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dependent variable that is predictable from the independent variable, or that is explained
by the independent variable.

R2 =
ESS
TSS

=
∑n

i=1 (ŷi − y)2

∑n
i=1(yi − y)2 (1)

where ESS is explained as the sum of squares, and TSS is the total sum of squares; ŷi is the
predicted value of the ith dependent variable; yi is the ith observed dependent variable;
and y is the mean of the observed data.

4. Results and Discussion

It is a desperate need to efficiently evaluate potential carcinogenic compounds that
humans are exposed to in preventing cancer incidence, progression, and high mortality.
Several computational and machine learning models have been developed for the pre-
diction of carcinogenic compounds [6–16,28–40]. However, most or all of the models are
developed as binary or regression models, not as categorical multiclassification models
or comprehensive classification models. Further, these models are limited to congeneric
computational models with a limited applicability domain and small dataset; they lack
chemical diversity and were applied to targeted organ systems for carcinogenicity predic-
tion. To fill this gap, we developed HNN-Cancer, a deep learning-based hybrid neural
network model and predicted the carcinogenicity in large scale with a variety of datasets.
The HNN-Cancer combines two neural network models, the CNN and the FFNN. The
HNN-Cancer model combines CNN for deep learning based on the structure attribute
(SMILES) with a multilayer perceptron (MLP)-type feed-forward neural network (FFNN)
for learning based on descriptors of the chemicals. We developed different classification
models, such as binary classification, multiclass classification, and regression models based
on diverse non-congeneric chemicals.

The HNN carcinogenicity prediction models are developed based on the hybrid neural
network (HNN) architecture we reported previously for toxicity prediction [17]. To compare
the HNN prediction performance, we also developed other machine learning models, such
as random forest (RF), bootstrap aggregating (Bagging), and adaptive boosting (AdaBoost)
for binary classification and multiclass classification. Several regression models were
developed based on random forest (RF), support vector regressor (SVR), gradient boosting
(GB), kernel ridge (KR), decision tree with AdaBoost (DT), and KNeighbors (KN) using the
sklearn package in python to make the final consensus prediction of the median toxic dose
(TD50). A consensus prediction was calculated based on the average of all seven predicted
values. We used the modified version of the 3D array representation of 1D SMILES in the
convolutional neural network (CNN) in the HNN models from our previous model [17].
The SMILES processing method included a vocabulary of 94 characters in the ASCII table
so as not to miss any possible characters of SMILES in any format. Additionally, instead of
using one-hot encoding to vectorize the characters in the 1-D SMILES, the embedding layer
of the CNN was used.

4.1. Carcinogen Prediction Using Binary Classification

The binary classification models were developed for Dataset I comprising 7994 chem-
icals (4636 carcinogenic and 3358 noncarcinogenic) from 9 different sources. Out of
1613 descriptors calculated by the Mordred descriptor calculator, 653 descriptors with
no missing values were used to develop the models. We used the SMILES string in addition
to the 653 descriptors in the HNN model. The accuracy, AUC, sensitivity, and specificity of
the HNN-Cancer, RF, and Bagging models were comparable, whereas AdaBoost statistical
metrics were significantly lower (Figure 1). The accuracy of the three models was 74%,
and their AUC was ~0.81. The sensitivity and specificity of the HNN model was 79.47%
and 67.3%.
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Figure 1. (A) accuracy, (B) AUC, (C) sensitivity, and (D) specificity for the dataset I as given by the
binary classification models developed based on the HNN, RF, Bagging, and AdaBoost methods.

Zhang et al. [10] built several machine learning models on the CPDB’s 1003 carcino-
genic data on rats. The highest accuracy they reported was 70.1%, and an AUC of 0.765 for
the five-fold cross-validation. Wang et al. [13] developed a deep learning tool CapsCarcino
on the 1003 rat data from CPDB used by Zhang et al. For five-fold cross-validation, they
reported accuracy of 74.5%, a sensitivity of 75%, and specificity of 74.2%. Li et al. developed
30 models on only 829 rat data from CPDB, with the highest accuracy of 89.29% on their
test set. Tanabe et al. [9] developed an SVM model with an accuracy of 68.8% and an AUC
of 0.683 for non-congeneric chemicals from six sources using dual cross-validation. They
improved the accuracy by developing models on congeneric subgroups. Notably, these
studies clearly demonstrate that models developed on more diverse chemicals result in
reduced accuracy. In contrast, the predictive performance of our HNN-Cancer models
based on a highly diverse set of chemicals is still good compared to the previously reported
models with a high AUC. Hence, we expect the HNN-Cancer will rapidly make optimal
carcinogen predictions for a wider variety of chemicals.

4.2. Carcinogen Prediction Using Multiclass Classification

The multiclass classification models were developed for Dataset II, containing
1618 chemicals with 459 chemicals in class 0, 604 in class 1, and 555 in class 2. In con-
trast, class 0 comprises non-carcinogens, class 1 comprises possible carcinogens and not
classifiable chemicals, and class 2 comprises carcinogens and probable carcinogens. The
overall accuracy is 50.58%, 54.73%, 55.52%, and 46.50%, the micro accuracy is 67.05%,
69.82%, 70.34%, and 64.33% whereas the average micro AUC is 0.68, 0.724, 0.725, and 0.653
for HNN-Cancer, RF, Bagging, and AdaBoost, respectively (Figure 2). As observed by
Limbu et al. [17], the HNN-Cancer model is not performing better for the multiclass in
comparison to RF and Bagging method. This is because the deep learning method performs
best with a large dataset, and the dataset used in these two studies is not sufficiently large.
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Figure 2. (A) Overall accuracy, (B) micro accuracy, (C) micro AUC, (D) micro sensitivity, and (E) micro
specificity for the dataset II as given by the multiclass classification models developed based on HNN,
RF, Bagging, and AdaBoost methods.

Li et al. developed 30 multiclass (ternary) classification models that categorized com-
pounds into carcinogenic I (strongly carcinogenic), carcinogenic II (weakly carcinogenic),
and non-carcinogens [11]. Their kNN model based on MACCS fingerprint with the best
predictive performance achieved micro accuracy of 81.89%. The ternary classification of
their data was based on the TD50 values where TD50 ≤ 10 mg/kg/day were carcinogenic
I and TD50 > 10 mg/kg/day were carcinogenic II. Whereas the classification of data in
our models is based on their category, they are class 2 if they are carcinogenic or prob-
ably carcinogenic, class 1 if they are possibly carcinogenic or not classifiable chemicals,
class 0 if they are non-carcinogenic. All the data from CPDB with TD50 were classified as
class 2, and non-carcinogens were classified as class 0; yet, none of them classified as class
1. However, we provided a complete classification range coverage when predicting the
chemical carcinogenicity.

4.3. Carcinogenicity Prediction Using Regression

Regression models were developed for Dataset III comprising 561 TD50 chemicals.
The models predicted carcinogenicity in the form of pTD50 (logarithm of the inverse of
TD50), and the average of all seven predicted values was calculated as the final consensus
prediction of the pTD50 value. The R2 is 0.35, 0.36, 0.04, 0.33, 0.36, 0.39, and 0.21 for the
HNN-Cancer, RF, SVM, GB, KR, DTBoost, and NN methods, respectively (Figure 3). The
overall R2 was slightly increased to 0.40 by the consensus prediction. The correlation
coefficient (R) is 0.628, 0.611, 0.322, 0.588, 0.614, 0.636, 0.527, and 0.649 for the HNN,
RF, SVM, GB, KR, DTBoost, NN, and consensus methods, respectively (Figure 4). The
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models were also developed for 543 TD50 data in mmol/kg body wt/day. The correlation
coefficient (R) is 0.604, 0.601, 0.287, 0.577, 0.545, 0.617, 0.497, and 0.629 for the HNN-Cancer,
RF, SVM, GB, KR, DTBoost, NN, and consensus methods, respectively (Figure 5).

Figure 3. R2 of regression models developed based on HNN-Cancer, RF, SVM, GB, KR, DTBoost, NN,
and consensus methods.

 
Figure 4. Correlation coefficient (R) of regression models developed based on HNN-Cancer, RF, SVM,
GB, KR, DTBoost, NN, and consensus methods.

Figure 5. Correlation coefficient (R) of regression models developed based on HNN-Cancer, RF,
SVM, GB, KR, DTBoost, NN, and consensus methods that predicts the carcinogenicity in mmol/kg
body wt/day.

Fjodorova et al. [8] developed the quantitative models for carcinogenicity predic-
tion on 805 rat data from CPDB using counter propagation artificial neural network (CP
ANN) [8]. The correlation coefficient of the models was 0.46 for the test set. Toma et al.
developed regression models to predict the carcinogenicity for external validation set with
r2 of 0.57 and 0.65 for models using oral and inhalation slope factor [12]. In the Toma
et al. [12] study, only 315 out of 1110 oral and 263 out of 990 inhalation compounds were
included in their final dataset after selecting compounds based on various criteria. The
external validation set was randomly chosen from the finally obtained dataset with highly
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similar compounds. This may be the reason for a slightly better coefficient of determination
reported by Toma et al. [12] compared to our models. Singh et al. [41] developed regression
models based on generalized regression neural network (GRNN) to predict the carcino-
genicity in mmol/kg body wt/day for 457 CPDB compounds and reported a correlation
coefficient of 0.896 [41]. The high value of the correlation coefficient in comparison to our
models could be attributed to the nine molecular descriptors selected for the regression
models, and the GRNN method was used. Taken together, our model included the multi-
classification models with full classification range coverage with diverse class of chemicals
and provided optimal carcinogen predictive performance over the other methods.

5. Conclusions

Determining environmental chemical carcinogenicity is an urgent need. Though sev-
eral machine learning models have been reported, there is a need for more non-congeneric
computational models with a vast applicability domain for carcinogenicity prediction. In
this study, we determined the carcinogenicity of thousands of wide-variety classes of real-
life exposure chemicals. We have developed carcinogen prediction models based on our
hybrid neural network (HNN) architecture method HNN-Cancer to determine chemical
carcinogens. In the HNN-Cancer, we included new SMILES feature representation method.
Using the HNN-Cancer and other machine learning methods, we predicted the carcinogen
in terms of binary classification, multiclass classification, and regression models for the
very diverse non-congeneric chemicals. Notably, the binary and multiclass classification
models developed for the larger set of diverse chemicals were from diverse sources, most
of which are human exposure-relevant chemicals.

The models based on the HNN-Cancer, RF, and Bagging methods predicted the
carcinogens with an accuracy of 74% and an AUC of 0.81, which shows that the carcinogen
predictions made by these models can be considered as optimal. Multiclass classification
models to categorize the carcinogenicity of chemicals into one of the three classes: non-
carcinogens, possible carcinogens/not classifiable chemicals, or carcinogens/probable
carcinogens, were developed. The HNN-Cancer exhibited an accuracy of 50.58%, a micro
accuracy of 67.05%, and a micro AUC of 0.68. Further, we developed regression models to
predict the median toxic dose of chemicals in the form of pTD50. The consensus prediction
achieved the overall R2 of 0.40 by calculating the average of all the methods. Though
our model included very diverse chemical categories and a larger number of chemicals
from different data sources, still our models could be able to predict the binary, categorical
(multiclass), and quantitative (regression) carcinogenicity comparable to the other literature
reported models that included smaller and similar chemicals. Therefore, our HNN-Cancer
can be used to identify the potential carcinogens for any chemical.

Several studies described the design of IoT-enabled environmental pollution and
toxicology using the artificial intelligence technique to improve human health [42–47].
For example, Aisha et al. [42] proposed a neural network model that includes IoT-based
sensor to sense eight pollutants and report the status of air quality in real-time by using a
cloud server and informing the presence of hazardous pollutants levels in the air. Shukla
et al. [46] and Memon et al. [47] employed artificial intelligence neural network IoT-enabled
big data pipeline to the identification of breast cancer. Similarly, the HNN-Cancer could be
integrated into the IoT-enabled sensors to inform the presence of carcinogens.

6. Limitations

The developed hybrid neural network method HNN-Cancer is first in class with devel-
oping various classification models, such as binary classification, multiclass classification,
and regression models based on diverse non-congeneric chemicals. These models would
enable the scientific community to classify chemicals carcinogenicity at specific doses or
dose ranges. However, there are some potential limitations that exist in the prediction of
carcinogens. Firstly, lack of a large dose-dependent chronic in vitro and in vivo carcinogen
dataset to train the model. Secondly, the HNN-Cancer method needs several routines of
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optimization with further refinement. We will improve HNN-Cancer method carcinogen
predictions further by including more experimentally determined carcinogenic dose data
(in vitro and in vivo) that we obtained recently from the National Toxicology Program
(NTP), bioinformatics and toxicology group.
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Abstract: Extreme weather events cause stream overflow and lead to urban inundation. In this
study, a decentralized flood monitoring system is proposed to provide water level predictions in
streams three hours ahead. The customized sensor in the system measures the water levels and
implements edge computing to produce future water levels. It is very different from traditional
centralized monitoring systems and considered an innovation in the field. In edge computing,
traditional physics-based algorithms are not computationally efficient if microprocessors are used in
sensors. A correlation analysis was performed to identify key factors that influence the variations in
the water level forecasts. For example, the second-order difference in the water level is considered
to represent the acceleration or deacceleration of a water level rise. According to different input
factors, three artificial neural network (ANN) models were developed. Four streams or canals were
selected to test and evaluate the performance of the models. One case was used for model training
and testing, and the others were used for model validation. The results demonstrated that the ANN
model with the second-order water level difference as an input factor outperformed the other ANN
models in terms of RMSE. The customized microprocessor-based sensor with an embedded ANN
algorithm can be adopted to improve edge computing capabilities and support emergency response
and decision making.

Keywords: edge computing; ANN; microprocessor; water level prediction; decentralized

1. Introduction

The Emergency Event Database (EM-DAT) includes records for 432 disastrous events
related to natural hazards worldwide in 2021. Floods dominated these events, with 223
occurrences, with an average of 163 annual flood occurrences recorded in the 2001–2020
period [1]. The losses of life and property caused by floods are tremendous [2]. Structural
and nonstructural measures have been devised to prevent or mitigate loss of life and
property [3]. The development of early warning systems, which are nonstructural measures,
was cited as a critical defense against floods [4]. These systems involve on-site facilities
such as bubble gauges, float gauges and pressure sensors, which are installed to observe
water level changes; then, these observations are used as indicators to assess the flood
potential [5]. Accurate and cost-efficient water level monitoring sensors are required and
must be deployed with very high intensity for detailed flood records [6–9]. Nevertheless,
these sensors are only used for water level monitoring, and this kind of application provides
limited lead time for decision makers to take response measures to mitigate the impact of
disasters [7–11].

Edge computing is a distributed computing paradigm in which computations are
largely or completely performed at distributed device nodes known as smart devices or
edge devices, as opposed to computations in a centralized cloud environment [12]. By
implementing edge computing on sensors, issues prevalent in centralized cloud systems,
such as latency and network connection dependency, can be avoided [13]. Since system
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failure or other misinformation issues occur during the transmission process, which is
common during disasters, simulation cannot be performed, resulting in delays in the
emergency response and increasing the possibility of damage. Many studies in the fields
such as medical care, manufacturing, and fault detection have developed sensors not only
for monitoring but also implemented edge computing for applications that are close in
proximity to the sources in case of need, e.g., [13–15]. In comparison with other applications,
only a few studies have investigated edge computing in landslide- and flood-related
applications [16–18]. People hesitate to apply edge computing in flood warning systems for
the following possible reasons. First, most of the systems are still built based on traditional
frameworks. If a prediction is performed in real time for operational purposes, the observed
data from local monitoring devices are transmitted to the remote server through the internet.
The server performs simulations and provides results to responders for decision making.
This is called a centralized simulation approach. The monitoring devices are only capable
of observing water levels without forecast functions. Therefore, there is no opportunity
to implement edge computing until new sensors are developed and deployed. Second, to
increase the lead time of the response, physically based models are used in the traditional
framework for predictions. These systems consider different hydrological and inundation
modeling components based on the specific target region, size of basins, available data
and resources, and system development approach [19]. These physically based models
considering detailed hydraulic processes (e.g., solving Saint-Venant equations) are complex
and computationally intensive, causing limited applications in practical applications due
to the availability of input data for parameterization and the detailed requirements of
simulations [20–22]. None of these models are designed to be installed in sensors with
limited computing power. In this regard, data-driven machine models that focus on the
relationship between input factors (e.g., historical flow discharge and precipitation) and
outputs (e.g., water level) are recommended as an alternative [23,24].

Related studies about the integration of customized sensors and data-driven models
were examined. Customized ultrasonic sensors have been developed [5,10]. Warnings are
issued when the monitored water levels are above a specific threshold. No extra calculation
was performed on the sensors in these studies. Other studies used microcontroller-based
sensors to collect environmental information and perform calculations in cloud-based
neural networks to predict flood disaster conditions [25–27]. These studies confirmed
the functionality of ANN models for water level predictions. However, the models were
executed in the cloud-based server. Finally, Samikwa et al. [28] utilized edge computing
for flood prediction and carried it on a low-power device within the IoT wireless sensor
network. Long short-term memory (LSTM), a type of ANN, was applied in the study to
predict one-hour ahead-of-time forecasts of water level. Similar to Bande and Shete [25],
water level and rainfall were utilized as inputs in the study to train the ANN models
to produce forecasts. However, the details of the input selection were not discussed
in the study. Al Qundus et al. [29] deployed sensors to collect data such as water levels,
temperature and wind speed. A support vector machine (SVM) algorithm was implemented
at nodes (sensors). Only four features (temperature, humidity, wind speed, and water level)
were selected to develop the SVM models. However, the details of feature selection were
not discussed in the study.

This study proposed a novel decentralized flood warning system with edge computing.
It consists of edge computing-enabled wireless water level monitoring sensors and a
suitable forecasting algorithm that was embedded in these sensors. The newly developed
sensor shifts applications, data, and computing power (services) away from centralized
points to the logical extremes of a network. In other words, the sensor involves applications
or general functionalities that are close in proximity to the sources of other processes, thus
involving interactions between distributed systems technology and the physical world;
this implies that the sensor can perform simulations and predictions directly at flood-prone
locations with localized information. Therefore, situational and customized awareness is
maintained during flooding, even if an internet connection is unavailable. As a result, the
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efficiency of the emergency response is increased. In addition, new flood prediction models
are desperately needed to be performed on the computing power-limited sensors. ANN
models were developed to determine the water level on the sensor. A detailed analysis
regarding the correlation between input factors and output water levels was carefully
conducted to maximize the efficiency of edge computing. Furthermore, special attention
was given to extreme events such as typhoons during the development of the proposed
system.

2. Study Areas

This study focused on three rivers and one artificial canal to develop the ANN model
and evaluate the performance of the proposed system. The geographical locations of these
study areas are shown in Figure 1.

Figure 1. The four study areas are the Shimen canal in Taoyuan County (upper left), the Yilan River
in Yilan County (upper right), the Beinan River in Taitung County (bottom right), and the Toucian
River in Hsinchu County (bottom left), Taiwan.

The Yilan River Basin is located on northeastern Taiwan Island. Its main stream is
approximately 24.4 km (km) long and covers an area of approximately 149.06 square km.
The Yilan River Basin was first selected to train and test the ANN model for water level
forecasting. This is because the precipitation, river stage, and flow velocity data have
been carefully measured by the Water Resources Agency (WRA) and National Center
for High-performance Computing (NCHC) since 2012 [30] for the Yilan River basin. In
addition, there is no human interference, such as a reservoir upstream of the Yilan River,
and there are no human operation-related factors considered among the ANN input factors
in this study. Figure 1 (in a clockwise direction) shows the remaining two river basins, the
Beinan River and Toucian River Basins, in eastern and western Taiwan and one artificial
canal, Shimen Canal, in western Taiwan. The Beinan River is approximately 84 km long
and flows through Taitung County to the Pacific Ocean. The Toucian River flows through
Hsinchu County for 63 km to the west. Different from the Yilan River and Beinan River
situations, there are also no human-made hydraulic structures upstream along the Toucian
River, but there is an off-stream reservoir upstream of the river. These two rivers were
selected because there was no human interference, such as reservoirs or gates, found in
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the rivers. For reference, the proposed system (integration of Raspberry Pi (RPi) sensors
and an ANN model) was only implemented on-site in the Shimen Canal because of the
limitations of devices and the need for permission to install equipment. Tests performed in
the Beinan River and Toucian River were conducted offline.

3. System Development

In this study, a water level forecasting model is embedded in an RPi-based monitoring
device that can provide real-time water level observations and support local calculations.
The system structure and data processing flowchart are illustrated in Figure 2. The mon-
itoring devices use ultrasonic waves to measure the water levels, and the observed data
and other related information are preprocessed in the RPi platform. Thereafter, the water
level predictions at specific locations are performed using the proposed ANN-based water
level forecasting models. The details of each component in the structure are described in
the following subsections.

Figure 2. System data processing flowchart.

3.1. Raspberry Pi Water Level Sensor

Automatic water level sensors with wireless functions are usually costly. Therefore,
low-cost, open-source, and low-energy-consumption sensors are always of interest for
environmental monitoring [31]. The proposed sensor is shown in Figure 3.

Figure 3. Details of the RPi-based ultrasonic water level sensor (left) and the installation of the
sensor (right).

The RPi is a reliable, low-cost microcomputer (MCU) that was developed in 2006 by the
University of Cambridge’s Computer Department and has been produced by the Raspberry
Pi Foundation since 2012. The RPi 3 Model B+ module, which was released in February
2018 with a 1.4 GHz 64-bit quad core processor, was used as a platform embedded with an
ultrasonic sensor to measure water stages at a local site. The UNIX/Debian=based Raspian
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operating system supports the implementation of a Python programming language-based
ANN module to forecast water levels with lead times. Many studies have successfully
applied ultrasonic waves to measure water levels under severe environmental condi-
tions [32,33]. The ultrasonic sensor used here is the high-performance ultrasonic distance
sensor MB7386 HRXL-MaxSonar-WR from MaxBotix, Brainerd, MN, USA. The ultrasonic
sensor emits sound waves at a frequency of 42 kHz with a 6 Hz sampling rate and detects
the sound waves that bounce back. The distance can be estimated by the elapsed time
between the generated and returning sound waves. Theoretically, the sensor is effective
up to a maximum range of 10 m, with functions of temperature compensation and noise
cancelation. However, the efficient measuring distance varies based on the size of the target
and power supply to the sensor (usually within 5 m).

3.2. Artificial Neural Network Water Level Forecasting Algorithm

ANNs are inspired by the human central nervous system. ANNs usually consist of
layers such as an input layer, one or more hidden layers, and an output layer. A three-layer
ANN data processing flowchart is shown in Figure 4. The input layer comprises a number
of nodes (i = 1, 2, 3 . . . n). A node, also called an artificial neuron, connects to other nodes in
the hidden layer and has an associated weight (w) and threshold (bias). When the incoming
signals (X1, X2, X3 . . . Xn) are passed to the nodes (j = 1, 2, 3 . . . N) in the next layer, they
are multiplied by the weight of the connection. These weights describe the importance
of any incoming signal, with larger weights contributing more significantly to the output
compared to other signals. The effective signal (Ej) to node j shown in Equation (1) is the
weighted sum of all incoming signals. In the first phase of training, the weights (i.e., wji)
are set to random values.

Ej =
n

∑
i=1

Xiwji + bias (1)

Figure 4. A three-layer ANN model and its data processing flowchart.

An activation function is used to transform the effective signal (Ej) into an output
value to be fed to the next layer or as an output. In this study, hyperbolic tangent (tanh) and
exponential linear unit (ELU) functions are used as the activation functions to transfer input
signals to hidden and output layers, respectively. The tanh function has an S-shape similar
to that of the sigmoid activation function, with a difference in the output range of −1 to
1. The ELU function is also similar to the rectified linear unit (ReLU), with a difference in
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output value for negative values of input. A three-layer network structure with one input
layer, one hidden layer, and one output layer is adopted because of the limited computing
power of the RPi 3 Model B+ module in the sensor [27]. No general guidelines exist for
specifying the optimal number of nodes required in the hidden layer [34]. The number
of nodes in the hidden layers can be estimated using Equation (2), as recommended by
Fletcher and Goss [35]. The formula was confirmed by Huang and Foo [36] to provide the
optimal network size, resulting in minimum error and a high correlation in the validation
data set. There are three output nodes representing the forecasted water levels with lead
periods of 1, 2, and 3 h.

N = 2n (2)

where N is the number of nodes in the hidden layer and n is the number of incoming signals.
The output from the neural network is calculated by propagating an input signal through
each layer until the output layer outputs its values. It is a so-called feed-forward network.
As mentioned above, the weights initially are random values and modified by reducing the
differences between the output and a known output. The procedure repeatedly optimizes
the weights until the value of the objective root mean square error (RMSE) function, shown
in Equation (3), falls below a certain threshold. In this study, the threshold is 0.01.

RMSE =

√√√√ 1
K

K=3

∑
i=1

(Pi − Oi)
2 (3)

where Pi is the predicted water level and Oi is the observed water level. K is the number
of outputs and here refers to the forecasted water levels with three lead times. This learn-
ing procedure is called the backpropagation approach and was proposed by Rumelhart
et al. [37]. It is a method for training the weights in a multilayer feed-forward neural
network structure. A Python module Scikit-learn was applied for the ANN model compu-
tation [38].

Since the output of the developed ANN model is the water level, the selection of
the input factors must be based on the characteristics and shifts of the outputs at a given
location. The change in the time series water level is not only dependent on rainfall records
in upstream watersheds and river inflows but also related to previous water levels based
on river discharge conditions. Moreover, the length of the lag phase of each input factor
is influenced by the distance between input and output locations, and it determines the
length of the input sequence. In fact, the selection of input factors has a large impact on
the accuracy and efficiency of ANN models. There is no global way to select the input
factors for an ANN model [39]. Thus, parameter selection for edge computing is important
to maximize the computing efficiency of ANNs. The efficiency of calculations must be
optimized for the appropriate number of input factors. In this study, a cross-correlation
analysis (cc2), shown in Equation (4), one of the most widely used methods for factor
selection, as discussed by Babel and Shinde [39], was carried out between the outputs
(forecasted water levels at a given location) and input factors with a lag phase length.

cc2 =
∑n−k

i=1

(
Xi − X

)(
Yi+k − Y

)
√

∑n
i=1

(
Xi − X

)2
√

∑n
i=1

(
Y − Y

)2
(4)

where n is the total number of time sequences in hours and k represents the time lag value.
X and Y are the water level and a possible input factor, respectively. X and Y denote
average values. Only the factors with a relatively high correlation value with the output
were adopted in the proposed ANN models. In addition to the original inputs, two extra
input factors were included in the cross-correlation analysis: water level variation (Wr) and
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the frequency of water level change (Wf) for consecutive records in a time interval (e.g.,
1 h). The definitions of Wr and Wf are shown below:

Wr,i = Xobs,i − Xobs,i−1 (5)

Wf ,i = Wr,i − Wr, i−1 (6)

Mathematically, Wr and Wf represent the first- and second-order differences of the
water level sequence at a target location, respectively. Physically, Wr and Wf are the
velocity and acceleration of the change water level, respectively. Zhong et al. [40] found
that considering the first- and second-order differences in the water level sequence can
improve the forecasting accuracy of ANN models. However, they used this information to
identify the level of data fluctuations and then applied the Kalman filter algorithm for local
optimization. Details of the selected factors were not discussed in their study. In contrast,
this study is the first attempt to apply these variables as input factors for the proposed
ANN models to perform water level forecasting. Details of the analysis are described in the
Results and Discussion section.

4. Results and Discussion

The ANN models were integrated into sensors, and their performance was evaluated
in real cases. The discussion of the results is divided into three parts: (1) data preparation,
(2) development, and (3) application. The research flowchart of this process is shown in
Figure 5.

Figure 5. Research flowchart of the proposed ANN models.

4.1. Data Preparation
4.1.1. Generation of Synthetic Rainfall Data for Different Return Periods

Data quality and quantity are important for the accuracy of data-driven models
(e.g., ANN models). The well-calibrated data from 2012 to 2017, including rainfall, flow
discharge, and water stage, from the experimental watershed in the Yilan River Basin
(Figure 1), were adopted. Following the research flowchart shown in Figure 5, a frequency
analysis using rainfall data from five rainfall stations was conducted, and the magnitude of
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extreme events was related to the corresponding frequency of occurrence through the use
of a probability distribution. To find the magnitude associated with a certain return period,
the standard frequency factor method [41] is used, as follows:

XT = X + Ks (7)

where XT is the calculated rainfall value in a certain period, X is the mean rainfall value
from historical data, K is the frequency factor, and s is the standard deviation of the
historical data. K was selected for 2-, 5-, 10-, 25-, 50-, and 100-year return period events
based on the Pearson III distribution [42]. The calculated cumulative rainfall for a 24-h
rainfall duration is shown in Table 1. In terms of topography, the upper parts of the Yilan
River Basin have mountain topography and steep slopes. There are wide flood plains
from the lower reaches to the Pacific Ocean. The stations YR_R2 and YR_R4 are located
in mountain and floodplain areas, respectively. As a result, YR_R2 and YR_R4 have the
greatest and fewest values among all stations. The rainfall values are consistent with the
variations in topography.

Table 1. Calculated 24-h rainfall values at five stations for different return periods.

Station ID
24-h Duration Rainfall for Different Return Periods in mm

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

YR_R1 208.96 264.35 298.96 340.15 369.35 397.30

YR_R2 205.90 283.71 336.73 403.20 451.81 499.36

YR_R3 191.88 256.75 305.44 369.67 415.85 466.46

YR_R4 178.11 220.21 242.81 267.33 283.37 298.00

YR_R5 263.98 332.60 369.57 408.09 433.36 456.17

Hydrographs specify the precipitation depth in 24 successive time intervals of 1 h
duration over a total of 24 h. Such hydrographs are necessary inputs to hydrological and
hydraulic models to generate flow discharge and water level data in the Yilan River Basin
for different return periods. The details associated with hydrological and hydraulic models
are discussed in the next section. The annual 24-h maximum rainfall value at each station
from 2012 to 2017 was selected, and the average contribution (%) of each hour to the 24-h
duration was calculated. These contributions were reordered in a time sequence with the
maximum contribution occurring at the center of the 24-h duration and the remaining
contributions arranged in descending order alternatively to the right and to the left of the
center value to form a hyetrograph. The results are shown in Figure 6.

 
(a) (b) 

Figure 6. Cont.
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(c) (d) 

 
(e) 

Figure 6. (a–e) The hourly rainfall distribution for different return periods in the Yilan River basin at
YR_R1-YR_R5.

4.1.2. Generation of Synthetic Water Level and Flow Discharge Data

The abovementioned synthetic rainfall data were used with the hydrological model
Hydrologic Modeling System (HEC-HMS) and the hydraulic model River Analysis System
(HEC-RAS) to generate discharge and water level data for five return periods. HEC-HMS
simulates rainfall runoff processes at the watershed level and includes different components,
such as the runoff volume, baseflow, and channel flow. For more details, please refer to the
Technical Reference Manual [43] and User’s Manual [44]. In this study, an initial loss and a
constant loss rate were subtracted from the precipitation depth, and the remaining depth
was referred to as precipitation excess. Thereafter, excess precipitation was transformed to
direct surface runoff through the SCS unit hydrograph (SCS-UH) method.

The total flow at YR_Q1 in the Yilan River Basin (Figure 1) was the sum of the direct
runoff plus the base flow, and the base flow was obtained from an initial value multiplied
by an exponential decay constant. The calculated total flow from the HEC-HMS model
was then used as the upstream boundary condition for the downstream HEC-RAS model
to calculate the variation in the water level downstream. To validate the performance
of the HEC-HMS model, Typhoons Soulik (2012), Dujuan (2015), and Megi (2016) were
considered. Table 2 shows the comparisons between the observations and simulations.
Differences in peak discharge and time to peak discharge were below 15% and less than 2 h,
respectively. Since the results met the relevant performance requirements, the calibrated
model was then used to generate synthetic discharge values at YR_Q1 for further analysis.
The inflow results associated with different return periods are shown in Figure 7.

Table 2. The validated performance of HEC-HMS for three typhoons.

Event Soulik (2012) Dujuan (2015) Megi (2016)

Difference in peak discharge (%) 14.8 3.83 14.1

Difference in time to peak discharge (hour) 1 2 0
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Figure 7. Synthetic inflow hydrograph at YR_Q1 in the Yilan River basin for different return periods.

There are four water level stations downstream of YR_Q1 (Figure 1). Among them,
data from YR_S1, YR_S2, and YR_S3 were used as input data to train the ANN model.
The HEC-RAS model was used to estimate water level variations at the abovementioned
locations, and YR_S4 was used as the downstream boundary. HEC-RAS is a 1D river
hydraulic model based on the Saint-Venant equations. These equations are approximated
with the implicit Preissmann scheme and solved numerically using the Newton–Raphson
iteration approach [45]. The downstream boundary condition was assumed to be the
observed water levels during Typhoon Dujuan (2015). In comparison with observations,
the performance was evaluated at YR_S2 in terms of temporal variations in water level,
and the results are shown in Figure 8. The results demonstrate that differences in peak
water level and time to peak water level were below 10% and zero hours, respectively. In
conclusion, both the hydrological and hydraulic results confirm that the model parameters
were well-tuned to generate the data needed for the development of the ANN model in the
next section.

4.2. ANN Model Development
4.2.1. Correlation Analysis and Input Factor Selection

As described in Section 3.2, precipitation from YR_R1 to YR_R5, flow discharge at
YR_Q1, and water levels from YR_S1 to YR_S3 were assumed to be correlated with the
water level output at YR_S2. A correlation analysis between the targeted water level at
the present time and the abovementioned variables from previous periods was performed
using Equation (4). This model was considered the ANN_0 model. To include physical
features such as the velocity and acceleration of water level variations, a correlation analysis
between the first-order and second-order differences of the output and its values from
previous periods was conducted. In this way, two more models were developed, named
the ANN_1 and ANN_2 models. All of the correlation results are shown in Table 3. The
variables with the highest correlation results with those in previous periods were selected
as the model inputs. For example, for the ANN_0 model, the highest correlation results
are 0.795 and 0.917 for YR_R1 at t−4 h and YR_S1 at t−1 h, respectively. As a result,
four variables of YR_R1 and one variable of YR_S1 were selected for the ANN_0 model.
However, in some cases, such as YR_R1 in the ANN_1 model, the correlation results 7 and
8 h earlier were 0.601 and 0.608, respectively. These values were different at three decimal
digits. Other rainfall-related input factors, such as YR_R2, YR_R3, YR_R4, and YR_R5, were
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the variables 7 h earlier. To be consistent with other rainfall input factors and to increase
computational efficiency, the variables 7 h earlier were selected for YR_R1. In addition, few
variables were included, so the efficiency was increased considering the limited computing
resources of the sensors. As a result, there were a total of 26, 46, and 46 input factors for the
ANN_0, ANN_1, and ANN_2 models, respectively, and details of the input factor selection
are listed in Table 4.

(a) 

(b) 

(c) 

Figure 8. Comparison of the simulated and observed water levels at YR_R2 for (a) Typhoon Soulik;
(b) Typhoon Dujuan; and (c) Typhoon Megi.
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Table 3. Correlation matrix for output and input variables.

Model Lag (Hour) YR_R1 YR_R2 YR_R3 YR_R4 YR_R5 YR_Q1 YR_S1 YR_S2 YR_S3

ANN_0

1 0.586 0.595 0.534 0.538 0.576 0.863 0.917 0.923 0.887

2 0.712 0.721 0.652 0.662 0.701 0.784 0.788 0.795 0.777

3 0.782 0.791 0.710 0.725 0.767 0.661 0.625 0.639 0.652

4 0.795 0.807 0.716 0.734 0.780 0.507 0.440 0.465 0.519

5 0.762 0.775 0.678 0.697 0.742 0.336 0.243 0.278 0.376

ANN_1

1 −0.278 −0.281 −0.297 −0.306 −0.274 0.394 0.488 0.680 0.471

2 −0.037 −0.046 −0.044 −0.045 −0.031 0.555 0.601 0.232 0.494

3 0.177 0.171 0.173 0.183 0.182 0.645 0.643 0.054 0.462

4 0.348 0.341 0.333 0.353 0.349 0.664 0.640 0.070 0.445

5 0.473 0.467 0.442 0.470 0.472 0.624 0.612 0.138 0.460

6 0.557 0.533 0.510 0.549 0.552 - - - -

7 0.601 0.595 0.542 0.585 0.589 - - - -

8 0.608 0.604 0.540 0.582 0.595 - - - -

9 0.570 0.571 0.499 0.539 0.559 - - - -

ANN_2

1 −0.260 −0.264 −0.283 −0.291 −0.257 0.400 0.488 0.680 0.471

2 −0.013 −0.022 −0.026 −0.024 −0.008 0.562 0.601 0.231 0.494

3 0.205 0.198 0.195 0.207 0.209 0.651 0.643 0.054 0.462

4 0.376 0.369 0.357 0.379 0.377 0.665 0.640 0.070 0.445

5 0.499 0.494 0.465 0.498 0.497 0.618 0.612 0.138 0.460

6 0.577 0.573 0.531 0.573 0.568 - - - -

7 0.609 0.604 0.557 0.599 0.595 - - - -

8 0.604 0.604 0.546 0.589 0.592 - - - -

9 0.556 0.556 0.493 0.527 0.541 - - - -

Table 4. ANN models and their input factors.

Model Name Input Combination No. of Factors

ANN_0 YR_R1(t−1 . . . ,t−4), YR_R2(t−1 . . . ,t−4), YR_R3(t−1 . . . ,t−4), YR_R4(t−1 . . . ,t−4),
YR_R5(t−1 . . . ,t−4), YR_Q1(t−1), YR_S1(t−1), YR_S2(t . . . , t−2), YR_S3(t−1) 26

ANN_1
YR_R1(t−1 . . . ,t−7), YR_R2(t−1 . . . ,t−7), YR_R3(t−1 . . . ,t−7), YR_R4(t−1 . . . ,t−7),

YR_R5(t−1 . . . ,t−7), YR_Q1(t−1 . . . ,t−4), YR_S1(t−1 . . . ,t−3), YR_S2(t, t−1),
YR_S3(t−1, t−2)

46

ANN_2
YR_R1(t−1 . . . ,t−7), YR_R2(t−1 . . . ,t−7), YR_R3(t−1 . . . ,t−7), YR_R4(t−1 . . . ,t−7),

YR_R5(t−1 . . . ,t−7), YR_Q1(t−1 . . . ,t−4), YR_S1(t−1 . . . ,t−3), YR_S2(t, t−1),
YR_S3(t−1, t−2)

46

4.2.2. Model Training and Testing

Random sampling was employed to split the input data from Section 4.1 into training
and testing sets at an 80–20% ratio. For more details in terms of random sampling, a dataset
included the input factors listed in Table 4. For example, there were 46 data needed in
a dataset to train the model and produce water levels at t + 1, t + 2, and t + 3. Shown
in Table 4, all data in the dataset were in a sequential order. The amount of dataset was
depended on the data availability during the training process. For example, if a 24-h was
available, there were 15 datasets available for training process. At each training, observed
or synthetic water levels at t + 1, t + 2, t + 3 were used for performance evaluation. Two
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extra experiments were conducted. One involved using data from 2-, 5-, 10-, 25-, and 50-yr
return periods for training and data from the maximum 100-yr return period for testing.
Another involved using data from 5-, 10-, 25-, 50-, and 100-yr return periods for training
and data from the minimum 2-yr return period for testing. The number of training data
was fully prepared and the number of the data was constant, therefore, there was only one
epoch done during this training process. The purpose of these experiments was to assess
the ANN models and their forecasting capability beyond the training data range. The
RMSE index (Equation (3)) was used to evaluate the model performance. The forecasting
results with 1-, 2-, and 3-h lead times at location YR_R2 are shown in Table 5.

Table 5. RMSEs of different ANN models for the training and testing processes.

Model
Lead Time

(Hours)
Cross-Validation

RMSE (m)
Test for 100-yr

Event RMSE (m)
Test for 2-yr Event

RMSE (m)

ANN_0

1 0.3421 0.4532 0.5935

2 0.4142 0.3192 0.5431

3 0.7743 0.5878 0.6054

ANN_1

1 0.0553 0.1212 0.1065

2 0.1085 0.1962 0.1129

3 0.1655 0.2162 0.0987

ANN_2

1 0.1229 0.1204 0.1155

2 0.0678 0.1029 0.1135

3 0.0778 0.1253 0.1286

The results demonstrated that the worst performance among the three models for all
three lead times was from the ANN_0 model; its RMSE results were 0.3421 m and 0.7743 m
for 1- and 3-h lead times, respectively. The performance of the other two tests for all three
models was comparable to that in the cross-validation test. This finding confirmed that
the proposed ANN models have the capability to forecast data beyond the testing data
range. In comparison, the ANN_1 and ANN_2 models yielded RMSEs that were all below
0.2 m. The ANN_2 model displayed better performance for the results with 2- and 3-h lead
times than ANN_1. However, the performance of these two models deteriorated when
the forecasting lead time was increased. According to the abovementioned results, the
following tests were continuously implemented using the ANN_1 and ANN_2 models.

To test the performance of the proposed ANN models for operational purposes, three
historical typhoon events, namely, Yutu (2018), Mangkhut (2018), and Maria (2018), were
considered. Three typhoons were split into two typhoons for training and one typhoon for
testing. The results are demonstrated in Table 6, and the naming convention is based on
the names used in the test case. The performance of both models was fairly consistent. All
RMSEs were below or close to 0.1 m regardless of the lead time. According to the individual
results, the ANN_2 model performed slightly better than the ANN_1 model. A temporal
comparison between observations and the simulations of both models is shown in Figure 9.
The results demonstrated that both models agree fairly well with the observations for all
three typhoons. It was interesting to find that performance did not deteriorate when the
lead time was increased. In contrast, both models produced worse results with a 1-h lead
time when the peak water level occurred during Typhoon Yutu in comparison with those
results for 2- and 3-h lead times.
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Table 6. Comparison of RMSEs for different ANN models and historical typhoon events.

Model
Lead Time

(Hour)
Typhoon Yutu (2018)

RMSE (m)
Typhoon Mangkhut (2018)

RMSE (m)
Typhoon Maria (2018)

RMSE (m)

ANN_1
1 0.0954 0.0751 0.0756

2 0.0759 0.0729 0.0931

3 0.1000 0.0611 0.1069

ANN_2
1 0.0977 0.0591 0.0742

2 0.0508 0.0611 0.0893

3 0.0530 0.0475 0.0912

 
(a) 

 
(b) 

 
(c) 

Figure 9. Comparison of simulated and observed water levels at YR_R2 for the ANN_1 model (left)
and ANN_2 model (right) at Yutu (a), Mangkut (b), and Maria (c).

Additionally, the calculation times of the models were compared for different hard-
ware configurations. The comparison was conducted with a hardware configuration that
included an AMD Ryzen 94900 central processing unit, an NVIDIA GeForce RTX 2060 (PC)
and an RPi 3B+ (the sensor mentioned in Section 3.1), among other components. Using
Typhoon Yutu with the ANN_2 model as an example, the calculation time was 5 min if the
model was run on the PC and 30 min if it was run on the sensor. The results for the PC and
the sensor were consistent, but the calculation time when the model ran on the sensor was
6 times slower than when it ran on the PC. Therefore, calculation time is an issue that must
be addressed in future investigations if the sensor is installed on site for real operation. In
conclusion, all the results above confirmed the capability of the proposed ANN models
to forecast water levels with up to a 3-h lead time. According to the comparison of model

202



Sensors 2022, 22, 8532

performance, the ANN_2 model can be continually applied for further applications and
will be discussed in the next section.

4.3. Applications

The proposed ANN_2 model and integrated sensor were then applied to three other
canals and rivers for real-world tests. The details of the geographic locations of these three
study areas can be found in Figure 1. The same input factors as in Table 4 were selected, but
the number of gages varied according to the number of gages installed in the study areas.
For example, there is only one rainfall station near the Shimen Canal; therefore, the number
of input factors decreased from 46 to 17. The list of the input factors for these three study
areas is shown in Table 7. In addition to the RMSE shown in Equation (3), the coefficient
of determination (R2) described below was used to evaluate system performance in these
real-world cases.

R2 = 1 − SSres
SStot

SSres = ∑(Pi − Oi)
2

SStot = ∑
(

Pi − O
)2

(8)

where Oi and O are the hourly observations and mean of the observations, respectively, and
Pi is the prediction. If the predictions exactly match the observations, SSres = 0 and R2 = 1.
A detailed discussion for each case is given below. In the applications, the sensor was
continually receiving data. If the sensor collected new data, the model was retraining with
newly collected data. Therefore, a new epoch was completed. This process was repeated
until the end of the experiment.

Table 7. ANN models and their input factors for various applications.

Model Name Input Combination No. of Factors

Shimen Canal model SC_R1(t−1 . . . ,t−7), SC_Q1(t−1 . . . ,t−4), SC_S1(t−1 . . . ,t−3),
SC_S2(t, t−1), SC_S3(t−1, t−2) 17

Toucian River model
TR_R1(t−1 . . . ,t−7), TR_R2(t−1 . . . ,t−7), TR_R3(t−1 . . . ,t−7),
TR_R4(t−1 . . . ,t−7), TR_Q1(t−1 . . . ,t−4), TR_S1(t−1 . . . ,t−3),

TR_S2(t, t−1), TR_S3(t−1, t−2)
39

Beinan River model
BR_R1(t−1 . . . ,t−7), BR_R2(t−1 . . . ,t−7), BR_R3(t−1 . . . ,t−7),
BR_R4(t−1 . . . ,t−7), BR_Q1(t−1 . . . ,t−4), BR_S1(t−1 . . . ,t−3),

BR_S2(t, t−1), BR_S3(t−1, t−2)
39

4.3.1. Shimen Canal

The distance between SC_R1 and SC_R3 is approximately 650 m and is shown in
Figure 1. Three sensors were installed at SC_R1, SC_R2, and SC_R3. The experiment
was performed on site during 24 June 2021, and 25 June 2021. There were a total of 200
observations collected by each sensor for an hour, and the average value was used for
model input. Other data, such as discharge and precipitation data, were retrieved from
local stations. The system started to produce water levels at SC_R2 with 1-, 2-, and 3-h lead
times after the fifth hour of installation. The overall testing time was 35 h. The comparison
between observations and simulations is shown in Figure 10. The errors, which were
defined as the difference between observation and prediction, were within 0.075 m. The
largest error of 0.075 m was found in Figure 10a with a 1-h lead time. One possible reason
for the error was human interference. The canal is operated at a certain water level for
the purpose of irrigation. This study did not include the factors of human operations, and
the performance deteriorated once human inference was carried out. The RMSEs were
between 0.02 and 0.03 m. According to the performance, the system was able to produce
the variation in the water levels. However, because of manual operations such as gate
control upstream of the canal, R2 was only in the range of 0.3 to 0.45. The total computation
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time needed to train the proposed ANN_2 model in the sensor and produce water level
forecasts using the observations was 8 min.

4.3.2. Toucian and Beinan Rivers

To avoid the impact of manual operations on system performance, the Toucian and
Beinan Rivers were selected to test system performance. Unfortunately, the distance
between the observed water surface and the installation of the sensor was beyond the
range of the maximum measurement distance. Therefore, the following experiments were
conducted by using the data retrieved from the Water Resources Agency directly. The
evaluation period was from 3 June 2021, to 31 December 2021, for the Toucian River.
Typhoon In-fa on July 24 and Typhoon Lupit on August 6 influenced this study area
during this period. Figure 11 shows that the largest difference between observations and
predictions at TR_S2 (see the location in Figure 1) was 1.3 m among all forecasts. This
was the time when Typhoon In-fa had an impact on this area (solid circle in Figure 11).
Similar to previous cases, the system started to produce forecasts the 5th hour after the
experiment started. It was confirmed that having more data in the training process increased
the accuracy of the ANN_2 model. The errors between observations and simulations
were decreased to below 0.5 m for the second typhoon event (dashed circle in Figure 11)
and thereafter. Finally, the overall R2 and RMSEs were approximately 0.98 and 0.045 m,
respectively.

 
(a) 

Figure 10. Cont.
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(b) 

 
(c) 

Figure 10. (a–c) Comparison of simulation and observed water levels at SC_S2 of Shimen canal for
lead times t + 1 h, t + 2, and t + 3 h, respectively.

For the Beinan River, the evaluation period was from 1 July 2021, to 31 December
2021. Typhoon Lupit on August 6 and Typhoon Kompasu on October 14 influenced this
study area during the period. Figure 12 shows that the greatest difference between the
observations and predictions at BR_S2 (see the location in Figure 1) was below 1 m. The
largest errors were found when the highest and lowest water levels were observed (solid
and dashed circles in Figure 12), and extreme values such as these were not included in the
training data. The overall R2 and RMSEs were approximately 0.98 and 0.08 m, respectively.
In conclusion, based on the above experiments, the proposed ANN_2 model and integrated
sensor show excellent potential to perform edge computing locally and generate water
level forecasts for real-time operation. The forecasting accuracy was influenced if the water
levels were beyond the values in the training data set. Furthermore, the performance of the
proposed system decreased if human interference occurred in the study area.
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(a) 

(b) 

(c) 

Figure 11. (a–c) Comparison of simulation and observed water levels at TR_S2 of the Touciaan River
for lead times t + 1 h, t + 2, and t + 3 h, respectively.
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(a) 

(b) 

 
(c) 

Figure 12. (a–c) Comparison of simulation and observed water levels at BR_S2 of the Beinan River
for lead times t + 1 h, t + 2, and t + 3 h, respectively.
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5. Conclusions

In this study, an ANN-based model was integrated into a Raspberry Pi-based sensor
to implement edge computing for hourly river water level forecasting. The ANN model is
capable of forecasting the river level with a high level of precision by only using previously
observed water level, rainfall information, and flow discharge as inputs without the need for
other hydrological and meteorological parameters. Edge computing is a form of computing
that is conducted on site or near a targeted location, thus minimizing the need for data
to be processed at a remote data center and increasing the efficiency of the emergency
response. This study is a first attempt to combine real-time customized sensors and ANN
algorithms in practice. Based on historical measured data from the Yilan River in Yilan
County, synthetic upstream rainfall and discharge data were generated for six different
return periods using the Pearson III probabilistic model and the HEC-HMS hydrological
model with synthetic inflow data. The downstream water level data were obtained with the
aid of the HEC-RAS hydraulic model. Different input combinations, including first-order
difference and second-order difference water levels, were investigated to enhance the
precision of the ANN model. The results demonstrated that the proposed ANN model
has the capability to precisely forecast the future fluctuations in the water level of rivers
in a short time and with a small number of inputs. The model was then embedded into
the customized sensor to forecast the water level over different time horizons up to 3 h
in advance. Finally, a comprehensive comparison between forecasts and observations
was performed for three other rivers and canals. The findings revealed that the proposed
water level sensor with the ANN model exhibited a high level of performance when it was
applied to real events. Therefore, the integration proposed in this study is very promising
and could be incorporated into a new generation of flood warning systems to prevent
and mitigate the impacts of floods in downstream areas. However, the time required to
train the ANN model and the system to produce results is over 30 min. Due to the limited
computing power of the sensor, the amount of data required to train the model during
real-time operation while maintaining high forecasting accuracy to speed up the computing
process needs to be investigated further. In addition, different options of microcontroller
units with more computing power will also be considered in future studies. Finally, in
the current study, only an on-site experiment was performed because of the limitation of
devices. More on-site experiments must be performed, and input factors of the ANN model
regarding human interference should be included in future studies to extend the system
application scope.
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Abstract: The Internet of Things (IoT) is a complete ecosystem encompassing various communication
technologies, sensors, hardware, and software. IoT cutting-edge technologies and Artificial Intelligence
(AI) have enhanced the traditional healthcare system considerably. The conventional healthcare
system faces many challenges, including avoidable long wait times, high costs, a conventional method
of payment, unnecessary long travel to medical centers, and mandatory periodic doctor visits. A
Smart healthcare system, Internet of Things (IoT), and AI are arguably the best-suited tailor-made
solutions for all the flaws related to traditional healthcare systems. The primary goal of this study is to
determine the impact of IoT, AI, various communication technologies, sensor networks, and disease
detection/diagnosis in Cardiac healthcare through a systematic analysis of scholarly articles. Hence,
a total of 104 fundamental studies are analyzed for the research questions purposefully defined for
this systematic study. The review results show that deep learning emerges as a promising technology
along with the combination of IoT in the domain of E-Cardiac care with enhanced accuracy and
real-time clinical monitoring. This study also pins down the key benefits and significant challenges
for E-Cardiology in the domains of IoT and AI. It further identifies the gaps and future research
directions related to E-Cardiology, monitoring various Cardiac parameters, and diagnosis patterns.

Keywords: arrhythmia; artificial intelligence (AI); cardiac; communication technologies; Electrocardiogram
(ECG); systematic literature review (SLR)

1. Introduction

Following the available information as confirmed by the World Health Organization
(WHO) [1], cardiovascular disease claims a large number of causalities across the globe [2]
and is responsible for approximately 80% of sudden deaths. Moreover, in more than
15% of the deaths, cardiac arrhythmia is considered the chief reason. Thus, promoting
cardiovascular health is vital and requires an overhaul of healthcare systems [3].

The rapidly expanding Internet of Things (IoT) [4] technology has the capability to
monitor and control the critical human functions, irrespective of where the individual is
located or what they are doing. Medical IoT (MIoT) is a cutting-edge technology that func-
tions by exploiting the advantages of the Internet at a very affordable cost with minimum
effort. The MIoT-based cardiac system guarantees monitoring the physical symptoms [5] of
cardiac patients, such as temperature, Blood Pressure (BP), Oxygen Saturation (SPO2), Elec-
trocardiogram (ECG), Heart Rate (HR) [6], and linked environmental parameters effectively
and without any failure. The MIoT cardiac care framework is a customized paradigm that
meets the requisite medical and safety standards of pervasive cardiac healthcare, including
serious heart-related issues.

Various cardiac (heart) abnormalities can be detected through an Electrocardiogram
(ECG) which is a medical testing platform that keeps track of electrical activity the heart
generates as it contracts. An electrocardiograph is a device that records patient’s ECG. An
ECG is a valuable tool for identifying problems associated with heart rate or heart rhythm.

Sensors 2022, 22, 8073. https://doi.org/10.3390/10.3390/{s}22208073 https://www.mdpi.com/journal/sensors
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It offers assistance to the physician in determining whether a patient is having a heart attack
or has had one in the past. An ECG is usually the first option for a cardiac test because
of its proven dependability. An ECG is helpful to determine if one’s pulse is difficult to
feel (bradycardia), or it is too fast (tachycardia) to count accurately. An ECG can also show
heart rhythm irregularities, i.e., arrhythmia. The main types of arrhythmia are mentioned
in Table 1.

Table 1. Various Types of Arrhythmias.

Types of Arrhythmia Explanation

Tachyarrhythmias
A fast heart rhythm with a rate of more than 100 beats per
minute.

Bradyarrhythmias
Slow heart rhythms that may be caused by disease in the heart’s
conduction system.

Supraventricular arrhythmias
Arrhythmias that begin in the atria (the heart’s upper chambers).
“Supra” means above; “ventricular” refers to the lower chambers
of the heart, or ventricles.

Ventricular arrhythmias
Arrhythmias that begin in the ventricles (the heart’s lower
chambers).

Similarly, atrial fibrillation, atrial flutter, and premature or extra beats are the other
types of cardiac issues. Figure 1 shows waveforms for different arrhythmia types. Atrial
fibrillation refers to a rapid, disorganized, and irregular heart rhythm., while atrial flutter is
an atrial arrhythmia generated by a fast circuit in the atrium. Compared to atrial fibrillation,
atrial flutter is typically more organized and regular.

Figure 1. Types of arrhythmia.

A comprehensive review of E-Cardiology, which encompasses the Internet of Things,
artificial intelligence, and cardiology could help understand the essential building blocks
of an IoT-based cardiac care system and intelligent diagnosis of various cardiovascular
diseases. It can also help to develop a complete picture of various hardware devices
(sensors), AI techniques, and communication technologies adopted by the existing studies
in the field of intelligent cardiac healthcare.

Following the introduction, Section 2 of this paper briefly discusses related works;
Section 3 highlights the contributions made by this paper. Section 4 elaborates on the
review methodology adopted for conducting the survey. Section 5 gives the outcomes of
the selected studies with a detailed analysis of the research questions (RQs). This section is
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further divided into four subsections. Section 6 contains a discussion. Section 7 summarises
the conclusions.

2. Related Works

This section presents a brief explanation of the related surveys in the field of IoT-based
cardiac healthcare.

The primary goal of the study [7] was to collect the latest facts, figures, and evidence on
the use of preprocessing techniques for heart disease classification. The review study also
summarised the impact of the most frequently used preprocessing tasks and techniques
and the performance in the field of cardiology. This review paper covered the literature
from 2000 to June 2019.

A survey on IoT and AI in healthcare was presented by [8] for 2007 to February 2018.
The paper highlighted the top application classifications, which included wearables, sensor
networks, connectivity options, and disease detection and treatment. This review identified
gaps and provided future research directions related to technology and design. However,
this survey analysed only three online databases.

A review article on data mining techniques frequently used in the field of cardiology
until 2015 was presented in [9]. The performance comparison of various data mining
models in cardiology were also discussed in this review paper.

The authors in [10] presented a survey on the Internet of Things (IoT) for healthcare
using mobile computing. This systematic study investigated how mobile computing
assisted IoT in a healthcare environment. Moreover, the intention of this paper was to
analyse the impact of mobile computing on IoT technology in Smart hospitals and the field
of healthcare. This study covered the literature between 2011 and 2019.

Another study [11] proposed a substantial review of various IoT applications in a
life-saving environment, as well as various other fields in Smart cities. It also contrasted
IoT with M2M and highlighted some drawbacks of IoT technology. This review article
covered 2013 to 2018 through the Scopus database.

Another study [12] presented literature on (IoT) technologies and several projects
for healthcare in 2018. This paper provided a review of primary medical IoT sensors
and an overview of state-of-the-art IoT infrastructure essential for healthcare. It focused
on the latest IoT technologies for healthcare services, such as cloud computing, big data,
RFID, WSN, Bluetooth, Wi-Fi, and other vital medical sensors. However, this study lacks a
systematic review.

The study [13] highlighted various IoT applications and was presented in 2022. The
study focused on IoT adoption in Pakistan and France in 2020. This systematic study
highlighted the barriers and possibilities for the implementation of IoT applications. It also
indicated the influence of COVID-19 on IoT adoption in the healthcare domain.

The [14] systematic review discussed telemedicine and healthcare IoT (HIoT). It cov-
ered 146 articles between 2015 and 2020. The articles were divided into five categories after
a technical analysis. In addition to the benefits and limitations of the selected methods, a
comprehensive comparison of evaluation techniques, tools, and metrics was also included.
This study presented a summary of healthcare applications of IoT (HIoT).

The discussion so far is limited to only a particular aspect of Smart healthcare/E-
Cardiology and does not genuinely attempt to cover the domain holistically. When we
say “entire domain”, it means AI-based IoT, which encompasses preprocessing techniques
and also various communication technologies. According to the deficiencies of the ex-
isting review papers, we provide a comprehensive systematic literature review for the
following reasons:

• The latest research articles need to be covered to assess the current state of the art.
• The present studies do not cover all the aspects of E-Cardiology.

The following section highlights the contributions made by this review study, thus
bringing novelty to this systematic review study.

213



Sensors 2022, 22, 8073

3. Contributions

1. This review paper highlights the influence of IoT, communication technologies, AI
models, and preprocessing techniques in cardiac healthcare using our review protocol.
Moreover, this study covers the complete and latest infrastructure for E-Cardiology,
including its benefits and challenges. Thus, this systematic review covers almost all as-
pects of E-Cardiology which have not been discussed before in such a comprehensive
way under one umbrella.

2. The study presents the systematic analysis of the most recent studies (2016 to 2021) to
investigate our formulated research questions.

3. This paper incorporates monitoring of vital CCU parameters, ECG analysis, and clas-
sification of various heart disorders, thus giving a thorough picture of E-Cardiology.

4. This review study provides recommendations and future guidelines for researchers
and cardiologists as well.

The next section discusses the research methodology adopted for our SLR.

4. Review Methodology

A systematic literature review (SLR) paradigm is followed in this paper for reviewing
papers from the most reliable resources, as shown in Figure 2. Principally, the research
work, applications, and monitoring/detection techniques provided by AI-aided MIoT in
cardiac care are considered. The primary studies have been then passed through a quality
assessment process for the study analysis to produce the best fit results.

Figure 2. SLR protocol outline.

The following subsections briefly describe the detail of each step involved in our
review protocol.

4.1. Defining Review Strategy

The application of medical IoT in cardiac care is a compelling field of study for the
researchers, so the primary focus of this SLR was to formulate the research questions explor-
ing how medical IoT is affecting cardiac care and the significance of artificial intelligence in
the diagnosis and detection of various heart diseases.

The review questions in Table 2 indicate how MIoT and AI are contributing to cardiac
healthcare systems in Smart hospitals.
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Table 2. Review questions and their motivation.

No. Review Question Motivation

RQ 1
What are the vital hardware components/sensors used in
E-Cardiac architecture for different CCU parameters?

The main focus of this question is to identify different types
of sensors and their features most often used in IoT-based
Cardiac Healthcare.

RQ 2
What are the most important communication technologies
used in E-Cardiac Care?

The question aims to find the most commonly used
communication technologies in MIoT-based Cardiology.

RQ 3
Which pre-processing techniques are used in E-Cardiology
along with the most widely used AI classifiers/models?

This question is designed to explore the current work in
the field of medical IoT accompanied by artificial intelligence
in cardiac healthcare and to identify various classification
and preprocessing techniques used for predicting
cardiovascular diseases.

RQ 4
What are the significant issues and challenges in the current
E-Cardiology?

This question investigates major benefits, and current
challenges of IoT-based cardiac healthcare system.

4.2. Defining Search Strategy

Once the research questions were designed, the next step was to indicate and state
the search strategy to be followed precisely. Therefore, the primary literature mentioned
in Appendix A (Table A1) was identified using three search strings which were used
in the five digital databases, namely IEEE Xplore, ACM Digital Library, SpringerLink,
ScienceDirect, and Google Scholar. These are the most popular online data resources in the
domain of computer science and information technology. Second, these digital libraries
were used as sources for previous systematic literature reviews related to computer science
and E-Cardiology [15].

Our search span included the period of 2016 to 2021. The criteria used for the selection
of search terms or keywords is mentioned below [16]:

• The important terms were extracted from the research questions.
• Synonyms and alternate spellings were identified for the key terms.
• Keywords were identified from various books and relevant research articles.
• For synonyms or alternating spellings, the Boolean operator OR was used.
• Boolean AND operator was used to interlink significant terms.

After the critical analysis of the key terms, three search strings were formed in order
to extract the relevant information. These search strings were checked on each of the
aforementioned databases by changing their patterns to retrieve the best relevant results.
The three search strings are given in Table 3.

Table 3. Search strings used for data retrieval.

No. Search String

1
(internet of things OR IoT OR IoT-based OR smart health) AND (cardiac OR heart OR CCU) AND (monitoring OR detection
OR diagnosis OR disease OR parameters)

2
(intelligent OR artificial intelligence OR AI OR machine learning OR deep learning OR preprocessing OR reduction OR
cleaning OR data mining) AND (cardiac OR heart OR ECG OR arrhythmia OR cardiovascular OR smart health OR healthcare
OR smart healthcare OR cardiology) AND (technique OR methods OR classification OR algorithm)

3
(internet of things OR IoT OR IoT-based) AND (cardiac OR heart OR CCU OR smart health OR smart healthcare) AND
(benefits OR advantages OR challenges OR issues OR disadvantages)

4.3. Inclusion and Exclusion Criteria

To identify and include studies relevant to answer the RQs, inclusion and exclusion
criteria were developed as described in the section “Defining Review Strategy”. To find the
most appropriate publications, we defined the inclusion and exclusion criteria as mentioned
in Table 4.
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Table 4. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

The papers published in English were chosen on priority.
The papers published in other languages were
not selected.

The most recently published research papers, i.e., 2016 to 2021, were
singled out for studies. Gray literature was excluded from the study list.

Papers describing an overview of current approaches that
implement modern tools and techniques in E-Cardiology
were selected.

Papers not defining the topic appropriately
were excluded.

The main aim was to target the primary studies such as original research papers. Duplicated material was removed.

The authors evaluated each forthcoming paper to decide whether it should be included
or excluded. The selection of papers was accomplished by following the three steps
mentioned below.

The first step included the removal of duplicated and redundant papers; perusing
the keywords, abstracts, and titles of research articles was the next step. Reading of full
length research papers was carried out in the last step. Accordingly, the inclusion and
exclusion criteria were implemented to their full effect. The articles that attracted difference
of opinion were discussed and reviewed again by the authors, either using the full text or
the partial text, until a consensus was achieved on an agreed-upon draft.

4.4. Quality Assessment Criteria

In this step, based upon the coherence and relevancy, we analyzed all the collected
studies to address the defined research questions. A deep analysis of each paper was made,
and based on our research questions, 134 papers were selected. Out of those 134 research
papers, the papers having considerable citation count, appearing in good impact factor
journals, and being delivered at highly ranked conferences were finally selected, thus
leaving a total of 104 papers for the review, shown in Appendix A (Table A1).

4.5. Quantitative Analysis

The last step of our review protocol design was conducted to execute necessary
statistical analysis on quantitative data. In this step, we quantitatively summarised and
analyzed the results extracted from various sources such as conferences, journals, and
book sections. Then, we carried out some quantitative statistical analysis of the findings to
explore more about our research questions (RQs) and trends.

Figure 3 gives a thorough overview of our screening and assessment method for
the statistical analysis of our literature. Five databases were chosen for the review, as
illustrated in this figure. A total of 502 documents were chosen for review and analy-
sis. The majority of papers were discovered to be duplicates. Thus, 203 records were
eliminated before screening. Papers were removed for a few different reasons. Ar-
ticles were chosen in the screening process based on a planned inclusion and exclu-
sion strategy. Following the screening, 104 papers were chosen based on inclusion and
exclusion standards.
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Figure 3. Flow diagram showing the screening process for the systematic review.

The next section highlights the “Outcomes” of this systematic review.

5. Outcomes

5.1. RQ 1: What Are the Vital Hardware Components/Sensors Used in E-Cardiac Architecture for
Different CCU Parameters?

The cardiac healthcare monitoring system in an IoT sphere encompasses the various
IoT sensory modules and technologies attached to the patient, receiving sensory data, and
sending data to the cloud for further monitoring, processing, and decision making. In
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an IoT-based cardiac healthcare monitoring system, the sensors, such as heart rate/pulse
sensor, temperature sensor, blood pressure sensor, blood oxygen sensor, and ECG sensor,
obtain sensory parametric values from the patient, transmit data through specific communi-
cation technologies to the cloud, apply machine learning practices to the learned parametric
values, and generate alerts to the specialist suggesting timely action when warranted.

(i) Heart Rate Sensory Unit

Heart rate monitoring plays a crucial role in patient cardiac abnormalities diagnosis,
detection, and classification. Several cardiac ailments and disorders occur due to a patient’s
high or low heart rate. Normal beats per minute (bpm) are 60–100. Less than 60 bpm is
considered to be low and greater than 100 is considered to be high bpm. We discovered
comprehensive studies that used several types of heart beat sensors for bpm monitoring.
The studies [17,18] used heart beat pulse sensors to measure patient heart rates in a real-time
environment. In this article [19], the KY 093 module was used to obtain heart rate values.
Using a MAX30100 pulse oximeter, the authors in [20] collected heart beat information. The
publications [21–23] utlized an ECG module AD8232 to obtain the patients heart rate data
in real time for monitoring purposes. Table 5 mentions recent studies on heart rate sensors.
Each heart rate sensor has its own set of properties. This table shows some important
characteristics of several heart beat sensor variants such as pins, type, operating voltage,
low current supply, accuracy, and so on.

(ii) Temperature Sensory Unit

Body temperature is an essential parameter for the development of cardiac healthcare
monitoring. Various analog and digital temperature sensors are available for determining
body temperature. Temperature can be measured in celsius or fahrenheit. Temperatures
above 37.5 or 38.3 celsius are considered high. The temperature sensor LM35 is referenced
in [24–27] for health monitoring. The authors in [18,28] used an 18DS20 sensor for tem-
perature monitoring in a real-time environment. Table 6 shows several of the temperature
sensors, along with descriptions. The LM35 and 18DS20 sensors are the most widely
employed temperature sensors in the research studies that we analysed.

(iii) Blood Pressure (BP) Sensory Unit

BP monitoring is a fundamental biological measure for the detection and diagnosis
of cardiac incongruities and anomalies. BP values can be obtained using various sensory
units and devices. Systolic and diastolic values are captured by BP sensors or devices
to be examined by a physician. Normal BP is less than 120/80 mmHg, while low BP,
called “hypotension”, is below 90/60 mmHg, and high BP, called “hypertension”, is above
140/90 mmHg. Our research discovered a publication on E-Cardiology that dealt with
cardiac patients’ BP. In 2017 [29], a digital BP monitor (OMRONHBP1300) was used to
monitor and automatically detect cardiac arrhythmia. The paper published in 2019 [30]
examined predicting cardiac ailments in E-Cardiology using ECG, cholesterol, and BP. The
MPX10 BP sensor was utilised in the 2020 publication [27] for patient health monitoring.
Table 7 shows lists of sensors and devices utilized in the past few years for BP monitoring
of cardiac patients, along with their comparable attributes.

The multiple modules of BP sensors and devices used in past studies, as well as
different sensors of other cardiac parameters, are shown in Table 7.

Table 5. Features of heart rate sensors/devices.

Heart Rate/
Pulse Rate
Sensors

Features

Major Pins INT Type
Operating
Voltage

BPM
Low
Supply
Current

Electrodes
Configuration

Acc

Pulse Sensor [31] GND, Vcc, Signal N
IR LED
(Analog) 3.3 V to 5.0 V Y N/A N N/A
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Table 5. Cont.

Heart Rate/
Pulse Rate
Sensors

Features

Major Pins INT Type
Operating
Voltage

BPM
Low
Supply
Current

Electrodes
Configuration

Acc

AD8232 [32]
GND, 3.3 V, Output,
LO+, LO−, SDN Y IR LED

(Analog) 3.6 V Y 170 μA
(typical) Y N/A

KY-039 [33] GND, Vcc, Signal N IR LED
(Analog) 5 V Y N/A N N/A

Holter Device [34] 3/5/12 Electrodes Y Digital Device N/A Y N/A Y N/A

SpO2 Sensor
device [35]

Fingertip Sensor Y IR LED
(Analog) N/A Y N/A N

±2%
for
SPO2,
±2 bpm
for
Pulse
Rate

MAX30100 Pulse
Oximeter and
Heart Sensor [36]

VIN, SCL, SDA,
INTERRUPT, IRD, RD,
GND

Y
Int IR
LED,
Photo Sensor

1.8 V and 3.3 V Y 170 μA,
(typical) N

98.84%
for SPO2,
97.11% for
Heart
Rate

Acc—accuracy; BPM—beats per minute; GND—ground; INT—integrated IR; LED—infrared light-emitting diode;
IRD—IR LED to driver; LO—leads off; N/A—not applicable; N—no; RD—red LED to driver; SCL—serial clock;
SDA—serial data; SDN—shutdown control input; V—voltage; VCC—voltage common collector; VIN—voltage
input; Y—yes.

(iv) Oxygen Sensory Unit

Blood oxygen can be monitored using several IoT-based blood oxygen sensory units,
such as pulse oximetry sensors, to obtain oxygen saturation levels along with a patient’s
heart rate. Ready-made wearable devices are also available to measure blood oxygen
saturation levels. Blood oxygen is measured in percentage. The normal blood oxygen
saturation is 90 to 100%. The study [37] describes a pervasive healthcare monitoring service
system that uses an SpO2 device to measure oxygen saturation. The MAX30100 pulse
oximeter has proven to be useful in measuring blood oxygen levels in cardiac patients [20].
Our findings and the literature on IoT-based cardiovascular healthcare monitoring used
the sensors mentioned in Table 8 to measure oxygen saturation. This table lists several
important and common features of oxygen saturation sensors and devices, such as ad-
dressed parameters, voltage, type, accuracy, pins, range, and so on. Table 8 shows that
blood oxygen sensors/devices are used for cardiac patients in very few studies.

(v) ECG Unit

ECG is the most crucial biological parameter for monitoring, detecting, predicting,
and classifying cardiac irregularities and variations in the human heart. The ECG AD8232
module was used in the studies [21,22,38–40] to monitor ECG and detect cardiac anomalies
in cardiovascular patients. Heart abnormalities were detected with the use of the ECG
AD8233 module [41]. In Table 9, recent papers published on multiple ECG sensors and
devices are mentioned along with their necessary and comparable features. Low supply
current, electrodes, the sampling rate, right leg drive shut down, single supply operation,
high pass filter, output, operating temperature, pins, and other features of various ECG
modules are considered as the most notable attributes.
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Table 10 shows detailed and comprehensive literature analysed to find IoT-based
cardiovascular sensors and devices used in previous studies from 2016 to 2021. This table
demonstrates that the majority of research on ECG has been conducted using the ECG
AD8232 module to detect anomalies in cardiac patients.

Table 6. Features of temperature sensors/devices.

Temperature
Sensor

Features

Type

◦C/◦F
or
Both

Acc
Operating
Voltage
Range

Alarm
Signaling

Major Pins
Measurement
Range

LM35 [42] Analog ◦C 0.5 ◦C Acc
guaranteeable at +25 ◦C 4 V to 30 V N VCC, VOUT,

GND
Range is −55◦
to +150 ◦C

DS18B20 [43] Digital Both ±0.5 °C Acc
from −10 ◦C to +85 ◦C 3.0 V to 5.5 V Y GND, DQ, VDD, NC

Range is 55 ◦C to
+125 °C and 67 ◦F
to +257 ◦F

MCP9700 [44] Analog ◦C ±4 ◦C (max.), 0 ◦C to +70 ◦C 2.3 V to 5.5 V N Vout, Vcc, GND, NC Range is −40 ◦C to
+125 ◦C

TMP100 [45] Digital ◦C
±1 ◦C (Typical) from −55 ◦C
to 125 ◦C and ±2 ◦C (Max)
from −55 ◦C to 125 ◦C

2.7 V to 5.5 V Y
ADD0, ADD1,
ALERT, GND,
SCL, SDA, V+

Range is −55 and
+125 ◦C

Acc—accuracy; ADD—address select; ◦C/◦F —centigrade/fahrenheit; DQ—data in/out; GND—ground; N—no;
NC—no connection; SDA—serial data; SDN—shutdown control; V—voltage; VCC—voltage common collector;
VDD—power supply voltage; VOUT—output; Voltage Y—yes.

Table 7. Features of blood pressure sensors/devices.

BP Sensors

Features

Freq Range Major Pins
Pressure
Hysteresis

Lin
Supply
Voltage

Full
Scale
Span

RT
Offset
Stability

Acc

MPX10
Series
Pressure
Sensor
[46]

N/A 0–10 kPa GND, Vs,
+Vout, −Vout

±0.1
typical

Min −1.0,
Max 1.0 3.0–6.0 Vs Min 20 mV,

Max 50 mV 1.0 ms ±0.5%
VFSS N/A

Omron
HBP-
1300
digital
Device
[47,48]

50/60 Hz 0 to 300 mmHg

Start/Stop,
Mode, Last
Reading
(buttons)

N/A N/A 100–240 V
AC N/A N/A N/A Within

±3 mmHg

Typical
BP
Monitor
Sensor
[49]

N/A 0 to 258 mmHg

Tube, Pressure
Cuff, Pressure
Control Valve,
Bulb

typical
±0.25%

typical
±0.25% N/A N/A 1.0 ms N/A ±1 mmHg

Acc—accuracy; BP—blood pressure IR; kPa—kiloPascal’s; LED—infrared light-emitting diode; mmHg—millimeters
of mercury; ms—millisecond; N/A—not applicable; RT—response time; V—voltage; Vout—voltage output; Vs—
power supply.
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Table 8. Features of oxygen sensors/devices.

Oxygen
Sensors
(Oximeter)

Features

INT
Addressed
Parameters

Power
Supply
Voltage

Type
Acc
SpO2

Acc
PR

Major Pins
SpO2
Range

PR
Range

MAX30100 [36] Y HR, SpO2 1.8 V to 3.3 V IR LED 99.62% 97.55%

VIN, SCL,
SDA, interrupt,
IRD, RD,
GND

N/A N/A

SpO2 Sensor
Device [50]

Y HR, SpO2 D.C. 3.4 V
∼D.C.4.3 V IR LED ±2% (80–100%);

±3% (70–79%) ±2% bpm N/A 35 to 100% 25 to
250 bpm

Acc—accuracy; GND—ground; INT—integrated; IRD—IR led to driver; HR—heart rate; N/A—not applicable;
PR—pulse rate; RD—red LED to driver; SDA—serial data; SDN—shutdown control; V—voltage; VIN—voltage
input; Y—yes.

Table 9. Features of ECG sensor/devices.

ECG
Sensors/
Devices

Features

INT
Single/
Multi
Lead

Low
Supply
Current

Elec SR

Right
Leg
Drive
Shut
Down

Single
Supply
OPER

HPF Out
OPER
TEMP

Major Pins

AD8232 [32] Y Single
Lead

170 μA
(typical)

2 or
3 360 HZ N 2.0 V to

3.5 V 2 Poles Rail to
Rail

40 °C
to
+85 °C

GND,
3.3 V,
OUT,
LO−,
LO+,
∼SDN,
RA,
LA,
RL

Holter
Device [34]

Y Multi
Lead N/A 3, 5 or

12 125 HZ N/A one AAA
battery N/A

ECG
Signal
Rec
on
Monitor

+10 °C
to
+40 °C

Multiple
Leads

ADAS1000 [51] Y Multi
Lead N/A 5 or 6 800 HZ N/A 3.15 V to

5.5 V N/A Monitor
−40 °C
to
+85 °C

64 lead
LQFP
[52],

56 lead
LFCSP
(Both
has
diff.
pins)

AD8233 [53] Y Single
Lead

50 A
typical 2 or 3 N/A Y 1.7 V to

3.5 V

2 Poles
Adjustable
HPF

Rail to
Rail

−40 °C
to
+85 °C

20 pins
(GND,
VS+,
REFIN,
HP-
SENSE,
HP-
DRIVE,
SDN,
AC/
DC,
FR, etc.

Shimmer 3
[54–57]

Y Multi
Lead

T60 μA
Maximum 4 24 MHZ N/A 450 mAh

battery N/A

On
Windows
PC and
SQL

N/A

5 ECG
pins,
5 EMG
pins

AC/DC—alternating current/direct current; EMG—electromyography; FR—fast restore; GND—ground;
HPF—high pass filter; HPSENSE—high pass sense; HPDRIVE—high-pass driver; HZ—hertz; INT—integrated;
LA—left arm; LO—leads off; MHZ—megahertz; NA—not applicable; N—no; OPER TEMP—operation tempera-
ture; PC—personal computer; RA—right arm; REFIN—reference buffer input; RL—right leg; SDN—shutdown
control input; SQL—structure query language sampling rate; V—voltage; Vs—power supply terminal; Y—yes.
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Table 10. Sensors used in previous studies.

Sensors Used

Year ECG
Module

Temp
Sensor

BP
Sensor

Pulse/
HB
Sensor

Oxygen
Sensor

Other
Sensor
/Device

Integrated
Sensor

2016 [17] � MCP9700 �
Pulse
Sensor � � �

2016 [58] � � � � �
PCG
Sensor �

2016 [59] � � � � � �

Wrist band
for HB & BP
(DNNS)

2016 [19] � � �

FingerTip-
Optical Sensor
for PPG

� � �

2016 [60] � � � � �
Wearable
Watch (PPG sensor) �

2016 [61]
Galilio Board
plateform for ECG
(UB-MMNS)

� � � � � �

2017 [37]
Holter
Devices (UB-MNNS)

Holter Device,
SpO2 Device
(UB-MNNS)

SpO2
Sensor Device
(DNNS)

�

2017 [62] � � � Pulse Sensor � � �

2017 [19] � 18DS20 � KY-093 � � �

2017 [29] � �
OMRONH-
-BP1300 PPG Sensor External

Defibillator �

2017 [63] (UB-MNNS) (UB-MNNS) (UB–MNNS) HB Sensor �

Alchol
Sensor, EMG
(MNNS)

�

2017 [64]

Wearable
SOC
ECG
(MNNS)

� � � � � �

2018 [65] � � � � � �
MAX30100
(SpO2, HB)

2018 [66] � � �
Pulse
Sensor � � �

2018 [18] � � �
Pulse
Sensor � � �

2018 [38] ECG Module AD8232 � � Pulse Sensor � � �

2018 [20]
ECG Module
AD8232 � � MAX30100 MAX30100 � �

2018 [24] � LM35 (UB–MNNS) HB Sensor � � �

2018 [67] � � � � � �

WWSN for
ECG, BP,
Respiratory

2019 [28] � 18DS20 � HB sensor � � �

2019 [25] Pulse Sensor LM35 � Pulse Sensor � � �

2019 [26] � LM35 � Pulse Sensor � � �

2019 [40]
ECG Module
AD8232 � � � � � �
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Table 10. Cont.

Sensors Used

Year ECG
Module

Temp
Sensor

BP
Sensor

Pulse/
HB
Sensor

Oxygen
Sensor

Other
Sensor
/Device

Integrated
Sensor

2019 [21]
ECG Module
AD8232 � �

ECG
Module
AD8232

� � �

2019 [68] � � � � �

Bio Sensors
of
hospital

�

2019 [69] � � � � � �

Watch for
HB,
CL, bp,
(DNNS)

2019 [30]
ECG AD8232
Module �

BP Cuff
(UB-MNNS)

Heart Rate
Monitor �

Near
Infrared
Sensor
for CL

�

2019 [70]
ECG AD8232
Module � � � � � �

2019 [71] (UB-MNNS) � � � � � �

2020 [72] (UB-MNNS) � � � � � �

2020 [73] � (UB-MNNS) (UB-MNNS) Pulse Sensor � � �

2020 [74] � � � HB sensor �

Alchohal
Sensor
(MNNS)

�

2020 [75] � � � � � �

MD, AC,
ENV
Sensors
(MNNS)

2020 [27]
ECG Module
AD8232 LM35 MPX10 Pulse Sensor Pulse Sensor � �

2020 [76]
3 Lead VCG
signals
(MNNS)

� � � � � �

2020 [22]
ECG Module
AD8232 � �

ECG Module
AD8232 � � �

2020 [77] ADAS1000 TMP100 � � � � �

2020 [78]
Multiple ECG
devices (MNNS) � � � � � �

2020 [79]
Shimmer3 ECG
Unit � � � � � �

2020 [23]
ECG Module
AD8232 � �

ECG Module
AD8232 � � �

2021 [80] � � (UB-MNNS) (UB-MNNS) �
Glucose Sensor
(MNNS) �

2021 [81]
Wearabale Smart
ECG device
(UB-DNNS)

� � � � � �
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Table 10. Cont.

Sensors Used

Year ECG
Module

Temp
Sensor

BP
Sensor

Pulse/
HB
Sensor

Oxygen
Sensor

Other
Sensor
/Device

Integrated
Sensor

2021 [83]
Ready made
ECG Device
(UB-DNNS)

� � � � AllCheck Device �

2021 [82]
Self Made Device
for ECG (NNS) � � � � � �

2021 [84]

Multiscale ECG
from 3
Sensors
(UB-MNNS)

� �

Wearable HB
Sensor
(MNNS)

Respiratory
Sensor
(MNNS)

Optical Sensor
(MNNS) �

2021 [41]
ECG Module
AD8283 � � � � � �

BP/bp—blood pressure; CL—cholesterol; DNNS—device name not specified; ECG—electrocardiogram;
HB—heartbeat; HR—heart rate; INT—integrated; MNNS—module number not specified; PCG—
phonocardiograph; PR—pulse rate; PPG—photoplethysmography; UB-DNNS—used but device name not speci-
fied UB-MNNS—used but module number not specified; �—The specified parameter is not addressed.

5.2. RQ 2: What Are the Most Important Communication Technologies Used in E-Cardiac Care?

Communication technologies and protocols can be defined as a set of rules, technolo-
gies, semantics, equipment, and programs used to transfer, process, communicate, and
receive information. Communication technologies and protocols vary depending upon the
technology and network type devised, developed, or utilized. Some of the protocols and
communication technologies are discussed in this section. The publications mentioned in
Table 11 address the communication technologies and protocols used in previous selected
studies for the development of E-Cardiology, monitoring, detection, and classification. BL
is a wireless technology for short-range communication and exchanging data between
mobile and fixed devices. BL has a transmission power of 1 mw–100 mw and a 1 Mbps data
rate. Its data transmission range is 30 feet. The wearable healthcare monitoring devices
(wearable fitness watches and pulse oximeters) may have the BL features integrated. BL
technology was also employed in previous research [19,39,41,58,66,73] for data transmis-
sion for E-Cardiology. In prior literature on E-Cardiology monitoring, BL technology was
determined to be the most commonly used technology. Ethernet is a wired communication
networking protocol that can be used in local area networks (LANs), metropolitan area
networks (MANs), and wide area networks (WANs). Ethernet allows communication
through data cables. The publications [58,83] used an Ethernet-wired technology for con-
nectivity support between various hardware modules implemented for cardiovascular
disease diagnosis. One existing research study found that Ethernet-wired communication
is rarely used in E-Cardiology. GSM is a cell-based or mobile communication modem that
works as a mobile communication system. GSM technology is also used in E-Cardiology to
send SMS messages or dial calls. GPS, which helps people to find their position on Earth,
consists of networks of satellites and receivers or devices that determine location.

The communication technologies and protocols used in E-Cardiology in previous
research studies and findings are detailed in Table 11.
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Table 11. Communication technologies used in previous studies.

Year Communication Technologies Used

BT ETH GSM GPS GPRS MQTT SMS SMPP ZB WIFI
TCP/
IP

Sc.
P

Cloud
SP/
PC

Internet

2016 [17] N N Y Y Y N Y Y N Y N N Y Y N

2016 [58] Y Y N N N N N N N Y Y Y Y Y N

2016 [59] Y N N N N N Y N N Y N Y Y N N

2016 [85] N N N N N N Y N N N N N N Y N

2016 [60] N N N N N N N N N N N N N Y N

2016 [61] N N N N N N N N N Y N N N Y N

2017 [37] Y N Y N Y N N N N Y N N N Y Y

2017 [62] N N N N N N N N N N N N N N N

2017 [19] Y N Y N N N Y N N Y Y N Y Y N

2017 [29] N N Y N Y N N N N Y N N Y Y N

2017 [63] N N N N N N N N N Y Y N Y Y N

2017 [64] N N N N N N N N N Y N Y Y Y N

2017 [39] Y N N Y N N N N N Y N N N Y N

2018 [65] N N Y Y Y N Y N N Y N N Y Y N

2018 [66] Y N N N N N Y N N Y N Y Y Y N

2018 [18] N N N N N N N N N Y N N Y Y N

2018 [38] N N Y N N N Y N N Y Y N Y Y N

2018 [20] N N N N N N N N N Y Y N Y Y N

2018 [24] N N N N N N N N N Y Y N N N N

2018 [67] Y N Y Y Y N N N N Y N N N Y N

2019 [28] N N N N N N Y N N N N N N Y N

2019 [25] Y N N N N N N N N N N N N Y N

2019 [26] N N N N N N N N N Y Y Y Y N N

2019 [40] N N N N N N N N N Y N Y Y Y N

2019 [21] Y N N Y N N N N N N N N N Y N

2019 [68] N N N N N N N N N Y N Y Y Y N

2019 [69] Y N N N N N N N N Y N N Y Y N

2019 [30] Y N N N N N N N N Y N Y Y Y N

2019 [70] N N N N N N Y N N N N N N Y N

2019 [71] Y N N N N N N N N N N N Y Y N

2020 [72] N N N N N N N N N Y N N N N N

2020 [86] N N N N N N N N N Y N N N Y N

2020 [73] Y N Y Y Y N N N N Y N N Y Y N

2020 [74] N N Y N Y N Y N Y N N N N N N

2020 [75] Y N N N N N N N N Y Y Y Y Y N

2020 [27] N N N N N N N N Y Y N N N Y N

2020 [76] N N N N N N N N N N N N N N N
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Table 11. Cont.

Year Communication Technologies Used

BT ETH GSM GPS GPRS MQTT SMS SMPP ZB WIFI
TCP/
IP

Sc.
P

Cloud
SP/
PC

Internet

2020 [22] N N N N N Y N N N Y N N Y Y N

2020 [77] Y N Y N Y N Y N N Y Y Y Y Y N

2020 [78] N N N N N N N N N Y N N Y Y N

2020 [79] N N N N N N N N N Y N N Y Y N

2020 [23] Y N N N N N N N N Y Y Y Y Y N

2021 [80] Y N N N N N N N N Y N Y Y Y N

2021 [81] N N N Y N N N N N N N N N N N

2021 [82] Y N N N N N N N N N Y N Y Y N

2021 [83] N Y N N N Y N N N Y Y Y Y Y N

2021 [84] N N N Y N N N N N Y N N N N N

2021 [41] Y N N N N N N N N Y N N Y Y N

BT—Bluetooth; GSM—global system for mobile communications; GPS—global positioning system; GPRS—
general packet radio service; MQTT—message queuing telemetry transport; N—No; Sc.P—security protocols;
SMS—short message service; SMPP—short message peer-to-peer; SP/PC—Smart phone/personal computer;
TCP/IP—transmission control protocol/Internet protocol; WIFI—wireless fidelity; Y—yes.

5.3. RQ 3: Which Pre-Processing Techniques Are Used in E-Cardiology, along with the Most
Widely Used AI Classifiers/Models?

RQ 3 is divided into two subsections. The first subsection investigates and compares
various AI Models for the classification and prediction of CVD. This part explores various
studies that use different machine learning and deep learning models for CVD predic-
tion. Our study also provides a comprehensive explanation about the algorithms and
methodologies used for prediction and classification techniques and the different datasets
and performance metrics that we used to evaluate the models. Furthermore, the data
preprocessing techniques used with different classifiers are also indicated in the second
subsection below.

5.3.1. AI Classifiers/Models and E-Cardiology

The prediction of CVD is a much discussed topic of research in the realm of healthcare.
AI-based prediction systems can be of great help in detecting disease at an earlier stage
which can reduce risk associated with disease progression. The concept of AI is not new in
cardiac electrophysiology with automated ECG interpretation. It has existed in some form
or other since the 1970s [87].

Artificial Intelligence (AI) is the reflection of human cognitive functions from the
surroundings acquired by applying algorithms, pattern matching, cognitive computing,
and deep learning to achieve specific objectives [88]. The ongoing progress in AI, primarily
in the sub-domains of machine learning (ML) and deep learning (DL), have caught the at-
tention of physicians hoping to develop newly integrated, dependable, and potent methods
for ensuring standard healthcare in the critical field of cardiology.

Machine learning (ML) is a subset of AI to “teach” computers to analyze huge datasets
in a quick, accurate, and efficient manner by using complex computing and statistical
algorithms [89]. Supervised ML is more successful in predicting survival compared to the
traditional clinical risk scores [90].

The study [91] proved that the accuracy of disease prediction can be increased by using
an unsupervised type of ML for obstructive coronary artery disease in nuclear cardiology.

Deep learning (DL) is a supervised ML methodology that relies on neural networks
and is known for the automated algorithms required to extract meaningful patterns from
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data collections [92]. In the medical context, the most widespread deep learning algorithms
are artificial neural networks (ANN), multilayer perceptron (MLP), convolution neural
networks (CNN/ConvNet), recurrent neural networks (RNN), radial basis function net-
work (RBFN), deep belief networks, and deep neural networks (DNN) [88]. Compared
with traditional supervised ML, the real strength of DL is that it is an effective, powerful,
and flexible approach to representing complicated raw input data that does not demand
manual feature engineering. For instance, while addressing the issue of automated ECG
interpretation, early conventional supervised ML techniques depended on human-defined
ECG features. In contrast, the modern DL model extracts patterns within raw ECGs to
detect sinus rhythm and various other arrhythmias with a performance that equals the
result of any cardiologist [93].

The significant areas of cardiac healthcare that can benefit from ML/DL techniques
are prognosis, diagnosis, classification, treatment, and clinical workflow. Table 12 presents
an overview of different AI algorithms extracted from the literature review on heart disease
diagnosis/classification.

Table 12. Overview of common ai techniques used in E-Cardiology.

No. AI Algorithm Description Strengths Limitations

1 Principal Component Analysis
(Unsupervised)

A method of dimensionality reduction which aims to compute
principal components and makes data more compressible.

1. Compute principal components
2. Avoids data overfitting
3. High variance, improved visualization
4. Reduce Complexity

1. Low interpretability of principal
components.
2. Dimensionality reduction may
result in information loss.

2 K-Means Clustering
(Unsupervised)

Generates k number of centroids that help to define
clusters of data.

1. Ensures convergence
2. Can warm-start the positions of centroids
3. Easily adjusts to new examples
4. Assists the doctors in making more accurate
diagnosis

1. Not suitable for data varying
in size and density
2. Noise sensitive

3 Decision Tree
(Supervised)

For classifying examples, a decision tree is an easy and simple
representation.

1. Easy to interpret
2. Avoids over-fitting by pruning
3. Less sensitive to outliers
4. Requires less data cleaning

1. Instability
2. Relatively inaccurate

4 K-Nearest Neighbor
(Supervised)

Saves all available cases and allocates new cases based
on a similarity measure.

1. Easy to implement & understand
2. Used for both classification &
regression problems

1. Significantly slow as the data
size increase
2. Computationally expensive
3. Requires high memory

5 Naïve Bayes
(Supervised) An easy probabilistic classifiers based on Bayes’ theorem.

1. Scalable
2. Fast
3. Used for real-time predictions
4. Not requires large amounts of data

1. Assumes attributes are mutually
independent
2. Zero Frequency limitation

6 Random Forest
(Supervised)

A set of decision trees, usually trained with the “bagging”
technique. It performs classification as well as regression
tasks.

1. Used for prediction
2. Resistant to noise and overfitting
3. Flexible, can handle large datasets easily

1. Can take up lots of memory
2. Not that interpretable

7 Support Vector Machine
(Supervised)

Indicates hyperplane which separates classes, based on a
similarity measure, can be used as a linear or nonlinear kernel.

1. Fast
2. Relatively memory efficient
3. Works well with clear margin of
separation between classes

1. Difficult to interpret
2. Not suitable for large datasets
3. May need normalization &
scaling

8 Logistic Regression
(Supervised)

The logistic paradigm can be used to model the probability
of a certain class or event happening.

1. Easy to implement and interpret
2. Efficient to train

1. Performs poorly with large no.
of variables
2. Used to predict only discrete
functions
3. Not capture interactions auto-
matically

9 Backpropagation
(Supervised)

Backpropagation is a widely used algorithm for training
feedforward neural networks. It is a reliable tool for
increasing the accuracy of predictions.

1. Fast
2. Simple
3. Easy to analyze
4. Flexible

1. Sensitive to noisy/complex data
2. Performance of backpropagation
depends on input data

10 Deep Learning (ANN)
(Supervised)

Multilayered processing technique that mimics human
neuronal structure. Different types of ANN are CNN or
ConvNet , MLP, RBFN, RNN, etc.

1. No feature engineering
2. Learn complex functions
3. Enhanced Accuracy
4. Scalabale Model

1. Requires extremely large datasets
2. Intensive computational power
3. Difficult to interpret
4. Significant processing time

A comparative analysis of different AI techniques frequently used in Smart cardiology
for the prognosis/diagnosis of various CVDs is given in Table 13.

As suggested by WHO, by 2030 almost 23.6 million individuals will die from heart-
related causes [94]. CVDs are the main cause, but they can be cured and prevented. To
reduce the risk involved, analysis is fundamental. The difficult part is accurate diagno-
sis [95].

Table 14 summarises the most recent work performed in the field of artificial intelli-
gence related to CVDs.
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Table 13. Comparative analysis of various AI techniques used for prognosis/diagnosis of CVDs.

No.

AI Techniques
Used in Smart

Cardiology

Performance Metrics

Cl. Acc Sensitivity Specificity Flexibility Efficiency
Com.
CPLX

Interpretability
Large

Dataset
Handling

Training
Time

Noise
Tolerance

1 DT L Y Y Y Y L H N S N
2 RF H - - Y - L L Y F N
3 NB L Y - Y Y L H Y F Y
4 PCA-KNN H Y Y - - - L - F N
5 SVM H Y Y Y Y H L N S N
6 LR L - - Y Y L H Y F N
7 BP H Y Y Y - - H Y - N
8 DL (ANN) H Y Y Y Y H L Y S Y

PCA-KNN—principal component analysis with K-nearest neighbor; NB—naïve Bayes; RF—random forest;
SVM—support vector machine; LR—logistic regression; DL—deep learning; ANN—artificial neural networks;
BP—backpropagation; Y—yes; S—slow; F—fast; L—low; H—high; N—no.

Table 14. Summary of AI-methodologies and data preprocessing techniques identified for E-
Cardiology, from different studies.

Ref # Year

Findings

AI Methodology
Prognosis/

Diagnosis Task
Types of

CVDs
Cardiac

Parameter/s
Cardiac
Dataset

Preprocessing Task
Data Preprocessing

Techniques
Accuracy

%
Complexity

[94] 2016 DT Coronary Heart
Disease N/A N/A UCI N/A N/A 86.7 M

[96] 2016 BBNN Arrhythmia 5 ECG MIT-BIH Feature Extraction Hermit Basis Function 97 H

[97] 2016 NN Arrhythmia 5 ECG MIT-BIH Denoising DWT 98.91 H
Feature Extraction DWT + PCA

DWT + ICA

[98] 2016 PSO tuned SVM Arrhythmia 12 ECG MIT-BIH Feature Extraction DOST 99.18 H

[99] 2016 NN Arrhythmia 5 ECG MITBIH Feature Extraction DOM 95 M

[100] 2016 RF Arrhythmia 5 ECG MIT-BIH Feature Extraction WPE 94.61 M

[61] 2016 SVM Arrhythmia 2 ECG CT Feature Extraction DWT 98.9 M

[101] 2016 Paired-CNN Coronary Artery
Calcification N/A CCTA CT Feature Extraction ConvNet Sens. = 71 H

[102] 2017 DL Arrhythmia N/A ECG MIT-BIH Feature Extraction AlexNet (DNN) 92 H

[103] 2017 SVM Arrhythmia 4 ECG MIT-BIH Denoising
Feature Extraction Multiresolution DWT 98.39 M

[104] 2017 RBF-NN Arrhythmia 6 ECG MIT-BIH Denoising DWT 99.89 HFeature Extraction EMD Features

[102] 2017 DL Arrhythmia 3 ECG MIT-BIH Feature Extraction Transferred Deep Learning 92 H

[105] 2018 SVM Arrhythmia 3 ECG CUDB
VFDB Feature Extraction FFT 95.9 M

[106] 2018 SVM Arrhythmia 5 ECG MIT-BIH
Denoising Daubechies wavelets

97.77 MNormalization min-max Normalization
Feature Extraction PCANet

[107] 2018 Twin LS-SVM Arrhythmia 16 ECG MIT-BIH Feature Extraction Composite Dictionary
(DOST + DST + DCT) 99.21 H

[108] 2018 MPNN Arrhythmia 3 ECG MIT-BIH Denoising Daubechies wavelet 99.07 H
Feature Extraction Multiresolution DWT

MPNN

[109] 2018 DL Arrhythmia 5 ECG MIT-BIH Normalization Z-score normalization 98.10 HFeature Extraction CNN and LSTM

[110] 2018 DL Arrhythmia 2 ECG MIT-BIH Feature Extraction DNN 99.68 M

[111] 2018 DBN Arrhythmia 5 ECG MIT-BIH N/A N/A 95.57 H

[91] 2018 DNN Arrhythmia N/A CCTA CT Feature Extraction DNN Sens. = 82.3 H

[71] 2019 CNN Arrhythmia 4 ECG CT
MIT-BIH Feature Extraction CNN 94.96

95.73 M

[112] 2019 MPNN-BP Heart Disease 5 ECG UCI N/A N/A 97.5 H

[93] 2019 DNN Arrhythmia 12 ECG CT Denoising
Feature Extraction DNN ROC = 97

F1 = 83.7 H

[68] 2019 Hybrid Model Heart Disease 8 ECG, HR, BP CT
Data Cleaning

Denoising Numerical Cleaner Filter 98 H
Feature Selection SFS
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Table 14. Cont.

Ref # Year

Findings

AI Methodology
Prognosis/

Diagnosis Task
Types of

CVDs
Cardiac

Parameter/s
Cardiac
Dataset

Preprocessing Task
Data Preprocessing

Techniques
Accuracy

%
Complexity

[113] 2020 CNN-KCL Myocarditis N/A ECG ZAS Outlier Anomaly K-means clustering 92.3 HK-means clustering CNN

[114] 2020 CNN Myocardial Infarction N/A ECG PTB
Data Augmentation

Segmentation
Feature Extraction

CNN 99.02 H

[115] 2020 DNN Arrhythmia 6 ECG TNMG N/A N/A F1 = 80
Spec. = 99 H

[72] 2020 TWSVM Arrhythmia 16 ECG CT
MIT-BIH Feature Extraction DWT 95.68 H

[78] 2020 DHCAF
MCHCNN Arrhythmia 5 ECG, HR CT

MIT-BIH
Denoising Daubechies wavelet-4 91.4

93 HFeature Extraction HWT

[116] 2021 E-D CNN-SVM Myocardial Infarction N/A ECHO HMC-QU Featuring Engineering CNN 80.24 H

[117] 2021 RF, NB Coronary Heart
Disease N/A N/A OR N/A N/A 83.85 (RF)

82.35 (NB) M

[118] 2021 AI Cardiac Amyloidosis N/A ECG MC Feature Extraction DNN 90 N/A

[119] 2021 CNN Heart Failure N/A N/A CT Feature Selection LASSO Regression 97 H

H—high; M—medium; N/A—not available; DL—deep learning; MPNN-BP—multilayer perceptron neural
network-backpropagation; RF—random forest; WPE—wavelet packet entropy; CNN—convolutional neural
network; CL—K means clustering; ZAS—Z alizadeh; PTB—physikalisch technische bundesanstalt; NB—naive
Bayes; FFT—fast fourier transform; DNN—deep neural network; SVM—support vector machine; NN—neural
networks; BBNN—block-based neural network; MC—Mayo Clinic; HWT—haar wavelet transform; EMD—
empirical mode decomposition; RBNN—radial basis function neural network; OCAD—obstructive coronary
artery disease; DBN—deep belief networks; ROC—receiver operating characteristic curve; DHCAF—dynamic
heartbeat classification; SFS—sequential forward transform; DOST—discrete orthogonal stockwell transform;
DOM—difference operation method; CCTA—cardiac CT angiography; PSO—particle swarm optimization;
CUDB—Creighton University database; VFDB—ventricular fibrillation database; LS—SVM-least square SVM;
OR—online repository; DBN—deep belief networks; ROC—receiver operating characteristic curve; DWT—
discrete wavelet transform; DHCAF—dynamic heartbeat classification with adjusted features; MCHCNN—multi-
channel heartbeat convolutional neural network.

5.3.2. Data Preprocessing Techniques in E-Cardiology

This section identifies and evaluates studies that applied data preprocessing techniques
in cardiac disease classification. Data Preprocessing (DP) in AI is a critical stage that
enhances the quality of data to achieve meaningful insights and is the initial step in the
development of an AI model. Conventionally, real-world data is not in an appropriate
format and contains errors or outliers. It usually lacks specific attribute values/trends,
thus resulting in an inadequate AI model. Data preprocessing solves this problem by
cleaning and organizing raw data to tailor it to the needs of building and training AI
models. Hence, data preprocessing in AI is a data mining approach that reshapes raw
data into a readable format that is readily available for an AI model to meet the high
standards of performance [120]. Consequently, the algorithm can easily interpret the data’s
features.There are four primary ways of data preprocessing, i.e., (1) data cleaning, (2) data
integration and formatting, (3) data transformation, and (4) data reduction.

Different preporocessing techniques used in past studies for diagnosing heart disease
and other types of arrhythmia are also mentioned in Table 14, along with AI models. This
table also lists the task performed by the preprocessing technique.

5.4. RQ 4: What Are the Major Issues and Challenges in Current E-Cardiology?

After conducting comprehensive research, we identified some significant benefits and
major challenges in the field of MIoT to answer our RQ 4. These challenges and benefits
have been emphasized on the basis of studies conducted by different researchers in the
domain of MIoT and E-Cardiology. Based upon selection and rejection criteria, only valid
and reliable papers were selected, as mentioned earlier. We incorporated only the latest
benefits and challenges that were found to be unique in the domain of IoT and AI regarding
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healthcare and cardiology. A pictorial representation of these benefits and challenges is
shown in Figure 4.

Figure 4. Benefits and challenges of E-Cardiology.

5.4.1. Benefits of E-Cardiology

Internet of Things (IoT) develops a linkage between “things”, such as devices, gadgets,
vehicles, and sensors. Likewise, the medical Internet of Things (MIoT)-based cardiovas-
cular healthcare system monitors the physical symptoms [5] of cardiac patients at a very
reasonable cost. These physical symptoms include temperature, blood pressure (BP), SPO2,
and heartbeat, along with ECG [6] and associated numerical measurements. Significant
benefits of IoT-based cardiology from various studies are noted in Table 15.

Table 15. Key issues and major benefits of IoT-based cardiology.

Ref # Year

Findings

Key Challenges and Barriers
of E-Cardiology with IoT

Data Related Issues
Benefits of IoT-Based

E-Cardiology

[121] 2016
Security, Interoperability
Unintended Behavior,
Device Vulnerability

Privacy
Consistency
Integration

Cost Reduction
Clinical Continuity
Quality Life, Telemedicine

[122] 2016
Security, Interoperability
Complexity, Scalability
Device Vulnerability

Privacy
Cost Reduction
Clinical Continuity
Automation, Time Saving

[123] 2017

Security
Energy Consumption
Network Latency
Intelligence in Medical Care
System Predictability

Privacy
Real-Time Processing

Cost Reduction
Clinical Continuity,
Automation,
Time Saving,
Quality Life, Telemedicine

[124] 2018
Security, Interoperability
Energy Consumption
Network Latency

Privacy
Ubiquitous Access, Quality Life
Cost Reduction, Time Saving
Reduced Hospital Visits

[11] 2019
Security, Interoperability
Energy Consumption
Internet Bandwidth

Privacy N/A
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Table 15. Cont.

Ref # Year

Findings

Key Challenges and Barriers
of E-Cardiology with IoT

Data Related Issues
Benefits of IoT-Based

E-Cardiology

[125] 2019 Security
Heterogeneity

Privacy, Reliability, Utility
Validity, Generalizability
Integrity, Objectivity,
Data Overload,
Completeness, Relevance

Personalized, Predictive,
Participatory, Preventative,
Persuasive, Perpetual,
Programmable (7P)

[126] 2019 Security
Unintended Behavior

Privacy,
Confidentiality

Ubiquitous Access
Cost Reduction
Clinical Continuity
Improved Accuracy
Quality Life, Telemedicine

[127] 2019 Security
Scalability

Privacy
Data Overload

Ubiquitous Access
Cost Reduction,
Clinical Continuity
Automation, Time Saving
Quality Life Telemedicine

[128] 2019

Security
Context-aware Computing
Interoperability
Energy Consumption

Privacy N/A

[129] 2020

Unobtrusiveness
Energy Consumption
Quality of Service
Scalabilty, Fixation
Patient Indentification
Body Impact on Signal Propagation

Reliability
Integrity
Data Protection
Data Representation
Accuracy

N/A

[130] 2020
Energy Consumption, Storage
Patient’s discomfort caused
by Sensors

Privacy
Data Overload
Noise

Flexibility
Clinical Continuity
Remote Monitoring

[131] 2020 Security

Privacy
Confidentiality
Integrity, Data Loss
Aval1abilty Compromise

Remote Monitoring
Cost Reduction, Time Saving
Better Diagnostics
Improved Clinical Infrastructure

[132] 2020

Security
Mobility
Heterogeneity
Legal Aspects

Privacy N/A

[133] 2021 Security, Scalability N/A Efficient, Cost Effective

[134] 2021

Security
Scalability
Interoperability,
Energy Consumption,
Low Latency Tolerance

Privacy
Computational Intensity

Ubiquitous Access
Time Saving, Cost Reduction
Telemedicine, Quality Life
Clinical Continuity
Easy Usge

A comparison of some key factors in Smart cardiac care are shown in Table 16.
Artificial intelligence (AI) is another significant aspect of E-Cardiology. Until now,

AI in cardiac electrophysiology has exhibited promising results. Primary advantages of
AI-based cardiology are discussed in Table 17.

Table 16. Comparison of the existing evaluation factors in the Smart cardiac care.

Ref # Year Security Privacy Complexity Integration Reliability
System

Predictability
Interoperability Scalability Heterogeneity

Energy
Consumption

Network
Latency

[122] 2016 � � � � � � � � � � �

[121] 2016 � � � � � � � � � � �

[135] 2017 � � � � � � � � � � �

[123] 2017 � � � � � � � � � � �

[124] 2018 � � � � � � � � � � �

[11] 2019 � � � � � � � � � � �

[126] 2019 � � � � � � � � � � �

[127] 2019 � � � � � � � � � � �

[125] 2019 � � � � � � � � � � �
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Table 16. Cont.

Ref # Year Security Privacy Complexity Integration Reliability
System

Predictability
Interoperability Scalability Heterogeneity

Energy
Consumption

Network
Latency

[128] 2019 � � � � � � � � � � �

[129] 2020 � � � � � � � � � � �

[130] 2020 � � � � � � � � � � �

[131] 2020 � � � � � � � � � � �

[132] 2020 � � � � � � � � � � �

[133] 2021 � � � � � � � � � � �

[134] 2021 � � � � � � � � � � �

�—parameter mentioned; �—parameter not mentioned.

Table 17. Key challenges and primary benefits of AI-based cardiology.

Ref # Year
Findings

Key Challenges and Barriers for E-Cardiology with AI Benefits of AI in E-Cardiology

[136] 2016

Safety and transparency
Algorithmic fairness and biases, Complexity
Data privacy and information security
Need for infrastructure, High quality data
Public perceptions about AI, Informed consent

Better diagnosis, better services
Improves quality of services
Time saving
Reduced treatment cost

[137] 2019

Fitting confounders accidentally versus actual signal,
Generalizability, Algorithmic bias
Possibility of adversarial attack
Logistical challenges in deploying AI systems
Robust and rigorous quality assurance
Traditional reluctance to switch from existing model
to AI model in healthcare
Algorithmic accountability
To develop a relation between physicians and human-centered AI tools

N/A

[138] 2019
Data privacy, Accountability
Algorithmic bias
Adaptability, Complexity

Improved healthcare
Better diagnosis
High accuracy

[139] 2019
Privacy and discrimination
Dynamic information and consent
Transparency and ownership

Speedy imaging, Increased efficiency
Greater insight into predictive screening
Decreased healthcare cost

[140] 2020
Respect for autonomy
Beneficence
Non-maleficence and justice

Lower cost
Improved diagnosis and treatment

[141] 2021

Safety, Privacy and security threats
Ethical challenges
Regulatory and policy challenges
Availability of quality data and Lack of data standardization
Distribution shifts
Upgrading hospital infrastructure

Disease prediction and diagnosis
Better image interpretation
Real-time monitoring

[142] 2021

Sometimes data reflects inherent biases and disparities
Huge dataset requirement
Patient’s confidentiality
Potential to be detrimental

Improved decision making
Improved precision and predictability
Intraoperative guidance via video

5.4.2. Challenges of E-Cardiology

Internet of Things (IoT) comes with various challenges as shown in Table 15. In
addition to these challenges, ref. [129] proposed some other vital challenges, such as
fixation of sensors, body impact on signal propagation, and synchronization, that may
affect critical health services such as cardiac care. The MIoT-based healthcare systems are
expected to produce a vast amount of data. Moreover, these sensors and devices are linked
through networks, thus enabling real-time transmission of data. Therefore, hackers may
attempt to target it. Moreover, the timely availability of medical data will affect the patient’s
life. Consequently, it is crucial to have real-time information with lower latency over the
network [124].

Artificial intelligence (AI) has brought a revolution in the field of healthcare. It
has especially made a great contribution in the domain of cardiac care, such as timely
prediction and diagnosis of cardiovascular diseases (CVDs), ECG analysis, and arrhythmia
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classification. However, despite all these milestones, it carries some challenges. Table 17
describes critical issues and challenges of AI-based cardiology from different past studies.

It is hoped that these challenges can be met and that through MIoT and AI we can
achieve new levels of technical and medical standards in the field of cardiac healthcare.

6. Discussion

Figure 5 shows the distribution of the selected studies (104 papers) according to our
four research questions (RQs). The pie chart shows that 47 studies overlap RQ1 and RQ2,
whereas 33 studies address RQ3 and 24 address RQ4.

Figure 5. Statistical analysis of reviewed papers in terms of formulated RQs.

The outcomes of this systematic literature review suggest a noticeable increase in the re-
search conducted in IoT using artificial intelligence in E-Cardiology. The research activities
also incorporate monitoring CCU parameters, ECG analysis, and diagnosis/classification
of various heart diseases. This extensive review study reveals that IoT sensors utilized
for E-Cardiology are based upon analog sensors, digital sensors, and different wearable
sensors or device modules. For fitness tracking and health monitoring activities, a variety
of ready-made and wearable watches are also available. E-Cardiology patients can use a
variety of wearable gadgets to track various cardiac healthcare characteristics. To estab-
lish expert E-Cardiology systems, several communication technologies and protocols for
transmissions over a defined range need to be instituted and maintained. Our findings on
communication technologies and protocols for the implementation of IoT-based cardiovas-
cular healthcare monitoring and detection systems show that the following technologies
provide viable tools to use in MIoT systems: Bluetooth (BL/BLE), ethernet, global system
for mobile (GSM), global positioning system (GPS), global packet radio service (GPRS),
message queuing telemetry transport (MQTT), short message service (SMS), email, zigbee,
transmission control protocol/Internet protocol (TCP/IP), wireless fidelity (Wifi), security
protocols, broadband/Internet, cloud, Smart cars, Smart phones/computers, etc. Our
findings show that deep learning is often used in cardiac imaging procedures, particularly
in echocardiography [88]. Furthermore, CNNs have been evaluated and found useful
in calculating coronary artery calcium in cardiac CT angiography [101]. Though deep
learning techniques are garnering attention in the field of Smart cardiology, we may infer
that instead of depending on a particular AI model, hybrid techniques are expected to
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produce better results. From the results of our study, it may also be inferred that SVM was
more frequently used in cardiac care than was deep learning. However, in recent years,
deep learning has emerged as a more powerful and reliable tool for the detection and
diagnosis of various heart diseases. It was also noted that data reduction appears to be a
major concern of researchers when applying data mining/data preprocessing approaches
to predict CVD. This literature review includes 24 studies devoted to major issues and
challenges in E-Cardiology. These studies conclude that a major benefit of MIoT in cardiac
healthcare is that it generates timely and accurate data, which results in better healthcare
outcomes. One vital advantage of using ML techniques is the ability to fuse various types
of data [143]. We also assessed the results and noted that mIoT devices do not possess the
requisite data protocols and standards [131]. Therefore, many issues must be addressed to
ensure IoT privacy and security [144,145], which is one of the major challenges of the IoT
era. Moreover, the continuous monitoring of critical indicators requires reduced energy
consumption and a longer battery life [146] to prevent a break of communication. This
is also one of the significant challenges of MIoT. The medical data gathered using MIoT
is seldom standardized and often fragmented. The data in legacy IT systems are usually
generated with incompatible formats. Thus, the great challenge of interoperability needs to
be addressed as well [124,147]. However, to move forward in the field of MIoT, fearing AI
is no option.

Instead, we should work toward the smooth digitization of healthcare infrastruc-
ture [148]. Obviously, various benefits of AI cannot be implemented and utilized correctly
without integrating AI into clinical decision making effectively and responsibly [149].

Figure 6 refers to the research work conducted based on the number of papers per
annum. It shows the year-wise trends in publications in the field of E-Cardiology. It also
indicates that the maximum number of papers selected for this survey was from 2019.

6.1. Gaps, Future Recommendations

In a future work, all the vital cardiac parameters can be combined with an intelligent
cardiac care unit (CCU) to develop a complete picture of E-Cardiology. These param-
eters/indicators may be comprised of temperature, blood pressure, oxygen saturation,
heart rate, and ECG analysis. In addition, in differentiating between normal and abnormal
heartbeats, a Smart CCU can also be used to detect QRS complexes in electrocardiographic
(ECG) signals to determine the presence of a cardiac malady and different arrhythmias.
Integrated and wearable IoT solutions, which address all the necessary cardiac parameters
of a heart patient, need to be implemented. The results and accuracy of the devices/sensors
used in the development of an IOT-based cardiac system cannot be compromised. The
implemented system must be tested, evaluated, and approved under the supervision of
cardiologists. Advanced communication technologies, including secure network protocols,
must be implemented. Data accessibility features, such as widespread data access, must be
possible in a secure environment so that the data confidentiality and integrity are main-
tained. Ubiquitous access is also an important factor and can be achieved by storing the
digital data on a cloud server.

6.2. Limitations of the Review Study

This review of literature has some limitations. First, many papers were conference
proceedings; therefore some parameters remained inaccessible since their authors did not
mention them in detail. Second, some of the studies on AI-based IoT architecture in cardiac
healthcare could not be located even after following a comprehensive search protocol, such
as gray literature and reports that were not published in the databases which we selected
for review. Therefore, we suggest that an additional systematic study be conducted to cover
the related literature from other important databases.
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Figure 6. Year-wise trends in publications in the field of E-Cardiology.

7. Conclusions

This review study outlines a total of 104 primary studies from 2016 to 2021 based on our
filtering process for supporting the proposed research. Quality assessment of the selected
studies was conducted for the formulated research questions after a rigorous analysis.

This work mentions different sensors and communication technologies being used in
cardiology. Moreover, this review study also describes various preprocessing techniques
and AI algorithms used in the existing studies to diagnose and classify CVD and ECG
analysis. This systematic review also provides comparative analysis of various existing
techniques in the field of AI, medical sensors, and communication technologies. Finally, this
study targets various advantages and issues indicated in the existing literature in the field
of E-Cardiology. The interaction of MIoT and artificial intelligence makes cardiac healthcare
more manageable by making various applications, services, communication protocols, third
party APIs, and IoT sensors available. E-Cardiology guarantees more privacy and security
to the IoT devices which are prone to hackers. Furthermore, AI-based diagnosis of various
cardiovascular diseases in E-Cardiology helps save time, enabling cardiologists to focus
more on treatment. This systematic work presents a review protocol to analyse how IoT
applications assist cardiac healthcare and how various artificial intelligence (AI) models
contribute to present and prospective research work of IoT in E-Cardiology. This study
also indicates how different communication technologies bring privacy and security to IoT
devices related to cardiac healthcare. The purpose of this paper is to highlight the influence
of IoT, communication technologies, and AI techniques in cardiac healthcare in light of our
systematic literature review protocol. Therefore, one can say that this systematic review
covers the complete and latest infrastructure of E-Cardiology, along with its benefits and
challenges which have not been examined before in such a comprehensive way.
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Appendix A

Selected Literature

Summary of the selected literature consisting of 104 papers used in this systematic
literature review is given in the Table A1.

Table A1. Selected Literature.

Sr.# Ref# Year Paper Title

1 [17] 2016 Smart Real-Time Healthcare Monitoring and Tracking System using GSM/GPS Technologies

2 [58] 2016 Internet of Medical Things for Cardiac Monitoring: Paving The Way to 5G Mobile Networks

3 [59] 2016 IOT on Heart Attack Detection and Heart Rate Monitoring

4 [85] 2016 Heart Rate Monitoring System Using Finger Tip Through Arduino and Processing Software

5 [60] 2016 iCarMa: Inexpensive Cardiac Arrhythmia Management—An IoT Healthcare Analytics Solution

6 [94] 2016 Efficient Heart Disease Prediction System

7 [96] 2016
A new personalized ECG Signal Classification Algorithm using Block-based Neural Network
and Particle Swarm Optimization

8 [97] 2016 Arrhythmia Recognition and Classification using Combined Linear and Nonlinear Features of ECG Signals

9 [98] 2016 Cardiac Arrhythmia Beat Classification Using DOST and PSO Tuned SVM

10 [99] 2016 High Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal

11 [100] 2016 ECG Classification Using Wavelet Packet Entropy and Random Forests

12 [101] 2016
Automatic Coronary Artery Calcium Scoring in Cardiac CT Angiography using paired
Convolutional Neural Networks

13 [61] 2016 ECG Signal Analysis and Arrhythmia Detection on IoT Wearable Medical Devices

14 [122] 2016 Study of IoT: Understanding IoT Architecture, Applications, Issues and Challenges

15 [121] 2016 Always Connected: The Security Challenges of the Healthcare Internet of Things

16 [136] 2016 Exploratory Study of Artificial Intelligence in Healthcare

17 [37] 2017 The IoT-based Heart Disease Monitoring System for Pervasive Healthcare Service

18 [62] 2017 Heartbeat Sensing and Heart Attack Detection using Internet of Things: IoT

19 [19] 2017 A Novel Cardiac Arrest Alerting System using IOT

20 [29] 2017 A Wearable Multiparameter Medical Monitoring And Alert System With First Aid

21 [63] 2017 Design And Implementation Of Low Cost Web Based Human Health Monitoring System Using Raspberry Pi 2

22 [64] 2017 Ultra-Low Power, Secure IoT Platform for Predicting Cardiovascular Diseases

23 [39] 2017 IOT Based Detection of Cardiac Arrythmia With Classification

24 [150] 2017 Student Research Abstract: A Novel IoT-based Wireless System to Monitor Heart Rate

25 [151] 2017 Cardiac Scan: A Non-contact and Continuous Heart-based User Authentication System

26 [102] 2017 Cardiac Arrhythmia Detection using Deep Learning

27 [103] 2017
Multiresolution Wavelet Transform based Feature Extraction and ECG Classification to Detect Cardiac
Abnormalities

28 [104] 2017 ECG beat Classification using Empirical Mode Decomposition and Mixture of Features

29 [123] 2017 Internet of Medical Things (IOMT): Applications, Benefits and Future Challenges in Healthcare Domain

30 [152] 2018 Social Assistive Robot for Cardiac Rehabilitation: A Pilot Study with Patients with Angioplasty

31 [153] 2018 Impact of a Mobile Cycling Application on Cardiac Patients’ Cycling Behavior and Enjoyment

32 [65] 2018 Pulse Oximetry and IOT based Cardiac Monitoring Integrated Alert System
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Table A1. Cont.

Sr.# Ref# Year Paper Title

33 [66] 2018 Detection of Cardiac Arrest Using Internet of Things

34 [18] 2018 Heart Attack Detection and Heart Rate Monitoring Using IoT

35 [38] 2018 IoT Based Continuous Monitoring of Cardiac Patients using Raspberry Pi

36 [20] 2018 Healthcare Monitoring System Based on Wireless Sensor Network for Cardiac Patients

37 [24] 2018 Heart Attack Detection By Heartbeat Sensing using Internet Of Things: IoT

38 [67] 2018 Real-Time Monitoring and Detection of “Heart Attack” Using Wireless Sensors and IoT

39 [105] 2018
Diagnosis of Shockable Rhythms for Automated External Defibrillators using a Reliable Support Vector
Machine Classifier

40 [106] 2018
Automatic Recognition of Arrhythmia based on Principal Component Analysis Network and Linear Support
Vector Machine

41 [107] 2018 Automated Recognition of Cardiac Arrhythmias using Sparse Decomposition over Composite Dictionary

42 [108] 2018
A Novel Adaptive Feature Extraction for Detection of Cardiac Arrhythmias using Hybrid technique MRDWT &
MPNN Classifier from ECG Big Data

43 [109] 2018
Automated Diagnosis of Arrhythmia using Combination of CNN and LSTM Techniques with Variable Length
Heart Beats

44 [110] 2018 A Deep Learning Approach for ECG-based Heartbeat Classification for Arrhythmia Detection

45 [111] 2018 A Novel Application of Deep Learning for Single-Lead ECG Classification

46 [91] 2018
Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT A Multicenter
Study

47 [124] 2018 Deploying Internet of Things in Healthcare: Benefits, Requirements, Challenges and Applications

48 [28] 2019 A Study on Heart Attack Detection by Heartbeat Monitoring Using IoT

49 [25] 2019 An Energy Efficient Wearable Smart IoT System to Predict Cardiac Arrest

50 [26] 2019 IoT Based Heart Attack Detection, Heart Rate and Temperature Monitor

51 [40] 2019 IoT based Diagnosing Myocardial Infarction through Firebase Web Application

52 [21] 2019 A Real-time Cardiac Monitoring using a Multisensory Smart IoT System

53 [68] 2019 An IoT based Efficient Hybrid Recommender System for Cardiovascular Disease

54 [69] 2019
Utilizing IoT Wearable Medical Device for Heart Disease Prediction using Higher Order Boltzmann Model: A
Classification Approach

55 [30] 2019 The Cardiac Disease Predictor: IoT and ML Driven Healthcare System

56 [70] 2019 Machine Learning and IoT-based Cardiac Arrhythmia Diagnosis using Statistical and Dynamic Features of ECG

57 [71] 2019 Artificial Intelligence of Things Wearable System for Cardiac Disease Detection

58 [112] 2019 Neural Network Based Intelligent System for Predicting Heart Disease

59 [93] 2019
Cardiologist-level Arrhythmia Detection and Classification in ambulatory Electrocardiograms using a Deep
Neural Network

60 [126] 2019 IoT Healthcare: Benefits, Issues and Challenges

61 [127] 2019
IoT, an Emerging Technology for Next Generation Medical Devices in Support of Cardiac Health Care—A
Comprehensive Review

62 [11] 2019 IoT Technology, Applications and Challenges: A Contemporary Survey

63 [128] 2019 Internet of Things applications: A Systematic Review

64 [125] 2019 Smart Healthcare in the Era of Internet-of-Things

65 [130] 2019 Challenges and opportunities in IoT Healthcare Systems: A Systematic Review

66 [138] 2019 AI in Healthcare: Ethical and Privacy Challenges

67 [137] 2019 Key Challenges for Delivering Clinical Impact with Artificial Intelligence

68 [139] 2019 Healthcare uses of Artificial Intelligence: Challenges and Opportunities for Growth

69 [149] 2019 Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications

70 [72] 2020 An Efficient IoT-Based Platform for Remote Real-Time Cardiac Activity Monitoring

71 [86] 2020 IOT Based Heart Attack Detection & Heart Rate Monitoring System
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72 [73] 2020 Remote Health and Monitoring, Heart Attack Detection and Location Tracking System with IoT

73 [74] 2020 IOT Based Heart Attack and Alcohol Detection in Smart Transportation and Accident

74 [75] 2020
HealthFog: An Ensemble Deep Learning based Smart Healthcare System for Automatic Diagnosis of Heart
Diseases in Integrated IoT and Fog Computing Environments

75 [27] 2020 IoT based Health Care Monitoring Kit

76 [76] 2020
Automated Detection of Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet
Transform Based Features

77 [22] 2020 IoT Based Real-Time Remote Patient Monitoring System

78 [77] 2020 Design, Fabrication, and Testing of an IoT Healthcare Cardiac Monitoring Device

79 [78] 2020 A Framework for Cardiac Arrhythmia Detection from IoT-based ECGs

80 [79] 2020 SAREF4health: Towards IoT Standard-based Ontology-Driven Cardiac E-health Systems

81 [23] 2020 An IoT Patient Monitoring Based on Fog Computing and Data Mining: Cardiac Arrhythmia Usecase

82 [113] 2020
CNN-KCL: Automatic Myocarditis Diagnosis using Convolutional Neural Network Combined with K-means
Clustering

83 [114] 2020
Detection of Myocardial Infarction Based on Novel Deep Transfer Learning Methods for Urban Healthcare in
Smart Cities

84 [115] 2020 Automatic Diagnosis of the 12-lead ECG using a Deep Neural Network

85 [129] 2020 Internet of Things Based Distributed Healthcare Systems: A Review

86 [131] 2020 IoT-Enabled Healthcare: Benefits, Issues and Challenges

87 [132] 2020 A Comprehensive Review on the Emerging IoT Cloud based Technologies for Smart Healthcare

88 [140] 2020 Ethical Challenges of Integrating AI into Healthcare

89 [80] 2021 Monitoring Patients to Prevent Myocardial Infarction using Internet of Things Technology

90 [81] 2021 Filtering the ECG Signal towards Heart Attack Detection using Motion Artifact Removal Technique

91 [82] 2021 Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management

92 [83] 2021 AMBtalk: A Cardiovascular IoT Device for Ambulance Applications

93 [84] 2021 Predicting Cardiovascular Events with Deep Learning Approach in the Context of the Internet of Things

94 [41] 2021 IoT Based Wearable Monitoring Structure for detecting Abnormal Heart

95 [154] 2021 An Advanced Patient Health Monitoring System

96 [155] 2021 Development of Smart Health Monitoring System using Internet of Things

97 [116] 2021 Early Detection of Myocardial Infarction in Low-Quality Echocardiography

98 [119] 2021 Prediction of Heart Disease Using Deep Convolutional Neural Networks

99 [117] 2021 AI-Based Smart Prediction of Clinical Disease Using Random Forest Classifier and Naive Bayes

100 [118] 2021 Artificial Intelligence Enhanced Electrocardiogram for the Early Detection of Cardiac Amyloidosis

101 [133] 2021 IOT in Healthcare: Challenges, Benefits, Applications and Opportunities

102 [134] 2021 A Survey on IoT Smart Healthcare: Emerging Technologies, Applications, Challenges, and Future Trends

103 [141] 2021 Secure and Robust Machine Learning for Healthcare: A Survey

104 [142] 2021 AI in Healthcare: Medical and Socio-Economic Benefits and Challenges
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Abstract: Point clouds are one of the most widely used data formats produced by depth sensors.
There is a lot of research into feature extraction from unordered and irregular point cloud data. Deep
learning in computer vision achieves great performance for data classification and segmentation of
3D data points as point clouds. Various research has been conducted on point clouds and remote
sensing tasks using deep learning (DL) methods. However, there is a research gap in providing a
road map of existing work, including limitations and challenges. This paper focuses on introducing
the state-of-the-art DL models, categorized by the structure of the data they consume. The models’
performance is collected, and results are provided for benchmarking on the most used datasets.
Additionally, we summarize the current benchmark 3D datasets publicly available for DL training
and testing. In our comparative study, we can conclude that convolutional neural networks (CNNs)
achieve the best performance in various remote-sensing applications while being light-weighted
models, namely Dynamic Graph CNN (DGCNN) and ConvPoint.

Keywords: point clouds; deep learning; remote sensing

1. Introduction

The light detection and ranging (LiDAR) mapping generate precise spatial information
about the shape and surface components of the Earth. Advancements in LiDAR mapping
systems and their technologies have been proven to examine natural and manmade envi-
ronments across various scales with higher accuracy, precision, and flexibility [1]. LiDAR
Remote sensing provides an accurate 3D representation of scanned areas with many fea-
tures that provide great performance for various applications. Such applications include
Digital Elevation Model (DEM), Digital Surface Model (DSM), and Digital Terrain Model
(DTM) generation, which, combined with intensity data, achieve excellent performance
in urban land cover classification [2]. Some other urban applications include pavement
crack detection [3], collapsed building detection [4], road markings and fixtures extraction
and classification [5], cultural heritage classification [6], and change detection [7]. Because
LiDAR is sensitive to variations in vertical vegetation structure, it makes it very effective
for natural resources [8] and forest applications [7], such as tree species classification [9].
Additionally, full-waveform LiDAR adds more advantages to using LiDAR in forestry
applications [10].

Various deep learning models have been developed with outstanding performance for
data classification on point cloud datasets in multiple applications. Existing deep learning
methods for point cloud classifications involve architectures based on the traditional neural
network, the Multi-Layer Perceptron (MLP). These models are called PointNet-Based as
they build on the pioneering work of PointNet [11]. PointNet is a great performer that is
very lightweight but suffers from local information loss. Global features are features of a
scene, object, or image that describe it as a whole, compared to local features that are ex-
tracted at different points and represent patches of the scene or image [12]. PointNet++ [13]
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mitigates the loss by building a feature aggregation pyramid to learn hierarchically, sim-
ilar to how a traditional Convolutional network learns. One of the biggest challenges
of using LiDAR point clouds in deep learning is the unstructured shapes of the point
cloud data; a convolutional kernel that works on uniform grid-structured data cannot be
directly applied to the raw point cloud. A convolutional neural network can better capture
spatial features, which performs better than a traditional neural network while being more
lightweight than most handcrafted models. The convolutional neural network is structured
as a convolution layer, non-linearity, e.g., Rectified linear unit (ReLU), and pooling layers to
distil features from low-level to high-level [14]. Applying CNNs on point clouds involves
the 2D projection of the point cloud to obtain images that can then be fed into traditional
convolution layers in a convolutional neural network. Another approach is resampling or
restructuring the point cloud into uniform volumetric grids using occupancy functions and
3D convolutional layers to create the CNN or to design novel convolutional layers that can
operate on pointsets and the custom convolution operation to build the CNN.

This paper provides a roadmap for current DL deep learning models for LiDAR point
cloud classifications in remote sensing. Existing deep learning methods can be classified
as projection-based and point-based models. Each category enjoys specific characteristics;
however, they show some limitations. Thus, this paper summarizes the significant subcate-
gories: 2D projection, Multiview projection, voxelization, Convolutional-based networks,
and graph convolutional networks. Additionally, we cover some examples that encompass
most of the fundamentals within each subcategory. Remote sensing applications require
different datasets or workflows; thus, we cover some examples from remote sensing that
employ or build upon computer vision models. Our comparative analysis shows that
DGCNN and ConvPoint have shown the best performance in various remote-sensing
applications while being light-weighted models. The rest of this paper can be organized as
Section 2 focuses on LiDAR point cloud data and processing overview, Section 3 introduces
the primary computer vision deep learning models that are often used to classify 3D data,
and Section 4 presents Point cloud computing tasks that are common in remote sensing
applications, Section 5 introduces the benchmark 3D datasets used in training and testing
of deep learning models grouped as objects, indoor, arial scanned, mobile scanned, and
terrestrial scanned datasets, Section 6 shows the evaluation metrics commonly used to
measure and benchmark model performance; Section 7 provides a comparative analysis
of existing models on different datasets for different classification tasks. Finally, Section 8
concludes the paper.

2. LiDAR Point Clouds

A typical LiDAR system in remote sensing uses a laser, Global Positioning System
(GPS) and an Inertial Measurement Unit (IMU) to approximate the heights of objects on
the ground. Discrete LiDAR data are generated; each point represents high energy points
along with rebounded energy. Discrete LiDAR points contain each point’s x, y, and z values.
The z value is used to obtain height. The LiDAR data can estimate surface structures with
various methods [15]. The raw LiDAR data are delivered as points, known as point clouds,
that can be further processed to create Digital Elevation Models (DEMs) or Triangulated
Irregular Networks (TINs) [1]. Point data are commonly stored in LAS (LASer) format,
regarded as an industry standard that contains information in a binary file specific to the
LiDAR nature of data without being complex [15]. The LiDAR data can also contain other
information such as the intensity of the rebounds, the point classification (if applicable),
number of returns, time, and source of each point [1,15]. LiDAR scanners use a laser pulse
to measure the distance from the sensor using the time for the laser pulse to return in the
case of time-of-flight sensors (Figure 1a) [16] or using the triangulation angle on the optical
sensor for triangulation-based scanners (Figure 1b) [17]. The LiDAR scanners then generate
an [x, y, z] position relative to the sensor’s locations based on the distance from the sensor
and the degrees of rotation of the sensor, such as pitch, roll, and yaw [18]. Most LiDAR
sensors also measure the intensity of the return signal, which can be used to differentiate
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between different surface types with different reflectivity [1]. Additionally, the sensor
is often paired with a GPS and an IMU to capture data required for georeferencing and
mapping of the point cloud.

 

 
Figure 1. Time of Flight LiDAR sensor calculation (a) [16] and triangulation-based LiDAR calculation
(b) [17].

For supervised classification, a significant challenge when working on LiDAR point
clouds is the variation in density inherent in the nature of the data. The density of similar
objects is also varied, as it depends on the speed of the vehicle mounting the sensor. Some
areas will be too dense and expensive to process, requiring some form of downsampling.
Other regions of a point cloud will have few or no points present. Additionally, for LiDAR
point clouds that include intensity values, the intensity of the same object could be affected
by different conditions and result in the same object having slightly different intensities [18].

3. Point Cloud Computing

Remote sensing data go through multiple processing steps to generate information
that can be consumed for production. Over the past few years, deep learning has been
applied to almost all remote sensing data processing aspects. Most notably, classification
and segmentation tasks. Regarding remote sensing 3D LiDAR point clouds, there is limited
interest in whole scene classification and more in semantic classification or segmentation
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tasks. Some other examples of deep learning tasks tackled by deep learning include change
detection, registration, fusion, and completion.

Traditionally, deep learning classification describes classifying an entire scene or an
object as belonging to a specific class as a whole. One example of classification tasks that
use 3D point clouds in remote sensing is the classification of tree species or roof types
previously segmented. However, remote sensing classification tasks involve semantic
classification and segmentation rather than aiming to identify an entire scene or object to
a single class. A significant example of semantic classification is Land use/Land cover
classification of Terrestrial and Arial Laser scanned (TLS/ALS) data. Segmentation divides
and assigns the data into different target classes and is split into three types, semantic,
instance, and panoptic segmentation [19]. Semantic segmentation assigns every point/pixel
from the input data to one of the target classes without distinguishing different objects; for
example, all tree points will be labelled trees. Instance segmentation involves identifying
and labelling objects belonging to target classes while distinguishing them from each other,
such as tree1, tree2, etc. Panoptic segmentation classifies every point/pixel in the input as
part of a class while distinguishing separate objects of a class from each other [19].

The most common application of image fusion in LiDAR remote sensing is the fusion
of 3D point clouds and RGB images to train a deep learning model for classification and
segmentation tasks [20–22]. The features extracted from both types of data are used to
enhance the performance of each class in the application of each class. Registration is the
process of matching and aligning two or more images or point clouds in the case of LiDAR
data obtained from different viewpoints and/or using different sensors; one example is
illustrated in [23], which achieves state-of-the-art performance. Completion is the process
of filling in missing information from datasets that could result from the limitations of the
sensors, conditions at the time of data capture, or the method of capture. For far-away
distances, the spatial resolution of a LiDAR sensor is lower, sometimes resulting in finer
details, such as road markings, signs, poles, etc., showing up incomplete. One example of
completion can be found in [5]. Most completion tasks on LiDAR point clouds are done
before training a classification model to improve performance and robustness.

4. Deep Learning Models

Advances have been made to produce DL models that are lightweight and efficient.
Feature learning models on 3D point clouds can be categorized as projection-based and
point-based models. This section briefly discusses models used as backbones or improved
for newer networks.

4.1. Projection-Based Methods

Some projection-based models create 2D projections from 3D point clouds and use
traditional 2D feature learning. This process primarily depends on projection direction (X,
Y or Z—default: Z) and other aspects such as the grid (size, scale, shape). Other projection
models create volumetric grids or voxels through 3D feature extraction layers.

• 2D Convolutional Neural Networks

U-Net [24]: builds on a fully convolutional model and extends it to work with few
training data while providing better performance. The U-Net architecture consists of
repeated two unpadded 3 × 3 convolutions followed by ReLU and downsampling 2 × 2
max pooling with stride 2. For each convolution step, the number of feature channels is
doubled. In the deconvolution steps, the features are upsampled and followed by a 2 × 2
convolution that halves the number of channels. The resulting feature map goes through
cropping and two 3 × 3 convolutions followed by a ReLU. The cropping is necessary
because of the border pixels lost after every convolution. Finally, a 1 × 1 convolution is
applied to label pixels and generate segmentation results.

DeepLab [25]: employs atrous convolution [25,26] to change the scope of convolution
and extract global features while also allowing larger networks without extra parameters.
DeepLab proposes Atrous Spatial Pyramid Pooling (ASPP) to segment at different scales
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by applying the same filters at different sampling rates and field-of-views, then the outputs
are added together. To overcome the toll downsampling and max pooling operations in
deep convolutional neural networks (DCNNs), DeepLab implements the fully connected
Conditional Random Field (CRF) from [27], which is trained separately from the rest of
the network. Iterations DeepLabV3 [28] and DeepLabV3+ [29] improve the performance
of DeepLab. Unlike [25], DeepLabV3 [28] performs batch normalization within ASPP.
Additionally, global average pooling is applied to the last feature map. The resulting image-
level features are fed into a 1 × 1 convolution with 256 filters, then multiplied to the desired
spatial dimension. DeepLabV3 abandons the CRF and replaces it with concatenating and
aggregating the resulting features and passing them through another 1 × 1 convolution
with 256 filters before computing the final logits. DeepLabV3+ [29] uses a decoder module
to refine segmentation results, especially around object boundaries. Depth-wise separable
convolutions are applied to ASPP pooling and decoder modules resulting in a faster and
more robust network.

VGGNet [30] evaluates the effect of increasing the network depth of a convolutional
network using very small 3 × 3 convolution filters. It improves the classification perfor-
mance compared to previous state-of-the-art models by pushing the depth to 16–19 weight
layers. ResNet [31] adopts residual learning to every stacked layer in the convolutional
network. The shortcut connections are added without increasing parameter or computa-
tion complexity. The residual learning allows deep networks with performance gain over
shallower networks.

• Multiview representation

MVCNN [32] tackles 3D feature learning using traditional image-focused networks by
making 2D renders of the 3D object from different angles and passing it through a standard
CNN. MVCNN generates 80 views of the 3D object by placing 20 virtual “cameras” pointed
at the object’s centroid, then generates 4 renders per camera at 0-, 90-, 180-, and 270-degree
rotation along the axis through the camera and object center. After each image is passed
through the first CNN, the outputs are aggregated at a view-pooling layer which performs
element-wise maximum operation across the different input views before passing through
the remaining section of the network, i.e., the second CNN.

• Volumetric grid representation

VoxNet [33] uses occupancy grids to efficiently estimate occupied, free, and unknown
space provided by ranging measurements. Small (32 × 32 × 32 voxels) dense voxels
are used to optimize GPU usage. VoxNet uses a more basic 3D CNN to extract and
learn features, consisting of 5 of two convolution layers, a convolution and pooling layer,
and two fully connected layers. The model can perform object classification in real-time
while achieving state-of-the-art performance. VoxelNet [34] introduces a multi-layer voxel
feature encoding (VFE) that enables inter-point interaction within a voxel. The point cloud
is divided into equally spaced voxels encoded using the stacked VFE layers, allowing
complex local 3D information learning. VoxelNet works on object detection using a Region
Proposal Network (RPN) at the final stage to create bounding boxes.

4.2. Point-Based Methods

Point-based methods consume unstructured and unordered point clouds. Some of the
models covered in this section are used as backbones or parts of a larger architecture, while
others are adapted for remote sensing tasks with minimal modifications.

• PointNets

PointNet [11] directly consumes point cloud data for feature extraction. The network
provides a unified approach to 3D recognition that can be applied for various tasks such
as object classification, instance segmentation, and semantic segmentation. PointNet uses
Multi-Layer Perceptrons (MLPs) combined with a joint alignment network. To hold invariance
under geometric transformations, the input is passed through a T-Net module [11], where

249



Sensors 2022, 22, 7868

it is multiplied by an affine transformation matrix. PointNet provides great performance
while remaining lightweight and computationally efficient. PointNet cannot produce
local features of neighbouring points; PointNet++ [13] introduces a class pyramid feature
aggregation scheme. The scheme comprises three stacked layers: the sampling layer, the
grouping layer, and the PointNet layer. This allows PointNet++ to extract features in a
hierarchical fashion similar to traditional image learning, reducing local information loss.
PointASNL [35] is an end-to-end network that effectively deals with noisy point clouds.
The two primary components of the model are the adaptive sampling (AS) and the local-
nonlocal (L-NL) modules. Initially, the AS module reweighs neighbour points surrounding
the initial sampled points from the farthest point sampling and then adaptively adjusts the
sampled points beyond the point cloud. The L-NL module captures the neighbour and
long-range dependencies of the sampled point. Self-Organizing Network (SO-Net) [36]
generates a Self-Organizing Map (SOM) to simulate point cloud spatial distribution. The
SOM retrieves hierarchical features from individual points and SOM nodes. A Point-to-
node search is performed on the output of the SOM for each point. Each point is normalized,
and features are learned through a series of fully connected layers. Node feature extraction
is done through channel-wise max-pooling the point features. Final learned features are
extracted using a batch of fully connected layers referred to as a small PointNet.

• (Graph) Convolutional Point Networks

ConvPoint [37] proposes continuous convolution kernels to allow arbitrary point
cloud sizes. Points {q} are selected iteratively from the input point cloud {p} until the
target number of points is reached through a score-based process. Using a kd-tree built
on the input point cloud, K-nearest neighbour search from {p} is performed on points
in {q}. A convolution operation is performed for each subset, generating the output
features. Operations detailed by ConvPoint are successfully adapted for classification,
part segmentation, and semantic segmentation tasks. ConvPoint can produce significant
performance with time- and cost-efficient. Dynamic Graph CNN (DGCNN) [38] generates
local neighbourhood graphs and applies convolution on the edges connecting neighbour
point pairs. Unlike traditional graph CNNs, DGCNN uses a dynamic graph where the set
of k-nearest neighbours for a point change between layers in the network and is calculated
from the sequence of embeddings. The EdgeConv block introduced by DGCNN computes
edge features for each input point and applies an MLP followed by channel-wise symmetric
aggregation. Taylor Gaussian mixture model (GMM) network (TGNet) [39] is composed of
units named TGConv that perform convolution operations parametrized by a family of
filters on irregular point sets. The filters are products of geometric features expressed by
Gaussian weighted Taylor kernels and local point features extracted from local coordinates.
TGConv features are aggregated using parametric pooling to generate feature vectors for
each point. TGNet uses a CRF at the output layer to improve segmentation results.

5. Benchmark Datasets

Advancements in Deep learning on point clouds have attracted more and more atten-
tion, especially in the last few years. Several publicly available datasets were also released,
which helped further support research on DL development. An increasing number of meth-
ods have been introduced to deal with various challenges related to point cloud processing,
including 3D shape classification, 3D object detection and tracking, 3D point cloud seg-
mentation, 3D point cloud registration, 6-DOF pose estimation, and 3D reconstruction [18].
Table 1 briefly overviews some of the most commonly used publicly available point cloud
datasets. Outdoor datasets are classified based on acquisition technique, Aerial, Mobile,
or Terrestrial Laser scanned data or ALS, MLS, and TLS, respectively. The remaining
datasets in this paper are indoor laser-scanned datasets and datasets of object scans. While
ModelNet40 and S3DIS are not LiDAR scanned datasets, they are included as we found
that they are the most commonly tested datasets for their respective tasks in remote sensing
classifications. ModelNet40 dataset consists of CAD files; most point cloud network testing
uses a point cloud sampled from the 3D object files. The models that used the ModelNet40
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dataset outlined later in the paper are tested on the dataset by sampling the objects into a
point cloud and then applying the model. Similarly, S3DIS, while not LiDAR data, is a point
cloud and the models tested on it are suitable for point clouds obtained from LiDAR scans.

Table 1. Benchmark datasets for training and testing deep learning on 3D point clouds.

Dataset Data Type Data Format Points/Objects No. of Classes Density

ModelNet40 [40] 3D CAD OFF Files 127,915 Models 40 N/A

ISPRS 3D Vaihingen
[41] ALS LiDAR x, y, z, reflectance,

return count 780.9 K pts 9 4–8 pts/m2

Hessigheim 3D [42] ALS LiDAR x, y, z, intensity,
return count

59.4 M training pts,
14.5 M validation
pts

11 800 pts/m2

2019 IEEE GRSS Data
fusion contest [43] ALS LiDAR x, y, z, intensity,

return count

83.7 M training pts,
83.7 M validation
pts

6 Very dense

AHN(3) [44] ALS LiDAR

x, y, z, intensity,
return count,
additional
normalization, and
location data

190.3 M pts 5 20 pts/m2

RoofN3D [45] ALS LiDAR multipoints,
multipolygons 118.1 K roofs 3 4.72 pts/m2

semanticKITTI [46] MLS LiDAR x, y, z, reflectance,
GPS data 4.549 K pts 25 (28) Sparse

S3DIS [47]
Indoor
Structured-light
3D scanner

x, y, z, r, g, b 215.0 M pts 12 35,800 pts/m2

Paris-Lille-3D [48] MLS LiDAR
x, y, z, reflectance,
additional position
data

143.1 M pts 10 coarse (50
total) 1000–2000 pts/m2

Toronto3D [49] MLS LiDAR

x, y, z, r, g, b,
intensity,
additional position
data

78.3 M pts 8 1000 pts/m2

ArCH [50] TLS LiDAR,
TLS+ALS LiDAR

x, y, z, r, g, b,
normalized
coordinates

102.1 M training
pts, 34.0 M testing
pts

6–9
depending on
the scene

subsampled
differently
depending on the
scene

Semantic3D [51] TLS LiDAR x, y, z, intensity, r,
g, b 4.0 B pts 8 Very dense

3D Forest [52] TLS LiDAR x, y, z, intensity 467.2 K pts 4 15–40 pts/m2

6. Performance Metrics

Various evaluation metrics have been used for segmentation, detection, and classi-
fication. The summary of the evaluation metrics [53] is shown in Table 2. Metrics for
segmentation, detection, and classification are the intersection over union (IoU), mean IoU,
and overall accuracy (OA) [53]. Detection and classification results are mainly analyzed
using precision, recall and F1-score, which takes the true positives (TP), false positives (FP),
and false negatives (FN) for calculation.
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Table 2. Performance Evaluation Metrics.

Metric Formula

IoU IoUi =
cii

cii+∑j 	=i cij+∑k 	=i cki

Where cij is ground truth class,
i predicted as j

mIoU mIoU = ∑N
i=1 IoUi

N
Where N is the number of

classes

OA OA = ∑N
i=1 cii

∑N
j=1 ∑N

k=1 cjk

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

F1 score F1 = 2TP
2TP+FP+FN

Average precision (AP) AP = 1
11 ∑

r∈{0,1,...,1}
max:≥r p()

Kappa coefficient K =
N ∑k

i=1 xii−∑k
i=1(xi+×x+i)

N2−∑k
i=1(xi+×x+i)

7. Comparative Analysis

The datasets ModelNet40, S3DIS, and Toronto3D provide an overview of benchmarks
used for different classification tasks: object classification, indoor scene classification, and
urban outdoor classification. Table 3 shows the performance comparison for the current 3D
object classification, indoor scene segmentation, and outdoor urban semantic segmentation
models using various evaluation metrics. The best-performing configuration for each
model was selected. For example, using a higher sampled point cloud in ModelNet40 tests
can produce better performance. Therefore, if the authors tested the models using different
point counts, the best set of results is used. The results outlined in the table are obtained
from the testing by each model’s respective author(s) except for the ConvPoint results
on Toronto3D, which we tested for this paper. From Table 3, we can see that DGCNN
and ConvPoint achieve the best performance on most datasets while being lightweight
relative to models with similar performance. Additionally, these two models have been
tested on multiple different tasks and different types of datasets. The major limitation of
ConvPoint is that the convolutional layer introduced is a scale agnostic, i.e., the object’s
size is important for scans and provides valuable information. DGCNN could be further
improved by adjusting the implementation details to improve the computational efficiency
of the model.

Most remote sensing papers use one of the previously outlined computer vision
models. The model is deployed directly for the application dataset or modified and attached
to post and/or preprocess pipelines. To further test the performance of the ConvPoint
model in this paper, we have also experimentally trained ConvPoint on Toronto3D using
labels such as L001, L003, and L004 and used L002 for testing. The training was run using
batch size 8, block size 8, and #of points 8192 for 100 Epochs. The testing results are
marked with a (*) in Table 4. Table 4 includes some applications categorized according to
their dataset, performance, and remote sensing deployment. We can conclude that both
DGCNN and ConvPoint have shown promising results across the different applications in
remote sensing.
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Table 3. Comparative Analysis of Deployed Models.

ModelNet40 Object Classification

Method OA Class Average Accuracy

PointNet [11] 89.2 86.2

PointNet++ [13] 91.9 -
ConvPoint [37] 92.5 89.6
DGCNN [38] 93.5 90.7
MVCNN [32] 90.1 79.5

FKAConv [54] 92.5 89.5

VoxNet [33] 83.0 -

SO-Net [36] 93.4 90.8

PointASNL [35] 93.2 -

S3DIS Indoor Semantic segmentation

Method OA mIOU

PointNet [11] 78.62 47.71

ConvPoint/Fusion [37] 85.2/88.8 62.6/68.2

DGCNN [38] 84.1 56.1

PointASNL [35] - 68.7

TGNet [39] 88.5 57.8

FKAConv [54] - 68.4

Toronto3D Urban MLS Semantic segmentation

Method OA mIoU Road
Road
mrk.

Natural Bldg
Util.
line

Pole Car Fence

PointNet++ [13] 84.88 41.81 89.27 0.00 69.00 54.10 43.70 23.30 52.00 3.00
DGCNN [38] 94.24 61.79 93.88 0.00 91.25 80.39 62.40 62.32 88.26 15.81
TGNet [39] 94.08 61.34 93.54 0.00 90.83 81.57 65.26 62.98 88.73 7.85

MSAAN [55] 95.90 75.00 96.10 59.90 94.40 85.40 85.80 77.00 83.70 17.70
ConvPoint * [37] 96.07 74.82 97.07 54.83 93.55 90.60 82.9 76.19 92.93 12.42
[56] 93.6 70.8 92.2 53.8 92.8 86.0 72.2 72.5 75.7 21.2

Table 4. Overview of some deep learning contributions focused on remote sensing data.

Paper Category
Architecture(s) Based
on/ Proposed

Test Dataset Performance 1 Application

[5] 2D Projection CNN, cGAN TUM MLS 2016 85.04 *

Road marking
extraction,
classification, and
completion

[57] 2D Projection 1D CNN, 2D CNN,
LSTM DNN ISPRS 3D Vaihingen 79.4 * ALS Point cloud

classification

[56] 2D projection
Point CNN 3D Convolution U-Net Toronto3D 70.8 ˆ MLS Point cloud

semantic segmentation

[58] Multi-view Projection MVCNN RoofN3D
99 * Saddleback
96 * Two-sided Hip
83 * Pyramid

Roof Classification

[59] Voxelization Clustering,
Voxelization, 3D CNN ISPRS 3D Vaihingen 79.60 * ALS Point cloud

classification
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Table 4. Cont.

Paper Category
Architecture(s) Based
on/ Proposed

Test Dataset Performance 1 Application

[60] Voxelization, 2D
projection DenseNet201 ISPRS 3D Vaihingen 83.62 * ALS Point cloud

classification

[61] PointNet/MLP/FCL
PointNet++, Joint
Manifold Learning,
Global Graph-based

ISPRS 3D Vaihingen
AHN3

66.2 *
83.7 *

ALS Point cloud
classification

[62] PointNet/MLP/FCL PointNet++ Proprietary 95.4 ~
TLS Forest Point cloud
Semantic
Segmentation

[21] PointNet/MLP/FCL MSSCN, MLP, Spatial
Aggregation Network

S3DIS
ScanNet

89.8 ~
86.3 ~

Point Cloud Semantic
Segmentation

[55] PointNet/MLP/FCL MSAAN, RandLA-Net CSPC (scene-2,
scene-5) Toronto3D 64.5 ˆ, 61.8 ˆ, 75.0 ˆ Point Cloud Semantic

Segmentation

[63] PointNet/MLP/FCL PointNet T-Nets,
FWNet, 1D CNN ZORZI et al. 2019 76 *

Full-Waveform LiDAR
Semantic
Segmentation

[64] Point CNN Dconv, CNN, U-Net ISPRS 3D Vaihingen 70.7 * ALS Point cloud
classification

[65] Point CNN ConvPoint, CNN
Saint-Jean NB
(provincial website)
Montreal QC (CMM)

96.6 ˆ
69.9 ˆ

ALS Point cloud
classification

[66] Voxelization
3D CNN 3D CNN, DQN ISPRS 3D Vaihingen 98.0 ~

Point cloud
classification and
reconstruction

[67] Graph/Point CNN Graph attention CNN ISPRS 3D Vaihingen 71.5 * ALS Point cloud
classification

[68] Graph/Point CNN DGCNN AHN3 89.7 * ALS Point cloud
classification

[6] Graph/Point CNN DGCNN ArCH 81.4 *
Cultural Heritage
point cloud
segmentation

1 f1-Score is denoted by *, mIOU is denoted by ˆ and OA is denoted by ~.

8. Conclusions and Future Directions

Recent work on the advances of deep learning on LiDAR 3D point cloud processing
was analyzed and summarized. An overview of the different model types and the state-
of-the-art and/or fundamental models of each type was provided. Additionally, the
performance of the models was provided on datasets for different classification tasks. The
strongest performing models were trending towards 3D Graph CNNs and 3D CNNs [69,70]
that work directly on the raw point cloud data. These models can provide state-of-the-art
performance and remain computationally lightweight. Finally, different applications of
remote sensing that deploy deep learning models were overviewed. One major challenge
when comparing the remote sensing models was the lack of standardized test datasets and
the frequent use of proprietary datasets. Notable test datasets available are Toronto3D,
Paris-Lille 3D, ISPRS 3D, and S3dIS. Future Directions would involve expanding the
application of the state-of-the-art methods in autonomous driving [71,72].
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